diff --git a/CHANGELOG.md b/CHANGELOG.md index 6d89c58..26a4701 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -1,6 +1,6 @@ # @vladmandic/face-api - Version: **1.7.14** + Version: **1.7.15** Description: **FaceAPI: AI-powered Face Detection & Rotation Tracking, Face Description & Recognition, Age & Gender & Emotion Prediction for Browser and NodeJS using TensorFlow/JS** Author: **Vladimir Mandic ** @@ -9,7 +9,10 @@ ## Changelog -### **HEAD -> master** 2024/09/10 mandic00@live.com +### **1.7.15** 2025/02/05 mandic00@live.com + + +### **origin/master** 2024/09/10 mandic00@live.com ### **1.7.14** 2024/09/10 mandic00@live.com diff --git a/README.md b/README.md index f9565a9..cb688a9 100644 --- a/README.md +++ b/README.md @@ -104,8 +104,11 @@ NodeJS examples are: 2021-03-14 08:42:09 STATE: Main: worker exit: 1888019 0 ``` -Note that `@tensorflow/tfjs-node` or `@tensorflow/tfjs-node-gpu` -must be installed before using any **NodeJS** examples +### NodeJS Notes +- Supported NodeJS versions are **14** up to **22** + NodeJS version **23** and higher are not supported due to incompatibility with TensorFlow/JS +- `@tensorflow/tfjs-node` or `@tensorflow/tfjs-node-gpu` + must be installed before using any **NodeJS** examples


diff --git a/dist/face-api.esm-nobundle.js b/dist/face-api.esm-nobundle.js index dee4a85..7c51ff7 100644 --- a/dist/face-api.esm-nobundle.js +++ b/dist/face-api.esm-nobundle.js @@ -4,4 +4,4 @@ author: ' */ -var ur=Object.defineProperty;var ho=Object.getOwnPropertyDescriptor;var bo=Object.getOwnPropertyNames;var go=Object.prototype.hasOwnProperty;var xo=(o=>typeof require!="undefined"?require:typeof Proxy!="undefined"?new Proxy(o,{get:(t,e)=>(typeof require!="undefined"?require:t)[e]}):o)(function(o){if(typeof require!="undefined")return require.apply(this,arguments);throw Error('Dynamic require of "'+o+'" is not supported')});var Ye=(o,t)=>{for(var e in t)ur(o,e,{get:t[e],enumerable:!0})},pr=(o,t,e,r)=>{if(t&&typeof t=="object"||typeof t=="function")for(let a of bo(t))!go.call(o,a)&&a!==e&&ur(o,a,{get:()=>t[a],enumerable:!(r=ho(t,a))||r.enumerable});return o},w=(o,t,e)=>(pr(o,t,"default"),e&&pr(e,t,"default"));var n={};Ye(n,{version:()=>Po});w(n,mn);w(n,pn);w(n,un);import*as mn from"@tensorflow/tfjs/dist/index.js";import*as pn from"@tensorflow/tfjs-backend-webgl/dist/index.js";import*as un from"@tensorflow/tfjs-backend-wasm/dist/index.js";var fr="4.22.0",vo="4.22.0",yo="4.22.0",To="4.22.0",_o="4.22.0",Po={tfjs:fr,"tfjs-core":fr,"tfjs-converter":vo,"tfjs-backend-cpu":yo,"tfjs-backend-webgl":To,"tfjs-backend-wasm":_o};var Sr={};Ye(Sr,{AnchorPosition:()=>Ke,DrawBox:()=>ee,DrawBoxOptions:()=>de,DrawFaceLandmarks:()=>De,DrawFaceLandmarksOptions:()=>Fe,DrawTextField:()=>xt,DrawTextFieldOptions:()=>Wt,drawContour:()=>Z,drawDetections:()=>Io,drawFaceExpressions:()=>No,drawFaceLandmarks:()=>So});function Z(o,t,e=!1){if(o.beginPath(),t.slice(1).forEach(({x:r,y:a},i)=>{let s=t[i];o.moveTo(s.x,s.y),o.lineTo(r,a)}),e){let r=t[t.length-1],a=t[0];if(!r||!a)return;o.moveTo(r.x,r.y),o.lineTo(a.x,a.y)}o.stroke()}var lr={};Ye(lr,{computeReshapedDimensions:()=>je,getCenterPoint:()=>bt,isDimensions:()=>ue,isEven:()=>pe,isFloat:()=>Ge,isTensor:()=>dt,isTensor1D:()=>wo,isTensor2D:()=>Ve,isTensor3D:()=>K,isTensor4D:()=>R,isValidNumber:()=>G,isValidProbablitiy:()=>Mt,range:()=>X,round:()=>ht});var A=class o{constructor(t,e){if(!G(t)||!G(e))throw new Error(`Dimensions.constructor - expected width and height to be valid numbers, instead have ${JSON.stringify({width:t,height:e})}`);this._width=t,this._height=e}get width(){return this._width}get height(){return this._height}reverse(){return new o(1/this.width,1/this.height)}};function dt(o,t){return o instanceof n.Tensor&&o.shape.length===t}function wo(o){return dt(o,1)}function Ve(o){return dt(o,2)}function K(o){return dt(o,3)}function R(o){return dt(o,4)}function Ge(o){return o%1!==0}function pe(o){return o%2===0}function ht(o,t=2){let e=10**t;return Math.floor(o*e)/e}function ue(o){return o&&o.width&&o.height}function je({width:o,height:t},e){let r=e/Math.max(t,o);return new A(Math.round(o*r),Math.round(t*r))}function bt(o){return o.reduce((t,e)=>t.add(e),new v(0,0)).div(new v(o.length,o.length))}function X(o,t,e){return Array(o).fill(0).map((r,a)=>t+a*e)}function G(o){return!!o&&o!==1/0&&o!==-1/0&&!Number.isNaN(o)||o===0}function Mt(o){return G(o)&&o>=0&&o<=1}var v=class o{constructor(t,e){this._x=t,this._y=e}get x(){return this._x}get y(){return this._y}add(t){return new o(this.x+t.x,this.y+t.y)}sub(t){return new o(this.x-t.x,this.y-t.y)}mul(t){return new o(this.x*t.x,this.y*t.y)}div(t){return new o(this.x/t.x,this.y/t.y)}abs(){return new o(Math.abs(this.x),Math.abs(this.y))}magnitude(){return Math.sqrt(this.x**2+this.y**2)}floor(){return new o(Math.floor(this.x),Math.floor(this.y))}};var C=class o{static isRect(t){return!!t&&[t.x,t.y,t.width,t.height].every(G)}static assertIsValidBox(t,e,r=!1){if(!o.isRect(t))throw new Error(`${e} - invalid box: ${JSON.stringify(t)}, expected object with properties x, y, width, height`);if(!r&&(t.width<0||t.height<0))throw new Error(`${e} - width (${t.width}) and height (${t.height}) must be positive numbers`)}constructor(t,e=!0){let r=t||{},a=[r.left,r.top,r.right,r.bottom].every(G),i=[r.x,r.y,r.width,r.height].every(G);if(!i&&!a)throw new Error(`Box.constructor - expected box to be IBoundingBox | IRect, instead have ${JSON.stringify(r)}`);let[s,c,m,p]=i?[r.x,r.y,r.width,r.height]:[r.left,r.top,r.right-r.left,r.bottom-r.top];o.assertIsValidBox({x:s,y:c,width:m,height:p},"Box.constructor",e),this._x=s,this._y=c,this._width=m,this._height=p}get x(){return this._x}get y(){return this._y}get width(){return this._width}get height(){return this._height}get left(){return this.x}get top(){return this.y}get right(){return this.x+this.width}get bottom(){return this.y+this.height}get area(){return this.width*this.height}get topLeft(){return new v(this.left,this.top)}get topRight(){return new v(this.right,this.top)}get bottomLeft(){return new v(this.left,this.bottom)}get bottomRight(){return new v(this.right,this.bottom)}round(){let[t,e,r,a]=[this.x,this.y,this.width,this.height].map(i=>Math.round(i));return new o({x:t,y:e,width:r,height:a})}floor(){let[t,e,r,a]=[this.x,this.y,this.width,this.height].map(i=>Math.floor(i));return new o({x:t,y:e,width:r,height:a})}toSquare(){let{x:t,y:e,width:r,height:a}=this,i=Math.abs(r-a);return re&&(c=-f+e+r,f=e),l>t&&(m=-l+t+a,l=t),p<1&&(m=2-p,p=1),u<1&&(m=2-u,u=1),{dy:s,edy:m,dx:i,edx:c,y:u,ey:l,x:p,ex:f,w:r,h:a}}calibrate(t){return new o({left:this.left+t.left*this.width,top:this.top+t.top*this.height,right:this.right+t.right*this.width,bottom:this.bottom+t.bottom*this.height}).toSquare().round()}};var Ct=class extends C{constructor(t,e,r,a,i=!1){super({left:t,top:e,right:r,bottom:a},i)}};var It=class o{constructor(t,e,r,a,i){this._imageDims=new A(i.width,i.height),this._score=t,this._classScore=e,this._className=r,this._box=new C(a).rescale(this._imageDims)}get score(){return this._score}get classScore(){return this._classScore}get className(){return this._className}get box(){return this._box}get imageDims(){return this._imageDims}get imageWidth(){return this.imageDims.width}get imageHeight(){return this.imageDims.height}get relativeBox(){return new C(this._box).rescale(this.imageDims.reverse())}forSize(t,e){return new o(this.score,this.classScore,this.className,this.relativeBox,{width:t,height:e})}};var D=class o extends It{constructor(t,e,r){super(t,t,"",e,r)}forSize(t,e){let{score:r,relativeBox:a,imageDims:i}=super.forSize(t,e);return new o(r,a,i)}};function dr(o,t,e=!0){let r=Math.max(0,Math.min(o.right,t.right)-Math.max(o.left,t.left)),a=Math.max(0,Math.min(o.bottom,t.bottom)-Math.max(o.top,t.top)),i=r*a;return e?i/(o.area+t.area-i):i/Math.min(o.area,t.area)}function hr(o){let t=o.map(c=>c.x),e=o.map(c=>c.y),r=t.reduce((c,m)=>mmcc({score:s,boxIndex:c})).sort((s,c)=>s.score-c.score).map(s=>s.boxIndex),i=[];for(;a.length>0;){let s=a.pop();i.push(s);let c=a,m=[];for(let p=0;pm[u]<=e)}return i}function J(o,t){return n.tidy(()=>{let[e,r,a]=t,i=n.fill([...o.shape.slice(0,3),1],e,"float32"),s=n.fill([...o.shape.slice(0,3),1],r,"float32"),c=n.fill([...o.shape.slice(0,3),1],a,"float32"),m=n.concat([i,s,c],3);return n.sub(o,m)})}function gr(o,t=!1){return n.tidy(()=>{let[e,r]=o.shape.slice(1);if(e===r)return o;let a=Math.abs(e-r),i=Math.round(a*(t?.5:1)),s=e>r?2:1,c=l=>{let d=o.shape.slice();return d[s]=l,n.fill(d,0,"float32")},m=c(i),p=a-m.shape[s],f=[t&&p?c(p):null,o,m].filter(l=>!!l).map(l=>n.cast(l,"float32"));return n.concat(f,s)})}function Rn(o){let t=o.slice();for(let e=t.length-1;e>0;e--){let r=Math.floor(Math.random()*(e+1)),a=t[e];t[e]=t[r],t[r]=a}return t}function fe(o){return 1/(1+Math.exp(-o))}function On(o){return Math.log(o/(1-o))}var Nt=class extends C{constructor(t,e,r,a,i=!1){super({x:t,y:e,width:r,height:a},i)}};var Fo=.5,Do=.43,Eo=.45,$=class{constructor(t,e,r=new v(0,0)){let{width:a,height:i}=e;this._imgDims=new A(a,i),this._shift=r,this._positions=t.map(s=>s.mul(new v(a,i)).add(r))}get shift(){return new v(this._shift.x,this._shift.y)}get imageWidth(){return this._imgDims.width}get imageHeight(){return this._imgDims.height}get positions(){return this._positions}get relativePositions(){return this._positions.map(t=>t.sub(this._shift).div(new v(this.imageWidth,this.imageHeight)))}forSize(t,e){return new this.constructor(this.relativePositions,{width:t,height:e})}shiftBy(t,e){return new this.constructor(this.relativePositions,this._imgDims,new v(t,e))}shiftByPoint(t){return this.shiftBy(t.x,t.y)}align(t,e={}){if(t){let i=t instanceof D?t.box.floor():new C(t);return this.shiftBy(i.x,i.y).align(null,e)}let{useDlibAlignment:r,minBoxPadding:a}={useDlibAlignment:!1,minBoxPadding:.2,...e};return r?this.alignDlib():this.alignMinBbox(a)}alignDlib(){let t=this.getRefPointsForAlignment(),[e,r,a]=t,i=f=>a.sub(f).magnitude(),s=(i(e)+i(r))/2,c=Math.floor(s/Eo),m=bt(t),p=Math.floor(Math.max(0,m.x-Fo*c)),u=Math.floor(Math.max(0,m.y-Do*c));return new Nt(p,u,Math.min(c,this.imageWidth+p),Math.min(c,this.imageHeight+u))}alignMinBbox(t){let e=hr(this.positions);return e.pad(e.width*t,e.height*t)}getRefPointsForAlignment(){throw new Error("getRefPointsForAlignment not implemented by base class")}};var xr=class extends ${getRefPointsForAlignment(){let t=this.positions;return[t[0],t[1],bt([t[3],t[4]])]}};var Lt=class extends ${getJawOutline(){return this.positions.slice(0,17)}getLeftEyeBrow(){return this.positions.slice(17,22)}getRightEyeBrow(){return this.positions.slice(22,27)}getNose(){return this.positions.slice(27,36)}getLeftEye(){return this.positions.slice(36,42)}getRightEye(){return this.positions.slice(42,48)}getMouth(){return this.positions.slice(48,68)}getRefPointsForAlignment(){return[this.getLeftEye(),this.getRightEye(),this.getMouth()].map(bt)}};var Kt=class{constructor(t,e){this._label=t,this._distance=e}get label(){return this._label}get distance(){return this._distance}toString(t=!0){return`${this.label}${t?` (${ht(this.distance)})`:""}`}};var Qt=class extends C{static assertIsValidLabeledBox(t,e){if(C.assertIsValidBox(t,e),!G(t.label))throw new Error(`${e} - expected property label (${t.label}) to be a number`)}constructor(t,e){super(t),this._label=e}get label(){return this._label}};var gt=class o{constructor(t,e){if(typeof t!="string")throw new Error("LabeledFaceDescriptors - constructor expected label to be a string");if(!Array.isArray(e)||e.some(r=>!(r instanceof Float32Array)))throw new Error("LabeledFaceDescriptors - constructor expected descriptors to be an array of Float32Array");this._label=t,this._descriptors=e}get label(){return this._label}get descriptors(){return this._descriptors}toJSON(){return{label:this.label,descriptors:this.descriptors.map(t=>Array.from(t))}}static fromJSON(t){let e=t.descriptors.map(r=>new Float32Array(r));return new o(t.label,e)}};var vr=class extends Qt{static assertIsValidPredictedBox(t,e){if(Qt.assertIsValidLabeledBox(t,e),!Mt(t.score)||!Mt(t.classScore))throw new Error(`${e} - expected properties score (${t.score}) and (${t.classScore}) to be a number between [0, 1]`)}constructor(t,e,r,a){super(t,e),this._score=r,this._classScore=a}get score(){return this._score}get classScore(){return this._classScore}};function Q(o){return o.detection instanceof D}function St(o,t){return{...o,...{detection:t}}}function Ue(){let o=window.fetch;if(!o)throw new Error("fetch - missing fetch implementation for browser environment");return{Canvas:HTMLCanvasElement,CanvasRenderingContext2D,Image:HTMLImageElement,ImageData,Video:HTMLVideoElement,createCanvasElement:()=>document.createElement("canvas"),createImageElement:()=>document.createElement("img"),createVideoElement:()=>document.createElement("video"),fetch:o,readFile:()=>{throw new Error("readFile - filesystem not available for browser environment")}}}function te(){return typeof global=="object"&&typeof process!="undefined"&&process.versions!=null&&process.versions.node!=null}function le(o){let t="";if(!o&&te())try{o=xo("fs")}catch(r){t=r.toString()}return{readFile:o?r=>new Promise((a,i)=>{o.readFile(r,(s,c)=>s?i(s):a(c))}):()=>{throw new Error(`readFile - failed to require fs in nodejs environment with error: ${t}`)}}}function Xe(){let o=global.Canvas||global.HTMLCanvasElement,t=global.Image||global.HTMLImageElement,e=global.Video||global.HTMLVideoElement,r=()=>{if(o)return new o;throw new Error("createCanvasElement - missing Canvas implementation for nodejs environment")},a=()=>{if(t)return new t;throw new Error("createImageElement - missing Image implementation for nodejs environment")},i=()=>{if(e)return new e;throw new Error("createVideoElement - missing Video implementation for nodejs environment")},s=global.fetch,c=le();return{Canvas:o||class{},CanvasRenderingContext2D:global.CanvasRenderingContext2D||class{},Image:t||class{},ImageData:global.ImageData||class{},Video:global.HTMLVideoElement||class{},createCanvasElement:r,createImageElement:a,createVideoElement:i,fetch:s,...c}}function Je(){return typeof window=="object"&&typeof document!="undefined"&&typeof HTMLImageElement!="undefined"&&typeof HTMLCanvasElement!="undefined"&&typeof HTMLVideoElement!="undefined"&&typeof ImageData!="undefined"&&typeof CanvasRenderingContext2D!="undefined"}var M;function Mo(){if(!M)throw new Error("getEnv - environment is not defined, check isNodejs() and isBrowser()");return M}function qe(o){M=o}function Ze(){return Je()?qe(Ue()):te()?qe(Xe()):null}function Co(o){if(M||Ze(),!M)throw new Error("monkeyPatch - environment is not defined, check isNodejs() and isBrowser()");let{Canvas:t=M.Canvas,Image:e=M.Image}=o;M.Canvas=t,M.Image=e,M.createCanvasElement=o.createCanvasElement||(()=>new t),M.createImageElement=o.createImageElement||(()=>new e),M.ImageData=o.ImageData||M.ImageData,M.Video=o.Video||M.Video,M.fetch=o.fetch||M.fetch,M.readFile=o.readFile||M.readFile}var _={getEnv:Mo,setEnv:qe,initialize:Ze,createBrowserEnv:Ue,createFileSystem:le,createNodejsEnv:Xe,monkeyPatch:Co,isBrowser:Je,isNodejs:te};Ze();function At(o){return!_.isNodejs()&&typeof o=="string"?document.getElementById(o):o}function W(o){let{Canvas:t,CanvasRenderingContext2D:e}=_.getEnv();if(o instanceof e)return o;let r=At(o);if(!(r instanceof t))throw new Error("resolveContext2d - expected canvas to be of instance of Canvas");let a=r.getContext("2d",{willReadFrequently:!0});if(!a)throw new Error("resolveContext2d - canvas 2d context is null");return a}var Ke=(a=>(a.TOP_LEFT="TOP_LEFT",a.TOP_RIGHT="TOP_RIGHT",a.BOTTOM_LEFT="BOTTOM_LEFT",a.BOTTOM_RIGHT="BOTTOM_RIGHT",a))(Ke||{}),Wt=class{constructor(t={}){let{anchorPosition:e,backgroundColor:r,fontColor:a,fontSize:i,fontStyle:s,padding:c}=t;this.anchorPosition=e||"TOP_LEFT",this.backgroundColor=r||"rgba(0, 0, 0, 0.5)",this.fontColor=a||"rgba(255, 255, 255, 1)",this.fontSize=i||14,this.fontStyle=s||"Georgia",this.padding=c||4}},xt=class o{constructor(t,e,r={}){this.text=typeof t=="string"?[t]:t instanceof o?t.text:t,this.anchor=e,this.options=new Wt(r)}measureWidth(t){let{padding:e}=this.options;return this.text.map(r=>t.measureText(r).width).reduce((r,a)=>r{let b=m+f.x,y=m+f.y+(d+1)*s;r.fillText(l,b,y)})}};var de=class{constructor(t={}){let{boxColor:e,lineWidth:r,label:a,drawLabelOptions:i}=t;this.boxColor=e||"rgba(0, 0, 255, 1)",this.lineWidth=r||2,this.label=a;let s={anchorPosition:"BOTTOM_LEFT",backgroundColor:this.boxColor};this.drawLabelOptions=new Wt({...s,...i})}},ee=class{constructor(t,e={}){this.box=new C(t),this.options=new de(e)}draw(t){let e=W(t),{boxColor:r,lineWidth:a}=this.options,{x:i,y:s,width:c,height:m}=this.box;e.strokeStyle=r,e.lineWidth=a,e.strokeRect(i,s,c,m);let{label:p}=this.options;p&&new xt([p],{x:i-a/2,y:s},this.options.drawLabelOptions).draw(t)}};function Io(o,t){(Array.isArray(t)?t:[t]).forEach(r=>{let a=r instanceof D?r.score:Q(r)?r.detection.score:void 0,i=r instanceof D?r.box:Q(r)?r.detection.box:new C(r),s=a?`${ht(a)}`:void 0;new ee(i,{label:s}).draw(o)})}function he(o){let{Image:t,Video:e}=_.getEnv();return o instanceof t&&o.complete||o instanceof e&&o.readyState>=3}function yr(o){return new Promise((t,e)=>{if(o instanceof _.getEnv().Canvas||he(o)){t(null);return}function r(i){i.currentTarget&&(i.currentTarget.removeEventListener("load",a),i.currentTarget.removeEventListener("error",r),e(i))}function a(i){i.currentTarget&&(i.currentTarget.removeEventListener("load",a),i.currentTarget.removeEventListener("error",r),t(i))}o.addEventListener("load",a),o.addEventListener("error",r)})}function Tr(o){return new Promise((t,e)=>{o instanceof Blob||e(new Error("bufferToImage - expected buf to be of type: Blob"));let r=new FileReader;r.onload=()=>{typeof r.result!="string"&&e(new Error("bufferToImage - expected reader.result to be a string, in onload"));let a=_.getEnv().createImageElement();a.onload=()=>t(a),a.onerror=e,a.src=r.result},r.onerror=e,r.readAsDataURL(o)})}function kt(o){let{Image:t,Video:e}=_.getEnv();return o instanceof t?new A(o.naturalWidth,o.naturalHeight):o instanceof e?new A(o.videoWidth,o.videoHeight):new A(o.width,o.height)}function Bt({width:o,height:t}){let{createCanvasElement:e}=_.getEnv(),r=e();return r.width=o,r.height=t,r}function be(o,t){let{ImageData:e}=_.getEnv();if(!(o instanceof e)&&!he(o))throw new Error("createCanvasFromMedia - media has not finished loading yet");let{width:r,height:a}=t||kt(o),i=Bt({width:r,height:a});return o instanceof e?W(i).putImageData(o,0,0):W(i).drawImage(o,0,0,r,a),i}async function _r(o,t){let e=t||_.getEnv().createCanvasElement(),[r,a,i]=o.shape.slice(R(o)?1:0),s=n.tidy(()=>o.as3D(r,a,i).toInt());return await n.browser.toPixels(s,e),s.dispose(),e}function Qe(o){let{Image:t,Canvas:e,Video:r}=_.getEnv();return o instanceof t||o instanceof e||o instanceof r}function Pr(o,t,e=!1){let{Image:r,Canvas:a}=_.getEnv();if(!(o instanceof r||o instanceof a))throw new Error("imageToSquare - expected arg0 to be HTMLImageElement | HTMLCanvasElement");if(t<=0)return Bt({width:1,height:1});let i=kt(o),s=t/Math.max(i.height,i.width),c=s*i.width,m=s*i.height,p=Bt({width:t,height:t}),u=o instanceof a?o:be(o),f=Math.abs(c-m)/2,l=e&&c0&&u.height>0&&W(p).drawImage(u,l,d,c,m),p}var tt=class{constructor(t,e=!1){this._imageTensors=[];this._canvases=[];this._treatAsBatchInput=!1;this._inputDimensions=[];this._inputSize=0;if(!Array.isArray(t))throw new Error(`NetInput.constructor - expected inputs to be an Array of TResolvedNetInput or to be instanceof tf.Tensor4D, instead have ${t}`);this._treatAsBatchInput=e,this._batchSize=t.length,t.forEach((r,a)=>{if(K(r)){this._imageTensors[a]=r,this._inputDimensions[a]=r.shape;return}if(R(r)){let s=r.shape[0];if(s!==1)throw new Error(`NetInput - tf.Tensor4D with batchSize ${s} passed, but not supported in input array`);this._imageTensors[a]=r,this._inputDimensions[a]=r.shape.slice(1);return}let i=r instanceof _.getEnv().Canvas?r:be(r);this._canvases[a]=i,this._inputDimensions[a]=[i.height,i.width,3]})}get imageTensors(){return this._imageTensors}get canvases(){return this._canvases}get isBatchInput(){return this.batchSize>1||this._treatAsBatchInput}get batchSize(){return this._batchSize}get inputDimensions(){return this._inputDimensions}get inputSize(){return this._inputSize}get reshapedInputDimensions(){return X(this.batchSize,0,1).map((t,e)=>this.getReshapedInputDimensions(e))}getInput(t){return this.canvases[t]||this.imageTensors[t]}getInputDimensions(t){return this._inputDimensions[t]}getInputHeight(t){return this._inputDimensions[t][0]}getInputWidth(t){return this._inputDimensions[t][1]}getReshapedInputDimensions(t){if(typeof this.inputSize!="number")throw new Error("getReshapedInputDimensions - inputSize not set, toBatchTensor has not been called yet");let e=this.getInputWidth(t),r=this.getInputHeight(t);return je({width:e,height:r},this.inputSize)}toBatchTensor(t,e=!0){return this._inputSize=t,n.tidy(()=>{let r=X(this.batchSize,0,1).map(i=>{let s=this.getInput(i);if(s instanceof n.Tensor){let c=R(s)?s:n.expandDims(s);return c=gr(c,e),(c.shape[1]!==t||c.shape[2]!==t)&&(c=n.image.resizeBilinear(c,[t,t],!1,!1)),c.as3D(t,t,3)}if(s instanceof _.getEnv().Canvas)return n.browser.fromPixels(Pr(s,t,e));throw new Error(`toBatchTensor - at batchIdx ${i}, expected input to be instanceof tf.Tensor or instanceof HTMLCanvasElement, instead have ${s}`)});return n.stack(r.map(i=>n.cast(i,"float32"))).as4D(this.batchSize,t,t,3)})}};async function F(o){if(o instanceof tt)return o;let t=Array.isArray(o)?o:[o];if(!t.length)throw new Error("toNetInput - empty array passed as input");let e=a=>Array.isArray(o)?` at input index ${a}:`:"",r=t.map(At);return r.forEach((a,i)=>{if(!Qe(a)&&!K(a)&&!R(a))throw typeof t[i]=="string"?new Error(`toNetInput -${e(i)} string passed, but could not resolve HTMLElement for element id ${t[i]}`):new Error(`toNetInput -${e(i)} expected media to be of type HTMLImageElement | HTMLVideoElement | HTMLCanvasElement | tf.Tensor3D, or to be an element id`);if(R(a)){let s=a.shape[0];if(s!==1)throw new Error(`toNetInput -${e(i)} tf.Tensor4D with batchSize ${s} passed, but not supported in input array`)}}),await Promise.all(r.map(a=>Qe(a)&&yr(a))),new tt(r,Array.isArray(o))}async function re(o,t){let{Canvas:e}=_.getEnv(),r=o;if(!(o instanceof e)){let s=await F(o);if(s.batchSize>1)throw new Error("extractFaces - batchSize > 1 not supported");let c=s.getInput(0);r=c instanceof e?c:await _r(c)}let a=W(r);return t.map(s=>s instanceof D?s.forSize(r.width,r.height).box.floor():s).map(s=>s.clipAtImageBorders(r.width,r.height)).map(({x:s,y:c,width:m,height:p})=>{let u=Bt({width:m,height:p});return m>0&&p>0&&W(u).putImageData(a.getImageData(s,c,m,p),0,0),u})}async function oe(o,t){if(!K(o)&&!R(o))throw new Error("extractFaceTensors - expected image tensor to be 3D or 4D");if(R(o)&&o.shape[0]>1)throw new Error("extractFaceTensors - batchSize > 1 not supported");return n.tidy(()=>{let[e,r,a]=o.shape.slice(R(o)?1:0);return t.map(c=>c instanceof D?c.forSize(r,e).box:c).map(c=>c.clipAtImageBorders(r,e)).filter(c=>c.width>0&&c.height>0).map(({x:c,y:m,width:p,height:u})=>n.slice3d(o.as3D(e,r,a),[m,c,0],[u,p,a]))})}async function st(o,t){let{fetch:e}=_.getEnv(),r=await e(o,t);if(!(r.status<400))throw new Error(`failed to fetch: (${r.status}) ${r.statusText}, from url: ${r.url}`);return r}async function Fi(o){let t=await st(o),e=await t.blob();if(!e.type.startsWith("image/"))throw new Error(`fetchImage - expected blob type to be of type image/*, instead have: ${e.type}, for url: ${t.url}`);return Tr(e)}async function wr(o){return(await st(o)).json()}async function Ii(o){return new Float32Array(await(await st(o)).arrayBuffer())}function Fr(o){return new Promise((t,e)=>{o instanceof Blob||e(new Error("bufferToVideo - expected buf to be of type: Blob"));let r=_.getEnv().createVideoElement();r.oncanplay=()=>t(r),r.onerror=e,r.playsInline=!0,r.muted=!0,r.src=URL.createObjectURL(o),r.play()})}async function ki(o){let t=await st(o),e=await t.blob();if(!e.type.startsWith("video/"))throw new Error(`fetchVideo - expected blob type to be of type video/*, instead have: ${e.type}, for url: ${t.url}`);return Fr(e)}function ge(o,t){let e=`${t}-weights_manifest.json`;if(!o)return{modelBaseUri:"",manifestUri:e};if(o==="/")return{modelBaseUri:"/",manifestUri:`/${e}`};let r=o.startsWith("http://")?"http://":o.startsWith("https://")?"https://":"";o=o.replace(r,"");let a=o.split("/").filter(c=>c),i=o.endsWith(".json")?a[a.length-1]:e,s=r+(o.endsWith(".json")?a.slice(0,a.length-1):a).join("/");return s=o.startsWith("/")?`/${s}`:s,{modelBaseUri:s,manifestUri:s==="/"?`/${i}`:`${s}/${i}`}}async function Dr(o,t){let{manifestUri:e,modelBaseUri:r}=ge(o,t),a=await wr(e);return n.io.loadWeights(a,r)}function Yi(o,t,e=!1){let{width:r,height:a}=e?kt(t):t;return o.width=r,o.height=a,{width:r,height:a}}var I=class{constructor(t){this._params=void 0;this._paramMappings=[];this._name=t}get params(){return this._params}get paramMappings(){return this._paramMappings}get isLoaded(){return!!this.params}getParamFromPath(t){let{obj:e,objProp:r}=this.traversePropertyPath(t);return e[r]}reassignParamFromPath(t,e){let{obj:r,objProp:a}=this.traversePropertyPath(t);r[a].dispose(),r[a]=e}getParamList(){return this._paramMappings.map(({paramPath:t})=>({path:t,tensor:this.getParamFromPath(t)}))}getTrainableParams(){return this.getParamList().filter(t=>t.tensor instanceof n.Variable)}getFrozenParams(){return this.getParamList().filter(t=>!(t.tensor instanceof n.Variable))}variable(){this.getFrozenParams().forEach(({path:t,tensor:e})=>{this.reassignParamFromPath(t,e.variable())})}freeze(){this.getTrainableParams().forEach(({path:t,tensor:e})=>{let r=n.tensor(e.dataSync());e.dispose(),this.reassignParamFromPath(t,r)})}dispose(t=!0){this.getParamList().forEach(e=>{if(t&&e.tensor.isDisposed)throw new Error(`param tensor has already been disposed for path ${e.path}`);e.tensor.dispose()}),this._params=void 0}serializeParams(){return new Float32Array(this.getParamList().map(({tensor:t})=>Array.from(t.dataSync())).reduce((t,e)=>t.concat(e)))}async load(t){if(t instanceof Float32Array){this.extractWeights(t);return}await this.loadFromUri(t)}async loadFromUri(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromUri - expected model uri`);let e=await Dr(t,this.getDefaultModelName());this.loadFromWeightMap(e)}async loadFromDisk(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromDisk - expected model file path`);let{readFile:e}=_.getEnv(),{manifestUri:r,modelBaseUri:a}=ge(t,this.getDefaultModelName()),i=p=>Promise.all(p.map(u=>e(u).then(f=>typeof f=="string"?Buffer.from(f):f.buffer))),s=n.io.weightsLoaderFactory(i),c=JSON.parse((await e(r)).toString()),m=await s(c,a);this.loadFromWeightMap(m)}loadFromWeightMap(t){let{paramMappings:e,params:r}=this.extractParamsFromWeightMap(t);this._paramMappings=e,this._params=r}extractWeights(t){let{paramMappings:e,params:r}=this.extractParams(t);this._paramMappings=e,this._params=r}traversePropertyPath(t){if(!this.params)throw new Error("traversePropertyPath - model has no loaded params");let e=t.split("/").reduce((i,s)=>{if(!i.nextObj.hasOwnProperty(s))throw new Error(`traversePropertyPath - object does not have property ${s}, for path ${t}`);return{obj:i.nextObj,objProp:s,nextObj:i.nextObj[s]}},{nextObj:this.params}),{obj:r,objProp:a}=e;if(!r||!a||!(r[a]instanceof n.Tensor))throw new Error(`traversePropertyPath - parameter is not a tensor, for path ${t}`);return{obj:r,objProp:a}}};function S(o,t,e){return n.tidy(()=>{let r=n.separableConv2d(o,t.depthwise_filter,t.pointwise_filter,e,"same");return r=n.add(r,t.bias),r})}function xe(o,t,e=!1){return n.tidy(()=>{let r=n.relu(e?n.add(n.conv2d(o,t.conv0.filters,[2,2],"same"),t.conv0.bias):S(o,t.conv0,[2,2])),a=S(r,t.conv1,[1,1]),i=n.relu(n.add(r,a)),s=S(i,t.conv2,[1,1]);return n.relu(n.add(r,n.add(a,s)))})}function ne(o,t,e=!1,r=!0){return n.tidy(()=>{let a=n.relu(e?n.add(n.conv2d(o,t.conv0.filters,r?[2,2]:[1,1],"same"),t.conv0.bias):S(o,t.conv0,r?[2,2]:[1,1])),i=S(a,t.conv1,[1,1]),s=n.relu(n.add(a,i)),c=S(s,t.conv2,[1,1]),m=n.relu(n.add(a,n.add(i,c))),p=S(m,t.conv3,[1,1]);return n.relu(n.add(a,n.add(i,n.add(c,p))))})}function vt(o,t,e="same",r=!1){return n.tidy(()=>{let a=n.add(n.conv2d(o,t.filters,[1,1],e),t.bias);return r?n.relu(a):a})}function N(o,t){Object.keys(o).forEach(e=>{t.some(r=>r.originalPath===e)||o[e].dispose()})}function Rt(o,t){return(e,r,a,i)=>{let s=n.tensor4d(o(e*r*a*a),[a,a,e,r]),c=n.tensor1d(o(r));return t.push({paramPath:`${i}/filters`},{paramPath:`${i}/bias`}),{filters:s,bias:c}}}function ve(o,t){return(e,r,a)=>{let i=n.tensor2d(o(e*r),[e,r]),s=n.tensor1d(o(r));return t.push({paramPath:`${a}/weights`},{paramPath:`${a}/bias`}),{weights:i,bias:s}}}var ae=class{constructor(t,e,r){this.depthwise_filter=t;this.pointwise_filter=e;this.bias=r}};function $t(o,t){return(e,r,a)=>{let i=n.tensor4d(o(9*e),[3,3,e,1]),s=n.tensor4d(o(e*r),[1,1,e,r]),c=n.tensor1d(o(r));return t.push({paramPath:`${a}/depthwise_filter`},{paramPath:`${a}/pointwise_filter`},{paramPath:`${a}/bias`}),new ae(i,s,c)}}function Ot(o){return t=>{let e=o(`${t}/depthwise_filter`,4),r=o(`${t}/pointwise_filter`,4),a=o(`${t}/bias`,1);return new ae(e,r,a)}}function k(o,t){return(e,r,a)=>{let i=o[e];if(!dt(i,r))throw new Error(`expected weightMap[${e}] to be a Tensor${r}D, instead have ${i}`);return t.push({originalPath:e,paramPath:a||e}),i}}function L(o){let t=o;function e(a){let i=t.slice(0,a);return t=t.slice(a),i}function r(){return t}return{extractWeights:e,getRemainingWeights:r}}function ye(o,t){let e=Rt(o,t),r=$t(o,t);function a(s,c,m,p=!1){let u=p?e(s,c,3,`${m}/conv0`):r(s,c,`${m}/conv0`),f=r(c,c,`${m}/conv1`),l=r(c,c,`${m}/conv2`);return{conv0:u,conv1:f,conv2:l}}function i(s,c,m,p=!1){let{conv0:u,conv1:f,conv2:l}=a(s,c,m,p),d=r(c,c,`${m}/conv3`);return{conv0:u,conv1:f,conv2:l,conv3:d}}return{extractDenseBlock3Params:a,extractDenseBlock4Params:i}}function Er(o){let t=[],{extractWeights:e,getRemainingWeights:r}=L(o),{extractDenseBlock4Params:a}=ye(e,t),i=a(3,32,"dense0",!0),s=a(32,64,"dense1"),c=a(64,128,"dense2"),m=a(128,256,"dense3");if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:t,params:{dense0:i,dense1:s,dense2:c,dense3:m}}}function Te(o){return t=>{let e=o(`${t}/filters`,4),r=o(`${t}/bias`,1);return{filters:e,bias:r}}}function _e(o,t){let e=k(o,t),r=Te(e),a=Ot(e);function i(c,m=!1){let p=m?r(`${c}/conv0`):a(`${c}/conv0`),u=a(`${c}/conv1`),f=a(`${c}/conv2`);return{conv0:p,conv1:u,conv2:f}}function s(c,m=!1){let p=m?r(`${c}/conv0`):a(`${c}/conv0`),u=a(`${c}/conv1`),f=a(`${c}/conv2`),l=a(`${c}/conv3`);return{conv0:p,conv1:u,conv2:f,conv3:l}}return{extractDenseBlock3Params:i,extractDenseBlock4Params:s}}function Mr(o){let t=[],{extractDenseBlock4Params:e}=_e(o,t),r={dense0:e("dense0",!0),dense1:e("dense1"),dense2:e("dense2"),dense3:e("dense3")};return N(o,t),{params:r,paramMappings:t}}var Ht=class extends I{constructor(){super("FaceFeatureExtractor")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("FaceFeatureExtractor - load model before inference");return n.tidy(()=>{let r=n.cast(t.toBatchTensor(112,!0),"float32"),i=J(r,[122.782,117.001,104.298]).div(255),s=ne(i,e.dense0,!0);return s=ne(s,e.dense1),s=ne(s,e.dense2),s=ne(s,e.dense3),s=n.avgPool(s,[7,7],[2,2],"valid"),s})}async forward(t){return this.forwardInput(await F(t))}getDefaultModelName(){return"face_feature_extractor_model"}extractParamsFromWeightMap(t){return Mr(t)}extractParams(t){return Er(t)}};function se(o,t){return n.tidy(()=>n.add(n.matMul(o,t.weights),t.bias))}function Cr(o,t,e){let r=[],{extractWeights:a,getRemainingWeights:i}=L(o),c=ve(a,r)(t,e,"fc");if(i().length!==0)throw new Error(`weights remaing after extract: ${i().length}`);return{paramMappings:r,params:{fc:c}}}function Ir(o){let t=[],e=k(o,t);function r(i){let s=e(`${i}/weights`,2),c=e(`${i}/bias`,1);return{weights:s,bias:c}}let a={fc:r("fc")};return N(o,t),{params:a,paramMappings:t}}function Pe(o){let t={},e={};return Object.keys(o).forEach(r=>{let a=r.startsWith("fc")?e:t;a[r]=o[r]}),{featureExtractorMap:t,classifierMap:e}}var zt=class extends I{constructor(t,e){super(t),this._faceFeatureExtractor=e}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(t){let{params:e}=this;if(!e)throw new Error(`${this._name} - load model before inference`);return n.tidy(()=>{let r=t instanceof tt?this.faceFeatureExtractor.forwardInput(t):t;return se(r.as2D(r.shape[0],-1),e.fc)})}dispose(t=!0){this.faceFeatureExtractor.dispose(t),super.dispose(t)}loadClassifierParams(t){let{params:e,paramMappings:r}=this.extractClassifierParams(t);this._params=e,this._paramMappings=r}extractClassifierParams(t){return Cr(t,this.getClassifierChannelsIn(),this.getClassifierChannelsOut())}extractParamsFromWeightMap(t){let{featureExtractorMap:e,classifierMap:r}=Pe(t);return this.faceFeatureExtractor.loadFromWeightMap(e),Ir(r)}extractParams(t){let e=this.getClassifierChannelsIn(),r=this.getClassifierChannelsOut(),a=r*e+r,i=t.slice(0,t.length-a),s=t.slice(t.length-a);return this.faceFeatureExtractor.extractWeights(i),this.extractClassifierParams(s)}};var Nr=["neutral","happy","sad","angry","fearful","disgusted","surprised"],it=class{constructor(t){this.neutral=0;this.happy=0;this.sad=0;this.angry=0;this.fearful=0;this.disgusted=0;this.surprised=0;if(t.length!==7)throw new Error(`FaceExpressions.constructor - expected probabilities.length to be 7, have: ${t.length}`);Nr.forEach((e,r)=>{this[e]=t[r]})}asSortedArray(){return Nr.map(t=>({expression:t,probability:this[t]})).sort((t,e)=>e.probability-t.probability)}};var we=class extends zt{constructor(t=new Ht){super("FaceExpressionNet",t)}forwardInput(t){return n.tidy(()=>n.softmax(this.runNet(t)))}async forward(t){return this.forwardInput(await F(t))}async predictExpressions(t){let e=await F(t),r=await this.forwardInput(e),a=await Promise.all(n.unstack(r).map(async s=>{let c=s.dataSync();return s.dispose(),c}));r.dispose();let i=a.map(s=>new it(s));return e.isBatchInput?i:i[0]}getDefaultModelName(){return"face_expression_model"}getClassifierChannelsIn(){return 256}getClassifierChannelsOut(){return 7}};function Lr(o){return o.expressions instanceof it}function tr(o,t){return{...o,...{expressions:t}}}function No(o,t,e=.1,r){(Array.isArray(t)?t:[t]).forEach(i=>{let s=i instanceof it?i:Lr(i)?i.expressions:void 0;if(!s)throw new Error("drawFaceExpressions - expected faceExpressions to be FaceExpressions | WithFaceExpressions<{}> or array thereof");let m=s.asSortedArray().filter(f=>f.probability>e),p=Q(i)?i.detection.box.bottomLeft:r||new v(0,0);new xt(m.map(f=>`${f.expression} (${ht(f.probability)})`),p).draw(o)})}function Yt(o){return Q(o)&&o.landmarks instanceof $&&o.unshiftedLandmarks instanceof $&&o.alignedRect instanceof D}function Lo(o){let t=m=>m*180/Math.PI,e=(m,p)=>Math.sqrt((m.x-p.x)**2+(m.y-p.y)**2),r={roll:void 0,pitch:void 0,yaw:void 0},a=(m,p,u)=>{let f=Math.floor(m.x-p.x),l=Math.floor(p.x-u.x);return f-l},i=(m,p)=>{let u=Math.hypot(p.x-m.x,p.y-m.y),f=p.y-m.y,l=Math.asin(f/u),d=t(l),b=Math.floor(90-d),y=p.x-m.x<0?-1:1;return b*y},s=(m,p,u)=>{let f=e(m,u),l=new v((m.x+u.x)/2,(m.y+u.y)/2),d=e(p,l),b=Math.atan(d/f),y=Math.floor(t(b)),h=l.y-p.y<0?-1:1;return y*h};if(!o||!o.positions||o.positions.length!==68)return r;let c=o.positions;return r.roll=i(c[27],c[66]),r.pitch=s(c[14],c[30],c[2]),r.yaw=a(c[14],c[33],c[2]),r}function ie(o,t){let{box:e}=o.detection,r=t.shiftBy(e.x,e.y),a=r.align(),{imageDims:i}=o.detection,s=new D(o.detection.score,a.rescale(i.reverse()),i),c=Lo(t);return{...o,...{landmarks:r,unshiftedLandmarks:t,alignedRect:s,angle:c}}}var Fe=class{constructor(t={}){let{drawLines:e=!0,drawPoints:r=!0,lineWidth:a,lineColor:i,pointSize:s,pointColor:c}=t;this.drawLines=e,this.drawPoints=r,this.lineWidth=a||1,this.pointSize=s||2,this.lineColor=i||"rgba(0, 255, 255, 1)",this.pointColor=c||"rgba(255, 0, 255, 1)"}},De=class{constructor(t,e={}){this.faceLandmarks=t,this.options=new Fe(e)}draw(t){let e=W(t),{drawLines:r,drawPoints:a,lineWidth:i,lineColor:s,pointSize:c,pointColor:m}=this.options;if(r&&this.faceLandmarks instanceof Lt&&(e.strokeStyle=s,e.lineWidth=i,Z(e,this.faceLandmarks.getJawOutline()),Z(e,this.faceLandmarks.getLeftEyeBrow()),Z(e,this.faceLandmarks.getRightEyeBrow()),Z(e,this.faceLandmarks.getNose()),Z(e,this.faceLandmarks.getLeftEye(),!0),Z(e,this.faceLandmarks.getRightEye(),!0),Z(e,this.faceLandmarks.getMouth(),!0)),a){e.strokeStyle=m,e.fillStyle=m;let p=u=>{e.beginPath(),e.arc(u.x,u.y,c,0,2*Math.PI),e.fill()};this.faceLandmarks.positions.forEach(p)}}};function So(o,t){(Array.isArray(t)?t:[t]).forEach(r=>{let a=r instanceof $?r:Yt(r)?r.landmarks:void 0;if(!a)throw new Error("drawFaceLandmarks - expected faceExpressions to be FaceLandmarks | WithFaceLandmarks> or array thereof");new De(a).draw(o)})}var Ar="1.7.14";function ko(o,t){let e=Rt(o,t),r=$t(o,t);function a(s,c,m){let p=r(s,c,`${m}/separable_conv0`),u=r(c,c,`${m}/separable_conv1`),f=e(s,c,1,`${m}/expansion_conv`);return{separable_conv0:p,separable_conv1:u,expansion_conv:f}}function i(s,c){let m=r(s,s,`${c}/separable_conv0`),p=r(s,s,`${c}/separable_conv1`),u=r(s,s,`${c}/separable_conv2`);return{separable_conv0:m,separable_conv1:p,separable_conv2:u}}return{extractConvParams:e,extractSeparableConvParams:r,extractReductionBlockParams:a,extractMainBlockParams:i}}function Wr(o,t){let e=[],{extractWeights:r,getRemainingWeights:a}=L(o),{extractConvParams:i,extractSeparableConvParams:s,extractReductionBlockParams:c,extractMainBlockParams:m}=ko(r,e),p=i(3,32,3,"entry_flow/conv_in"),u=c(32,64,"entry_flow/reduction_block_0"),f=c(64,128,"entry_flow/reduction_block_1"),l={conv_in:p,reduction_block_0:u,reduction_block_1:f},d={};X(t,0,1).forEach(g=>{d[`main_block_${g}`]=m(128,`middle_flow/main_block_${g}`)});let b=c(128,256,"exit_flow/reduction_block"),y=s(256,512,"exit_flow/separable_conv"),h={reduction_block:b,separable_conv:y};if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:e,params:{entry_flow:l,middle_flow:d,exit_flow:h}}}function Bo(o,t){let e=k(o,t),r=Te(e),a=Ot(e);function i(c){let m=a(`${c}/separable_conv0`),p=a(`${c}/separable_conv1`),u=r(`${c}/expansion_conv`);return{separable_conv0:m,separable_conv1:p,expansion_conv:u}}function s(c){let m=a(`${c}/separable_conv0`),p=a(`${c}/separable_conv1`),u=a(`${c}/separable_conv2`);return{separable_conv0:m,separable_conv1:p,separable_conv2:u}}return{extractConvParams:r,extractSeparableConvParams:a,extractReductionBlockParams:i,extractMainBlockParams:s}}function kr(o,t){let e=[],{extractConvParams:r,extractSeparableConvParams:a,extractReductionBlockParams:i,extractMainBlockParams:s}=Bo(o,e),c=r("entry_flow/conv_in"),m=i("entry_flow/reduction_block_0"),p=i("entry_flow/reduction_block_1"),u={conv_in:c,reduction_block_0:m,reduction_block_1:p},f={};X(t,0,1).forEach(y=>{f[`main_block_${y}`]=s(`middle_flow/main_block_${y}`)});let l=i("exit_flow/reduction_block"),d=a("exit_flow/separable_conv"),b={reduction_block:l,separable_conv:d};return N(o,e),{params:{entry_flow:u,middle_flow:f,exit_flow:b},paramMappings:e}}function Br(o,t,e){return n.add(n.conv2d(o,t.filters,e,"same"),t.bias)}function er(o,t,e=!0){let r=e?n.relu(o):o;return r=S(r,t.separable_conv0,[1,1]),r=S(n.relu(r),t.separable_conv1,[1,1]),r=n.maxPool(r,[3,3],[2,2],"same"),r=n.add(r,Br(o,t.expansion_conv,[2,2])),r}function Ro(o,t){let e=S(n.relu(o),t.separable_conv0,[1,1]);return e=S(n.relu(e),t.separable_conv1,[1,1]),e=S(n.relu(e),t.separable_conv2,[1,1]),e=n.add(e,o),e}var Ee=class extends I{constructor(t){super("TinyXception"),this._numMainBlocks=t}forwardInput(t){let{params:e}=this;if(!e)throw new Error("TinyXception - load model before inference");return n.tidy(()=>{let r=n.cast(t.toBatchTensor(112,!0),"float32"),i=J(r,[122.782,117.001,104.298]).div(255),s=n.relu(Br(i,e.entry_flow.conv_in,[2,2]));return s=er(s,e.entry_flow.reduction_block_0,!1),s=er(s,e.entry_flow.reduction_block_1),X(this._numMainBlocks,0,1).forEach(c=>{s=Ro(s,e.middle_flow[`main_block_${c}`])}),s=er(s,e.exit_flow.reduction_block),s=n.relu(S(s,e.exit_flow.separable_conv,[1,1])),s})}async forward(t){return this.forwardInput(await F(t))}getDefaultModelName(){return"tiny_xception_model"}extractParamsFromWeightMap(t){return kr(t,this._numMainBlocks)}extractParams(t){return Wr(t,this._numMainBlocks)}};function Rr(o){let t=[],{extractWeights:e,getRemainingWeights:r}=L(o),a=ve(e,t),i=a(512,1,"fc/age"),s=a(512,2,"fc/gender");if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:t,params:{fc:{age:i,gender:s}}}}function $r(o){let t=[],e=k(o,t);function r(i){let s=e(`${i}/weights`,2),c=e(`${i}/bias`,1);return{weights:s,bias:c}}let a={fc:{age:r("fc/age"),gender:r("fc/gender")}};return N(o,t),{params:a,paramMappings:t}}var rr=(e=>(e.FEMALE="female",e.MALE="male",e))(rr||{});var Me=class extends I{constructor(t=new Ee(2)){super("AgeGenderNet"),this._faceFeatureExtractor=t}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(t){let{params:e}=this;if(!e)throw new Error(`${this._name} - load model before inference`);return n.tidy(()=>{let r=t instanceof tt?this.faceFeatureExtractor.forwardInput(t):t,a=n.avgPool(r,[7,7],[2,2],"valid").as2D(r.shape[0],-1),i=se(a,e.fc.age).as1D(),s=se(a,e.fc.gender);return{age:i,gender:s}})}forwardInput(t){return n.tidy(()=>{let{age:e,gender:r}=this.runNet(t);return{age:e,gender:n.softmax(r)}})}async forward(t){return this.forwardInput(await F(t))}async predictAgeAndGender(t){let e=await F(t),r=await this.forwardInput(e),a=n.unstack(r.age),i=n.unstack(r.gender),s=a.map((m,p)=>({ageTensor:m,genderTensor:i[p]})),c=await Promise.all(s.map(async({ageTensor:m,genderTensor:p})=>{let u=m.dataSync()[0],f=p.dataSync()[0],l=f>.5,d=l?"male":"female",b=l?f:1-f;return m.dispose(),p.dispose(),{age:u,gender:d,genderProbability:b}}));return r.age.dispose(),r.gender.dispose(),e.isBatchInput?c:c[0]}getDefaultModelName(){return"age_gender_model"}dispose(t=!0){this.faceFeatureExtractor.dispose(t),super.dispose(t)}loadClassifierParams(t){let{params:e,paramMappings:r}=this.extractClassifierParams(t);this._params=e,this._paramMappings=r}extractClassifierParams(t){return Rr(t)}extractParamsFromWeightMap(t){let{featureExtractorMap:e,classifierMap:r}=Pe(t);return this.faceFeatureExtractor.loadFromWeightMap(e),$r(r)}extractParams(t){let r=t.slice(0,t.length-1539),a=t.slice(t.length-1539);return this.faceFeatureExtractor.extractWeights(r),this.extractClassifierParams(a)}};var Vt=class extends zt{postProcess(t,e,r){let a=r.map(({width:s,height:c})=>{let m=e/Math.max(c,s);return{width:s*m,height:c*m}}),i=a.length;return n.tidy(()=>{let s=(f,l)=>n.stack([n.fill([68],f,"float32"),n.fill([68],l,"float32")],1).as2D(1,136).as1D(),c=(f,l)=>{let{width:d,height:b}=a[f];return l(d,b)?Math.abs(d-b)/2:0},m=f=>c(f,(l,d)=>lc(f,(l,d)=>ds(m(l),p(l))))).div(n.stack(Array.from(Array(i),(f,l)=>s(a[l].width,a[l].height))))})}forwardInput(t){return n.tidy(()=>{let e=this.runNet(t);return this.postProcess(e,t.inputSize,t.inputDimensions.map(([r,a])=>({height:r,width:a})))})}async forward(t){return this.forwardInput(await F(t))}async detectLandmarks(t){let e=await F(t),r=n.tidy(()=>n.unstack(this.forwardInput(e))),a=await Promise.all(r.map(async(i,s)=>{let c=Array.from(i.dataSync()),m=c.filter((u,f)=>pe(f)),p=c.filter((u,f)=>!pe(f));return new Lt(Array(68).fill(0).map((u,f)=>new v(m[f],p[f])),{height:e.getInputHeight(s),width:e.getInputWidth(s)})}));return r.forEach(i=>i.dispose()),e.isBatchInput?a:a[0]}getClassifierChannelsOut(){return 136}};var Gt=class extends Vt{constructor(t=new Ht){super("FaceLandmark68Net",t)}getDefaultModelName(){return"face_landmark_68_model"}getClassifierChannelsIn(){return 256}};function Or(o){let t=[],{extractDenseBlock3Params:e}=_e(o,t),r={dense0:e("dense0",!0),dense1:e("dense1"),dense2:e("dense2")};return N(o,t),{params:r,paramMappings:t}}function Hr(o){let t=[],{extractWeights:e,getRemainingWeights:r}=L(o),{extractDenseBlock3Params:a}=ye(e,t),i=a(3,32,"dense0",!0),s=a(32,64,"dense1"),c=a(64,128,"dense2");if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:t,params:{dense0:i,dense1:s,dense2:c}}}var Ce=class extends I{constructor(){super("TinyFaceFeatureExtractor")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("TinyFaceFeatureExtractor - load model before inference");return n.tidy(()=>{let r=n.cast(t.toBatchTensor(112,!0),"float32"),i=J(r,[122.782,117.001,104.298]).div(255),s=xe(i,e.dense0,!0);return s=xe(s,e.dense1),s=xe(s,e.dense2),s=n.avgPool(s,[14,14],[2,2],"valid"),s})}async forward(t){return this.forwardInput(await F(t))}getDefaultModelName(){return"face_feature_extractor_tiny_model"}extractParamsFromWeightMap(t){return Or(t)}extractParams(t){return Hr(t)}};var Ie=class extends Vt{constructor(t=new Ce){super("FaceLandmark68TinyNet",t)}getDefaultModelName(){return"face_landmark_68_tiny_model"}getClassifierChannelsIn(){return 128}};var zr=class extends Gt{};function Yr(o,t){return n.add(n.mul(o,t.weights),t.biases)}function or(o,t,e,r,a="same"){let{filters:i,bias:s}=t.conv,c=n.conv2d(o,i,e,a);return c=n.add(c,s),c=Yr(c,t.scale),r?n.relu(c):c}function Vr(o,t){return or(o,t,[1,1],!0)}function nr(o,t){return or(o,t,[1,1],!1)}function Ne(o,t){return or(o,t,[2,2],!0,"valid")}function $o(o,t){function e(c,m,p){let u=o(c),f=u.length/(m*p*p);if(Ge(f))throw new Error(`depth has to be an integer: ${f}, weights.length: ${u.length}, numFilters: ${m}, filterSize: ${p}`);return n.tidy(()=>n.transpose(n.tensor4d(u,[m,f,p,p]),[2,3,1,0]))}function r(c,m,p,u){let f=e(c,m,p),l=n.tensor1d(o(m));return t.push({paramPath:`${u}/filters`},{paramPath:`${u}/bias`}),{filters:f,bias:l}}function a(c,m){let p=n.tensor1d(o(c)),u=n.tensor1d(o(c));return t.push({paramPath:`${m}/weights`},{paramPath:`${m}/biases`}),{weights:p,biases:u}}function i(c,m,p,u){let f=r(c,m,p,`${u}/conv`),l=a(m,`${u}/scale`);return{conv:f,scale:l}}function s(c,m,p,u,f=!1){let l=i((f?.5:1)*c,m,p,`${u}/conv1`),d=i(c,m,p,`${u}/conv2`);return{conv1:l,conv2:d}}return{extractConvLayerParams:i,extractResidualLayerParams:s}}function Gr(o){let{extractWeights:t,getRemainingWeights:e}=L(o),r=[],{extractConvLayerParams:a,extractResidualLayerParams:i}=$o(t,r),s=a(4704,32,7,"conv32_down"),c=i(9216,32,3,"conv32_1"),m=i(9216,32,3,"conv32_2"),p=i(9216,32,3,"conv32_3"),u=i(36864,64,3,"conv64_down",!0),f=i(36864,64,3,"conv64_1"),l=i(36864,64,3,"conv64_2"),d=i(36864,64,3,"conv64_3"),b=i(147456,128,3,"conv128_down",!0),y=i(147456,128,3,"conv128_1"),h=i(147456,128,3,"conv128_2"),g=i(589824,256,3,"conv256_down",!0),T=i(589824,256,3,"conv256_1"),x=i(589824,256,3,"conv256_2"),E=i(589824,256,3,"conv256_down_out"),B=n.tidy(()=>n.transpose(n.tensor2d(t(256*128),[128,256]),[1,0]));if(r.push({paramPath:"fc"}),e().length!==0)throw new Error(`weights remaing after extract: ${e().length}`);return{params:{conv32_down:s,conv32_1:c,conv32_2:m,conv32_3:p,conv64_down:u,conv64_1:f,conv64_2:l,conv64_3:d,conv128_down:b,conv128_1:y,conv128_2:h,conv256_down:g,conv256_1:T,conv256_2:x,conv256_down_out:E,fc:B},paramMappings:r}}function Oo(o,t){let e=k(o,t);function r(s){let c=e(`${s}/scale/weights`,1),m=e(`${s}/scale/biases`,1);return{weights:c,biases:m}}function a(s){let c=e(`${s}/conv/filters`,4),m=e(`${s}/conv/bias`,1),p=r(s);return{conv:{filters:c,bias:m},scale:p}}function i(s){return{conv1:a(`${s}/conv1`),conv2:a(`${s}/conv2`)}}return{extractConvLayerParams:a,extractResidualLayerParams:i}}function jr(o){let t=[],{extractConvLayerParams:e,extractResidualLayerParams:r}=Oo(o,t),a=e("conv32_down"),i=r("conv32_1"),s=r("conv32_2"),c=r("conv32_3"),m=r("conv64_down"),p=r("conv64_1"),u=r("conv64_2"),f=r("conv64_3"),l=r("conv128_down"),d=r("conv128_1"),b=r("conv128_2"),y=r("conv256_down"),h=r("conv256_1"),g=r("conv256_2"),T=r("conv256_down_out"),{fc:x}=o;if(t.push({originalPath:"fc",paramPath:"fc"}),!Ve(x))throw new Error(`expected weightMap[fc] to be a Tensor2D, instead have ${x}`);let E={conv32_down:a,conv32_1:i,conv32_2:s,conv32_3:c,conv64_down:m,conv64_1:p,conv64_2:u,conv64_3:f,conv128_down:l,conv128_1:d,conv128_2:b,conv256_down:y,conv256_1:h,conv256_2:g,conv256_down_out:T,fc:x};return N(o,t),{params:E,paramMappings:t}}function j(o,t){let e=Vr(o,t.conv1);return e=nr(e,t.conv2),e=n.add(e,o),e=n.relu(e),e}function ce(o,t){let e=Ne(o,t.conv1);e=nr(e,t.conv2);let r=n.avgPool(o,2,2,"valid"),a=n.zeros(r.shape),i=r.shape[3]!==e.shape[3];if(r.shape[1]!==e.shape[1]||r.shape[2]!==e.shape[2]){let c=[...e.shape];c[1]=1;let m=n.zeros(c);e=n.concat([e,m],1);let p=[...e.shape];p[2]=1;let u=n.zeros(p);e=n.concat([e,u],2)}return r=i?n.concat([r,a],3):r,e=n.add(r,e),e=n.relu(e),e}var jt=class extends I{constructor(){super("FaceRecognitionNet")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("FaceRecognitionNet - load model before inference");return n.tidy(()=>{let r=n.cast(t.toBatchTensor(150,!0),"float32"),i=J(r,[122.782,117.001,104.298]).div(255),s=Ne(i,e.conv32_down);s=n.maxPool(s,3,2,"valid"),s=j(s,e.conv32_1),s=j(s,e.conv32_2),s=j(s,e.conv32_3),s=ce(s,e.conv64_down),s=j(s,e.conv64_1),s=j(s,e.conv64_2),s=j(s,e.conv64_3),s=ce(s,e.conv128_down),s=j(s,e.conv128_1),s=j(s,e.conv128_2),s=ce(s,e.conv256_down),s=j(s,e.conv256_1),s=j(s,e.conv256_2),s=ce(s,e.conv256_down_out);let c=s.mean([1,2]);return n.matMul(c,e.fc)})}async forward(t){return this.forwardInput(await F(t))}async computeFaceDescriptor(t){var i;if((i=t==null?void 0:t.shape)!=null&&i.some(s=>s<=0))return new Float32Array(128);let e=await F(t),r=n.tidy(()=>n.unstack(this.forwardInput(e))),a=await Promise.all(r.map(s=>s.data()));return r.forEach(s=>s.dispose()),e.isBatchInput?a:a[0]}getDefaultModelName(){return"face_recognition_model"}extractParamsFromWeightMap(t){return jr(t)}extractParams(t){return Gr(t)}};function gf(o){let t=new jt;return t.extractWeights(o),t}function ar(o,t){return{...o,...{descriptor:t}}}function Tf(o){return typeof o.age=="number"}function sr(o,t){return{...o,...{age:t}}}function Ff(o){return(o.gender==="male"||o.gender==="female")&&Mt(o.genderProbability)}function ir(o,t,e){return{...o,...{gender:t,genderProbability:e}}}function Ho(o,t){function e(m,p){let u=n.tensor4d(o(9*m),[3,3,m,1]),f=n.tensor1d(o(m)),l=n.tensor1d(o(m)),d=n.tensor1d(o(m)),b=n.tensor1d(o(m));return t.push({paramPath:`${p}/filters`},{paramPath:`${p}/batch_norm_scale`},{paramPath:`${p}/batch_norm_offset`},{paramPath:`${p}/batch_norm_mean`},{paramPath:`${p}/batch_norm_variance`}),{filters:u,batch_norm_scale:f,batch_norm_offset:l,batch_norm_mean:d,batch_norm_variance:b}}function r(m,p,u,f,l){let d=n.tensor4d(o(m*p*u*u),[u,u,m,p]),b=n.tensor1d(o(p));return t.push({paramPath:`${f}/filters`},{paramPath:`${f}/${l?"batch_norm_offset":"bias"}`}),{filters:d,bias:b}}function a(m,p,u,f){let{filters:l,bias:d}=r(m,p,u,f,!0);return{filters:l,batch_norm_offset:d}}function i(m,p,u){let f=e(m,`${u}/depthwise_conv`),l=a(m,p,1,`${u}/pointwise_conv`);return{depthwise_conv:f,pointwise_conv:l}}function s(){let m=a(3,32,3,"mobilenetv1/conv_0"),p=i(32,64,"mobilenetv1/conv_1"),u=i(64,128,"mobilenetv1/conv_2"),f=i(128,128,"mobilenetv1/conv_3"),l=i(128,256,"mobilenetv1/conv_4"),d=i(256,256,"mobilenetv1/conv_5"),b=i(256,512,"mobilenetv1/conv_6"),y=i(512,512,"mobilenetv1/conv_7"),h=i(512,512,"mobilenetv1/conv_8"),g=i(512,512,"mobilenetv1/conv_9"),T=i(512,512,"mobilenetv1/conv_10"),x=i(512,512,"mobilenetv1/conv_11"),E=i(512,1024,"mobilenetv1/conv_12"),B=i(1024,1024,"mobilenetv1/conv_13");return{conv_0:m,conv_1:p,conv_2:u,conv_3:f,conv_4:l,conv_5:d,conv_6:b,conv_7:y,conv_8:h,conv_9:g,conv_10:T,conv_11:x,conv_12:E,conv_13:B}}function c(){let m=a(1024,256,1,"prediction_layer/conv_0"),p=a(256,512,3,"prediction_layer/conv_1"),u=a(512,128,1,"prediction_layer/conv_2"),f=a(128,256,3,"prediction_layer/conv_3"),l=a(256,128,1,"prediction_layer/conv_4"),d=a(128,256,3,"prediction_layer/conv_5"),b=a(256,64,1,"prediction_layer/conv_6"),y=a(64,128,3,"prediction_layer/conv_7"),h=r(512,12,1,"prediction_layer/box_predictor_0/box_encoding_predictor"),g=r(512,9,1,"prediction_layer/box_predictor_0/class_predictor"),T=r(1024,24,1,"prediction_layer/box_predictor_1/box_encoding_predictor"),x=r(1024,18,1,"prediction_layer/box_predictor_1/class_predictor"),E=r(512,24,1,"prediction_layer/box_predictor_2/box_encoding_predictor"),B=r(512,18,1,"prediction_layer/box_predictor_2/class_predictor"),V=r(256,24,1,"prediction_layer/box_predictor_3/box_encoding_predictor"),U=r(256,18,1,"prediction_layer/box_predictor_3/class_predictor"),O=r(256,24,1,"prediction_layer/box_predictor_4/box_encoding_predictor"),ot=r(256,18,1,"prediction_layer/box_predictor_4/class_predictor"),nt=r(128,24,1,"prediction_layer/box_predictor_5/box_encoding_predictor"),at=r(128,18,1,"prediction_layer/box_predictor_5/class_predictor");return{conv_0:m,conv_1:p,conv_2:u,conv_3:f,conv_4:l,conv_5:d,conv_6:b,conv_7:y,box_predictor_0:{box_encoding_predictor:h,class_predictor:g},box_predictor_1:{box_encoding_predictor:T,class_predictor:x},box_predictor_2:{box_encoding_predictor:E,class_predictor:B},box_predictor_3:{box_encoding_predictor:V,class_predictor:U},box_predictor_4:{box_encoding_predictor:O,class_predictor:ot},box_predictor_5:{box_encoding_predictor:nt,class_predictor:at}}}return{extractMobilenetV1Params:s,extractPredictionLayerParams:c}}function Ur(o){let t=[],{extractWeights:e,getRemainingWeights:r}=L(o),{extractMobilenetV1Params:a,extractPredictionLayerParams:i}=Ho(e,t),s=a(),c=i(),p={extra_dim:n.tensor3d(e(5118*4),[1,5118,4])};if(t.push({paramPath:"output_layer/extra_dim"}),r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{params:{mobilenetv1:s,prediction_layer:c,output_layer:p},paramMappings:t}}function zo(o,t){let e=k(o,t);function r(p,u,f){let l=e(`${p}/Conv2d_${u}_pointwise/weights`,4,`${f}/filters`),d=e(`${p}/Conv2d_${u}_pointwise/convolution_bn_offset`,1,`${f}/batch_norm_offset`);return{filters:l,batch_norm_offset:d}}function a(p){let u=`mobilenetv1/conv_${p}`,f=`MobilenetV1/Conv2d_${p}_depthwise`,l=`${u}/depthwise_conv`,d=`${u}/pointwise_conv`,b=e(`${f}/depthwise_weights`,4,`${l}/filters`),y=e(`${f}/BatchNorm/gamma`,1,`${l}/batch_norm_scale`),h=e(`${f}/BatchNorm/beta`,1,`${l}/batch_norm_offset`),g=e(`${f}/BatchNorm/moving_mean`,1,`${l}/batch_norm_mean`),T=e(`${f}/BatchNorm/moving_variance`,1,`${l}/batch_norm_variance`);return{depthwise_conv:{filters:b,batch_norm_scale:y,batch_norm_offset:h,batch_norm_mean:g,batch_norm_variance:T},pointwise_conv:r("MobilenetV1",p,d)}}function i(){return{conv_0:r("MobilenetV1",0,"mobilenetv1/conv_0"),conv_1:a(1),conv_2:a(2),conv_3:a(3),conv_4:a(4),conv_5:a(5),conv_6:a(6),conv_7:a(7),conv_8:a(8),conv_9:a(9),conv_10:a(10),conv_11:a(11),conv_12:a(12),conv_13:a(13)}}function s(p,u){let f=e(`${p}/weights`,4,`${u}/filters`),l=e(`${p}/biases`,1,`${u}/bias`);return{filters:f,bias:l}}function c(p){let u=s(`Prediction/BoxPredictor_${p}/BoxEncodingPredictor`,`prediction_layer/box_predictor_${p}/box_encoding_predictor`),f=s(`Prediction/BoxPredictor_${p}/ClassPredictor`,`prediction_layer/box_predictor_${p}/class_predictor`);return{box_encoding_predictor:u,class_predictor:f}}function m(){return{conv_0:r("Prediction",0,"prediction_layer/conv_0"),conv_1:r("Prediction",1,"prediction_layer/conv_1"),conv_2:r("Prediction",2,"prediction_layer/conv_2"),conv_3:r("Prediction",3,"prediction_layer/conv_3"),conv_4:r("Prediction",4,"prediction_layer/conv_4"),conv_5:r("Prediction",5,"prediction_layer/conv_5"),conv_6:r("Prediction",6,"prediction_layer/conv_6"),conv_7:r("Prediction",7,"prediction_layer/conv_7"),box_predictor_0:c(0),box_predictor_1:c(1),box_predictor_2:c(2),box_predictor_3:c(3),box_predictor_4:c(4),box_predictor_5:c(5)}}return{extractMobilenetV1Params:i,extractPredictionLayerParams:m}}function Xr(o){let t=[],{extractMobilenetV1Params:e,extractPredictionLayerParams:r}=zo(o,t),a=o["Output/extra_dim"];if(t.push({originalPath:"Output/extra_dim",paramPath:"output_layer/extra_dim"}),!K(a))throw new Error(`expected weightMap['Output/extra_dim'] to be a Tensor3D, instead have ${a}`);let i={mobilenetv1:e(),prediction_layer:r(),output_layer:{extra_dim:a}};return N(o,t),{params:i,paramMappings:t}}function H(o,t,e){return n.tidy(()=>{let r=n.conv2d(o,t.filters,e,"same");return r=n.add(r,t.batch_norm_offset),n.clipByValue(r,0,6)})}var Yo=.0010000000474974513;function Vo(o,t,e){return n.tidy(()=>{let r=n.depthwiseConv2d(o,t.filters,e,"same");return r=n.batchNorm(r,t.batch_norm_mean,t.batch_norm_variance,t.batch_norm_offset,t.batch_norm_scale,Yo),n.clipByValue(r,0,6)})}function Go(o){return[2,4,6,12].some(t=>t===o)?[2,2]:[1,1]}function Jr(o,t){return n.tidy(()=>{let e,r=H(o,t.conv_0,[2,2]);if([t.conv_1,t.conv_2,t.conv_3,t.conv_4,t.conv_5,t.conv_6,t.conv_7,t.conv_8,t.conv_9,t.conv_10,t.conv_11,t.conv_12,t.conv_13].forEach((i,s)=>{let c=s+1,m=Go(c);r=Vo(r,i.depthwise_conv,m),r=H(r,i.pointwise_conv,[1,1]),c===11&&(e=r)}),e===null)throw new Error("mobileNetV1 - output of conv layer 11 is null");return{out:r,conv11:e}})}function jo(o,t,e){let r=o.arraySync(),a=Math.min(r[t][0],r[t][2]),i=Math.min(r[t][1],r[t][3]),s=Math.max(r[t][0],r[t][2]),c=Math.max(r[t][1],r[t][3]),m=Math.min(r[e][0],r[e][2]),p=Math.min(r[e][1],r[e][3]),u=Math.max(r[e][0],r[e][2]),f=Math.max(r[e][1],r[e][3]),l=(s-a)*(c-i),d=(u-m)*(f-p);if(l<=0||d<=0)return 0;let b=Math.max(a,m),y=Math.max(i,p),h=Math.min(s,u),g=Math.min(c,f),T=Math.max(h-b,0)*Math.max(g-y,0);return T/(l+d-T)}function qr(o,t,e,r,a){let i=o.shape[0],s=Math.min(e,i),c=t.map((u,f)=>({score:u,boxIndex:f})).filter(u=>u.score>a).sort((u,f)=>f.score-u.score),m=u=>u<=r?1:0,p=[];return c.forEach(u=>{if(p.length>=s)return;let f=u.score;for(let l=p.length-1;l>=0;--l){let d=jo(o,u.boxIndex,p[l]);if(d!==0&&(u.score*=m(d),u.score<=a))break}f===u.score&&p.push(u.boxIndex)}),p}function Uo(o){let t=n.unstack(n.transpose(o,[1,0])),e=[n.sub(t[2],t[0]),n.sub(t[3],t[1])],r=[n.add(t[0],n.div(e[0],2)),n.add(t[1],n.div(e[1],2))];return{sizes:e,centers:r}}function Xo(o,t){let{sizes:e,centers:r}=Uo(o),a=n.unstack(n.transpose(t,[1,0])),i=n.div(n.mul(n.exp(n.div(a[2],5)),e[0]),2),s=n.add(n.mul(n.div(a[0],10),e[0]),r[0]),c=n.div(n.mul(n.exp(n.div(a[3],5)),e[1]),2),m=n.add(n.mul(n.div(a[1],10),e[1]),r[1]);return n.transpose(n.stack([n.sub(s,i),n.sub(m,c),n.add(s,i),n.add(m,c)]),[1,0])}function Zr(o,t,e){return n.tidy(()=>{let r=o.shape[0],a=Xo(n.reshape(n.tile(e.extra_dim,[r,1,1]),[-1,4]),n.reshape(o,[-1,4]));a=n.reshape(a,[r,a.shape[0]/r,4]);let i=n.sigmoid(n.slice(t,[0,0,1],[-1,-1,-1])),s=n.slice(i,[0,0,0],[-1,-1,1]);s=n.reshape(s,[r,s.shape[1]]);let c=n.unstack(a),m=n.unstack(s);return{boxes:c,scores:m}})}function yt(o,t){return n.tidy(()=>{let e=o.shape[0],r=n.reshape(vt(o,t.box_encoding_predictor),[e,-1,1,4]),a=n.reshape(vt(o,t.class_predictor),[e,-1,3]);return{boxPredictionEncoding:r,classPrediction:a}})}function Kr(o,t,e){return n.tidy(()=>{let r=H(o,e.conv_0,[1,1]),a=H(r,e.conv_1,[2,2]),i=H(a,e.conv_2,[1,1]),s=H(i,e.conv_3,[2,2]),c=H(s,e.conv_4,[1,1]),m=H(c,e.conv_5,[2,2]),p=H(m,e.conv_6,[1,1]),u=H(p,e.conv_7,[2,2]),f=yt(t,e.box_predictor_0),l=yt(o,e.box_predictor_1),d=yt(a,e.box_predictor_2),b=yt(s,e.box_predictor_3),y=yt(m,e.box_predictor_4),h=yt(u,e.box_predictor_5),g=n.concat([f.boxPredictionEncoding,l.boxPredictionEncoding,d.boxPredictionEncoding,b.boxPredictionEncoding,y.boxPredictionEncoding,h.boxPredictionEncoding],1),T=n.concat([f.classPrediction,l.classPrediction,d.classPrediction,b.classPrediction,y.classPrediction,h.classPrediction],1);return{boxPredictions:g,classPredictions:T}})}var z=class{constructor({minConfidence:t,maxResults:e}={}){this._name="SsdMobilenetv1Options";if(this._minConfidence=t||.5,this._maxResults=e||100,typeof this._minConfidence!="number"||this._minConfidence<=0||this._minConfidence>=1)throw new Error(`${this._name} - expected minConfidence to be a number between 0 and 1`);if(typeof this._maxResults!="number")throw new Error(`${this._name} - expected maxResults to be a number`)}get minConfidence(){return this._minConfidence}get maxResults(){return this._maxResults}};var Tt=class extends I{constructor(){super("SsdMobilenetv1")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("SsdMobilenetv1 - load model before inference");return n.tidy(()=>{let r=n.cast(t.toBatchTensor(512,!1),"float32"),a=n.sub(n.div(r,127.5),1),i=Jr(a,e.mobilenetv1),{boxPredictions:s,classPredictions:c}=Kr(i.out,i.conv11,e.prediction_layer);return Zr(s,c,e.output_layer)})}async forward(t){return this.forwardInput(await F(t))}async locateFaces(t,e={}){let{maxResults:r,minConfidence:a}=new z(e),i=await F(t),{boxes:s,scores:c}=this.forwardInput(i),m=s[0],p=c[0];for(let x=1;x{let[E,B]=[Math.max(0,g[x][0]),Math.min(1,g[x][2])].map(O=>O*h),[V,U]=[Math.max(0,g[x][1]),Math.min(1,g[x][3])].map(O=>O*y);return new D(u[x],new Nt(V,E,U-V,B-E),{height:i.getInputHeight(0),width:i.getInputWidth(0)})});return m.dispose(),p.dispose(),T}getDefaultModelName(){return"ssd_mobilenetv1_model"}extractParamsFromWeightMap(t){return Xr(t)}extractParams(t){return Ur(t)}};function Jo(o){let t=new Tt;return t.extractWeights(o),t}function gl(o){return Jo(o)}var Qr=class extends Tt{};var to=.4,eo=[new v(.738768,.874946),new v(2.42204,2.65704),new v(4.30971,7.04493),new v(10.246,4.59428),new v(12.6868,11.8741)],ro=[new v(1.603231,2.094468),new v(6.041143,7.080126),new v(2.882459,3.518061),new v(4.266906,5.178857),new v(9.041765,10.66308)],oo=[117.001,114.697,97.404],no="tiny_yolov2_model",ao="tiny_yolov2_separable_conv_model";var Le=o=>typeof o=="number";function so(o){if(!o)throw new Error(`invalid config: ${o}`);if(typeof o.withSeparableConvs!="boolean")throw new Error(`config.withSeparableConvs has to be a boolean, have: ${o.withSeparableConvs}`);if(!Le(o.iouThreshold)||o.iouThreshold<0||o.iouThreshold>1)throw new Error(`config.iouThreshold has to be a number between [0, 1], have: ${o.iouThreshold}`);if(!Array.isArray(o.classes)||!o.classes.length||!o.classes.every(t=>typeof t=="string"))throw new Error(`config.classes has to be an array class names: string[], have: ${JSON.stringify(o.classes)}`);if(!Array.isArray(o.anchors)||!o.anchors.length||!o.anchors.map(t=>t||{}).every(t=>Le(t.x)&&Le(t.y)))throw new Error(`config.anchors has to be an array of { x: number, y: number }, have: ${JSON.stringify(o.anchors)}`);if(o.meanRgb&&(!Array.isArray(o.meanRgb)||o.meanRgb.length!==3||!o.meanRgb.every(Le)))throw new Error(`config.meanRgb has to be an array of shape [number, number, number], have: ${JSON.stringify(o.meanRgb)}`)}function Ut(o){return n.tidy(()=>{let t=n.mul(o,n.scalar(.10000000149011612));return n.add(n.relu(n.sub(o,t)),t)})}function et(o,t){return n.tidy(()=>{let e=n.pad(o,[[0,0],[1,1],[1,1],[0,0]]);return e=n.conv2d(e,t.conv.filters,[1,1],"valid"),e=n.sub(e,t.bn.sub),e=n.mul(e,t.bn.truediv),e=n.add(e,t.conv.bias),Ut(e)})}function rt(o,t){return n.tidy(()=>{let e=n.pad(o,[[0,0],[1,1],[1,1],[0,0]]);return e=n.separableConv2d(e,t.depthwise_filter,t.pointwise_filter,[1,1],"valid"),e=n.add(e,t.bias),Ut(e)})}function qo(o,t){let e=Rt(o,t);function r(s,c){let m=n.tensor1d(o(s)),p=n.tensor1d(o(s));return t.push({paramPath:`${c}/sub`},{paramPath:`${c}/truediv`}),{sub:m,truediv:p}}function a(s,c,m){let p=e(s,c,3,`${m}/conv`),u=r(c,`${m}/bn`);return{conv:p,bn:u}}let i=$t(o,t);return{extractConvParams:e,extractConvWithBatchNormParams:a,extractSeparableConvParams:i}}function io(o,t,e,r){let{extractWeights:a,getRemainingWeights:i}=L(o),s=[],{extractConvParams:c,extractConvWithBatchNormParams:m,extractSeparableConvParams:p}=qo(a,s),u;if(t.withSeparableConvs){let[f,l,d,b,y,h,g,T,x]=r,E=t.isFirstLayerConv2d?c(f,l,3,"conv0"):p(f,l,"conv0"),B=p(l,d,"conv1"),V=p(d,b,"conv2"),U=p(b,y,"conv3"),O=p(y,h,"conv4"),ot=p(h,g,"conv5"),nt=T?p(g,T,"conv6"):void 0,at=x?p(T,x,"conv7"):void 0,Et=c(x||T||g,5*e,1,"conv8");u={conv0:E,conv1:B,conv2:V,conv3:U,conv4:O,conv5:ot,conv6:nt,conv7:at,conv8:Et}}else{let[f,l,d,b,y,h,g,T,x]=r,E=m(f,l,"conv0"),B=m(l,d,"conv1"),V=m(d,b,"conv2"),U=m(b,y,"conv3"),O=m(y,h,"conv4"),ot=m(h,g,"conv5"),nt=m(g,T,"conv6"),at=m(T,x,"conv7"),Et=c(x,5*e,1,"conv8");u={conv0:E,conv1:B,conv2:V,conv3:U,conv4:O,conv5:ot,conv6:nt,conv7:at,conv8:Et}}if(i().length!==0)throw new Error(`weights remaing after extract: ${i().length}`);return{params:u,paramMappings:s}}function Zo(o,t){let e=k(o,t);function r(c){let m=e(`${c}/sub`,1),p=e(`${c}/truediv`,1);return{sub:m,truediv:p}}function a(c){let m=e(`${c}/filters`,4),p=e(`${c}/bias`,1);return{filters:m,bias:p}}function i(c){let m=a(`${c}/conv`),p=r(`${c}/bn`);return{conv:m,bn:p}}let s=Ot(e);return{extractConvParams:a,extractConvWithBatchNormParams:i,extractSeparableConvParams:s}}function co(o,t){let e=[],{extractConvParams:r,extractConvWithBatchNormParams:a,extractSeparableConvParams:i}=Zo(o,e),s;if(t.withSeparableConvs){let c=t.filterSizes&&t.filterSizes.length||9;s={conv0:t.isFirstLayerConv2d?r("conv0"):i("conv0"),conv1:i("conv1"),conv2:i("conv2"),conv3:i("conv3"),conv4:i("conv4"),conv5:i("conv5"),conv6:c>7?i("conv6"):void 0,conv7:c>8?i("conv7"):void 0,conv8:r("conv8")}}else s={conv0:a("conv0"),conv1:a("conv1"),conv2:a("conv2"),conv3:a("conv3"),conv4:a("conv4"),conv5:a("conv5"),conv6:a("conv6"),conv7:a("conv7"),conv8:r("conv8")};return N(o,e),{params:s,paramMappings:e}}var q=class{constructor({inputSize:t,scoreThreshold:e}={}){this._name="TinyYolov2Options";if(this._inputSize=t||416,this._scoreThreshold=e||.5,typeof this._inputSize!="number"||this._inputSize%32!==0)throw new Error(`${this._name} - expected inputSize to be a number divisible by 32`);if(typeof this._scoreThreshold!="number"||this._scoreThreshold<=0||this._scoreThreshold>=1)throw new Error(`${this._name} - expected scoreThreshold to be a number between 0 and 1`)}get inputSize(){return this._inputSize}get scoreThreshold(){return this._scoreThreshold}};var Se=class Se extends I{constructor(t){super("TinyYolov2"),so(t),this._config=t}get config(){return this._config}get withClassScores(){return this.config.withClassScores||this.config.classes.length>1}get boxEncodingSize(){return 5+(this.withClassScores?this.config.classes.length:0)}runTinyYolov2(t,e){let r=et(t,e.conv0);return r=n.maxPool(r,[2,2],[2,2],"same"),r=et(r,e.conv1),r=n.maxPool(r,[2,2],[2,2],"same"),r=et(r,e.conv2),r=n.maxPool(r,[2,2],[2,2],"same"),r=et(r,e.conv3),r=n.maxPool(r,[2,2],[2,2],"same"),r=et(r,e.conv4),r=n.maxPool(r,[2,2],[2,2],"same"),r=et(r,e.conv5),r=n.maxPool(r,[2,2],[1,1],"same"),r=et(r,e.conv6),r=et(r,e.conv7),vt(r,e.conv8,"valid",!1)}runMobilenet(t,e){let r=this.config.isFirstLayerConv2d?Ut(vt(t,e.conv0,"valid",!1)):rt(t,e.conv0);return r=n.maxPool(r,[2,2],[2,2],"same"),r=rt(r,e.conv1),r=n.maxPool(r,[2,2],[2,2],"same"),r=rt(r,e.conv2),r=n.maxPool(r,[2,2],[2,2],"same"),r=rt(r,e.conv3),r=n.maxPool(r,[2,2],[2,2],"same"),r=rt(r,e.conv4),r=n.maxPool(r,[2,2],[2,2],"same"),r=rt(r,e.conv5),r=n.maxPool(r,[2,2],[1,1],"same"),r=e.conv6?rt(r,e.conv6):r,r=e.conv7?rt(r,e.conv7):r,vt(r,e.conv8,"valid",!1)}forwardInput(t,e){let{params:r}=this;if(!r)throw new Error("TinyYolov2 - load model before inference");return n.tidy(()=>{let a=n.cast(t.toBatchTensor(e,!1),"float32");return a=this.config.meanRgb?J(a,this.config.meanRgb):a,a=a.div(255),this.config.withSeparableConvs?this.runMobilenet(a,r):this.runTinyYolov2(a,r)})}async forward(t,e){return this.forwardInput(await F(t),e)}async detect(t,e={}){let{inputSize:r,scoreThreshold:a}=new q(e),i=await F(t),s=await this.forwardInput(i,r),c=n.tidy(()=>n.unstack(s)[0].expandDims()),m={width:i.getInputWidth(0),height:i.getInputHeight(0)},p=await this.extractBoxes(c,i.getReshapedInputDimensions(0),a);s.dispose(),c.dispose();let u=p.map(h=>h.box),f=p.map(h=>h.score),l=p.map(h=>h.classScore),d=p.map(h=>this.config.classes[h.label]);return br(u.map(h=>h.rescale(r)),f,this.config.iouThreshold,!0).map(h=>new It(f[h],l[h],d[h],u[h],m))}getDefaultModelName(){return""}extractParamsFromWeightMap(t){return co(t,this.config)}extractParams(t){let e=this.config.filterSizes||Se.DEFAULT_FILTER_SIZES,r=e?e.length:void 0;if(r!==7&&r!==8&&r!==9)throw new Error(`TinyYolov2 - expected 7 | 8 | 9 convolutional filters, but found ${r} filterSizes in config`);return io(t,this.config,this.boxEncodingSize,e)}async extractBoxes(t,e,r){let{width:a,height:i}=e,s=Math.max(a,i),c=s/a,m=s/i,p=t.shape[1],u=this.config.anchors.length,[f,l,d]=n.tidy(()=>{let g=t.reshape([p,p,u,this.boxEncodingSize]),T=g.slice([0,0,0,0],[p,p,u,4]),x=g.slice([0,0,0,4],[p,p,u,1]),E=this.withClassScores?n.softmax(g.slice([0,0,0,5],[p,p,u,this.config.classes.length]),3):n.scalar(0);return[T,x,E]}),b=[],y=await l.array(),h=await f.array();for(let g=0;gr){let B=(T+fe(h[g][T][x][0]))/p*c,V=(g+fe(h[g][T][x][1]))/p*m,U=Math.exp(h[g][T][x][2])*this.config.anchors[x].x/p*c,O=Math.exp(h[g][T][x][3])*this.config.anchors[x].y/p*m,ot=B-U/2,nt=V-O/2,at={row:g,col:T,anchor:x},{classScore:Et,label:mr}=this.withClassScores?await this.extractPredictedClass(d,at):{classScore:1,label:0};b.push({box:new Ct(ot,nt,ot+U,nt+O),score:E,classScore:E*Et,label:mr,...at})}}return f.dispose(),l.dispose(),d.dispose(),b}async extractPredictedClass(t,e){let{row:r,col:a,anchor:i}=e,s=await t.array();return Array(this.config.classes.length).fill(0).map((c,m)=>s[r][a][i][m]).map((c,m)=>({classScore:c,label:m})).reduce((c,m)=>c.classScore>m.classScore?c:m)}};Se.DEFAULT_FILTER_SIZES=[3,16,32,64,128,256,512,1024,1024];var Xt=Se;var Jt=class extends Xt{constructor(t=!0){let e={withSeparableConvs:t,iouThreshold:to,classes:["face"],...t?{anchors:ro,meanRgb:oo}:{anchors:eo,withClassScores:!0}};super(e)}get withSeparableConvs(){return this.config.withSeparableConvs}get anchors(){return this.config.anchors}async locateFaces(t,e){return(await this.detect(t,e)).map(a=>new D(a.score,a.relativeBox,{width:a.imageWidth,height:a.imageHeight}))}getDefaultModelName(){return this.withSeparableConvs?ao:no}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};function cd(o,t=!0){let e=new Jt(t);return e.extractWeights(o),e}var Ae=class extends q{constructor(){super(...arguments);this._name="TinyFaceDetectorOptions"}};var Y=class{async then(t){return t(await this.run())}async run(){throw new Error("ComposableTask - run is not implemented")}};async function _t(o,t,e,r,a=({alignedRect:i})=>i){let i=o.map(m=>Yt(m)?a(m):m.detection),s=r||(t instanceof n.Tensor?await oe(t,i):await re(t,i)),c=await e(s);return s.forEach(m=>m instanceof n.Tensor&&m.dispose()),c}async function qt(o,t,e,r,a){return _t([o],t,async i=>e(i[0]),r,a)}var mo=.4,po=[new v(1.603231,2.094468),new v(6.041143,7.080126),new v(2.882459,3.518061),new v(4.266906,5.178857),new v(9.041765,10.66308)],uo=[117.001,114.697,97.404];var Zt=class extends Xt{constructor(){let t={withSeparableConvs:!0,iouThreshold:mo,classes:["face"],anchors:po,meanRgb:uo,isFirstLayerConv2d:!0,filterSizes:[3,16,32,64,128,256,512]};super(t)}get anchors(){return this.config.anchors}async locateFaces(t,e){return(await this.detect(t,e)).map(a=>new D(a.score,a.relativeBox,{width:a.imageWidth,height:a.imageHeight}))}getDefaultModelName(){return"tiny_face_detector_model"}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};var P={ssdMobilenetv1:new Tt,tinyFaceDetector:new Zt,tinyYolov2:new Jt,faceLandmark68Net:new Gt,faceLandmark68TinyNet:new Ie,faceRecognitionNet:new jt,faceExpressionNet:new we,ageGenderNet:new Me},Ko=(o,t)=>P.ssdMobilenetv1.locateFaces(o,t),Rd=(o,t)=>P.tinyFaceDetector.locateFaces(o,t),$d=(o,t)=>P.tinyYolov2.locateFaces(o,t),Qo=o=>P.faceLandmark68Net.detectLandmarks(o),Od=o=>P.faceLandmark68TinyNet.detectLandmarks(o),Hd=o=>P.faceRecognitionNet.computeFaceDescriptor(o),zd=o=>P.faceExpressionNet.predictExpressions(o),Yd=o=>P.ageGenderNet.predictAgeAndGender(o),tn=o=>P.ssdMobilenetv1.load(o),Vd=o=>P.tinyFaceDetector.load(o),Gd=o=>P.tinyYolov2.load(o),jd=o=>P.faceLandmark68Net.load(o),Ud=o=>P.faceLandmark68TinyNet.load(o),Xd=o=>P.faceRecognitionNet.load(o),Jd=o=>P.faceExpressionNet.load(o),qd=o=>P.ageGenderNet.load(o),Zd=tn,Kd=Ko,Qd=Qo;var We=class extends Y{constructor(e,r,a){super();this.parentTask=e;this.input=r;this.extractedFaces=a}},Pt=class extends We{async run(){let t=await this.parentTask,e=await _t(t,this.input,async r=>Promise.all(r.map(a=>P.faceExpressionNet.predictExpressions(a))),this.extractedFaces);return t.map((r,a)=>tr(r,e[a]))}withAgeAndGender(){return new Ft(this,this.input)}},wt=class extends We{async run(){let t=await this.parentTask;if(!t)return;let e=await qt(t,this.input,r=>P.faceExpressionNet.predictExpressions(r),this.extractedFaces);return tr(t,e)}withAgeAndGender(){return new Dt(this,this.input)}},ct=class extends Pt{withAgeAndGender(){return new pt(this,this.input)}withFaceDescriptors(){return new ft(this,this.input)}},mt=class extends wt{withAgeAndGender(){return new ut(this,this.input)}withFaceDescriptor(){return new lt(this,this.input)}};var ke=class extends Y{constructor(e,r,a){super();this.parentTask=e;this.input=r;this.extractedFaces=a}},Ft=class extends ke{async run(){let t=await this.parentTask,e=await _t(t,this.input,async r=>Promise.all(r.map(a=>P.ageGenderNet.predictAgeAndGender(a))),this.extractedFaces);return t.map((r,a)=>{let{age:i,gender:s,genderProbability:c}=e[a];return sr(ir(r,s,c),i)})}withFaceExpressions(){return new Pt(this,this.input)}},Dt=class extends ke{async run(){let t=await this.parentTask;if(!t)return;let{age:e,gender:r,genderProbability:a}=await qt(t,this.input,i=>P.ageGenderNet.predictAgeAndGender(i),this.extractedFaces);return sr(ir(t,r,a),e)}withFaceExpressions(){return new wt(this,this.input)}},pt=class extends Ft{withFaceExpressions(){return new ct(this,this.input)}withFaceDescriptors(){return new ft(this,this.input)}},ut=class extends Dt{withFaceExpressions(){return new mt(this,this.input)}withFaceDescriptor(){return new lt(this,this.input)}};var Be=class extends Y{constructor(e,r){super();this.parentTask=e;this.input=r}},ft=class extends Be{async run(){let t=await this.parentTask;return(await _t(t,this.input,r=>Promise.all(r.map(a=>P.faceRecognitionNet.computeFaceDescriptor(a))),null,r=>r.landmarks.align(null,{useDlibAlignment:!0}))).map((r,a)=>ar(t[a],r))}withFaceExpressions(){return new ct(this,this.input)}withAgeAndGender(){return new pt(this,this.input)}},lt=class extends Be{async run(){let t=await this.parentTask;if(!t)return;let e=await qt(t,this.input,r=>P.faceRecognitionNet.computeFaceDescriptor(r),null,r=>r.landmarks.align(null,{useDlibAlignment:!0}));return ar(t,e)}withFaceExpressions(){return new mt(this,this.input)}withAgeAndGender(){return new ut(this,this.input)}};var Re=class extends Y{constructor(e,r,a){super();this.parentTask=e;this.input=r;this.useTinyLandmarkNet=a}get landmarkNet(){return this.useTinyLandmarkNet?P.faceLandmark68TinyNet:P.faceLandmark68Net}},$e=class extends Re{async run(){let t=await this.parentTask,e=t.map(s=>s.detection),r=this.input instanceof n.Tensor?await oe(this.input,e):await re(this.input,e),a=await Promise.all(r.map(s=>this.landmarkNet.detectLandmarks(s)));return r.forEach(s=>s instanceof n.Tensor&&s.dispose()),t.filter((s,c)=>a[c]).map((s,c)=>ie(s,a[c]))}withFaceExpressions(){return new ct(this,this.input)}withAgeAndGender(){return new pt(this,this.input)}withFaceDescriptors(){return new ft(this,this.input)}},Oe=class extends Re{async run(){let t=await this.parentTask;if(!t)return;let{detection:e}=t,r=this.input instanceof n.Tensor?await oe(this.input,[e]):await re(this.input,[e]),a=await this.landmarkNet.detectLandmarks(r[0]);return r.forEach(i=>i instanceof n.Tensor&&i.dispose()),ie(t,a)}withFaceExpressions(){return new mt(this,this.input)}withAgeAndGender(){return new ut(this,this.input)}withFaceDescriptor(){return new lt(this,this.input)}};var He=class extends Y{constructor(e,r=new z){super();this.input=e;this.options=r}},me=class extends He{async run(){let{input:t,options:e}=this,r;if(e instanceof Ae)r=P.tinyFaceDetector.locateFaces(t,e);else if(e instanceof z)r=P.ssdMobilenetv1.locateFaces(t,e);else if(e instanceof q)r=P.tinyYolov2.locateFaces(t,e);else throw new Error("detectFaces - expected options to be instance of TinyFaceDetectorOptions | SsdMobilenetv1Options | TinyYolov2Options");return r}runAndExtendWithFaceDetections(){return new Promise((t,e)=>{this.run().then(r=>t(r.map(a=>St({},a)))).catch(r=>e(r))})}withFaceLandmarks(t=!1){return new $e(this.runAndExtendWithFaceDetections(),this.input,t)}withFaceExpressions(){return new Pt(this.runAndExtendWithFaceDetections(),this.input)}withAgeAndGender(){return new Ft(this.runAndExtendWithFaceDetections(),this.input)}},ze=class extends He{async run(){let t=await new me(this.input,this.options),e=t[0];return t.forEach(r=>{r.score>e.score&&(e=r)}),e}runAndExtendWithFaceDetection(){return new Promise(async t=>{let e=await this.run();t(e?St({},e):void 0)})}withFaceLandmarks(t=!1){return new Oe(this.runAndExtendWithFaceDetection(),this.input,t)}withFaceExpressions(){return new wt(this.runAndExtendWithFaceDetection(),this.input)}withAgeAndGender(){return new Dt(this.runAndExtendWithFaceDetection(),this.input)}};function qh(o,t=new z){return new ze(o,t)}function cr(o,t=new z){return new me(o,t)}async function en(o,t){return cr(o,new z(t?{minConfidence:t}:{})).withFaceLandmarks().withFaceDescriptors()}async function rb(o,t={}){return cr(o,new q(t)).withFaceLandmarks().withFaceDescriptors()}var ob=en;function fo(o,t){if(o.length!==t.length)throw new Error("euclideanDistance: arr1.length !== arr2.length");let e=Array.from(o),r=Array.from(t);return Math.sqrt(e.map((a,i)=>a-r[i]).reduce((a,i)=>a+i*i,0))}var lo=class o{constructor(t,e=.6){this._distanceThreshold=e;let r=Array.isArray(t)?t:[t];if(!r.length)throw new Error("FaceRecognizer.constructor - expected atleast one input");let a=1,i=()=>`person ${a++}`;this._labeledDescriptors=r.map(s=>{if(s instanceof gt)return s;if(s instanceof Float32Array)return new gt(i(),[s]);if(s.descriptor&&s.descriptor instanceof Float32Array)return new gt(i(),[s.descriptor]);throw new Error("FaceRecognizer.constructor - expected inputs to be of type LabeledFaceDescriptors | WithFaceDescriptor | Float32Array | Array | Float32Array>")})}get labeledDescriptors(){return this._labeledDescriptors}get distanceThreshold(){return this._distanceThreshold}computeMeanDistance(t,e){return e.map(r=>fo(r,t)).reduce((r,a)=>r+a,0)/(e.length||1)}matchDescriptor(t){return this.labeledDescriptors.map(({descriptors:e,label:r})=>new Kt(r,this.computeMeanDistance(t,e))).reduce((e,r)=>e.distancet.toJSON())}}static fromJSON(t){let e=t.labeledDescriptors.map(r=>gt.fromJSON(r));return new o(e,t.distanceThreshold)}};function Tb(o){let t=new Zt;return t.extractWeights(o),t}function rn(o,t){let{width:e,height:r}=new A(t.width,t.height);if(e<=0||r<=0)throw new Error(`resizeResults - invalid dimensions: ${JSON.stringify({width:e,height:r})}`);if(Array.isArray(o))return o.map(a=>rn(a,{width:e,height:r}));if(Yt(o)){let a=o.detection.forSize(e,r),i=o.unshiftedLandmarks.forSize(a.box.width,a.box.height);return ie(St(o,a),i)}return Q(o)?St(o,o.detection.forSize(e,r)):o instanceof $||o instanceof D?o.forSize(e,r):o}var Lb=Ar;export{Me as AgeGenderNet,Ct as BoundingBox,C as Box,Y as ComposableTask,ft as ComputeAllFaceDescriptorsTask,Be as ComputeFaceDescriptorsTaskBase,lt as ComputeSingleFaceDescriptorTask,$e as DetectAllFaceLandmarksTask,me as DetectAllFacesTask,Re as DetectFaceLandmarksTaskBase,He as DetectFacesTaskBase,Oe as DetectSingleFaceLandmarksTask,ze as DetectSingleFaceTask,A as Dimensions,Nr as FACE_EXPRESSION_LABELS,D as FaceDetection,Qr as FaceDetectionNet,we as FaceExpressionNet,it as FaceExpressions,Gt as FaceLandmark68Net,Ie as FaceLandmark68TinyNet,zr as FaceLandmarkNet,$ as FaceLandmarks,xr as FaceLandmarks5,Lt as FaceLandmarks68,Kt as FaceMatch,lo as FaceMatcher,jt as FaceRecognitionNet,rr as Gender,Qt as LabeledBox,gt as LabeledFaceDescriptors,tt as NetInput,I as NeuralNetwork,It as ObjectDetection,v as Point,vr as PredictedBox,Nt as Rect,Tt as SsdMobilenetv1,z as SsdMobilenetv1Options,Zt as TinyFaceDetector,Ae as TinyFaceDetectorOptions,Jt as TinyYolov2,q as TinyYolov2Options,ob as allFaces,en as allFacesSsdMobilenetv1,rb as allFacesTinyYolov2,yr as awaitMediaLoaded,Tr as bufferToImage,Hd as computeFaceDescriptor,Bt as createCanvas,be as createCanvasFromMedia,gl as createFaceDetectionNet,gf as createFaceRecognitionNet,Jo as createSsdMobilenetv1,Tb as createTinyFaceDetector,cd as createTinyYolov2,cr as detectAllFaces,Qo as detectFaceLandmarks,Od as detectFaceLandmarksTiny,Qd as detectLandmarks,qh as detectSingleFace,Sr as draw,_ as env,fo as euclideanDistance,sr as extendWithAge,ar as extendWithFaceDescriptor,St as extendWithFaceDetection,tr as extendWithFaceExpressions,ie as extendWithFaceLandmarks,ir as extendWithGender,oe as extractFaceTensors,re as extractFaces,Fi as fetchImage,wr as fetchJson,Ii as fetchNetWeights,st as fetchOrThrow,ki as fetchVideo,W as getContext2dOrThrow,kt as getMediaDimensions,_r as imageTensorToCanvas,Pr as imageToSquare,On as inverseSigmoid,dr as iou,Qe as isMediaElement,he as isMediaLoaded,Tf as isWithAge,Q as isWithFaceDetection,Lr as isWithFaceExpressions,Yt as isWithFaceLandmarks,Ff as isWithGender,qd as loadAgeGenderModel,Zd as loadFaceDetectionModel,Jd as loadFaceExpressionModel,jd as loadFaceLandmarkModel,Ud as loadFaceLandmarkTinyModel,Xd as loadFaceRecognitionModel,tn as loadSsdMobilenetv1Model,Vd as loadTinyFaceDetectorModel,Gd as loadTinyYolov2Model,Dr as loadWeightMap,Kd as locateFaces,Yi as matchDimensions,hr as minBbox,P as nets,br as nonMaxSuppression,J as normalize,gr as padToSquare,Yd as predictAgeAndGender,zd as recognizeFaceExpressions,rn as resizeResults,At as resolveInput,Rn as shuffleArray,fe as sigmoid,Ko as ssdMobilenetv1,n as tf,Rd as tinyFaceDetector,$d as tinyYolov2,F as toNetInput,lr as utils,so as validateConfig,Lb as version}; +var ur=Object.defineProperty;var ho=Object.getOwnPropertyDescriptor;var bo=Object.getOwnPropertyNames;var go=Object.prototype.hasOwnProperty;var xo=(o=>typeof require!="undefined"?require:typeof Proxy!="undefined"?new Proxy(o,{get:(t,e)=>(typeof require!="undefined"?require:t)[e]}):o)(function(o){if(typeof require!="undefined")return require.apply(this,arguments);throw Error('Dynamic require of "'+o+'" is not supported')});var Ye=(o,t)=>{for(var e in t)ur(o,e,{get:t[e],enumerable:!0})},pr=(o,t,e,r)=>{if(t&&typeof t=="object"||typeof t=="function")for(let a of bo(t))!go.call(o,a)&&a!==e&&ur(o,a,{get:()=>t[a],enumerable:!(r=ho(t,a))||r.enumerable});return o},w=(o,t,e)=>(pr(o,t,"default"),e&&pr(e,t,"default"));var n={};Ye(n,{version:()=>Po});w(n,mn);w(n,pn);w(n,un);import*as mn from"@tensorflow/tfjs/dist/index.js";import*as pn from"@tensorflow/tfjs-backend-webgl/dist/index.js";import*as un from"@tensorflow/tfjs-backend-wasm/dist/index.js";var fr="4.22.0",vo="4.22.0",yo="4.22.0",To="4.22.0",_o="4.22.0",Po={tfjs:fr,"tfjs-core":fr,"tfjs-converter":vo,"tfjs-backend-cpu":yo,"tfjs-backend-webgl":To,"tfjs-backend-wasm":_o};var Sr={};Ye(Sr,{AnchorPosition:()=>Ke,DrawBox:()=>ee,DrawBoxOptions:()=>de,DrawFaceLandmarks:()=>De,DrawFaceLandmarksOptions:()=>Fe,DrawTextField:()=>xt,DrawTextFieldOptions:()=>Wt,drawContour:()=>Z,drawDetections:()=>Io,drawFaceExpressions:()=>No,drawFaceLandmarks:()=>So});function Z(o,t,e=!1){if(o.beginPath(),t.slice(1).forEach(({x:r,y:a},i)=>{let s=t[i];o.moveTo(s.x,s.y),o.lineTo(r,a)}),e){let r=t[t.length-1],a=t[0];if(!r||!a)return;o.moveTo(r.x,r.y),o.lineTo(a.x,a.y)}o.stroke()}var lr={};Ye(lr,{computeReshapedDimensions:()=>je,getCenterPoint:()=>bt,isDimensions:()=>ue,isEven:()=>pe,isFloat:()=>Ge,isTensor:()=>dt,isTensor1D:()=>wo,isTensor2D:()=>Ve,isTensor3D:()=>K,isTensor4D:()=>R,isValidNumber:()=>G,isValidProbablitiy:()=>Mt,range:()=>X,round:()=>ht});var A=class o{constructor(t,e){if(!G(t)||!G(e))throw new Error(`Dimensions.constructor - expected width and height to be valid numbers, instead have ${JSON.stringify({width:t,height:e})}`);this._width=t,this._height=e}get width(){return this._width}get height(){return this._height}reverse(){return new o(1/this.width,1/this.height)}};function dt(o,t){return o instanceof n.Tensor&&o.shape.length===t}function wo(o){return dt(o,1)}function Ve(o){return dt(o,2)}function K(o){return dt(o,3)}function R(o){return dt(o,4)}function Ge(o){return o%1!==0}function pe(o){return o%2===0}function ht(o,t=2){let e=10**t;return Math.floor(o*e)/e}function ue(o){return o&&o.width&&o.height}function je({width:o,height:t},e){let r=e/Math.max(t,o);return new A(Math.round(o*r),Math.round(t*r))}function bt(o){return o.reduce((t,e)=>t.add(e),new v(0,0)).div(new v(o.length,o.length))}function X(o,t,e){return Array(o).fill(0).map((r,a)=>t+a*e)}function G(o){return!!o&&o!==1/0&&o!==-1/0&&!Number.isNaN(o)||o===0}function Mt(o){return G(o)&&o>=0&&o<=1}var v=class o{constructor(t,e){this._x=t,this._y=e}get x(){return this._x}get y(){return this._y}add(t){return new o(this.x+t.x,this.y+t.y)}sub(t){return new o(this.x-t.x,this.y-t.y)}mul(t){return new o(this.x*t.x,this.y*t.y)}div(t){return new o(this.x/t.x,this.y/t.y)}abs(){return new o(Math.abs(this.x),Math.abs(this.y))}magnitude(){return Math.sqrt(this.x**2+this.y**2)}floor(){return new o(Math.floor(this.x),Math.floor(this.y))}};var C=class o{static isRect(t){return!!t&&[t.x,t.y,t.width,t.height].every(G)}static assertIsValidBox(t,e,r=!1){if(!o.isRect(t))throw new Error(`${e} - invalid box: ${JSON.stringify(t)}, expected object with properties x, y, width, height`);if(!r&&(t.width<0||t.height<0))throw new Error(`${e} - width (${t.width}) and height (${t.height}) must be positive numbers`)}constructor(t,e=!0){let r=t||{},a=[r.left,r.top,r.right,r.bottom].every(G),i=[r.x,r.y,r.width,r.height].every(G);if(!i&&!a)throw new Error(`Box.constructor - expected box to be IBoundingBox | IRect, instead have ${JSON.stringify(r)}`);let[s,c,m,p]=i?[r.x,r.y,r.width,r.height]:[r.left,r.top,r.right-r.left,r.bottom-r.top];o.assertIsValidBox({x:s,y:c,width:m,height:p},"Box.constructor",e),this._x=s,this._y=c,this._width=m,this._height=p}get x(){return this._x}get y(){return this._y}get width(){return this._width}get height(){return this._height}get left(){return this.x}get top(){return this.y}get right(){return this.x+this.width}get bottom(){return this.y+this.height}get area(){return this.width*this.height}get topLeft(){return new v(this.left,this.top)}get topRight(){return new v(this.right,this.top)}get bottomLeft(){return new v(this.left,this.bottom)}get bottomRight(){return new v(this.right,this.bottom)}round(){let[t,e,r,a]=[this.x,this.y,this.width,this.height].map(i=>Math.round(i));return new o({x:t,y:e,width:r,height:a})}floor(){let[t,e,r,a]=[this.x,this.y,this.width,this.height].map(i=>Math.floor(i));return new o({x:t,y:e,width:r,height:a})}toSquare(){let{x:t,y:e,width:r,height:a}=this,i=Math.abs(r-a);return re&&(c=-f+e+r,f=e),l>t&&(m=-l+t+a,l=t),p<1&&(m=2-p,p=1),u<1&&(m=2-u,u=1),{dy:s,edy:m,dx:i,edx:c,y:u,ey:l,x:p,ex:f,w:r,h:a}}calibrate(t){return new o({left:this.left+t.left*this.width,top:this.top+t.top*this.height,right:this.right+t.right*this.width,bottom:this.bottom+t.bottom*this.height}).toSquare().round()}};var Ct=class extends C{constructor(t,e,r,a,i=!1){super({left:t,top:e,right:r,bottom:a},i)}};var It=class o{constructor(t,e,r,a,i){this._imageDims=new A(i.width,i.height),this._score=t,this._classScore=e,this._className=r,this._box=new C(a).rescale(this._imageDims)}get score(){return this._score}get classScore(){return this._classScore}get className(){return this._className}get box(){return this._box}get imageDims(){return this._imageDims}get imageWidth(){return this.imageDims.width}get imageHeight(){return this.imageDims.height}get relativeBox(){return new C(this._box).rescale(this.imageDims.reverse())}forSize(t,e){return new o(this.score,this.classScore,this.className,this.relativeBox,{width:t,height:e})}};var D=class o extends It{constructor(t,e,r){super(t,t,"",e,r)}forSize(t,e){let{score:r,relativeBox:a,imageDims:i}=super.forSize(t,e);return new o(r,a,i)}};function dr(o,t,e=!0){let r=Math.max(0,Math.min(o.right,t.right)-Math.max(o.left,t.left)),a=Math.max(0,Math.min(o.bottom,t.bottom)-Math.max(o.top,t.top)),i=r*a;return e?i/(o.area+t.area-i):i/Math.min(o.area,t.area)}function hr(o){let t=o.map(c=>c.x),e=o.map(c=>c.y),r=t.reduce((c,m)=>mmcc({score:s,boxIndex:c})).sort((s,c)=>s.score-c.score).map(s=>s.boxIndex),i=[];for(;a.length>0;){let s=a.pop();i.push(s);let c=a,m=[];for(let p=0;pm[u]<=e)}return i}function J(o,t){return n.tidy(()=>{let[e,r,a]=t,i=n.fill([...o.shape.slice(0,3),1],e,"float32"),s=n.fill([...o.shape.slice(0,3),1],r,"float32"),c=n.fill([...o.shape.slice(0,3),1],a,"float32"),m=n.concat([i,s,c],3);return n.sub(o,m)})}function gr(o,t=!1){return n.tidy(()=>{let[e,r]=o.shape.slice(1);if(e===r)return o;let a=Math.abs(e-r),i=Math.round(a*(t?.5:1)),s=e>r?2:1,c=l=>{let d=o.shape.slice();return d[s]=l,n.fill(d,0,"float32")},m=c(i),p=a-m.shape[s],f=[t&&p?c(p):null,o,m].filter(l=>!!l).map(l=>n.cast(l,"float32"));return n.concat(f,s)})}function Rn(o){let t=o.slice();for(let e=t.length-1;e>0;e--){let r=Math.floor(Math.random()*(e+1)),a=t[e];t[e]=t[r],t[r]=a}return t}function fe(o){return 1/(1+Math.exp(-o))}function On(o){return Math.log(o/(1-o))}var Nt=class extends C{constructor(t,e,r,a,i=!1){super({x:t,y:e,width:r,height:a},i)}};var Fo=.5,Do=.43,Eo=.45,$=class{constructor(t,e,r=new v(0,0)){let{width:a,height:i}=e;this._imgDims=new A(a,i),this._shift=r,this._positions=t.map(s=>s.mul(new v(a,i)).add(r))}get shift(){return new v(this._shift.x,this._shift.y)}get imageWidth(){return this._imgDims.width}get imageHeight(){return this._imgDims.height}get positions(){return this._positions}get relativePositions(){return this._positions.map(t=>t.sub(this._shift).div(new v(this.imageWidth,this.imageHeight)))}forSize(t,e){return new this.constructor(this.relativePositions,{width:t,height:e})}shiftBy(t,e){return new this.constructor(this.relativePositions,this._imgDims,new v(t,e))}shiftByPoint(t){return this.shiftBy(t.x,t.y)}align(t,e={}){if(t){let i=t instanceof D?t.box.floor():new C(t);return this.shiftBy(i.x,i.y).align(null,e)}let{useDlibAlignment:r,minBoxPadding:a}={useDlibAlignment:!1,minBoxPadding:.2,...e};return r?this.alignDlib():this.alignMinBbox(a)}alignDlib(){let t=this.getRefPointsForAlignment(),[e,r,a]=t,i=f=>a.sub(f).magnitude(),s=(i(e)+i(r))/2,c=Math.floor(s/Eo),m=bt(t),p=Math.floor(Math.max(0,m.x-Fo*c)),u=Math.floor(Math.max(0,m.y-Do*c));return new Nt(p,u,Math.min(c,this.imageWidth+p),Math.min(c,this.imageHeight+u))}alignMinBbox(t){let e=hr(this.positions);return e.pad(e.width*t,e.height*t)}getRefPointsForAlignment(){throw new Error("getRefPointsForAlignment not implemented by base class")}};var xr=class extends ${getRefPointsForAlignment(){let t=this.positions;return[t[0],t[1],bt([t[3],t[4]])]}};var Lt=class extends ${getJawOutline(){return this.positions.slice(0,17)}getLeftEyeBrow(){return this.positions.slice(17,22)}getRightEyeBrow(){return this.positions.slice(22,27)}getNose(){return this.positions.slice(27,36)}getLeftEye(){return this.positions.slice(36,42)}getRightEye(){return this.positions.slice(42,48)}getMouth(){return this.positions.slice(48,68)}getRefPointsForAlignment(){return[this.getLeftEye(),this.getRightEye(),this.getMouth()].map(bt)}};var Kt=class{constructor(t,e){this._label=t,this._distance=e}get label(){return this._label}get distance(){return this._distance}toString(t=!0){return`${this.label}${t?` (${ht(this.distance)})`:""}`}};var Qt=class extends C{static assertIsValidLabeledBox(t,e){if(C.assertIsValidBox(t,e),!G(t.label))throw new Error(`${e} - expected property label (${t.label}) to be a number`)}constructor(t,e){super(t),this._label=e}get label(){return this._label}};var gt=class o{constructor(t,e){if(typeof t!="string")throw new Error("LabeledFaceDescriptors - constructor expected label to be a string");if(!Array.isArray(e)||e.some(r=>!(r instanceof Float32Array)))throw new Error("LabeledFaceDescriptors - constructor expected descriptors to be an array of Float32Array");this._label=t,this._descriptors=e}get label(){return this._label}get descriptors(){return this._descriptors}toJSON(){return{label:this.label,descriptors:this.descriptors.map(t=>Array.from(t))}}static fromJSON(t){let e=t.descriptors.map(r=>new Float32Array(r));return new o(t.label,e)}};var vr=class extends Qt{static assertIsValidPredictedBox(t,e){if(Qt.assertIsValidLabeledBox(t,e),!Mt(t.score)||!Mt(t.classScore))throw new Error(`${e} - expected properties score (${t.score}) and (${t.classScore}) to be a number between [0, 1]`)}constructor(t,e,r,a){super(t,e),this._score=r,this._classScore=a}get score(){return this._score}get classScore(){return this._classScore}};function Q(o){return o.detection instanceof D}function St(o,t){return{...o,...{detection:t}}}function Ue(){let o=window.fetch;if(!o)throw new Error("fetch - missing fetch implementation for browser environment");return{Canvas:HTMLCanvasElement,CanvasRenderingContext2D,Image:HTMLImageElement,ImageData,Video:HTMLVideoElement,createCanvasElement:()=>document.createElement("canvas"),createImageElement:()=>document.createElement("img"),createVideoElement:()=>document.createElement("video"),fetch:o,readFile:()=>{throw new Error("readFile - filesystem not available for browser environment")}}}function te(){return typeof global=="object"&&typeof process!="undefined"&&process.versions!=null&&process.versions.node!=null}function le(o){let t="";if(!o&&te())try{o=xo("fs")}catch(r){t=r.toString()}return{readFile:o?r=>new Promise((a,i)=>{o.readFile(r,(s,c)=>s?i(s):a(c))}):()=>{throw new Error(`readFile - failed to require fs in nodejs environment with error: ${t}`)}}}function Xe(){let o=global.Canvas||global.HTMLCanvasElement,t=global.Image||global.HTMLImageElement,e=global.Video||global.HTMLVideoElement,r=()=>{if(o)return new o;throw new Error("createCanvasElement - missing Canvas implementation for nodejs environment")},a=()=>{if(t)return new t;throw new Error("createImageElement - missing Image implementation for nodejs environment")},i=()=>{if(e)return new e;throw new Error("createVideoElement - missing Video implementation for nodejs environment")},s=global.fetch,c=le();return{Canvas:o||class{},CanvasRenderingContext2D:global.CanvasRenderingContext2D||class{},Image:t||class{},ImageData:global.ImageData||class{},Video:global.HTMLVideoElement||class{},createCanvasElement:r,createImageElement:a,createVideoElement:i,fetch:s,...c}}function Je(){return typeof window=="object"&&typeof document!="undefined"&&typeof HTMLImageElement!="undefined"&&typeof HTMLCanvasElement!="undefined"&&typeof HTMLVideoElement!="undefined"&&typeof ImageData!="undefined"&&typeof CanvasRenderingContext2D!="undefined"}var M;function Mo(){if(!M)throw new Error("getEnv - environment is not defined, check isNodejs() and isBrowser()");return M}function qe(o){M=o}function Ze(){return Je()?qe(Ue()):te()?qe(Xe()):null}function Co(o){if(M||Ze(),!M)throw new Error("monkeyPatch - environment is not defined, check isNodejs() and isBrowser()");let{Canvas:t=M.Canvas,Image:e=M.Image}=o;M.Canvas=t,M.Image=e,M.createCanvasElement=o.createCanvasElement||(()=>new t),M.createImageElement=o.createImageElement||(()=>new e),M.ImageData=o.ImageData||M.ImageData,M.Video=o.Video||M.Video,M.fetch=o.fetch||M.fetch,M.readFile=o.readFile||M.readFile}var _={getEnv:Mo,setEnv:qe,initialize:Ze,createBrowserEnv:Ue,createFileSystem:le,createNodejsEnv:Xe,monkeyPatch:Co,isBrowser:Je,isNodejs:te};Ze();function At(o){return!_.isNodejs()&&typeof o=="string"?document.getElementById(o):o}function W(o){let{Canvas:t,CanvasRenderingContext2D:e}=_.getEnv();if(o instanceof e)return o;let r=At(o);if(!(r instanceof t))throw new Error("resolveContext2d - expected canvas to be of instance of Canvas");let a=r.getContext("2d",{willReadFrequently:!0});if(!a)throw new Error("resolveContext2d - canvas 2d context is null");return a}var Ke=(a=>(a.TOP_LEFT="TOP_LEFT",a.TOP_RIGHT="TOP_RIGHT",a.BOTTOM_LEFT="BOTTOM_LEFT",a.BOTTOM_RIGHT="BOTTOM_RIGHT",a))(Ke||{}),Wt=class{constructor(t={}){let{anchorPosition:e,backgroundColor:r,fontColor:a,fontSize:i,fontStyle:s,padding:c}=t;this.anchorPosition=e||"TOP_LEFT",this.backgroundColor=r||"rgba(0, 0, 0, 0.5)",this.fontColor=a||"rgba(255, 255, 255, 1)",this.fontSize=i||14,this.fontStyle=s||"Georgia",this.padding=c||4}},xt=class o{constructor(t,e,r={}){this.text=typeof t=="string"?[t]:t instanceof o?t.text:t,this.anchor=e,this.options=new Wt(r)}measureWidth(t){let{padding:e}=this.options;return this.text.map(r=>t.measureText(r).width).reduce((r,a)=>r{let b=m+f.x,y=m+f.y+(d+1)*s;r.fillText(l,b,y)})}};var de=class{constructor(t={}){let{boxColor:e,lineWidth:r,label:a,drawLabelOptions:i}=t;this.boxColor=e||"rgba(0, 0, 255, 1)",this.lineWidth=r||2,this.label=a;let s={anchorPosition:"BOTTOM_LEFT",backgroundColor:this.boxColor};this.drawLabelOptions=new Wt({...s,...i})}},ee=class{constructor(t,e={}){this.box=new C(t),this.options=new de(e)}draw(t){let e=W(t),{boxColor:r,lineWidth:a}=this.options,{x:i,y:s,width:c,height:m}=this.box;e.strokeStyle=r,e.lineWidth=a,e.strokeRect(i,s,c,m);let{label:p}=this.options;p&&new xt([p],{x:i-a/2,y:s},this.options.drawLabelOptions).draw(t)}};function Io(o,t){(Array.isArray(t)?t:[t]).forEach(r=>{let a=r instanceof D?r.score:Q(r)?r.detection.score:void 0,i=r instanceof D?r.box:Q(r)?r.detection.box:new C(r),s=a?`${ht(a)}`:void 0;new ee(i,{label:s}).draw(o)})}function he(o){let{Image:t,Video:e}=_.getEnv();return o instanceof t&&o.complete||o instanceof e&&o.readyState>=3}function yr(o){return new Promise((t,e)=>{if(o instanceof _.getEnv().Canvas||he(o)){t(null);return}function r(i){i.currentTarget&&(i.currentTarget.removeEventListener("load",a),i.currentTarget.removeEventListener("error",r),e(i))}function a(i){i.currentTarget&&(i.currentTarget.removeEventListener("load",a),i.currentTarget.removeEventListener("error",r),t(i))}o.addEventListener("load",a),o.addEventListener("error",r)})}function Tr(o){return new Promise((t,e)=>{o instanceof Blob||e(new Error("bufferToImage - expected buf to be of type: Blob"));let r=new FileReader;r.onload=()=>{typeof r.result!="string"&&e(new Error("bufferToImage - expected reader.result to be a string, in onload"));let a=_.getEnv().createImageElement();a.onload=()=>t(a),a.onerror=e,a.src=r.result},r.onerror=e,r.readAsDataURL(o)})}function kt(o){let{Image:t,Video:e}=_.getEnv();return o instanceof t?new A(o.naturalWidth,o.naturalHeight):o instanceof e?new A(o.videoWidth,o.videoHeight):new A(o.width,o.height)}function Bt({width:o,height:t}){let{createCanvasElement:e}=_.getEnv(),r=e();return r.width=o,r.height=t,r}function be(o,t){let{ImageData:e}=_.getEnv();if(!(o instanceof e)&&!he(o))throw new Error("createCanvasFromMedia - media has not finished loading yet");let{width:r,height:a}=t||kt(o),i=Bt({width:r,height:a});return o instanceof e?W(i).putImageData(o,0,0):W(i).drawImage(o,0,0,r,a),i}async function _r(o,t){let e=t||_.getEnv().createCanvasElement(),[r,a,i]=o.shape.slice(R(o)?1:0),s=n.tidy(()=>o.as3D(r,a,i).toInt());return await n.browser.toPixels(s,e),s.dispose(),e}function Qe(o){let{Image:t,Canvas:e,Video:r}=_.getEnv();return o instanceof t||o instanceof e||o instanceof r}function Pr(o,t,e=!1){let{Image:r,Canvas:a}=_.getEnv();if(!(o instanceof r||o instanceof a))throw new Error("imageToSquare - expected arg0 to be HTMLImageElement | HTMLCanvasElement");if(t<=0)return Bt({width:1,height:1});let i=kt(o),s=t/Math.max(i.height,i.width),c=s*i.width,m=s*i.height,p=Bt({width:t,height:t}),u=o instanceof a?o:be(o),f=Math.abs(c-m)/2,l=e&&c0&&u.height>0&&W(p).drawImage(u,l,d,c,m),p}var tt=class{constructor(t,e=!1){this._imageTensors=[];this._canvases=[];this._treatAsBatchInput=!1;this._inputDimensions=[];this._inputSize=0;if(!Array.isArray(t))throw new Error(`NetInput.constructor - expected inputs to be an Array of TResolvedNetInput or to be instanceof tf.Tensor4D, instead have ${t}`);this._treatAsBatchInput=e,this._batchSize=t.length,t.forEach((r,a)=>{if(K(r)){this._imageTensors[a]=r,this._inputDimensions[a]=r.shape;return}if(R(r)){let s=r.shape[0];if(s!==1)throw new Error(`NetInput - tf.Tensor4D with batchSize ${s} passed, but not supported in input array`);this._imageTensors[a]=r,this._inputDimensions[a]=r.shape.slice(1);return}let i=r instanceof _.getEnv().Canvas?r:be(r);this._canvases[a]=i,this._inputDimensions[a]=[i.height,i.width,3]})}get imageTensors(){return this._imageTensors}get canvases(){return this._canvases}get isBatchInput(){return this.batchSize>1||this._treatAsBatchInput}get batchSize(){return this._batchSize}get inputDimensions(){return this._inputDimensions}get inputSize(){return this._inputSize}get reshapedInputDimensions(){return X(this.batchSize,0,1).map((t,e)=>this.getReshapedInputDimensions(e))}getInput(t){return this.canvases[t]||this.imageTensors[t]}getInputDimensions(t){return this._inputDimensions[t]}getInputHeight(t){return this._inputDimensions[t][0]}getInputWidth(t){return this._inputDimensions[t][1]}getReshapedInputDimensions(t){if(typeof this.inputSize!="number")throw new Error("getReshapedInputDimensions - inputSize not set, toBatchTensor has not been called yet");let e=this.getInputWidth(t),r=this.getInputHeight(t);return je({width:e,height:r},this.inputSize)}toBatchTensor(t,e=!0){return this._inputSize=t,n.tidy(()=>{let r=X(this.batchSize,0,1).map(i=>{let s=this.getInput(i);if(s instanceof n.Tensor){let c=R(s)?s:n.expandDims(s);return c=gr(c,e),(c.shape[1]!==t||c.shape[2]!==t)&&(c=n.image.resizeBilinear(c,[t,t],!1,!1)),c.as3D(t,t,3)}if(s instanceof _.getEnv().Canvas)return n.browser.fromPixels(Pr(s,t,e));throw new Error(`toBatchTensor - at batchIdx ${i}, expected input to be instanceof tf.Tensor or instanceof HTMLCanvasElement, instead have ${s}`)});return n.stack(r.map(i=>n.cast(i,"float32"))).as4D(this.batchSize,t,t,3)})}};async function F(o){if(o instanceof tt)return o;let t=Array.isArray(o)?o:[o];if(!t.length)throw new Error("toNetInput - empty array passed as input");let e=a=>Array.isArray(o)?` at input index ${a}:`:"",r=t.map(At);return r.forEach((a,i)=>{if(!Qe(a)&&!K(a)&&!R(a))throw typeof t[i]=="string"?new Error(`toNetInput -${e(i)} string passed, but could not resolve HTMLElement for element id ${t[i]}`):new Error(`toNetInput -${e(i)} expected media to be of type HTMLImageElement | HTMLVideoElement | HTMLCanvasElement | tf.Tensor3D, or to be an element id`);if(R(a)){let s=a.shape[0];if(s!==1)throw new Error(`toNetInput -${e(i)} tf.Tensor4D with batchSize ${s} passed, but not supported in input array`)}}),await Promise.all(r.map(a=>Qe(a)&&yr(a))),new tt(r,Array.isArray(o))}async function re(o,t){let{Canvas:e}=_.getEnv(),r=o;if(!(o instanceof e)){let s=await F(o);if(s.batchSize>1)throw new Error("extractFaces - batchSize > 1 not supported");let c=s.getInput(0);r=c instanceof e?c:await _r(c)}let a=W(r);return t.map(s=>s instanceof D?s.forSize(r.width,r.height).box.floor():s).map(s=>s.clipAtImageBorders(r.width,r.height)).map(({x:s,y:c,width:m,height:p})=>{let u=Bt({width:m,height:p});return m>0&&p>0&&W(u).putImageData(a.getImageData(s,c,m,p),0,0),u})}async function oe(o,t){if(!K(o)&&!R(o))throw new Error("extractFaceTensors - expected image tensor to be 3D or 4D");if(R(o)&&o.shape[0]>1)throw new Error("extractFaceTensors - batchSize > 1 not supported");return n.tidy(()=>{let[e,r,a]=o.shape.slice(R(o)?1:0);return t.map(c=>c instanceof D?c.forSize(r,e).box:c).map(c=>c.clipAtImageBorders(r,e)).filter(c=>c.width>0&&c.height>0).map(({x:c,y:m,width:p,height:u})=>n.slice3d(o.as3D(e,r,a),[m,c,0],[u,p,a]))})}async function st(o,t){let{fetch:e}=_.getEnv(),r=await e(o,t);if(!(r.status<400))throw new Error(`failed to fetch: (${r.status}) ${r.statusText}, from url: ${r.url}`);return r}async function Fi(o){let t=await st(o),e=await t.blob();if(!e.type.startsWith("image/"))throw new Error(`fetchImage - expected blob type to be of type image/*, instead have: ${e.type}, for url: ${t.url}`);return Tr(e)}async function wr(o){return(await st(o)).json()}async function Ii(o){return new Float32Array(await(await st(o)).arrayBuffer())}function Fr(o){return new Promise((t,e)=>{o instanceof Blob||e(new Error("bufferToVideo - expected buf to be of type: Blob"));let r=_.getEnv().createVideoElement();r.oncanplay=()=>t(r),r.onerror=e,r.playsInline=!0,r.muted=!0,r.src=URL.createObjectURL(o),r.play()})}async function ki(o){let t=await st(o),e=await t.blob();if(!e.type.startsWith("video/"))throw new Error(`fetchVideo - expected blob type to be of type video/*, instead have: ${e.type}, for url: ${t.url}`);return Fr(e)}function ge(o,t){let e=`${t}-weights_manifest.json`;if(!o)return{modelBaseUri:"",manifestUri:e};if(o==="/")return{modelBaseUri:"/",manifestUri:`/${e}`};let r=o.startsWith("http://")?"http://":o.startsWith("https://")?"https://":"";o=o.replace(r,"");let a=o.split("/").filter(c=>c),i=o.endsWith(".json")?a[a.length-1]:e,s=r+(o.endsWith(".json")?a.slice(0,a.length-1):a).join("/");return s=o.startsWith("/")?`/${s}`:s,{modelBaseUri:s,manifestUri:s==="/"?`/${i}`:`${s}/${i}`}}async function Dr(o,t){let{manifestUri:e,modelBaseUri:r}=ge(o,t),a=await wr(e);return n.io.loadWeights(a,r)}function Yi(o,t,e=!1){let{width:r,height:a}=e?kt(t):t;return o.width=r,o.height=a,{width:r,height:a}}var I=class{constructor(t){this._params=void 0;this._paramMappings=[];this._name=t}get params(){return this._params}get paramMappings(){return this._paramMappings}get isLoaded(){return!!this.params}getParamFromPath(t){let{obj:e,objProp:r}=this.traversePropertyPath(t);return e[r]}reassignParamFromPath(t,e){let{obj:r,objProp:a}=this.traversePropertyPath(t);r[a].dispose(),r[a]=e}getParamList(){return this._paramMappings.map(({paramPath:t})=>({path:t,tensor:this.getParamFromPath(t)}))}getTrainableParams(){return this.getParamList().filter(t=>t.tensor instanceof n.Variable)}getFrozenParams(){return this.getParamList().filter(t=>!(t.tensor instanceof n.Variable))}variable(){this.getFrozenParams().forEach(({path:t,tensor:e})=>{this.reassignParamFromPath(t,e.variable())})}freeze(){this.getTrainableParams().forEach(({path:t,tensor:e})=>{let r=n.tensor(e.dataSync());e.dispose(),this.reassignParamFromPath(t,r)})}dispose(t=!0){this.getParamList().forEach(e=>{if(t&&e.tensor.isDisposed)throw new Error(`param tensor has already been disposed for path ${e.path}`);e.tensor.dispose()}),this._params=void 0}serializeParams(){return new Float32Array(this.getParamList().map(({tensor:t})=>Array.from(t.dataSync())).reduce((t,e)=>t.concat(e)))}async load(t){if(t instanceof Float32Array){this.extractWeights(t);return}await this.loadFromUri(t)}async loadFromUri(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromUri - expected model uri`);let e=await Dr(t,this.getDefaultModelName());this.loadFromWeightMap(e)}async loadFromDisk(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromDisk - expected model file path`);let{readFile:e}=_.getEnv(),{manifestUri:r,modelBaseUri:a}=ge(t,this.getDefaultModelName()),i=p=>Promise.all(p.map(u=>e(u).then(f=>typeof f=="string"?Buffer.from(f):f.buffer))),s=n.io.weightsLoaderFactory(i),c=JSON.parse((await e(r)).toString()),m=await s(c,a);this.loadFromWeightMap(m)}loadFromWeightMap(t){let{paramMappings:e,params:r}=this.extractParamsFromWeightMap(t);this._paramMappings=e,this._params=r}extractWeights(t){let{paramMappings:e,params:r}=this.extractParams(t);this._paramMappings=e,this._params=r}traversePropertyPath(t){if(!this.params)throw new Error("traversePropertyPath - model has no loaded params");let e=t.split("/").reduce((i,s)=>{if(!i.nextObj.hasOwnProperty(s))throw new Error(`traversePropertyPath - object does not have property ${s}, for path ${t}`);return{obj:i.nextObj,objProp:s,nextObj:i.nextObj[s]}},{nextObj:this.params}),{obj:r,objProp:a}=e;if(!r||!a||!(r[a]instanceof n.Tensor))throw new Error(`traversePropertyPath - parameter is not a tensor, for path ${t}`);return{obj:r,objProp:a}}};function S(o,t,e){return n.tidy(()=>{let r=n.separableConv2d(o,t.depthwise_filter,t.pointwise_filter,e,"same");return r=n.add(r,t.bias),r})}function xe(o,t,e=!1){return n.tidy(()=>{let r=n.relu(e?n.add(n.conv2d(o,t.conv0.filters,[2,2],"same"),t.conv0.bias):S(o,t.conv0,[2,2])),a=S(r,t.conv1,[1,1]),i=n.relu(n.add(r,a)),s=S(i,t.conv2,[1,1]);return n.relu(n.add(r,n.add(a,s)))})}function ne(o,t,e=!1,r=!0){return n.tidy(()=>{let a=n.relu(e?n.add(n.conv2d(o,t.conv0.filters,r?[2,2]:[1,1],"same"),t.conv0.bias):S(o,t.conv0,r?[2,2]:[1,1])),i=S(a,t.conv1,[1,1]),s=n.relu(n.add(a,i)),c=S(s,t.conv2,[1,1]),m=n.relu(n.add(a,n.add(i,c))),p=S(m,t.conv3,[1,1]);return n.relu(n.add(a,n.add(i,n.add(c,p))))})}function vt(o,t,e="same",r=!1){return n.tidy(()=>{let a=n.add(n.conv2d(o,t.filters,[1,1],e),t.bias);return r?n.relu(a):a})}function N(o,t){Object.keys(o).forEach(e=>{t.some(r=>r.originalPath===e)||o[e].dispose()})}function Rt(o,t){return(e,r,a,i)=>{let s=n.tensor4d(o(e*r*a*a),[a,a,e,r]),c=n.tensor1d(o(r));return t.push({paramPath:`${i}/filters`},{paramPath:`${i}/bias`}),{filters:s,bias:c}}}function ve(o,t){return(e,r,a)=>{let i=n.tensor2d(o(e*r),[e,r]),s=n.tensor1d(o(r));return t.push({paramPath:`${a}/weights`},{paramPath:`${a}/bias`}),{weights:i,bias:s}}}var ae=class{constructor(t,e,r){this.depthwise_filter=t;this.pointwise_filter=e;this.bias=r}};function $t(o,t){return(e,r,a)=>{let i=n.tensor4d(o(9*e),[3,3,e,1]),s=n.tensor4d(o(e*r),[1,1,e,r]),c=n.tensor1d(o(r));return t.push({paramPath:`${a}/depthwise_filter`},{paramPath:`${a}/pointwise_filter`},{paramPath:`${a}/bias`}),new ae(i,s,c)}}function Ot(o){return t=>{let e=o(`${t}/depthwise_filter`,4),r=o(`${t}/pointwise_filter`,4),a=o(`${t}/bias`,1);return new ae(e,r,a)}}function k(o,t){return(e,r,a)=>{let i=o[e];if(!dt(i,r))throw new Error(`expected weightMap[${e}] to be a Tensor${r}D, instead have ${i}`);return t.push({originalPath:e,paramPath:a||e}),i}}function L(o){let t=o;function e(a){let i=t.slice(0,a);return t=t.slice(a),i}function r(){return t}return{extractWeights:e,getRemainingWeights:r}}function ye(o,t){let e=Rt(o,t),r=$t(o,t);function a(s,c,m,p=!1){let u=p?e(s,c,3,`${m}/conv0`):r(s,c,`${m}/conv0`),f=r(c,c,`${m}/conv1`),l=r(c,c,`${m}/conv2`);return{conv0:u,conv1:f,conv2:l}}function i(s,c,m,p=!1){let{conv0:u,conv1:f,conv2:l}=a(s,c,m,p),d=r(c,c,`${m}/conv3`);return{conv0:u,conv1:f,conv2:l,conv3:d}}return{extractDenseBlock3Params:a,extractDenseBlock4Params:i}}function Er(o){let t=[],{extractWeights:e,getRemainingWeights:r}=L(o),{extractDenseBlock4Params:a}=ye(e,t),i=a(3,32,"dense0",!0),s=a(32,64,"dense1"),c=a(64,128,"dense2"),m=a(128,256,"dense3");if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:t,params:{dense0:i,dense1:s,dense2:c,dense3:m}}}function Te(o){return t=>{let e=o(`${t}/filters`,4),r=o(`${t}/bias`,1);return{filters:e,bias:r}}}function _e(o,t){let e=k(o,t),r=Te(e),a=Ot(e);function i(c,m=!1){let p=m?r(`${c}/conv0`):a(`${c}/conv0`),u=a(`${c}/conv1`),f=a(`${c}/conv2`);return{conv0:p,conv1:u,conv2:f}}function s(c,m=!1){let p=m?r(`${c}/conv0`):a(`${c}/conv0`),u=a(`${c}/conv1`),f=a(`${c}/conv2`),l=a(`${c}/conv3`);return{conv0:p,conv1:u,conv2:f,conv3:l}}return{extractDenseBlock3Params:i,extractDenseBlock4Params:s}}function Mr(o){let t=[],{extractDenseBlock4Params:e}=_e(o,t),r={dense0:e("dense0",!0),dense1:e("dense1"),dense2:e("dense2"),dense3:e("dense3")};return N(o,t),{params:r,paramMappings:t}}var Ht=class extends I{constructor(){super("FaceFeatureExtractor")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("FaceFeatureExtractor - load model before inference");return n.tidy(()=>{let r=n.cast(t.toBatchTensor(112,!0),"float32"),i=J(r,[122.782,117.001,104.298]).div(255),s=ne(i,e.dense0,!0);return s=ne(s,e.dense1),s=ne(s,e.dense2),s=ne(s,e.dense3),s=n.avgPool(s,[7,7],[2,2],"valid"),s})}async forward(t){return this.forwardInput(await F(t))}getDefaultModelName(){return"face_feature_extractor_model"}extractParamsFromWeightMap(t){return Mr(t)}extractParams(t){return Er(t)}};function se(o,t){return n.tidy(()=>n.add(n.matMul(o,t.weights),t.bias))}function Cr(o,t,e){let r=[],{extractWeights:a,getRemainingWeights:i}=L(o),c=ve(a,r)(t,e,"fc");if(i().length!==0)throw new Error(`weights remaing after extract: ${i().length}`);return{paramMappings:r,params:{fc:c}}}function Ir(o){let t=[],e=k(o,t);function r(i){let s=e(`${i}/weights`,2),c=e(`${i}/bias`,1);return{weights:s,bias:c}}let a={fc:r("fc")};return N(o,t),{params:a,paramMappings:t}}function Pe(o){let t={},e={};return Object.keys(o).forEach(r=>{let a=r.startsWith("fc")?e:t;a[r]=o[r]}),{featureExtractorMap:t,classifierMap:e}}var zt=class extends I{constructor(t,e){super(t),this._faceFeatureExtractor=e}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(t){let{params:e}=this;if(!e)throw new Error(`${this._name} - load model before inference`);return n.tidy(()=>{let r=t instanceof tt?this.faceFeatureExtractor.forwardInput(t):t;return se(r.as2D(r.shape[0],-1),e.fc)})}dispose(t=!0){this.faceFeatureExtractor.dispose(t),super.dispose(t)}loadClassifierParams(t){let{params:e,paramMappings:r}=this.extractClassifierParams(t);this._params=e,this._paramMappings=r}extractClassifierParams(t){return Cr(t,this.getClassifierChannelsIn(),this.getClassifierChannelsOut())}extractParamsFromWeightMap(t){let{featureExtractorMap:e,classifierMap:r}=Pe(t);return this.faceFeatureExtractor.loadFromWeightMap(e),Ir(r)}extractParams(t){let e=this.getClassifierChannelsIn(),r=this.getClassifierChannelsOut(),a=r*e+r,i=t.slice(0,t.length-a),s=t.slice(t.length-a);return this.faceFeatureExtractor.extractWeights(i),this.extractClassifierParams(s)}};var Nr=["neutral","happy","sad","angry","fearful","disgusted","surprised"],it=class{constructor(t){this.neutral=0;this.happy=0;this.sad=0;this.angry=0;this.fearful=0;this.disgusted=0;this.surprised=0;if(t.length!==7)throw new Error(`FaceExpressions.constructor - expected probabilities.length to be 7, have: ${t.length}`);Nr.forEach((e,r)=>{this[e]=t[r]})}asSortedArray(){return Nr.map(t=>({expression:t,probability:this[t]})).sort((t,e)=>e.probability-t.probability)}};var we=class extends zt{constructor(t=new Ht){super("FaceExpressionNet",t)}forwardInput(t){return n.tidy(()=>n.softmax(this.runNet(t)))}async forward(t){return this.forwardInput(await F(t))}async predictExpressions(t){let e=await F(t),r=await this.forwardInput(e),a=await Promise.all(n.unstack(r).map(async s=>{let c=s.dataSync();return s.dispose(),c}));r.dispose();let i=a.map(s=>new it(s));return e.isBatchInput?i:i[0]}getDefaultModelName(){return"face_expression_model"}getClassifierChannelsIn(){return 256}getClassifierChannelsOut(){return 7}};function Lr(o){return o.expressions instanceof it}function tr(o,t){return{...o,...{expressions:t}}}function No(o,t,e=.1,r){(Array.isArray(t)?t:[t]).forEach(i=>{let s=i instanceof it?i:Lr(i)?i.expressions:void 0;if(!s)throw new Error("drawFaceExpressions - expected faceExpressions to be FaceExpressions | WithFaceExpressions<{}> or array thereof");let m=s.asSortedArray().filter(f=>f.probability>e),p=Q(i)?i.detection.box.bottomLeft:r||new v(0,0);new xt(m.map(f=>`${f.expression} (${ht(f.probability)})`),p).draw(o)})}function Yt(o){return Q(o)&&o.landmarks instanceof $&&o.unshiftedLandmarks instanceof $&&o.alignedRect instanceof D}function Lo(o){let t=m=>m*180/Math.PI,e=(m,p)=>Math.sqrt((m.x-p.x)**2+(m.y-p.y)**2),r={roll:void 0,pitch:void 0,yaw:void 0},a=(m,p,u)=>{let f=Math.floor(m.x-p.x),l=Math.floor(p.x-u.x);return f-l},i=(m,p)=>{let u=Math.hypot(p.x-m.x,p.y-m.y),f=p.y-m.y,l=Math.asin(f/u),d=t(l),b=Math.floor(90-d),y=p.x-m.x<0?-1:1;return b*y},s=(m,p,u)=>{let f=e(m,u),l=new v((m.x+u.x)/2,(m.y+u.y)/2),d=e(p,l),b=Math.atan(d/f),y=Math.floor(t(b)),h=l.y-p.y<0?-1:1;return y*h};if(!o||!o.positions||o.positions.length!==68)return r;let c=o.positions;return r.roll=i(c[27],c[66]),r.pitch=s(c[14],c[30],c[2]),r.yaw=a(c[14],c[33],c[2]),r}function ie(o,t){let{box:e}=o.detection,r=t.shiftBy(e.x,e.y),a=r.align(),{imageDims:i}=o.detection,s=new D(o.detection.score,a.rescale(i.reverse()),i),c=Lo(t);return{...o,...{landmarks:r,unshiftedLandmarks:t,alignedRect:s,angle:c}}}var Fe=class{constructor(t={}){let{drawLines:e=!0,drawPoints:r=!0,lineWidth:a,lineColor:i,pointSize:s,pointColor:c}=t;this.drawLines=e,this.drawPoints=r,this.lineWidth=a||1,this.pointSize=s||2,this.lineColor=i||"rgba(0, 255, 255, 1)",this.pointColor=c||"rgba(255, 0, 255, 1)"}},De=class{constructor(t,e={}){this.faceLandmarks=t,this.options=new Fe(e)}draw(t){let e=W(t),{drawLines:r,drawPoints:a,lineWidth:i,lineColor:s,pointSize:c,pointColor:m}=this.options;if(r&&this.faceLandmarks instanceof Lt&&(e.strokeStyle=s,e.lineWidth=i,Z(e,this.faceLandmarks.getJawOutline()),Z(e,this.faceLandmarks.getLeftEyeBrow()),Z(e,this.faceLandmarks.getRightEyeBrow()),Z(e,this.faceLandmarks.getNose()),Z(e,this.faceLandmarks.getLeftEye(),!0),Z(e,this.faceLandmarks.getRightEye(),!0),Z(e,this.faceLandmarks.getMouth(),!0)),a){e.strokeStyle=m,e.fillStyle=m;let p=u=>{e.beginPath(),e.arc(u.x,u.y,c,0,2*Math.PI),e.fill()};this.faceLandmarks.positions.forEach(p)}}};function So(o,t){(Array.isArray(t)?t:[t]).forEach(r=>{let a=r instanceof $?r:Yt(r)?r.landmarks:void 0;if(!a)throw new Error("drawFaceLandmarks - expected faceExpressions to be FaceLandmarks | WithFaceLandmarks> or array thereof");new De(a).draw(o)})}var Ar="1.7.15";function ko(o,t){let e=Rt(o,t),r=$t(o,t);function a(s,c,m){let p=r(s,c,`${m}/separable_conv0`),u=r(c,c,`${m}/separable_conv1`),f=e(s,c,1,`${m}/expansion_conv`);return{separable_conv0:p,separable_conv1:u,expansion_conv:f}}function i(s,c){let m=r(s,s,`${c}/separable_conv0`),p=r(s,s,`${c}/separable_conv1`),u=r(s,s,`${c}/separable_conv2`);return{separable_conv0:m,separable_conv1:p,separable_conv2:u}}return{extractConvParams:e,extractSeparableConvParams:r,extractReductionBlockParams:a,extractMainBlockParams:i}}function Wr(o,t){let e=[],{extractWeights:r,getRemainingWeights:a}=L(o),{extractConvParams:i,extractSeparableConvParams:s,extractReductionBlockParams:c,extractMainBlockParams:m}=ko(r,e),p=i(3,32,3,"entry_flow/conv_in"),u=c(32,64,"entry_flow/reduction_block_0"),f=c(64,128,"entry_flow/reduction_block_1"),l={conv_in:p,reduction_block_0:u,reduction_block_1:f},d={};X(t,0,1).forEach(g=>{d[`main_block_${g}`]=m(128,`middle_flow/main_block_${g}`)});let b=c(128,256,"exit_flow/reduction_block"),y=s(256,512,"exit_flow/separable_conv"),h={reduction_block:b,separable_conv:y};if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:e,params:{entry_flow:l,middle_flow:d,exit_flow:h}}}function Bo(o,t){let e=k(o,t),r=Te(e),a=Ot(e);function i(c){let m=a(`${c}/separable_conv0`),p=a(`${c}/separable_conv1`),u=r(`${c}/expansion_conv`);return{separable_conv0:m,separable_conv1:p,expansion_conv:u}}function s(c){let m=a(`${c}/separable_conv0`),p=a(`${c}/separable_conv1`),u=a(`${c}/separable_conv2`);return{separable_conv0:m,separable_conv1:p,separable_conv2:u}}return{extractConvParams:r,extractSeparableConvParams:a,extractReductionBlockParams:i,extractMainBlockParams:s}}function kr(o,t){let e=[],{extractConvParams:r,extractSeparableConvParams:a,extractReductionBlockParams:i,extractMainBlockParams:s}=Bo(o,e),c=r("entry_flow/conv_in"),m=i("entry_flow/reduction_block_0"),p=i("entry_flow/reduction_block_1"),u={conv_in:c,reduction_block_0:m,reduction_block_1:p},f={};X(t,0,1).forEach(y=>{f[`main_block_${y}`]=s(`middle_flow/main_block_${y}`)});let l=i("exit_flow/reduction_block"),d=a("exit_flow/separable_conv"),b={reduction_block:l,separable_conv:d};return N(o,e),{params:{entry_flow:u,middle_flow:f,exit_flow:b},paramMappings:e}}function Br(o,t,e){return n.add(n.conv2d(o,t.filters,e,"same"),t.bias)}function er(o,t,e=!0){let r=e?n.relu(o):o;return r=S(r,t.separable_conv0,[1,1]),r=S(n.relu(r),t.separable_conv1,[1,1]),r=n.maxPool(r,[3,3],[2,2],"same"),r=n.add(r,Br(o,t.expansion_conv,[2,2])),r}function Ro(o,t){let e=S(n.relu(o),t.separable_conv0,[1,1]);return e=S(n.relu(e),t.separable_conv1,[1,1]),e=S(n.relu(e),t.separable_conv2,[1,1]),e=n.add(e,o),e}var Ee=class extends I{constructor(t){super("TinyXception"),this._numMainBlocks=t}forwardInput(t){let{params:e}=this;if(!e)throw new Error("TinyXception - load model before inference");return n.tidy(()=>{let r=n.cast(t.toBatchTensor(112,!0),"float32"),i=J(r,[122.782,117.001,104.298]).div(255),s=n.relu(Br(i,e.entry_flow.conv_in,[2,2]));return s=er(s,e.entry_flow.reduction_block_0,!1),s=er(s,e.entry_flow.reduction_block_1),X(this._numMainBlocks,0,1).forEach(c=>{s=Ro(s,e.middle_flow[`main_block_${c}`])}),s=er(s,e.exit_flow.reduction_block),s=n.relu(S(s,e.exit_flow.separable_conv,[1,1])),s})}async forward(t){return this.forwardInput(await F(t))}getDefaultModelName(){return"tiny_xception_model"}extractParamsFromWeightMap(t){return kr(t,this._numMainBlocks)}extractParams(t){return Wr(t,this._numMainBlocks)}};function Rr(o){let t=[],{extractWeights:e,getRemainingWeights:r}=L(o),a=ve(e,t),i=a(512,1,"fc/age"),s=a(512,2,"fc/gender");if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:t,params:{fc:{age:i,gender:s}}}}function $r(o){let t=[],e=k(o,t);function r(i){let s=e(`${i}/weights`,2),c=e(`${i}/bias`,1);return{weights:s,bias:c}}let a={fc:{age:r("fc/age"),gender:r("fc/gender")}};return N(o,t),{params:a,paramMappings:t}}var rr=(e=>(e.FEMALE="female",e.MALE="male",e))(rr||{});var Me=class extends I{constructor(t=new Ee(2)){super("AgeGenderNet"),this._faceFeatureExtractor=t}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(t){let{params:e}=this;if(!e)throw new Error(`${this._name} - load model before inference`);return n.tidy(()=>{let r=t instanceof tt?this.faceFeatureExtractor.forwardInput(t):t,a=n.avgPool(r,[7,7],[2,2],"valid").as2D(r.shape[0],-1),i=se(a,e.fc.age).as1D(),s=se(a,e.fc.gender);return{age:i,gender:s}})}forwardInput(t){return n.tidy(()=>{let{age:e,gender:r}=this.runNet(t);return{age:e,gender:n.softmax(r)}})}async forward(t){return this.forwardInput(await F(t))}async predictAgeAndGender(t){let e=await F(t),r=await this.forwardInput(e),a=n.unstack(r.age),i=n.unstack(r.gender),s=a.map((m,p)=>({ageTensor:m,genderTensor:i[p]})),c=await Promise.all(s.map(async({ageTensor:m,genderTensor:p})=>{let u=m.dataSync()[0],f=p.dataSync()[0],l=f>.5,d=l?"male":"female",b=l?f:1-f;return m.dispose(),p.dispose(),{age:u,gender:d,genderProbability:b}}));return r.age.dispose(),r.gender.dispose(),e.isBatchInput?c:c[0]}getDefaultModelName(){return"age_gender_model"}dispose(t=!0){this.faceFeatureExtractor.dispose(t),super.dispose(t)}loadClassifierParams(t){let{params:e,paramMappings:r}=this.extractClassifierParams(t);this._params=e,this._paramMappings=r}extractClassifierParams(t){return Rr(t)}extractParamsFromWeightMap(t){let{featureExtractorMap:e,classifierMap:r}=Pe(t);return this.faceFeatureExtractor.loadFromWeightMap(e),$r(r)}extractParams(t){let r=t.slice(0,t.length-1539),a=t.slice(t.length-1539);return this.faceFeatureExtractor.extractWeights(r),this.extractClassifierParams(a)}};var Vt=class extends zt{postProcess(t,e,r){let a=r.map(({width:s,height:c})=>{let m=e/Math.max(c,s);return{width:s*m,height:c*m}}),i=a.length;return n.tidy(()=>{let s=(f,l)=>n.stack([n.fill([68],f,"float32"),n.fill([68],l,"float32")],1).as2D(1,136).as1D(),c=(f,l)=>{let{width:d,height:b}=a[f];return l(d,b)?Math.abs(d-b)/2:0},m=f=>c(f,(l,d)=>lc(f,(l,d)=>ds(m(l),p(l))))).div(n.stack(Array.from(Array(i),(f,l)=>s(a[l].width,a[l].height))))})}forwardInput(t){return n.tidy(()=>{let e=this.runNet(t);return this.postProcess(e,t.inputSize,t.inputDimensions.map(([r,a])=>({height:r,width:a})))})}async forward(t){return this.forwardInput(await F(t))}async detectLandmarks(t){let e=await F(t),r=n.tidy(()=>n.unstack(this.forwardInput(e))),a=await Promise.all(r.map(async(i,s)=>{let c=Array.from(i.dataSync()),m=c.filter((u,f)=>pe(f)),p=c.filter((u,f)=>!pe(f));return new Lt(Array(68).fill(0).map((u,f)=>new v(m[f],p[f])),{height:e.getInputHeight(s),width:e.getInputWidth(s)})}));return r.forEach(i=>i.dispose()),e.isBatchInput?a:a[0]}getClassifierChannelsOut(){return 136}};var Gt=class extends Vt{constructor(t=new Ht){super("FaceLandmark68Net",t)}getDefaultModelName(){return"face_landmark_68_model"}getClassifierChannelsIn(){return 256}};function Or(o){let t=[],{extractDenseBlock3Params:e}=_e(o,t),r={dense0:e("dense0",!0),dense1:e("dense1"),dense2:e("dense2")};return N(o,t),{params:r,paramMappings:t}}function Hr(o){let t=[],{extractWeights:e,getRemainingWeights:r}=L(o),{extractDenseBlock3Params:a}=ye(e,t),i=a(3,32,"dense0",!0),s=a(32,64,"dense1"),c=a(64,128,"dense2");if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:t,params:{dense0:i,dense1:s,dense2:c}}}var Ce=class extends I{constructor(){super("TinyFaceFeatureExtractor")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("TinyFaceFeatureExtractor - load model before inference");return n.tidy(()=>{let r=n.cast(t.toBatchTensor(112,!0),"float32"),i=J(r,[122.782,117.001,104.298]).div(255),s=xe(i,e.dense0,!0);return s=xe(s,e.dense1),s=xe(s,e.dense2),s=n.avgPool(s,[14,14],[2,2],"valid"),s})}async forward(t){return this.forwardInput(await F(t))}getDefaultModelName(){return"face_feature_extractor_tiny_model"}extractParamsFromWeightMap(t){return Or(t)}extractParams(t){return Hr(t)}};var Ie=class extends Vt{constructor(t=new Ce){super("FaceLandmark68TinyNet",t)}getDefaultModelName(){return"face_landmark_68_tiny_model"}getClassifierChannelsIn(){return 128}};var zr=class extends Gt{};function Yr(o,t){return n.add(n.mul(o,t.weights),t.biases)}function or(o,t,e,r,a="same"){let{filters:i,bias:s}=t.conv,c=n.conv2d(o,i,e,a);return c=n.add(c,s),c=Yr(c,t.scale),r?n.relu(c):c}function Vr(o,t){return or(o,t,[1,1],!0)}function nr(o,t){return or(o,t,[1,1],!1)}function Ne(o,t){return or(o,t,[2,2],!0,"valid")}function $o(o,t){function e(c,m,p){let u=o(c),f=u.length/(m*p*p);if(Ge(f))throw new Error(`depth has to be an integer: ${f}, weights.length: ${u.length}, numFilters: ${m}, filterSize: ${p}`);return n.tidy(()=>n.transpose(n.tensor4d(u,[m,f,p,p]),[2,3,1,0]))}function r(c,m,p,u){let f=e(c,m,p),l=n.tensor1d(o(m));return t.push({paramPath:`${u}/filters`},{paramPath:`${u}/bias`}),{filters:f,bias:l}}function a(c,m){let p=n.tensor1d(o(c)),u=n.tensor1d(o(c));return t.push({paramPath:`${m}/weights`},{paramPath:`${m}/biases`}),{weights:p,biases:u}}function i(c,m,p,u){let f=r(c,m,p,`${u}/conv`),l=a(m,`${u}/scale`);return{conv:f,scale:l}}function s(c,m,p,u,f=!1){let l=i((f?.5:1)*c,m,p,`${u}/conv1`),d=i(c,m,p,`${u}/conv2`);return{conv1:l,conv2:d}}return{extractConvLayerParams:i,extractResidualLayerParams:s}}function Gr(o){let{extractWeights:t,getRemainingWeights:e}=L(o),r=[],{extractConvLayerParams:a,extractResidualLayerParams:i}=$o(t,r),s=a(4704,32,7,"conv32_down"),c=i(9216,32,3,"conv32_1"),m=i(9216,32,3,"conv32_2"),p=i(9216,32,3,"conv32_3"),u=i(36864,64,3,"conv64_down",!0),f=i(36864,64,3,"conv64_1"),l=i(36864,64,3,"conv64_2"),d=i(36864,64,3,"conv64_3"),b=i(147456,128,3,"conv128_down",!0),y=i(147456,128,3,"conv128_1"),h=i(147456,128,3,"conv128_2"),g=i(589824,256,3,"conv256_down",!0),T=i(589824,256,3,"conv256_1"),x=i(589824,256,3,"conv256_2"),E=i(589824,256,3,"conv256_down_out"),B=n.tidy(()=>n.transpose(n.tensor2d(t(256*128),[128,256]),[1,0]));if(r.push({paramPath:"fc"}),e().length!==0)throw new Error(`weights remaing after extract: ${e().length}`);return{params:{conv32_down:s,conv32_1:c,conv32_2:m,conv32_3:p,conv64_down:u,conv64_1:f,conv64_2:l,conv64_3:d,conv128_down:b,conv128_1:y,conv128_2:h,conv256_down:g,conv256_1:T,conv256_2:x,conv256_down_out:E,fc:B},paramMappings:r}}function Oo(o,t){let e=k(o,t);function r(s){let c=e(`${s}/scale/weights`,1),m=e(`${s}/scale/biases`,1);return{weights:c,biases:m}}function a(s){let c=e(`${s}/conv/filters`,4),m=e(`${s}/conv/bias`,1),p=r(s);return{conv:{filters:c,bias:m},scale:p}}function i(s){return{conv1:a(`${s}/conv1`),conv2:a(`${s}/conv2`)}}return{extractConvLayerParams:a,extractResidualLayerParams:i}}function jr(o){let t=[],{extractConvLayerParams:e,extractResidualLayerParams:r}=Oo(o,t),a=e("conv32_down"),i=r("conv32_1"),s=r("conv32_2"),c=r("conv32_3"),m=r("conv64_down"),p=r("conv64_1"),u=r("conv64_2"),f=r("conv64_3"),l=r("conv128_down"),d=r("conv128_1"),b=r("conv128_2"),y=r("conv256_down"),h=r("conv256_1"),g=r("conv256_2"),T=r("conv256_down_out"),{fc:x}=o;if(t.push({originalPath:"fc",paramPath:"fc"}),!Ve(x))throw new Error(`expected weightMap[fc] to be a Tensor2D, instead have ${x}`);let E={conv32_down:a,conv32_1:i,conv32_2:s,conv32_3:c,conv64_down:m,conv64_1:p,conv64_2:u,conv64_3:f,conv128_down:l,conv128_1:d,conv128_2:b,conv256_down:y,conv256_1:h,conv256_2:g,conv256_down_out:T,fc:x};return N(o,t),{params:E,paramMappings:t}}function j(o,t){let e=Vr(o,t.conv1);return e=nr(e,t.conv2),e=n.add(e,o),e=n.relu(e),e}function ce(o,t){let e=Ne(o,t.conv1);e=nr(e,t.conv2);let r=n.avgPool(o,2,2,"valid"),a=n.zeros(r.shape),i=r.shape[3]!==e.shape[3];if(r.shape[1]!==e.shape[1]||r.shape[2]!==e.shape[2]){let c=[...e.shape];c[1]=1;let m=n.zeros(c);e=n.concat([e,m],1);let p=[...e.shape];p[2]=1;let u=n.zeros(p);e=n.concat([e,u],2)}return r=i?n.concat([r,a],3):r,e=n.add(r,e),e=n.relu(e),e}var jt=class extends I{constructor(){super("FaceRecognitionNet")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("FaceRecognitionNet - load model before inference");return n.tidy(()=>{let r=n.cast(t.toBatchTensor(150,!0),"float32"),i=J(r,[122.782,117.001,104.298]).div(255),s=Ne(i,e.conv32_down);s=n.maxPool(s,3,2,"valid"),s=j(s,e.conv32_1),s=j(s,e.conv32_2),s=j(s,e.conv32_3),s=ce(s,e.conv64_down),s=j(s,e.conv64_1),s=j(s,e.conv64_2),s=j(s,e.conv64_3),s=ce(s,e.conv128_down),s=j(s,e.conv128_1),s=j(s,e.conv128_2),s=ce(s,e.conv256_down),s=j(s,e.conv256_1),s=j(s,e.conv256_2),s=ce(s,e.conv256_down_out);let c=s.mean([1,2]);return n.matMul(c,e.fc)})}async forward(t){return this.forwardInput(await F(t))}async computeFaceDescriptor(t){var i;if((i=t==null?void 0:t.shape)!=null&&i.some(s=>s<=0))return new Float32Array(128);let e=await F(t),r=n.tidy(()=>n.unstack(this.forwardInput(e))),a=await Promise.all(r.map(s=>s.data()));return r.forEach(s=>s.dispose()),e.isBatchInput?a:a[0]}getDefaultModelName(){return"face_recognition_model"}extractParamsFromWeightMap(t){return jr(t)}extractParams(t){return Gr(t)}};function gf(o){let t=new jt;return t.extractWeights(o),t}function ar(o,t){return{...o,...{descriptor:t}}}function Tf(o){return typeof o.age=="number"}function sr(o,t){return{...o,...{age:t}}}function Ff(o){return(o.gender==="male"||o.gender==="female")&&Mt(o.genderProbability)}function ir(o,t,e){return{...o,...{gender:t,genderProbability:e}}}function Ho(o,t){function e(m,p){let u=n.tensor4d(o(9*m),[3,3,m,1]),f=n.tensor1d(o(m)),l=n.tensor1d(o(m)),d=n.tensor1d(o(m)),b=n.tensor1d(o(m));return t.push({paramPath:`${p}/filters`},{paramPath:`${p}/batch_norm_scale`},{paramPath:`${p}/batch_norm_offset`},{paramPath:`${p}/batch_norm_mean`},{paramPath:`${p}/batch_norm_variance`}),{filters:u,batch_norm_scale:f,batch_norm_offset:l,batch_norm_mean:d,batch_norm_variance:b}}function r(m,p,u,f,l){let d=n.tensor4d(o(m*p*u*u),[u,u,m,p]),b=n.tensor1d(o(p));return t.push({paramPath:`${f}/filters`},{paramPath:`${f}/${l?"batch_norm_offset":"bias"}`}),{filters:d,bias:b}}function a(m,p,u,f){let{filters:l,bias:d}=r(m,p,u,f,!0);return{filters:l,batch_norm_offset:d}}function i(m,p,u){let f=e(m,`${u}/depthwise_conv`),l=a(m,p,1,`${u}/pointwise_conv`);return{depthwise_conv:f,pointwise_conv:l}}function s(){let m=a(3,32,3,"mobilenetv1/conv_0"),p=i(32,64,"mobilenetv1/conv_1"),u=i(64,128,"mobilenetv1/conv_2"),f=i(128,128,"mobilenetv1/conv_3"),l=i(128,256,"mobilenetv1/conv_4"),d=i(256,256,"mobilenetv1/conv_5"),b=i(256,512,"mobilenetv1/conv_6"),y=i(512,512,"mobilenetv1/conv_7"),h=i(512,512,"mobilenetv1/conv_8"),g=i(512,512,"mobilenetv1/conv_9"),T=i(512,512,"mobilenetv1/conv_10"),x=i(512,512,"mobilenetv1/conv_11"),E=i(512,1024,"mobilenetv1/conv_12"),B=i(1024,1024,"mobilenetv1/conv_13");return{conv_0:m,conv_1:p,conv_2:u,conv_3:f,conv_4:l,conv_5:d,conv_6:b,conv_7:y,conv_8:h,conv_9:g,conv_10:T,conv_11:x,conv_12:E,conv_13:B}}function c(){let m=a(1024,256,1,"prediction_layer/conv_0"),p=a(256,512,3,"prediction_layer/conv_1"),u=a(512,128,1,"prediction_layer/conv_2"),f=a(128,256,3,"prediction_layer/conv_3"),l=a(256,128,1,"prediction_layer/conv_4"),d=a(128,256,3,"prediction_layer/conv_5"),b=a(256,64,1,"prediction_layer/conv_6"),y=a(64,128,3,"prediction_layer/conv_7"),h=r(512,12,1,"prediction_layer/box_predictor_0/box_encoding_predictor"),g=r(512,9,1,"prediction_layer/box_predictor_0/class_predictor"),T=r(1024,24,1,"prediction_layer/box_predictor_1/box_encoding_predictor"),x=r(1024,18,1,"prediction_layer/box_predictor_1/class_predictor"),E=r(512,24,1,"prediction_layer/box_predictor_2/box_encoding_predictor"),B=r(512,18,1,"prediction_layer/box_predictor_2/class_predictor"),V=r(256,24,1,"prediction_layer/box_predictor_3/box_encoding_predictor"),U=r(256,18,1,"prediction_layer/box_predictor_3/class_predictor"),O=r(256,24,1,"prediction_layer/box_predictor_4/box_encoding_predictor"),ot=r(256,18,1,"prediction_layer/box_predictor_4/class_predictor"),nt=r(128,24,1,"prediction_layer/box_predictor_5/box_encoding_predictor"),at=r(128,18,1,"prediction_layer/box_predictor_5/class_predictor");return{conv_0:m,conv_1:p,conv_2:u,conv_3:f,conv_4:l,conv_5:d,conv_6:b,conv_7:y,box_predictor_0:{box_encoding_predictor:h,class_predictor:g},box_predictor_1:{box_encoding_predictor:T,class_predictor:x},box_predictor_2:{box_encoding_predictor:E,class_predictor:B},box_predictor_3:{box_encoding_predictor:V,class_predictor:U},box_predictor_4:{box_encoding_predictor:O,class_predictor:ot},box_predictor_5:{box_encoding_predictor:nt,class_predictor:at}}}return{extractMobilenetV1Params:s,extractPredictionLayerParams:c}}function Ur(o){let t=[],{extractWeights:e,getRemainingWeights:r}=L(o),{extractMobilenetV1Params:a,extractPredictionLayerParams:i}=Ho(e,t),s=a(),c=i(),p={extra_dim:n.tensor3d(e(5118*4),[1,5118,4])};if(t.push({paramPath:"output_layer/extra_dim"}),r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{params:{mobilenetv1:s,prediction_layer:c,output_layer:p},paramMappings:t}}function zo(o,t){let e=k(o,t);function r(p,u,f){let l=e(`${p}/Conv2d_${u}_pointwise/weights`,4,`${f}/filters`),d=e(`${p}/Conv2d_${u}_pointwise/convolution_bn_offset`,1,`${f}/batch_norm_offset`);return{filters:l,batch_norm_offset:d}}function a(p){let u=`mobilenetv1/conv_${p}`,f=`MobilenetV1/Conv2d_${p}_depthwise`,l=`${u}/depthwise_conv`,d=`${u}/pointwise_conv`,b=e(`${f}/depthwise_weights`,4,`${l}/filters`),y=e(`${f}/BatchNorm/gamma`,1,`${l}/batch_norm_scale`),h=e(`${f}/BatchNorm/beta`,1,`${l}/batch_norm_offset`),g=e(`${f}/BatchNorm/moving_mean`,1,`${l}/batch_norm_mean`),T=e(`${f}/BatchNorm/moving_variance`,1,`${l}/batch_norm_variance`);return{depthwise_conv:{filters:b,batch_norm_scale:y,batch_norm_offset:h,batch_norm_mean:g,batch_norm_variance:T},pointwise_conv:r("MobilenetV1",p,d)}}function i(){return{conv_0:r("MobilenetV1",0,"mobilenetv1/conv_0"),conv_1:a(1),conv_2:a(2),conv_3:a(3),conv_4:a(4),conv_5:a(5),conv_6:a(6),conv_7:a(7),conv_8:a(8),conv_9:a(9),conv_10:a(10),conv_11:a(11),conv_12:a(12),conv_13:a(13)}}function s(p,u){let f=e(`${p}/weights`,4,`${u}/filters`),l=e(`${p}/biases`,1,`${u}/bias`);return{filters:f,bias:l}}function c(p){let u=s(`Prediction/BoxPredictor_${p}/BoxEncodingPredictor`,`prediction_layer/box_predictor_${p}/box_encoding_predictor`),f=s(`Prediction/BoxPredictor_${p}/ClassPredictor`,`prediction_layer/box_predictor_${p}/class_predictor`);return{box_encoding_predictor:u,class_predictor:f}}function m(){return{conv_0:r("Prediction",0,"prediction_layer/conv_0"),conv_1:r("Prediction",1,"prediction_layer/conv_1"),conv_2:r("Prediction",2,"prediction_layer/conv_2"),conv_3:r("Prediction",3,"prediction_layer/conv_3"),conv_4:r("Prediction",4,"prediction_layer/conv_4"),conv_5:r("Prediction",5,"prediction_layer/conv_5"),conv_6:r("Prediction",6,"prediction_layer/conv_6"),conv_7:r("Prediction",7,"prediction_layer/conv_7"),box_predictor_0:c(0),box_predictor_1:c(1),box_predictor_2:c(2),box_predictor_3:c(3),box_predictor_4:c(4),box_predictor_5:c(5)}}return{extractMobilenetV1Params:i,extractPredictionLayerParams:m}}function Xr(o){let t=[],{extractMobilenetV1Params:e,extractPredictionLayerParams:r}=zo(o,t),a=o["Output/extra_dim"];if(t.push({originalPath:"Output/extra_dim",paramPath:"output_layer/extra_dim"}),!K(a))throw new Error(`expected weightMap['Output/extra_dim'] to be a Tensor3D, instead have ${a}`);let i={mobilenetv1:e(),prediction_layer:r(),output_layer:{extra_dim:a}};return N(o,t),{params:i,paramMappings:t}}function H(o,t,e){return n.tidy(()=>{let r=n.conv2d(o,t.filters,e,"same");return r=n.add(r,t.batch_norm_offset),n.clipByValue(r,0,6)})}var Yo=.0010000000474974513;function Vo(o,t,e){return n.tidy(()=>{let r=n.depthwiseConv2d(o,t.filters,e,"same");return r=n.batchNorm(r,t.batch_norm_mean,t.batch_norm_variance,t.batch_norm_offset,t.batch_norm_scale,Yo),n.clipByValue(r,0,6)})}function Go(o){return[2,4,6,12].some(t=>t===o)?[2,2]:[1,1]}function Jr(o,t){return n.tidy(()=>{let e,r=H(o,t.conv_0,[2,2]);if([t.conv_1,t.conv_2,t.conv_3,t.conv_4,t.conv_5,t.conv_6,t.conv_7,t.conv_8,t.conv_9,t.conv_10,t.conv_11,t.conv_12,t.conv_13].forEach((i,s)=>{let c=s+1,m=Go(c);r=Vo(r,i.depthwise_conv,m),r=H(r,i.pointwise_conv,[1,1]),c===11&&(e=r)}),e===null)throw new Error("mobileNetV1 - output of conv layer 11 is null");return{out:r,conv11:e}})}function jo(o,t,e){let r=o.arraySync(),a=Math.min(r[t][0],r[t][2]),i=Math.min(r[t][1],r[t][3]),s=Math.max(r[t][0],r[t][2]),c=Math.max(r[t][1],r[t][3]),m=Math.min(r[e][0],r[e][2]),p=Math.min(r[e][1],r[e][3]),u=Math.max(r[e][0],r[e][2]),f=Math.max(r[e][1],r[e][3]),l=(s-a)*(c-i),d=(u-m)*(f-p);if(l<=0||d<=0)return 0;let b=Math.max(a,m),y=Math.max(i,p),h=Math.min(s,u),g=Math.min(c,f),T=Math.max(h-b,0)*Math.max(g-y,0);return T/(l+d-T)}function qr(o,t,e,r,a){let i=o.shape[0],s=Math.min(e,i),c=t.map((u,f)=>({score:u,boxIndex:f})).filter(u=>u.score>a).sort((u,f)=>f.score-u.score),m=u=>u<=r?1:0,p=[];return c.forEach(u=>{if(p.length>=s)return;let f=u.score;for(let l=p.length-1;l>=0;--l){let d=jo(o,u.boxIndex,p[l]);if(d!==0&&(u.score*=m(d),u.score<=a))break}f===u.score&&p.push(u.boxIndex)}),p}function Uo(o){let t=n.unstack(n.transpose(o,[1,0])),e=[n.sub(t[2],t[0]),n.sub(t[3],t[1])],r=[n.add(t[0],n.div(e[0],2)),n.add(t[1],n.div(e[1],2))];return{sizes:e,centers:r}}function Xo(o,t){let{sizes:e,centers:r}=Uo(o),a=n.unstack(n.transpose(t,[1,0])),i=n.div(n.mul(n.exp(n.div(a[2],5)),e[0]),2),s=n.add(n.mul(n.div(a[0],10),e[0]),r[0]),c=n.div(n.mul(n.exp(n.div(a[3],5)),e[1]),2),m=n.add(n.mul(n.div(a[1],10),e[1]),r[1]);return n.transpose(n.stack([n.sub(s,i),n.sub(m,c),n.add(s,i),n.add(m,c)]),[1,0])}function Zr(o,t,e){return n.tidy(()=>{let r=o.shape[0],a=Xo(n.reshape(n.tile(e.extra_dim,[r,1,1]),[-1,4]),n.reshape(o,[-1,4]));a=n.reshape(a,[r,a.shape[0]/r,4]);let i=n.sigmoid(n.slice(t,[0,0,1],[-1,-1,-1])),s=n.slice(i,[0,0,0],[-1,-1,1]);s=n.reshape(s,[r,s.shape[1]]);let c=n.unstack(a),m=n.unstack(s);return{boxes:c,scores:m}})}function yt(o,t){return n.tidy(()=>{let e=o.shape[0],r=n.reshape(vt(o,t.box_encoding_predictor),[e,-1,1,4]),a=n.reshape(vt(o,t.class_predictor),[e,-1,3]);return{boxPredictionEncoding:r,classPrediction:a}})}function Kr(o,t,e){return n.tidy(()=>{let r=H(o,e.conv_0,[1,1]),a=H(r,e.conv_1,[2,2]),i=H(a,e.conv_2,[1,1]),s=H(i,e.conv_3,[2,2]),c=H(s,e.conv_4,[1,1]),m=H(c,e.conv_5,[2,2]),p=H(m,e.conv_6,[1,1]),u=H(p,e.conv_7,[2,2]),f=yt(t,e.box_predictor_0),l=yt(o,e.box_predictor_1),d=yt(a,e.box_predictor_2),b=yt(s,e.box_predictor_3),y=yt(m,e.box_predictor_4),h=yt(u,e.box_predictor_5),g=n.concat([f.boxPredictionEncoding,l.boxPredictionEncoding,d.boxPredictionEncoding,b.boxPredictionEncoding,y.boxPredictionEncoding,h.boxPredictionEncoding],1),T=n.concat([f.classPrediction,l.classPrediction,d.classPrediction,b.classPrediction,y.classPrediction,h.classPrediction],1);return{boxPredictions:g,classPredictions:T}})}var z=class{constructor({minConfidence:t,maxResults:e}={}){this._name="SsdMobilenetv1Options";if(this._minConfidence=t||.5,this._maxResults=e||100,typeof this._minConfidence!="number"||this._minConfidence<=0||this._minConfidence>=1)throw new Error(`${this._name} - expected minConfidence to be a number between 0 and 1`);if(typeof this._maxResults!="number")throw new Error(`${this._name} - expected maxResults to be a number`)}get minConfidence(){return this._minConfidence}get maxResults(){return this._maxResults}};var Tt=class extends I{constructor(){super("SsdMobilenetv1")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("SsdMobilenetv1 - load model before inference");return n.tidy(()=>{let r=n.cast(t.toBatchTensor(512,!1),"float32"),a=n.sub(n.div(r,127.5),1),i=Jr(a,e.mobilenetv1),{boxPredictions:s,classPredictions:c}=Kr(i.out,i.conv11,e.prediction_layer);return Zr(s,c,e.output_layer)})}async forward(t){return this.forwardInput(await F(t))}async locateFaces(t,e={}){let{maxResults:r,minConfidence:a}=new z(e),i=await F(t),{boxes:s,scores:c}=this.forwardInput(i),m=s[0],p=c[0];for(let x=1;x{let[E,B]=[Math.max(0,g[x][0]),Math.min(1,g[x][2])].map(O=>O*h),[V,U]=[Math.max(0,g[x][1]),Math.min(1,g[x][3])].map(O=>O*y);return new D(u[x],new Nt(V,E,U-V,B-E),{height:i.getInputHeight(0),width:i.getInputWidth(0)})});return m.dispose(),p.dispose(),T}getDefaultModelName(){return"ssd_mobilenetv1_model"}extractParamsFromWeightMap(t){return Xr(t)}extractParams(t){return Ur(t)}};function Jo(o){let t=new Tt;return t.extractWeights(o),t}function gl(o){return Jo(o)}var Qr=class extends Tt{};var to=.4,eo=[new v(.738768,.874946),new v(2.42204,2.65704),new v(4.30971,7.04493),new v(10.246,4.59428),new v(12.6868,11.8741)],ro=[new v(1.603231,2.094468),new v(6.041143,7.080126),new v(2.882459,3.518061),new v(4.266906,5.178857),new v(9.041765,10.66308)],oo=[117.001,114.697,97.404],no="tiny_yolov2_model",ao="tiny_yolov2_separable_conv_model";var Le=o=>typeof o=="number";function so(o){if(!o)throw new Error(`invalid config: ${o}`);if(typeof o.withSeparableConvs!="boolean")throw new Error(`config.withSeparableConvs has to be a boolean, have: ${o.withSeparableConvs}`);if(!Le(o.iouThreshold)||o.iouThreshold<0||o.iouThreshold>1)throw new Error(`config.iouThreshold has to be a number between [0, 1], have: ${o.iouThreshold}`);if(!Array.isArray(o.classes)||!o.classes.length||!o.classes.every(t=>typeof t=="string"))throw new Error(`config.classes has to be an array class names: string[], have: ${JSON.stringify(o.classes)}`);if(!Array.isArray(o.anchors)||!o.anchors.length||!o.anchors.map(t=>t||{}).every(t=>Le(t.x)&&Le(t.y)))throw new Error(`config.anchors has to be an array of { x: number, y: number }, have: ${JSON.stringify(o.anchors)}`);if(o.meanRgb&&(!Array.isArray(o.meanRgb)||o.meanRgb.length!==3||!o.meanRgb.every(Le)))throw new Error(`config.meanRgb has to be an array of shape [number, number, number], have: ${JSON.stringify(o.meanRgb)}`)}function Ut(o){return n.tidy(()=>{let t=n.mul(o,n.scalar(.10000000149011612));return n.add(n.relu(n.sub(o,t)),t)})}function et(o,t){return n.tidy(()=>{let e=n.pad(o,[[0,0],[1,1],[1,1],[0,0]]);return e=n.conv2d(e,t.conv.filters,[1,1],"valid"),e=n.sub(e,t.bn.sub),e=n.mul(e,t.bn.truediv),e=n.add(e,t.conv.bias),Ut(e)})}function rt(o,t){return n.tidy(()=>{let e=n.pad(o,[[0,0],[1,1],[1,1],[0,0]]);return e=n.separableConv2d(e,t.depthwise_filter,t.pointwise_filter,[1,1],"valid"),e=n.add(e,t.bias),Ut(e)})}function qo(o,t){let e=Rt(o,t);function r(s,c){let m=n.tensor1d(o(s)),p=n.tensor1d(o(s));return t.push({paramPath:`${c}/sub`},{paramPath:`${c}/truediv`}),{sub:m,truediv:p}}function a(s,c,m){let p=e(s,c,3,`${m}/conv`),u=r(c,`${m}/bn`);return{conv:p,bn:u}}let i=$t(o,t);return{extractConvParams:e,extractConvWithBatchNormParams:a,extractSeparableConvParams:i}}function io(o,t,e,r){let{extractWeights:a,getRemainingWeights:i}=L(o),s=[],{extractConvParams:c,extractConvWithBatchNormParams:m,extractSeparableConvParams:p}=qo(a,s),u;if(t.withSeparableConvs){let[f,l,d,b,y,h,g,T,x]=r,E=t.isFirstLayerConv2d?c(f,l,3,"conv0"):p(f,l,"conv0"),B=p(l,d,"conv1"),V=p(d,b,"conv2"),U=p(b,y,"conv3"),O=p(y,h,"conv4"),ot=p(h,g,"conv5"),nt=T?p(g,T,"conv6"):void 0,at=x?p(T,x,"conv7"):void 0,Et=c(x||T||g,5*e,1,"conv8");u={conv0:E,conv1:B,conv2:V,conv3:U,conv4:O,conv5:ot,conv6:nt,conv7:at,conv8:Et}}else{let[f,l,d,b,y,h,g,T,x]=r,E=m(f,l,"conv0"),B=m(l,d,"conv1"),V=m(d,b,"conv2"),U=m(b,y,"conv3"),O=m(y,h,"conv4"),ot=m(h,g,"conv5"),nt=m(g,T,"conv6"),at=m(T,x,"conv7"),Et=c(x,5*e,1,"conv8");u={conv0:E,conv1:B,conv2:V,conv3:U,conv4:O,conv5:ot,conv6:nt,conv7:at,conv8:Et}}if(i().length!==0)throw new Error(`weights remaing after extract: ${i().length}`);return{params:u,paramMappings:s}}function Zo(o,t){let e=k(o,t);function r(c){let m=e(`${c}/sub`,1),p=e(`${c}/truediv`,1);return{sub:m,truediv:p}}function a(c){let m=e(`${c}/filters`,4),p=e(`${c}/bias`,1);return{filters:m,bias:p}}function i(c){let m=a(`${c}/conv`),p=r(`${c}/bn`);return{conv:m,bn:p}}let s=Ot(e);return{extractConvParams:a,extractConvWithBatchNormParams:i,extractSeparableConvParams:s}}function co(o,t){let e=[],{extractConvParams:r,extractConvWithBatchNormParams:a,extractSeparableConvParams:i}=Zo(o,e),s;if(t.withSeparableConvs){let c=t.filterSizes&&t.filterSizes.length||9;s={conv0:t.isFirstLayerConv2d?r("conv0"):i("conv0"),conv1:i("conv1"),conv2:i("conv2"),conv3:i("conv3"),conv4:i("conv4"),conv5:i("conv5"),conv6:c>7?i("conv6"):void 0,conv7:c>8?i("conv7"):void 0,conv8:r("conv8")}}else s={conv0:a("conv0"),conv1:a("conv1"),conv2:a("conv2"),conv3:a("conv3"),conv4:a("conv4"),conv5:a("conv5"),conv6:a("conv6"),conv7:a("conv7"),conv8:r("conv8")};return N(o,e),{params:s,paramMappings:e}}var q=class{constructor({inputSize:t,scoreThreshold:e}={}){this._name="TinyYolov2Options";if(this._inputSize=t||416,this._scoreThreshold=e||.5,typeof this._inputSize!="number"||this._inputSize%32!==0)throw new Error(`${this._name} - expected inputSize to be a number divisible by 32`);if(typeof this._scoreThreshold!="number"||this._scoreThreshold<=0||this._scoreThreshold>=1)throw new Error(`${this._name} - expected scoreThreshold to be a number between 0 and 1`)}get inputSize(){return this._inputSize}get scoreThreshold(){return this._scoreThreshold}};var Se=class Se extends I{constructor(t){super("TinyYolov2"),so(t),this._config=t}get config(){return this._config}get withClassScores(){return this.config.withClassScores||this.config.classes.length>1}get boxEncodingSize(){return 5+(this.withClassScores?this.config.classes.length:0)}runTinyYolov2(t,e){let r=et(t,e.conv0);return r=n.maxPool(r,[2,2],[2,2],"same"),r=et(r,e.conv1),r=n.maxPool(r,[2,2],[2,2],"same"),r=et(r,e.conv2),r=n.maxPool(r,[2,2],[2,2],"same"),r=et(r,e.conv3),r=n.maxPool(r,[2,2],[2,2],"same"),r=et(r,e.conv4),r=n.maxPool(r,[2,2],[2,2],"same"),r=et(r,e.conv5),r=n.maxPool(r,[2,2],[1,1],"same"),r=et(r,e.conv6),r=et(r,e.conv7),vt(r,e.conv8,"valid",!1)}runMobilenet(t,e){let r=this.config.isFirstLayerConv2d?Ut(vt(t,e.conv0,"valid",!1)):rt(t,e.conv0);return r=n.maxPool(r,[2,2],[2,2],"same"),r=rt(r,e.conv1),r=n.maxPool(r,[2,2],[2,2],"same"),r=rt(r,e.conv2),r=n.maxPool(r,[2,2],[2,2],"same"),r=rt(r,e.conv3),r=n.maxPool(r,[2,2],[2,2],"same"),r=rt(r,e.conv4),r=n.maxPool(r,[2,2],[2,2],"same"),r=rt(r,e.conv5),r=n.maxPool(r,[2,2],[1,1],"same"),r=e.conv6?rt(r,e.conv6):r,r=e.conv7?rt(r,e.conv7):r,vt(r,e.conv8,"valid",!1)}forwardInput(t,e){let{params:r}=this;if(!r)throw new Error("TinyYolov2 - load model before inference");return n.tidy(()=>{let a=n.cast(t.toBatchTensor(e,!1),"float32");return a=this.config.meanRgb?J(a,this.config.meanRgb):a,a=a.div(255),this.config.withSeparableConvs?this.runMobilenet(a,r):this.runTinyYolov2(a,r)})}async forward(t,e){return this.forwardInput(await F(t),e)}async detect(t,e={}){let{inputSize:r,scoreThreshold:a}=new q(e),i=await F(t),s=await this.forwardInput(i,r),c=n.tidy(()=>n.unstack(s)[0].expandDims()),m={width:i.getInputWidth(0),height:i.getInputHeight(0)},p=await this.extractBoxes(c,i.getReshapedInputDimensions(0),a);s.dispose(),c.dispose();let u=p.map(h=>h.box),f=p.map(h=>h.score),l=p.map(h=>h.classScore),d=p.map(h=>this.config.classes[h.label]);return br(u.map(h=>h.rescale(r)),f,this.config.iouThreshold,!0).map(h=>new It(f[h],l[h],d[h],u[h],m))}getDefaultModelName(){return""}extractParamsFromWeightMap(t){return co(t,this.config)}extractParams(t){let e=this.config.filterSizes||Se.DEFAULT_FILTER_SIZES,r=e?e.length:void 0;if(r!==7&&r!==8&&r!==9)throw new Error(`TinyYolov2 - expected 7 | 8 | 9 convolutional filters, but found ${r} filterSizes in config`);return io(t,this.config,this.boxEncodingSize,e)}async extractBoxes(t,e,r){let{width:a,height:i}=e,s=Math.max(a,i),c=s/a,m=s/i,p=t.shape[1],u=this.config.anchors.length,[f,l,d]=n.tidy(()=>{let g=t.reshape([p,p,u,this.boxEncodingSize]),T=g.slice([0,0,0,0],[p,p,u,4]),x=g.slice([0,0,0,4],[p,p,u,1]),E=this.withClassScores?n.softmax(g.slice([0,0,0,5],[p,p,u,this.config.classes.length]),3):n.scalar(0);return[T,x,E]}),b=[],y=await l.array(),h=await f.array();for(let g=0;gr){let B=(T+fe(h[g][T][x][0]))/p*c,V=(g+fe(h[g][T][x][1]))/p*m,U=Math.exp(h[g][T][x][2])*this.config.anchors[x].x/p*c,O=Math.exp(h[g][T][x][3])*this.config.anchors[x].y/p*m,ot=B-U/2,nt=V-O/2,at={row:g,col:T,anchor:x},{classScore:Et,label:mr}=this.withClassScores?await this.extractPredictedClass(d,at):{classScore:1,label:0};b.push({box:new Ct(ot,nt,ot+U,nt+O),score:E,classScore:E*Et,label:mr,...at})}}return f.dispose(),l.dispose(),d.dispose(),b}async extractPredictedClass(t,e){let{row:r,col:a,anchor:i}=e,s=await t.array();return Array(this.config.classes.length).fill(0).map((c,m)=>s[r][a][i][m]).map((c,m)=>({classScore:c,label:m})).reduce((c,m)=>c.classScore>m.classScore?c:m)}};Se.DEFAULT_FILTER_SIZES=[3,16,32,64,128,256,512,1024,1024];var Xt=Se;var Jt=class extends Xt{constructor(t=!0){let e={withSeparableConvs:t,iouThreshold:to,classes:["face"],...t?{anchors:ro,meanRgb:oo}:{anchors:eo,withClassScores:!0}};super(e)}get withSeparableConvs(){return this.config.withSeparableConvs}get anchors(){return this.config.anchors}async locateFaces(t,e){return(await this.detect(t,e)).map(a=>new D(a.score,a.relativeBox,{width:a.imageWidth,height:a.imageHeight}))}getDefaultModelName(){return this.withSeparableConvs?ao:no}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};function cd(o,t=!0){let e=new Jt(t);return e.extractWeights(o),e}var Ae=class extends q{constructor(){super(...arguments);this._name="TinyFaceDetectorOptions"}};var Y=class{async then(t){return t(await this.run())}async run(){throw new Error("ComposableTask - run is not implemented")}};async function _t(o,t,e,r,a=({alignedRect:i})=>i){let i=o.map(m=>Yt(m)?a(m):m.detection),s=r||(t instanceof n.Tensor?await oe(t,i):await re(t,i)),c=await e(s);return s.forEach(m=>m instanceof n.Tensor&&m.dispose()),c}async function qt(o,t,e,r,a){return _t([o],t,async i=>e(i[0]),r,a)}var mo=.4,po=[new v(1.603231,2.094468),new v(6.041143,7.080126),new v(2.882459,3.518061),new v(4.266906,5.178857),new v(9.041765,10.66308)],uo=[117.001,114.697,97.404];var Zt=class extends Xt{constructor(){let t={withSeparableConvs:!0,iouThreshold:mo,classes:["face"],anchors:po,meanRgb:uo,isFirstLayerConv2d:!0,filterSizes:[3,16,32,64,128,256,512]};super(t)}get anchors(){return this.config.anchors}async locateFaces(t,e){return(await this.detect(t,e)).map(a=>new D(a.score,a.relativeBox,{width:a.imageWidth,height:a.imageHeight}))}getDefaultModelName(){return"tiny_face_detector_model"}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};var P={ssdMobilenetv1:new Tt,tinyFaceDetector:new Zt,tinyYolov2:new Jt,faceLandmark68Net:new Gt,faceLandmark68TinyNet:new Ie,faceRecognitionNet:new jt,faceExpressionNet:new we,ageGenderNet:new Me},Ko=(o,t)=>P.ssdMobilenetv1.locateFaces(o,t),Rd=(o,t)=>P.tinyFaceDetector.locateFaces(o,t),$d=(o,t)=>P.tinyYolov2.locateFaces(o,t),Qo=o=>P.faceLandmark68Net.detectLandmarks(o),Od=o=>P.faceLandmark68TinyNet.detectLandmarks(o),Hd=o=>P.faceRecognitionNet.computeFaceDescriptor(o),zd=o=>P.faceExpressionNet.predictExpressions(o),Yd=o=>P.ageGenderNet.predictAgeAndGender(o),tn=o=>P.ssdMobilenetv1.load(o),Vd=o=>P.tinyFaceDetector.load(o),Gd=o=>P.tinyYolov2.load(o),jd=o=>P.faceLandmark68Net.load(o),Ud=o=>P.faceLandmark68TinyNet.load(o),Xd=o=>P.faceRecognitionNet.load(o),Jd=o=>P.faceExpressionNet.load(o),qd=o=>P.ageGenderNet.load(o),Zd=tn,Kd=Ko,Qd=Qo;var We=class extends Y{constructor(e,r,a){super();this.parentTask=e;this.input=r;this.extractedFaces=a}},Pt=class extends We{async run(){let t=await this.parentTask,e=await _t(t,this.input,async r=>Promise.all(r.map(a=>P.faceExpressionNet.predictExpressions(a))),this.extractedFaces);return t.map((r,a)=>tr(r,e[a]))}withAgeAndGender(){return new Ft(this,this.input)}},wt=class extends We{async run(){let t=await this.parentTask;if(!t)return;let e=await qt(t,this.input,r=>P.faceExpressionNet.predictExpressions(r),this.extractedFaces);return tr(t,e)}withAgeAndGender(){return new Dt(this,this.input)}},ct=class extends Pt{withAgeAndGender(){return new pt(this,this.input)}withFaceDescriptors(){return new ft(this,this.input)}},mt=class extends wt{withAgeAndGender(){return new ut(this,this.input)}withFaceDescriptor(){return new lt(this,this.input)}};var ke=class extends Y{constructor(e,r,a){super();this.parentTask=e;this.input=r;this.extractedFaces=a}},Ft=class extends ke{async run(){let t=await this.parentTask,e=await _t(t,this.input,async r=>Promise.all(r.map(a=>P.ageGenderNet.predictAgeAndGender(a))),this.extractedFaces);return t.map((r,a)=>{let{age:i,gender:s,genderProbability:c}=e[a];return sr(ir(r,s,c),i)})}withFaceExpressions(){return new Pt(this,this.input)}},Dt=class extends ke{async run(){let t=await this.parentTask;if(!t)return;let{age:e,gender:r,genderProbability:a}=await qt(t,this.input,i=>P.ageGenderNet.predictAgeAndGender(i),this.extractedFaces);return sr(ir(t,r,a),e)}withFaceExpressions(){return new wt(this,this.input)}},pt=class extends Ft{withFaceExpressions(){return new ct(this,this.input)}withFaceDescriptors(){return new ft(this,this.input)}},ut=class extends Dt{withFaceExpressions(){return new mt(this,this.input)}withFaceDescriptor(){return new lt(this,this.input)}};var Be=class extends Y{constructor(e,r){super();this.parentTask=e;this.input=r}},ft=class extends Be{async run(){let t=await this.parentTask;return(await _t(t,this.input,r=>Promise.all(r.map(a=>P.faceRecognitionNet.computeFaceDescriptor(a))),null,r=>r.landmarks.align(null,{useDlibAlignment:!0}))).map((r,a)=>ar(t[a],r))}withFaceExpressions(){return new ct(this,this.input)}withAgeAndGender(){return new pt(this,this.input)}},lt=class extends Be{async run(){let t=await this.parentTask;if(!t)return;let e=await qt(t,this.input,r=>P.faceRecognitionNet.computeFaceDescriptor(r),null,r=>r.landmarks.align(null,{useDlibAlignment:!0}));return ar(t,e)}withFaceExpressions(){return new mt(this,this.input)}withAgeAndGender(){return new ut(this,this.input)}};var Re=class extends Y{constructor(e,r,a){super();this.parentTask=e;this.input=r;this.useTinyLandmarkNet=a}get landmarkNet(){return this.useTinyLandmarkNet?P.faceLandmark68TinyNet:P.faceLandmark68Net}},$e=class extends Re{async run(){let t=await this.parentTask,e=t.map(s=>s.detection),r=this.input instanceof n.Tensor?await oe(this.input,e):await re(this.input,e),a=await Promise.all(r.map(s=>this.landmarkNet.detectLandmarks(s)));return r.forEach(s=>s instanceof n.Tensor&&s.dispose()),t.filter((s,c)=>a[c]).map((s,c)=>ie(s,a[c]))}withFaceExpressions(){return new ct(this,this.input)}withAgeAndGender(){return new pt(this,this.input)}withFaceDescriptors(){return new ft(this,this.input)}},Oe=class extends Re{async run(){let t=await this.parentTask;if(!t)return;let{detection:e}=t,r=this.input instanceof n.Tensor?await oe(this.input,[e]):await re(this.input,[e]),a=await this.landmarkNet.detectLandmarks(r[0]);return r.forEach(i=>i instanceof n.Tensor&&i.dispose()),ie(t,a)}withFaceExpressions(){return new mt(this,this.input)}withAgeAndGender(){return new ut(this,this.input)}withFaceDescriptor(){return new lt(this,this.input)}};var He=class extends Y{constructor(e,r=new z){super();this.input=e;this.options=r}},me=class extends He{async run(){let{input:t,options:e}=this,r;if(e instanceof Ae)r=P.tinyFaceDetector.locateFaces(t,e);else if(e instanceof z)r=P.ssdMobilenetv1.locateFaces(t,e);else if(e instanceof q)r=P.tinyYolov2.locateFaces(t,e);else throw new Error("detectFaces - expected options to be instance of TinyFaceDetectorOptions | SsdMobilenetv1Options | TinyYolov2Options");return r}runAndExtendWithFaceDetections(){return new Promise((t,e)=>{this.run().then(r=>t(r.map(a=>St({},a)))).catch(r=>e(r))})}withFaceLandmarks(t=!1){return new $e(this.runAndExtendWithFaceDetections(),this.input,t)}withFaceExpressions(){return new Pt(this.runAndExtendWithFaceDetections(),this.input)}withAgeAndGender(){return new Ft(this.runAndExtendWithFaceDetections(),this.input)}},ze=class extends He{async run(){let t=await new me(this.input,this.options),e=t[0];return t.forEach(r=>{r.score>e.score&&(e=r)}),e}runAndExtendWithFaceDetection(){return new Promise(async t=>{let e=await this.run();t(e?St({},e):void 0)})}withFaceLandmarks(t=!1){return new Oe(this.runAndExtendWithFaceDetection(),this.input,t)}withFaceExpressions(){return new wt(this.runAndExtendWithFaceDetection(),this.input)}withAgeAndGender(){return new Dt(this.runAndExtendWithFaceDetection(),this.input)}};function qh(o,t=new z){return new ze(o,t)}function cr(o,t=new z){return new me(o,t)}async function en(o,t){return cr(o,new z(t?{minConfidence:t}:{})).withFaceLandmarks().withFaceDescriptors()}async function rb(o,t={}){return cr(o,new q(t)).withFaceLandmarks().withFaceDescriptors()}var ob=en;function fo(o,t){if(o.length!==t.length)throw new Error("euclideanDistance: arr1.length !== arr2.length");let e=Array.from(o),r=Array.from(t);return Math.sqrt(e.map((a,i)=>a-r[i]).reduce((a,i)=>a+i*i,0))}var lo=class o{constructor(t,e=.6){this._distanceThreshold=e;let r=Array.isArray(t)?t:[t];if(!r.length)throw new Error("FaceRecognizer.constructor - expected atleast one input");let a=1,i=()=>`person ${a++}`;this._labeledDescriptors=r.map(s=>{if(s instanceof gt)return s;if(s instanceof Float32Array)return new gt(i(),[s]);if(s.descriptor&&s.descriptor instanceof Float32Array)return new gt(i(),[s.descriptor]);throw new Error("FaceRecognizer.constructor - expected inputs to be of type LabeledFaceDescriptors | WithFaceDescriptor | Float32Array | Array | Float32Array>")})}get labeledDescriptors(){return this._labeledDescriptors}get distanceThreshold(){return this._distanceThreshold}computeMeanDistance(t,e){return e.map(r=>fo(r,t)).reduce((r,a)=>r+a,0)/(e.length||1)}matchDescriptor(t){return this.labeledDescriptors.map(({descriptors:e,label:r})=>new Kt(r,this.computeMeanDistance(t,e))).reduce((e,r)=>e.distancet.toJSON())}}static fromJSON(t){let e=t.labeledDescriptors.map(r=>gt.fromJSON(r));return new o(e,t.distanceThreshold)}};function Tb(o){let t=new Zt;return t.extractWeights(o),t}function rn(o,t){let{width:e,height:r}=new A(t.width,t.height);if(e<=0||r<=0)throw new Error(`resizeResults - invalid dimensions: ${JSON.stringify({width:e,height:r})}`);if(Array.isArray(o))return o.map(a=>rn(a,{width:e,height:r}));if(Yt(o)){let a=o.detection.forSize(e,r),i=o.unshiftedLandmarks.forSize(a.box.width,a.box.height);return ie(St(o,a),i)}return Q(o)?St(o,o.detection.forSize(e,r)):o instanceof $||o instanceof D?o.forSize(e,r):o}var Lb=Ar;export{Me as AgeGenderNet,Ct as BoundingBox,C as Box,Y as ComposableTask,ft as ComputeAllFaceDescriptorsTask,Be as ComputeFaceDescriptorsTaskBase,lt as ComputeSingleFaceDescriptorTask,$e as DetectAllFaceLandmarksTask,me as DetectAllFacesTask,Re as DetectFaceLandmarksTaskBase,He as DetectFacesTaskBase,Oe as DetectSingleFaceLandmarksTask,ze as DetectSingleFaceTask,A as Dimensions,Nr as FACE_EXPRESSION_LABELS,D as FaceDetection,Qr as FaceDetectionNet,we as FaceExpressionNet,it as FaceExpressions,Gt as FaceLandmark68Net,Ie as FaceLandmark68TinyNet,zr as FaceLandmarkNet,$ as FaceLandmarks,xr as FaceLandmarks5,Lt as FaceLandmarks68,Kt as FaceMatch,lo as FaceMatcher,jt as FaceRecognitionNet,rr as Gender,Qt as LabeledBox,gt as LabeledFaceDescriptors,tt as NetInput,I as NeuralNetwork,It as ObjectDetection,v as Point,vr as PredictedBox,Nt as Rect,Tt as SsdMobilenetv1,z as SsdMobilenetv1Options,Zt as TinyFaceDetector,Ae as TinyFaceDetectorOptions,Jt as TinyYolov2,q as TinyYolov2Options,ob as allFaces,en as allFacesSsdMobilenetv1,rb as allFacesTinyYolov2,yr as awaitMediaLoaded,Tr as bufferToImage,Hd as computeFaceDescriptor,Bt as createCanvas,be as createCanvasFromMedia,gl as createFaceDetectionNet,gf as createFaceRecognitionNet,Jo as createSsdMobilenetv1,Tb as createTinyFaceDetector,cd as createTinyYolov2,cr as detectAllFaces,Qo as detectFaceLandmarks,Od as detectFaceLandmarksTiny,Qd as detectLandmarks,qh as detectSingleFace,Sr as draw,_ as env,fo as euclideanDistance,sr as extendWithAge,ar as extendWithFaceDescriptor,St as extendWithFaceDetection,tr as extendWithFaceExpressions,ie as extendWithFaceLandmarks,ir as extendWithGender,oe as extractFaceTensors,re as extractFaces,Fi as fetchImage,wr as fetchJson,Ii as fetchNetWeights,st as fetchOrThrow,ki as fetchVideo,W as getContext2dOrThrow,kt as getMediaDimensions,_r as imageTensorToCanvas,Pr as imageToSquare,On as inverseSigmoid,dr as iou,Qe as isMediaElement,he as isMediaLoaded,Tf as isWithAge,Q as isWithFaceDetection,Lr as isWithFaceExpressions,Yt as isWithFaceLandmarks,Ff as isWithGender,qd as loadAgeGenderModel,Zd as loadFaceDetectionModel,Jd as loadFaceExpressionModel,jd as loadFaceLandmarkModel,Ud as loadFaceLandmarkTinyModel,Xd as loadFaceRecognitionModel,tn as loadSsdMobilenetv1Model,Vd as loadTinyFaceDetectorModel,Gd as loadTinyYolov2Model,Dr as loadWeightMap,Kd as locateFaces,Yi as matchDimensions,hr as minBbox,P as nets,br as nonMaxSuppression,J as normalize,gr as padToSquare,Yd as predictAgeAndGender,zd as recognizeFaceExpressions,rn as resizeResults,At as resolveInput,Rn as shuffleArray,fe as sigmoid,Ko as ssdMobilenetv1,n as tf,Rd as tinyFaceDetector,$d as tinyYolov2,F as toNetInput,lr as utils,so as validateConfig,Lb as version}; diff --git a/dist/face-api.esm.js b/dist/face-api.esm.js index 9981175..19c28a6 100644 --- a/dist/face-api.esm.js +++ b/dist/face-api.esm.js @@ -5006,5 +5006,5 @@ return a / b;`,jse=` } `}};function Xle(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,segmentIds:s}=t,{numSegments:i}=a,o=r.shape.length,l=[],u=0,p=T.getAxesPermutation([u],o),d=r;p!=null&&(d=Sn({inputs:{x:r},backend:n,attrs:{perm:p}}),l.push(d),u=T.getInnerMostAxes(1,o)[0]);let c=T.segment_util.computeOutShape(d.shape,u,i),h=w.sizeFromShape([d.shape[u]]),m=ce({inputs:{x:d},backend:n,attrs:{shape:[-1,h]}});l.push(m);let f=Mm(r.dtype),g=(v,I,N,C,_)=>{let F=v.shape[0],D=v.shape[1],$=T.segment_util.segOpComputeOptimalWindowSize(D,_),S={windowSize:$,inSize:D,batchSize:F,numSegments:_},M=new Kle(S,I),B=n.compileAndRun(M,[v,N],C);if(l.push(B),B.shape[1]===_)return B;let U=iF({backend:n,attrs:{start:0,stop:_,step:1,dtype:"float32"}}),H=oF({inputs:{x:U},backend:n,attrs:{reps:[D/$]}});return l.push(U),l.push(H),g(B,I,H,C,_)},b=g(m,"unsortedSegmentSum",s,f,i),y=ce({inputs:{x:b},backend:n,attrs:{shape:c}}),x=y;if(p!=null){l.push(y);let v=T.getUndoAxesPermutation(p);x=Sn({inputs:{x},backend:n,attrs:{perm:v}})}return l.forEach(v=>n.disposeIntermediateTensorInfo(v)),x}var Yle={kernelName:Qc,backendName:"webgl",kernelFunc:Xle},Zle=[Ree,Oee,zee,Vee,Gee,qee,Xee,Zee,tte,ate,ite,ute,dte,gte,xte,wte,Ite,Cte,_te,Fte,Mte,Vte,Gte,Kte,Yte,nne,rne,lne,bee,cne,gne,vne,Tne,_ne,Fne,Dne,Mne,zne,Vne,Hne,qne,Xne,Zne,eae,nae,iae,lae,cae,mae,gae,vae,Sae,Eae,Fae,Rae,Mae,Pae,zae,Bae,Uae,Hae,Xae,Jae,tre,are,ire,ure,hre,bre,gee,xre,mne,kre,Nre,Ere,xee,$re,Ore,Lre,Vre,Hre,Xre,Jre,nse,ise,use,cse,fse,bse,xse,Ise,Nse,Cse,_se,Fse,Mse,zse,Use,Zse,kee,tie,rie,oie,pie,Jte,hie,fie,bie,vie,Sie,wee,Tie,Eie,Aie,$ie,Die,Qte,qse,Oie,Wie,Gie,See,Kie,Zie,toe,roe,loe,poe,hoe,goe,xoe,koe,Noe,Eoe,$oe,Moe,zoe,Voe,Wte,Xse,Hoe,qoe,Xoe,Zoe,Qoe,tle,ale,sle,ole,ple,dle,mle,gle,xle,wle,Ile,Nle,Kse,Fee,Ele,Fle,Dle,Ole,Wle,Ule,$ee,Hle,qle,Yle,mie];for(let e of Zle)ed(e);var Qe;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(Qe||(Qe={}));var Ac;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu",e[e.sigmoid=5]="sigmoid",e[e.elu=6]="elu"})(Ac||(Ac={}));var lF;function Jle(e){lF=e.wasm.cwrap(ii,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function Qle(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t;if(r.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:u,activation:p,leakyreluAlpha:d}=a,c=n.dataIdMap.get(r.dataId).id,h=n.dataIdMap.get(s.dataId).id,m=0;if(i!=null){let _=n.dataIdMap.get(i.dataId);if(_.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${_.shape.length}.`);m=_.id}let f=o==null?0:n.dataIdMap.get(o.dataId).id,g=Ac[p];if(g==null)throw new Error(`${p} activation not yet supported for FusedConv2D in the wasm backend.`);let b=l?r.shape[2]:r.shape[1],y=u?s.shape[1]:s.shape[2],x=Ju.assertAndGetBroadcastShape(r.shape.slice(0,-2),s.shape.slice(0,-2)),v=n.makeOutput([...x,b,y],r.dtype),I=n.dataIdMap.get(v.dataId).id,N=new Uint8Array(new Int32Array(r.shape).buffer),C=new Uint8Array(new Int32Array(s.shape).buffer);return lF(c,N,r.shape.length,h,C,s.shape.length,l,u,g,m,f,d||0,I),v}var eue={kernelName:ii,backendName:"wasm",setupFunc:Jle,kernelFunc:Qle};function Xe(e,t){let n;function a(s){n=s.wasm.cwrap(e,null,["number","number","number"])}function r(s){let{backend:i,inputs:{x:o}}=s,l=i.dataIdMap.get(o.dataId).id,u=i.makeOutput(o.shape,t||o.dtype),p=i.dataIdMap.get(u.dataId).id;return w.sizeFromShape(u.shape)===0||n(l,Qe[o.dtype],p),u}return{kernelName:e,backendName:"wasm",setupFunc:a,kernelFunc:r}}var tue=Xe(Yl),nue=Xe(Ni),aue=Xe(Ti);function Ut(e,t,n){let a;function r(i){a=i.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function s(i){let{backend:o,inputs:l}=i,{a:u,b:p}=l,d=o.dataIdMap.get(u.dataId).id,c=o.dataIdMap.get(p.dataId).id,h=n!=null?n:u.dtype,m=T.assertAndGetBroadcastShape(u.shape,p.shape),f=o.makeOutput(m,h);if(w.sizeFromShape(m)===0)return f;let g=new Uint8Array(new Int32Array(u.shape).buffer),b=new Uint8Array(new Int32Array(p.shape).buffer),y=o.dataIdMap.get(f.dataId).id;return a(d,g,u.shape.length,c,b,p.shape.length,Qe[u.dtype],y),f}return{kernelName:e,backendName:"wasm",setupFunc:r,kernelFunc:s}}var rue=!0,sue=Ut(vs,rue),uF;function iue(e){uF=e.wasm.cwrap(Ci,null,["array","number","number","number"])}function oue(e){let{inputs:t,backend:n}=e,a=n.makeOutput(t[0].shape,t[0].dtype);if(w.sizeFromShape(a.shape)===0)return a;let r=t.map(o=>n.dataIdMap.get(o.dataId).id),s=new Uint8Array(new Int32Array(r).buffer),i=n.dataIdMap.get(a.dataId).id;return uF(s,r.length,Qe[a.dtype],i),a}var lue={kernelName:Ci,backendName:"wasm",setupFunc:iue,kernelFunc:oue};function Gf(e){let{inputs:{x:t},backend:n}=e;if(t.dtype==="string")return bn(n.readSync(t.dataId),t.shape,t.dtype);let a=n.makeOutput(t.shape,t.dtype),r=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(a).set(r),a}var uue={kernelName:eo,backendName:"wasm",kernelFunc:Gf},pF;function pue(e){pF=e.wasm.cwrap(Cr,null,["number","array","number","number","number","array","number"])}function ys(e){let{inputs:t,backend:n,attrs:a}=e,[r,s]=due(t.x.shape,a.perm),i=!0;for(let m=0;m=r&&(s===-1||a[s]>a[i])&&(s=i);a[s]=r}return[n,a]}var hue={kernelName:Cr,backendName:"wasm",kernelFunc:ys,setupFunc:pue};function Ds(e,t,n){let a=e.shape,r=e.shape.length,s=w.parseAxisParam(t,a),i=s,o=T.getAxesPermutation(i,r),l=null,u=!1;if(o!=null){let p=new Array(r);for(let c=0;c`new shape: ${i}, old shape: ${a.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(a.dataId),{dataId:a.dataId,shape:i,dtype:a.dtype}}var zue={kernelName:Ru,backendName:"wasm",kernelFunc:zn},yF;function Wue(e){yF=e.wasm.cwrap(Ri,null,["number","array","number","number","array","number","number","number","number"])}function Bue(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;if(r.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=r.shape.length,u=s.shape.length,p=i?r.shape[l-2]:r.shape[l-1],d=o?s.shape[u-1]:s.shape[u-2],c=i?r.shape[l-1]:r.shape[l-2],h=o?s.shape[u-2]:s.shape[u-1],m=r.shape.slice(0,-2),f=s.shape.slice(0,-2),g=w.sizeFromShape(m),b=w.sizeFromShape(f),y=Ju.assertAndGetBroadcastShape(r.shape.slice(0,-2),s.shape.slice(0,-2)).concat([c,h]);w.assert(p===d,()=>`Error in matMul: inner shapes (${p}) and (${d}) of Tensors with shapes ${r.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let x=i?[g,p,c]:[g,c,p],v=o?[b,h,d]:[b,d,h],I=zn({inputs:{x:r},backend:n,attrs:{shape:x}}),N=zn({inputs:{x:s},backend:n,attrs:{shape:v}}),C=n.dataIdMap.get(I.dataId).id,_=n.dataIdMap.get(N.dataId).id,F=i?I.shape[2]:I.shape[1],D=o?N.shape[1]:N.shape[2],$=Math.max(g,b),S=n.makeOutput([$,F,D],I.dtype),M=n.dataIdMap.get(S.dataId).id,B=new Uint8Array(new Int32Array(I.shape).buffer),U=new Uint8Array(new Int32Array(N.shape).buffer);return yF(C,B,I.shape.length,_,U,N.shape.length,i,o,M),n.disposeData(I.dataId),n.disposeData(N.dataId),S.shape=y,S}var Vue={kernelName:Ri,backendName:"wasm",setupFunc:Wue,kernelFunc:Bue};function Ii(e){let{inputs:{x:t},attrs:{begin:n,size:a},backend:r}=e,[s,i]=Kt.parseSliceParams(t,n,a),o=Kt.isSliceContinous(t.shape,s,i),l=r.readSync(t.dataId),u=r.makeOutput(i,t.dtype),p=w.computeStrides(t.shape),d=r.dataIdMap.get(u.dataId);if(o){let m=Kt.computeFlatOffset(s,p);return t.dtype==="string"?d.stringBytes=l.slice(m,m+w.sizeFromShape(i)):r.typedArrayFromHeap(u).set(l.subarray(m,m+w.sizeFromShape(i))),u}if(t.dtype==="string"){let m=um(l,s,i,t.shape,t.dtype);return d.stringBytes=m,u}let c=r.typedArrayFromHeap(u),h=t.shape.length;if(h===2)Uue(l,p[0],c,s,i);else if(h===3)Gue(l,p[0],p[1],c,s,i);else if(h===4)Hue(l,p[0],p[1],p[2],c,s,i);else{let m=um(l,s,i,t.shape,t.dtype);c.set(m)}return u}function Uue(e,t,n,a,r){let s=0,i=a[0],o=a[1],l=i+r[0];for(let u=i;ub*y),l=T.getReshaped(r.shape,s,o),u=T.getPermuted(l.length,s.length),p=T.getReshapedPermuted(r.shape,s,o),d=T.getSliceBeginCoords(i,s.length),c=T.getSliceSize(p,i,s.length),h=zn({inputs:{x:r},backend:n,attrs:{shape:l}}),m=ys({inputs:{x:h},backend:n,attrs:{perm:u}}),f=zn({inputs:{x:m},backend:n,attrs:{shape:p}}),g=Ii({inputs:{x:f},backend:n,attrs:{begin:d,size:c}});return n.disposeData(h.dataId),n.disposeData(m.dataId),n.disposeData(f.dataId),g}var Kue={kernelName:nu,backendName:"wasm",kernelFunc:que},xF;function Xue(e){xF=e.wasm.cwrap(au,null,["number","number","boolean","number","number","number"])}function Yue(e){let{backend:t,inputs:n,attrs:a}=e,{x:r,weights:s}=n,{size:i}=a,o=s.shape.reduce((d,c)=>d*c,1)!==0,l=r.shape.length===1?[i]:[r.shape[0],i],u=t.makeOutput(l,s.dtype);function p(d){return t.dataIdMap.get(d.dataId).id}return xF(p(r),i,o,p(s),Qe[s.dtype],p(u)),u}var Zue={kernelName:au,backendName:"wasm",setupFunc:Xue,kernelFunc:Yue},Jue=!0,Que=Ut(ru,Jue);function epe(e){let{inputs:t,backend:n}=e,{s0:a,s1:r}=t,s=n.typedArrayFromHeap(a),i=n.typedArrayFromHeap(r),o=T.assertAndGetBroadcastShape(Array.from(s),Array.from(i));return n.makeOutput([o.length],"int32",void 0,new Int32Array(o))}var tpe={kernelName:Mc,backendName:"wasm",kernelFunc:epe};function Rs(e){let{inputs:{x:t},attrs:{dtype:n},backend:a}=e,r=a.makeOutput(t.shape,n),s=a.typedArrayFromHeap(t);return a.typedArrayFromHeap(r).set(s),r}var npe={kernelName:Mi,backendName:"wasm",kernelFunc:Rs},ape=Xe(Oi),vF;function rpe(e){vF=e.wasm.cwrap(ws,null,["number","number","number","number"])}function spe(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{clipValueMin:s,clipValueMax:i}=a,o=n.dataIdMap.get(r.dataId).id,l=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(l.dataId).id;return vF(o,s,i,u),l}var ipe={kernelName:ws,backendName:"wasm",setupFunc:rpe,kernelFunc:spe};function wF(e){let{inputs:t,backend:n}=e,a=w.parseAxisParam(e.attrs.axis,t[0].shape)[0],r=t.map(h=>h.shape);T.assertParamsConsistent(r,a);let s=T.computeOutShape(t.map(h=>h.shape),a),i=t.filter(h=>w.sizeFromShape(h.shape)>0);if(i.length===1)return Gf({inputs:{x:i[0]},backend:n});let o=n.makeOutput(s,t[0].dtype);if(w.sizeFromShape(s)===0)return o;if(i[0].dtype==="string"){let h=i.map(x=>{let v=[-1,w.sizeFromShape(x.shape.slice(a))];return zn({inputs:{x},backend:n,attrs:{shape:v}})}),m=h.map(x=>({vals:n.readSync(x.dataId),shape:x.shape}));s=T.computeOutShape(h.map(x=>x.shape),1);let f=h[0].shape[0]===1,g=L1(m,s,t[0].dtype,f),b=T.computeOutShape(i.map(x=>x.shape),a);o.shape=b;let y=n.dataIdMap.get(o.dataId);return y.stringBytes=T.fromStringArrayToUint8(g),h.forEach(x=>n.disposeData(x.dataId)),o}let l=w.sizeFromShape(i[0].shape.slice(0,a)),u=0,p=i.map(h=>{let m=w.sizeFromShape(h.shape.slice(a));return u+=m,m}),d=i.map(h=>n.typedArrayFromHeap(h)),c=n.typedArrayFromHeap(o);for(let h=0;h`cumprod does not support ${r.dtype} tensors in the WASM backend`);let u=T.getAxesPermutation([s],l),p=r;u!==null&&(p=ys({inputs:{x:r},attrs:{perm:u},backend:n}));let d=T.getInnerMostAxes(1,l)[0];T.assertAxesAreInnerMostDims("cumprod",[d],l);let c=n.makeOutput(p.shape,p.dtype),h=p.shape[d],m=n.dataIdMap.get(p.dataId).id,f=n.dataIdMap.get(c.dataId).id;EF(m,i?1:0,o?1:0,h,f,Qe[r.dtype]);let g=c;if(u!==null){let b=T.getUndoAxesPermutation(u);g=ys({inputs:{x:c},attrs:{perm:b},backend:n}),n.disposeData(p.dataId),n.disposeData(c.dataId)}return g}var Ape={kernelName:lu,backendName:"wasm",setupFunc:Epe,kernelFunc:_pe},_F;function Fpe(e){_F=e.wasm.cwrap(Vi,null,["number","number","number","number","number","number"])}function $pe(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a,l=r.shape.length;w.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumsum does not support ${r.dtype} tensors in the WASM backend`);let u=T.getAxesPermutation([s],l),p=r;u!==null&&(p=ys({inputs:{x:r},attrs:{perm:u},backend:n}));let d=T.getInnerMostAxes(1,l)[0];T.assertAxesAreInnerMostDims("cumsum",[d],l);let c=n.makeOutput(p.shape,p.dtype),h=p.shape[d],m=n.dataIdMap.get(p.dataId).id,f=n.dataIdMap.get(c.dataId).id;_F(m,i?1:0,o?1:0,h,f,Qe[r.dtype]);let g=c;if(u!==null){let b=T.getUndoAxesPermutation(u);g=ys({inputs:{x:c},attrs:{perm:b},backend:n}),n.disposeData(p.dataId),n.disposeData(c.dataId)}return g}var Dpe={kernelName:Vi,backendName:"wasm",setupFunc:Fpe,kernelFunc:$pe},AF;function Rpe(e){AF=e.wasm.cwrap("DenseBincount",null,["number","array","number","number","boolean","number","number","boolean","number"])}function Mpe(e){let{backend:t,inputs:n,attrs:a}=e,{x:r,weights:s}=n,{size:i,binaryOutput:o}=a,l=s.shape.reduce((c,h)=>c*h,1)!==0,u=r.shape.length===1?[i]:[r.shape[0],i],p=t.makeOutput(u,s.dtype);function d(c){return t.dataIdMap.get(c.dataId).id}return AF(d(r),new Uint8Array(new Int32Array(r.shape).buffer),r.shape.length,i,l,d(s),Qe[s.dtype],o,d(p)),p}var Ope={kernelName:Pc,backendName:"wasm",setupFunc:Rpe,kernelFunc:Mpe},FF;function Ppe(e){FF=e.wasm.cwrap(pu,null,["number","number","number","array","number","array","array","number","number"])}function Lpe(e){let{backend:t,inputs:n,attrs:a}=e,{x:r}=n,{blockSize:s,dataFormat:i}=a,o=r.shape[0],l=i==="NHWC"?r.shape[1]:r.shape[2],u=i==="NHWC"?r.shape[2]:r.shape[3],p=i==="NHWC"?r.shape[3]:r.shape[1],d=l*s,c=u*s,h=p/(s*s),m=i==="NHWC"?[o,d,c,h]:[o,h,d,c],f=t.makeOutput(m,"float32"),g=t.dataIdMap.get(r.dataId).id,b=new Uint8Array(new Int32Array(w.computeStrides(r.shape)).buffer),y=new Uint8Array(new Int32Array(m).buffer),x=new Uint8Array(new Int32Array(w.computeStrides(m)).buffer),v=t.dataIdMap.get(f.dataId).id;return FF(g,s,i==="NHWC"?1:0,b,r.shape.length-1,y,x,m.length,v),f}var zpe={kernelName:pu,backendName:"wasm",setupFunc:Ppe,kernelFunc:Lpe},$F;function Wpe(e){$F=e.wasm.cwrap(Ui,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Bpe(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s}=t,i=a.dataIdMap.get(r.dataId).id,o=a.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:p,dimRoundingMode:d}=n,c=u==null?[1,1]:u,h=T.computeConv2DInfo(r.shape,s.shape,l,c,p,d,!0),m=h.filterHeight,f=h.filterWidth,g=h.padInfo.top,b=h.padInfo.right,y=h.padInfo.bottom,x=h.padInfo.left,v=h.dilationHeight,I=h.dilationWidth,N=h.strideHeight,C=h.strideWidth,_=h.inChannels,F=h.outChannels,D=h.padInfo.type==="SAME"?1:0;if(h.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${h.dataFormat}'. Please use 'channelsLast'.`);let $=a.makeOutput(h.outShape,"float32"),S=a.dataIdMap.get($.dataId).id;return $F(i,r.shape[0],r.shape[1],r.shape[2],o,m,f,g,b,y,x,D,v,I,N,C,_,F,S),$}var Vpe={kernelName:Ui,backendName:"wasm",setupFunc:Wpe,kernelFunc:Bpe},DF;function Upe(e){DF=e.wasm.cwrap("Diag",null,["number","number","number","number"])}function Gpe(e){let{inputs:t,backend:n}=e,{x:a}=t,r=w.sizeFromShape(a.shape),s=n.makeOutput([...a.shape,...a.shape],a.dtype);return DF(n.dataIdMap.get(a.dataId).id,Qe[a.dtype],r,n.dataIdMap.get(s.dataId).id),s}var Hpe={kernelName:Lc,backendName:"wasm",setupFunc:Upe,kernelFunc:Gpe},RF;function jpe(e){RF=e.wasm.cwrap(Gi,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function qpe(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a;if(r.dtype!==s.dtype)throw new Error(`Dilation2D error: x must have the same dtype as filter. Got ${r.dtype} and ${s.dtype}`);let u=T.computeDilation2DInfo(r.shape,s.shape,i,o,"NHWC",l),p=n.makeOutput(u.outShape,r.dtype);return RF(n.dataIdMap.get(r.dataId).id,n.dataIdMap.get(s.dataId).id,n.dataIdMap.get(p.dataId).id,Qe[r.dtype],u.batchSize,u.inChannels,u.inHeight,u.inWidth,u.outHeight,u.outWidth,u.strideHeight,u.strideWidth,u.dilationHeight,u.dilationWidth,u.filterHeight,u.filterWidth,u.padInfo.top,u.padInfo.left),p}var Kpe={kernelName:Gi,backendName:"wasm",setupFunc:jpe,kernelFunc:qpe},MF;function Xpe(e){MF=e.wasm.cwrap(Rl,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Ype(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,dy:i}=t,{strides:o,pad:l,dilations:u}=a;if(r.dtype!==s.dtype||r.dtype!==i.dtype)throw new Error(`Dilation2DBackpropFilter error: x must have the same dtype as filter and dy. Got ${r.dtype}, ${s.dtype}, and ${i.dtype}`);let p=T.computeDilation2DInfo(r.shape,s.shape,o,l,"NHWC",u),d=n.makeOutput(s.shape,s.dtype);return MF(n.dataIdMap.get(r.dataId).id,n.dataIdMap.get(s.dataId).id,n.dataIdMap.get(i.dataId).id,n.dataIdMap.get(d.dataId).id,Qe[r.dtype],p.batchSize,p.inChannels,p.inHeight,p.inWidth,p.outHeight,p.outWidth,p.strideHeight,p.strideWidth,p.dilationHeight,p.dilationWidth,p.filterHeight,p.filterWidth,p.padInfo.top,p.padInfo.left),d}var Zpe={kernelName:Rl,backendName:"wasm",setupFunc:Xpe,kernelFunc:Ype},OF;function Jpe(e){OF=e.wasm.cwrap(Dl,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Qpe(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,dy:i}=t,{strides:o,pad:l,dilations:u}=a;if(r.dtype!==s.dtype||r.dtype!==i.dtype)throw new Error(`Dilation2DBackpropInput error: x must have the same dtype as filter and dy. Got ${r.dtype}, ${s.dtype}, and ${i.dtype}`);let p=T.computeDilation2DInfo(r.shape,s.shape,o,l,"NHWC",u),d=n.makeOutput(r.shape,r.dtype);return OF(n.dataIdMap.get(r.dataId).id,n.dataIdMap.get(s.dataId).id,n.dataIdMap.get(i.dataId).id,n.dataIdMap.get(d.dataId).id,Qe[r.dtype],p.batchSize,p.inChannels,p.inHeight,p.inWidth,p.outHeight,p.outWidth,p.strideHeight,p.strideWidth,p.dilationHeight,p.dilationWidth,p.filterHeight,p.filterWidth,p.padInfo.top,p.padInfo.left),d}var ece={kernelName:Dl,backendName:"wasm",setupFunc:Jpe,kernelFunc:Qpe},tce=Xe(ji),PF;function nce(e){PF=e.wasm.cwrap(cu,null,["number","number","number"])}function ace(e){let{inputs:t,backend:n}=e,{dy:a,y:r}=t,s=n.makeOutput(r.shape,"float32"),i=o=>n.dataIdMap.get(o.dataId).id;return PF(i(r),i(a),i(s)),s}var rce={kernelName:cu,backendName:"wasm",setupFunc:nce,kernelFunc:ace},sce=!1,ice=Ut(du,sce,"bool"),oce=Xe(qi),lce=Xe(Ki,"float32");function yv(e){let{inputs:t,attrs:n,backend:a}=e,{input:r}=t,{dim:s}=n,i=r.shape.length,o=r.shape.slice(),l=s;return s<0&&(w.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),zn({inputs:{x:r},backend:a,attrs:{shape:o}})}var uce={kernelName:hu,backendName:"wasm",kernelFunc:yv},pce=Xe(Xi,"float32");function LF(e){let{attrs:{shape:t,value:n},backend:a}=e,{attrs:{dtype:r}}=e;r=r||w.inferDtype(n);let s=a.makeOutput(t,r);return a.typedArrayFromHeap(s).fill(n),s}var cce={kernelName:zc,backendName:"wasm",kernelFunc:LF},zF;function dce(e){zF=e.wasm.cwrap(mu,null,["number","number","number","number","number","number"])}function hce(e){let{inputs:t,backend:n}=e,{image:a}=t,r=n.makeOutput(a.shape,a.dtype),s=n.dataIdMap.get(a.dataId).id,i=n.dataIdMap.get(r.dataId).id,[o,l,u,p]=a.shape;return zF(s,o,l,u,p,i),r}var mce={kernelName:mu,backendName:"wasm",kernelFunc:hce,setupFunc:dce},fce=Xe(Yi),gce=!1,bce=Ut(Zi,gce),WF;function yce(e){WF=e.wasm.cwrap(Ji,null,["number","number","number","number","number","number","number"])}function xce(e){let{backend:t,inputs:n,attrs:a}=e,{varianceEpsilon:r}=a,{x:s,mean:i,variance:o,offset:l,scale:u}=n,p=t.dataIdMap.get(s.dataId).id,d=t.dataIdMap.get(i.dataId).id,c=t.dataIdMap.get(o.dataId).id,h=l!=null?t.dataIdMap.get(l.dataId).id:0,m=u!=null?t.dataIdMap.get(u.dataId).id:0,f=t.makeOutput(s.shape,s.dtype);if(w.sizeFromShape(s.shape)===0)return f;let g=t.dataIdMap.get(f.dataId).id;return WF(p,d,c,h,m,r,g),f}var vce={kernelName:Ji,backendName:"wasm",setupFunc:yce,kernelFunc:xce},BF;function wce(e){BF=e.wasm.cwrap(oi,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function kce(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:p,dataFormat:d,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=n,f=T.computeConv2DInfo(r.shape,s.shape,l,p,u,c),g=Ac[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedConv2D in the wasm backend.`);let b=a.dataIdMap.get(r.dataId).id,y=a.dataIdMap.get(s.dataId).id,x=f.outChannels,v=0;if(i!=null){let te=a.dataIdMap.get(i.dataId);if(te.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${te.shape.length}.`);if(te.shape[0]!==x)throw new Error(`FusedConv2D bias shape (${te.shape}) does not match the number of output channels (${x})`);v=te.id}let I=f.filterHeight,N=f.filterWidth,C=f.padInfo.top,_=f.padInfo.right,F=f.padInfo.bottom,D=f.padInfo.left,$=f.dilationHeight,S=f.dilationWidth,M=f.strideHeight,B=f.strideWidth,U=f.inChannels,H=f.padInfo.type==="SAME"?1:0,q=f.batchSize,K=f.inHeight,Z=f.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let J=a.makeOutput(f.outShape,"float32"),ee=a.dataIdMap.get(J.dataId).id,ae=o==null?0:a.dataIdMap.get(o.dataId).id;return BF(b,q,K,Z,y,I,N,v,C,_,F,D,H,$,S,M,B,U,x,g,ae,m||0,ee),J}var Ice={kernelName:oi,backendName:"wasm",setupFunc:wce,kernelFunc:kce},VF;function Sce(e){VF=e.wasm.cwrap(li,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Nce(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:p,dataFormat:d,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=n,f=T.computeConv2DInfo(r.shape,s.shape,l,p,u,c,!0),g=Ac[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let b=a.dataIdMap.get(r.dataId).id,y=a.dataIdMap.get(s.dataId).id,x=f.outChannels,v=0;if(i!=null){let te=a.dataIdMap.get(i.dataId);if(te.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${te.shape.length}.`);if(te.shape[0]!==x)throw new Error(`FusedDepthwiseConv2D bias shape (${te.shape}) does not match the number of output channels (${x})`);v=te.id}let I=f.filterHeight,N=f.filterWidth,C=f.padInfo.top,_=f.padInfo.right,F=f.padInfo.bottom,D=f.padInfo.left,$=f.dilationHeight,S=f.dilationWidth,M=f.strideHeight,B=f.strideWidth,U=f.inChannels,H=f.padInfo.type==="SAME"?1:0,q=f.batchSize,K=f.inHeight,Z=f.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let J=a.makeOutput(f.outShape,"float32"),ee=a.dataIdMap.get(J.dataId).id,ae=o==null?0:a.dataIdMap.get(o.dataId).id;return VF(b,q,K,Z,y,I,N,v,C,_,F,D,H,$,S,M,B,U,x,g,ae,m||0,ee),J}var Tce={kernelName:li,backendName:"wasm",setupFunc:Sce,kernelFunc:Nce},UF;function Cce(e){UF=e.wasm.cwrap(gu,null,["number","number","number","number","number","number","array","number"])}function Ece(e){let{backend:t,inputs:n}=e,{params:a,indices:r}=n,[s,i,o,l]=Yw.prepareAndValidate(a,r),u=t.makeOutput(s,a.dtype);if(i===0)return u;let p=r.shape,d=p[p.length-1],c=t.dataIdMap.get(a.dataId).id,h=t.dataIdMap.get(r.dataId).id,m=new Uint8Array(new Int32Array(l).buffer),f=t.dataIdMap.get(u.dataId).id;return UF(c,Qe[a.dtype],h,i,d,o,m,f),u}var _ce={kernelName:gu,backendName:"wasm",setupFunc:Cce,kernelFunc:Ece},GF;function Ace(e){GF=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function Fce(e){let{backend:t,inputs:n,attrs:a}=e,{x:r,indices:s}=n,{axis:i,batchDims:o}=a,l=w.parseAxisParam(i,r.shape)[0],u=t.readSync(s.dataId),p=r.shape[l];for(let C=0;C=0,()=>`GatherV2: the index value ${_} is not in [0, ${p-1}]`)}let d=T.segment_util.collectGatherOpShapeInfo(r,s,l,o),c=zn({inputs:{x:r},attrs:{shape:[d.batchSize,d.outerSize,d.dimSize,d.sliceSize]},backend:t}),h=w.sizeFromShape(s.shape),m=zn({inputs:{x:s},attrs:{shape:[d.batchSize,h/d.batchSize]},backend:t}),f=[d.batchSize,d.outerSize,h/d.batchSize,d.sliceSize],g=t.makeOutput(f,r.dtype);if(w.sizeFromShape(r.shape)===0)return g;let b=c.shape.length-1,y=t.dataIdMap.get(c.dataId).id,x=t.dataIdMap.get(m.dataId).id,v=t.dataIdMap.get(g.dataId).id,I=new Uint8Array(new Int32Array(w.computeStrides(c.shape)).buffer),N=new Uint8Array(new Int32Array(w.computeStrides(f)).buffer);return GF(y,Qe[r.dtype],I,b,x,d.batchSize,N,v),t.disposeData(c.dataId),t.disposeData(m.dataId),g.shape=d.outputShape,g}var $ce={kernelName:fu,backendName:"wasm",setupFunc:Ace,kernelFunc:Fce},Dce=!1,Rce=Ut(bu,Dce,"bool"),Mce=!1,Oce=Ut(Qi,Mce,"bool"),Pce=Xe(to,"bool"),Lce=Xe(no,"bool"),zce=Xe(ao,"bool"),HF;function Wce(e){HF=e.wasm.cwrap(ro,null,["number","number","number","number"])}function Bce(e){let{inputs:{x:t},attrs:{alpha:n},backend:a}=e,r=a.dataIdMap.get(t.dataId).id,s=a.makeOutput(t.shape,"float32");if(w.sizeFromShape(t.shape)!==0){let i=a.dataIdMap.get(s.dataId).id;HF(r,Qe[t.dtype],n,i)}return s}var Vce={kernelName:ro,backendName:"wasm",setupFunc:Wce,kernelFunc:Bce},Uce=!1,Gce=Ut(yu,Uce,"bool"),Hce=!1,jce=Ut(xu,Hce,"bool"),jF;function qce(e){jF=e.wasm.cwrap(vu,null,["number","number","number","number"])}function Kce(e){let{attrs:t,backend:n}=e,{start:a,stop:r,num:s}=t,i=Math.floor(s),o=n.makeOutput([i],"float32");return jF(n.dataIdMap.get(o.dataId).id,a,r,i),o}var Xce={kernelName:vu,backendName:"wasm",setupFunc:qce,kernelFunc:Kce},Yce=Xe(so),Zce=Xe(io),Jce=!1,Qce=Ut(wu,Jce,"bool"),ede=Xe(ku),tde=!1,nde=Ut(Iu,tde,"bool"),ade=!1,rde=Ut(jS,ade,"bool"),qF;function sde(e){qF=e.wasm.cwrap(oo,null,["number","number","number","number","number","number","number"])}function ide(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=a;if(r.dtype!=="float32")throw new Error("LRN error: x must have dtype float32");let u=n.makeOutput(r.shape,r.dtype);return qF(n.dataIdMap.get(r.dataId).id,n.dataIdMap.get(u.dataId).id,r.shape[3],s,i,o,l),u}var ode={kernelName:oo,backendName:"wasm",setupFunc:sde,kernelFunc:ide},KF;function lde(e){KF=e.wasm.cwrap(Su,null,["number","number","number","number","number","number","number","number","number"])}function ude(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:u,beta:p}=a;if(r.dtype!=="float32"||s.dtype!=="float32"||i.dtype!=="float32")throw new Error("LRNGrad error: x, y, and dy must have dtype float32");let d=n.makeOutput(r.shape,r.dtype);return KF(n.dataIdMap.get(r.dataId).id,n.dataIdMap.get(s.dataId).id,n.dataIdMap.get(i.dataId).id,n.dataIdMap.get(d.dataId).id,i.shape[3],o,l,u,p),d}var pde={kernelName:Su,backendName:"wasm",setupFunc:lde,kernelFunc:ude},XF;function cde(e){XF=e.wasm.cwrap(lo,null,["number","number","number","number"])}function dde(e){let{backend:t,inputs:n,attrs:a}=e,{reductionIndices:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:c}=Ds(i,r,t);if(c){let y=t.dataIdMap.get(u.dataId).id;l=u,o=y}let h=l.shape.length;T.assertAxesAreInnerMostDims("max",p,h);let[m,f]=T.computeOutAndReduceShapes(l.shape,p),g=w.sizeFromShape(f),b=t.makeOutput(m,i.dtype);if(w.sizeFromShape(l.shape)!==0){let y=t.dataIdMap.get(b.dataId).id;XF(o,Qe[i.dtype],g,y)}if(c&&t.disposeData(u.dataId),s){let y=T.expandShapeToKeepDim(b.shape,d);b.shape=y}return b}var hde={kernelName:lo,backendName:"wasm",setupFunc:cde,kernelFunc:dde},mde=!1,fde=Ut(uo,mde),YF;function gde(e){YF=e.wasm.cwrap(po,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function bde(e){let{inputs:t,attrs:n,backend:a}=e,r=t.x,s=a.dataIdMap.get(r.dataId).id;w.assert(r.dtype==="float32",()=>`Error in MaxPool: only float32 input is supported. Got ${r.dtype}.`);let{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=n,p=T.computePool2DInfo(r.shape,i,o,1,l,u),d=p.filterHeight,c=p.filterWidth,h=p.padInfo.top,m=p.padInfo.right,f=p.padInfo.bottom,g=p.padInfo.left,b=p.dilationHeight,y=p.dilationWidth,x=p.strideHeight,v=p.strideWidth,I=p.inChannels,N=p.outChannels;if(p.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${p.dataFormat}'. Please use 'channelsLast'.`);let C=a.makeOutput(p.outShape,"float32"),_=a.dataIdMap.get(C.dataId).id;return YF(s,r.shape[0],r.shape[1],r.shape[2],d,c,h,m,f,g,b,y,x,v,I,N,_),C}var yde={kernelName:po,backendName:"wasm",setupFunc:gde,kernelFunc:bde},ZF;function xde(e){ZF=e.wasm.cwrap("MaxPool3D",null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function vde(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=a,p=T.computePool3DInfo(r.shape,s,i,1,o,l,u),d=n.makeOutput(p.outShape,r.dtype);return ZF(n.dataIdMap.get(r.dataId).id,n.dataIdMap.get(d.dataId).id,p.batchSize,p.inChannels,p.inDepth,p.inHeight,p.inWidth,p.outDepth,p.outHeight,p.outWidth,p.strideDepth,p.strideHeight,p.strideWidth,p.dilationDepth,p.dilationHeight,p.dilationWidth,p.effectiveFilterDepth,p.effectiveFilterHeight,p.effectiveFilterWidth,p.padInfo.front,p.padInfo.top,p.padInfo.left),d}var wde={kernelName:Nu,backendName:"wasm",setupFunc:xde,kernelFunc:vde},JF;function kde(e){JF=e.wasm.cwrap("MaxPool3DGrad",null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Ide(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=a,p=T.computePool3DInfo(s.shape,i,o,1,l,u),d=n.makeOutput(s.shape,s.dtype);return JF(n.dataIdMap.get(s.dataId).id,n.dataIdMap.get(r.dataId).id,n.dataIdMap.get(d.dataId).id,p.batchSize,p.inChannels,p.inDepth,p.inHeight,p.inWidth,p.outDepth,p.outHeight,p.outWidth,p.strideDepth,p.strideHeight,p.strideWidth,p.dilationDepth,p.dilationHeight,p.dilationWidth,p.effectiveFilterDepth,p.effectiveFilterHeight,p.effectiveFilterWidth,p.padInfo.front,p.padInfo.top,p.padInfo.left),d}var Sde={kernelName:Bc,backendName:"wasm",setupFunc:kde,kernelFunc:Ide},QF;function Nde(e){QF=e.wasm.cwrap("MaxPoolGrad",null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Tde(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=a,p=T.computePool2DInfo(s.shape,i,o,1,l,u),d=n.makeOutput(s.shape,s.dtype);return QF(n.dataIdMap.get(s.dataId).id,n.dataIdMap.get(r.dataId).id,n.dataIdMap.get(d.dataId).id,p.batchSize,p.inChannels,p.inHeight,p.inWidth,p.outHeight,p.outWidth,p.strideHeight,p.strideWidth,p.dilationHeight,p.dilationWidth,p.effectiveFilterHeight,p.effectiveFilterWidth,p.padInfo.top,p.padInfo.left),d}var Cde={kernelName:Wc,backendName:"wasm",setupFunc:Nde,kernelFunc:Tde},e$;function Ede(e){e$=e.wasm.cwrap("MaxPoolWithArgmax",null,["number","number","number","number","boolean","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function _de(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,includeBatchInIndex:l}=a;w.assert(r.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${r.shape.length}.`);let u=[1,1];w.assert(T.eitherStridesOrDilationsAreOne(i,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let p=T.computePool2DInfo(r.shape,s,i,[1,1],o),d=n.makeOutput(p.outShape,r.dtype),c=n.makeOutput(p.outShape,"int32");return e$(n.dataIdMap.get(r.dataId).id,n.dataIdMap.get(d.dataId).id,n.dataIdMap.get(c.dataId).id,Qe[r.dtype],l,p.batchSize,p.inChannels,p.inHeight,p.inWidth,p.outHeight,p.outWidth,p.strideHeight,p.strideWidth,p.dilationHeight,p.dilationWidth,p.effectiveFilterHeight,p.effectiveFilterWidth,p.padInfo.top,p.padInfo.left),[d,c]}var Ade={kernelName:Vc,backendName:"wasm",setupFunc:Ede,kernelFunc:_de},t$;function Fde(e){t$=e.wasm.cwrap(co,null,["number, number, number"])}function $de(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:p,axes:d,originalAxes:c,inputWasTransposed:h}=Ds(i,r,t),m=d;if(h){let v=t.dataIdMap.get(p.dataId).id;v!==o&&(u=p,l=v,m=T.getInnerMostAxes(m.length,u.shape.length))}T.assertAxesAreInnerMostDims("mean",m,u.shape.length);let[f,g]=T.computeOutAndReduceShapes(u.shape,m),b=w.sizeFromShape(g),y=u;u.dtype!=="float32"&&(y=Rs({backend:t,inputs:{x:u},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(y.dataId).id);let x=t.makeOutput(f,"float32");if(w.sizeFromShape(u.shape)!==0){let v=t.dataIdMap.get(x.dataId).id;t$(l,b,v)}if(h&&t.disposeData(p.dataId),s){let v=T.expandShapeToKeepDim(x.shape,c);x.shape=v}return u.dtype!=="float32"&&t.disposeData(y.dataId),x}var Dde={kernelName:co,backendName:"wasm",setupFunc:Fde,kernelFunc:$de},n$;function Rde(e){n$=e.wasm.cwrap(ho,null,["number","number","number","number"])}function Mde(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:p,axes:d,originalAxes:c,inputWasTransposed:h}=Ds(i,r,t);if(h){let x=t.dataIdMap.get(p.dataId).id;x!==o&&(u=p,l=x)}let m=u.shape.length;T.assertAxesAreInnerMostDims("min",d,m);let[f,g]=T.computeOutAndReduceShapes(u.shape,d),b=w.sizeFromShape(g),y=t.makeOutput(f,u.dtype);if(w.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;n$(l,Qe[i.dtype],b,x)}if(h&&t.disposeData(p.dataId),s){let x=T.expandShapeToKeepDim(y.shape,c);y.shape=x}return y}var Ode={kernelName:ho,backendName:"wasm",setupFunc:Rde,kernelFunc:Mde},Pde=!1,Lde=Ut(mo,Pde),xv;(function(e){e[e.reflect=0]="reflect",e[e.symmetric=1]="symmetric"})(xv||(xv={}));var a$;function zde(e){a$=e.wasm.cwrap(fo,null,["number","array","number","number","array","array","number","number"])}function Wde(e){let{inputs:{x:t},backend:n,attrs:{paddings:a,mode:r}}=e,s=a.map((m,f)=>m[0]+t.shape[f]+m[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),p=a.map(m=>m[0]),d=a.map(m=>m[1]),c=new Uint8Array(new Int32Array(p).buffer),h=new Uint8Array(new Int32Array(d).buffer);return a$(i,u,t.shape.length,Qe[t.dtype],c,h,xv[r],l),o}var Bde={kernelName:fo,backendName:"wasm",kernelFunc:Wde,setupFunc:zde},r$;function Vde(e){r$=e.wasm.cwrap(zo,null,["number","number","number","number"])}function s$(e){let{backend:t,inputs:{logits:n},attrs:{dim:a}}=e,r=t.dataIdMap.get(n.dataId).id,s=t.makeOutput(n.shape,n.dtype),i=t.dataIdMap.get(s.dataId).id,o=n.shape[a],l=w.sizeFromShape(n.shape)/o;return w.sizeFromShape(s.shape)===0||r$(r,i,o,l),s}var Ude={kernelName:zo,backendName:"wasm",setupFunc:Vde,kernelFunc:s$},i$;function Gde(e){i$=e.wasm.cwrap(Tu,null,["number","number","number","number","number","number"])}function Hde(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{numSamples:s,seed:i,normalized:o}=a;if(r.dtype!=="float32")throw new Error(`Tensor logits must have dtype float32, got ${r.dtype}`);let l=o?r:s$({inputs:{logits:r},backend:n,attrs:{dim:r.shape.length-1}}),[u,p]=l.shape,d=n.makeOutput([u,s],"int32");return i$(n.dataIdMap.get(l.dataId).id,u,p,s,i,n.dataIdMap.get(d.dataId).id),o||n.disposeData(l.dataId),d}var jde={kernelName:Tu,backendName:"wasm",setupFunc:Gde,kernelFunc:Hde},qde=Ut(go,!0),Kde=!0,Xde=Ut(bo,Kde),Yde=Xe(Cu);function hk(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),a=n[0],r=n[1],s=n[2],i=n[3];return e.wasm._free(t),{pSelectedIndices:a,selectedSize:r,pSelectedScores:s,pValidOutputs:i}}var o$;function Zde(e){o$=e.wasm.cwrap(_u,"number",["number","number","number","number","number"])}function Jde(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i}=a,{boxes:o,scores:l}=n,u=t.dataIdMap.get(o.dataId).id,p=t.dataIdMap.get(l.dataId).id,d=o$(u,p,s,r,i),{pSelectedIndices:c,selectedSize:h,pSelectedScores:m,pValidOutputs:f}=hk(t,d);return t.wasm._free(m),t.wasm._free(f),t.makeOutput([h],"int32",c)}var Qde={kernelName:_u,backendName:"wasm",setupFunc:Zde,kernelFunc:Jde},l$;function ehe(e){l$=e.wasm.cwrap(Au,"number",["number","number","number","number","number","bool"])}function the(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i,padToMaxOutputSize:o}=a,{boxes:l,scores:u}=n,p=t.dataIdMap.get(l.dataId).id,d=t.dataIdMap.get(u.dataId).id,c=l$(p,d,s,r,i,o),{pSelectedIndices:h,selectedSize:m,pSelectedScores:f,pValidOutputs:g}=hk(t,c);t.wasm._free(f);let b=t.makeOutput([m],"int32",h),y=t.makeOutput([],"int32",g);return[b,y]}var nhe={kernelName:Au,backendName:"wasm",setupFunc:ehe,kernelFunc:the},u$;function ahe(e){u$=e.wasm.cwrap(Fu,"number",["number","number","number","number","number","number"])}function rhe(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i,softNmsSigma:o}=a,{boxes:l,scores:u}=n,p=t.dataIdMap.get(l.dataId).id,d=t.dataIdMap.get(u.dataId).id,c=u$(p,d,s,r,i,o),{pSelectedIndices:h,selectedSize:m,pSelectedScores:f,pValidOutputs:g}=hk(t,c);t.wasm._free(g);let b=t.makeOutput([m],"int32",h),y=t.makeOutput([m],"float32",f);return[b,y]}var she={kernelName:Fu,backendName:"wasm",setupFunc:ahe,kernelFunc:rhe},ihe=!1,ohe=Ut(Eu,ihe,"bool"),p$;function lhe(e){p$=e.wasm.cwrap(yo,null,["number","number","number","number","number"])}function uhe(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{dtype:s,depth:i,onValue:o,offValue:l}=a,u=n.makeOutput([...r.shape,i],s),p=n.dataIdMap.get(u.dataId).id,d=n.dataIdMap.get(r.dataId).id;return p$(d,i,o,l,p),u}var phe={kernelName:yo,backendName:"wasm",setupFunc:lhe,kernelFunc:uhe};function che(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(a).fill(1),a}var dhe={kernelName:$u,backendName:"wasm",kernelFunc:che};function hhe(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return yv({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(p=>{w.assertShapesMatch(s,p.shape,"All tensors passed to stack must have matching shapes"),w.assert(i===p.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(p=>{let d=yv({inputs:{input:p},backend:n,attrs:{dim:r}});return o.push(d),d}),u=wF({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(p=>n.disposeData(p.dataId)),u}var mhe={kernelName:Du,backendName:"wasm",kernelFunc:hhe},c$;function fhe(e){c$=e.wasm.cwrap(xo,null,["number","array","number","number","array","array","number","number"])}function ghe(e){let{inputs:{x:t},backend:n,attrs:{paddings:a,constantValue:r}}=e,s=a.map((m,f)=>m[0]+t.shape[f]+m[1]);if(w.sizeFromShape(t.shape)===0)return LF({backend:n,attrs:{shape:s,value:r,dtype:t.dtype}});let i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),p=a.map(m=>m[0]),d=a.map(m=>m[1]),c=new Uint8Array(new Int32Array(p).buffer),h=new Uint8Array(new Int32Array(d).buffer);return c$(i,u,t.shape.length,Qe[t.dtype],c,h,r,l),o}var d$={kernelName:xo,backendName:"wasm",kernelFunc:ghe,setupFunc:fhe},bhe=!1,yhe=Ut(vo,bhe),h$;function xhe(e){h$=e.wasm.cwrap(wo,null,["number","number","number"])}function vhe(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t,s=n.dataIdMap.get(a.dataId).id,i=n.dataIdMap.get(r.dataId).id,o=s,l=a,u=l;l.dtype!=="float32"&&(u=Rs({backend:n,inputs:{x:a},attrs:{dtype:"float32"}}),o=n.dataIdMap.get(u.dataId).id);let p=n.makeOutput(a.shape,"float32"),d=n.dataIdMap.get(p.dataId).id;return h$(o,i,d),l.dtype!=="float32"&&n.disposeData(u.dataId),p}var whe={kernelName:wo,backendName:"wasm",setupFunc:xhe,kernelFunc:vhe},m$;function khe(e){m$=e.wasm.cwrap(ko,null,["number","number","number","number"])}function Ihe(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:p,axes:d,originalAxes:c,inputWasTransposed:h}=Ds(i,r,t),m=d;if(h){let x=t.dataIdMap.get(p.dataId).id;x!==o&&(u=p,l=x,m=T.getInnerMostAxes(m.length,u.shape.length))}T.assertAxesAreInnerMostDims("prod",m,u.shape.length);let[f,g]=T.computeOutAndReduceShapes(u.shape,m),b=w.sizeFromShape(g),y=t.makeOutput(f,u.dtype);if(w.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;m$(l,b,Qe[y.dtype],x)}if(h&&t.disposeData(p.dataId),s){let x=T.expandShapeToKeepDim(y.shape,c);y.shape=x}return y}var She={kernelName:ko,backendName:"wasm",setupFunc:khe,kernelFunc:Ihe},Nhe=e=>{let{backend:t,attrs:n}=e,{start:a,stop:r,step:s,dtype:i}=n,o=B1(a,r,s,i),l=t.makeOutput([o.length],i);return t.typedArrayFromHeap(l).set(o),l},The={kernelName:Uc,backendName:"wasm",kernelFunc:Nhe},Che=!0,Ehe=Ut(Hi,Che),_he=Xe(Io),Ahe=Xe(So),Fhe=Xe(Co),f$;function $he(e){f$=e.wasm.cwrap(To,null,["number","number","number","number","number","number","number","number","number","number"])}function Dhe(e){let{backend:t,inputs:n,attrs:a}=e,{images:r}=n,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,u]=o,[p,d,c,h]=r.shape,m=[p,l,u,h],f=t.dataIdMap.get(r.dataId),g;f.dtype!=="float32"&&(g=Rs({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(g.dataId));let b=f.id,y=t.makeOutput(m,"float32");if(w.sizeFromShape(r.shape)===0)return y;let x=t.dataIdMap.get(y.dataId).id;return f$(b,p,d,c,h,l,u,s?1:0,i?1:0,x),g!=null&&t.disposeData(g.dataId),y}var Rhe={kernelName:To,backendName:"wasm",setupFunc:$he,kernelFunc:Dhe},g$;function Mhe(e){g$=e.wasm.cwrap(Ou,null,["number","number","number","array","array","boolean"])}function Ohe(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a,o=n.makeOutput(r.shape,"float32"),l=n.dataIdMap.get(r.dataId),u;return l.dtype!=="float32"&&(u=Rs({backend:n,inputs:{x:r},attrs:{dtype:"float32"}}),l=n.dataIdMap.get(u.dataId)),g$(n.dataIdMap.get(r.dataId).id,n.dataIdMap.get(s.dataId).id,n.dataIdMap.get(o.dataId).id,new Uint8Array(new Int32Array(r.shape).buffer),new Uint8Array(new Int32Array(s.shape).buffer),i),u!=null&&n.disposeData(u.dataId),o}var Phe={kernelName:Ou,backendName:"wasm",setupFunc:Mhe,kernelFunc:Ohe},b$;function Lhe(e){b$=e.wasm.cwrap(No,null,["number","number","number","number","number","number","number","number","number","number"])}function zhe(e){let{backend:t,inputs:n,attrs:a}=e,{images:r}=n,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,u]=o,[p,d,c,h]=r.shape,m=[p,l,u,h],f=t.makeOutput(m,"float32");if(w.sizeFromShape(r.shape)===0)return f;let g=t.dataIdMap.get(r.dataId),b;g.dtype!=="float32"&&(b=Rs({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),g=t.dataIdMap.get(b.dataId));let y=g.id,x=t.dataIdMap.get(f.dataId).id;return b$(y,p,d,c,h,l,u,s?1:0,i?1:0,x),b!=null&&t.disposeData(b.dataId),f}var Whe={kernelName:No,backendName:"wasm",setupFunc:Lhe,kernelFunc:zhe},y$;function Bhe(e){y$=e.wasm.cwrap(Mu,null,["number","number","number","array","array","boolean"])}function Vhe(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a,o=n.makeOutput(r.shape,"float32"),l=n.dataIdMap.get(r.dataId),u;return l.dtype!=="float32"&&(u=Rs({backend:n,inputs:{x:r},attrs:{dtype:"float32"}}),l=n.dataIdMap.get(u.dataId)),y$(n.dataIdMap.get(r.dataId).id,n.dataIdMap.get(s.dataId).id,n.dataIdMap.get(o.dataId).id,new Uint8Array(new Int32Array(r.shape).buffer),new Uint8Array(new Int32Array(s.shape).buffer),i),u!=null&&n.disposeData(u.dataId),o}var Uhe={kernelName:Mu,backendName:"wasm",setupFunc:Bhe,kernelFunc:Vhe},x$;function Ghe(e){x$=e.wasm.cwrap(Eo,null,["number","array","number","array","number","number"])}function Hhe(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a,i=w.parseAxisParam(s,r.shape);if(r.shape.length===0)return Gf({inputs:{x:r},backend:n});let o=n.makeOutput(r.shape,r.dtype),l=n.dataIdMap.get(r.dataId).id,u=n.dataIdMap.get(o.dataId).id,p=new Uint8Array(new Int32Array(i).buffer),d=new Uint8Array(new Int32Array(r.shape).buffer);x$(l,p,i.length,d,r.shape.length,u);let c=zn({inputs:{x:o},attrs:{shape:r.shape},backend:n});return n.disposeData(o.dataId),c}var jhe={kernelName:Eo,backendName:"wasm",kernelFunc:Hhe,setupFunc:Ghe},v$;function qhe(e){v$=e.wasm.cwrap(Zu,null,["number","number","number","number","number","number","number","number","array","number","number"])}function Khe(e){let{inputs:t,backend:n,attrs:a}=e,{image:r}=t,{radians:s,fillValue:i,center:o}=a,l=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(r.dataId).id,p=n.dataIdMap.get(l.dataId).id,[d,c,h,m]=r.shape,[f,g]=T.getImageCenter(o,c,h),b=i===0,y=255,x=typeof i=="number"?[i,i,i,b?0:y]:[...i,y],v=new Uint8Array(new Int32Array(x).buffer);return v$(u,d,c,h,m,s,f,g,v,x.length,p),l}var Xhe={kernelName:Zu,backendName:"wasm",kernelFunc:Khe,setupFunc:qhe},Yhe=Xe(_o),Zhe=Xe(Ao),w$;function Jhe(e){w$=e.wasm.cwrap(Pu,null,["number","number","number","number","number","number","array","number","number"])}function Qhe(e){let{backend:t,inputs:n,attrs:a}=e,{indices:r,updates:s}=n,{shape:i}=a,o=t.makeOutput(i,s.dtype);if(w.sizeFromShape(i)===0)return o;let{sliceRank:l,numUpdates:u,sliceSize:p,strides:d,outputSize:c}=sf.calculateShapes(s,r,i),h=t.dataIdMap.get(r.dataId).id,m=t.dataIdMap.get(s.dataId).id,f=new Uint8Array(new Int32Array(d).buffer),g=t.dataIdMap.get(o.dataId).id;return w$(h,m,Qe[s.dtype],l,u,p,f,c,g),o}var eme={kernelName:Pu,backendName:"wasm",setupFunc:Jhe,kernelFunc:Qhe},k$;function tme(e){k$=e.wasm.cwrap(zu,null,["number","number","number","number","number","number","bool","number"])}function nme(e){let{inputs:t,backend:n,attrs:a}=e,{sortedSequence:r,values:s}=t,{side:i}=a;if(r.dtype!==s.dtype)throw new Error(`SearchSorted error: sorted_sequence must have the same dtype as values. Got ${r.dtype} and ${s.dtype}`);let o=n.makeOutput(s.shape,"int32");function l(u){return n.dataIdMap.get(u.dataId).id}return k$(l(r),l(s),r.shape[0],r.shape[1],s.shape[1],Qe[r.dtype],i==="left",l(o)),o}var ame={kernelName:zu,backendName:"wasm",setupFunc:tme,kernelFunc:nme},I$;function rme(e){I$=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function sme(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t,i=n.dataIdMap.get(a.dataId).id,o=n.dataIdMap.get(r.dataId).id,l=n.dataIdMap.get(s.dataId).id,u=n.makeOutput(r.shape,r.dtype),p=n.dataIdMap.get(u.dataId).id,d=a.shape.length,c=r.shape.length,h=d===0||d>1||c===1?1:w.sizeFromShape(r.shape.slice(1));return I$(i,o,l,h,p),u}var ime={kernelName:Wu,backendName:"wasm",kernelFunc:sme,setupFunc:rme},ome=Xe(Fo),S$;function lme(e){S$=e.wasm.cwrap(Mo,null,["number","number"])}function ume(e){let{backend:t,inputs:{x:n}}=e,a=t.dataIdMap.get(n.dataId).id,r=t.makeOutput(n.shape,n.dtype),s=t.dataIdMap.get(r.dataId).id;return w.sizeFromShape(r.shape)===0||S$(a,s),r}var pme={kernelName:"Sigmoid",backendName:"wasm",setupFunc:lme,kernelFunc:ume},cme=Xe(Ro),dme=Xe($o),hme=Xe(Do),mme=Xe(Oo);function fme(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,paddings:i}=a,o=w.sizeFromShape(s),l=[[0,0]];l.push(...i);for(let g=1+s.length;g0?l+1:0;if(u<0)throw new Error(T.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let p=r.shape.slice();p[0]=u;let d=n.dataIdMap.get(r.dataId).id,c=n.dataIdMap.get(s.dataId).id,h=n.dataIdMap.get(i.dataId).id,m=n.makeOutput(p,r.dtype),f=n.dataIdMap.get(m.dataId).id,g=n.makeOutput([4],"int32"),b=n.dataIdMap.get(g.dataId).id;C$(d,Qe[r.dtype],r.shape[0],c,h,f,b,t,0);let y=n.readSync(g.dataId),x;switch(y[0]){case 0:{x=T.getSparseSegmentReductionNegativeSegmentIdsErrorMessage();break}case 1:{x=T.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage();break}case 2:x=T.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(y[1],y[2]);break;case 3:x=T.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(y[1],y[2],y[3]);break;default:x=""}if(n.disposeData(g.dataId),x)throw n.disposeData(m.dataId),new Error(x);return m}function Ime(e){return _$(e,!0)}var Sme={kernelName:Hc,backendName:"wasm",setupFunc:E$,kernelFunc:Ime};function Nme(e){return _$(e,!1)}var Tme={kernelName:jc,backendName:"wasm",setupFunc:E$,kernelFunc:Nme},A$;function Cme(e){A$=e.wasm.cwrap(Hu,null,["number","number","number","number","number","number","number","number","array","number","number"])}function Eme(e){let{backend:t,inputs:n,attrs:a}=e,{sparseIndices:r,sparseValues:s,defaultValue:i}=n,{outputShape:o}=a,l=t.makeOutput(o,i.dtype);if(w.sizeFromShape(o)===0)return l;let{sliceRank:u,numUpdates:p,sliceSize:d,strides:c,outputSize:h}=T.calculateShapes(s,r,o),m=t.dataIdMap.get(r.dataId).id,f=t.dataIdMap.get(s.dataId).id,g=t.dataIdMap.get(i.dataId).id,b=new Uint8Array(new Int32Array(c).buffer),y=t.dataIdMap.get(l.dataId).id;return A$(m,f,s.shape.length,g,Qe[i.dtype],u,p,d,b,h,y),l}var _me={kernelName:Hu,backendName:"wasm",setupFunc:Cme,kernelFunc:Eme};function Ame(e){let{inputs:t,attrs:n,backend:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=n,o=w.parseAxisParam(i,r.shape)[0],l=T.prepareSplitSize(r,s,o),u=new Array(r.shape.length).fill(0),p=r.shape.slice();return l.map(d=>{let c=[...p];c[o]=d;let h=Ii({inputs:{x:r},attrs:{begin:u,size:c},backend:a});return u[o]+=d,h})}var Fme={kernelName:Uu,backendName:"wasm",kernelFunc:Ame},$me=Xe(Po),Dme=Xe(qc),Rme=!0,Mme=Ut(Wo,Rme),F$;function Ome(e){F$=e.wasm.cwrap(Is,null,["number","number","number","number"])}function Pme(e){let{backend:t,inputs:n,attrs:a}=e,{alpha:r}=a,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=t.makeOutput(s.shape,s.dtype),l=t.dataIdMap.get(o.dataId).id;return F$(i,r,Qe[s.dtype],l),o}var Lme={kernelName:Is,backendName:"wasm",setupFunc:Ome,kernelFunc:Pme},$$;function zme(e){$$=e.wasm.cwrap(ju,null,["number","array","number","array","array","array","array","array","number","number"])}function Wme(e){let{backend:t,inputs:n,attrs:a}=e,{x:r}=n,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:p,newAxisMask:d,shrinkAxisMask:c}=a,{finalShapeSparse:h,finalShape:m,isIdentity:f,sliceDim0:g,isSimpleSlice:b,begin:y,end:x,strides:v}=Kt.sliceInfo(r.shape,s,i,o,l,u,p,d,c),I;if(f)I=zn({inputs:{x:r},backend:t,attrs:{shape:m}});else if(g||b){w.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let N=Kt.computeOutShape(y,x,v),C=Ii({inputs:{x:r},backend:t,attrs:{begin:y,size:N}});I=zn({inputs:{x:C},backend:t,attrs:{shape:m}}),t.disposeData(C.dataId)}else{let N=t.makeOutput(h,"float32"),C=t.dataIdMap.get(r.dataId).id,_=new Uint8Array(new Int32Array(w.computeStrides(r.shape)).buffer),F=new Uint8Array(new Int32Array(y).buffer),D=new Uint8Array(new Int32Array(x).buffer),$=new Uint8Array(new Int32Array(v).buffer),S=new Uint8Array(new Int32Array(h).buffer),M=new Uint8Array(new Int32Array(w.computeStrides(h)).buffer),B=t.dataIdMap.get(N.dataId).id;$$(C,_,r.shape.length,F,D,$,S,M,h.length,B),I=zn({inputs:{x:N},backend:t,attrs:{shape:m}}),t.disposeData(N.dataId)}return I}var Bme={kernelName:ju,backendName:"wasm",setupFunc:zme,kernelFunc:Wme};function Vme(e){let{backend:t,inputs:n,attrs:a}=e,{data:r,dataSplits:s}=n,{separator:i,nGramWidths:o,leftPad:l,rightPad:u,padWidth:p,preserveShortSequences:d}=a,c=t.readSync(r.dataId),h=t.readSync(s.dataId),[m,f]=U1(c,h,i,o,l,u,p,d),g=t.makeOutput([m.length],"string"),b=t.dataIdMap.get(g.dataId);b.stringBytes=m;let y=t.makeOutput(s.shape,"int32");return t.typedArrayFromHeap(y).set(f),[g,y]}var Ume={kernelName:Xc,backendName:"wasm",kernelFunc:Vme};function Gme(e){let{backend:t,inputs:n,attrs:a}=e,{input:r,delimiter:s}=n,{skipEmpty:i}=a,o=t.readSync(r.dataId),l=t.readSync(s.dataId),[u,p,d]=G1(o,l[0],i),c=p.length,h=t.makeOutput([c,2],"int32");t.typedArrayFromHeap(h).set(u);let m=t.makeOutput([c],"string"),f=t.dataIdMap.get(m.dataId);f.stringBytes=p;let g=t.makeOutput([2],"int32");return t.typedArrayFromHeap(g).set(d),[h,m,g]}var Hme={kernelName:Yc,backendName:"wasm",kernelFunc:Gme};function jme(e){let{backend:t,inputs:n,attrs:a}=e,{input:r}=n,{numBuckets:s}=a,i=t.readSync(r.dataId),o=H1(i,s),l=t.makeOutput(r.shape,"int32");return t.typedArrayFromHeap(l).set(o),l}var qme={kernelName:Zc,backendName:"wasm",kernelFunc:jme},Kme=!0,Xme=Ut(Bo,Kme),D$;function Yme(e){D$=e.wasm.cwrap(Lo,null,["number","number","number","number"])}function Zme(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:p,axes:d,originalAxes:c,inputWasTransposed:h}=Ds(i,r,t),m=d;if(h){let x=t.dataIdMap.get(p.dataId).id;x!==o&&(u=p,l=x,m=T.getInnerMostAxes(m.length,u.shape.length))}T.assertAxesAreInnerMostDims("sum",m,u.shape.length);let[f,g]=T.computeOutAndReduceShapes(u.shape,m),b=w.sizeFromShape(g),y=t.makeOutput(f,u.dtype);if(w.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;D$(l,b,Qe[y.dtype],x)}if(h&&t.disposeData(p.dataId),s){let x=T.expandShapeToKeepDim(y.shape,c);y.shape=x}return y}var Jme={kernelName:Lo,backendName:"wasm",setupFunc:Yme,kernelFunc:Zme},Qme=Xe(Vo),efe=Xe(Uo),R$;function tfe(e){R$=e.wasm.cwrap(Lu,null,["number","number","number","number","number","number","array","number","number","number"])}function nfe(e){let{backend:t,inputs:n,attrs:a}=e,{tensor:r,indices:s,updates:i}=n,{}=a,o=t.makeOutput(r.shape,r.dtype);if(w.sizeFromShape(r.shape)===0)return o;let{sliceRank:l,numUpdates:u,sliceSize:p,strides:d,outputSize:c}=sf.calculateShapes(i,s,r.shape),h=t.dataIdMap.get(s.dataId).id,m=t.dataIdMap.get(i.dataId).id,f=t.dataIdMap.get(r.dataId).id,g=new Uint8Array(new Int32Array(d).buffer),b=t.dataIdMap.get(o.dataId).id;return R$(h,m,Qe[i.dtype],l,u,p,g,c,b,f),o}var afe={kernelName:Lu,backendName:"wasm",setupFunc:tfe,kernelFunc:nfe},M$;function rfe(e){M$=e.wasm.cwrap(ks,null,["number","array","number","array","number","number"])}function sfe(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,s=n.dataIdMap.get(r.dataId).id,{reps:i}=a,o=new Array(r.shape.length);for(let c=0;c{let{x:a}=e,{k:r,sorted:s}=n,i=t.dataIdMap.get(a.dataId).id,o=new Uint8Array(new Int32Array(a.shape).buffer),l=a.shape.slice();l[l.length-1]=r;let u=t.makeOutput(l,a.dtype),p=t.dataIdMap.get(u.dataId).id,d=t.makeOutput(l,"int32"),c=t.dataIdMap.get(d.dataId).id;return O$(i,o,a.shape.length,Qe[a.dtype],r,s,p,c),[u,d]},ufe={kernelName:qu,backendName:"wasm",setupFunc:ofe,kernelFunc:lfe},P$;function pfe(e){P$=e.wasm.cwrap(Ku,null,["number","number","bool","number","number","number","number","number","number","array","number","array","number","number","number","number","number"])}function cfe(e){let{backend:t,inputs:n,attrs:a}=e,{image:r,transforms:s}=n,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=a,[p,d,c,h]=r.shape,[m,f]=u!=null?u:[d,c],g=[p,m,f,h],b=new Uint8Array(new Int32Array(w.computeStrides(r.shape)).buffer),y=new Uint8Array(new Int32Array(w.computeStrides(g)).buffer),x=t.makeOutput(g,r.dtype),v=t.dataIdMap.get(x.dataId).id,I=t.dataIdMap.get(r.dataId).id,N=t.dataIdMap.get(s.dataId).id,C=i==="nearest"?1:2,_;switch(o){case"constant":_=1;break;case"reflect":_=2;break;case"wrap":_=3;break;case"nearest":_=4;break;default:_=1;break}return P$(I,N,s.shape[0]>1,p,m,f,h,c,d,b,r.shape.length-1,y,g.length-1,C,_,l,v),x}var dfe={kernelName:Ku,backendName:"wasm",setupFunc:pfe,kernelFunc:cfe};function hfe(e){let{inputs:t,attrs:n,backend:a}=e,{axis:r}=n,{x:s}=t,{outputValues:i,outputShape:o,indices:l}=q1(a.readSync(s.dataId),r,s.shape,s.dtype);return[a.makeOutput(o,s.dtype,void 0,i),a.makeOutput([l.length],"int32",void 0,l)]}var mfe={kernelName:Jc,backendName:"wasm",kernelFunc:hfe};function ffe(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r.shape[s],o=r.shape.length,l=new Array(o-1),u=0;for(let h=0;h({dataId:h,dtype:m,shape:l}))}var gfe={kernelName:Xu,backendName:"wasm",kernelFunc:ffe};function bfe(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(a).fill(0),a}var yfe={kernelName:Yu,backendName:"wasm",kernelFunc:bfe},xfe=[eue,tue,nue,aue,sue,lue,gue,xue,vue,wue,kue,Iue,Sue,Nue,Tue,_ue,Lue,$ue,Mue,Vue,Kue,Zue,Que,tpe,npe,ape,ipe,ope,ppe,hpe,gpe,xpe,kpe,Ipe,Spe,Cpe,Ape,Dpe,Ope,zpe,Vpe,Hpe,Kpe,Zpe,ece,tce,rce,ice,oce,lce,uce,pce,cce,mce,fce,bce,vce,Ice,Tce,_ce,$ce,Rce,Oce,uue,Pce,Lce,zce,Vce,Gce,jce,Xce,Zce,Yce,Qce,ede,nde,rde,ode,pde,hde,fde,yde,wde,Sde,Cde,Ade,Dde,Ode,Lde,Bde,jde,qde,Xde,Yde,Qde,nhe,she,ohe,phe,dhe,mhe,d$,yhe,whe,She,The,Ehe,_he,Ahe,Fhe,zue,Rhe,Phe,Whe,Uhe,jhe,Xhe,Yhe,Zhe,eme,ame,ime,ome,pme,cme,dme,hme,jue,Ude,mme,gme,xme,kme,Sme,Tme,_me,Fme,$me,Dme,Mme,Lme,Bme,Ume,Hme,qme,Xme,Jme,Qme,efe,afe,ife,ufe,dfe,hue,mfe,gfe,yfe];for(let e of xfe)ed(e);var vv=G();vv.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>{try{return WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11]))}catch(e){return!1}});vv.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(vv.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var TS=xs(VR()),vfe=xs(UR()),CS=xs(GR()),ES=TS.default||TS,wfe=CS.default||CS,L$=class extends Fc{constructor(e){super(),this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.initWithThreadsCount(z$),wv=this.wasm.tfjs.getThreadsCount(),this.dataIdMap=new ym(this,Ta())}write(e,t,n){let a={id:this.dataIdNextNumber++};return this.move(a,e,t,n,1),a}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=w.now();return e(),{kernelMs:w.now()-t}}move(e,t,n,a,r){let s=this.dataIdNextNumber++;if(a==="string"){let u=t;this.dataIdMap.set(e,{id:s,stringBytes:u,shape:n,dtype:a,memoryOffset:null,refCount:r});return}let i=w.sizeFromShape(n),o=i*w.bytesPerElement(a),l=this.wasm._malloc(o)>>>0;this.dataIdMap.set(e,{id:s,memoryOffset:l,shape:n,dtype:a,refCount:r}),this.wasm.tfjs.registerTensor(s,i,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,o),l)}async read(e){return this.readSync(e)}readSync(e,t,n){let{memoryOffset:a,dtype:r,shape:s,stringBytes:i}=this.dataIdMap.get(e);if(r==="string")return(t==null||t===0)&&(n==null||n>=i.length)?i:i.slice(t,n);t=t||0,n=n||w.sizeFromShape(s);let o=w.bytesPerElement(r),l=this.wasm.HEAPU8.slice(a+t*o,a+n*o);return Sfe(l.buffer,r)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n,a){let r;if(n==null)r=this.write(a!=null?a:null,e,t);else{let s=this.dataIdNextNumber++;r={id:s},this.dataIdMap.set(r,{id:s,memoryOffset:n,shape:e,dtype:t,refCount:1});let i=w.sizeFromShape(e);this.wasm.tfjs.registerTensor(s,i,n)}return{dataId:r,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let a=this.wasm.HEAPU8.buffer,{memoryOffset:r}=this.dataIdMap.get(n),s=w.sizeFromShape(e);switch(t){case"float32":return new Float32Array(a,r,s);case"int32":return new Int32Array(a,r,s);case"bool":return new Uint8Array(a,r,s);default:throw new Error(`Unknown dtype ${t}`)}}};function kfe(e){return(t,n)=>(w.fetch(e,{credentials:"same-origin"}).then(a=>{a.ok||t.env.a(`failed to load wasm binary file at '${e}'`),a.arrayBuffer().then(r=>{WebAssembly.instantiate(r,t).then(s=>{n(s.instance,s.module)})})}),{})}function _S(e,t,n){if(gm!=null)return gm;let a="tfjs-backend-wasm.wasm";return e&&t?a="tfjs-backend-wasm-threaded-simd.wasm":e&&(a="tfjs-backend-wasm-simd.wasm"),cc!=null&&cc[a]!=null?cc[a]:n+a}async function Ife(){let[e,t]=await Promise.all([G().getAsync("WASM_HAS_SIMD_SUPPORT"),G().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,a)=>{let r={};r.locateFile=(o,l)=>{if(o.endsWith(".worker.js")){let u=vfe.wasmWorkerContents.replace(/\n/g,"\\n"),p=new Blob([u],{type:"application/javascript"});return URL.createObjectURL(p)}return o.endsWith(".wasm")?_S(e,t,lc!=null?lc:l):l+o},mk&&(r.instantiateWasm=kfe(_S(e,t,lc!=null?lc:"")));let s=!1;r.onAbort=()=>{s||dc||(dc=!0,a({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"}))};let i;t&&e&&gm==null?(r.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+ES.toString()],{type:"text/javascript"}),i=ES(r)):i=wfe(r),i.then(o=>{s=!0,dc=!1;let l=null;o.tfjs={init:o.cwrap("init",null,[]),initWithThreadsCount:o.cwrap("init_with_threads_count",null,["number"]),getThreadsCount:o.cwrap("get_threads_count","number",[]),registerTensor:o.cwrap("register_tensor",null,["number","number","number"]),disposeData:o.cwrap("dispose_data",l,["number"]),dispose:o.cwrap("dispose",l,[])},n({wasm:o})}).catch(a)})}function Sfe(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var Nfe=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],gm=null,lc=null,cc={},dc=!1,mk=!1;function Tfe(e,t=!1){if($v("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),dc)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");gm=e,mk=t}function Cfe(e,t=!1){if(dc)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")lc=e;else{cc=e;let n=Nfe.filter(a=>cc[a]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}mk=t}var z$=-1,wv=-1;function Efe(e){z$=e}function _fe(){if(wv===-1)throw new Error("WASM backend not initialized.");return wv}var Afe="4.22.0",Ffe=2;Om("wasm",async()=>{let{wasm:e}=await Ife();return new L$(e)},Ffe);var AS="4.22.0",$fe="4.22.0",Dfe="4.22.0",Rfe="4.22.0",Mfe="4.22.0",Ofe={tfjs:AS,"tfjs-core":AS,"tfjs-converter":$fe,"tfjs-backend-cpu":Dfe,"tfjs-backend-webgl":Rfe,"tfjs-backend-wasm":Mfe};var iD={};ax(iD,{AnchorPosition:()=>Ik,DrawBox:()=>Od,DrawBoxOptions:()=>Xf,DrawFaceLandmarks:()=>og,DrawFaceLandmarksOptions:()=>ig,DrawTextField:()=>sl,DrawTextFieldOptions:()=>Ip,drawContour:()=>Pr,drawDetections:()=>Ufe,drawFaceExpressions:()=>Gfe,drawFaceLandmarks:()=>jfe});function Pr(e,t,n=!1){if(e.beginPath(),t.slice(1).forEach(({x:a,y:r},s)=>{let i=t[s];e.moveTo(i.x,i.y),e.lineTo(a,r)}),n){let a=t[t.length-1],r=t[0];if(!a||!r)return;e.moveTo(a.x,a.y),e.lineTo(r.x,r.y)}e.stroke()}var W$={};ax(W$,{computeReshapedDimensions:()=>bk,getCenterPoint:()=>al,isDimensions:()=>jf,isEven:()=>Hf,isFloat:()=>gk,isTensor:()=>tl,isTensor1D:()=>Pfe,isTensor2D:()=>fk,isTensor3D:()=>Lr,isTensor4D:()=>wa,isValidNumber:()=>Xa,isValidProbablitiy:()=>gp,range:()=>gr,round:()=>nl});var aa=class e{constructor(t,n){if(!Xa(t)||!Xa(n))throw new Error(`Dimensions.constructor - expected width and height to be valid numbers, instead have ${JSON.stringify({width:t,height:n})}`);this._width=t,this._height=n}get width(){return this._width}get height(){return this._height}reverse(){return new e(1/this.width,1/this.height)}};function tl(e,t){return e instanceof Ce&&e.shape.length===t}function Pfe(e){return tl(e,1)}function fk(e){return tl(e,2)}function Lr(e){return tl(e,3)}function wa(e){return tl(e,4)}function gk(e){return e%1!==0}function Hf(e){return e%2===0}function nl(e,t=2){let n=10**t;return Math.floor(e*n)/n}function jf(e){return e&&e.width&&e.height}function bk({width:e,height:t},n){let a=n/Math.max(t,e);return new aa(Math.round(e*a),Math.round(t*a))}function al(e){return e.reduce((t,n)=>t.add(n),new He(0,0)).div(new He(e.length,e.length))}function gr(e,t,n){return Array(e).fill(0).map((a,r)=>t+r*n)}function Xa(e){return!!e&&e!==1/0&&e!==-1/0&&!Number.isNaN(e)||e===0}function gp(e){return Xa(e)&&e>=0&&e<=1}var He=class e{constructor(t,n){this._x=t,this._y=n}get x(){return this._x}get y(){return this._y}add(t){return new e(this.x+t.x,this.y+t.y)}sub(t){return new e(this.x-t.x,this.y-t.y)}mul(t){return new e(this.x*t.x,this.y*t.y)}div(t){return new e(this.x/t.x,this.y/t.y)}abs(){return new e(Math.abs(this.x),Math.abs(this.y))}magnitude(){return Math.sqrt(this.x**2+this.y**2)}floor(){return new e(Math.floor(this.x),Math.floor(this.y))}};var mn=class e{static isRect(t){return!!t&&[t.x,t.y,t.width,t.height].every(Xa)}static assertIsValidBox(t,n,a=!1){if(!e.isRect(t))throw new Error(`${n} - invalid box: ${JSON.stringify(t)}, expected object with properties x, y, width, height`);if(!a&&(t.width<0||t.height<0))throw new Error(`${n} - width (${t.width}) and height (${t.height}) must be positive numbers`)}constructor(t,n=!0){let a=t||{},r=[a.left,a.top,a.right,a.bottom].every(Xa),s=[a.x,a.y,a.width,a.height].every(Xa);if(!s&&!r)throw new Error(`Box.constructor - expected box to be IBoundingBox | IRect, instead have ${JSON.stringify(a)}`);let[i,o,l,u]=s?[a.x,a.y,a.width,a.height]:[a.left,a.top,a.right-a.left,a.bottom-a.top];e.assertIsValidBox({x:i,y:o,width:l,height:u},"Box.constructor",n),this._x=i,this._y=o,this._width=l,this._height=u}get x(){return this._x}get y(){return this._y}get width(){return this._width}get height(){return this._height}get left(){return this.x}get top(){return this.y}get right(){return this.x+this.width}get bottom(){return this.y+this.height}get area(){return this.width*this.height}get topLeft(){return new He(this.left,this.top)}get topRight(){return new He(this.right,this.top)}get bottomLeft(){return new He(this.left,this.bottom)}get bottomRight(){return new He(this.right,this.bottom)}round(){let[t,n,a,r]=[this.x,this.y,this.width,this.height].map(s=>Math.round(s));return new e({x:t,y:n,width:a,height:r})}floor(){let[t,n,a,r]=[this.x,this.y,this.width,this.height].map(s=>Math.floor(s));return new e({x:t,y:n,width:a,height:r})}toSquare(){let{x:t,y:n,width:a,height:r}=this,s=Math.abs(a-r);return an&&(o=-d+n+a,d=n),c>t&&(l=-c+t+r,c=t),u<1&&(l=2-u,u=1),p<1&&(l=2-p,p=1),{dy:i,edy:l,dx:s,edx:o,y:p,ey:c,x:u,ex:d,w:a,h:r}}calibrate(t){return new e({left:this.left+t.left*this.width,top:this.top+t.top*this.height,right:this.right+t.right*this.width,bottom:this.bottom+t.bottom*this.height}).toSquare().round()}};var bp=class extends mn{constructor(t,n,a,r,s=!1){super({left:t,top:n,right:a,bottom:r},s)}};var yp=class e{constructor(t,n,a,r,s){this._imageDims=new aa(s.width,s.height),this._score=t,this._classScore=n,this._className=a,this._box=new mn(r).rescale(this._imageDims)}get score(){return this._score}get classScore(){return this._classScore}get className(){return this._className}get box(){return this._box}get imageDims(){return this._imageDims}get imageWidth(){return this.imageDims.width}get imageHeight(){return this.imageDims.height}get relativeBox(){return new mn(this._box).rescale(this.imageDims.reverse())}forSize(t,n){return new e(this.score,this.classScore,this.className,this.relativeBox,{width:t,height:n})}};var Ft=class e extends yp{constructor(t,n,a){super(t,t,"",n,a)}forSize(t,n){let{score:a,relativeBox:r,imageDims:s}=super.forSize(t,n);return new e(a,r,s)}};function B$(e,t,n=!0){let a=Math.max(0,Math.min(e.right,t.right)-Math.max(e.left,t.left)),r=Math.max(0,Math.min(e.bottom,t.bottom)-Math.max(e.top,t.top)),s=a*r;return n?s/(e.area+t.area-s):s/Math.min(e.area,t.area)}function V$(e){let t=e.map(o=>o.x),n=e.map(o=>o.y),a=t.reduce((o,l)=>lloo({score:i,boxIndex:o})).sort((i,o)=>i.score-o.score).map(i=>i.boxIndex),s=[];for(;r.length>0;){let i=r.pop();s.push(i);let o=r,l=[];for(let u=0;ul[p]<=n)}return s}function br(e,t){return O(()=>{let[n,a,r]=t,s=yn([...e.shape.slice(0,3),1],n,"float32"),i=yn([...e.shape.slice(0,3),1],a,"float32"),o=yn([...e.shape.slice(0,3),1],r,"float32"),l=et([s,i,o],3);return pe(e,l)})}function G$(e,t=!1){return O(()=>{let[n,a]=e.shape.slice(1);if(n===a)return e;let r=Math.abs(n-a),s=Math.round(r*(t?.5:1)),i=n>a?2:1,o=c=>{let h=e.shape.slice();return h[i]=c,yn(h,0,"float32")},l=o(s),u=r-l.shape[i],d=[t&&u?o(u):null,e,l].filter(c=>!!c).map(c=>re(c,"float32"));return et(d,i)})}function y0e(e){let t=e.slice();for(let n=t.length-1;n>0;n--){let a=Math.floor(Math.random()*(n+1)),r=t[n];t[n]=t[a],t[a]=r}return t}function qf(e){return 1/(1+Math.exp(-e))}function v0e(e){return Math.log(e/(1-e))}var xp=class extends mn{constructor(t,n,a,r,s=!1){super({x:t,y:n,width:a,height:r},s)}};var Lfe=.5,zfe=.43,Wfe=.45,ka=class{constructor(t,n,a=new He(0,0)){let{width:r,height:s}=n;this._imgDims=new aa(r,s),this._shift=a,this._positions=t.map(i=>i.mul(new He(r,s)).add(a))}get shift(){return new He(this._shift.x,this._shift.y)}get imageWidth(){return this._imgDims.width}get imageHeight(){return this._imgDims.height}get positions(){return this._positions}get relativePositions(){return this._positions.map(t=>t.sub(this._shift).div(new He(this.imageWidth,this.imageHeight)))}forSize(t,n){return new this.constructor(this.relativePositions,{width:t,height:n})}shiftBy(t,n){return new this.constructor(this.relativePositions,this._imgDims,new He(t,n))}shiftByPoint(t){return this.shiftBy(t.x,t.y)}align(t,n={}){if(t){let s=t instanceof Ft?t.box.floor():new mn(t);return this.shiftBy(s.x,s.y).align(null,n)}let{useDlibAlignment:a,minBoxPadding:r}={useDlibAlignment:!1,minBoxPadding:.2,...n};return a?this.alignDlib():this.alignMinBbox(r)}alignDlib(){let t=this.getRefPointsForAlignment(),[n,a,r]=t,s=d=>r.sub(d).magnitude(),i=(s(n)+s(a))/2,o=Math.floor(i/Wfe),l=al(t),u=Math.floor(Math.max(0,l.x-Lfe*o)),p=Math.floor(Math.max(0,l.y-zfe*o));return new xp(u,p,Math.min(o,this.imageWidth+u),Math.min(o,this.imageHeight+p))}alignMinBbox(t){let n=V$(this.positions);return n.pad(n.width*t,n.height*t)}getRefPointsForAlignment(){throw new Error("getRefPointsForAlignment not implemented by base class")}};var H$=class extends ka{getRefPointsForAlignment(){let t=this.positions;return[t[0],t[1],al([t[3],t[4]])]}};var vp=class extends ka{getJawOutline(){return this.positions.slice(0,17)}getLeftEyeBrow(){return this.positions.slice(17,22)}getRightEyeBrow(){return this.positions.slice(22,27)}getNose(){return this.positions.slice(27,36)}getLeftEye(){return this.positions.slice(36,42)}getRightEye(){return this.positions.slice(42,48)}getMouth(){return this.positions.slice(48,68)}getRefPointsForAlignment(){return[this.getLeftEye(),this.getRightEye(),this.getMouth()].map(al)}};var Dd=class{constructor(t,n){this._label=t,this._distance=n}get label(){return this._label}get distance(){return this._distance}toString(t=!0){return`${this.label}${t?` (${nl(this.distance)})`:""}`}};var Rd=class extends mn{static assertIsValidLabeledBox(t,n){if(mn.assertIsValidBox(t,n),!Xa(t.label))throw new Error(`${n} - expected property label (${t.label}) to be a number`)}constructor(t,n){super(t),this._label=n}get label(){return this._label}};var rl=class e{constructor(t,n){if(typeof t!="string")throw new Error("LabeledFaceDescriptors - constructor expected label to be a string");if(!Array.isArray(n)||n.some(a=>!(a instanceof Float32Array)))throw new Error("LabeledFaceDescriptors - constructor expected descriptors to be an array of Float32Array");this._label=t,this._descriptors=n}get label(){return this._label}get descriptors(){return this._descriptors}toJSON(){return{label:this.label,descriptors:this.descriptors.map(t=>Array.from(t))}}static fromJSON(t){let n=t.descriptors.map(a=>new Float32Array(a));return new e(t.label,n)}};var j$=class extends Rd{static assertIsValidPredictedBox(t,n){if(Rd.assertIsValidLabeledBox(t,n),!gp(t.score)||!gp(t.classScore))throw new Error(`${n} - expected properties score (${t.score}) and (${t.classScore}) to be a number between [0, 1]`)}constructor(t,n,a,r){super(t,n),this._score=a,this._classScore=r}get score(){return this._score}get classScore(){return this._classScore}};function zr(e){return e.detection instanceof Ft}function wp(e,t){return{...e,...{detection:t}}}function yk(){let e=window.fetch;if(!e)throw new Error("fetch - missing fetch implementation for browser environment");return{Canvas:HTMLCanvasElement,CanvasRenderingContext2D,Image:HTMLImageElement,ImageData,Video:HTMLVideoElement,createCanvasElement:()=>document.createElement("canvas"),createImageElement:()=>document.createElement("img"),createVideoElement:()=>document.createElement("video"),fetch:e,readFile:()=>{throw new Error("readFile - filesystem not available for browser environment")}}}function Md(){return typeof global=="object"&&typeof process!="undefined"&&process.versions!=null&&process.versions.node!=null}function Kf(e){let t="";if(!e&&Md())try{e=wR("fs")}catch(a){t=a.toString()}return{readFile:e?a=>new Promise((r,s)=>{e.readFile(a,(i,o)=>i?s(i):r(o))}):()=>{throw new Error(`readFile - failed to require fs in nodejs environment with error: ${t}`)}}}function xk(){let e=global.Canvas||global.HTMLCanvasElement,t=global.Image||global.HTMLImageElement,n=global.Video||global.HTMLVideoElement,a=()=>{if(e)return new e;throw new Error("createCanvasElement - missing Canvas implementation for nodejs environment")},r=()=>{if(t)return new t;throw new Error("createImageElement - missing Image implementation for nodejs environment")},s=()=>{if(n)return new n;throw new Error("createVideoElement - missing Video implementation for nodejs environment")},i=global.fetch,o=Kf();return{Canvas:e||class{},CanvasRenderingContext2D:global.CanvasRenderingContext2D||class{},Image:t||class{},ImageData:global.ImageData||class{},Video:global.HTMLVideoElement||class{},createCanvasElement:a,createImageElement:r,createVideoElement:s,fetch:i,...o}}function vk(){return typeof window=="object"&&typeof document!="undefined"&&typeof HTMLImageElement!="undefined"&&typeof HTMLCanvasElement!="undefined"&&typeof HTMLVideoElement!="undefined"&&typeof ImageData!="undefined"&&typeof CanvasRenderingContext2D!="undefined"}var ln;function Bfe(){if(!ln)throw new Error("getEnv - environment is not defined, check isNodejs() and isBrowser()");return ln}function wk(e){ln=e}function kk(){return vk()?wk(yk()):Md()?wk(xk()):null}function Vfe(e){if(ln||kk(),!ln)throw new Error("monkeyPatch - environment is not defined, check isNodejs() and isBrowser()");let{Canvas:t=ln.Canvas,Image:n=ln.Image}=e;ln.Canvas=t,ln.Image=n,ln.createCanvasElement=e.createCanvasElement||(()=>new t),ln.createImageElement=e.createImageElement||(()=>new n),ln.ImageData=e.ImageData||ln.ImageData,ln.Video=e.Video||ln.Video,ln.fetch=e.fetch||ln.fetch,ln.readFile=e.readFile||ln.readFile}var at={getEnv:Bfe,setEnv:wk,initialize:kk,createBrowserEnv:yk,createFileSystem:Kf,createNodejsEnv:xk,monkeyPatch:Vfe,isBrowser:vk,isNodejs:Md};kk();function kp(e){return!at.isNodejs()&&typeof e=="string"?document.getElementById(e):e}function ra(e){let{Canvas:t,CanvasRenderingContext2D:n}=at.getEnv();if(e instanceof n)return e;let a=kp(e);if(!(a instanceof t))throw new Error("resolveContext2d - expected canvas to be of instance of Canvas");let r=a.getContext("2d",{willReadFrequently:!0});if(!r)throw new Error("resolveContext2d - canvas 2d context is null");return r}var Ik=(r=>(r.TOP_LEFT="TOP_LEFT",r.TOP_RIGHT="TOP_RIGHT",r.BOTTOM_LEFT="BOTTOM_LEFT",r.BOTTOM_RIGHT="BOTTOM_RIGHT",r))(Ik||{}),Ip=class{constructor(t={}){let{anchorPosition:n,backgroundColor:a,fontColor:r,fontSize:s,fontStyle:i,padding:o}=t;this.anchorPosition=n||"TOP_LEFT",this.backgroundColor=a||"rgba(0, 0, 0, 0.5)",this.fontColor=r||"rgba(255, 255, 255, 1)",this.fontSize=s||14,this.fontStyle=i||"Georgia",this.padding=o||4}},sl=class e{constructor(t,n,a={}){this.text=typeof t=="string"?[t]:t instanceof e?t.text:t,this.anchor=n,this.options=new Ip(a)}measureWidth(t){let{padding:n}=this.options;return this.text.map(a=>t.measureText(a).width).reduce((a,r)=>a{let m=l+d.x,f=l+d.y+(h+1)*i;a.fillText(c,m,f)})}};var Xf=class{constructor(t={}){let{boxColor:n,lineWidth:a,label:r,drawLabelOptions:s}=t;this.boxColor=n||"rgba(0, 0, 255, 1)",this.lineWidth=a||2,this.label=r;let i={anchorPosition:"BOTTOM_LEFT",backgroundColor:this.boxColor};this.drawLabelOptions=new Ip({...i,...s})}},Od=class{constructor(t,n={}){this.box=new mn(t),this.options=new Xf(n)}draw(t){let n=ra(t),{boxColor:a,lineWidth:r}=this.options,{x:s,y:i,width:o,height:l}=this.box;n.strokeStyle=a,n.lineWidth=r,n.strokeRect(s,i,o,l);let{label:u}=this.options;u&&new sl([u],{x:s-r/2,y:i},this.options.drawLabelOptions).draw(t)}};function Ufe(e,t){(Array.isArray(t)?t:[t]).forEach(a=>{let r=a instanceof Ft?a.score:zr(a)?a.detection.score:void 0,s=a instanceof Ft?a.box:zr(a)?a.detection.box:new mn(a),i=r?`${nl(r)}`:void 0;new Od(s,{label:i}).draw(e)})}function Yf(e){let{Image:t,Video:n}=at.getEnv();return e instanceof t&&e.complete||e instanceof n&&e.readyState>=3}function q$(e){return new Promise((t,n)=>{if(e instanceof at.getEnv().Canvas||Yf(e)){t(null);return}function a(s){s.currentTarget&&(s.currentTarget.removeEventListener("load",r),s.currentTarget.removeEventListener("error",a),n(s))}function r(s){s.currentTarget&&(s.currentTarget.removeEventListener("load",r),s.currentTarget.removeEventListener("error",a),t(s))}e.addEventListener("load",r),e.addEventListener("error",a)})}function K$(e){return new Promise((t,n)=>{e instanceof Blob||n(new Error("bufferToImage - expected buf to be of type: Blob"));let a=new FileReader;a.onload=()=>{typeof a.result!="string"&&n(new Error("bufferToImage - expected reader.result to be a string, in onload"));let r=at.getEnv().createImageElement();r.onload=()=>t(r),r.onerror=n,r.src=a.result},a.onerror=n,a.readAsDataURL(e)})}function Sp(e){let{Image:t,Video:n}=at.getEnv();return e instanceof t?new aa(e.naturalWidth,e.naturalHeight):e instanceof n?new aa(e.videoWidth,e.videoHeight):new aa(e.width,e.height)}function Np({width:e,height:t}){let{createCanvasElement:n}=at.getEnv(),a=n();return a.width=e,a.height=t,a}function Zf(e,t){let{ImageData:n}=at.getEnv();if(!(e instanceof n)&&!Yf(e))throw new Error("createCanvasFromMedia - media has not finished loading yet");let{width:a,height:r}=t||Sp(e),s=Np({width:a,height:r});return e instanceof n?ra(s).putImageData(e,0,0):ra(s).drawImage(e,0,0,a,r),s}async function X$(e,t){let n=t||at.getEnv().createCanvasElement(),[a,r,s]=e.shape.slice(wa(e)?1:0),i=O(()=>e.as3D(a,r,s).toInt());return await qo.toPixels(i,n),i.dispose(),n}function Sk(e){let{Image:t,Canvas:n,Video:a}=at.getEnv();return e instanceof t||e instanceof n||e instanceof a}function Y$(e,t,n=!1){let{Image:a,Canvas:r}=at.getEnv();if(!(e instanceof a||e instanceof r))throw new Error("imageToSquare - expected arg0 to be HTMLImageElement | HTMLCanvasElement");if(t<=0)return Np({width:1,height:1});let s=Sp(e),i=t/Math.max(s.height,s.width),o=i*s.width,l=i*s.height,u=Np({width:t,height:t}),p=e instanceof r?e:Zf(e),d=Math.abs(o-l)/2,c=n&&o0&&p.height>0&&ra(u).drawImage(p,c,h,o,l),u}var Wr=class{constructor(t,n=!1){this._imageTensors=[];this._canvases=[];this._treatAsBatchInput=!1;this._inputDimensions=[];this._inputSize=0;if(!Array.isArray(t))throw new Error(`NetInput.constructor - expected inputs to be an Array of TResolvedNetInput or to be instanceof tf.Tensor4D, instead have ${t}`);this._treatAsBatchInput=n,this._batchSize=t.length,t.forEach((a,r)=>{if(Lr(a)){this._imageTensors[r]=a,this._inputDimensions[r]=a.shape;return}if(wa(a)){let i=a.shape[0];if(i!==1)throw new Error(`NetInput - tf.Tensor4D with batchSize ${i} passed, but not supported in input array`);this._imageTensors[r]=a,this._inputDimensions[r]=a.shape.slice(1);return}let s=a instanceof at.getEnv().Canvas?a:Zf(a);this._canvases[r]=s,this._inputDimensions[r]=[s.height,s.width,3]})}get imageTensors(){return this._imageTensors}get canvases(){return this._canvases}get isBatchInput(){return this.batchSize>1||this._treatAsBatchInput}get batchSize(){return this._batchSize}get inputDimensions(){return this._inputDimensions}get inputSize(){return this._inputSize}get reshapedInputDimensions(){return gr(this.batchSize,0,1).map((t,n)=>this.getReshapedInputDimensions(n))}getInput(t){return this.canvases[t]||this.imageTensors[t]}getInputDimensions(t){return this._inputDimensions[t]}getInputHeight(t){return this._inputDimensions[t][0]}getInputWidth(t){return this._inputDimensions[t][1]}getReshapedInputDimensions(t){if(typeof this.inputSize!="number")throw new Error("getReshapedInputDimensions - inputSize not set, toBatchTensor has not been called yet");let n=this.getInputWidth(t),a=this.getInputHeight(t);return bk({width:n,height:a},this.inputSize)}toBatchTensor(t,n=!0){return this._inputSize=t,O(()=>{let a=gr(this.batchSize,0,1).map(s=>{let i=this.getInput(s);if(i instanceof Ce){let o=wa(i)?i:Gt(i);return o=G$(o,n),(o.shape[1]!==t||o.shape[2]!==t)&&(o=Zn.resizeBilinear(o,[t,t],!1,!1)),o.as3D(t,t,3)}if(i instanceof at.getEnv().Canvas)return qo.fromPixels(Y$(i,t,n));throw new Error(`toBatchTensor - at batchIdx ${s}, expected input to be instanceof tf.Tensor or instanceof HTMLCanvasElement, instead have ${i}`)});return At(a.map(s=>re(s,"float32"))).as4D(this.batchSize,t,t,3)})}};async function vt(e){if(e instanceof Wr)return e;let t=Array.isArray(e)?e:[e];if(!t.length)throw new Error("toNetInput - empty array passed as input");let n=r=>Array.isArray(e)?` at input index ${r}:`:"",a=t.map(kp);return a.forEach((r,s)=>{if(!Sk(r)&&!Lr(r)&&!wa(r))throw typeof t[s]=="string"?new Error(`toNetInput -${n(s)} string passed, but could not resolve HTMLElement for element id ${t[s]}`):new Error(`toNetInput -${n(s)} expected media to be of type HTMLImageElement | HTMLVideoElement | HTMLCanvasElement | tf.Tensor3D, or to be an element id`);if(wa(r)){let i=r.shape[0];if(i!==1)throw new Error(`toNetInput -${n(s)} tf.Tensor4D with batchSize ${i} passed, but not supported in input array`)}}),await Promise.all(a.map(r=>Sk(r)&&q$(r))),new Wr(a,Array.isArray(e))}async function Pd(e,t){let{Canvas:n}=at.getEnv(),a=e;if(!(e instanceof n)){let i=await vt(e);if(i.batchSize>1)throw new Error("extractFaces - batchSize > 1 not supported");let o=i.getInput(0);a=o instanceof n?o:await X$(o)}let r=ra(a);return t.map(i=>i instanceof Ft?i.forSize(a.width,a.height).box.floor():i).map(i=>i.clipAtImageBorders(a.width,a.height)).map(({x:i,y:o,width:l,height:u})=>{let p=Np({width:l,height:u});return l>0&&u>0&&ra(p).putImageData(r.getImageData(i,o,l,u),0,0),p})}async function Ld(e,t){if(!Lr(e)&&!wa(e))throw new Error("extractFaceTensors - expected image tensor to be 3D or 4D");if(wa(e)&&e.shape[0]>1)throw new Error("extractFaceTensors - batchSize > 1 not supported");return O(()=>{let[n,a,r]=e.shape.slice(wa(e)?1:0);return t.map(o=>o instanceof Ft?o.forSize(a,n).box:o).map(o=>o.clipAtImageBorders(a,n)).filter(o=>o.width>0&&o.height>0).map(({x:o,y:l,width:u,height:p})=>Ho(e.as3D(n,a,r),[l,o,0],[p,u,r]))})}async function Ms(e,t){let{fetch:n}=at.getEnv(),a=await n(e,t);if(!(a.status<400))throw new Error(`failed to fetch: (${a.status}) ${a.statusText}, from url: ${a.url}`);return a}async function sIe(e){let t=await Ms(e),n=await t.blob();if(!n.type.startsWith("image/"))throw new Error(`fetchImage - expected blob type to be of type image/*, instead have: ${n.type}, for url: ${t.url}`);return K$(n)}async function Z$(e){return(await Ms(e)).json()}async function pIe(e){return new Float32Array(await(await Ms(e)).arrayBuffer())}function J$(e){return new Promise((t,n)=>{e instanceof Blob||n(new Error("bufferToVideo - expected buf to be of type: Blob"));let a=at.getEnv().createVideoElement();a.oncanplay=()=>t(a),a.onerror=n,a.playsInline=!0,a.muted=!0,a.src=URL.createObjectURL(e),a.play()})}async function gIe(e){let t=await Ms(e),n=await t.blob();if(!n.type.startsWith("video/"))throw new Error(`fetchVideo - expected blob type to be of type video/*, instead have: ${n.type}, for url: ${t.url}`);return J$(n)}function Jf(e,t){let n=`${t}-weights_manifest.json`;if(!e)return{modelBaseUri:"",manifestUri:n};if(e==="/")return{modelBaseUri:"/",manifestUri:`/${n}`};let a=e.startsWith("http://")?"http://":e.startsWith("https://")?"https://":"";e=e.replace(a,"");let r=e.split("/").filter(o=>o),s=e.endsWith(".json")?r[r.length-1]:n,i=a+(e.endsWith(".json")?r.slice(0,r.length-1):r).join("/");return i=e.startsWith("/")?`/${i}`:i,{modelBaseUri:i,manifestUri:i==="/"?`/${s}`:`${i}/${s}`}}async function Q$(e,t){let{manifestUri:n,modelBaseUri:a}=Jf(e,t),r=await Z$(n);return jt.loadWeights(r,a)}function IIe(e,t,n=!1){let{width:a,height:r}=n?Sp(t):t;return e.width=a,e.height=r,{width:a,height:r}}var fn=class{constructor(t){this._params=void 0;this._paramMappings=[];this._name=t}get params(){return this._params}get paramMappings(){return this._paramMappings}get isLoaded(){return!!this.params}getParamFromPath(t){let{obj:n,objProp:a}=this.traversePropertyPath(t);return n[a]}reassignParamFromPath(t,n){let{obj:a,objProp:r}=this.traversePropertyPath(t);a[r].dispose(),a[r]=n}getParamList(){return this._paramMappings.map(({paramPath:t})=>({path:t,tensor:this.getParamFromPath(t)}))}getTrainableParams(){return this.getParamList().filter(t=>t.tensor instanceof os)}getFrozenParams(){return this.getParamList().filter(t=>!(t.tensor instanceof os))}variable(){this.getFrozenParams().forEach(({path:t,tensor:n})=>{this.reassignParamFromPath(t,n.variable())})}freeze(){this.getTrainableParams().forEach(({path:t,tensor:n})=>{let a=bn(n.dataSync());n.dispose(),this.reassignParamFromPath(t,a)})}dispose(t=!0){this.getParamList().forEach(n=>{if(t&&n.tensor.isDisposed)throw new Error(`param tensor has already been disposed for path ${n.path}`);n.tensor.dispose()}),this._params=void 0}serializeParams(){return new Float32Array(this.getParamList().map(({tensor:t})=>Array.from(t.dataSync())).reduce((t,n)=>t.concat(n)))}async load(t){if(t instanceof Float32Array){this.extractWeights(t);return}await this.loadFromUri(t)}async loadFromUri(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromUri - expected model uri`);let n=await Q$(t,this.getDefaultModelName());this.loadFromWeightMap(n)}async loadFromDisk(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromDisk - expected model file path`);let{readFile:n}=at.getEnv(),{manifestUri:a,modelBaseUri:r}=Jf(t,this.getDefaultModelName()),s=u=>Promise.all(u.map(p=>n(p).then(d=>typeof d=="string"?Buffer.from(d):d.buffer))),i=jt.weightsLoaderFactory(s),o=JSON.parse((await n(a)).toString()),l=await i(o,r);this.loadFromWeightMap(l)}loadFromWeightMap(t){let{paramMappings:n,params:a}=this.extractParamsFromWeightMap(t);this._paramMappings=n,this._params=a}extractWeights(t){let{paramMappings:n,params:a}=this.extractParams(t);this._paramMappings=n,this._params=a}traversePropertyPath(t){if(!this.params)throw new Error("traversePropertyPath - model has no loaded params");let n=t.split("/").reduce((s,i)=>{if(!s.nextObj.hasOwnProperty(i))throw new Error(`traversePropertyPath - object does not have property ${i}, for path ${t}`);return{obj:s.nextObj,objProp:i,nextObj:s.nextObj[i]}},{nextObj:this.params}),{obj:a,objProp:r}=n;if(!a||!r||!(a[r]instanceof Ce))throw new Error(`traversePropertyPath - parameter is not a tensor, for path ${t}`);return{obj:a,objProp:r}}};function Un(e,t,n){return O(()=>{let a=_s(e,t.depthwise_filter,t.pointwise_filter,n,"same");return a=X(a,t.bias),a})}function Qf(e,t,n=!1){return O(()=>{let a=Ke(n?X($t(e,t.conv0.filters,[2,2],"same"),t.conv0.bias):Un(e,t.conv0,[2,2])),r=Un(a,t.conv1,[1,1]),s=Ke(X(a,r)),i=Un(s,t.conv2,[1,1]);return Ke(X(a,X(r,i)))})}function zd(e,t,n=!1,a=!0){return O(()=>{let r=Ke(n?X($t(e,t.conv0.filters,a?[2,2]:[1,1],"same"),t.conv0.bias):Un(e,t.conv0,a?[2,2]:[1,1])),s=Un(r,t.conv1,[1,1]),i=Ke(X(r,s)),o=Un(i,t.conv2,[1,1]),l=Ke(X(r,X(s,o))),u=Un(l,t.conv3,[1,1]);return Ke(X(r,X(s,X(o,u))))})}function il(e,t,n="same",a=!1){return O(()=>{let r=X($t(e,t.filters,[1,1],n),t.bias);return a?Ke(r):r})}function _n(e,t){Object.keys(e).forEach(n=>{t.some(a=>a.originalPath===n)||e[n].dispose()})}function Tp(e,t){return(n,a,r,s)=>{let i=Fa(e(n*a*r*r),[r,r,n,a]),o=je(e(a));return t.push({paramPath:`${s}/filters`},{paramPath:`${s}/bias`}),{filters:i,bias:o}}}function eg(e,t){return(n,a,r)=>{let s=Ea(e(n*a),[n,a]),i=je(e(a));return t.push({paramPath:`${r}/weights`},{paramPath:`${r}/bias`}),{weights:s,bias:i}}}var Wd=class{constructor(t,n,a){this.depthwise_filter=t;this.pointwise_filter=n;this.bias=a}};function Cp(e,t){return(n,a,r)=>{let s=Fa(e(9*n),[3,3,n,1]),i=Fa(e(n*a),[1,1,n,a]),o=je(e(a));return t.push({paramPath:`${r}/depthwise_filter`},{paramPath:`${r}/pointwise_filter`},{paramPath:`${r}/bias`}),new Wd(s,i,o)}}function Ep(e){return t=>{let n=e(`${t}/depthwise_filter`,4),a=e(`${t}/pointwise_filter`,4),r=e(`${t}/bias`,1);return new Wd(n,a,r)}}function sa(e,t){return(n,a,r)=>{let s=e[n];if(!tl(s,a))throw new Error(`expected weightMap[${n}] to be a Tensor${a}D, instead have ${s}`);return t.push({originalPath:n,paramPath:r||n}),s}}function An(e){let t=e;function n(r){let s=t.slice(0,r);return t=t.slice(r),s}function a(){return t}return{extractWeights:n,getRemainingWeights:a}}function tg(e,t){let n=Tp(e,t),a=Cp(e,t);function r(i,o,l,u=!1){let p=u?n(i,o,3,`${l}/conv0`):a(i,o,`${l}/conv0`),d=a(o,o,`${l}/conv1`),c=a(o,o,`${l}/conv2`);return{conv0:p,conv1:d,conv2:c}}function s(i,o,l,u=!1){let{conv0:p,conv1:d,conv2:c}=r(i,o,l,u),h=a(o,o,`${l}/conv3`);return{conv0:p,conv1:d,conv2:c,conv3:h}}return{extractDenseBlock3Params:r,extractDenseBlock4Params:s}}function eD(e){let t=[],{extractWeights:n,getRemainingWeights:a}=An(e),{extractDenseBlock4Params:r}=tg(n,t),s=r(3,32,"dense0",!0),i=r(32,64,"dense1"),o=r(64,128,"dense2"),l=r(128,256,"dense3");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{dense0:s,dense1:i,dense2:o,dense3:l}}}function ng(e){return t=>{let n=e(`${t}/filters`,4),a=e(`${t}/bias`,1);return{filters:n,bias:a}}}function ag(e,t){let n=sa(e,t),a=ng(n),r=Ep(n);function s(o,l=!1){let u=l?a(`${o}/conv0`):r(`${o}/conv0`),p=r(`${o}/conv1`),d=r(`${o}/conv2`);return{conv0:u,conv1:p,conv2:d}}function i(o,l=!1){let u=l?a(`${o}/conv0`):r(`${o}/conv0`),p=r(`${o}/conv1`),d=r(`${o}/conv2`),c=r(`${o}/conv3`);return{conv0:u,conv1:p,conv2:d,conv3:c}}return{extractDenseBlock3Params:s,extractDenseBlock4Params:i}}function tD(e){let t=[],{extractDenseBlock4Params:n}=ag(e,t),a={dense0:n("dense0",!0),dense1:n("dense1"),dense2:n("dense2"),dense3:n("dense3")};return _n(e,t),{params:a,paramMappings:t}}var _p=class extends fn{constructor(){super("FaceFeatureExtractor")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("FaceFeatureExtractor - load model before inference");return O(()=>{let a=re(t.toBatchTensor(112,!0),"float32"),s=br(a,[122.782,117.001,104.298]).div(255),i=zd(s,n.dense0,!0);return i=zd(i,n.dense1),i=zd(i,n.dense2),i=zd(i,n.dense3),i=ya(i,[7,7],[2,2],"valid"),i})}async forward(t){return this.forwardInput(await vt(t))}getDefaultModelName(){return"face_feature_extractor_model"}extractParamsFromWeightMap(t){return tD(t)}extractParams(t){return eD(t)}};function Bd(e,t){return O(()=>X($e(e,t.weights),t.bias))}function nD(e,t,n){let a=[],{extractWeights:r,getRemainingWeights:s}=An(e),o=eg(r,a)(t,n,"fc");if(s().length!==0)throw new Error(`weights remaing after extract: ${s().length}`);return{paramMappings:a,params:{fc:o}}}function aD(e){let t=[],n=sa(e,t);function a(s){let i=n(`${s}/weights`,2),o=n(`${s}/bias`,1);return{weights:i,bias:o}}let r={fc:a("fc")};return _n(e,t),{params:r,paramMappings:t}}function rg(e){let t={},n={};return Object.keys(e).forEach(a=>{let r=a.startsWith("fc")?n:t;r[a]=e[a]}),{featureExtractorMap:t,classifierMap:n}}var Ap=class extends fn{constructor(t,n){super(t),this._faceFeatureExtractor=n}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(t){let{params:n}=this;if(!n)throw new Error(`${this._name} - load model before inference`);return O(()=>{let a=t instanceof Wr?this.faceFeatureExtractor.forwardInput(t):t;return Bd(a.as2D(a.shape[0],-1),n.fc)})}dispose(t=!0){this.faceFeatureExtractor.dispose(t),super.dispose(t)}loadClassifierParams(t){let{params:n,paramMappings:a}=this.extractClassifierParams(t);this._params=n,this._paramMappings=a}extractClassifierParams(t){return nD(t,this.getClassifierChannelsIn(),this.getClassifierChannelsOut())}extractParamsFromWeightMap(t){let{featureExtractorMap:n,classifierMap:a}=rg(t);return this.faceFeatureExtractor.loadFromWeightMap(n),aD(a)}extractParams(t){let n=this.getClassifierChannelsIn(),a=this.getClassifierChannelsOut(),r=a*n+a,s=t.slice(0,t.length-r),i=t.slice(t.length-r);return this.faceFeatureExtractor.extractWeights(s),this.extractClassifierParams(i)}};var rD=["neutral","happy","sad","angry","fearful","disgusted","surprised"],Os=class{constructor(t){this.neutral=0;this.happy=0;this.sad=0;this.angry=0;this.fearful=0;this.disgusted=0;this.surprised=0;if(t.length!==7)throw new Error(`FaceExpressions.constructor - expected probabilities.length to be 7, have: ${t.length}`);rD.forEach((n,a)=>{this[n]=t[a]})}asSortedArray(){return rD.map(t=>({expression:t,probability:this[t]})).sort((t,n)=>n.probability-t.probability)}};var sg=class extends Ap{constructor(t=new _p){super("FaceExpressionNet",t)}forwardInput(t){return O(()=>qa(this.runNet(t)))}async forward(t){return this.forwardInput(await vt(t))}async predictExpressions(t){let n=await vt(t),a=await this.forwardInput(n),r=await Promise.all(dt(a).map(async i=>{let o=i.dataSync();return i.dispose(),o}));a.dispose();let s=r.map(i=>new Os(i));return n.isBatchInput?s:s[0]}getDefaultModelName(){return"face_expression_model"}getClassifierChannelsIn(){return 256}getClassifierChannelsOut(){return 7}};function sD(e){return e.expressions instanceof Os}function Nk(e,t){return{...e,...{expressions:t}}}function Gfe(e,t,n=.1,a){(Array.isArray(t)?t:[t]).forEach(s=>{let i=s instanceof Os?s:sD(s)?s.expressions:void 0;if(!i)throw new Error("drawFaceExpressions - expected faceExpressions to be FaceExpressions | WithFaceExpressions<{}> or array thereof");let l=i.asSortedArray().filter(d=>d.probability>n),u=zr(s)?s.detection.box.bottomLeft:a||new He(0,0);new sl(l.map(d=>`${d.expression} (${nl(d.probability)})`),u).draw(e)})}function Fp(e){return zr(e)&&e.landmarks instanceof ka&&e.unshiftedLandmarks instanceof ka&&e.alignedRect instanceof Ft}function Hfe(e){let t=l=>l*180/Math.PI,n=(l,u)=>Math.sqrt((l.x-u.x)**2+(l.y-u.y)**2),a={roll:void 0,pitch:void 0,yaw:void 0},r=(l,u,p)=>{let d=Math.floor(l.x-u.x),c=Math.floor(u.x-p.x);return d-c},s=(l,u)=>{let p=Math.hypot(u.x-l.x,u.y-l.y),d=u.y-l.y,c=Math.asin(d/p),h=t(c),m=Math.floor(90-h),f=u.x-l.x<0?-1:1;return m*f},i=(l,u,p)=>{let d=n(l,p),c=new He((l.x+p.x)/2,(l.y+p.y)/2),h=n(u,c),m=Math.atan(h/d),f=Math.floor(t(m)),g=c.y-u.y<0?-1:1;return f*g};if(!e||!e.positions||e.positions.length!==68)return a;let o=e.positions;return a.roll=s(o[27],o[66]),a.pitch=i(o[14],o[30],o[2]),a.yaw=r(o[14],o[33],o[2]),a}function Vd(e,t){let{box:n}=e.detection,a=t.shiftBy(n.x,n.y),r=a.align(),{imageDims:s}=e.detection,i=new Ft(e.detection.score,r.rescale(s.reverse()),s),o=Hfe(t);return{...e,...{landmarks:a,unshiftedLandmarks:t,alignedRect:i,angle:o}}}var ig=class{constructor(t={}){let{drawLines:n=!0,drawPoints:a=!0,lineWidth:r,lineColor:s,pointSize:i,pointColor:o}=t;this.drawLines=n,this.drawPoints=a,this.lineWidth=r||1,this.pointSize=i||2,this.lineColor=s||"rgba(0, 255, 255, 1)",this.pointColor=o||"rgba(255, 0, 255, 1)"}},og=class{constructor(t,n={}){this.faceLandmarks=t,this.options=new ig(n)}draw(t){let n=ra(t),{drawLines:a,drawPoints:r,lineWidth:s,lineColor:i,pointSize:o,pointColor:l}=this.options;if(a&&this.faceLandmarks instanceof vp&&(n.strokeStyle=i,n.lineWidth=s,Pr(n,this.faceLandmarks.getJawOutline()),Pr(n,this.faceLandmarks.getLeftEyeBrow()),Pr(n,this.faceLandmarks.getRightEyeBrow()),Pr(n,this.faceLandmarks.getNose()),Pr(n,this.faceLandmarks.getLeftEye(),!0),Pr(n,this.faceLandmarks.getRightEye(),!0),Pr(n,this.faceLandmarks.getMouth(),!0)),r){n.strokeStyle=l,n.fillStyle=l;let u=p=>{n.beginPath(),n.arc(p.x,p.y,o,0,2*Math.PI),n.fill()};this.faceLandmarks.positions.forEach(u)}}};function jfe(e,t){(Array.isArray(t)?t:[t]).forEach(a=>{let r=a instanceof ka?a:Fp(a)?a.landmarks:void 0;if(!r)throw new Error("drawFaceLandmarks - expected faceExpressions to be FaceLandmarks | WithFaceLandmarks> or array thereof");new og(r).draw(e)})}var oD="1.7.14";function Xfe(e,t){let n=Tp(e,t),a=Cp(e,t);function r(i,o,l){let u=a(i,o,`${l}/separable_conv0`),p=a(o,o,`${l}/separable_conv1`),d=n(i,o,1,`${l}/expansion_conv`);return{separable_conv0:u,separable_conv1:p,expansion_conv:d}}function s(i,o){let l=a(i,i,`${o}/separable_conv0`),u=a(i,i,`${o}/separable_conv1`),p=a(i,i,`${o}/separable_conv2`);return{separable_conv0:l,separable_conv1:u,separable_conv2:p}}return{extractConvParams:n,extractSeparableConvParams:a,extractReductionBlockParams:r,extractMainBlockParams:s}}function lD(e,t){let n=[],{extractWeights:a,getRemainingWeights:r}=An(e),{extractConvParams:s,extractSeparableConvParams:i,extractReductionBlockParams:o,extractMainBlockParams:l}=Xfe(a,n),u=s(3,32,3,"entry_flow/conv_in"),p=o(32,64,"entry_flow/reduction_block_0"),d=o(64,128,"entry_flow/reduction_block_1"),c={conv_in:u,reduction_block_0:p,reduction_block_1:d},h={};gr(t,0,1).forEach(b=>{h[`main_block_${b}`]=l(128,`middle_flow/main_block_${b}`)});let m=o(128,256,"exit_flow/reduction_block"),f=i(256,512,"exit_flow/separable_conv"),g={reduction_block:m,separable_conv:f};if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:n,params:{entry_flow:c,middle_flow:h,exit_flow:g}}}function Yfe(e,t){let n=sa(e,t),a=ng(n),r=Ep(n);function s(o){let l=r(`${o}/separable_conv0`),u=r(`${o}/separable_conv1`),p=a(`${o}/expansion_conv`);return{separable_conv0:l,separable_conv1:u,expansion_conv:p}}function i(o){let l=r(`${o}/separable_conv0`),u=r(`${o}/separable_conv1`),p=r(`${o}/separable_conv2`);return{separable_conv0:l,separable_conv1:u,separable_conv2:p}}return{extractConvParams:a,extractSeparableConvParams:r,extractReductionBlockParams:s,extractMainBlockParams:i}}function uD(e,t){let n=[],{extractConvParams:a,extractSeparableConvParams:r,extractReductionBlockParams:s,extractMainBlockParams:i}=Yfe(e,n),o=a("entry_flow/conv_in"),l=s("entry_flow/reduction_block_0"),u=s("entry_flow/reduction_block_1"),p={conv_in:o,reduction_block_0:l,reduction_block_1:u},d={};gr(t,0,1).forEach(f=>{d[`main_block_${f}`]=i(`middle_flow/main_block_${f}`)});let c=s("exit_flow/reduction_block"),h=r("exit_flow/separable_conv"),m={reduction_block:c,separable_conv:h};return _n(e,n),{params:{entry_flow:p,middle_flow:d,exit_flow:m},paramMappings:n}}function pD(e,t,n){return X($t(e,t.filters,n,"same"),t.bias)}function Tk(e,t,n=!0){let a=n?Ke(e):e;return a=Un(a,t.separable_conv0,[1,1]),a=Un(Ke(a),t.separable_conv1,[1,1]),a=Dt(a,[3,3],[2,2],"same"),a=X(a,pD(e,t.expansion_conv,[2,2])),a}function Zfe(e,t){let n=Un(Ke(e),t.separable_conv0,[1,1]);return n=Un(Ke(n),t.separable_conv1,[1,1]),n=Un(Ke(n),t.separable_conv2,[1,1]),n=X(n,e),n}var lg=class extends fn{constructor(t){super("TinyXception"),this._numMainBlocks=t}forwardInput(t){let{params:n}=this;if(!n)throw new Error("TinyXception - load model before inference");return O(()=>{let a=re(t.toBatchTensor(112,!0),"float32"),s=br(a,[122.782,117.001,104.298]).div(255),i=Ke(pD(s,n.entry_flow.conv_in,[2,2]));return i=Tk(i,n.entry_flow.reduction_block_0,!1),i=Tk(i,n.entry_flow.reduction_block_1),gr(this._numMainBlocks,0,1).forEach(o=>{i=Zfe(i,n.middle_flow[`main_block_${o}`])}),i=Tk(i,n.exit_flow.reduction_block),i=Ke(Un(i,n.exit_flow.separable_conv,[1,1])),i})}async forward(t){return this.forwardInput(await vt(t))}getDefaultModelName(){return"tiny_xception_model"}extractParamsFromWeightMap(t){return uD(t,this._numMainBlocks)}extractParams(t){return lD(t,this._numMainBlocks)}};function cD(e){let t=[],{extractWeights:n,getRemainingWeights:a}=An(e),r=eg(n,t),s=r(512,1,"fc/age"),i=r(512,2,"fc/gender");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{fc:{age:s,gender:i}}}}function dD(e){let t=[],n=sa(e,t);function a(s){let i=n(`${s}/weights`,2),o=n(`${s}/bias`,1);return{weights:i,bias:o}}let r={fc:{age:a("fc/age"),gender:a("fc/gender")}};return _n(e,t),{params:r,paramMappings:t}}var Ck=(n=>(n.FEMALE="female",n.MALE="male",n))(Ck||{});var ug=class extends fn{constructor(t=new lg(2)){super("AgeGenderNet"),this._faceFeatureExtractor=t}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(t){let{params:n}=this;if(!n)throw new Error(`${this._name} - load model before inference`);return O(()=>{let a=t instanceof Wr?this.faceFeatureExtractor.forwardInput(t):t,r=ya(a,[7,7],[2,2],"valid").as2D(a.shape[0],-1),s=Bd(r,n.fc.age).as1D(),i=Bd(r,n.fc.gender);return{age:s,gender:i}})}forwardInput(t){return O(()=>{let{age:n,gender:a}=this.runNet(t);return{age:n,gender:qa(a)}})}async forward(t){return this.forwardInput(await vt(t))}async predictAgeAndGender(t){let n=await vt(t),a=await this.forwardInput(n),r=dt(a.age),s=dt(a.gender),i=r.map((l,u)=>({ageTensor:l,genderTensor:s[u]})),o=await Promise.all(i.map(async({ageTensor:l,genderTensor:u})=>{let p=l.dataSync()[0],d=u.dataSync()[0],c=d>.5,h=c?"male":"female",m=c?d:1-d;return l.dispose(),u.dispose(),{age:p,gender:h,genderProbability:m}}));return a.age.dispose(),a.gender.dispose(),n.isBatchInput?o:o[0]}getDefaultModelName(){return"age_gender_model"}dispose(t=!0){this.faceFeatureExtractor.dispose(t),super.dispose(t)}loadClassifierParams(t){let{params:n,paramMappings:a}=this.extractClassifierParams(t);this._params=n,this._paramMappings=a}extractClassifierParams(t){return cD(t)}extractParamsFromWeightMap(t){let{featureExtractorMap:n,classifierMap:a}=rg(t);return this.faceFeatureExtractor.loadFromWeightMap(n),dD(a)}extractParams(t){let a=t.slice(0,t.length-1539),r=t.slice(t.length-1539);return this.faceFeatureExtractor.extractWeights(a),this.extractClassifierParams(r)}};var $p=class extends Ap{postProcess(t,n,a){let r=a.map(({width:i,height:o})=>{let l=n/Math.max(o,i);return{width:i*l,height:o*l}}),s=r.length;return O(()=>{let i=(d,c)=>At([yn([68],d,"float32"),yn([68],c,"float32")],1).as2D(1,136).as1D(),o=(d,c)=>{let{width:h,height:m}=r[d];return c(h,m)?Math.abs(h-m)/2:0},l=d=>o(d,(c,h)=>co(d,(c,h)=>hi(l(c),u(c))))).div(At(Array.from(Array(s),(d,c)=>i(r[c].width,r[c].height))))})}forwardInput(t){return O(()=>{let n=this.runNet(t);return this.postProcess(n,t.inputSize,t.inputDimensions.map(([a,r])=>({height:a,width:r})))})}async forward(t){return this.forwardInput(await vt(t))}async detectLandmarks(t){let n=await vt(t),a=O(()=>dt(this.forwardInput(n))),r=await Promise.all(a.map(async(s,i)=>{let o=Array.from(s.dataSync()),l=o.filter((p,d)=>Hf(d)),u=o.filter((p,d)=>!Hf(d));return new vp(Array(68).fill(0).map((p,d)=>new He(l[d],u[d])),{height:n.getInputHeight(i),width:n.getInputWidth(i)})}));return a.forEach(s=>s.dispose()),n.isBatchInput?r:r[0]}getClassifierChannelsOut(){return 136}};var Dp=class extends $p{constructor(t=new _p){super("FaceLandmark68Net",t)}getDefaultModelName(){return"face_landmark_68_model"}getClassifierChannelsIn(){return 256}};function hD(e){let t=[],{extractDenseBlock3Params:n}=ag(e,t),a={dense0:n("dense0",!0),dense1:n("dense1"),dense2:n("dense2")};return _n(e,t),{params:a,paramMappings:t}}function mD(e){let t=[],{extractWeights:n,getRemainingWeights:a}=An(e),{extractDenseBlock3Params:r}=tg(n,t),s=r(3,32,"dense0",!0),i=r(32,64,"dense1"),o=r(64,128,"dense2");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{dense0:s,dense1:i,dense2:o}}}var pg=class extends fn{constructor(){super("TinyFaceFeatureExtractor")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("TinyFaceFeatureExtractor - load model before inference");return O(()=>{let a=re(t.toBatchTensor(112,!0),"float32"),s=br(a,[122.782,117.001,104.298]).div(255),i=Qf(s,n.dense0,!0);return i=Qf(i,n.dense1),i=Qf(i,n.dense2),i=ya(i,[14,14],[2,2],"valid"),i})}async forward(t){return this.forwardInput(await vt(t))}getDefaultModelName(){return"face_feature_extractor_tiny_model"}extractParamsFromWeightMap(t){return hD(t)}extractParams(t){return mD(t)}};var cg=class extends $p{constructor(t=new pg){super("FaceLandmark68TinyNet",t)}getDefaultModelName(){return"face_landmark_68_tiny_model"}getClassifierChannelsIn(){return 128}};var fD=class extends Dp{};function gD(e,t){return X(z(e,t.weights),t.biases)}function Ek(e,t,n,a,r="same"){let{filters:s,bias:i}=t.conv,o=$t(e,s,n,r);return o=X(o,i),o=gD(o,t.scale),a?Ke(o):o}function bD(e,t){return Ek(e,t,[1,1],!0)}function _k(e,t){return Ek(e,t,[1,1],!1)}function dg(e,t){return Ek(e,t,[2,2],!0,"valid")}function Jfe(e,t){function n(o,l,u){let p=e(o),d=p.length/(l*u*u);if(gk(d))throw new Error(`depth has to be an integer: ${d}, weights.length: ${p.length}, numFilters: ${l}, filterSize: ${u}`);return O(()=>De(Fa(p,[l,d,u,u]),[2,3,1,0]))}function a(o,l,u,p){let d=n(o,l,u),c=je(e(l));return t.push({paramPath:`${p}/filters`},{paramPath:`${p}/bias`}),{filters:d,bias:c}}function r(o,l){let u=je(e(o)),p=je(e(o));return t.push({paramPath:`${l}/weights`},{paramPath:`${l}/biases`}),{weights:u,biases:p}}function s(o,l,u,p){let d=a(o,l,u,`${p}/conv`),c=r(l,`${p}/scale`);return{conv:d,scale:c}}function i(o,l,u,p,d=!1){let c=s((d?.5:1)*o,l,u,`${p}/conv1`),h=s(o,l,u,`${p}/conv2`);return{conv1:c,conv2:h}}return{extractConvLayerParams:s,extractResidualLayerParams:i}}function yD(e){let{extractWeights:t,getRemainingWeights:n}=An(e),a=[],{extractConvLayerParams:r,extractResidualLayerParams:s}=Jfe(t,a),i=r(4704,32,7,"conv32_down"),o=s(9216,32,3,"conv32_1"),l=s(9216,32,3,"conv32_2"),u=s(9216,32,3,"conv32_3"),p=s(36864,64,3,"conv64_down",!0),d=s(36864,64,3,"conv64_1"),c=s(36864,64,3,"conv64_2"),h=s(36864,64,3,"conv64_3"),m=s(147456,128,3,"conv128_down",!0),f=s(147456,128,3,"conv128_1"),g=s(147456,128,3,"conv128_2"),b=s(589824,256,3,"conv256_down",!0),y=s(589824,256,3,"conv256_1"),x=s(589824,256,3,"conv256_2"),v=s(589824,256,3,"conv256_down_out"),I=O(()=>De(Ea(t(256*128),[128,256]),[1,0]));if(a.push({paramPath:"fc"}),n().length!==0)throw new Error(`weights remaing after extract: ${n().length}`);return{params:{conv32_down:i,conv32_1:o,conv32_2:l,conv32_3:u,conv64_down:p,conv64_1:d,conv64_2:c,conv64_3:h,conv128_down:m,conv128_1:f,conv128_2:g,conv256_down:b,conv256_1:y,conv256_2:x,conv256_down_out:v,fc:I},paramMappings:a}}function Qfe(e,t){let n=sa(e,t);function a(i){let o=n(`${i}/scale/weights`,1),l=n(`${i}/scale/biases`,1);return{weights:o,biases:l}}function r(i){let o=n(`${i}/conv/filters`,4),l=n(`${i}/conv/bias`,1),u=a(i);return{conv:{filters:o,bias:l},scale:u}}function s(i){return{conv1:r(`${i}/conv1`),conv2:r(`${i}/conv2`)}}return{extractConvLayerParams:r,extractResidualLayerParams:s}}function xD(e){let t=[],{extractConvLayerParams:n,extractResidualLayerParams:a}=Qfe(e,t),r=n("conv32_down"),s=a("conv32_1"),i=a("conv32_2"),o=a("conv32_3"),l=a("conv64_down"),u=a("conv64_1"),p=a("conv64_2"),d=a("conv64_3"),c=a("conv128_down"),h=a("conv128_1"),m=a("conv128_2"),f=a("conv256_down"),g=a("conv256_1"),b=a("conv256_2"),y=a("conv256_down_out"),{fc:x}=e;if(t.push({originalPath:"fc",paramPath:"fc"}),!fk(x))throw new Error(`expected weightMap[fc] to be a Tensor2D, instead have ${x}`);let v={conv32_down:r,conv32_1:s,conv32_2:i,conv32_3:o,conv64_down:l,conv64_1:u,conv64_2:p,conv64_3:d,conv128_down:c,conv128_1:h,conv128_2:m,conv256_down:f,conv256_1:g,conv256_2:b,conv256_down_out:y,fc:x};return _n(e,t),{params:v,paramMappings:t}}function Ya(e,t){let n=bD(e,t.conv1);return n=_k(n,t.conv2),n=X(n,e),n=Ke(n),n}function Ud(e,t){let n=dg(e,t.conv1);n=_k(n,t.conv2);let a=ya(e,2,2,"valid"),r=It(a.shape),s=a.shape[3]!==n.shape[3];if(a.shape[1]!==n.shape[1]||a.shape[2]!==n.shape[2]){let o=[...n.shape];o[1]=1;let l=It(o);n=et([n,l],1);let u=[...n.shape];u[2]=1;let p=It(u);n=et([n,p],2)}return a=s?et([a,r],3):a,n=X(a,n),n=Ke(n),n}var Rp=class extends fn{constructor(){super("FaceRecognitionNet")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("FaceRecognitionNet - load model before inference");return O(()=>{let a=re(t.toBatchTensor(150,!0),"float32"),s=br(a,[122.782,117.001,104.298]).div(255),i=dg(s,n.conv32_down);i=Dt(i,3,2,"valid"),i=Ya(i,n.conv32_1),i=Ya(i,n.conv32_2),i=Ya(i,n.conv32_3),i=Ud(i,n.conv64_down),i=Ya(i,n.conv64_1),i=Ya(i,n.conv64_2),i=Ya(i,n.conv64_3),i=Ud(i,n.conv128_down),i=Ya(i,n.conv128_1),i=Ya(i,n.conv128_2),i=Ud(i,n.conv256_down),i=Ya(i,n.conv256_1),i=Ya(i,n.conv256_2),i=Ud(i,n.conv256_down_out);let o=i.mean([1,2]);return $e(o,n.fc)})}async forward(t){return this.forwardInput(await vt(t))}async computeFaceDescriptor(t){var s;if((s=t==null?void 0:t.shape)!=null&&s.some(i=>i<=0))return new Float32Array(128);let n=await vt(t),a=O(()=>dt(this.forwardInput(n))),r=await Promise.all(a.map(i=>i.data()));return a.forEach(i=>i.dispose()),n.isBatchInput?r:r[0]}getDefaultModelName(){return"face_recognition_model"}extractParamsFromWeightMap(t){return xD(t)}extractParams(t){return yD(t)}};function Y2e(e){let t=new Rp;return t.extractWeights(e),t}function Ak(e,t){return{...e,...{descriptor:t}}}function eCe(e){return typeof e.age=="number"}function Fk(e,t){return{...e,...{age:t}}}function rCe(e){return(e.gender==="male"||e.gender==="female")&&gp(e.genderProbability)}function $k(e,t,n){return{...e,...{gender:t,genderProbability:n}}}function ege(e,t){function n(l,u){let p=Fa(e(9*l),[3,3,l,1]),d=je(e(l)),c=je(e(l)),h=je(e(l)),m=je(e(l));return t.push({paramPath:`${u}/filters`},{paramPath:`${u}/batch_norm_scale`},{paramPath:`${u}/batch_norm_offset`},{paramPath:`${u}/batch_norm_mean`},{paramPath:`${u}/batch_norm_variance`}),{filters:p,batch_norm_scale:d,batch_norm_offset:c,batch_norm_mean:h,batch_norm_variance:m}}function a(l,u,p,d,c){let h=Fa(e(l*u*p*p),[p,p,l,u]),m=je(e(u));return t.push({paramPath:`${d}/filters`},{paramPath:`${d}/${c?"batch_norm_offset":"bias"}`}),{filters:h,bias:m}}function r(l,u,p,d){let{filters:c,bias:h}=a(l,u,p,d,!0);return{filters:c,batch_norm_offset:h}}function s(l,u,p){let d=n(l,`${p}/depthwise_conv`),c=r(l,u,1,`${p}/pointwise_conv`);return{depthwise_conv:d,pointwise_conv:c}}function i(){let l=r(3,32,3,"mobilenetv1/conv_0"),u=s(32,64,"mobilenetv1/conv_1"),p=s(64,128,"mobilenetv1/conv_2"),d=s(128,128,"mobilenetv1/conv_3"),c=s(128,256,"mobilenetv1/conv_4"),h=s(256,256,"mobilenetv1/conv_5"),m=s(256,512,"mobilenetv1/conv_6"),f=s(512,512,"mobilenetv1/conv_7"),g=s(512,512,"mobilenetv1/conv_8"),b=s(512,512,"mobilenetv1/conv_9"),y=s(512,512,"mobilenetv1/conv_10"),x=s(512,512,"mobilenetv1/conv_11"),v=s(512,1024,"mobilenetv1/conv_12"),I=s(1024,1024,"mobilenetv1/conv_13");return{conv_0:l,conv_1:u,conv_2:p,conv_3:d,conv_4:c,conv_5:h,conv_6:m,conv_7:f,conv_8:g,conv_9:b,conv_10:y,conv_11:x,conv_12:v,conv_13:I}}function o(){let l=r(1024,256,1,"prediction_layer/conv_0"),u=r(256,512,3,"prediction_layer/conv_1"),p=r(512,128,1,"prediction_layer/conv_2"),d=r(128,256,3,"prediction_layer/conv_3"),c=r(256,128,1,"prediction_layer/conv_4"),h=r(128,256,3,"prediction_layer/conv_5"),m=r(256,64,1,"prediction_layer/conv_6"),f=r(64,128,3,"prediction_layer/conv_7"),g=a(512,12,1,"prediction_layer/box_predictor_0/box_encoding_predictor"),b=a(512,9,1,"prediction_layer/box_predictor_0/class_predictor"),y=a(1024,24,1,"prediction_layer/box_predictor_1/box_encoding_predictor"),x=a(1024,18,1,"prediction_layer/box_predictor_1/class_predictor"),v=a(512,24,1,"prediction_layer/box_predictor_2/box_encoding_predictor"),I=a(512,18,1,"prediction_layer/box_predictor_2/class_predictor"),N=a(256,24,1,"prediction_layer/box_predictor_3/box_encoding_predictor"),C=a(256,18,1,"prediction_layer/box_predictor_3/class_predictor"),_=a(256,24,1,"prediction_layer/box_predictor_4/box_encoding_predictor"),F=a(256,18,1,"prediction_layer/box_predictor_4/class_predictor"),D=a(128,24,1,"prediction_layer/box_predictor_5/box_encoding_predictor"),$=a(128,18,1,"prediction_layer/box_predictor_5/class_predictor");return{conv_0:l,conv_1:u,conv_2:p,conv_3:d,conv_4:c,conv_5:h,conv_6:m,conv_7:f,box_predictor_0:{box_encoding_predictor:g,class_predictor:b},box_predictor_1:{box_encoding_predictor:y,class_predictor:x},box_predictor_2:{box_encoding_predictor:v,class_predictor:I},box_predictor_3:{box_encoding_predictor:N,class_predictor:C},box_predictor_4:{box_encoding_predictor:_,class_predictor:F},box_predictor_5:{box_encoding_predictor:D,class_predictor:$}}}return{extractMobilenetV1Params:i,extractPredictionLayerParams:o}}function vD(e){let t=[],{extractWeights:n,getRemainingWeights:a}=An(e),{extractMobilenetV1Params:r,extractPredictionLayerParams:s}=ege(n,t),i=r(),o=s(),u={extra_dim:xd(n(5118*4),[1,5118,4])};if(t.push({paramPath:"output_layer/extra_dim"}),a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{params:{mobilenetv1:i,prediction_layer:o,output_layer:u},paramMappings:t}}function tge(e,t){let n=sa(e,t);function a(u,p,d){let c=n(`${u}/Conv2d_${p}_pointwise/weights`,4,`${d}/filters`),h=n(`${u}/Conv2d_${p}_pointwise/convolution_bn_offset`,1,`${d}/batch_norm_offset`);return{filters:c,batch_norm_offset:h}}function r(u){let p=`mobilenetv1/conv_${u}`,d=`MobilenetV1/Conv2d_${u}_depthwise`,c=`${p}/depthwise_conv`,h=`${p}/pointwise_conv`,m=n(`${d}/depthwise_weights`,4,`${c}/filters`),f=n(`${d}/BatchNorm/gamma`,1,`${c}/batch_norm_scale`),g=n(`${d}/BatchNorm/beta`,1,`${c}/batch_norm_offset`),b=n(`${d}/BatchNorm/moving_mean`,1,`${c}/batch_norm_mean`),y=n(`${d}/BatchNorm/moving_variance`,1,`${c}/batch_norm_variance`);return{depthwise_conv:{filters:m,batch_norm_scale:f,batch_norm_offset:g,batch_norm_mean:b,batch_norm_variance:y},pointwise_conv:a("MobilenetV1",u,h)}}function s(){return{conv_0:a("MobilenetV1",0,"mobilenetv1/conv_0"),conv_1:r(1),conv_2:r(2),conv_3:r(3),conv_4:r(4),conv_5:r(5),conv_6:r(6),conv_7:r(7),conv_8:r(8),conv_9:r(9),conv_10:r(10),conv_11:r(11),conv_12:r(12),conv_13:r(13)}}function i(u,p){let d=n(`${u}/weights`,4,`${p}/filters`),c=n(`${u}/biases`,1,`${p}/bias`);return{filters:d,bias:c}}function o(u){let p=i(`Prediction/BoxPredictor_${u}/BoxEncodingPredictor`,`prediction_layer/box_predictor_${u}/box_encoding_predictor`),d=i(`Prediction/BoxPredictor_${u}/ClassPredictor`,`prediction_layer/box_predictor_${u}/class_predictor`);return{box_encoding_predictor:p,class_predictor:d}}function l(){return{conv_0:a("Prediction",0,"prediction_layer/conv_0"),conv_1:a("Prediction",1,"prediction_layer/conv_1"),conv_2:a("Prediction",2,"prediction_layer/conv_2"),conv_3:a("Prediction",3,"prediction_layer/conv_3"),conv_4:a("Prediction",4,"prediction_layer/conv_4"),conv_5:a("Prediction",5,"prediction_layer/conv_5"),conv_6:a("Prediction",6,"prediction_layer/conv_6"),conv_7:a("Prediction",7,"prediction_layer/conv_7"),box_predictor_0:o(0),box_predictor_1:o(1),box_predictor_2:o(2),box_predictor_3:o(3),box_predictor_4:o(4),box_predictor_5:o(5)}}return{extractMobilenetV1Params:s,extractPredictionLayerParams:l}}function wD(e){let t=[],{extractMobilenetV1Params:n,extractPredictionLayerParams:a}=tge(e,t),r=e["Output/extra_dim"];if(t.push({originalPath:"Output/extra_dim",paramPath:"output_layer/extra_dim"}),!Lr(r))throw new Error(`expected weightMap['Output/extra_dim'] to be a Tensor3D, instead have ${r}`);let s={mobilenetv1:n(),prediction_layer:a(),output_layer:{extra_dim:r}};return _n(e,t),{params:s,paramMappings:t}}function Ra(e,t,n){return O(()=>{let a=$t(e,t.filters,n,"same");return a=X(a,t.batch_norm_offset),an(a,0,6)})}var nge=.0010000000474974513;function age(e,t,n){return O(()=>{let a=Ts(e,t.filters,n,"same");return a=Ns(a,t.batch_norm_mean,t.batch_norm_variance,t.batch_norm_offset,t.batch_norm_scale,nge),an(a,0,6)})}function rge(e){return[2,4,6,12].some(t=>t===e)?[2,2]:[1,1]}function kD(e,t){return O(()=>{let n,a=Ra(e,t.conv_0,[2,2]);if([t.conv_1,t.conv_2,t.conv_3,t.conv_4,t.conv_5,t.conv_6,t.conv_7,t.conv_8,t.conv_9,t.conv_10,t.conv_11,t.conv_12,t.conv_13].forEach((s,i)=>{let o=i+1,l=rge(o);a=age(a,s.depthwise_conv,l),a=Ra(a,s.pointwise_conv,[1,1]),o===11&&(n=a)}),n===null)throw new Error("mobileNetV1 - output of conv layer 11 is null");return{out:a,conv11:n}})}function sge(e,t,n){let a=e.arraySync(),r=Math.min(a[t][0],a[t][2]),s=Math.min(a[t][1],a[t][3]),i=Math.max(a[t][0],a[t][2]),o=Math.max(a[t][1],a[t][3]),l=Math.min(a[n][0],a[n][2]),u=Math.min(a[n][1],a[n][3]),p=Math.max(a[n][0],a[n][2]),d=Math.max(a[n][1],a[n][3]),c=(i-r)*(o-s),h=(p-l)*(d-u);if(c<=0||h<=0)return 0;let m=Math.max(r,l),f=Math.max(s,u),g=Math.min(i,p),b=Math.min(o,d),y=Math.max(g-m,0)*Math.max(b-f,0);return y/(c+h-y)}function ID(e,t,n,a,r){let s=e.shape[0],i=Math.min(n,s),o=t.map((p,d)=>({score:p,boxIndex:d})).filter(p=>p.score>r).sort((p,d)=>d.score-p.score),l=p=>p<=a?1:0,u=[];return o.forEach(p=>{if(u.length>=i)return;let d=p.score;for(let c=u.length-1;c>=0;--c){let h=sge(e,p.boxIndex,u[c]);if(h!==0&&(p.score*=l(h),p.score<=r))break}d===p.score&&u.push(p.boxIndex)}),u}function ige(e){let t=dt(De(e,[1,0])),n=[pe(t[2],t[0]),pe(t[3],t[1])],a=[X(t[0],he(n[0],2)),X(t[1],he(n[1],2))];return{sizes:n,centers:a}}function oge(e,t){let{sizes:n,centers:a}=ige(e),r=dt(De(t,[1,0])),s=he(z(dn(he(r[2],5)),n[0]),2),i=X(z(he(r[0],10),n[0]),a[0]),o=he(z(dn(he(r[3],5)),n[1]),2),l=X(z(he(r[1],10),n[1]),a[1]);return De(At([pe(i,s),pe(l,o),X(i,s),X(l,o)]),[1,0])}function SD(e,t,n){return O(()=>{let a=e.shape[0],r=oge(W(On(n.extra_dim,[a,1,1]),[-1,4]),W(e,[-1,4]));r=W(r,[a,r.shape[0]/a,4]);let s=ha(Ve(t,[0,0,1],[-1,-1,-1])),i=Ve(s,[0,0,0],[-1,-1,1]);i=W(i,[a,i.shape[1]]);let o=dt(r),l=dt(i);return{boxes:o,scores:l}})}function ol(e,t){return O(()=>{let n=e.shape[0],a=W(il(e,t.box_encoding_predictor),[n,-1,1,4]),r=W(il(e,t.class_predictor),[n,-1,3]);return{boxPredictionEncoding:a,classPrediction:r}})}function ND(e,t,n){return O(()=>{let a=Ra(e,n.conv_0,[1,1]),r=Ra(a,n.conv_1,[2,2]),s=Ra(r,n.conv_2,[1,1]),i=Ra(s,n.conv_3,[2,2]),o=Ra(i,n.conv_4,[1,1]),l=Ra(o,n.conv_5,[2,2]),u=Ra(l,n.conv_6,[1,1]),p=Ra(u,n.conv_7,[2,2]),d=ol(t,n.box_predictor_0),c=ol(e,n.box_predictor_1),h=ol(r,n.box_predictor_2),m=ol(i,n.box_predictor_3),f=ol(l,n.box_predictor_4),g=ol(p,n.box_predictor_5),b=et([d.boxPredictionEncoding,c.boxPredictionEncoding,h.boxPredictionEncoding,m.boxPredictionEncoding,f.boxPredictionEncoding,g.boxPredictionEncoding],1),y=et([d.classPrediction,c.classPrediction,h.classPrediction,m.classPrediction,f.classPrediction,g.classPrediction],1);return{boxPredictions:b,classPredictions:y}})}var Ma=class{constructor({minConfidence:t,maxResults:n}={}){this._name="SsdMobilenetv1Options";if(this._minConfidence=t||.5,this._maxResults=n||100,typeof this._minConfidence!="number"||this._minConfidence<=0||this._minConfidence>=1)throw new Error(`${this._name} - expected minConfidence to be a number between 0 and 1`);if(typeof this._maxResults!="number")throw new Error(`${this._name} - expected maxResults to be a number`)}get minConfidence(){return this._minConfidence}get maxResults(){return this._maxResults}};var ll=class extends fn{constructor(){super("SsdMobilenetv1")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("SsdMobilenetv1 - load model before inference");return O(()=>{let a=re(t.toBatchTensor(512,!1),"float32"),r=pe(he(a,127.5),1),s=kD(r,n.mobilenetv1),{boxPredictions:i,classPredictions:o}=ND(s.out,s.conv11,n.prediction_layer);return SD(i,o,n.output_layer)})}async forward(t){return this.forwardInput(await vt(t))}async locateFaces(t,n={}){let{maxResults:a,minConfidence:r}=new Ma(n),s=await vt(t),{boxes:i,scores:o}=this.forwardInput(s),l=i[0],u=o[0];for(let x=1;x{let[v,I]=[Math.max(0,b[x][0]),Math.min(1,b[x][2])].map(_=>_*g),[N,C]=[Math.max(0,b[x][1]),Math.min(1,b[x][3])].map(_=>_*f);return new Ft(p[x],new xp(N,v,C-N,I-v),{height:s.getInputHeight(0),width:s.getInputWidth(0)})});return l.dispose(),u.dispose(),y}getDefaultModelName(){return"ssd_mobilenetv1_model"}extractParamsFromWeightMap(t){return wD(t)}extractParams(t){return vD(t)}};function lge(e){let t=new ll;return t.extractWeights(e),t}function YCe(e){return lge(e)}var TD=class extends ll{};var CD=.4,ED=[new He(.738768,.874946),new He(2.42204,2.65704),new He(4.30971,7.04493),new He(10.246,4.59428),new He(12.6868,11.8741)],_D=[new He(1.603231,2.094468),new He(6.041143,7.080126),new He(2.882459,3.518061),new He(4.266906,5.178857),new He(9.041765,10.66308)],AD=[117.001,114.697,97.404],FD="tiny_yolov2_model",$D="tiny_yolov2_separable_conv_model";var hg=e=>typeof e=="number";function DD(e){if(!e)throw new Error(`invalid config: ${e}`);if(typeof e.withSeparableConvs!="boolean")throw new Error(`config.withSeparableConvs has to be a boolean, have: ${e.withSeparableConvs}`);if(!hg(e.iouThreshold)||e.iouThreshold<0||e.iouThreshold>1)throw new Error(`config.iouThreshold has to be a number between [0, 1], have: ${e.iouThreshold}`);if(!Array.isArray(e.classes)||!e.classes.length||!e.classes.every(t=>typeof t=="string"))throw new Error(`config.classes has to be an array class names: string[], have: ${JSON.stringify(e.classes)}`);if(!Array.isArray(e.anchors)||!e.anchors.length||!e.anchors.map(t=>t||{}).every(t=>hg(t.x)&&hg(t.y)))throw new Error(`config.anchors has to be an array of { x: number, y: number }, have: ${JSON.stringify(e.anchors)}`);if(e.meanRgb&&(!Array.isArray(e.meanRgb)||e.meanRgb.length!==3||!e.meanRgb.every(hg)))throw new Error(`config.meanRgb has to be an array of shape [number, number, number], have: ${JSON.stringify(e.meanRgb)}`)}function Mp(e){return O(()=>{let t=z(e,xe(.10000000149011612));return X(Ke(pe(e,t)),t)})}function Br(e,t){return O(()=>{let n=xa(e,[[0,0],[1,1],[1,1],[0,0]]);return n=$t(n,t.conv.filters,[1,1],"valid"),n=pe(n,t.bn.sub),n=z(n,t.bn.truediv),n=X(n,t.conv.bias),Mp(n)})}function Vr(e,t){return O(()=>{let n=xa(e,[[0,0],[1,1],[1,1],[0,0]]);return n=_s(n,t.depthwise_filter,t.pointwise_filter,[1,1],"valid"),n=X(n,t.bias),Mp(n)})}function uge(e,t){let n=Tp(e,t);function a(i,o){let l=je(e(i)),u=je(e(i));return t.push({paramPath:`${o}/sub`},{paramPath:`${o}/truediv`}),{sub:l,truediv:u}}function r(i,o,l){let u=n(i,o,3,`${l}/conv`),p=a(o,`${l}/bn`);return{conv:u,bn:p}}let s=Cp(e,t);return{extractConvParams:n,extractConvWithBatchNormParams:r,extractSeparableConvParams:s}}function RD(e,t,n,a){let{extractWeights:r,getRemainingWeights:s}=An(e),i=[],{extractConvParams:o,extractConvWithBatchNormParams:l,extractSeparableConvParams:u}=uge(r,i),p;if(t.withSeparableConvs){let[d,c,h,m,f,g,b,y,x]=a,v=t.isFirstLayerConv2d?o(d,c,3,"conv0"):u(d,c,"conv0"),I=u(c,h,"conv1"),N=u(h,m,"conv2"),C=u(m,f,"conv3"),_=u(f,g,"conv4"),F=u(g,b,"conv5"),D=y?u(b,y,"conv6"):void 0,$=x?u(y,x,"conv7"):void 0,S=o(x||y||b,5*n,1,"conv8");p={conv0:v,conv1:I,conv2:N,conv3:C,conv4:_,conv5:F,conv6:D,conv7:$,conv8:S}}else{let[d,c,h,m,f,g,b,y,x]=a,v=l(d,c,"conv0"),I=l(c,h,"conv1"),N=l(h,m,"conv2"),C=l(m,f,"conv3"),_=l(f,g,"conv4"),F=l(g,b,"conv5"),D=l(b,y,"conv6"),$=l(y,x,"conv7"),S=o(x,5*n,1,"conv8");p={conv0:v,conv1:I,conv2:N,conv3:C,conv4:_,conv5:F,conv6:D,conv7:$,conv8:S}}if(s().length!==0)throw new Error(`weights remaing after extract: ${s().length}`);return{params:p,paramMappings:i}}function pge(e,t){let n=sa(e,t);function a(o){let l=n(`${o}/sub`,1),u=n(`${o}/truediv`,1);return{sub:l,truediv:u}}function r(o){let l=n(`${o}/filters`,4),u=n(`${o}/bias`,1);return{filters:l,bias:u}}function s(o){let l=r(`${o}/conv`),u=a(`${o}/bn`);return{conv:l,bn:u}}let i=Ep(n);return{extractConvParams:r,extractConvWithBatchNormParams:s,extractSeparableConvParams:i}}function MD(e,t){let n=[],{extractConvParams:a,extractConvWithBatchNormParams:r,extractSeparableConvParams:s}=pge(e,n),i;if(t.withSeparableConvs){let o=t.filterSizes&&t.filterSizes.length||9;i={conv0:t.isFirstLayerConv2d?a("conv0"):s("conv0"),conv1:s("conv1"),conv2:s("conv2"),conv3:s("conv3"),conv4:s("conv4"),conv5:s("conv5"),conv6:o>7?s("conv6"):void 0,conv7:o>8?s("conv7"):void 0,conv8:a("conv8")}}else i={conv0:r("conv0"),conv1:r("conv1"),conv2:r("conv2"),conv3:r("conv3"),conv4:r("conv4"),conv5:r("conv5"),conv6:r("conv6"),conv7:r("conv7"),conv8:a("conv8")};return _n(e,n),{params:i,paramMappings:n}}var yr=class{constructor({inputSize:t,scoreThreshold:n}={}){this._name="TinyYolov2Options";if(this._inputSize=t||416,this._scoreThreshold=n||.5,typeof this._inputSize!="number"||this._inputSize%32!==0)throw new Error(`${this._name} - expected inputSize to be a number divisible by 32`);if(typeof this._scoreThreshold!="number"||this._scoreThreshold<=0||this._scoreThreshold>=1)throw new Error(`${this._name} - expected scoreThreshold to be a number between 0 and 1`)}get inputSize(){return this._inputSize}get scoreThreshold(){return this._scoreThreshold}};var mg=class mg extends fn{constructor(t){super("TinyYolov2"),DD(t),this._config=t}get config(){return this._config}get withClassScores(){return this.config.withClassScores||this.config.classes.length>1}get boxEncodingSize(){return 5+(this.withClassScores?this.config.classes.length:0)}runTinyYolov2(t,n){let a=Br(t,n.conv0);return a=Dt(a,[2,2],[2,2],"same"),a=Br(a,n.conv1),a=Dt(a,[2,2],[2,2],"same"),a=Br(a,n.conv2),a=Dt(a,[2,2],[2,2],"same"),a=Br(a,n.conv3),a=Dt(a,[2,2],[2,2],"same"),a=Br(a,n.conv4),a=Dt(a,[2,2],[2,2],"same"),a=Br(a,n.conv5),a=Dt(a,[2,2],[1,1],"same"),a=Br(a,n.conv6),a=Br(a,n.conv7),il(a,n.conv8,"valid",!1)}runMobilenet(t,n){let a=this.config.isFirstLayerConv2d?Mp(il(t,n.conv0,"valid",!1)):Vr(t,n.conv0);return a=Dt(a,[2,2],[2,2],"same"),a=Vr(a,n.conv1),a=Dt(a,[2,2],[2,2],"same"),a=Vr(a,n.conv2),a=Dt(a,[2,2],[2,2],"same"),a=Vr(a,n.conv3),a=Dt(a,[2,2],[2,2],"same"),a=Vr(a,n.conv4),a=Dt(a,[2,2],[2,2],"same"),a=Vr(a,n.conv5),a=Dt(a,[2,2],[1,1],"same"),a=n.conv6?Vr(a,n.conv6):a,a=n.conv7?Vr(a,n.conv7):a,il(a,n.conv8,"valid",!1)}forwardInput(t,n){let{params:a}=this;if(!a)throw new Error("TinyYolov2 - load model before inference");return O(()=>{let r=re(t.toBatchTensor(n,!1),"float32");return r=this.config.meanRgb?br(r,this.config.meanRgb):r,r=r.div(255),this.config.withSeparableConvs?this.runMobilenet(r,a):this.runTinyYolov2(r,a)})}async forward(t,n){return this.forwardInput(await vt(t),n)}async detect(t,n={}){let{inputSize:a,scoreThreshold:r}=new yr(n),s=await vt(t),i=await this.forwardInput(s,a),o=O(()=>dt(i)[0].expandDims()),l={width:s.getInputWidth(0),height:s.getInputHeight(0)},u=await this.extractBoxes(o,s.getReshapedInputDimensions(0),r);i.dispose(),o.dispose();let p=u.map(g=>g.box),d=u.map(g=>g.score),c=u.map(g=>g.classScore),h=u.map(g=>this.config.classes[g.label]);return U$(p.map(g=>g.rescale(a)),d,this.config.iouThreshold,!0).map(g=>new yp(d[g],c[g],h[g],p[g],l))}getDefaultModelName(){return""}extractParamsFromWeightMap(t){return MD(t,this.config)}extractParams(t){let n=this.config.filterSizes||mg.DEFAULT_FILTER_SIZES,a=n?n.length:void 0;if(a!==7&&a!==8&&a!==9)throw new Error(`TinyYolov2 - expected 7 | 8 | 9 convolutional filters, but found ${a} filterSizes in config`);return RD(t,this.config,this.boxEncodingSize,n)}async extractBoxes(t,n,a){let{width:r,height:s}=n,i=Math.max(r,s),o=i/r,l=i/s,u=t.shape[1],p=this.config.anchors.length,[d,c,h]=O(()=>{let b=t.reshape([u,u,p,this.boxEncodingSize]),y=b.slice([0,0,0,0],[u,u,p,4]),x=b.slice([0,0,0,4],[u,u,p,1]),v=this.withClassScores?qa(b.slice([0,0,0,5],[u,u,p,this.config.classes.length]),3):xe(0);return[y,x,v]}),m=[],f=await c.array(),g=await d.array();for(let b=0;ba){let I=(y+qf(g[b][y][x][0]))/u*o,N=(b+qf(g[b][y][x][1]))/u*l,C=Math.exp(g[b][y][x][2])*this.config.anchors[x].x/u*o,_=Math.exp(g[b][y][x][3])*this.config.anchors[x].y/u*l,F=I-C/2,D=N-_/2,$={row:b,col:y,anchor:x},{classScore:S,label:M}=this.withClassScores?await this.extractPredictedClass(h,$):{classScore:1,label:0};m.push({box:new bp(F,D,F+C,D+_),score:v,classScore:v*S,label:M,...$})}}return d.dispose(),c.dispose(),h.dispose(),m}async extractPredictedClass(t,n){let{row:a,col:r,anchor:s}=n,i=await t.array();return Array(this.config.classes.length).fill(0).map((o,l)=>i[a][r][s][l]).map((o,l)=>({classScore:o,label:l})).reduce((o,l)=>o.classScore>l.classScore?o:l)}};mg.DEFAULT_FILTER_SIZES=[3,16,32,64,128,256,512,1024,1024];var Op=mg;var Pp=class extends Op{constructor(t=!0){let n={withSeparableConvs:t,iouThreshold:CD,classes:["face"],...t?{anchors:_D,meanRgb:AD}:{anchors:ED,withClassScores:!0}};super(n)}get withSeparableConvs(){return this.config.withSeparableConvs}get anchors(){return this.config.anchors}async locateFaces(t,n){return(await this.detect(t,n)).map(r=>new Ft(r.score,r.relativeBox,{width:r.imageWidth,height:r.imageHeight}))}getDefaultModelName(){return this.withSeparableConvs?$D:FD}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};function BEe(e,t=!0){let n=new Pp(t);return n.extractWeights(e),n}var fg=class extends yr{constructor(){super(...arguments);this._name="TinyFaceDetectorOptions"}};var Oa=class{async then(t){return t(await this.run())}async run(){throw new Error("ComposableTask - run is not implemented")}};async function ul(e,t,n,a,r=({alignedRect:s})=>s){let s=e.map(l=>Fp(l)?r(l):l.detection),i=a||(t instanceof Ce?await Ld(t,s):await Pd(t,s)),o=await n(i);return i.forEach(l=>l instanceof Ce&&l.dispose()),o}async function Lp(e,t,n,a,r){return ul([e],t,async s=>n(s[0]),a,r)}var OD=.4,PD=[new He(1.603231,2.094468),new He(6.041143,7.080126),new He(2.882459,3.518061),new He(4.266906,5.178857),new He(9.041765,10.66308)],LD=[117.001,114.697,97.404];var zp=class extends Op{constructor(){let t={withSeparableConvs:!0,iouThreshold:OD,classes:["face"],anchors:PD,meanRgb:LD,isFirstLayerConv2d:!0,filterSizes:[3,16,32,64,128,256,512]};super(t)}get anchors(){return this.config.anchors}async locateFaces(t,n){return(await this.detect(t,n)).map(r=>new Ft(r.score,r.relativeBox,{width:r.imageWidth,height:r.imageHeight}))}getDefaultModelName(){return"tiny_face_detector_model"}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};var rt={ssdMobilenetv1:new ll,tinyFaceDetector:new zp,tinyYolov2:new Pp,faceLandmark68Net:new Dp,faceLandmark68TinyNet:new cg,faceRecognitionNet:new Rp,faceExpressionNet:new sg,ageGenderNet:new ug},cge=(e,t)=>rt.ssdMobilenetv1.locateFaces(e,t),b_e=(e,t)=>rt.tinyFaceDetector.locateFaces(e,t),y_e=(e,t)=>rt.tinyYolov2.locateFaces(e,t),dge=e=>rt.faceLandmark68Net.detectLandmarks(e),x_e=e=>rt.faceLandmark68TinyNet.detectLandmarks(e),v_e=e=>rt.faceRecognitionNet.computeFaceDescriptor(e),w_e=e=>rt.faceExpressionNet.predictExpressions(e),k_e=e=>rt.ageGenderNet.predictAgeAndGender(e),hge=e=>rt.ssdMobilenetv1.load(e),I_e=e=>rt.tinyFaceDetector.load(e),S_e=e=>rt.tinyYolov2.load(e),N_e=e=>rt.faceLandmark68Net.load(e),T_e=e=>rt.faceLandmark68TinyNet.load(e),C_e=e=>rt.faceRecognitionNet.load(e),E_e=e=>rt.faceExpressionNet.load(e),__e=e=>rt.ageGenderNet.load(e),A_e=hge,F_e=cge,$_e=dge;var gg=class extends Oa{constructor(n,a,r){super();this.parentTask=n;this.input=a;this.extractedFaces=r}},pl=class extends gg{async run(){let t=await this.parentTask,n=await ul(t,this.input,async a=>Promise.all(a.map(r=>rt.faceExpressionNet.predictExpressions(r))),this.extractedFaces);return t.map((a,r)=>Nk(a,n[r]))}withAgeAndGender(){return new dl(this,this.input)}},cl=class extends gg{async run(){let t=await this.parentTask;if(!t)return;let n=await Lp(t,this.input,a=>rt.faceExpressionNet.predictExpressions(a),this.extractedFaces);return Nk(t,n)}withAgeAndGender(){return new hl(this,this.input)}},Ps=class extends pl{withAgeAndGender(){return new zs(this,this.input)}withFaceDescriptors(){return new Bs(this,this.input)}},Ls=class extends cl{withAgeAndGender(){return new Ws(this,this.input)}withFaceDescriptor(){return new Vs(this,this.input)}};var bg=class extends Oa{constructor(n,a,r){super();this.parentTask=n;this.input=a;this.extractedFaces=r}},dl=class extends bg{async run(){let t=await this.parentTask,n=await ul(t,this.input,async a=>Promise.all(a.map(r=>rt.ageGenderNet.predictAgeAndGender(r))),this.extractedFaces);return t.map((a,r)=>{let{age:s,gender:i,genderProbability:o}=n[r];return Fk($k(a,i,o),s)})}withFaceExpressions(){return new pl(this,this.input)}},hl=class extends bg{async run(){let t=await this.parentTask;if(!t)return;let{age:n,gender:a,genderProbability:r}=await Lp(t,this.input,s=>rt.ageGenderNet.predictAgeAndGender(s),this.extractedFaces);return Fk($k(t,a,r),n)}withFaceExpressions(){return new cl(this,this.input)}},zs=class extends dl{withFaceExpressions(){return new Ps(this,this.input)}withFaceDescriptors(){return new Bs(this,this.input)}},Ws=class extends hl{withFaceExpressions(){return new Ls(this,this.input)}withFaceDescriptor(){return new Vs(this,this.input)}};var yg=class extends Oa{constructor(n,a){super();this.parentTask=n;this.input=a}},Bs=class extends yg{async run(){let t=await this.parentTask;return(await ul(t,this.input,a=>Promise.all(a.map(r=>rt.faceRecognitionNet.computeFaceDescriptor(r))),null,a=>a.landmarks.align(null,{useDlibAlignment:!0}))).map((a,r)=>Ak(t[r],a))}withFaceExpressions(){return new Ps(this,this.input)}withAgeAndGender(){return new zs(this,this.input)}},Vs=class extends yg{async run(){let t=await this.parentTask;if(!t)return;let n=await Lp(t,this.input,a=>rt.faceRecognitionNet.computeFaceDescriptor(a),null,a=>a.landmarks.align(null,{useDlibAlignment:!0}));return Ak(t,n)}withFaceExpressions(){return new Ls(this,this.input)}withAgeAndGender(){return new Ws(this,this.input)}};var xg=class extends Oa{constructor(n,a,r){super();this.parentTask=n;this.input=a;this.useTinyLandmarkNet=r}get landmarkNet(){return this.useTinyLandmarkNet?rt.faceLandmark68TinyNet:rt.faceLandmark68Net}},vg=class extends xg{async run(){let t=await this.parentTask,n=t.map(i=>i.detection),a=this.input instanceof Ce?await Ld(this.input,n):await Pd(this.input,n),r=await Promise.all(a.map(i=>this.landmarkNet.detectLandmarks(i)));return a.forEach(i=>i instanceof Ce&&i.dispose()),t.filter((i,o)=>r[o]).map((i,o)=>Vd(i,r[o]))}withFaceExpressions(){return new Ps(this,this.input)}withAgeAndGender(){return new zs(this,this.input)}withFaceDescriptors(){return new Bs(this,this.input)}},wg=class extends xg{async run(){let t=await this.parentTask;if(!t)return;let{detection:n}=t,a=this.input instanceof Ce?await Ld(this.input,[n]):await Pd(this.input,[n]),r=await this.landmarkNet.detectLandmarks(a[0]);return a.forEach(s=>s instanceof Ce&&s.dispose()),Vd(t,r)}withFaceExpressions(){return new Ls(this,this.input)}withAgeAndGender(){return new Ws(this,this.input)}withFaceDescriptor(){return new Vs(this,this.input)}};var kg=class extends Oa{constructor(n,a=new Ma){super();this.input=n;this.options=a}},Gd=class extends kg{async run(){let{input:t,options:n}=this,a;if(n instanceof fg)a=rt.tinyFaceDetector.locateFaces(t,n);else if(n instanceof Ma)a=rt.ssdMobilenetv1.locateFaces(t,n);else if(n instanceof yr)a=rt.tinyYolov2.locateFaces(t,n);else throw new Error("detectFaces - expected options to be instance of TinyFaceDetectorOptions | SsdMobilenetv1Options | TinyYolov2Options");return a}runAndExtendWithFaceDetections(){return new Promise((t,n)=>{this.run().then(a=>t(a.map(r=>wp({},r)))).catch(a=>n(a))})}withFaceLandmarks(t=!1){return new vg(this.runAndExtendWithFaceDetections(),this.input,t)}withFaceExpressions(){return new pl(this.runAndExtendWithFaceDetections(),this.input)}withAgeAndGender(){return new dl(this.runAndExtendWithFaceDetections(),this.input)}},Ig=class extends kg{async run(){let t=await new Gd(this.input,this.options),n=t[0];return t.forEach(a=>{a.score>n.score&&(n=a)}),n}runAndExtendWithFaceDetection(){return new Promise(async t=>{let n=await this.run();t(n?wp({},n):void 0)})}withFaceLandmarks(t=!1){return new wg(this.runAndExtendWithFaceDetection(),this.input,t)}withFaceExpressions(){return new cl(this.runAndExtendWithFaceDetection(),this.input)}withAgeAndGender(){return new hl(this.runAndExtendWithFaceDetection(),this.input)}};function _Ae(e,t=new Ma){return new Ig(e,t)}function Dk(e,t=new Ma){return new Gd(e,t)}async function mge(e,t){return Dk(e,new Ma(t?{minConfidence:t}:{})).withFaceLandmarks().withFaceDescriptors()}async function MAe(e,t={}){return Dk(e,new yr(t)).withFaceLandmarks().withFaceDescriptors()}var OAe=mge;function zD(e,t){if(e.length!==t.length)throw new Error("euclideanDistance: arr1.length !== arr2.length");let n=Array.from(e),a=Array.from(t);return Math.sqrt(n.map((r,s)=>r-a[s]).reduce((r,s)=>r+s*s,0))}var WD=class e{constructor(t,n=.6){this._distanceThreshold=n;let a=Array.isArray(t)?t:[t];if(!a.length)throw new Error("FaceRecognizer.constructor - expected atleast one input");let r=1,s=()=>`person ${r++}`;this._labeledDescriptors=a.map(i=>{if(i instanceof rl)return i;if(i instanceof Float32Array)return new rl(s(),[i]);if(i.descriptor&&i.descriptor instanceof Float32Array)return new rl(s(),[i.descriptor]);throw new Error("FaceRecognizer.constructor - expected inputs to be of type LabeledFaceDescriptors | WithFaceDescriptor | Float32Array | Array | Float32Array>")})}get labeledDescriptors(){return this._labeledDescriptors}get distanceThreshold(){return this._distanceThreshold}computeMeanDistance(t,n){return n.map(a=>zD(a,t)).reduce((a,r)=>a+r,0)/(n.length||1)}matchDescriptor(t){return this.labeledDescriptors.map(({descriptors:n,label:a})=>new Dd(a,this.computeMeanDistance(t,n))).reduce((n,a)=>n.distancet.toJSON())}}static fromJSON(t){let n=t.labeledDescriptors.map(a=>rl.fromJSON(a));return new e(n,t.distanceThreshold)}};function eFe(e){let t=new zp;return t.extractWeights(e),t}function fge(e,t){let{width:n,height:a}=new aa(t.width,t.height);if(n<=0||a<=0)throw new Error(`resizeResults - invalid dimensions: ${JSON.stringify({width:n,height:a})}`);if(Array.isArray(e))return e.map(r=>fge(r,{width:n,height:a}));if(Fp(e)){let r=e.detection.forSize(n,a),s=e.unshiftedLandmarks.forSize(r.box.width,r.box.height);return Vd(wp(e,r),s)}return zr(e)?wp(e,e.detection.forSize(n,a)):e instanceof ka||e instanceof Ft?e.forSize(n,a):e}var cFe=oD;export{ug as AgeGenderNet,bp as BoundingBox,mn as Box,Oa as ComposableTask,Bs as ComputeAllFaceDescriptorsTask,yg as ComputeFaceDescriptorsTaskBase,Vs as ComputeSingleFaceDescriptorTask,vg as DetectAllFaceLandmarksTask,Gd as DetectAllFacesTask,xg as DetectFaceLandmarksTaskBase,kg as DetectFacesTaskBase,wg as DetectSingleFaceLandmarksTask,Ig as DetectSingleFaceTask,aa as Dimensions,rD as FACE_EXPRESSION_LABELS,Ft as FaceDetection,TD as FaceDetectionNet,sg as FaceExpressionNet,Os as FaceExpressions,Dp as FaceLandmark68Net,cg as FaceLandmark68TinyNet,fD as FaceLandmarkNet,ka as FaceLandmarks,H$ as FaceLandmarks5,vp as FaceLandmarks68,Dd as FaceMatch,WD as FaceMatcher,Rp as FaceRecognitionNet,Ck as Gender,Rd as LabeledBox,rl as LabeledFaceDescriptors,Wr as NetInput,fn as NeuralNetwork,yp as ObjectDetection,He as Point,j$ as PredictedBox,xp as Rect,ll as SsdMobilenetv1,Ma as SsdMobilenetv1Options,zp as TinyFaceDetector,fg as TinyFaceDetectorOptions,Pp as TinyYolov2,yr as TinyYolov2Options,OAe as allFaces,mge as allFacesSsdMobilenetv1,MAe as allFacesTinyYolov2,q$ as awaitMediaLoaded,K$ as bufferToImage,v_e as computeFaceDescriptor,Np as createCanvas,Zf as createCanvasFromMedia,YCe as createFaceDetectionNet,Y2e as createFaceRecognitionNet,lge as createSsdMobilenetv1,eFe as createTinyFaceDetector,BEe as createTinyYolov2,Dk as detectAllFaces,dge as detectFaceLandmarks,x_e as detectFaceLandmarksTiny,$_e as detectLandmarks,_Ae as detectSingleFace,iD as draw,at as env,zD as euclideanDistance,Fk as extendWithAge,Ak as extendWithFaceDescriptor,wp as extendWithFaceDetection,Nk as extendWithFaceExpressions,Vd as extendWithFaceLandmarks,$k as extendWithGender,Ld as extractFaceTensors,Pd as extractFaces,sIe as fetchImage,Z$ as fetchJson,pIe as fetchNetWeights,Ms as fetchOrThrow,gIe as fetchVideo,ra as getContext2dOrThrow,Sp as getMediaDimensions,X$ as imageTensorToCanvas,Y$ as imageToSquare,v0e as inverseSigmoid,B$ as iou,Sk as isMediaElement,Yf as isMediaLoaded,eCe as isWithAge,zr as isWithFaceDetection,sD as isWithFaceExpressions,Fp as isWithFaceLandmarks,rCe as isWithGender,__e as loadAgeGenderModel,A_e as loadFaceDetectionModel,E_e as loadFaceExpressionModel,N_e as loadFaceLandmarkModel,T_e as loadFaceLandmarkTinyModel,C_e as loadFaceRecognitionModel,hge as loadSsdMobilenetv1Model,I_e as loadTinyFaceDetectorModel,S_e as loadTinyYolov2Model,Q$ as loadWeightMap,F_e as locateFaces,IIe as matchDimensions,V$ as minBbox,rt as nets,U$ as nonMaxSuppression,br as normalize,G$ as padToSquare,k_e as predictAgeAndGender,w_e as recognizeFaceExpressions,fge as resizeResults,kp as resolveInput,y0e as shuffleArray,qf as sigmoid,cge as ssdMobilenetv1,Pe as tf,b_e as tinyFaceDetector,y_e as tinyYolov2,vt as toNetInput,W$ as utils,DD as validateConfig,cFe as version}; + ${r.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=t.dataIdMap.get(a.dataId).id,o=t.dataIdMap.get(r.dataId).id,l=t.dataIdMap.get(s.dataId).id,u=a.shape[0],p=w.sizeFromShape(s.shape),d=t.makeOutput([u,p],a.dtype),c=t.dataIdMap.get(d.dataId).id,h=t.makeOutput([p],s.dtype),m=t.dataIdMap.get(h.dataId).id,f=t.makeOutput([3],"int32"),g=t.dataIdMap.get(f.dataId).id;T$(i,o,l,u,c,m,g);let b=t.readSync(f.dataId),y;switch(b[0]){case 0:{y=T.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(b[1],b[2]);break}case 1:{y=T.getSparseReshapeNegativeOutputDimErrorMessage(b[1],b[2]);break}case 2:y=T.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage();break;case 3:{let x=Array.from(t.readSync(r.dataId)),v=Array.from(t.readSync(h.dataId));y=T.getSparseReshapeInputOutputMultipleErrorMessage(x,v);break}case 4:{let x=Array.from(t.readSync(r.dataId)),v=Array.from(t.readSync(h.dataId));y=T.getSparseReshapeInputOutputMismatchErrorMessage(x,v);break}default:y=""}if(t.disposeData(f.dataId),y)throw t.disposeData(d.dataId),t.disposeData(h.dataId),new Error(y);return[d,h]}var kme={kernelName:Gu,backendName:"wasm",setupFunc:vme,kernelFunc:wme},C$;function E$(e){C$=e.wasm.cwrap("SparseSegmentReduction",null,["number","number","number","number","number","number","number","number","number"])}function _$(e,t){let{backend:n,inputs:a}=e,{data:r,indices:s,segmentIds:i}=a,o=s.shape[0],l=n.readSync(i.dataId,o-1,o)[0],u=o>0?l+1:0;if(u<0)throw new Error(T.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let p=r.shape.slice();p[0]=u;let d=n.dataIdMap.get(r.dataId).id,c=n.dataIdMap.get(s.dataId).id,h=n.dataIdMap.get(i.dataId).id,m=n.makeOutput(p,r.dtype),f=n.dataIdMap.get(m.dataId).id,g=n.makeOutput([4],"int32"),b=n.dataIdMap.get(g.dataId).id;C$(d,Qe[r.dtype],r.shape[0],c,h,f,b,t,0);let y=n.readSync(g.dataId),x;switch(y[0]){case 0:{x=T.getSparseSegmentReductionNegativeSegmentIdsErrorMessage();break}case 1:{x=T.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage();break}case 2:x=T.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(y[1],y[2]);break;case 3:x=T.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(y[1],y[2],y[3]);break;default:x=""}if(n.disposeData(g.dataId),x)throw n.disposeData(m.dataId),new Error(x);return m}function Ime(e){return _$(e,!0)}var Sme={kernelName:Hc,backendName:"wasm",setupFunc:E$,kernelFunc:Ime};function Nme(e){return _$(e,!1)}var Tme={kernelName:jc,backendName:"wasm",setupFunc:E$,kernelFunc:Nme},A$;function Cme(e){A$=e.wasm.cwrap(Hu,null,["number","number","number","number","number","number","number","number","array","number","number"])}function Eme(e){let{backend:t,inputs:n,attrs:a}=e,{sparseIndices:r,sparseValues:s,defaultValue:i}=n,{outputShape:o}=a,l=t.makeOutput(o,i.dtype);if(w.sizeFromShape(o)===0)return l;let{sliceRank:u,numUpdates:p,sliceSize:d,strides:c,outputSize:h}=T.calculateShapes(s,r,o),m=t.dataIdMap.get(r.dataId).id,f=t.dataIdMap.get(s.dataId).id,g=t.dataIdMap.get(i.dataId).id,b=new Uint8Array(new Int32Array(c).buffer),y=t.dataIdMap.get(l.dataId).id;return A$(m,f,s.shape.length,g,Qe[i.dtype],u,p,d,b,h,y),l}var _me={kernelName:Hu,backendName:"wasm",setupFunc:Cme,kernelFunc:Eme};function Ame(e){let{inputs:t,attrs:n,backend:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=n,o=w.parseAxisParam(i,r.shape)[0],l=T.prepareSplitSize(r,s,o),u=new Array(r.shape.length).fill(0),p=r.shape.slice();return l.map(d=>{let c=[...p];c[o]=d;let h=Ii({inputs:{x:r},attrs:{begin:u,size:c},backend:a});return u[o]+=d,h})}var Fme={kernelName:Uu,backendName:"wasm",kernelFunc:Ame},$me=Xe(Po),Dme=Xe(qc),Rme=!0,Mme=Ut(Wo,Rme),F$;function Ome(e){F$=e.wasm.cwrap(Is,null,["number","number","number","number"])}function Pme(e){let{backend:t,inputs:n,attrs:a}=e,{alpha:r}=a,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=t.makeOutput(s.shape,s.dtype),l=t.dataIdMap.get(o.dataId).id;return F$(i,r,Qe[s.dtype],l),o}var Lme={kernelName:Is,backendName:"wasm",setupFunc:Ome,kernelFunc:Pme},$$;function zme(e){$$=e.wasm.cwrap(ju,null,["number","array","number","array","array","array","array","array","number","number"])}function Wme(e){let{backend:t,inputs:n,attrs:a}=e,{x:r}=n,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:p,newAxisMask:d,shrinkAxisMask:c}=a,{finalShapeSparse:h,finalShape:m,isIdentity:f,sliceDim0:g,isSimpleSlice:b,begin:y,end:x,strides:v}=Kt.sliceInfo(r.shape,s,i,o,l,u,p,d,c),I;if(f)I=zn({inputs:{x:r},backend:t,attrs:{shape:m}});else if(g||b){w.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let N=Kt.computeOutShape(y,x,v),C=Ii({inputs:{x:r},backend:t,attrs:{begin:y,size:N}});I=zn({inputs:{x:C},backend:t,attrs:{shape:m}}),t.disposeData(C.dataId)}else{let N=t.makeOutput(h,"float32"),C=t.dataIdMap.get(r.dataId).id,_=new Uint8Array(new Int32Array(w.computeStrides(r.shape)).buffer),F=new Uint8Array(new Int32Array(y).buffer),D=new Uint8Array(new Int32Array(x).buffer),$=new Uint8Array(new Int32Array(v).buffer),S=new Uint8Array(new Int32Array(h).buffer),M=new Uint8Array(new Int32Array(w.computeStrides(h)).buffer),B=t.dataIdMap.get(N.dataId).id;$$(C,_,r.shape.length,F,D,$,S,M,h.length,B),I=zn({inputs:{x:N},backend:t,attrs:{shape:m}}),t.disposeData(N.dataId)}return I}var Bme={kernelName:ju,backendName:"wasm",setupFunc:zme,kernelFunc:Wme};function Vme(e){let{backend:t,inputs:n,attrs:a}=e,{data:r,dataSplits:s}=n,{separator:i,nGramWidths:o,leftPad:l,rightPad:u,padWidth:p,preserveShortSequences:d}=a,c=t.readSync(r.dataId),h=t.readSync(s.dataId),[m,f]=U1(c,h,i,o,l,u,p,d),g=t.makeOutput([m.length],"string"),b=t.dataIdMap.get(g.dataId);b.stringBytes=m;let y=t.makeOutput(s.shape,"int32");return t.typedArrayFromHeap(y).set(f),[g,y]}var Ume={kernelName:Xc,backendName:"wasm",kernelFunc:Vme};function Gme(e){let{backend:t,inputs:n,attrs:a}=e,{input:r,delimiter:s}=n,{skipEmpty:i}=a,o=t.readSync(r.dataId),l=t.readSync(s.dataId),[u,p,d]=G1(o,l[0],i),c=p.length,h=t.makeOutput([c,2],"int32");t.typedArrayFromHeap(h).set(u);let m=t.makeOutput([c],"string"),f=t.dataIdMap.get(m.dataId);f.stringBytes=p;let g=t.makeOutput([2],"int32");return t.typedArrayFromHeap(g).set(d),[h,m,g]}var Hme={kernelName:Yc,backendName:"wasm",kernelFunc:Gme};function jme(e){let{backend:t,inputs:n,attrs:a}=e,{input:r}=n,{numBuckets:s}=a,i=t.readSync(r.dataId),o=H1(i,s),l=t.makeOutput(r.shape,"int32");return t.typedArrayFromHeap(l).set(o),l}var qme={kernelName:Zc,backendName:"wasm",kernelFunc:jme},Kme=!0,Xme=Ut(Bo,Kme),D$;function Yme(e){D$=e.wasm.cwrap(Lo,null,["number","number","number","number"])}function Zme(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:p,axes:d,originalAxes:c,inputWasTransposed:h}=Ds(i,r,t),m=d;if(h){let x=t.dataIdMap.get(p.dataId).id;x!==o&&(u=p,l=x,m=T.getInnerMostAxes(m.length,u.shape.length))}T.assertAxesAreInnerMostDims("sum",m,u.shape.length);let[f,g]=T.computeOutAndReduceShapes(u.shape,m),b=w.sizeFromShape(g),y=t.makeOutput(f,u.dtype);if(w.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;D$(l,b,Qe[y.dtype],x)}if(h&&t.disposeData(p.dataId),s){let x=T.expandShapeToKeepDim(y.shape,c);y.shape=x}return y}var Jme={kernelName:Lo,backendName:"wasm",setupFunc:Yme,kernelFunc:Zme},Qme=Xe(Vo),efe=Xe(Uo),R$;function tfe(e){R$=e.wasm.cwrap(Lu,null,["number","number","number","number","number","number","array","number","number","number"])}function nfe(e){let{backend:t,inputs:n,attrs:a}=e,{tensor:r,indices:s,updates:i}=n,{}=a,o=t.makeOutput(r.shape,r.dtype);if(w.sizeFromShape(r.shape)===0)return o;let{sliceRank:l,numUpdates:u,sliceSize:p,strides:d,outputSize:c}=sf.calculateShapes(i,s,r.shape),h=t.dataIdMap.get(s.dataId).id,m=t.dataIdMap.get(i.dataId).id,f=t.dataIdMap.get(r.dataId).id,g=new Uint8Array(new Int32Array(d).buffer),b=t.dataIdMap.get(o.dataId).id;return R$(h,m,Qe[i.dtype],l,u,p,g,c,b,f),o}var afe={kernelName:Lu,backendName:"wasm",setupFunc:tfe,kernelFunc:nfe},M$;function rfe(e){M$=e.wasm.cwrap(ks,null,["number","array","number","array","number","number"])}function sfe(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,s=n.dataIdMap.get(r.dataId).id,{reps:i}=a,o=new Array(r.shape.length);for(let c=0;c{let{x:a}=e,{k:r,sorted:s}=n,i=t.dataIdMap.get(a.dataId).id,o=new Uint8Array(new Int32Array(a.shape).buffer),l=a.shape.slice();l[l.length-1]=r;let u=t.makeOutput(l,a.dtype),p=t.dataIdMap.get(u.dataId).id,d=t.makeOutput(l,"int32"),c=t.dataIdMap.get(d.dataId).id;return O$(i,o,a.shape.length,Qe[a.dtype],r,s,p,c),[u,d]},ufe={kernelName:qu,backendName:"wasm",setupFunc:ofe,kernelFunc:lfe},P$;function pfe(e){P$=e.wasm.cwrap(Ku,null,["number","number","bool","number","number","number","number","number","number","array","number","array","number","number","number","number","number"])}function cfe(e){let{backend:t,inputs:n,attrs:a}=e,{image:r,transforms:s}=n,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=a,[p,d,c,h]=r.shape,[m,f]=u!=null?u:[d,c],g=[p,m,f,h],b=new Uint8Array(new Int32Array(w.computeStrides(r.shape)).buffer),y=new Uint8Array(new Int32Array(w.computeStrides(g)).buffer),x=t.makeOutput(g,r.dtype),v=t.dataIdMap.get(x.dataId).id,I=t.dataIdMap.get(r.dataId).id,N=t.dataIdMap.get(s.dataId).id,C=i==="nearest"?1:2,_;switch(o){case"constant":_=1;break;case"reflect":_=2;break;case"wrap":_=3;break;case"nearest":_=4;break;default:_=1;break}return P$(I,N,s.shape[0]>1,p,m,f,h,c,d,b,r.shape.length-1,y,g.length-1,C,_,l,v),x}var dfe={kernelName:Ku,backendName:"wasm",setupFunc:pfe,kernelFunc:cfe};function hfe(e){let{inputs:t,attrs:n,backend:a}=e,{axis:r}=n,{x:s}=t,{outputValues:i,outputShape:o,indices:l}=q1(a.readSync(s.dataId),r,s.shape,s.dtype);return[a.makeOutput(o,s.dtype,void 0,i),a.makeOutput([l.length],"int32",void 0,l)]}var mfe={kernelName:Jc,backendName:"wasm",kernelFunc:hfe};function ffe(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r.shape[s],o=r.shape.length,l=new Array(o-1),u=0;for(let h=0;h({dataId:h,dtype:m,shape:l}))}var gfe={kernelName:Xu,backendName:"wasm",kernelFunc:ffe};function bfe(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(a).fill(0),a}var yfe={kernelName:Yu,backendName:"wasm",kernelFunc:bfe},xfe=[eue,tue,nue,aue,sue,lue,gue,xue,vue,wue,kue,Iue,Sue,Nue,Tue,_ue,Lue,$ue,Mue,Vue,Kue,Zue,Que,tpe,npe,ape,ipe,ope,ppe,hpe,gpe,xpe,kpe,Ipe,Spe,Cpe,Ape,Dpe,Ope,zpe,Vpe,Hpe,Kpe,Zpe,ece,tce,rce,ice,oce,lce,uce,pce,cce,mce,fce,bce,vce,Ice,Tce,_ce,$ce,Rce,Oce,uue,Pce,Lce,zce,Vce,Gce,jce,Xce,Zce,Yce,Qce,ede,nde,rde,ode,pde,hde,fde,yde,wde,Sde,Cde,Ade,Dde,Ode,Lde,Bde,jde,qde,Xde,Yde,Qde,nhe,she,ohe,phe,dhe,mhe,d$,yhe,whe,She,The,Ehe,_he,Ahe,Fhe,zue,Rhe,Phe,Whe,Uhe,jhe,Xhe,Yhe,Zhe,eme,ame,ime,ome,pme,cme,dme,hme,jue,Ude,mme,gme,xme,kme,Sme,Tme,_me,Fme,$me,Dme,Mme,Lme,Bme,Ume,Hme,qme,Xme,Jme,Qme,efe,afe,ife,ufe,dfe,hue,mfe,gfe,yfe];for(let e of xfe)ed(e);var vv=G();vv.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>{try{return WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11]))}catch(e){return!1}});vv.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(vv.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var TS=xs(VR()),vfe=xs(UR()),CS=xs(GR()),ES=TS.default||TS,wfe=CS.default||CS,L$=class extends Fc{constructor(e){super(),this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.initWithThreadsCount(z$),wv=this.wasm.tfjs.getThreadsCount(),this.dataIdMap=new ym(this,Ta())}write(e,t,n){let a={id:this.dataIdNextNumber++};return this.move(a,e,t,n,1),a}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=w.now();return e(),{kernelMs:w.now()-t}}move(e,t,n,a,r){let s=this.dataIdNextNumber++;if(a==="string"){let u=t;this.dataIdMap.set(e,{id:s,stringBytes:u,shape:n,dtype:a,memoryOffset:null,refCount:r});return}let i=w.sizeFromShape(n),o=i*w.bytesPerElement(a),l=this.wasm._malloc(o)>>>0;this.dataIdMap.set(e,{id:s,memoryOffset:l,shape:n,dtype:a,refCount:r}),this.wasm.tfjs.registerTensor(s,i,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,o),l)}async read(e){return this.readSync(e)}readSync(e,t,n){let{memoryOffset:a,dtype:r,shape:s,stringBytes:i}=this.dataIdMap.get(e);if(r==="string")return(t==null||t===0)&&(n==null||n>=i.length)?i:i.slice(t,n);t=t||0,n=n||w.sizeFromShape(s);let o=w.bytesPerElement(r),l=this.wasm.HEAPU8.slice(a+t*o,a+n*o);return Sfe(l.buffer,r)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n,a){let r;if(n==null)r=this.write(a!=null?a:null,e,t);else{let s=this.dataIdNextNumber++;r={id:s},this.dataIdMap.set(r,{id:s,memoryOffset:n,shape:e,dtype:t,refCount:1});let i=w.sizeFromShape(e);this.wasm.tfjs.registerTensor(s,i,n)}return{dataId:r,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let a=this.wasm.HEAPU8.buffer,{memoryOffset:r}=this.dataIdMap.get(n),s=w.sizeFromShape(e);switch(t){case"float32":return new Float32Array(a,r,s);case"int32":return new Int32Array(a,r,s);case"bool":return new Uint8Array(a,r,s);default:throw new Error(`Unknown dtype ${t}`)}}};function kfe(e){return(t,n)=>(w.fetch(e,{credentials:"same-origin"}).then(a=>{a.ok||t.env.a(`failed to load wasm binary file at '${e}'`),a.arrayBuffer().then(r=>{WebAssembly.instantiate(r,t).then(s=>{n(s.instance,s.module)})})}),{})}function _S(e,t,n){if(gm!=null)return gm;let a="tfjs-backend-wasm.wasm";return e&&t?a="tfjs-backend-wasm-threaded-simd.wasm":e&&(a="tfjs-backend-wasm-simd.wasm"),cc!=null&&cc[a]!=null?cc[a]:n+a}async function Ife(){let[e,t]=await Promise.all([G().getAsync("WASM_HAS_SIMD_SUPPORT"),G().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,a)=>{let r={};r.locateFile=(o,l)=>{if(o.endsWith(".worker.js")){let u=vfe.wasmWorkerContents.replace(/\n/g,"\\n"),p=new Blob([u],{type:"application/javascript"});return URL.createObjectURL(p)}return o.endsWith(".wasm")?_S(e,t,lc!=null?lc:l):l+o},mk&&(r.instantiateWasm=kfe(_S(e,t,lc!=null?lc:"")));let s=!1;r.onAbort=()=>{s||dc||(dc=!0,a({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"}))};let i;t&&e&&gm==null?(r.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+ES.toString()],{type:"text/javascript"}),i=ES(r)):i=wfe(r),i.then(o=>{s=!0,dc=!1;let l=null;o.tfjs={init:o.cwrap("init",null,[]),initWithThreadsCount:o.cwrap("init_with_threads_count",null,["number"]),getThreadsCount:o.cwrap("get_threads_count","number",[]),registerTensor:o.cwrap("register_tensor",null,["number","number","number"]),disposeData:o.cwrap("dispose_data",l,["number"]),dispose:o.cwrap("dispose",l,[])},n({wasm:o})}).catch(a)})}function Sfe(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var Nfe=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],gm=null,lc=null,cc={},dc=!1,mk=!1;function Tfe(e,t=!1){if($v("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),dc)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");gm=e,mk=t}function Cfe(e,t=!1){if(dc)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")lc=e;else{cc=e;let n=Nfe.filter(a=>cc[a]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}mk=t}var z$=-1,wv=-1;function Efe(e){z$=e}function _fe(){if(wv===-1)throw new Error("WASM backend not initialized.");return wv}var Afe="4.22.0",Ffe=2;Om("wasm",async()=>{let{wasm:e}=await Ife();return new L$(e)},Ffe);var AS="4.22.0",$fe="4.22.0",Dfe="4.22.0",Rfe="4.22.0",Mfe="4.22.0",Ofe={tfjs:AS,"tfjs-core":AS,"tfjs-converter":$fe,"tfjs-backend-cpu":Dfe,"tfjs-backend-webgl":Rfe,"tfjs-backend-wasm":Mfe};var iD={};ax(iD,{AnchorPosition:()=>Ik,DrawBox:()=>Od,DrawBoxOptions:()=>Xf,DrawFaceLandmarks:()=>og,DrawFaceLandmarksOptions:()=>ig,DrawTextField:()=>sl,DrawTextFieldOptions:()=>Ip,drawContour:()=>Pr,drawDetections:()=>Ufe,drawFaceExpressions:()=>Gfe,drawFaceLandmarks:()=>jfe});function Pr(e,t,n=!1){if(e.beginPath(),t.slice(1).forEach(({x:a,y:r},s)=>{let i=t[s];e.moveTo(i.x,i.y),e.lineTo(a,r)}),n){let a=t[t.length-1],r=t[0];if(!a||!r)return;e.moveTo(a.x,a.y),e.lineTo(r.x,r.y)}e.stroke()}var W$={};ax(W$,{computeReshapedDimensions:()=>bk,getCenterPoint:()=>al,isDimensions:()=>jf,isEven:()=>Hf,isFloat:()=>gk,isTensor:()=>tl,isTensor1D:()=>Pfe,isTensor2D:()=>fk,isTensor3D:()=>Lr,isTensor4D:()=>wa,isValidNumber:()=>Xa,isValidProbablitiy:()=>gp,range:()=>gr,round:()=>nl});var aa=class e{constructor(t,n){if(!Xa(t)||!Xa(n))throw new Error(`Dimensions.constructor - expected width and height to be valid numbers, instead have ${JSON.stringify({width:t,height:n})}`);this._width=t,this._height=n}get width(){return this._width}get height(){return this._height}reverse(){return new e(1/this.width,1/this.height)}};function tl(e,t){return e instanceof Ce&&e.shape.length===t}function Pfe(e){return tl(e,1)}function fk(e){return tl(e,2)}function Lr(e){return tl(e,3)}function wa(e){return tl(e,4)}function gk(e){return e%1!==0}function Hf(e){return e%2===0}function nl(e,t=2){let n=10**t;return Math.floor(e*n)/n}function jf(e){return e&&e.width&&e.height}function bk({width:e,height:t},n){let a=n/Math.max(t,e);return new aa(Math.round(e*a),Math.round(t*a))}function al(e){return e.reduce((t,n)=>t.add(n),new He(0,0)).div(new He(e.length,e.length))}function gr(e,t,n){return Array(e).fill(0).map((a,r)=>t+r*n)}function Xa(e){return!!e&&e!==1/0&&e!==-1/0&&!Number.isNaN(e)||e===0}function gp(e){return Xa(e)&&e>=0&&e<=1}var He=class e{constructor(t,n){this._x=t,this._y=n}get x(){return this._x}get y(){return this._y}add(t){return new e(this.x+t.x,this.y+t.y)}sub(t){return new e(this.x-t.x,this.y-t.y)}mul(t){return new e(this.x*t.x,this.y*t.y)}div(t){return new e(this.x/t.x,this.y/t.y)}abs(){return new e(Math.abs(this.x),Math.abs(this.y))}magnitude(){return Math.sqrt(this.x**2+this.y**2)}floor(){return new e(Math.floor(this.x),Math.floor(this.y))}};var mn=class e{static isRect(t){return!!t&&[t.x,t.y,t.width,t.height].every(Xa)}static assertIsValidBox(t,n,a=!1){if(!e.isRect(t))throw new Error(`${n} - invalid box: ${JSON.stringify(t)}, expected object with properties x, y, width, height`);if(!a&&(t.width<0||t.height<0))throw new Error(`${n} - width (${t.width}) and height (${t.height}) must be positive numbers`)}constructor(t,n=!0){let a=t||{},r=[a.left,a.top,a.right,a.bottom].every(Xa),s=[a.x,a.y,a.width,a.height].every(Xa);if(!s&&!r)throw new Error(`Box.constructor - expected box to be IBoundingBox | IRect, instead have ${JSON.stringify(a)}`);let[i,o,l,u]=s?[a.x,a.y,a.width,a.height]:[a.left,a.top,a.right-a.left,a.bottom-a.top];e.assertIsValidBox({x:i,y:o,width:l,height:u},"Box.constructor",n),this._x=i,this._y=o,this._width=l,this._height=u}get x(){return this._x}get y(){return this._y}get width(){return this._width}get height(){return this._height}get left(){return this.x}get top(){return this.y}get right(){return this.x+this.width}get bottom(){return this.y+this.height}get area(){return this.width*this.height}get topLeft(){return new He(this.left,this.top)}get topRight(){return new He(this.right,this.top)}get bottomLeft(){return new He(this.left,this.bottom)}get bottomRight(){return new He(this.right,this.bottom)}round(){let[t,n,a,r]=[this.x,this.y,this.width,this.height].map(s=>Math.round(s));return new e({x:t,y:n,width:a,height:r})}floor(){let[t,n,a,r]=[this.x,this.y,this.width,this.height].map(s=>Math.floor(s));return new e({x:t,y:n,width:a,height:r})}toSquare(){let{x:t,y:n,width:a,height:r}=this,s=Math.abs(a-r);return an&&(o=-d+n+a,d=n),c>t&&(l=-c+t+r,c=t),u<1&&(l=2-u,u=1),p<1&&(l=2-p,p=1),{dy:i,edy:l,dx:s,edx:o,y:p,ey:c,x:u,ex:d,w:a,h:r}}calibrate(t){return new e({left:this.left+t.left*this.width,top:this.top+t.top*this.height,right:this.right+t.right*this.width,bottom:this.bottom+t.bottom*this.height}).toSquare().round()}};var bp=class extends mn{constructor(t,n,a,r,s=!1){super({left:t,top:n,right:a,bottom:r},s)}};var yp=class e{constructor(t,n,a,r,s){this._imageDims=new aa(s.width,s.height),this._score=t,this._classScore=n,this._className=a,this._box=new mn(r).rescale(this._imageDims)}get score(){return this._score}get classScore(){return this._classScore}get className(){return this._className}get box(){return this._box}get imageDims(){return this._imageDims}get imageWidth(){return this.imageDims.width}get imageHeight(){return this.imageDims.height}get relativeBox(){return new mn(this._box).rescale(this.imageDims.reverse())}forSize(t,n){return new e(this.score,this.classScore,this.className,this.relativeBox,{width:t,height:n})}};var Ft=class e extends yp{constructor(t,n,a){super(t,t,"",n,a)}forSize(t,n){let{score:a,relativeBox:r,imageDims:s}=super.forSize(t,n);return new e(a,r,s)}};function B$(e,t,n=!0){let a=Math.max(0,Math.min(e.right,t.right)-Math.max(e.left,t.left)),r=Math.max(0,Math.min(e.bottom,t.bottom)-Math.max(e.top,t.top)),s=a*r;return n?s/(e.area+t.area-s):s/Math.min(e.area,t.area)}function V$(e){let t=e.map(o=>o.x),n=e.map(o=>o.y),a=t.reduce((o,l)=>lloo({score:i,boxIndex:o})).sort((i,o)=>i.score-o.score).map(i=>i.boxIndex),s=[];for(;r.length>0;){let i=r.pop();s.push(i);let o=r,l=[];for(let u=0;ul[p]<=n)}return s}function br(e,t){return O(()=>{let[n,a,r]=t,s=yn([...e.shape.slice(0,3),1],n,"float32"),i=yn([...e.shape.slice(0,3),1],a,"float32"),o=yn([...e.shape.slice(0,3),1],r,"float32"),l=et([s,i,o],3);return pe(e,l)})}function G$(e,t=!1){return O(()=>{let[n,a]=e.shape.slice(1);if(n===a)return e;let r=Math.abs(n-a),s=Math.round(r*(t?.5:1)),i=n>a?2:1,o=c=>{let h=e.shape.slice();return h[i]=c,yn(h,0,"float32")},l=o(s),u=r-l.shape[i],d=[t&&u?o(u):null,e,l].filter(c=>!!c).map(c=>re(c,"float32"));return et(d,i)})}function y0e(e){let t=e.slice();for(let n=t.length-1;n>0;n--){let a=Math.floor(Math.random()*(n+1)),r=t[n];t[n]=t[a],t[a]=r}return t}function qf(e){return 1/(1+Math.exp(-e))}function v0e(e){return Math.log(e/(1-e))}var xp=class extends mn{constructor(t,n,a,r,s=!1){super({x:t,y:n,width:a,height:r},s)}};var Lfe=.5,zfe=.43,Wfe=.45,ka=class{constructor(t,n,a=new He(0,0)){let{width:r,height:s}=n;this._imgDims=new aa(r,s),this._shift=a,this._positions=t.map(i=>i.mul(new He(r,s)).add(a))}get shift(){return new He(this._shift.x,this._shift.y)}get imageWidth(){return this._imgDims.width}get imageHeight(){return this._imgDims.height}get positions(){return this._positions}get relativePositions(){return this._positions.map(t=>t.sub(this._shift).div(new He(this.imageWidth,this.imageHeight)))}forSize(t,n){return new this.constructor(this.relativePositions,{width:t,height:n})}shiftBy(t,n){return new this.constructor(this.relativePositions,this._imgDims,new He(t,n))}shiftByPoint(t){return this.shiftBy(t.x,t.y)}align(t,n={}){if(t){let s=t instanceof Ft?t.box.floor():new mn(t);return this.shiftBy(s.x,s.y).align(null,n)}let{useDlibAlignment:a,minBoxPadding:r}={useDlibAlignment:!1,minBoxPadding:.2,...n};return a?this.alignDlib():this.alignMinBbox(r)}alignDlib(){let t=this.getRefPointsForAlignment(),[n,a,r]=t,s=d=>r.sub(d).magnitude(),i=(s(n)+s(a))/2,o=Math.floor(i/Wfe),l=al(t),u=Math.floor(Math.max(0,l.x-Lfe*o)),p=Math.floor(Math.max(0,l.y-zfe*o));return new xp(u,p,Math.min(o,this.imageWidth+u),Math.min(o,this.imageHeight+p))}alignMinBbox(t){let n=V$(this.positions);return n.pad(n.width*t,n.height*t)}getRefPointsForAlignment(){throw new Error("getRefPointsForAlignment not implemented by base class")}};var H$=class extends ka{getRefPointsForAlignment(){let t=this.positions;return[t[0],t[1],al([t[3],t[4]])]}};var vp=class extends ka{getJawOutline(){return this.positions.slice(0,17)}getLeftEyeBrow(){return this.positions.slice(17,22)}getRightEyeBrow(){return this.positions.slice(22,27)}getNose(){return this.positions.slice(27,36)}getLeftEye(){return this.positions.slice(36,42)}getRightEye(){return this.positions.slice(42,48)}getMouth(){return this.positions.slice(48,68)}getRefPointsForAlignment(){return[this.getLeftEye(),this.getRightEye(),this.getMouth()].map(al)}};var Dd=class{constructor(t,n){this._label=t,this._distance=n}get label(){return this._label}get distance(){return this._distance}toString(t=!0){return`${this.label}${t?` (${nl(this.distance)})`:""}`}};var Rd=class extends mn{static assertIsValidLabeledBox(t,n){if(mn.assertIsValidBox(t,n),!Xa(t.label))throw new Error(`${n} - expected property label (${t.label}) to be a number`)}constructor(t,n){super(t),this._label=n}get label(){return this._label}};var rl=class e{constructor(t,n){if(typeof t!="string")throw new Error("LabeledFaceDescriptors - constructor expected label to be a string");if(!Array.isArray(n)||n.some(a=>!(a instanceof Float32Array)))throw new Error("LabeledFaceDescriptors - constructor expected descriptors to be an array of Float32Array");this._label=t,this._descriptors=n}get label(){return this._label}get descriptors(){return this._descriptors}toJSON(){return{label:this.label,descriptors:this.descriptors.map(t=>Array.from(t))}}static fromJSON(t){let n=t.descriptors.map(a=>new Float32Array(a));return new e(t.label,n)}};var j$=class extends Rd{static assertIsValidPredictedBox(t,n){if(Rd.assertIsValidLabeledBox(t,n),!gp(t.score)||!gp(t.classScore))throw new Error(`${n} - expected properties score (${t.score}) and (${t.classScore}) to be a number between [0, 1]`)}constructor(t,n,a,r){super(t,n),this._score=a,this._classScore=r}get score(){return this._score}get classScore(){return this._classScore}};function zr(e){return e.detection instanceof Ft}function wp(e,t){return{...e,...{detection:t}}}function yk(){let e=window.fetch;if(!e)throw new Error("fetch - missing fetch implementation for browser environment");return{Canvas:HTMLCanvasElement,CanvasRenderingContext2D,Image:HTMLImageElement,ImageData,Video:HTMLVideoElement,createCanvasElement:()=>document.createElement("canvas"),createImageElement:()=>document.createElement("img"),createVideoElement:()=>document.createElement("video"),fetch:e,readFile:()=>{throw new Error("readFile - filesystem not available for browser environment")}}}function Md(){return typeof global=="object"&&typeof process!="undefined"&&process.versions!=null&&process.versions.node!=null}function Kf(e){let t="";if(!e&&Md())try{e=wR("fs")}catch(a){t=a.toString()}return{readFile:e?a=>new Promise((r,s)=>{e.readFile(a,(i,o)=>i?s(i):r(o))}):()=>{throw new Error(`readFile - failed to require fs in nodejs environment with error: ${t}`)}}}function xk(){let e=global.Canvas||global.HTMLCanvasElement,t=global.Image||global.HTMLImageElement,n=global.Video||global.HTMLVideoElement,a=()=>{if(e)return new e;throw new Error("createCanvasElement - missing Canvas implementation for nodejs environment")},r=()=>{if(t)return new t;throw new Error("createImageElement - missing Image implementation for nodejs environment")},s=()=>{if(n)return new n;throw new Error("createVideoElement - missing Video implementation for nodejs environment")},i=global.fetch,o=Kf();return{Canvas:e||class{},CanvasRenderingContext2D:global.CanvasRenderingContext2D||class{},Image:t||class{},ImageData:global.ImageData||class{},Video:global.HTMLVideoElement||class{},createCanvasElement:a,createImageElement:r,createVideoElement:s,fetch:i,...o}}function vk(){return typeof window=="object"&&typeof document!="undefined"&&typeof HTMLImageElement!="undefined"&&typeof HTMLCanvasElement!="undefined"&&typeof HTMLVideoElement!="undefined"&&typeof ImageData!="undefined"&&typeof CanvasRenderingContext2D!="undefined"}var ln;function Bfe(){if(!ln)throw new Error("getEnv - environment is not defined, check isNodejs() and isBrowser()");return ln}function wk(e){ln=e}function kk(){return vk()?wk(yk()):Md()?wk(xk()):null}function Vfe(e){if(ln||kk(),!ln)throw new Error("monkeyPatch - environment is not defined, check isNodejs() and isBrowser()");let{Canvas:t=ln.Canvas,Image:n=ln.Image}=e;ln.Canvas=t,ln.Image=n,ln.createCanvasElement=e.createCanvasElement||(()=>new t),ln.createImageElement=e.createImageElement||(()=>new n),ln.ImageData=e.ImageData||ln.ImageData,ln.Video=e.Video||ln.Video,ln.fetch=e.fetch||ln.fetch,ln.readFile=e.readFile||ln.readFile}var at={getEnv:Bfe,setEnv:wk,initialize:kk,createBrowserEnv:yk,createFileSystem:Kf,createNodejsEnv:xk,monkeyPatch:Vfe,isBrowser:vk,isNodejs:Md};kk();function kp(e){return!at.isNodejs()&&typeof e=="string"?document.getElementById(e):e}function ra(e){let{Canvas:t,CanvasRenderingContext2D:n}=at.getEnv();if(e instanceof n)return e;let a=kp(e);if(!(a instanceof t))throw new Error("resolveContext2d - expected canvas to be of instance of Canvas");let r=a.getContext("2d",{willReadFrequently:!0});if(!r)throw new Error("resolveContext2d - canvas 2d context is null");return r}var Ik=(r=>(r.TOP_LEFT="TOP_LEFT",r.TOP_RIGHT="TOP_RIGHT",r.BOTTOM_LEFT="BOTTOM_LEFT",r.BOTTOM_RIGHT="BOTTOM_RIGHT",r))(Ik||{}),Ip=class{constructor(t={}){let{anchorPosition:n,backgroundColor:a,fontColor:r,fontSize:s,fontStyle:i,padding:o}=t;this.anchorPosition=n||"TOP_LEFT",this.backgroundColor=a||"rgba(0, 0, 0, 0.5)",this.fontColor=r||"rgba(255, 255, 255, 1)",this.fontSize=s||14,this.fontStyle=i||"Georgia",this.padding=o||4}},sl=class e{constructor(t,n,a={}){this.text=typeof t=="string"?[t]:t instanceof e?t.text:t,this.anchor=n,this.options=new Ip(a)}measureWidth(t){let{padding:n}=this.options;return this.text.map(a=>t.measureText(a).width).reduce((a,r)=>a{let m=l+d.x,f=l+d.y+(h+1)*i;a.fillText(c,m,f)})}};var Xf=class{constructor(t={}){let{boxColor:n,lineWidth:a,label:r,drawLabelOptions:s}=t;this.boxColor=n||"rgba(0, 0, 255, 1)",this.lineWidth=a||2,this.label=r;let i={anchorPosition:"BOTTOM_LEFT",backgroundColor:this.boxColor};this.drawLabelOptions=new Ip({...i,...s})}},Od=class{constructor(t,n={}){this.box=new mn(t),this.options=new Xf(n)}draw(t){let n=ra(t),{boxColor:a,lineWidth:r}=this.options,{x:s,y:i,width:o,height:l}=this.box;n.strokeStyle=a,n.lineWidth=r,n.strokeRect(s,i,o,l);let{label:u}=this.options;u&&new sl([u],{x:s-r/2,y:i},this.options.drawLabelOptions).draw(t)}};function Ufe(e,t){(Array.isArray(t)?t:[t]).forEach(a=>{let r=a instanceof Ft?a.score:zr(a)?a.detection.score:void 0,s=a instanceof Ft?a.box:zr(a)?a.detection.box:new mn(a),i=r?`${nl(r)}`:void 0;new Od(s,{label:i}).draw(e)})}function Yf(e){let{Image:t,Video:n}=at.getEnv();return e instanceof t&&e.complete||e instanceof n&&e.readyState>=3}function q$(e){return new Promise((t,n)=>{if(e instanceof at.getEnv().Canvas||Yf(e)){t(null);return}function a(s){s.currentTarget&&(s.currentTarget.removeEventListener("load",r),s.currentTarget.removeEventListener("error",a),n(s))}function r(s){s.currentTarget&&(s.currentTarget.removeEventListener("load",r),s.currentTarget.removeEventListener("error",a),t(s))}e.addEventListener("load",r),e.addEventListener("error",a)})}function K$(e){return new Promise((t,n)=>{e instanceof Blob||n(new Error("bufferToImage - expected buf to be of type: Blob"));let a=new FileReader;a.onload=()=>{typeof a.result!="string"&&n(new Error("bufferToImage - expected reader.result to be a string, in onload"));let r=at.getEnv().createImageElement();r.onload=()=>t(r),r.onerror=n,r.src=a.result},a.onerror=n,a.readAsDataURL(e)})}function Sp(e){let{Image:t,Video:n}=at.getEnv();return e instanceof t?new aa(e.naturalWidth,e.naturalHeight):e instanceof n?new aa(e.videoWidth,e.videoHeight):new aa(e.width,e.height)}function Np({width:e,height:t}){let{createCanvasElement:n}=at.getEnv(),a=n();return a.width=e,a.height=t,a}function Zf(e,t){let{ImageData:n}=at.getEnv();if(!(e instanceof n)&&!Yf(e))throw new Error("createCanvasFromMedia - media has not finished loading yet");let{width:a,height:r}=t||Sp(e),s=Np({width:a,height:r});return e instanceof n?ra(s).putImageData(e,0,0):ra(s).drawImage(e,0,0,a,r),s}async function X$(e,t){let n=t||at.getEnv().createCanvasElement(),[a,r,s]=e.shape.slice(wa(e)?1:0),i=O(()=>e.as3D(a,r,s).toInt());return await qo.toPixels(i,n),i.dispose(),n}function Sk(e){let{Image:t,Canvas:n,Video:a}=at.getEnv();return e instanceof t||e instanceof n||e instanceof a}function Y$(e,t,n=!1){let{Image:a,Canvas:r}=at.getEnv();if(!(e instanceof a||e instanceof r))throw new Error("imageToSquare - expected arg0 to be HTMLImageElement | HTMLCanvasElement");if(t<=0)return Np({width:1,height:1});let s=Sp(e),i=t/Math.max(s.height,s.width),o=i*s.width,l=i*s.height,u=Np({width:t,height:t}),p=e instanceof r?e:Zf(e),d=Math.abs(o-l)/2,c=n&&o0&&p.height>0&&ra(u).drawImage(p,c,h,o,l),u}var Wr=class{constructor(t,n=!1){this._imageTensors=[];this._canvases=[];this._treatAsBatchInput=!1;this._inputDimensions=[];this._inputSize=0;if(!Array.isArray(t))throw new Error(`NetInput.constructor - expected inputs to be an Array of TResolvedNetInput or to be instanceof tf.Tensor4D, instead have ${t}`);this._treatAsBatchInput=n,this._batchSize=t.length,t.forEach((a,r)=>{if(Lr(a)){this._imageTensors[r]=a,this._inputDimensions[r]=a.shape;return}if(wa(a)){let i=a.shape[0];if(i!==1)throw new Error(`NetInput - tf.Tensor4D with batchSize ${i} passed, but not supported in input array`);this._imageTensors[r]=a,this._inputDimensions[r]=a.shape.slice(1);return}let s=a instanceof at.getEnv().Canvas?a:Zf(a);this._canvases[r]=s,this._inputDimensions[r]=[s.height,s.width,3]})}get imageTensors(){return this._imageTensors}get canvases(){return this._canvases}get isBatchInput(){return this.batchSize>1||this._treatAsBatchInput}get batchSize(){return this._batchSize}get inputDimensions(){return this._inputDimensions}get inputSize(){return this._inputSize}get reshapedInputDimensions(){return gr(this.batchSize,0,1).map((t,n)=>this.getReshapedInputDimensions(n))}getInput(t){return this.canvases[t]||this.imageTensors[t]}getInputDimensions(t){return this._inputDimensions[t]}getInputHeight(t){return this._inputDimensions[t][0]}getInputWidth(t){return this._inputDimensions[t][1]}getReshapedInputDimensions(t){if(typeof this.inputSize!="number")throw new Error("getReshapedInputDimensions - inputSize not set, toBatchTensor has not been called yet");let n=this.getInputWidth(t),a=this.getInputHeight(t);return bk({width:n,height:a},this.inputSize)}toBatchTensor(t,n=!0){return this._inputSize=t,O(()=>{let a=gr(this.batchSize,0,1).map(s=>{let i=this.getInput(s);if(i instanceof Ce){let o=wa(i)?i:Gt(i);return o=G$(o,n),(o.shape[1]!==t||o.shape[2]!==t)&&(o=Zn.resizeBilinear(o,[t,t],!1,!1)),o.as3D(t,t,3)}if(i instanceof at.getEnv().Canvas)return qo.fromPixels(Y$(i,t,n));throw new Error(`toBatchTensor - at batchIdx ${s}, expected input to be instanceof tf.Tensor or instanceof HTMLCanvasElement, instead have ${i}`)});return At(a.map(s=>re(s,"float32"))).as4D(this.batchSize,t,t,3)})}};async function vt(e){if(e instanceof Wr)return e;let t=Array.isArray(e)?e:[e];if(!t.length)throw new Error("toNetInput - empty array passed as input");let n=r=>Array.isArray(e)?` at input index ${r}:`:"",a=t.map(kp);return a.forEach((r,s)=>{if(!Sk(r)&&!Lr(r)&&!wa(r))throw typeof t[s]=="string"?new Error(`toNetInput -${n(s)} string passed, but could not resolve HTMLElement for element id ${t[s]}`):new Error(`toNetInput -${n(s)} expected media to be of type HTMLImageElement | HTMLVideoElement | HTMLCanvasElement | tf.Tensor3D, or to be an element id`);if(wa(r)){let i=r.shape[0];if(i!==1)throw new Error(`toNetInput -${n(s)} tf.Tensor4D with batchSize ${i} passed, but not supported in input array`)}}),await Promise.all(a.map(r=>Sk(r)&&q$(r))),new Wr(a,Array.isArray(e))}async function Pd(e,t){let{Canvas:n}=at.getEnv(),a=e;if(!(e instanceof n)){let i=await vt(e);if(i.batchSize>1)throw new Error("extractFaces - batchSize > 1 not supported");let o=i.getInput(0);a=o instanceof n?o:await X$(o)}let r=ra(a);return t.map(i=>i instanceof Ft?i.forSize(a.width,a.height).box.floor():i).map(i=>i.clipAtImageBorders(a.width,a.height)).map(({x:i,y:o,width:l,height:u})=>{let p=Np({width:l,height:u});return l>0&&u>0&&ra(p).putImageData(r.getImageData(i,o,l,u),0,0),p})}async function Ld(e,t){if(!Lr(e)&&!wa(e))throw new Error("extractFaceTensors - expected image tensor to be 3D or 4D");if(wa(e)&&e.shape[0]>1)throw new Error("extractFaceTensors - batchSize > 1 not supported");return O(()=>{let[n,a,r]=e.shape.slice(wa(e)?1:0);return t.map(o=>o instanceof Ft?o.forSize(a,n).box:o).map(o=>o.clipAtImageBorders(a,n)).filter(o=>o.width>0&&o.height>0).map(({x:o,y:l,width:u,height:p})=>Ho(e.as3D(n,a,r),[l,o,0],[p,u,r]))})}async function Ms(e,t){let{fetch:n}=at.getEnv(),a=await n(e,t);if(!(a.status<400))throw new Error(`failed to fetch: (${a.status}) ${a.statusText}, from url: ${a.url}`);return a}async function sIe(e){let t=await Ms(e),n=await t.blob();if(!n.type.startsWith("image/"))throw new Error(`fetchImage - expected blob type to be of type image/*, instead have: ${n.type}, for url: ${t.url}`);return K$(n)}async function Z$(e){return(await Ms(e)).json()}async function pIe(e){return new Float32Array(await(await Ms(e)).arrayBuffer())}function J$(e){return new Promise((t,n)=>{e instanceof Blob||n(new Error("bufferToVideo - expected buf to be of type: Blob"));let a=at.getEnv().createVideoElement();a.oncanplay=()=>t(a),a.onerror=n,a.playsInline=!0,a.muted=!0,a.src=URL.createObjectURL(e),a.play()})}async function gIe(e){let t=await Ms(e),n=await t.blob();if(!n.type.startsWith("video/"))throw new Error(`fetchVideo - expected blob type to be of type video/*, instead have: ${n.type}, for url: ${t.url}`);return J$(n)}function Jf(e,t){let n=`${t}-weights_manifest.json`;if(!e)return{modelBaseUri:"",manifestUri:n};if(e==="/")return{modelBaseUri:"/",manifestUri:`/${n}`};let a=e.startsWith("http://")?"http://":e.startsWith("https://")?"https://":"";e=e.replace(a,"");let r=e.split("/").filter(o=>o),s=e.endsWith(".json")?r[r.length-1]:n,i=a+(e.endsWith(".json")?r.slice(0,r.length-1):r).join("/");return i=e.startsWith("/")?`/${i}`:i,{modelBaseUri:i,manifestUri:i==="/"?`/${s}`:`${i}/${s}`}}async function Q$(e,t){let{manifestUri:n,modelBaseUri:a}=Jf(e,t),r=await Z$(n);return jt.loadWeights(r,a)}function IIe(e,t,n=!1){let{width:a,height:r}=n?Sp(t):t;return e.width=a,e.height=r,{width:a,height:r}}var fn=class{constructor(t){this._params=void 0;this._paramMappings=[];this._name=t}get params(){return this._params}get paramMappings(){return this._paramMappings}get isLoaded(){return!!this.params}getParamFromPath(t){let{obj:n,objProp:a}=this.traversePropertyPath(t);return n[a]}reassignParamFromPath(t,n){let{obj:a,objProp:r}=this.traversePropertyPath(t);a[r].dispose(),a[r]=n}getParamList(){return this._paramMappings.map(({paramPath:t})=>({path:t,tensor:this.getParamFromPath(t)}))}getTrainableParams(){return this.getParamList().filter(t=>t.tensor instanceof os)}getFrozenParams(){return this.getParamList().filter(t=>!(t.tensor instanceof os))}variable(){this.getFrozenParams().forEach(({path:t,tensor:n})=>{this.reassignParamFromPath(t,n.variable())})}freeze(){this.getTrainableParams().forEach(({path:t,tensor:n})=>{let a=bn(n.dataSync());n.dispose(),this.reassignParamFromPath(t,a)})}dispose(t=!0){this.getParamList().forEach(n=>{if(t&&n.tensor.isDisposed)throw new Error(`param tensor has already been disposed for path ${n.path}`);n.tensor.dispose()}),this._params=void 0}serializeParams(){return new Float32Array(this.getParamList().map(({tensor:t})=>Array.from(t.dataSync())).reduce((t,n)=>t.concat(n)))}async load(t){if(t instanceof Float32Array){this.extractWeights(t);return}await this.loadFromUri(t)}async loadFromUri(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromUri - expected model uri`);let n=await Q$(t,this.getDefaultModelName());this.loadFromWeightMap(n)}async loadFromDisk(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromDisk - expected model file path`);let{readFile:n}=at.getEnv(),{manifestUri:a,modelBaseUri:r}=Jf(t,this.getDefaultModelName()),s=u=>Promise.all(u.map(p=>n(p).then(d=>typeof d=="string"?Buffer.from(d):d.buffer))),i=jt.weightsLoaderFactory(s),o=JSON.parse((await n(a)).toString()),l=await i(o,r);this.loadFromWeightMap(l)}loadFromWeightMap(t){let{paramMappings:n,params:a}=this.extractParamsFromWeightMap(t);this._paramMappings=n,this._params=a}extractWeights(t){let{paramMappings:n,params:a}=this.extractParams(t);this._paramMappings=n,this._params=a}traversePropertyPath(t){if(!this.params)throw new Error("traversePropertyPath - model has no loaded params");let n=t.split("/").reduce((s,i)=>{if(!s.nextObj.hasOwnProperty(i))throw new Error(`traversePropertyPath - object does not have property ${i}, for path ${t}`);return{obj:s.nextObj,objProp:i,nextObj:s.nextObj[i]}},{nextObj:this.params}),{obj:a,objProp:r}=n;if(!a||!r||!(a[r]instanceof Ce))throw new Error(`traversePropertyPath - parameter is not a tensor, for path ${t}`);return{obj:a,objProp:r}}};function Un(e,t,n){return O(()=>{let a=_s(e,t.depthwise_filter,t.pointwise_filter,n,"same");return a=X(a,t.bias),a})}function Qf(e,t,n=!1){return O(()=>{let a=Ke(n?X($t(e,t.conv0.filters,[2,2],"same"),t.conv0.bias):Un(e,t.conv0,[2,2])),r=Un(a,t.conv1,[1,1]),s=Ke(X(a,r)),i=Un(s,t.conv2,[1,1]);return Ke(X(a,X(r,i)))})}function zd(e,t,n=!1,a=!0){return O(()=>{let r=Ke(n?X($t(e,t.conv0.filters,a?[2,2]:[1,1],"same"),t.conv0.bias):Un(e,t.conv0,a?[2,2]:[1,1])),s=Un(r,t.conv1,[1,1]),i=Ke(X(r,s)),o=Un(i,t.conv2,[1,1]),l=Ke(X(r,X(s,o))),u=Un(l,t.conv3,[1,1]);return Ke(X(r,X(s,X(o,u))))})}function il(e,t,n="same",a=!1){return O(()=>{let r=X($t(e,t.filters,[1,1],n),t.bias);return a?Ke(r):r})}function _n(e,t){Object.keys(e).forEach(n=>{t.some(a=>a.originalPath===n)||e[n].dispose()})}function Tp(e,t){return(n,a,r,s)=>{let i=Fa(e(n*a*r*r),[r,r,n,a]),o=je(e(a));return t.push({paramPath:`${s}/filters`},{paramPath:`${s}/bias`}),{filters:i,bias:o}}}function eg(e,t){return(n,a,r)=>{let s=Ea(e(n*a),[n,a]),i=je(e(a));return t.push({paramPath:`${r}/weights`},{paramPath:`${r}/bias`}),{weights:s,bias:i}}}var Wd=class{constructor(t,n,a){this.depthwise_filter=t;this.pointwise_filter=n;this.bias=a}};function Cp(e,t){return(n,a,r)=>{let s=Fa(e(9*n),[3,3,n,1]),i=Fa(e(n*a),[1,1,n,a]),o=je(e(a));return t.push({paramPath:`${r}/depthwise_filter`},{paramPath:`${r}/pointwise_filter`},{paramPath:`${r}/bias`}),new Wd(s,i,o)}}function Ep(e){return t=>{let n=e(`${t}/depthwise_filter`,4),a=e(`${t}/pointwise_filter`,4),r=e(`${t}/bias`,1);return new Wd(n,a,r)}}function sa(e,t){return(n,a,r)=>{let s=e[n];if(!tl(s,a))throw new Error(`expected weightMap[${n}] to be a Tensor${a}D, instead have ${s}`);return t.push({originalPath:n,paramPath:r||n}),s}}function An(e){let t=e;function n(r){let s=t.slice(0,r);return t=t.slice(r),s}function a(){return t}return{extractWeights:n,getRemainingWeights:a}}function tg(e,t){let n=Tp(e,t),a=Cp(e,t);function r(i,o,l,u=!1){let p=u?n(i,o,3,`${l}/conv0`):a(i,o,`${l}/conv0`),d=a(o,o,`${l}/conv1`),c=a(o,o,`${l}/conv2`);return{conv0:p,conv1:d,conv2:c}}function s(i,o,l,u=!1){let{conv0:p,conv1:d,conv2:c}=r(i,o,l,u),h=a(o,o,`${l}/conv3`);return{conv0:p,conv1:d,conv2:c,conv3:h}}return{extractDenseBlock3Params:r,extractDenseBlock4Params:s}}function eD(e){let t=[],{extractWeights:n,getRemainingWeights:a}=An(e),{extractDenseBlock4Params:r}=tg(n,t),s=r(3,32,"dense0",!0),i=r(32,64,"dense1"),o=r(64,128,"dense2"),l=r(128,256,"dense3");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{dense0:s,dense1:i,dense2:o,dense3:l}}}function ng(e){return t=>{let n=e(`${t}/filters`,4),a=e(`${t}/bias`,1);return{filters:n,bias:a}}}function ag(e,t){let n=sa(e,t),a=ng(n),r=Ep(n);function s(o,l=!1){let u=l?a(`${o}/conv0`):r(`${o}/conv0`),p=r(`${o}/conv1`),d=r(`${o}/conv2`);return{conv0:u,conv1:p,conv2:d}}function i(o,l=!1){let u=l?a(`${o}/conv0`):r(`${o}/conv0`),p=r(`${o}/conv1`),d=r(`${o}/conv2`),c=r(`${o}/conv3`);return{conv0:u,conv1:p,conv2:d,conv3:c}}return{extractDenseBlock3Params:s,extractDenseBlock4Params:i}}function tD(e){let t=[],{extractDenseBlock4Params:n}=ag(e,t),a={dense0:n("dense0",!0),dense1:n("dense1"),dense2:n("dense2"),dense3:n("dense3")};return _n(e,t),{params:a,paramMappings:t}}var _p=class extends fn{constructor(){super("FaceFeatureExtractor")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("FaceFeatureExtractor - load model before inference");return O(()=>{let a=re(t.toBatchTensor(112,!0),"float32"),s=br(a,[122.782,117.001,104.298]).div(255),i=zd(s,n.dense0,!0);return i=zd(i,n.dense1),i=zd(i,n.dense2),i=zd(i,n.dense3),i=ya(i,[7,7],[2,2],"valid"),i})}async forward(t){return this.forwardInput(await vt(t))}getDefaultModelName(){return"face_feature_extractor_model"}extractParamsFromWeightMap(t){return tD(t)}extractParams(t){return eD(t)}};function Bd(e,t){return O(()=>X($e(e,t.weights),t.bias))}function nD(e,t,n){let a=[],{extractWeights:r,getRemainingWeights:s}=An(e),o=eg(r,a)(t,n,"fc");if(s().length!==0)throw new Error(`weights remaing after extract: ${s().length}`);return{paramMappings:a,params:{fc:o}}}function aD(e){let t=[],n=sa(e,t);function a(s){let i=n(`${s}/weights`,2),o=n(`${s}/bias`,1);return{weights:i,bias:o}}let r={fc:a("fc")};return _n(e,t),{params:r,paramMappings:t}}function rg(e){let t={},n={};return Object.keys(e).forEach(a=>{let r=a.startsWith("fc")?n:t;r[a]=e[a]}),{featureExtractorMap:t,classifierMap:n}}var Ap=class extends fn{constructor(t,n){super(t),this._faceFeatureExtractor=n}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(t){let{params:n}=this;if(!n)throw new Error(`${this._name} - load model before inference`);return O(()=>{let a=t instanceof Wr?this.faceFeatureExtractor.forwardInput(t):t;return Bd(a.as2D(a.shape[0],-1),n.fc)})}dispose(t=!0){this.faceFeatureExtractor.dispose(t),super.dispose(t)}loadClassifierParams(t){let{params:n,paramMappings:a}=this.extractClassifierParams(t);this._params=n,this._paramMappings=a}extractClassifierParams(t){return nD(t,this.getClassifierChannelsIn(),this.getClassifierChannelsOut())}extractParamsFromWeightMap(t){let{featureExtractorMap:n,classifierMap:a}=rg(t);return this.faceFeatureExtractor.loadFromWeightMap(n),aD(a)}extractParams(t){let n=this.getClassifierChannelsIn(),a=this.getClassifierChannelsOut(),r=a*n+a,s=t.slice(0,t.length-r),i=t.slice(t.length-r);return this.faceFeatureExtractor.extractWeights(s),this.extractClassifierParams(i)}};var rD=["neutral","happy","sad","angry","fearful","disgusted","surprised"],Os=class{constructor(t){this.neutral=0;this.happy=0;this.sad=0;this.angry=0;this.fearful=0;this.disgusted=0;this.surprised=0;if(t.length!==7)throw new Error(`FaceExpressions.constructor - expected probabilities.length to be 7, have: ${t.length}`);rD.forEach((n,a)=>{this[n]=t[a]})}asSortedArray(){return rD.map(t=>({expression:t,probability:this[t]})).sort((t,n)=>n.probability-t.probability)}};var sg=class extends Ap{constructor(t=new _p){super("FaceExpressionNet",t)}forwardInput(t){return O(()=>qa(this.runNet(t)))}async forward(t){return this.forwardInput(await vt(t))}async predictExpressions(t){let n=await vt(t),a=await this.forwardInput(n),r=await Promise.all(dt(a).map(async i=>{let o=i.dataSync();return i.dispose(),o}));a.dispose();let s=r.map(i=>new Os(i));return n.isBatchInput?s:s[0]}getDefaultModelName(){return"face_expression_model"}getClassifierChannelsIn(){return 256}getClassifierChannelsOut(){return 7}};function sD(e){return e.expressions instanceof Os}function Nk(e,t){return{...e,...{expressions:t}}}function Gfe(e,t,n=.1,a){(Array.isArray(t)?t:[t]).forEach(s=>{let i=s instanceof Os?s:sD(s)?s.expressions:void 0;if(!i)throw new Error("drawFaceExpressions - expected faceExpressions to be FaceExpressions | WithFaceExpressions<{}> or array thereof");let l=i.asSortedArray().filter(d=>d.probability>n),u=zr(s)?s.detection.box.bottomLeft:a||new He(0,0);new sl(l.map(d=>`${d.expression} (${nl(d.probability)})`),u).draw(e)})}function Fp(e){return zr(e)&&e.landmarks instanceof ka&&e.unshiftedLandmarks instanceof ka&&e.alignedRect instanceof Ft}function Hfe(e){let t=l=>l*180/Math.PI,n=(l,u)=>Math.sqrt((l.x-u.x)**2+(l.y-u.y)**2),a={roll:void 0,pitch:void 0,yaw:void 0},r=(l,u,p)=>{let d=Math.floor(l.x-u.x),c=Math.floor(u.x-p.x);return d-c},s=(l,u)=>{let p=Math.hypot(u.x-l.x,u.y-l.y),d=u.y-l.y,c=Math.asin(d/p),h=t(c),m=Math.floor(90-h),f=u.x-l.x<0?-1:1;return m*f},i=(l,u,p)=>{let d=n(l,p),c=new He((l.x+p.x)/2,(l.y+p.y)/2),h=n(u,c),m=Math.atan(h/d),f=Math.floor(t(m)),g=c.y-u.y<0?-1:1;return f*g};if(!e||!e.positions||e.positions.length!==68)return a;let o=e.positions;return a.roll=s(o[27],o[66]),a.pitch=i(o[14],o[30],o[2]),a.yaw=r(o[14],o[33],o[2]),a}function Vd(e,t){let{box:n}=e.detection,a=t.shiftBy(n.x,n.y),r=a.align(),{imageDims:s}=e.detection,i=new Ft(e.detection.score,r.rescale(s.reverse()),s),o=Hfe(t);return{...e,...{landmarks:a,unshiftedLandmarks:t,alignedRect:i,angle:o}}}var ig=class{constructor(t={}){let{drawLines:n=!0,drawPoints:a=!0,lineWidth:r,lineColor:s,pointSize:i,pointColor:o}=t;this.drawLines=n,this.drawPoints=a,this.lineWidth=r||1,this.pointSize=i||2,this.lineColor=s||"rgba(0, 255, 255, 1)",this.pointColor=o||"rgba(255, 0, 255, 1)"}},og=class{constructor(t,n={}){this.faceLandmarks=t,this.options=new ig(n)}draw(t){let n=ra(t),{drawLines:a,drawPoints:r,lineWidth:s,lineColor:i,pointSize:o,pointColor:l}=this.options;if(a&&this.faceLandmarks instanceof vp&&(n.strokeStyle=i,n.lineWidth=s,Pr(n,this.faceLandmarks.getJawOutline()),Pr(n,this.faceLandmarks.getLeftEyeBrow()),Pr(n,this.faceLandmarks.getRightEyeBrow()),Pr(n,this.faceLandmarks.getNose()),Pr(n,this.faceLandmarks.getLeftEye(),!0),Pr(n,this.faceLandmarks.getRightEye(),!0),Pr(n,this.faceLandmarks.getMouth(),!0)),r){n.strokeStyle=l,n.fillStyle=l;let u=p=>{n.beginPath(),n.arc(p.x,p.y,o,0,2*Math.PI),n.fill()};this.faceLandmarks.positions.forEach(u)}}};function jfe(e,t){(Array.isArray(t)?t:[t]).forEach(a=>{let r=a instanceof ka?a:Fp(a)?a.landmarks:void 0;if(!r)throw new Error("drawFaceLandmarks - expected faceExpressions to be FaceLandmarks | WithFaceLandmarks> or array thereof");new og(r).draw(e)})}var oD="1.7.15";function Xfe(e,t){let n=Tp(e,t),a=Cp(e,t);function r(i,o,l){let u=a(i,o,`${l}/separable_conv0`),p=a(o,o,`${l}/separable_conv1`),d=n(i,o,1,`${l}/expansion_conv`);return{separable_conv0:u,separable_conv1:p,expansion_conv:d}}function s(i,o){let l=a(i,i,`${o}/separable_conv0`),u=a(i,i,`${o}/separable_conv1`),p=a(i,i,`${o}/separable_conv2`);return{separable_conv0:l,separable_conv1:u,separable_conv2:p}}return{extractConvParams:n,extractSeparableConvParams:a,extractReductionBlockParams:r,extractMainBlockParams:s}}function lD(e,t){let n=[],{extractWeights:a,getRemainingWeights:r}=An(e),{extractConvParams:s,extractSeparableConvParams:i,extractReductionBlockParams:o,extractMainBlockParams:l}=Xfe(a,n),u=s(3,32,3,"entry_flow/conv_in"),p=o(32,64,"entry_flow/reduction_block_0"),d=o(64,128,"entry_flow/reduction_block_1"),c={conv_in:u,reduction_block_0:p,reduction_block_1:d},h={};gr(t,0,1).forEach(b=>{h[`main_block_${b}`]=l(128,`middle_flow/main_block_${b}`)});let m=o(128,256,"exit_flow/reduction_block"),f=i(256,512,"exit_flow/separable_conv"),g={reduction_block:m,separable_conv:f};if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:n,params:{entry_flow:c,middle_flow:h,exit_flow:g}}}function Yfe(e,t){let n=sa(e,t),a=ng(n),r=Ep(n);function s(o){let l=r(`${o}/separable_conv0`),u=r(`${o}/separable_conv1`),p=a(`${o}/expansion_conv`);return{separable_conv0:l,separable_conv1:u,expansion_conv:p}}function i(o){let l=r(`${o}/separable_conv0`),u=r(`${o}/separable_conv1`),p=r(`${o}/separable_conv2`);return{separable_conv0:l,separable_conv1:u,separable_conv2:p}}return{extractConvParams:a,extractSeparableConvParams:r,extractReductionBlockParams:s,extractMainBlockParams:i}}function uD(e,t){let n=[],{extractConvParams:a,extractSeparableConvParams:r,extractReductionBlockParams:s,extractMainBlockParams:i}=Yfe(e,n),o=a("entry_flow/conv_in"),l=s("entry_flow/reduction_block_0"),u=s("entry_flow/reduction_block_1"),p={conv_in:o,reduction_block_0:l,reduction_block_1:u},d={};gr(t,0,1).forEach(f=>{d[`main_block_${f}`]=i(`middle_flow/main_block_${f}`)});let c=s("exit_flow/reduction_block"),h=r("exit_flow/separable_conv"),m={reduction_block:c,separable_conv:h};return _n(e,n),{params:{entry_flow:p,middle_flow:d,exit_flow:m},paramMappings:n}}function pD(e,t,n){return X($t(e,t.filters,n,"same"),t.bias)}function Tk(e,t,n=!0){let a=n?Ke(e):e;return a=Un(a,t.separable_conv0,[1,1]),a=Un(Ke(a),t.separable_conv1,[1,1]),a=Dt(a,[3,3],[2,2],"same"),a=X(a,pD(e,t.expansion_conv,[2,2])),a}function Zfe(e,t){let n=Un(Ke(e),t.separable_conv0,[1,1]);return n=Un(Ke(n),t.separable_conv1,[1,1]),n=Un(Ke(n),t.separable_conv2,[1,1]),n=X(n,e),n}var lg=class extends fn{constructor(t){super("TinyXception"),this._numMainBlocks=t}forwardInput(t){let{params:n}=this;if(!n)throw new Error("TinyXception - load model before inference");return O(()=>{let a=re(t.toBatchTensor(112,!0),"float32"),s=br(a,[122.782,117.001,104.298]).div(255),i=Ke(pD(s,n.entry_flow.conv_in,[2,2]));return i=Tk(i,n.entry_flow.reduction_block_0,!1),i=Tk(i,n.entry_flow.reduction_block_1),gr(this._numMainBlocks,0,1).forEach(o=>{i=Zfe(i,n.middle_flow[`main_block_${o}`])}),i=Tk(i,n.exit_flow.reduction_block),i=Ke(Un(i,n.exit_flow.separable_conv,[1,1])),i})}async forward(t){return this.forwardInput(await vt(t))}getDefaultModelName(){return"tiny_xception_model"}extractParamsFromWeightMap(t){return uD(t,this._numMainBlocks)}extractParams(t){return lD(t,this._numMainBlocks)}};function cD(e){let t=[],{extractWeights:n,getRemainingWeights:a}=An(e),r=eg(n,t),s=r(512,1,"fc/age"),i=r(512,2,"fc/gender");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{fc:{age:s,gender:i}}}}function dD(e){let t=[],n=sa(e,t);function a(s){let i=n(`${s}/weights`,2),o=n(`${s}/bias`,1);return{weights:i,bias:o}}let r={fc:{age:a("fc/age"),gender:a("fc/gender")}};return _n(e,t),{params:r,paramMappings:t}}var Ck=(n=>(n.FEMALE="female",n.MALE="male",n))(Ck||{});var ug=class extends fn{constructor(t=new lg(2)){super("AgeGenderNet"),this._faceFeatureExtractor=t}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(t){let{params:n}=this;if(!n)throw new Error(`${this._name} - load model before inference`);return O(()=>{let a=t instanceof Wr?this.faceFeatureExtractor.forwardInput(t):t,r=ya(a,[7,7],[2,2],"valid").as2D(a.shape[0],-1),s=Bd(r,n.fc.age).as1D(),i=Bd(r,n.fc.gender);return{age:s,gender:i}})}forwardInput(t){return O(()=>{let{age:n,gender:a}=this.runNet(t);return{age:n,gender:qa(a)}})}async forward(t){return this.forwardInput(await vt(t))}async predictAgeAndGender(t){let n=await vt(t),a=await this.forwardInput(n),r=dt(a.age),s=dt(a.gender),i=r.map((l,u)=>({ageTensor:l,genderTensor:s[u]})),o=await Promise.all(i.map(async({ageTensor:l,genderTensor:u})=>{let p=l.dataSync()[0],d=u.dataSync()[0],c=d>.5,h=c?"male":"female",m=c?d:1-d;return l.dispose(),u.dispose(),{age:p,gender:h,genderProbability:m}}));return a.age.dispose(),a.gender.dispose(),n.isBatchInput?o:o[0]}getDefaultModelName(){return"age_gender_model"}dispose(t=!0){this.faceFeatureExtractor.dispose(t),super.dispose(t)}loadClassifierParams(t){let{params:n,paramMappings:a}=this.extractClassifierParams(t);this._params=n,this._paramMappings=a}extractClassifierParams(t){return cD(t)}extractParamsFromWeightMap(t){let{featureExtractorMap:n,classifierMap:a}=rg(t);return this.faceFeatureExtractor.loadFromWeightMap(n),dD(a)}extractParams(t){let a=t.slice(0,t.length-1539),r=t.slice(t.length-1539);return this.faceFeatureExtractor.extractWeights(a),this.extractClassifierParams(r)}};var $p=class extends Ap{postProcess(t,n,a){let r=a.map(({width:i,height:o})=>{let l=n/Math.max(o,i);return{width:i*l,height:o*l}}),s=r.length;return O(()=>{let i=(d,c)=>At([yn([68],d,"float32"),yn([68],c,"float32")],1).as2D(1,136).as1D(),o=(d,c)=>{let{width:h,height:m}=r[d];return c(h,m)?Math.abs(h-m)/2:0},l=d=>o(d,(c,h)=>co(d,(c,h)=>hi(l(c),u(c))))).div(At(Array.from(Array(s),(d,c)=>i(r[c].width,r[c].height))))})}forwardInput(t){return O(()=>{let n=this.runNet(t);return this.postProcess(n,t.inputSize,t.inputDimensions.map(([a,r])=>({height:a,width:r})))})}async forward(t){return this.forwardInput(await vt(t))}async detectLandmarks(t){let n=await vt(t),a=O(()=>dt(this.forwardInput(n))),r=await Promise.all(a.map(async(s,i)=>{let o=Array.from(s.dataSync()),l=o.filter((p,d)=>Hf(d)),u=o.filter((p,d)=>!Hf(d));return new vp(Array(68).fill(0).map((p,d)=>new He(l[d],u[d])),{height:n.getInputHeight(i),width:n.getInputWidth(i)})}));return a.forEach(s=>s.dispose()),n.isBatchInput?r:r[0]}getClassifierChannelsOut(){return 136}};var Dp=class extends $p{constructor(t=new _p){super("FaceLandmark68Net",t)}getDefaultModelName(){return"face_landmark_68_model"}getClassifierChannelsIn(){return 256}};function hD(e){let t=[],{extractDenseBlock3Params:n}=ag(e,t),a={dense0:n("dense0",!0),dense1:n("dense1"),dense2:n("dense2")};return _n(e,t),{params:a,paramMappings:t}}function mD(e){let t=[],{extractWeights:n,getRemainingWeights:a}=An(e),{extractDenseBlock3Params:r}=tg(n,t),s=r(3,32,"dense0",!0),i=r(32,64,"dense1"),o=r(64,128,"dense2");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{dense0:s,dense1:i,dense2:o}}}var pg=class extends fn{constructor(){super("TinyFaceFeatureExtractor")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("TinyFaceFeatureExtractor - load model before inference");return O(()=>{let a=re(t.toBatchTensor(112,!0),"float32"),s=br(a,[122.782,117.001,104.298]).div(255),i=Qf(s,n.dense0,!0);return i=Qf(i,n.dense1),i=Qf(i,n.dense2),i=ya(i,[14,14],[2,2],"valid"),i})}async forward(t){return this.forwardInput(await vt(t))}getDefaultModelName(){return"face_feature_extractor_tiny_model"}extractParamsFromWeightMap(t){return hD(t)}extractParams(t){return mD(t)}};var cg=class extends $p{constructor(t=new pg){super("FaceLandmark68TinyNet",t)}getDefaultModelName(){return"face_landmark_68_tiny_model"}getClassifierChannelsIn(){return 128}};var fD=class extends Dp{};function gD(e,t){return X(z(e,t.weights),t.biases)}function Ek(e,t,n,a,r="same"){let{filters:s,bias:i}=t.conv,o=$t(e,s,n,r);return o=X(o,i),o=gD(o,t.scale),a?Ke(o):o}function bD(e,t){return Ek(e,t,[1,1],!0)}function _k(e,t){return Ek(e,t,[1,1],!1)}function dg(e,t){return Ek(e,t,[2,2],!0,"valid")}function Jfe(e,t){function n(o,l,u){let p=e(o),d=p.length/(l*u*u);if(gk(d))throw new Error(`depth has to be an integer: ${d}, weights.length: ${p.length}, numFilters: ${l}, filterSize: ${u}`);return O(()=>De(Fa(p,[l,d,u,u]),[2,3,1,0]))}function a(o,l,u,p){let d=n(o,l,u),c=je(e(l));return t.push({paramPath:`${p}/filters`},{paramPath:`${p}/bias`}),{filters:d,bias:c}}function r(o,l){let u=je(e(o)),p=je(e(o));return t.push({paramPath:`${l}/weights`},{paramPath:`${l}/biases`}),{weights:u,biases:p}}function s(o,l,u,p){let d=a(o,l,u,`${p}/conv`),c=r(l,`${p}/scale`);return{conv:d,scale:c}}function i(o,l,u,p,d=!1){let c=s((d?.5:1)*o,l,u,`${p}/conv1`),h=s(o,l,u,`${p}/conv2`);return{conv1:c,conv2:h}}return{extractConvLayerParams:s,extractResidualLayerParams:i}}function yD(e){let{extractWeights:t,getRemainingWeights:n}=An(e),a=[],{extractConvLayerParams:r,extractResidualLayerParams:s}=Jfe(t,a),i=r(4704,32,7,"conv32_down"),o=s(9216,32,3,"conv32_1"),l=s(9216,32,3,"conv32_2"),u=s(9216,32,3,"conv32_3"),p=s(36864,64,3,"conv64_down",!0),d=s(36864,64,3,"conv64_1"),c=s(36864,64,3,"conv64_2"),h=s(36864,64,3,"conv64_3"),m=s(147456,128,3,"conv128_down",!0),f=s(147456,128,3,"conv128_1"),g=s(147456,128,3,"conv128_2"),b=s(589824,256,3,"conv256_down",!0),y=s(589824,256,3,"conv256_1"),x=s(589824,256,3,"conv256_2"),v=s(589824,256,3,"conv256_down_out"),I=O(()=>De(Ea(t(256*128),[128,256]),[1,0]));if(a.push({paramPath:"fc"}),n().length!==0)throw new Error(`weights remaing after extract: ${n().length}`);return{params:{conv32_down:i,conv32_1:o,conv32_2:l,conv32_3:u,conv64_down:p,conv64_1:d,conv64_2:c,conv64_3:h,conv128_down:m,conv128_1:f,conv128_2:g,conv256_down:b,conv256_1:y,conv256_2:x,conv256_down_out:v,fc:I},paramMappings:a}}function Qfe(e,t){let n=sa(e,t);function a(i){let o=n(`${i}/scale/weights`,1),l=n(`${i}/scale/biases`,1);return{weights:o,biases:l}}function r(i){let o=n(`${i}/conv/filters`,4),l=n(`${i}/conv/bias`,1),u=a(i);return{conv:{filters:o,bias:l},scale:u}}function s(i){return{conv1:r(`${i}/conv1`),conv2:r(`${i}/conv2`)}}return{extractConvLayerParams:r,extractResidualLayerParams:s}}function xD(e){let t=[],{extractConvLayerParams:n,extractResidualLayerParams:a}=Qfe(e,t),r=n("conv32_down"),s=a("conv32_1"),i=a("conv32_2"),o=a("conv32_3"),l=a("conv64_down"),u=a("conv64_1"),p=a("conv64_2"),d=a("conv64_3"),c=a("conv128_down"),h=a("conv128_1"),m=a("conv128_2"),f=a("conv256_down"),g=a("conv256_1"),b=a("conv256_2"),y=a("conv256_down_out"),{fc:x}=e;if(t.push({originalPath:"fc",paramPath:"fc"}),!fk(x))throw new Error(`expected weightMap[fc] to be a Tensor2D, instead have ${x}`);let v={conv32_down:r,conv32_1:s,conv32_2:i,conv32_3:o,conv64_down:l,conv64_1:u,conv64_2:p,conv64_3:d,conv128_down:c,conv128_1:h,conv128_2:m,conv256_down:f,conv256_1:g,conv256_2:b,conv256_down_out:y,fc:x};return _n(e,t),{params:v,paramMappings:t}}function Ya(e,t){let n=bD(e,t.conv1);return n=_k(n,t.conv2),n=X(n,e),n=Ke(n),n}function Ud(e,t){let n=dg(e,t.conv1);n=_k(n,t.conv2);let a=ya(e,2,2,"valid"),r=It(a.shape),s=a.shape[3]!==n.shape[3];if(a.shape[1]!==n.shape[1]||a.shape[2]!==n.shape[2]){let o=[...n.shape];o[1]=1;let l=It(o);n=et([n,l],1);let u=[...n.shape];u[2]=1;let p=It(u);n=et([n,p],2)}return a=s?et([a,r],3):a,n=X(a,n),n=Ke(n),n}var Rp=class extends fn{constructor(){super("FaceRecognitionNet")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("FaceRecognitionNet - load model before inference");return O(()=>{let a=re(t.toBatchTensor(150,!0),"float32"),s=br(a,[122.782,117.001,104.298]).div(255),i=dg(s,n.conv32_down);i=Dt(i,3,2,"valid"),i=Ya(i,n.conv32_1),i=Ya(i,n.conv32_2),i=Ya(i,n.conv32_3),i=Ud(i,n.conv64_down),i=Ya(i,n.conv64_1),i=Ya(i,n.conv64_2),i=Ya(i,n.conv64_3),i=Ud(i,n.conv128_down),i=Ya(i,n.conv128_1),i=Ya(i,n.conv128_2),i=Ud(i,n.conv256_down),i=Ya(i,n.conv256_1),i=Ya(i,n.conv256_2),i=Ud(i,n.conv256_down_out);let o=i.mean([1,2]);return $e(o,n.fc)})}async forward(t){return this.forwardInput(await vt(t))}async computeFaceDescriptor(t){var s;if((s=t==null?void 0:t.shape)!=null&&s.some(i=>i<=0))return new Float32Array(128);let n=await vt(t),a=O(()=>dt(this.forwardInput(n))),r=await Promise.all(a.map(i=>i.data()));return a.forEach(i=>i.dispose()),n.isBatchInput?r:r[0]}getDefaultModelName(){return"face_recognition_model"}extractParamsFromWeightMap(t){return xD(t)}extractParams(t){return yD(t)}};function Y2e(e){let t=new Rp;return t.extractWeights(e),t}function Ak(e,t){return{...e,...{descriptor:t}}}function eCe(e){return typeof e.age=="number"}function Fk(e,t){return{...e,...{age:t}}}function rCe(e){return(e.gender==="male"||e.gender==="female")&&gp(e.genderProbability)}function $k(e,t,n){return{...e,...{gender:t,genderProbability:n}}}function ege(e,t){function n(l,u){let p=Fa(e(9*l),[3,3,l,1]),d=je(e(l)),c=je(e(l)),h=je(e(l)),m=je(e(l));return t.push({paramPath:`${u}/filters`},{paramPath:`${u}/batch_norm_scale`},{paramPath:`${u}/batch_norm_offset`},{paramPath:`${u}/batch_norm_mean`},{paramPath:`${u}/batch_norm_variance`}),{filters:p,batch_norm_scale:d,batch_norm_offset:c,batch_norm_mean:h,batch_norm_variance:m}}function a(l,u,p,d,c){let h=Fa(e(l*u*p*p),[p,p,l,u]),m=je(e(u));return t.push({paramPath:`${d}/filters`},{paramPath:`${d}/${c?"batch_norm_offset":"bias"}`}),{filters:h,bias:m}}function r(l,u,p,d){let{filters:c,bias:h}=a(l,u,p,d,!0);return{filters:c,batch_norm_offset:h}}function s(l,u,p){let d=n(l,`${p}/depthwise_conv`),c=r(l,u,1,`${p}/pointwise_conv`);return{depthwise_conv:d,pointwise_conv:c}}function i(){let l=r(3,32,3,"mobilenetv1/conv_0"),u=s(32,64,"mobilenetv1/conv_1"),p=s(64,128,"mobilenetv1/conv_2"),d=s(128,128,"mobilenetv1/conv_3"),c=s(128,256,"mobilenetv1/conv_4"),h=s(256,256,"mobilenetv1/conv_5"),m=s(256,512,"mobilenetv1/conv_6"),f=s(512,512,"mobilenetv1/conv_7"),g=s(512,512,"mobilenetv1/conv_8"),b=s(512,512,"mobilenetv1/conv_9"),y=s(512,512,"mobilenetv1/conv_10"),x=s(512,512,"mobilenetv1/conv_11"),v=s(512,1024,"mobilenetv1/conv_12"),I=s(1024,1024,"mobilenetv1/conv_13");return{conv_0:l,conv_1:u,conv_2:p,conv_3:d,conv_4:c,conv_5:h,conv_6:m,conv_7:f,conv_8:g,conv_9:b,conv_10:y,conv_11:x,conv_12:v,conv_13:I}}function o(){let l=r(1024,256,1,"prediction_layer/conv_0"),u=r(256,512,3,"prediction_layer/conv_1"),p=r(512,128,1,"prediction_layer/conv_2"),d=r(128,256,3,"prediction_layer/conv_3"),c=r(256,128,1,"prediction_layer/conv_4"),h=r(128,256,3,"prediction_layer/conv_5"),m=r(256,64,1,"prediction_layer/conv_6"),f=r(64,128,3,"prediction_layer/conv_7"),g=a(512,12,1,"prediction_layer/box_predictor_0/box_encoding_predictor"),b=a(512,9,1,"prediction_layer/box_predictor_0/class_predictor"),y=a(1024,24,1,"prediction_layer/box_predictor_1/box_encoding_predictor"),x=a(1024,18,1,"prediction_layer/box_predictor_1/class_predictor"),v=a(512,24,1,"prediction_layer/box_predictor_2/box_encoding_predictor"),I=a(512,18,1,"prediction_layer/box_predictor_2/class_predictor"),N=a(256,24,1,"prediction_layer/box_predictor_3/box_encoding_predictor"),C=a(256,18,1,"prediction_layer/box_predictor_3/class_predictor"),_=a(256,24,1,"prediction_layer/box_predictor_4/box_encoding_predictor"),F=a(256,18,1,"prediction_layer/box_predictor_4/class_predictor"),D=a(128,24,1,"prediction_layer/box_predictor_5/box_encoding_predictor"),$=a(128,18,1,"prediction_layer/box_predictor_5/class_predictor");return{conv_0:l,conv_1:u,conv_2:p,conv_3:d,conv_4:c,conv_5:h,conv_6:m,conv_7:f,box_predictor_0:{box_encoding_predictor:g,class_predictor:b},box_predictor_1:{box_encoding_predictor:y,class_predictor:x},box_predictor_2:{box_encoding_predictor:v,class_predictor:I},box_predictor_3:{box_encoding_predictor:N,class_predictor:C},box_predictor_4:{box_encoding_predictor:_,class_predictor:F},box_predictor_5:{box_encoding_predictor:D,class_predictor:$}}}return{extractMobilenetV1Params:i,extractPredictionLayerParams:o}}function vD(e){let t=[],{extractWeights:n,getRemainingWeights:a}=An(e),{extractMobilenetV1Params:r,extractPredictionLayerParams:s}=ege(n,t),i=r(),o=s(),u={extra_dim:xd(n(5118*4),[1,5118,4])};if(t.push({paramPath:"output_layer/extra_dim"}),a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{params:{mobilenetv1:i,prediction_layer:o,output_layer:u},paramMappings:t}}function tge(e,t){let n=sa(e,t);function a(u,p,d){let c=n(`${u}/Conv2d_${p}_pointwise/weights`,4,`${d}/filters`),h=n(`${u}/Conv2d_${p}_pointwise/convolution_bn_offset`,1,`${d}/batch_norm_offset`);return{filters:c,batch_norm_offset:h}}function r(u){let p=`mobilenetv1/conv_${u}`,d=`MobilenetV1/Conv2d_${u}_depthwise`,c=`${p}/depthwise_conv`,h=`${p}/pointwise_conv`,m=n(`${d}/depthwise_weights`,4,`${c}/filters`),f=n(`${d}/BatchNorm/gamma`,1,`${c}/batch_norm_scale`),g=n(`${d}/BatchNorm/beta`,1,`${c}/batch_norm_offset`),b=n(`${d}/BatchNorm/moving_mean`,1,`${c}/batch_norm_mean`),y=n(`${d}/BatchNorm/moving_variance`,1,`${c}/batch_norm_variance`);return{depthwise_conv:{filters:m,batch_norm_scale:f,batch_norm_offset:g,batch_norm_mean:b,batch_norm_variance:y},pointwise_conv:a("MobilenetV1",u,h)}}function s(){return{conv_0:a("MobilenetV1",0,"mobilenetv1/conv_0"),conv_1:r(1),conv_2:r(2),conv_3:r(3),conv_4:r(4),conv_5:r(5),conv_6:r(6),conv_7:r(7),conv_8:r(8),conv_9:r(9),conv_10:r(10),conv_11:r(11),conv_12:r(12),conv_13:r(13)}}function i(u,p){let d=n(`${u}/weights`,4,`${p}/filters`),c=n(`${u}/biases`,1,`${p}/bias`);return{filters:d,bias:c}}function o(u){let p=i(`Prediction/BoxPredictor_${u}/BoxEncodingPredictor`,`prediction_layer/box_predictor_${u}/box_encoding_predictor`),d=i(`Prediction/BoxPredictor_${u}/ClassPredictor`,`prediction_layer/box_predictor_${u}/class_predictor`);return{box_encoding_predictor:p,class_predictor:d}}function l(){return{conv_0:a("Prediction",0,"prediction_layer/conv_0"),conv_1:a("Prediction",1,"prediction_layer/conv_1"),conv_2:a("Prediction",2,"prediction_layer/conv_2"),conv_3:a("Prediction",3,"prediction_layer/conv_3"),conv_4:a("Prediction",4,"prediction_layer/conv_4"),conv_5:a("Prediction",5,"prediction_layer/conv_5"),conv_6:a("Prediction",6,"prediction_layer/conv_6"),conv_7:a("Prediction",7,"prediction_layer/conv_7"),box_predictor_0:o(0),box_predictor_1:o(1),box_predictor_2:o(2),box_predictor_3:o(3),box_predictor_4:o(4),box_predictor_5:o(5)}}return{extractMobilenetV1Params:s,extractPredictionLayerParams:l}}function wD(e){let t=[],{extractMobilenetV1Params:n,extractPredictionLayerParams:a}=tge(e,t),r=e["Output/extra_dim"];if(t.push({originalPath:"Output/extra_dim",paramPath:"output_layer/extra_dim"}),!Lr(r))throw new Error(`expected weightMap['Output/extra_dim'] to be a Tensor3D, instead have ${r}`);let s={mobilenetv1:n(),prediction_layer:a(),output_layer:{extra_dim:r}};return _n(e,t),{params:s,paramMappings:t}}function Ra(e,t,n){return O(()=>{let a=$t(e,t.filters,n,"same");return a=X(a,t.batch_norm_offset),an(a,0,6)})}var nge=.0010000000474974513;function age(e,t,n){return O(()=>{let a=Ts(e,t.filters,n,"same");return a=Ns(a,t.batch_norm_mean,t.batch_norm_variance,t.batch_norm_offset,t.batch_norm_scale,nge),an(a,0,6)})}function rge(e){return[2,4,6,12].some(t=>t===e)?[2,2]:[1,1]}function kD(e,t){return O(()=>{let n,a=Ra(e,t.conv_0,[2,2]);if([t.conv_1,t.conv_2,t.conv_3,t.conv_4,t.conv_5,t.conv_6,t.conv_7,t.conv_8,t.conv_9,t.conv_10,t.conv_11,t.conv_12,t.conv_13].forEach((s,i)=>{let o=i+1,l=rge(o);a=age(a,s.depthwise_conv,l),a=Ra(a,s.pointwise_conv,[1,1]),o===11&&(n=a)}),n===null)throw new Error("mobileNetV1 - output of conv layer 11 is null");return{out:a,conv11:n}})}function sge(e,t,n){let a=e.arraySync(),r=Math.min(a[t][0],a[t][2]),s=Math.min(a[t][1],a[t][3]),i=Math.max(a[t][0],a[t][2]),o=Math.max(a[t][1],a[t][3]),l=Math.min(a[n][0],a[n][2]),u=Math.min(a[n][1],a[n][3]),p=Math.max(a[n][0],a[n][2]),d=Math.max(a[n][1],a[n][3]),c=(i-r)*(o-s),h=(p-l)*(d-u);if(c<=0||h<=0)return 0;let m=Math.max(r,l),f=Math.max(s,u),g=Math.min(i,p),b=Math.min(o,d),y=Math.max(g-m,0)*Math.max(b-f,0);return y/(c+h-y)}function ID(e,t,n,a,r){let s=e.shape[0],i=Math.min(n,s),o=t.map((p,d)=>({score:p,boxIndex:d})).filter(p=>p.score>r).sort((p,d)=>d.score-p.score),l=p=>p<=a?1:0,u=[];return o.forEach(p=>{if(u.length>=i)return;let d=p.score;for(let c=u.length-1;c>=0;--c){let h=sge(e,p.boxIndex,u[c]);if(h!==0&&(p.score*=l(h),p.score<=r))break}d===p.score&&u.push(p.boxIndex)}),u}function ige(e){let t=dt(De(e,[1,0])),n=[pe(t[2],t[0]),pe(t[3],t[1])],a=[X(t[0],he(n[0],2)),X(t[1],he(n[1],2))];return{sizes:n,centers:a}}function oge(e,t){let{sizes:n,centers:a}=ige(e),r=dt(De(t,[1,0])),s=he(z(dn(he(r[2],5)),n[0]),2),i=X(z(he(r[0],10),n[0]),a[0]),o=he(z(dn(he(r[3],5)),n[1]),2),l=X(z(he(r[1],10),n[1]),a[1]);return De(At([pe(i,s),pe(l,o),X(i,s),X(l,o)]),[1,0])}function SD(e,t,n){return O(()=>{let a=e.shape[0],r=oge(W(On(n.extra_dim,[a,1,1]),[-1,4]),W(e,[-1,4]));r=W(r,[a,r.shape[0]/a,4]);let s=ha(Ve(t,[0,0,1],[-1,-1,-1])),i=Ve(s,[0,0,0],[-1,-1,1]);i=W(i,[a,i.shape[1]]);let o=dt(r),l=dt(i);return{boxes:o,scores:l}})}function ol(e,t){return O(()=>{let n=e.shape[0],a=W(il(e,t.box_encoding_predictor),[n,-1,1,4]),r=W(il(e,t.class_predictor),[n,-1,3]);return{boxPredictionEncoding:a,classPrediction:r}})}function ND(e,t,n){return O(()=>{let a=Ra(e,n.conv_0,[1,1]),r=Ra(a,n.conv_1,[2,2]),s=Ra(r,n.conv_2,[1,1]),i=Ra(s,n.conv_3,[2,2]),o=Ra(i,n.conv_4,[1,1]),l=Ra(o,n.conv_5,[2,2]),u=Ra(l,n.conv_6,[1,1]),p=Ra(u,n.conv_7,[2,2]),d=ol(t,n.box_predictor_0),c=ol(e,n.box_predictor_1),h=ol(r,n.box_predictor_2),m=ol(i,n.box_predictor_3),f=ol(l,n.box_predictor_4),g=ol(p,n.box_predictor_5),b=et([d.boxPredictionEncoding,c.boxPredictionEncoding,h.boxPredictionEncoding,m.boxPredictionEncoding,f.boxPredictionEncoding,g.boxPredictionEncoding],1),y=et([d.classPrediction,c.classPrediction,h.classPrediction,m.classPrediction,f.classPrediction,g.classPrediction],1);return{boxPredictions:b,classPredictions:y}})}var Ma=class{constructor({minConfidence:t,maxResults:n}={}){this._name="SsdMobilenetv1Options";if(this._minConfidence=t||.5,this._maxResults=n||100,typeof this._minConfidence!="number"||this._minConfidence<=0||this._minConfidence>=1)throw new Error(`${this._name} - expected minConfidence to be a number between 0 and 1`);if(typeof this._maxResults!="number")throw new Error(`${this._name} - expected maxResults to be a number`)}get minConfidence(){return this._minConfidence}get maxResults(){return this._maxResults}};var ll=class extends fn{constructor(){super("SsdMobilenetv1")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("SsdMobilenetv1 - load model before inference");return O(()=>{let a=re(t.toBatchTensor(512,!1),"float32"),r=pe(he(a,127.5),1),s=kD(r,n.mobilenetv1),{boxPredictions:i,classPredictions:o}=ND(s.out,s.conv11,n.prediction_layer);return SD(i,o,n.output_layer)})}async forward(t){return this.forwardInput(await vt(t))}async locateFaces(t,n={}){let{maxResults:a,minConfidence:r}=new Ma(n),s=await vt(t),{boxes:i,scores:o}=this.forwardInput(s),l=i[0],u=o[0];for(let x=1;x{let[v,I]=[Math.max(0,b[x][0]),Math.min(1,b[x][2])].map(_=>_*g),[N,C]=[Math.max(0,b[x][1]),Math.min(1,b[x][3])].map(_=>_*f);return new Ft(p[x],new xp(N,v,C-N,I-v),{height:s.getInputHeight(0),width:s.getInputWidth(0)})});return l.dispose(),u.dispose(),y}getDefaultModelName(){return"ssd_mobilenetv1_model"}extractParamsFromWeightMap(t){return wD(t)}extractParams(t){return vD(t)}};function lge(e){let t=new ll;return t.extractWeights(e),t}function YCe(e){return lge(e)}var TD=class extends ll{};var CD=.4,ED=[new He(.738768,.874946),new He(2.42204,2.65704),new He(4.30971,7.04493),new He(10.246,4.59428),new He(12.6868,11.8741)],_D=[new He(1.603231,2.094468),new He(6.041143,7.080126),new He(2.882459,3.518061),new He(4.266906,5.178857),new He(9.041765,10.66308)],AD=[117.001,114.697,97.404],FD="tiny_yolov2_model",$D="tiny_yolov2_separable_conv_model";var hg=e=>typeof e=="number";function DD(e){if(!e)throw new Error(`invalid config: ${e}`);if(typeof e.withSeparableConvs!="boolean")throw new Error(`config.withSeparableConvs has to be a boolean, have: ${e.withSeparableConvs}`);if(!hg(e.iouThreshold)||e.iouThreshold<0||e.iouThreshold>1)throw new Error(`config.iouThreshold has to be a number between [0, 1], have: ${e.iouThreshold}`);if(!Array.isArray(e.classes)||!e.classes.length||!e.classes.every(t=>typeof t=="string"))throw new Error(`config.classes has to be an array class names: string[], have: ${JSON.stringify(e.classes)}`);if(!Array.isArray(e.anchors)||!e.anchors.length||!e.anchors.map(t=>t||{}).every(t=>hg(t.x)&&hg(t.y)))throw new Error(`config.anchors has to be an array of { x: number, y: number }, have: ${JSON.stringify(e.anchors)}`);if(e.meanRgb&&(!Array.isArray(e.meanRgb)||e.meanRgb.length!==3||!e.meanRgb.every(hg)))throw new Error(`config.meanRgb has to be an array of shape [number, number, number], have: ${JSON.stringify(e.meanRgb)}`)}function Mp(e){return O(()=>{let t=z(e,xe(.10000000149011612));return X(Ke(pe(e,t)),t)})}function Br(e,t){return O(()=>{let n=xa(e,[[0,0],[1,1],[1,1],[0,0]]);return n=$t(n,t.conv.filters,[1,1],"valid"),n=pe(n,t.bn.sub),n=z(n,t.bn.truediv),n=X(n,t.conv.bias),Mp(n)})}function Vr(e,t){return O(()=>{let n=xa(e,[[0,0],[1,1],[1,1],[0,0]]);return n=_s(n,t.depthwise_filter,t.pointwise_filter,[1,1],"valid"),n=X(n,t.bias),Mp(n)})}function uge(e,t){let n=Tp(e,t);function a(i,o){let l=je(e(i)),u=je(e(i));return t.push({paramPath:`${o}/sub`},{paramPath:`${o}/truediv`}),{sub:l,truediv:u}}function r(i,o,l){let u=n(i,o,3,`${l}/conv`),p=a(o,`${l}/bn`);return{conv:u,bn:p}}let s=Cp(e,t);return{extractConvParams:n,extractConvWithBatchNormParams:r,extractSeparableConvParams:s}}function RD(e,t,n,a){let{extractWeights:r,getRemainingWeights:s}=An(e),i=[],{extractConvParams:o,extractConvWithBatchNormParams:l,extractSeparableConvParams:u}=uge(r,i),p;if(t.withSeparableConvs){let[d,c,h,m,f,g,b,y,x]=a,v=t.isFirstLayerConv2d?o(d,c,3,"conv0"):u(d,c,"conv0"),I=u(c,h,"conv1"),N=u(h,m,"conv2"),C=u(m,f,"conv3"),_=u(f,g,"conv4"),F=u(g,b,"conv5"),D=y?u(b,y,"conv6"):void 0,$=x?u(y,x,"conv7"):void 0,S=o(x||y||b,5*n,1,"conv8");p={conv0:v,conv1:I,conv2:N,conv3:C,conv4:_,conv5:F,conv6:D,conv7:$,conv8:S}}else{let[d,c,h,m,f,g,b,y,x]=a,v=l(d,c,"conv0"),I=l(c,h,"conv1"),N=l(h,m,"conv2"),C=l(m,f,"conv3"),_=l(f,g,"conv4"),F=l(g,b,"conv5"),D=l(b,y,"conv6"),$=l(y,x,"conv7"),S=o(x,5*n,1,"conv8");p={conv0:v,conv1:I,conv2:N,conv3:C,conv4:_,conv5:F,conv6:D,conv7:$,conv8:S}}if(s().length!==0)throw new Error(`weights remaing after extract: ${s().length}`);return{params:p,paramMappings:i}}function pge(e,t){let n=sa(e,t);function a(o){let l=n(`${o}/sub`,1),u=n(`${o}/truediv`,1);return{sub:l,truediv:u}}function r(o){let l=n(`${o}/filters`,4),u=n(`${o}/bias`,1);return{filters:l,bias:u}}function s(o){let l=r(`${o}/conv`),u=a(`${o}/bn`);return{conv:l,bn:u}}let i=Ep(n);return{extractConvParams:r,extractConvWithBatchNormParams:s,extractSeparableConvParams:i}}function MD(e,t){let n=[],{extractConvParams:a,extractConvWithBatchNormParams:r,extractSeparableConvParams:s}=pge(e,n),i;if(t.withSeparableConvs){let o=t.filterSizes&&t.filterSizes.length||9;i={conv0:t.isFirstLayerConv2d?a("conv0"):s("conv0"),conv1:s("conv1"),conv2:s("conv2"),conv3:s("conv3"),conv4:s("conv4"),conv5:s("conv5"),conv6:o>7?s("conv6"):void 0,conv7:o>8?s("conv7"):void 0,conv8:a("conv8")}}else i={conv0:r("conv0"),conv1:r("conv1"),conv2:r("conv2"),conv3:r("conv3"),conv4:r("conv4"),conv5:r("conv5"),conv6:r("conv6"),conv7:r("conv7"),conv8:a("conv8")};return _n(e,n),{params:i,paramMappings:n}}var yr=class{constructor({inputSize:t,scoreThreshold:n}={}){this._name="TinyYolov2Options";if(this._inputSize=t||416,this._scoreThreshold=n||.5,typeof this._inputSize!="number"||this._inputSize%32!==0)throw new Error(`${this._name} - expected inputSize to be a number divisible by 32`);if(typeof this._scoreThreshold!="number"||this._scoreThreshold<=0||this._scoreThreshold>=1)throw new Error(`${this._name} - expected scoreThreshold to be a number between 0 and 1`)}get inputSize(){return this._inputSize}get scoreThreshold(){return this._scoreThreshold}};var mg=class mg extends fn{constructor(t){super("TinyYolov2"),DD(t),this._config=t}get config(){return this._config}get withClassScores(){return this.config.withClassScores||this.config.classes.length>1}get boxEncodingSize(){return 5+(this.withClassScores?this.config.classes.length:0)}runTinyYolov2(t,n){let a=Br(t,n.conv0);return a=Dt(a,[2,2],[2,2],"same"),a=Br(a,n.conv1),a=Dt(a,[2,2],[2,2],"same"),a=Br(a,n.conv2),a=Dt(a,[2,2],[2,2],"same"),a=Br(a,n.conv3),a=Dt(a,[2,2],[2,2],"same"),a=Br(a,n.conv4),a=Dt(a,[2,2],[2,2],"same"),a=Br(a,n.conv5),a=Dt(a,[2,2],[1,1],"same"),a=Br(a,n.conv6),a=Br(a,n.conv7),il(a,n.conv8,"valid",!1)}runMobilenet(t,n){let a=this.config.isFirstLayerConv2d?Mp(il(t,n.conv0,"valid",!1)):Vr(t,n.conv0);return a=Dt(a,[2,2],[2,2],"same"),a=Vr(a,n.conv1),a=Dt(a,[2,2],[2,2],"same"),a=Vr(a,n.conv2),a=Dt(a,[2,2],[2,2],"same"),a=Vr(a,n.conv3),a=Dt(a,[2,2],[2,2],"same"),a=Vr(a,n.conv4),a=Dt(a,[2,2],[2,2],"same"),a=Vr(a,n.conv5),a=Dt(a,[2,2],[1,1],"same"),a=n.conv6?Vr(a,n.conv6):a,a=n.conv7?Vr(a,n.conv7):a,il(a,n.conv8,"valid",!1)}forwardInput(t,n){let{params:a}=this;if(!a)throw new Error("TinyYolov2 - load model before inference");return O(()=>{let r=re(t.toBatchTensor(n,!1),"float32");return r=this.config.meanRgb?br(r,this.config.meanRgb):r,r=r.div(255),this.config.withSeparableConvs?this.runMobilenet(r,a):this.runTinyYolov2(r,a)})}async forward(t,n){return this.forwardInput(await vt(t),n)}async detect(t,n={}){let{inputSize:a,scoreThreshold:r}=new yr(n),s=await vt(t),i=await this.forwardInput(s,a),o=O(()=>dt(i)[0].expandDims()),l={width:s.getInputWidth(0),height:s.getInputHeight(0)},u=await this.extractBoxes(o,s.getReshapedInputDimensions(0),r);i.dispose(),o.dispose();let p=u.map(g=>g.box),d=u.map(g=>g.score),c=u.map(g=>g.classScore),h=u.map(g=>this.config.classes[g.label]);return U$(p.map(g=>g.rescale(a)),d,this.config.iouThreshold,!0).map(g=>new yp(d[g],c[g],h[g],p[g],l))}getDefaultModelName(){return""}extractParamsFromWeightMap(t){return MD(t,this.config)}extractParams(t){let n=this.config.filterSizes||mg.DEFAULT_FILTER_SIZES,a=n?n.length:void 0;if(a!==7&&a!==8&&a!==9)throw new Error(`TinyYolov2 - expected 7 | 8 | 9 convolutional filters, but found ${a} filterSizes in config`);return RD(t,this.config,this.boxEncodingSize,n)}async extractBoxes(t,n,a){let{width:r,height:s}=n,i=Math.max(r,s),o=i/r,l=i/s,u=t.shape[1],p=this.config.anchors.length,[d,c,h]=O(()=>{let b=t.reshape([u,u,p,this.boxEncodingSize]),y=b.slice([0,0,0,0],[u,u,p,4]),x=b.slice([0,0,0,4],[u,u,p,1]),v=this.withClassScores?qa(b.slice([0,0,0,5],[u,u,p,this.config.classes.length]),3):xe(0);return[y,x,v]}),m=[],f=await c.array(),g=await d.array();for(let b=0;ba){let I=(y+qf(g[b][y][x][0]))/u*o,N=(b+qf(g[b][y][x][1]))/u*l,C=Math.exp(g[b][y][x][2])*this.config.anchors[x].x/u*o,_=Math.exp(g[b][y][x][3])*this.config.anchors[x].y/u*l,F=I-C/2,D=N-_/2,$={row:b,col:y,anchor:x},{classScore:S,label:M}=this.withClassScores?await this.extractPredictedClass(h,$):{classScore:1,label:0};m.push({box:new bp(F,D,F+C,D+_),score:v,classScore:v*S,label:M,...$})}}return d.dispose(),c.dispose(),h.dispose(),m}async extractPredictedClass(t,n){let{row:a,col:r,anchor:s}=n,i=await t.array();return Array(this.config.classes.length).fill(0).map((o,l)=>i[a][r][s][l]).map((o,l)=>({classScore:o,label:l})).reduce((o,l)=>o.classScore>l.classScore?o:l)}};mg.DEFAULT_FILTER_SIZES=[3,16,32,64,128,256,512,1024,1024];var Op=mg;var Pp=class extends Op{constructor(t=!0){let n={withSeparableConvs:t,iouThreshold:CD,classes:["face"],...t?{anchors:_D,meanRgb:AD}:{anchors:ED,withClassScores:!0}};super(n)}get withSeparableConvs(){return this.config.withSeparableConvs}get anchors(){return this.config.anchors}async locateFaces(t,n){return(await this.detect(t,n)).map(r=>new Ft(r.score,r.relativeBox,{width:r.imageWidth,height:r.imageHeight}))}getDefaultModelName(){return this.withSeparableConvs?$D:FD}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};function BEe(e,t=!0){let n=new Pp(t);return n.extractWeights(e),n}var fg=class extends yr{constructor(){super(...arguments);this._name="TinyFaceDetectorOptions"}};var Oa=class{async then(t){return t(await this.run())}async run(){throw new Error("ComposableTask - run is not implemented")}};async function ul(e,t,n,a,r=({alignedRect:s})=>s){let s=e.map(l=>Fp(l)?r(l):l.detection),i=a||(t instanceof Ce?await Ld(t,s):await Pd(t,s)),o=await n(i);return i.forEach(l=>l instanceof Ce&&l.dispose()),o}async function Lp(e,t,n,a,r){return ul([e],t,async s=>n(s[0]),a,r)}var OD=.4,PD=[new He(1.603231,2.094468),new He(6.041143,7.080126),new He(2.882459,3.518061),new He(4.266906,5.178857),new He(9.041765,10.66308)],LD=[117.001,114.697,97.404];var zp=class extends Op{constructor(){let t={withSeparableConvs:!0,iouThreshold:OD,classes:["face"],anchors:PD,meanRgb:LD,isFirstLayerConv2d:!0,filterSizes:[3,16,32,64,128,256,512]};super(t)}get anchors(){return this.config.anchors}async locateFaces(t,n){return(await this.detect(t,n)).map(r=>new Ft(r.score,r.relativeBox,{width:r.imageWidth,height:r.imageHeight}))}getDefaultModelName(){return"tiny_face_detector_model"}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};var rt={ssdMobilenetv1:new ll,tinyFaceDetector:new zp,tinyYolov2:new Pp,faceLandmark68Net:new Dp,faceLandmark68TinyNet:new cg,faceRecognitionNet:new Rp,faceExpressionNet:new sg,ageGenderNet:new ug},cge=(e,t)=>rt.ssdMobilenetv1.locateFaces(e,t),b_e=(e,t)=>rt.tinyFaceDetector.locateFaces(e,t),y_e=(e,t)=>rt.tinyYolov2.locateFaces(e,t),dge=e=>rt.faceLandmark68Net.detectLandmarks(e),x_e=e=>rt.faceLandmark68TinyNet.detectLandmarks(e),v_e=e=>rt.faceRecognitionNet.computeFaceDescriptor(e),w_e=e=>rt.faceExpressionNet.predictExpressions(e),k_e=e=>rt.ageGenderNet.predictAgeAndGender(e),hge=e=>rt.ssdMobilenetv1.load(e),I_e=e=>rt.tinyFaceDetector.load(e),S_e=e=>rt.tinyYolov2.load(e),N_e=e=>rt.faceLandmark68Net.load(e),T_e=e=>rt.faceLandmark68TinyNet.load(e),C_e=e=>rt.faceRecognitionNet.load(e),E_e=e=>rt.faceExpressionNet.load(e),__e=e=>rt.ageGenderNet.load(e),A_e=hge,F_e=cge,$_e=dge;var gg=class extends Oa{constructor(n,a,r){super();this.parentTask=n;this.input=a;this.extractedFaces=r}},pl=class extends gg{async run(){let t=await this.parentTask,n=await ul(t,this.input,async a=>Promise.all(a.map(r=>rt.faceExpressionNet.predictExpressions(r))),this.extractedFaces);return t.map((a,r)=>Nk(a,n[r]))}withAgeAndGender(){return new dl(this,this.input)}},cl=class extends gg{async run(){let t=await this.parentTask;if(!t)return;let n=await Lp(t,this.input,a=>rt.faceExpressionNet.predictExpressions(a),this.extractedFaces);return Nk(t,n)}withAgeAndGender(){return new hl(this,this.input)}},Ps=class extends pl{withAgeAndGender(){return new zs(this,this.input)}withFaceDescriptors(){return new Bs(this,this.input)}},Ls=class extends cl{withAgeAndGender(){return new Ws(this,this.input)}withFaceDescriptor(){return new Vs(this,this.input)}};var bg=class extends Oa{constructor(n,a,r){super();this.parentTask=n;this.input=a;this.extractedFaces=r}},dl=class extends bg{async run(){let t=await this.parentTask,n=await ul(t,this.input,async a=>Promise.all(a.map(r=>rt.ageGenderNet.predictAgeAndGender(r))),this.extractedFaces);return t.map((a,r)=>{let{age:s,gender:i,genderProbability:o}=n[r];return Fk($k(a,i,o),s)})}withFaceExpressions(){return new pl(this,this.input)}},hl=class extends bg{async run(){let t=await this.parentTask;if(!t)return;let{age:n,gender:a,genderProbability:r}=await Lp(t,this.input,s=>rt.ageGenderNet.predictAgeAndGender(s),this.extractedFaces);return Fk($k(t,a,r),n)}withFaceExpressions(){return new cl(this,this.input)}},zs=class extends dl{withFaceExpressions(){return new Ps(this,this.input)}withFaceDescriptors(){return new Bs(this,this.input)}},Ws=class extends hl{withFaceExpressions(){return new Ls(this,this.input)}withFaceDescriptor(){return new Vs(this,this.input)}};var yg=class extends Oa{constructor(n,a){super();this.parentTask=n;this.input=a}},Bs=class extends yg{async run(){let t=await this.parentTask;return(await ul(t,this.input,a=>Promise.all(a.map(r=>rt.faceRecognitionNet.computeFaceDescriptor(r))),null,a=>a.landmarks.align(null,{useDlibAlignment:!0}))).map((a,r)=>Ak(t[r],a))}withFaceExpressions(){return new Ps(this,this.input)}withAgeAndGender(){return new zs(this,this.input)}},Vs=class extends yg{async run(){let t=await this.parentTask;if(!t)return;let n=await Lp(t,this.input,a=>rt.faceRecognitionNet.computeFaceDescriptor(a),null,a=>a.landmarks.align(null,{useDlibAlignment:!0}));return Ak(t,n)}withFaceExpressions(){return new Ls(this,this.input)}withAgeAndGender(){return new Ws(this,this.input)}};var xg=class extends Oa{constructor(n,a,r){super();this.parentTask=n;this.input=a;this.useTinyLandmarkNet=r}get landmarkNet(){return this.useTinyLandmarkNet?rt.faceLandmark68TinyNet:rt.faceLandmark68Net}},vg=class extends xg{async run(){let t=await this.parentTask,n=t.map(i=>i.detection),a=this.input instanceof Ce?await Ld(this.input,n):await Pd(this.input,n),r=await Promise.all(a.map(i=>this.landmarkNet.detectLandmarks(i)));return a.forEach(i=>i instanceof Ce&&i.dispose()),t.filter((i,o)=>r[o]).map((i,o)=>Vd(i,r[o]))}withFaceExpressions(){return new Ps(this,this.input)}withAgeAndGender(){return new zs(this,this.input)}withFaceDescriptors(){return new Bs(this,this.input)}},wg=class extends xg{async run(){let t=await this.parentTask;if(!t)return;let{detection:n}=t,a=this.input instanceof Ce?await Ld(this.input,[n]):await Pd(this.input,[n]),r=await this.landmarkNet.detectLandmarks(a[0]);return a.forEach(s=>s instanceof Ce&&s.dispose()),Vd(t,r)}withFaceExpressions(){return new Ls(this,this.input)}withAgeAndGender(){return new Ws(this,this.input)}withFaceDescriptor(){return new Vs(this,this.input)}};var kg=class extends Oa{constructor(n,a=new Ma){super();this.input=n;this.options=a}},Gd=class extends kg{async run(){let{input:t,options:n}=this,a;if(n instanceof fg)a=rt.tinyFaceDetector.locateFaces(t,n);else if(n instanceof Ma)a=rt.ssdMobilenetv1.locateFaces(t,n);else if(n instanceof yr)a=rt.tinyYolov2.locateFaces(t,n);else throw new Error("detectFaces - expected options to be instance of TinyFaceDetectorOptions | SsdMobilenetv1Options | TinyYolov2Options");return a}runAndExtendWithFaceDetections(){return new Promise((t,n)=>{this.run().then(a=>t(a.map(r=>wp({},r)))).catch(a=>n(a))})}withFaceLandmarks(t=!1){return new vg(this.runAndExtendWithFaceDetections(),this.input,t)}withFaceExpressions(){return new pl(this.runAndExtendWithFaceDetections(),this.input)}withAgeAndGender(){return new dl(this.runAndExtendWithFaceDetections(),this.input)}},Ig=class extends kg{async run(){let t=await new Gd(this.input,this.options),n=t[0];return t.forEach(a=>{a.score>n.score&&(n=a)}),n}runAndExtendWithFaceDetection(){return new Promise(async t=>{let n=await this.run();t(n?wp({},n):void 0)})}withFaceLandmarks(t=!1){return new wg(this.runAndExtendWithFaceDetection(),this.input,t)}withFaceExpressions(){return new cl(this.runAndExtendWithFaceDetection(),this.input)}withAgeAndGender(){return new hl(this.runAndExtendWithFaceDetection(),this.input)}};function _Ae(e,t=new Ma){return new Ig(e,t)}function Dk(e,t=new Ma){return new Gd(e,t)}async function mge(e,t){return Dk(e,new Ma(t?{minConfidence:t}:{})).withFaceLandmarks().withFaceDescriptors()}async function MAe(e,t={}){return Dk(e,new yr(t)).withFaceLandmarks().withFaceDescriptors()}var OAe=mge;function zD(e,t){if(e.length!==t.length)throw new Error("euclideanDistance: arr1.length !== arr2.length");let n=Array.from(e),a=Array.from(t);return Math.sqrt(n.map((r,s)=>r-a[s]).reduce((r,s)=>r+s*s,0))}var WD=class e{constructor(t,n=.6){this._distanceThreshold=n;let a=Array.isArray(t)?t:[t];if(!a.length)throw new Error("FaceRecognizer.constructor - expected atleast one input");let r=1,s=()=>`person ${r++}`;this._labeledDescriptors=a.map(i=>{if(i instanceof rl)return i;if(i instanceof Float32Array)return new rl(s(),[i]);if(i.descriptor&&i.descriptor instanceof Float32Array)return new rl(s(),[i.descriptor]);throw new Error("FaceRecognizer.constructor - expected inputs to be of type LabeledFaceDescriptors | WithFaceDescriptor | Float32Array | Array | Float32Array>")})}get labeledDescriptors(){return this._labeledDescriptors}get distanceThreshold(){return this._distanceThreshold}computeMeanDistance(t,n){return n.map(a=>zD(a,t)).reduce((a,r)=>a+r,0)/(n.length||1)}matchDescriptor(t){return this.labeledDescriptors.map(({descriptors:n,label:a})=>new Dd(a,this.computeMeanDistance(t,n))).reduce((n,a)=>n.distancet.toJSON())}}static fromJSON(t){let n=t.labeledDescriptors.map(a=>rl.fromJSON(a));return new e(n,t.distanceThreshold)}};function eFe(e){let t=new zp;return t.extractWeights(e),t}function fge(e,t){let{width:n,height:a}=new aa(t.width,t.height);if(n<=0||a<=0)throw new Error(`resizeResults - invalid dimensions: ${JSON.stringify({width:n,height:a})}`);if(Array.isArray(e))return e.map(r=>fge(r,{width:n,height:a}));if(Fp(e)){let r=e.detection.forSize(n,a),s=e.unshiftedLandmarks.forSize(r.box.width,r.box.height);return Vd(wp(e,r),s)}return zr(e)?wp(e,e.detection.forSize(n,a)):e instanceof ka||e instanceof Ft?e.forSize(n,a):e}var cFe=oD;export{ug as AgeGenderNet,bp as BoundingBox,mn as Box,Oa as ComposableTask,Bs as ComputeAllFaceDescriptorsTask,yg as ComputeFaceDescriptorsTaskBase,Vs as ComputeSingleFaceDescriptorTask,vg as DetectAllFaceLandmarksTask,Gd as DetectAllFacesTask,xg as DetectFaceLandmarksTaskBase,kg as DetectFacesTaskBase,wg as DetectSingleFaceLandmarksTask,Ig as DetectSingleFaceTask,aa as Dimensions,rD as FACE_EXPRESSION_LABELS,Ft as FaceDetection,TD as FaceDetectionNet,sg as FaceExpressionNet,Os as FaceExpressions,Dp as FaceLandmark68Net,cg as FaceLandmark68TinyNet,fD as FaceLandmarkNet,ka as FaceLandmarks,H$ as FaceLandmarks5,vp as FaceLandmarks68,Dd as FaceMatch,WD as FaceMatcher,Rp as FaceRecognitionNet,Ck as Gender,Rd as LabeledBox,rl as LabeledFaceDescriptors,Wr as NetInput,fn as NeuralNetwork,yp as ObjectDetection,He as Point,j$ as PredictedBox,xp as Rect,ll as SsdMobilenetv1,Ma as SsdMobilenetv1Options,zp as TinyFaceDetector,fg as TinyFaceDetectorOptions,Pp as TinyYolov2,yr as TinyYolov2Options,OAe as allFaces,mge as allFacesSsdMobilenetv1,MAe as allFacesTinyYolov2,q$ as awaitMediaLoaded,K$ as bufferToImage,v_e as computeFaceDescriptor,Np as createCanvas,Zf as createCanvasFromMedia,YCe as createFaceDetectionNet,Y2e as createFaceRecognitionNet,lge as createSsdMobilenetv1,eFe as createTinyFaceDetector,BEe as createTinyYolov2,Dk as detectAllFaces,dge as detectFaceLandmarks,x_e as detectFaceLandmarksTiny,$_e as detectLandmarks,_Ae as detectSingleFace,iD as draw,at as env,zD as euclideanDistance,Fk as extendWithAge,Ak as extendWithFaceDescriptor,wp as extendWithFaceDetection,Nk as extendWithFaceExpressions,Vd as extendWithFaceLandmarks,$k as extendWithGender,Ld as extractFaceTensors,Pd as extractFaces,sIe as fetchImage,Z$ as fetchJson,pIe as fetchNetWeights,Ms as fetchOrThrow,gIe as fetchVideo,ra as getContext2dOrThrow,Sp as getMediaDimensions,X$ as imageTensorToCanvas,Y$ as imageToSquare,v0e as inverseSigmoid,B$ as iou,Sk as isMediaElement,Yf as isMediaLoaded,eCe as isWithAge,zr as isWithFaceDetection,sD as isWithFaceExpressions,Fp as isWithFaceLandmarks,rCe as isWithGender,__e as loadAgeGenderModel,A_e as loadFaceDetectionModel,E_e as loadFaceExpressionModel,N_e as loadFaceLandmarkModel,T_e as loadFaceLandmarkTinyModel,C_e as loadFaceRecognitionModel,hge as loadSsdMobilenetv1Model,I_e as loadTinyFaceDetectorModel,S_e as loadTinyYolov2Model,Q$ as loadWeightMap,F_e as locateFaces,IIe as matchDimensions,V$ as minBbox,rt as nets,U$ as nonMaxSuppression,br as normalize,G$ as padToSquare,k_e as predictAgeAndGender,w_e as recognizeFaceExpressions,fge as resizeResults,kp as resolveInput,y0e as shuffleArray,qf as sigmoid,cge as ssdMobilenetv1,Pe as tf,b_e as tinyFaceDetector,y_e as tinyYolov2,vt as toNetInput,W$ as utils,DD as validateConfig,cFe as version}; //# sourceMappingURL=face-api.esm.js.map diff --git a/dist/face-api.esm.js.map b/dist/face-api.esm.js.map index a54c4f2..847b8a3 100644 --- a/dist/face-api.esm.js.map +++ b/dist/face-api.esm.js.map @@ -1,7 +1,7 @@ { "version": 3, "sources": ["tfjs.esm.js", "../src/draw/index.ts", "../src/draw/drawContour.ts", "../src/utils/index.ts", "../src/classes/Dimensions.ts", "../src/classes/Point.ts", "../src/classes/Box.ts", "../src/classes/BoundingBox.ts", "../src/classes/ObjectDetection.ts", "../src/classes/FaceDetection.ts", "../src/ops/iou.ts", "../src/ops/minBbox.ts", "../src/ops/nonMaxSuppression.ts", "../src/ops/normalize.ts", "../src/ops/padToSquare.ts", "../src/ops/shuffleArray.ts", "../src/ops/index.ts", "../src/classes/Rect.ts", "../src/classes/FaceLandmarks.ts", "../src/classes/FaceLandmarks5.ts", "../src/classes/FaceLandmarks68.ts", "../src/classes/FaceMatch.ts", "../src/classes/LabeledBox.ts", "../src/classes/LabeledFaceDescriptors.ts", "../src/classes/PredictedBox.ts", "../src/factories/WithFaceDetection.ts", "../src/env/createBrowserEnv.ts", "../src/env/isNodejs.ts", "../src/env/createFileSystem.ts", "../src/env/createNodejsEnv.ts", "../src/env/isBrowser.ts", "../src/env/index.ts", "../src/dom/resolveInput.ts", "../src/dom/getContext2dOrThrow.ts", "../src/draw/DrawTextField.ts", "../src/draw/DrawBox.ts", "../src/draw/drawDetections.ts", "../src/dom/isMediaLoaded.ts", "../src/dom/awaitMediaLoaded.ts", "../src/dom/bufferToImage.ts", "../src/dom/getMediaDimensions.ts", "../src/dom/createCanvas.ts", "../src/dom/imageTensorToCanvas.ts", "../src/dom/isMediaElement.ts", "../src/dom/imageToSquare.ts", "../src/dom/NetInput.ts", "../src/dom/toNetInput.ts", "../src/dom/extractFaces.ts", "../src/dom/extractFaceTensors.ts", "../src/dom/fetchOrThrow.ts", "../src/dom/fetchImage.ts", "../src/dom/fetchJson.ts", "../src/dom/fetchNetWeights.ts", "../src/dom/bufferToVideo.ts", "../src/dom/fetchVideo.ts", "../src/common/getModelUris.ts", "../src/dom/loadWeightMap.ts", "../src/dom/matchDimensions.ts", "../src/NeuralNetwork.ts", "../src/common/depthwiseSeparableConv.ts", "../src/faceFeatureExtractor/denseBlock.ts", "../src/common/convLayer.ts", "../src/common/disposeUnusedWeightTensors.ts", "../src/common/extractConvParamsFactory.ts", "../src/common/extractFCParamsFactory.ts", "../src/common/types.ts", "../src/common/extractSeparableConvParamsFactory.ts", "../src/common/extractWeightEntryFactory.ts", "../src/common/extractWeightsFactory.ts", "../src/faceFeatureExtractor/extractorsFactory.ts", "../src/faceFeatureExtractor/extractParams.ts", "../src/common/loadConvParamsFactory.ts", "../src/faceFeatureExtractor/loadParamsFactory.ts", "../src/faceFeatureExtractor/extractParamsFromWeightMap.ts", "../src/faceFeatureExtractor/FaceFeatureExtractor.ts", "../src/common/fullyConnectedLayer.ts", "../src/faceProcessor/extractParams.ts", "../src/faceProcessor/extractParamsFromWeightMap.ts", "../src/faceProcessor/util.ts", "../src/faceProcessor/FaceProcessor.ts", "../src/faceExpressionNet/FaceExpressions.ts", "../src/faceExpressionNet/FaceExpressionNet.ts", "../src/factories/WithFaceExpressions.ts", "../src/draw/drawFaceExpressions.ts", "../src/factories/WithFaceLandmarks.ts", "../src/draw/DrawFaceLandmarks.ts", "../package.json", "../src/xception/extractParams.ts", "../src/xception/extractParamsFromWeightMap.ts", "../src/xception/TinyXception.ts", "../src/ageGenderNet/extractParams.ts", "../src/ageGenderNet/extractParamsFromWeightMap.ts", "../src/ageGenderNet/types.ts", "../src/ageGenderNet/AgeGenderNet.ts", "../src/faceLandmarkNet/FaceLandmark68NetBase.ts", "../src/faceLandmarkNet/FaceLandmark68Net.ts", "../src/faceFeatureExtractor/extractParamsFromWeightMapTiny.ts", "../src/faceFeatureExtractor/extractParamsTiny.ts", "../src/faceFeatureExtractor/TinyFaceFeatureExtractor.ts", "../src/faceLandmarkNet/FaceLandmark68TinyNet.ts", "../src/faceLandmarkNet/index.ts", "../src/faceRecognitionNet/scaleLayer.ts", "../src/faceRecognitionNet/convLayer.ts", "../src/faceRecognitionNet/extractParams.ts", "../src/faceRecognitionNet/extractParamsFromWeightMap.ts", "../src/faceRecognitionNet/residualLayer.ts", "../src/faceRecognitionNet/FaceRecognitionNet.ts", "../src/faceRecognitionNet/index.ts", "../src/factories/WithFaceDescriptor.ts", "../src/factories/WithAge.ts", "../src/factories/WithGender.ts", "../src/ssdMobilenetv1/extractParams.ts", "../src/ssdMobilenetv1/extractParamsFromWeightMap.ts", "../src/ssdMobilenetv1/pointwiseConvLayer.ts", "../src/ssdMobilenetv1/mobileNetV1.ts", "../src/ssdMobilenetv1/nonMaxSuppression.ts", "../src/ssdMobilenetv1/outputLayer.ts", "../src/ssdMobilenetv1/boxPredictionLayer.ts", "../src/ssdMobilenetv1/predictionLayer.ts", "../src/ssdMobilenetv1/SsdMobilenetv1Options.ts", "../src/ssdMobilenetv1/SsdMobilenetv1.ts", "../src/ssdMobilenetv1/index.ts", "../src/tinyYolov2/const.ts", "../src/tinyYolov2/config.ts", "../src/tinyYolov2/leaky.ts", "../src/tinyYolov2/convWithBatchNorm.ts", "../src/tinyYolov2/depthwiseSeparableConv.ts", "../src/tinyYolov2/extractParams.ts", "../src/tinyYolov2/extractParamsFromWeightMap.ts", "../src/tinyYolov2/TinyYolov2Options.ts", "../src/tinyYolov2/TinyYolov2Base.ts", "../src/tinyYolov2/TinyYolov2.ts", "../src/tinyYolov2/index.ts", "../src/tinyFaceDetector/TinyFaceDetectorOptions.ts", "../src/globalApi/ComposableTask.ts", "../src/globalApi/extractFacesAndComputeResults.ts", "../src/tinyFaceDetector/const.ts", "../src/tinyFaceDetector/TinyFaceDetector.ts", "../src/globalApi/nets.ts", "../src/globalApi/PredictFaceExpressionsTask.ts", "../src/globalApi/PredictAgeAndGenderTask.ts", "../src/globalApi/ComputeFaceDescriptorsTasks.ts", "../src/globalApi/DetectFaceLandmarksTasks.ts", "../src/globalApi/DetectFacesTasks.ts", "../src/globalApi/detectFaces.ts", "../src/globalApi/allFaces.ts", "../src/euclideanDistance.ts", "../src/globalApi/FaceMatcher.ts", "../src/tinyFaceDetector/index.ts", "../src/resizeResults.ts", "../src/index.ts"], - "sourcesContent": ["/*\n Face-API\n homepage: \n author: '\n*/\n\nvar zq=Object.create;var f0=Object.defineProperty;var Bq=Object.getOwnPropertyDescriptor;var Vq=Object.getOwnPropertyNames;var Gq=Object.getPrototypeOf,Wq=Object.prototype.hasOwnProperty;var br=(r,t)=>()=>(t||r((t={exports:{}}).exports,t),t.exports),Kt=(r,t)=>{for(var e in t)f0(r,e,{get:t[e],enumerable:!0})},Uq=(r,t,e,n)=>{if(t&&typeof t==\"object\"||typeof t==\"function\")for(let o of Vq(t))!Wq.call(r,o)&&o!==e&&f0(r,o,{get:()=>t[o],enumerable:!(n=Bq(t,o))||n.enumerable});return r};var Gl=(r,t,e)=>(e=r!=null?zq(Gq(r)):{},Uq(t||!r||!r.__esModule?f0(e,\"default\",{value:r,enumerable:!0}):e,r));var W_=br((gft,G_)=>{G_.exports=He;var yo=null;try{yo=new WebAssembly.Instance(new WebAssembly.Module(new Uint8Array([0,97,115,109,1,0,0,0,1,13,2,96,0,1,127,96,4,127,127,127,127,1,127,3,7,6,0,1,1,1,1,1,6,6,1,127,1,65,0,11,7,50,6,3,109,117,108,0,1,5,100,105,118,95,115,0,2,5,100,105,118,95,117,0,3,5,114,101,109,95,115,0,4,5,114,101,109,95,117,0,5,8,103,101,116,95,104,105,103,104,0,0,10,191,1,6,4,0,35,0,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,126,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,127,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,128,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,129,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,130,34,4,66,32,135,167,36,0,32,4,167,11])),{}).exports}catch(r){}function He(r,t,e){this.low=r|0,this.high=t|0,this.unsigned=!!e}He.prototype.__isLong__;Object.defineProperty(He.prototype,\"__isLong__\",{value:!0});function zn(r){return(r&&r.__isLong__)===!0}He.isLong=zn;var R_={},F_={};function oc(r,t){var e,n,o;return t?(r>>>=0,(o=0<=r&&r<256)&&(n=F_[r],n)?n:(e=qe(r,(r|0)<0?-1:0,!0),o&&(F_[r]=e),e)):(r|=0,(o=-128<=r&&r<128)&&(n=R_[r],n)?n:(e=qe(r,r<0?-1:0,!1),o&&(R_[r]=e),e))}He.fromInt=oc;function bo(r,t){if(isNaN(r))return t?nc:wo;if(t){if(r<0)return nc;if(r>=L_)return V_}else{if(r<=-M_)return Ln;if(r+1>=M_)return B_}return r<0?bo(-r,t).neg():qe(r%Hp|0,r/Hp|0,t)}He.fromNumber=bo;function qe(r,t,e){return new He(r,t,e)}He.fromBits=qe;var Jg=Math.pow;function k0(r,t,e){if(r.length===0)throw Error(\"empty string\");if(r===\"NaN\"||r===\"Infinity\"||r===\"+Infinity\"||r===\"-Infinity\")return wo;if(typeof t==\"number\"?(e=t,t=!1):t=!!t,e=e||10,e<2||360)throw Error(\"interior hyphen\");if(n===0)return k0(r.substring(1),t,e).neg();for(var o=bo(Jg(e,8)),s=wo,i=0;i>>0:this.low};xt.toNumber=function(){return this.unsigned?(this.high>>>0)*Hp+(this.low>>>0):this.high*Hp+(this.low>>>0)};xt.toString=function(t){if(t=t||10,t<2||36>>0,c=l.toString(t);if(i=u,i.isZero())return c+a;for(;c.length<6;)c=\"0\"+c;a=\"\"+c+a}};xt.getHighBits=function(){return this.high};xt.getHighBitsUnsigned=function(){return this.high>>>0};xt.getLowBits=function(){return this.low};xt.getLowBitsUnsigned=function(){return this.low>>>0};xt.getNumBitsAbs=function(){if(this.isNegative())return this.eq(Ln)?64:this.neg().getNumBitsAbs();for(var t=this.high!=0?this.high:this.low,e=31;e>0&&!(t&1<=0};xt.isOdd=function(){return(this.low&1)===1};xt.isEven=function(){return(this.low&1)===0};xt.equals=function(t){return zn(t)||(t=oi(t)),this.unsigned!==t.unsigned&&this.high>>>31===1&&t.high>>>31===1?!1:this.high===t.high&&this.low===t.low};xt.eq=xt.equals;xt.notEquals=function(t){return!this.eq(t)};xt.neq=xt.notEquals;xt.ne=xt.notEquals;xt.lessThan=function(t){return this.comp(t)<0};xt.lt=xt.lessThan;xt.lessThanOrEqual=function(t){return this.comp(t)<=0};xt.lte=xt.lessThanOrEqual;xt.le=xt.lessThanOrEqual;xt.greaterThan=function(t){return this.comp(t)>0};xt.gt=xt.greaterThan;xt.greaterThanOrEqual=function(t){return this.comp(t)>=0};xt.gte=xt.greaterThanOrEqual;xt.ge=xt.greaterThanOrEqual;xt.compare=function(t){if(zn(t)||(t=oi(t)),this.eq(t))return 0;var e=this.isNegative(),n=t.isNegative();return e&&!n?-1:!e&&n?1:this.unsigned?t.high>>>0>this.high>>>0||t.high===this.high&&t.low>>>0>this.low>>>0?-1:1:this.sub(t).isNegative()?-1:1};xt.comp=xt.compare;xt.negate=function(){return!this.unsigned&&this.eq(Ln)?Ln:this.not().add(Up)};xt.neg=xt.negate;xt.add=function(t){zn(t)||(t=oi(t));var e=this.high>>>16,n=this.high&65535,o=this.low>>>16,s=this.low&65535,i=t.high>>>16,a=t.high&65535,u=t.low>>>16,l=t.low&65535,c=0,p=0,m=0,f=0;return f+=s+l,m+=f>>>16,f&=65535,m+=o+u,p+=m>>>16,m&=65535,p+=n+a,c+=p>>>16,p&=65535,c+=e+i,c&=65535,qe(m<<16|f,c<<16|p,this.unsigned)};xt.subtract=function(t){return zn(t)||(t=oi(t)),this.add(t.neg())};xt.sub=xt.subtract;xt.multiply=function(t){if(this.isZero())return wo;if(zn(t)||(t=oi(t)),yo){var e=yo.mul(this.low,this.high,t.low,t.high);return qe(e,yo.get_high(),this.unsigned)}if(t.isZero())return wo;if(this.eq(Ln))return t.isOdd()?Ln:wo;if(t.eq(Ln))return this.isOdd()?Ln:wo;if(this.isNegative())return t.isNegative()?this.neg().mul(t.neg()):this.neg().mul(t).neg();if(t.isNegative())return this.mul(t.neg()).neg();if(this.lt(P_)&&t.lt(P_))return bo(this.toNumber()*t.toNumber(),this.unsigned);var n=this.high>>>16,o=this.high&65535,s=this.low>>>16,i=this.low&65535,a=t.high>>>16,u=t.high&65535,l=t.low>>>16,c=t.low&65535,p=0,m=0,f=0,d=0;return d+=i*c,f+=d>>>16,d&=65535,f+=s*c,m+=f>>>16,f&=65535,f+=i*l,m+=f>>>16,f&=65535,m+=o*c,p+=m>>>16,m&=65535,m+=s*l,p+=m>>>16,m&=65535,m+=i*u,p+=m>>>16,m&=65535,p+=n*c+o*l+s*u+i*a,p&=65535,qe(f<<16|d,p<<16|m,this.unsigned)};xt.mul=xt.multiply;xt.divide=function(t){if(zn(t)||(t=oi(t)),t.isZero())throw Error(\"division by zero\");if(yo){if(!this.unsigned&&this.high===-2147483648&&t.low===-1&&t.high===-1)return this;var e=(this.unsigned?yo.div_u:yo.div_s)(this.low,this.high,t.low,t.high);return qe(e,yo.get_high(),this.unsigned)}if(this.isZero())return this.unsigned?nc:wo;var n,o,s;if(this.unsigned){if(t.unsigned||(t=t.toUnsigned()),t.gt(this))return nc;if(t.gt(this.shru(1)))return z_;s=nc}else{if(this.eq(Ln)){if(t.eq(Up)||t.eq(N0))return Ln;if(t.eq(Ln))return Up;var i=this.shr(1);return n=i.div(t).shl(1),n.eq(wo)?t.isNegative()?Up:N0:(o=this.sub(t.mul(n)),s=n.add(o.div(t)),s)}else if(t.eq(Ln))return this.unsigned?nc:wo;if(this.isNegative())return t.isNegative()?this.neg().div(t.neg()):this.neg().div(t).neg();if(t.isNegative())return this.div(t.neg()).neg();s=wo}for(o=this;o.gte(t);){n=Math.max(1,Math.floor(o.toNumber()/t.toNumber()));for(var a=Math.ceil(Math.log(n)/Math.LN2),u=a<=48?1:Jg(2,a-48),l=bo(n),c=l.mul(t);c.isNegative()||c.gt(o);)n-=u,l=bo(n,this.unsigned),c=l.mul(t);l.isZero()&&(l=Up),s=s.add(l),o=o.sub(c)}return s};xt.div=xt.divide;xt.modulo=function(t){if(zn(t)||(t=oi(t)),yo){var e=(this.unsigned?yo.rem_u:yo.rem_s)(this.low,this.high,t.low,t.high);return qe(e,yo.get_high(),this.unsigned)}return this.sub(this.div(t).mul(t))};xt.mod=xt.modulo;xt.rem=xt.modulo;xt.not=function(){return qe(~this.low,~this.high,this.unsigned)};xt.and=function(t){return zn(t)||(t=oi(t)),qe(this.low&t.low,this.high&t.high,this.unsigned)};xt.or=function(t){return zn(t)||(t=oi(t)),qe(this.low|t.low,this.high|t.high,this.unsigned)};xt.xor=function(t){return zn(t)||(t=oi(t)),qe(this.low^t.low,this.high^t.high,this.unsigned)};xt.shiftLeft=function(t){return zn(t)&&(t=t.toInt()),(t&=63)===0?this:t<32?qe(this.low<>>32-t,this.unsigned):qe(0,this.low<>>t|this.high<<32-t,this.high>>t,this.unsigned):qe(this.high>>t-32,this.high>=0?0:-1,this.unsigned)};xt.shr=xt.shiftRight;xt.shiftRightUnsigned=function(t){if(zn(t)&&(t=t.toInt()),t&=63,t===0)return this;var e=this.high;if(t<32){var n=this.low;return qe(n>>>t|e<<32-t,e>>>t,this.unsigned)}else return t===32?qe(e,0,this.unsigned):qe(e>>>t-32,0,this.unsigned)};xt.shru=xt.shiftRightUnsigned;xt.shr_u=xt.shiftRightUnsigned;xt.toSigned=function(){return this.unsigned?qe(this.low,this.high,!1):this};xt.toUnsigned=function(){return this.unsigned?this:qe(this.low,this.high,!0)};xt.toBytes=function(t){return t?this.toBytesLE():this.toBytesBE()};xt.toBytesLE=function(){var t=this.high,e=this.low;return[e&255,e>>>8&255,e>>>16&255,e>>>24,t&255,t>>>8&255,t>>>16&255,t>>>24]};xt.toBytesBE=function(){var t=this.high,e=this.low;return[t>>>24,t>>>16&255,t>>>8&255,t&255,e>>>24,e>>>16&255,e>>>8&255,e&255]};He.fromBytes=function(t,e,n){return n?He.fromBytesLE(t,e):He.fromBytesBE(t,e)};He.fromBytesLE=function(t,e){return new He(t[0]|t[1]<<8|t[2]<<16|t[3]<<24,t[4]|t[5]<<8|t[6]<<16|t[7]<<24,e)};He.fromBytesBE=function(t,e){return new He(t[4]<<24|t[5]<<16|t[6]<<8|t[7],t[0]<<24|t[1]<<16|t[2]<<8|t[3],e)}});var TE=br(()=>{});var _E=br(()=>{});var nA=br((rA,sN)=>{(function(r,t,e){function n(a){var u=this,l=i();u.next=function(){var c=2091639*u.s0+u.c*23283064365386963e-26;return u.s0=u.s1,u.s1=u.s2,u.s2=c-(u.c=c|0)},u.c=1,u.s0=l(\" \"),u.s1=l(\" \"),u.s2=l(\" \"),u.s0-=l(a),u.s0<0&&(u.s0+=1),u.s1-=l(a),u.s1<0&&(u.s1+=1),u.s2-=l(a),u.s2<0&&(u.s2+=1),l=null}function o(a,u){return u.c=a.c,u.s0=a.s0,u.s1=a.s1,u.s2=a.s2,u}function s(a,u){var l=new n(a),c=u&&u.state,p=l.next;return p.int32=function(){return l.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,c&&(typeof c==\"object\"&&o(c,l),p.state=function(){return o(l,{})}),p}function i(){var a=4022871197,u=function(l){l=String(l);for(var c=0;c>>0,p-=a,p*=a,a=p>>>0,p-=a,a+=p*4294967296}return(a>>>0)*23283064365386963e-26};return u}t&&t.exports?t.exports=s:e&&e.amd?e(function(){return s}):this.alea=s})(rA,typeof sN==\"object\"&&sN,typeof define==\"function\"&&define)});var sA=br((oA,iN)=>{(function(r,t,e){function n(i){var a=this,u=\"\";a.x=0,a.y=0,a.z=0,a.w=0,a.next=function(){var c=a.x^a.x<<11;return a.x=a.y,a.y=a.z,a.z=a.w,a.w^=a.w>>>19^c^c>>>8},i===(i|0)?a.x=i:u+=i;for(var l=0;l>>0)/4294967296};return c.double=function(){do var p=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=u.next,c.quick=c,l&&(typeof l==\"object\"&&o(l,u),c.state=function(){return o(u,{})}),c}t&&t.exports?t.exports=s:e&&e.amd?e(function(){return s}):this.xor128=s})(oA,typeof iN==\"object\"&&iN,typeof define==\"function\"&&define)});var aA=br((iA,aN)=>{(function(r,t,e){function n(i){var a=this,u=\"\";a.next=function(){var c=a.x^a.x>>>2;return a.x=a.y,a.y=a.z,a.z=a.w,a.w=a.v,(a.d=a.d+362437|0)+(a.v=a.v^a.v<<4^(c^c<<1))|0},a.x=0,a.y=0,a.z=0,a.w=0,a.v=0,i===(i|0)?a.x=i:u+=i;for(var l=0;l>>4),a.next()}function o(i,a){return a.x=i.x,a.y=i.y,a.z=i.z,a.w=i.w,a.v=i.v,a.d=i.d,a}function s(i,a){var u=new n(i),l=a&&a.state,c=function(){return(u.next()>>>0)/4294967296};return c.double=function(){do var p=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=u.next,c.quick=c,l&&(typeof l==\"object\"&&o(l,u),c.state=function(){return o(u,{})}),c}t&&t.exports?t.exports=s:e&&e.amd?e(function(){return s}):this.xorwow=s})(iA,typeof aN==\"object\"&&aN,typeof define==\"function\"&&define)});var uA=br((lA,lN)=>{(function(r,t,e){function n(i){var a=this;a.next=function(){var l=a.x,c=a.i,p,m,f;return p=l[c],p^=p>>>7,m=p^p<<24,p=l[c+1&7],m^=p^p>>>10,p=l[c+3&7],m^=p^p>>>3,p=l[c+4&7],m^=p^p<<7,p=l[c+7&7],p=p^p<<13,m^=p^p<<9,l[c]=m,a.i=c+1&7,m};function u(l,c){var p,m,f=[];if(c===(c|0))m=f[0]=c;else for(c=\"\"+c,p=0;p0;--p)l.next()}u(a,i)}function o(i,a){return a.x=i.x.slice(),a.i=i.i,a}function s(i,a){i==null&&(i=+new Date);var u=new n(i),l=a&&a.state,c=function(){return(u.next()>>>0)/4294967296};return c.double=function(){do var p=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=u.next,c.quick=c,l&&(l.x&&o(l,u),c.state=function(){return o(u,{})}),c}t&&t.exports?t.exports=s:e&&e.amd?e(function(){return s}):this.xorshift7=s})(lA,typeof lN==\"object\"&&lN,typeof define==\"function\"&&define)});var pA=br((cA,uN)=>{(function(r,t,e){function n(i){var a=this;a.next=function(){var l=a.w,c=a.X,p=a.i,m,f;return a.w=l=l+1640531527|0,f=c[p+34&127],m=c[p=p+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=c[p]=f^m,a.i=p,f+(l^l>>>16)|0};function u(l,c){var p,m,f,d,h,g=[],x=128;for(c===(c|0)?(m=c,c=null):(c=c+\"\\0\",m=0,x=Math.max(x,c.length)),f=0,d=-32;d>>15,m^=m<<4,m^=m>>>13,d>=0&&(h=h+1640531527|0,p=g[d&127]^=m+h,f=p==0?f+1:0);for(f>=128&&(g[(c&&c.length||0)&127]=-1),f=127,d=4*128;d>0;--d)m=g[f+34&127],p=g[f=f+1&127],m^=m<<13,p^=p<<17,m^=m>>>15,p^=p>>>12,g[f]=m^p;l.w=h,l.X=g,l.i=f}u(a,i)}function o(i,a){return a.i=i.i,a.w=i.w,a.X=i.X.slice(),a}function s(i,a){i==null&&(i=+new Date);var u=new n(i),l=a&&a.state,c=function(){return(u.next()>>>0)/4294967296};return c.double=function(){do var p=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=u.next,c.quick=c,l&&(l.X&&o(l,u),c.state=function(){return o(u,{})}),c}t&&t.exports?t.exports=s:e&&e.amd?e(function(){return s}):this.xor4096=s})(cA,typeof uN==\"object\"&&uN,typeof define==\"function\"&&define)});var fA=br((mA,cN)=>{(function(r,t,e){function n(i){var a=this,u=\"\";a.next=function(){var c=a.b,p=a.c,m=a.d,f=a.a;return c=c<<25^c>>>7^p,p=p-m|0,m=m<<24^m>>>8^f,f=f-c|0,a.b=c=c<<20^c>>>12^p,a.c=p=p-m|0,a.d=m<<16^p>>>16^f,a.a=f-c|0},a.a=0,a.b=0,a.c=-1640531527,a.d=1367130551,i===Math.floor(i)?(a.a=i/4294967296|0,a.b=i|0):u+=i;for(var l=0;l>>0)/4294967296};return c.double=function(){do var p=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=u.next,c.quick=c,l&&(typeof l==\"object\"&&o(l,u),c.state=function(){return o(u,{})}),c}t&&t.exports?t.exports=s:e&&e.amd?e(function(){return s}):this.tychei=s})(mA,typeof cN==\"object\"&&cN,typeof define==\"function\"&&define)});var dA=br(()=>{});var gA=br((hA,ty)=>{(function(r,t,e){var n=256,o=6,s=52,i=\"random\",a=e.pow(n,o),u=e.pow(2,s),l=u*2,c=n-1,p;function m(w,I,N){var E=[];I=I==!0?{entropy:!0}:I||{};var A=g(h(I.entropy?[w,b(t)]:w==null?x():w,3),E),D=new f(E),F=function(){for(var M=D.g(o),V=a,G=0;M=l;)M/=2,V/=2,G>>>=1;return(M+G)/V};return F.int32=function(){return D.g(4)|0},F.quick=function(){return D.g(4)/4294967296},F.double=F,g(b(D.S),t),(I.pass||N||function(M,V,G,W){return W&&(W.S&&d(W,D),M.state=function(){return d(D,{})}),G?(e[i]=M,V):M})(F,A,\"global\"in I?I.global:this==e,I.state)}function f(w){var I,N=w.length,E=this,A=0,D=E.i=E.j=0,F=E.S=[];for(N||(w=[N++]);A{var BX=nA(),VX=sA(),GX=aA(),WX=uA(),UX=pA(),HX=fA(),hc=gA();hc.alea=BX;hc.xor128=VX;hc.xorwow=GX;hc.xorshift7=WX;hc.xor4096=UX;hc.tychei=HX;xA.exports=hc});var $k=br(()=>{});var hw=br(()=>{});var e_=br(()=>{});var KH=br(()=>{});var jH=br(()=>{});var XH=br(()=>{});var YH=br((RC,n_)=>{var r_=(()=>{var r=typeof document!=\"undefined\"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!=\"undefined\"&&(r=r||__filename),function(t){t=t||{};function e(){return it.buffer!=re&&Xe(it.buffer),be}function n(){return it.buffer!=re&&Xe(it.buffer),de}function o(){return it.buffer!=re&&Xe(it.buffer),Ee}function s(){return it.buffer!=re&&Xe(it.buffer),On}function i(){return it.buffer!=re&&Xe(it.buffer),lr}function a(){return it.buffer!=re&&Xe(it.buffer),Zn}function u(){return it.buffer!=re&&Xe(it.buffer),Br}var l=typeof t!=\"undefined\"?t:{},c,p;l.ready=new Promise(function(P,U){c=P,p=U});var m;typeof process!=\"undefined\"&&process.listeners&&(m={uncaughtException:process.listeners(\"uncaughtException\"),unhandledRejection:process.listeners(\"unhandledRejection\")});var f=Object.assign({},l),d=[],h=\"./this.program\",g=(P,U)=>{throw U},x=typeof window==\"object\",b=typeof importScripts==\"function\",w=typeof process==\"object\"&&typeof process.versions==\"object\"&&typeof process.versions.node==\"string\",I=l.ENVIRONMENT_IS_PTHREAD||!1,N=\"\";function E(P){return l.locateFile?l.locateFile(P,N):N+P}var A,D,F,M;function V(P){if(P instanceof Yu)return;Y(\"exiting due to exception: \"+P)}if(w){var G=hw(),W=e_();b?N=W.dirname(N)+\"/\":N=__dirname+\"/\",A=(U,dt)=>(U=wp(U)?new URL(U):W.normalize(U),G.readFileSync(U,dt?void 0:\"utf8\")),F=U=>{var dt=A(U,!0);return dt.buffer||(dt=new Uint8Array(dt)),dt},D=(U,dt,Pt)=>{U=wp(U)?new URL(U):W.normalize(U),G.readFile(U,function(Jt,Zt){Jt?Pt(Jt):dt(Zt.buffer)})},process.argv.length>1&&(h=process.argv[1].replace(/\\\\/g,\"/\")),d=process.argv.slice(2),process.on(\"uncaughtException\",function(U){if(!(U instanceof Yu))throw U}),process.on(\"unhandledRejection\",function(U){throw U}),g=(U,dt)=>{if(zo())throw process.exitCode=U,dt;V(dt),process.exit(U)},l.inspect=function(){return\"[Emscripten Module object]\"};let P;try{P=KH()}catch(U){throw console.error('The \"worker_threads\" module is not supported in this node.js build - perhaps a newer version is needed?'),U}global.Worker=P.Worker}else(x||b)&&(b?N=self.location.href:typeof document!=\"undefined\"&&document.currentScript&&(N=document.currentScript.src),typeof r!=\"undefined\"&&r&&(N=r),N.indexOf(\"blob:\")!==0?N=N.substr(0,N.replace(/[?#].*/,\"\").lastIndexOf(\"/\")+1):N=\"\",w||(A=P=>{var U=new XMLHttpRequest;return U.open(\"GET\",P,!1),U.send(null),U.responseText},b&&(F=P=>{var U=new XMLHttpRequest;return U.open(\"GET\",P,!1),U.responseType=\"arraybuffer\",U.send(null),new Uint8Array(U.response)}),D=(P,U,dt)=>{var Pt=new XMLHttpRequest;Pt.open(\"GET\",P,!0),Pt.responseType=\"arraybuffer\",Pt.onload=()=>{if(Pt.status==200||Pt.status==0&&Pt.response){U(Pt.response);return}dt()},Pt.onerror=dt,Pt.send(null)}),M=P=>document.title=P);w&&typeof performance==\"undefined\"&&(global.performance=jH().performance);var q=console.log.bind(console),H=console.warn.bind(console);w&&(q=P=>G.writeSync(1,P+`\n`),H=P=>G.writeSync(2,P+`\n`));var j=l.print||q,Y=l.printErr||H;Object.assign(l,f),f=null,l.arguments&&(d=l.arguments),l.thisProgram&&(h=l.thisProgram),l.quit&&(g=l.quit);var Z=4,et=Atomics.load,nt=Atomics.store,st=Atomics.compareExchange,lt;l.wasmBinary&&(lt=l.wasmBinary);var ot=l.noExitRuntime||!0;typeof WebAssembly!=\"object\"&&Xu(\"no native wasm support detected\");var it,ft,gt=!1,Ct;function Rt(P,U){P||Xu(U)}var Dt=typeof TextDecoder!=\"undefined\"?new TextDecoder(\"utf8\"):void 0;function Ht(P,U,dt){U>>>=0;for(var Pt=U+dt,Jt=U;P[Jt]&&!(Jt>=Pt);)++Jt;if(Jt-U>16&&P.buffer&&Dt)return Dt.decode(P.buffer instanceof SharedArrayBuffer?P.slice(U,Jt):P.subarray(U,Jt));for(var Zt=\"\";U>10,56320|eo&1023)}}return Zt}function qt(P,U){return P>>>=0,P?Ht(n(),P,U):\"\"}function pe(P,U,dt,Pt){if(dt>>>=0,!(Pt>0))return 0;for(var Jt=dt,Zt=dt+Pt-1,bt=0;bt=55296&&$t<=57343){var or=P.charCodeAt(++bt);$t=65536+(($t&1023)<<10)|or&1023}if($t<=127){if(dt>=Zt)break;U[dt++>>>0]=$t}else if($t<=2047){if(dt+1>=Zt)break;U[dt++>>>0]=192|$t>>6,U[dt++>>>0]=128|$t&63}else if($t<=65535){if(dt+2>=Zt)break;U[dt++>>>0]=224|$t>>12,U[dt++>>>0]=128|$t>>6&63,U[dt++>>>0]=128|$t&63}else{if(dt+3>=Zt)break;U[dt++>>>0]=240|$t>>18,U[dt++>>>0]=128|$t>>12&63,U[dt++>>>0]=128|$t>>6&63,U[dt++>>>0]=128|$t&63}}return U[dt>>>0]=0,dt-Jt}function ye(P,U,dt){return pe(P,n(),U,dt)}var re,be,de,Ee,Ae,On,lr,Zn,Br;I&&(re=l.buffer);function Xe(P){re=P,l.HEAP8=be=new Int8Array(P),l.HEAP16=Ee=new Int16Array(P),l.HEAP32=On=new Int32Array(P),l.HEAPU8=de=new Uint8Array(P),l.HEAPU16=Ae=new Uint16Array(P),l.HEAPU32=lr=new Uint32Array(P),l.HEAPF32=Zn=new Float32Array(P),l.HEAPF64=Br=new Float64Array(P)}var Vr=l.INITIAL_MEMORY||16777216;if(I)it=l.wasmMemory,re=l.buffer;else if(l.wasmMemory)it=l.wasmMemory;else if(it=new WebAssembly.Memory({initial:Vr/65536,maximum:65536,shared:!0}),!(it.buffer instanceof SharedArrayBuffer))throw Y(\"requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag\"),w&&Y(\"(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and/or recent version)\"),Error(\"bad memory\");it&&(re=it.buffer),Vr=re.byteLength,Xe(re);var Gr,Jn=[],Qn=[],Qr=[],Ca=!1;function zo(){return ot}function Ti(){if(l.preRun)for(typeof l.preRun==\"function\"&&(l.preRun=[l.preRun]);l.preRun.length;)Vd(l.preRun.shift());Ud(Jn)}function Er(){Ca=!0,!I&&Ud(Qn)}function va(){if(!I){if(l.postRun)for(typeof l.postRun==\"function\"&&(l.postRun=[l.postRun]);l.postRun.length;)c_(l.postRun.shift());Ud(Qr)}}function Vd(P){Jn.unshift(P)}function Gd(P){Qn.unshift(P)}function c_(P){Qr.unshift(P)}var zl=0,bp=null,Sa=null;function MC(P){zl++,l.monitorRunDependencies&&l.monitorRunDependencies(zl)}function Ig(P){if(zl--,l.monitorRunDependencies&&l.monitorRunDependencies(zl),zl==0&&(bp!==null&&(clearInterval(bp),bp=null),Sa)){var U=Sa;Sa=null,U()}}function Xu(P){l.onAbort&&l.onAbort(P),P=\"Aborted(\"+P+\")\",Y(P),gt=!0,Ct=1,P+=\". Build with -sASSERTIONS for more info.\";var U=new WebAssembly.RuntimeError(P);throw p(U),U}var PC=\"data:application/octet-stream;base64,\";function Cg(P){return P.startsWith(PC)}function wp(P){return P.startsWith(\"file://\")}var tn;tn=\"tfjs-backend-wasm-threaded-simd.wasm\",Cg(tn)||(tn=E(tn));function vg(P){try{if(P==tn&<)return new Uint8Array(lt);if(F)return F(P);throw\"both async and sync fetching of the wasm failed\"}catch(U){Xu(U)}}function LC(){if(!lt&&(x||b)){if(typeof fetch==\"function\"&&!wp(tn))return fetch(tn,{credentials:\"same-origin\"}).then(function(P){if(!P.ok)throw\"failed to load wasm binary file at '\"+tn+\"'\";return P.arrayBuffer()}).catch(function(){return vg(tn)});if(D)return new Promise(function(P,U){D(tn,function(dt){P(new Uint8Array(dt))},U)})}return Promise.resolve().then(function(){return vg(tn)})}function zC(){var P={env:Mg,wasi_snapshot_preview1:Mg};function U(bt,$t){var or=bt.exports;if(l.asm=or,jC(l.asm._emscripten_tls_init),Gr=l.asm.__indirect_function_table,Gd(l.asm.__wasm_call_ctors),ft=$t,!I){var eo=Yt.unusedWorkers.length;Yt.unusedWorkers.forEach(function(ka){Yt.loadWasmModuleToWorker(ka,function(){--eo||Ig(\"wasm-instantiate\")})})}}I||MC(\"wasm-instantiate\");function dt(bt){U(bt.instance,bt.module)}function Pt(bt){return LC().then(function($t){return WebAssembly.instantiate($t,P)}).then(function($t){return $t}).then(bt,function($t){Y(\"failed to asynchronously prepare wasm: \"+$t),Xu($t)})}function Jt(){return!lt&&typeof WebAssembly.instantiateStreaming==\"function\"&&!Cg(tn)&&!wp(tn)&&!w&&typeof fetch==\"function\"?fetch(tn,{credentials:\"same-origin\"}).then(function(bt){var $t=WebAssembly.instantiateStreaming(bt,P);return $t.then(dt,function(or){return Y(\"wasm streaming compile failed: \"+or),Y(\"falling back to ArrayBuffer instantiation\"),Pt(dt)})}):Pt(dt)}if(l.instantiateWasm)try{var Zt=l.instantiateWasm(P,U);return Zt}catch(bt){Y(\"Module.instantiateWasm callback failed with error: \"+bt),p(bt)}return Jt().catch(p),{}}var p_,m_,Sg={};function Yu(P){this.name=\"ExitStatus\",this.message=\"Program terminated with exit(\"+P+\")\",this.status=P}function BC(P){var U=Yt.pthreads[P];delete Yt.pthreads[P],U.terminate(),c0(P),Yt.runningWorkers.splice(Yt.runningWorkers.indexOf(U),1),U.pthread_ptr=0}function VC(P){var U=Yt.pthreads[P];U.postMessage({cmd:\"cancel\"})}function Wd(P){var U=Yt.pthreads[P];Rt(U),Yt.returnWorkerToPool(U)}function GC(P){var U=Yt.getNewWorker();if(!U)return 6;Yt.runningWorkers.push(U),Yt.pthreads[P.pthread_ptr]=U,U.pthread_ptr=P.pthread_ptr;var dt={cmd:\"run\",start_routine:P.startRoutine,arg:P.arg,pthread_ptr:P.pthread_ptr};return U.runPthread=()=>{w&&U.ref(),U.postMessage(dt,P.transferList),delete U.runPthread},U.loaded&&U.runPthread(),0}var Ng={varargs:void 0,get:function(){Ng.varargs+=4;var P=s()[Ng.varargs-4>>>2];return P},getStr:function(P){var U=qt(P);return U}};function kg(P){if(I)return Bl(1,1,P);Ct=P,zo()||(Yt.terminateAllThreads(),l.onExit&&l.onExit(P),gt=!0),g(P,new Yu(P))}function WC(P,U){if(Ct=P,!U&&I)throw _g(P),\"unwind\";kg(P)}var Tg=WC;function UC(P){if(P instanceof Yu||P==\"unwind\")return Ct;g(1,P)}var Yt={unusedWorkers:[],runningWorkers:[],tlsInitFunctions:[],pthreads:{},init:function(){I?Yt.initWorker():Yt.initMainThread()},initMainThread:function(){for(var P=8;P--;)Yt.allocateUnusedWorker()},initWorker:function(){ot=!1},setExitStatus:function(P){Ct=P},terminateAllThreads:function(){for(var P of Object.values(Yt.pthreads))Yt.returnWorkerToPool(P);for(var P of Yt.unusedWorkers)P.terminate();Yt.unusedWorkers=[]},returnWorkerToPool:function(P){var U=P.pthread_ptr;delete Yt.pthreads[U],Yt.unusedWorkers.push(P),Yt.runningWorkers.splice(Yt.runningWorkers.indexOf(P),1),P.pthread_ptr=0,w&&P.unref(),c0(U)},receiveObjectTransfer:function(P){},threadInitTLS:function(){Yt.tlsInitFunctions.forEach(P=>P())},loadWasmModuleToWorker:function(P,U){P.onmessage=Zt=>{var bt=Zt.data,$t=bt.cmd;if(P.pthread_ptr&&(Yt.currentProxiedOperationCallerThread=P.pthread_ptr),bt.targetThread&&bt.targetThread!=Gg()){var or=Yt.pthreads[bt.targetThread];or?or.postMessage(bt,bt.transferList):Y('Internal error! Worker sent a message \"'+$t+'\" to target pthread '+bt.targetThread+\", but that thread no longer exists!\"),Yt.currentProxiedOperationCallerThread=void 0;return}$t===\"processProxyingQueue\"?Hd(bt.queue):$t===\"spawnThread\"?GC(bt):$t===\"cleanupThread\"?Wd(bt.thread):$t===\"killThread\"?BC(bt.thread):$t===\"cancelThread\"?VC(bt.thread):$t===\"loaded\"?(P.loaded=!0,w&&P.unref(),U&&U(P),P.runPthread&&P.runPthread()):$t===\"print\"?j(\"Thread \"+bt.threadId+\": \"+bt.text):$t===\"printErr\"?Y(\"Thread \"+bt.threadId+\": \"+bt.text):$t===\"alert\"?alert(\"Thread \"+bt.threadId+\": \"+bt.text):bt.target===\"setimmediate\"?P.postMessage(bt):$t===\"callHandler\"?l[bt.handler](...bt.args):$t&&Y(\"worker sent an unknown command \"+$t),Yt.currentProxiedOperationCallerThread=void 0},P.onerror=Zt=>{var bt=\"worker sent an error!\";throw Y(bt+\" \"+Zt.filename+\":\"+Zt.lineno+\": \"+Zt.message),Zt},w&&(P.on(\"message\",function(Zt){P.onmessage({data:Zt})}),P.on(\"error\",function(Zt){P.onerror(Zt)}),P.on(\"detachedExit\",function(){}));var dt=[],Pt=[\"onExit\",\"onAbort\",\"print\",\"printErr\"];for(var Jt of Pt)l.hasOwnProperty(Jt)&&dt.push(Jt);P.postMessage({cmd:\"load\",handlers:dt,urlOrBlob:l.mainScriptUrlOrBlob||r,wasmMemory:it,wasmModule:ft})},allocateUnusedWorker:function(){var P,U=E(\"tfjs-backend-wasm-threaded-simd.worker.js\");P=new Worker(U),Yt.unusedWorkers.push(P)},getNewWorker:function(){return Yt.unusedWorkers.length==0&&(Yt.allocateUnusedWorker(),Yt.loadWasmModuleToWorker(Yt.unusedWorkers[0])),Yt.unusedWorkers.pop()}};l.PThread=Yt;function Ud(P){for(;P.length>0;)P.shift()(l)}function HC(){var P=Gg(),U=s()[P+52>>>2],dt=s()[P+56>>>2],Pt=U-dt;y_(U,Pt),Wg(U)}l.establishStackSpace=HC;function _g(P){if(I)return Bl(2,0,P);try{Tg(P)}catch(U){UC(U)}}var Ip=[];function qC(P){var U=Ip[P];return U||(P>=Ip.length&&(Ip.length=P+1),Ip[P]=U=Gr.get(P)),U}function KC(P,U){var dt=qC(P)(U);zo()?Yt.setExitStatus(dt):x_(dt)}l.invokeEntryPoint=KC;function jC(P){Yt.tlsInitFunctions.push(P)}function XC(P){d_(P,!b,1,!x),Yt.threadInitTLS()}function YC(P){I?postMessage({cmd:\"cleanupThread\",thread:P}):Wd(P)}function Eg(P,U,dt,Pt){return I?Bl(3,1,P,U,dt,Pt):Ag(P,U,dt,Pt)}function Ag(P,U,dt,Pt){if(typeof SharedArrayBuffer==\"undefined\")return Y(\"Current environment does not support SharedArrayBuffer, pthreads are not available!\"),6;var Jt=[],Zt=0;if(I&&(Jt.length===0||Zt))return Eg(P,U,dt,Pt);if(Zt)return Zt;var bt={startRoutine:dt,pthread_ptr:P,arg:Pt,transferList:Jt};return I?(bt.cmd=\"spawnThread\",postMessage(bt,Jt),0):GC(bt)}function ZC(){return 65536}var JC=!0;function QC(){return JC}function Hd(P){Atomics.store(s(),P>>2,1),Gg()&&g_(P),Atomics.compareExchange(s(),P>>2,1,0)}l.executeNotifiedProxyingQueue=Hd;function tv(P,U,dt,Pt){if(P==U)setTimeout(()=>Hd(Pt));else if(I)postMessage({targetThread:P,cmd:\"processProxyingQueue\",queue:Pt});else{var Jt=Yt.pthreads[P];if(!Jt)return;Jt.postMessage({cmd:\"processProxyingQueue\",queue:Pt})}return 1}function ev(P,U,dt){return-1}function rv(){Xu(\"\")}function Zu(P){Zu.shown||(Zu.shown={}),Zu.shown[P]||(Zu.shown[P]=1,w&&(P=\"warning: \"+P),Y(P))}function nv(){w||b||Zu(\"Blocking on the main thread is very dangerous, see https://emscripten.org/docs/porting/pthreads.html#blocking-on-the-main-browser-thread\")}function ov(){return Date.now()}function Dg(){return 4294901760}function sv(){return Dg()}var qd;w?qd=()=>{var P=process.hrtime();return P[0]*1e3+P[1]/1e6}:qd=()=>performance.timeOrigin+performance.now();function iv(P,U,dt){n().copyWithin(P>>>0,U>>>0,U+dt>>>0)}function av(){return w?XH().cpus().length:navigator.hardwareConcurrency}function lv(P){var U=p0(),dt=P();return Wg(U),dt}function Bl(P,U){var dt=arguments.length-2,Pt=arguments;return lv(()=>{for(var Jt=dt,Zt=Ug(Jt*8),bt=Zt>>3,$t=0;$t>>0]=or}return h_(P,Jt,Zt,U)})}var Kd=[];function uv(P,U,dt){Kd.length=U;for(var Pt=dt>>3,Jt=0;Jt>>0];var Zt=P<0,bt=Zt?Sg[-P-1]:yv[P];return bt.apply(null,Kd)}function cv(P){try{return it.grow(P-re.byteLength+65535>>>16),Xe(it.buffer),1}catch(U){}}function pv(P){var U=n().length;if(P=P>>>0,P<=U)return!1;var dt=Dg();if(P>dt)return!1;let Pt=(or,eo)=>or+(eo-or%eo)%eo;for(var Jt=1;Jt<=4;Jt*=2){var Zt=U*(1+.2/Jt);Zt=Math.min(Zt,P+100663296);var bt=Math.min(dt,Pt(Math.max(P,Zt),65536)),$t=cv(bt);if($t)return!0}return!1}function mv(){throw\"unwind\"}function $g(P){return I?Bl(4,1,P):52}function Rg(P,U,dt,Pt,Jt){return I?Bl(5,1,P,U,dt,Pt,Jt):70}var fv=[null,[],[]];function dv(P,U){var dt=fv[P];U===0||U===10?((P===1?j:Y)(Ht(dt,0)),dt.length=0):dt.push(U)}function Fg(P,U,dt,Pt){if(I)return Bl(6,1,P,U,dt,Pt);for(var Jt=0,Zt=0;Zt>>2],$t=i()[U+4>>>2];U+=8;for(var or=0;or<$t;or++)dv(P,n()[bt+or>>>0]);Jt+=$t}return i()[Pt>>>2]=Jt,0}function Og(P){var U=l[\"_\"+P];return U}function hv(P,U){e().set(P,U>>>0)}function gv(P,U,dt,Pt,Jt){var Zt={string:Mn=>{var Np=0;if(Mn!=null&&Mn!==0){var I_=(Mn.length<<2)+1;Np=Ug(I_),ye(Mn,Np,I_)}return Np},array:Mn=>{var Np=Ug(Mn.length);return hv(Mn,Np),Np}};function bt(Mn){return U===\"string\"?qt(Mn):U===\"boolean\"?!!Mn:Mn}var $t=Og(P),or=[],eo=0;if(Pt)for(var ka=0;kabt===\"number\"||bt===\"boolean\"),Zt=U!==\"string\";return Zt&&Jt&&!Pt?Og(P):function(){return gv(P,U,dt,arguments,Pt)}}Yt.init();var yv=[null,kg,_g,Eg,$g,Rg,Fg],Mg={__emscripten_init_main_thread_js:XC,__emscripten_thread_cleanup:YC,__pthread_create_js:Ag,_emscripten_default_pthread_stack_size:ZC,_emscripten_get_now_is_monotonic:QC,_emscripten_notify_task_queue:tv,_emscripten_set_offscreencanvas_size:ev,abort:rv,emscripten_check_blocking_allowed:nv,emscripten_date_now:ov,emscripten_get_heap_max:sv,emscripten_get_now:qd,emscripten_memcpy_big:iv,emscripten_num_logical_cores:av,emscripten_receive_on_main_thread_js:uv,emscripten_resize_heap:pv,emscripten_unwind_to_js_event_loop:mv,exit:Tg,fd_close:$g,fd_seek:Rg,fd_write:Fg,memory:it||l.wasmMemory},f_=zC(),bv=l.___wasm_call_ctors=function(){return(bv=l.___wasm_call_ctors=l.asm.__wasm_call_ctors).apply(null,arguments)},wv=l._init=function(){return(wv=l._init=l.asm.init).apply(null,arguments)},Iv=l._init_with_threads_count=function(){return(Iv=l._init_with_threads_count=l.asm.init_with_threads_count).apply(null,arguments)},Cv=l._get_threads_count=function(){return(Cv=l._get_threads_count=l.asm.get_threads_count).apply(null,arguments)},vv=l._register_tensor=function(){return(vv=l._register_tensor=l.asm.register_tensor).apply(null,arguments)},Sv=l._dispose_data=function(){return(Sv=l._dispose_data=l.asm.dispose_data).apply(null,arguments)},Nv=l._dispose=function(){return(Nv=l._dispose=l.asm.dispose).apply(null,arguments)},kv=l._Abs=function(){return(kv=l._Abs=l.asm.Abs).apply(null,arguments)},Tv=l._Acos=function(){return(Tv=l._Acos=l.asm.Acos).apply(null,arguments)},_v=l._Acosh=function(){return(_v=l._Acosh=l.asm.Acosh).apply(null,arguments)},Ev=l._Add=function(){return(Ev=l._Add=l.asm.Add).apply(null,arguments)},Av=l._AddN=function(){return(Av=l._AddN=l.asm.AddN).apply(null,arguments)},Dv=l._All=function(){return(Dv=l._All=l.asm.All).apply(null,arguments)},$v=l._Any=function(){return($v=l._Any=l.asm.Any).apply(null,arguments)},Rv=l._ArgMax=function(){return(Rv=l._ArgMax=l.asm.ArgMax).apply(null,arguments)},Fv=l._ArgMin=function(){return(Fv=l._ArgMin=l.asm.ArgMin).apply(null,arguments)},Ov=l._Asin=function(){return(Ov=l._Asin=l.asm.Asin).apply(null,arguments)},Mv=l._Asinh=function(){return(Mv=l._Asinh=l.asm.Asinh).apply(null,arguments)},Pv=l._Atan=function(){return(Pv=l._Atan=l.asm.Atan).apply(null,arguments)},Lv=l._Atan2=function(){return(Lv=l._Atan2=l.asm.Atan2).apply(null,arguments)},zv=l._Atanh=function(){return(zv=l._Atanh=l.asm.Atanh).apply(null,arguments)},Bv=l._AvgPool=function(){return(Bv=l._AvgPool=l.asm.AvgPool).apply(null,arguments)},Vv=l._AvgPool3D=function(){return(Vv=l._AvgPool3D=l.asm.AvgPool3D).apply(null,arguments)},Gv=l._AvgPool3DGrad=function(){return(Gv=l._AvgPool3DGrad=l.asm.AvgPool3DGrad).apply(null,arguments)},Wv=l._AvgPoolGrad=function(){return(Wv=l._AvgPoolGrad=l.asm.AvgPoolGrad).apply(null,arguments)},Uv=l._BatchMatMul=function(){return(Uv=l._BatchMatMul=l.asm.BatchMatMul).apply(null,arguments)},Hv=l._Bincount=function(){return(Hv=l._Bincount=l.asm.Bincount).apply(null,arguments)},qv=l._BitwiseAnd=function(){return(qv=l._BitwiseAnd=l.asm.BitwiseAnd).apply(null,arguments)},Kv=l._Ceil=function(){return(Kv=l._Ceil=l.asm.Ceil).apply(null,arguments)},jv=l._ClipByValue=function(){return(jv=l._ClipByValue=l.asm.ClipByValue).apply(null,arguments)},Xv=l._Conv2D=function(){return(Xv=l._Conv2D=l.asm.Conv2D).apply(null,arguments)},Yv=l._Conv2DBackpropInput=function(){return(Yv=l._Conv2DBackpropInput=l.asm.Conv2DBackpropInput).apply(null,arguments)},Zv=l._Conv3D=function(){return(Zv=l._Conv3D=l.asm.Conv3D).apply(null,arguments)},Jv=l._Conv3DBackpropFilterV2=function(){return(Jv=l._Conv3DBackpropFilterV2=l.asm.Conv3DBackpropFilterV2).apply(null,arguments)},Qv=l._Conv3DBackpropInputV2=function(){return(Qv=l._Conv3DBackpropInputV2=l.asm.Conv3DBackpropInputV2).apply(null,arguments)},tS=l._Cos=function(){return(tS=l._Cos=l.asm.Cos).apply(null,arguments)},eS=l._Cosh=function(){return(eS=l._Cosh=l.asm.Cosh).apply(null,arguments)},rS=l._CropAndResize=function(){return(rS=l._CropAndResize=l.asm.CropAndResize).apply(null,arguments)},nS=l._Cumprod=function(){return(nS=l._Cumprod=l.asm.Cumprod).apply(null,arguments)},oS=l._Cumsum=function(){return(oS=l._Cumsum=l.asm.Cumsum).apply(null,arguments)},sS=l._DenseBincount=function(){return(sS=l._DenseBincount=l.asm.DenseBincount).apply(null,arguments)},iS=l._DepthToSpace=function(){return(iS=l._DepthToSpace=l.asm.DepthToSpace).apply(null,arguments)},aS=l._DepthwiseConv2dNative=function(){return(aS=l._DepthwiseConv2dNative=l.asm.DepthwiseConv2dNative).apply(null,arguments)},lS=l._Diag=function(){return(lS=l._Diag=l.asm.Diag).apply(null,arguments)},uS=l._Dilation2D=function(){return(uS=l._Dilation2D=l.asm.Dilation2D).apply(null,arguments)},cS=l._Dilation2DBackpropFilter=function(){return(cS=l._Dilation2DBackpropFilter=l.asm.Dilation2DBackpropFilter).apply(null,arguments)},pS=l._Dilation2DBackpropInput=function(){return(pS=l._Dilation2DBackpropInput=l.asm.Dilation2DBackpropInput).apply(null,arguments)},mS=l._Elu=function(){return(mS=l._Elu=l.asm.Elu).apply(null,arguments)},fS=l._EluGrad=function(){return(fS=l._EluGrad=l.asm.EluGrad).apply(null,arguments)},dS=l._Equal=function(){return(dS=l._Equal=l.asm.Equal).apply(null,arguments)},hS=l._Erf=function(){return(hS=l._Erf=l.asm.Erf).apply(null,arguments)},gS=l._Exp=function(){return(gS=l._Exp=l.asm.Exp).apply(null,arguments)},xS=l._Expm1=function(){return(xS=l._Expm1=l.asm.Expm1).apply(null,arguments)},yS=l._FlipLeftRight=function(){return(yS=l._FlipLeftRight=l.asm.FlipLeftRight).apply(null,arguments)},bS=l._Floor=function(){return(bS=l._Floor=l.asm.Floor).apply(null,arguments)},wS=l._FloorDiv=function(){return(wS=l._FloorDiv=l.asm.FloorDiv).apply(null,arguments)},IS=l._FusedBatchNorm=function(){return(IS=l._FusedBatchNorm=l.asm.FusedBatchNorm).apply(null,arguments)},CS=l._FusedConv2D=function(){return(CS=l._FusedConv2D=l.asm.FusedConv2D).apply(null,arguments)},vS=l._FusedDepthwiseConv2D=function(){return(vS=l._FusedDepthwiseConv2D=l.asm.FusedDepthwiseConv2D).apply(null,arguments)},SS=l._Gather=function(){return(SS=l._Gather=l.asm.Gather).apply(null,arguments)},NS=l._GatherNd=function(){return(NS=l._GatherNd=l.asm.GatherNd).apply(null,arguments)},kS=l._Greater=function(){return(kS=l._Greater=l.asm.Greater).apply(null,arguments)},TS=l._GreaterEqual=function(){return(TS=l._GreaterEqual=l.asm.GreaterEqual).apply(null,arguments)},_S=l._IsFinite=function(){return(_S=l._IsFinite=l.asm.IsFinite).apply(null,arguments)},ES=l._IsInf=function(){return(ES=l._IsInf=l.asm.IsInf).apply(null,arguments)},AS=l._IsNan=function(){return(AS=l._IsNan=l.asm.IsNan).apply(null,arguments)},DS=l._LRN=function(){return(DS=l._LRN=l.asm.LRN).apply(null,arguments)},$S=l._LRNGrad=function(){return($S=l._LRNGrad=l.asm.LRNGrad).apply(null,arguments)},RS=l._LeakyRelu=function(){return(RS=l._LeakyRelu=l.asm.LeakyRelu).apply(null,arguments)},FS=l._Less=function(){return(FS=l._Less=l.asm.Less).apply(null,arguments)},OS=l._LessEqual=function(){return(OS=l._LessEqual=l.asm.LessEqual).apply(null,arguments)},MS=l._LinSpace=function(){return(MS=l._LinSpace=l.asm.LinSpace).apply(null,arguments)},PS=l._Log=function(){return(PS=l._Log=l.asm.Log).apply(null,arguments)},LS=l._Log1p=function(){return(LS=l._Log1p=l.asm.Log1p).apply(null,arguments)},zS=l._LogicalAnd=function(){return(zS=l._LogicalAnd=l.asm.LogicalAnd).apply(null,arguments)},BS=l._LogicalNot=function(){return(BS=l._LogicalNot=l.asm.LogicalNot).apply(null,arguments)},VS=l._LogicalOr=function(){return(VS=l._LogicalOr=l.asm.LogicalOr).apply(null,arguments)},GS=l._LogicalXor=function(){return(GS=l._LogicalXor=l.asm.LogicalXor).apply(null,arguments)},WS=l._Max=function(){return(WS=l._Max=l.asm.Max).apply(null,arguments)},US=l._MaxPool=function(){return(US=l._MaxPool=l.asm.MaxPool).apply(null,arguments)},HS=l._MaxPool3D=function(){return(HS=l._MaxPool3D=l.asm.MaxPool3D).apply(null,arguments)},qS=l._MaxPool3DGrad=function(){return(qS=l._MaxPool3DGrad=l.asm.MaxPool3DGrad).apply(null,arguments)},KS=l._MaxPoolGrad=function(){return(KS=l._MaxPoolGrad=l.asm.MaxPoolGrad).apply(null,arguments)},jS=l._MaxPoolWithArgmax=function(){return(jS=l._MaxPoolWithArgmax=l.asm.MaxPoolWithArgmax).apply(null,arguments)},XS=l._Maximum=function(){return(XS=l._Maximum=l.asm.Maximum).apply(null,arguments)},YS=l._Mean=function(){return(YS=l._Mean=l.asm.Mean).apply(null,arguments)},ZS=l._Min=function(){return(ZS=l._Min=l.asm.Min).apply(null,arguments)},JS=l._Minimum=function(){return(JS=l._Minimum=l.asm.Minimum).apply(null,arguments)},QS=l._MirrorPad=function(){return(QS=l._MirrorPad=l.asm.MirrorPad).apply(null,arguments)},t0=l._Mod=function(){return(t0=l._Mod=l.asm.Mod).apply(null,arguments)},e0=l._Multinomial=function(){return(e0=l._Multinomial=l.asm.Multinomial).apply(null,arguments)},r0=l._Multiply=function(){return(r0=l._Multiply=l.asm.Multiply).apply(null,arguments)},n0=l._Neg=function(){return(n0=l._Neg=l.asm.Neg).apply(null,arguments)},o0=l._NonMaxSuppressionV3=function(){return(o0=l._NonMaxSuppressionV3=l.asm.NonMaxSuppressionV3).apply(null,arguments)},s0=l._NonMaxSuppressionV4=function(){return(s0=l._NonMaxSuppressionV4=l.asm.NonMaxSuppressionV4).apply(null,arguments)},Pg=l._NonMaxSuppressionV5=function(){return(Pg=l._NonMaxSuppressionV5=l.asm.NonMaxSuppressionV5).apply(null,arguments)},Lg=l._NotEqual=function(){return(Lg=l._NotEqual=l.asm.NotEqual).apply(null,arguments)},jd=l._OneHot=function(){return(jd=l._OneHot=l.asm.OneHot).apply(null,arguments)},i0=l._PadV2=function(){return(i0=l._PadV2=l.asm.PadV2).apply(null,arguments)},a0=l._Pow=function(){return(a0=l._Pow=l.asm.Pow).apply(null,arguments)},Cp=l._Prelu=function(){return(Cp=l._Prelu=l.asm.Prelu).apply(null,arguments)},zg=l._Prod=function(){return(zg=l._Prod=l.asm.Prod).apply(null,arguments)},vp=l._RealDiv=function(){return(vp=l._RealDiv=l.asm.RealDiv).apply(null,arguments)},Sp=l._Reciprocal=function(){return(Sp=l._Reciprocal=l.asm.Reciprocal).apply(null,arguments)},l0=l._Relu=function(){return(l0=l._Relu=l.asm.Relu).apply(null,arguments)},X=l._Relu6=function(){return(X=l._Relu6=l.asm.Relu6).apply(null,arguments)},ct=l._ResizeBilinear=function(){return(ct=l._ResizeBilinear=l.asm.ResizeBilinear).apply(null,arguments)},Ft=l._ResizeBilinearGrad=function(){return(Ft=l._ResizeBilinearGrad=l.asm.ResizeBilinearGrad).apply(null,arguments)},me=l._ResizeNearestNeighbor=function(){return(me=l._ResizeNearestNeighbor=l.asm.ResizeNearestNeighbor).apply(null,arguments)},Ye=l._ResizeNearestNeighborGrad=function(){return(Ye=l._ResizeNearestNeighborGrad=l.asm.ResizeNearestNeighborGrad).apply(null,arguments)},Ze=l._Reverse=function(){return(Ze=l._Reverse=l.asm.Reverse).apply(null,arguments)},se=l._RotateWithOffset=function(){return(se=l._RotateWithOffset=l.asm.RotateWithOffset).apply(null,arguments)},ne=l._Round=function(){return(ne=l._Round=l.asm.Round).apply(null,arguments)},yr=l._Rsqrt=function(){return(yr=l._Rsqrt=l.asm.Rsqrt).apply(null,arguments)},to=l._ScatterNd=function(){return(to=l._ScatterNd=l.asm.ScatterNd).apply(null,arguments)},Na=l._SearchSorted=function(){return(Na=l._SearchSorted=l.asm.SearchSorted).apply(null,arguments)},Bg=l._SelectV2=function(){return(Bg=l._SelectV2=l.asm.SelectV2).apply(null,arguments)},Xd=l._Selu=function(){return(Xd=l._Selu=l.asm.Selu).apply(null,arguments)},u0=l._Sigmoid=function(){return(u0=l._Sigmoid=l.asm.Sigmoid).apply(null,arguments)},on=l._Sign=function(){return(on=l._Sign=l.asm.Sign).apply(null,arguments)},Vl=l._Sin=function(){return(Vl=l._Sin=l.asm.Sin).apply(null,arguments)},Vg=l._Sinh=function(){return(Vg=l._Sinh=l.asm.Sinh).apply(null,arguments)},iq=l._Softmax=function(){return(iq=l._Softmax=l.asm.Softmax).apply(null,arguments)},aq=l._Softplus=function(){return(aq=l._Softplus=l.asm.Softplus).apply(null,arguments)},lq=l._SparseFillEmptyRows=function(){return(lq=l._SparseFillEmptyRows=l.asm.SparseFillEmptyRows).apply(null,arguments)},uq=l._SparseReshape=function(){return(uq=l._SparseReshape=l.asm.SparseReshape).apply(null,arguments)},cq=l._SparseSegmentReduction=function(){return(cq=l._SparseSegmentReduction=l.asm.SparseSegmentReduction).apply(null,arguments)},pq=l._SparseToDense=function(){return(pq=l._SparseToDense=l.asm.SparseToDense).apply(null,arguments)},mq=l._Sqrt=function(){return(mq=l._Sqrt=l.asm.Sqrt).apply(null,arguments)},fq=l._Square=function(){return(fq=l._Square=l.asm.Square).apply(null,arguments)},dq=l._SquaredDifference=function(){return(dq=l._SquaredDifference=l.asm.SquaredDifference).apply(null,arguments)},hq=l._Step=function(){return(hq=l._Step=l.asm.Step).apply(null,arguments)},gq=l._StridedSlice=function(){return(gq=l._StridedSlice=l.asm.StridedSlice).apply(null,arguments)},xq=l._Sub=function(){return(xq=l._Sub=l.asm.Sub).apply(null,arguments)},yq=l._Sum=function(){return(yq=l._Sum=l.asm.Sum).apply(null,arguments)},bq=l._Tan=function(){return(bq=l._Tan=l.asm.Tan).apply(null,arguments)},wq=l._Tanh=function(){return(wq=l._Tanh=l.asm.Tanh).apply(null,arguments)},Iq=l._TensorScatterUpdate=function(){return(Iq=l._TensorScatterUpdate=l.asm.TensorScatterUpdate).apply(null,arguments)},Cq=l._Tile=function(){return(Cq=l._Tile=l.asm.Tile).apply(null,arguments)},vq=l._TopK=function(){return(vq=l._TopK=l.asm.TopK).apply(null,arguments)},Sq=l._Transform=function(){return(Sq=l._Transform=l.asm.Transform).apply(null,arguments)},Nq=l._Transpose=function(){return(Nq=l._Transpose=l.asm.Transpose).apply(null,arguments)},kq=l.__FusedMatMul=function(){return(kq=l.__FusedMatMul=l.asm._FusedMatMul).apply(null,arguments)},Tq=l._malloc=function(){return(Tq=l._malloc=l.asm.malloc).apply(null,arguments)},_q=l._free=function(){return(_q=l._free=l.asm.free).apply(null,arguments)},Eq=l.__emscripten_tls_init=function(){return(Eq=l.__emscripten_tls_init=l.asm._emscripten_tls_init).apply(null,arguments)},Gg=l._pthread_self=function(){return(Gg=l._pthread_self=l.asm.pthread_self).apply(null,arguments)},Aq=l.___errno_location=function(){return(Aq=l.___errno_location=l.asm.__errno_location).apply(null,arguments)},d_=l.__emscripten_thread_init=function(){return(d_=l.__emscripten_thread_init=l.asm._emscripten_thread_init).apply(null,arguments)},Dq=l.__emscripten_thread_crashed=function(){return(Dq=l.__emscripten_thread_crashed=l.asm._emscripten_thread_crashed).apply(null,arguments)},$q=l._emscripten_main_thread_process_queued_calls=function(){return($q=l._emscripten_main_thread_process_queued_calls=l.asm.emscripten_main_thread_process_queued_calls).apply(null,arguments)},Rq=l._emscripten_main_browser_thread_id=function(){return(Rq=l._emscripten_main_browser_thread_id=l.asm.emscripten_main_browser_thread_id).apply(null,arguments)},h_=l._emscripten_run_in_main_runtime_thread_js=function(){return(h_=l._emscripten_run_in_main_runtime_thread_js=l.asm.emscripten_run_in_main_runtime_thread_js).apply(null,arguments)},Fq=l._emscripten_dispatch_to_thread_=function(){return(Fq=l._emscripten_dispatch_to_thread_=l.asm.emscripten_dispatch_to_thread_).apply(null,arguments)},g_=l.__emscripten_proxy_execute_task_queue=function(){return(g_=l.__emscripten_proxy_execute_task_queue=l.asm._emscripten_proxy_execute_task_queue).apply(null,arguments)},c0=l.__emscripten_thread_free_data=function(){return(c0=l.__emscripten_thread_free_data=l.asm._emscripten_thread_free_data).apply(null,arguments)},x_=l.__emscripten_thread_exit=function(){return(x_=l.__emscripten_thread_exit=l.asm._emscripten_thread_exit).apply(null,arguments)},y_=l._emscripten_stack_set_limits=function(){return(y_=l._emscripten_stack_set_limits=l.asm.emscripten_stack_set_limits).apply(null,arguments)},p0=l.stackSave=function(){return(p0=l.stackSave=l.asm.stackSave).apply(null,arguments)},Wg=l.stackRestore=function(){return(Wg=l.stackRestore=l.asm.stackRestore).apply(null,arguments)},Ug=l.stackAlloc=function(){return(Ug=l.stackAlloc=l.asm.stackAlloc).apply(null,arguments)},Oq=l.dynCall_iijjiiii=function(){return(Oq=l.dynCall_iijjiiii=l.asm.dynCall_iijjiiii).apply(null,arguments)},Mq=l.dynCall_jiji=function(){return(Mq=l.dynCall_jiji=l.asm.dynCall_jiji).apply(null,arguments)};l.keepRuntimeAlive=zo,l.wasmMemory=it,l.cwrap=xv,l.ExitStatus=Yu,l.PThread=Yt;var Hg;Sa=function P(){Hg||b_(),Hg||(Sa=P)};function b_(P){if(P=P||d,zl>0)return;if(I){c(l),Er(),startWorker(l);return}if(Ti(),zl>0)return;function U(){Hg||(Hg=!0,l.calledRun=!0,!gt&&(Er(),c(l),l.onRuntimeInitialized&&l.onRuntimeInitialized(),va()))}l.setStatus?(l.setStatus(\"Running...\"),setTimeout(function(){setTimeout(function(){l.setStatus(\"\")},1),U()},1)):U()}if(l.preInit)for(typeof l.preInit==\"function\"&&(l.preInit=[l.preInit]);l.preInit.length>0;)l.preInit.pop()();b_();var qg;m&&(qg={uncaughtException:process.listeners(\"uncaughtException\").filter(function(P){return!m.uncaughtException.indexOf(P)>-1}),unhandledRejection:process.listeners(\"unhandledRejection\").filter(function(P){return!m.unhandledRejection.indexOf(P)>-1})});var Kg;if(typeof WasmBackendModule!=\"undefined\")Kg=WasmBackendModule;else if(typeof t!=\"undefined\")Kg=t;else throw new Error(\"Could not find wasm module in post.js\");if(qg){var Pq=Kg._dispose;Kg._dispose=function(){Pq(),qg.uncaughtException.forEach(function(P){process.removeListener(\"uncaughtException\",P)}),qg.unhandledRejection.forEach(function(P){process.removeListener(\"unhandledRejection\",P)})}}return t.ready}})();typeof RC==\"object\"&&typeof n_==\"object\"?n_.exports=r_:typeof define==\"function\"&&define.amd?define([],function(){return r_}):typeof RC==\"object\"&&(RC.WasmBackendModuleThreadedSimd=r_)});var JH=br((fnr,ZH)=>{ZH.exports.wasmWorkerContents=`\"use strict\";var Module={};var ENVIRONMENT_IS_NODE=typeof process==\"object\"&&typeof process.versions==\"object\"&&typeof process.versions.node==\"string\";if(ENVIRONMENT_IS_NODE){var nodeWorkerThreads=require(\"worker_threads\");var parentPort=nodeWorkerThreads.parentPort;parentPort.on(\"message\",data=>onmessage({data:data}));var fs=require(\"fs\");Object.assign(global,{self:global,require:require,Module:Module,location:{href:__filename},Worker:nodeWorkerThreads.Worker,importScripts:function(f){(0,eval)(fs.readFileSync(f,\"utf8\")+\"//# sourceURL=\"+f)},postMessage:function(msg){parentPort.postMessage(msg)},performance:global.performance||{now:function(){return Date.now()}}})}var initializedJS=false;var pendingNotifiedProxyingQueues=[];function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(\" \");if(ENVIRONMENT_IS_NODE){fs.writeSync(2,text+\"\n\");return}console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(\" \");postMessage({cmd:\"alert\",text:text,threadId:Module[\"_pthread_self\"]()})}var err=threadPrintErr;self.alert=threadAlert;Module[\"instantiateWasm\"]=(info,receiveInstance)=>{var instance=new WebAssembly.Instance(Module[\"wasmModule\"],info);receiveInstance(instance);Module[\"wasmModule\"]=null;return instance.exports};self.onunhandledrejection=e=>{throw e.reason??e};self.startWorker=instance=>{Module=instance;postMessage({\"cmd\":\"loaded\"})};self.onmessage=e=>{try{if(e.data.cmd===\"load\"){Module[\"wasmModule\"]=e.data.wasmModule;for(const handler of e.data.handlers){Module[handler]=function(){postMessage({cmd:\"callHandler\",handler:handler,args:[...arguments]})}}Module[\"wasmMemory\"]=e.data.wasmMemory;Module[\"buffer\"]=Module[\"wasmMemory\"].buffer;Module[\"ENVIRONMENT_IS_PTHREAD\"]=true;if(typeof e.data.urlOrBlob==\"string\"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module)}else if(e.data.cmd===\"run\"){Module[\"__emscripten_thread_init\"](e.data.pthread_ptr,0,0,1);Module[\"establishStackSpace\"]();Module[\"PThread\"].receiveObjectTransfer(e.data);Module[\"PThread\"].threadInitTLS();if(!initializedJS){pendingNotifiedProxyingQueues.forEach(queue=>{Module[\"executeNotifiedProxyingQueue\"](queue)});pendingNotifiedProxyingQueues=[];initializedJS=true}try{Module[\"invokeEntryPoint\"](e.data.start_routine,e.data.arg)}catch(ex){if(ex!=\"unwind\"){if(ex instanceof Module[\"ExitStatus\"]){if(Module[\"keepRuntimeAlive\"]()){}else{Module[\"__emscripten_thread_exit\"](ex.status)}}else{throw ex}}}}else if(e.data.cmd===\"cancel\"){if(Module[\"_pthread_self\"]()){Module[\"__emscripten_thread_exit\"](-1)}}else if(e.data.target===\"setimmediate\"){}else if(e.data.cmd===\"processProxyingQueue\"){if(initializedJS){Module[\"executeNotifiedProxyingQueue\"](e.data.queue)}else{pendingNotifiedProxyingQueues.push(e.data.queue)}}else if(e.data.cmd){err(\"worker.js received unknown command \"+e.data.cmd);err(e.data)}}catch(ex){if(Module[\"__emscripten_thread_crashed\"]){Module[\"__emscripten_thread_crashed\"]()}throw ex}};`});var QH=br((FC,s_)=>{var o_=(()=>{var r=typeof document!=\"undefined\"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!=\"undefined\"&&(r=r||__filename),function(t){t=t||{};var e=typeof t!=\"undefined\"?t:{},n,o;e.ready=new Promise(function(X,ct){n=X,o=ct});var s;typeof process!=\"undefined\"&&process.listeners&&(s={uncaughtException:process.listeners(\"uncaughtException\"),unhandledRejection:process.listeners(\"unhandledRejection\")});var i=Object.assign({},e),a=[],u=\"./this.program\",l=(X,ct)=>{throw ct},c=typeof window==\"object\",p=typeof importScripts==\"function\",m=typeof process==\"object\"&&typeof process.versions==\"object\"&&typeof process.versions.node==\"string\",f=\"\";function d(X){return e.locateFile?e.locateFile(X,f):f+X}var h,g,x,b;function w(X){if(X instanceof bp)return;A(\"exiting due to exception: \"+X)}if(m){var I=hw(),N=e_();p?f=N.dirname(f)+\"/\":f=__dirname+\"/\",h=(X,ct)=>(X=Ti(X)?new URL(X):N.normalize(X),I.readFileSync(X,ct?void 0:\"utf8\")),x=X=>{var ct=h(X,!0);return ct.buffer||(ct=new Uint8Array(ct)),ct},g=(X,ct,Ft)=>{X=Ti(X)?new URL(X):N.normalize(X),I.readFile(X,function(me,Ye){me?Ft(me):ct(Ye.buffer)})},process.argv.length>1&&(u=process.argv[1].replace(/\\\\/g,\"/\")),a=process.argv.slice(2),process.on(\"uncaughtException\",function(X){if(!(X instanceof bp))throw X}),process.on(\"unhandledRejection\",function(X){throw X}),l=(X,ct)=>{if(de())throw process.exitCode=X,ct;w(ct),process.exit(X)},e.inspect=function(){return\"[Emscripten Module object]\"}}else(c||p)&&(p?f=self.location.href:typeof document!=\"undefined\"&&document.currentScript&&(f=document.currentScript.src),r&&(f=r),f.indexOf(\"blob:\")!==0?f=f.substr(0,f.replace(/[?#].*/,\"\").lastIndexOf(\"/\")+1):f=\"\",h=X=>{var ct=new XMLHttpRequest;return ct.open(\"GET\",X,!1),ct.send(null),ct.responseText},p&&(x=X=>{var ct=new XMLHttpRequest;return ct.open(\"GET\",X,!1),ct.responseType=\"arraybuffer\",ct.send(null),new Uint8Array(ct.response)}),g=(X,ct,Ft)=>{var me=new XMLHttpRequest;me.open(\"GET\",X,!0),me.responseType=\"arraybuffer\",me.onload=()=>{if(me.status==200||me.status==0&&me.response){ct(me.response);return}Ft()},me.onerror=Ft,me.send(null)},b=X=>document.title=X);var E=e.print||console.log.bind(console),A=e.printErr||console.warn.bind(console);Object.assign(e,i),i=null,e.arguments&&(a=e.arguments),e.thisProgram&&(u=e.thisProgram),e.quit&&(l=e.quit);var D=4,F;e.wasmBinary&&(F=e.wasmBinary);var M=e.noExitRuntime||!0;typeof WebAssembly!=\"object\"&&Qr(\"no native wasm support detected\");var V,G=!1,W;function q(X,ct){X||Qr(ct)}var H=typeof TextDecoder!=\"undefined\"?new TextDecoder(\"utf8\"):void 0;function j(X,ct,Ft){ct>>>=0;for(var me=ct+Ft,Ye=ct;X[Ye]&&!(Ye>=me);)++Ye;if(Ye-ct>16&&X.buffer&&H)return H.decode(X.subarray(ct,Ye));for(var Ze=\"\";ct>10,56320|to&1023)}}return Ze}function Y(X,ct){return X>>>=0,X?j(lt,X,ct):\"\"}function Z(X,ct,Ft,me){if(Ft>>>=0,!(me>0))return 0;for(var Ye=Ft,Ze=Ft+me-1,se=0;se=55296&&ne<=57343){var yr=X.charCodeAt(++se);ne=65536+((ne&1023)<<10)|yr&1023}if(ne<=127){if(Ft>=Ze)break;ct[Ft++>>>0]=ne}else if(ne<=2047){if(Ft+1>=Ze)break;ct[Ft++>>>0]=192|ne>>6,ct[Ft++>>>0]=128|ne&63}else if(ne<=65535){if(Ft+2>=Ze)break;ct[Ft++>>>0]=224|ne>>12,ct[Ft++>>>0]=128|ne>>6&63,ct[Ft++>>>0]=128|ne&63}else{if(Ft+3>=Ze)break;ct[Ft++>>>0]=240|ne>>18,ct[Ft++>>>0]=128|ne>>12&63,ct[Ft++>>>0]=128|ne>>6&63,ct[Ft++>>>0]=128|ne&63}}return ct[Ft>>>0]=0,Ft-Ye}function et(X,ct,Ft){return Z(X,lt,ct,Ft)}var nt,st,lt,ot,it,ft,gt,Ct,Rt;function Dt(X){nt=X,e.HEAP8=st=new Int8Array(X),e.HEAP16=ot=new Int16Array(X),e.HEAP32=ft=new Int32Array(X),e.HEAPU8=lt=new Uint8Array(X),e.HEAPU16=it=new Uint16Array(X),e.HEAPU32=gt=new Uint32Array(X),e.HEAPF32=Ct=new Float32Array(X),e.HEAPF64=Rt=new Float64Array(X)}var Ht=e.INITIAL_MEMORY||16777216,qt,pe=[],ye=[],re=[],be=!1;function de(){return M}function Ee(){if(e.preRun)for(typeof e.preRun==\"function\"&&(e.preRun=[e.preRun]);e.preRun.length;)lr(e.preRun.shift());Sa(pe)}function Ae(){be=!0,Sa(ye)}function On(){if(e.postRun)for(typeof e.postRun==\"function\"&&(e.postRun=[e.postRun]);e.postRun.length;)Br(e.postRun.shift());Sa(re)}function lr(X){pe.unshift(X)}function Zn(X){ye.unshift(X)}function Br(X){re.unshift(X)}var Xe=0,Vr=null,Gr=null;function Jn(X){Xe++,e.monitorRunDependencies&&e.monitorRunDependencies(Xe)}function Qn(X){if(Xe--,e.monitorRunDependencies&&e.monitorRunDependencies(Xe),Xe==0&&(Vr!==null&&(clearInterval(Vr),Vr=null),Gr)){var ct=Gr;Gr=null,ct()}}function Qr(X){e.onAbort&&e.onAbort(X),X=\"Aborted(\"+X+\")\",A(X),G=!0,W=1,X+=\". Build with -sASSERTIONS for more info.\";var ct=new WebAssembly.RuntimeError(X);throw o(ct),ct}var Ca=\"data:application/octet-stream;base64,\";function zo(X){return X.startsWith(Ca)}function Ti(X){return X.startsWith(\"file://\")}var Er;Er=\"tfjs-backend-wasm.wasm\",zo(Er)||(Er=d(Er));function va(X){try{if(X==Er&&F)return new Uint8Array(F);if(x)return x(X);throw\"both async and sync fetching of the wasm failed\"}catch(ct){Qr(ct)}}function Vd(){if(!F&&(c||p)){if(typeof fetch==\"function\"&&!Ti(Er))return fetch(Er,{credentials:\"same-origin\"}).then(function(X){if(!X.ok)throw\"failed to load wasm binary file at '\"+Er+\"'\";return X.arrayBuffer()}).catch(function(){return va(Er)});if(g)return new Promise(function(X,ct){g(Er,function(Ft){X(new Uint8Array(Ft))},ct)})}return Promise.resolve().then(function(){return va(Er)})}function Gd(){var X={env:Wd,wasi_snapshot_preview1:Wd};function ct(se,ne){var yr=se.exports;e.asm=yr,V=e.asm.memory,Dt(V.buffer),qt=e.asm.__indirect_function_table,Zn(e.asm.__wasm_call_ctors),Qn(\"wasm-instantiate\")}Jn(\"wasm-instantiate\");function Ft(se){ct(se.instance)}function me(se){return Vd().then(function(ne){return WebAssembly.instantiate(ne,X)}).then(function(ne){return ne}).then(se,function(ne){A(\"failed to asynchronously prepare wasm: \"+ne),Qr(ne)})}function Ye(){return!F&&typeof WebAssembly.instantiateStreaming==\"function\"&&!zo(Er)&&!Ti(Er)&&!m&&typeof fetch==\"function\"?fetch(Er,{credentials:\"same-origin\"}).then(function(se){var ne=WebAssembly.instantiateStreaming(se,X);return ne.then(Ft,function(yr){return A(\"wasm streaming compile failed: \"+yr),A(\"falling back to ArrayBuffer instantiation\"),me(Ft)})}):me(Ft)}if(e.instantiateWasm)try{var Ze=e.instantiateWasm(X,ct);return Ze}catch(se){A(\"Module.instantiateWasm callback failed with error: \"+se),o(se)}return Ye().catch(o),{}}var c_,zl;function bp(X){this.name=\"ExitStatus\",this.message=\"Program terminated with exit(\"+X+\")\",this.status=X}function Sa(X){for(;X.length>0;)X.shift()(e)}function MC(){Qr(\"\")}function Ig(){return 4294901760}function Xu(){return Ig()}function PC(X,ct,Ft){lt.copyWithin(X>>>0,ct>>>0,ct+Ft>>>0)}function Cg(X){try{return V.grow(X-nt.byteLength+65535>>>16),Dt(V.buffer),1}catch(ct){}}function wp(X){var ct=lt.length;X=X>>>0;var Ft=Ig();if(X>Ft)return!1;let me=(yr,to)=>yr+(to-yr%to)%to;for(var Ye=1;Ye<=4;Ye*=2){var Ze=ct*(1+.2/Ye);Ze=Math.min(Ze,X+100663296);var se=Math.min(Ft,me(Math.max(X,Ze),65536)),ne=Cg(se);if(ne)return!0}return!1}var tn={varargs:void 0,get:function(){tn.varargs+=4;var X=ft[tn.varargs-4>>>2];return X},getStr:function(X){var ct=Y(X);return ct}};function vg(X){return 52}function LC(X,ct,Ft,me,Ye){return 70}var zC=[null,[],[]];function p_(X,ct){var Ft=zC[X];ct===0||ct===10?((X===1?E:A)(j(Ft,0)),Ft.length=0):Ft.push(ct)}function m_(X,ct,Ft,me){for(var Ye=0,Ze=0;Ze>>2],ne=gt[ct+4>>>2];ct+=8;for(var yr=0;yr>>0]);Ye+=ne}return gt[me>>>2]=Ye,0}function Sg(X){var ct=e[\"_\"+X];return ct}function Yu(X,ct){st.set(X,ct>>>0)}function BC(X,ct,Ft,me,Ye){var Ze={string:on=>{var Vl=0;if(on!=null&&on!==0){var Vg=(on.length<<2)+1;Vl=jd(Vg),et(on,Vl,Vg)}return Vl},array:on=>{var Vl=jd(on.length);return Yu(on,Vl),Vl}};function se(on){return ct===\"string\"?Y(on):ct===\"boolean\"?!!on:on}var ne=Sg(X),yr=[],to=0;if(me)for(var Na=0;Nase===\"number\"||se===\"boolean\"),Ze=ct!==\"string\";return Ze&&Ye&&!me?Sg(X):function(){return BC(X,ct,Ft,arguments,me)}}var Wd={abort:MC,emscripten_get_heap_max:Xu,emscripten_memcpy_big:PC,emscripten_resize_heap:wp,fd_close:vg,fd_seek:LC,fd_write:m_},GC=Gd(),Ng=e.___wasm_call_ctors=function(){return(Ng=e.___wasm_call_ctors=e.asm.__wasm_call_ctors).apply(null,arguments)},kg=e._init=function(){return(kg=e._init=e.asm.init).apply(null,arguments)},WC=e._init_with_threads_count=function(){return(WC=e._init_with_threads_count=e.asm.init_with_threads_count).apply(null,arguments)},Tg=e._get_threads_count=function(){return(Tg=e._get_threads_count=e.asm.get_threads_count).apply(null,arguments)},UC=e._register_tensor=function(){return(UC=e._register_tensor=e.asm.register_tensor).apply(null,arguments)},Yt=e._dispose_data=function(){return(Yt=e._dispose_data=e.asm.dispose_data).apply(null,arguments)},Ud=e._dispose=function(){return(Ud=e._dispose=e.asm.dispose).apply(null,arguments)},HC=e._Abs=function(){return(HC=e._Abs=e.asm.Abs).apply(null,arguments)},_g=e._Acos=function(){return(_g=e._Acos=e.asm.Acos).apply(null,arguments)},Ip=e._Acosh=function(){return(Ip=e._Acosh=e.asm.Acosh).apply(null,arguments)},qC=e._Add=function(){return(qC=e._Add=e.asm.Add).apply(null,arguments)},KC=e._AddN=function(){return(KC=e._AddN=e.asm.AddN).apply(null,arguments)},jC=e._All=function(){return(jC=e._All=e.asm.All).apply(null,arguments)},XC=e._Any=function(){return(XC=e._Any=e.asm.Any).apply(null,arguments)},YC=e._ArgMax=function(){return(YC=e._ArgMax=e.asm.ArgMax).apply(null,arguments)},Eg=e._ArgMin=function(){return(Eg=e._ArgMin=e.asm.ArgMin).apply(null,arguments)},Ag=e._Asin=function(){return(Ag=e._Asin=e.asm.Asin).apply(null,arguments)},ZC=e._Asinh=function(){return(ZC=e._Asinh=e.asm.Asinh).apply(null,arguments)},JC=e._Atan=function(){return(JC=e._Atan=e.asm.Atan).apply(null,arguments)},QC=e._Atan2=function(){return(QC=e._Atan2=e.asm.Atan2).apply(null,arguments)},Hd=e._Atanh=function(){return(Hd=e._Atanh=e.asm.Atanh).apply(null,arguments)},tv=e._AvgPool=function(){return(tv=e._AvgPool=e.asm.AvgPool).apply(null,arguments)},ev=e._AvgPool3D=function(){return(ev=e._AvgPool3D=e.asm.AvgPool3D).apply(null,arguments)},rv=e._AvgPool3DGrad=function(){return(rv=e._AvgPool3DGrad=e.asm.AvgPool3DGrad).apply(null,arguments)},Zu=e._AvgPoolGrad=function(){return(Zu=e._AvgPoolGrad=e.asm.AvgPoolGrad).apply(null,arguments)},nv=e._BatchMatMul=function(){return(nv=e._BatchMatMul=e.asm.BatchMatMul).apply(null,arguments)},ov=e._Bincount=function(){return(ov=e._Bincount=e.asm.Bincount).apply(null,arguments)},Dg=e._BitwiseAnd=function(){return(Dg=e._BitwiseAnd=e.asm.BitwiseAnd).apply(null,arguments)},sv=e._Ceil=function(){return(sv=e._Ceil=e.asm.Ceil).apply(null,arguments)},qd=e._ClipByValue=function(){return(qd=e._ClipByValue=e.asm.ClipByValue).apply(null,arguments)},iv=e._Conv2D=function(){return(iv=e._Conv2D=e.asm.Conv2D).apply(null,arguments)},av=e._Conv2DBackpropInput=function(){return(av=e._Conv2DBackpropInput=e.asm.Conv2DBackpropInput).apply(null,arguments)},lv=e._Conv3D=function(){return(lv=e._Conv3D=e.asm.Conv3D).apply(null,arguments)},Bl=e._Conv3DBackpropFilterV2=function(){return(Bl=e._Conv3DBackpropFilterV2=e.asm.Conv3DBackpropFilterV2).apply(null,arguments)},Kd=e._Conv3DBackpropInputV2=function(){return(Kd=e._Conv3DBackpropInputV2=e.asm.Conv3DBackpropInputV2).apply(null,arguments)},uv=e._Cos=function(){return(uv=e._Cos=e.asm.Cos).apply(null,arguments)},cv=e._Cosh=function(){return(cv=e._Cosh=e.asm.Cosh).apply(null,arguments)},pv=e._CropAndResize=function(){return(pv=e._CropAndResize=e.asm.CropAndResize).apply(null,arguments)},mv=e._Cumprod=function(){return(mv=e._Cumprod=e.asm.Cumprod).apply(null,arguments)},$g=e._Cumsum=function(){return($g=e._Cumsum=e.asm.Cumsum).apply(null,arguments)},Rg=e._DenseBincount=function(){return(Rg=e._DenseBincount=e.asm.DenseBincount).apply(null,arguments)},fv=e._DepthToSpace=function(){return(fv=e._DepthToSpace=e.asm.DepthToSpace).apply(null,arguments)},dv=e._DepthwiseConv2dNative=function(){return(dv=e._DepthwiseConv2dNative=e.asm.DepthwiseConv2dNative).apply(null,arguments)},Fg=e._Diag=function(){return(Fg=e._Diag=e.asm.Diag).apply(null,arguments)},Og=e._Dilation2D=function(){return(Og=e._Dilation2D=e.asm.Dilation2D).apply(null,arguments)},hv=e._Dilation2DBackpropFilter=function(){return(hv=e._Dilation2DBackpropFilter=e.asm.Dilation2DBackpropFilter).apply(null,arguments)},gv=e._Dilation2DBackpropInput=function(){return(gv=e._Dilation2DBackpropInput=e.asm.Dilation2DBackpropInput).apply(null,arguments)},xv=e._Elu=function(){return(xv=e._Elu=e.asm.Elu).apply(null,arguments)},yv=e._EluGrad=function(){return(yv=e._EluGrad=e.asm.EluGrad).apply(null,arguments)},Mg=e._Equal=function(){return(Mg=e._Equal=e.asm.Equal).apply(null,arguments)},f_=e._Erf=function(){return(f_=e._Erf=e.asm.Erf).apply(null,arguments)},bv=e._Exp=function(){return(bv=e._Exp=e.asm.Exp).apply(null,arguments)},wv=e._Expm1=function(){return(wv=e._Expm1=e.asm.Expm1).apply(null,arguments)},Iv=e._FlipLeftRight=function(){return(Iv=e._FlipLeftRight=e.asm.FlipLeftRight).apply(null,arguments)},Cv=e._Floor=function(){return(Cv=e._Floor=e.asm.Floor).apply(null,arguments)},vv=e._FloorDiv=function(){return(vv=e._FloorDiv=e.asm.FloorDiv).apply(null,arguments)},Sv=e._FusedBatchNorm=function(){return(Sv=e._FusedBatchNorm=e.asm.FusedBatchNorm).apply(null,arguments)},Nv=e._FusedConv2D=function(){return(Nv=e._FusedConv2D=e.asm.FusedConv2D).apply(null,arguments)},kv=e._FusedDepthwiseConv2D=function(){return(kv=e._FusedDepthwiseConv2D=e.asm.FusedDepthwiseConv2D).apply(null,arguments)},Tv=e._Gather=function(){return(Tv=e._Gather=e.asm.Gather).apply(null,arguments)},_v=e._GatherNd=function(){return(_v=e._GatherNd=e.asm.GatherNd).apply(null,arguments)},Ev=e._Greater=function(){return(Ev=e._Greater=e.asm.Greater).apply(null,arguments)},Av=e._GreaterEqual=function(){return(Av=e._GreaterEqual=e.asm.GreaterEqual).apply(null,arguments)},Dv=e._IsFinite=function(){return(Dv=e._IsFinite=e.asm.IsFinite).apply(null,arguments)},$v=e._IsInf=function(){return($v=e._IsInf=e.asm.IsInf).apply(null,arguments)},Rv=e._IsNan=function(){return(Rv=e._IsNan=e.asm.IsNan).apply(null,arguments)},Fv=e._LRN=function(){return(Fv=e._LRN=e.asm.LRN).apply(null,arguments)},Ov=e._LRNGrad=function(){return(Ov=e._LRNGrad=e.asm.LRNGrad).apply(null,arguments)},Mv=e._LeakyRelu=function(){return(Mv=e._LeakyRelu=e.asm.LeakyRelu).apply(null,arguments)},Pv=e._Less=function(){return(Pv=e._Less=e.asm.Less).apply(null,arguments)},Lv=e._LessEqual=function(){return(Lv=e._LessEqual=e.asm.LessEqual).apply(null,arguments)},zv=e._LinSpace=function(){return(zv=e._LinSpace=e.asm.LinSpace).apply(null,arguments)},Bv=e._Log=function(){return(Bv=e._Log=e.asm.Log).apply(null,arguments)},Vv=e._Log1p=function(){return(Vv=e._Log1p=e.asm.Log1p).apply(null,arguments)},Gv=e._LogicalAnd=function(){return(Gv=e._LogicalAnd=e.asm.LogicalAnd).apply(null,arguments)},Wv=e._LogicalNot=function(){return(Wv=e._LogicalNot=e.asm.LogicalNot).apply(null,arguments)},Uv=e._LogicalOr=function(){return(Uv=e._LogicalOr=e.asm.LogicalOr).apply(null,arguments)},Hv=e._LogicalXor=function(){return(Hv=e._LogicalXor=e.asm.LogicalXor).apply(null,arguments)},qv=e._Max=function(){return(qv=e._Max=e.asm.Max).apply(null,arguments)},Kv=e._MaxPool=function(){return(Kv=e._MaxPool=e.asm.MaxPool).apply(null,arguments)},jv=e._MaxPool3D=function(){return(jv=e._MaxPool3D=e.asm.MaxPool3D).apply(null,arguments)},Xv=e._MaxPool3DGrad=function(){return(Xv=e._MaxPool3DGrad=e.asm.MaxPool3DGrad).apply(null,arguments)},Yv=e._MaxPoolGrad=function(){return(Yv=e._MaxPoolGrad=e.asm.MaxPoolGrad).apply(null,arguments)},Zv=e._MaxPoolWithArgmax=function(){return(Zv=e._MaxPoolWithArgmax=e.asm.MaxPoolWithArgmax).apply(null,arguments)},Jv=e._Maximum=function(){return(Jv=e._Maximum=e.asm.Maximum).apply(null,arguments)},Qv=e._Mean=function(){return(Qv=e._Mean=e.asm.Mean).apply(null,arguments)},tS=e._Min=function(){return(tS=e._Min=e.asm.Min).apply(null,arguments)},eS=e._Minimum=function(){return(eS=e._Minimum=e.asm.Minimum).apply(null,arguments)},rS=e._MirrorPad=function(){return(rS=e._MirrorPad=e.asm.MirrorPad).apply(null,arguments)},nS=e._Mod=function(){return(nS=e._Mod=e.asm.Mod).apply(null,arguments)},oS=e._Multinomial=function(){return(oS=e._Multinomial=e.asm.Multinomial).apply(null,arguments)},sS=e._Multiply=function(){return(sS=e._Multiply=e.asm.Multiply).apply(null,arguments)},iS=e._Neg=function(){return(iS=e._Neg=e.asm.Neg).apply(null,arguments)},aS=e._NonMaxSuppressionV3=function(){return(aS=e._NonMaxSuppressionV3=e.asm.NonMaxSuppressionV3).apply(null,arguments)},lS=e._NonMaxSuppressionV4=function(){return(lS=e._NonMaxSuppressionV4=e.asm.NonMaxSuppressionV4).apply(null,arguments)},uS=e._NonMaxSuppressionV5=function(){return(uS=e._NonMaxSuppressionV5=e.asm.NonMaxSuppressionV5).apply(null,arguments)},cS=e._NotEqual=function(){return(cS=e._NotEqual=e.asm.NotEqual).apply(null,arguments)},pS=e._OneHot=function(){return(pS=e._OneHot=e.asm.OneHot).apply(null,arguments)},mS=e._PadV2=function(){return(mS=e._PadV2=e.asm.PadV2).apply(null,arguments)},fS=e._Pow=function(){return(fS=e._Pow=e.asm.Pow).apply(null,arguments)},dS=e._Prelu=function(){return(dS=e._Prelu=e.asm.Prelu).apply(null,arguments)},hS=e._Prod=function(){return(hS=e._Prod=e.asm.Prod).apply(null,arguments)},gS=e._RealDiv=function(){return(gS=e._RealDiv=e.asm.RealDiv).apply(null,arguments)},xS=e._Reciprocal=function(){return(xS=e._Reciprocal=e.asm.Reciprocal).apply(null,arguments)},yS=e._Relu=function(){return(yS=e._Relu=e.asm.Relu).apply(null,arguments)},bS=e._Relu6=function(){return(bS=e._Relu6=e.asm.Relu6).apply(null,arguments)},wS=e._ResizeBilinear=function(){return(wS=e._ResizeBilinear=e.asm.ResizeBilinear).apply(null,arguments)},IS=e._ResizeBilinearGrad=function(){return(IS=e._ResizeBilinearGrad=e.asm.ResizeBilinearGrad).apply(null,arguments)},CS=e._ResizeNearestNeighbor=function(){return(CS=e._ResizeNearestNeighbor=e.asm.ResizeNearestNeighbor).apply(null,arguments)},vS=e._ResizeNearestNeighborGrad=function(){return(vS=e._ResizeNearestNeighborGrad=e.asm.ResizeNearestNeighborGrad).apply(null,arguments)},SS=e._Reverse=function(){return(SS=e._Reverse=e.asm.Reverse).apply(null,arguments)},NS=e._RotateWithOffset=function(){return(NS=e._RotateWithOffset=e.asm.RotateWithOffset).apply(null,arguments)},kS=e._Round=function(){return(kS=e._Round=e.asm.Round).apply(null,arguments)},TS=e._Rsqrt=function(){return(TS=e._Rsqrt=e.asm.Rsqrt).apply(null,arguments)},_S=e._ScatterNd=function(){return(_S=e._ScatterNd=e.asm.ScatterNd).apply(null,arguments)},ES=e._SearchSorted=function(){return(ES=e._SearchSorted=e.asm.SearchSorted).apply(null,arguments)},AS=e._SelectV2=function(){return(AS=e._SelectV2=e.asm.SelectV2).apply(null,arguments)},DS=e._Selu=function(){return(DS=e._Selu=e.asm.Selu).apply(null,arguments)},$S=e._Sigmoid=function(){return($S=e._Sigmoid=e.asm.Sigmoid).apply(null,arguments)},RS=e._Sign=function(){return(RS=e._Sign=e.asm.Sign).apply(null,arguments)},FS=e._Sin=function(){return(FS=e._Sin=e.asm.Sin).apply(null,arguments)},OS=e._Sinh=function(){return(OS=e._Sinh=e.asm.Sinh).apply(null,arguments)},MS=e._Softmax=function(){return(MS=e._Softmax=e.asm.Softmax).apply(null,arguments)},PS=e._Softplus=function(){return(PS=e._Softplus=e.asm.Softplus).apply(null,arguments)},LS=e._SparseFillEmptyRows=function(){return(LS=e._SparseFillEmptyRows=e.asm.SparseFillEmptyRows).apply(null,arguments)},zS=e._SparseReshape=function(){return(zS=e._SparseReshape=e.asm.SparseReshape).apply(null,arguments)},BS=e._SparseSegmentReduction=function(){return(BS=e._SparseSegmentReduction=e.asm.SparseSegmentReduction).apply(null,arguments)},VS=e._SparseToDense=function(){return(VS=e._SparseToDense=e.asm.SparseToDense).apply(null,arguments)},GS=e._Sqrt=function(){return(GS=e._Sqrt=e.asm.Sqrt).apply(null,arguments)},WS=e._Square=function(){return(WS=e._Square=e.asm.Square).apply(null,arguments)},US=e._SquaredDifference=function(){return(US=e._SquaredDifference=e.asm.SquaredDifference).apply(null,arguments)},HS=e._Step=function(){return(HS=e._Step=e.asm.Step).apply(null,arguments)},qS=e._StridedSlice=function(){return(qS=e._StridedSlice=e.asm.StridedSlice).apply(null,arguments)},KS=e._Sub=function(){return(KS=e._Sub=e.asm.Sub).apply(null,arguments)},jS=e._Sum=function(){return(jS=e._Sum=e.asm.Sum).apply(null,arguments)},XS=e._Tan=function(){return(XS=e._Tan=e.asm.Tan).apply(null,arguments)},YS=e._Tanh=function(){return(YS=e._Tanh=e.asm.Tanh).apply(null,arguments)},ZS=e._TensorScatterUpdate=function(){return(ZS=e._TensorScatterUpdate=e.asm.TensorScatterUpdate).apply(null,arguments)},JS=e._Tile=function(){return(JS=e._Tile=e.asm.Tile).apply(null,arguments)},QS=e._TopK=function(){return(QS=e._TopK=e.asm.TopK).apply(null,arguments)},t0=e._Transform=function(){return(t0=e._Transform=e.asm.Transform).apply(null,arguments)},e0=e._Transpose=function(){return(e0=e._Transpose=e.asm.Transpose).apply(null,arguments)},r0=e.__FusedMatMul=function(){return(r0=e.__FusedMatMul=e.asm._FusedMatMul).apply(null,arguments)},n0=e._malloc=function(){return(n0=e._malloc=e.asm.malloc).apply(null,arguments)},o0=e._free=function(){return(o0=e._free=e.asm.free).apply(null,arguments)},s0=e.___errno_location=function(){return(s0=e.___errno_location=e.asm.__errno_location).apply(null,arguments)},Pg=e.stackSave=function(){return(Pg=e.stackSave=e.asm.stackSave).apply(null,arguments)},Lg=e.stackRestore=function(){return(Lg=e.stackRestore=e.asm.stackRestore).apply(null,arguments)},jd=e.stackAlloc=function(){return(jd=e.stackAlloc=e.asm.stackAlloc).apply(null,arguments)},i0=e.dynCall_iijjiiii=function(){return(i0=e.dynCall_iijjiiii=e.asm.dynCall_iijjiiii).apply(null,arguments)},a0=e.dynCall_jiji=function(){return(a0=e.dynCall_jiji=e.asm.dynCall_jiji).apply(null,arguments)};e.cwrap=VC;var Cp;Gr=function X(){Cp||zg(),Cp||(Gr=X)};function zg(X){if(X=X||a,Xe>0||(Ee(),Xe>0))return;function ct(){Cp||(Cp=!0,e.calledRun=!0,!G&&(Ae(),n(e),e.onRuntimeInitialized&&e.onRuntimeInitialized(),On()))}e.setStatus?(e.setStatus(\"Running...\"),setTimeout(function(){setTimeout(function(){e.setStatus(\"\")},1),ct()},1)):ct()}if(e.preInit)for(typeof e.preInit==\"function\"&&(e.preInit=[e.preInit]);e.preInit.length>0;)e.preInit.pop()();zg();var vp;s&&(vp={uncaughtException:process.listeners(\"uncaughtException\").filter(function(X){return!s.uncaughtException.indexOf(X)>-1}),unhandledRejection:process.listeners(\"unhandledRejection\").filter(function(X){return!s.unhandledRejection.indexOf(X)>-1})});var Sp;if(typeof t!=\"undefined\")Sp=t;else if(typeof WasmBackendModuleThreadedSimd!=\"undefined\")Sp=WasmBackendModuleThreadedSimd;else throw new Error(\"Could not find wasm module in post.js\");if(vp){var l0=Sp._dispose;Sp._dispose=function(){l0(),vp.uncaughtException.forEach(function(X){process.removeListener(\"uncaughtException\",X)}),vp.unhandledRejection.forEach(function(X){process.removeListener(\"unhandledRejection\",X)})}}return t.ready}})();typeof FC==\"object\"&&typeof s_==\"object\"?s_.exports=o_:typeof define==\"function\"&&define.amd?define([],function(){return o_}):typeof FC==\"object\"&&(FC.WasmBackendModule=o_)});var Ta=class{constructor(t,e){this.backend=t,this.dataMover=e,this.data=new WeakMap,this.dataIdsCount=0}get(t){return this.data.has(t)||this.dataMover.moveData(this.backend,t),this.data.get(t)}set(t,e){this.dataIdsCount++,this.data.set(t,e)}has(t){return this.data.has(t)}delete(t){return this.dataIdsCount--,this.data.delete(t)}numDataIds(){return this.dataIdsCount}},Bo=class{refCount(t){return Pn(\"refCount\")}incRef(t){return Pn(\"incRef\")}timerAvailable(){return!0}time(t){return Pn(\"time\")}read(t){return Pn(\"read\")}readSync(t){return Pn(\"readSync\")}readToGPU(t,e){return Pn(\"readToGPU\")}numDataIds(){return Pn(\"numDataIds\")}disposeData(t,e){return Pn(\"disposeData\")}write(t,e,n){return Pn(\"write\")}move(t,e,n,o,s){return Pn(\"move\")}createTensorFromGPUData(t,e,n){return Pn(\"createTensorFromGPUData\")}memory(){return Pn(\"memory\")}floatPrecision(){return Pn(\"floatPrecision\")}epsilon(){return this.floatPrecision()===32?1e-7:1e-4}dispose(){return Pn(\"dispose\")}};function Pn(r){throw new Error(`'${r}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function C_(r){let t=r.length,e=0;for(;t>0;)e=Math.random()*t|0,t--,jg(r,t,e)}function Hq(r,t){if(r.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${r.length}Second array length was ${t.length}`);let e=r.length,n=0;for(;e>0;)n=Math.random()*e|0,e--,jg(r,e,n),jg(t,e,n)}function kp(r,t,e){return Math.max(r,Math.min(t,e))}function qq(r){return r%2===0?r:r+1}function jg(r,t,e){let n=r[t];r[t]=r[e],r[e]=n}function Kq(r){let t=0;for(let e=0;ee+` Shapes ${r} and ${t} must match`)}function ro(r){_(r!=null,()=>\"The input to the tensor constructor must be a non-null value.\")}function jt(r){if(r.length===0)return 1;let t=r[0];for(let e=1;e0,e,n){return new Promise((o,s)=>{let i=0,a=()=>{if(r()){o();return}i++;let u=t(i);if(e!=null&&i>=e){s();return}n!=null?n(a,u):setTimeout(a,u)};a()})}function eK(r,t){let e=1,n=-1;for(let s=0;s=0)e*=r[s];else if(r[s]===-1){if(n!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${n} and dim ${s}`);n=s}else if(r[s]<0)throw Error(`Shapes can not be < 0. Found ${r[s]} at dim ${s}`);if(n===-1){if(t>0&&t!==e)throw Error(`Size(${t}) must match the product of shape ${r}`);return r}if(e===0)throw Error(`Cannot infer the missing size in [${r}] when there are 0 elements`);if(t%e!==0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${e}`);let o=r.slice();return o[n]=t/e,o}function fr(r,t){let e=t.length;return r=r==null?t.map((n,o)=>o):[].concat(r),_(r.every(n=>n>=-e&&n`All values in axis param must be in range [-${e}, ${e}) but got axis ${r}`),_(r.every(n=>_a(n)),()=>`All values in axis param must be integers but got axis ${r}`),r.map(n=>n<0?e+n:n)}function h0(r,t){let e=[],n=[],o=t!=null&&Array.isArray(t)&&t.length===0,s=t==null||o?null:fr(t,r).sort(),i=0;for(let a=0;aa)&&r[a]===1&&(e.push(r[a]),n.push(a)),s[i]<=a&&i++}r[a]!==1&&(e.push(r[a]),n.push(a))}return{newShape:e,keptDims:n}}function g0(r,t){return Xg(r,t)}function Xg(r,t){let e=null;if(r==null||r===\"float32\")e=new Float32Array(t);else if(r===\"int32\")e=new Int32Array(t);else if(r===\"bool\")e=new Uint8Array(t);else if(r===\"string\")e=new Array(t);else throw new Error(`Unknown data type ${r}`);return e}function x0(r,t){for(let e=0;et+=e.length),t}function Vo(r){return typeof r==\"string\"||r instanceof String}function v_(r){return typeof r==\"boolean\"}function S_(r){return typeof r==\"number\"}function Wl(r){return Array.isArray(r)?Wl(r[0]):r instanceof Float32Array?\"float32\":r instanceof Int32Array||r instanceof Uint8Array||r instanceof Uint8ClampedArray?\"int32\":S_(r)?\"float32\":Vo(r)?\"string\":v_(r)?\"bool\":\"float32\"}function _i(r){return!!(r&&r.constructor&&r.call&&r.apply)}function _p(r,t){for(let e=t;e=0;--n)e[n]=e[n+1]*r[n+1];return e}function N_(r,t,e,n=!1){let o=new Array;if(t.length===1){let s=t[0]*(n?2:1);for(let i=0;iu*l)*(n?2:1);for(let u=0;uo*s)*(e?2:1);if(n===0)return[];if(n!==t.length)throw new Error(`[${r}] does not match the input size ${t.length}${e?\" for a complex tensor\":\"\"}.`);return N_(0,r,t,e)}function nK(r,t){if(Array.isArray(r))return r;if(t===\"float32\")return r instanceof Float32Array?r:new Float32Array(r);if(t===\"int32\")return r instanceof Int32Array?r:new Int32Array(r);if(t===\"bool\"||t===\"string\")return Uint8Array.from(new Int32Array(r));throw new Error(`Unknown dtype ${t}`)}function Yd(r,t){let e=Ep(r,t);for(let n=0;nn*o,1);if(t==null||t===\"float32\")return Ju(r,new Float32Array(e));if(t===\"int32\")return Ju(r,new Int32Array(e));if(t===\"bool\")return Ju(r,new Uint8Array(e));throw new Error(`Unknown data type ${t}`)}function Le(r){r.forEach(t=>{_(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${r}].`)})}function sK(r,t,e){if(t===0)return 0;if(t===1)return r[0];let n=r[r.length-1];for(let o=0;o{let[o,s]=n.split(\":\");this.urlFlags[o]=cK(o,s)})}};function lK(r){let t={};return r.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(e,...n)=>(uK(t,n[0],n[1]),n.join(\"=\"))),t}function uK(r,t,e){r[decodeURIComponent(t)]=decodeURIComponent(e||\"\")}function cK(r,t){let e=t.toLowerCase();return e===\"true\"||e===\"false\"?e===\"true\":`${+e}`===e?+e:t}function L(){return w0}var w0=null;function T_(r){w0=r}var I0;function C0(){if(I0==null){let r;if(typeof window!=\"undefined\")r=window;else if(typeof global!=\"undefined\")r=global;else if(typeof process!=\"undefined\")r=process;else if(typeof self!=\"undefined\")r=self;else throw new Error(\"Could not find a global object\");I0=r}return I0}function pK(){let r=C0();return r._tfGlobals==null&&(r._tfGlobals=new Map),r._tfGlobals}function Jd(r,t){let e=pK();if(e.has(r))return e.get(r);{let n=t();return e.set(r,n),e.get(r)}}var Ai=\"Abs\",Go=\"Acos\",Wo=\"Acosh\",no=\"Add\",Uo=\"AddN\",Ea=\"All\",Aa=\"Any\",Di=\"ArgMax\",$i=\"ArgMin\",Ho=\"Asin\",qo=\"Asinh\",Ko=\"Atan\",jo=\"Atanh\",Xo=\"Atan2\",Yo=\"AvgPool\",Ul=\"AvgPoolGrad\",Ri=\"AvgPool3D\",Hl=\"AvgPool3DGrad\",Zo=\"BatchMatMul\",Fi=\"BatchToSpaceND\",Da=\"Bincount\",$a=\"BitwiseAnd\",__=\"BroadcastTo\",ql=\"BroadcastArgs\",fo=\"Cast\",Jo=\"Ceil\",ho=\"ClipByValue\",Ap=\"Complex\",Kl=\"ComplexAbs\",Oi=\"Concat\",Qo=\"Conv2D\",Dp=\"Conv2DBackpropFilter\",ts=\"Conv2DBackpropInput\",es=\"Conv3D\",Ra=\"Conv3DBackpropFilterV2\",Fa=\"Conv3DBackpropInputV2\",rs=\"Cos\",ns=\"Cosh\",Oa=\"Cumprod\",os=\"Cumsum\",Ma=\"CropAndResize\",jl=\"DenseBincount\",Pa=\"DepthToSpace\",ss=\"DepthwiseConv2dNative\",$p=\"DepthwiseConv2dNativeBackpropFilter\",Rp=\"DepthwiseConv2dNativeBackpropInput\",Xl=\"Diag\",is=\"Dilation2D\",Yl=\"Dilation2DBackpropInput\",Zl=\"Dilation2DBackpropFilter\",Qd=\"Draw\",as=\"RealDiv\",Fp=\"Einsum\",ls=\"Elu\",La=\"EluGrad\",us=\"Erf\",za=\"Equal\",cs=\"Exp\",Mi=\"ExpandDims\",ps=\"Expm1\",Op=\"FFT\",Jl=\"Fill\",Ba=\"FlipLeftRight\",ms=\"Floor\",fs=\"FloorDiv\",ds=\"FusedBatchNorm\",Pi=\"GatherV2\",Va=\"GatherNd\",Ga=\"Greater\",hs=\"GreaterEqual\",go=\"Identity\",Mp=\"IFFT\",Pp=\"Imag\",gs=\"IsFinite\",xs=\"IsInf\",ys=\"IsNan\",bs=\"LeakyRelu\",Wa=\"Less\",Ua=\"LessEqual\",Ha=\"LinSpace\",ws=\"Log\",Is=\"Log1p\",qa=\"LogicalAnd\",Ka=\"LogicalNot\",ja=\"LogicalOr\",E_=\"LogicalXor\",A_=\"LogSoftmax\",nft=\"LowerBound\",Cs=\"LRN\",Xa=\"LRNGrad\",oft=\"MatrixBandPart\",vs=\"Max\",Ss=\"Maximum\",Ns=\"MaxPool\",Ql=\"MaxPoolGrad\",Li=\"MaxPool3D\",tu=\"MaxPool3DGrad\",eu=\"MaxPoolWithArgmax\",ks=\"Mean\",Ts=\"Min\",_s=\"Minimum\",Es=\"MirrorPad\",As=\"Mod\",Ya=\"Multinomial\",Ds=\"Multiply\",zi=\"Neg\",Za=\"NotEqual\",Ja=\"NonMaxSuppressionV3\",Qa=\"NonMaxSuppressionV4\",tl=\"NonMaxSuppressionV5\",Bi=\"OnesLike\",$s=\"OneHot\",Vi=\"Pack\",Rs=\"PadV2\",sft=\"Pool\",Fs=\"Pow\",Os=\"Prelu\",Ms=\"Prod\",Lp=\"RaggedGather\",zp=\"RaggedRange\",Bp=\"RaggedTensorToTensor\",ru=\"Range\",Vp=\"Real\",Ps=\"Reciprocal\",Ls=\"Relu\",Gi=\"Reshape\",zs=\"ResizeNearestNeighbor\",el=\"ResizeNearestNeighborGrad\",Bs=\"ResizeBilinear\",rl=\"ResizeBilinearGrad\",Vs=\"Relu6\",Gs=\"Reverse\",Ws=\"Round\",Us=\"Rsqrt\",nl=\"ScatterNd\",ol=\"TensorScatterUpdate\",sl=\"SearchSorted\",Wi=\"Select\",Hs=\"Selu\",Ui=\"Slice\",qs=\"Sin\",Ks=\"Sinh\",js=\"Sign\",Xs=\"Sigmoid\",Ys=\"Softplus\",Zs=\"Sqrt\",Js=\"Sum\",Hi=\"SpaceToBatchND\",qi=\"SplitV\",Qs=\"Softmax\",nu=\"SparseFillEmptyRows\",il=\"SparseReshape\",ou=\"SparseSegmentMean\",su=\"SparseSegmentSum\",al=\"SparseToDense\",ti=\"SquaredDifference\",iu=\"Square\",ec=\"StaticRegexReplace\",ll=\"StridedSlice\",au=\"StringNGrams\",lu=\"StringSplit\",uu=\"StringToHashBucketFast\",ei=\"Sub\",ri=\"Tan\",ni=\"Tanh\",oo=\"Tile\",ul=\"TopK\",cl=\"Transform\",so=\"Transpose\",cu=\"Unique\",Ki=\"Unpack\",pu=\"UnsortedSegmentSum\",ift=\"UpperBound\",ji=\"ZerosLike\",xo=\"Step\",th=\"FromPixels\",pl=\"RotateWithOffset\",Xi=\"_FusedMatMul\",Yi=\"FusedConv2D\",Zi=\"FusedDepthwiseConv2D\";function Ji(...r){L().getBool(\"IS_TEST\")||L().getBool(\"PROD\")||console.warn(...r)}function mK(...r){L().getBool(\"IS_TEST\")||L().getBool(\"PROD\")||console.log(...r)}var Gp=Jd(\"kernelRegistry\",()=>new Map),eh=Jd(\"gradRegistry\",()=>new Map);function Wp(r,t){let e=S0(r,t);return Gp.get(e)}function v0(r){return eh.get(r)}function Yg(r){let t=Gp.entries(),e=[];for(;;){let{done:n,value:o}=t.next();if(n)break;let[s,i]=o,[a]=s.split(\"_\");a===r&&e.push(i)}return e}function rc(r){let{kernelName:t,backendName:e}=r,n=S0(t,e);Gp.has(n)&&Ji(`The kernel '${t}' for backend '${e}' is already registered`),Gp.set(n,r)}function $_(r){let{kernelName:t}=r;eh.has(t)&&L().getBool(\"DEBUG\")&&Ji(`Overriding the gradient for '${t}'`),eh.set(t,r)}function pft(r,t){let e=S0(r,t);if(!Gp.has(e))throw new Error(`The kernel '${r}' for backend '${t}' is not registered`);Gp.delete(e)}function mft(r){if(!eh.has(r))throw new Error(`The gradient '${r}' for backend is not registered`);eh.delete(r)}function fft(r,t){Yg(r).forEach(n=>{let o=Object.assign({},n,{backendName:t});rc(o)})}function S0(r,t){return`${t}_${r}`}var y={};Kt(y,{arraysEqual:()=>sn,arraysEqualWithNull:()=>d0,assert:()=>_,assertNonNegativeIntegerDimensions:()=>Le,assertNonNull:()=>ro,assertShapesMatch:()=>$e,bytesFromStringArray:()=>b0,bytesPerElement:()=>Tp,checkConversionForErrors:()=>x0,clamp:()=>kp,computeStrides:()=>Ei,convertBackendValuesAndArrayBuffer:()=>nK,createScalarValue:()=>bK,createShuffledIndices:()=>Qq,decodeString:()=>Kp,distSquared:()=>Xq,encodeString:()=>fu,fetch:()=>IK,fingerPrint64:()=>yK,flatten:()=>si,getArrayFromDType:()=>Xg,getTypedArrayFromDType:()=>g0,hasEncodingLoss:()=>rK,hexToLong:()=>rh,indexToLoc:()=>iK,inferDtype:()=>Wl,inferFromImplicitShape:()=>eK,isBoolean:()=>v_,isFunction:()=>_i,isInt:()=>_a,isNumber:()=>S_,isPromise:()=>tc,isScalarShape:()=>Yq,isString:()=>Vo,isTypedArray:()=>sr,isValidDtype:()=>y0,locToIndex:()=>sK,makeOnesTypedArray:()=>Yd,makeZerosNestedTypedArray:()=>oK,makeZerosTypedArray:()=>Ep,nearestDivisor:()=>_p,nearestLargerEven:()=>qq,now:()=>ac,parseAxisParam:()=>fr,randUniform:()=>jq,repeatedTry:()=>tK,rightPad:()=>Qu,shuffle:()=>C_,shuffleCombo:()=>Hq,sizeFromShape:()=>jt,sizeToSquarishShape:()=>Jq,squeezeShape:()=>h0,sum:()=>Kq,swap:()=>jg,tanh:()=>Zq,toNestedArray:()=>Ju,toTypedArray:()=>qp});function Zg(r){return r instanceof Float32Array||r instanceof Int32Array||r instanceof Uint8Array||r instanceof Uint8ClampedArray}var _0=Gl(W_());var ic=_0.default||_0;function rh(r){return ic.fromString(r,!0,16)}var H_=rh(\"c3a5c85c97cb3127\"),sc=rh(\"b492b66fbe98f273\"),an=rh(\"9ae16a3b2f90404f\");function T0(r){return r.xor(r.shru(47))}function q_(r,t,e){let n=r.slice(t,t+e);return ic.fromBytes(Array.from(n),!0,!0)}function ze(r,t){return q_(r,t,8)}function U_(r,t){return q_(r,t,4)}function Ar(r,t){return t===0?r:r.shru(t).or(r.shl(64-t))}function mu(r,t,e=rh(\"9ddfea08eb382d69\")){let n=r.xor(t).mul(e);n=n.xor(n.shru(47));let o=t.xor(n).mul(e);return o=o.xor(o.shru(47)),o=o.mul(e),o}function dK(r,t,e,n,o,s){o=o.add(r),s=Ar(s.add(o).add(n),21);let i=o;return o=o.add(t),o=o.add(e),s=s.add(Ar(o,44)),[o.add(n),s.add(i)]}function Qg(r,t,e,n){return dK(ze(r,t),ze(r,t+8),ze(r,t+16),ze(r,t+24),e,n)}function hK(r,t=r.length){if(t>=8){let e=an.add(t*2),n=ze(r,0).add(an),o=ze(r,t-8),s=Ar(o,37).mul(e).add(n),i=Ar(n,25).add(o).mul(e);return mu(s,i,e)}if(t>=4){let e=an.add(t*2),n=U_(r,0);return mu(n.shl(3).add(t),U_(r,t-4),e)}if(t>0){let e=r[0],n=r[t>>1],o=r[t-1],s=e+(n<<8),i=t+(o<<2);return T0(an.mul(s).xor(H_.mul(i))).mul(an)}return an}function gK(r,t=r.length){let e=an.add(t*2),n=ze(r,0).mul(sc),o=ze(r,8),s=ze(r,t-8).mul(e),i=ze(r,t-16).mul(an);return mu(Ar(n.add(o),43).add(Ar(s,30)).add(i),n.add(Ar(o.add(an),18)).add(s),e)}function xK(r,t=r.length){let e=an.add(t*2),n=ze(r,0).mul(an),o=ze(r,8),s=ze(r,t-8).mul(e),i=ze(r,t-16).mul(an),a=Ar(n.add(o),43).add(Ar(s,30)).add(i),u=mu(a,n.add(Ar(o.add(an),18)).add(s),e),l=ze(r,16).mul(e),c=ze(r,24),p=a.add(ze(r,t-32)).mul(e),m=u.add(ze(r,t-24)).mul(e);return mu(Ar(l.add(c),43).add(Ar(p,30)).add(m),l.add(Ar(c.add(n),18)).add(p),e)}function yK(r,t=r.length){let e=ic.fromNumber(81,!0);if(t<=32)return t<=16?hK(r,t):gK(r,t);if(t<=64)return xK(r,t);let n=e,o=e.mul(sc).add(113),s=T0(o.mul(an).add(113)).mul(an),i=[ic.UZERO,ic.UZERO],a=[ic.UZERO,ic.UZERO];n=n.mul(an).add(ze(r,0));let u=0,l=(t-1>>6)*64,c=l+(t-1&63)-63;do n=Ar(n.add(o).add(i[0]).add(ze(r,u+8)),37).mul(sc),o=Ar(o.add(i[1]).add(ze(r,u+48)),42).mul(sc),n=n.xor(a[1]),o=o.add(i[0]).add(ze(r,u+40)),s=Ar(s.add(a[0]),33).mul(sc),i=Qg(r,u,i[1].mul(sc),n.add(a[0])),a=Qg(r,u+32,s.add(a[1]),o.add(ze(r,u+16))),[s,n]=[n,s],u+=64;while(u!==l);let p=sc.add(s.and(255).shl(1));return u=c,a[0]=a[0].add(t-1&63),i[0]=i[0].add(a[0]),a[0]=a[0].add(i[0]),n=Ar(n.add(o).add(i[0]).add(ze(r,u+8)),37).mul(p),o=Ar(o.add(i[1]).add(ze(r,u+48)),42).mul(p),n=n.xor(a[1].mul(9)),o=o.add(i[0].mul(9).add(ze(r,u+40))),s=Ar(s.add(a[0]),33).mul(p),i=Qg(r,u,i[1].mul(p),n.add(a[0])),a=Qg(r,u+32,s.add(a[1]),o.add(ze(r,u+16))),[s,n]=[n,s],mu(mu(i[0],a[0],p).add(T0(o).mul(H_)).add(s),mu(i[1],a[1],p).add(n),p)}function bK(r,t){return t===\"string\"?fu(r):qp([r],t)}function wK(r,t){return r instanceof Float32Array&&t===\"float32\"||r instanceof Int32Array&&t===\"int32\"||r instanceof Uint8Array&&t===\"bool\"}function qp(r,t){if(t===\"string\")throw new Error(\"Cannot convert a string[] to a TypedArray\");if(Array.isArray(r)&&(r=si(r)),L().getBool(\"DEBUG\")&&x0(r,t),wK(r,t))return r;if(t==null||t===\"float32\"||t===\"complex64\")return new Float32Array(r);if(t===\"int32\")return new Int32Array(r);if(t===\"bool\"){let e=new Uint8Array(r.length);for(let n=0;n{o=n()},i,a=ac();if(this.backendTimer.timerAvailable())i=this.backendTimer.time(s);else{s();for(let l of o)l.dataSync();i=Promise.resolve({kernelMs:ac()-a})}if(L().getBool(\"CHECK_COMPUTATION_FOR_ERRORS\"))for(let l=0;l{CK(p,c.dtype,t)})}return{kernelName:t,outputs:o,inputs:e,timeMs:i.then(l=>l.kernelMs),extraInfo:i.then(l=>l.getExtraProfileInfo!=null?l.getExtraProfileInfo():\"\")}}logKernelProfile(t){let{kernelName:e,outputs:n,timeMs:o,inputs:s,extraInfo:i}=t;n.forEach(a=>{Promise.all([a.data(),o,i]).then(u=>{this.logger.logKernelProfile(e,a,u[0],u[1],s,u[2])})})}};function CK(r,t,e){if(t!==\"float32\")return!1;for(let n=0;n0?h:\"\"} `}}console.log(`%c${u}\t%c${a}\t%c${l}D ${p}\t%c${c}\t%c${m}\t%c${i}`,\"font-weight:bold\",\"color:red\",\"color:blue\",\"color: orange\",\"color: green\",\"color: steelblue\")}};function K_(r,t,e){let n={},o={};for(let u=0;un[h.id]=!0),f=!0,o[l.id]=!0;break}if(f)break}}let s={};s[e.id]=!0;let i={};for(let u=r.length-1;u>=0;u--){let l=r[u],c=l.inputs;for(let p=0;p=0;o--){let s=t[o],i=[];if(s.outputs.forEach(u=>{let l=r[u.id];l!=null?i.push(l):i.push(null)}),s.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${s.kernelName}.`);let a=s.gradient(i);for(let u in s.inputs){if(!(u in a))throw new Error(`Cannot backprop through input ${u}. Available gradients found: ${Object.keys(a)}.`);let l=e(()=>a[u]());if(l.dtype!==\"float32\")throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input ${u} must have 'float32' dtype, but has '${l.dtype}'`);let c=s.inputs[u];if(!sn(l.shape,c.shape))throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input '${u}' has shape '${l.shape}', which does not match the shape of the input '${c.shape}'`);if(r[c.id]==null)r[c.id]=l;else{let p=r[c.id];r[c.id]=n(p,l),p.dispose()}}}}var X_=20,nh=3,A0=7;function Y_(r,t,e,n){let o=Ei(t),s=vK(r,t,e,o),i=t.length,a=ex(r,t,e,o,s),u=[\"Tensor\"];return n&&(u.push(` dtype: ${e}`),u.push(` rank: ${i}`),u.push(` shape: [${t}]`),u.push(\" values:\")),u.push(a.map(l=>\" \"+l).join(`\n`)),u.join(`\n`)}function vK(r,t,e,n){let o=jt(t),s=n[n.length-1],i=new Array(s).fill(0),a=t.length,u=e===\"complex64\"?sh(r):r;if(a>1)for(let l=0;lX_){let g=nh*i,x=Array.from(r.slice(0,g)),b=Array.from(r.slice((a-nh)*i,a*i));return e===\"complex64\"&&(x=sh(x),b=sh(b)),[\"[\"+x.map((w,I)=>oh(w,o[I],e)).join(\", \")+\", ..., \"+b.map((w,I)=>oh(w,o[a-nh+I],e)).join(\", \")+\"]\"]}return[\"[\"+(e===\"complex64\"?sh(r):Array.from(r)).map((g,x)=>oh(g,o[x],e)).join(\", \")+\"]\"]}let l=t.slice(1),c=n.slice(1),p=n[0]*i,m=[];if(a>X_){for(let h=0;h0?m[0]+f:\"\");for(let h=1;h`Length of values '${o}' does not match the size inferred by the shape '${this.size}'.`)}if(e===\"complex64\")throw new Error(\"complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).\");this.values=n||Xg(e,this.size),this.strides=Ei(t)}set(t,...e){e.length===0&&(e=[0]),_(e.length===this.rank,()=>`The number of provided coordinates (${e.length}) must match the rank (${this.rank})`);let n=this.locToIndex(e);this.values[n]=t}get(...t){t.length===0&&(t=[0]);let e=0;for(let o of t){if(o<0||o>=this.shape[e]){let s=`Requested out of range element at ${t}. Buffer shape=${this.shape}`;throw new Error(s)}e++}let n=t[t.length-1];for(let o=0;oKp(n))}catch(n){throw new Error(\"Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().\")}}return t}dataToGPU(t){return this.throwIfDisposed(),ii().readToGPU(this.dataId,t)}dataSync(){this.throwIfDisposed();let t=ii().readSync(this.dataId);if(this.dtype===\"string\")try{return t.map(e=>Kp(e))}catch(e){throw new Error(\"Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().\")}return t}async bytes(){this.throwIfDisposed();let t=await ii().read(this.dataId);return this.dtype===\"string\"?t:new Uint8Array(t.buffer)}dispose(){this.isDisposed||(this.kerasMask&&this.kerasMask.dispose(),ii().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error(\"Tensor is disposed.\")}print(t=!1){return jp.print(this,t)}clone(){return this.throwIfDisposed(),jp.clone(this)}toString(t=!1){let e=this.dataSync();return Y_(e,this.shape,this.dtype,t)}cast(t){return this.throwIfDisposed(),jp.cast(this,t)}variable(t=!0,e,n){return this.throwIfDisposed(),ii().makeVariable(this,t,e,n)}};Object.defineProperty(Lt,Symbol.hasInstance,{value:r=>!!r&&r.data!=null&&r.dataSync!=null&&r.throwIfDisposed!=null});function O(){return Jd(\"Tensor\",()=>Lt)}O();var ml=class extends Lt{constructor(t,e,n,o){super(t.shape,t.dtype,t.dataId,o),this.trainable=e,this.name=n}assign(t){if(t.dtype!==this.dtype)throw new Error(`dtype of the new value (${t.dtype}) and previous value (${this.dtype}) must match`);if(!sn(t.shape,this.shape))throw new Error(`shape of the new value (${t.shape}) and previous value (${this.shape}) must match`);ii().disposeTensor(this),this.dataId=t.dataId,ii().incRef(this,null)}dispose(){ii().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(ml,Symbol.hasInstance,{value:r=>r instanceof Lt&&r.assign!=null&&r.assign instanceof Function});var Io={};Kt(Io,{assertTypesMatch:()=>M0,getTensorsInContainer:()=>ih,isTensorInList:()=>kK,makeTypesMatch:()=>Xt});var D0;(function(r){r.R0=\"R0\",r.R1=\"R1\",r.R2=\"R2\",r.R3=\"R3\",r.R4=\"R4\",r.R5=\"R5\",r.R6=\"R6\"})(D0||(D0={}));var $0;(function(r){r.float32=\"float32\",r.int32=\"int32\",r.bool=\"int32\",r.complex64=\"complex64\"})($0||($0={}));var R0;(function(r){r.float32=\"float32\",r.int32=\"int32\",r.bool=\"bool\",r.complex64=\"complex64\"})(R0||(R0={}));var F0;(function(r){r.float32=\"float32\",r.int32=\"float32\",r.bool=\"float32\",r.complex64=\"complex64\"})(F0||(F0={}));var O0;(function(r){r.float32=\"complex64\",r.int32=\"complex64\",r.bool=\"complex64\",r.complex64=\"complex64\"})(O0||(O0={}));var NK={float32:F0,int32:$0,bool:R0,complex64:O0};function ur(r,t){if(r===\"string\"||t===\"string\"){if(r===\"string\"&&t===\"string\")return\"string\";throw new Error(`Can not upcast ${r} with ${t}`)}return NK[r][t]}function lc(r){return ur(r,\"int32\")}function rx(r){return r!=null&&typeof r==\"object\"&&\"texture\"in r&&r.texture instanceof WebGLTexture}function nx(r){return typeof GPUBuffer!=\"undefined\"&&r!=null&&typeof r==\"object\"&&\"buffer\"in r&&r.buffer instanceof GPUBuffer}function Xt(r,t){if(r.dtype===t.dtype)return[r,t];let e=ur(r.dtype,t.dtype);return[r.cast(e),t.cast(e)]}function M0(r,t){_(r.dtype===t.dtype,()=>`The dtypes of the first(${r.dtype}) and second(${t.dtype}) input must match`)}function kK(r,t){return t.some(e=>e.id===r.id)}function ih(r){let t=[];return eE(r,t,new Set),t}function eE(r,t,e){if(r==null)return;if(r instanceof Lt){t.push(r);return}if(!TK(r))return;let n=r;for(let o in n){let s=n[o];e.has(s)||(e.add(s),eE(s,t,e))}}function TK(r){return Array.isArray(r)||typeof r==\"object\"}function P0(r){return r.kernelName!=null}var ox=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(t=>t.name)))}}}dispose(){for(let t in this.registeredVariables)this.registeredVariables[t].dispose()}},ah=class r{constructor(t){this.ENV=t,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new ox}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let t=this.getSortedBackends();for(let e=0;e{e.setupFunc!=null&&e.setupFunc(this.backendInstance)})}disposeRegisteredKernels(t){Yg(t).forEach(n=>{n.disposeFunc!=null&&n.disposeFunc(this.registry[t])})}initializeBackend(t){let e=this.registryFactory[t];if(e==null)throw new Error(`Cannot initialize backend ${t}, no registration found.`);try{let n=e.factory();if(n&&!(n instanceof Bo)&&typeof n.then==\"function\"){let o=++this.pendingBackendInitId,s=n.then(i=>o(othis.registryFactory[e].priority-this.registryFactory[t].priority)}initializeBackendsAndReturnBest(){let t=this.getSortedBackends();for(let e=0;ethis.startScope(n),()=>this.endScope(o),()=>(o=e(),o instanceof Promise&&console.error(\"Cannot return a Promise inside of tidy.\"),o))}scopedRun(t,e,n){t();try{let o=n();return e(),o}catch(o){throw e(),o}}nextTensorId(){return r.nextTensorId++}nextVariableId(){return r.nextVariableId++}clone(t){let e=T.runKernel(go,{x:t}),n={x:t},o=i=>({x:()=>{let a=\"float32\",u={x:i},l={dtype:a};return T.runKernel(fo,u,l)}}),s=[];return this.addTapeNode(this.state.activeScope.name,n,[e],o,s,{}),e}runKernel(t,e,n){if(this.backendName==null&&this.backend,!(Wp(t,this.backendName)!=null))throw new Error(`Kernel '${t}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:t,inputs:e,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool(\"IS_TEST\")}checkKernelForMemLeak(t,e,n){let o=this.backend.numDataIds(),s=0;n.forEach(u=>{s+=u.dtype===\"complex64\"?3:1});let i=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],a=o-e-s-i;if(a>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${a} data ids) after running '${t}'`)}runKernelFunc(t){let e,n=[],o=this.isTapeOn(),s=this.state.numBytes,i=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let a;this.backendName==null&&this.backend;let u,l=P0(t)?t.kernelName:this.state.activeScope!=null?this.state.activeScope.name:\"\";if(P0(t)){let{kernelName:d,inputs:h,attrs:g}=t;this.backendName==null&&this.backend;let x=Wp(d,this.backendName);_(x!=null,()=>`Cannot find registered kernel '${d}' for backend '${this.backendName}'`),a=()=>{let b=this.backend.numDataIds();u=x.kernelFunc({inputs:h,attrs:g,backend:this.backend});let w=Array.isArray(u)?u:[u];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(d,b,w);let I=w.map(N=>N.rank!=null?N:this.makeTensorFromTensorInfo(N));if(o){let N=this.getTensorsForGradient(d,h,I);n=this.saveTensorsForBackwardMode(N)}return I}}else{let{forwardFunc:d}=t,h=g=>{o&&(n=g.map(x=>this.keep(this.clone(x))))};a=()=>{let g=this.backend.numDataIds();u=this.tidy(()=>d(this.backend,h));let x=Array.isArray(u)?u:[u];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,g,x),x}}let{inputs:c,attrs:p}=t,m=P0(t)?null:t.backwardsFunc,f;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool(\"DEBUG\")&&!this.state.profiling?e=a():(f=this.profiler.profileKernel(l,c,()=>a()),this.ENV.getBool(\"DEBUG\")&&this.profiler.logKernelProfile(f),e=f.outputs)}),o&&this.addTapeNode(l,c,e,m,n,p),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-s,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-i,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(c).map(d=>c[d]!=null?c[d].shape:null),outputShapes:e.map(d=>d.shape),kernelTimeMs:f.timeMs,extraInfo:f.extraInfo}),Array.isArray(u)?e:e[0]}saveTensorsForBackwardMode(t){return t.map(n=>this.keep(this.clone(n)))}getTensorsForGradient(t,e,n){let o=v0(t);if(o!=null){let s=o.inputsToSave||[],i=o.outputsToSave||[],a;o.saveAllInputs?(_(Array.isArray(e),()=>\"saveAllInputs is true, expected inputs to be an array.\"),a=Object.keys(e).map(l=>e[l])):a=s.map(l=>e[l]);let u=n.filter((l,c)=>i[c]);return a.concat(u)}return[]}makeTensor(t,e,n,o){if(t==null)throw new Error(\"Values passed to engine.makeTensor() are null\");n=n||\"float32\",o=o||this.backend;let s=t;n===\"string\"&&Vo(t[0])&&(s=t.map(u=>fu(u)));let i=o.write(s,e,n),a=new Lt(e,n,i,this.nextTensorId());if(this.trackTensor(a,o),n===\"string\"){let u=this.state.tensorInfo.get(i),l=b0(s);this.state.numBytes+=l-u.bytes,u.bytes=l}return a}makeTensorFromDataId(t,e,n,o){n=n||\"float32\";let s={dataId:t,shape:e,dtype:n};return this.makeTensorFromTensorInfo(s,o)}makeTensorFromTensorInfo(t,e){let{dataId:n,shape:o,dtype:s}=t,i=new Lt(o,s,n,this.nextTensorId());return this.trackTensor(i,e),i}makeVariable(t,e=!0,n,o){n=n||this.nextVariableId().toString(),o!=null&&o!==t.dtype&&(t=t.cast(o));let s=new ml(t,e,n,this.nextTensorId());if(this.state.registeredVariables[s.name]!=null)throw new Error(`Variable with name ${s.name} was already registered`);return this.state.registeredVariables[s.name]=s,this.incRef(s,this.backend),s}trackTensor(t,e){this.state.numTensors++,t.dtype===\"string\"&&this.state.numStringTensors++;let n=0;t.dtype!==\"complex64\"&&t.dtype!==\"string\"&&(n=t.size*Tp(t.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(t.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(t.dataId,{backend:e||this.backend,dtype:t.dtype,shape:t.shape,bytes:n})),t instanceof ml||this.track(t)}incRef(t,e){this.trackTensor(t,e),this.backend.incRef(t.dataId)}removeDataId(t,e){this.state.tensorInfo.has(t)&&this.state.tensorInfo.get(t).backend===e&&(this.state.tensorInfo.delete(t),this.state.numDataBuffers--)}disposeTensor(t){if(!this.state.tensorInfo.has(t.dataId))return;let e=this.state.tensorInfo.get(t.dataId);if(this.state.numTensors--,t.dtype===\"string\"&&(this.state.numStringTensors--,this.state.numBytes-=e.bytes),t.dtype!==\"complex64\"&&t.dtype!==\"string\"){let n=t.size*Tp(t.dtype);this.state.numBytes-=n}e.backend.disposeData(t.dataId)&&this.removeDataId(t.dataId,e.backend)}disposeVariables(){for(let t in this.state.registeredVariables){let e=this.state.registeredVariables[t];this.disposeVariable(e)}}disposeVariable(t){this.disposeTensor(t),this.state.registeredVariables[t.name]!=null&&delete this.state.registeredVariables[t.name]}memory(){let t=this.backend.memory();return t.numTensors=this.state.numTensors,t.numDataBuffers=this.state.numDataBuffers,t.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(t.unreliable=!0,t.reasons==null&&(t.reasons=[]),t.reasons.push(\"Memory usage by string tensors is approximate (2 bytes per character)\")),t}async profile(t){this.state.profiling=!0;let e=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await t(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(o=>o.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-e,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let o of this.state.activeProfile.kernels)o.kernelTimeMs=await o.kernelTimeMs,o.extraInfo=await o.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(t,e,n,o,s,i){let a={id:this.state.nextTapeNodeId++,kernelName:t,inputs:e,outputs:n,saved:s},u=v0(t);u!=null&&(o=u.gradFunc),o!=null&&(a.gradient=l=>(l=l.map((c,p)=>{if(c==null){let m=n[p],f=Ep(m.size,m.dtype);return this.makeTensor(f,m.shape,m.dtype)}return c}),o(l.length>1?l:l[0],s,i))),this.state.activeTape.push(a)}keep(t){return t.kept=!0,t}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(t){let e={track:[],name:\"unnamed scope\",id:this.state.nextScopeId++};t&&(e.name=t),this.state.scopeStack.push(e),this.state.activeScope=e}endScope(t){let e=ih(t),n=new Set(e.map(s=>s.id));for(let s=0;s{!s.kept&&s.scopeId===o.id&&this.track(s)})}gradients(t,e,n,o=!1){if(_(e.length>0,()=>\"gradients() received an empty list of xs.\"),n!=null&&n.dtype!==\"float32\")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let s=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy(\"forward\",t));_(s instanceof Lt,()=>\"The result y returned by f() must be a tensor.\");let i=K_(this.state.activeTape,e,s);if(!o&&i.length===0&&e.length>0)throw new Error(\"Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.\");return this.tidy(\"backward\",()=>{let a={};a[s.id]=n==null?_K(s.shape):n,j_(a,i,l=>this.tidy(l),EK);let u=e.map(l=>a[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let c of l.saved)c.dispose()}),this.state.activeTape=null),{value:s,grads:u}})}customGrad(t){return _(_i(t),()=>\"The f passed in customGrad(f) must be a function.\"),(...e)=>{_(e.every(a=>a instanceof Lt),()=>\"The args passed in customGrad(f)(x1, x2,...) must all be tensors\");let n,o={};e.forEach((a,u)=>{o[u]=a});let s=(a,u)=>(n=t(...e,u),_(n.value instanceof Lt,()=>\"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor\"),_(_i(n.gradFunc),()=>\"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function.\"),n.value),i=(a,u)=>{let l=n.gradFunc(a,u),c=Array.isArray(l)?l:[l];_(c.length===e.length,()=>\"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...).\"),_(c.every(m=>m instanceof Lt),()=>\"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.\");let p={};return c.forEach((m,f)=>{p[f]=()=>m}),p};return this.runKernelFunc({forwardFunc:s,backwardsFunc:i,inputs:o})}}readSync(t){return this.state.tensorInfo.get(t).backend.readSync(t)}read(t){return this.state.tensorInfo.get(t).backend.read(t)}readToGPU(t,e){return this.state.tensorInfo.get(t).backend.readToGPU(t,e)}async time(t){let e=ac(),n=await this.backend.time(t);return n.wallMs=ac()-e,n}track(t){return this.state.activeScope!=null&&(t.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(t)),t}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new ox;for(let t in this.registry)this.disposeRegisteredKernels(t),this.registry[t].dispose(),delete this.registry[t];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};ah.nextTensorId=0;ah.nextVariableId=0;function _K(r){let t=Yd(jt(r),\"float32\");return T.makeTensor(t,r,\"float32\")}function L0(){let r=C0();if(r._tfengine==null){let t=new Zd(r);r._tfengine=new ah(t)}return T_(r._tfengine.ENV),J_(()=>r._tfengine),r._tfengine}var T=L0();function EK(r,t){let e={a:r,b:t};return T.runKernel(no,e)}var du={};Kt(du,{isBrowser:()=>B0,isMobile:()=>$K,mockIsMobile:()=>DK});function AK(){return typeof navigator!=\"undefined\"&&navigator!=null}var z0;function DK(r){z0=r}function $K(r){if(z0!==void 0)return z0;if(r||AK()){if(r||(r=navigator),r.product===\"ReactNative\")return!0;let t=r.userAgent||r.vendor||(typeof window!=\"undefined\"?window.opera:\"\");if(!t){let e=r;return e.userAgentData&&e.userAgentData.mobile}return/(android|bb\\d+|meego).+mobile|avantgo|bada\\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\\-(n|u)|c55\\/|capi|ccwa|cdm\\-|cell|chtm|cldc|cmd\\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\\-s|devi|dica|dmob|do(c|p)o|ds(12|\\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\\-|_)|g1 u|g560|gene|gf\\-5|g\\-mo|go(\\.w|od)|gr(ad|un)|haie|hcit|hd\\-(m|p|t)|hei\\-|hi(pt|ta)|hp( i|ip)|hs\\-c|ht(c(\\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\\-(20|go|ma)|i230|iac( |\\-|\\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\\/)|klon|kpt |kwc\\-|kyo(c|k)|le(no|xi)|lg( g|\\/(k|l|u)|50|54|\\-[a-w])|libw|lynx|m1\\-w|m3ga|m50\\/|ma(te|ui|xo)|mc(01|21|ca)|m\\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\\-2|po(ck|rt|se)|prox|psio|pt\\-g|qa\\-a|qc(07|12|21|32|60|\\-[2-7]|i\\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\\-|oo|p\\-)|sdk\\/|se(c(\\-|0|1)|47|mc|nd|ri)|sgh\\-|shar|sie(\\-|m)|sk\\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\\-|v\\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\\-|tdg\\-|tel(i|m)|tim\\-|t\\-mo|to(pl|sh)|ts(70|m\\-|m3|m5)|tx\\-9|up(\\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\\-|your|zeto|zte\\-/i.test(t.substr(0,4))}return!1}function B0(){return typeof window!=\"undefined\"&&window.document!=null||typeof WorkerGlobalScope!=\"undefined\"}var vn=L();vn.registerFlag(\"DEBUG\",()=>!1,r=>{r&&console.warn(\"Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.\")});vn.registerFlag(\"IS_BROWSER\",()=>B0());vn.registerFlag(\"IS_NODE\",()=>typeof process!=\"undefined\"&&typeof process.versions!=\"undefined\"&&typeof process.versions.node!=\"undefined\");vn.registerFlag(\"IS_CHROME\",()=>typeof navigator!=\"undefined\"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));vn.registerFlag(\"IS_SAFARI\",()=>typeof navigator!=\"undefined\"&&navigator!=null&&navigator.userAgent!=null&&/Safari/.test(navigator.userAgent)&&/Apple/.test(navigator.vendor));vn.registerFlag(\"PROD\",()=>!1);vn.registerFlag(\"TENSORLIKE_CHECK_SHAPE_CONSISTENCY\",()=>vn.getBool(\"DEBUG\"));vn.registerFlag(\"DEPRECATION_WARNINGS_ENABLED\",()=>!0);vn.registerFlag(\"IS_TEST\",()=>!1);vn.registerFlag(\"CHECK_COMPUTATION_FOR_ERRORS\",()=>vn.getBool(\"DEBUG\"));vn.registerFlag(\"WRAP_TO_IMAGEBITMAP\",()=>!1);vn.registerFlag(\"CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU\",()=>!1);vn.registerFlag(\"USE_SETTIMEOUTCUSTOM\",()=>!1);function Wr(r,t){let e=r;if(sr(r))return t===\"string\"?[]:[r.length];if(rx(r)){let o=r.channels||\"RGBA\";return[r.height,r.width*o.length]}else if(nx(r))return[r.buffer.size/(t==null?4:Tp(t))];if(!Array.isArray(r))return[];let n=[];for(;Array.isArray(e)||sr(e)&&t!==\"string\";)n.push(e.length),e=e[0];return Array.isArray(r)&&L().getBool(\"TENSORLIKE_CHECK_SHAPE_CONSISTENCY\")&&nE(r,n,[]),n}function nE(r,t,e){if(e=e||[],!Array.isArray(r)&&!sr(r)){_(t.length===0,()=>`Element arr[${e.join(\"][\")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}_(t.length>0,()=>`Element arr[${e.join(\"][\")}] should be a primitive, but is an array of ${r.length} elements`),_(r.length===t[0],()=>`Element arr[${e.join(\"][\")}] should have ${t[0]} elements, but has ${r.length} elements`);let n=t.slice(1);for(let o=0;o=0&&(o=n),rE(n,o,t,e),r==null||!sr(r)&&!Array.isArray(r)&&typeof r!=\"number\"&&typeof r!=\"boolean\"&&typeof r!=\"string\"){let u=r==null?\"null\":r.constructor.name;throw new Error(`Argument '${t}' passed to '${e}' must be a Tensor or TensorLike, but got '${u}'`)}let s=Wr(r,o);!sr(r)&&!Array.isArray(r)&&(r=[r]);let a=o!==\"string\"?qp(r,o):si(r,[],!0);return T.makeTensor(a,s,o)}function fl(r,t,e,n=\"numeric\"){if(!Array.isArray(r))throw new Error(`Argument ${t} passed to ${e} must be a \\`Tensor[]\\` or \\`TensorLike[]\\``);return r.map((s,i)=>C(s,`${t}[${i}]`,e,n))}var V0=\"__op\";function k(r){let t=Object.keys(r);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let e=t[0],n=r[e];e.endsWith(\"_\")&&(e=e.substring(0,e.length-1)),e=e+V0;let o=(...s)=>{T.startScope(e);try{let i=n(...s);return tc(i)&&console.error(\"Cannot return a Promise inside of tidy.\"),T.endScope(i),i}catch(i){throw T.endScope(null),i}};return Object.defineProperty(o,\"name\",{value:e,configurable:!0}),o}function RK(r,t){let e=C(r,\"real\",\"complex\"),n=C(t,\"imag\",\"complex\");$e(e.shape,n.shape,`real and imag shapes, ${e.shape} and ${n.shape}, must match in call to tf.complex().`);let o={real:e,imag:n};return T.runKernel(Ap,o)}var Sn=k({complex_:RK});function ln(r,t,e,n){if(n==null)n=Wl(r);else if(n===\"complex64\")throw new Error(\"Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).\");if(nx(r)||rx(r)){if(n!==\"float32\"&&n!==\"int32\")throw new Error(`Creating tensor from GPU data only supports 'float32'|'int32' dtype, while the dtype is ${n}.`);return T.backend.createTensorFromGPUData(r,t||e,n)}if(!sr(r)&&!Array.isArray(r)&&typeof r!=\"number\"&&typeof r!=\"boolean\"&&typeof r!=\"string\")throw new Error(\"values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray\");if(t!=null){Le(t);let o=jt(t),s=jt(e);_(o===s,()=>`Based on the provided shape, [${t}], the tensor should have ${o} values but has ${s}`);for(let i=0;i`Error creating a new Tensor. Inferred shape (${e}) does not match the provided shape (${t}). `)}}return!sr(r)&&!Array.isArray(r)&&(r=[r]),t=t||e,r=n!==\"string\"?qp(r,n):si(r,[],!0),T.makeTensor(r,t,n)}function ir(r,t,e){let n=Wr(r,e);return ln(r,t,n,e)}var dl={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8};var Ur=class r{static join(t){return new r(t).slice()}constructor(t){if(this.shards=[],this.previousShardIndex=0,t==null||(t instanceof Array||(t=[t]),t=t.map(n=>sr(n)?n.buffer:n),t.length===0))return;this.bufferUniformSize=t[0].byteLength;let e=0;for(let n=0;n=this.byteLength)return-1;if(this.bufferUniformSize!=null)return this.previousShardIndex=Math.floor(t/this.bufferUniformSize),this.previousShardIndex;function e(o){return t=o.end?1:0}if(e(this.shards[this.previousShardIndex])===0)return this.previousShardIndex;let n=FK(this.shards,e);return n===-1?-1:(this.previousShardIndex=n,this.previousShardIndex)}};function FK(r,t){let e=0,n=r.length;for(;e<=n;){let o=Math.floor((n-e)/2)+e,s=t(r[o]);if(s===0)return o;s<0?n=o:e=o+1}return-1}function Cdt(){L().set(\"PROD\",!0)}function vdt(){L().set(\"DEBUG\",!0)}function Sdt(){L().set(\"DEPRECATION_WARNINGS_ENABLED\",!1),console.warn(\"TensorFlow.js deprecation warnings have been disabled.\")}function G0(r){L().getBool(\"DEPRECATION_WARNINGS_ENABLED\")&&console.warn(r+\" You can disable deprecation warnings with tf.disableDeprecationWarnings().\")}tE(G0);function Ndt(){T.disposeVariables()}function Bn(){return T}function lh(){return T.memory()}function kdt(r){return T.profile(r)}function B(r,t){return T.tidy(r,t)}function Tt(r){ih(r).forEach(e=>e.dispose())}function De(r){return T.keep(r)}function Tdt(r){return T.time(r)}function OK(r){return T.setBackend(r)}function _dt(){return T.ready()}function oE(){return T.backendName}function Edt(r){T.removeBackend(r)}function Adt(r){return T.findBackend(r)}function Ddt(r){return T.findBackendFactory(r)}function Xp(r,t,e=1){return T.registerBackend(r,t,e)}function sx(){return T.backend}function $dt(r,t){L().setPlatform(r,t)}var hu=4;async function aE(r,t){let e=[],n=[],o=Array.isArray(r)?r.map(i=>i.name):Object.keys(r);for(let i=0;i{let m=await u.bytes(),f=m.reduce((g,x)=>g+x.length,0)+hu*m.length,d=new Uint8Array(f),h=0;for(let g=0;ge.slice(o+a,o+u));n[s.name]=lE(s,e.slice(o,o+i)),o+=i}return n}function MK(r,t){let e=jt(r.shape),n;if(\"quantization\"in r){let o=r.quantization;n=dl[o.dtype]}else if(r.dtype===\"string\"){let o=0;for(let s=0;s(o=await sE(n,o,c),o.slice(l,c)));o=await sE(n,o,i);let a=o.slice(0,i);o=o.slice(i);let u=lE(s,a);if(e[s.name]=u,oE()===\"webgpu\"){let l=sx();\"uploadToGPU\"in l&&jt(u.shape)>=L().get(\"WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD\")&&l.uploadToGPU(u.dataId)}}return e}function LK(r){if(r===null)throw new Error(`Invalid input value: ${JSON.stringify(r)}`);let t=0,e=[];r.forEach(s=>{if(t+=s.byteLength,e.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let n=new Uint8Array(t),o=0;return e.forEach(s=>{n.set(new Uint8Array(s.buffer),o),o+=s.byteLength}),n.buffer}var W0=typeof Buffer!=\"undefined\"&&(typeof Blob==\"undefined\"||typeof atob==\"undefined\"||typeof btoa==\"undefined\");function iE(r){return W0?Buffer.byteLength(r,\"utf8\"):new Blob([r]).size}function uE(r){if(W0)return Buffer.from(r).toString(\"base64\");let t=new Uint8Array(r),e=\"\";for(let n=0,o=t.length;n{let n=e<<13,o=0;for(;!(n&8388608);)o-=8388608,n<<=1;return n&=-8388609,o+=947912704,n|o},t=new Uint32Array(2048);t[0]=0;for(let e=1;e<1024;e++)t[e]=r(e);for(let e=1024;e<2048;e++)t[e]=939524096+(e-1024<<13);return t}function BK(){let r=new Uint32Array(64);r[0]=0,r[31]=1199570944,r[32]=2147483648,r[63]=3347054592;for(let t=1;t<31;t++)r[t]=t<<23;for(let t=33;t<63;t++)r[t]=2147483648+(t-32<<23);return r}function VK(){let r=new Uint32Array(64);for(let t=0;t<64;t++)r[t]=1024;return r[0]=r[32]=0,r}function GK(){let r=zK(),t=BK(),e=VK();return n=>{let o=new ArrayBuffer(4*n.length),s=new Uint32Array(o);for(let i=0;i>10]+(a&1023)]+t[a>>10];s[i]=u}return new Float32Array(o)}}var Cr=class r{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return r.instance==null&&(r.instance=new r),r.instance}static registerSaveRouter(t){r.getInstance().saveRouters.push(t)}static registerLoadRouter(t){r.getInstance().loadRouters.push(t)}static getSaveHandlers(t){return r.getHandlers(t,\"save\")}static getLoadHandlers(t,e){return r.getHandlers(t,\"load\",e)}static getHandlers(t,e,n){let o=[];return(e===\"load\"?r.getInstance().loadRouters:r.getInstance().saveRouters).forEach(i=>{let a=i(t,n);a!==null&&o.push(a)}),o}},mE=r=>Cr.registerSaveRouter(r),fE=r=>Cr.registerLoadRouter(r),dE=r=>Cr.getSaveHandlers(r),hE=(r,t)=>Cr.getLoadHandlers(r,t);var q0=\"tensorflowjs\",K0=1,uc=\"models_store\",gu=\"model_info_store\";function gE(){if(!L().getBool(\"IS_BROWSER\"))throw new Error(\"Failed to obtain IndexedDB factory because the current environmentis not a web browser.\");let r=typeof window==\"undefined\"?self:window,t=r.indexedDB||r.mozIndexedDB||r.webkitIndexedDB||r.msIndexedDB||r.shimIndexedDB;if(t==null)throw new Error(\"The current browser does not appear to support IndexedDB.\");return t}function j0(r){let t=r.result;t.createObjectStore(uc,{keyPath:\"modelPath\"}),t.createObjectStore(gu,{keyPath:\"modelPath\"})}var ta=class{constructor(t){if(this.indexedDB=gE(),t==null||!t)throw new Error(\"For IndexedDB, modelPath must not be null, undefined or empty.\");this.modelPath=t}async save(t){if(t.modelTopology instanceof ArrayBuffer)throw new Error(\"BrowserLocalStorage.save() does not support saving model topology in binary formats yet.\");return this.databaseAction(this.modelPath,t)}async load(){return this.databaseAction(this.modelPath)}databaseAction(t,e){return new Promise((n,o)=>{let s=this.indexedDB.open(q0,K0);s.onupgradeneeded=()=>j0(s),s.onsuccess=()=>{let i=s.result;if(e==null){let a=i.transaction(uc,\"readonly\"),l=a.objectStore(uc).get(this.modelPath);l.onsuccess=()=>{if(l.result==null)return i.close(),o(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(l.result.modelArtifacts)},l.onerror=c=>(i.close(),o(l.error)),a.oncomplete=()=>i.close()}else{e.weightData=Ur.join(e.weightData);let a=Qi(e),u=i.transaction(gu,\"readwrite\"),l=u.objectStore(gu),c;try{c=l.put({modelPath:this.modelPath,modelArtifactsInfo:a})}catch(m){return o(m)}let p;c.onsuccess=()=>{p=i.transaction(uc,\"readwrite\");let m=p.objectStore(uc),f;try{f=m.put({modelPath:this.modelPath,modelArtifacts:e,modelArtifactsInfo:a})}catch(d){return o(d)}f.onsuccess=()=>n({modelArtifactsInfo:a}),f.onerror=d=>{l=u.objectStore(gu);let h=l.delete(this.modelPath);h.onsuccess=()=>(i.close(),o(f.error)),h.onerror=g=>(i.close(),o(f.error))}},c.onerror=m=>(i.close(),o(c.error)),u.oncomplete=()=>{p==null?i.close():p.oncomplete=()=>i.close()}}},s.onerror=i=>o(s.error)})}};ta.URL_SCHEME=\"indexeddb://\";var xE=r=>L().getBool(\"IS_BROWSER\")&&!Array.isArray(r)&&r.startsWith(ta.URL_SCHEME)?WK(r.slice(ta.URL_SCHEME.length)):null;Cr.registerSaveRouter(xE);Cr.registerLoadRouter(xE);function WK(r){return new ta(r)}function UK(r){return r.startsWith(ta.URL_SCHEME)?r.slice(ta.URL_SCHEME.length):r}var ux=class{constructor(){this.indexedDB=gE()}async listModels(){return new Promise((t,e)=>{let n=this.indexedDB.open(q0,K0);n.onupgradeneeded=()=>j0(n),n.onsuccess=()=>{let o=n.result,s=o.transaction(gu,\"readonly\"),a=s.objectStore(gu).getAll();a.onsuccess=()=>{let u={};for(let l of a.result)u[l.modelPath]=l.modelArtifactsInfo;t(u)},a.onerror=u=>(o.close(),e(a.error)),s.oncomplete=()=>o.close()},n.onerror=o=>e(n.error)})}async removeModel(t){return t=UK(t),new Promise((e,n)=>{let o=this.indexedDB.open(q0,K0);o.onupgradeneeded=()=>j0(o),o.onsuccess=()=>{let s=o.result,i=s.transaction(gu,\"readwrite\"),a=i.objectStore(gu),u=a.get(t),l;u.onsuccess=()=>{if(u.result==null)return s.close(),n(new Error(`Cannot find model with path '${t}' in IndexedDB.`));{let c=a.delete(t),p=()=>{l=s.transaction(uc,\"readwrite\");let f=l.objectStore(uc).delete(t);f.onsuccess=()=>e(u.result.modelArtifactsInfo),f.onerror=d=>n(u.error)};c.onsuccess=p,c.onerror=m=>(p(),s.close(),n(u.error))}},u.onerror=c=>(s.close(),n(u.error)),i.oncomplete=()=>{l==null?s.close():l.oncomplete=()=>s.close()}},o.onerror=s=>n(o.error)})}};var hl=\"/\",Zp=\"tensorflowjs_models\",yE=\"info\",HK=\"model_topology\",qK=\"weight_specs\",KK=\"weight_data\",jK=\"model_metadata\";function bE(r){return{info:[Zp,r,yE].join(hl),topology:[Zp,r,HK].join(hl),weightSpecs:[Zp,r,qK].join(hl),weightData:[Zp,r,KK].join(hl),modelMetadata:[Zp,r,jK].join(hl)}}function wE(r){for(let t of Object.values(r))window.localStorage.removeItem(t)}function XK(r){let t=r.split(hl);if(t.length<3)throw new Error(`Invalid key format: ${r}`);return t.slice(1,t.length-1).join(hl)}function YK(r){return r.startsWith(ea.URL_SCHEME)?r.slice(ea.URL_SCHEME.length):r}var ea=class{constructor(t){if(!L().getBool(\"IS_BROWSER\")||typeof window==\"undefined\"||typeof window.localStorage==\"undefined\")throw new Error(\"The current environment does not support local storage.\");if(this.LS=window.localStorage,t==null||!t)throw new Error(\"For local storage, modelPath must not be null, undefined or empty.\");this.modelPath=t,this.keys=bE(this.modelPath)}async save(t){if(t.modelTopology instanceof ArrayBuffer)throw new Error(\"BrowserLocalStorage.save() does not support saving model topology in binary formats yet.\");{let e=JSON.stringify(t.modelTopology),n=JSON.stringify(t.weightSpecs),o=Qi(t),s=Ur.join(t.weightData);try{this.LS.setItem(this.keys.info,JSON.stringify(o)),this.LS.setItem(this.keys.topology,e),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,uE(s));let i={format:t.format,generatedBy:t.generatedBy,convertedBy:t.convertedBy,signature:t.signature!=null?t.signature:void 0,userDefinedMetadata:t.userDefinedMetadata!=null?t.userDefinedMetadata:void 0,modelInitializer:t.modelInitializer!=null?t.modelInitializer:void 0,initializerSignature:t.initializerSignature!=null?t.initializerSignature:void 0,trainingConfig:t.trainingConfig!=null?t.trainingConfig:void 0};return this.LS.setItem(this.keys.modelMetadata,JSON.stringify(i)),{modelArtifactsInfo:o}}catch(i){throw wE(this.keys),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${o.modelTopologyBytes}, weightSpecsBytes=${o.weightSpecsBytes}, weightDataBytes=${o.weightDataBytes}.`)}}}async load(){let t=JSON.parse(this.LS.getItem(this.keys.info));if(t==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(t.modelTopologyType!==\"JSON\")throw new Error(\"BrowserLocalStorage does not support loading non-JSON model topology yet.\");let e={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);e.modelTopology=n;let o=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(o==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);e.weightSpecs=o;let s=this.LS.getItem(this.keys.modelMetadata);if(s!=null){let a=JSON.parse(s);e.format=a.format,e.generatedBy=a.generatedBy,e.convertedBy=a.convertedBy,a.signature!=null&&(e.signature=a.signature),a.userDefinedMetadata!=null&&(e.userDefinedMetadata=a.userDefinedMetadata),a.modelInitializer!=null&&(e.modelInitializer=a.modelInitializer),a.initializerSignature!=null&&(e.initializerSignature=a.initializerSignature),a.trainingConfig!=null&&(e.trainingConfig=a.trainingConfig)}let i=this.LS.getItem(this.keys.weightData);if(i==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return e.weightData=cE(i),e}};ea.URL_SCHEME=\"localstorage://\";var IE=r=>L().getBool(\"IS_BROWSER\")&&!Array.isArray(r)&&r.startsWith(ea.URL_SCHEME)?ZK(r.slice(ea.URL_SCHEME.length)):null;Cr.registerSaveRouter(IE);Cr.registerLoadRouter(IE);function ZK(r){return new ea(r)}var cx=class{constructor(){_(L().getBool(\"IS_BROWSER\"),()=>\"Current environment is not a web browser\"),_(typeof window==\"undefined\"||typeof window.localStorage!=\"undefined\",()=>\"Current browser does not appear to support localStorage\"),this.LS=window.localStorage}async listModels(){let t={},e=Zp+hl,n=hl+yE;for(let o=0;o\"scheme must not be undefined or null.\"),t.endsWith(Jp)&&(t=t.slice(0,t.indexOf(Jp))),_(t.length>0,()=>\"scheme must not be an empty string.\");let n=r.getInstance();_(n.managers[t]==null,()=>`A model store manager is already registered for scheme '${t}'.`),n.managers[t]=e}static getManager(t){let e=r.getInstance().managers[t];if(e==null)throw new Error(`Cannot find model manager for scheme '${t}'`);return e}static getSchemes(){return Object.keys(r.getInstance().managers)}};function px(r){if(r.indexOf(Jp)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${ai.getSchemes().join(\",\")}`);return{scheme:r.split(Jp)[0],path:r.split(Jp)[1]}}async function CE(r,t,e=!1){_(r!==t,()=>`Old path and new path are the same: '${r}'`);let n=Cr.getLoadHandlers(r);_(n.length>0,()=>`Copying failed because no load handler is found for source URL ${r}.`),_(n.length<2,()=>`Copying failed because more than one (${n.length}) load handlers for source URL ${r}.`);let o=n[0],s=Cr.getSaveHandlers(t);_(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),_(s.length<2,()=>`Copying failed because more than one (${n.length}) save handlers for destination URL ${t}.`);let i=s[0],a=px(r).scheme,u=px(r).path,l=a===px(r).scheme,c=await o.load();e&&l&&await ai.getManager(a).removeModel(u);let p=await i.save(c);return e&&!l&&await ai.getManager(a).removeModel(u),p.modelArtifactsInfo}async function vE(){let r=ai.getSchemes(),t={};for(let e of r){let n=await ai.getManager(e).listModels();for(let o in n){let s=e+Jp+o;t[s]=n[o]}}return t}async function SE(r){let t=px(r);return ai.getManager(t.scheme).removeModel(t.path)}async function NE(r,t){return CE(r,t,!1)}async function kE(r,t){return CE(r,t,!0)}var X0=class{constructor(){this.messageName=\"setTimeoutCustom\",this.functionRefs=[],this.handledMessageCount=0,this.hasEventListener=!1}fetch(t,e){return fetch(t,e)}now(){return performance.now()}encode(t,e){if(e!==\"utf-8\"&&e!==\"utf8\")throw new Error(`Browser's encoder only supports utf-8, but got ${e}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(t)}decode(t,e){return new TextDecoder(e).decode(t)}setTimeoutCustom(t,e){if(typeof window==\"undefined\"||!L().getBool(\"USE_SETTIMEOUTCUSTOM\")){setTimeout(t,e);return}this.functionRefs.push(t),setTimeout(()=>{window.postMessage({name:this.messageName,index:this.functionRefs.length-1},\"*\")},e),this.hasEventListener||(this.hasEventListener=!0,window.addEventListener(\"message\",n=>{if(n.source===window&&n.data.name===this.messageName){n.stopPropagation();let o=this.functionRefs[n.data.index];o(),this.handledMessageCount++,this.handledMessageCount===this.functionRefs.length&&(this.functionRefs=[],this.handledMessageCount=0)}},!0))}isTypedArray(t){return Zg(t)}};if(L().get(\"IS_BROWSER\")){L().setPlatform(\"browser\",new X0);try{ai.registerManager(ea.URL_SCHEME,new cx)}catch(r){}try{ai.registerManager(ta.URL_SCHEME,new ux)}catch(r){}}var JK={importFetch:()=>TE()},Y0;var Z0=class{constructor(){this.util=_E(),this.textEncoder=new this.util.TextEncoder}fetch(t,e){return L().global.fetch!=null?L().global.fetch(t,e):(Y0==null&&(Y0=JK.importFetch()),Y0(t,e))}now(){let t=process.hrtime();return t[0]*1e3+t[1]/1e6}encode(t,e){if(e!==\"utf-8\"&&e!==\"utf8\")throw new Error(`Node built-in encoder only supports utf-8, but got ${e}`);return this.textEncoder.encode(t)}decode(t,e){return t.length===0?\"\":new this.util.TextDecoder(e).decode(t)}isTypedArray(t){return this.util.types.isFloat32Array(t)||this.util.types.isInt32Array(t)||this.util.types.isUint8Array(t)||this.util.types.isUint8ClampedArray(t)}};L().get(\"IS_NODE\")&&!L().get(\"IS_BROWSER\")&&L().setPlatform(\"node\",new Z0);function wt(r,t=\"float32\",e){return t=t||\"float32\",Le(r),new le(r,t,e)}function QK(r,t){let e=C(r,\"x\",\"cast\");if(!y0(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t===\"string\"&&e.dtype!==\"string\"||t!==\"string\"&&e.dtype===\"string\")throw new Error(\"Only strings can be casted to strings\");let n={x:e},o={dtype:t};return T.runKernel(fo,n,o)}var J=k({cast_:QK});function tj(r){let e={x:C(r,\"x\",\"clone\",\"string_or_numeric\")};return T.runKernel(go,e)}var un=k({clone_:tj});function mx(r,t=!1){console.log(r.toString(t))}L0();var ej={buffer:wt,cast:J,clone:un,print:mx};Q_(ej);function rj(r,t){let e=C(r,\"a\",\"add\"),n=C(t,\"b\",\"add\");[e,n]=Xt(e,n);let o={a:e,b:n};return T.runKernel(no,o)}var K=k({add_:rj});function nj(r,t){let e=C(r,\"a\",\"floorDiv\"),n=C(t,\"b\",\"floorDiv\");[e,n]=Xt(e,n);let o={a:e,b:n};return T.runKernel(fs,o)}var Qp=k({floorDiv_:nj});function oj(r,t){let e=C(r,\"a\",\"div\"),n=C(t,\"b\",\"div\");if([e,n]=Xt(e,n),e.dtype===\"int32\"&&n.dtype===\"int32\")return Qp(e,n);let o={a:e,b:n},s={};return T.runKernel(as,o,s)}var ut=k({div_:oj});function sj(r,t){let e=C(r,\"a\",\"mul\"),n=C(t,\"b\",\"mul\");[e,n]=Xt(e,n);let o={a:e,b:n};return T.runKernel(Ds,o)}var $=k({mul_:sj});function ij(r){let t=C(r,\"x\",\"abs\");if(t.dtype===\"complex64\"){let e={x:t};return T.runKernel(Kl,e)}else{let e={x:t};return T.runKernel(Ai,e)}}var _e=k({abs_:ij});function aj(r){let e={x:C(r,\"x\",\"acos\")};return T.runKernel(Go,e)}var fx=k({acos_:aj});function lj(r){let e={x:C(r,\"x\",\"acosh\")};return T.runKernel(Wo,e)}var dx=k({acosh_:lj});function uj(r){_(Array.isArray(r),()=>\"The argument passed to tf.addN() must be a list of tensors\"),_(r.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${r.length}`);let t=r.map((o,s)=>C(o,`tensors${s}`,\"addN\")),e=t[0];t.forEach(o=>{if(o.dtype!==e.dtype)throw new Error(\"All tensors passed to tf.addN() must have the same dtype\")}),t.forEach(o=>{if(!sn(o.shape,e.shape))throw new Error(\"All tensors passed to tf.addN() must have the same shape\")});let n=t;return T.runKernel(Uo,n)}var EE=k({addN_:uj});function cj(r,t=null,e=!1){let o={x:C(r,\"x\",\"all\",\"bool\")},s={axis:t,keepDims:e};return T.runKernel(Ea,o,s)}var tm=k({all_:cj});function pj(r,t=null,e=!1){let o={x:C(r,\"x\",\"any\",\"bool\")},s={axis:t,keepDims:e};return T.runKernel(Aa,o,s)}var cc=k({any_:pj});function mj(r,t=0){let n={x:C(r,\"x\",\"argMax\")},o={axis:t};return T.runKernel(Di,n,o)}var ra=k({argMax_:mj});function fj(r,t=0){let n={x:C(r,\"x\",\"argMin\")},o={axis:t};return T.runKernel($i,n,o)}var hx=k({argMin_:fj});function dj(r){let e={x:C(r,\"x\",\"asin\")};return T.runKernel(Ho,e)}var gx=k({asin_:dj});function hj(r){let e={x:C(r,\"x\",\"asinh\")};return T.runKernel(qo,e)}var xx=k({asinh_:hj});function gj(r){let e={x:C(r,\"x\",\"atan\")};return T.runKernel(Ko,e)}var yx=k({atan_:gj});function xj(r,t){let e=C(r,\"a\",\"atan2\"),n=C(t,\"b\",\"atan2\");[e,n]=Xt(e,n);let o={a:e,b:n};return T.runKernel(Xo,o)}var bx=k({atan2_:xj});function yj(r){let e={x:C(r,\"x\",\"atanh\")};return T.runKernel(jo,e)}var wx=k({atanh_:yj});function bj(r,t,e,n,o=\"NHWC\",s){let i=r[3],a=[...t,i],u=DE(o);return pc(r,a,e,s,n,null,null,u)}function Q0(r,t,e,n,o,s,i=\"channelsLast\"){let[a,u]=ch(t),l;if(i===\"channelsLast\")l=[a,u,r[3],r[3]];else if(i===\"channelsFirst\")l=[a,u,r[1],r[1]];else throw new Error(`Unknown dataFormat ${i}`);return pc(r,l,e,n,o,s,!1,i)}function wj(r,t,e,n,o,s,i=\"NDHWC\"){let[a,u,l]=J0(t),c,p;if(i===\"NDHWC\")p=\"channelsLast\",c=[a,u,l,r[4],r[4]];else if(i===\"NCDHW\")p=\"channelsFirst\",c=[a,u,l,r[1],r[1]];else throw new Error(`Unknown dataFormat ${i}`);return AE(r,c,e,n,o,!1,p,s)}function pc(r,t,e,n,o,s,i=!1,a=\"channelsLast\"){let[u,l,c,p]=[-1,-1,-1,-1];if(a===\"channelsLast\")[u,l,c,p]=r;else if(a===\"channelsFirst\")[u,p,l,c]=r;else throw new Error(`Unknown dataFormat ${a}`);let[m,f,,d]=t,[h,g]=ch(e),[x,b]=ch(n),w=em(m,x),I=em(f,b),{padInfo:N,outHeight:E,outWidth:A}=vj(o,l,c,h,g,w,I,s,a),D=i?d*p:d,F;return a===\"channelsFirst\"?F=[u,D,E,A]:a===\"channelsLast\"&&(F=[u,E,A,D]),{batchSize:u,dataFormat:a,inHeight:l,inWidth:c,inChannels:p,outHeight:E,outWidth:A,outChannels:D,padInfo:N,strideHeight:h,strideWidth:g,filterHeight:m,filterWidth:f,effectiveFilterHeight:w,effectiveFilterWidth:I,dilationHeight:x,dilationWidth:b,inShape:r,outShape:F,filterShape:t}}function AE(r,t,e,n,o,s=!1,i=\"channelsLast\",a){let[u,l,c,p,m]=[-1,-1,-1,-1,-1];if(i===\"channelsLast\")[u,l,c,p,m]=r;else if(i===\"channelsFirst\")[u,m,l,c,p]=r;else throw new Error(`Unknown dataFormat ${i}`);let[f,d,h,,g]=t,[x,b,w]=J0(e),[I,N,E]=J0(n),A=em(f,I),D=em(d,N),F=em(h,E),{padInfo:M,outDepth:V,outHeight:G,outWidth:W}=Sj(o,l,c,p,x,b,w,A,D,F,a),q=s?g*m:g,H;return i===\"channelsFirst\"?H=[u,q,V,G,W]:i===\"channelsLast\"&&(H=[u,V,G,W,q]),{batchSize:u,dataFormat:i,inDepth:l,inHeight:c,inWidth:p,inChannels:m,outDepth:V,outHeight:G,outWidth:W,outChannels:q,padInfo:M,strideDepth:x,strideHeight:b,strideWidth:w,filterDepth:f,filterHeight:d,filterWidth:h,effectiveFilterDepth:A,effectiveFilterHeight:D,effectiveFilterWidth:F,dilationDepth:I,dilationHeight:N,dilationWidth:E,inShape:r,outShape:H,filterShape:t}}function Ij(r,t,e,n,o){n==null&&(n=tN(r,t,e));let s=r[0],i=r[1],a=ph((s-t+2*n)/e+1,o),u=ph((i-t+2*n)/e+1,o);return[a,u]}function Cj(r,t,e,n,o,s){o==null&&(o=tN(r,t[0],n[0]));let i=[0,0,0,e];for(let a=0;a<3;a++)r[a]+2*o>=t[a]&&(i[a]=ph((r[a]-t[a]+2*o)/n[a]+1,s));return i}function tN(r,t,e,n=1){let o=em(t,n);return Math.floor((r[0]*(e-1)-e+o)/2)}function ch(r){return typeof r==\"number\"?[r,r,r]:r.length===2?[r[0],r[1],1]:r}function J0(r){return typeof r==\"number\"?[r,r,r]:r}function em(r,t){return t<=1?r:r+(r-1)*(t-1)}function vj(r,t,e,n,o,s,i,a,u){let l,c,p;if(typeof r==\"number\"){l={top:r,bottom:r,left:r,right:r,type:r===0?\"VALID\":\"NUMBER\"};let f=Ij([t,e],s,n,r,a);c=f[0],p=f[1]}else if(r===\"same\"){c=Math.ceil(t/n),p=Math.ceil(e/o);let m=Math.max(0,(c-1)*n+s-t),f=Math.max(0,(p-1)*o+i-e),d=Math.floor(m/2),h=m-d,g=Math.floor(f/2),x=f-g;l={top:d,bottom:h,left:g,right:x,type:\"SAME\"}}else if(r===\"valid\")l={top:0,bottom:0,left:0,right:0,type:\"VALID\"},c=Math.ceil((t-s+1)/n),p=Math.ceil((e-i+1)/o);else if(typeof r==\"object\"){let m=u===\"channelsLast\"?r[1][0]:r[2][0],f=u===\"channelsLast\"?r[1][1]:r[2][1],d=u===\"channelsLast\"?r[2][0]:r[3][0],h=u===\"channelsLast\"?r[2][1]:r[3][1];l={top:m,bottom:f,left:d,right:h,type:m===0&&f===0&&d===0&&h===0?\"VALID\":\"EXPLICIT\"},c=ph((t-s+m+f)/n+1,a),p=ph((e-i+d+h)/o+1,a)}else throw Error(`Unknown padding parameter: ${r}`);return{padInfo:l,outHeight:c,outWidth:p}}function Sj(r,t,e,n,o,s,i,a,u,l,c){let p,m,f,d;if(r===\"valid\"&&(r=0),typeof r==\"number\"){p={top:r,bottom:r,left:r,right:r,front:r,back:r,type:r===0?\"VALID\":\"NUMBER\"};let g=Cj([t,e,n,1],[a,u,l],1,[o,s,i],r,c);m=g[0],f=g[1],d=g[2]}else if(r===\"same\"){m=Math.ceil(t/o),f=Math.ceil(e/s),d=Math.ceil(n/i);let h=(m-1)*o+a-t,g=(f-1)*s+u-e,x=(d-1)*i+l-n,b=Math.floor(h/2),w=h-b,I=Math.floor(g/2),N=g-I,E=Math.floor(x/2),A=x-E;p={top:I,bottom:N,left:E,right:A,front:b,back:w,type:\"SAME\"}}else throw Error(`Unknown padding parameter: ${r}`);return{padInfo:p,outDepth:m,outHeight:f,outWidth:d}}function ph(r,t){if(!t)return Math.trunc(r);switch(t){case\"round\":return Math.round(r);case\"ceil\":return Math.ceil(r);case\"floor\":return Math.floor(r);default:throw new Error(`Unknown roundingMode ${t}`)}}function io(r){let[t,e,n]=ch(r);return t===1&&e===1&&n===1}function Dr(r,t){return io(r)||io(t)}function na(r){return ch(r).every(t=>t>0)}function DE(r){if(r===\"NHWC\")return\"channelsLast\";if(r===\"NCHW\")return\"channelsFirst\";throw new Error(`Unknown dataFormat ${r}`)}function Se(r,t,e){if(e!=null){if(typeof t==\"string\")throw Error(`Error in ${r}: pad must be an integer when using dimRoundingMode ${e} but got pad ${t}.`);if(typeof t==\"number\")_(_a(t),()=>`Error in ${r}: pad must be an integer when using dimRoundingMode ${e} but got pad ${t}.`);else if(typeof t==\"object\")t.forEach(n=>{n.forEach(o=>{_(_a(o),()=>`Error in ${r}: pad must be an integer when using dimRoundingMode ${e} but got pad ${o}.`)})});else throw Error(`Error in ${r}: Unknown padding parameter: ${t}`)}}function Nj(r,t){let n={x:C(r,\"x\",\"reshape\",\"string_or_numeric\")},o={shape:t};return T.runKernel(Gi,n,o)}var R=k({reshape_:Nj});function kj(r,t,e,n,o){let s=C(r,\"x\",\"avgPool\",\"float32\"),i=1;_(Dr(e,i),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${e} and dilations '${i}'`);let a=s,u=!1;s.rank===3&&(u=!0,a=R(s,[1,s.shape[0],s.shape[1],s.shape[2]])),_(a.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${a.rank}.`),Se(\"avgPool\",n,o);let l={x:a},c={filterSize:t,strides:e,pad:n,dimRoundingMode:o},p=T.runKernel(Yo,l,c);return p=J(p,s.dtype),u?R(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var xu=k({avgPool_:kj});function Tj(r,t,e,n,o,s=\"NDHWC\"){let i=C(r,\"x\",\"avgPool3d\",\"float32\"),a=i,u=!1;i.rank===4&&(u=!0,a=R(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),_(a.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${a.rank}.`),_(s===\"NDHWC\",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),_(typeof e==\"number\"&&e>0||Array.isArray(e)&&e[0]>0&&e[1]>0&&e[2]>0,()=>`Error in avgPool3d: Stride must be > 0, but got '${e}'`),Se(\"avgPool3d\",n,o);let l={x:a},c={filterSize:t,strides:e,pad:n,dimRoundingMode:o,dataFormat:s},p=T.runKernel(Ri,l,c);return p=J(p,a.dtype),u?R(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var Ix=k({avgPool3d_:Tj});function _j(r,t=0){_(r.length>=1,()=>\"Pass at least one tensor to concat\");let e=fl(r,\"tensors\",\"concat\",\"string_or_numeric\");if(e[0].dtype===\"complex64\"&&e.forEach(s=>{if(s.dtype!==\"complex64\")throw new Error(`Cannot concatenate complex64 tensors with a tensor\n with dtype ${s.dtype}. `)}),e.length===1)return un(e[0]);let n=e,o={axis:t};return T.runKernel(Oi,n,o)}var ie=k({concat_:_j});function Ej(r,t,e=!1,n=!1){let o=C(r,\"a\",\"matMul\"),s=C(t,\"b\",\"matMul\");[o,s]=Xt(o,s);let i={a:o,b:s},a={transposeA:e,transposeB:n};return T.runKernel(Zo,i,a)}var Bt=k({matMul_:Ej});function Aj(r){let e={x:C(r,\"x\",\"sigmoid\",\"float32\")};return T.runKernel(Xs,e)}var en=k({sigmoid_:Aj});function Dj(r,t,e){let n=C(r,\"x\",\"slice\",\"string_or_numeric\");if(n.rank===0)throw new Error(\"Slicing scalar is not possible\");let o={x:n},s={begin:t,size:e};return T.runKernel(Ui,o,s)}var Ot=k({slice_:Dj});function $j(r){let e={x:C(r,\"x\",\"tanh\",\"float32\")};return T.runKernel(ni,e)}var li=k({tanh_:$j});function Rj(r,t,e,n,o,s){let i=C(r,\"forgetBias\",\"basicLSTMCell\"),a=C(t,\"lstmKernel\",\"basicLSTMCell\"),u=C(e,\"lstmBias\",\"basicLSTMCell\"),l=C(n,\"data\",\"basicLSTMCell\"),c=C(o,\"c\",\"basicLSTMCell\"),p=C(s,\"h\",\"basicLSTMCell\"),m=ie([l,p],1),f=Bt(m,a),d=K(f,u),h=d.shape[0],g=d.shape[1]/4,x=[h,g],b=Ot(d,[0,0],x),w=Ot(d,[0,g],x),I=Ot(d,[0,g*2],x),N=Ot(d,[0,g*3],x),E=K($(en(b),li(w)),$(c,en(K(i,I)))),A=$(li(E),en(N));return[E,A]}var $E=k({basicLSTMCell_:Rj});function Fj(r,t,e){let n=C(r,\"x\",\"batchToSpaceND\"),o=t.reduce((a,u)=>a*u);_(n.rank>=1+t.length,()=>`input rank is ${n.rank} but should be > than blockShape.length ${t.length}`),_(e.length===t.length,()=>`crops.length is ${e.length} but should be equal to blockShape.length ${t.length}`),_(n.shape[0]%o===0,()=>`input tensor batch is ${n.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(\" * \")} === ${o}`);let s={x:n},i={blockShape:t,crops:e};return T.runKernel(Fi,s,i)}var yu=k({batchToSpaceND_:Fj});function RE(r){let t;return r.rank===0||r.rank===1?t=R(r,[1,1,1,r.size]):r.rank===2?t=R(r,[1,1,r.shape[0],r.shape[1]]):r.rank===3?t=R(r,[1,r.shape[0],r.shape[1],r.shape[2]]):t=r,t}function Oj(r,t,e,n,o,s){s==null&&(s=.001);let i=C(r,\"x\",\"batchNorm\"),a=C(t,\"mean\",\"batchNorm\"),u=C(e,\"variance\",\"batchNorm\"),l;o!=null&&(l=C(o,\"scale\",\"batchNorm\"));let c;n!=null&&(c=C(n,\"offset\",\"batchNorm\")),_(a.rank===u.rank,()=>\"Batch normalization gradient requires mean and variance to have equal ranks.\"),_(c==null||a.rank===c.rank,()=>\"Batch normalization gradient requires mean and offset to have equal ranks.\"),_(l==null||a.rank===l.rank,()=>\"Batch normalization gradient requires mean and scale to have equal ranks.\");let m={x:RE(i),scale:l,offset:c,mean:a,variance:u},f={varianceEpsilon:s},d=T.runKernel(ds,m,f);return R(d,i.shape)}var oa=k({batchNorm_:Oj});function Mj(r,t,e,n,o,s){let i=C(r,\"x\",\"batchNorm\"),a=C(t,\"mean\",\"batchNorm\"),u=C(e,\"variance\",\"batchNorm\"),l;o!=null&&(l=C(o,\"scale\",\"batchNorm\"));let c;return n!=null&&(c=C(n,\"offset\",\"batchNorm\")),_(i.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${i.rank}.`),_(a.rank===2||a.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${a.rank}.`),_(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${u.rank}.`),l!=null&&_(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${l.rank}.`),c!=null&&_(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${c.rank}.`),oa(i,a,u,c,l,s)}var Cx=k({batchNorm2d_:Mj});function Pj(r,t,e,n,o,s){let i=C(r,\"x\",\"batchNorm\"),a=C(t,\"mean\",\"batchNorm\"),u=C(e,\"variance\",\"batchNorm\"),l;o!=null&&(l=C(o,\"scale\",\"batchNorm\"));let c;return n!=null&&(c=C(n,\"offset\",\"batchNorm\")),_(i.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${i.rank}.`),_(a.rank===3||a.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${a.rank}.`),_(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${u.rank}.`),l!=null&&_(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${l.rank}.`),c!=null&&_(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${c.rank}.`),oa(i,a,u,c,l,s)}var vx=k({batchNorm3d_:Pj});function Lj(r,t,e,n,o,s){let i=C(r,\"x\",\"batchNorm\"),a=C(t,\"mean\",\"batchNorm\"),u=C(e,\"variance\",\"batchNorm\"),l;o!=null&&(l=C(o,\"scale\",\"batchNorm\"));let c;return n!=null&&(c=C(n,\"offset\",\"batchNorm\")),_(i.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${i.rank}.`),_(a.rank===4||a.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${a.rank}.`),_(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${u.rank}.`),l!=null&&_(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${l.rank}.`),c!=null&&_(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${c.rank}.`),oa(i,a,u,c,l,s)}var Sx=k({batchNorm4d_:Lj});function zj(r,t,e){let n=C(r,\"x\",\"bincount\"),o=C(t,\"weights\",\"bincount\");_(n.dtype===\"int32\",()=>`Error in bincount: input dtype must be int32, but got ${n.dtype}`),_(e>=0,()=>`size must be non-negative, but got ${e}.`),_(o.size===n.size||o.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${n.shape}, weights shape: ${o.shape}.`);let s={x:n,weights:o},i={size:e};return T.runKernel(Da,s,i)}var Nx=k({bincount_:zj});function Bj(r,t){let e=C(r,\"x\",\"bitwiseAnd\"),n=C(t,\"y\",\"bitwiseAnd\");if(!sn(e.shape,n.shape))throw new Error(`BitwiseAnd: Tensors must have the same shape. x: ${e.shape}, y: ${n.shape}`);if(e.dtype!==\"int32\"||n.dtype!==\"int32\")throw new Error(`BitwiseAnd: Only supports 'int32' values in tensor, found type of x: ${e.dtype} and type of y: ${n.dtype}`);let o={a:e,b:n};return T.runKernel($a,o)}var FE=k({bitwiseAnd_:Bj});function Vj(r,t){let e=C(r,\"s0\",\"broadcastArgs\",\"int32\"),n=C(t,\"s1\",\"broadcastArgs\",\"int32\");if(e.rank!==1)throw new Error(`broadcastArgs(): first input must be a vector (rank=1). Has rank ${e.rank}`);if(n.rank!==1)throw new Error(`broadcastArgs(): second input must be a vector (rank=1). Has rank ${n.rank}`);let o={s0:e,s1:n};return T.runKernel(ql,o)}var OE=k({broadcastArgs_:Vj});function Gj(r,t){let e=C(r,\"broadcastTo\",\"x\"),n=e.shape;if(Le(t),t.lengthe.rank){let l=e.shape.slice();for(;l.length=0;l--)if(o[l]===t[l])s[l]=1;else if(e.shape[l]!==1)throw new Error(`broadcastTo(): [${n}] cannot be broadcast to [${t}].`);if(s.map((l,c)=>l>1?c:-1).filter(l=>l>=0).length===0)return un(e);let a={x:e},u={reps:s};return T.runKernel(oo,a,u)}var sa=k({broadcastTo_:Gj});function Wj(r){let e={x:C(r,\"x\",\"ceil\",\"float32\")};return T.runKernel(Jo,e)}var kx=k({ceil_:Wj});function Co(r,t,e){Le(r),e=e||Wl(t);let n={shape:r,value:t,dtype:e};return T.runKernel(Jl,{},n)}function Uj(r,t,e){let n=C(r,\"x\",\"clipByValue\");if(_(t<=e,()=>`Error in clip: min (${t}) must be less than or equal to max (${e}).`),t===e)return Co(n.shape,t,n.dtype);let o={x:n},s={clipValueMin:t,clipValueMax:e};return T.runKernel(ho,o,s)}var vr=k({clipByValue_:Uj});function Hj(r){return ie(r,0)}var Tx=k({concat1d_:Hj});function qj(r,t){return ie(r,t)}var _x=k({concat2d_:qj});function Kj(r,t){return ie(r,t)}var Ex=k({concat3d_:Kj});function jj(r,t){return ie(r,t)}var Ax=k({concat4d_:jj});function Xj(r,t,e,n,o=\"NHWC\",s=[1,1],i){let a=C(r,\"x\",\"conv2d\",\"float32\"),u=C(t,\"filter\",\"conv2d\",\"float32\"),l=a,c=!1;a.rank===3&&(c=!0,l=R(a,[1,a.shape[0],a.shape[1],a.shape[2]])),_(l.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${l.rank}.`),_(u.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${u.rank}.`),Se(\"conv2d\",n,i);let p=o===\"NHWC\"?l.shape[3]:l.shape[1];_(p===u.shape[2],()=>`Error in conv2d: depth of input (${p}) must match input depth for filter ${u.shape[2]}.`),_(Dr(e,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${e} and dilations '${s}'`),_(na(s),()=>\"Error in conv2D: Dilated rates should be larger than 0.\"),_(na(e),()=>\"Error in conv2D: Strides should be larger than 0.\");let m={x:l,filter:u},f={strides:e,pad:n,dataFormat:o,dilations:s,dimRoundingMode:i},d=T.runKernel(Qo,m,f);return c?R(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Nn=k({conv2d_:Xj});function Yj(r,t,e,n,o=\"NWC\",s=1,i){let a=C(r,\"x\",\"conv1d\"),u=C(t,\"filter\",\"conv1d\"),l=a,c=!1;a.rank===2&&(c=!0,l=R(a,[1,a.shape[0],a.shape[1]])),_(l.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${l.rank}.`),_(u.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${u.rank}.`),Se(\"conv1d\",n,i),_(l.shape[2]===u.shape[1],()=>`Error in conv1d: depth of input (${l.shape[2]}) must match input depth for filter ${u.shape[1]}.`),_(Dr(e,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${e} and dilation '${s}'`),_(na(s),()=>\"Error in conv1D: Dilated rates should be larger than 0.\"),_(na(e),()=>\"Error in conv1D: Stride should be larger than 0.\"),_(o===\"NWC\",()=>`Error in conv1d: got dataFormat of ${o} but only NWC is currently supported.`);let p=R(u,[1,u.shape[0],u.shape[1],u.shape[2]]),m=R(l,[l.shape[0],1,l.shape[1],l.shape[2]]),g=Nn(m,p,[1,e],n,\"NHWC\",[1,s],i);return c?R(g,[g.shape[2],g.shape[3]]):R(g,[g.shape[0],g.shape[2],g.shape[3]])}var rm=k({conv1d_:Yj});function Zj(r,t,e,n,o,s=\"NHWC\",i){_(r.length===t.rank,()=>`Length of inShape (${r.length}) and rank of dy (${t.rank}) must match`);let a=r,u=t,l=!1;t.rank===3&&(l=!0,u=R(t,[1,t.shape[0],t.shape[1],t.shape[2]]),a=[1,r[0],r[1],r[2]]),_(a.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${a.length}.`),_(u.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${u.rank}`),_(e.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${e.rank}`);let c=s===\"NHWC\"?a[3]:a[1],p=s===\"NHWC\"?u.shape[3]:u.shape[1];_(c===e.shape[2],()=>`Error in conv2dDerInput: depth of input (${c}) must match input depth for filter ${e.shape[2]}.`),_(p===e.shape[3],()=>`Error in conv2dDerInput: depth of output (${p}) must match output depth for filter ${e.shape[3]}.`),Se(\"conv2dDerInput\",o,i);let m={dy:u,filter:e},f={strides:n,pad:o,dataFormat:s,dimRoundingMode:i,inputShape:a},d=T.runKernel(ts,m,f);return l?R(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var nm=k({conv2DBackpropInput_:Zj});function Jj(r,t,e,n,o,s){let i=C(r,\"x\",\"conv2dTranspose\"),a=C(t,\"filter\",\"conv2dTranspose\");return nm(e,i,a,n,o,\"NHWC\",s)}var om=k({conv2dTranspose_:Jj});function Qj(r,t,e,n,o=\"NDHWC\",s=[1,1,1]){let i=C(r,\"x\",\"conv3d\"),a=C(t,\"filter\",\"conv3d\"),u=i,l=!1;i.rank===4&&(l=!0,u=R(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),_(u.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${u.rank}.`),_(a.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${a.rank}.`),_(u.shape[4]===a.shape[3],()=>`Error in conv3d: depth of input (${u.shape[4]}) must match input depth for filter ${a.shape[3]}.`),_(Dr(e,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${e} and dilations '${s}'`),_(o===\"NDHWC\",()=>`Error in conv3d: got dataFormat of ${o} but only NDHWC is currently supported.`),_(na(s),()=>\"Error in conv3D: Dilated rates should be larger than 0.\"),_(na(e),()=>\"Error in conv3D: Strides should be larger than 0.\");let c={x:u,filter:a},p={strides:e,pad:n,dataFormat:o,dilations:s},m=T.runKernel(es,c,p);return l?R(m,[m.shape[1],m.shape[2],m.shape[3],m.shape[4]]):m}var Dx=k({conv3d_:Qj});function t6(r,t,e,n,o){_(r.length===t.rank,()=>`Length of inShape (${r.length}) and rank of dy (${t.rank}) must match`);let s=r,i=t,a=!1;t.rank===4&&(a=!0,i=R(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),s=[1,r[0],r[1],r[2],r[3]]);let u=s[4],l=i.shape[4];_(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),_(i.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${i.rank}`),_(e.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${e.rank}`),_(u===e.shape[3],()=>`Error in conv3dDerInput: depth of input (${u}) must match input depth for filter ${e.shape[3]}.`),_(l===e.shape[4],()=>`Error in conv3dDerInput: depth of output (${l}) must match output depth for filter ${e.shape[4]}.`);let c={dy:i,filter:e},p={pad:o,strides:n,inputShape:s},m=T.runKernel(Fa,c,p);return a?R(m,[m.shape[1],m.shape[2],m.shape[3],m.shape[4]]):m}var $x=k({conv3DBackpropInput_:t6});function e6(r,t,e,n,o){let s=C(r,\"x\",\"conv3dTranspose\"),i=C(t,\"filter\",\"conv3dTranspose\");return $x(e,s,i,n,o)}var Rx=k({conv3dTranspose_:e6});function r6(r){let e={x:C(r,\"x\",\"cos\",\"float32\")};return T.runKernel(rs,e)}var bu=k({cos_:r6});function n6(r){let e={x:C(r,\"x\",\"cosh\",\"float32\")};return T.runKernel(ns,e)}var sm=k({cosh_:n6});function o6(r,t=0,e=!1,n=!1){let s={x:C(r,\"x\",\"cumprod\")},i={axis:t,exclusive:e,reverse:n};return T.runKernel(Oa,s,i)}var mc=k({cumprod_:o6});function s6(r,t=0,e=!1,n=!1){let s={x:C(r,\"x\",\"cumsum\")},i={axis:t,exclusive:e,reverse:n};return T.runKernel(os,s,i)}var im=k({cumsum_:s6});function i6(r,t,e,n=!1){let o=C(r,\"x\",\"denseBincount\"),s=C(t,\"weights\",\"denseBincount\");_(o.dtype===\"int32\",()=>`Error in denseBincount: input dtype must be int32, but got ${o.dtype}`),_(o.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${o.rank}.`),_(e>=0,()=>`size must be non-negative, but got ${e}.`),_(s.size===o.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${o.shape}, weights shape: ${s.shape}.`);let i={x:o,weights:s},a={size:e,binaryOutput:n};return T.runKernel(jl,i,a)}var mh=k({denseBincount_:i6});function a6(r,t,e=\"NHWC\"){let n=C(r,\"x\",\"depthToSpace\",\"float32\"),o=e===\"NHWC\"?n.shape[1]:n.shape[2],s=e===\"NHWC\"?n.shape[2]:n.shape[3],i=e===\"NHWC\"?n.shape[3]:n.shape[1];_(t>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${t}`),_(o*t>=0,()=>`Negative dimension size caused by overflow when multiplying\n ${o} and ${t} for depthToSpace with input shape\n ${n.shape}`),_(s*t>=0,()=>`Negative dimension size caused by overflow when multiplying\n ${s} and ${t} for depthToSpace with input shape\n ${n.shape}`),_(i%(t*t)===0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${i} for depthToSpace with input shape ${n.shape}`);let a={x:n},u={blockSize:t,dataFormat:e};return T.runKernel(Pa,a,u)}var Fx=k({depthToSpace_:a6});function l6(r,t,e,n,o=\"NHWC\",s=[1,1],i){let a=C(r,\"x\",\"depthwiseConv2d\",\"float32\"),u=C(t,\"filter\",\"depthwiseConv2d\",\"float32\"),l=a,c=!1;a.rank===3&&(c=!0,l=R(a,[1,a.shape[0],a.shape[1],a.shape[2]])),_(l.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${l.rank}.`),_(u.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${u.rank}.`);let p=o===\"NHWC\"?l.shape[3]:l.shape[1];_(p===u.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${p}) must match the inChannels dimension in filter ${u.shape[2]}.`),Se(\"depthwiseConv2d\",n,i);let m={x:l,filter:u},f={strides:e,pad:n,dataFormat:o,dilations:s,dimRoundingMode:i},d=T.runKernel(ss,m,f);return c?R(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var ia=k({depthwiseConv2d_:l6});function u6(r){let e={x:C(r,\"x\",\"diag\")};return T.runKernel(Xl,e)}var ME=k({diag_:u6});function c6(r,t,e,n,o=[1,1],s=\"NHWC\"){let i=C(r,\"x\",\"dilation2d\"),a=C(t,\"filter\",\"dilation2d\");_(i.rank===3||i.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${i.rank}.`),_(a.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${a.rank}.`),_(s===\"NHWC\",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let u=i,l=!1;i.rank===3&&(u=R(i,[1,i.shape[0],i.shape[1],i.shape[2]]),l=!0),_(u.shape[3]===a.shape[2],()=>`Error in dilation2d: input and filter must have the same depth: ${u.shape[3]} vs ${a.shape[2]}`);let c={x:u,filter:a},p={strides:e,pad:n,dilations:o},m=T.runKernel(is,c,p);return l?R(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var Ox=k({dilation2d_:c6});var Hr={};Kt(Hr,{assertAndGetBroadcastShape:()=>Mt,getBroadcastDims:()=>PE,getReductionAxes:()=>we});function PE(r,t){let e=r.length,n=[];for(let o=0;o1&&i===1&&n.unshift(s)}return n}function we(r,t){let e=[];for(let n=0;n1)&&e.unshift(s)}return e}function Mt(r,t){let e=Math.max(r.length,t.length),n=new Array(e);for(let o=0;o`Error in dot: inputs must all be rank 1 or 2, but got ranks ${e.rank} and ${n.rank}.`);let o=e.rank===1?e.size:e.shape[1],s=n.rank===1?n.size:n.shape[0];if(_(o===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${o} and ${s}.`),e.rank===1&&n.rank===1){let i=R(e,[1,-1]),a=R(n,[-1,1]),u=Bt(i,a);return R(u,[])}else if(e.rank===1&&n.rank===2){let i=R(e,[1,-1]),a=R(n,[n.shape[0],n.shape[1]]),u=Bt(i,a);return R(u,[u.size])}else if(e.rank===2&&n.rank===1){let i=R(n,[-1,1]),a=Bt(e,i);return R(a,[a.size])}else{let i=R(n,[n.shape[0],n.shape[1]]);return Bt(e,i)}}var Px=k({dot_:h6});function g6(r,...t){let e=t.map((o,s)=>C(o,`tensors${s}`,\"einsum\")),n={equation:r};return T.runKernel(Fp,e,n)}var wu=k({einsum_:g6});function x6(r){let e={x:C(r,\"x\",\"elu\",\"float32\")};return T.runKernel(ls,e)}var aa=k({elu_:x6});function y6(r,t){let e=C(r,\"x\",\"ensureShape\",\"string_or_numeric\");if(!d0(e.shape,t))throw new Error(`EnsureShape: Shape of tensor ${e.shape} is not compatible with expected shape ${t}`);return r}var LE=k({ensureShape_:y6});function b6(r){let t=C(r,\"x\",\"erf\");_(t.dtype===\"int32\"||t.dtype===\"float32\",()=>\"Input dtype must be `int32` or `float32`.\"),t.dtype===\"int32\"&&(t=J(t,\"float32\"));let e={x:t};return T.runKernel(us,e)}var am=k({erf_:b6});function eN(r,t){for(let e=0;er[s]);return[e,o]}function vo(r,t){let e=t.map(n=>1);return zE(r,e,t)}function w6(r,t,e){_(eN(t,e),()=>`${r} supports only inner-most axes for now. Got axes ${t} and rank-${e} input.`)}function nN(r,t){if(eN(r,t))return null;let e=[];for(let n=0;ne.push(n)),e}function fh(r){return r.map((t,e)=>[e,t]).sort((t,e)=>t[1]-e[1]).map(t=>t[0])}function I6(r,t){let e=[];for(let n=t-r;n\"Axis must be <= rank of the tensor\");let n={input:e},o={dim:t};return T.runKernel(Mi,n,o)}var je=k({expandDims_:D6});function $6(r){let e={x:C(r,\"x\",\"expm1\")};return T.runKernel(ps,e)}var zx=k({expm1_:$6});function R6(r,t){let e=C(r,\"x\",\"tile\",\"string_or_numeric\");_(e.rank===t.length,()=>`Error in transpose: rank of input ${e.rank} must match length of reps ${t}.`);let n={x:e},o={reps:t};return T.runKernel(oo,n,o)}var Rr=k({tile_:R6});function F6(r,t,e,n=\"float32\"){t==null&&(t=r);let o=wt([r,t],n),s=r<=t?r:t;for(let a=0;a`Error in localResponseNormalization: x must be rank 3 or 4 but got\n rank ${s.rank}.`),_(_a(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let i=s,a=!1;s.rank===3&&(a=!0,i=R(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let u={x:i},l={depthRadius:t,bias:e,alpha:n,beta:o},c=T.runKernel(Cs,u,l);return a?R(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var Wx=k({localResponseNormalization_:q6});function K6(r){let e={x:C(r,\"x\",\"log\",\"float32\")};return T.runKernel(ws,e)}var Nr=k({log_:K6});function j6(r){let e={x:C(r,\"x\",\"log1p\")};return T.runKernel(Is,e)}var vu=k({log1p_:j6});function X6(r){return _(_i(r),()=>\"The f passed in grad(f) must be a function\"),(t,e)=>{let n=C(t,\"x\",\"tf.grad\",\"string_or_numeric\"),o=e!=null?C(e,\"dy\",\"tf.grad\"):null;return T.tidy(()=>{let{value:s,grads:i}=T.gradients(()=>r(n),[n],o);return o!=null&&$e(s.shape,o.shape,\"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)\"),Hx(i),i[0]})}}function Y6(r){return _(_i(r),()=>\"The f passed in grads(f) must be a function\"),(t,e)=>{_(Array.isArray(t),()=>\"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s\");let n=fl(t,\"args\",\"tf.grads\",\"string_or_numeric\"),o=e!=null?C(e,\"dy\",\"tf.grads\"):null;return T.tidy(()=>{let{value:s,grads:i}=T.gradients(()=>r(...n),n,o);return o!=null&&$e(s.shape,o.shape,\"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])\"),Hx(i),i})}}function Z6(r){return _(_i(r),()=>\"The f passed in valueAndGrad(f) must be a function\"),(t,e)=>{_(t instanceof Lt,()=>\"The x passed in valueAndGrad(f)(x) must be a tensor\"),_(e==null||e instanceof Lt,()=>\"The dy passed in valueAndGrad(f)(x, dy) must be a tensor\");let{grads:n,value:o}=T.gradients(()=>r(t),[t],e);return Hx(n),{grad:n[0],value:o}}}function J6(r){return _(_i(r),()=>\"The f passed in valueAndGrads(f) must be a function\"),(t,e)=>{_(Array.isArray(t)&&t.every(o=>o instanceof Lt),()=>\"The args passed in valueAndGrads(f)(args) must be array of tensors\"),_(e==null||e instanceof Lt,()=>\"The dy passed in valueAndGrads(f)(args, dy) must be a tensor\");let n=T.gradients(()=>r(...t),t,e);return e!=null&&$e(n.value.shape,e.shape,\"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])\"),Hx(n.grads),n}}function Ux(r,t){_(_i(r),()=>\"The f passed in variableGrads(f) must be a function\"),_(t==null||Array.isArray(t)&&t.every(l=>l instanceof ml),()=>\"The varList passed in variableGrads(f, varList) must be an array of variables\");let e=t!=null;if(!e){t=[];for(let l in T.registeredVariables)t.push(T.registeredVariables[l])}let n=e?t.filter(l=>!l.trainable):null,o=t.length;t=t.filter(l=>l.trainable),_(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${o} variables is trainable.`);let s=!0,{value:i,grads:a}=T.gradients(r,t,null,s);_(a.some(l=>l!=null),()=>\"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize().\"),_(i.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${i.rank} tensor`);let u={};return t.forEach((l,c)=>{a[c]!=null&&(u[l.name]=a[c])}),n!=null&&n.forEach(l=>u[l.name]=null),{value:i,grads:u}}function pn(r){return T.customGrad(r)}function Hx(r){if(r.filter(e=>e==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that\n the f you passed encloses all operations that lead from x to y.`)}function Q6(r){let e={x:C(r,\"x\",\"neg\")};return T.runKernel(zi,e)}var Ut=k({neg_:Q6});function tX(r){let e={x:C(r,\"x\",\"softplus\")};return T.runKernel(Ys,e)}var ui=k({softplus_:tX});function eX(r){let t=C(r,\"x\",\"logSigmoid\");return pn(n=>({value:Ut(ui(Ut(n))),gradFunc:i=>$(i,en(Ut(n)))}))(t)}var qx=k({logSigmoid_:eX});function rX(r,t){let e=C(r,\"a\",\"sub\"),n=C(t,\"b\",\"sub\");[e,n]=Xt(e,n);let o={a:e,b:n};return T.runKernel(ei,o)}var at=k({sub_:rX});function nX(r,t=-1){let e=C(r,\"logits\",\"logSoftmax\");if(t===-1&&(t=e.rank-1),t!==e.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${e.rank} and axis was ${t}`);return pn((o,s)=>{let a=Sr(o,t,!0),u=at(o,a),l=at(J(u,\"float32\"),Nr(mt(Ke(u),t,!0)));return s([l]),{value:l,gradFunc:(p,m)=>{let[f]=m,d=!0,h=Ke(f);return at(p,$(mt(p,t,d),h))}}})(e)}var lm=k({logSoftmax_:nX});function oX(r,t=null,e=!1){let n=C(r,\"x\",\"logSumExp\"),o=fr(t,n.shape),s=Sr(n,o,!0),i=at(n,s),a=Ke(i),u=mt(a,o),l=Nr(u),c=K(R(s,l.shape),l);if(e){let p=vo(c.shape,o);return R(c,p)}return c}var Su=k({logSumExp_:oX});function sX(r,t){let e=C(r,\"a\",\"logicalAnd\",\"bool\"),n=C(t,\"b\",\"logicalAnd\",\"bool\");Mt(e.shape,n.shape);let o={a:e,b:n};return T.runKernel(qa,o)}var Fr=k({logicalAnd_:sX});function iX(r){let e={x:C(r,\"x\",\"logicalNot\",\"bool\")};return T.runKernel(Ka,e)}var Nu=k({logicalNot_:iX});function aX(r,t){let e=C(r,\"a\",\"logicalOr\",\"bool\"),n=C(t,\"b\",\"logicalOr\",\"bool\");Mt(e.shape,n.shape);let o={a:e,b:n};return T.runKernel(ja,o)}var um=k({logicalOr_:aX});function lX(r,t){let e=C(r,\"a\",\"logicalXor\",\"bool\"),n=C(t,\"b\",\"logicalXor\",\"bool\");return Mt(e.shape,n.shape),Fr(um(r,t),Nu(Fr(r,t)))}var Kx=k({logicalXor_:lX});var jx=2147483648;function uX(r,t,e=\"left\"){let n=C(r,\"sortedSequence\",\"searchSorted\"),o=C(t,\"values\",\"searchSorted\"),s=n.shape[n.shape.length-1],i=o.shape[o.shape.length-1],a=R(n,[-1,s]),u=R(o,[-1,i]);if(a.rank<2)throw new Error(\"Sorted input argument must be at least 2-dimensional\");if(a.shape[0]!==u.shape[0])throw new Error(\"Leading dimension of 'sortedSequence' and 'values' must match.\");if(jt(u.shape)>=jx)throw new Error(`values tensor size must less than ${jx}`);if(a.shape[1]>=jx)throw new Error(`trailing dim_size must less than ${jx} for int32 output type, was ${a.shape[1]}`);let l={sortedSequence:a,values:u},c={side:e};return T.runKernel(sl,l,c)}var dh=k({searchSorted_:uX});function GE(r,t){return dh(r,t,\"left\")}function cX(r,t,e,n,o){let s=C(r,\"x\",\"maxPool\"),i=1,a=s,u=!1;s.rank===3&&(u=!0,a=R(s,[1,s.shape[0],s.shape[1],s.shape[2]])),_(a.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${a.rank}.`),_(Dr(e,i),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${e} and dilations '${i}'`),Se(\"maxPool\",n,o);let l={x:a},c={filterSize:t,strides:e,pad:n,dimRoundingMode:o},p=T.runKernel(Ns,l,c);return u?R(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var ku=k({maxPool_:cX});function pX(r,t=[1,1,1],e,n,o,s=\"NDHWC\"){let i=C(r,\"x\",\"maxPool3d\"),a=i,u=!1;i.rank===4&&(u=!0,a=R(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),_(a.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${a.rank}.`),_(s===\"NDHWC\",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),Se(\"maxPool3d\",n,o);let l={x:a},c={filterSize:t,strides:e,pad:n,dimRoundingMode:o,dataFormat:s},p=T.runKernel(Li,l,c);return u?R(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var Xx=k({maxPool3d_:pX});function mX(r,t,e,n,o=!1){let i={x:C(r,\"x\",\"maxPoolWithArgmax\")},a={filterSize:t,strides:e,pad:n,includeBatchInIndex:o},u=T.runKernel(eu,i,a);return{result:u[0],indexes:u[1]}}var WE=k({maxPoolWithArgmax_:mX});function fX(r,t){let e=C(r,\"a\",\"maximum\"),n=C(t,\"b\",\"maximum\");[e,n]=Xt(e,n),e.dtype===\"bool\"&&(e=J(e,\"int32\"),n=J(n,\"int32\")),Mt(e.shape,n.shape);let o={a:e,b:n};return T.runKernel(Ss,o)}var kn=k({maximum_:fX});function dX(r,t=null,e=!1){let o={x:C(r,\"x\",\"mean\")},s={axis:t,keepDims:e};return T.runKernel(ks,o,s)}var Ne=k({mean_:dX});function ke(r,t=\"float32\"){if(Le(r),t===\"complex64\"){let n=ke(r,\"float32\"),o=ke(r,\"float32\");return Sn(n,o)}let e=Ep(jt(r),t);return T.makeTensor(e,r,t)}function ar(r,t=\"float32\"){if(Le(r),t===\"complex64\"){let n=ar(r,\"float32\"),o=ke(r,\"float32\");return Sn(n,o)}let e=Yd(jt(r),t);return T.makeTensor(e,r,t)}function UE(r,t,{indexing:e=\"xy\"}={}){if(e!==\"xy\"&&e!==\"ij\")throw new TypeError(`${e} is not a valid third argument to meshgrid`);if(r===void 0)return[];let n=C(r,\"x\",\"meshgrid\",r instanceof Lt?r.dtype:\"float32\");if(t===void 0)return[n];let o=C(t,\"y\",\"meshgrid\",t instanceof Lt?t.dtype:\"float32\"),s=jt(n.shape),i=jt(o.shape);return e===\"xy\"?(n=R(n,[1,-1]),o=R(o,[-1,1]),[Bt(ar([i,1],n.dtype),n),Bt(o,ar([1,s],o.dtype))]):(n=R(n,[-1,1]),o=R(o,[1,-1]),[Bt(n,ar([1,i],n.dtype)),Bt(ar([s,1],o.dtype),o)])}function hX(r,t){let e=C(r,\"a\",\"minimum\"),n=C(t,\"b\",\"minimum\");[e,n]=Xt(e,n),e.dtype===\"bool\"&&(e=J(e,\"int32\"),n=J(n,\"int32\")),Mt(e.shape,n.shape);let o={a:e,b:n};return T.runKernel(_s,o)}var lo=k({minimum_:hX});function gX(r,t,e){_(e===\"reflect\"||e===\"symmetric\",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${e}.`);let n=C(r,\"x\",\"mirrorPad\");if(n.rank===0)throw new Error(\"mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad\");_(t.length===n.rank,()=>`Padding doesn't match input. Must be ${n.rank}. Got ${t.length}.`);let o=e===\"reflect\"?1:0;for(let a=0;a\"Invalid number of paddings. Must be length of 2 each.\"),_(t[a][0]>=0&&t[a][0]<=n.shape[a]-o&&t[a][1]>=0&&t[a][1]<=n.shape[a]-o,()=>`Padding in dimension ${a} cannot be greater than or equal to ${n.shape[a]-o} or less than 0 for input of shape ${n.shape}`);let s={paddings:t,mode:e},i={x:n};return T.runKernel(Es,i,s)}var Yx=k({mirrorPad_:gX});function xX(r,t){let e=C(r,\"a\",\"mod\"),n=C(t,\"b\",\"mod\");[e,n]=Xt(e,n);let o={a:e,b:n};return T.runKernel(As,o)}var Zx=k({mod_:xX});function yX(r,t=null,e=!1){r=C(r,\"x\",\"moments\");let n=fr(t,r.shape),o=Ne(r,n,e),s=o.shape;e||(s=vo(o.shape,n));let i=Wt(at(J(r,\"float32\"),R(o,s))),a=Ne(i,n,e);return{mean:o,variance:a}}var dc=k({moments_:yX});function bX(r,t,e,n){let o=C(t,\"data\",\"multiRNNCell\"),s=fl(e,\"c\",\"multiRNNCell\"),i=fl(n,\"h\",\"multiRNNCell\"),a=o,u=[];for(let p=0;p2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${i}`);e=e||Math.random();let u={logits:i===1?R(o,[1,-1]):o},l={numSamples:t,seed:e,normalized:n},c=T.runKernel(Ya,u,l);return i===1?R(c,[c.size]):c}var qE=k({multinomial_:wX});function IX(r,t){let e=C(r,\"a\",\"notEqual\",\"string_or_numeric\"),n=C(t,\"b\",\"notEqual\",\"string_or_numeric\");[e,n]=Xt(e,n),Mt(e.shape,n.shape);let o={a:e,b:n};return T.runKernel(Za,o)}var ci=k({notEqual_:IX});function CX(r,t,e=1,n=0,o=\"int32\"){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let i={indices:C(r,\"indices\",\"oneHot\",\"int32\")},a={dtype:o,depth:t,onValue:e,offValue:n};return T.runKernel($s,i,a)}var ca=k({oneHot_:CX});function vX(r){let e={x:C(r,\"x\",\"onesLike\")};return T.runKernel(Bi,e)}var wr=k({onesLike_:vX});function SX(r,t){let e=C(r,\"v1\",\"outerProduct\"),n=C(t,\"v2\",\"outerProduct\");_(e.rank===1&&n.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${e.rank} and ${n.rank}.`);let o=R(e,[-1,1]),s=R(n,[1,-1]);return Bt(o,s)}var KE=k({outerProduct_:SX});function NX(r,t,e=0){let n=C(r,\"x\",\"pad\");if(n.rank===0)throw new Error(\"pad(scalar) is not defined. Pass non-scalar to pad\");let o={paddings:t,constantValue:e},s={x:n};return T.runKernel(Rs,s,o)}var mn=k({pad_:NX});function kX(r,t,e=0){return _(t.length===2,()=>\"Invalid number of paddings. Must be length of 2.\"),mn(r,[t],e)}var jE=k({pad1d_:kX});function TX(r,t,e=0){return _(t.length===2&&t[0].length===2&&t[1].length===2,()=>\"Invalid number of paddings. Must be length of 2 each.\"),mn(r,t,e)}var XE=k({pad2d_:TX});function _X(r,t,e=0){return _(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>\"Invalid number of paddings. Must be length of 2 each.\"),mn(r,t,e)}var YE=k({pad3d_:_X});function EX(r,t,e=0){return _(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>\"Invalid number of paddings. Must be length of 2 each.\"),mn(r,t,e)}var ZE=k({pad4d_:EX});function AX(r,t,e){let n=C(r,\"x\",\"spaceToBatchND\");_(n.rank>=1+t.length,()=>`input rank ${n.rank} should be > than [blockShape] ${t.length}`),_(e.length===t.length,()=>`paddings.shape[0] ${e.length} must be equal to [blockShape] ${t.length}`),_(n.shape.reduce((i,a,u)=>u>0&&u<=t.length?i&&(a+e[u-1][0]+e[u-1][1])%t[u-1]===0:i,!0),()=>`input spatial dimensions ${n.shape.slice(1)} with paddings ${e.toString()} must be divisible by blockShapes ${t.toString()}`);let o={x:n},s={blockShape:t,paddings:e};return T.runKernel(Hi,o,s)}var Tu=k({spaceToBatchND_:AX});function DX(r,t,e,n,o,s,i){o==null&&(o=[1,1]),s==null&&(s=1),n===0&&(n=\"valid\");let a=C(r,\"x\",\"maxPool\"),u=a,l=!1;a.rank===3&&(l=!0,u=R(a,[1,a.shape[0],a.shape[1],a.shape[2]])),_(Dr(s,o),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${o}'`);let c=Q0(u.shape,t,s,o,n),p=[c.dilationHeight,c.dilationWidth],m;n===\"same\"?m=RX([c.filterHeight,c.filterWidth],p):m=[[0,0],[0,0]];let f=p[0]===1&&p[1]===1,[d,h]=$X([c.inHeight,c.inWidth],p,m),g=f?n:\"valid\",x=f?u:Tu(u,p,d),w=(e===\"avg\"?()=>xu(x,t,s,g,i):()=>ku(x,t,s,g,i))(),I=f?w:yu(w,p,h);return l?R(I,[I.shape[1],I.shape[2],I.shape[3]]):I}function $X(r,t,e){let n=e.map(c=>c[0]),o=e.map(c=>c[1]),s=r.concat(n,o),i=t.map((c,p)=>(c-s[p]%c)%c),a=o.map((c,p)=>c+i[p]),u=t.map((c,p)=>[n[p],a[p]]),l=t.map((c,p)=>[0,i[p]]);return[u,l]}function RX(r,t){let n=r.map((i,a)=>i+(i-1)*(t[a]-1)).map(i=>i-1),o=n.map(i=>Math.floor(i/2)),s=n.map((i,a)=>i-o[a]);return n.map((i,a)=>[o[a],s[a]])}var Jx=k({pool_:DX});function FX(r,t){let e=C(r,\"x\",\"prelu\"),n=C(t,\"alpha\",\"prelu\"),o={x:e,alpha:n};return T.runKernel(Os,o)}var _u=k({prelu_:FX});function OX(r,t=null,e=!1){let n=C(r,\"x\",\"prod\");n.dtype===\"bool\"&&(n=J(n,\"int32\"));let o={x:n},s={axis:t,keepDims:e};return T.runKernel(Ms,o,s)}var Qx=k({prod_:OX});function MX(r,t,e,n){let o=r.map((c,p)=>C(c,`tensors${p}`,\"raggedGather\",\"int32\")),s=C(t,\"paramsDenseValues\",\"raggedGather\"),i=C(e,\"indices\",\"raggedGather\",\"int32\"),a={paramsNestedSplits:o,paramsDenseValues:s,indices:i},u={outputRaggedRank:n},l=T.runKernel(Lp,a,u);return{outputNestedSplits:l.slice(0,l.length-1),outputDenseValues:l[l.length-1]}}var JE=k({raggedGather_:MX});function PX(r,t,e){let n=C(r,\"starts\",\"raggedRange\"),o=C(t,\"limits\",\"raggedRange\",n.dtype),s=C(e,\"deltas\",\"raggedRange\",n.dtype),i={starts:n,limits:o,deltas:s},a=T.runKernel(zp,i);return{rtNestedSplits:a[0],rtDenseValues:a[1]}}var QE=k({raggedRange_:PX});function LX(r,t,e,n,o){let s=C(r,\"shape\",\"raggedTensorToTensor\",\"int32\"),i=C(t,\"values\",\"raggedTensorToTensor\"),a=C(e,\"defaultValue\",\"raggedTensorToTensor\",i.dtype),u=n.map((p,m)=>C(p,`tensors${m}`,\"raggedTensorToTensor\",\"int32\")),l={shape:s,values:i,defaultValue:a,rowPartitionTensors:u},c={rowPartitionTypes:o};return T.runKernel(Bp,l,c)}var tA=k({raggedTensorToTensor_:LX});function zX(r,t,e){Le(r);let n=jt(r),o=null;if(e==null||e===\"float32\")o=new Float32Array(n);else if(e===\"int32\")o=new Int32Array(n);else if(e===\"bool\")o=new Uint8Array(n);else throw new Error(`Unknown data type ${e}`);for(let s=0;syA,createVideoElement:()=>JX,encodeStrings:()=>wA,expectArrayBuffersEqual:()=>ZX,expectArraysClose:()=>KX,expectArraysEqual:()=>XX,expectNumbersClose:()=>bA,expectPromiseToFail:()=>jX,expectValuesInRange:()=>YX,play:()=>QX,testEpsilon:()=>ey});var qX=.001,yA=.1;function KX(r,t,e){return e==null&&(e=ey()),pN(r,t,(n,o)=>mN(n,o,e))}function ey(){return T.backend.floatPrecision()===32?qX:yA}function pN(r,t,e){let n=!0;if((sr(r)||sr(t))&&(n=!1),sr(r)&&sr(t)&&(n=!0),n){let i=r.constructor.name,a=t.constructor.name;if(i!==a)throw new Error(`Arrays are of different type. Actual: ${i}. Expected: ${a}`)}if(Array.isArray(r)&&Array.isArray(t)){let i=Wr(r),a=Wr(t);if(!sn(i,a))throw new Error(`Arrays have different shapes. Actual: [${i}]. Expected: [${a}]`)}let o=sr(r)?r:si(r),s=sr(t)?t:si(t);if(o.length!==s.length)throw new Error(`Arrays have different lengths actual: ${o.length} vs expected: ${s.length}.\nActual: ${o}.\nExpected: ${s}.`);for(let i=0;it.fail(),()=>t()),typeof expect!=\"undefined\"&&expect().nothing()}function XX(r,t){let e=typeof t==\"string\"||typeof t==\"number\"||typeof t==\"boolean\"?[t]:t;return Vo(r)||Vo(r[0])||Vo(t)||Vo(t[0])?pN(r,e,(n,o)=>n==o):pN(r,t,(n,o)=>mN(n,o,0))}function bA(r,t,e){if(e==null&&(e=ey()),!mN(r,t,e))throw new Error(`Numbers differ: actual === ${r}, expected === ${t}`);typeof expect!=\"undefined\"&&expect().nothing()}function mN(r,t,e){return!isFinite(r)&&!isFinite(t)?!0:!(isNaN(r)||isNaN(t)||Math.abs(r-t)>e)}function YX(r,t,e){for(let n=0;ne)throw new Error(`Value out of range:${r[n]} low: ${t}, high: ${e}`)}function ZX(r,t){let e=new Float32Array(r),n=new Float32Array(t);if(e.length!==n.length)throw new Error(`Expected ArrayBuffer to be of length ${n.length}, but it was ${e.length}`);for(let o=0;o{t.addEventListener(\"loadeddata\",n=>e(t)),t.load()})}async function QX(r){await r.play(),\"requestVideoFrameCallback\"in r&&await new Promise(t=>{r.requestVideoFrameCallback(t)})}var gc=class{constructor(t,e,n,o,s){this.mean=t,this.stdDev=e,this.dtype=n,this.nextVal=NaN,this.truncated=o,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let i=s||Math.random();this.random=oy.alea(i.toString())}nextValue(){if(!isNaN(this.nextVal)){let o=this.nextVal;return this.nextVal=NaN,o}let t,e,n=!1;for(;!n;){let o,s,i;do o=2*this.random()-1,s=2*this.random()-1,i=o*o+s*s;while(i>=1||i===0);let a=Math.sqrt(-2*Math.log(i)/i);t=this.mean+this.stdDev*o*a,e=this.mean+this.stdDev*s*a,(!this.truncated||this.isValidTruncated(t))&&(n=!0)}return(!this.truncated||this.isValidTruncated(e))&&(this.nextVal=this.convertValue(e)),this.convertValue(t)}convertValue(t){return this.dtype==null||this.dtype===\"float32\"?t:Math.round(t)}isValidTruncated(t){return t<=this.upper&&t>=this.lower}},ry=class{constructor(t,e,n,o){this.alpha=t,this.beta=1/e,this.dtype=n;let s=o||Math.random();this.randu=oy.alea(s.toString()),this.randn=new gc(0,1,n,!1,this.randu()),t<1?this.d=t+2/3:this.d=t-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let t,e,n,o,s,i;for(;;){do o=this.randn.nextValue(),i=1+this.c*o;while(i<=0);if(i*=i*i,t=o*o,e=1-.331*t*t,n=.5*t+this.d*(1-i+Math.log(i)),s=this.randu(),sthis.dtype==null||this.dtype===\"float32\",this.min=t,this.range=e-t,this.dtype=n,o==null&&(o=Math.random()),typeof o==\"number\"&&(o=o.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${t} - ${e} <= 1 and dtype is not float`);this.random=oy.alea(o)}convertValue(t){return this.canReturnFloat()?t:Math.round(t)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function t5(r,t,e=1,n=\"float32\",o){if(Le(r),e==null&&(e=1),n==null&&(n=\"float32\"),n!==\"float32\"&&n!==\"int32\")throw new Error(`Unsupported data type ${n}`);let s=new ry(t,e,n,o),i=wt(r,n);for(let a=0;a`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),dr(t,0)}var NA=k({reverse1d_:c5});function p5(r,t){let e=C(r,\"x\",\"reverse\");return _(e.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${e.rank}.`),dr(e,t)}var kA=k({reverse2d_:p5});function m5(r,t){let e=C(r,\"x\",\"reverse\");return _(e.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${e.rank}.`),dr(e,t)}var TA=k({reverse3d_:m5});function f5(r,t){let e=C(r,\"x\",\"reverse\");return _(e.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${e.rank}.`),dr(e,t)}var _A=k({reverse4d_:f5});function d5(r){let e={x:C(r,\"x\",\"round\")};return T.runKernel(Ws,e)}var pm=k({round_:d5});function h5(r){let e={x:C(r,\"x\",\"rsqrt\",\"float32\")};return T.runKernel(Us,e)}var mm=k({rsqrt_:h5});function g5(r){let e={x:C(r,\"x\",\"selu\")};return T.runKernel(Hs,e)}var fm=k({selu_:g5});function x5(r,t,e,n,o,s=[1,1],i=\"NHWC\"){let a=C(r,\"x\",\"separableConv2d\"),u=C(t,\"depthwiseFilter\",\"separableConv2d\"),l=C(e,\"pointwiseFilter\",\"separableConv2d\"),c=a,p=!1;if(a.rank===3&&(p=!0,c=R(a,[1,a.shape[0],a.shape[1],a.shape[2]])),i===\"NCHW\")throw new Error(\"separableConv2d currently does not support dataFormat NCHW; only NHWC is supported\");_(c.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${c.rank}.`),_(u.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${u.rank}.`),_(l.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${u.rank}.`),_(l.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${l.shape[0]}.`),_(l.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${l.shape[1]}.`);let m=u.shape[2],f=u.shape[3];_(l.shape[2]===m*f,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${m*f}, but got ${l.shape[2]}.`);let d=ia(c,u,n,o,i,s),g=Nn(d,l,1,\"valid\",i);return p?R(g,[g.shape[1],g.shape[2],g.shape[3]]):g}var dm=k({separableConv2d_:x5});async function y5(r,t){let e=C(r,\"x\",\"setdiff1d\"),n=C(t,\"y\",\"setdiff1d\");_(e.dtype===n.dtype,()=>`x and y should have the same dtype, but got x (${e.dtype}) and y (${n.dtype}).`),_(e.rank===1,()=>`x should be 1D tensor, but got x (${e.shape}).`),_(n.rank===1,()=>`y should be 1D tensor, but got y (${n.shape}).`);let o=await e.data(),s=await n.data(),i=new Set(s),a=0;for(let c=0;c`slice1d expects a rank-1 tensor, but got a rank-${n.rank} tensor`),Ot(n,[t],[e])}var xm=k({slice1d_:C5});function v5(r,t,e){let n=C(r,\"x\",\"slice2d\");return _(n.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${n.rank} tensor`),Ot(n,t,e)}var gh=k({slice2d_:v5});function S5(r,t,e){let n=C(r,\"x\",\"slice3d\");return _(n.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${n.rank} tensor`),Ot(n,t,e)}var ym=k({slice3d_:S5});function N5(r,t,e){let n=C(r,\"x\",\"slice4d\");return _(n.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${n.rank} tensor`),Ot(n,t,e)}var yc=k({slice4d_:N5});function k5(r,t=-1){let e=C(r,\"logits\",\"softmax\",\"float32\");if(t===-1&&(t=e.rank-1),t!==e.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${e.rank} and dim was ${t}`);let n={logits:e},o={dim:t};return T.runKernel(Qs,n,o)}var Eu=k({softmax_:k5});function T5(r){_(r.dtype===\"complex64\",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${r.dtype}.`);let t={input:r};return T.runKernel(Op,t)}var Au=k({fft_:T5});function _5(r){_(r.dtype===\"complex64\",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${r.dtype}.`);let t={input:r};return T.runKernel(Mp,t)}var wl=k({ifft_:_5});function E5(r){let t=r.shape[r.shape.length-1],e=r.size/t,n;if(t<=2){let o=R(r,[e,t]);n=wl(o)}else{let o=[e,2*(t-1)],s=R(bl(r),[e,t]),i=R(Iu(r),[e,t]),a=dr(Ot(s,[0,1],[e,t-2]),1),u=$(dr(Ot(i,[0,1],[e,t-2]),1),pt(-1)),l=ie([s,a],1),c=ie([i,u],1),p=R(Sn(l,c),[o[0],o[1]]);n=wl(p)}if(n=bl(n),r.rank===3&&r.shape[0]!==0){let o=n,s=r.shape[0];n=R(n,[s,n.shape[0]/s,n.shape[1]]),o.dispose()}return n}var bm=k({irfft_:E5});function A5(r,t,e=0){let o={x:C(r,\"x\",\"split\")},s={numOrSizeSplits:t,axis:e};return T.runKernel(qi,o,s)}var hr=k({split_:A5});function D5(r,t){_(r.dtype===\"float32\",()=>`The dtype for rfft() must be real value but got ${r.dtype}`);let e=r.shape[r.shape.length-1],n=r.size/e,o;if(t!=null&&t0),h=r.shape.map(g=>g);h[r.shape.length-1]=t,o=Ot(r,d,h),e=t}else if(t!=null&&t>e){let d=r.shape.map(h=>h);d[r.shape.length-1]=t-e,o=ie([r,ke(d)],r.shape.length-1),e=t}else o=r;let s=vt(o),i=R(Sn(o,s),[n,e]),a=Au(i),u=Math.floor(e/2)+1,l=bl(a),c=Iu(a),p=hr(l,[u,e-u],l.shape.length-1),m=hr(c,[u,e-u],c.shape.length-1),f=o.shape.slice();return f[o.shape.length-1]=u,R(Sn(p[0],m[0]),f)}var Du=k({rfft_:D5});function $5(r,t){let e=C(r,\"a\",\"squaredDifference\"),n=C(t,\"b\",\"squaredDifference\");[e,n]=Xt(e,n),Mt(e.shape,n.shape);let o={a:e,b:n},s={};return T.runKernel(ti,o,s)}var wm=k({squaredDifference_:$5});function R5(r,t){let e=C(r,\"x\",\"squeeze\",\"string_or_numeric\");return R(e,h0(e.shape,t).newShape)}var Wn=k({squeeze_:R5});function F5(r,t=0){let e=fl(r,\"tensors\",\"stack\",\"string_or_numeric\");_(e.length>=1,()=>\"Pass at least one tensor to tf.stack\"),e.length>0&&_(t<=e[0].rank,()=>\"Axis must be <= rank of the tensor\");let n=e,o={axis:t};return T.runKernel(Vi,n,o)}var Fe=k({stack_:F5});function O5(r,t=0){let n={x:C(r,\"x\",\"step\")},o={alpha:t};return T.runKernel(xo,n,o)}var So=k({step_:O5});function M5(r,t,e,n,o=0,s=0,i=0,a=0,u=0){let c={x:C(r,\"x\",\"stridedSlice\",\"string_or_numeric\")},p={begin:t,end:e,strides:n,beginMask:o,endMask:s,ellipsisMask:i,newAxisMask:a,shrinkAxisMask:u};return T.runKernel(ll,c,p)}var ay=k({stridedSlice_:M5});function P5(r){let e={x:C(r,\"x\",\"tan\",\"float32\")};return T.runKernel(ri,e)}var ly=k({tan_:P5});function Oe(r,t){ro(r);let e=Wr(r,t);if(e.length!==1)throw new Error(\"tensor1d() requires values to be a flat/TypedArray\");return ln(r,null,e,t)}function pi(r,t,e){if(ro(r),t!=null&&t.length!==2)throw new Error(\"tensor2d() requires shape to have two numbers\");let n=Wr(r,e);if(n.length!==2&&n.length!==1)throw new Error(\"tensor2d() requires values to be number[][] or flat/TypedArray\");if(n.length===1&&t==null)throw new Error(\"tensor2d() requires shape to be provided when `values` are a flat/TypedArray\");return ln(r,t,n,e)}function uy(r,t,e){if(ro(r),t!=null&&t.length!==3)throw new Error(\"tensor3d() requires shape to have three numbers\");let n=Wr(r,e);if(n.length!==3&&n.length!==1)throw new Error(\"tensor3d() requires values to be number[][][] or flat/TypedArray\");if(n.length===1&&t==null)throw new Error(\"tensor3d() requires shape to be provided when `values` are a flat array\");return ln(r,t,n,e)}function AA(r,t,e){if(ro(r),t!=null&&t.length!==4)throw new Error(\"tensor4d() requires shape to have four numbers\");let n=Wr(r,e);if(n.length!==4&&n.length!==1)throw new Error(\"tensor4d() requires values to be number[][][][] or flat/TypedArray\");if(n.length===1&&t==null)throw new Error(\"tensor4d() requires shape to be provided when `values` are a flat array\");return ln(r,t,n,e)}function DA(r,t,e){if(ro(r),t!=null&&t.length!==5)throw new Error(\"tensor5d() requires shape to have five numbers\");let n=Wr(r,e);if(n.length!==5&&n.length!==1)throw new Error(\"tensor5d() requires values to be number[][][][][] or flat/TypedArray\");if(n.length===1&&t==null)throw new Error(\"tensor5d() requires shape to be provided when `values` are a flat array\");return ln(r,t,n,e)}function $A(r,t,e){if(ro(r),t!=null&&t.length!==6)throw new Error(\"tensor6d() requires shape to have six numbers\");let n=Wr(r,e);if(n.length!==6&&n.length!==1)throw new Error(\"tensor6d() requires values to be number[][][][][][] or flat/TypedArray\");if(n.length===1&&t==null)throw new Error(\"tensor6d() requires shape to be provided when `values` are a flat array\");return t=t||n,ln(r,t,n,e)}var $u={};Kt($u,{calculateShapes:()=>RA,validateInput:()=>Im,validateUpdateShape:()=>fN});function fN(r,t,e){let n=t.rank>1?t.shape[t.rank-1]:1,o=t.rank>1?t.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${e.shape}, indices.shape: ${t.shape}, shape: ${r}, sliceDim: ${n}, and batchDim: ${o}.`;if(e.rank1?t.shape[n-1]:1,s=e.length,i=1;for(let p=o;p= 0 but got ${t}`);if(t>o)throw new Error(`'k' passed to topk() must be <= the last dimension (${o}) but got ${t}`);let s={x:n},i={k:t,sorted:e},[a,u]=T.runKernel(ul,s,i);return{values:a,indices:u}}var cy=k({topk_:z5});function B5(r,t=0,e=1,n,o){if(Le(r),n!=null&&n===\"bool\")throw new Error(\"Unsupported data type $ { dtype }\");let s=new gc(t,e,n,!0,o),i=wt(r,n);for(let a=0;a0,()=>\"The input tensor must be at least 1D\");let n={x:e},o={axis:t},[s,i]=T.runKernel(cu,n,o);return{values:s,indices:i}}var py=k({unique_:V5});function G5(r,t,e){let n=C(r,\"x\",\"unsortedSegmentSum\"),o=C(t,\"segmentIds\",\"unsortedSegmentSum\",\"int32\");_(_a(e),()=>\"numSegments must be of dtype int\");let s={x:n,segmentIds:o},i={numSegments:e};return T.runKernel(pu,s,i)}var vm=k({unsortedSegmentSum_:G5});function W5(r,t=0){let e=C(r,\"x\",\"unstack\",\"string_or_numeric\");_(t>=-e.shape.length&&t`Axis = ${t} is not in [-${e.shape.length}, ${e.shape.length})`);let n={value:e},o={axis:t};return T.runKernel(Ki,n,o)}var gr=k({unstack_:W5});function OA(r,t){return dh(r,t,\"right\")}function my(r,t=!0,e,n){return T.makeVariable(r,t,e,n)}function fy(r,t){let e=[];for(let s=0;s0,()=>\"mask cannot be scalar\"),$e(a.slice(s,s+i),o.shape,\"mask's shape must match the first K dimensions of tensor's shape,\");let u=1;for(let h=s;ha).reverse()),_(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(i=>{_(i>=0&&i`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let o={x:n},s={perm:t};return n.dtype===\"complex64\"?B(()=>{let i=bl(n),a=Iu(n);return i=T.runKernel(so,{x:i},s),a=T.runKernel(so,{x:a},s),e&&(a=Ut(a)),Sn(i,a)}):T.runKernel(so,o,s)}var Vt=k({transpose_:K5});function j5(r,t,e,n,o=!0){let s=C(r,\"v\",\"movingAverage\"),i=C(t,\"x\",\"movingAverage\"),a=C(e,\"decay\",\"movingAverage\");M0(s,i),_(sn(s.shape,i.shape),()=>\"Shape mismatch in v and x\");let u=pt(1),l=at(u,a),c=$(at(i,s),l);if(o){_(n!=null,()=>\"When using zeroDebias: true, step is required.\");let p=C(n,\"step\",\"movingAverage\");c=ut(c,at(u,qr(a,p)))}return K(s,c)}var X5=k({movingAverage_:j5});function Y5(r,t,e){Le(e);let n=C(r,\"indices\",\"scatterND\",\"int32\"),o=C(t,\"updates\",\"scatterND\");Im(o,n,e);let s={indices:n,updates:o},i={shape:e};return T.runKernel(nl,s,i)}var Z5=k({scatterND_:Y5});function MA(r,t,e,n){if(r.dtype!==\"int32\")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${r.dtype}.`);if(r.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${r.shape}.`);let o=r.rank>0?r.shape[0]:1,s=r.rank>1?r.shape[1]:1;if(e.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${e.length}, should be: ${s}.`);let i=t.size;if(!(t.rank===0||t.rank===1&&i===o))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${o}]`);if(t.dtype!==n.dtype)throw new Error(\"sparseValues.dtype must match defaultValues.dtype\")}function Q5(r,t,e,n=0){Le(e);let o=C(r,\"sparseIndices\",\"sparseToDense\",\"int32\"),s=C(t,\"sparseValues\",\"sparseToDense\",\"string_or_numeric\"),i=C(n,\"defaultValue\",\"sparseToDense\",s.dtype);MA(o,s,e,i);let a={sparseIndices:o,sparseValues:s,defaultValue:i},u={outputShape:e};return T.runKernel(al,a,u)}var t8=k({sparseToDense_:Q5});function e8(r,t){let e=C(t,\"indices\",\"gatherND\",\"int32\"),o={params:C(r,\"x\",\"gatherND\",\"string_or_numeric\"),indices:e};return T.runKernel(Va,o)}var r8=k({gatherND_:e8});function PA(r,t){if(t==null)return r.shape.slice();if(sn(r.shape,t))return t;if(r.shape.length===t.length){let e=[];for(let n=0;n`x has to be a floating point tensor since it's going to be scaled, but got a ${o.dtype} tensor instead.`),_(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return r instanceof Lt?o.clone():o;let s=PA(o,e),i=1-t,a=ut(la(K(Gn(s,0,1,\"float32\",n),i)),i);return $(o,a)}var dN=k({dropout_:n8});function hN(r){return Math.floor(Math.pow(2,Math.ceil(Math.log(r)/Math.log(2))))}function xh(r,t,e){let n=1-r%2,o=new Float32Array(r);for(let s=0;s1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${n.rank}`),_(n.rank-1===o.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${n.rank} and targets rank ${o.rank}`),$e(n.shape.slice(0,n.shape.length-1),o.shape,\"predictions's shape should be align with the targets' shape, except the last dimension.\");let s=n.shape[n.shape.length-1];_(e>0&&e<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${e}`);let i=await n.data(),a=await o.data(),[u,l]=[i.length/s,s],c=g0(\"bool\",u);for(let p=0;pg.value-h.value),c[p]=0;for(let h=0;hLA,depthwiseConv2d:()=>zA,matMul:()=>BA});function i8(r,t,e,n,o,s=\"NHWC\",i){let a=r;r.rank===3&&(a=R(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let u=t;u.rank===3&&(u=R(t,[1,t.shape[0],t.shape[1],t.shape[2]])),_(a.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${a.shape}.`),_(u.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${u.shape}.`),_(e.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${e}.`);let l=s===\"NHWC\"?a.shape[3]:a.shape[1],c=s===\"NHWC\"?u.shape[3]:u.shape[1];_(l===e[2],()=>`Error in conv2dDerFilter: depth of input ${l}) must match input depth in filter (${e[2]}.`),_(c===e[3],()=>`Error in conv2dDerFilter: depth of dy (${c}) must match output depth for filter (${e[3]}).`),Se(\"conv2dDerFilter\",o,i);let p={x:a,dy:u},m={strides:n,pad:o,dataFormat:s,dimRoundingMode:i,filterShape:e};return T.runKernel(Dp,p,m)}var Sm=k({conv2DBackpropFilter_:i8});function bc(r,t,e){if(e==null||e===\"linear\")return r;if(e===\"relu\")return $(r,So(t));throw new Error(`Cannot compute gradient for fused activation ${e}.`)}function wc(r,t){let e=t,n=we(r.shape,t.shape);return n.length>0&&(e=mt(e,n)),R(e,r.shape)}function Ic(r,t,e,n){if(t===\"linear\")return r;if(t===\"relu\")return Or(r);if(t===\"elu\")return aa(r);if(t===\"relu6\")return cm(r);if(t===\"prelu\")return _u(r,e);if(t===\"leakyrelu\")return Cu(r,n);if(t===\"sigmoid\")return en(r);throw new Error(`Unknown fused activation ${t}.`)}var Cc=(r,t)=>!(r>0)||t===\"linear\";function a8({x:r,filter:t,strides:e,pad:n,dataFormat:o=\"NHWC\",dilations:s=[1,1],dimRoundingMode:i,bias:a,activation:u=\"linear\",preluActivationWeights:l,leakyreluAlpha:c}){if(u=u||\"linear\",Cc(T.state.gradientDepth,u)===!1){_(o===\"NHWC\",()=>`Error in fused conv2d: got dataFormat of ${o} but only NHWC is currently supported for the case of gradient depth is 0 and the activation is not linear.`);let E=Nn(r,t,e,n,o,s,i);return a!=null&&(E=K(E,a)),Ic(E,u,l,c)}let p=C(r,\"x\",\"conv2d\",\"float32\"),m=C(t,\"filter\",\"conv2d\",\"float32\"),f=p,d=!1;p.rank===3&&(d=!0,f=R(p,[1,p.shape[0],p.shape[1],p.shape[2]])),_(f.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${f.rank}.`),_(m.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${m.rank}.`),Se(\"fused conv2d\",n,i);let h=o===\"NHWC\"?f.shape[3]:f.shape[1];_(m.shape[2]===h,()=>`Error in conv2d: depth of input (${h}) must match input depth for filter ${m.shape[2]}.`),_(Dr(e,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${e} and dilations '${s}'`);let g=pc(f.shape,m.shape,e,s,n,i),x;a!=null&&(x=C(a,\"bias\",\"fused conv2d\"),[x]=Xt(x,p),o===\"NHWC\"?Mt(g.outShape,x.shape):(_(x.shape.length<=1,()=>`Error in fused conv2d: only supports scalar or 1-D Tensor bias for NCHW format but got the bias of rank-${x.shape.length}.`),_(x.shape.length===0||x.shape[0]===g.outChannels||x.shape[0]===1,()=>`Error in fused conv2d: bias shape (${x.shape}) is not compatible with the number of output channels (${g.outChannels})`)));let b;if(l!=null){let E=l.shape;if(_(E.length<=1||E.length===3,()=>`Error in fused conv2d: only supports scalar, 1-D Tensor or 3-D Tensor PReLU activation weights but got a tensor of rank-${E.length}.`),E.length===1)_(E[0]===1||E[0]===g.outChannels,()=>`Error in fused conv2d: PReLU activation weights (${E}) is not compatible with the number of output channels (${g.outChannels}).`);else if(E.length===3)try{Mt(E,g.outShape)}catch(A){let D=`Error in fused conv2d: PReLU activation weights (${E}) is not compatible with the output shape of the conv2d (${g.outShape}).`;throw Error(D)}b=C(l,\"prelu weights\",\"fused conv2d\")}let w=(E,A)=>{_(o===\"NHWC\",()=>`Error in gradient of fused conv2D: got dataFormat of ${o} but only NHWC is currently supported.`);let[D,F,M,V]=A,G=bc(E,M,u);_(io(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let W=nm(F.shape,G,D,e,n),q=Sm(F,G,D.shape,e,n),H=[W,q];if(V!=null){let j=wc(V,G);H.push(j)}return H},I={x:f,filter:m,bias:x,preluActivationWeights:b},N={strides:e,pad:n,dataFormat:o,dilations:s,dimRoundingMode:i,activation:u,leakyreluAlpha:c};return a==null?pn((A,D,F)=>{let M=T.runKernel(Yi,I,N);return F([D,A,M]),d&&(M=R(M,[M.shape[1],M.shape[2],M.shape[3]])),{value:M,gradFunc:w}})(f,m):pn((A,D,F,M)=>{let V=T.runKernel(Yi,I,N);return M([D,A,V,F]),d&&(V=R(V,[V.shape[1],V.shape[2],V.shape[3]])),{value:V,gradFunc:w}})(f,m,x)}var LA=k({fusedConv2d_:a8});function l8(r,t,e,n,o,s=[1,1],i){let a=r;r.rank===3&&(a=R(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let u=t;u.rank===3&&(u=R(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let l={x:a,dy:u},c={strides:n,pad:o,dimRoundingMode:i,dilations:s,filterShape:e};return T.runKernel($p,l,c)}var hy=k({depthwiseConv2dNativeBackpropFilter_:l8});function u8(r,t,e,n,o,s=[1,1],i){let a=t,u=!1;t.rank===3&&(u=!0,a=R(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let l={dy:a,filter:e},c={strides:n,pad:o,dimRoundingMode:i,dilations:s,inputShape:r},p=T.runKernel(Rp,l,c);return u?R(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var gy=k({depthwiseConv2dNativeBackpropInput_:u8});function c8({x:r,filter:t,strides:e,pad:n,dataFormat:o=\"NHWC\",dilations:s=[1,1],dimRoundingMode:i,bias:a,activation:u=\"linear\",preluActivationWeights:l,leakyreluAlpha:c}){if(Cc(T.state.gradientDepth,u)===!1){let N=ia(r,t,e,n,o,s,i);return a!=null&&(N=K(N,a)),Ic(N,u,l,c)}let p=C(r,\"x\",\"depthwiseConv2d\",\"float32\"),m=C(t,\"filter\",\"depthwiseConv2d\",\"float32\"),f=p,d=!1;p.rank===3&&(d=!0,f=R(p,[1,p.shape[0],p.shape[1],p.shape[2]])),_(f.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${f.rank}.`),_(m.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${m.rank}.`),_(f.shape[3]===m.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${f.shape[3]}) must match the inChannels dimension in filter ${m.shape[2]}.`),s==null&&(s=[1,1]),_(Dr(e,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${e} and dilations '${s}'`),Se(\"fused depthwiseConv2d\",n,i);let h=pc(f.shape,m.shape,e,s,n,i,!0),g;a!=null&&(g=C(a,\"bias\",\"fused conv2d\"),[g]=Xt(g,p),Mt(h.outShape,g.shape));let x;l!=null&&(x=C(l,\"prelu weights\",\"fused depthwiseConv2d\"));let b=(N,E)=>{_(io(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[A,D,F,M]=E,V=bc(N,F,u),G=gy(D.shape,V,A,e,n,s,i),W=hy(D,V,A.shape,e,n,s,i);if(M!=null){let q=wc(g,V);return[G,W,q]}return[G,W]},w={x:f,filter:m,bias:g,preluActivationWeights:x},I={strides:e,pad:n,dataFormat:o,dilations:s,dimRoundingMode:i,activation:u,leakyreluAlpha:c};return a==null?pn((E,A,D)=>{let F=T.runKernel(Zi,w,I);return D([A,E,F]),d&&(F=R(F,[F.shape[1],F.shape[2],F.shape[3]])),{value:F,gradFunc:b}})(f,m):pn((E,A,D,F)=>{let M=T.runKernel(Zi,w,I);return F([A,E,M,D]),d&&(M=R(M,[M.shape[1],M.shape[2],M.shape[3]])),{value:M,gradFunc:b}})(f,m,g)}var zA=k({fusedDepthwiseConv2d_:c8});function p8({a:r,b:t,transposeA:e=!1,transposeB:n=!1,bias:o,activation:s=\"linear\",preluActivationWeights:i,leakyreluAlpha:a=.2}){if(Cc(T.state.gradientDepth,s)===!1){let V=Bt(r,t,e,n);return o!=null&&(V=K(V,o)),Ic(V,s,i,a)}let u=C(r,\"a\",\"fused matMul\"),l=C(t,\"b\",\"fused matMul\");[u,l]=Xt(u,l);let c=e?u.shape[u.rank-2]:u.shape[u.rank-1],p=n?l.shape[l.rank-1]:l.shape[l.rank-2],m=e?u.shape[u.rank-1]:u.shape[u.rank-2],f=n?l.shape[l.rank-2]:l.shape[l.rank-1],d=u.shape.slice(0,-2),h=l.shape.slice(0,-2),g=jt(d),x=jt(h);_(c===p,()=>`Error in fused matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${u.shape} and ${l.shape} and transposeA=${e} and transposeB=${n} must match.`);let w=Mt(u.shape.slice(0,-2),l.shape.slice(0,-2)).concat([m,f]),I=e?R(u,[g,c,m]):R(u,[g,m,c]),N=n?R(l,[x,f,p]):R(l,[x,p,f]),E;o!=null&&(E=C(o,\"bias\",\"fused matMul\"),[E]=Xt(E,u),Mt(w,E.shape));let A;i!=null&&(A=C(i,\"prelu weights\",\"fused matMul\"));let D=(V,G)=>{let[W,q,H,j]=G,Y=bc(R(V,H.shape),H,s),Z,et;if(!e&&!n?(Z=Bt(Y,q,!1,!0),et=Bt(W,Y,!0,!1)):!e&&n?(Z=Bt(Y,q,!1,!1),et=Bt(Y,W,!0,!1)):e&&!n?(Z=Bt(q,Y,!1,!0),et=Bt(W,Y,!1,!1)):(Z=Bt(q,Y,!0,!0),et=Bt(Y,W,!0,!0)),o!=null){let nt=wc(j,Y);return[Z,et,nt]}else return[Z,et]},F={a:I,b:N,bias:E,preluActivationWeights:A},M={transposeA:e,transposeB:n,activation:s,leakyreluAlpha:a};return o==null?pn((G,W,q)=>{let H=T.runKernel(Xi,F,M);return q([G,W,H]),{value:R(H,w),gradFunc:D}})(I,N):pn((G,W,q,H)=>{let j=T.runKernel(Xi,F,M);return H([G,W,j,q]),{value:R(j,w),gradFunc:D}})(I,N,E)}var BA=k({fusedMatMul_:p8});function m8(r){return xh(r,.54,.46)}var VA=k({hammingWindow_:m8});function f8(r){return xh(r,.5,.5)}var xy=k({hannWindow_:f8});function d8(r,t,e,n=!1,o=0){let s=0,i=[];for(;s+t<=r.size;)i.push(Ot(r,s,t)),s+=e;if(n)for(;s`Error in cropAndResize: image must be rank 4,but got rank ${i.rank}.`),_(a.rank===2&&a.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${l},4] but had shape ${a.shape}.`),_(u.rank===1&&u.shape[0]===l,()=>`Error in cropAndResize: boxInd must be have size [${l}] but had shape ${a.shape}.`),_(n.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${n.length}.`),_(n[0]>=1&&n[1]>=1,()=>`cropSize must be atleast [1,1], but was ${n}`),_(o===\"bilinear\"||o===\"nearest\",()=>`method must be bilinear or nearest, but was ${o}`);let c={image:i,boxes:a,boxInd:u},p={method:o,extrapolationValue:s,cropSize:n};return T.runKernel(Ma,c,p)}var WA=k({cropAndResize_:g8});function x8(r){let t=C(r,\"image\",\"flipLeftRight\",\"float32\");_(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let e={image:t};return T.runKernel(Ba,e,{})}var UA=k({flipLeftRight_:x8});function y8(r){let t=C(r,\"image\",\"grayscaleToRGB\"),e=t.rank-1,n=t.shape[e];_(t.rank>=2,()=>`Error in grayscaleToRGB: images must be at least rank 2, but got rank ${t.rank}.`),_(n===1,()=>`Error in grayscaleToRGB: last dimension of a grayscale image should be size 1, but got size ${n}.`);let o=new Array(t.rank);return o.fill(1,0,e),o[e]=3,Rr(t,o)}var HA=k({grayscaleToRGB_:y8});function b8(r){let t=C(r,\"image\",\"RGBToGrayscale\"),e=t.rank-1,n=t.shape[e];_(t.rank>=2,()=>`Error in RGBToGrayscale: images must be at least rank 2, but got rank ${t.rank}.`),_(n===3,()=>`Error in RGBToGrayscale: last dimension of an RGB image should be size 3, but got size ${n}.`);let o=t.dtype,s=J(t,\"float32\"),i=Oe([.2989,.587,.114]),a;switch(t.rank){case 2:a=wu(\"ij,j->i\",s,i);break;case 3:a=wu(\"ijk,k->ij\",s,i);break;case 4:a=wu(\"ijkl,l->ijk\",s,i);break;case 5:a=wu(\"ijklm,m->ijkl\",s,i);break;case 6:a=wu(\"ijklmn,n->ijklm\",s,i);break;default:throw new Error(\"Not a valid tensor rank.\")}return a=je(a,-1),J(a,o)}var qA=k({rgbToGrayscale_:b8});function w8(r,t,e=0,n=.5){let o=C(r,\"image\",\"rotateWithOffset\",\"float32\");_(o.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${o.rank}.`);let s={image:o},i={radians:t,fillValue:e,center:n};return T.runKernel(pl,s,i)}var KA=k({rotateWithOffset_:w8});function No(r,t,e,n,o,s){n==null&&(n=.5),o==null&&(o=Number.NEGATIVE_INFINITY),s==null&&(s=0);let i=r.shape[0];return e=Math.min(e,i),_(0<=n&&n<=1,()=>`iouThreshold must be in [0, 1], but was '${n}'`),_(r.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${r.rank}'`),_(r.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${r.shape[1]}`),_(t.rank===1,()=>\"scores must be a 1D tensor\"),_(t.shape[0]===i,()=>`scores has incompatible shape with boxes. Expected ${i}, but was ${t.shape[0]}`),_(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:e,iouThreshold:n,scoreThreshold:o,softNmsSigma:s}}function I8(r,t,e,n=.5,o=Number.NEGATIVE_INFINITY){let s=C(r,\"boxes\",\"nonMaxSuppression\",\"float32\"),i=C(t,\"scores\",\"nonMaxSuppression\",\"float32\"),a=No(s,i,e,n,o);e=a.maxOutputSize,n=a.iouThreshold,o=a.scoreThreshold;let u={maxOutputSize:e,iouThreshold:n,scoreThreshold:o};return T.runKernel(Ja,{boxes:s,scores:i},u)}var jA=k({nonMaxSuppression_:I8});function XA(r,t,e){let n=C8(r,t,e),o=n<0?-(n+1):n;r.splice(o,0,t)}function C8(r,t,e){return S8(r,t,e||v8)}function v8(r,t){return r>t?1:r>>1);let a=e(t,r[s]);a>0?n=s+1:(o=s,i=!a)}return i?n:-n-1}function by(r,t,e,n,o){return gN(r,t,e,n,o,0)}function wy(r,t,e,n,o,s){return gN(r,t,e,n,o,0,!1,s,!0)}function Iy(r,t,e,n,o,s){return gN(r,t,e,n,o,s,!0)}function gN(r,t,e,n,o,s,i=!1,a=!1,u=!1){let l=[];for(let g=0;go&&l.push({score:t[g],boxIndex:g,suppressBeginIndex:0});l.sort(YA);let c=s>0?-.5/s:0,p=[],m=[];for(;p.length0;){let g=l.pop(),{score:x,boxIndex:b,suppressBeginIndex:w}=g;if(x=w;--N){let E=N8(r,b,p[N]);if(E>=n){I=!0;break}if(g.score=g.score*k8(n,c,E),g.score<=o)break}g.suppressBeginIndex=p.length,I||(g.score===x?(p.push(b),m.push(g.score)):g.score>o&&XA(l,g,YA))}let f=p.length,d=e-f;a&&d>0&&(p.push(...new Array(d).fill(0)),m.push(...new Array(d).fill(0)));let h={selectedIndices:p};return i&&(h.selectedScores=m),u&&(h.validOutputs=f),h}function N8(r,t,e){let n=r.subarray(t*4,t*4+4),o=r.subarray(e*4,e*4+4),s=Math.min(n[0],n[2]),i=Math.min(n[1],n[3]),a=Math.max(n[0],n[2]),u=Math.max(n[1],n[3]),l=Math.min(o[0],o[2]),c=Math.min(o[1],o[3]),p=Math.max(o[0],o[2]),m=Math.max(o[1],o[3]),f=(a-s)*(u-i),d=(p-l)*(m-c);if(f<=0||d<=0)return 0;let h=Math.max(s,l),g=Math.max(i,c),x=Math.min(a,p),b=Math.min(u,m),w=Math.max(x-h,0)*Math.max(b-g,0);return w/(f+d-w)}function k8(r,t,e){let n=Math.exp(t*e*e);return e<=r?n:0}function YA(r,t){return r.score-t.score||r.score===t.score&&t.boxIndex-r.boxIndex}async function T8(r,t,e,n=.5,o=Number.NEGATIVE_INFINITY){let s=C(r,\"boxes\",\"nonMaxSuppressionAsync\"),i=C(t,\"scores\",\"nonMaxSuppressionAsync\"),a=No(s,i,e,n,o);e=a.maxOutputSize,n=a.iouThreshold,o=a.scoreThreshold;let u=await Promise.all([s.data(),i.data()]),l=u[0],c=u[1],{selectedIndices:p}=by(l,c,e,n,o);return s!==r&&s.dispose(),i!==t&&i.dispose(),Oe(p,\"int32\")}var ZA=T8;function _8(r,t,e,n=.5,o=Number.NEGATIVE_INFINITY,s=0){let i=C(r,\"boxes\",\"nonMaxSuppression\"),a=C(t,\"scores\",\"nonMaxSuppression\"),u=No(i,a,e,n,o,s);e=u.maxOutputSize,n=u.iouThreshold,o=u.scoreThreshold,s=u.softNmsSigma;let l={boxes:i,scores:a},c={maxOutputSize:e,iouThreshold:n,scoreThreshold:o,softNmsSigma:s},p=T.runKernel(tl,l,c);return{selectedIndices:p[0],selectedScores:p[1]}}var JA=k({nonMaxSuppressionWithScore_:_8});async function E8(r,t,e,n=.5,o=Number.NEGATIVE_INFINITY,s=0){let i=C(r,\"boxes\",\"nonMaxSuppressionAsync\"),a=C(t,\"scores\",\"nonMaxSuppressionAsync\"),u=No(i,a,e,n,o,s);e=u.maxOutputSize,n=u.iouThreshold,o=u.scoreThreshold,s=u.softNmsSigma;let l=await Promise.all([i.data(),a.data()]),c=l[0],p=l[1],{selectedIndices:m,selectedScores:f}=Iy(c,p,e,n,o,s);return i!==r&&i.dispose(),a!==t&&a.dispose(),{selectedIndices:Oe(m,\"int32\"),selectedScores:Oe(f)}}var QA=E8;function A8(r,t,e,n=.5,o=Number.NEGATIVE_INFINITY,s=!1){let i=C(r,\"boxes\",\"nonMaxSuppression\"),a=C(t,\"scores\",\"nonMaxSuppression\"),u=No(i,a,e,n,o,null),l=u.maxOutputSize,c=u.iouThreshold,p=u.scoreThreshold,m={boxes:i,scores:a},f={maxOutputSize:l,iouThreshold:c,scoreThreshold:p,padToMaxOutputSize:s},d=T.runKernel(Qa,m,f);return{selectedIndices:d[0],validOutputs:d[1]}}var t2=k({nonMaxSuppressionPadded_:A8});async function D8(r,t,e,n=.5,o=Number.NEGATIVE_INFINITY,s=!1){let i=C(r,\"boxes\",\"nonMaxSuppressionAsync\"),a=C(t,\"scores\",\"nonMaxSuppressionAsync\"),u=No(i,a,e,n,o,null),l=u.maxOutputSize,c=u.iouThreshold,p=u.scoreThreshold,[m,f]=await Promise.all([i.data(),a.data()]),{selectedIndices:d,validOutputs:h}=wy(m,f,l,c,p,s);return i!==r&&i.dispose(),a!==t&&a.dispose(),{selectedIndices:Oe(d,\"int32\"),validOutputs:pt(h,\"int32\")}}var e2=D8;function $8(r,t,e=!1,n=!1){let o=C(r,\"images\",\"resizeBilinear\");_(o.rank===3||o.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${o.rank}.`),_(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),_(n===!1||e===!1,()=>\"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.\");let s=o,i=!1;o.rank===3&&(i=!0,s=R(o,[1,o.shape[0],o.shape[1],o.shape[2]]));let[]=t,a={images:s},u={alignCorners:e,halfPixelCenters:n,size:t},l=T.runKernel(Bs,a,u);return i?R(l,[l.shape[1],l.shape[2],l.shape[3]]):l}var Cy=k({resizeBilinear_:$8});function R8(r,t,e=!1,n=!1){let o=C(r,\"images\",\"resizeNearestNeighbor\");_(o.rank===3||o.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${o.rank}.`),_(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),_(o.dtype===\"float32\"||o.dtype===\"int32\",()=>\"`images` must have `int32` or `float32` as dtype\"),_(n===!1||e===!1,()=>\"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.\");let s=o,i=!1;o.rank===3&&(i=!0,s=R(o,[1,o.shape[0],o.shape[1],o.shape[2]]));let[]=t,a={images:s},u={alignCorners:e,halfPixelCenters:n,size:t},l=T.runKernel(zs,a,u);return i?R(l,[l.shape[1],l.shape[2],l.shape[3]]):l}var vy=k({resizeNearestNeighbor_:R8});function F8(r,t=\"binary\",e=!1,n=.5){let o=C(r,\"image\",\"threshold\"),s=.2989,i=.587,a=.114,u=o.shape[0]*o.shape[1],l=$(Oe([n]),255),c,p,m,f;if(_(o.rank===3,()=>`Error in threshold: image must be rank 3,but got rank ${o.rank}.`),_(o.shape[2]===3||o.shape[2]===1,()=>`Error in threshold: image color channel must be equal to 3 or 1but got ${o.shape[2]}.`),_(o.dtype===\"int32\"||o.dtype===\"float32\",()=>`Error in dtype: image dtype must be int32 or float32,but got dtype ${o.dtype}.`),_(t===\"otsu\"||t===\"binary\",()=>`Method must be binary or otsu, but was ${t}`),o.shape[2]===3){[c,p,m]=hr(o,[1,1,1],-1);let g=$(c,s),x=$(p,i),b=$(m,a);f=K(K(g,x),b)}else f=r;if(t===\"otsu\"){let g=Nx(J(pm(f),\"int32\"),ir([]),256);l=O8(g,u)}let d=e?Vn(f,l):Re(f,l);return J($(d,255),\"int32\")}function O8(r,t){let e=Oe([-1]),n=Oe([0]),o=Oe([0]),s,i,a,u,l,c;for(let p=0;p`Error in transform: image must be rank 4,but got rank ${i.rank}.`),_(a.rank===2&&(a.shape[0]===i.shape[0]||a.shape[0]===1)&&a.shape[1]===8,()=>\"Error in transform: Input transform should be batch x 8 or 1 x 8\"),_(s==null||s.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${s}.`);let u={image:i,transforms:a},l={interpolation:e,fillMode:n,fillValue:o,outputShape:s};return T.runKernel(cl,u,l)}var n2=k({transform_:M8});function P8(r,t,e){let n=C(r,\"a\",\"bandPart\");_(n.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${n.rank}.`);let o=n.shape,[s,i]=n.shape.slice(-2),a,u;typeof t==\"number\"?(_(t%1===0,()=>`bandPart(): numLower must be an integer, got ${t}.`),_(t<=s,()=>`bandPart(): numLower (${t}) must not be greater than the number of rows (${s}).`),a=C(t<0?s:t,\"numLower\",\"bandPart\")):(_(t.dtype===\"int32\",()=>\"bandPart(): numLower's dtype must be an int32.\"),a=Ie(yl(t,0),s,lo(t,s))),typeof e==\"number\"?(_(e%1===0,()=>`bandPart(): numUpper must be an integer, got ${e}.`),_(e<=i,()=>`bandPart(): numUpper (${e}) must not be greater than the number of columns (${i}).`),u=C(e<0?i:e,\"numUpper\",\"bandPart\")):(_(e.dtype===\"int32\",()=>\"bandPart(): numUpper's dtype must be an int32.\"),u=Ie(yl(e,0),i,lo(e,i)));let l=R(pa(0,s,1,\"int32\"),[-1,1]),c=pa(0,i,1,\"int32\"),p=at(l,c),m=Fr(Vn(p,a),cn(p,Ut(u))),f=ke([s,i],n.dtype);return R(Fe(gr(R(n,[-1,s,i])).map(d=>Ie(m,d,f))),o)}var o2=k({bandPart_:P8});function L8(r){let t;if(Array.isArray(r)){t=!1,_(r!=null&&r.length>0,()=>\"Gram-Schmidt process: input must not be null, undefined, or empty\");let o=r[0].shape[0];for(let s=1;s`Gram-Schmidt: Non-unique lengths found in the input vectors: (${r[s].shape[0]} vs. ${o})`)}else t=!0,r=hr(r,r.shape[0],0).map(o=>Wn(o,[0]));_(r.length<=r[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${r.length}) exceeds number of dimensions (${r[0].shape[0]}).`);let e=[],n=r;for(let o=0;o{let s=n[o];if(o>0)for(let i=0;i=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${r.rank}`),r.rank===2)return i2(r,t);{let e=r.shape.slice(0,r.shape.length-2).reduce((u,l)=>u*l),n=gr(R(r,[e,r.shape[r.shape.length-2],r.shape[r.shape.length-1]]),0),o=[],s=[];n.forEach(u=>{let[l,c]=i2(u,t);o.push(l),s.push(c)});let i=R(Fe(o,0),r.shape),a=R(Fe(s,0),r.shape);return[i,a]}}function i2(r,t=!1){return T.tidy(()=>{_(r.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${r.shape.length}D Tensor.`);let e=r.shape[0],n=r.shape[1],o=fc(e),s=un(r),i=pi([[1]],[1,1]),a=un(i),u=e>=n?n:e;for(let l=0;l{let f=Ot(s,[l,l],[e-l,1]),d=xl(f),h=Ot(s,[l,l],[1,1]),g=Ie(Re(h,0),pi([[-1]]),pi([[1]])),x=at(h,$(g,d)),b=ut(f,x);b.shape[0]===1?a=un(i):a=ie([i,Ot(b,[1,0],[b.shape[0]-1,b.shape[1]])],0);let w=Ut(ut(Bt(g,x),d)),I=Ot(s,[l,0],[e-l,n]),N=$(w,a),E=Vt(a);if(l===0)s=at(I,Bt(N,Bt(E,I)));else{let F=at(I,Bt(N,Bt(E,I)));s=ie([Ot(s,[0,0],[l,n]),F],0)}let A=Vt(N),D=Ot(o,[0,l],[e,o.shape[1]-l]);if(l===0)o=at(D,Bt(Bt(D,a),A));else{let F=at(D,Bt(Bt(D,a),A));o=ie([Ot(o,[0,0],[e,l]),F],1)}return[a,s,o]}),Tt([c,p,m])}return!t&&e>n&&(o=Ot(o,[0,0],[e,n]),s=Ot(s,[0,0],[n,n])),[o,s]})}var a2=k({qr_:z8});var Je;(function(r){r[r.NONE=0]=\"NONE\",r[r.MEAN=1]=\"MEAN\",r[r.SUM=2]=\"SUM\",r[r.SUM_BY_NONZERO_WEIGHTS=3]=\"SUM_BY_NONZERO_WEIGHTS\"})(Je||(Je={}));function B8(r,t,e=Je.SUM_BY_NONZERO_WEIGHTS){let n=C(r,\"losses\",\"computeWeightedLoss\"),o=null;t!=null&&(o=C(t,\"weights\",\"computeWeightedLoss\"));let s=o==null?n:$(n,o);if(e===Je.NONE)return s;if(e===Je.SUM)return mt(s);if(e===Je.MEAN){if(o==null)return Ne(s);{let i=n.size/o.size,a=ut(mt(s),mt(o));return i>1?ut(a,pt(i)):a}}if(e===Je.SUM_BY_NONZERO_WEIGHTS){if(o==null)return ut(mt(s),pt(n.size));{let i=$(o,ar(n.shape)),a=J(mt(ci(i,pt(0))),\"float32\");return ut(mt(s),a)}}throw Error(`Unknown reduction: ${e}`)}var Kr=k({computeWeightedLoss_:B8});function V8(r,t,e,n=Je.SUM_BY_NONZERO_WEIGHTS){let o=C(r,\"labels\",\"absoluteDifference\"),s=C(t,\"predictions\",\"absoluteDifference\"),i=null;e!=null&&(i=C(e,\"weights\",\"absoluteDifference\")),$e(o.shape,s.shape,\"Error in absoluteDifference: \");let a=_e(at(o,s));return Kr(a,i,n)}var l2=k({absoluteDifference_:V8});function G8(r,t,e,n,o=Je.SUM_BY_NONZERO_WEIGHTS){let s=C(r,\"labels\",\"cosineDistance\"),i=C(t,\"predictions\",\"cosineDistance\"),a=null;n!=null&&(a=C(n,\"weights\",\"cosineDistance\")),$e(s.shape,i.shape,\"Error in cosineDistance: \");let u=pt(1),l=at(u,mt($(s,i),e,!0));return Kr(l,a,o)}var u2=k({cosineDistance_:G8});function W8(r,t,e,n=Je.SUM_BY_NONZERO_WEIGHTS){let o=C(r,\"labels\",\"hingeLoss\"),s=C(t,\"predictions\",\"hingeLoss\"),i=null;e!=null&&(i=C(e,\"weights\",\"hingeLoss\")),$e(o.shape,s.shape,\"Error in hingeLoss: \");let a=pt(1);o=at($(pt(2),o),a);let u=Or(at(a,$(o,s)));return Kr(u,i,n)}var c2=k({hingeLoss_:W8});function U8(r,t,e,n=1,o=Je.SUM_BY_NONZERO_WEIGHTS){let s=C(r,\"labels\",\"huberLoss\"),i=C(t,\"predictions\",\"huberLoss\"),a=null;e!=null&&(a=C(e,\"weights\",\"huberLoss\")),$e(s.shape,i.shape,\"Error in huberLoss: \");let u=pt(n),l=_e(at(i,s)),c=lo(l,u),p=at(l,c),m=K($(pt(.5),Wt(c)),$(u,p));return Kr(m,a,o)}var p2=k({huberLoss_:U8});function H8(r,t,e,n=1e-7,o=Je.SUM_BY_NONZERO_WEIGHTS){let s=C(r,\"labels\",\"logLoss\"),i=C(t,\"predictions\",\"logLoss\"),a=null;e!=null&&(a=C(e,\"weights\",\"logLoss\")),$e(s.shape,i.shape,\"Error in logLoss: \");let u=pt(1),l=pt(n),c=Ut($(s,Nr(K(i,l)))),p=$(at(u,s),Nr(K(at(u,i),l))),m=at(c,p);return Kr(m,a,o)}var m2=k({logLoss_:H8});function q8(r,t,e,n=Je.SUM_BY_NONZERO_WEIGHTS){let o=C(r,\"labels\",\"meanSquaredError\"),s=C(t,\"predictions\",\"meanSquaredError\"),i=null;e!=null&&(i=C(e,\"weights\",\"meanSquaredError\")),$e(o.shape,s.shape,\"Error in meanSquaredError: \");let a=wm(o,s);return Kr(a,i,n)}var f2=k({meanSquaredError_:q8});function K8(r,t){let e=C(r,\"labels\",\"sigmoidCrossEntropyWithLogits\"),n=C(t,\"logits\",\"sigmoidCrossEntropyWithLogits\");$e(e.shape,n.shape,\"Error in sigmoidCrossEntropyWithLogits: \");let o=Or(n),s=$(n,e),i=vu(Ke(Ut(_e(n))));return K(at(o,s),i)}function j8(r,t,e,n=0,o=Je.SUM_BY_NONZERO_WEIGHTS){let s=C(r,\"multiClassLabels\",\"sigmoidCrossEntropy\"),i=C(t,\"logits\",\"sigmoidCrossEntropy\"),a=null;if(e!=null&&(a=C(e,\"weights\",\"sigmoidCrossEntropy\")),$e(s.shape,i.shape,\"Error in sigmoidCrossEntropy: \"),n>0){let l=pt(n),c=pt(1),p=pt(.5);s=K($(s,at(c,l)),$(p,l))}let u=K8(s,i);return Kr(u,a,o)}var d2=k({sigmoidCrossEntropy_:j8});function X8(r,t,e=-1){if(e===-1&&(e=t.rank-1),e!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${e}`);return pn((o,s,i)=>{let u=Su(s,[e],!0),l=at(J(s,\"float32\"),u);i([o,l]);let c=Ut($(l,o));return{value:mt(c,[e]),gradFunc:(f,d)=>{let[h,g]=d,x=vo(f.shape,[e]);return[$(R(f,x),at(J(h,\"float32\"),Ke(g))),$(R(f,x),at(Ke(g),J(h,\"float32\")))]}}})(r,t)}function Y8(r,t,e,n=0,o=Je.SUM_BY_NONZERO_WEIGHTS){let s=C(r,\"onehotLabels\",\"softmaxCrossEntropy\"),i=C(t,\"logits\",\"softmaxCrossEntropy\"),a=null;if(e!=null&&(a=C(e,\"weights\",\"softmaxCrossEntropy\")),$e(s.shape,i.shape,\"Error in softmaxCrossEntropy: \"),n>0){let l=pt(n),c=pt(1),p=pt(s.shape[1]);s=K($(s,at(c,l)),ut(l,p))}let u=X8(s,i);return Kr(u,a,o)}var h2=k({softmaxCrossEntropy_:Y8});function Z8(r,t,e,n){let o=C(r,\"indices\",\"sparseFillEmptyRows\",\"int32\"),s=C(t,\"values\",\"sparseFillEmptyRows\"),i=C(e,\"denseShape\",\"sparseFillEmptyRows\",\"int32\"),a=C(n,\"defaultValue\",\"sparseFillEmptyRows\",s.dtype);if(o.rank!==2)throw new Error(`Indices should be Tensor2D but received shape\n ${o.shape}`);if(s.rank!==1)throw new Error(`Values should be Tensor1D but received shape ${s.shape}`);if(i.rank!==1)throw new Error(`Dense shape should be Tensor1D but received shape ${i.shape}`);if(a.rank!==0)throw new Error(`Default value should be a scalar but received shape ${a.shape}`);let u={indices:o,values:s,denseShape:i,defaultValue:a},l=T.runKernel(nu,u);return{outputIndices:l[0],outputValues:l[1],emptyRowIndicator:l[2],reverseIndexMap:l[3]}}var g2=k({sparseFillEmptyRows_:Z8});function J8(r,t,e){let n=C(r,\"inputIndices\",\"sparseReshape\",\"int32\"),o=C(t,\"inputShape\",\"sparseReshape\",\"int32\"),s=C(e,\"newShape\",\"sparseReshape\",\"int32\");if(n.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape\n ${n.shape}`);if(o.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${o.shape}`);if(s.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${s.shape}`);let i={inputIndices:n,inputShape:o,newShape:s},a=T.runKernel(il,i);return{outputIndices:a[0],outputShape:a[1]}}var x2=k({sparseReshape_:J8});function Q8(r,t,e){let n=C(r,\"data\",\"sparseSegmentMean\"),o=C(t,\"indices\",\"sparseSegmentMean\",\"int32\"),s=C(e,\"segmentIds\",\"sparseSegmentMean\",\"int32\");if(n.rank<1)throw new Error(\"Data should be at least 1 dimensional but received scalar\");if(o.rank!==1)throw new Error(`Indices should be Tensor1D but received shape\n ${o.shape}`);if(s.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape\n ${s.shape}`);let i={data:n,indices:o,segmentIds:s};return T.runKernel(ou,i)}var y2=k({sparseSegmentMean_:Q8});function tY(r,t,e){let n=C(r,\"data\",\"sparseSegmentSum\"),o=C(t,\"indices\",\"sparseSegmentSum\",\"int32\"),s=C(e,\"segmentIds\",\"sparseSegmentSum\",\"int32\");if(n.rank<1)throw new Error(\"Data should be at least 1 dimensional but received scalar\");if(o.rank!==1)throw new Error(`Indices should be Tensor1D but received shape\n ${o.shape}`);if(s.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape\n ${s.shape}`);let i={data:n,indices:o,segmentIds:s};return T.runKernel(su,i)}var b2=k({sparseSegmentSum_:tY});function eY(r,t,e,n,o,s,i,a){let u=C(r,\"data\",\"stringNGrams\",\"string\");if(u.dtype!==\"string\")throw new Error(\"Data must be of datatype string\");if(u.shape.length!==1)throw new Error(`Data must be a vector, saw: ${u.shape}`);let l=C(t,\"dataSplits\",\"stringNGrams\");if(l.dtype!==\"int32\")throw new Error(\"Data splits must be of datatype int32\");let c={separator:e,nGramWidths:n,leftPad:o,rightPad:s,padWidth:i,preserveShortSequences:a},p={data:u,dataSplits:l},m=T.runKernel(au,p,c);return{nGrams:m[0],nGramsSplits:m[1]}}var w2=k({stringNGrams_:eY});function rY(r,t,e=!0){let n=C(r,\"input\",\"stringSplit\",\"string\"),o=C(t,\"delimiter\",\"stringSplit\",\"string\");if(n.rank!==1)throw new Error(`Input should be Tensor1D but received shape ${n.shape}`);if(o.rank!==0)throw new Error(`Delimiter should be a scalar but received shape ${o.shape}`);let s={skipEmpty:e},i={input:n,delimiter:o},a=T.runKernel(lu,i,s);return{indices:a[0],values:a[1],shape:a[2]}}var I2=k({stringSplit_:rY});function nY(r,t){let e=C(r,\"input\",\"stringToHashBucketFast\",\"string\"),n={numBuckets:t};if(t<=0)throw new Error(\"Number of buckets must be at least 1\");let o={input:e};return T.runKernel(uu,o,n)}var C2=k({stringToHashBucketFast_:nY});function oY(r,t,e,n=!0){let o=C(r,\"input\",\"staticRegexReplace\",\"string\"),s={pattern:t,rewrite:e,replaceGlobal:n};return T.runKernel(ec,{x:o},s)}var v2=k({staticRegexReplace_:oY});var sY={fft:Au,ifft:wl,rfft:Du,irfft:bm},iY={hammingWindow:VA,hannWindow:xy,frame:yy,stft:GA},fn={flipLeftRight:UA,grayscaleToRGB:HA,resizeNearestNeighbor:vy,resizeBilinear:Cy,rgbToGrayscale:qA,rotateWithOffset:KA,cropAndResize:WA,nonMaxSuppression:jA,nonMaxSuppressionAsync:ZA,nonMaxSuppressionWithScore:JA,nonMaxSuppressionWithScoreAsync:QA,nonMaxSuppressionPadded:t2,nonMaxSuppressionPaddedAsync:e2,threshold:r2,transform:n2},xN={bandPart:o2,gramSchmidt:s2,qr:a2},aY={absoluteDifference:l2,computeWeightedLoss:Kr,cosineDistance:u2,hingeLoss:c2,huberLoss:p2,logLoss:m2,meanSquaredError:f2,sigmoidCrossEntropy:d2,softmaxCrossEntropy:h2},lY={sparseFillEmptyRows:g2,sparseReshape:x2,sparseSegmentMean:y2,sparseSegmentSum:b2},uY={stringNGrams:w2,stringSplit:I2,stringToHashBucketFast:C2,staticRegexReplace:v2};var Q={};Kt(Q,{Serializable:()=>yh,SerializationMap:()=>Sy,getRegisteredName:()=>pY,registerClass:()=>bN});var cY=new Map,yN=new Map,yh=class{getClassName(){return this.constructor.className}static fromConfig(t,e){return new t(e)}},Sy=class r{constructor(){this.classNameMap={}}static getMap(){return r.instance==null&&(r.instance=new r),r.instance}static register(t){r.getMap().classNameMap[t.className]=[t,t.fromConfig]}};function bN(r,t,e){_(r.className!=null,()=>\"Class being registered does not have the static className property defined.\"),_(typeof r.className==\"string\",()=>\"className is required to be a string, but got type \"+typeof r.className),_(r.className.length>0,()=>\"Class being registered has an empty-string as its className, which is disallowed.\"),typeof t==\"undefined\"&&(t=\"Custom\"),typeof e==\"undefined\"&&(e=r.className);let n=e,o=t+\">\"+n;return Sy.register(r),cY.set(o,r),yN.set(r,o),r}function pY(r){return yN.has(r)?yN.get(r):r.className}var jr=class extends yh{minimize(t,e=!1,n){let{value:o,grads:s}=this.computeGradients(t,n);if(n!=null){let i=n.map(a=>({name:a.name,tensor:s[a.name]}));this.applyGradients(i)}else this.applyGradients(s);return Tt(s),e?o:(o.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(t,e){return Ux(t,e)}dispose(){this.iterations_!=null&&Tt(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:\"iter\",tensor:pt(this.iterations_,\"int32\")}}async getWeights(){throw new Error(\"getWeights() is not implemented for this optimizer yet.\")}async setWeights(t){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(t){return this.iterations_=(await t[0].tensor.data())[0],t.slice(1)}};Object.defineProperty(jr,Symbol.hasInstance,{value:r=>r.minimize!=null&&r.computeGradients!=null&&r.applyGradients!=null});var vc=class extends jr{static get className(){return\"Adadelta\"}constructor(t,e,n=null){super(),this.learningRate=t,this.rho=e,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=T.backend.epsilon())}applyGradients(t){(Array.isArray(t)?t.map(n=>n.name):Object.keys(t)).forEach((n,o)=>{let s=T.registeredVariables[n],i=!1;this.accumulatedGrads[o]==null&&(this.accumulatedGrads[o]={originalName:`${n}/accum_grad`,variable:B(()=>vt(s).variable(i))}),this.accumulatedUpdates[o]==null&&(this.accumulatedUpdates[o]={originalName:`${n}/accum_var`,variable:B(()=>vt(s).variable(i))});let a=Array.isArray(t)?t[o].tensor:t[n];if(a==null)return;let u=this.accumulatedGrads[o].variable,l=this.accumulatedUpdates[o].variable;B(()=>{let c=K($(u,this.rho),$(Wt(a),1-this.rho)),p=$(ut(ge(K(l,this.epsilon)),ge(K(u,this.epsilon))),a),m=K($(l,this.rho),$(Wt(p),1-this.rho));u.assign(c),l.assign(m);let f=K($(p,-this.learningRate),s);s.assign(f)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(Tt(this.accumulatedGrads.map(t=>t.variable)),Tt(this.accumulatedUpdates.map(t=>t.variable)))}async getWeights(){let t=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(t.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(t){t=await this.extractIterations(t);let e=t.length/2,n=!1;this.accumulatedGrads=t.slice(0,e).map(o=>({originalName:o.name,variable:o.tensor.variable(n)})),this.accumulatedUpdates=t.slice(e,e*2).map(o=>({originalName:o.name,variable:o.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(t,e){return new t(e.learningRate,e.rho,e.epsilon)}};var Sc=class extends jr{static get className(){return\"Adagrad\"}constructor(t,e=.1){super(),this.learningRate=t,this.initialAccumulatorValue=e,this.accumulatedGrads=[]}applyGradients(t){(Array.isArray(t)?t.map(n=>n.name):Object.keys(t)).forEach((n,o)=>{let s=T.registeredVariables[n];this.accumulatedGrads[o]==null&&(this.accumulatedGrads[o]={originalName:`${n}/accumulator`,variable:B(()=>Co(s.shape,this.initialAccumulatorValue).variable(!1))});let i=Array.isArray(t)?t[o].tensor:t[n];if(i==null)return;let a=this.accumulatedGrads[o].variable;B(()=>{let u=K(a,Wt(i));a.assign(u);let l=K($(ut(i,ge(K(u,T.backend.epsilon()))),-this.learningRate),s);s.assign(l)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&Tt(this.accumulatedGrads.map(t=>t.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(t){t=await this.extractIterations(t);let e=!1;this.accumulatedGrads=t.map(n=>({originalName:n.name,variable:n.tensor.variable(e)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(t,e){return new t(e.learningRate,e.initialAccumulatorValue)}};var Nc=class extends jr{static get className(){return\"Adam\"}constructor(t,e,n,o=null){super(),this.learningRate=t,this.beta1=e,this.beta2=n,this.epsilon=o,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],B(()=>{this.accBeta1=pt(e).variable(),this.accBeta2=pt(n).variable()}),o==null&&(this.epsilon=T.backend.epsilon())}applyGradients(t){let e=Array.isArray(t)?t.map(n=>n.name):Object.keys(t);B(()=>{let n=at(1,this.accBeta1),o=at(1,this.accBeta2);e.forEach((s,i)=>{let a=T.registeredVariables[s],u=!1;this.accumulatedFirstMoment[i]==null&&(this.accumulatedFirstMoment[i]={originalName:`${s}/m`,variable:B(()=>vt(a).variable(u))}),this.accumulatedSecondMoment[i]==null&&(this.accumulatedSecondMoment[i]={originalName:`${s}/v`,variable:B(()=>vt(a).variable(u))});let l=Array.isArray(t)?t[i].tensor:t[s];if(l==null)return;let c=this.accumulatedFirstMoment[i].variable,p=this.accumulatedSecondMoment[i].variable,m=K($(c,this.beta1),$(l,1-this.beta1)),f=K($(p,this.beta2),$(Wt(l),1-this.beta2)),d=ut(m,n),h=ut(f,o);c.assign(m),p.assign(f);let g=K($(ut(d,K(ge(h),this.epsilon)),-this.learningRate),a);a.assign(g)}),this.accBeta1.assign($(this.accBeta1,this.beta1)),this.accBeta2.assign($(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&Tt(this.accumulatedFirstMoment.map(t=>t.variable)),this.accumulatedSecondMoment!=null&&Tt(this.accumulatedSecondMoment.map(t=>t.variable))}async getWeights(){let t=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(t.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(t){t=await this.extractIterations(t),B(()=>{this.accBeta1.assign(qr(this.beta1,this.iterations_+1)),this.accBeta2.assign(qr(this.beta2,this.iterations_+1))});let e=t.length/2,n=!1;this.accumulatedFirstMoment=t.slice(0,e).map(o=>({originalName:o.name,variable:o.tensor.variable(n)})),this.accumulatedSecondMoment=t.slice(e,e*2).map(o=>({originalName:o.name,variable:o.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(t,e){return new t(e.learningRate,e.beta1,e.beta2,e.epsilon)}};var kc=class extends jr{static get className(){return\"Adamax\"}constructor(t,e,n,o=null,s=0){super(),this.learningRate=t,this.beta1=e,this.beta2=n,this.epsilon=o,this.decay=s,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],B(()=>{this.iteration=pt(0).variable(),this.accBeta1=pt(e).variable()}),o==null&&(this.epsilon=T.backend.epsilon())}applyGradients(t){let e=Array.isArray(t)?t.map(n=>n.name):Object.keys(t);B(()=>{let n=at(1,this.accBeta1),o=ut(-this.learningRate,K($(this.iteration,this.decay),1));e.forEach((s,i)=>{let a=T.registeredVariables[s],u=!1;this.accumulatedFirstMoment[i]==null&&(this.accumulatedFirstMoment[i]={originalName:`${s}/m`,variable:vt(a).variable(u)}),this.accumulatedWeightedInfNorm[i]==null&&(this.accumulatedWeightedInfNorm[i]={originalName:`${s}/v`,variable:vt(a).variable(u)});let l=Array.isArray(t)?t[i].tensor:t[s];if(l==null)return;let c=this.accumulatedFirstMoment[i].variable,p=this.accumulatedWeightedInfNorm[i].variable,m=K($(c,this.beta1),$(l,1-this.beta1)),f=$(p,this.beta2),d=_e(l),h=kn(f,d);c.assign(m),p.assign(h);let g=K($(ut(o,n),ut(m,K(h,this.epsilon))),a);a.assign(g)}),this.iteration.assign(K(this.iteration,1)),this.accBeta1.assign($(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&Tt(this.accumulatedFirstMoment.map(t=>t.variable)),this.accumulatedWeightedInfNorm!=null&&Tt(this.accumulatedWeightedInfNorm.map(t=>t.variable))}async getWeights(){throw new Error(\"getWeights() is not implemented for Adamax yet.\")}async setWeights(t){throw new Error(\"setWeights() is not implemented for Adamax yet.\")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(t,e){return new t(e.learningRate,e.beta1,e.beta2,e.epsilon,e.decay)}};var Il=class extends jr{static get className(){return\"SGD\"}constructor(t){super(),this.learningRate=t,this.setLearningRate(t)}applyGradients(t){(Array.isArray(t)?t.map(n=>n.name):Object.keys(t)).forEach((n,o)=>{let s=Array.isArray(t)?t[o].tensor:t[n];if(s==null)return;let i=T.registeredVariables[n];B(()=>{let a=K($(this.c,s),i);i.assign(a)})}),this.incrementIterations()}setLearningRate(t){this.learningRate=t,this.c!=null&&this.c.dispose(),this.c=De(pt(-t))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(t){if(t=await this.extractIterations(t),t.length!==0)throw new Error(\"SGD optimizer does not have settable weights.\")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(t,e){return new t(e.learningRate)}};var Tc=class extends Il{static get className(){return\"Momentum\"}constructor(t,e,n=!1){super(t),this.learningRate=t,this.momentum=e,this.useNesterov=n,this.accumulations=[],this.m=pt(this.momentum)}applyGradients(t){(Array.isArray(t)?t.map(n=>n.name):Object.keys(t)).forEach((n,o)=>{let s=T.registeredVariables[n];this.accumulations[o]==null&&(this.accumulations[o]={originalName:`${n}/momentum`,variable:B(()=>vt(s).variable(!1))});let i=this.accumulations[o].variable,a=Array.isArray(t)?t[o].tensor:t[n];a!=null&&B(()=>{let u,l=K($(this.m,i),a);this.useNesterov?u=K($(this.c,K(a,$(l,this.m))),s):u=K($(this.c,l),s),i.assign(l),s.assign(u)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&Tt(this.accumulations.map(t=>t.variable))}setMomentum(t){this.momentum=t}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(t){t=await this.extractIterations(t);let e=!1;this.accumulations=t.map(n=>({originalName:n.name,variable:n.tensor.variable(e)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(t,e){return new t(e.learningRate,e.momentum,e.useNesterov)}};var _c=class extends jr{static get className(){return\"RMSProp\"}constructor(t,e=.9,n=0,o=null,s=!1){if(super(),this.learningRate=t,this.decay=e,this.momentum=n,this.epsilon=o,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=s,o==null&&(this.epsilon=T.backend.epsilon()),t==null)throw new Error(\"learningRate for RMSPropOptimizer must be defined.\")}applyGradients(t){(Array.isArray(t)?t.map(n=>n.name):Object.keys(t)).forEach((n,o)=>{let s=T.registeredVariables[n],i=!1;this.accumulatedMeanSquares[o]==null&&(this.accumulatedMeanSquares[o]={originalName:`${n}/rms`,variable:B(()=>vt(s).variable(i))}),this.accumulatedMoments[o]==null&&(this.accumulatedMoments[o]={originalName:`${n}/momentum`,variable:B(()=>vt(s).variable(i))}),this.accumulatedMeanGrads[o]==null&&this.centered&&(this.accumulatedMeanGrads[o]={originalName:`${n}/mg`,variable:B(()=>vt(s).variable(i))});let a=Array.isArray(t)?t[o].tensor:t[n];if(a==null)return;let u=this.accumulatedMeanSquares[o].variable,l=this.accumulatedMoments[o].variable;B(()=>{let c=K($(u,this.decay),$(Wt(a),1-this.decay));if(this.centered){let p=this.accumulatedMeanGrads[o].variable,m=K($(p,this.decay),$(a,1-this.decay)),f=ut($(a,this.learningRate),ge(at(c,K(Wt(m),this.epsilon)))),d=K($(l,this.momentum),f);u.assign(c),p.assign(m),l.assign(d);let h=at(s,d);s.assign(h)}else{let p=K($(u,this.decay),$(Wt(a),1-this.decay)),m=K($(l,this.momentum),ut($(a,this.learningRate),ge(K(p,this.epsilon))));u.assign(p),l.assign(m);let f=at(s,m);s.assign(f)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&Tt(this.accumulatedMeanSquares.map(t=>t.variable)),this.accumulatedMeanGrads!=null&&this.centered&&Tt(this.accumulatedMeanGrads.map(t=>t.variable)),this.accumulatedMoments!=null&&Tt(this.accumulatedMoments.map(t=>t.variable))}async getWeights(){let t=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&t.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(t.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(t){t=await this.extractIterations(t);let e=this.centered?t.length/3:t.length/2,n=!1;this.accumulatedMeanSquares=t.slice(0,e).map(o=>({originalName:o.name,variable:o.tensor.variable(n)})),this.accumulatedMoments=t.slice(e,e*2).map(o=>({originalName:o.name,variable:o.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=t.slice(e*2,e*3).map(o=>({originalName:o.name,variable:o.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(t,e){return new t(e.learningRate,e.decay,e.momentum,e.epsilon,e.centered)}};var mY=[vc,Sc,Nc,kc,Tc,_c,Il];function S2(){for(let r of mY)bN(r)}var Mr={};Kt(Mr,{CompositeArrayBuffer:()=>Ur,browserFiles:()=>k2,browserHTTPRequest:()=>A2,concatenateArrayBuffers:()=>pE,copyModel:()=>NE,decodeWeights:()=>ix,decodeWeightsStream:()=>ax,encodeWeights:()=>aE,fromMemory:()=>D2,fromMemorySync:()=>NN,getLoadHandlers:()=>hE,getModelArtifactsForJSON:()=>Yp,getModelArtifactsForJSONSync:()=>H0,getModelArtifactsInfoForJSON:()=>Qi,getSaveHandlers:()=>dE,getWeightSpecs:()=>uh,http:()=>ky,isHTTPScheme:()=>Ny,listModels:()=>vE,loadWeights:()=>_2,moveModel:()=>kE,registerLoadRouter:()=>fE,registerSaveRouter:()=>mE,removeModel:()=>SE,weightsLoaderFactory:()=>vN,withSaveHandler:()=>$2,withSaveHandlerSync:()=>R2});var fY=\"model\",dY=\".json\",hY=\".weights.bin\";function N2(r){return new Promise(t=>setTimeout(t)).then(r)}var Nm=class r{constructor(t){if(!L().getBool(\"IS_BROWSER\"))throw new Error(\"browserDownloads() cannot proceed because the current environment is not a browser.\");t.startsWith(r.URL_SCHEME)&&(t=t.slice(r.URL_SCHEME.length)),(t==null||t.length===0)&&(t=fY),this.modelJsonFileName=t+dY,this.weightDataFileName=t+hY}async save(t){if(typeof document==\"undefined\")throw new Error(\"Browser downloads are not supported in this environment since `document` is not present\");let e=Ur.join(t.weightData),n=window.URL.createObjectURL(new Blob([e],{type:\"application/octet-stream\"}));if(t.modelTopology instanceof ArrayBuffer)throw new Error(\"BrowserDownloads.save() does not support saving model topology in binary formats yet.\");{let o=[{paths:[\"./\"+this.weightDataFileName],weights:t.weightSpecs}],s=lx(t,o),i=window.URL.createObjectURL(new Blob([JSON.stringify(s)],{type:\"application/json\"})),a=this.modelJsonAnchor==null?document.createElement(\"a\"):this.modelJsonAnchor;if(a.download=this.modelJsonFileName,a.href=i,await N2(()=>a.dispatchEvent(new MouseEvent(\"click\"))),t.weightData!=null){let u=this.weightDataAnchor==null?document.createElement(\"a\"):this.weightDataAnchor;u.download=this.weightDataFileName,u.href=n,await N2(()=>u.dispatchEvent(new MouseEvent(\"click\")))}return{modelArtifactsInfo:Qi(t)}}}};Nm.URL_SCHEME=\"downloads://\";var wN=class{constructor(t){if(t==null||t.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${t}`);this.jsonFile=t[0],this.weightsFiles=t.slice(1)}async load(){return new Promise((t,e)=>{let n=new FileReader;n.onload=o=>{let s=JSON.parse(o.target.result),i=s.modelTopology;if(i==null){e(new Error(`modelTopology field is missing from file ${this.jsonFile.name}`));return}if(s.weightsManifest==null){e(new Error(`weightManifest field is missing from file ${this.jsonFile.name}`));return}if(this.weightsFiles.length===0){t({modelTopology:i});return}let u=Yp(s,l=>this.loadWeights(l));t(u)},n.onerror=o=>e(`Failed to read model topology and weights manifest JSON from file '${this.jsonFile.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),n.readAsText(this.jsonFile)})}loadWeights(t){let e=[],n=[];for(let i of t)e.push(...i.weights),n.push(...i.paths);let o=this.checkManifestAndWeightFiles(t),s=n.map(i=>this.loadWeightsFile(i,o[i]));return Promise.all(s).then(i=>[e,i])}loadWeightsFile(t,e){return new Promise((n,o)=>{let s=new FileReader;s.onload=i=>{let a=i.target.result;n(a)},s.onerror=i=>o(`Failed to weights data from file of path '${t}'.`),s.readAsArrayBuffer(e)})}checkManifestAndWeightFiles(t){let e=[],n=this.weightsFiles.map(s=>U0(s.name)),o={};for(let s of t)s.paths.forEach(i=>{let a=U0(i);if(e.indexOf(a)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${a}'`);if(e.push(a),n.indexOf(a)===-1)throw new Error(`Weight file with basename '${a}' is not provided.`);o[i]=this.weightsFiles[n.indexOf(a)]});if(e.length!==this.weightsFiles.length)throw new Error(`Mismatch in the number of files in weights manifest (${e.length}) and the number of weight files provided (${this.weightsFiles.length}).`);return o}},gY=r=>L().getBool(\"IS_BROWSER\")&&!Array.isArray(r)&&r.startsWith(Nm.URL_SCHEME)?xY(r.slice(Nm.URL_SCHEME.length)):null;Cr.registerSaveRouter(gY);function xY(r=\"model\"){return new Nm(r)}function k2(r){return new wN(r)}function IN(r,t,e,n){i(r),e=e==null?0:e,n=n==null?1:n,a(e,n);let o=0,s=u=>(u.then(l=>{let c=e+ ++o/r.length*(n-e);return t(c),l}),u);function i(u){_(u!=null&&Array.isArray(u)&&u.length>0,()=>\"promises must be a none empty array\")}function a(u,l){_(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${u}`),_(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${l}`),_(l>=u,()=>`startFraction must be no more than endFraction, but got startFraction ${u} and endFraction ${l}`)}return Promise.all(r.map(s))}async function CN(r,t){t==null&&(t={});let e=t.fetchFunc==null?L().platform.fetch:t.fetchFunc,n=r.map(p=>e(p,t.requestInit,{isBinary:!0})),a=(t.onProgress==null?await Promise.all(n):await IN(n,t.onProgress,0,.5)).map(p=>p.arrayBuffer());return t.onProgress==null?await Promise.all(a):await IN(a,t.onProgress,.5,1)}function T2(r,t){var e;let n=t.fetchFunc==null?L().platform.fetch:t.fetchFunc,o=0,s;return(e=t.onProgress)===null||e===void 0||e.call(t,0),new ReadableStream({pull:async i=>{for(var a;oCN(i,{requestInit:n}))(r,t,e)}function vN(r){return async(t,e=\"\",n)=>{let o=t.map(()=>!1),s={},i=n!=null?n.map(()=>!1):[],a=[];if(t.forEach((f,d)=>{let h=0;f.weights.forEach(g=>{let x=\"quantization\"in g?g.quantization.dtype:g.dtype,b=dl[x]*jt(g.shape),w=()=>{o[d]=!0,s[d]==null&&(s[d]=[]),s[d].push({manifestEntry:g,groupOffset:h,sizeBytes:b})};n!=null?n.forEach((I,N)=>{I===g.name&&(w(),i[N]=!0)}):w(),a.push(g.name),h+=b})}),!i.every(f=>f)){let f=n.filter((d,h)=>!i[h]);throw new Error(`Could not find weights in manifest with names: ${f.join(\", \")}. \nManifest JSON has weights with names: ${a.join(\", \")}.`)}let u=o.reduce((f,d,h)=>(d&&f.push(h),f),[]),l=[];u.forEach(f=>{t[f].paths.forEach(d=>{let h=e+(e.endsWith(\"/\")?\"\":\"/\")+d;l.push(h)})});let c=await r(l),p={},m=0;return u.forEach(f=>{let d=t[f].paths.length,h=new Ur(c.slice(m,m+d));s[f].forEach(x=>{let b=h.slice(x.groupOffset,x.groupOffset+x.sizeBytes),w=ix(b,[x.manifestEntry]);for(let I in w)p[I]=w[I]}),m+=d}),p}}var yY=\"application/octet-stream\",bY=\"application/json\",bh=class{constructor(t,e){if(this.DEFAULT_METHOD=\"POST\",e==null&&(e={}),this.weightPathPrefix=e.weightPathPrefix,this.weightUrlConverter=e.weightUrlConverter,e.fetchFunc!=null?(_(typeof e.fetchFunc==\"function\",()=>\"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)\"),this.fetch=e.fetchFunc):this.fetch=L().platform.fetch,_(t!=null&&t.length>0,()=>\"URL path for http must not be null, undefined or empty.\"),Array.isArray(t)&&_(t.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${t.length}).`),this.path=t,e.requestInit!=null&&e.requestInit.body!=null)throw new Error(\"requestInit is expected to have no pre-existing body, but has one.\");this.requestInit=e.requestInit||{},this.loadOptions=e}async save(t){if(t.modelTopology instanceof ArrayBuffer)throw new Error(\"BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.\");let e=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);e.body=new FormData;let n=[{paths:[\"./model.weights.bin\"],weights:t.weightSpecs}],o=lx(t,n);if(e.body.append(\"model.json\",new Blob([JSON.stringify(o)],{type:bY}),\"model.json\"),t.weightData!=null){let i=Ur.join(t.weightData);e.body.append(\"model.weights.bin\",new Blob([i],{type:yY}),\"model.weights.bin\")}let s=await this.fetch(this.path,e);if(s.ok)return{modelArtifactsInfo:Qi(t),responses:[s]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${s.status}.`)}async loadModelJSON(){let t=await this.fetch(this.path,this.requestInit);if(!t.ok)throw new Error(`Request to ${this.path} failed with status code ${t.status}. Please verify this URL points to the model JSON of the model to load.`);let e;try{e=await t.json()}catch(s){let i=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(\".pb\")?i+=\" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.\":i+=\" Please make sure the server is serving valid JSON for this request.\",new Error(i)}let n=e.modelTopology,o=e.weightsManifest;if(n==null&&o==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);return e}async load(){if(this.loadOptions.streamWeights)return this.loadStream();let t=await this.loadModelJSON();return Yp(t,e=>this.loadWeights(e))}async loadStream(){let t=await this.loadModelJSON(),e=await this.getWeightUrls(t.weightsManifest),n=uh(t.weightsManifest),o=()=>T2(e,this.loadOptions);return Object.assign(Object.assign({},t),{weightSpecs:n,getWeightStream:o})}async getWeightUrls(t){let e=Array.isArray(this.path)?this.path[1]:this.path,[n,o]=wY(e),s=this.weightPathPrefix||n,i=[],a=[];for(let u of t)for(let l of u.paths)this.weightUrlConverter!=null?a.push(this.weightUrlConverter(l)):i.push(s+l+o);return this.weightUrlConverter&&i.push(...await Promise.all(a)),i}async loadWeights(t){let e=await this.getWeightUrls(t),n=uh(t),o=await CN(e,this.loadOptions);return[n,o]}};bh.URL_SCHEME_REGEX=/^https?:\\/\\//;function wY(r){let t=r.lastIndexOf(\"/\"),e=r.lastIndexOf(\"?\"),n=r.substring(0,t),o=e>t?r.substring(e):\"\";return[n+\"/\",o]}function Ny(r){return r.match(bh.URL_SCHEME_REGEX)!=null}var E2=(r,t)=>{if(typeof fetch==\"undefined\"&&(t==null||t.fetchFunc==null))return null;{let e=!0;if(Array.isArray(r)?e=r.every(n=>Ny(n)):e=Ny(r),e)return ky(r,t)}return null};Cr.registerSaveRouter(E2);Cr.registerLoadRouter(E2);function ky(r,t){return new bh(r,t)}function A2(r,t){return ky(r,t)}var wh=class{constructor(t){this.modelArtifacts=t}load(){return this.modelArtifacts}},Ty=class{constructor(t){this.saveHandler=t}save(t){return this.saveHandler(t)}},SN=class{constructor(t){t.load&&(this.load=()=>Promise.resolve(t.load())),t.save&&(this.save=e=>Promise.resolve(t.save(e)))}};function D2(r,t,e,n){let o=arguments;return new SN(NN(...o))}function NN(r,t,e,n){return arguments.length===1?r.modelTopology!=null||r.weightSpecs!=null?new wh(r):(console.warn(\"Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release.\"),new wh({modelTopology:r})):(console.warn(\"Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release.\"),new wh({modelTopology:r,weightSpecs:t,weightData:e,trainingConfig:n}))}function $2(r){return new Ty(r)}function R2(r){return new Ty(r)}var O2={};Kt(O2,{confusionMatrix:()=>F2});function IY(r,t,e){let n=C(r,\"labels\",\"confusionMatrix\"),o=C(t,\"predictions\",\"confusionMatrix\");_(e==null||e>0&&Number.isInteger(e),()=>`If provided, numClasses must be a positive integer, but got ${e}`),_(n.rank===1,()=>`Expected the rank of labels to be 1, but got ${n.rank}`),_(o.rank===1,()=>`Expected the rank of predictions to be 1, but got ${o.rank}`),_(n.shape[0]===o.shape[0],()=>`Mismatch in the number of examples: ${n.shape[0]} vs. ${o.shape[0]}. Labels and predictions should have the same number of elements.`),_(e>0&&Number.isInteger(e),()=>`numClasses is required to be a positive integer, but got ${e}`);let s=ca(J(n,\"int32\"),e),i=ca(J(o,\"int32\"),e),a=Vt(s),u=Bt(a,i);return J(u,\"int32\")}var F2=k({confusionMatrix_:IY});var _y={};Kt(_y,{draw:()=>EY,fromPixels:()=>AY,fromPixelsAsync:()=>kY,toPixels:()=>_Y});var Ec,M2=!1;function P2(r,t=3){if(t>4)throw new Error(\"Cannot construct Tensor with more than 4 channels from pixels.\");if(r==null)throw new Error(\"pixels passed to tf.browser.fromPixels() can not be null\");let e=!1,n=!1,o=!1,s=!1,i=!1,a=!1;if(r.data instanceof Uint8Array)e=!0;else if(typeof ImageData!=\"undefined\"&&r instanceof ImageData)n=!0;else if(typeof HTMLVideoElement!=\"undefined\"&&r instanceof HTMLVideoElement)o=!0;else if(typeof HTMLImageElement!=\"undefined\"&&r instanceof HTMLImageElement)s=!0;else if(r.getContext!=null)i=!0;else if(typeof ImageBitmap!=\"undefined\"&&r instanceof ImageBitmap)a=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${r.constructor.name}`);if(Wp(th,T.backendName)!=null){let d={pixels:r},h={numChannels:t};return T.runKernel(th,d,h)}let[l,c]=o?[r.videoWidth,r.videoHeight]:[r.width,r.height],p;if(i)p=r.getContext(\"2d\").getImageData(0,0,l,c).data;else if(n||e)p=r.data;else if(s||o||a){if(Ec==null)if(typeof document==\"undefined\")if(typeof OffscreenCanvas!=\"undefined\"&&typeof OffscreenCanvasRenderingContext2D!=\"undefined\")Ec=new OffscreenCanvas(1,1).getContext(\"2d\");else throw new Error(\"Cannot parse input in current context. Reason: OffscreenCanvas Context2D rendering is not supported.\");else Ec=document.createElement(\"canvas\").getContext(\"2d\",{willReadFrequently:!0});Ec.canvas.width=l,Ec.canvas.height=c,Ec.drawImage(r,0,0,l,c),p=Ec.getImageData(0,0,l,c).data}let m;if(t===4)m=new Int32Array(p);else{let d=l*c;m=new Int32Array(d*t);for(let h=0;h4||t===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${t}`);if(r.dtype!==\"float32\"&&r.dtype!==\"int32\")throw new Error(`Unsupported type for toPixels: ${r.dtype}. Please use float32 or int32 tensors.`)}function TY(r){let t=(r==null?void 0:r.alpha)||1;if(t>1||t<0)throw new Error(`Alpha value ${t} is suppoed to be in range [0 - 1].`)}async function _Y(r,t){let e=C(r,\"img\",\"toPixels\");if(!(r instanceof Lt)){let l=e;e=J(l,\"int32\"),l.dispose()}L2(e);let[n,o]=e.shape.slice(0,2),s=e.rank===2?1:e.shape[2],i=await e.data(),a=e.dtype===\"float32\"?255:1,u=new Uint8ClampedArray(o*n*4);for(let l=0;l1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${f}.`)}else if(e.dtype===\"int32\"&&(f<0||f>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${f}.`);s===1?(c[0]=f*a,c[1]=f*a,c[2]=f*a):c[m]=f*a}let p=l*4;u[p+0]=Math.round(c[0]),u[p+1]=Math.round(c[1]),u[p+2]=Math.round(c[2]),u[p+3]=Math.round(c[3])}if(t!=null){M2||Wp(Qd,T.backendName)!=null&&(console.warn(\"tf.browser.toPixels is not efficient to draw tensor on canvas. Please try tf.browser.draw instead.\"),M2=!0),t.width=o,t.height=n;let l=t.getContext(\"2d\"),c=new ImageData(u,o,n);l.putImageData(c,0,0)}return e!==r&&e.dispose(),u}function EY(r,t,e){let n=C(r,\"img\",\"draw\");if(!(r instanceof Lt)){let i=n;n=J(i,\"int32\"),i.dispose()}L2(n),TY(e==null?void 0:e.imageOptions);let o={image:n},s={canvas:t,options:e};T.runKernel(Qd,o,s)}var AY=k({fromPixels_:P2});var Ey={};Kt(Ey,{prepareAndValidate:()=>z2});function z2(r,t){let e=r.shape.length,n=t.shape.length;if(e<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${e}.`);if(n<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${n}.`);if(t.dtype!==\"int32\")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[n-1]>e)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[n-1]} vs. ${e}`);if(jt(r.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${r.shape}.`);let o=t.shape,s=o[o.length-1],i=1;for(let p=0;pp/l),1].slice(0,s);return[u,i,l,c]}var Be={};Kt(Be,{assertParamsValid:()=>$Y,computeFlatOffset:()=>PY,computeOutShape:()=>FY,getNormalizedAxes:()=>OY,isSliceContinous:()=>MY,maskToAxes:()=>RY,parseSliceParams:()=>TN,sliceInfo:()=>LY,startForAxis:()=>K2,startIndicesWithElidedDims:()=>U2,stopForAxis:()=>j2,stopIndicesWithElidedDims:()=>H2,stridesForAxis:()=>q2,stridesWithElidedDims:()=>V2});var kN=-2,DY=-1;function $Y(r,t,e){let n=r.shape.length;_(n===t.length,()=>`Error in slice${n}D: Length of begin ${t} must match the rank of the array (${n}).`),_(n===e.length,()=>`Error in slice${n}D: Length of size ${e} must match the rank of the array (${n}).`);for(let o=0;o`Error in slice${n}D: begin[${o}] + size[${o}] (${t[o]+e[o]}) would overflow input.shape[${o}] (${r.shape[o]})`)}function RY(r){let t=[],e=0;for(;r>0;)r&1&&t.push(e),r/=2,e++;return t}function FY(r,t,e){let n=[];for(let o=0;o0){let f=t[0],d=e+1;c=U2(i,f,d,n,r),p=H2(a,f,d,o,r),m=V2(s,f,d,r)}else for(let f=0;f-1)s[a]=0;else{let u=G2(t,e,a),l=n[u];r&1<-1)s[a]=Number.MAX_SAFE_INTEGER;else{let u=G2(t,e,a),l=n[u];r&1<0?i=Number.MIN_SAFE_INTEGER:i=Number.MAX_SAFE_INTEGER);let u=n[o];return i<0&&(i+=u),i=kp(0,i,u-1),i}function j2(r,t,e,n,o,s){let i=t[o],a=e[o]||1;(r&1<0?i=Number.MAX_SAFE_INTEGER:i=Number.MIN_SAFE_INTEGER);let u=n[o];return i<0&&(i+=u),a>0?i=kp(0,i,u):i=kp(-1,i,u-1),i}function MY(r,t,e){let n=e.length;for(let o=0;o1){n=o;break}for(let o=n+1;o0||e[o]!==r[o])return!1;return!0}function PY(r,t){let e=r.length>0?r[r.length-1]:1;for(let n=0;n{_(i!==-1,()=>\"slice() does not support negative begin indexing.\")});let s;return e==null?s=new Array(o).fill(-1):typeof e==\"number\"?s=[e,...new Array(o-1).fill(-1)]:e.lengthi>=0?i:(_(i===-1,()=>`Negative size values should be exactly -1 but got ${i} for the slice() size at index ${a}.`),r.shape[a]-n[a])),[n,s]}function LY(r,t,e,n,o,s,i,a,u){let l;if(n==null?(l=new Array(t.length),l.fill(1)):l=n,i!=null&&i&i-1)throw new Error(\"Multiple ellipses in slice is not allowed.\");let c=!1,p={dims:l.length,numAddAxisAfterEllipsis:0,begin:t.slice(),end:e.slice(),strides:l.slice(),beginMask:o,endMask:s,ellipsisMask:i,newAxisMask:a,shrinkAxisMask:u};for(let w=0;w0?0:-1,m.strides[w]>0?N:N-1];if(I&&m.strides[w]<=0)throw Error(\"only stride 1 allowed on non-range indexing.\");h=h&&m.strides[w]===1;let D=!!(m.beginMask&1<=N)throw Error(`slice index ${m.begin[w]} of dimension ${w} out of bounds.`)}else m.begin[w]=B2(m.begin[w],0,m.strides[w],N,E,A),m.end[w]=B2(m.end[w],1,m.strides[w],N,E,A);let V=m.strides[w]===1&&m.begin[w]===0&&m.end[w]===N;f=f&&V,d=d&&(w===0&&m.strides[w]===1||V)}else f=f&&m.strides[w]===1&&D,d=d&&(w===0&&m.strides[w]===1||D);let F,M=!1;if(m.beginValid&&m.endValid?(F=m.end[w]-m.begin[w],M=!0):I?(F=1,M=!0):D&&N>=0&&(m.strides[w]<0?F=-N:F=N,M=!0),M){let V;F===0||F<0!=m.strides[w]<0?V=0:V=Math.trunc(F/m.strides[w])+(F%m.strides[w]!==0?1:0),g.push(V)}else g.push(-1)}for(let w=0;w=0?x.push(g[I]):I===kN&&x.push(1)}return{finalShapeSparse:x.filter((w,I)=>m.finalShapeGatherIndices[I]!==kN),finalShape:x,isIdentity:f,sliceDim0:d,isSimpleSlice:h,begin:m.begin,end:m.end,strides:m.strides}}function zY(r,t){t.beginMask=0,t.endMask=0,t.shrinkAxisMask=0;let e=0;t.beginValid=r.begin!=null,t.endValid=r.end!=null,t.begin=new Array(t.dims),t.end=new Array(t.dims),t.strides=new Array(t.dims),t.finalShapeGatherIndices=[],t.finalShapeGatherIndicesSparse=[],t.inputShapeGatherIndicesSparse=new Array(t.dims);for(let n=0;n0?s[t]:s[t+1&1];{let i=r<0?n+r:r;return is[1]?s[1]:i}}var X2=\"4.22.0\";var Ih=class{static sgd(t){return new Il(t)}static momentum(t,e,n=!1){return new Tc(t,e,n)}static rmsprop(t,e=.9,n=0,o=null,s=!1){return new _c(t,e,n,o,s)}static adam(t=.001,e=.9,n=.999,o=null){return new Nc(t,e,n,o)}static adadelta(t=.001,e=.95,n=null){return new vc(t,e,n)}static adamax(t=.002,e=.9,n=.999,o=null,s=0){return new kc(t,e,n,o,s)}static adagrad(t,e=.1){return new Sc(t,e)}};var Ac=Ih;var BY=typeof requestAnimationFrame!=\"undefined\"?requestAnimationFrame:typeof setImmediate!=\"undefined\"?setImmediate:r=>r();function Ch(){return new Promise(r=>BY(()=>r()))}var S={};Kt(S,{ERF_A1:()=>eZ,ERF_A2:()=>rZ,ERF_A3:()=>nZ,ERF_A4:()=>oZ,ERF_A5:()=>sZ,ERF_P:()=>tZ,PARALLELIZE_THRESHOLD:()=>Ay,RowPartitionType:()=>ma,SELU_SCALE:()=>EN,SELU_SCALEALPHA:()=>_N,applyActivation:()=>Ic,assertAndGetBroadcastShape:()=>Mt,assertAxesAreInnerMostDims:()=>w6,assertParamsConsistent:()=>VY,assignToTypedArray:()=>pZ,axesAreInnerMostDims:()=>eN,calculateShapes:()=>RA,checkEinsumDimSizes:()=>xZ,checkPadOnDimRoundingMode:()=>Se,combineLocations:()=>zE,combineRaggedTensorToTensorShapes:()=>WY,complexWithEvenIndex:()=>lZ,complexWithOddIndex:()=>uZ,computeConv2DInfo:()=>pc,computeConv3DInfo:()=>AE,computeDefaultPad:()=>tN,computeDilation2DInfo:()=>bj,computeOptimalWindowSize:()=>KY,computeOutAndReduceShapes:()=>rN,computeOutShape:()=>GY,computePool2DInfo:()=>Q0,computePool3DInfo:()=>wj,convertConv2DDataFormat:()=>DE,decodeEinsumEquation:()=>hZ,eitherStridesOrDilationsAreOne:()=>Dr,expandShapeToKeepDim:()=>vo,exponent:()=>fZ,exponents:()=>mZ,fromStringArrayToUint8:()=>LZ,fromUint8ToStringArray:()=>PZ,getAxesPermutation:()=>nN,getBroadcastDims:()=>PE,getComplexWithIndex:()=>cZ,getEinsumComputePath:()=>yZ,getEinsumPermutation:()=>gZ,getFusedBiasGradient:()=>wc,getFusedDyActivation:()=>bc,getImageCenter:()=>jY,getInnerMostAxes:()=>I6,getPermuted:()=>YY,getRaggedRank:()=>HY,getReductionAxes:()=>we,getReshaped:()=>XY,getReshapedPermuted:()=>ZY,getRowPartitionTypesHelper:()=>UY,getSliceBeginCoords:()=>JY,getSliceSize:()=>QY,getSparseFillEmptyRowsIndicesDenseShapeMismatch:()=>CZ,getSparseFillEmptyRowsNegativeIndexErrorMessage:()=>vZ,getSparseFillEmptyRowsOutOfRangeIndexErrorMessage:()=>SZ,getSparseReshapeEmptyTensorZeroOutputDimErrorMessage:()=>TZ,getSparseReshapeInputOutputMismatchErrorMessage:()=>EZ,getSparseReshapeInputOutputMultipleErrorMessage:()=>_Z,getSparseReshapeMultipleNegativeOneOutputDimErrorMessage:()=>NZ,getSparseReshapeNegativeOutputDimErrorMessage:()=>kZ,getSparseSegmentReductionIndicesOutOfRangeErrorMessage:()=>RZ,getSparseSegmentReductionNegativeSegmentIdsErrorMessage:()=>AZ,getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage:()=>DZ,getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage:()=>$Z,getUndoAxesPermutation:()=>fh,isIdentityPermutation:()=>bZ,log:()=>mK,mergeRealAndImagArrays:()=>iZ,prepareAndValidate:()=>z2,prepareSplitSize:()=>IZ,segment_util:()=>DN,shouldFuse:()=>Cc,slice_util:()=>Be,splitRealAndImagArrays:()=>aZ,stridesOrDilationsArePositive:()=>na,tupleValuesAreOne:()=>io,upcastType:()=>ur,validateDefaultValueShape:()=>qY,validateInput:()=>Im,validateUpdateShape:()=>fN,warn:()=>Ji});function VY(r,t){let e=r[0].length;r.forEach((o,s)=>{_(o.length===e,()=>`Error in concat${e}D: rank of tensors[${s}] must be the same as the rank of the rest (${e})`)}),_(t>=0&&t`Error in concat${e}D: axis must be between 0 and ${e-1}.`);let n=r[0];r.forEach((o,s)=>{for(let i=0;i`Error in concat${e}D: Shape of tensors[${s}] (${o}) does not match the shape of the rest (${n}) along the non-concatenated axis ${s}.`)})}function GY(r,t){let e=r[0].slice();for(let n=1;n=0)if(a>=0){if(a!==s)throw new Error(`rt input.shape and shape=${t} are incompatible: rt input.shape[${o+r}] = ${s} but shape[${o+r}] = ${a}`)}else n[i]=s}return n}function UY(r){let t={FIRST_DIM_SIZE:ma.FIRST_DIM_SIZE,VALUE_ROWIDS:ma.VALUE_ROWIDS,ROW_LENGTHS:ma.ROW_LENGTHS,ROW_SPLITS:ma.ROW_SPLITS,ROW_LIMITS:ma.ROW_LIMITS,ROW_STARTS:ma.ROW_STARTS},e=[];for(let n of r)if(n in t)e.push(t[n]);else break;return e}function HY(r){return r.length===0?0:r[0]===ma.FIRST_DIM_SIZE?r.length-1:r.length}function qY(r,t){if(r==null||t==null)return;let e=r.length,n=t.length;if(e>=n)throw new Error(`defaultValue.shape=${r} and ragged tensor flatValues.shape=${t}, are incompatible: defaultValue.rank = ${e} must be less than ragged tensor input flatValues.rank = ${n})`);for(let o=0;o=0&&i>=0&&s!==1&&s!==i)throw new Error(`defaultValue.shape=${r}, and ragged tensor input flatValues.shape=${t} are incompatible: defaultValue.shape[${o-r.length}] = ${s} but ragged tensor input.flatValues.shape[${o-r.length}] = ${i}`)}}var Ay=30;function KY(r){return r<=Ay?r:_p(r,Math.floor(Math.sqrt(r)))}function jY(r,t,e){let n=e*(typeof r==\"number\"?r:r[0]),o=t*(typeof r==\"number\"?r:r[1]);return[n,o]}function XY(r,t,e,n=!0){let o=[];if(n)o=o.concat(t.slice(0)),o.push(r[0]/e),o=o.concat(r.slice(1));else{o=o.concat(r[0]);let s=t.length;for(let i=0;i=t*2+1||i%2===1?s.push(i):o.push(i);n.push(...o),n.push(0),n.push(...s)}return n}function ZY(r,t,e,n=!0){let o=[];n?o.push(r[0]/e):o.push(r[0]*e);for(let s=1;s\",dZ=/->/g,Y2=\",\",Z2=\"...\";function hZ(r,t){r=r.replace(/\\s/g,\"\");let e=(r.length-r.replace(dZ,\"\").length)/AN.length;if(e<1)throw new Error(\"Equations without an arrow are not supported.\");if(e>1)throw new Error(`Equation must contain exactly one arrow (\"${AN}\").`);let[n,o]=r.split(AN);_(n.indexOf(Z2)===-1,()=>`The ellipsis notation (\"${Z2}\") is not supported yet.`);let s=n.split(Y2),i=s.length;if(t!==i)throw new Error(`Expected ${i} input tensors, received ${t}`);if(i>2)throw new Error(\"Support for more than 2 input tensors is not implemented yet.\");let a=[];for(let m=0;md.indexOf(f)!==-1))throw new Error(`Output subscripts contain the label ${f} not present in the input subscripts.`);a.indexOf(f)===-1&&a.push(f)}for(let m=0;mo!==-1),{permutationIndices:e,expandDims:n}}function xZ(r,t,e){let n=new Array(r);for(let o=0;o`Expected dimension ${n[t[o][i]]} at axis ${i} of input shaped ${JSON.stringify(s)}, but got dimension ${s[i]}`)}}function yZ(r,t){let e=r,n=[],o=0;r.length===0&&e.push(-1),o=r.length+1;for(let i=0;it===e)}function wZ(r,t){let e=[];for(let n=0;n\"Number of splits must evenly divide the axis.\"),n=new Array(t).fill(r.shape[e]/t);else{let o=t.reduce((i,a)=>(a===-1&&(i+=1),i),0);_(o<=1,()=>\"There should be only one negative value in split array.\");let s=t.indexOf(-1);if(s!==-1){let i=t.reduce((a,u)=>u>0?a+u:a);t[s]=r.shape[e]-i}_(r.shape[e]===t.reduce((i,a)=>i+a),()=>\"The sum of sizes must match the size of the axis dimension.\"),n=t}return n}function CZ(r){return`Received SparseTensor with denseShape[0] = 0 but\n indices.shape[0] = ${r}`}function vZ(r,t){return`indices(${r}, 0) is invalid: ${t} < 0`}function SZ(r,t,e){return`indices(${r}, 0) is invalid: ${t} >= ${e}`}function NZ(r,t){return`only one output dimension may be -1, not both ${r} and ${t}`}function kZ(r,t){return`size ${r} must be non-negative, not ${t}`}function TZ(){return\"reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero\"}function _Z(r,t){let e=jt(r),n=jt(t);return`Input to reshape is a SparseTensor with ${e}\n dense values, but the requested shape requires a multiple of ${n}. inputShape=${r} outputShape= ${t}`}function EZ(r,t){let e=jt(r),n=jt(t);return`Input to reshape is a tensor with ${e} dense values, but the requested shape has ${n}. inputShape=${r} outputShape=${t}`}function AZ(){return\"segment ids must be >= 0\"}function DZ(){return\"segment ids are not increasing\"}function $Z(r,t){return`Segment id ${r} out of range [0, ${t}), possibly because segmentIds input is not sorted.`}function RZ(r,t,e){return`Bad: indices[${r}] == ${t} out of range [0, ${e})`}var DN={};Kt(DN,{collectGatherOpShapeInfo:()=>MZ,computeOutShape:()=>OZ,segOpComputeOptimalWindowSize:()=>FZ});function FZ(r,t){let e=!1,n;for(r<=Ay?(n=r,e=!0):n=_p(r,Math.floor(Math.sqrt(r)));!e;)n>t||n===r?e=!0:n=_p(r,n+1);return n}function OZ(r,t,e){let n=[],o=r.length;for(let s=0;so))throw new Error(`Expect batchDims in the range of [-${o}, ${o}], but got ${n}`);if(n<0&&(n+=o),n>s)throw new Error(`batchDims (${n}) must be less than rank(x) (\n ${s}).`);if(eKp(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function LZ(r){return r.map(t=>fu(t))}var Xr={};Kt(Xr,{nonMaxSuppressionV3Impl:()=>by,nonMaxSuppressionV4Impl:()=>wy,nonMaxSuppressionV5Impl:()=>Iy,whereImpl:()=>fy});S2();var Dy={kernelName:Ai,inputsToSave:[\"x\"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>$(r,So(J(e,\"float32\"),-1))}}};var J2={kernelName:Go,inputsToSave:[\"x\"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>{let n=Wt(J(e,\"float32\")),o=ge(at(pt(1),n));return Ut(ut(r,o))}}}};var Q2={kernelName:Wo,inputsToSave:[\"x\"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>{let n=ge(at(Wt(J(e,\"float32\")),1));return ut(r,n)}}}};var tD={kernelName:no,inputsToSave:[\"a\",\"b\"],gradFunc:(r,t)=>{let[e,n]=t,o=Mt(e.shape,n.shape);return{a:()=>{let a=r,u=we(e.shape,o);return u.length>0&&(a=mt(a,u)),R(a,e.shape)},b:()=>{let a=r,u=we(n.shape,o);return u.length>0&&(a=mt(a,u)),R(a,n.shape)}}}};var eD={kernelName:Uo,saveAllInputs:!0,gradFunc:(r,t)=>{let e={};return t.forEach((n,o)=>{e[o]=()=>r.clone()}),e}};var rD={kernelName:Di,inputsToSave:[\"x\"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>vt(e)}}};var nD={kernelName:$i,inputsToSave:[\"x\"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>vt(e)}}};var oD={kernelName:Ho,inputsToSave:[\"x\"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>ut(r,ge(at(pt(1),Wt(J(e,\"float32\")))))}}};var sD={kernelName:qo,inputsToSave:[\"x\"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>{let n=ge(K(pt(1),Wt(J(e,\"float32\"))));return ut(r,n)}}}};var iD={kernelName:Xo,inputsToSave:[\"a\",\"b\"],gradFunc:(r,t)=>{let[e,n]=t,o=Mt(e.shape,n.shape);return{a:()=>{let a=K(Wt(e),Wt(n)),u=$(r,ut(n,a)),l=we(e.shape,o);return l.length>0&&(u=mt(u,l)),R(u,e.shape)},b:()=>{let a=K(Wt(e),Wt(n)),u=Ut($(r,ut(e,a))),l=we(n.shape,o);return l.length>0&&(u=mt(u,l)),R(u,n.shape)}}}};var aD={kernelName:Ko,inputsToSave:[\"x\"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>ut(r,K(Wt(J(e,\"float32\")),1))}}};var lD={kernelName:jo,inputsToSave:[\"x\"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>ut(r,at(pt(1),Wt(J(e,\"float32\"))))}}};function zZ(r,t,e,n,o,s){let i=C(r,\"dy\",\"avgPool3dGrad\"),a=C(t,\"input\",\"avgPool3dGrad\"),u=i,l=a,c=!1;a.rank===4&&(c=!0,u=R(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),l=R(a,[1,a.shape[0],a.shape[1],a.shape[2],a.shape[3]])),_(u.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${u.rank}.`),_(l.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${l.rank}.`),Se(\"avgPool3dGrad\",o,s);let p={dy:u,input:l},m={filterSize:e,strides:n,pad:o,dimRoundingMode:s},f=T.runKernel(Hl,p,m);return c?R(f,[f.shape[1],f.shape[2],f.shape[3],f.shape[4]]):f}var uD=k({avgPool3dGrad_:zZ});var cD={kernelName:Ri,inputsToSave:[\"x\"],gradFunc:(r,t,e)=>{let[n]=t,{filterSize:o,strides:s,pad:i,dimRoundingMode:a}=e;return{x:()=>uD(r,n,o,s,i,a)}}};function BZ(r,t,e,n,o){let s=C(r,\"dy\",\"avgPoolGrad\"),i=C(t,\"input\",\"avgPoolGrad\");_(i.rank===s.rank,()=>`Rank of input (${i.rank}) does not match rank of dy (${s.rank})`);let a=i,u=s,l=!1;i.rank===3&&(l=!0,a=R(i,[1,i.shape[0],i.shape[1],i.shape[2]]),u=R(s,[1,s.shape[0],s.shape[1],s.shape[2]])),_(u.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${u.rank}.`),_(a.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${a.rank}.`);let c={dy:u,input:a},p={filterSize:e,strides:n,pad:o},m=T.runKernel(Ul,c,p);return l?R(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var pD=k({avgPoolGrad_:BZ});var mD={kernelName:Yo,inputsToSave:[\"x\"],gradFunc:(r,t,e)=>{let[n]=t,{filterSize:o,strides:s,pad:i}=e;return{x:()=>pD(r,n,o,s,i)}}};var fD={kernelName:Zo,inputsToSave:[\"a\",\"b\"],gradFunc:(r,t,e)=>{let[n,o]=t,{transposeA:s,transposeB:i}=e;return!s&&!i?{a:()=>Bt(r,o,!1,!0),b:()=>Bt(n,r,!0,!1)}:!s&&i?{a:()=>Bt(r,o,!1,!1),b:()=>Bt(r,n,!0,!1)}:s&&!i?{a:()=>Bt(o,r,!1,!0),b:()=>Bt(n,r,!1,!1)}:{a:()=>Bt(o,r,!0,!0),b:()=>Bt(r,n,!0,!0)}}};var dD={kernelName:Fi,gradFunc:(r,t,e)=>{let{blockShape:n,crops:o}=e;return{x:()=>Tu(r,n,o)}}};var hD={kernelName:__,gradFunc:(r,t,e)=>{let n=e,o=n.inputShape,s=n.shape,i=Array.from(s);for(let u=o.length-1;u>=0;u--)if(o[u]===s[u])i[u]=1;else if(o[u]!==1)throw new Error(`broadcastTo(): [${o}] cannot be broadcast to [${s}].`);let a=[];for(let u=0;u1&&a.push(u);return{x:()=>mt(r,a,!0)}}};var gD={kernelName:fo,gradFunc:r=>({x:()=>r.clone()})};var xD={kernelName:Jo,gradFunc:r=>({x:()=>vt(r)})};var yD={kernelName:ho,inputsToSave:[\"x\"],gradFunc:(r,t,e)=>{let[n]=t,{clipValueMin:o,clipValueMax:s}=e;return{x:()=>Ie(Fr(cn(n,o),Vn(n,s)),r,vt(r))}}};var bD={kernelName:Kl,inputsToSave:[\"x\"],gradFunc:Dy.gradFunc};var wD={kernelName:Oi,saveAllInputs:!0,gradFunc:(r,t,e)=>{let n=t.map(u=>u.shape),{axis:o}=e,s=fr(o,t[0].shape)[0],i=n.map(u=>u[s]);return hr(r,i,s).map(u=>()=>u)}};var ID={kernelName:Qo,inputsToSave:[\"x\",\"filter\"],gradFunc:(r,t,e)=>{let[n,o]=t,{dilations:s,strides:i,pad:a,dataFormat:u}=e;return _(io(s),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`),{x:()=>nm(n.shape,r,o,i,a,u),filter:()=>Sm(n,r,o.shape,i,a,u)}}};var CD={kernelName:ts,inputsToSave:[\"dy\",\"filter\"],gradFunc:(r,t,e)=>{let[n,o]=t,{strides:s,pad:i,dataFormat:a,dimRoundingMode:u}=e;return{dy:()=>Nn(r,o,s,i,a,1,u),filter:()=>Sm(r,n,o.shape,s,i,a,u)}}};function VZ(r,t,e,n,o){let s=r;r.rank===4&&(s=R(r,[1,r.shape[0],r.shape[1],r.shape[2],r.shape[3]]));let i=t;i.rank===4&&(i=R(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),_(s.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${s.shape}.`),_(i.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${i.shape}.`),_(e.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${e}.`),_(s.shape[4]===e[3],()=>`Error in conv3dDerFilter: depth of input ${s.shape[4]}) must match input depth in filter (${e[3]}.`),_(i.shape[4]===e[4],()=>`Error in conv3dDerFilter: depth of dy (${i.shape[4]}) must match output depth for filter (${e[4]}).`);let a={x:s,dy:i},u={strides:n,pad:o,filterShape:e};return T.runKernel(Ra,a,u)}var vD=k({conv3DBackpropFilter_:VZ});var SD={kernelName:es,inputsToSave:[\"x\",\"filter\"],gradFunc:(r,t,e)=>{let{dilations:n,strides:o,pad:s}=e;_(io(n),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${n}'`);let[i,a]=t;return{x:()=>$x(i.shape,r,a,o,s),filter:()=>vD(i,r,a.shape,o,s)}}};var ND={kernelName:rs,inputsToSave:[\"x\"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>$(Ut(hm(J(e,\"float32\"))),r)}}};var kD={kernelName:ns,inputsToSave:[\"x\"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>$(gm(J(e,\"float32\")),r)}}};var TD={kernelName:os,inputsToSave:[\"x\"],gradFunc:(r,t,e)=>{let[n]=t,{axis:o,exclusive:s,reverse:i}=e;return{x:()=>{let a=nN([o],n.rank),u=im(r,o,s,!i);return a!=null&&(u=Vt(u,a)),u}}}};var _D={kernelName:ss,inputsToSave:[\"x\",\"filter\"],gradFunc:(r,t,e)=>{let{dilations:n,strides:o,pad:s,dimRoundingMode:i}=e,a=n==null?[1,1]:n;_(io(a),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${a}'`);let[u,l]=t;return _(u.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${u.rank}.`),_(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${l.rank}.`),_(u.shape[3]===l.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${u.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),_(Dr(o,a),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${a}'.`),Se(\"depthwiseConv2d\",s,i),{x:()=>gy(u.shape,r,l,o,s,a,i),filter:()=>hy(u,r,l.shape,o,s,a,i)}}};var ED={kernelName:is,inputsToSave:[\"x\",\"filter\"],gradFunc:(r,t,e)=>{let[n,o]=t,s={x:n,filter:o,dy:r},i={x:n,filter:o,dy:r};return{x:()=>T.runKernel(Yl,s,e),filter:()=>T.runKernel(Zl,i,e)}}};var AD={kernelName:ls,outputsToSave:[!0],gradFunc:(r,t)=>{let[e]=t,n={dy:r,y:e};return{x:()=>T.runKernel(La,n)}}};var DD={kernelName:us,inputsToSave:[\"x\"],gradFunc:(r,t)=>{let[e]=t,n=$(Ke(Ut(Wt(e))),2/Math.sqrt(Math.PI));return{x:()=>$(r,n)}}};var $D={kernelName:cs,outputsToSave:[!0],gradFunc:(r,t)=>{let[e]=t;return{x:()=>$(r,e)}}};var RD={kernelName:Mi,inputsToSave:[\"input\"],gradFunc:(r,t)=>{let[e]=t;return{input:()=>R(r,e.shape)}}};var FD={kernelName:ps,inputsToSave:[\"x\"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>$(r,Ke(e))}}};var OD={kernelName:ms,gradFunc:r=>({x:()=>vt(r)})};var MD={kernelName:fs,inputsToSave:[\"a\",\"b\"],gradFunc:(r,t)=>{let[e,n]=t,o=Mt(e.shape,n.shape);return{a:()=>{let a=ut(r,J(n,\"float32\")),u=we(e.shape,o);return u.length>0?R(mt(a,u),e.shape):a},b:()=>{let a=$(r,J(e,\"float32\")),u=we(n.shape,o);u.length>0&&(a=R(mt(a,u),n.shape));let l=Wt(n);return Ut(ut(a,J(l,\"float32\")))}}}};var PD={kernelName:ds,inputsToSave:[\"x\",\"mean\",\"variance\",\"scale\"],gradFunc:(r,t,e)=>{let{varianceEpsilon:n}=e,[o,s,i,a]=t,u=a==null?pt(1):a,l=we(s.shape,o.shape),c=[];if(s.rank===1){for(let I=0;Is.rank===1?R($($(r,Rr(R(f,[1,1,1,s.shape[0]]),c)),u),o.shape):R($($(r,f),u),o.shape),mean:()=>{let I=$($(f,pt(-1)),m);return s.rank===1&&(I=mt(I,l)),R(I,s.shape)},variance:()=>{let I=$($(d,p),m);return s.rank===1&&(I=mt(I,l)),R(I,s.shape)},scale:()=>{let I=$(p,f),N=$(r,I);return s.rank===1&&(N=mt(N,l)),R(N,s.shape)},offset:()=>{let I=r;return s.rank===1&&(I=mt(I,l)),R(I,s.shape)}}}};var BD={kernelName:Pi,inputsToSave:[\"x\",\"indices\"],gradFunc:(r,t,e)=>{let[n,o]=t,{axis:s,batchDims:i}=e,a=fr(s,n.shape)[0],u=(l,c,p)=>()=>{let m=l.shape,f=c.size,d=m.slice(0,a),h=d.length,g=m.slice(s,m.length).slice(1),x=g.length,b=LD(0,h),w=LD(h+1,h+1+x),I=zD([d,[f],g]),N=R(p,I),E=R(c,[f]),A=zD([[h],b,w]),D=Vt(N,A),F=vm(D,E,l.shape[a]),M=fh(A);return F=Vt(F,M),F};if(i===1){let l=n.shape[0],c=n.split(l,0);return{x:()=>Fe(c.map((f,d)=>u(f,o.slice(d,1),r.slice(d,1))())).reshape(n.shape),indices:()=>o}}else return{x:u(n,o,r),indices:()=>o}}};function LD(r,t){let e=[];for(let n=r;n{let[e,n]=t;return{a:()=>vt(e),b:()=>vt(n)}}};var GD={kernelName:go,gradFunc:r=>({x:()=>J(r,\"float32\")})};var WD={kernelName:gs,gradFunc:r=>({x:()=>vt(r)})};var UD={kernelName:xs,gradFunc:r=>({x:()=>vt(r)})};var HD={kernelName:ys,gradFunc:r=>({x:()=>vt(r)})};var qD={kernelName:bs,inputsToSave:[\"x\"],gradFunc:(r,t,e)=>{let[n]=t,{alpha:o}=e,s=Re(n,0);return{x:()=>Ie(s,r,$(r,o))}}};var KD={kernelName:Is,inputsToSave:[\"x\"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>ut(r,K(e,1))}}};var jD={kernelName:ws,inputsToSave:[\"x\"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>ut(r,J(e,\"float32\"))}}};var XD={kernelName:A_,inputsToSave:[],outputsToSave:[!0],gradFunc:(r,t,e)=>{let[n]=t,{axis:o}=e;return{logits:()=>{let i=Ke(n);return at(r,$(mt(r,o,!0),i))}}}};function GZ(r,t,e,n=5,o=1,s=1,i=.5){let a={x:r,y:t,dy:e},u={depthRadius:n,bias:o,alpha:s,beta:i};return T.runKernel(Xa,a,u)}var YD=k({localResponseNormalizationBackprop_:GZ});var ZD={kernelName:Cs,inputsToSave:[\"x\"],outputsToSave:[!0],gradFunc:(r,t,e)=>{let[n,o]=t,{depthRadius:s,bias:i,alpha:a,beta:u}=e;return{x:()=>YD(n,o,r,s,i,a,u)}}};function $y(r,t,e,n){return t.rank$(r,J($r(e,t),r.dtype))}}var $N={kernelName:vs,inputsToSave:[\"x\"],outputsToSave:[!0],gradFunc:(r,t,e)=>{let n=e,{reductionIndices:o}=n,s=t[0],i=t[1],a=fr(o,s.shape),u=$y(r,i,s,a);return{x:()=>u.x()}}};var JD={kernelName:Ss,inputsToSave:[\"a\",\"b\"],gradFunc:(r,t)=>{let[e,n]=t;return{a:()=>$(r,J(cn(e,n),\"float32\")),b:()=>$(r,J(yl(e,n),\"float32\"))}}};function WZ(r,t,e,n,o,s,i){let a=C(r,\"dy\",\"maxPool3dGrad\"),u=C(t,\"input\",\"maxPool3dGrad\"),l=C(e,\"output\",\"maxPool3dGrad\"),c=a,p=u,m=l,f=!1;u.rank===4&&(f=!0,c=R(a,[1,a.shape[0],a.shape[1],a.shape[2],a.shape[3]]),p=R(u,[1,u.shape[0],u.shape[1],u.shape[2],u.shape[3]]),m=R(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]])),_(c.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${c.rank}.`),_(p.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${p.rank}.`),_(m.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${m.rank}.`),Se(\"maxPool3dGrad\",s,i);let d={dy:c,input:p,output:m},h={filterSize:n,strides:o,pad:s,dimRoundingMode:i},g=T.runKernel(tu,d,h);return f?R(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var QD=k({maxPool3dGrad_:WZ});var t$={kernelName:Li,inputsToSave:[\"x\"],outputsToSave:[!0],gradFunc:(r,t,e)=>{let[n,o]=t,{filterSize:s,strides:i,pad:a,dimRoundingMode:u}=e;return{x:()=>QD(r,n,o,s,i,a,u)}}};function UZ(r,t,e,n,o,s,i){let a=C(r,\"dy\",\"maxPoolGrad\"),u=C(t,\"input\",\"maxPoolGrad\"),l=C(e,\"output\",\"maxPoolGrad\");_(u.rank===a.rank,()=>`Rank of input (${u.rank}) does not match rank of dy (${a.rank})`),_(a.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${a.rank}.`),_(u.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${u.rank}.`),Se(\"maxPoolGrad\",s,i);let c={dy:a,input:u,output:l},p={filterSize:n,strides:o,pad:s,dimRoundingMode:i};return T.runKernel(Ql,c,p)}var e$=k({maxPoolGrad_:UZ});var r$={kernelName:Ns,inputsToSave:[\"x\"],outputsToSave:[!0],gradFunc:(r,t,e)=>{let[n,o]=t,{filterSize:s,strides:i,pad:a}=e;return{x:()=>e$(r,n,o,s,i,a)}}};var n$={kernelName:ks,inputsToSave:[\"x\"],gradFunc:(r,t,e)=>{let[n]=t,{axis:o}=e,s=fr(o,n.shape),a=rN(n.shape,s)[1],u=jt(a);return{x:()=>{let c=n.shape.slice();s.forEach(f=>{c[f]=1});let p=R(r,c);return ut($(p,ar(n.shape,\"float32\")),u)}}}};var o$={kernelName:Ts,inputsToSave:[\"x\"],outputsToSave:[!0],gradFunc:(r,t,e)=>{let n=e,{axis:o}=n,[s,i]=t,a=fr(o,s.shape),u=$y(r,i,s,a);return{x:()=>u.x()}}};var s$={kernelName:_s,inputsToSave:[\"a\",\"b\"],gradFunc:(r,t)=>{let[e,n]=t;return{a:()=>$(r,J(Vn(e,n),\"float32\")),b:()=>$(r,J(Re(e,n),\"float32\"))}}};var i$={kernelName:Es,inputsToSave:[\"x\"],gradFunc:(r,t,e)=>{let n=t[0],{paddings:o}=e,s=o.map(i=>i[0]);return{x:()=>Ot(r,s,n.shape)}}};var a$={kernelName:As,inputsToSave:[\"a\",\"b\"],gradFunc:(r,t)=>{let[e,n]=t,o=Mt(e.shape,n.shape);return{a:()=>{let a=we(e.shape,o);return a.length>0?R(mt(r,a),e.shape):r},b:()=>{let a=$(r,Ut(la(ut(e,n)))),u=we(n.shape,o);return u.length>0?R(mt(a,u),n.shape):a}}}};var l$={kernelName:Ds,inputsToSave:[\"a\",\"b\"],gradFunc:(r,t)=>{let[e,n]=t,o=Mt(e.shape,n.shape);return{a:()=>{let a=$(r,J(n,\"float32\")),u=we(e.shape,o);return u.length>0?R(mt(a,u),e.shape):a},b:()=>{let a=$(r,J(e,\"float32\")),u=we(n.shape,o);return u.length>0?R(mt(a,u),n.shape):a}}}};var u$={kernelName:zi,gradFunc:r=>({x:()=>Ut(r)})};var c$={kernelName:$s,inputsToSave:[\"indices\"],gradFunc:(r,t)=>{let e=t[0];return{indices:()=>ke(e.shape,\"float32\")}}};var p$={kernelName:Bi,gradFunc:r=>({x:()=>vt(r)})};var m$={kernelName:Vi,saveAllInputs:!0,gradFunc:(r,t,e)=>{let{axis:n}=e;return gr(r,n).map(s=>()=>s)}};var RN={kernelName:Rs,inputsToSave:[\"x\"],gradFunc:(r,t,e)=>{let n=t[0],{paddings:o}=e,s=o.map(i=>i[0]);return{x:()=>Ot(r,s,n.shape)}}};var f$={kernelName:Fs,inputsToSave:[\"a\",\"b\"],outputsToSave:[!0],gradFunc:(r,t)=>{let[e,n,o]=t,s=e,i=n,a=Mt(s.shape,i.shape);return{a:()=>{let c=J(i,\"float32\"),p=$(r,$(c,qr(s,at(c,pt(1))))),m=we(s.shape,a);return m.length>0&&(p=mt(p,m)),R(p,s.shape)},b:()=>{let c=Re(s,0),p=Ie(c,Nr(s),vt(s)),m=$(r,$(o,p)),f=we(i.shape,a);return f.length>0&&(m=mt(m,f)),R(m,i.shape)}}}};var d$={kernelName:Os,inputsToSave:[\"x\",\"alpha\"],gradFunc:(r,t)=>{let[e,n]=t,o=Re(e,0);return{x:()=>Ie(o,r,$(r,n)),alpha:()=>{let s=Ie(o,vt(r),$(r,e)),i=we(n.shape,r.shape);return i.length>0&&(s=mt(s,i)),R(s,n.shape)}}}};function HZ(r,t,e){let n=r.shape.slice();n[e]=1;let o=R(t,n),s=mc(r,e,!0,!1),i=mc(r,e,!0,!0),a=$(s,i);return $(o,a)}function qZ(r,t,e){let n=r.shape.length,o=n-e.length,s=S.getAxesPermutation(e,n),i=r;s!=null&&(i=Vt(r,s));let a=i.shape.slice(),l=a.splice(n-e.length,e.length).reduce((m,f)=>m*f,1);a.push(l);let c=i.reshape(a),p=HZ(c,t,o);if(p=p.reshape(i.shape),s!=null){let m=S.getUndoAxesPermutation(s);p=Vt(p,m)}return p}var h$={kernelName:Ms,inputsToSave:[\"x\"],gradFunc:(r,t,e)=>{let[n]=t,{axis:o}=e,s=[];return o==null?s=n.shape.map((i,a)=>a):typeof o==\"number\"?s=[o]:s=o,{x:()=>qZ(n,r,s)}}};var g$={kernelName:as,inputsToSave:[\"a\",\"b\"],gradFunc:(r,t)=>{let[e,n]=t,o=Mt(e.shape,n.shape);return{a:()=>{let a=ut(r,J(n,\"float32\")),u=we(e.shape,o);return u.length>0?R(mt(a,u),e.shape):a},b:()=>{let a=$(r,J(e,\"float32\")),u=we(n.shape,o);u.length>0&&(a=R(mt(a,u),n.shape));let l=Wt(n);return Ut(ut(a,J(l,\"float32\")))}}}};var x$={kernelName:Ps,inputsToSave:[\"x\"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>ut(r,Ut(Wt(e)))}}};var y$={kernelName:Vs,inputsToSave:[\"x\"],gradFunc:(r,t)=>{let[e]=t,n=$(Vn(e,6),So(e));return{x:()=>$(r,J(n,\"float32\"))}}};var b$={kernelName:Ls,inputsToSave:[\"x\"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>$(r,J(So(e),\"float32\"))}}};var w$={kernelName:Gi,inputsToSave:[\"x\"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>R(r,e.shape)}}};var I$={kernelName:Bs,inputsToSave:[\"images\"],gradFunc:(r,t,e)=>{let[n]=t,o={dy:r,images:n};return{images:()=>T.runKernel(rl,o,e)}}};var C$={kernelName:zs,inputsToSave:[\"images\"],gradFunc:(r,t,e)=>{let[n]=t,o={dy:r,images:n};return{images:()=>T.runKernel(el,o,e)}}};var v$={kernelName:Gs,gradFunc:(r,t,e)=>{let{dims:n}=e,o=fr(n,r.shape);return{x:()=>dr(r,o)}}};var S$={kernelName:Ws,gradFunc:r=>({x:()=>vt(r)})};var N$={kernelName:Us,inputsToSave:[\"x\"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>Ut(ut(r,$(qr(e,1.5),2)))}}};var k$={kernelName:Wi,inputsToSave:[\"condition\"],gradFunc:(r,t)=>{let[e]=t;return{condition:()=>J(vt(e),\"float32\"),t:()=>$(r,J(e,r.dtype)),e:()=>$(r,J(Nu(e),r.dtype))}}};var T$={kernelName:Hs,inputsToSave:[\"x\"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>{let n=Re(e,pt(0)),o=pt(_N),s=pt(EN),i=$(r,s),a=$($(r,o),Ke(J(e,\"float32\")));return Ie(n,i,a)}}}};var _$={kernelName:Xs,outputsToSave:[!0],gradFunc:(r,t)=>{let[e]=t;return{x:()=>$(r,$(e,at(pt(1),e)))}}};var E$={kernelName:js,gradFunc:r=>({x:()=>vt(r)})};var A$={kernelName:qs,inputsToSave:[\"x\"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>$(bu(J(e,\"float32\")),r)}}};var D$={kernelName:Ks,inputsToSave:[\"x\"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>$(sm(J(e,\"float32\")),r)}}};var $$={kernelName:Ui,inputsToSave:[\"x\"],gradFunc:(r,t,e)=>{let[n]=t,{begin:o,size:s}=e,i=n.shape,[a,u]=TN(n,o,s),l=[];for(let c=0;cmn(r,l)}}};var R$={kernelName:Qs,outputsToSave:[!0],gradFunc:(r,t,e)=>{let[n]=t,{dim:o}=e,s=!0,i=$(r,n);return{logits:()=>at(i,$(mt(i,[o],s),n))}}};var F$={kernelName:Ys,inputsToSave:[\"x\"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>$(r,en(e))}}};var FN={kernelName:Hi,gradFunc:(r,t,e)=>{let{blockShape:n,paddings:o}=e;return{x:()=>yu(r,n,o)}}};var ON={kernelName:qi,gradFunc:(r,t,e)=>{let{axis:n}=e;return{x:()=>ie(r,n)}}};var O$={kernelName:Zs,inputsToSave:[\"x\"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>ut(r,$(ge(J(e,\"float32\")),2))}}};var M$={kernelName:iu,inputsToSave:[\"x\"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>$(r,$(J(e,\"float32\"),2))}}};var P$={kernelName:ti,inputsToSave:[\"a\",\"b\"],gradFunc:(r,t)=>{let[e,n]=t,o=pt(2);return{a:()=>$(r,$(o,at(e,n))),b:()=>$(r,$(o,at(n,e)))}}};var L$={kernelName:xo,gradFunc:r=>({x:()=>vt(r)})};var z$={kernelName:ei,inputsToSave:[\"a\",\"b\"],gradFunc:(r,t)=>{let[e,n]=t,o=Mt(e.shape,n.shape);return{a:()=>{let a=r,u=we(e.shape,o);return u.length>0&&(a=mt(a,u)),R(a,e.shape)},b:()=>{let a=r,u=we(n.shape,o);return u.length>0&&(a=mt(a,u)),R(Ut(a),n.shape)}}}};var B$={kernelName:Js,inputsToSave:[\"x\"],gradFunc:(r,t,e)=>{let[n]=t,o=n.shape.slice(),{axis:s}=e;fr(s,n.shape).forEach(l=>{o[l]=1});let a=R(r,o),u=$(a,ar(n.shape,\"float32\"));return{x:()=>u}}};var V$={kernelName:ri,inputsToSave:[\"x\"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>ut(r,Wt(bu(e)))}}};var G$={kernelName:ni,outputsToSave:[!0],gradFunc:(r,t)=>{let[e]=t;return{x:()=>$(at(pt(1),Wt(e)),r)}}};var W$={kernelName:oo,inputsToSave:[\"x\"],gradFunc:(r,t,e)=>{let[n]=t,{reps:o}=e;return{x:()=>{let i=vt(n);if(n.rank===1)for(let a=0;a{let n=e,{perm:o}=n,s=fh(o);return{x:()=>Vt(r,s)}}};var H$={kernelName:Ki,gradFunc:(r,t,e)=>{let n=e,{axis:o}=n;return{value:()=>Fe(r,o)}}};var q$={kernelName:pu,inputsToSave:[\"segmentIds\"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>KZ(r,e)}}};function KZ(r,t){let e=kn(t,vt(t)),n=ua(r,e),o=cn(t,pt(0,\"int32\")),s=n.rank-o.rank;for(let a=0;a({x:()=>vt(r)})};var jZ=[Dy,J2,Q2,tD,eD,rD,nD,oD,sD,iD,aD,lD,cD,mD,fD,dD,hD,gD,xD,yD,bD,wD,CD,ID,SD,ND,kD,TD,_D,ED,g$,AD,DD,$D,RD,FD,MD,OD,PD,BD,VD,GD,WD,UD,HD,qD,KD,jD,XD,ZD,$N,$N,JD,t$,r$,n$,o$,s$,i$,a$,l$,u$,c$,p$,m$,RN,RN,f$,d$,h$,x$,y$,b$,w$,I$,C$,v$,S$,N$,k$,T$,_$,E$,A$,D$,$$,R$,F$,FN,FN,ON,ON,O$,P$,M$,L$,z$,B$,V$,G$,W$,U$,H$,q$,K$];for(let r of jZ)$_(r);O().prototype.abs=function(){return this.throwIfDisposed(),_e(this)};O().prototype.acos=function(){return this.throwIfDisposed(),fx(this)};O().prototype.acosh=function(){return this.throwIfDisposed(),dx(this)};O().prototype.add=function(r){return this.throwIfDisposed(),K(this,r)};O().prototype.all=function(r,t){return this.throwIfDisposed(),tm(this,r,t)};O().prototype.any=function(r,t){return this.throwIfDisposed(),cc(this,r,t)};O().prototype.argMax=function(r){return this.throwIfDisposed(),ra(this,r)};O().prototype.argMin=function(r){return this.throwIfDisposed(),hx(this,r)};O().prototype.asScalar=function(){return this.throwIfDisposed(),_(this.size===1,()=>\"The array must have only 1 element.\"),R(this,[])};O().prototype.asType=function(r){return this.throwIfDisposed(),J(this,r)};O().prototype.as1D=function(){return this.throwIfDisposed(),R(this,[this.size])};O().prototype.as2D=function(r,t){return this.throwIfDisposed(),R(this,[r,t])};O().prototype.as3D=function(r,t,e){return this.throwIfDisposed(),R(this,[r,t,e])};O().prototype.as4D=function(r,t,e,n){return this.throwIfDisposed(),R(this,[r,t,e,n])};O().prototype.as5D=function(r,t,e,n,o){return this.throwIfDisposed(),R(this,[r,t,e,n,o])};O().prototype.asin=function(){return this.throwIfDisposed(),gx(this)};O().prototype.asinh=function(){return this.throwIfDisposed(),xx(this)};O().prototype.atan=function(){return this.throwIfDisposed(),yx(this)};O().prototype.atan2=function(r){return this.throwIfDisposed(),bx(this,r)};O().prototype.atanh=function(){return this.throwIfDisposed(),wx(this)};O().prototype.avgPool=function(r,t,e,n){return this.throwIfDisposed(),xu(this,r,t,e,n)};O().prototype.batchToSpaceND=function(r,t){return this.throwIfDisposed(),yu(this,r,t)};O().prototype.batchNorm=function(r,t,e,n,o){return this.throwIfDisposed(),oa(this,r,t,e,n,o)};O().prototype.broadcastTo=function(r){return this.throwIfDisposed(),sa(this,r)};O().prototype.cast=function(r){return this.throwIfDisposed(),J(this,r)};O().prototype.ceil=function(){return this.throwIfDisposed(),kx(this)};O().prototype.clipByValue=function(r,t){return this.throwIfDisposed(),vr(this,r,t)};O().prototype.concat=function(r,t){return this.throwIfDisposed(),r instanceof Lt&&(r=[r]),ie([this,...r],t)};O().prototype.conv1d=function(r,t,e,n,o,s){return this.throwIfDisposed(),rm(this,r,t,e,n,o,s)};O().prototype.conv2dTranspose=function(r,t,e,n,o){return this.throwIfDisposed(),om(this,r,t,e,n,o)};O().prototype.conv2d=function(r,t,e,n,o,s){return this.throwIfDisposed(),Nn(this,r,t,e,n,o,s)};O().prototype.cos=function(){return this.throwIfDisposed(),bu(this)};O().prototype.cosh=function(){return this.throwIfDisposed(),sm(this)};O().prototype.cumprod=function(r,t,e){return this.throwIfDisposed(),mc(this,r,t,e)};O().prototype.cumsum=function(r,t,e){return this.throwIfDisposed(),im(this,r,t,e)};O().prototype.depthToSpace=function(r,t){return this.throwIfDisposed(),Fx(this,r,t)};O().prototype.depthwiseConv2d=function(r,t,e,n,o,s){return this.throwIfDisposed(),ia(this,r,t,e,n,o,s)};O().prototype.dilation2d=function(r,t,e,n,o){return this.throwIfDisposed(),Ox(this,r,t,e,n,o)};O().prototype.divNoNan=function(r){return this.throwIfDisposed(),Mx(this,r)};O().prototype.div=function(r){return this.throwIfDisposed(),ut(this,r)};O().prototype.dot=function(r){return this.throwIfDisposed(),Px(this,r)};O().prototype.elu=function(){return this.throwIfDisposed(),aa(this)};O().prototype.equal=function(r){return this.throwIfDisposed(),$r(this,r)};O().prototype.erf=function(){return this.throwIfDisposed(),am(this)};O().prototype.euclideanNorm=function(r,t){return this.throwIfDisposed(),Lx(this,r,t)};O().prototype.exp=function(){return this.throwIfDisposed(),Ke(this)};O().prototype.expandDims=function(r){return this.throwIfDisposed(),je(this,r)};O().prototype.expm1=function(){return this.throwIfDisposed(),zx(this)};O().prototype.fft=function(){return this.throwIfDisposed(),Au(this)};O().prototype.flatten=function(){return this.throwIfDisposed(),R(this,[this.size])};O().prototype.floor=function(){return this.throwIfDisposed(),la(this)};O().prototype.floorDiv=function(r){return this.throwIfDisposed(),Qp(this,r)};O().prototype.gather=function(r,t,e){return this.throwIfDisposed(),ua(this,r,t,e)};O().prototype.greaterEqual=function(r){return this.throwIfDisposed(),cn(this,r)};O().prototype.greater=function(r){return this.throwIfDisposed(),Re(this,r)};O().prototype.ifft=function(){return this.throwIfDisposed(),wl(this)};O().prototype.irfft=function(){return this.throwIfDisposed(),bm(this)};O().prototype.isFinite=function(){return this.throwIfDisposed(),Bx(this)};O().prototype.isInf=function(){return this.throwIfDisposed(),Vx(this)};O().prototype.isNaN=function(){return this.throwIfDisposed(),Gx(this)};O().prototype.leakyRelu=function(r){return this.throwIfDisposed(),Cu(this,r)};O().prototype.lessEqual=function(r){return this.throwIfDisposed(),Vn(this,r)};O().prototype.less=function(r){return this.throwIfDisposed(),yl(this,r)};O().prototype.localResponseNormalization=function(r,t,e,n){return this.throwIfDisposed(),Wx(this,r,t,e,n)};O().prototype.logSigmoid=function(){return this.throwIfDisposed(),qx(this)};O().prototype.logSoftmax=function(r){return this.throwIfDisposed(),lm(this,r)};O().prototype.logSumExp=function(r,t){return this.throwIfDisposed(),Su(this,r,t)};O().prototype.log=function(){return this.throwIfDisposed(),Nr(this)};O().prototype.log1p=function(){return this.throwIfDisposed(),vu(this)};O().prototype.logicalAnd=function(r){return this.throwIfDisposed(),Fr(this,r)};O().prototype.logicalNot=function(){return this.throwIfDisposed(),Nu(this)};O().prototype.logicalOr=function(r){return this.throwIfDisposed(),um(this,r)};O().prototype.logicalXor=function(r){return this.throwIfDisposed(),Kx(this,r)};O().prototype.matMul=function(r,t,e){return this.throwIfDisposed(),Bt(this,r,t,e)};O().prototype.maxPool=function(r,t,e,n){return this.throwIfDisposed(),ku(this,r,t,e,n)};O().prototype.max=function(r,t){return this.throwIfDisposed(),Sr(this,r,t)};O().prototype.maximum=function(r){return this.throwIfDisposed(),kn(this,r)};O().prototype.mean=function(r,t){return this.throwIfDisposed(),Ne(this,r,t)};O().prototype.min=function(r,t){return this.throwIfDisposed(),gl(this,r,t)};O().prototype.minimum=function(r){return this.throwIfDisposed(),lo(this,r)};O().prototype.mirrorPad=function(r,t){return this.throwIfDisposed(),Yx(this,r,t)};O().prototype.mod=function(r){return this.throwIfDisposed(),Zx(this,r)};O().prototype.mul=function(r){return this.throwIfDisposed(),$(this,r)};O().prototype.neg=function(){return this.throwIfDisposed(),Ut(this)};O().prototype.norm=function(r,t,e){return this.throwIfDisposed(),xl(this,r,t,e)};O().prototype.notEqual=function(r){return this.throwIfDisposed(),ci(this,r)};O().prototype.oneHot=function(r,t=1,e=0){return this.throwIfDisposed(),ca(this,r,t,e)};O().prototype.onesLike=function(){return this.throwIfDisposed(),wr(this)};O().prototype.pad=function(r,t){return this.throwIfDisposed(),mn(this,r,t)};O().prototype.pool=function(r,t,e,n,o,s){return this.throwIfDisposed(),Jx(this,r,t,e,n,o,s)};O().prototype.pow=function(r){return this.throwIfDisposed(),qr(this,r)};O().prototype.prelu=function(r){return this.throwIfDisposed(),_u(this,r)};O().prototype.prod=function(r,t){return this.throwIfDisposed(),Qx(this,r,t)};O().prototype.reciprocal=function(){return this.throwIfDisposed(),sy(this)};O().prototype.relu=function(){return this.throwIfDisposed(),Or(this)};O().prototype.relu6=function(){return this.throwIfDisposed(),cm(this)};O().prototype.reshapeAs=function(r){return this.throwIfDisposed(),R(this,r.shape)};O().prototype.reshape=function(r){return this.throwIfDisposed(),R(this,r)};O().prototype.resizeBilinear=function(r,t,e){return this.throwIfDisposed(),Cy(this,r,t,e)};O().prototype.resizeNearestNeighbor=function(r,t,e){return this.throwIfDisposed(),vy(this,r,t,e)};O().prototype.reverse=function(r){return this.throwIfDisposed(),dr(this,r)};O().prototype.rfft=function(){return this.throwIfDisposed(),Du(this)};O().prototype.round=function(){return this.throwIfDisposed(),pm(this)};O().prototype.rsqrt=function(){return this.throwIfDisposed(),mm(this)};O().prototype.selu=function(){return this.throwIfDisposed(),fm(this)};O().prototype.separableConv2d=function(r,t,e,n,o,s){return this.throwIfDisposed(),dm(this,r,t,e,n,o,s)};O().prototype.sigmoid=function(){return this.throwIfDisposed(),en(this)};O().prototype.sign=function(){return this.throwIfDisposed(),iy(this)};O().prototype.sin=function(){return this.throwIfDisposed(),hm(this)};O().prototype.sinh=function(){return this.throwIfDisposed(),gm(this)};O().prototype.slice=function(r,t){return this.throwIfDisposed(),Ot(this,r,t)};O().prototype.softmax=function(r){return this.throwIfDisposed(),Eu(this,r)};O().prototype.softplus=function(){return this.throwIfDisposed(),ui(this)};O().prototype.spaceToBatchND=function(r,t){return this.throwIfDisposed(),Tu(this,r,t)};O().prototype.split=function(r,t){return this.throwIfDisposed(),hr(this,r,t)};O().prototype.sqrt=function(){return this.throwIfDisposed(),ge(this)};O().prototype.square=function(){return this.throwIfDisposed(),Wt(this)};O().prototype.squaredDifference=function(r){return this.throwIfDisposed(),wm(this,r)};O().prototype.squeeze=function(r){return this.throwIfDisposed(),Wn(this,r)};O().prototype.stack=function(r,t){this.throwIfDisposed();let e=r instanceof Lt?[this,r]:[this,...r];return Fe(e,t)};O().prototype.step=function(r){return this.throwIfDisposed(),So(this,r)};O().prototype.stridedSlice=function(r,t,e,n,o,s,i,a){return this.throwIfDisposed(),ay(this,r,t,e,n,o,s,i,a)};O().prototype.sub=function(r){return this.throwIfDisposed(),at(this,r)};O().prototype.sum=function(r,t){return this.throwIfDisposed(),mt(this,r,t)};O().prototype.tan=function(){return this.throwIfDisposed(),ly(this)};O().prototype.tanh=function(){return this.throwIfDisposed(),li(this)};O().prototype.tile=function(r){return this.throwIfDisposed(),Rr(this,r)};O().prototype.toBool=function(){return this.throwIfDisposed(),J(this,\"bool\")};O().prototype.toFloat=function(){return this.throwIfDisposed(),J(this,\"float32\")};O().prototype.toInt=function(){return this.throwIfDisposed(),J(this,\"int32\")};O().prototype.topk=function(r,t){return this.throwIfDisposed(),cy(this,r,t)};O().prototype.transpose=function(r){return this.throwIfDisposed(),Vt(this,r)};O().prototype.unique=function(r){return this.throwIfDisposed(),py(this,r)};O().prototype.unsortedSegmentSum=function(r,t){return this.throwIfDisposed(),vm(this,r,t)};O().prototype.unstack=function(r){return this.throwIfDisposed(),gr(this,r)};O().prototype.where=function(r,t){return this.throwIfDisposed(),Ie(r,this,t)};O().prototype.zerosLike=function(){return this.throwIfDisposed(),vt(this)};var uo=class r extends Error{constructor(t){super(t),Object.setPrototypeOf(this,r.prototype)}},dn=class r extends Error{constructor(t){super(t),Object.setPrototypeOf(this,r.prototype)}},z=class r extends Error{constructor(t){super(t),Object.setPrototypeOf(this,r.prototype)}},_t=class r extends Error{constructor(t){super(t),Object.setPrototypeOf(this,r.prototype)}},Ry=class r extends Error{constructor(t){super(t),Object.setPrototypeOf(this,r.prototype)}};var vh=class{constructor(t){this.maxEntries=t||100,this.cache=new Map}get(t){let e;return this.cache.has(t)&&(e=this.cache.get(t),this.cache.delete(t),this.cache.set(t,e)),e}put(t,e){if(this.cache.has(t))this.cache.delete(t);else if(this.cache.size>=this.maxEntries){let n=this.cache.keys().next().value;this.cache.delete(n)}this.cache.set(t,e)}getMaxEntries(){return this.maxEntries}setMaxEntries(t){if(t<0)throw new Error(`The maxEntries of LRU caches must be at least 0, but got ${t}.`);if(this.maxEntries>t)for(let e=0;ee.toUpperCase())}var ko={};function km(r){if(r==null)return null;let t={};return t.className=r.getClassName(),t.config=r.getConfig(),t}function MN(r){if(!(r==null||typeof r!=\"object\"))if(Array.isArray(r))r.forEach(t=>MN(t));else{let t=Object.keys(r);for(let e of t){let n=r[e];n!=null&&typeof n==\"object\"&&(!Array.isArray(n)&&n.type===\"ndarray\"&&typeof n.value==\"number\"?r[e]=n.value:MN(n))}}}function fa(r,t={},e={},n=\"object\",o=!1){if(typeof r==\"string\"){let s=r,i;if(s in e)i=e[s];else if(s in ko)i=ko[s];else if(i=t[s],i==null)throw new z(`Unknown ${n}: ${r}. This may be due to one of the following reasons:\n1. The ${n} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.\n2. The custom ${n} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return i}else{let s=r;if(s.className==null||s.config==null)throw new z(`${n}: Improper config format: ${JSON.stringify(s)}.\n'className' and 'config' must set.`);let i=s.className,a,u;if(i in e?[a,u]=e[i]:i in ko?[a,u]=ko.className:i in t&&([a,u]=t[i]),a==null)throw new z(`Unknown ${n}: ${i}. This may be due to one of the following reasons:\n1. The ${n} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.\n2. The custom ${n} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(u!=null){let l={};for(let f of Object.keys(ko))l[f]=ko[f];for(let f of Object.keys(e))l[f]=e[f];let c=s.config;c.customObjects=l;let p=Object.assign({},ko);for(let f of Object.keys(e))ko[f]=e[f];MN(s.config);let m=u(a,s.config,e,o);return ko=Object.assign({},p),m}else{let l=Object.assign({},ko);for(let p of Object.keys(e))ko[p]=e[p];let c=new a(s.config);return ko=Object.assign({},l),c}}}function XZ(r,t){return rt?1:0}function Sh(r,t){return-1*XZ(r,t)}function Eo(r){if(r==null)return r;let t=[];for(let e of r)t.indexOf(e)===-1&&t.push(e);return t}function j$(r){if(r==null)throw new z(`Invalid value in obj: ${JSON.stringify(r)}`);for(let t in r)if(r.hasOwnProperty(t))return!1;return!0}function da(r,t,e){if(e!=null&&r.indexOf(e)<0)throw new z(`${e} is not a valid ${t}. Valid values are ${r} or null/undefined.`)}function Fy(r,t,e=0,n=1/0){return co(e>=0),co(n>=e),Array.isArray(r)&&r.length>=e&&r.length<=n&&r.every(o=>typeof o===t)}function tr(r,t){Array.isArray(r)?(y.assert(r.length>0,()=>`${t} is unexpectedly an empty array.`),r.forEach((e,n)=>tr(e,`element ${n+1} of ${t}`))):y.assert(Number.isInteger(r)&&r>0,()=>`Expected ${t} to be a positive integer, but got ${X$(r)}.`)}function X$(r){return r===null?\"null\":Array.isArray(r)?\"[\"+r.map(t=>X$(t)).join(\",\")+\"]\":typeof r==\"string\"?`\"${r}\"`:`${r}`}function Y$(r,t,e){let n=e!=null?e():y.now(),o;return(...i)=>{let a=e!=null?e():y.now();return a-n0){let e=`${r}_${t}`;return Tm.set(e,1),e}else return r}var JZ=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\\._\\/]*$/);function oR(r){return!!r.match(JZ)}function sR(r){return r===parseInt(r.toString(),10)}function Ao(r,t,e){t==null&&(t=0),e==null&&(e=r.length);let n=1;for(let o=t;ot&&(t=n)}return t}function gn(r,t){if(t{if(r.shape.length!==2)throw new z(`repeat() expects a rank-2 tensor, but received a rank-${r.shape.length} tensor.`);let e=Sl(r,1);return Vy(e,[1,t,1])})}function aR(r){let t=[Ao(r.shape)];return R(r,t)}function lR(r){if(r.rank<=1)throw new z(`batchFlatten requires a minimum rank of 2. Got rank: ${r.rank}.`);let t=[r.shape[0],Ao(r.shape,1)];return R(r,t)}function vl(r,t,e){return B(()=>{switch(r.rank){case 1:return xm(r,t,e);case 2:return gh(r,[t,0],[e,r.shape[1]]);case 3:return ym(r,[t,0,0],[e,r.shape[1],r.shape[2]]);case 4:return yc(r,[t,0,0,0],[e,r.shape[1],r.shape[2],r.shape[3]]);case 5:return Ot(r,[t,0,0,0,0],[e,r.shape[1],r.shape[2],r.shape[3],r.shape[4]]);case 6:return Ot(r,[t,0,0,0,0,0],[e,r.shape[1],r.shape[2],r.shape[3],r.shape[4],r.shape[5]]);default:throw new z(`sliceAlongFirstAxis() received an unsupported tensor rank: ${r.rank}`)}})}function BN(r,t,e){return B(()=>{switch(r.rank){case 1:return xm(r,t,e);case 2:return gh(r,[0,t],[r.shape[0],e]);case 3:return ym(r,[0,0,t],[r.shape[0],r.shape[1],e]);case 4:return yc(r,[0,0,0,t],[r.shape[0],r.shape[1],r.shape[2],e]);default:throw new z(`sliceAlongLastAxis() received an unsupported tensor rank: ${r.rank}`)}})}function kh(r,t,e,n){return B(()=>{switch(r.rank){case 1:return xm(r,t,e);case 2:switch(n){case 1:return vl(r,t,e);case 2:return BN(r,t,e);default:throw new z(`The axis is not within the rank of the tensor ${n}`)}case 3:switch(n){case 1:return vl(r,t,e);case 2:return ym(r,[0,t,0],[r.shape[0],e,r.shape[2]]);case 3:return BN(r,t,e);default:throw new z(`The axis is not within the rank of the tensor ${n}`)}case 4:switch(n){case 1:return vl(r,t,e);case 2:return yc(r,[0,t,0,0],[r.shape[0],e,r.shape[2],r.shape[3]]);case 3:return yc(r,[0,0,t,0],[r.shape[0],r.shape[1],e,r.shape[3]]);case 4:return BN(r,t,e);default:throw new z(`The axis is not within the rank of the tensor ${n}`)}default:throw new z(`sliceAlongLastAxis() received an unsupported tensor rank: ${r.rank}`)}})}function _m(r,t=-1){let e;return t<0&&(e=r[0].rank,e!==0?t=e:t=0),t===r[0].rank&&(t=-1),ie(r,t)}function GN(r,t){switch(r.rank){case 1:return Tx([r,t]);case 2:return _x([r,t],0);case 3:return Ex([r,t],0);case 4:return Ax([r,t],0);default:throw new z(`concatAlongFirstAxis() received an unsupported tensor rank: ${r.rank}`)}}function Vy(r,t){if(Array.isArray(t)||(t=[t]),r.rank!==t.length)throw new z(`The length of input n (${t.length}) does not match the number of dimensions in input x (${r.rank})`);return Rr(r,t)}function Em(r,t=0,e=1,n,o){return xc(r,t,e,n,o)}function Do(r,t,e,n){if(r.rank<2||t.rank<2)throw new _t(`dot requires both inputs to be rank >= 2 but got x shape = ${r.shape} and y shape = ${t.shape}`);if(t.rank>=3){let o=r.shape.slice(-1)[0],s=t.shape.slice(-2)[0];if(o!==s)throw new _t(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${r.shape} and y shape = ${t.shape}`)}if(r.rank===2&&t.rank===2)return Ru.matMul({a:r,b:t,transposeA:!1,transposeB:!1,bias:n?VN(r.rank,n,xn()):null,activation:e});{let o=r.shape.slice(),s=o.pop();r=R(r,[-1,s]);let i=t.shape.slice(),a=i.pop(),u=i.pop(),l=[...i,a],c=Array.from({length:t.rank},(d,h)=>h===0?t.rank-2:h<=t.rank-2?h-1:h);t=R(Vt(t,c),[u,-1]);let p=[...o,...l];return R(Ru.matMul({a:r,b:t,transposeA:!1,transposeB:!1,bias:n?VN(r.rank,n,xn()):null,activation:e}),p)}}function Gy(r,t,e){return B(()=>(Array.isArray(t)?t=Oe(t,\"int32\"):t=J(t,\"int32\"),ua(r,t,e)))}function $c(r){return $(r,r)}function VN(r,t,e){let n=t.shape;if(t.rank!==1&&t.rank!==r)throw new z(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${r}`);if(r===5){if(e===\"channelsFirst\")return n.length===1?R(t,[1,n[0],1,1,1]):R(t,[1,n[3],n[0],n[1],n[2]]);if(e===\"channelsLast\")return n.length===1?R(t,[1,1,1,1,n[0]]):R(t,[1].concat(n))}else if(r===4){if(e===\"channelsFirst\")return n.length===1?R(t,[1,n[0],1,1]):R(t,[1,n[2],n[0],n[1]]);if(e===\"channelsLast\")return n.length===1?R(t,[1,1,1,n[0]]):R(t,[1].concat(n))}else if(r===3){if(e===\"channelsFirst\")return n.length===1?R(t,[1,n[0],1]):R(t,[1,n[1],n[0]]);if(e===\"channelsLast\")return n.length===1?R(t,[1,1,n[0]]):R(t,[1].concat(n))}else if(r<3)return t;throw new z(`Unsupported input rank by biasAdd: ${t.rank}`)}function yn(r,t,e){return B(()=>(e==null&&(e=xn()),Me(e),K(r,VN(r.rank,t,e))))}function uR(r,t=1){if(t!==1)throw new _t(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return aa(r)}function cR(r){return B(()=>ut(r,K(_e(r),1)))}function Wy(r,t,e,n){return B(()=>dN(r,t,e,n))}function pR(r){return B(()=>{let t=K(.5,$(.2,r));return vr(t,0,1)})}function Ou(r,t,e=!1){return e?r():t()}var mR=[\"fanIn\",\"fanOut\",\"fanAvg\"],fR=[\"normal\",\"uniform\",\"truncatedNormal\"];function QZ(r){da(mR,\"FanMode\",r)}function t7(r){da(fR,\"Distribution\",r)}var bn=class extends Q.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},Am=class extends bn{apply(t,e){return ke(t,e)}};Am.className=\"Zeros\";Q.registerClass(Am);var Mu=class extends bn{apply(t,e){return ar(t,e)}};Mu.className=\"Ones\";Q.registerClass(Mu);var Dm=class extends bn{constructor(t){if(super(),typeof t!=\"object\")throw new z(`Expected argument of type ConstantConfig but got ${t}`);if(t.value===void 0)throw new z(`config must have value set but got ${t}`);this.value=t.value}apply(t,e){return B(()=>$(pt(this.value),ar(t,e)))}getConfig(){return{value:this.value}}};Dm.className=\"Constant\";Q.registerClass(Dm);var $m=class extends bn{constructor(t){super(),this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=t.minval||this.DEFAULT_MINVAL,this.maxval=t.maxval||this.DEFAULT_MAXVAL,this.seed=t.seed}apply(t,e){return Gn(t,this.minval,this.maxval,e,this.seed)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};$m.className=\"RandomUniform\";Q.registerClass($m);var Rm=class extends bn{constructor(t){super(),this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=t.mean||this.DEFAULT_MEAN,this.stddev=t.stddev||this.DEFAULT_STDDEV,this.seed=t.seed}apply(t,e){if(e=e||\"float32\",e!==\"float32\"&&e!==\"int32\")throw new _t(`randomNormal does not support dType ${e}.`);return Em(t,this.mean,this.stddev,e,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};Rm.className=\"RandomNormal\";Q.registerClass(Rm);var Fm=class extends bn{constructor(t){super(),this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=t.mean||this.DEFAULT_MEAN,this.stddev=t.stddev||this.DEFAULT_STDDEV,this.seed=t.seed}apply(t,e){if(e=e||\"float32\",e!==\"float32\"&&e!==\"int32\")throw new _t(`truncatedNormal does not support dType ${e}.`);return Cm(t,this.mean,this.stddev,e,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};Fm.className=\"TruncatedNormal\";Q.registerClass(Fm);var Om=class extends bn{constructor(t){super(),this.gain=t.gain!=null?t.gain:1}apply(t,e){return B(()=>{if(t.length!==2||t[0]!==t[1])throw new z(\"Identity matrix initializer can only be used for 2D square matrices.\");return $(this.gain,fc(t[0]))})}getConfig(){return{gain:this.gain}}};Om.className=\"Identity\";Q.registerClass(Om);function e7(r,t=\"channelsLast\"){let e,n;if(Me(t),r.length===2)e=r[0],n=r[1];else if([3,4,5].indexOf(r.length)!==-1){if(t===\"channelsFirst\"){let o=Ao(r,2);e=r[1]*o,n=r[0]*o}else if(t===\"channelsLast\"){let o=Ao(r,0,r.length-2);e=r[r.length-2]*o,n=r[r.length-1]*o}}else{let o=Ao(r);e=Math.sqrt(o),n=Math.sqrt(o)}return[e,n]}var Yr=class extends bn{constructor(t){if(super(),t.scale<0)throw new z(`scale must be a positive float. Got: ${t.scale}`);this.scale=t.scale==null?1:t.scale,this.mode=t.mode==null?\"fanIn\":t.mode,QZ(this.mode),this.distribution=t.distribution==null?\"normal\":t.distribution,t7(this.distribution),this.seed=t.seed}apply(t,e){let n=e7(t),o=n[0],s=n[1],i=this.scale;if(this.mode===\"fanIn\"?i/=Math.max(1,o):this.mode===\"fanOut\"?i/=Math.max(1,s):i/=Math.max(1,(o+s)/2),this.distribution===\"normal\"){let a=Math.sqrt(i);if(e=e||\"float32\",e!==\"float32\"&&e!==\"int32\")throw new _t(`${this.getClassName()} does not support dType ${e}.`);return Cm(t,0,a,e,this.seed)}else{let a=Math.sqrt(3*i);return Gn(t,-a,a,e,this.seed)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};Yr.className=\"VarianceScaling\";Q.registerClass(Yr);var Rc=class extends Yr{constructor(t){super({scale:1,mode:\"fanAvg\",distribution:\"uniform\",seed:t==null?null:t.seed})}getClassName(){return Yr.className}};Rc.className=\"GlorotUniform\";Q.registerClass(Rc);var Fc=class extends Yr{constructor(t){super({scale:1,mode:\"fanAvg\",distribution:\"normal\",seed:t==null?null:t.seed})}getClassName(){return Yr.className}};Fc.className=\"GlorotNormal\";Q.registerClass(Fc);var Oc=class extends Yr{constructor(t){super({scale:2,mode:\"fanIn\",distribution:\"normal\",seed:t==null?null:t.seed})}getClassName(){return Yr.className}};Oc.className=\"HeNormal\";Q.registerClass(Oc);var Mc=class extends Yr{constructor(t){super({scale:2,mode:\"fanIn\",distribution:\"uniform\",seed:t==null?null:t.seed})}getClassName(){return Yr.className}};Mc.className=\"HeUniform\";Q.registerClass(Mc);var Pc=class extends Yr{constructor(t){super({scale:1,mode:\"fanIn\",distribution:\"normal\",seed:t==null?null:t.seed})}getClassName(){return Yr.className}};Pc.className=\"LeCunNormal\";Q.registerClass(Pc);var Lc=class extends Yr{constructor(t){super({scale:1,mode:\"fanIn\",distribution:\"uniform\",seed:t==null?null:t.seed})}getClassName(){return Yr.className}};Lc.className=\"LeCunUniform\";Q.registerClass(Lc);var Mm=class extends bn{constructor(t){super(),this.DEFAULT_GAIN=1,this.ELEMENTS_WARN_SLOW=2e3,this.gain=t.gain==null?this.DEFAULT_GAIN:t.gain,this.seed=t.seed}apply(t,e){return B(()=>{if(t.length<2)throw new _t(\"Shape must be at least 2D.\");if(e!==\"int32\"&&e!==\"float32\"&&e!==void 0)throw new TypeError(`Unsupported data type ${e}.`);e=e;let n=y.sizeFromShape(t.slice(0,-1)),o=t[t.length-1],s=n*o;s>this.ELEMENTS_WARN_SLOW&&console.warn(`Orthogonal initializer is being called on a matrix with more than ${this.ELEMENTS_WARN_SLOW} (${s}) elements: Slowness may result.`);let i=[Math.max(o,n),Math.min(o,n)],a=Em(i,0,1,e,this.seed),u=xN.qr(a,!1),l=u[0],p=u[1].flatten().stridedSlice([0],[Math.min(o,n)*Math.min(o,n)],[Math.min(o,n)+1]);return l=$(l,p.sign()),nn*o);return t}var xR=\"Variable\",Th=class{constructor(t,e=\"float32\",n=xR,o=!0,s=null){this.dtype=e==null?\"float32\":e,this.shape=t.shape,this.id=Py(),n=n==null?xR:n,this.originalName=Ly(n),this.name=zy(this.originalName),this.trainable_=o,this.constraint=s,this.val=my(t,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(t){return this.assertNotDisposed(),n7(this.val,t),this.val.id!==t.id&&(this.val.assign(t),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(t){this.trainable_=t,this.val.trainable=t}};function n7(r,t){if(r.shape.toString()!==t.shape.toString())throw new Error(\"Shape mismatch: \"+JSON.stringify(r.shape)+\" vs. \"+JSON.stringify(t.shape))}function _h(r){return r.map(t=>t.read())}function zm(r){r.forEach(t=>{t[0].write(t[1])})}var Ce=class{constructor(t){this.dtype=t.dtype,this.shape=t.shape,t.shape!=null?this.ndim=t.shape.length:this.ndim=t.ndim,this.maxNDim=t.maxNDim,this.minNDim=t.minNDim,this.axes=t.axes||{}}},nn=class{constructor(t,e,n,o,s,i,a){this.dtype=t,this.shape=e,this.sourceLayer=n,this.inputs=o,this.callArgs=s,this.outputTensorIndex=a,this.id=Py(),i!=null&&(this.originalName=Ly(i),this.name=zy(this.originalName)),this.rank=e.length}},o7=0,Nl=class{constructor(t,e){this.callArgs=e,this.id=o7++,this.outboundLayer=t.outboundLayer,this.inboundLayers=t.inboundLayers,this.nodeIndices=t.nodeIndices,this.tensorIndices=t.tensorIndices,this.inputTensors=t.inputTensors,this.outputTensors=t.outputTensors,this.inputMasks=t.inputMasks,this.outputMasks=t.outputMasks,this.inputShapes=t.inputShapes,this.outputShapes=t.outputShapes;for(let n of t.inboundLayers)n!=null&&n.outboundNodes.push(this);t.outboundLayer.inboundNodes.push(this)}getConfig(){let t=[];for(let e of this.inboundLayers)e!=null?t.push(e.name):t.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:t,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},s7=0,Et=class extends Q.Serializable{constructor(t={}){super(),this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=s7++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let e=t.name;if(!e){let n=this.getClassName();e=_o(n)+\"_\"+Fu(n)}if(this.name=e,this.trainable_=t.trainable==null?!0:t.trainable,t.inputShape!=null||t.batchInputShape!=null){let n;if(t.batchInputShape!=null)n=t.batchInputShape;else if(t.inputShape!=null){let s=null;t.batchSize!=null&&(s=t.batchSize),n=[s].concat(t.inputShape)}this.batchInputShape=n;let o=t.dtype;o==null&&(o=t.inputDType),o==null&&(o=\"float32\"),this.dtype=o}t.weights!=null?this.initialWeights=t.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(t,e){return t.name+\"_ib-\"+e.toString()}getNodeAtIndex(t,e){if(this.inboundNodes.length===0)throw new dn(`The layer has never been called and thus has no defined ${e}.`);if(this.inboundNodes.length<=t)throw new z(`Asked to get ${e} at node ${t}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[t]}getInputAt(t){return kr(this.getNodeAtIndex(t,\"input\").inputTensors)}getOutputAt(t){return kr(this.getNodeAtIndex(t,\"output\").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new uo(`Layer ${this.name} has multiple inbound nodes, hence the notion of \"layer input\" is ill-defined. Use \\`getInputAt(nodeIndex)\\` instead.`);if(this.inboundNodes.length===0)throw new uo(`Layer ${this.name} is not connected, no input to return.`);return kr(this.getNodeAtIndex(0,\"input\").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new uo(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new uo(`Layer ${this.name} has multiple inbound nodes, hence the notion of \"layer output\" is ill-defined. Use \\`getOutputAt(nodeIndex)\\` instead.`);return kr(this.getNodeAtIndex(0,\"output\").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(t=>t())}get updates(){return this._updates}get built(){return this._built}set built(t){this._built=t}get trainable(){return this.trainable_}set trainable(t){this._trainableWeights.forEach(e=>e.trainable=t),this.trainable_=t}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(t=>t.trainable):[]}set trainableWeights(t){this._trainableWeights=t}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(t=>!t.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(t){this._nonTrainableWeights=t}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error(\"Cannot call the resetStates() method of a non-stateful Layer object.\")}assertInputCompatibility(t){let e=ue(t);if(this.inputSpec==null||this.inputSpec.length===0)return;let n=ue(this.inputSpec);if(e.length!==n.length)throw new z(`Layer ${this.name} expects ${n.length} inputs, but it received ${e.length} input tensors. Input received: ${t}`);for(let o=0;oi.maxNDim)throw new z(`Input ${o} is incompatible with layer ${this.name}: expected max_ndim=${i.maxNDim}, found ndim=${a}`);if(i.minNDim!=null&&a=0?u[c]:u[u.length+c];if(p!=null&&[p,null].indexOf(m)===-1)throw new z(`Input ${o} is incompatible with layer ${this.name}: expected axis ${c} of input shape to have value ${p} but got shape ${u}.`)}}if(i.shape!=null)for(let u=0;u{if(!this.built){this.assertInputCompatibility(t);let i=[];for(let a of ue(t))i.push(a.shape);this.build(kr(i)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&s&&(this._refCount=1)}if(this.assertInputCompatibility(t),s){let i=this.call(t,e);this.supportsMasking&&this.setMaskMetadata(t,i);let a=ue(i),u=[];for(let l of a)n.indexOf(l)!==-1&&(l=l.clone()),u.push(l);if(i=kr(u),this.activityRegularizer!=null)throw new _t(\"Layer invocation in the presence of activity regularizer(s) is not supported yet.\");return i}else{let i=i7(t),a=this.computeOutputShape(i),u,l=a7(t);if(this.warnOnIncompatibleInputShape(Array.isArray(t)?i[0]:i),a!=null&&a.length>0&&Array.isArray(a[0])?u=a.map((c,p)=>new nn(l,c,this,ue(t),e,this.name,p)):u=new nn(l,a,this,ue(t),e,this.name),this.addInboundNode(t,u,null,null,i,a,e),this._refCount++,this.activityRegularizer!=null)throw new _t(\"Layer invocation in the presence of activity regularizer(s) is not supported yet.\");return u}})}warnOnIncompatibleInputShape(t){if(this.batchInputShape!=null)if(t.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(t)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let e=!1;this.batchInputShape.forEach((n,o)=>{n!=null&&t[o]!=null&&t[o]!==n&&(e=!0)}),e&&console.warn(`The shape of the input tensor (${JSON.stringify(t)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new uo(`The layer ${this.name} has never been called and thus has no defined output shape.`);let t=[];for(let e of this.inboundNodes){let n=JSON.stringify(e.outputShapes);t.indexOf(n)===-1&&t.push(n)}if(t.length===1){let e=this.inboundNodes[0].outputShapes;return Array.isArray(e)&&Array.isArray(e[0])&&e.length===1?e[0]:e}else throw new uo(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of \"output shape\" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new dn(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return Lm(this.weights)}build(t){this.built=!0}getWeights(t=!1){return _h(t?this.trainableWeights:this.weights)}setWeights(t){B(()=>{let e=this.weights;if(e.length!==t.length)throw new z(`You called setWeights(weights) on layer \"${this.name}\" with a weight list of length ${t.length}, but the layer was expecting ${e.length} weights. Provided weights: ${t}...`);if(e.length===0)return;let n=[],o=_h(e);for(let s=0;ss.apply(c.read())),i==null&&(i=!0),i?this._trainableWeights.push(c):this._nonTrainableWeights.push(c),c}setFastWeightInitDuringBuild(t){this.fastWeightInitDuringBuild=t}addLoss(t){t==null||Array.isArray(t)&&t.length===0||(t=ue(t),this._losses!==void 0&&this._losses!==null&&this.losses.push(...t))}computeOutputShape(t){return t}computeMask(t,e){if(!this.supportsMasking){if(e!=null)if(Array.isArray(e))e.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return e}setMaskMetadata(t,e,n){if(!this.supportsMasking)return;let o=this.computeMask(t,n),s=ue(e),i=ue(o);if(s.length!==i.length)throw new Error(`${this.name} outputs ${s.length} tensors but ${s.length} masks for those tensors`);for(let a=0;at.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let t=0;return--this._refCount===0&&(t=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:t}}};function i7(r){r=ue(r);let t=[];for(let e of r)t.push(e.shape);return kr(t)}function a7(r){return\"float32\"}function WN(r,t,e){if((t==null||e!=null&&e>0)&&(t=r.sourceLayer,e=r.nodeIndex),t.inboundNodes.length===0)return[r];{let n=t.inboundNodes[e];if(n.inboundLayers.length===0)return n.inputTensors;{let o=[];for(let s=0;sd.name),u=[],l=t.names();for(let d of a)l.indexOf(d)!==-1?u.push(t.getValue(d)):u.push(null);n!=null&&(n.maxNumTensors=-1/0,n.minNumTensors=1/0);let c=a.join(\",\")+\"|\"+t.names().sort().join(\",\"),p=qy.get(c),m;if(p==null){let d=p7(i,t);p=d.sorted,m=d.recipientCounts,qy.put(c,p),Ky.put(c,m)}m={},o||Object.assign(m,Ky.get(c));let f=new ha(t);for(let d=0;dn.maxNumTensors&&(n.maxNumTensors=F),F0,()=>\"Expected at least one fetch, got none\");let e=[],n={};if(r.length===1){let o=yR(r[0],t);e=o.sorted,n=o.recipientMap}else{let o=new Set;for(let s of r){let{sorted:i,recipientMap:a}=yR(s,t);for(let u of i)o.has(u.name)||(e.push(u),o.add(u.name));for(let u in a)n[u]==null&&(n[u]=new Set),a[u].forEach(l=>n[u].add(l))}}return{sorted:e,recipientCounts:m7(n)}}function m7(r){let t={};for(let e in r)t[e]=r[e].size;return t}function yR(r,t){let e=new Set,n=[],o={};for(let a of t.names())e.add(a);let s=[],i=[];for(s.push(r);s.length>0;){let a=s[s.length-1];if(e.has(a.name)){s.pop();continue}let u=i[i.length-1]===s.length-1;if(a.inputs.length===0||u)s.pop(),n.push(a),e.add(a.name),u&&i.pop();else{i.push(s.length-1);for(let l of a.inputs)o[l.name]==null&&(o[l.name]=new Set),o[l.name].add(a.name),!e.has(l.name)&&s.push(l)}}return{sorted:n,recipientMap:o}}function f7(r){let t;if(r.sourceLayer.inboundNodes.length===1)t=r.sourceLayer.output;else{let e=null;for(let n=0;n100,bR);var CR={};Kt(CR,{maxNorm:()=>h7,minMaxNorm:()=>y7,nonNeg:()=>x7,unitNorm:()=>g7});function UN(r,t){return B(()=>ge(mt($(r,r),t,!0)))}var Bc=class extends Q.Serializable{getConfig(){return{}}},Bm=class extends Bc{constructor(t){super(),this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=t.maxValue!=null?t.maxValue:this.defaultMaxValue,this.axis=t.axis!=null?t.axis:this.defaultAxis}apply(t){return B(()=>{let e=UN(t,this.axis),n=vr(e,0,this.maxValue);return $(t,ut(n,K(cr(),e)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};Bm.className=\"MaxNorm\";Q.registerClass(Bm);var Vm=class extends Bc{constructor(t){super(),this.defaultAxis=0,this.axis=t.axis!=null?t.axis:this.defaultAxis}apply(t){return B(()=>ut(t,K(cr(),UN(t,this.axis))))}getConfig(){return{axis:this.axis}}};Vm.className=\"UnitNorm\";Q.registerClass(Vm);var Gm=class extends Bc{apply(t){return Or(t)}};Gm.className=\"NonNeg\";Q.registerClass(Gm);var Wm=class extends Bc{constructor(t){super(),this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=t.minValue!=null?t.minValue:this.defaultMinValue,this.maxValue=t.maxValue!=null?t.maxValue:this.defaultMaxValue,this.rate=t.rate!=null?t.rate:this.defaultRate,this.axis=t.axis!=null?t.axis:this.defaultAxis}apply(t){return B(()=>{let e=UN(t,this.axis),n=K($(this.rate,vr(e,this.minValue,this.maxValue)),$(1-this.rate,e));return $(t,ut(n,K(cr(),e)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};Wm.className=\"MinMaxNorm\";Q.registerClass(Wm);var wR={maxNorm:\"MaxNorm\",minMaxNorm:\"MinMaxNorm\",nonNeg:\"NonNeg\",unitNorm:\"UnitNorm\"};function Ve(r){return km(r)}function IR(r,t={}){return fa(r,Q.SerializationMap.getMap().classNameMap,t,\"constraint\")}function Ge(r){if(r==null)return null;if(typeof r==\"string\"){let e={className:r in wR?wR[r]:r,config:{}};return IR(e)}else return r instanceof Bc?r:IR(r)}function h7(r){return new Bm(r)}function g7(r){return new Vm(r)}function x7(){return new Gm}function y7(r){return new Wm(r)}var vR={};Kt(vR,{constant:()=>I7,glorotNormal:()=>_7,glorotUniform:()=>T7,heNormal:()=>E7,heUniform:()=>A7,identity:()=>N7,leCunNormal:()=>D7,leCunUniform:()=>$7,ones:()=>w7,orthogonal:()=>R7,randomNormal:()=>v7,randomUniform:()=>C7,truncatedNormal:()=>S7,varianceScaling:()=>k7,zeros:()=>b7});function b7(){return new Am}function w7(){return new Mu}function I7(r){return new Dm(r)}function C7(r){return new $m(r)}function v7(r){return new Rm(r)}function S7(r){return new Fm(r)}function N7(r){return new Om(r)}function k7(r){return new Yr(r)}function T7(r){return new Rc(r)}function _7(r){return new Fc(r)}function E7(r){return new Oc(r)}function A7(r){return new Mc(r)}function D7(r){return new Pc(r)}function $7(r){return new Lc(r)}function R7(r){return new Mm(r)}var oF={};Kt(oF,{Layer:()=>Et,RNN:()=>po,RNNCell:()=>Tl,activation:()=>JJ,add:()=>a9,alphaDropout:()=>U9,average:()=>l9,averagePooling1d:()=>ok,averagePooling2d:()=>sk,averagePooling3d:()=>ik,avgPool1d:()=>x9,avgPool2d:()=>b9,avgPool3d:()=>I9,avgPooling1d:()=>y9,avgPooling2d:()=>w9,avgPooling3d:()=>C9,batchNormalization:()=>d9,bidirectional:()=>M9,categoryEncoding:()=>X9,centerCrop:()=>K9,concatenate:()=>u9,conv1d:()=>WJ,conv2d:()=>UJ,conv2dTranspose:()=>HJ,conv3d:()=>qJ,conv3dTranspose:()=>KJ,convLstm2d:()=>$9,convLstm2dCell:()=>R9,cropping2D:()=>XJ,dense:()=>QJ,depthwiseConv2d:()=>ZJ,dot:()=>f9,dropout:()=>t9,elu:()=>PJ,embedding:()=>i9,flatten:()=>r9,gaussianDropout:()=>W9,gaussianNoise:()=>G9,globalAveragePooling1d:()=>v9,globalAveragePooling2d:()=>S9,globalMaxPool1d:()=>L9,globalMaxPool2d:()=>z9,globalMaxPooling1d:()=>tF,globalMaxPooling2d:()=>eF,gru:()=>k9,gruCell:()=>T9,input:()=>JN,inputLayer:()=>MJ,layerNormalization:()=>h9,leakyReLU:()=>zJ,lstm:()=>_9,lstmCell:()=>E9,masking:()=>H9,maxPool1d:()=>B9,maxPool2d:()=>V9,maxPooling1d:()=>rF,maxPooling2d:()=>nF,maxPooling3d:()=>N9,maximum:()=>c9,minimum:()=>p9,multiply:()=>m9,permute:()=>s9,prelu:()=>BJ,randomWidth:()=>Y9,reLU:()=>LJ,repeatVector:()=>n9,rescaling:()=>q9,reshape:()=>o9,resizing:()=>j9,rnn:()=>F9,separableConv2d:()=>jJ,simpleRNN:()=>A9,simpleRNNCell:()=>D9,softmax:()=>VJ,spatialDropout1d:()=>e9,stackedRNNCells:()=>O9,thresholdedReLU:()=>GJ,timeDistributed:()=>P9,upSampling2d:()=>YJ,zeroPadding2d:()=>g9});async function ga(r){if(r==null)return;let t=[],e=[],n=[];for(let o in r){let s=r[o];if(typeof s!=\"number\"){let i=s;t.push(i.data()),e.push(o),n.push(i)}}if(t.length>0){let o=await Promise.all(t);for(let s=0;sK(this.totals[o],$(s,n)));this.totals[o]=a,i!=null&&i.dispose()}}}async onEpochEnd(t,e){if(e!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]==\"number\"?e[n]=this.totals[n]/this.seen:B(()=>{let o=$(ut(1,this.seen),this.totals[n]);e[n]=o,this.totals[n].dispose(),De(e[n])}))}},Yy=class extends kl{async onTrainBegin(t){this.epoch=[],this.history={}}async onEpochEnd(t,e){e==null&&(e={}),this.epoch.push(t);for(let n in e)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(e[n])}async syncData(){let t=[],e=[],n=[];for(let s in this.history){let i=this.history[s];for(let a=0;anew Zy(n,t))}var Um=class r{constructor(){}static registerCallbackConstructor(t,e){y.assert(t>=0&&Number.isInteger(t),()=>`Verbosity level is expected to be an integer >= 0, but got ${t}`),r.checkForDuplicate(e),r.constructors[t]==null&&(r.constructors[t]=[]),r.constructors[t].push(e)}static checkForDuplicate(t){for(let e in r.constructors)r.constructors[+e].forEach(o=>{if(o===t)throw new z(\"Duplicate callback constructor.\")})}static clear(){r.constructors={}}static createCallbacks(t){let e=[];for(let n in r.constructors){let o=+n;t>=o&&e.push(...r.constructors[o])}return e.map(n=>new n)}};Um.constructors={};function Qy(r,t,e,n,o,s,i,a,u){let l=new Yy,c=[new HN,...Um.createCallbacks(t)];r!=null&&c.push(...r),c.push(l);let p=new Xy(c);return p.setParams({epochs:e,initialEpoch:n,samples:o,steps:s,batchSize:i,verbose:t,doValidation:a,metrics:u}),{callbackList:p,history:l}}function wn(r,t={},e=!1){return fa(r,Q.SerializationMap.getMap().classNameMap,t,\"layer\",e)}function Eh(r,t){return B(()=>{r.dtype!==\"float32\"&&(r=J(r,\"float32\"));let e=mt($c(r),t,!0),n=Co(e.shape,cr()),o=ge(kn(e,n));return ut(r,o)})}function xa(r,t){return B(()=>Ne($c(at(t,r)),-1))}function Hm(r,t){return B(()=>Ne(_e(at(t,r)),-1))}function Pu(r,t){return B(()=>{let e=at(r,t),n=vr(_e(r),cr(),Number.MAX_VALUE),o=_e(ut(e,n));return $(100,Ne(o,-1))})}function O7(r,t){return B(()=>{let e=vr(t,cr(),Number.MAX_VALUE),n=Nr(K(1,e)),o=vr(r,cr(),Number.MAX_VALUE),s=Nr(K(1,o));return Ne($c(at(n,s)),-1)})}function M7(r,t){return B(()=>{let e=kn(0,at(1,$(r,t)));return Ne($c(e),-1)})}function P7(r,t){return B(()=>{let e=kn(0,at(1,$(r,t)));return Ne(e,-1)})}function L7(r,t){return B(()=>{let e=mt($(r,t),-1),n=Sr($(at(1,r),t),-1);return kn(0,K(1,at(n,e)))})}function z7(r,t){return B(()=>{let e=Math.log(2),n=at(t,r),o=at(K(n,ui($(-2,n))),e);return Ne(o,-1)})}function Vc(r,t,e=!1){return B(()=>{if(e)t=Eu(t);else{let n=mt(t,t.shape.length-1,!0);t=ut(t,n)}return t=vr(t,cr(),1-cr()),Ut(mt($(J(r,\"float32\"),Nr(t)),t.shape.length-1))})}function qm(r,t,e=!1){return B(()=>{let n=J(la(aR(r)),\"int32\");t=vr(t,cr(),1-cr());let o=t.shape,s=R(ca(n,o[o.length-1]),o);return Vc(s,t,e)})}function B7(r,t){if(!y.arraysEqual(r.shape,t.shape))throw new z(`logits and labels must have the same shape, but got shapes ${JSON.stringify(r.shape)} and ${JSON.stringify(t.shape)}`);return B(()=>{let e=Or(t),n=Ut(_e(t));return K(at(e,$(t,r)),vu(Ke(n)))})}function Km(r,t){return B(()=>{let e;return e=vr(t,cr(),1-cr()),e=Nr(ut(e,at(1,e))),Ne(B7(r,e),-1)})}function V7(r,t){return B(()=>{let e=vr(r,cr(),1),n=vr(t,cr(),1);return mt($(r,Nr(ut(e,n))),-1)})}function G7(r,t){return B(()=>{let e=Nr(K(cr(),t));return Ne(at(t,$(r,e)),-1)})}function Dh(r,t){return B(()=>{let e=Eh(r,-1),n=Eh(t,-1),o=$(e,n);return Ut(mt(o,-1))})}var Ah={meanSquaredError:xa,meanAbsoluteError:Hm,meanAbsolutePercentageError:Pu,meanSquaredLogarithmicError:O7,squaredHinge:M7,hinge:P7,categoricalHinge:L7,logcosh:z7,categoricalCrossentropy:Vc,sparseCategoricalCrossentropy:qm,binaryCrossentropy:Km,kullbackLeiblerDivergence:V7,poisson:G7,cosineProximity:Dh};function tb(r){if(typeof r==\"string\"){if(r in Ah)return Ah[r];let t=`Unknown loss ${r}`;throw r.toLowerCase().includes(\"softmaxcrossentropy\")&&(t=`Unknown loss ${r}. Use \"categoricalCrossentropy\" as the string name for tf.losses.softmaxCrossEntropy`),new z(t)}else return r}function $h(r,t){return B(()=>{let e=$(.5,wr(t)),n=rn(Re(t,e),r.dtype);return Ne($r(r,n),-1)})}function Rh(r,t){return B(()=>rn($r(ra(r,-1),ra(t,-1)),\"float32\"))}function kR(r,t){return B(()=>J(mt(Fr($r(r,1),$r(t,1))),\"float32\"))}function W7(r,t){return B(()=>J(mt(Fr($r(r,1),$r(t,0))),\"float32\"))}function U7(r,t){return B(()=>J(mt(Fr($r(r,0),$r(t,1))),\"float32\"))}function qN(r,t){return B(()=>{let e=kR(r,t),n=U7(r,t),o=K(e,n);return J(Ie(Re(o,0),ut(e,o),0),\"float32\")})}function TR(r,t){return B(()=>{let e=kR(r,t),n=W7(r,t),o=K(e,n);return J(Ie(Re(o,0),ut(e,o),0),\"float32\")})}function rb(r,t){return Km(r,t)}function nb(r,t){return r.rank===t.rank&&(r=Wn(r,[r.rank-1])),t=ra(t,-1),t.dtype!==r.dtype&&(t=J(t,r.dtype)),J($r(r,t),\"float32\")}function _R(r,t){return B(()=>{let e=r.sub(t).square().sum(),n=r.sub(r.mean()).square().sum();return pt(1).sub(e.div(n))})}var H7=xa,q7=xa,K7=Hm,j7=Hm,X7=Pu,Y7=Pu,Fh=Vc,Z7=Dh,KN=qm,eb={binaryAccuracy:$h,categoricalAccuracy:Rh,precision:qN,categoricalCrossentropy:Fh,sparseCategoricalCrossentropy:KN,mse:H7,MSE:q7,mae:K7,MAE:j7,mape:X7,MAPE:Y7,cosine:Z7};function ER(r){if(typeof r==\"string\"&&r in eb)return eb[r];if(typeof r!=\"string\"&&r!=null)return r;throw new z(`Unknown metric ${r}`)}function Oh(r){if(co(r!==null,`Unknown LossOrMetricFn ${r}`),typeof r==\"string\")return r;{let t;for(let e of Object.keys(Ah))if(Ah[e]===r){t=e;break}if(t!==void 0)return t;for(let e of Object.keys(eb))if(eb[e]===r){t=e;break}return t!==void 0?t:r.name}}function DR(r){let t={Adagrad:()=>Ac.adagrad(.01),Adadelta:()=>Ac.adadelta(1,.95,cr()),Adam:()=>Ac.adam(.001,.9,.999,cr()),Adamax:()=>Ac.adamax(.002,.9,.999,cr(),0),RMSProp:()=>Ac.rmsprop(.001,.9,0,cr()),SGD:()=>Ac.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,r in t)return t[r]();throw new z(`Unknown Optimizer ${r}`)}function XN(r,t,e=!1){if(r==null||typeof r!=\"object\"||Object.getPrototypeOf(r)!==Object.prototype||!jN(r))throw new Error(\"User-defined metadata is expected to be a JSON object, but is not.\");if(e){let n=JSON.stringify(r);n.length>1048576&&console.warn(`User-defined metadata of model \"${t}\" is too large in size (length=${n.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= 1048576.`)}}function jN(r){if(r===null)return!0;if(typeof r==\"object\")if(Object.getPrototypeOf(r)===Object.prototype){let t=Object.keys(r);for(let e of t)if(typeof e!=\"string\"||!jN(r[e]))return!1;return!0}else if(Array.isArray(r)){for(let t of r)if(!jN(t))return!1;return!0}else return!1;else{let t=typeof r;return t===\"string\"||t===\"number\"||t===\"boolean\"}}function $R(r,t,e,n=console.log){let o=tJ(r),s=[\"Layer (type)\",\"Input Shape\",\"Output shape\",\"Param #\"];o?(t=t||90,e=e||[.32,.61,.89,1]):(t=t||115,e=e||[.24,.48,.7,.8,1]),e[e.length-1]<=1&&(e=e.map(c=>Math.floor(t*c)));let i;if(!o){s.push(\"Receives inputs\"),i=[];for(let c in r.nodesByDepth)i.push(...r.nodesByDepth[c])}n(\"_\".repeat(t)),ob(s,e,n),n(\"=\".repeat(t));let a=r.layers;for(let c=0;c1||o.length===1&&o[0].inboundLayers.length>1){t=!1;break}n.push(...o)}if(t)for(let o of r.layers){let s=!1;for(let i of o.inboundNodes)if(n.indexOf(i)!==-1)if(s){t=!1;break}else s=!0;if(!t)break}return t}function ob(r,t,e=console.log){let n=\"\";for(let o=0;o0&&(n=n.slice(0,n.length-1)+\" \"),n+=r[o],n=n.slice(0,t[o]),n+=\" \".repeat(t[o]-n.length);e(n)}function eJ(r,t,e){let n,o;try{o=r.inboundNodes.map(u=>JSON.stringify(u.inputShapes)).join(\",\")}catch(u){o=\"multiple\"}try{n=JSON.stringify(r.outputShape)}catch(u){n=\"multiple\"}let s=r.name,i=r.getClassName(),a=[`${s} (${i})`,o,n,r.countParams().toString()];ob(a,t,e)}function rJ(r,t,e,n){let o,s;try{s=r.inboundNodes.map(p=>JSON.stringify(p.inputShapes)).join(\",\")}catch(p){s=\"multiple\"}try{o=JSON.stringify(r.outputShape)}catch(p){o=\"multiple\"}let i=[];for(let p of r.inboundNodes)if(!(e!=null&&e.length>0&&e.indexOf(p)===-1))for(let m=0;m{let t=Object.keys(r);if(t.length===0)return!1;let e=t[0].split(\"/\");return!isNaN(parseInt(e[e.length-1],10))},ib=class r extends Et{constructor(t){if(super({}),this.containerNodes=new Set,this.name=t.name,this.name==null){let b=this.getClassName().toLowerCase();this.name=Fu(b)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(t.inputs)?this.inputs=t.inputs.slice():this.inputs=[t.inputs],Array.isArray(t.outputs)?this.outputs=t.outputs.slice():this.outputs=[t.outputs],Eo(this.inputs).length!==this.inputs.length)throw new z(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(b=>b.name)}`);Eo(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(b=>b.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let b of this.outputs){let w=b.sourceLayer,I=b.nodeIndex,N=b.tensorIndex;this.outputLayers.push(w),this.outputLayersNodeIndices.push(I),this.outputLayersTensorIndices.push(N)}for(let b of this.inputs){let w=b.sourceLayer,I=b.nodeIndex,N=b.tensorIndex;co(I===0,\"input layer has >1 nodes\"),co(N===0,\"input layer has >1 tensors\"),this.inputLayers.push(w),this.inputLayersNodeIndices.push(I),this.inputLayersTensorIndices.push(N)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let b=0;bb.shape),this.internalOutputShapes=this.outputs.map(b=>b.shape);let e={},n={},o={},s={},i={},a=[],u=(b,w,I,N,E,A)=>{(N==null||E==null||A==null)&&(N=b.sourceLayer,E=b.nodeIndex,A=b.tensorIndex);let D=N.inboundNodes[E];if(I.indexOf(D)!==-1)throw new dn(`The tensor ${b.name} at layer \"${N.name}\" is part of a cycle.`);if(w.indexOf(D)!==-1)return;this.containerNodes.add(r.nodeKey(N,E)),N.id in i||(i[N.id]=Object.keys(i).length),I.indexOf(D)===-1&&I.push(D);let F=D.inboundLayers.length;for(let M=0;M=0;)I.splice(I.indexOf(D),1);a.push(D)},l=[],c=[];for(let b of this.outputs)u(b,l,c);let p=a.slice().reverse();for(let b of p){n[b.id]=b,b.id in e||(e[b.id]=0);let w=e[b.id],I=o[b.outboundLayer.id]==null?0:o[b.outboundLayer.id];w=Math.max(w,I),o[b.outboundLayer.id]=w,s[b.outboundLayer.id]=b.outboundLayer,e[b.id]=w;for(let N=0;NparseInt(b,10)).sort(Sh);this.layers=[];for(let b of d){let w=f[b];w.sort((I,N)=>{let E=i[I.id],A=i[N.id];return EA?1:0});for(let I of w)I instanceof r&&this.internalContainerRefs.push(I),this.layers.push(I)}this.layersByDepth=f,d=Object.keys(m).map(b=>parseInt(b,10)).sort(Sh);let h=this.inputs.slice(),g=[];for(let b of d)for(let w of m[b]){let I=w.outboundLayer;if(I!=null){for(let N of w.inputTensors)if(h.indexOf(N)===-1)throw new dn(`Graph disconnected: cannot obtain value for tensor ${N} at layer \"${I.name}\". The following previous layers were accessed without issue: ${g}`);for(let N of w.outputTensors)h.push(N);g.push(I.name)}}this.nodesByDepth=m;let x=this.layers.map(b=>b.name);for(let b of x){let w=x.filter(I=>I===b).length;if(w!==1)throw new dn(`The name \"${b}\" is used ${w} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(x))}this.outboundNodes=[],this.inboundNodes=[],new Nl({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(b=>null),outputMasks:this.outputs.map(b=>null),inputShapes:this.inputs.map(b=>b.shape),outputShapes:this.outputs.map(b=>b.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let t={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount===0){for(let e of this.layers)t.numDisposedVariables+=e.dispose().numDisposedVariables;for(let e of this.internalContainerRefs)t.numDisposedVariables+=e.dispose().numDisposedVariables}return t.refCountAfterDispose=this._refCount,t}get trainable(){return this.trainable_}set trainable(t){this.layers.forEach(e=>{e._trainableWeights.forEach(n=>n.trainable=t)}),this.trainable_=t}get trainableWeights(){if(this._trainableWeights.length>0)throw new z(\"Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.\");if(!this.trainable)return[];let t=[];for(let e of this.layers)t=t.concat(e.trainableWeights);return t}get nonTrainableWeights(){let t=[];for(let e of this.layers)t.push(...e.nonTrainableWeights);if(!this.trainable){let e=[];for(let n of this.layers)e.push(...n.trainableWeights);return e.concat(t)}return t}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(t,e=!0){let n={},o=0,s=nJ(t);s&&this.parseWeights(t);for(let a of this.layers)for(let[u,l]of a.weights.entries()){let c=s?`${l.name.split(\"/\").slice(0,-1).join(\"/\")+\"/\"}${u}`:l.originalName;if(n[c]!=null)throw new z(`Duplicate weight name: ${c}`);n[c]=l,o++}let i=[];for(let a in t){let u=a;if(n[a]==null){let l=a.split(\"/\");u=l.slice(0,-2).concat([l[l.length-1]]).join(\"/\")}if(n[u]!=null)i.push([n[u],t[a]]);else if(e)throw new z(`Provided weight data has no target variable: ${a}`);delete n[u]}if(e){let a=[];for(let u in n)a.push(u);if(a.length>0)throw new z(`${a.length} of ${o} weights are not set: ${a}`)}zm(i)}parseWeights(t){for(let e in Object.keys(t)){let n=e.split(\"/\"),o=[\"vars\",\"layer_checkpoint_dependencies\"],s=n.map(i=>i.startsWith(\"_\")?i.slice(1):i).filter(i=>!o.includes(i)).join(\"/\");s!==e&&(t[s]=t[e],delete t[e])}}updatedConfig(){let t=this.getConfig(),e={};return e.className=this.getClassName(),e.config=t,e.kerasVersion=`tfjs-layers ${jm}`,e.backend=\"TensorFlow.js\",e}toJSON(t,e=!0){let n=sb(this.updatedConfig());return e?JSON.stringify(n):n}call(t,e){return B(()=>{t=ue(t);let n=new ha;for(let o=0;o{t=ue(t);let n;return e==null?n=To(null,t.length):n=ue(e),this.runInternalGraph(t,n)[1]})}computeOutputShape(t){let e=Pm(t);if(e.length!==this.inputLayers.length)throw new z(`Invalid inputShape argument ${t}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let a=0;aparseInt(a,10)).sort(Sh);if(o.length>1)for(let a of o){let u=this.nodesByDepth[a];for(let l of u){let c=l.outboundLayer;if(this.inputLayers.map(h=>h.id).indexOf(c.id)!==-1)continue;let p=[];for(let h=0;hparseInt(u,10)).sort(Sh);for(let u of o){let l=this.nodesByDepth[u];for(let c of l){let p=c.outboundLayer,m=c.inputTensors,f=c.outputTensors,d=new Array;for(let h of m)h.id in n&&d.push(n[h.id]);if(d.length===m.length){let h={},g,x,b,w;if(c.callArgs!=null&&(h=c.callArgs),d.length===1){let[I,N]=d[0];h.mask==null&&(h.mask=N),b=ue(p.call(I,h)),w=ue(p.computeMask(I,N)),g=[I],x=[N]}else g=d.map(I=>I[0]),x=d.map(I=>I[1]),h.mask==null&&(h.mask=x),b=ue(p.call(g,h)),w=ue(p.computeMask(g,x));if(p.activityRegularizer)throw new _t(\"LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.\");for(let I=0;I{let t=[];for(let e of this.layers)for(let n=0;n0){let h=[];for(let g=0;g0&&g.apply(kr(b),w)}function l(g){let x=g.name,b=wn(g,e.customObjects!=null?e.customObjects:{});b.setFastWeightInitDuringBuild(o),s[x]=b,g.inboundNodes.forEach(I=>{if(!(I instanceof Array))throw new z(`Corrupted configuration, expected array for nodeData: ${I}`);a(b,I)})}let c=e.name,p=e.layers;for(let g of p)l(g);for(;!j$(i);)for(let g of p){let x=s[g.name];if(x.name in i){let b=i[x.name];delete i[x.name];for(let w of b)u(x,w)}}let m=[],f=[],d=e.inputLayers;for(let g of d){let x=g[0],b=g[1],w=g[2];co(x in s);let N=s[x].inboundNodes[b].outputTensors;m.push(N[w])}let h=e.outputLayers;for(let g of h){let x=g[0],b=g[1],w=g[2];co(x in s);let N=s[x].inboundNodes[b].outputTensors;f.push(N[w])}return new t({inputs:m,outputs:f,name:c})}get stateful(){if(this._stateful)throw new z(\"Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.\");for(let t of this.layers)if(t.stateful)return!0;return!1}resetStates(){B(()=>{this.layers.forEach(t=>{t.stateful&&t.resetStates()})})}};function oJ(r,t,e){let n=t.length;if(r==null||Array.isArray(r)&&r.length===0)return t.map(o=>null);if(n===1)return Array.isArray(r)&&r.length===1?r:typeof r==\"object\"&&t[0]in r?[r[t[0]]]:[r];if(Array.isArray(r)){if(r.length!==n)throw new Error(`Provided ${e} is an array of ${r.length} element(s), but the model has ${n} outputs. Make sure a set of weights is provided for each model output.`);return r}else if(typeof r==\"object\"&&Object.keys(r).length>0&&typeof r[Object.keys(r)[0]]==\"object\"){let o=[];return t.forEach(s=>{s in r?o.push(r[s]):o.push(null)}),o}else throw new Error(`The model has multiple (${n}) outputs, so ${e} must be either an array with ${n} elements or an object with ${t} keys. Provided ${e} not understood: ${JSON.stringify(r)}`)}function ab(r,t){return oJ(r,t,\"classWeight\")}async function lb(r,t,e,n){if(t!=null||n!=null)throw new Error(\"Support sampleWeight is not implemented yet\");if(e!=null){let o=B(()=>{if(r.shape.length===1)return un(r);if(r.shape.length===2){if(r.shape[1]>1)return ra(r,1);if(r.shape[1]===1)return R(r,[r.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${r.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${r.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),s=Array.from(await o.data());Tt(o);let i=[];return s.forEach(a=>{if(e[a]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${a} exists in the data but not in classWeight`);i.push(e[a])}),Oe(i,\"float32\")}else return null}function FR(r,t){return $(r,t)}var sJ=32;function PR(r,t){let e,n,o=t;e=o.xs,n=o.ys,y.assert(e!=null&&n!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \\`{xs: xVal, ys: yVal}\\`, where the two values may be \\`tf.Tensor\\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let s=OR(\"input\",r.inputNames,e),i=OR(\"output\",r.outputNames,n),a=s[0].shape[0];y.assert(s.length===r.inputs.length,()=>`LayersModel has ${r.inputs.length} inputs, but the dataset provides ${s.length} inputs. (Expected input keys: ${JSON.stringify(r.inputNames)})`),y.assert(i.length===r.outputs.length,()=>`LayersModel has ${r.outputs.length} outputs, but the dataset provides ${i.length} outputs. (Expected output keys: ${JSON.stringify(r.outputNames)})`);for(let u=0;u`Batch size mismatch: input ${r.inputNames[u]} has ${s[u].shape[0]}; expected ${a} based on input ${r.inputNames[0]}.`);for(let u=0;u`Batch size mismatch: output ${r.outputNames[u]} has ${i[u].shape[0]}; expected ${a} based on input ${r.inputNames[0]}.`);return{xs:s,ys:i}}function OR(r,t,e){if(e instanceof Lt)return[e];if(Array.isArray(e))return y.assert(e.length===t.length,()=>`Received an array of ${e.length} Tensors, but expected ${t.length} to match the ${r} keys ${t}.`),e;{let n=[];for(let o of t){if(e[o]==null)throw new z(`The feature data generated by the dataset lacks the required ${r} key '${o}'.`);n.push(e[o])}return n}}function iJ(r){if(r.length===3)throw new _t(\"Validation with sample weights is not implemented yet.\");return{xs:r[0],ys:r[1]}}async function LR(r,t,e){let n=e.batchesPerEpoch!=null;if(y.assert(r.optimizer!=null,()=>\"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig).\"),y.assert(e!=null,()=>\"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call.\"),y.assert(e.epochs!=null&&e.epochs>0&&Number.isInteger(e.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${e.epochs}`),y.assert(!n||e.batchesPerEpoch>0&&Number.isInteger(e.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${e.batchesPerEpoch}`),y.assert(e.validationSplit==null,()=>\"`validationSplit` is not supported by `fitDataset()`. Use validationData instead.\"),r.isTraining)throw new Error(\"Cannot start training because another fit() call is ongoing.\");r.isTraining=!0;try{let o=e.validationData!=null,s,i;if(o)if(MR(e.validationData))y.assert(e.validationBatches==null||e.validationBatches>0&&Number.isInteger(e.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${e.validationBatches}`);else{let g=iJ(e.validationData);s=g.xs,i=g.ys}let a=r.makeTrainFunction(),u=r.getDedupedMetricsNames(),l;o?l=u.slice().concat(u.map(g=>\"val_\"+g)):l=u.slice();let c=Jy(e.callbacks,e.yieldEvery),p=e.verbose==null?1:e.verbose,{callbackList:m,history:f}=Qy(c,p,e.epochs,null,null,aJ(t,e),null,o,l);m.setModel(r),r.history=f,await m.onTrainBegin(),r.stopTraining_=!1;let d=e.initialEpoch==null?0:e.initialEpoch,h=await t.iterator();for(;d=e.batchesPerEpoch:w.done){if(o){let I;MR(e.validationData)?I=ue(await r.evaluateDataset(e.validationData,{batches:e.validationBatches})):I=ue(r.evaluate(s,i,{batchSize:e.validationBatchSize==null?sJ:e.validationBatchSize,verbose:0}));for(let N=0;N0)throw new _t(\"Verbose mode is not implemented yet.\");y.assert(!n||e.batches>0&&Number.isInteger(e.batches),()=>`Test loop expects \\`batches\\` to be a positive integer, but received ${JSON.stringify(e.batches)}`);let i=lJ(t)?t:await t.iterator(),a=0,u=0;for(;!n||u{if(l.value){let{xs:c,ys:p}=PR(r,l.value),m=c.concat(p),f=B(()=>o(m));if(Tt(m),u===0)for(let h=0;hK(s[h],$(d,g))),u>0&&Tt(x)}Tt(f),a+=d,++u}return s}),l.done){n&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \\`batches\\` batches (in this case, ${e.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let l=0;l0&&Number.isInteger(r),()=>`batchSize is required to be a positive integer, but got ${r}`)}function Xm(r,t,e){return r==null?[null]:Array.isArray(r)?r.map(n=>vl(n,t,e-t)):vl(r,t,e-t)}function cb(r,t){return B(()=>r==null?null:Array.isArray(r)?r.map(e=>cb(e,t)):Gy(r,t.dtype===\"int32\"?t:J(t,\"int32\")))}function pb(r,t){let e=[],n=0,o=null;for(;n=r&&(o=r),e.push([n,o]),n=o;return e}function YN(r){let t=[];r instanceof Lt&&(r=[r]);for(let e=0;ee.push(o.id));else if(t!=null)for(let o in t){let s=t[o];e.push(s.id)}let n=[];if(r instanceof Lt)e.indexOf(r.id)===-1&&n.push(r);else if(Array.isArray(r))r.forEach(o=>{e.indexOf(o.id)===-1&&n.push(o)});else if(r!=null)for(let o in r){let s=r[o];e.indexOf(s.id)===-1&&n.push(s)}n.forEach(o=>{o.isDisposed||o.dispose()})}function uJ(r){return r instanceof Lt}function ZN(r){return Array.isArray(r)}function BR(r){return!uJ(r)&&!ZN(r)}function VR(r,t,e,n=!0,o=\"\"){if(t==null||t.length===0){if(r!=null){let i=!1;if(ZN(r)&&r.length>0)i=!0;else if(BR(r)){for(let a in r)if(r.hasOwnProperty(a)){i=!0;break}}else i=!0;if(i)throw new z(`Error when checking model ${o} expected no data, but got ${r}`)}return[]}if(r==null)return t.map(i=>null);let s;if(BR(r)){r=r,s=[];for(let i of t){if(r[i]==null)throw new z(`No data provided for \"${i}\". Need data for each key in: ${t}`);s.push(r[i])}}else if(ZN(r)){if(r=r,r.length!==t.length)throw new z(`Error when checking model ${o}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${r}`);s=r}else{if(r=r,t.length>1)throw new z(`The model ${o} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${r.shape}`);s=[r]}if(s=YN(s),e!=null)for(let i=0;i=0&&l!==c)throw new z(`${o} expected a batch of elements where each example has shape [${e[i].slice(1,e[i].length)}] (i.e.,tensor shape [*,${e[i].slice(1,e[i].length)}]) but the ${o} received an input with ${a.shape[0]} examples, each with shape [${a.shape.slice(1,a.shape.length)}] (tensor shape [${a.shape}])`)}}return s}function cJ(r,t,e){let n=Eo(r.map(s=>s.shape[0]));n.sort();let o=Eo(t.map(s=>s.shape[0]));if(o.sort(),n.length>1)throw new z(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(r.map(s=>s.shape))}`);if(o.length>1)throw new z(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(s=>s.shape))}`);if(n.length>0&&o.length>0&&!y.arraysEqual(n,o))throw new z(`Input Tensors should have the same number of samples as target Tensors. Found ${n[0]} input sample(s) and ${o[0]} target sample(s).`)}function pJ(r,t,e){let n=[xa,Km,Vc];for(let o=0;o1)throw new z(`The model expects ${t.length} ${o} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(r.shape)}.`);s=[r]}if(e!=null)for(let i=0;i[]);let e;if(typeof r==\"string\"||typeof r==\"function\")e=[r];else if(Array.isArray(r)||typeof r==\"object\")e=r;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${r}`);if(Array.isArray(e))return t.map(n=>e);{let n=[];for(let o of t){let s=e.hasOwnProperty(o)?e[o]:[];Array.isArray(s)||(s=[s]),n.push(s)}return n}}var fJ=\"layers-model\",Un=class extends ib{constructor(t){super(t),this.isTraining=!1}summary(t,e,n=console.log){if(!this.built)throw new z(\"This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).\");$R(this,t,e,n)}compile(t){if(t.loss==null&&(t.loss=[]),this.loss=t.loss,typeof t.optimizer==\"string\")this.optimizer_=DR(t.optimizer),this.isOptimizerOwned=!0;else{if(!(t.optimizer instanceof jr))throw new z(\"User-defined optimizer must be an instance of tf.Optimizer.\");this.optimizer_=t.optimizer,this.isOptimizerOwned=!1}let e=[];if(!Array.isArray(t.loss)&&typeof t.loss!=\"string\"&&typeof t.loss!=\"function\"){t.loss=t.loss;for(let i in t.loss)if(this.outputNames.indexOf(i)===-1)throw new z(`Unknown entry in loss dictionary: \"${i}\". Only expected the following keys: ${this.outputNames}`);for(let i of this.outputNames)t.loss[i]==null&&console.warn(`Output \"${i}\" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${i} during training`),e.push(tb(t.loss[i]))}else if(Array.isArray(t.loss)){if(t.loss.length!==this.outputs.length)throw new z(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${t.loss}.`);e=t.loss.map(a=>tb(a))}else{let i=tb(t.loss);this.outputs.forEach(a=>{e.push(i)})}this.lossFunctions=e,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let i=0;i{for(let i=0;i1&&(this.metricsTensors.push([a,i]),this.metricsNames.push(this.outputNames[i]+\"_loss\"))}});let o=mJ(t.metrics,this.outputNames),s=(i,a,u)=>{this.outputNames.length>1&&(a=this.outputNames[i]+\"_\"+a),this.metricsNames.push(a),this.metricsTensors.push([u,i])};fi(\"metric\",()=>{for(let i=0;i{let c=\"\",p,m,f;for(let d of l){if(typeof d==\"string\"&&[\"accuracy\",\"acc\",\"crossentropy\",\"ce\"].indexOf(d)!==-1){let g=this.internalOutputShapes[i];g[g.length-1]===1||this.lossFunctions[i]===Km?[\"accuracy\",\"acc\"].indexOf(d)!==-1?m=$h:[\"crossentropy\",\"ce\"].indexOf(d)!==-1&&(m=rb):this.lossFunctions[i]===qm?[\"accuracy\",\"acc\"].indexOf(d)!==-1?m=nb:[\"crossentropy\",\"ce\"].indexOf(d)!==-1&&(m=KN):[\"accuracy\",\"acc\"].indexOf(d)!==-1?m=Rh:[\"crossentropy\",\"ce\"].indexOf(d)!==-1&&(m=Fh);let x;[\"accuracy\",\"acc\"].indexOf(d)!==-1?x=\"acc\":[\"crossentropy\",\"ce\"].indexOf(d)!==-1&&(x=\"ce\"),f=m,p=c+x}else f=ER(d),p=c+Oh(d);let h;fi(p,()=>{h=f}),s(i,p,h)}})(a)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn(\"Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?\")}evaluate(t,e,n={}){let o=n.batchSize==null?32:n.batchSize;ub(o);let i=this.standardizeUserDataXY(t,e,!0,o);try{let a=i[0].concat(i[1]);this.makeTestFunction();let u=this.testFunction,l=this.testLoop(u,a,o,n.verbose,n.steps);return kr(l)}finally{$o(i[0],t),$o(i[1],e)}}async evaluateDataset(t,e){return this.makeTestFunction(),zR(this,t,e)}checkNumSamples(t,e,n,o=\"steps\"){let s;if(n!=null){if(s=null,e!=null)throw new z(`If ${o} is set, batchSize must be null or undefined.Got batchSize = ${e}`)}else if(t!=null)Array.isArray(t)?s=t[0].shape[0]:s=t.shape[0];else throw new z(`Either the input data should have a defined shape, or ${o} shoud be specified.`);return s}execute(t,e){if(Array.isArray(e)&&e.length===0)throw new z(\"`outputs` is an empty Array, which is not allowed.\");let n=Array.isArray(e),o=n?e:[e],s=this.retrieveSymbolicTensors(o),i=new ha;if(t instanceof Lt&&(t=[t]),Array.isArray(t)){if(t.length!==this.inputs.length)throw new z(`The number of inputs provided (${t.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let u=0;ua.name);for(let a=0;a0){let o=[];throw e.forEach((s,i)=>{s==null&&o.push(t[i])}),new z(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(o)}`)}return e}predictLoop(t,e=32,n=!1){return B(()=>{let o=this.checkNumSamples(t);if(n)throw new _t(\"Verbose predictLoop() is not implemented yet.\");let s=pb(o,e),i=this.outputs.map(a=>[]);for(let a=0;a{let l=s[a][0],c=s[a][1],p=Xm(t,l,c),m=[];if(Array.isArray(p))for(let d=0;di[c].push(l));return kr(i.map(a=>ie(a,0)))})}predict(t,e={}){let n=YN(t);GR(n,this.inputNames,this.feedInputShapes,!1);try{let o=e.batchSize==null?32:e.batchSize;return ub(o),this.predictLoop(n,o)}finally{$o(n,t)}}predictOnBatch(t){GR(t,this.inputNames,this.feedInputShapes,!0);let e=(Array.isArray(t)?t[0]:t).shape[0];return this.predictLoop(t,e)}standardizeUserDataXY(t,e,n=!0,o){if(this.optimizer_==null)throw new dn(\"You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).\");let s=[];for(let i=0;i0&&t[0].shape[0]%o!==0)throw new z(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${o}. Found: ${t[0].shape[0]} sample(s).`);return[t,e]}async standardizeUserData(t,e,n,o,s=!0,i){let[a,u]=this.standardizeUserDataXY(t,e,s,i);if(n!=null)throw new Error(\"sample weight is not supported yet.\");let l=null;if(o!=null){let c=ab(o,this.outputNames);l=[];for(let p=0;p{let i=this.checkNumSamples(e,n,s,\"steps\"),a=[];if(o>0)throw new _t(\"Verbose mode is not implemented yet.\");if(s!=null)throw new _t(\"steps mode in testLoop() is not implemented yet\");{let u=pb(i,n),l=Oe(gn(0,i));for(let c=0;c1){let i=PN(t.slice(0,n),o);s+=`_${i}`}e.push(s)}return e}makeTrainFunction(){return t=>{let e=[],n=t.slice(0,this.inputs.length),o=t.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=t.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),i=[],a=()=>{let p=[];for(let h=0;h1&&h{d=K(d,h)}),d},u=this.collectedTrainableWeights.map(p=>p.read());return[this.optimizer_.minimize(a,!0,u)].concat(i)}}makeTestFunction(){this.testFunction=t=>B(()=>{let e=[],n,o=t.slice(0,this.inputs.length),s=t.slice(this.inputs.length,this.inputs.length+this.outputs.length),i=[];for(let l=0;l0){if(g=!0,n.validationData.length===2)u=n.validationData[0],l=n.validationData[1];else throw n.validationData.length===3?new _t(\"validationData including sample weights is not supported yet.\"):new z(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${n.validationData} is invalid.`);let M=await this.standardizeUserData(u,l,null,null,!0,f);c=M[0],p=M[1],x=c.concat(p)}else if(n.validationSplit!=null&&n.validationSplit>0&&n.validationSplit<1){g=!0;let F=Math.floor(o[0].shape[0]*(1-n.validationSplit)),M=o[0].shape[0];c=Xm(o,F,M),i=o,o=Xm(o,0,F),p=Xm(s,F,M),a=s,s=Xm(s,0,F),x=c.concat(p)}else n.validationSteps!=null&&(g=!0);let b=o.concat(s).concat(m);this.checkTrainableWeightsConsistency();let w=this.makeTrainFunction(),I=this.getDedupedMetricsNames(),N,E;g?(this.makeTestFunction(),N=this.testFunction,E=I.slice().concat(I.map(F=>\"val_\"+F))):(N=null,x=[],E=I.slice());let A=Jy(n.callbacks,n.yieldEvery);return await this.fitLoop(w,b,I,f,n.epochs,n.verbose,A,N,x,n.shuffle,E,n.initialEpoch,null,null)}finally{this.isTraining=!1,$o(o,t),$o(s,e),$o(i,t),$o(a,e),$o(c,u),$o(p,l),m!=null&&Tt(m)}}async fitLoop(t,e,n,o,s,i,a,u,l,c,p,m,f,d){o==null&&(o=32),s==null&&(s=1),c==null&&(c=!0),m==null&&(m=0);let h=!1;if(u!=null&&l!=null&&(h=!0),d!=null&&(h=!0,f==null))throw new z(\"Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.\");let g=this.checkNumSamples(e,o,f,\"steps_per_epoch\"),x;g!=null&&(x=gn(0,g)),i==null&&(i=1);let{callbackList:b,history:w}=Qy(a,i,s,m,g,f,o,h,p);b.setModel(this),this.history=w,await b.onTrainBegin(),this.stopTraining_=!1;for(let I=m;I{let M=A[D][0],V=A[D][1],G=vl(E,M,V-M);F.batch=D,F.size=V-M;let W=cb(e,G),q=t(W);for(let H=0;H_o(e))}else{let e=Object.keys(this.loss);t={};let n=this.loss;for(let o of e)if(typeof n[o]==\"string\")t[o]=_o(n[o]);else throw new Error(\"Serialization of non-string loss is not supported.\")}return t}getMetricIdentifiers(){if(typeof this.metrics==\"string\"||typeof this.metrics==\"function\")return[_o(Oh(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(t=>_o(Oh(t)));{let t={};for(let e in this.metrics)t[e]=_o(Oh(this.metrics[e]));return t}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(t){if(t.weighted_metrics!=null)throw new Error(\"Loading weight_metrics is not supported yet.\");if(t.loss_weights!=null)throw new Error(\"Loading loss_weights is not supported yet.\");if(t.sample_weight_mode!=null)throw new Error(\"Loading sample_weight_mode is not supported yet.\");let e=Gc(t.optimizer_config),n=wn(e),o;if(typeof t.loss==\"string\")o=Cl(t.loss);else if(Array.isArray(t.loss))o=t.loss.map(i=>Cl(i));else if(t.loss!=null){o={};for(let i in t.loss)o[i]=Cl(t.loss[i])}let s;if(Array.isArray(t.metrics))s=t.metrics.map(i=>Cl(i));else if(t.metrics!=null){s={};for(let i in t.metrics)s[i]=Cl(t.metrics[i])}this.compile({loss:o,metrics:s,optimizer:n})}async save(t,e){if(typeof t==\"string\"){let l=Mr.getSaveHandlers(t);if(l.length===0)throw new z(`Cannot find any save handlers for URL '${t}'`);if(l.length>1)throw new z(`Found more than one (${l.length}) save handlers for URL '${t}'`);t=l[0]}if(t.save==null)throw new z(\"LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.\");let n=await Mr.encodeWeights(this.getNamedWeights(e)),a={modelTopology:this.toJSON(null,!1),format:fJ,generatedBy:`TensorFlow.js tfjs-layers v${jm}`,convertedBy:null};if((e==null?!1:e.includeOptimizer)&&this.optimizer!=null){a.trainingConfig=this.getTrainingConfig();let l=\"optimizer\",{data:c,specs:p}=await Mr.encodeWeights(await this.optimizer.getWeights(),l);n.specs.push(...p),n.data=Mr.concatenateArrayBuffers([n.data,c])}return this.userDefinedMetadata!=null&&(XN(this.userDefinedMetadata,this.name,!0),a.userDefinedMetadata=this.userDefinedMetadata),a.weightData=n.data,a.weightSpecs=n.specs,t.save(a)}setUserDefinedMetadata(t){XN(t,this.name),this.userDefinedMetadata=t}getUserDefinedMetadata(){return this.userDefinedMetadata}};Un.className=\"Model\";Q.registerClass(Un);var mb=class extends Un{};mb.className=\"Functional\";Q.registerClass(mb);async function WR(r,t){\"modelTopology\"in r||(r={modelTopology:r}),r=r;let e=r.modelTopology;e.model_config!=null&&(e=e.model_config);let n=Gc(e),o=wn(n,t);if(r.weightsManifest!=null){let s=await Mr.loadWeights(r.weightsManifest,r.pathPrefix,o.weights.map(a=>a.originalName)),i={};for(let a of o.weights)i[a.originalName]=s[a.originalName];o.loadWeights(i),Tt(s)}return o}async function UR(r,t){if(t==null&&(t={}),typeof r==\"string\"){let e=Mr.getLoadHandlers(r,t);if(e.length===0)e.push(Mr.browserHTTPRequest(r,t));else if(e.length>1)throw new z(`Found more than one (${e.length}) load handlers for URL '${r}'`);r=e[0]}return dJ(r,void 0,t)}async function dJ(r,t,e){if(e==null&&(e={}),r.load==null)throw new z(\"Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.\");let n=await r.load(),o=n.modelTopology;o.model_config!=null&&(o=o.model_config);let s=e.strict==null?!0:e.strict,i=n.weightData!=null&&n.weightSpecs!=null&&s,a=wn(Gc(o),t,i),u=n.trainingConfig;if(u!=null&&a.loadTrainingConfig(u),n.userDefinedMetadata!=null&&a.setUserDefinedMetadata(n.userDefinedMetadata),n.weightData!=null){if(n.weightSpecs==null)throw new z(\"LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.\");let{modelWeights:l,optimizerWeights:c}=hJ(n.weightData,n.weightSpecs);a.loadWeights(l,s),a.optimizer!=null&&c.length>0&&await a.optimizer.setWeights(c),Tt(l),Tt(c.map(p=>p.tensor))}return a}function hJ(r,t){let e=Mr.decodeWeights(r,t),n={},o=[];return t.forEach(s=>{s.group===\"optimizer\"?o.push({name:s.name,tensor:e[s.name]}):n[s.name]=e[s.name]}),{modelWeights:n,optimizerWeights:o}}var Wc=class r extends Un{constructor(t){if(super({inputs:[],outputs:[]}),t=t||{},this.trainable=!0,this.built=!1,this.name=t.name!=null?t.name:Fu(\"sequential_\"),t.layers!=null)for(let e of t.layers)this.add(e)}checkShape(t){if(t.inboundNodes[0].outputTensors[0].shape.some(n=>n<0))throw new z(`Negative dimension size caused by adding layer ${t.name} with input shape [${t.inboundNodes[0].inputTensors[0].shape}]`)}add(t){let e=t instanceof r||t instanceof Un,n;if(e){if(n=t,n.outputs.length!==1)throw new z(\"All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.\");if(n.inputs.length!==1)throw new z(\"All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.\")}if(this.outputs.length===0){if(t.inboundNodes.length===0){if(t.batchInputShape==null)throw new z(\"The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.\");let o=Hy({batchShape:t.batchInputShape,dtype:t.dtype,name:t.name+\"_input\"});t.apply(o)}if(e)this.outputs=n.outputs,this.inputs=n.inputs;else{if(t.inboundNodes.length!==1)throw new z(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${t.name} which has ${t.inboundNodes.length} pre-existing inbound connections.`);if(t.inboundNodes[0].outputTensors.length!==1)throw new z(\"All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.\");this.checkShape(t),this.outputs=[t.inboundNodes[0].outputTensors[0]],this.inputs=WN(this.outputs[0])}this.inboundNodes=[],new Nl({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:To(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(o=>o.shape),outputShapes:this.outputs[0].shape})}else{let o=t.apply(this.outputs[0]);if(Array.isArray(o))throw new TypeError(\"All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.\");this.checkShape(t),this.outputs=[o],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(t),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError(\"There are no layers in the model.\");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let t=this.layers.length-1;this.layers[t].outboundNodes=[],this.outputs=[this.layers[t].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(t,e){return this.model==null&&this.build(),this.model.call(t,e)}build(t){if(Gt(t),this.inputs.length===0||this.outputs.length===0)throw new TypeError(\"Sequential model cannot be built: model is empty. Add some layers first.\");this.model=new Un({inputs:this.inputs,outputs:this.outputs[0],name:this.name+\"_model\"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(t,e,n=console.log){this.built||this.build(),super.summary(t,e,n)}setWeights(t){this.model==null&&this.build(),this.model.setWeights(t)}evaluate(t,e,n={}){if(!this.built)throw new dn(\"The model needs to be compiled before being used.\");return this.model.evaluate(t,e,n)}async evaluateDataset(t,e){if(!this.built)throw new dn(\"The model needs to be compiled before being used.\");return this.model.evaluateDataset(t,e)}predict(t,e={}){return this.model==null&&this.build(),this.model.predict(t,e)}predictOnBatch(t){return this.model==null&&this.build(),this.model.predictOnBatch(t)}compile(t){this.build(),this.model.compile(t),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(t){this.model.optimizer=t}async fit(t,e,n={}){if(!this.built)throw new dn(\"The model needs to be compiled before being used.\");return this.model.fit(t,e,n)}async fitDataset(t,e){if(!this.built)throw new dn(\"The model needs to be compiled before being used.\");return this.model.fitDataset(t,e)}async trainOnBatch(t,e){return this.model.trainOnBatch(t,e)}static fromConfig(t,e,n={},o=!1){let s,i={};if(e instanceof Array){if(e[0].className==null||e[0].className===\"Merge\")throw new z(\"Legacy serialization format not supported yet.\");s=e}else y.assert(e.layers!=null,()=>\"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field.\"),s=e.layers,delete e.layers,i=e;let a=new t(i);if(!(a instanceof r))throw new _t(`Sequential.fromConfig called on non-Sequential input: ${a}`);for(let u of s){let c=wn(u,void 0,o);o&&c.setFastWeightInitDuringBuild(!0),a.add(c)}return a}set stopTraining(t){if(this.model==null)throw new z(\"Cannot set the stopTraining property of a sequential model before it is compiled.\");this.model.stopTraining=t}get stopTraining(){if(this.model==null)throw new z(\"Cannot get the stopTraining property of a sequential model before it is compiled.\");return this.model.stopTraining}getConfig(){let t=[];for(let e of this.layers){let n={};n.className=e.getClassName(),n.config=e.getConfig(),t.push(n)}return{name:this.name,layers:t}}};Wc.className=\"Sequential\";Q.registerClass(Wc);function gJ(r){return new Un(r)}function xJ(r){return new Wc(r)}function JN(r){return Hy(r)}function yJ(r,t){Um.registerCallbackConstructor(r,t)}var Pr=class extends Q.Serializable{getConfig(){return{}}},fb=class extends Pr{apply(t,e=1){return uR(t,e)}};fb.className=\"elu\";Q.registerClass(fb);var db=class extends Pr{apply(t){return fm(t)}};db.className=\"selu\";Q.registerClass(db);var hb=class extends Pr{apply(t){return Or(t)}};hb.className=\"relu\";Q.registerClass(hb);var gb=class extends Pr{apply(t){return B(()=>lo(6,Or(t)))}};gb.className=\"relu6\";Q.registerClass(gb);var xb=class extends Pr{apply(t){return t}};xb.className=\"linear\";Q.registerClass(xb);var yb=class extends Pr{apply(t){return en(t)}};yb.className=\"sigmoid\";Q.registerClass(yb);var bb=class extends Pr{apply(t){return pR(t)}};bb.className=\"hardSigmoid\";Q.registerClass(bb);var wb=class extends Pr{apply(t){return ui(t)}};wb.className=\"softplus\";Q.registerClass(wb);var Ib=class extends Pr{apply(t){return cR(t)}};Ib.className=\"softsign\";Q.registerClass(Ib);var Cb=class extends Pr{apply(t){return li(t)}};Cb.className=\"tanh\";Q.registerClass(Cb);var Ym=class extends Pr{apply(t,e=-1){return Eu(t,e)}};Ym.className=\"softmax\";Q.registerClass(Ym);var vb=class extends Pr{apply(t,e=-1){return lm(t,e)}};vb.className=\"logSoftmax\";Q.registerClass(vb);var Sb=class extends Pr{apply(t){return B(()=>B(()=>{let e=Math.sqrt(2),n=$(.5,K(1,am(ut(t,e))));return $(t,n)}))}};Sb.className=\"gelu\";Q.registerClass(Sb);var Nb=class extends Pr{apply(t){return B(()=>$(.5,$(t,K(1,li($(ge(ut(2,Math.PI)),K(t,$(.044715,qr(t,3)))))))))}};Nb.className=\"gelu_new\";Q.registerClass(Nb);var kb=class extends Pr{apply(t){return B(()=>$(t,li(ui(t))))}};kb.className=\"mish\";Q.registerClass(kb);var Tb=class extends Pr{apply(t,e=1){return B(()=>$(en($(t,e)),t))}};Tb.className=\"swish\";Q.registerClass(Tb);function gi(r){return r.getClassName()}function QN(r,t={}){return fa(r,Q.SerializationMap.getMap().classNameMap,t,\"activation\")}function xi(r){if(r==null){let t={};return t.className=\"linear\",t.config={},QN(t)}if(typeof r==\"string\"){let t={};return t.className=r,t.config={},QN(t)}else return r instanceof Pr?r:QN(r)}function tk(r){if(r!=null&&typeof r!=\"object\")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${r}`)}var _b=class extends Q.Serializable{},Lu=class extends _b{constructor(t){super(),tk(t),this.l1=t==null||t.l1==null?.01:t.l1,this.l2=t==null||t.l2==null?.01:t.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(t){return B(()=>{let e=ke([1]);return this.hasL1&&(e=K(e,mt($(this.l1,_e(t))))),this.hasL2&&(e=K(e,mt($(this.l2,$c(t))))),R(e,[])})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(t,e){return new t({l1:e.l1,l2:e.l2})}};Lu.className=\"L1L2\";Q.registerClass(Lu);function KR(r){return tk(r),new Lu({l1:r!=null?r.l1:null,l2:0})}function jR(r){return tk(r),new Lu({l2:r!=null?r.l2:null,l1:0})}var HR={l1l2:\"L1L2\"};function fe(r){return km(r)}function qR(r,t={}){return fa(r,Q.SerializationMap.getMap().classNameMap,t,\"regularizer\")}function ve(r){if(r==null)return null;if(typeof r==\"string\"){let e={className:r in HR?HR[r]:r,config:{}};return qR(e)}else return r instanceof _b?r:qR(r)}var Zm=class extends Et{constructor(t){super(t==null?{}:t),this.supportsMasking=!0,t!=null&&(this.maxValue=t.maxValue)}call(t,e){t=St(t);let n=Or(t);return this.maxValue!=null&&(n=vr(n,0,this.maxValue)),n}computeOutputShape(t){return t}getConfig(){let t={maxValue:this.maxValue},e=super.getConfig();return Object.assign(t,e),t}};Zm.className=\"ReLU\";Q.registerClass(Zm);var Jm=class extends Et{constructor(t){super(t==null?{}:t),this.DEFAULT_ALPHA=.3,t==null&&(t={}),this.alpha=t.alpha==null?this.DEFAULT_ALPHA:t.alpha}call(t,e){let n=St(t);return Cu(n,this.alpha)}computeOutputShape(t){return t}getConfig(){let t={alpha:this.alpha},e=super.getConfig();return Object.assign(t,e),t}};Jm.className=\"LeakyReLU\";Q.registerClass(Jm);var Qm=class extends Et{constructor(t){if(super(t==null?{}:t),this.DEFAULT_ALPHA_INITIALIZER=\"zeros\",t==null&&(t={}),this.supportsMasking=!0,this.alphaInitializer=xe(t.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=ve(t.alphaRegularizer),this.alphaConstraint=Ge(t.alphaConstraint),t.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(t.sharedAxes))this.sharedAxes=t.sharedAxes;else if(typeof t.sharedAxes==\"number\")this.sharedAxes=[t.sharedAxes];else throw new z(`Expected sharedAxes to be a number or an array of numbers, but got ${t.sharedAxes}`)}build(t){t=Gt(t);let e=t.slice(1);if(this.sharedAxes!=null)for(let o of this.sharedAxes)e[o-1]=1;this.alpha=this.addWeight(\"alpha\",e,\"float32\",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let o=1;o{let n=St(t),o=e.mask;if(o!=null){let s=$(at(ar(n.shape),J(o,n.dtype)),pt(-1e9));n=K(n,s)}return this.axis instanceof Array?this.axis.length>1?Ke(at(n,Su(n,this.axis,!0))):this.softmax(n,this.axis[0]):this.softmax(n,this.axis)})}computeOutputShape(t){return t}getConfig(){let t={axis:this.axis},e=super.getConfig();return Object.assign(t,e),t}};rf.className=\"Softmax\";Q.registerClass(rf);function zu(r,t,e){if(typeof r==\"number\")return To(r,t);if(r.length!==t)throw new z(`The ${e} argument must be an integer or tuple of ${t} integers. Received: ${r.length} elements.`);for(let n=0;n(Me(t),t===\"channelsFirst\"?Vt(r,[0,2,3,1]):r))}function ek(r,t){return B(()=>(Me(t),t===\"channelsFirst\"?Vt(r,[0,2,3,4,1]):r))}function wJ(r,t,e,n=1,o=\"valid\",s,i=1){return B(()=>{if(s==null&&(s=xn()),Me(s),r.shape.length!==3)throw new z(`The input of a conv1dWithBias operation should be 3, but is ${r.shape.length} instead.`);if(t.shape.length!==3)throw new z(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(e!=null&&e.shape.length!==1)throw new z(`The bias for a conv1dWithBias operation should be 1, but is ${e.shape.length} instead`);if(s===\"channelsFirst\"&&(r=Vt(r,[0,2,1])),o===\"causal\")throw new _t(\"The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.\");let a=rm(r,t,n,o===\"same\"?\"same\":\"valid\",\"NWC\",i);return e!=null&&(a=yn(a,e)),a})}function XR(r,t,e,n=[1,1],o=\"valid\",s,i,a=null){return B(()=>{if(s==null&&(s=xn()),Me(s),r.rank!==3&&r.rank!==4)throw new z(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${r.rank}.`);if(t.rank!==3&&t.rank!==4)throw new z(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${r.rank}.`);let u=Ph(r,s);if(o===\"causal\")throw new _t(\"The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.\");return u=Ru.conv2d({x:u,filter:t,strides:n,pad:o===\"same\"?\"same\":\"valid\",dilations:i,dataFormat:\"NHWC\",bias:e,activation:a}),s===\"channelsFirst\"&&(u=Vt(u,[0,3,1,2])),u})}function IJ(r,t,e,n=[1,1,1],o=\"valid\",s,i){return B(()=>{if(s==null&&(s=xn()),Me(s),r.rank!==4&&r.rank!==5)throw new z(`conv3dWithBias expects input to be of rank 4 or 5, but received ${r.rank}.`);if(t.rank!==4&&t.rank!==5)throw new z(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${r.rank}.`);let a=ek(r,s);if(o===\"causal\")throw new _t(\"The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.\");return a=Dx(a,t,n,o===\"same\"?\"same\":\"valid\",\"NDHWC\",i),e!=null&&(a=yn(a,e)),s===\"channelsFirst\"&&(a=Vt(a,[0,4,1,2,3])),a})}var Mh=class r extends Et{constructor(t,e){if(super(e),this.bias=null,this.DEFAULT_KERNEL_INITIALIZER=\"glorotNormal\",this.DEFAULT_BIAS_INITIALIZER=\"zeros\",r.verifyArgs(e),this.rank=t,tr(this.rank,\"rank\"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new _t(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=zu(e.kernelSize,t,\"kernelSize\"),this.strides=zu(e.strides==null?1:e.strides,t,\"strides\"),this.padding=e.padding==null?\"valid\":e.padding,hn(this.padding),this.dataFormat=e.dataFormat==null?\"channelsLast\":e.dataFormat,Me(this.dataFormat),this.activation=xi(e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.biasInitializer=xe(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=Ge(e.biasConstraint),this.biasRegularizer=ve(e.biasRegularizer),this.activityRegularizer=ve(e.activityRegularizer),this.dilationRate=zu(e.dilationRate==null?1:e.dilationRate,t,\"dilationRate\"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new z(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate==\"number\")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new z(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate==\"number\")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new z(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(t){if(co(\"kernelSize\"in t,\"required key 'kernelSize' not in config\"),typeof t.kernelSize!=\"number\"&&!Fy(t.kernelSize,\"number\",1,3))throw new z(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(t.kernelSize)}.`)}getConfig(){let t={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:gi(this.activation),useBias:this.useBias,biasInitializer:Te(this.biasInitializer),biasRegularizer:fe(this.biasRegularizer),activityRegularizer:fe(this.activityRegularizer),biasConstraint:Ve(this.biasConstraint)},e=super.getConfig();return Object.assign(t,e),t}},nf=class r extends Mh{constructor(t,e){super(t,e),this.kernel=null,r.verifyArgs(e),this.filters=e.filters,tr(this.filters,\"filters\"),this.kernelInitializer=xe(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=Ge(e.kernelConstraint),this.kernelRegularizer=ve(e.kernelRegularizer)}build(t){t=Gt(t);let e=this.dataFormat===\"channelsFirst\"?1:t.length-1;if(t[e]==null)throw new z(`The channel dimension of the input should be defined. Found ${t[e]}`);let n=t[e],o=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight(\"kernel\",o,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight(\"bias\",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[e]:n}}],this.built=!0}call(t,e){return B(()=>{t=St(t);let n,o=this.bias==null?null:this.bias.read(),s=Oy(this.activation.getClassName());if(s!=null&&this.rank===2)n=XR(t,this.kernel.read(),o,this.strides,this.padding,this.dataFormat,this.dilationRate,s);else{if(this.rank===1)n=wJ(t,this.kernel.read(),o,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=XR(t,this.kernel.read(),o,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=IJ(t,this.kernel.read(),o,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new _t(\"convolutions greater than 3D are not implemented yet.\");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(t){t=Gt(t);let e=[],n=this.dataFormat===\"channelsLast\"?t.slice(1,t.length-1):t.slice(2);for(let s=0;s 0 but got ${JSON.stringify(t.filters)}`)}},Uc=class r extends nf{constructor(t){super(2,t),r.verifyArgs(t)}getConfig(){let t=super.getConfig();return delete t.rank,t}static verifyArgs(t){if(typeof t.kernelSize!=\"number\"&&!Fy(t.kernelSize,\"number\",1,2))throw new z(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(t.kernelSize)}.`)}};Uc.className=\"Conv2D\";Q.registerClass(Uc);var Hc=class r extends nf{constructor(t){super(3,t),r.verifyArgs(t)}getConfig(){let t=super.getConfig();return delete t.rank,t}static verifyArgs(t){if(typeof t.kernelSize!=\"number\"&&!(Array.isArray(t.kernelSize)&&(t.kernelSize.length===1||t.kernelSize.length===3)))throw new z(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(t.kernelSize)}.`)}};Hc.className=\"Conv3D\";Q.registerClass(Hc);var of=class extends Uc{constructor(t){if(super(t),this.inputSpec=[new Ce({ndim:4})],this.padding!==\"same\"&&this.padding!==\"valid\")throw new z(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(t){if(t=Gt(t),t.length!==4)throw new z(\"Input should have rank 4; Received input shape: \"+JSON.stringify(t));let e=this.dataFormat===\"channelsFirst\"?1:t.length-1;if(t[e]==null)throw new z(\"The channel dimension of the inputs should be defined. Found `None`.\");let n=t[e],o=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight(\"kernel\",o,\"float32\",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight(\"bias\",[this.filters],\"float32\",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Ce({ndim:4,axes:{[e]:n}})],this.built=!0}call(t,e){return B(()=>{let n=St(t);if(n.shape.length!==4)throw new z(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let o=n.shape,s=o[0],i,a;this.dataFormat===\"channelsFirst\"?(i=2,a=3):(i=1,a=2);let u=o[i],l=o[a],c=this.kernelSize[0],p=this.kernelSize[1],m=this.strides[0],f=this.strides[1],d=yi(u,m,c,this.padding),h=yi(l,f,p,this.padding),g=[s,d,h,this.filters];this.dataFormat!==\"channelsLast\"&&(n=Vt(n,[0,2,3,1]));let x=om(n,this.kernel.read(),g,this.strides,this.padding);return this.dataFormat!==\"channelsLast\"&&(x=Vt(x,[0,3,1,2])),this.bias!=null&&(x=yn(x,this.bias.read(),this.dataFormat)),this.activation!=null&&(x=this.activation.apply(x)),x})}computeOutputShape(t){t=Gt(t);let e=t.slice(),n,o,s;this.dataFormat===\"channelsFirst\"?(n=1,o=2,s=3):(n=3,o=1,s=2);let i=this.kernelSize[0],a=this.kernelSize[1],u=this.strides[0],l=this.strides[1];return e[n]=this.filters,e[o]=yi(e[o],u,i,this.padding),e[s]=yi(e[s],l,a,this.padding),e}getConfig(){let t=super.getConfig();return delete t.dilationRate,t}};of.className=\"Conv2DTranspose\";Q.registerClass(of);var sf=class extends Hc{constructor(t){if(super(t),this.inputSpec=[new Ce({ndim:5})],this.padding!==\"same\"&&this.padding!==\"valid\")throw new z(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(t){if(t=Gt(t),t.length!==5)throw new z(\"Input should have rank 5; Received input shape: \"+JSON.stringify(t));let e=this.dataFormat===\"channelsFirst\"?1:t.length-1;if(t[e]==null)throw new z(\"The channel dimension of the inputs should be defined. Found `None`.\");let n=t[e],o=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight(\"kernel\",o,\"float32\",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight(\"bias\",[this.filters],\"float32\",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Ce({ndim:5,axes:{[e]:n}})],this.built=!0}call(t,e){return B(()=>{let n=St(t);if(n.shape.length!==5)throw new z(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let o=n.shape,s=o[0],i,a,u;this.dataFormat===\"channelsFirst\"?(u=2,i=3,a=4):(u=1,i=2,a=3);let l=o[u],c=o[i],p=o[a],m=this.kernelSize[0],f=this.kernelSize[1],d=this.kernelSize[2],h=this.strides[0],g=this.strides[1],x=this.strides[2],b=yi(l,h,m,this.padding),w=yi(c,g,f,this.padding),I=yi(p,x,d,this.padding),N=[s,b,w,I,this.filters];this.dataFormat!==\"channelsLast\"&&(n=Vt(n,[0,2,3,4,1]));let E=Rx(n,this.kernel.read(),N,this.strides,this.padding);return this.dataFormat!==\"channelsLast\"&&(E=Vt(E,[0,4,1,2,3])),this.bias!==null&&(E=yn(E,this.bias.read(),this.dataFormat)),this.activation!==null&&(E=this.activation.apply(E)),E})}computeOutputShape(t){t=Gt(t);let e=t.slice(),n,o,s,i;this.dataFormat===\"channelsFirst\"?(n=1,o=2,s=3,i=4):(n=4,o=1,s=2,i=3);let a=this.kernelSize[0],u=this.kernelSize[1],l=this.kernelSize[2],c=this.strides[0],p=this.strides[1],m=this.strides[2];return e[n]=this.filters,e[o]=yi(e[o],c,a,this.padding),e[s]=yi(e[s],p,u,this.padding),e[i]=yi(e[i],m,l,this.padding),e}getConfig(){let t=super.getConfig();return delete t.dilationRate,t}};sf.className=\"Conv3DTranspose\";Q.registerClass(sf);var Eb=class extends nf{constructor(t,e){if(super(t,e),this.DEFAULT_DEPTHWISE_INITIALIZER=\"glorotUniform\",this.DEFAULT_POINTWISE_INITIALIZER=\"glorotUniform\",this.depthwiseKernel=null,this.pointwiseKernel=null,e.filters==null)throw new z(\"The `filters` configuration field is required by SeparableConv, but is unspecified.\");if(e.kernelInitializer!=null||e.kernelRegularizer!=null||e.kernelConstraint!=null)throw new z(\"Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.\");if(e.padding!=null&&e.padding!==\"same\"&&e.padding!==\"valid\")throw new z(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(e.padding)}`);this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=xe(e.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=ve(e.depthwiseRegularizer),this.depthwiseConstraint=Ge(e.depthwiseConstraint),this.pointwiseInitializer=xe(e.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=ve(e.pointwiseRegularizer),this.pointwiseConstraint=Ge(e.pointwiseConstraint)}build(t){if(t=Gt(t),t.length{t=St(t);let n;if(this.rank===1)throw new _t(\"1D separable convolution is not implemented yet.\");return this.rank===2&&(this.dataFormat===\"channelsFirst\"&&(t=Vt(t,[0,2,3,1])),n=dm(t,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,\"NHWC\")),this.useBias&&(n=yn(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat===\"channelsFirst\"&&(n=Vt(n,[0,3,1,2])),n})}getConfig(){let t=super.getConfig();return delete t.rank,delete t.kernelInitializer,delete t.kernelRegularizer,delete t.kernelConstraint,t.depthwiseInitializer=Te(this.depthwiseInitializer),t.pointwiseInitializer=Te(this.pointwiseInitializer),t.depthwiseRegularizer=fe(this.depthwiseRegularizer),t.pointwiseRegularizer=fe(this.pointwiseRegularizer),t.depthwiseConstraint=Ve(this.depthwiseConstraint),t.pointwiseConstraint=Ve(this.pointwiseConstraint),t}};Eb.className=\"SeparableConv\";var af=class extends Eb{constructor(t){super(2,t)}};af.className=\"SeparableConv2D\";Q.registerClass(af);var lf=class r extends nf{constructor(t){super(1,t),r.verifyArgs(t),this.inputSpec=[{ndim:3}]}getConfig(){let t=super.getConfig();return delete t.rank,delete t.dataFormat,t}static verifyArgs(t){if(typeof t.kernelSize!=\"number\"&&!Fy(t.kernelSize,\"number\",1,1))throw new z(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(t.kernelSize)}.`)}};lf.className=\"Conv1D\";Q.registerClass(lf);var uf=class extends Et{constructor(t){super(t),typeof t.cropping==\"number\"?this.cropping=[[t.cropping,t.cropping],[t.cropping,t.cropping]]:typeof t.cropping[0]==\"number\"?this.cropping=[[t.cropping[0],t.cropping[0]],[t.cropping[1],t.cropping[1]]]:this.cropping=t.cropping,this.dataFormat=t.dataFormat===void 0?\"channelsLast\":t.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(t){return this.dataFormat===\"channelsFirst\"?[t[0],t[1],t[2]-this.cropping[0][0]-this.cropping[0][1],t[3]-this.cropping[1][0]-this.cropping[1][1]]:[t[0],t[1]-this.cropping[0][0]-this.cropping[0][1],t[2]-this.cropping[1][0]-this.cropping[1][1],t[3]]}call(t,e){return B(()=>{if(t=St(t),this.dataFormat===\"channelsLast\"){let n=kh(t,this.cropping[0][0],t.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return kh(n,this.cropping[1][0],t.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=kh(t,this.cropping[0][0],t.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return kh(n,this.cropping[1][0],t.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let t={cropping:this.cropping,dataFormat:this.dataFormat},e=super.getConfig();return Object.assign(t,e),t}};uf.className=\"Cropping2D\";Q.registerClass(uf);var cf=class extends Et{constructor(t){super(t),this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=t.size==null?this.DEFAULT_SIZE:t.size,this.dataFormat=t.dataFormat==null?\"channelsLast\":t.dataFormat,Me(this.dataFormat),this.interpolation=t.interpolation==null?\"nearest\":t.interpolation,nR(this.interpolation)}computeOutputShape(t){if(this.dataFormat===\"channelsFirst\"){let e=t[2]==null?null:this.size[0]*t[2],n=t[3]==null?null:this.size[1]*t[3];return[t[0],t[1],e,n]}else{let e=t[1]==null?null:this.size[0]*t[1],n=t[2]==null?null:this.size[1]*t[2];return[t[0],e,n,t[3]]}}call(t,e){return B(()=>{let n=St(t),o=n.shape;if(this.dataFormat===\"channelsFirst\"){n=Vt(n,[0,2,3,1]);let s=this.size[0]*o[2],i=this.size[1]*o[3],a=this.interpolation===\"nearest\"?fn.resizeNearestNeighbor(n,[s,i]):fn.resizeBilinear(n,[s,i]);return Vt(a,[0,3,1,2])}else{let s=this.size[0]*o[1],i=this.size[1]*o[2];return this.interpolation===\"nearest\"?fn.resizeNearestNeighbor(n,[s,i]):fn.resizeBilinear(n,[s,i])}})}getConfig(){let t={size:this.size,dataFormat:this.dataFormat,interpolation:this.interpolation},e=super.getConfig();return Object.assign(t,e),t}};cf.className=\"UpSampling2D\";Q.registerClass(cf);function CJ(r,t,e=[1,1],n=\"valid\",o,s){return B(()=>{o==null&&(o=xn()),Me(o);let i=Ph(r,o);if(r.rank!==4)throw new z(`Input for depthwiseConv2d is required to be 4-D, but is instead ${r.rank}-D`);if(t.rank!==4)throw new z(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return i=ia(i,t,e,n===\"same\"?\"same\":\"valid\",\"NHWC\",s),o===\"channelsFirst\"&&(i=Vt(i,[0,3,1,2])),i})}var pf=class extends Mh{constructor(t){super(2,t),this.depthwiseKernel=null,this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=xe(t.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=Ge(t.depthwiseConstraint),this.depthwiseRegularizer=ve(t.depthwiseRegularizer)}build(t){if(t=Gt(t),t.length<4)throw new z(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(t)}.`);let e=this.dataFormat===\"channelsFirst\"?1:3;if(t[e]==null||t[e]<0)throw new z(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${t[e]}).`);let n=t[e],o=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight(\"depthwise_kernel\",o,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight(\"bias\",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(t,e){return B(()=>{t=St(t);let n=CJ(t,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=yn(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(t){t=Gt(t);let e=this.dataFormat===\"channelsFirst\"?t[2]:t[1],n=this.dataFormat===\"channelsFirst\"?t[3]:t[2],o=this.dataFormat===\"channelsFirst\"?t[1]*this.depthMultiplier:t[3]*this.depthMultiplier,s=Tn(e,this.kernelSize[0],this.padding,this.strides[0]),i=Tn(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat===\"channelsFirst\"?[t[0],o,s,i]:[t[0],s,i,o]}getConfig(){let t=super.getConfig();return t.depthMultiplier=this.depthMultiplier,t.depthwiseInitializer=Te(this.depthwiseInitializer),t.depthwiseRegularizer=fe(this.depthwiseRegularizer),t.depthwiseConstraint=Ve(this.depthwiseRegularizer),t}};pf.className=\"DepthwiseConv2D\";Q.registerClass(pf);function rk(r,t,e,n){if(Array.isArray(r)){if(t!=null||e!=null)throw new z(\"When inputs is an array, neither initialState or constants should be provided\");n!=null&&(e=r.slice(r.length-n,r.length),r=r.slice(0,r.length-n)),r.length>1&&(t=r.slice(1,r.length)),r=r[0]}function o(s){return s==null||Array.isArray(s)?s:[s]}return t=o(t),e=o(e),{inputs:r,initialState:t,constants:e}}function nk(r,t,e,n=!1,o,s,i=!1,a=!1){return B(()=>{let u=t.shape.length;if(u<3)throw new z(`Input should be at least 3D, but is ${u}D.`);let l=[1,0].concat(gn(2,u));if(t=Vt(t,l),s!=null)throw new _t(\"The rnn() functoin of the deeplearn.js backend does not support constants yet.\");i&&console.warn(\"Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend.\"),o!=null&&(o=J(J(o,\"bool\"),\"float32\"),o.rank===u-1&&(o=je(o,-1)),o=Vt(o,l)),n&&(t=dr(t,0),o!=null&&(o=dr(o,0)));let c=[],p,m=e,f=t.shape[0],d=gr(t),h;o!=null&&(h=gr(o));for(let x=0;xr(b,m));if(o==null)p=w[0],m=w[1];else{let I=B(()=>{let N=h[x],E=at(wr(N),N),A=K($(w[0],N),$(m[0],E)),D=m.map((F,M)=>K($(w[1][M],N),$(F,E)));return{output:A,newStates:D}});p=I.output,m=I.newStates}a&&c.push(p)}let g;return a&&(g=Fe(c,1)),[p,g,m]})}var po=class r extends Et{constructor(t){super(t);let e;if(t.cell==null)throw new z(\"cell property is missing for the constructor of RNN.\");if(Array.isArray(t.cell)?e=new jc({cells:t.cell}):e=t.cell,e.stateSize==null)throw new z(\"The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).\");this.cell=e,this.returnSequences=t.returnSequences==null?!1:t.returnSequences,this.returnState=t.returnState==null?!1:t.returnState,this.goBackwards=t.goBackwards==null?!1:t.goBackwards,this._stateful=t.stateful==null?!1:t.stateful,this.unroll=t.unroll==null?!1:t.unroll,this.supportsMasking=!0,this.inputSpec=[new Ce({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let t=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return gn(0,t).map(e=>null)}else return this.states_}setStates(t){this.states_=t}computeOutputShape(t){Uy(t)&&(t=t[0]),t=t;let e=this.cell.stateSize;Array.isArray(e)||(e=[e]);let n=e[0],o;if(this.returnSequences?o=[t[0],t[1],n]:o=[t[0],n],this.returnState){let s=[];for(let i of e)s.push([t[0],i]);return[o].concat(s)}else return o}computeMask(t,e){return B(()=>{Array.isArray(e)&&(e=e[0]);let n=this.returnSequences?e:null;if(this.returnState){let o=this.states.map(s=>null);return[n].concat(o)}else return n})}get states(){if(this.states_==null){let t=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,e=[];for(let n=0;na.shape[a.shape.length-1]),i))throw new z(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=i.map(a=>new Ce({shape:[null,a]}));this.stateful&&this.resetStates()}resetStates(t,e=!1){B(()=>{if(!this.stateful)throw new uo(\"Cannot call resetStates() on an RNN Layer that is not stateful.\");let n=this.inputSpec[0].shape[0];if(n==null)throw new z(\"If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \\n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.\");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(o=>ke([n,o])):this.states_=[ke([n,this.cell.stateSize])];else if(t==null)Tt(this.states_),this.keptStates!=null&&(Tt(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(o=>ke([n,o])):this.states_[0]=ke([n,this.cell.stateSize]);else{if(Array.isArray(t)||(t=[t]),t.length!==this.states_.length)throw new z(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${t.length} state value(s). Input received: ${t}`);e===!0?this.keptStates.push(this.states_.slice()):Tt(this.states_);for(let o=0;oDe(o.clone()))})}apply(t,e){let n=e==null?null:e.initialState,o=e==null?null:e.constants;e==null&&(e={});let s=rk(t,n,o,this.numConstants);t=s.inputs,n=s.initialState,o=s.constants;let i=[],a=[];if(n!=null){e.initialState=n,i=i.concat(n),this.stateSpec=[];for(let l of n)this.stateSpec.push(new Ce({shape:l.shape}));a=a.concat(this.stateSpec)}if(o!=null&&(e.constants=o,i=i.concat(o),this.numConstants=o.length),i[0]instanceof nn){let l=[t].concat(i),c=this.inputSpec.concat(a),p=this.inputSpec;this.inputSpec=c;let m=super.apply(l,e);return this.inputSpec=p,m}else return super.apply(t,e)}call(t,e){return B(()=>{let n=e==null?null:e.mask,o=e==null?null:e.training,s=e==null?null:e.initialState;t=St(t),s==null&&(this.stateful?s=this.states_:s=this.getInitialState(t));let i=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(s.length!==i)throw new z(`RNN Layer has ${i} state(s) but was passed ${s.length} initial state(s).`);this.unroll&&console.warn(\"Ignoring unroll = true for RNN layer, due to imperative backend.\");let a={training:o},l=nk((d,h)=>{let g=this.cell.call([d].concat(h),a);return[g[0],g.slice(1)]},t,s,this.goBackwards,n,null,this.unroll,this.returnSequences),c=l[0],p=l[1],m=l[2];this.stateful&&this.resetStates(m,o);let f=this.returnSequences?p:c;return this.returnState?[f].concat(m):f})}getInitialState(t){return B(()=>{let e=ke(t.shape);return e=mt(e,[1,2]),e=Sl(e),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?Vy(e,[1,n]):e):this.cell.stateSize>1?[Vy(e,[1,this.cell.stateSize])]:[e]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(t){super.setFastWeightInitDuringBuild(t),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(t)}getConfig(){let t=super.getConfig(),e={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(e.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===r.className&&(e.cell={className:this.cell.getClassName(),config:n}),Object.assign(Object.assign(Object.assign({},n),t),e)}static fromConfig(t,e,n={}){let o=e.cell,s=wn(o,n);return new t(Object.assign(e,{cell:s}))}};po.className=\"RNN\";Q.registerClass(po);var Tl=class extends Et{},qc=class extends Tl{constructor(t){super(t),this.DEFAULT_ACTIVATION=\"tanh\",this.DEFAULT_KERNEL_INITIALIZER=\"glorotNormal\",this.DEFAULT_RECURRENT_INITIALIZER=\"orthogonal\",this.DEFAULT_BIAS_INITIALIZER=\"zeros\",this.units=t.units,tr(this.units,\"units\"),this.activation=xi(t.activation==null?this.DEFAULT_ACTIVATION:t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.kernelInitializer=xe(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=xe(t.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=xe(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=ve(t.kernelRegularizer),this.recurrentRegularizer=ve(t.recurrentRegularizer),this.biasRegularizer=ve(t.biasRegularizer),this.kernelConstraint=Ge(t.kernelConstraint),this.recurrentConstraint=Ge(t.recurrentConstraint),this.biasConstraint=Ge(t.biasConstraint),this.dropout=Dc([1,di([0,t.dropout==null?0:t.dropout])]),this.recurrentDropout=Dc([1,di([0,t.recurrentDropout==null?0:t.recurrentDropout])]),this.dropoutFunc=t.dropoutFunc,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(t){t=Gt(t),this.kernel=this.addWeight(\"kernel\",[t[t.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight(\"recurrent_kernel\",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight(\"bias\",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(t,e){return B(()=>{if(t=t,t.length!==2)throw new z(`SimpleRNNCell expects 2 input Tensors, got ${t.length}.`);let n=t[1];t=t[0];let o=e.training==null?!1:e.training;0wr(t),rate:this.dropout,training:o,dropoutFunc:this.dropoutFunc})),0wr(n),rate:this.recurrentDropout,training:o,dropoutFunc:this.dropoutFunc}));let s,i=this.dropoutMask,a=this.recurrentDropoutMask;i!=null?s=Do($(t,i),this.kernel.read()):s=Do(t,this.kernel.read()),this.bias!=null&&(s=yn(s,this.bias.read())),a!=null&&(n=$(n,a));let u=K(s,Do(n,this.recurrentKernel.read()));return this.activation!=null&&(u=this.activation.apply(u)),[u,u]})}getConfig(){let t=super.getConfig(),e={units:this.units,activation:gi(this.activation),useBias:this.useBias,kernelInitializer:Te(this.kernelInitializer),recurrentInitializer:Te(this.recurrentInitializer),biasInitializer:Te(this.biasInitializer),kernelRegularizer:fe(this.kernelRegularizer),recurrentRegularizer:fe(this.recurrentRegularizer),biasRegularizer:fe(this.biasRegularizer),activityRegularizer:fe(this.activityRegularizer),kernelConstraint:Ve(this.kernelConstraint),recurrentConstraint:Ve(this.recurrentConstraint),biasConstraint:Ve(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign(Object.assign({},t),e)}};qc.className=\"SimpleRNNCell\";Q.registerClass(qc);var mf=class extends po{constructor(t){t.cell=new qc(t),super(t)}call(t,e){return B(()=>{this.cell.dropoutMask!=null&&(Tt(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Tt(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=e==null?null:e.mask,o=e==null?null:e.training,s=e==null?null:e.initialState;return super.call(t,{mask:n,training:o,initialState:s})})}static fromConfig(t,e){return new t(e)}};mf.className=\"SimpleRNN\";Q.registerClass(mf);var Kc=class extends Tl{constructor(t){if(super(t),this.DEFAULT_ACTIVATION=\"tanh\",this.DEFAULT_RECURRENT_ACTIVATION=\"hardSigmoid\",this.DEFAULT_KERNEL_INITIALIZER=\"glorotNormal\",this.DEFAULT_RECURRENT_INITIALIZER=\"orthogonal\",this.DEFAULT_BIAS_INITIALIZER=\"zeros\",t.resetAfter)throw new z(\"GRUCell does not support reset_after parameter set to true.\");this.units=t.units,tr(this.units,\"units\"),this.activation=xi(t.activation===void 0?this.DEFAULT_ACTIVATION:t.activation),this.recurrentActivation=xi(t.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:t.recurrentActivation),this.useBias=t.useBias==null?!0:t.useBias,this.kernelInitializer=xe(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=xe(t.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=xe(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=ve(t.kernelRegularizer),this.recurrentRegularizer=ve(t.recurrentRegularizer),this.biasRegularizer=ve(t.biasRegularizer),this.kernelConstraint=Ge(t.kernelConstraint),this.recurrentConstraint=Ge(t.recurrentConstraint),this.biasConstraint=Ge(t.biasConstraint),this.dropout=Dc([1,di([0,t.dropout==null?0:t.dropout])]),this.recurrentDropout=Dc([1,di([0,t.recurrentDropout==null?0:t.recurrentDropout])]),this.dropoutFunc=t.dropoutFunc,this.implementation=t.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(t){t=Gt(t);let e=t[t.length-1];this.kernel=this.addWeight(\"kernel\",[e,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight(\"recurrent_kernel\",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight(\"bias\",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(t,e){return B(()=>{if(t=t,t.length!==2)throw new z(`GRUCell expects 2 input Tensors (inputs, h, c), got ${t.length}.`);let n=e.training==null?!1:e.training,o=t[1];t=t[0],0wr(t),rate:this.dropout,training:n,count:3,dropoutFunc:this.dropoutFunc})),0wr(o),rate:this.recurrentDropout,training:n,count:3,dropoutFunc:this.dropoutFunc}));let s=this.dropoutMask,i=this.recurrentDropoutMask,a,u,l;0{this.cell.dropoutMask!=null&&(Tt(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Tt(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=e==null?null:e.mask,o=e==null?null:e.training,s=e==null?null:e.initialState;return super.call(t,{mask:n,training:o,initialState:s})})}static fromConfig(t,e){return e.implmentation===0&&(e.implementation=1),new t(e)}};ff.className=\"GRU\";Q.registerClass(ff);var _l=class extends Tl{constructor(t){super(t),this.DEFAULT_ACTIVATION=\"tanh\",this.DEFAULT_RECURRENT_ACTIVATION=\"hardSigmoid\",this.DEFAULT_KERNEL_INITIALIZER=\"glorotNormal\",this.DEFAULT_RECURRENT_INITIALIZER=\"orthogonal\",this.DEFAULT_BIAS_INITIALIZER=\"zeros\",this.units=t.units,tr(this.units,\"units\"),this.activation=xi(t.activation===void 0?this.DEFAULT_ACTIVATION:t.activation),this.recurrentActivation=xi(t.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:t.recurrentActivation),this.useBias=t.useBias==null?!0:t.useBias,this.kernelInitializer=xe(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=xe(t.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=xe(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=t.unitForgetBias,this.kernelRegularizer=ve(t.kernelRegularizer),this.recurrentRegularizer=ve(t.recurrentRegularizer),this.biasRegularizer=ve(t.biasRegularizer),this.kernelConstraint=Ge(t.kernelConstraint),this.recurrentConstraint=Ge(t.recurrentConstraint),this.biasConstraint=Ge(t.biasConstraint),this.dropout=Dc([1,di([0,t.dropout==null?0:t.dropout])]),this.recurrentDropout=Dc([1,di([0,t.recurrentDropout==null?0:t.recurrentDropout])]),this.dropoutFunc=t.dropoutFunc,this.implementation=t.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(t){var e;t=Gt(t);let n=t[t.length-1];this.kernel=this.addWeight(\"kernel\",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight(\"recurrent_kernel\",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let o;if(this.useBias){if(this.unitForgetBias){let s=this.biasInitializer,i=this.units;o=new(e=class extends bn{apply(u,l){let c=s.apply([i]),p=new Mu().apply([i]),m=s.apply([i*2]);return GN(GN(c,p),m)}},e.className=\"CustomInit\",e)}else o=this.biasInitializer;this.bias=this.addWeight(\"bias\",[this.units*4],null,o,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(t,e){return B(()=>{let n=e.training==null?!1:e.training;if(t=t,t.length!==3)throw new z(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${t.length}.`);let o=t[1],s=t[2];t=t[0],0wr(t),rate:this.dropout,training:n,count:4,dropoutFunc:this.dropoutFunc})),0wr(o),rate:this.recurrentDropout,training:n,count:4,dropoutFunc:this.dropoutFunc}));let i=this.dropoutMask,a=this.recurrentDropoutMask,u,l,c,p;0{this.cell.dropoutMask!=null&&(Tt(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Tt(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=e==null?null:e.mask,o=e==null?null:e.training,s=e==null?null:e.initialState;return super.call(t,{mask:n,training:o,initialState:s})})}static fromConfig(t,e){return e.implmentation===0&&(e.implementation=1),new t(e)}};df.className=\"LSTM\";Q.registerClass(df);var jc=class extends Tl{constructor(t){super(t),this.cells=t.cells}get stateSize(){let t=[];for(let e of this.cells.slice().reverse())Array.isArray(e.stateSize)?t.push(...e.stateSize):t.push(e.stateSize);return t}call(t,e){return B(()=>{t=t;let n=t.slice(1),o=[];for(let a of this.cells.slice().reverse())Array.isArray(a.stateSize)?o.push(n.splice(0,a.stateSize.length)):o.push(n.splice(0,1));o.reverse();let s=[],i;for(let a=0;a{fi(`RNNCell_${o}`,()=>{n.build(t),Array.isArray(n.stateSize)?e=n.stateSize[0]:e=n.stateSize,t=[t[0],e]})}),this.built=!0}getConfig(){let t=super.getConfig(),e=s=>({className:s.getClassName(),config:s.getConfig()}),o={cells:this.cells.map(e)};return Object.assign(Object.assign({},t),o)}static fromConfig(t,e,n={}){let o=[];for(let s of e.cells)o.push(wn(s,n));return new t({cells:o})}get trainableWeights(){if(!this.trainable)return[];let t=[];for(let e of this.cells)t.push(...e.trainableWeights);return t}get nonTrainableWeights(){let t=[];for(let e of this.cells)t.push(...e.nonTrainableWeights);if(!this.trainable){let e=[];for(let n of this.cells)e.push(...n.trainableWeights);return e.concat(t)}return t}getWeights(){let t=[];for(let e of this.cells)t.push(...e.weights);return _h(t)}setWeights(t){let e=[];for(let n of this.cells){let o=n.weights.length,s=t.splice(o);for(let i=0;is!=null?s(t(),e):Wy(t(),e),a=()=>Ou(i,t,n);return!o||o<=1?De(a().clone()):Array(o).fill(void 0).map(a).map(l=>De(l.clone()))}var vJ=function(r,t){var e={};for(var n in r)Object.prototype.hasOwnProperty.call(r,n)&&t.indexOf(n)<0&&(e[n]=r[n]);if(r!=null&&typeof Object.getOwnPropertySymbols==\"function\")for(var o=0,n=Object.getOwnPropertySymbols(r);o{if(this.cell.dropoutMask!=null&&(Tt(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Tt(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),e&&e.constants)throw new z(\"ConvRNN2D cell does not support constants\");let n=e==null?null:e.mask,o=e==null?null:e.training,s=e==null?null:e.initialState;return super.call(t,{mask:n,training:o,initialState:s})})}computeOutputShape(t){let e=this.computeSingleOutputShape(t);return this.returnSequences||(e=[e[0],...e.slice(2)]),this.returnState&&(e=[e,...Array(2).fill([t[0],...e.slice(-3)])]),e}getInitialState(t){return B(()=>{let{stateSize:e}=this.cell,n=t.shape,o=this.computeSingleOutputShape(n),s=[o[0],...o.slice(2)],i=ke(s);return Array.isArray(e)?Array(e.length).fill(i):[i]})}resetStates(t,e=!1){B(()=>{if(!this.stateful)throw new uo(\"Cannot call resetStates() on an RNN Layer that is not stateful.\");let n=this.inputSpec[0].shape,o=this.computeSingleOutputShape(n),s=[o[0],...o.slice(2)];if(n[0]==null)throw new z(\"If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \\n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.\");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>ke(s)):this.states_=[ke(s)];else if(t==null)Tt(this.states_),this.keptStates!=null&&(Tt(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>ke(s)):this.states_[0]=ke(s);else{if(Array.isArray(t)||(t=[t]),t.length!==this.states_.length)throw new z(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${t.length} state value(s). Input received: ${t}`);e?this.keptStates.push(this.states_.slice()):Tt(this.states_);for(let a=0;aDe(a.clone()))})}computeSingleOutputShape(t){let{dataFormat:e,filters:n,kernelSize:o,padding:s,strides:i,dilationRate:a}=this.cell,u=e===\"channelsFirst\",l=t[u?3:2],c=t[u?4:3],p=Tn(l,o[0],s,i[0],a[0]),m=Tn(c,o[1],s,i[1],a[1]);return[...t.slice(0,2),...u?[n,p,m]:[p,m,n]]}};Ab.className=\"ConvRNN2D\";var Xc=class extends _l{constructor(t){let{filters:e,kernelSize:n,strides:o,padding:s,dataFormat:i,dilationRate:a}=t;super(Object.assign(Object.assign({},t),{units:e})),this.filters=e,tr(this.filters,\"filters\"),this.kernelSize=zu(n,2,\"kernelSize\"),this.kernelSize.forEach(u=>tr(u,\"kernelSize\")),this.strides=zu(o||1,2,\"strides\"),this.strides.forEach(u=>tr(u,\"strides\")),this.padding=s||\"valid\",hn(this.padding),this.dataFormat=i||\"channelsLast\",Me(this.dataFormat),this.dilationRate=zu(a||1,2,\"dilationRate\"),this.dilationRate.forEach(u=>tr(u,\"dilationRate\"))}build(t){var e;t=Gt(t);let n=this.dataFormat===\"channelsFirst\"?1:t.length-1;if(t[n]==null)throw new z(`The channel dimension of the input should be defined. Found ${t[n]}`);let o=t[n],s=4,i=this.kernelSize.concat([o,this.filters*s]);this.kernel=this.addWeight(\"kernel\",i,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let a=this.kernelSize.concat([this.filters,this.filters*s]);if(this.recurrentKernel=this.addWeight(\"recurrent_kernel\",a,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let u;if(this.unitForgetBias){let l=this.biasInitializer,c=this.filters;u=new(e=class extends bn{apply(m,f){let d=l.apply([c]),h=ar([c]),g=l.apply([c*2]);return _m([d,h,g])}},e.className=\"CustomInit\",e)}else u=this.biasInitializer;this.bias=this.addWeight(\"bias\",[this.filters*s],null,u,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(t,e){return B(()=>{if(t.length!==3)throw new z(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${t.length}.`);let n=e.training||!1,o=t[0],s=t[1],i=t[2],a=4;0wr(o),rate:this.dropout,training:n,count:a,dropoutFunc:this.dropoutFunc}));let u=this.dropoutMask,l=(nt,st,lt)=>!st||!st[lt]?nt:$(st[lt],nt),c=l(o,u,0),p=l(o,u,1),m=l(o,u,2),f=l(o,u,3);0wr(s),rate:this.recurrentDropout,training:n,count:a,dropoutFunc:this.dropoutFunc}));let d=this.recurrentDropoutMask,h=l(s,d,0),g=l(s,d,1),x=l(s,d,2),b=l(s,d,3),w=3,[I,N,E,A]=hr(this.kernel.read(),a,w),[D,F,M,V]=this.useBias?hr(this.bias.read(),a):[null,null,null,null];c=this.inputConv(c,I,D,this.padding),p=this.inputConv(p,N,F,this.padding),m=this.inputConv(m,E,M,this.padding),f=this.inputConv(f,A,V,this.padding);let[G,W,q,H]=hr(this.recurrentKernel.read(),a,w);h=this.recurrentConv(h,G),g=this.recurrentConv(g,W),x=this.recurrentConv(x,q),b=this.recurrentConv(b,H);let j=this.recurrentActivation.apply(K(c,h)),Y=this.recurrentActivation.apply(K(p,g)),Z=K($(Y,i),$(j,this.activation.apply(K(m,x)))),et=$(this.recurrentActivation.apply(K(f,b)),this.activation.apply(Z));return[et,et,Z]})}getConfig(){let t=super.getConfig(),{units:e}=t,n=vJ(t,[\"units\"]),o={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign(Object.assign({},n),o)}inputConv(t,e,n,o){let s=Nn(t,e,this.strides,o||\"valid\",this.dataFormat===\"channelsFirst\"?\"NCHW\":\"NHWC\",this.dilationRate);return n?yn(s,n,this.dataFormat):s}recurrentConv(t,e){return Nn(t,e,1,\"same\",this.dataFormat===\"channelsFirst\"?\"NCHW\":\"NHWC\")}};Xc.className=\"ConvLSTM2DCell\";Q.registerClass(Xc);var hf=class extends Ab{constructor(t){let e=new Xc(t);super(Object.assign(Object.assign({},t),{cell:e}))}static fromConfig(t,e){return new t(e)}};hf.className=\"ConvLSTM2D\";Q.registerClass(hf);var Yc=class extends Et{constructor(t){super(t),this.rate=Math.max(Math.min(t.rate,1),0),this.noiseShape=t.noiseShape,this.seed=t.seed,this.supportsMasking=!0}getNoiseShape(t){if(this.noiseShape==null)return this.noiseShape;let e=t.shape,n=[];for(let o=0;o{this.invokeCallHook(t,e);let n=St(t);if(0Wy(n,this.rate,s,this.seed),()=>n,o)}return t})}getConfig(){let t={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},e=super.getConfig();return Object.assign(t,e),t}dispose(){return super.dispose()}};Yc.className=\"Dropout\";Q.registerClass(Yc);var gf=class extends Yc{constructor(t){super(t),this.inputSpec=[{ndim:3}]}getNoiseShape(t){let e=t.shape;return[e[0],1,e[2]]}};gf.className=\"SpatialDropout1D\";Q.registerClass(gf);var xf=class extends Et{constructor(t){if(super(t),this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER=\"glorotNormal\",this.DEFAULT_BIAS_INITIALIZER=\"zeros\",t.batchInputShape==null&&t.inputShape==null&&t.inputDim!=null){let e=null;t.batchSize!=null&&(e=t.batchSize),this.batchInputShape=[e,t.inputDim]}this.units=t.units,tr(this.units,\"units\"),this.activation=xi(t.activation),t.useBias!=null&&(this.useBias=t.useBias),this.kernelInitializer=xe(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=xe(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=Ge(t.kernelConstraint),this.biasConstraint=Ge(t.biasConstraint),this.kernelRegularizer=ve(t.kernelRegularizer),this.biasRegularizer=ve(t.biasRegularizer),this.activityRegularizer=ve(t.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(t){t=Gt(t);let e=t[t.length-1];this.kernel==null&&(this.kernel=this.addWeight(\"kernel\",[e,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight(\"bias\",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:e}}],this.built=!0}computeOutputShape(t){t=Gt(t);let e=t.slice();return e[e.length-1]=this.units,e}call(t,e){return B(()=>{this.invokeCallHook(t,e);let n=St(t),o=Oy(this.activation.getClassName()),s;return o!=null?s=Do(n,this.kernel.read(),o,this.bias?this.bias.read():null):(s=Do(n,this.kernel.read()),this.bias!=null&&(s=yn(s,this.bias.read())),this.activation!=null&&(s=this.activation.apply(s))),s})}getConfig(){let t={units:this.units,activation:gi(this.activation),useBias:this.useBias,kernelInitializer:Te(this.kernelInitializer),biasInitializer:Te(this.biasInitializer),kernelRegularizer:fe(this.kernelRegularizer),biasRegularizer:fe(this.biasRegularizer),activityRegularizer:fe(this.activityRegularizer),kernelConstraint:Ve(this.kernelConstraint),biasConstraint:Ve(this.biasConstraint)},e=super.getConfig();return Object.assign(t,e),t}};xf.className=\"Dense\";Q.registerClass(xf);var yf=class extends Et{constructor(t){t=t||{},super(t),this.inputSpec=[{minNDim:3}],this.dataFormat=t.dataFormat}computeOutputShape(t){t=Gt(t);for(let e of t.slice(1))if(e==null)throw new z(`The shape of the input to \"Flatten\" is not fully defined (got ${t.slice(1)}). Make sure to pass a complete \"input_shape\" or \"batch_input_shape\" argument to the first layer in your model.`);return[t[0],Ao(t,1)]}call(t,e){return B(()=>{this.invokeCallHook(t,e);let n=St(t);if(this.dataFormat===\"channelsFirst\"&&n.rank>1){let o=[0];for(let s=2;s{this.invokeCallHook(t,e);let n=St(t);return this.activation.apply(n)})}getConfig(){let t={activation:gi(this.activation)},e=super.getConfig();return Object.assign(t,e),t}};bf.className=\"Activation\";Q.registerClass(bf);var wf=class extends Et{constructor(t){super(t),this.n=t.n,this.inputSpec=[{ndim:2}]}computeOutputShape(t){return[t[0],this.n,t[1]]}call(t,e){return B(()=>(t=St(t),iR(t,this.n)))}getConfig(){let t={n:this.n},e=super.getConfig();return Object.assign(t,e),t}};wf.className=\"RepeatVector\";Q.registerClass(wf);var If=class extends Et{constructor(t){super(t),this.targetShape=t.targetShape;for(let e=0;e{this.invokeCallHook(t,e);let n=St(t),o=n.shape,s=o.slice(0,1).concat(this.fixUnknownDimension(o.slice(1),this.targetShape));return R(n,s)})}getConfig(){let t={targetShape:this.targetShape},e=super.getConfig();return Object.assign(t,e),t}};If.className=\"Reshape\";Q.registerClass(If);var Cf=class extends Et{constructor(t){if(super(t),t.dims==null)throw new Error(\"Required configuration field `dims` is missing during Permute constructor call.\");if(!Array.isArray(t.dims))throw new Error(`Permute constructor requires \\`dims\\` to be an Array, but received ${t.dims} instead.`);let e=gn(1,t.dims.length+1);if(!y.arraysEqual(t.dims.slice().sort(),e))throw new Error(\"Invalid permutation `dims`: \"+JSON.stringify(t.dims)+\" `dims` must contain consecutive integers starting from 1.\");this.dims=t.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new Ce({ndim:this.dims.length+1})]}computeOutputShape(t){t=Gt(t);let e=t.slice();return this.dims.forEach((n,o)=>{e[o+1]=t[n]}),e}call(t,e){return Vt(St(t),this.dimsIncludingBatch)}getConfig(){let t={dims:this.dims},e=super.getConfig();return Object.assign(t,e),t}};Cf.className=\"Permute\";Q.registerClass(Cf);var vf=class extends Et{constructor(t){super(t==null?{}:t),this.supportsMasking=!0,t!=null?this.maskValue=t.maskValue==null?0:t.maskValue:this.maskValue=0}computeOutputShape(t){return t}getConfig(){let t=super.getConfig(),e={maskValue:this.maskValue};return Object.assign(e,t),e}computeMask(t,e){let n=St(t);return cc(ci(n,this.maskValue),-1)}call(t,e){return B(()=>{this.invokeCallHook(t,e);let n=St(t),i=cc(ci(n,this.maskValue),-1,!0);return $(n,J(i,n.dtype))})}};vf.className=\"Masking\";Q.registerClass(vf);var Sf=class extends Et{constructor(t){if(super(t),this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER=\"randomUniform\",t.batchInputShape==null&&t.inputShape==null){let e=null;t.batchSize!=null&&(e=t.batchSize),t.inputLength==null?this.batchInputShape=[e,null]:this.batchInputShape=[e].concat(ue(t.inputLength))}this.inputDim=t.inputDim,tr(this.inputDim,\"inputDim\"),this.outputDim=t.outputDim,tr(this.outputDim,\"outputDim\"),this.embeddingsInitializer=xe(t.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=ve(t.embeddingsRegularizer),this.activityRegularizer=ve(t.activityRegularizer),this.embeddingsConstraint=Ge(t.embeddingsConstraint),this.maskZero=t.maskZero,this.supportsMasking=t.maskZero,this.inputLength=t.inputLength}build(t){this.embeddings=this.addWeight(\"embeddings\",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(t){}computeMask(t,e){return B(()=>this.maskZero?(t=St(t),ci(t,vt(t))):null)}computeOutputShape(t){if(t=Gt(t),this.inputLength==null)return[...t,this.outputDim];let e=ue(this.inputLength);if(e.length!==t.length-1)throw new z(`\"inputLength\" is ${this.inputLength}, but received input shape has shape ${t}`);{let n=0;for(let o=0;o{this.invokeCallHook(t,e);let n=St(t);n.dtype!==\"int32\"&&(n=rn(n,\"int32\"));let o=Gy(this.embeddings.read(),R(n,[n.size]));return R(o,Gt(this.computeOutputShape(n.shape)))})}getConfig(){let t={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:Te(this.embeddingsInitializer),embeddingsRegularizer:fe(this.embeddingsRegularizer),activityRegularizer:fe(this.activityRegularizer),embeddingsConstraint:Ve(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},e=super.getConfig();return Object.assign(t,e),t}};Sf.className=\"Embedding\";Q.registerClass(Sf);var Al=class extends Et{constructor(t){super(t||{}),this.supportsMasking=!0}mergeFunction(t){throw new _t}computeElementwiseOpOutputShape(t,e){if(t==null||e==null)return null;if(t.length1)throw new z(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(t)}.`);let n=t[0]==null?null:t[0].slice(1);for(let s=1;ss.length);t.indexOf(null)===-1&&Eo(o).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(t,e){return B(()=>{if(t=t,this.reshapeRequired){let n=[],o=t.map(s=>s.rank);if(o.indexOf(null)===-1){let s=di(o);for(let i of t){let a=i.rank;for(let u=0;u1){let c=gn(1,l).concat([0]);n.push(Vt(u,c)),s=!0}else n.push(u)}let i=this.mergeFunction(n),a=i.rank;if(s){if(a==null){let u=i.shape,l=u.length,c=u[l-1],p=[c].concat(u.slice(0,u.length-1));i=R(Vt(R(i,[-1,c]),[1,0]),p)}else if(a>1){let u=[a-1].concat(gn(0,a-1));i=Vt(i,u)}}return i}}else return this.mergeFunction(t)})}computeOutputShape(t){t=t;let e;t[0]==null?e=null:e=t[0].slice(1);for(let o=1;o{if(e==null)return null;if(!Array.isArray(e))throw new z(\"`mask` should be an Array\");if(!Array.isArray(t))throw new z(\"`inputs` should be an Array\");if(e.length!==t.length)throw new z(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${t.length} vs ${e.length})`);if(e.every(o=>o==null))return null;e=e.map(o=>o==null?o:je(o,0));let n=e[0];for(let o=1;o{let e=t[0].clone();for(let n=1;n{let e=t[0].clone();for(let n=1;n{let e=t[0].clone();for(let n=1;n{let e=t[0];for(let n=1;n{let e=t[0];for(let n=1;n1)throw new z(\"A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: \"+JSON.stringify(t))}mergeFunction(t){return B(()=>_m(t,this.axis))}computeOutputShape(t){if(!(Array.isArray(t)&&Array.isArray(t[0])))throw new z(\"A `Concatenate` layer should be called on a list of inputs.\");let e=t,n=e[0].slice(),o=this.axis<0?n.length+this.axis:this.axis;for(let s of e.slice(1)){if(n[o]==null||s[o]==null){n[o]=null;break}n[o]+=s[o]}return n}computeMask(t,e){if(e==null)return null;if(!Array.isArray(e))throw new z(\"`mask` should be an array for Concatenate\");if(!Array.isArray(t))throw new z(\"`inputs` should be an array for Concatenate\");if(e.length!==t.length)throw new z(`Mismatch in the length of mask (${e.length}) and the legnth of inputs (${t.length})`);return B(()=>{let n=!0;if(e.forEach(i=>{if(i!=null){n=!1;return}}),n)return null;let o=[];for(let i=0;i3||t.shape.length>3)throw new _t(\"batchDot is not implemented for tensors of 4D or higher rank yet\");if(y.assert(r.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${r.shape.length}`),y.assert(r.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof e==\"number\"&&(e=[e,e]),r.dtype===\"complex64\"||t.dtype===\"complex64\")throw new _t(\"batchDot is not implemented for complex64-type Tensors yet.\");let n=r.shape.length,o=t.shape.length;e==null&&(e=[n-1,o-2]);let s=e;return B(()=>{let i;if(n>o){i=n-o;let u=[];for(let l=0;ln){i=o-n;let u=[];for(let l=0;l0){let u;n>o?u=n+o-3:u=n-1;let l=[];for(let c=u;c\"A `Dot` layer should be called on a list of exactly 2 inputs.\");let e=t[0],n=t[1];if(e.length>3||n.length>3)throw new _t(\"Dot layer does not support tensors of 4D or higher rank yet.\");let o=this.interpretAxes(e,n);if(e[o[0]]!==n[o[1]])throw new z(`Dimension incompatibility: ${e[o[0]]} !== ${n[o[1]]}`)}mergeFunction(t){if(t.length!==2)throw new z(`A \\`Dot\\` layer must be called on exactly 2 inputs, but received ${t.length} input(s).`);let e=t[0],n=t[1],o;return Array.isArray(this.axes)?o=this.axes.map((s,i)=>Lh(s,t[i].shape.length)):o=[Lh(this.axes,e.shape.length),Lh(this.axes,n.shape.length)],this.normalize&&(e=Eh(e,o[0]),n=Eh(n,o[1])),SJ(e,n,o)}interpretAxes(t,e){let n;return Array.isArray(this.axes)?n=this.axes:n=[Lh(this.axes,t.length),Lh(this.axes,e.length)],n}computeOutputShape(t){y.assert(Array.isArray(t)&&t.length===2&&Array.isArray(t[0])&&Array.isArray(t[1]),()=>\"A `Dot` layer should be called on a list of exactly 2 inputs.\");let e=t[0].slice(),n=t[1].slice();if(e.length>3||n.length>3)throw new _t(\"Dot layer does not support tensors of 4D or higher rank yet.\");let o=this.interpretAxes(e,n);e.splice(o[0],1),n.splice(o[1],1),n.splice(0,1);let s=e.concat(n);return s.length===1&&s.push(1),s}computeMask(t,e){return null}getConfig(){let t={axes:this.axes,normalize:this.normalize},e=super.getConfig();return Object.assign(t,e),t}};Df.className=\"Dot\";Q.registerClass(Df);var $f=class extends Et{constructor(t){super(t),this.supportsMasking=!0,this.stddev=t.stddev}computeOutputShape(t){return t}getConfig(){let t=super.getConfig(),e={stddev:this.stddev};return Object.assign(e,t),e}call(t,e){return B(()=>{this.invokeCallHook(t,e);let n=St(t);return Ou(()=>K(Em(n.shape,0,this.stddev),n),()=>n,e.training||!1)})}};$f.className=\"GaussianNoise\";Q.registerClass($f);var Rf=class extends Et{constructor(t){super(t),this.supportsMasking=!0,this.rate=t.rate}computeOutputShape(t){return t}getConfig(){let t=super.getConfig(),e={rate:this.rate};return Object.assign(e,t),e}call(t,e){return B(()=>{this.invokeCallHook(t,e);let n=St(t);return this.rate>0&&this.rate<1?Ou(()=>{let s=Math.sqrt(this.rate/(1-this.rate));return $(n,Em(n.shape,1,s))},()=>n,e.training||!1):n})}};Rf.className=\"GaussianDropout\";Q.registerClass(Rf);var Ff=class extends Et{constructor(t){super(t),this.supportsMasking=!0,this.rate=t.rate,this.noiseShape=t.noiseShape}_getNoiseShape(t){return this.noiseShape||St(t).shape}computeOutputShape(t){return t}getConfig(){let t=super.getConfig(),e={rate:this.rate};return Object.assign(e,t),e}call(t,e){return B(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(t);return Ou(()=>{let s=St(t),u=-1.6732632423543772*1.0507009873554805,l=cn(Gn(n),this.rate);l=rn(l,\"float32\");let c=((1-this.rate)*(1+this.rate*u**2))**-.5,p=-c*u*this.rate,m=K($(s,l),$(K(l,-1),u));return K($(m,c),p)},()=>St(t),e.training||!1)}return t})}};Ff.className=\"AlphaDropout\";Q.registerClass(Ff);function zh(r,t,e,n,o,s=.001){let i;if(r.rank===2)i=Cx(r,t,e,n,o,s);else if(r.rank===3)i=vx(r,t,e,n,o,s);else if(r.rank===4)i=Sx(r,t,e,n,o,s);else throw new _t(`batchNormalization is not implemented for array of rank ${r.rank} yet`);return i}function NJ(r,t,e,n,o=.001){return B(()=>{let s=dc(r,n),i=s.mean,a=s.variance;return[zh(r,i,a,e,t,o),i,a]})}function kJ(r,t,e,n,o=.001){return B(()=>{let s=dc(r,n),i=s.mean,a=s.variance,u=[];for(let d of gn(0,r.rank))n.indexOf(d)!==-1?u.push(1):u.push(r.shape[d]);let l=R(i,u),c=R(a,u),p=t==null?null:R(t,u),m=e==null?null:R(e,u);return[zh(r,l,c,m,p,o),i,a]})}function TJ(r,t,e,n,o=.001){return y.arraysEqual(n.slice().sort(),gn(0,r.rank-1))?NJ(r,t,e,n,o):kJ(r,t,e,n,o)}var Of=class extends Et{constructor(t){t==null&&(t={}),super(t),this.supportsMasking=!0,this.axis=t.axis==null?-1:t.axis,this.momentum=t.momentum==null?.99:t.momentum,this.epsilon=t.epsilon==null?.001:t.epsilon,this.center=t.center==null?!0:t.center,this.scale=t.scale==null?!0:t.scale,this.betaInitializer=xe(t.betaInitializer||\"zeros\"),this.gammaInitializer=xe(t.gammaInitializer||\"ones\"),this.movingMeanInitializer=xe(t.movingMeanInitializer||\"zeros\"),this.movingVarianceInitializer=xe(t.movingVarianceInitializer||\"ones\"),this.betaConstraint=Ge(t.betaConstraint),this.gammaConstraint=Ge(t.gammaConstraint),this.betaRegularizer=ve(t.betaRegularizer),this.gammaRegularizer=ve(t.gammaRegularizer)}build(t){t=Gt(t);let e=this.axis>=0?this.axis:this.axis+t.length,n=t[e];if(n==null)throw new z(`Axis ${e} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(t)}.`);this.inputSpec=[new Ce({ndim:t.length,axes:{[e]:n}})];let o=[n];this.scale&&(this.gamma=this.addWeight(\"gamma\",o,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight(\"beta\",o,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight(\"moving_mean\",o,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight(\"moving_variance\",o,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(t,e){return B(()=>{let n=e.training==null?!1:e.training,o=St(t),s=o.shape,i=s.length,a=gn(0,i),u=this.axis>=0?this.axis:this.axis+i;a.splice(u,1);let l=To(1,i);l[u]=s[u];let c=a.slice();c.sort();let p=!y.arraysEqual(c,gn(0,i).slice(0,i-1)),m=()=>{if(p){let b=R(this.movingMean.read(),l),w=R(this.movingVariance.read(),l),I=this.center?R(this.beta.read(),l):null,N=this.scale?R(this.gamma.read(),l):null;return zh(o,b,w,I,N,this.epsilon)}else return zh(o,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return m();let[f,d,h]=TJ(o,this.gamma.read(),this.beta.read(),a,this.epsilon),g=(b,w,I)=>{B(()=>{let N=1-I,E=b.read(),A=$(at(E,w),N);b.write(at(E,A))})};return(()=>{g(this.movingMean,d,this.momentum),g(this.movingVariance,h,this.momentum)})(),f})}getConfig(){let t={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Te(this.betaInitializer),gammaInitializer:Te(this.gammaInitializer),movingMeanInitializer:Te(this.movingMeanInitializer),movingVarianceInitializer:Te(this.movingVarianceInitializer),betaRegularizer:fe(this.betaRegularizer),gammaRegularizer:fe(this.gammaRegularizer),betaConstraint:Ve(this.betaConstraint),gammaConstraint:Ve(this.gammaConstraint)},e=super.getConfig();return Object.assign(t,e),t}};Of.className=\"BatchNormalization\";Q.registerClass(Of);var Mf=class extends Et{constructor(t){if(t==null&&(t={}),super(t),this.axis=t.axis==null?-1:t.axis,typeof this.axis==\"number\"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let e of this.axis)if(!Number.isInteger(e))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=t.epsilon==null?.001:t.epsilon,this.center=t.center==null?!0:t.center,this.scale=t.scale==null?!0:t.scale,this.betaInitializer=xe(t.betaInitializer||\"zeros\"),this.gammaInitializer=xe(t.gammaInitializer||\"ones\"),this.betaRegularizer=ve(t.betaRegularizer),this.gammaRegularizer=ve(t.gammaRegularizer),this.supportsMasking=!0}build(t){t=Gt(t);let e=t.length;typeof this.axis==\"number\"&&(this.axis=[this.axis]);for(let s=0;s=e)throw new Error(`Invalid axis: ${s}`);if(this.axis.length!==Eo(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(s=>t[s]),o=!0;this.scale?this.gamma=this.addWeight(\"gamma\",n,\"float32\",this.gammaInitializer,this.gammaRegularizer,o):this.gamma=null,this.center?this.beta=this.addWeight(\"beta\",n,\"float32\",this.betaInitializer,this.betaRegularizer,o):this.beta=null,this.built=!0}call(t,e){let n=St(t),o=n.shape,s=o.length;return B(()=>{let{mean:a,variance:u}=dc(n,this.axis,!0),l=To(1,s);for(let h of this.axis)l[h]=o[h];let c=h=>h!=null&&h.shape.length!==s?R(h,l):h,p=this.scale?c(this.gamma.read()):null,m=this.center?c(this.beta.read()):null,f=[],d=[];for(let h=0;h{if(r.rank!==4)throw new z(`temporalPadding expects input tensor to be 4-D, but received a ${r.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new z(\"spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.\");if(e==null&&(e=xn()),e!==\"channelsLast\"&&e!==\"channelsFirst\")throw new z(`Unknown data format: ${e}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let n;return e===\"channelsFirst\"?n=[[0,0],[0,0],t[0],t[1]]:n=[[0,0],t[0],t[1],[0,0]],mn(r,n)})}var Pf=class extends Et{constructor(t){if(t==null&&(t={}),super(t),this.dataFormat=t.dataFormat==null?xn():t.dataFormat,t.padding==null)this.padding=[[1,1],[1,1]];else if(typeof t.padding==\"number\")this.padding=[[t.padding,t.padding],[t.padding,t.padding]];else{if(t.padding=t.padding,t.padding.length!==2)throw new z(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${t.padding.length} array.`);let e,n;if(typeof t.padding[0]==\"number\")e=[t.padding[0],t.padding[0]],n=[t.padding[1],t.padding[1]];else{if(t.padding=t.padding,t.padding[0].length!==2)throw new z(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${t.padding[0].length} array.`);if(e=t.padding[0],t.padding[1].length!==2)throw new z(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${t.padding[1].length} array.`);n=t.padding[1]}this.padding=[e,n]}this.inputSpec=[new Ce({ndim:4})]}computeOutputShape(t){t=Gt(t);let e,n;return this.dataFormat===\"channelsFirst\"?(t[2]!=null&&t[2]>=0?e=t[2]+this.padding[0][0]+this.padding[0][1]:e=null,t[3]!=null&&t[3]>=0?n=t[3]+this.padding[1][0]+this.padding[1][1]:n=null,[t[0],t[1],e,n]):(t[1]!=null&&t[1]>=0?e=t[1]+this.padding[0][0]+this.padding[0][1]:e=null,t[2]!=null&&t[2]>=0?n=t[2]+this.padding[1][0]+this.padding[1][1]:n=null,[t[0],e,n,t[3]])}call(t,e){return B(()=>_J(St(t),this.padding,this.dataFormat))}getConfig(){let t={padding:this.padding,dataFormat:this.dataFormat},e=super.getConfig();return Object.assign(t,e),t}};Pf.className=\"ZeroPadding2D\";Q.registerClass(Pf);function Mb(r,t,e,n,o,s){return B(()=>{Me(o),LN(s),hn(n),e==null&&(e=[1,1]),n==null&&(n=\"valid\"),o==null&&(o=xn()),s==null&&(s=\"max\"),r=Ph(r,o);let i,a=n===\"same\"?\"same\":\"valid\";return s===\"max\"?i=ku(r,t,e,a):i=xu(r,t,e,a),o===\"channelsFirst\"&&(i=Vt(i,[0,3,1,2])),i})}function YR(r,t,e,n,o,s){return B(()=>{Me(o),LN(s),hn(n),e==null&&(e=[1,1,1]),n==null&&(n=\"valid\"),o==null&&(o=xn()),s==null&&(s=\"max\"),r=ek(r,o);let i,a=n===\"same\"?\"same\":\"valid\";return s===\"max\"?i=Xx(r,t,e,a):i=Ix(r,t,e,a),o===\"channelsFirst\"&&(i=Vt(i,[0,4,1,2,3])),i})}var Db=class extends Et{constructor(t){if(t.poolSize==null&&(t.poolSize=2),super(t),typeof t.poolSize==\"number\")this.poolSize=[t.poolSize];else if(Array.isArray(t.poolSize)&&t.poolSize.length===1&&typeof t.poolSize[0]==\"number\")this.poolSize=t.poolSize;else throw new z(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(t.poolSize)}`);if(tr(this.poolSize,\"poolSize\"),t.strides==null)this.strides=this.poolSize;else if(typeof t.strides==\"number\")this.strides=[t.strides];else if(Array.isArray(t.strides)&&t.strides.length===1&&typeof t.strides[0]==\"number\")this.strides=t.strides;else throw new z(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(t.strides)}`);tr(this.strides,\"strides\"),this.padding=t.padding==null?\"valid\":t.padding,hn(this.padding),this.inputSpec=[new Ce({ndim:3})]}computeOutputShape(t){t=Gt(t);let e=Tn(t[1],this.poolSize[0],this.padding,this.strides[0]);return[t[0],e,t[2]]}call(t,e){return B(()=>{this.invokeCallHook(t,e),t=Sl(St(t),2);let n=this.poolingFunction(St(t),[this.poolSize[0],1],[this.strides[0],1],this.padding,\"channelsLast\");return Wn(n,[2])})}getConfig(){let t={poolSize:this.poolSize,padding:this.padding,strides:this.strides},e=super.getConfig();return Object.assign(t,e),t}},Lf=class extends Db{constructor(t){super(t)}poolingFunction(t,e,n,o,s){return Me(s),hn(o),Mb(t,e,n,o,s,\"max\")}};Lf.className=\"MaxPooling1D\";Q.registerClass(Lf);var zf=class extends Db{constructor(t){super(t)}poolingFunction(t,e,n,o,s){return Me(s),hn(o),Mb(t,e,n,o,s,\"avg\")}};zf.className=\"AveragePooling1D\";Q.registerClass(zf);var $b=class extends Et{constructor(t){if(t.poolSize==null&&(t.poolSize=[2,2]),super(t),this.poolSize=Array.isArray(t.poolSize)?t.poolSize:[t.poolSize,t.poolSize],t.strides==null)this.strides=this.poolSize;else if(Array.isArray(t.strides)){if(t.strides.length!==2)throw new z(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${t.strides.length}.`);this.strides=t.strides}else this.strides=[t.strides,t.strides];tr(this.poolSize,\"poolSize\"),tr(this.strides,\"strides\"),this.padding=t.padding==null?\"valid\":t.padding,this.dataFormat=t.dataFormat==null?\"channelsLast\":t.dataFormat,Me(this.dataFormat),hn(this.padding),this.inputSpec=[new Ce({ndim:4})]}computeOutputShape(t){t=Gt(t);let e=this.dataFormat===\"channelsFirst\"?t[2]:t[1],n=this.dataFormat===\"channelsFirst\"?t[3]:t[2];return e=Tn(e,this.poolSize[0],this.padding,this.strides[0]),n=Tn(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat===\"channelsFirst\"?[t[0],t[1],e,n]:[t[0],e,n,t[3]]}call(t,e){return B(()=>(this.invokeCallHook(t,e),this.poolingFunction(St(t),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let t={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},e=super.getConfig();return Object.assign(t,e),t}},Bf=class extends $b{constructor(t){super(t)}poolingFunction(t,e,n,o,s){return Me(s),hn(o),Mb(t,e,n,o,s,\"max\")}};Bf.className=\"MaxPooling2D\";Q.registerClass(Bf);var Vf=class extends $b{constructor(t){super(t)}poolingFunction(t,e,n,o,s){return Me(s),hn(o),Mb(t,e,n,o,s,\"avg\")}};Vf.className=\"AveragePooling2D\";Q.registerClass(Vf);var Rb=class extends Et{constructor(t){if(t.poolSize==null&&(t.poolSize=[2,2,2]),super(t),this.poolSize=Array.isArray(t.poolSize)?t.poolSize:[t.poolSize,t.poolSize,t.poolSize],t.strides==null)this.strides=this.poolSize;else if(Array.isArray(t.strides)){if(t.strides.length!==3)throw new z(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${t.strides.length}.`);this.strides=t.strides}else this.strides=[t.strides,t.strides,t.strides];tr(this.poolSize,\"poolSize\"),tr(this.strides,\"strides\"),this.padding=t.padding==null?\"valid\":t.padding,this.dataFormat=t.dataFormat==null?\"channelsLast\":t.dataFormat,Me(this.dataFormat),hn(this.padding),this.inputSpec=[new Ce({ndim:5})]}computeOutputShape(t){t=Gt(t);let e=this.dataFormat===\"channelsFirst\"?t[2]:t[1],n=this.dataFormat===\"channelsFirst\"?t[3]:t[2],o=this.dataFormat===\"channelsFirst\"?t[4]:t[3];return e=Tn(e,this.poolSize[0],this.padding,this.strides[0]),n=Tn(n,this.poolSize[1],this.padding,this.strides[1]),o=Tn(o,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat===\"channelsFirst\"?[t[0],t[1],e,n,o]:[t[0],e,n,o,t[4]]}call(t,e){return B(()=>(this.invokeCallHook(t,e),this.poolingFunction(St(t),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let t={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},e=super.getConfig();return Object.assign(t,e),t}},Gf=class extends Rb{constructor(t){super(t)}poolingFunction(t,e,n,o,s){return Me(s),hn(o),YR(t,e,n,o,s,\"max\")}};Gf.className=\"MaxPooling3D\";Q.registerClass(Gf);var Wf=class extends Rb{constructor(t){super(t)}poolingFunction(t,e,n,o,s){return Me(s),hn(o),YR(t,e,n,o,s,\"avg\")}};Wf.className=\"AveragePooling3D\";Q.registerClass(Wf);var Fb=class extends Et{constructor(t){super(t),this.inputSpec=[new Ce({ndim:3})]}computeOutputShape(t){return[t[0],t[2]]}call(t,e){throw new _t}},Uf=class extends Fb{constructor(t){super(t||{})}call(t,e){return B(()=>{let n=St(t);return Ne(n,1)})}};Uf.className=\"GlobalAveragePooling1D\";Q.registerClass(Uf);var Hf=class extends Fb{constructor(t){super(t||{})}call(t,e){return B(()=>{let n=St(t);return Sr(n,1)})}};Hf.className=\"GlobalMaxPooling1D\";Q.registerClass(Hf);var Ob=class extends Et{constructor(t){super(t),this.dataFormat=t.dataFormat==null?\"channelsLast\":t.dataFormat,Me(this.dataFormat),this.inputSpec=[new Ce({ndim:4})]}computeOutputShape(t){return t=t,this.dataFormat===\"channelsLast\"?[t[0],t[3]]:[t[0],t[1]]}call(t,e){throw new _t}getConfig(){let t={dataFormat:this.dataFormat},e=super.getConfig();return Object.assign(t,e),t}},qf=class extends Ob{call(t,e){return B(()=>{let n=St(t);return this.dataFormat===\"channelsLast\"?Ne(n,[1,2]):Ne(n,[2,3])})}};qf.className=\"GlobalAveragePooling2D\";Q.registerClass(qf);var Kf=class extends Ob{call(t,e){return B(()=>{let n=St(t);return this.dataFormat===\"channelsLast\"?Sr(n,[1,2]):Sr(n,[2,3])})}};Kf.className=\"GlobalMaxPooling2D\";Q.registerClass(Kf);var Pb=class extends Et{constructor(t){super(t),this.layer=t.layer}build(t){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(t){this.layer!=null&&(this.layer.trainable=t)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(t){this.layer.setWeights(t)}getConfig(){let t={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},e=super.getConfig();return Object.assign(t,e),t}setFastWeightInitDuringBuild(t){super.setFastWeightInitDuringBuild(t),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(t)}static fromConfig(t,e,n={}){let o=e.layer,s=wn(o,n);delete e.layer;let i={layer:s};return Object.assign(i,e),new t(i)}},jf=class extends Pb{constructor(t){super(t),this.supportsMasking=!0}build(t){if(t=Gt(t),t.length<3)throw new z(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(t)}`);this.inputSpec=[{shape:t}];let e=[t[0]].concat(t.slice(2));this.layer.built||(this.layer.build(e),this.layer.built=!0),super.build(t)}computeOutputShape(t){t=Gt(t);let e=[t[0]].concat(t.slice(2)),n=this.layer.computeOutputShape(e),o=t[1];return[n[0],o].concat(n.slice(1))}call(t,e){return B(()=>(t=St(t),nk((i,a)=>[St(this.layer.call(i,e)),[]],t,[],!1,null,null,!1,!0)[1]))}};jf.className=\"TimeDistributed\";Q.registerClass(jf);function EJ(r){da(eR,\"BidirectionalMergeMode\",r)}var AJ=\"concat\",Xf=class extends Pb{constructor(t){super(t);let e=t.layer.getConfig(),n={};n.className=t.layer.getClassName(),n.config=e,this.forwardLayer=wn(n),e.goBackwards=e.goBackwards!==!0;let o={};if(o.className=t.layer.getClassName(),o.config=e,this.backwardLayer=wn(o),this.forwardLayer.name=\"forward_\"+this.forwardLayer.name,this.backwardLayer.name=\"backward_\"+this.backwardLayer.name,this.mergeMode=t.mergeMode===void 0?AJ:t.mergeMode,EJ(this.mergeMode),t.weights)throw new _t(\"weights support is not implemented for Bidirectional layer yet.\");this._stateful=t.layer.stateful,this.returnSequences=t.layer.returnSequences,this.returnState=t.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=t.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(t){this._trainable=t,this.forwardLayer!=null&&(this.forwardLayer.trainable=t),this.backwardLayer!=null&&(this.backwardLayer.trainable=t)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(t){let e=t.length,n=Math.floor(e/2);this.forwardLayer.setWeights(t.slice(0,n)),this.backwardLayer.setWeights(t.slice(n))}computeOutputShape(t){let e=this.forwardLayer.computeOutputShape(t);Array.isArray(e)&&Array.isArray(e[0])||(e=[e]),e=e;let n,o,s;return this.returnState&&(s=e.slice(1)),n=e[0],n=n,this.mergeMode===\"concat\"?(n[n.length-1]*=2,o=[n]):this.mergeMode==null?o=[n,n.slice()]:o=[n],this.returnState?this.mergeMode==null?o.concat(s).concat(s.slice()):[n].concat(s).concat(s.slice()):kr(o)}apply(t,e){let n=e==null?null:e.initialState,o=e==null?null:e.constants;e==null&&(e={});let s=rk(t,n,o,this.numConstants);if(t=s.inputs,n=s.initialState,o=s.constants,Array.isArray(t)&&(n=t.slice(1),t=t[0]),(n==null||n.length===0)&&o==null)return super.apply(t,e);let i=[],a=[];if(n!=null){let l=n.length;if(l%2>0)throw new z(\"When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.\");e.initialState=n,i.push(...n);let c=n.map(p=>new Ce({shape:p.shape}));this.forwardLayer.stateSpec=c.slice(0,l/2),this.backwardLayer.stateSpec=c.slice(l/2),a.push(...c)}if(o!=null)throw new _t(\"Support for constants in Bidirectional layers is not implemented yet.\");let u=i[0]instanceof nn;for(let l of i)if(l instanceof nn!==u)throw new z(\"The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors\");if(u){let l=[t].concat(i),c=this.inputSpec.concat(a),p=this.inputSpec;this.inputSpec=c;let m=super.apply(l,e);return this.inputSpec=p,m}else return super.apply(t,e)}call(t,e){return B(()=>{let n=e.initialState,o,s;if(n==null)o=this.forwardLayer.call(t,e),s=this.backwardLayer.call(t,e);else{let u=n.slice(0,n.length/2),l=n.slice(n.length/2);o=this.forwardLayer.call(t,Object.assign(e,{initialState:u})),s=this.backwardLayer.call(t,Object.assign(e,{initialState:l}))}let i;this.returnState&&(Array.isArray(o)&&(i=o.slice(1).concat(s.slice(1))),o=o[0],s=s[0]),this.returnSequences&&(s=dr(s,1));let a;return this.mergeMode===\"concat\"?a=_m([o,s]):this.mergeMode===\"sum\"?a=K(o,s):this.mergeMode===\"ave\"?a=$(.5,K(o,s)):this.mergeMode===\"mul\"?a=$(o,s):this.mergeMode==null&&(a=[o,s]),this.returnState?this.mergeMode==null?a.concat(i):[a].concat(i):a})}resetStates(t){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(t){fi(this.forwardLayer.name,()=>{this.forwardLayer.build(t)}),fi(this.backwardLayer.name,()=>{this.backwardLayer.build(t)}),this.built=!0}computeMask(t,e){Array.isArray(e)&&(e=e[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[e,e]:n=e:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let s=this.forwardLayer.states.map(i=>null);return Array.isArray(n)?n.concat(s).concat(s):[n].concat(s).concat(s)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(t){super.setFastWeightInitDuringBuild(t),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(t),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(t)}getConfig(){let t={mergeMode:this.mergeMode},e=super.getConfig();return Object.assign(t,e),t}static fromConfig(t,e){let n=wn(e.layer);if(delete e.layer,e.numConstants!=null)throw new _t(\"Deserialization of a Bidirectional layer with numConstants present is not supported yet.\");let o=e;return o.layer=n,new t(o)}};Xf.className=\"Bidirectional\";Q.registerClass(Xf);var Yf=class extends Et{constructor(t){super(t),this.scale=t.scale,t.offset?this.offset=t.offset:this.offset=0}getConfig(){let t={scale:this.scale,offset:this.offset},e=super.getConfig();return Object.assign(t,e),t}call(t,e){return B(()=>(t=St(t),t.dtype!==\"float32\"&&(t=rn(t,\"float32\")),K($(t,this.scale),this.offset)))}};Yf.className=\"Rescaling\";Q.registerClass(Yf);var{resizeBilinear:DJ,cropAndResize:$J}=fn,Zf=class extends Et{constructor(t){super(t),this.height=t.height,this.width=t.width}centerCrop(t,e,n,o,s,i,a,u){return B(()=>{let l,c=!1,p=e/i,m=n/a,f=(o+e)/i,d=(s+n)/a,h=[p,m,f,d],g=[];t.rank===3?(c=!0,l=Fe([t])):l=t;for(let N=0;N{let s=DJ(t,[e,n]);return rn(s,o)})}call(t,e){return B(()=>{let n=St(t),o=n.dtype,s=n.shape,i=s[s.length-3],a=s[s.length-2],u=0;i!==this.height&&(u=Math.floor((i-this.height)/2));let l=0;return a!==this.width&&(l=Math.floor((a-this.width)/2),l===0&&(l=1)),u>=0&&l>=0?this.centerCrop(n,u,l,this.height,this.width,i,a,o):this.upsize(t,this.height,this.width,o)})}getConfig(){let t={height:this.height,width:this.width},e=super.getConfig();return Object.assign(t,e),t}computeOutputShape(t){t=Gt(t);let e=t.length-3,n=t.length-2;return t[e]=this.height,t[n]=this.width,t}};Zf.className=\"CenterCrop\";Q.registerClass(Zf);function ZR(r,t,e,n){let o=St(r);if(o.dtype!==\"int32\"&&(o=rn(o,\"int32\")),t===\"int\")return o;let s=o.shape;if(o.rank===0&&(o=je(o,-1)),t===\"oneHot\"&&o.shape[o.shape.length-1]!==1&&(o=je(o,-1)),o.rank>2)throw new z(`When outputMode is not int, maximum output rank is 2 Received outputMode ${t} and input shape ${s} which would result in output rank ${o.rank}.`);let i=[\"multiHot\",\"oneHot\"].includes(t),a=o,u;if(typeof n!=\"undefined\"&&t===\"count\"?u=mh(a,n,e,i):u=mh(a,[],e,i),t!==\"tfIdf\")return u;if(n)return $(u,n);throw new z(\"When outputMode is 'tfIdf', weights must be provided.\")}var Jf=class extends Et{constructor(t){super(t),this.numTokens=t.numTokens,t.outputMode?this.outputMode=t.outputMode:this.outputMode=\"multiHot\"}getConfig(){let t={numTokens:this.numTokens,outputMode:this.outputMode},e=super.getConfig();return Object.assign(t,e),t}computeOutputShape(t){return t=Gt(t),t==null?[this.numTokens]:this.outputMode===\"oneHot\"&&t[t.length-1]!==1?(t.push(this.numTokens),t):(t[t.length-1]=this.numTokens,t)}call(t,e){return B(()=>{t=St(t),t.dtype!==\"int32\"&&(t=rn(t,\"int32\"));let n;if(typeof e.countWeights!=\"undefined\"){if(this.outputMode!==\"count\")throw new z(`countWeights is not used when outputMode !== count.\n Received countWeights=${e.countWeights}`);n=St(e.countWeights)}let o=Sr(t),s=gl(t),i=Re(this.numTokens,o).bufferSync().get(0),a=cn(s,0).bufferSync().get(0);if(!(i&&a))throw new z(`Input values must be between 0 < values <= numTokens with numTokens=${this.numTokens}`);return ZR(t,this.outputMode,this.numTokens,n)})}};Jf.className=\"CategoryEncoding\";Q.registerClass(Jf);var FJ=[\"bilinear\",\"nearest\"],JR=new Set(FJ),Qf=class extends Et{constructor(t){if(super(t),this.height=t.height,this.width=t.width,t.interpolation)if(JR.has(t.interpolation))this.interpolation=t.interpolation;else throw new z(`Invalid interpolation parameter: ${t.interpolation} is not implemented`);else this.interpolation=\"bilinear\";this.cropToAspectRatio=!!t.cropToAspectRatio}computeOutputShape(t){t=Gt(t);let e=t[2];return[this.height,this.width,e]}getConfig(){let t={height:this.height,width:this.width,interpolation:this.interpolation,cropToAspectRatio:this.cropToAspectRatio},e=super.getConfig();return Object.assign(t,e),t}call(t,e){return B(()=>{let n=[this.height,this.width];if(this.interpolation===\"bilinear\")return fn.resizeBilinear(t,n,!this.cropToAspectRatio);if(this.interpolation===\"nearest\")return fn.resizeNearestNeighbor(t,n,!this.cropToAspectRatio);throw new Error(`Interpolation is ${this.interpolation} but only ${[...JR]} are supported`)})}};Qf.className=\"Resizing\";Q.registerClass(Qf);var Bh=class{constructor(t){this.seed=t}next(){if(this.seed!==void 0)return this.seed++}};Bh.className=\"RandomSeed\";var Vh=class extends Et{constructor(t){super(t),this.randomGenerator=new Bh(t.seed)}getConfig(){let t={seed:this.randomGenerator.seed},e=super.getConfig();return Object.assign(t,e),t}};Vh.className=\"BaseRandomLayer\";var OJ=[\"bilinear\",\"nearest\"],QR=new Set(OJ),td=class extends Vh{constructor(t){super(t);let{factor:e,interpolation:n=\"bilinear\"}=t;if(this.factor=e,Array.isArray(this.factor)&&this.factor.length===2)this.widthLower=this.factor[0],this.widthUpper=this.factor[1];else if(!Array.isArray(this.factor)&&this.factor>0)this.widthLower=-this.factor,this.widthUpper=this.factor;else throw new z(`Invalid factor: ${this.factor}. Must be positive number or tuple of 2 numbers`);if(this.widthLower<-1||this.widthUpper<-1)throw new z(`factor must have values larger than -1. Got: ${this.factor}`);if(this.widthUpper{let n=St(t);this.imgHeight=n.shape[n.shape.length-3];let o=n.shape[n.shape.length-2];this.widthFactor=Gn([1],1+this.widthLower,1+this.widthUpper,\"float32\",this.randomGenerator.next());let s=this.widthFactor.dataSync()[0]*o;s=Math.round(s);let i=[this.imgHeight,s];switch(this.interpolation){case\"bilinear\":return fn.resizeBilinear(t,i);case\"nearest\":return fn.resizeNearestNeighbor(t,i);default:throw new Error(`Interpolation is ${this.interpolation}\n but only ${[...QR]} are supported`)}})}};td.className=\"RandomWidth\";Q.registerClass(td);function MJ(r){return new hi(r)}function PJ(r){return new tf(r)}function LJ(r){return new Zm(r)}function zJ(r){return new Jm(r)}function BJ(r){return new Qm(r)}function VJ(r){return new rf(r)}function GJ(r){return new ef(r)}function WJ(r){return new lf(r)}function UJ(r){return new Uc(r)}function HJ(r){return new of(r)}function qJ(r){return new Hc(r)}function KJ(r){return new sf(r)}function jJ(r){return new af(r)}function XJ(r){return new uf(r)}function YJ(r){return new cf(r)}function ZJ(r){return new pf(r)}function JJ(r){return new bf(r)}function QJ(r){return new xf(r)}function t9(r){return new Yc(r)}function e9(r){return new gf(r)}function r9(r){return new yf(r)}function n9(r){return new wf(r)}function o9(r){return new If(r)}function s9(r){return new Cf(r)}function i9(r){return new Sf(r)}function a9(r){return new Nf(r)}function l9(r){return new Tf(r)}function u9(r){return new Af(r)}function c9(r){return new _f(r)}function p9(r){return new Ef(r)}function m9(r){return new kf(r)}function f9(r){return new Df(r)}function d9(r){return new Of(r)}function h9(r){return new Mf(r)}function g9(r){return new Pf(r)}function ok(r){return new zf(r)}function x9(r){return ok(r)}function y9(r){return ok(r)}function sk(r){return new Vf(r)}function b9(r){return sk(r)}function w9(r){return sk(r)}function ik(r){return new Wf(r)}function I9(r){return ik(r)}function C9(r){return ik(r)}function v9(r){return new Uf(r)}function S9(r){return new qf(r)}function tF(r){return new Hf(r)}function eF(r){return new Kf(r)}function rF(r){return new Lf(r)}function nF(r){return new Bf(r)}function N9(r){return new Gf(r)}function k9(r){return new ff(r)}function T9(r){return new Kc(r)}function _9(r){return new df(r)}function E9(r){return new _l(r)}function A9(r){return new mf(r)}function D9(r){return new qc(r)}function $9(r){return new hf(r)}function R9(r){return new Xc(r)}function F9(r){return new po(r)}function O9(r){return new jc(r)}function M9(r){return new Xf(r)}function P9(r){return new jf(r)}var L9=tF,z9=eF,B9=rF,V9=nF;function G9(r){return new $f(r)}function W9(r){return new Rf(r)}function U9(r){return new Ff(r)}function H9(r){return new vf(r)}function q9(r){return new Yf(r)}function K9(r){return new Zf(r)}function j9(r){return new Qf(r)}function X9(r){return new Jf(r)}function Y9(r){return new td(r)}var sF={};Kt(sF,{MAPE:()=>aQ,MSE:()=>cQ,binaryAccuracy:()=>Z9,binaryCrossentropy:()=>J9,categoricalAccuracy:()=>tQ,categoricalCrossentropy:()=>eQ,cosineProximity:()=>oQ,mape:()=>lQ,meanAbsoluteError:()=>sQ,meanAbsolutePercentageError:()=>iQ,meanSquaredError:()=>uQ,mse:()=>pQ,precision:()=>rQ,r2Score:()=>mQ,recall:()=>nQ,sparseCategoricalAccuracy:()=>Q9});function Z9(r,t){return $h(r,t)}function J9(r,t){return rb(r,t)}function Q9(r,t){return nb(r,t)}function tQ(r,t){return Rh(r,t)}function eQ(r,t){return Fh(r,t)}function rQ(r,t){return qN(r,t)}function nQ(r,t){return TR(r,t)}function oQ(r,t){return Dh(r,t)}function sQ(r,t){return Hm(r,t)}function iQ(r,t){return Pu(r,t)}function aQ(r,t){return Pu(r,t)}function lQ(r,t){return Pu(r,t)}function uQ(r,t){return xa(r,t)}function cQ(r,t){return xa(r,t)}function pQ(r,t){return xa(r,t)}function mQ(r,t){return _R(r,t)}var iF={};Kt(iF,{modelFromJSON:()=>WR});var aF={};Kt(aF,{l1:()=>dQ,l1l2:()=>fQ,l2:()=>hQ});function fQ(r){return new Lu(r)}function dQ(r){return KR(r)}function hQ(r){return jR(r)}var zb=class extends kl{constructor(){super(...arguments),this.model=null}setModel(t){if(!(t instanceof Un))throw new Error(\"model must be a LayersModel, not some other Container\");this.model=t}};function Lb(r,t){return rt}var Bb=class extends zb{constructor(t){if(super(),t==null&&(t={}),t.restoreBestWeights)throw new _t(\"restoreBestWeights = True is not implemented in EarlyStopping yet.\");this.monitor=t.monitor||\"val_loss\",this.minDelta=Math.abs(t.minDelta||0),this.patience=t.patience||0,this.verbose=t.verbose||0,this.mode=t.mode||\"auto\",this.baseline=t.baseline,[\"auto\",\"min\",\"max\"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode=\"auto\"),this.mode===\"min\"?this.monitorFunc=Lb:this.mode===\"max\"?this.monitorFunc=lF:this.monitor.indexOf(\"acc\")!==-1?this.monitorFunc=lF:this.monitorFunc=Lb,this.monitorFunc===Lb&&(this.minDelta*=-1)}async onTrainBegin(t){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===Lb?1/0:-1/0}async onEpochEnd(t,e){await ga(e);let n=this.getMonitorValue(e);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=t,this.model.stopTraining=!0)))}async onTrainEnd(t){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(t){t==null&&(t={});let e=t[this.monitor];return e==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(t)}`),e}};function gQ(r){return new Bb(r)}var xQ={earlyStopping:gQ};var yQ=L();yQ.registerFlag(\"KEEP_INTERMEDIATE_TENSORS\",()=>!1,r=>{r&&console.warn(\"Keep intermediate tensors is ON. This will print the values of all intermediate tensors during model inference. Not all models support this mode. For details, check e2e/benchmarks/ model_config.js. This significantly impacts performance.\")});var _n;(function(r){r[r.DT_INVALID=0]=\"DT_INVALID\",r[r.DT_FLOAT=1]=\"DT_FLOAT\",r[r.DT_DOUBLE=2]=\"DT_DOUBLE\",r[r.DT_INT32=3]=\"DT_INT32\",r[r.DT_UINT8=4]=\"DT_UINT8\",r[r.DT_INT16=5]=\"DT_INT16\",r[r.DT_INT8=6]=\"DT_INT8\",r[r.DT_STRING=7]=\"DT_STRING\",r[r.DT_COMPLEX64=8]=\"DT_COMPLEX64\",r[r.DT_INT64=9]=\"DT_INT64\",r[r.DT_BOOL=10]=\"DT_BOOL\",r[r.DT_QINT8=11]=\"DT_QINT8\",r[r.DT_QUINT8=12]=\"DT_QUINT8\",r[r.DT_QINT32=13]=\"DT_QINT32\",r[r.DT_BFLOAT16=14]=\"DT_BFLOAT16\",r[r.DT_QINT16=15]=\"DT_QINT16\",r[r.DT_QUINT16=16]=\"DT_QUINT16\",r[r.DT_UINT16=17]=\"DT_UINT16\",r[r.DT_COMPLEX128=18]=\"DT_COMPLEX128\",r[r.DT_HALF=19]=\"DT_HALF\",r[r.DT_RESOURCE=20]=\"DT_RESOURCE\",r[r.DT_VARIANT=21]=\"DT_VARIANT\",r[r.DT_UINT32=22]=\"DT_UINT32\",r[r.DT_UINT64=23]=\"DT_UINT64\",r[r.DT_FLOAT_REF=101]=\"DT_FLOAT_REF\",r[r.DT_DOUBLE_REF=102]=\"DT_DOUBLE_REF\",r[r.DT_INT32_REF=103]=\"DT_INT32_REF\",r[r.DT_UINT8_REF=104]=\"DT_UINT8_REF\",r[r.DT_INT16_REF=105]=\"DT_INT16_REF\",r[r.DT_INT8_REF=106]=\"DT_INT8_REF\",r[r.DT_STRING_REF=107]=\"DT_STRING_REF\",r[r.DT_COMPLEX64_REF=108]=\"DT_COMPLEX64_REF\",r[r.DT_INT64_REF=109]=\"DT_INT64_REF\",r[r.DT_BOOL_REF=110]=\"DT_BOOL_REF\",r[r.DT_QINT8_REF=111]=\"DT_QINT8_REF\",r[r.DT_QUINT8_REF=112]=\"DT_QUINT8_REF\",r[r.DT_QINT32_REF=113]=\"DT_QINT32_REF\",r[r.DT_BFLOAT16_REF=114]=\"DT_BFLOAT16_REF\",r[r.DT_QINT16_REF=115]=\"DT_QINT16_REF\",r[r.DT_QUINT16_REF=116]=\"DT_QUINT16_REF\",r[r.DT_UINT16_REF=117]=\"DT_UINT16_REF\",r[r.DT_COMPLEX128_REF=118]=\"DT_COMPLEX128_REF\",r[r.DT_HALF_REF=119]=\"DT_HALF_REF\",r[r.DT_RESOURCE_REF=120]=\"DT_RESOURCE_REF\",r[r.DT_VARIANT_REF=121]=\"DT_VARIANT_REF\",r[r.DT_UINT32_REF=122]=\"DT_UINT32_REF\",r[r.DT_UINT64_REF=123]=\"DT_UINT64_REF\"})(_n||(_n={}));var uF;(function(r){let t;(function(e){e[e.LEGACY=0]=\"LEGACY\",e[e.V1=1]=\"V1\",e[e.V2=2]=\"V2\"})(t=r.CheckpointFormatVersion||(r.CheckpointFormatVersion={}))})(uF||(uF={}));var ak={};function wQ(r,t){let e={tfOpName:r,category:\"custom\",inputs:[],attrs:[],customExecutor:t};ak[r]=e}function Vb(r){return ak[r]}function IQ(r){delete ak[r]}function v(r,t,e,n,o){let s=t.inputParams[r];if(s&&s.inputIndexStart!==void 0){let a=s.inputIndexStart,u=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?a+1:s.inputIndexEnd,l=a<0?t.inputNames.length+a:a;if(s.type===\"tensor\")return pr(t.inputNames[l],e,n,o);if(s.type===\"tensors\"){let m=t.inputs.slice(a,u);return t.inputNames.slice(a,u).filter((d,h)=>{var g;return((g=m[h])===null||g===void 0?void 0:g.op)!==\"NoOp\"}).map(d=>pr(d,e,n,o))}let c=pr(t.inputNames[l],e,n,o),p=c.dataSync();return s.type===\"number\"?p[0]:y.toNestedArray(c.shape,p)}let i=t.attrParams[r];return i&&i.value}function pr(r,t,e,n){let[o,s]=In(r,e);if(n!=null){let a=n.getHashTableHandleByName(o);if(a!=null)return a}let i=e.currentContextIds.find(a=>!!t[Gb(o,a)]);return i!==void 0?t[Gb(o,i)][s]:void 0}function lk(r,t,e){return t[Gb(r,e.currentContextId)]}function bi(r,t){let[e,n,o]=In(r,t);return[Gb(e,t&&t.currentContextId),n,o]}function Gb(r,t){return t?`${r}-${t}`:r}function In(r,t){if(r===\"\")return[\"\",0,void 0];let e=t!=null&&t.parseNodeNameCache!=null;if(e){let s=t.parseNodeNameCache.get(r);if(s!=null)return s}let n=r.split(\":\"),o;if(n.length===1)o=[r,0,void 0];else{let s=n[0],i=n.length===3?n[1]:void 0,a=Number(n[n.length-1]);o=[s,a,i]}return e&&t.parseNodeNameCache.set(r,o),o}function Gh(r,t,e){let n=v(\"pad\",r,t,e);if(n===\"explicit\"){n=v(\"explicitPaddings\",r,t,e);let o=[[0,0],[0,0],[0,0],[0,0]];for(let s=0;s<4;s++)o[s][0]=n[s*2],o[s][1]=n[s*2+1];return o}return n}function wi(r){return r.kept?r:un(r)}var uk={};Kt(uk,{json:()=>CQ});var CQ=[{tfOpName:\"Add\",category:\"arithmetic\",inputs:[{start:0,name:\"a\",type:\"tensor\"},{start:1,name:\"b\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"AddV2\",category:\"arithmetic\",inputs:[{start:0,name:\"a\",type:\"tensor\"},{start:1,name:\"b\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"AddN\",category:\"arithmetic\",inputs:[{start:0,end:0,name:\"tensors\",type:\"tensors\"}]},{tfOpName:\"BiasAdd\",category:\"arithmetic\",inputs:[{start:0,name:\"a\",type:\"tensor\"},{start:1,name:\"b\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0},{tfName:\"data_format\",name:\"dataFormat\",type:\"string\",notSupported:!0}]},{tfOpName:\"Sub\",category:\"arithmetic\",inputs:[{start:0,name:\"a\",type:\"tensor\"},{start:1,name:\"b\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"RealDiv\",category:\"arithmetic\",inputs:[{start:0,name:\"a\",type:\"tensor\"},{start:1,name:\"b\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Div\",category:\"arithmetic\",inputs:[{start:0,name:\"a\",type:\"tensor\"},{start:1,name:\"b\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"DivNoNan\",category:\"arithmetic\",inputs:[{start:0,name:\"a\",type:\"tensor\"},{start:1,name:\"b\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"FloorDiv\",category:\"arithmetic\",inputs:[{start:0,name:\"a\",type:\"tensor\"},{start:1,name:\"b\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Mul\",category:\"arithmetic\",inputs:[{start:0,name:\"a\",type:\"tensor\"},{start:1,name:\"b\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Maximum\",category:\"arithmetic\",inputs:[{start:0,name:\"a\",type:\"tensor\"},{start:1,name:\"b\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Minimum\",category:\"arithmetic\",inputs:[{start:0,name:\"a\",type:\"tensor\"},{start:1,name:\"b\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Pow\",category:\"arithmetic\",inputs:[{start:0,name:\"a\",type:\"tensor\"},{start:1,name:\"b\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"SquaredDifference\",category:\"arithmetic\",inputs:[{start:0,name:\"a\",type:\"tensor\"},{start:1,name:\"b\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Mod\",category:\"arithmetic\",inputs:[{start:0,name:\"a\",type:\"tensor\"},{start:1,name:\"b\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"FloorMod\",category:\"arithmetic\",inputs:[{start:0,name:\"a\",type:\"tensor\"},{start:1,name:\"b\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]}];var ck={};Kt(ck,{json:()=>vQ});var vQ=[{tfOpName:\"Abs\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Acos\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Asin\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Atan\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Atan2\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"y\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Ceil\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"ClipByValue\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"clipValueMin\",type:\"number\"},{start:2,name:\"clipValueMax\",type:\"number\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Complex\",category:\"basic_math\",inputs:[{start:0,name:\"real\",type:\"tensor\"},{start:1,name:\"imag\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"ComplexAbs\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Cos\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Cosh\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Elu\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Exp\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Floor\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Log\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Imag\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0},{tfName:\"Tout\",name:\"outputType\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Neg\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Real\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0},{tfName:\"Tout\",name:\"outputType\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Prelu\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"alpha\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Relu\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Relu6\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Selu\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Sigmoid\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Sin\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Sinh\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Sqrt\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Rsqrt\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Square\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Tan\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Tanh\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Sign\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Round\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Expm1\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Log1p\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Reciprocal\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Softplus\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Asinh\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Acosh\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Atanh\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Erf\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"LeakyRelu\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"alpha\",name:\"alpha\",type:\"number\",defaultValue:.2},{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"IsNan\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"IsFinite\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"IsInf\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]}];var pk={};Kt(pk,{json:()=>SQ});var SQ=[{tfOpName:\"EmptyTensorList\",category:\"control\",inputs:[{start:0,name:\"elementShape\",type:\"shape\"},{start:1,name:\"maxNumElements\",type:\"number\"}],attrs:[{tfName:\"element_dtype\",name:\"elementDType\",type:\"dtype\"}]},{tfOpName:\"LoopCond\",category:\"control\",inputs:[{start:0,name:\"pred\",type:\"tensor\"}]},{tfOpName:\"Switch\",category:\"control\",inputs:[{start:0,name:\"data\",type:\"tensor\"},{start:1,name:\"pred\",type:\"tensor\"}]},{tfOpName:\"Merge\",category:\"control\",inputs:[{start:0,end:0,name:\"tensors\",type:\"tensors\"}]},{tfOpName:\"Enter\",category:\"control\",inputs:[{start:0,name:\"tensor\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0},{tfName:\"frame_name\",name:\"frameName\",type:\"string\"},{tfName:\"is_constant\",name:\"isConstant\",type:\"bool\"}]},{tfOpName:\"Exit\",category:\"control\",inputs:[{start:0,name:\"tensor\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"NextIteration\",category:\"control\",inputs:[{start:0,name:\"tensor\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"TensorArrayV3\",category:\"control\",inputs:[{start:0,name:\"size\",type:\"number\"}],attrs:[{tfName:\"dtype\",name:\"dtype\",type:\"dtype\"},{tfName:\"element_shape\",name:\"elementShape\",type:\"shape\"},{tfName:\"dynamic_size\",name:\"dynamicSize\",type:\"bool\"},{tfName:\"clear_after_read\",name:\"clearAfterRead\",type:\"bool\"},{tfName:\"identical_element_shapes\",name:\"identicalElementShapes\",type:\"bool\"},{tfName:\"tensor_array_name\",name:\"name\",type:\"string\"}]},{tfOpName:\"TensorArrayWriteV3\",category:\"control\",inputs:[{start:0,name:\"tensorArrayId\",type:\"tensor\"},{start:1,name:\"index\",type:\"number\"},{start:2,name:\"tensor\",type:\"tensor\"},{start:3,name:\"flowIn\",type:\"number\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"TensorArrayReadV3\",category:\"control\",inputs:[{start:0,name:\"tensorArrayId\",type:\"tensor\"},{start:1,name:\"index\",type:\"number\"},{start:2,name:\"flowIn\",type:\"number\"}],attrs:[{tfName:\"dtype\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"TensorArrayGatherV3\",category:\"control\",inputs:[{start:0,name:\"tensorArrayId\",type:\"tensor\"},{start:1,name:\"indices\",type:\"number[]\"},{start:2,name:\"flowIn\",type:\"number\"}],attrs:[{tfName:\"dtype\",name:\"dtype\",type:\"dtype\"},{tfName:\"element_shape\",name:\"elementShape\",type:\"shape\"}]},{tfOpName:\"TensorArrayScatterV3\",category:\"control\",inputs:[{start:0,name:\"tensorArrayId\",type:\"tensor\"},{start:1,name:\"indices\",type:\"number[]\"},{start:2,name:\"tensor\",type:\"tensor\"},{start:3,name:\"flowIn\",type:\"number\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\"}]},{tfOpName:\"TensorArrayConcatV3\",category:\"control\",inputs:[{start:0,name:\"tensorArrayId\",type:\"tensor\"},{start:1,name:\"flowIn\",type:\"number\"}],attrs:[{tfName:\"dtype\",name:\"dtype\",type:\"dtype\"},{tfName:\"element_shape_except0\",name:\"elementShapeExcept0\",type:\"shape\",notSupported:!0}]},{tfOpName:\"TensorArraySplitV3\",category:\"control\",inputs:[{start:0,name:\"tensorArrayId\",type:\"tensor\"},{start:1,name:\"tensor\",type:\"tensor\"},{start:2,name:\"lengths\",type:\"number[]\"},{start:3,name:\"flowIn\",type:\"number\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\"}]},{tfOpName:\"TensorArraySizeV3\",category:\"control\",inputs:[{start:0,name:\"tensorArrayId\",type:\"tensor\"},{start:1,name:\"flowIn\",type:\"number\"}]},{tfOpName:\"TensorArrayCloseV3\",category:\"control\",inputs:[{start:0,name:\"tensorArrayId\",type:\"tensor\"}]},{tfOpName:\"StatelessIf\",category:\"control\",inputs:[{start:0,name:\"cond\",type:\"tensor\"},{start:1,end:0,name:\"args\",type:\"tensors\"}],attrs:[{tfName:\"then_branch\",name:\"thenBranch\",type:\"func\"},{tfName:\"else_branch\",name:\"elseBranch\",type:\"func\"}]},{tfOpName:\"If\",category:\"control\",inputs:[{start:0,name:\"cond\",type:\"tensor\"},{start:1,end:0,name:\"args\",type:\"tensors\"}],attrs:[{tfName:\"then_branch\",name:\"thenBranch\",type:\"func\"},{tfName:\"else_branch\",name:\"elseBranch\",type:\"func\"}]},{tfOpName:\"StatelessWhile\",category:\"control\",inputs:[{start:0,end:0,name:\"args\",type:\"tensors\"}],attrs:[{tfName:\"cond\",name:\"cond\",type:\"func\"},{tfName:\"body\",name:\"body\",type:\"func\"}]},{tfOpName:\"While\",category:\"control\",inputs:[{start:0,end:0,name:\"args\",type:\"tensors\"}],attrs:[{tfName:\"cond\",name:\"cond\",type:\"func\"},{tfName:\"body\",name:\"body\",type:\"func\"}]},{tfOpName:\"TensorListScatter\",category:\"control\",inputs:[{start:0,name:\"tensor\",type:\"tensor\"},{start:1,name:\"indices\",type:\"number[]\"},{start:2,name:\"elementShape\",type:\"shape\"}],attrs:[{tfName:\"element_dtype\",name:\"elementDType\",type:\"dtype\"}]},{tfOpName:\"TensorListScatterV2\",category:\"control\",inputs:[{start:0,name:\"tensor\",type:\"tensor\"},{start:1,name:\"indices\",type:\"number[]\"},{start:2,name:\"elementShape\",type:\"shape\"},{start:3,name:\"numElements\",type:\"number\"}],attrs:[{tfName:\"element_dtype\",name:\"elementDType\",type:\"dtype\"}]},{tfOpName:\"TensorListGather\",category:\"control\",inputs:[{start:0,name:\"tensorListId\",type:\"tensor\"},{start:1,name:\"indices\",type:\"number[]\"},{start:2,name:\"elementShape\",type:\"shape\"}],attrs:[{tfName:\"element_dtype\",name:\"elementDType\",type:\"dtype\"}]},{tfOpName:\"TensorListGetItem\",category:\"control\",inputs:[{start:0,name:\"tensorListId\",type:\"tensor\"},{start:1,name:\"index\",type:\"number\"},{start:2,name:\"elementShape\",type:\"shape\"}],attrs:[{tfName:\"element_dtype\",name:\"elementDType\",type:\"dtype\"}]},{tfOpName:\"TensorListSetItem\",category:\"control\",inputs:[{start:0,name:\"tensorListId\",type:\"tensor\"},{start:1,name:\"index\",type:\"number\"},{start:2,name:\"tensor\",type:\"tensor\"}],attrs:[{tfName:\"element_dtype\",name:\"elementDType\",type:\"dtype\"}]},{tfOpName:\"TensorListReserve\",category:\"control\",inputs:[{start:0,name:\"elementShape\",type:\"shape\"},{start:1,name:\"numElements\",type:\"number\"}],attrs:[{tfName:\"element_dtype\",name:\"elementDType\",type:\"dtype\"}]},{tfOpName:\"TensorListFromTensor\",category:\"control\",inputs:[{start:0,name:\"tensor\",type:\"tensor\"},{start:1,name:\"elementShape\",type:\"shape\"}],attrs:[{tfName:\"element_dtype\",name:\"elementDType\",type:\"dtype\"}]},{tfOpName:\"TensorListStack\",category:\"control\",inputs:[{start:0,name:\"tensorListId\",type:\"tensor\"},{start:1,name:\"elementShape\",type:\"shape\"}],attrs:[{tfName:\"element_dtype\",name:\"elementDType\",type:\"dtype\"},{tfName:\"num_elements\",name:\"numElements\",type:\"dtype\"}]},{tfOpName:\"TensorListSplit\",category:\"control\",inputs:[{start:0,name:\"tensor\",type:\"tensor\"},{start:1,name:\"elementShape\",type:\"shape\"},{start:2,name:\"lengths\",type:\"number[]\"}],attrs:[{tfName:\"element_dtype\",name:\"elementDType\",type:\"dtype\"}]},{tfOpName:\"TensorListConcat\",category:\"control\",inputs:[{start:0,name:\"tensorListId\",type:\"tensor\"}],attrs:[{tfName:\"element_shape\",name:\"elementShape\",type:\"shape\"},{tfName:\"element_dtype\",name:\"elementDType\",type:\"dtype\"}]},{tfOpName:\"TensorListConcatV2\",category:\"control\",inputs:[{start:0,name:\"tensorListId\",type:\"tensor\"}],attrs:[{tfName:\"element_shape\",name:\"elementShape\",type:\"shape\"},{tfName:\"element_dtype\",name:\"elementDType\",type:\"dtype\"}]},{tfOpName:\"TensorListPopBack\",category:\"control\",inputs:[{start:0,name:\"tensorListId\",type:\"tensor\"},{start:1,name:\"elementShape\",type:\"shape\"}],attrs:[{tfName:\"element_dtype\",name:\"elementDType\",type:\"dtype\"}]},{tfOpName:\"TensorListPushBack\",category:\"control\",inputs:[{start:0,name:\"tensorListId\",type:\"tensor\"},{start:1,name:\"tensor\",type:\"tensor\"}],attrs:[{tfName:\"element_dtype\",name:\"elementDType\",type:\"dtype\"}]},{tfOpName:\"TensorListLength\",category:\"control\",inputs:[{start:0,name:\"tensorListId\",type:\"tensor\"}]},{tfOpName:\"TensorListResize\",category:\"control\",inputs:[{start:0,name:\"tensorListId\",type:\"tensor\"},{start:1,name:\"size\",type:\"number\"}]}];var mk={};Kt(mk,{json:()=>NQ});var NQ=[{tfOpName:\"AvgPool\",category:\"convolution\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"strides\",name:\"strides\",type:\"number[]\"},{tfName:\"padding\",name:\"pad\",type:\"string\"},{tfName:\"data_format\",name:\"dataFormat\",type:\"string\",notSupported:!0},{tfName:\"ksize\",name:\"kernelSize\",type:\"number[]\"},{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"MaxPool\",category:\"convolution\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"strides\",name:\"strides\",type:\"number[]\"},{tfName:\"padding\",name:\"pad\",type:\"string\"},{tfName:\"data_format\",name:\"dataFormat\",type:\"string\",notSupported:!0},{tfName:\"ksize\",name:\"kernelSize\",type:\"number[]\"},{tfName:\"explicit_paddings\",name:\"explicitPaddings\",type:\"number[]\",defaultValue:[],notSupported:!0},{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"MaxPoolWithArgmax\",category:\"convolution\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"strides\",name:\"strides\",type:\"number[]\"},{tfName:\"padding\",name:\"pad\",type:\"string\"},{tfName:\"ksize\",name:\"kernelSize\",type:\"number[]\"},{tfName:\"include_batch_in_index\",name:\"includeBatchInIndex\",type:\"bool\"},{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"AvgPool3D\",category:\"convolution\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"strides\",name:\"strides\",type:\"number[]\"},{tfName:\"padding\",name:\"pad\",type:\"string\"},{tfName:\"data_format\",name:\"dataFormat\",type:\"string\",notSupported:!0},{tfName:\"ksize\",name:\"kernelSize\",type:\"number[]\"},{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"MaxPool3D\",category:\"convolution\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"strides\",name:\"strides\",type:\"number[]\"},{tfName:\"padding\",name:\"pad\",type:\"string\"},{tfName:\"data_format\",name:\"dataFormat\",type:\"string\",notSupported:!0},{tfName:\"ksize\",name:\"kernelSize\",type:\"number[]\"},{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Conv1D\",category:\"convolution\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"filter\",type:\"tensor\"}],attrs:[{tfName:\"stride\",name:\"stride\",type:\"number\"},{tfName:\"padding\",name:\"pad\",type:\"string\"},{tfName:\"data_format\",name:\"dataFormat\",type:\"string\",defaultValue:\"NWC\"},{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0},{tfName:\"dilation\",name:\"dilation\",type:\"number\",defaultValue:1}]},{tfOpName:\"Conv2D\",category:\"convolution\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"filter\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0},{tfName:\"strides\",name:\"strides\",type:\"number[]\"},{tfName:\"padding\",name:\"pad\",type:\"string\"},{tfName:\"useCudnnOnGpu\",name:\"useCudnnOnGpu\",type:\"bool\"},{tfName:\"data_format\",name:\"dataFormat\",type:\"string\",defaultValue:\"NHWC\"},{tfName:\"explicit_paddings\",name:\"explicitPaddings\",type:\"number[]\",defaultValue:[]},{tfName:\"dilations\",name:\"dilations\",type:\"number[]\"}]},{tfOpName:\"_FusedConv2D\",category:\"convolution\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"filter\",type:\"tensor\"},{start:2,end:0,name:\"args\",type:\"tensors\"}],attrs:[{tfName:\"num_args\",name:\"numArgs\",type:\"number\"},{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0},{tfName:\"strides\",name:\"strides\",type:\"number[]\"},{tfName:\"padding\",name:\"pad\",type:\"string\"},{tfName:\"explicit_paddings\",name:\"explicitPaddings\",type:\"number[]\",defaultValue:[]},{tfName:\"use_cudnn_on_gpu\",name:\"useCudnnOnGpu\",type:\"bool\",defaultValue:!0},{tfName:\"data_format\",name:\"dataFormat\",type:\"string\",defaultValue:\"NHWC\"},{tfName:\"dilations\",name:\"dilations\",type:\"number[]\",defaultValue:[1,1,1,1]},{tfName:\"fused_ops\",name:\"fusedOps\",type:\"string[]\",defaultValue:[]},{tfName:\"epsilon\",name:\"epsilon\",type:\"number\",defaultValue:1e-4},{tfName:\"leakyrelu_alpha\",name:\"leakyreluAlpha\",type:\"number\",defaultValue:.2}]},{tfOpName:\"Conv2DBackpropInput\",category:\"convolution\",inputs:[{start:2,name:\"x\",type:\"tensor\"},{start:1,name:\"filter\",type:\"tensor\"},{start:0,name:\"outputShape\",type:\"number[]\"}],attrs:[{tfName:\"strides\",name:\"strides\",type:\"number[]\"},{tfName:\"padding\",name:\"pad\",type:\"string\"},{tfName:\"data_format\",name:\"dataFormat\",type:\"string\",notSupported:!0},{tfName:\"explicit_paddings\",name:\"explicitPaddings\",type:\"number[]\",defaultValue:[]},{tfName:\"dilations\",name:\"dilations\",type:\"number[]\",notSupported:!0}]},{tfOpName:\"DepthwiseConv2d\",category:\"convolution\",inputs:[{start:0,name:\"input\",type:\"tensor\"},{start:1,name:\"filter\",type:\"tensor\"}],attrs:[{tfName:\"strides\",name:\"strides\",type:\"number[]\"},{tfName:\"padding\",name:\"pad\",type:\"string\"},{tfName:\"data_format\",name:\"dataFormat\",type:\"string\",defaultValue:\"NHWC\"},{tfName:\"explicit_paddings\",name:\"explicitPaddings\",type:\"number[]\",defaultValue:[]},{tfName:\"dilations\",name:\"dilations\",type:\"number[]\"}]},{tfOpName:\"DepthwiseConv2dNative\",category:\"convolution\",inputs:[{start:0,name:\"input\",type:\"tensor\"},{start:1,name:\"filter\",type:\"tensor\"}],attrs:[{tfName:\"strides\",name:\"strides\",type:\"number[]\"},{tfName:\"padding\",name:\"pad\",type:\"string\"},{tfName:\"data_format\",name:\"dataFormat\",type:\"string\",defaultValue:\"NHWC\"},{tfName:\"explicit_paddings\",name:\"explicitPaddings\",type:\"number[]\",defaultValue:[]},{tfName:\"dilations\",name:\"dilations\",type:\"number[]\"}]},{tfOpName:\"FusedDepthwiseConv2dNative\",category:\"convolution\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"filter\",type:\"tensor\"},{start:2,end:0,name:\"args\",type:\"tensors\"}],attrs:[{tfName:\"num_args\",name:\"numArgs\",type:\"number\"},{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0},{tfName:\"strides\",name:\"strides\",type:\"number[]\"},{tfName:\"padding\",name:\"pad\",type:\"string\"},{tfName:\"data_format\",name:\"dataFormat\",type:\"string\",defaultValue:\"NHWC\"},{tfName:\"dilations\",name:\"dilations\",type:\"number[]\",defaultValue:[1,1,1,1]},{tfName:\"fused_ops\",name:\"fusedOps\",type:\"string[]\",defaultValue:[]},{tfName:\"explicit_paddings\",name:\"explicitPaddings\",type:\"number[]\",defaultValue:[]}]},{tfOpName:\"Conv3D\",category:\"convolution\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"filter\",type:\"tensor\"}],attrs:[{tfName:\"strides\",name:\"strides\",type:\"number[]\"},{tfName:\"padding\",name:\"pad\",type:\"string\"},{tfName:\"data_format\",name:\"dataFormat\",type:\"string\",defaultValue:\"NHWC\"},{tfName:\"dilations\",name:\"dilations\",type:\"number[]\"}]},{tfOpName:\"Dilation2D\",category:\"convolution\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"filter\",type:\"tensor\"}],attrs:[{tfName:\"strides\",name:\"strides\",type:\"number[]\"},{tfName:\"rates\",name:\"dilations\",type:\"number[]\"},{tfName:\"padding\",name:\"pad\",type:\"string\"}]}];var fk={};Kt(fk,{json:()=>kQ});var kQ=[{tfOpName:\"Fill\",category:\"creation\",inputs:[{start:0,name:\"shape\",type:\"number[]\"},{start:1,name:\"value\",type:\"number\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\"}]},{tfOpName:\"LinSpace\",category:\"creation\",inputs:[{start:0,name:\"start\",type:\"number\"},{start:1,name:\"stop\",type:\"number\"},{start:2,name:\"num\",type:\"number\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"OneHot\",category:\"creation\",inputs:[{start:0,name:\"indices\",type:\"tensor\"},{start:1,name:\"depth\",type:\"number\"},{start:2,name:\"onValue\",type:\"number\",defaultValue:1},{start:3,name:\"offValue\",type:\"number\",defaultValue:0}],attrs:[{tfName:\"axis\",name:\"axis\",type:\"number\",notSupported:!0},{tfName:\"T\",name:\"dtype\",type:\"dtype\"}]},{tfOpName:\"Ones\",category:\"creation\",inputs:[{start:0,name:\"shape\",type:\"number[]\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\"}]},{tfOpName:\"OnesLike\",category:\"creation\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"dtype\",name:\"dtype\",type:\"dtype\"}]},{tfOpName:\"RandomStandardNormal\",category:\"creation\",inputs:[{start:0,name:\"shape\",type:\"number[]\"}],attrs:[{tfName:\"seed\",name:\"seed\",type:\"number\",defaultValue:0},{tfName:\"seed2\",name:\"seed2\",type:\"number\",defaultValue:0,notSupported:!0},{tfName:\"dtype\",name:\"dtype\",type:\"dtype\"},{tfName:\"T\",name:\"T\",type:\"number\",notSupported:!0}]},{tfOpName:\"RandomUniform\",category:\"creation\",inputs:[{start:0,name:\"shape\",type:\"number[]\"}],attrs:[{tfName:\"minval\",name:\"minval\",type:\"number\",defaultValue:0},{tfName:\"maxval\",name:\"maxval\",type:\"number\",defaultValue:1},{tfName:\"dtype\",name:\"dtype\",type:\"dtype\"},{tfName:\"seed\",name:\"seed\",type:\"number\",defaultValue:0},{tfName:\"seed2\",name:\"seed2\",type:\"number\",defaultValue:0,notSupported:!0},{tfName:\"T\",name:\"T\",type:\"number\",notSupported:!0}]},{tfOpName:\"RandomUniformInt\",category:\"creation\",inputs:[{start:0,name:\"shape\",type:\"number[]\"}],attrs:[{tfName:\"minval\",name:\"minval\",type:\"number\"},{tfName:\"maxval\",name:\"maxval\",type:\"number\"},{tfName:\"seed\",name:\"seed\",type:\"number\",defaultValue:0},{tfName:\"seed2\",name:\"seed2\",type:\"number\",defaultValue:0,notSupported:!0}]},{tfOpName:\"Range\",category:\"creation\",inputs:[{start:0,name:\"start\",type:\"number\"},{start:1,name:\"stop\",type:\"number\"},{start:2,name:\"step\",type:\"number\",defaultValue:0}],attrs:[{tfName:\"Tidx\",name:\"dtype\",type:\"dtype\"}]},{tfOpName:\"TruncatedNormal\",category:\"creation\",inputs:[{start:0,name:\"shape\",type:\"number[]\"}],attrs:[{tfName:\"means\",name:\"mean\",type:\"number\",defaultValue:0},{tfName:\"stddev\",name:\"stdDev\",type:\"number\",defaultValue:1},{tfName:\"seed\",name:\"seed\",type:\"number\"},{tfName:\"seed2\",name:\"seed2\",type:\"number\",defaultValue:0,notSupported:!0},{tfName:\"dtype\",name:\"dtype\",type:\"dtype\"},{tfName:\"T\",name:\"T\",type:\"number\",notSupported:!0}]},{tfOpName:\"Zeros\",category:\"creation\",inputs:[{start:0,name:\"shape\",type:\"number[]\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\"}]},{tfOpName:\"ZerosLike\",category:\"creation\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\"}]},{tfOpName:\"Multinomial\",category:\"creation\",inputs:[{start:0,name:\"logits\",type:\"tensor\"},{start:1,name:\"numSamples\",type:\"number\"}],attrs:[{tfName:\"seed\",name:\"seed\",type:\"number\"},{tfName:\"seed2\",name:\"seed2\",type:\"number\"},{tfName:\"T\",name:\"dtype\",type:\"dtype\"},{tfName:\"output_dtype\",name:\"output_dtype\",type:\"dtype\"}]}];var dk={};Kt(dk,{json:()=>TQ});var TQ=[{tfOpName:\"NonMaxSuppressionV2\",category:\"dynamic\",inputs:[{start:0,name:\"boxes\",type:\"tensor\"},{start:1,name:\"scores\",type:\"tensor\"},{start:2,name:\"maxOutputSize\",type:\"number\"},{start:3,name:\"iouThreshold\",type:\"number\"}]},{tfOpName:\"NonMaxSuppressionV3\",category:\"dynamic\",inputs:[{start:0,name:\"boxes\",type:\"tensor\"},{start:1,name:\"scores\",type:\"tensor\"},{start:2,name:\"maxOutputSize\",type:\"number\"},{start:3,name:\"iouThreshold\",type:\"number\"},{start:4,name:\"scoreThreshold\",type:\"number\"}]},{tfOpName:\"NonMaxSuppressionV4\",category:\"dynamic\",inputs:[{start:0,name:\"boxes\",type:\"tensor\"},{start:1,name:\"scores\",type:\"tensor\"},{start:2,name:\"maxOutputSize\",type:\"number\"},{start:3,name:\"iouThreshold\",type:\"number\"},{start:4,name:\"scoreThreshold\",type:\"number\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0},{tfName:\"T_threshold\",name:\"threshold\",type:\"dtype\",notSupported:!0},{tfName:\"pad_to_max_output_size\",name:\"padToMaxOutputSize\",type:\"bool\"}]},{tfOpName:\"NonMaxSuppressionV5\",category:\"dynamic\",inputs:[{start:0,name:\"boxes\",type:\"tensor\"},{start:1,name:\"scores\",type:\"tensor\"},{start:2,name:\"maxOutputSize\",type:\"number\"},{start:3,name:\"iouThreshold\",type:\"number\"},{start:4,name:\"scoreThreshold\",type:\"number\"},{start:5,name:\"softNmsSigma\",type:\"number\"}]},{tfOpName:\"Where\",category:\"dynamic\",inputs:[{start:0,name:\"condition\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"ListDiff\",category:\"dynamic\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"y\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]}];var hk={};Kt(hk,{json:()=>_Q});var _Q=[{tfOpName:\"LowerBound\",category:\"evaluation\",inputs:[{start:0,name:\"sortedSequence\",type:\"tensor\"},{start:1,name:\"values\",type:\"tensor\"}]},{tfOpName:\"TopKV2\",category:\"evaluation\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"k\",type:\"number\"}],attrs:[{tfName:\"sorted\",name:\"sorted\",type:\"bool\"}]},{tfOpName:\"UpperBound\",category:\"evaluation\",inputs:[{start:0,name:\"sortedSequence\",type:\"tensor\"},{start:1,name:\"values\",type:\"tensor\"}]},{tfOpName:\"Unique\",category:\"evaluation\",inputs:[{start:0,name:\"x\",type:\"tensor\"}]},{tfOpName:\"UniqueV2\",category:\"evaluation\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"axis\",type:\"number\"}]}];var gk={};Kt(gk,{json:()=>EQ});var EQ=[{tfOpName:\"PlaceholderWithDefault\",category:\"graph\",inputs:[{start:0,name:\"default\",type:\"tensor\"}],attrs:[{tfName:\"shape\",name:\"shape\",type:\"shape\"},{tfName:\"dtype\",name:\"dtype\",type:\"dtype\"}]},{tfOpName:\"Placeholder\",category:\"graph\",attrs:[{tfName:\"shape\",name:\"shape\",type:\"shape\"},{tfName:\"dtype\",name:\"dtype\",type:\"dtype\"}]},{tfOpName:\"Const\",category:\"graph\"},{tfOpName:\"Identity\",category:\"graph\",inputs:[{start:0,name:\"x\",type:\"tensor\"}]},{tfOpName:\"IdentityN\",category:\"graph\",inputs:[{start:0,end:0,name:\"x\",type:\"tensors\"}]},{tfOpName:\"Snapshot\",category:\"graph\",inputs:[{start:0,name:\"x\",type:\"tensor\"}]},{tfOpName:\"Rank\",category:\"graph\",inputs:[{start:0,name:\"x\",type:\"tensor\"}]},{tfOpName:\"Size\",category:\"graph\",inputs:[{start:0,name:\"x\",type:\"tensor\"}]},{tfOpName:\"Shape\",category:\"graph\",inputs:[{start:0,name:\"x\",type:\"tensor\"}]},{tfOpName:\"ShapeN\",category:\"graph\",inputs:[{start:0,end:0,name:\"x\",type:\"tensors\"}]},{tfOpName:\"Print\",category:\"graph\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"data\",type:\"tensors\"}],attrs:[{tfName:\"message\",name:\"message\",type:\"string\"},{tfName:\"first_n\",name:\"firstN\",type:\"number\",notSupported:!0},{tfName:\"summarize\",name:\"summarize\",type:\"number\",defaultValue:3}]},{tfOpName:\"NoOp\",category:\"graph\",inputs:[]},{tfOpName:\"StopGradient\",category:\"graph\",inputs:[{start:0,name:\"x\",type:\"tensor\"}]},{tfOpName:\"FakeQuantWithMinMaxVars\",category:\"graph\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"min\",name:\"min\",type:\"number\"},{tfName:\"max\",name:\"max\",type:\"number\"}]}];var xk={};Kt(xk,{json:()=>AQ});var AQ=[{tfOpName:\"HashTable\",category:\"hash_table\",inputs:[],attrs:[{tfName:\"shared_name\",name:\"sharedName\",type:\"string\"},{tfName:\"use_node_name_sharing\",name:\"useNodeNameSharing\",type:\"bool\"},{tfName:\"key_dtype\",name:\"keyDType\",type:\"dtype\"},{tfName:\"value_dtype\",name:\"valueDType\",type:\"dtype\"}]},{tfOpName:\"HashTableV2\",category:\"hash_table\",inputs:[],attrs:[{tfName:\"shared_name\",name:\"sharedName\",type:\"string\"},{tfName:\"use_node_name_sharing\",name:\"useNodeNameSharing\",type:\"bool\"},{tfName:\"key_dtype\",name:\"keyDType\",type:\"dtype\"},{tfName:\"value_dtype\",name:\"valueDType\",type:\"dtype\"}]},{tfOpName:\"LookupTableImport\",category:\"hash_table\",inputs:[{start:0,name:\"tableHandle\",type:\"tensor\"},{start:1,name:\"keys\",type:\"tensor\"},{start:2,name:\"values\",type:\"tensor\"}],attrs:[{tfName:\"Tin\",name:\"tIn\",type:\"dtype\",notSupported:!0},{tfName:\"Tout\",name:\"tOut\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"LookupTableImportV2\",category:\"hash_table\",inputs:[{start:0,name:\"tableHandle\",type:\"tensor\"},{start:1,name:\"keys\",type:\"tensor\"},{start:2,name:\"values\",type:\"tensor\"}],attrs:[{tfName:\"Tin\",name:\"tIn\",type:\"dtype\",notSupported:!0},{tfName:\"Tout\",name:\"tOut\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"LookupTableFind\",category:\"hash_table\",inputs:[{start:0,name:\"tableHandle\",type:\"tensor\"},{start:1,name:\"keys\",type:\"tensor\"},{start:2,name:\"defaultValue\",type:\"tensor\"}],attrs:[{tfName:\"Tin\",name:\"tIn\",type:\"dtype\",notSupported:!0},{tfName:\"Tout\",name:\"tOut\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"LookupTableFindV2\",category:\"hash_table\",inputs:[{start:0,name:\"tableHandle\",type:\"tensor\"},{start:1,name:\"keys\",type:\"tensor\"},{start:2,name:\"defaultValue\",type:\"tensor\"}],attrs:[{tfName:\"Tin\",name:\"tIn\",type:\"dtype\",notSupported:!0},{tfName:\"Tout\",name:\"tOut\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"LookupTableSize\",category:\"hash_table\",inputs:[{start:0,name:\"tableHandle\",type:\"tensor\"}]},{tfOpName:\"LookupTableSizeV2\",category:\"hash_table\",inputs:[{start:0,name:\"tableHandle\",type:\"tensor\"}]},{tfOpName:\"InitializeTable\",category:\"hash_table\",inputs:[{start:0,name:\"tableHandle\",type:\"tensor\"},{start:1,name:\"keys\",type:\"tensor\"},{start:2,name:\"values\",type:\"tensor\"}]},{tfOpName:\"InitializeTableV2\",category:\"hash_table\",inputs:[{start:0,name:\"tableHandle\",type:\"tensor\"},{start:1,name:\"keys\",type:\"tensor\"},{start:2,name:\"values\",type:\"tensor\"}]}];var yk={};Kt(yk,{json:()=>DQ});var DQ=[{tfOpName:\"ResizeBilinear\",category:\"image\",inputs:[{start:0,name:\"images\",type:\"tensor\"},{start:1,name:\"size\",type:\"number[]\"}],attrs:[{tfName:\"align_corners\",name:\"alignCorners\",type:\"bool\"},{tfName:\"half_pixel_centers\",name:\"halfPixelCenters\",type:\"bool\"},{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"ResizeNearestNeighbor\",category:\"image\",inputs:[{start:0,name:\"images\",type:\"tensor\"},{start:1,name:\"size\",type:\"number[]\"}],attrs:[{tfName:\"align_corners\",name:\"alignCorners\",type:\"bool\"},{tfName:\"half_pixel_centers\",name:\"halfPixelCenters\",type:\"bool\"},{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"CropAndResize\",category:\"image\",inputs:[{start:0,name:\"image\",type:\"tensor\"},{start:1,name:\"boxes\",type:\"tensor\"},{start:2,name:\"boxInd\",type:\"tensor\"},{start:3,name:\"cropSize\",type:\"number[]\"}],attrs:[{tfName:\"method\",name:\"method\",type:\"string\"},{tfName:\"extrapolation_value\",name:\"extrapolationValue\",type:\"number\"}]},{tfOpName:\"ImageProjectiveTransformV3\",category:\"image\",inputs:[{start:0,name:\"images\",type:\"tensor\"},{start:1,name:\"transforms\",type:\"tensor\"},{start:2,name:\"outputShape\",type:\"number[]\"},{start:3,name:\"fillValue\",type:\"number\"}],attrs:[{tfName:\"interpolation\",name:\"interpolation\",type:\"string\"},{tfName:\"fill_mode\",name:\"fillMode\",type:\"string\"}]}];var bk={};Kt(bk,{json:()=>$Q});var $Q=[{tfOpName:\"Equal\",category:\"logical\",inputs:[{start:0,name:\"a\",type:\"tensor\"},{start:1,name:\"b\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"NotEqual\",category:\"logical\",inputs:[{start:0,name:\"a\",type:\"tensor\"},{start:1,name:\"b\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Greater\",category:\"logical\",inputs:[{start:0,name:\"a\",type:\"tensor\"},{start:1,name:\"b\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"GreaterEqual\",category:\"logical\",inputs:[{start:0,name:\"a\",type:\"tensor\"},{start:1,name:\"b\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Less\",category:\"logical\",inputs:[{start:0,name:\"a\",type:\"tensor\"},{start:1,name:\"b\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"LessEqual\",category:\"logical\",inputs:[{start:0,name:\"a\",type:\"tensor\"},{start:1,name:\"b\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"LogicalAnd\",category:\"logical\",inputs:[{start:0,name:\"a\",type:\"tensor\"},{start:1,name:\"b\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"LogicalNot\",category:\"logical\",inputs:[{start:0,name:\"a\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"LogicalOr\",category:\"logical\",inputs:[{start:0,name:\"a\",type:\"tensor\"},{start:1,name:\"b\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Select\",category:\"logical\",inputs:[{start:0,name:\"condition\",type:\"tensor\"},{start:1,name:\"a\",type:\"tensor\"},{start:2,name:\"b\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"SelectV2\",category:\"logical\",inputs:[{start:0,name:\"condition\",type:\"tensor\"},{start:1,name:\"a\",type:\"tensor\"},{start:2,name:\"b\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"BitwiseAnd\",category:\"logical\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"y\",type:\"tensor\"}]}];var wk={};Kt(wk,{json:()=>RQ});var RQ=[{tfOpName:\"_FusedMatMul\",category:\"matrices\",inputs:[{start:0,name:\"a\",type:\"tensor\"},{start:1,name:\"b\",type:\"tensor\"},{start:2,end:0,name:\"args\",type:\"tensors\"}],attrs:[{tfName:\"num_args\",name:\"numArgs\",type:\"number\"},{tfName:\"fused_ops\",name:\"fusedOps\",type:\"string[]\",defaultValue:[]},{tfName:\"epsilon\",name:\"epsilon\",type:\"number\",defaultValue:1e-4},{tfName:\"transpose_a\",name:\"transposeA\",type:\"bool\",defaultValue:!1},{tfName:\"transpose_b\",name:\"transposeB\",type:\"bool\",defaultValue:!1},{tfName:\"leakyrelu_alpha\",name:\"leakyreluAlpha\",type:\"number\",defaultValue:.2},{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"MatMul\",category:\"matrices\",inputs:[{start:0,name:\"a\",type:\"tensor\"},{start:1,name:\"b\",type:\"tensor\"}],attrs:[{tfName:\"transpose_a\",name:\"transposeA\",type:\"bool\",defaultValue:!1},{tfName:\"transpose_b\",name:\"transposeB\",type:\"bool\",defaultValue:!1},{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"BatchMatMul\",category:\"matrices\",inputs:[{start:0,name:\"a\",type:\"tensor\"},{start:1,name:\"b\",type:\"tensor\"}],attrs:[{tfName:\"adj_x\",name:\"transposeA\",type:\"bool\",defaultValue:!1},{tfName:\"adj_y\",name:\"transposeB\",type:\"bool\",defaultValue:!1},{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"BatchMatMulV2\",category:\"matrices\",inputs:[{start:0,name:\"a\",type:\"tensor\"},{start:1,name:\"b\",type:\"tensor\"}],attrs:[{tfName:\"adj_x\",name:\"transposeA\",type:\"bool\",defaultValue:!1},{tfName:\"adj_y\",name:\"transposeB\",type:\"bool\",defaultValue:!1},{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Transpose\",category:\"matrices\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"perm\",type:\"number[]\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Einsum\",category:\"matrices\",inputs:[{start:0,end:0,name:\"tensors\",type:\"tensors\"}],attrs:[{tfName:\"equation\",name:\"equation\",type:\"string\"},{tfName:\"N\",name:\"n\",type:\"number\",defaultValue:2},{tfName:\"T\",name:\"dtype\",type:\"dtype\"}]},{tfOpName:\"MatrixBandPart\",category:\"matrices\",inputs:[{start:0,name:\"a\",type:\"tensor\"},{start:1,name:\"numLower\",type:\"tensor\"},{start:1,name:\"numUpper\",type:\"tensor\"}]}];var Ik={};Kt(Ik,{json:()=>FQ});var FQ=[{tfOpName:\"EuclideanNorm\",category:\"normalization\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"axis\",type:\"number[]\"}],attrs:[{tfName:\"keep_dims\",name:\"keepDims\",type:\"bool\",defaultValue:!1}]},{tfOpName:\"FusedBatchNorm\",category:\"normalization\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"scale\",type:\"tensor\"},{start:2,name:\"offset\",type:\"tensor\"},{start:3,name:\"mean\",type:\"tensor\"},{start:4,name:\"variance\",type:\"tensor\"}],attrs:[{tfName:\"epsilon\",name:\"epsilon\",type:\"number\",defaultValue:.001},{tfName:\"data_format\",name:\"dataFormat\",type:\"string\",notSupported:!0}]},{tfOpName:\"FusedBatchNormV2\",category:\"normalization\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"scale\",type:\"tensor\"},{start:2,name:\"offset\",type:\"tensor\"},{start:3,name:\"mean\",type:\"tensor\"},{start:4,name:\"variance\",type:\"tensor\"}],attrs:[{tfName:\"epsilon\",name:\"epsilon\",type:\"number\",defaultValue:.001},{tfName:\"data_format\",name:\"dataFormat\",type:\"string\",notSupported:!0}]},{tfOpName:\"FusedBatchNormV3\",category:\"normalization\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"scale\",type:\"tensor\"},{start:2,name:\"offset\",type:\"tensor\"},{start:3,name:\"mean\",type:\"tensor\"},{start:4,name:\"variance\",type:\"tensor\"}],attrs:[{tfName:\"epsilon\",name:\"epsilon\",type:\"number\",defaultValue:.001},{tfName:\"data_format\",name:\"dataFormat\",type:\"string\",notSupported:!0}]},{tfOpName:\"LRN\",category:\"normalization\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"depth_radius\",name:\"radius\",type:\"number\",defaultValue:5},{tfName:\"bias\",name:\"bias\",type:\"number\",defaultValue:1},{tfName:\"alpha\",name:\"alpha\",type:\"number\",defaultValue:1},{tfName:\"beta\",name:\"beta\",type:\"number\",defaultValue:.5}]},{tfOpName:\"Softmax\",category:\"normalization\",inputs:[{start:0,name:\"x\",type:\"tensor\"}]},{tfOpName:\"LogSoftmax\",category:\"normalization\",inputs:[{start:0,name:\"x\",type:\"tensor\"}]}];var Ck={};Kt(Ck,{json:()=>OQ});var OQ=[{tfOpName:\"Bincount\",category:\"reduction\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"size\",type:\"number\"},{start:2,name:\"weights\",type:\"tensor\"}]},{tfOpName:\"DenseBincount\",category:\"reduction\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"size\",type:\"number\"},{start:2,name:\"weights\",type:\"tensor\"}],attrs:[{tfName:\"binary_output\",name:\"binaryOutput\",type:\"bool\"}]},{tfOpName:\"Max\",category:\"reduction\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"axis\",type:\"number[]\"}],attrs:[{tfName:\"keep_dims\",name:\"keepDims\",type:\"bool\"}]},{tfOpName:\"Mean\",category:\"reduction\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"axis\",type:\"number[]\"}],attrs:[{tfName:\"keep_dims\",name:\"keepDims\",type:\"bool\"}]},{tfOpName:\"Min\",category:\"reduction\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"axis\",type:\"number[]\"}],attrs:[{tfName:\"keep_dims\",name:\"keepDims\",type:\"bool\"}]},{tfOpName:\"Sum\",category:\"reduction\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"axis\",type:\"number[]\"}],attrs:[{tfName:\"keep_dims\",name:\"keepDims\",type:\"bool\"}]},{tfOpName:\"All\",category:\"reduction\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"axis\",type:\"number[]\"}],attrs:[{tfName:\"keep_dims\",name:\"keepDims\",type:\"bool\"}]},{tfOpName:\"Any\",category:\"reduction\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"axis\",type:\"number[]\"}],attrs:[{tfName:\"keep_dims\",name:\"keepDims\",type:\"bool\"}]},{tfOpName:\"ArgMax\",category:\"reduction\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"axis\",type:\"number\"}]},{tfOpName:\"ArgMin\",category:\"reduction\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"axis\",type:\"number\"}]},{tfOpName:\"Prod\",category:\"reduction\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"axis\",type:\"number[]\"}],attrs:[{tfName:\"keep_dims\",name:\"keepDims\",type:\"bool\"},{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Cumprod\",category:\"reduction\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"axis\",type:\"number\"}],attrs:[{tfName:\"exclusive\",name:\"exclusive\",type:\"bool\"},{tfName:\"reverse\",name:\"reverse\",type:\"bool\"}]},{tfOpName:\"Cumsum\",category:\"reduction\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"axis\",type:\"number\"}],attrs:[{tfName:\"exclusive\",name:\"exclusive\",type:\"bool\"},{tfName:\"reverse\",name:\"reverse\",type:\"bool\"}]}];var vk={};Kt(vk,{json:()=>MQ});var MQ=[{tfOpName:\"ConcatV2\",category:\"slice_join\",inputs:[{start:0,end:-1,name:\"tensors\",type:\"tensors\"},{start:-1,name:\"axis\",type:\"number\"}],attrs:[{tfName:\"N\",name:\"n\",type:\"number\",defaultValue:2}]},{tfOpName:\"Concat\",category:\"slice_join\",inputs:[{start:1,end:0,name:\"tensors\",type:\"tensors\"},{start:0,name:\"axis\",type:\"number\"}],attrs:[{tfName:\"N\",name:\"n\",type:\"number\",defaultValue:2}]},{tfOpName:\"GatherV2\",category:\"slice_join\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"indices\",type:\"tensor\"},{start:2,name:\"axis\",type:\"number\",defaultValue:0}],attrs:[{tfName:\"batch_dims\",name:\"batchDims\",type:\"number\",defaultValue:0}]},{tfOpName:\"Gather\",category:\"slice_join\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"indices\",type:\"tensor\"}],attrs:[{tfName:\"validate_indices\",name:\"validateIndices\",type:\"bool\",notSupported:!0}]},{tfOpName:\"Reverse\",category:\"slice_join\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"dims\",type:\"bool[]\"}]},{tfOpName:\"ReverseV2\",category:\"slice_join\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"axis\",type:\"number[]\"}]},{tfOpName:\"Slice\",category:\"slice_join\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"begin\",type:\"number[]\"},{start:2,name:\"size\",type:\"number[]\"}]},{tfOpName:\"StridedSlice\",category:\"slice_join\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"begin\",type:\"number[]\"},{start:2,name:\"end\",type:\"number[]\"},{start:3,name:\"strides\",type:\"number[]\"}],attrs:[{tfName:\"begin_mask\",name:\"beginMask\",type:\"number\",defaultValue:0},{tfName:\"end_mask\",name:\"endMask\",type:\"number\",defaultValue:0},{tfName:\"new_axis_mask\",name:\"newAxisMask\",type:\"number\",defaultValue:0},{tfName:\"ellipsis_mask\",name:\"ellipsisMask\",type:\"number\",defaultValue:0},{tfName:\"shrink_axis_mask\",name:\"shrinkAxisMask\",type:\"number\",defaultValue:0}]},{tfOpName:\"Pack\",category:\"slice_join\",inputs:[{start:0,end:0,name:\"tensors\",type:\"tensors\"}],attrs:[{tfName:\"axis\",name:\"axis\",type:\"number\",defaultValue:0}]},{tfOpName:\"Unpack\",category:\"slice_join\",inputs:[{start:0,name:\"tensor\",type:\"tensor\"}],attrs:[{tfName:\"axis\",name:\"axis\",type:\"number\",defaultValue:0},{tfName:\"num\",name:\"num\",type:\"number\",defaultValue:0,notSupported:!0}]},{tfOpName:\"Tile\",category:\"slice_join\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"reps\",type:\"number[]\"}]},{tfOpName:\"Split\",category:\"slice_join\",inputs:[{start:0,name:\"axis\",type:\"number\",defaultValue:0},{start:1,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"num_split\",name:\"numOrSizeSplits\",type:\"number\",defaultValue:1}]},{tfOpName:\"SplitV\",category:\"slice_join\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"numOrSizeSplits\",type:\"number[]\"},{start:2,name:\"axis\",type:\"number\",defaultValue:0}]},{tfOpName:\"ScatterNd\",category:\"slice_join\",inputs:[{start:0,name:\"indices\",type:\"tensor\"},{start:1,name:\"values\",type:\"tensor\"},{start:2,name:\"shape\",type:\"number[]\"}]},{tfOpName:\"GatherNd\",category:\"slice_join\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"indices\",type:\"tensor\"}]},{tfOpName:\"SparseToDense\",category:\"slice_join\",inputs:[{start:0,name:\"sparseIndices\",type:\"tensor\"},{start:1,name:\"outputShape\",type:\"number[]\"},{start:2,name:\"sparseValues\",type:\"tensor\"},{start:3,name:\"defaultValue\",type:\"tensor\"}],attrs:[{tfName:\"validate_indices\",name:\"validateIndices\",type:\"bool\",defaultValue:!1,notSupported:!0}]},{tfOpName:\"TensorScatterUpdate\",category:\"slice_join\",inputs:[{start:0,name:\"tensor\",type:\"tensor\"},{start:1,name:\"indices\",type:\"tensor\"},{start:2,name:\"values\",type:\"tensor\"}]}];var Sk={};Kt(Sk,{json:()=>PQ});var PQ=[{tfOpName:\"SparseFillEmptyRows\",category:\"sparse\",inputs:[{start:0,name:\"indices\",type:\"tensor\"},{start:1,name:\"values\",type:\"tensor\"},{start:2,name:\"denseShape\",type:\"tensor\"},{start:3,name:\"defaultValue\",type:\"tensor\"}]},{tfOpName:\"SparseReshape\",category:\"sparse\",inputs:[{start:0,name:\"inputIndices\",type:\"tensor\"},{start:1,name:\"inputShape\",type:\"tensor\"},{start:2,name:\"newShape\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"SparseSegmentMean\",category:\"sparse\",inputs:[{start:0,name:\"data\",type:\"tensor\"},{start:1,name:\"indices\",type:\"tensor\"},{start:2,name:\"segmentIds\",type:\"tensor\"}]},{tfOpName:\"SparseSegmentSum\",category:\"sparse\",inputs:[{start:0,name:\"data\",type:\"tensor\"},{start:1,name:\"indices\",type:\"tensor\"},{start:2,name:\"segmentIds\",type:\"tensor\"}]}];var Nk={};Kt(Nk,{json:()=>LQ});var LQ=[{tfOpName:\"FFT\",category:\"spectral\",inputs:[{start:0,name:\"x\",type:\"tensor\"}]},{tfOpName:\"IFFT\",category:\"spectral\",inputs:[{start:0,name:\"x\",type:\"tensor\"}]},{tfOpName:\"RFFT\",category:\"spectral\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"fft_length\",type:\"number\",notSupported:!0}]},{tfOpName:\"IRFFT\",category:\"spectral\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"fft_length\",type:\"number\",notSupported:!0}]}];var kk={};Kt(kk,{json:()=>zQ});var zQ=[{tfOpName:\"StaticRegexReplace\",category:\"string\",inputs:[{start:0,name:\"input\",type:\"tensor\"}],attrs:[{tfName:\"pattern\",name:\"pattern\",type:\"string\"},{tfName:\"rewrite\",name:\"rewrite\",type:\"string\"},{tfName:\"replace_global\",name:\"replaceGlobal\",type:\"bool\"}]},{tfOpName:\"StringNGrams\",category:\"string\",inputs:[{start:0,name:\"data\",type:\"tensor\"},{start:1,name:\"dataSplits\",type:\"tensor\"}],attrs:[{tfName:\"separator\",name:\"separator\",type:\"string\"},{tfName:\"ngram_widths\",name:\"nGramWidths\",type:\"number[]\"},{tfName:\"left_pad\",name:\"leftPad\",type:\"string\"},{tfName:\"right_pad\",name:\"rightPad\",type:\"string\"},{tfName:\"pad_width\",name:\"padWidth\",type:\"number\"},{tfName:\"preserve_short_sequences\",name:\"preserveShortSequences\",type:\"bool\"}],outputs:[\"ngrams\",\"ngrams_splits\"]},{tfOpName:\"StringSplit\",category:\"string\",inputs:[{start:0,name:\"input\",type:\"tensor\"},{start:1,name:\"delimiter\",type:\"tensor\"}],attrs:[{tfName:\"skip_empty\",name:\"skipEmpty\",type:\"bool\"}],outputs:[\"indices\",\"values\",\"shape\"]},{tfOpName:\"StringToHashBucketFast\",category:\"string\",inputs:[{start:0,name:\"input\",type:\"tensor\"}],attrs:[{tfName:\"num_buckets\",name:\"numBuckets\",type:\"number\"}]}];var Tk={};Kt(Tk,{json:()=>BQ});var BQ=[{tfOpName:\"Cast\",category:\"transformation\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"SrcT\",name:\"sdtype\",type:\"dtype\",notSupported:!0},{tfName:\"DstT\",name:\"dtype\",type:\"dtype\"}]},{tfOpName:\"ExpandDims\",category:\"transformation\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"axis\",type:\"number\"}]},{tfOpName:\"MirrorPad\",category:\"transformation\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"padding\",type:\"number[]\"}],attrs:[{tfName:\"mode\",name:\"mode\",type:\"string\"}]},{tfOpName:\"Pad\",category:\"transformation\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"padding\",type:\"number[]\"}],attrs:[{tfName:\"constant_value\",name:\"constantValue\",type:\"number\",defaultValue:0}]},{tfOpName:\"PadV2\",category:\"transformation\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"padding\",type:\"number[]\"},{start:2,name:\"constantValue\",type:\"number\",defaultValue:0}]},{tfOpName:\"Reshape\",category:\"transformation\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"shape\",type:\"number[]\"}]},{tfOpName:\"EnsureShape\",category:\"transformation\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"shape\",type:\"number[]\"}]},{tfOpName:\"Squeeze\",category:\"transformation\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"axis\",tfDeprecatedName:\"squeeze_dims\",name:\"axis\",type:\"number[]\"}]},{tfOpName:\"SpaceToBatchND\",category:\"transformation\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"blockShape\",type:\"number[]\"},{start:2,name:\"paddings\",type:\"number[]\"}]},{tfOpName:\"BatchToSpaceND\",category:\"transformation\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"blockShape\",type:\"number[]\"},{start:2,name:\"crops\",type:\"number[]\"}]},{tfOpName:\"DepthToSpace\",category:\"transformation\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"block_size\",name:\"blockSize\",type:\"number\"},{tfName:\"data_format\",name:\"dataFormat\",type:\"string\"}]},{tfOpName:\"BroadcastTo\",category:\"transformation\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"shape\",type:\"number[]\"}],attrs:[]},{tfOpName:\"BroadcastArgs\",category:\"transformation\",inputs:[{start:0,name:\"s0\",type:\"tensor\"},{start:1,name:\"s1\",type:\"tensor\"}],attrs:[]}];var Wh=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let t=[uk,ck,pk,mk,fk,dk,hk,gk,xk,yk,bk,wk,Ik,Ck,vk,Sk,Nk,kk,Tk],e=[].concat(...t.map(n=>n.json));this.opMappers=e.reduce((n,o)=>(n[o.tfOpName]=o,n),{})}transformGraph(t,e={}){let n=t.node,o=[],s=[],i=[],a=n.reduce((h,g)=>(h[g.name]=this.mapNode(g),g.op.startsWith(\"Placeholder\")?o.push(h[g.name]):g.op===\"Const\"?s.push(h[g.name]):(g.input==null||g.input.length===0)&&i.push(h[g.name]),h),{}),u=[],l=[],c={},p={};e!=null&&(c=this.mapSignatureEntries(e.inputs),p=this.mapSignatureEntries(e.outputs));let m=Object.keys(a);m.forEach(h=>{let g=a[h];g.inputNames.forEach((x,b)=>{let[w,,I]=bi(x),N=a[w];if(N.outputs!=null){let E=N.outputs.indexOf(I);if(E!==-1){let A=`${w}:${E}`;g.inputNames[b]=A}}g.inputs.push(N),N.children.push(g)})}),Object.keys(p).length===0?m.forEach(h=>{let g=a[h];g.children.length===0&&l.push(g)}):Object.keys(p).forEach(h=>{let[g]=bi(h),x=a[g];x!=null&&(x.signatureKey=p[h],l.push(x))}),Object.keys(c).length>0?Object.keys(c).forEach(h=>{let[g]=bi(h),x=a[g];x&&(x.signatureKey=c[h],u.push(x))}):u=o;let f={};t.library!=null&&t.library.function!=null&&(f=t.library.function.reduce((h,g)=>(h[g.signature.name]=this.mapFunction(g),h),{}));let d={nodes:a,inputs:u,outputs:l,weights:s,placeholders:o,signature:e,functions:f};return i.length>0&&(d.initNodes=i),d}mapSignatureEntries(t){return Object.keys(t||{}).reduce((e,n)=>(e[t[n].name]=n,e),{})}mapNode(t){let e=Vb(t.op)||this.opMappers[t.op]||{};t.attr==null&&(t.attr={});let n={name:t.name,op:t.op,category:e.category,inputNames:(t.input||[]).map(o=>o.startsWith(\"^\")?o.slice(1):o),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:t.attr,outputs:e.outputs};return e.inputs!=null&&(n.inputParams=e.inputs.reduce((o,s)=>(o[s.name]={type:s.type,inputIndexStart:s.start,inputIndexEnd:s.end},o),{})),e.attrs!=null&&(n.attrParams=e.attrs.reduce((o,s)=>{let i=s.type,a;switch(s.type){case\"string\":a=Wb(t.attr,s.tfName,s.defaultValue),a===void 0&&s.tfDeprecatedName&&(a=Wb(t.attr,s.tfDeprecatedName,s.defaultValue));break;case\"string[]\":a=Yb(t.attr,s.tfName,s.defaultValue),a===void 0&&s.tfDeprecatedName&&(a=Yb(t.attr,s.tfDeprecatedName,s.defaultValue));break;case\"number\":a=Hb(t.attr,s.tfName,s.defaultValue||0),a===void 0&&s.tfDeprecatedName&&(a=Hb(t.attr,s.tfDeprecatedName,s.defaultValue));break;case\"number[]\":a=Xb(t.attr,s.tfName,s.defaultValue),a===void 0&&s.tfDeprecatedName&&(a=Xb(t.attr,s.tfDeprecatedName,s.defaultValue));break;case\"bool\":a=Ub(t.attr,s.tfName,s.defaultValue),a===void 0&&s.tfDeprecatedName&&(a=Ub(t.attr,s.tfDeprecatedName,s.defaultValue));break;case\"bool[]\":a=Jb(t.attr,s.tfName,s.defaultValue),a===void 0&&s.tfDeprecatedName&&(a=Jb(t.attr,s.tfDeprecatedName,s.defaultValue));break;case\"shape\":a=jb(t.attr,s.tfName,s.defaultValue),a===void 0&&s.tfDeprecatedName&&(a=jb(t.attr,s.tfDeprecatedName,s.defaultValue));break;case\"shape[]\":a=Zb(t.attr,s.tfName,s.defaultValue),a===void 0&&s.tfDeprecatedName&&(a=Zb(t.attr,s.tfDeprecatedName,s.defaultValue));break;case\"dtype\":a=qb(t.attr,s.tfName,s.defaultValue),a===void 0&&s.tfDeprecatedName&&(a=qb(t.attr,s.tfDeprecatedName,s.defaultValue));break;case\"dtype[]\":a=Kb(t.attr,s.tfName,s.defaultValue),a===void 0&&s.tfDeprecatedName&&(a=Kb(t.attr,s.tfDeprecatedName,s.defaultValue));break;case\"func\":a=cF(t.attr,s.tfName,s.defaultValue),a===void 0&&s.tfDeprecatedName&&(a=cF(t.attr,s.tfDeprecatedName,s.defaultValue));break;case\"tensor\":case\"tensors\":break;default:throw new Error(`Unsupported param type: ${s.type} for op: ${t.op}`)}return o[s.name]={value:a,type:i},o},{})),n}mapFunction(t){let e=t.nodeDef,n=[],o=[],s={};e!=null&&(s=e.reduce((p,m)=>(p[m.name]=this.mapNode(m),m.op===\"Const\"&&o.push(p[m.name]),p),{}));let i=[],a=[];t.signature.inputArg.forEach(p=>{let[m]=bi(p.name),f={name:m,op:\"Placeholder\",inputs:[],inputNames:[],category:\"graph\",inputParams:{},attrParams:{dtype:{value:_k(p.type),type:\"dtype\"}},children:[]};f.signatureKey=p.name,i.push(f),s[m]=f}),Object.keys(s).forEach(p=>{let m=s[p];m.inputNames.forEach((f,d)=>{let[h,,g]=bi(f),x=s[h];if(x.outputs!=null){let b=x.outputs.indexOf(g);if(b!==-1){let w=`${h}:${b}`;m.inputNames[d]=w}}m.inputs.push(x),x.children.push(m)})});let l=t.ret;t.signature.outputArg.forEach(p=>{let[m,f]=bi(l[p.name]),d=s[m];d!=null&&(d.defaultOutput=f,a.push(d))});let c=this.mapArgsToSignature(t);return{nodes:s,inputs:i,outputs:a,weights:o,placeholders:n,signature:c}}mapArgsToSignature(t){return{methodName:t.signature.name,inputs:t.signature.inputArg.reduce((e,n)=>(e[n.name]=this.mapArgToTensorInfo(n),e),{}),outputs:t.signature.outputArg.reduce((e,n)=>(e[n.name]=this.mapArgToTensorInfo(n,t.ret),e),{})}}mapArgToTensorInfo(t,e){let n=t.name;return e!=null&&(n=e[n]),{name:n,dtype:t.type}}};function VQ(r){let t=L().global;if(typeof t.atob!=\"undefined\")return t.atob(r);if(typeof Buffer!=\"undefined\")return new Buffer(r,\"base64\").toString();throw new Error(\"Unable to decode base64 in this environment. Missing built-in atob() or Buffer()\")}function pF(r,t){let e=Array.isArray(r)?String.fromCharCode.apply(null,r):VQ(r);return t?e:e.toLowerCase()}function Wb(r,t,e,n=!1){let o=r[t];return o!=null?pF(o.s,n):e}function Ub(r,t,e){let n=r[t];return n?n.b:e}function Hb(r,t,e){let n=r[t]||{},o=n.i!=null?n.i:n.f!=null?n.f:e;return typeof o==\"number\"?o:parseInt(o,10)}function _k(r){switch(typeof r==\"string\"&&(r=_n[r]),r){case _n.DT_FLOAT:case _n.DT_HALF:return\"float32\";case _n.DT_INT32:case _n.DT_INT64:case _n.DT_INT8:case _n.DT_UINT8:return\"int32\";case _n.DT_BOOL:return\"bool\";case _n.DT_DOUBLE:return\"float32\";case _n.DT_STRING:return\"string\";case _n.DT_COMPLEX64:case _n.DT_COMPLEX128:return\"complex64\";default:return null}}function cF(r,t,e){let n=r[t];return n&&n.func?n.func.name:e}function qb(r,t,e){let n=r[t];return n&&n.type?_k(n.type):e}function Kb(r,t,e){let n=r[t];return n&&n.list&&n.list.type?n.list.type.map(o=>_k(o)):e}function mF(r){if(!r.unknownRank)return r.dim!=null?r.dim.map(t=>typeof t.size==\"number\"?t.size:parseInt(t.size,10)):[]}function jb(r,t,e){let n=r[t];return n&&n.shape?mF(n.shape):e}function Xb(r,t,e){let n=r[t];return n?((n.list.f&&n.list.f.length?n.list.f:n.list.i)||[]).map(o=>typeof o==\"number\"?o:parseInt(o,10)):e}function Yb(r,t,e,n=!1){let o=r[t];return o&&o.list&&o.list.s?o.list.s.map(s=>pF(s,n)):e}function Zb(r,t,e){let n=r[t];return n&&n.list&&n.list.shape?n.list.shape.map(o=>mF(o)):e}function Jb(r,t,e){let n=r[t];return n&&n.list&&n.list.b?n.list.b:e}var Qb=class{constructor(t,e,n){this.node=t,this.tensorMap=e,this.context=n,this.inputs=[],this.attrs={},this.inputs=t.inputNames.map(o=>this.getInput(o)),t.rawAttrs!=null&&(this.attrs=Object.keys(t.rawAttrs).reduce((o,s)=>(o[s]=this.getAttr(s),o),{}))}getInput(t){return pr(t,this.tensorMap,this.context)}getAttr(t,e){let n=this.node.rawAttrs[t];if(n.tensor!=null)return pr(t,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return Hb(this.node.rawAttrs,t,e);if(n.s!=null)return Wb(this.node.rawAttrs,t,e);if(n.b!=null)return Ub(this.node.rawAttrs,t,e);if(n.shape!=null)return jb(this.node.rawAttrs,t,e);if(n.type!=null)return qb(this.node.rawAttrs,t,e);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return Xb(this.node.rawAttrs,t,e);if(n.list.s!=null)return Yb(this.node.rawAttrs,t,e);if(n.list.shape!=null)return Zb(this.node.rawAttrs,t,e);if(n.list.b!=null)return Jb(this.node.rawAttrs,t,e);if(n.list.type!=null)return Kb(this.node.rawAttrs,t,e)}return e}};var ae={};Kt(ae,{OP_SCOPE_SUFFIX:()=>V0,abs:()=>_e,acos:()=>fx,acosh:()=>dx,add:()=>K,addN:()=>EE,all:()=>tm,any:()=>cc,argMax:()=>ra,argMin:()=>hx,asin:()=>gx,asinh:()=>xx,atan:()=>yx,atan2:()=>bx,atanh:()=>wx,avgPool:()=>xu,avgPool3d:()=>Ix,basicLSTMCell:()=>$E,batchNorm:()=>oa,batchNorm2d:()=>Cx,batchNorm3d:()=>vx,batchNorm4d:()=>Sx,batchToSpaceND:()=>yu,bincount:()=>Nx,bitwiseAnd:()=>FE,booleanMaskAsync:()=>q5,broadcastArgs:()=>OE,broadcastTo:()=>sa,buffer:()=>wt,cast:()=>J,ceil:()=>kx,clipByValue:()=>vr,clone:()=>un,complex:()=>Sn,concat:()=>ie,concat1d:()=>Tx,concat2d:()=>_x,concat3d:()=>Ex,concat4d:()=>Ax,conv1d:()=>rm,conv2d:()=>Nn,conv2dTranspose:()=>om,conv3d:()=>Dx,conv3dTranspose:()=>Rx,cos:()=>bu,cosh:()=>sm,cosineWindow:()=>xh,cumprod:()=>mc,cumsum:()=>im,denseBincount:()=>mh,depthToSpace:()=>Fx,depthwiseConv2d:()=>ia,diag:()=>ME,dilation2d:()=>Ox,div:()=>ut,divNoNan:()=>Mx,dot:()=>Px,dropout:()=>dN,einsum:()=>wu,elu:()=>aa,enclosingPowerOfTwo:()=>hN,ensureShape:()=>LE,equal:()=>$r,erf:()=>am,euclideanNorm:()=>Lx,exp:()=>Ke,expandDims:()=>je,expm1:()=>zx,eye:()=>fc,fft:()=>Au,fill:()=>Co,floor:()=>la,floorDiv:()=>Qp,fused:()=>Ru,gather:()=>ua,gatherND:()=>r8,greater:()=>Re,greaterEqual:()=>cn,ifft:()=>wl,imag:()=>Iu,image:()=>fn,inTopKAsync:()=>s8,irfft:()=>bm,isFinite:()=>Bx,isInf:()=>Vx,isNaN:()=>Gx,leakyRelu:()=>Cu,less:()=>yl,lessEqual:()=>Vn,linalg:()=>xN,linspace:()=>VE,localResponseNormalization:()=>Wx,log:()=>Nr,log1p:()=>vu,logSigmoid:()=>qx,logSoftmax:()=>lm,logSumExp:()=>Su,logicalAnd:()=>Fr,logicalNot:()=>Nu,logicalOr:()=>um,logicalXor:()=>Kx,losses:()=>aY,lowerBound:()=>GE,matMul:()=>Bt,max:()=>Sr,maxPool:()=>ku,maxPool3d:()=>Xx,maxPoolWithArgmax:()=>WE,maximum:()=>kn,mean:()=>Ne,meshgrid:()=>UE,min:()=>gl,minimum:()=>lo,mirrorPad:()=>Yx,mod:()=>Zx,moments:()=>dc,movingAverage:()=>X5,mul:()=>$,multiRNNCell:()=>HE,multinomial:()=>qE,neg:()=>Ut,norm:()=>xl,notEqual:()=>ci,oneHot:()=>ca,ones:()=>ar,onesLike:()=>wr,op:()=>k,outerProduct:()=>KE,pad:()=>mn,pad1d:()=>jE,pad2d:()=>XE,pad3d:()=>YE,pad4d:()=>ZE,pool:()=>Jx,pow:()=>qr,prelu:()=>_u,print:()=>mx,prod:()=>Qx,raggedGather:()=>JE,raggedRange:()=>QE,raggedTensorToTensor:()=>tA,rand:()=>eA,randomGamma:()=>CA,randomNormal:()=>xc,randomStandardNormal:()=>vA,randomUniform:()=>Gn,randomUniformInt:()=>SA,range:()=>pa,real:()=>bl,reciprocal:()=>sy,relu:()=>Or,relu6:()=>cm,reshape:()=>R,reverse:()=>dr,reverse1d:()=>NA,reverse2d:()=>kA,reverse3d:()=>TA,reverse4d:()=>_A,rfft:()=>Du,round:()=>pm,rsqrt:()=>mm,scalar:()=>pt,scatterND:()=>Z5,searchSorted:()=>dh,selu:()=>fm,separableConv2d:()=>dm,setdiff1dAsync:()=>EA,sigmoid:()=>en,sign:()=>iy,signal:()=>iY,sin:()=>hm,sinh:()=>gm,slice:()=>Ot,slice1d:()=>xm,slice2d:()=>gh,slice3d:()=>ym,slice4d:()=>yc,softmax:()=>Eu,softplus:()=>ui,spaceToBatchND:()=>Tu,sparse:()=>lY,sparseToDense:()=>t8,spectral:()=>sY,split:()=>hr,sqrt:()=>ge,square:()=>Wt,squaredDifference:()=>wm,squeeze:()=>Wn,stack:()=>Fe,step:()=>So,stridedSlice:()=>ay,string:()=>uY,sub:()=>at,sum:()=>mt,tan:()=>ly,tanh:()=>li,tensor:()=>ir,tensor1d:()=>Oe,tensor2d:()=>pi,tensor3d:()=>uy,tensor4d:()=>AA,tensor5d:()=>DA,tensor6d:()=>$A,tensorScatterUpdate:()=>FA,tile:()=>Rr,topk:()=>cy,transpose:()=>Vt,truncatedNormal:()=>Cm,unique:()=>py,unsortedSegmentSum:()=>vm,unstack:()=>gr,upperBound:()=>OA,variable:()=>my,where:()=>Ie,whereAsync:()=>dy,zeros:()=>ke,zerosLike:()=>vt});var fF=(r,t,e,n=ae)=>{switch(r.op){case\"BiasAdd\":case\"AddV2\":case\"Add\":return[n.add(v(\"a\",r,t,e),v(\"b\",r,t,e))];case\"AddN\":return[n.addN(v(\"tensors\",r,t,e))];case\"FloorMod\":case\"Mod\":return[n.mod(v(\"a\",r,t,e),v(\"b\",r,t,e))];case\"Mul\":return[n.mul(v(\"a\",r,t,e),v(\"b\",r,t,e))];case\"RealDiv\":case\"Div\":return[n.div(v(\"a\",r,t,e),v(\"b\",r,t,e))];case\"DivNoNan\":return[n.divNoNan(v(\"a\",r,t,e),v(\"b\",r,t,e))];case\"FloorDiv\":return[n.floorDiv(v(\"a\",r,t,e),v(\"b\",r,t,e))];case\"Sub\":return[n.sub(v(\"a\",r,t,e),v(\"b\",r,t,e))];case\"Minimum\":return[n.minimum(v(\"a\",r,t,e),v(\"b\",r,t,e))];case\"Maximum\":return[n.maximum(v(\"a\",r,t,e),v(\"b\",r,t,e))];case\"Pow\":return[n.pow(v(\"a\",r,t,e),v(\"b\",r,t,e))];case\"SquaredDifference\":return[n.squaredDifference(v(\"a\",r,t,e),v(\"b\",r,t,e))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var dF=(r,t,e,n=ae)=>{switch(r.op){case\"Abs\":case\"ComplexAbs\":return[n.abs(v(\"x\",r,t,e))];case\"Acos\":return[n.acos(v(\"x\",r,t,e))];case\"Acosh\":return[n.acosh(v(\"x\",r,t,e))];case\"Asin\":return[n.asin(v(\"x\",r,t,e))];case\"Asinh\":return[n.asinh(v(\"x\",r,t,e))];case\"Atan\":return[n.atan(v(\"x\",r,t,e))];case\"Atan2\":return[n.atan2(v(\"x\",r,t,e),v(\"y\",r,t,e))];case\"Atanh\":return[n.atanh(v(\"x\",r,t,e))];case\"Ceil\":return[n.ceil(v(\"x\",r,t,e))];case\"Complex\":return[n.complex(v(\"real\",r,t,e),v(\"imag\",r,t,e))];case\"Cos\":return[n.cos(v(\"x\",r,t,e))];case\"Cosh\":return[n.cosh(v(\"x\",r,t,e))];case\"Elu\":return[n.elu(v(\"x\",r,t,e))];case\"Erf\":return[n.erf(v(\"x\",r,t,e))];case\"Exp\":return[n.exp(v(\"x\",r,t,e))];case\"Expm1\":return[n.expm1(v(\"x\",r,t,e))];case\"Floor\":return[n.floor(v(\"x\",r,t,e))];case\"Log\":return[n.log(v(\"x\",r,t,e))];case\"Log1p\":return[n.log1p(v(\"x\",r,t,e))];case\"Imag\":return[n.imag(v(\"x\",r,t,e))];case\"Neg\":return[n.neg(v(\"x\",r,t,e))];case\"Reciprocal\":return[n.reciprocal(v(\"x\",r,t,e))];case\"Real\":return[n.real(v(\"x\",r,t,e))];case\"Relu\":return[n.relu(v(\"x\",r,t,e))];case\"Round\":return[n.round(v(\"x\",r,t,e))];case\"Selu\":return[n.selu(v(\"x\",r,t,e))];case\"Sigmoid\":return[n.sigmoid(v(\"x\",r,t,e))];case\"Sin\":return[n.sin(v(\"x\",r,t,e))];case\"Sign\":return[n.sign(v(\"x\",r,t,e))];case\"Sinh\":return[n.sinh(v(\"x\",r,t,e))];case\"Softplus\":return[n.softplus(v(\"x\",r,t,e))];case\"Sqrt\":return[n.sqrt(v(\"x\",r,t,e))];case\"Square\":return[n.square(v(\"x\",r,t,e))];case\"Tanh\":return[n.tanh(v(\"x\",r,t,e))];case\"Tan\":return[n.tan(v(\"x\",r,t,e))];case\"ClipByValue\":return[n.clipByValue(v(\"x\",r,t,e),v(\"clipValueMin\",r,t,e),v(\"clipValueMax\",r,t,e))];case\"Relu6\":return[n.relu6(v(\"x\",r,t,e))];case\"Rsqrt\":return[n.rsqrt(pr(r.inputNames[0],t,e))];case\"LeakyRelu\":return[n.leakyRelu(v(\"x\",r,t,e),v(\"alpha\",r,t,e))];case\"Prelu\":return[n.prelu(v(\"x\",r,t,e),v(\"alpha\",r,t,e))];case\"IsNan\":return[n.isNaN(pr(r.inputNames[0],t,e))];case\"IsInf\":return[n.isInf(pr(r.inputNames[0],t,e))];case\"IsFinite\":return[n.isFinite(pr(r.inputNames[0],t,e))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};function Hn(r,t,e=\"\"){if(!(typeof r==\"number\"||typeof t==\"number\")){y.assert(r.length===t.length,()=>e+` Shapes ${r} and ${t} must match`);for(let n=0;ne+` Shapes ${r} and ${t} must match`)}}}function hF(r){return!(typeof r==\"number\"||r.some(t=>t<0))}function ed(r,t,e){let n=tw(r,e),o=!hF(n);if(o&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${n}`);if(o&&t.forEach(s=>{n=tw(s.shape,n)}),!hF(n))throw new Error(`Non-fully-defined elementShape: ${n}`);return n}function tw(r,t){if(typeof r==\"number\")return t;if(typeof t==\"number\")return r;if(r.length!==t.length)throw new Error(`Incompatible ranks during merge: ${r} vs. ${t}`);let e=[];for(let n=0;n=0&&s>=0&&o!==s)throw new Error(`Incompatible shape during merge: ${r} vs. ${t}`);e[n]=o>=0?o:s}return e}var ew=class{constructor(t,e,n,o,s,i,a){this.name=t,this.dtype=e,this.maxSize=n,this.elementShape=o,this.identicalElementShapes=s,this.dynamicSize=i,this.clearAfterRead=a,this.tensors=[],this.closed_=!1,this.idTensor=pt(0),De(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(t){this.tensors.forEach(e=>{(t==null||!t.has(e.tensor.id))&&e.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(t<0||t>=this.size())throw new Error(`Tried to read from index ${t}, but array size is: ${this.size()}`);let e=this.tensors[t];if(e.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${t} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(e.cleared=!0),e.read=!0,e.tensor}readMany(t){return t.map(e=>this.read(e))}write(t,e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(t<0||!this.dynamicSize&&t>=this.maxSize)throw new Error(`Tried to write to index ${t}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[t]||{};if(e.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${t},\n because the value dtype is ${e.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=e.shape),Hn(this.elementShape,e.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${t}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${t}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${t}, because it has already been written.`);n.tensor=e,De(e),n.written=!0,this.tensors[t]=n}writeMany(t,e){if(t.length!==e.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${t.length} is not the same as tensors size: ${e.length}.`);t.forEach((n,o)=>this.write(n,e[o]))}gather(t,e){if(e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${e}`);if(t)t=t.slice(0,this.size());else{t=[];for(let o=0;o=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(t,gr(e,0))}split(t,e){if(e.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${e.dtype}`);let n=0,o=t.map(u=>(n+=u,n));if(n!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to\n tensor.shape[0], but sum of lengths is\n ${n}, and tensor's shape is: ${e.shape}`);if(!this.dynamicSize&&t.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${t.length}), and the TensorArray is not marked as dynamically resizeable`);let s=n===0?0:e.size/n,i=[];B(()=>{e=R(e,[1,n,s]);for(let u=0;u{if(n!==s.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${s.dtype}`);Hn(e,s.shape,\"TensorList shape mismatch: \"),De(s)}),this.idTensor=pt(0),this.maxNumElements=o,De(this.idTensor)}copy(){return new r([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(t){this.tensors.forEach(e=>{(t==null||!t.has(e.id))&&e.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(t,e,n=-1){if(e!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);Hn(t,this.elementShape,\"TensorList shape mismatch: \");let o=ed(this.elementShape,this.tensors,t);return B(()=>{let s=this.tensors.map(i=>R(i,o));return Fe(s,0)})}popBack(t,e){if(e!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error(\"Trying to pop from an empty list.\");let n=ed(this.elementShape,this.tensors,t),o=this.tensors.pop();return o.kept=!1,Hn(o.shape,t,\"TensorList shape mismatch: \"),R(o,n)}pushBack(t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(Hn(t.shape,this.elementShape,\"TensorList shape mismatch: \"),this.maxNumElements===this.size())throw new Error(\"Trying to push element into a full list.\");De(t),this.tensors.push(t)}resize(t){if(t<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${t}`);if(this.maxNumElements!==-1&&t>this.maxNumElements)throw new Error(`TensorListResize input size ${t} is greater maxNumElement ${this.maxNumElements}.`);let e=new r([],this.elementShape,this.elementDtype,this.maxNumElements);e.tensors.length=t;for(let n=0;nthis.tensors.length)throw new Error(`Trying to access element ${t} in a list with ${this.tensors.length} elements.`);if(this.tensors[t]==null)throw new Error(`element at index ${t} is null.`);Hn(this.tensors[t].shape,e,\"TensorList shape mismatch: \");let o=ed(this.elementShape,this.tensors,e);return R(this.tensors[t],o)}setItem(t,e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(t<0||this.maxNumElements!==-1&&t>=this.maxNumElements)throw new Error(`Trying to set element ${t} in a list with max ${this.maxNumElements} elements.`);Hn(this.elementShape,e.shape,\"TensorList shape mismatch: \"),De(e),this.tensors[t]!=null&&(this.tensors[t].kept=!1),this.tensors[t]=e}gather(t,e,n){if(e!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e}, but list elements ${this.elementDtype}`);Hn(this.elementShape,n,\"TensorList shape mismatch: \"),t=t.slice(0,this.size());let o=ed(this.elementShape,this.tensors,n);return t.length===0?ir([],[0].concat(o)):B(()=>{let s=t.map(i=>R(this.tensors[i],o));return Fe(s,0)})}concat(t,e){if(t&&t!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${t}`);Hn(this.elementShape,e,\"TensorList shape mismatch: \");let n=ed(this.elementShape,this.tensors,e);return this.size()===0?ir([],[0].concat(n)):B(()=>{let o=this.tensors.map(s=>R(s,n));return ie(o,0)})}};function gF(r,t,e){let n=r.dtype;if(r.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${r.shape}`);if(r.dtype!==e)throw new Error(`Invalid data types; op elements ${r.dtype}, but list elements ${e}`);let o=r.shape.slice(1);Hn(o,t,\"TensorList shape mismatch: \");let s=gr(r);return new rd(s,t,n)}function xF(r,t,e,n){return new rd([],r,t,n)}function yF(r,t,e,n){if(t.length!==r.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${r.shape[0]}`);let o=Math.max(...t);if(n!=null&&n!==-1&&o>=n)throw new Error(`Max index must be < array size (${o} vs. ${n})`);let s=new rd([],e,r.dtype,n),i=gr(r,0);return t.forEach((a,u)=>{s.setItem(a,i[u])}),s}function bF(r,t,e){let n=0,o=t.map(c=>(n+=c,n));if(n!==r.shape[0])throw new Error(`Expected sum of lengths to be equal to\n tensor.shape[0], but sum of lengths is\n ${n}, and tensor's shape is: ${r.shape}`);let s=r.shape.slice(1),i=tw(s,e),a=n===0?0:r.size/n,u=B(()=>{let c=[];r=R(r,[1,n,a]);for(let p=0;p{switch(r.op){case\"If\":case\"StatelessIf\":{let n=v(\"thenBranch\",r,t,e),o=v(\"elseBranch\",r,t,e),s=v(\"cond\",r,t,e),i=v(\"args\",r,t,e);return(await s.data())[0]?e.functionMap[n].executeFunctionAsync(i,e.tensorArrayMap,e.tensorListMap):e.functionMap[o].executeFunctionAsync(i,e.tensorArrayMap,e.tensorListMap)}case\"While\":case\"StatelessWhile\":{let n=v(\"body\",r,t,e),o=v(\"cond\",r,t,e),s=v(\"args\",r,t,e),i=await e.functionMap[o].executeFunctionAsync(s,e.tensorArrayMap,e.tensorListMap),a=s.map(c=>c.id),u=await i[0].data();i.forEach(c=>{!c.kept&&a.indexOf(c.id)===-1&&c.dispose()});let l=s;for(;u[0];){let c=l;l=await e.functionMap[n].executeFunctionAsync(l,e.tensorArrayMap,e.tensorListMap);let p=l.map(f=>f.id);c.forEach(f=>{!f.kept&&a.indexOf(f.id)===-1&&p.indexOf(f.id)===-1&&f.dispose()});let m=await e.functionMap[o].executeFunctionAsync(l,e.tensorArrayMap,e.tensorListMap);u=await m[0].data(),m.forEach(f=>{!f.kept&&a.indexOf(f.id)===-1&&p.indexOf(f.id)===-1&&f.dispose()})}return l}case\"LoopCond\":{let n=v(\"pred\",r,t,e);return[wi(n)]}case\"Switch\":{let n=v(\"pred\",r,t,e),o=v(\"data\",r,t,e);return o.kept||(o=wi(o)),(await n.data())[0]?[void 0,o]:[o,void 0]}case\"Merge\":{let n=r.inputNames.find(o=>pr(o,t,e)!==void 0);if(n){let o=pr(n,t,e);return[wi(o)]}return}case\"Enter\":{let n=v(\"frameName\",r,t,e),o=v(\"tensor\",r,t,e);return e.enterFrame(n),[wi(o)]}case\"Exit\":{let n=v(\"tensor\",r,t,e);return e.exitFrame(),[wi(n)]}case\"NextIteration\":{let n=v(\"tensor\",r,t,e);return e.nextIteration(),[wi(n)]}case\"TensorArrayV3\":{let n=v(\"size\",r,t,e),o=v(\"dtype\",r,t,e),s=v(\"elementShape\",r,t,e),i=v(\"dynamicSize\",r,t,e),a=v(\"clearAfterRead\",r,t,e),u=v(\"identicalElementShapes\",r,t,e),l=v(\"name\",r,t,e),c=new ew(l,o,n,s,u,i,a);return e.addTensorArray(c),[c.idTensor,pt(1)]}case\"TensorArrayWriteV3\":{let n=v(\"tensorArrayId\",r,t,e),o=v(\"index\",r,t,e),s=v(\"tensor\",r,t,e),i=e.getTensorArray(n.id);return i.write(o,s),[i.idTensor]}case\"TensorArrayReadV3\":{let n=v(\"tensorArrayId\",r,t,e),o=v(\"index\",r,t,e);return[e.getTensorArray(n.id).read(o)]}case\"TensorArrayGatherV3\":{let n=v(\"tensorArrayId\",r,t,e),o=v(\"indices\",r,t,e),s=v(\"dtype\",r,t,e);return[e.getTensorArray(n.id).gather(o,s)]}case\"TensorArrayScatterV3\":{let n=v(\"tensorArrayId\",r,t,e),o=v(\"indices\",r,t,e),s=v(\"tensor\",r,t,e),i=e.getTensorArray(n.id);return i.scatter(o,s),[i.idTensor]}case\"TensorArrayConcatV3\":{let n=v(\"tensorArrayId\",r,t,e),o=e.getTensorArray(n.id),s=v(\"dtype\",r,t,e);return[o.concat(s)]}case\"TensorArraySplitV3\":{let n=v(\"tensorArrayId\",r,t,e),o=v(\"tensor\",r,t,e),s=v(\"lengths\",r,t,e),i=e.getTensorArray(n.id);return i.split(s,o),[i.idTensor]}case\"TensorArraySizeV3\":{let n=v(\"tensorArrayId\",r,t,e),o=e.getTensorArray(n.id);return[pt(o.size(),\"int32\")]}case\"TensorArrayCloseV3\":{let n=v(\"tensorArrayId\",r,t,e),o=e.getTensorArray(n.id);return o.clearAndClose(),[o.idTensor]}case\"TensorListSetItem\":{let n=v(\"tensorListId\",r,t,e),o=v(\"index\",r,t,e),s=v(\"tensor\",r,t,e),i=e.getTensorList(n.id);return i.setItem(o,s),[i.idTensor]}case\"TensorListGetItem\":{let n=v(\"tensorListId\",r,t,e),o=v(\"index\",r,t,e),s=v(\"elementShape\",r,t,e),i=v(\"elementDType\",r,t,e);return[e.getTensorList(n.id).getItem(o,s,i)]}case\"TensorListScatterV2\":case\"TensorListScatter\":{let n=v(\"indices\",r,t,e),o=v(\"tensor\",r,t,e),s=v(\"elementShape\",r,t,e),i=v(\"numElements\",r,t,e),a=yF(o,n,s,i);return e.addTensorList(a),[a.idTensor]}case\"TensorListReserve\":case\"EmptyTensorList\":{let n=v(\"elementShape\",r,t,e),o=v(\"elementDType\",r,t,e),s;r.op===\"TensorListReserve\"?s=\"numElements\":s=\"maxNumElements\";let i=v(s,r,t,e),a=r.op===\"TensorListReserve\"?-1:i,u=xF(n,o,i,a);return e.addTensorList(u),[u.idTensor]}case\"TensorListGather\":{let n=v(\"tensorListId\",r,t,e),o=v(\"indices\",r,t,e),s=v(\"elementShape\",r,t,e),i=v(\"elementDType\",r,t,e);return[e.getTensorList(n.id).gather(o,i,s)]}case\"TensorListStack\":{let n=v(\"tensorListId\",r,t,e),o=v(\"elementShape\",r,t,e),s=v(\"elementDType\",r,t,e),i=v(\"numElements\",r,t,e);return[e.getTensorList(n.id).stack(o,s,i)]}case\"TensorListFromTensor\":{let n=v(\"tensor\",r,t,e),o=v(\"elementShape\",r,t,e),s=v(\"elementDType\",r,t,e),i=gF(n,o,s);return e.addTensorList(i),[i.idTensor]}case\"TensorListConcat\":case\"TensorListConcatV2\":{let n=v(\"tensorListId\",r,t,e),o=e.getTensorList(n.id),s=v(\"dtype\",r,t,e),i=v(\"elementShape\",r,t,e);return[o.concat(s,i)]}case\"TensorListPushBack\":{let n=v(\"tensorListId\",r,t,e),o=v(\"tensor\",r,t,e),s=e.getTensorList(n.id);return s.pushBack(o),[s.idTensor]}case\"TensorListPopBack\":{let n=v(\"tensorListId\",r,t,e),o=v(\"elementShape\",r,t,e),s=v(\"elementDType\",r,t,e);return[e.getTensorList(n.id).popBack(o,s)]}case\"TensorListSplit\":{let n=v(\"tensor\",r,t,e),o=v(\"elementShape\",r,t,e),s=v(\"lengths\",r,t,e),i=bF(n,s,o);return e.addTensorList(i),[i.idTensor]}case\"TensorListLength\":{let n=v(\"tensorListId\",r,t,e),o=e.getTensorList(n.id);return[pt(o.size(),\"int32\")]}case\"TensorListResize\":{let n=v(\"tensorListId\",r,t,e),o=v(\"size\",r,t,e),i=e.getTensorList(n.id).resize(o);return e.addTensorList(i),[i.idTensor]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};function IF(r,t,e){let[n,o]=v(\"fusedOps\",r,t,e),s=n===\"biasadd\",i=!s,a=o===\"prelu\",u=n===\"fusedbatchnorm\",l=v(\"numArgs\",r,t,e);if(s){if(a&&l!==2)throw new Error(\"FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.\");if(!a&&s&&l!==1)throw new Error(\"FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.\")}if(u)throw new Error(\"FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported\");let c=v(\"strides\",r,t,e),p=Gh(r,t,e),m=v(\"dataFormat\",r,t,e).toUpperCase(),f=v(\"dilations\",r,t,e),[d,h]=v(\"args\",r,t,e);i&&(h=d,d=void 0);let g=v(\"leakyreluAlpha\",r,t,e);return{stride:c,pad:p,dataFormat:m,dilations:f,biasArg:d,preluArg:h,activationFunc:o,leakyreluAlpha:g}}var CF=(r,t,e,n=ae)=>{switch(r.op){case\"Conv1D\":{let o=v(\"stride\",r,t,e),s=v(\"pad\",r,t,e),i=v(\"dataFormat\",r,t,e).toUpperCase(),a=v(\"dilation\",r,t,e);return[n.conv1d(v(\"x\",r,t,e),v(\"filter\",r,t,e),o,s,i,a)]}case\"Conv2D\":{let o=v(\"strides\",r,t,e),s=Gh(r,t,e),i=v(\"dataFormat\",r,t,e).toUpperCase(),a=v(\"dilations\",r,t,e);return[n.conv2d(v(\"x\",r,t,e),v(\"filter\",r,t,e),[o[1],o[2]],s,i,[a[1],a[2]])]}case\"_FusedConv2D\":{let{stride:o,pad:s,dataFormat:i,dilations:a,biasArg:u,preluArg:l,activationFunc:c,leakyreluAlpha:p}=IF(r,t,e);return[n.fused.conv2d({x:v(\"x\",r,t,e),filter:v(\"filter\",r,t,e),strides:[o[1],o[2]],pad:s,dataFormat:i,dilations:[a[1],a[2]],bias:u,activation:c,preluActivationWeights:l,leakyreluAlpha:p})]}case\"FusedDepthwiseConv2dNative\":{let{stride:o,pad:s,dataFormat:i,dilations:a,biasArg:u,preluArg:l,activationFunc:c,leakyreluAlpha:p}=IF(r,t,e);return[n.fused.depthwiseConv2d({x:v(\"x\",r,t,e),filter:v(\"filter\",r,t,e),strides:[o[1],o[2]],pad:s,dataFormat:i,dilations:[a[1],a[2]],bias:u,activation:c,preluActivationWeights:l,leakyreluAlpha:p})]}case\"Conv2DBackpropInput\":case\"Conv2dTranspose\":{let o=v(\"outputShape\",r,t,e),s=v(\"strides\",r,t,e),i=Gh(r,t,e);return[n.conv2dTranspose(v(\"x\",r,t,e),v(\"filter\",r,t,e),o,[s[1],s[2]],i)]}case\"DepthwiseConv2dNative\":case\"DepthwiseConv2d\":{let o=v(\"strides\",r,t,e),s=Gh(r,t,e),i=v(\"dilations\",r,t,e),a=v(\"dataFormat\",r,t,e).toUpperCase();return[n.depthwiseConv2d(v(\"input\",r,t,e),v(\"filter\",r,t,e),[o[1],o[2]],s,a,[i[1],i[2]])]}case\"Conv3D\":{let o=v(\"strides\",r,t,e),s=v(\"pad\",r,t,e),i=v(\"dataFormat\",r,t,e).toUpperCase(),a=v(\"dilations\",r,t,e);return[n.conv3d(v(\"x\",r,t,e),v(\"filter\",r,t,e),[o[1],o[2],o[3]],s,i,[a[1],a[2],a[3]])]}case\"AvgPool\":{let o=v(\"strides\",r,t,e),s=v(\"pad\",r,t,e),i=v(\"kernelSize\",r,t,e);return[n.avgPool(v(\"x\",r,t,e),[i[1],i[2]],[o[1],o[2]],s)]}case\"MaxPool\":{let o=v(\"strides\",r,t,e),s=v(\"pad\",r,t,e),i=v(\"kernelSize\",r,t,e);return[n.maxPool(v(\"x\",r,t,e),[i[1],i[2]],[o[1],o[2]],s)]}case\"MaxPoolWithArgmax\":{let o=v(\"strides\",r,t,e),s=v(\"pad\",r,t,e),i=v(\"kernelSize\",r,t,e),a=v(\"includeBatchInIndex\",r,t,e),{result:u,indexes:l}=n.maxPoolWithArgmax(v(\"x\",r,t,e),[i[1],i[2]],[o[1],o[2]],s,a);return[u,l]}case\"AvgPool3D\":{let o=v(\"strides\",r,t,e),s=v(\"pad\",r,t,e),i=v(\"kernelSize\",r,t,e);return[n.avgPool3d(v(\"x\",r,t,e),[i[1],i[2],i[3]],[o[1],o[2],o[3]],s)]}case\"MaxPool3D\":{let o=v(\"strides\",r,t,e),s=v(\"pad\",r,t,e),i=v(\"kernelSize\",r,t,e);return[n.maxPool3d(v(\"x\",r,t,e),[i[1],i[2],i[3]],[o[1],o[2],o[3]],s)]}case\"Dilation2D\":{let o=v(\"strides\",r,t,e),s=v(\"pad\",r,t,e),i=v(\"dilations\",r,t,e),a=o[1],u=o[2],l=i[1],c=i[2];return[n.dilation2d(v(\"x\",r,t,e),v(\"filter\",r,t,e),[a,u],s,[l,c],\"NHWC\")]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var vF=(r,t,e,n=ae)=>{switch(r.op){case\"Fill\":{let o=v(\"shape\",r,t,e),s=v(\"dtype\",r,t,e),i=v(\"value\",r,t,e);return[n.fill(o,i,s)]}case\"LinSpace\":{let o=v(\"start\",r,t,e),s=v(\"stop\",r,t,e),i=v(\"num\",r,t,e);return[n.linspace(o,s,i)]}case\"Multinomial\":{let o=v(\"logits\",r,t,e),s=v(\"numSamples\",r,t,e),i=v(\"seed\",r,t,e);return[n.multinomial(o,s,i)]}case\"OneHot\":{let o=v(\"indices\",r,t,e),s=v(\"depth\",r,t,e),i=v(\"onValue\",r,t,e),a=v(\"offValue\",r,t,e),u=v(\"dtype\",r,t,e);return[n.oneHot(o,s,i,a,u)]}case\"Ones\":return[n.ones(v(\"shape\",r,t,e),v(\"dtype\",r,t,e))];case\"OnesLike\":return[n.onesLike(v(\"x\",r,t,e))];case\"RandomStandardNormal\":return[n.randomStandardNormal(v(\"shape\",r,t,e),v(\"dtype\",r,t,e),v(\"seed\",r,t,e))];case\"RandomUniform\":return[n.randomUniform(v(\"shape\",r,t,e),v(\"minval\",r,t,e),v(\"maxval\",r,t,e),v(\"dtype\",r,t,e))];case\"RandomUniformInt\":return[n.randomUniformInt(v(\"shape\",r,t,e),v(\"minval\",r,t,e),v(\"maxval\",r,t,e),v(\"seed\",r,t,e))];case\"Range\":{let o=v(\"start\",r,t,e),s=v(\"stop\",r,t,e),i=v(\"step\",r,t,e);return[n.range(o,s,i,v(\"dtype\",r,t,e))]}case\"TruncatedNormal\":{let o=v(\"shape\",r,t,e),s=v(\"mean\",r,t,e),i=v(\"stdDev\",r,t,e),a=v(\"seed\",r,t,e);return[n.truncatedNormal(o,s,i,v(\"dtype\",r,t,e),a)]}case\"Zeros\":return[n.zeros(v(\"shape\",r,t,e),v(\"dtype\",r,t,e))];case\"ZerosLike\":return[n.zerosLike(v(\"x\",r,t,e))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};function Ek(r,t,e){let n=v(\"boxes\",r,t,e),o=v(\"scores\",r,t,e),s=v(\"maxOutputSize\",r,t,e),i=v(\"iouThreshold\",r,t,e),a=v(\"scoreThreshold\",r,t,e),u=v(\"softNmsSigma\",r,t,e);return{boxes:n,scores:o,maxOutputSize:s,iouThreshold:i,scoreThreshold:a,softNmsSigma:u}}var SF=async(r,t,e,n,o=ae)=>{switch(r.op){case\"NonMaxSuppressionV5\":{let{boxes:s,scores:i,maxOutputSize:a,iouThreshold:u,scoreThreshold:l,softNmsSigma:c}=Ek(r,t,e),p=await o.image.nonMaxSuppressionWithScoreAsync(s,i,a,u,l,c);return[p.selectedIndices,p.selectedScores]}case\"NonMaxSuppressionV4\":{let{boxes:s,scores:i,maxOutputSize:a,iouThreshold:u,scoreThreshold:l}=Ek(r,t,e),c=v(\"padToMaxOutputSize\",r,t,e),p=await o.image.nonMaxSuppressionPaddedAsync(s,i,a,u,l,c);return[p.selectedIndices,p.validOutputs]}case\"NonMaxSuppressionV3\":case\"NonMaxSuppressionV2\":{let{boxes:s,scores:i,maxOutputSize:a,iouThreshold:u,scoreThreshold:l}=Ek(r,t,e);return[await o.image.nonMaxSuppressionAsync(s,i,a,u,l)]}case\"Where\":{let s=o.cast(v(\"condition\",r,t,e),\"bool\"),i=[await o.whereAsync(s)];return s.dispose(),i}case\"ListDiff\":return o.setdiff1dAsync(v(\"x\",r,t,e),v(\"y\",r,t,e));default:throw TypeError(`Node type ${r.op} is not implemented`)}};var NF=(r,t,e,n=ae)=>{switch(r.op){case\"LowerBound\":{let o=v(\"sortedSequence\",r,t,e),s=v(\"values\",r,t,e);return[n.lowerBound(o,s)]}case\"TopKV2\":{let o=v(\"x\",r,t,e),s=v(\"k\",r,t,e),i=v(\"sorted\",r,t,e),a=n.topk(o,s,i);return[a.values,a.indices]}case\"UpperBound\":{let o=v(\"sortedSequence\",r,t,e),s=v(\"values\",r,t,e);return[n.upperBound(o,s)]}case\"Unique\":{let o=v(\"x\",r,t,e),s=n.unique(o);return[s.values,s.indices]}case\"UniqueV2\":{let o=v(\"x\",r,t,e),s=v(\"axis\",r,t,e),i=n.unique(o,s);return[i.values,i.indices]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var kF=(r,t,e,n=ae)=>{switch(r.op){case\"Const\":return t[r.name];case\"PlaceholderWithDefault\":let o=v(\"default\",r,t,e);return[pr(r.name,t,e)||o];case\"Placeholder\":return[pr(r.name,t,e)];case\"Identity\":case\"StopGradient\":case\"FakeQuantWithMinMaxVars\":{let c=v(\"x\",r,t,e);return[wi(c)]}case\"IdentityN\":return v(\"x\",r,t,e).map(c=>wi(c));case\"Snapshot\":let s=v(\"x\",r,t,e);return[wi(s)];case\"Shape\":return[n.tensor1d(v(\"x\",r,t,e).shape,\"int32\")];case\"ShapeN\":return v(\"x\",r,t,e).map(c=>n.tensor1d(c.shape));case\"Size\":return[n.scalar(v(\"x\",r,t,e).size,\"int32\")];case\"Rank\":return[n.scalar(v(\"x\",r,t,e).rank,\"int32\")];case\"NoOp\":return[n.scalar(1)];case\"Print\":let i=v(\"x\",r,t,e),a=v(\"data\",r,t,e),u=v(\"message\",r,t,e),l=v(\"summarize\",r,t,e);console.warn(\"The graph has a tf.print() operation,usually used for debugging, which slows down performance.\"),console.log(u);for(let c=0;ct.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return pt(this.size(),\"int32\")}async import(t,e){this.checkKeyAndValueTensor(t,e);let n=await t.data();return this.tensorMap.forEach(o=>o.dispose()),this.tensorMap.clear(),B(()=>{let o=gr(e),s=n.length,i=o.length;y.assert(s===i,()=>`The number of elements doesn't match, keys has ${s} elements, the values has ${i} elements.`);for(let a=0;a{let o=[];for(let s=0;s{switch(r.op){case\"HashTable\":case\"HashTableV2\":{let o=n.getHashTableHandleByName(r.name);if(o!=null)return[o];{let s=v(\"keyDType\",r,t,e),i=v(\"valueDType\",r,t,e),a=new rw(s,i);return n.addHashTable(r.name,a),[a.handle]}}case\"InitializeTable\":case\"InitializeTableV2\":case\"LookupTableImport\":case\"LookupTableImportV2\":{let o=v(\"tableHandle\",r,t,e,n),s=v(\"keys\",r,t,e),i=v(\"values\",r,t,e);return[await n.getHashTableById(o.id).import(s,i)]}case\"LookupTableFind\":case\"LookupTableFindV2\":{let o=v(\"tableHandle\",r,t,e,n),s=v(\"keys\",r,t,e),i=v(\"defaultValue\",r,t,e);return[await n.getHashTableById(o.id).find(s,i)]}case\"LookupTableSize\":case\"LookupTableSizeV2\":{let o=v(\"tableHandle\",r,t,e,n);return[n.getHashTableById(o.id).tensorSize()]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var _F=(r,t,e,n=ae)=>{switch(r.op){case\"ResizeBilinear\":{let o=v(\"images\",r,t,e),s=v(\"size\",r,t,e),i=v(\"alignCorners\",r,t,e),a=v(\"halfPixelCenters\",r,t,e);return[n.image.resizeBilinear(o,[s[0],s[1]],i,a)]}case\"ResizeNearestNeighbor\":{let o=v(\"images\",r,t,e),s=v(\"size\",r,t,e),i=v(\"alignCorners\",r,t,e),a=v(\"halfPixelCenters\",r,t,e);return[n.image.resizeNearestNeighbor(o,[s[0],s[1]],i,a)]}case\"CropAndResize\":{let o=v(\"image\",r,t,e),s=v(\"boxes\",r,t,e),i=v(\"boxInd\",r,t,e),a=v(\"cropSize\",r,t,e),u=v(\"method\",r,t,e),l=v(\"extrapolationValue\",r,t,e);return[n.image.cropAndResize(o,s,i,a,u,l)]}case\"ImageProjectiveTransformV3\":{let o=v(\"images\",r,t,e),s=v(\"transforms\",r,t,e),i=v(\"outputShape\",r,t,e),a=v(\"fillValue\",r,t,e),u=v(\"interpolation\",r,t,e),l=v(\"fillMode\",r,t,e);return[n.image.transform(o,s,u.toLowerCase(),l.toLowerCase(),a,i)]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var EF=(r,t,e,n=ae)=>{switch(r.op){case\"Equal\":return[n.equal(v(\"a\",r,t,e),v(\"b\",r,t,e))];case\"NotEqual\":return[n.notEqual(v(\"a\",r,t,e),v(\"b\",r,t,e))];case\"Greater\":return[n.greater(v(\"a\",r,t,e),v(\"b\",r,t,e))];case\"GreaterEqual\":return[n.greaterEqual(v(\"a\",r,t,e),v(\"b\",r,t,e))];case\"Less\":return[n.less(v(\"a\",r,t,e),v(\"b\",r,t,e))];case\"LessEqual\":return[n.lessEqual(v(\"a\",r,t,e),v(\"b\",r,t,e))];case\"LogicalAnd\":return[n.logicalAnd(v(\"a\",r,t,e),v(\"b\",r,t,e))];case\"LogicalNot\":return[n.logicalNot(v(\"a\",r,t,e))];case\"LogicalOr\":return[n.logicalOr(v(\"a\",r,t,e),v(\"b\",r,t,e))];case\"Select\":case\"SelectV2\":return[n.where(v(\"condition\",r,t,e),v(\"a\",r,t,e),v(\"b\",r,t,e))];case\"BitwiseAnd\":return[n.bitwiseAnd(v(\"a\",r,t,e),v(\"b\",r,t,e))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var AF=(r,t,e,n=ae)=>{switch(r.op){case\"BatchMatMul\":case\"BatchMatMulV2\":case\"MatMul\":return[n.matMul(v(\"a\",r,t,e),v(\"b\",r,t,e),v(\"transposeA\",r,t,e),v(\"transposeB\",r,t,e))];case\"Einsum\":return[n.einsum(v(\"equation\",r,t,e),...v(\"tensors\",r,t,e))];case\"Transpose\":return[n.transpose(v(\"x\",r,t,e),v(\"perm\",r,t,e))];case\"_FusedMatMul\":let[o,s]=v(\"fusedOps\",r,t,e),i=o===\"biasadd\",a=s===\"prelu\",u=v(\"numArgs\",r,t,e),l=v(\"leakyreluAlpha\",r,t,e);if(i){if(a&&u!==2)throw new Error(\"Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.\");if(!a&&u!==1)throw new Error(\"Fused MatMul with BiasAdd must have one extra argument: bias.\")}let[c,p]=v(\"args\",r,t,e);return[n.fused.matMul({a:v(\"a\",r,t,e),b:v(\"b\",r,t,e),transposeA:v(\"transposeA\",r,t,e),transposeB:v(\"transposeB\",r,t,e),bias:c,activation:s,preluActivationWeights:p,leakyreluAlpha:l})];case\"MatrixBandPart\":return[n.linalg.bandPart(v(\"a\",r,t,e),v(\"numLower\",r,t,e),v(\"numUpper\",r,t,e))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var DF=(r,t,e,n=ae)=>{switch(r.op){case\"EuclideanNorm\":return[n.euclideanNorm(v(\"x\",r,t,e),v(\"axis\",r,t,e),v(\"keepDims\",r,t,e))];case\"FusedBatchNorm\":case\"FusedBatchNormV2\":return[n.batchNorm(v(\"x\",r,t,e),v(\"mean\",r,t,e),v(\"variance\",r,t,e),v(\"offset\",r,t,e),v(\"scale\",r,t,e),v(\"epsilon\",r,t,e))];case\"FusedBatchNormV3\":return[n.batchNorm(v(\"x\",r,t,e),v(\"mean\",r,t,e),v(\"variance\",r,t,e),v(\"offset\",r,t,e),v(\"scale\",r,t,e),v(\"epsilon\",r,t,e))];case\"LRN\":return[n.localResponseNormalization(v(\"x\",r,t,e),v(\"radius\",r,t,e),v(\"bias\",r,t,e),v(\"alpha\",r,t,e),v(\"beta\",r,t,e))];case\"Softmax\":return[n.softmax(v(\"x\",r,t,e))];case\"LogSoftmax\":return[n.logSoftmax(v(\"x\",r,t,e))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var $F=(r,t,e,n=ae)=>{switch(r.op){case\"RaggedGather\":{let{outputNestedSplits:o,outputDenseValues:s}=n.raggedGather(v(\"paramsNestedSplits\",r,t,e),v(\"paramsDenseValues\",r,t,e),v(\"indices\",r,t,e),v(\"outputRaggedRank\",r,t,e));return o.concat(s)}case\"RaggedRange\":{let{rtNestedSplits:o,rtDenseValues:s}=n.raggedRange(v(\"starts\",r,t,e),v(\"limits\",r,t,e),v(\"splits\",r,t,e));return[o,s]}case\"RaggedTensorToTensor\":return[n.raggedTensorToTensor(v(\"shape\",r,t,e),v(\"values\",r,t,e),v(\"defaultValue\",r,t,e),v(\"rowPartitionTensors\",r,t,e),v(\"rowPartitionTypes\",r,t,e))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var RF=(r,t,e,n=ae)=>{switch(r.op){case\"Max\":{let a=v(\"axis\",r,t,e),u=v(\"keepDims\",r,t,e);return[n.max(v(\"x\",r,t,e),a,u)]}case\"Mean\":{let a=v(\"axis\",r,t,e),u=v(\"keepDims\",r,t,e);return[n.mean(v(\"x\",r,t,e),a,u)]}case\"Min\":{let a=v(\"axis\",r,t,e),u=v(\"keepDims\",r,t,e);return[n.min(v(\"x\",r,t,e),a,u)]}case\"Sum\":{let a=v(\"axis\",r,t,e),u=v(\"keepDims\",r,t,e);return[n.sum(v(\"x\",r,t,e),a,u)]}case\"All\":{let a=v(\"axis\",r,t,e),u=v(\"keepDims\",r,t,e);return[n.all(v(\"x\",r,t,e),a,u)]}case\"Any\":{let a=v(\"axis\",r,t,e),u=v(\"keepDims\",r,t,e);return[n.any(v(\"x\",r,t,e),a,u)]}case\"ArgMax\":{let a=v(\"axis\",r,t,e);return[n.argMax(v(\"x\",r,t,e),a)]}case\"ArgMin\":{let a=v(\"axis\",r,t,e);return[n.argMin(v(\"x\",r,t,e),a)]}case\"Prod\":{let a=v(\"axis\",r,t,e),u=v(\"keepDims\",r,t,e);return[n.prod(v(\"x\",r,t,e),a,u)]}case\"Cumprod\":{let a=v(\"axis\",r,t,e),u=v(\"exclusive\",r,t,e),l=v(\"reverse\",r,t,e);return[n.cumprod(v(\"x\",r,t,e),a,u,l)]}case\"Cumsum\":{let a=v(\"axis\",r,t,e),u=v(\"exclusive\",r,t,e),l=v(\"reverse\",r,t,e);return[n.cumsum(v(\"x\",r,t,e),a,u,l)]}case\"Bincount\":let o=v(\"x\",r,t,e),s=v(\"weights\",r,t,e),i=v(\"size\",r,t,e);return[n.bincount(o,s,i)];case\"DenseBincount\":{let a=v(\"x\",r,t,e),u=v(\"weights\",r,t,e),l=v(\"size\",r,t,e),c=v(\"binaryOutput\",r,t,e);return[n.denseBincount(a,u,l,c)]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var FF=(r,t,e,n=ae)=>{switch(r.op){case\"ConcatV2\":case\"Concat\":{let o=v(\"n\",r,t,e),s=v(\"axis\",r,t,e),i=v(\"tensors\",r,t,e);return i=i.slice(0,o),[n.concat(i,s)]}case\"Gather\":{let o=v(\"x\",r,t,e),s=v(\"indices\",r,t,e);return[n.gather(o,n.cast(s,\"int32\"),0)]}case\"GatherV2\":{let o=v(\"axis\",r,t,e),s=v(\"batchDims\",r,t,e),i=v(\"x\",r,t,e),a=v(\"indices\",r,t,e);return[n.gather(i,n.cast(a,\"int32\"),o,s)]}case\"Reverse\":{let o=v(\"dims\",r,t,e),s=[];for(let a=0;a{let o=v(\"axis\",r,t,e),s=v(\"tensors\",r,t,e),i=s[0].shape,a=n.squeeze(s[0]).shape,u=s.map(l=>{let c=y.arraysEqual(l.shape,i);if(!c&&!y.arraysEqual(n.squeeze(l).shape,a))throw new Error(\"the input tensors shape does not match\");return c?l:n.reshape(l,i)});return[n.stack(u,o)]});case\"Unpack\":{let o=v(\"axis\",r,t,e),s=v(\"tensor\",r,t,e);return n.unstack(s,o)}case\"Tile\":{let o=v(\"reps\",r,t,e);return[n.tile(v(\"x\",r,t,e),o)]}case\"Split\":case\"SplitV\":{let o=v(\"axis\",r,t,e),s=v(\"numOrSizeSplits\",r,t,e),i=v(\"x\",r,t,e);return n.split(i,s,o)}case\"ScatterNd\":{let o=v(\"indices\",r,t,e),s=v(\"values\",r,t,e),i=v(\"shape\",r,t,e);return[n.scatterND(o,s,i)]}case\"GatherNd\":{let o=v(\"x\",r,t,e),s=v(\"indices\",r,t,e);return[n.gatherND(o,s)]}case\"SparseToDense\":{let o=v(\"sparseIndices\",r,t,e),s=v(\"outputShape\",r,t,e),i=v(\"sparseValues\",r,t,e),a=v(\"defaultValue\",r,t,e);return[n.sparseToDense(o,i,s,i.dtype===a.dtype?a:n.cast(a,i.dtype))]}case\"TensorScatterUpdate\":{let o=v(\"indices\",r,t,e),s=v(\"values\",r,t,e),i=v(\"tensor\",r,t,e);return[n.tensorScatterUpdate(i,o,s)]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var OF=(r,t,e,n=ae)=>{switch(r.op){case\"SparseFillEmptyRows\":{let{outputIndices:o,outputValues:s,emptyRowIndicator:i,reverseIndexMap:a}=n.sparse.sparseFillEmptyRows(v(\"indices\",r,t,e),v(\"values\",r,t,e),v(\"denseShape\",r,t,e),v(\"defaultValue\",r,t,e));return[o,s,i,a]}case\"SparseReshape\":{let{outputIndices:o,outputShape:s}=n.sparse.sparseReshape(v(\"inputIndices\",r,t,e),v(\"inputShape\",r,t,e),v(\"newShape\",r,t,e));return[o,s]}case\"SparseSegmentMean\":return[n.sparse.sparseSegmentMean(v(\"data\",r,t,e),v(\"indices\",r,t,e),v(\"segmentIds\",r,t,e))];case\"SparseSegmentSum\":return[n.sparse.sparseSegmentSum(v(\"data\",r,t,e),v(\"indices\",r,t,e),v(\"segmentIds\",r,t,e))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var MF=(r,t,e,n=ae)=>{switch(r.op){case\"FFT\":return[n.fft(v(\"x\",r,t,e))];case\"IFFT\":return[n.ifft(v(\"x\",r,t,e))];case\"RFFT\":return[n.rfft(v(\"x\",r,t,e))];case\"IRFFT\":return[n.irfft(v(\"x\",r,t,e))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var PF=(r,t,e,n=ae)=>{switch(r.op){case\"StaticRegexReplace\":return[n.string.staticRegexReplace(v(\"input\",r,t,e),v(\"pattern\",r,t,e),v(\"rewrite\",r,t,e),v(\"replaceGlobal\",r,t,e))];case\"StringNGrams\":{let{nGrams:o,nGramsSplits:s}=n.string.stringNGrams(v(\"data\",r,t,e),v(\"dataSplits\",r,t,e),v(\"separator\",r,t,e),v(\"nGramWidths\",r,t,e),v(\"leftPad\",r,t,e),v(\"rightPad\",r,t,e),v(\"padWidth\",r,t,e),v(\"preserveShortSequences\",r,t,e));return[o,s]}case\"StringSplit\":{let{indices:o,values:s,shape:i}=n.string.stringSplit(v(\"input\",r,t,e),v(\"delimiter\",r,t,e),v(\"skipEmpty\",r,t,e));return[o,s,i]}case\"StringToHashBucketFast\":return[n.string.stringToHashBucketFast(v(\"input\",r,t,e),v(\"numBuckets\",r,t,e))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var LF=(r,t,e,n=ae)=>{switch(r.op){case\"Cast\":return[n.cast(v(\"x\",r,t,e),v(\"dtype\",r,t,e))];case\"ExpandDims\":{let o=v(\"axis\",r,t,e);return[n.expandDims(v(\"x\",r,t,e),o)]}case\"Squeeze\":{let o=v(\"axis\",r,t,e);return[n.squeeze(v(\"x\",r,t,e),o)]}case\"Reshape\":return[n.reshape(v(\"x\",r,t,e),v(\"shape\",r,t,e))];case\"EnsureShape\":return[n.ensureShape(v(\"x\",r,t,e),v(\"shape\",r,t,e))];case\"MirrorPad\":return[n.mirrorPad(v(\"x\",r,t,e),v(\"padding\",r,t,e),v(\"mode\",r,t,e))];case\"PadV2\":case\"Pad\":return[n.pad(v(\"x\",r,t,e),v(\"padding\",r,t,e),v(\"constantValue\",r,t,e))];case\"SpaceToBatchND\":{let o=v(\"blockShape\",r,t,e),s=v(\"paddings\",r,t,e);return[n.spaceToBatchND(v(\"x\",r,t,e),o,s)]}case\"BatchToSpaceND\":{let o=v(\"blockShape\",r,t,e),s=v(\"crops\",r,t,e);return[n.batchToSpaceND(v(\"x\",r,t,e),o,s)]}case\"DepthToSpace\":{let o=v(\"blockSize\",r,t,e),s=v(\"dataFormat\",r,t,e).toUpperCase();return[n.depthToSpace(v(\"x\",r,t,e),o,s)]}case\"BroadcastTo\":return[n.broadcastTo(v(\"x\",r,t,e),v(\"shape\",r,t,e))];case\"BroadcastArgs\":return[n.broadcastArgs(v(\"s0\",r,t,e),v(\"s1\",r,t,e))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};function Ak(r,t,e,n,o=B){let s=((i,a,u)=>{switch(i.category){case\"arithmetic\":return o(()=>fF(i,a,u));case\"basic_math\":return o(()=>dF(i,a,u));case\"control\":return wF(i,a,u);case\"convolution\":return o(()=>CF(i,a,u));case\"creation\":return o(()=>vF(i,a,u));case\"dynamic\":return SF(i,a,u);case\"evaluation\":return o(()=>NF(i,a,u));case\"image\":return o(()=>_F(i,a,u));case\"graph\":return o(()=>kF(i,a,u));case\"logical\":return o(()=>EF(i,a,u));case\"matrices\":return o(()=>AF(i,a,u));case\"normalization\":return o(()=>DF(i,a,u));case\"ragged\":return o(()=>$F(i,a,u));case\"reduction\":return o(()=>RF(i,a,u));case\"slice_join\":return o(()=>FF(i,a,u));case\"sparse\":return o(()=>OF(i,a,u));case\"spectral\":return o(()=>MF(i,a,u));case\"string\":return o(()=>PF(i,a,u));case\"transformation\":return o(()=>LF(i,a,u));case\"hash_table\":return TF(i,a,u,n);case\"custom\":let l=Vb(i.op);if(l&&l.customExecutor)return l.customExecutor(new Qb(i,a,u));throw TypeError(`Custom op ${i.op} is not registered.`);default:throw TypeError(`Unknown op '${i.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(r,t,e);return y.isPromise(s)?s.then(i=>[].concat(i)):[].concat(s)}var Uh=class{constructor(t={},e={},n={},o={},s){this.weightMap=t,this.tensorArrayMap=e,this.tensorListMap=n,this.functionMap=o,this.parseNodeNameCache=s,this.rootContext={id:0,frameName:\"\",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(t,e){return{id:t,frameName:e,iterationId:0}}set currentContext(t){this.contexts!==t&&(this.contexts=t,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let t=[];for(let e=0;ee.id===0&&e.iterationId===0?\"\":`${e.frameName}-${e.iterationId}`).join(\"/\"):\"\"}enterFrame(t){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,t)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error(\"Cannot exit frame, the context is empty\")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let t=Object.assign({},this.contexts[this.contexts.length-1]);t.iterationId+=1,t.id=this.lastId,this.contexts.splice(-1,1,t),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error(\"Cannot increase frame iteration, the context is empty\")}getWeight(t){return this.weightMap[t]}addTensorArray(t){this.tensorArrayMap[t.id]=t}getTensorArray(t){return this.tensorArrayMap[t]}addTensorList(t){this.tensorListMap[t.id]=t}getTensorList(t){return this.tensorListMap[t]}dispose(t){for(let e in this.tensorArrayMap)this.tensorArrayMap[e].clearAndClose(t);for(let e in this.tensorListMap)this.tensorListMap[e].clearAndClose(t)}};function Dk(r,t,e,n){let o=new Set,s=[],i=null,a=null,u=new Set,l=new Set(Object.keys(r).map(m=>In(m)[0]));n=n||[];let c=new Set(n.map(m=>In(m.name)[0])),p=[...t];for(;p.length>0;){let m=p.pop();if((Bu(m)||ftt(m)||dtt(m))&&i==null&&(i=m,a=i.children.map(f=>f.name).filter(f=>o.has(f))),o.add(m.name),e[m.name]==null&&!l.has(m.name)&&!c.has(m.name)){if(m.inputs.length===0){s.push(m.name);continue}m.inputs.forEach(f=>{u.has(f.name)||(u.add(f.name),p.push(f))})}}return{inputs:r,outputs:t,usedNodes:o,missingInputs:s,dynamicNode:i,syncInputs:a}}function zF(r,t){let{usedNodes:e,inputs:n}=t,o=Object.keys(n).map(g=>In(g)[0]).map(g=>r.nodes[g]),s=r.initNodes||[],i=g=>e.has(typeof g==\"string\"?g:g.name);function a(g){return[...new Map(g.map(x=>[x.name,x])).values()]}let u=a([...o,...r.weights,...s]).filter(i),l=a([...u,...Object.values(r.nodes)]).filter(i),c=new Map(l.map(g=>[g.name,g])),p={};for(let g of l){p[g.name]=p[g.name]||0;for(let x of g.children)i(x)||(p[x.name]=Number.POSITIVE_INFINITY),p[x.name]=(p[x.name]||0)+1}let m=Object.entries(p).filter(([,g])=>g===0).map(([g])=>g),f=[...m];for(;m.length>0;){let g=m.pop(),x=c.get(g);for(let b of x.children.filter(i))--p[b.name]===0&&(f.push(b.name),m.push(b.name))}let d=f.map(g=>c.get(g)),h=ltt(d,u);return utt(h,u),h}function ltt(r,t){let e=new Map(r.map(i=>[i.name,i])),n=t.map(i=>i.name),o=new Set(n);for(;n.length>0;){let i=n.pop(),a=e.get(i);for(let u of a.children)!e.has(u.name)||o.has(u.name)||(o.add(u.name),n.push(u.name))}return r.filter(i=>o.has(i.name))}var nd=class extends Error{constructor(t){super(`NodesExecutionOrderError: ${t}`)}};function utt(r,t){let e=new Map(r.map((a,u)=>[a.name,u])),n=new Set(t.map(a=>a.name)),o=a=>n.has(typeof a==\"string\"?a:a.name),s=new Set(r.map(a=>a.name)),i=a=>s.has(typeof a==\"string\"?a:a.name);for(let a of r){for(let u of a.children.filter(i)){if(!e.has(u.name))throw new nd(`Child ${u.name} of node ${a.name} is unreachable.`);if(e.get(a.name)>e.get(u.name))throw new nd(`Node ${a.name} is scheduled to run after its child ${u.name}.`)}if(!o(a))for(let u of a.inputs){if(!e.has(u.name))throw new nd(`Input ${u.name} of node ${a.name} is unreachable.`);if(e.get(u.name)>e.get(a.name))throw new nd(`Node ${a.name} is scheduled to run before its input ${u.name}.`)}}}function BF(r){let t=new Map(r.map((a,u)=>[a.name,u])),e=Number.MAX_SAFE_INTEGER,n=r.map((a,u)=>Bu(a)?e:u),o=a=>{let u=n[t.get(a.name)];return u==null?-1:u},s=r.map((a,u)=>a.children.map(o).reduce((l,c)=>Math.max(l,c),n[u])),i=new Map;for(let a=0;at[n].map(o=>o.id));this._weightIds=[].concat(...e),this._weightMap=t}set resourceManager(t){this._resourceManager=t}get inputs(){return this._inputs.map(t=>({name:t.name,shape:t.attrParams.shape?t.attrParams.shape.value:void 0,dtype:t.attrParams.dtype?t.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(t=>({name:t.name,shape:t.attrParams.shape?t.attrParams.shape.value:void 0,dtype:t.attrParams.dtype?t.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(t=>t.signatureKey||t.name)}get outputNodes(){return this._outputs.map(t=>{let e=t.signatureKey||t.name;return t.defaultOutput?`${e}:${t.defaultOutput}`:e})}get functions(){return Object.keys(this._functions).reduce((t,e)=>(t[e]=this._functions[e].signature,t),{})}constructor(t,e){this.graph=t,this.parent=e,this.compiledMap=new Map,this.parseNodeNameCache=new Map,this._weightMap={},this.SEPARATOR=\",\",this._functions={},this._functionExecutorMap={},this.keepIntermediateTensors=!1,this._outputs=t.outputs,this._inputs=t.inputs,this._initNodes=t.initNodes,this._signature=t.signature,this._functions=t.functions,t.functions!=null&&Object.keys(t.functions).forEach(n=>{this._functionExecutorMap[n]=new r(t.functions[n],this)})}getCompilationKey(t,e){let n=t.map(s=>s.name).sort(),o=e.map(s=>s.name).sort();return n.join(this.SEPARATOR)+\"--\"+o.join(this.SEPARATOR)}compile(t,e){let n=Dk(t,e,this.weightMap,this._initNodes),{missingInputs:o,dynamicNode:s,syncInputs:i}=n;if(s!=null)throw new Error(`This execution contains the node '${s.name}', which has the dynamic op '${s.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${i}]`);if(o.length>0){let l=e.map(p=>p.name),c=Object.keys(t);throw new Error(`Cannot compute the outputs [${l}] from the provided inputs [${c}]. Missing the following inputs: [${o}]`)}let a=zF(this.graph,n),u=BF(a);return{orderedNodes:a,nodeLiveUntilMap:u}}cloneAndKeepTensor(t){if(t==null)return null;let e=t.clone();return De(e),e}cloneTensorList(t){return t?t.map(n=>this.cloneAndKeepTensor(n)):null}cloneTensorMap(t){return Object.fromEntries(Object.entries(t).map(([e,n])=>[e,this.cloneTensorList(n)]))}execute(t,e){this.disposeIntermediateTensors(),t=this.mapInputs(t);let n=Object.keys(t).sort();this.checkInputs(t),this.checkInputShapeAndType(t),e=this.mapOutputs(e),this.checkOutputs(e);let o=n.map(m=>this.graph.nodes[In(m)[0]]),s=e.map(m=>In(m)[0]),i=new Set(s),a=s.map(m=>this.graph.nodes[m]);a.length===0&&(a=this._outputs);let u=this.getCompilationKey(o,a),l=this.compiledMap.get(u);l==null&&(l=this.compile(t,a),this.compiledMap.set(u,l));try{this.keepIntermediateTensors=L().getBool(\"KEEP_INTERMEDIATE_TENSORS\")}catch(m){this.keepIntermediateTensors=!1,console.warn(m.message)}let c={},p={};return B(()=>{let m=new Uh(this.weightMap,c,p,this.functionExecutorMap,this.parseNodeNameCache),f=Object.assign({},this.weightMap);this.keepIntermediateTensors&&(this.clonedTensorsMap=this.cloneTensorMap(this.weightMap)),Object.keys(t).forEach(x=>{let[b,w]=In(x,m),I=[];I[w]=t[x],f[b]=I,this.keepIntermediateTensors&&(this.clonedTensorsMap[b]=this.cloneTensorList(I))});let d=this.getFrozenTensorIds(f),{orderedNodes:h,nodeLiveUntilMap:g}=l;for(let x of h){if(f[x.name])continue;let b=Ak(x,f,m,this._resourceManager);if(y.isPromise(b))throw new Error(`The execution of the op '${x.op}' returned a promise. Please use model.executeAsync() instead.`);f[x.name]=b,this.keepIntermediateTensors&&(this.clonedTensorsMap[x.name]=this.cloneTensorList(b)),this.checkTensorForDisposalWithNodeLiveUntilInfo(x,f,m,d,i,g.get(x.name))}return this.parent==null&&m.dispose(d),e.map(x=>pr(x,f,m))})}getFrozenTensorIds(t){let e=[].concat.apply([],Object.keys(t).map(n=>t[n]).map(n=>n.map(o=>o.id)));return new Set(e)}checkTensorForDisposal(t,e,n,o,s,i,a){if(!(Bu(e)||i.has(t))){for(let u of n[t])u!=null&&(a[u.id]=(a[u.id]||0)+e.children.length);for(let u of e.inputs){if(Bu(u))continue;let l=lk(u.name,n,o);if(l!=null)for(let c of l){if(!c||c.kept||s.has(c.id))continue;let p=a[c.id];p===1?(c.dispose(),delete a[c.id]):p!=null&&a[c.id]--}}}}checkTensorForDisposalWithNodeLiveUntilInfo(t,e,n,o,s,i){function a(u){return Bu(u)||s.has(u.name)}if(!(Bu(t)||i==null))for(let u of i){if(a(u))continue;let l=lk(u.name,e,n);for(let c of l)!c||c.kept||o.has(c.id)||c.dispose()}}async executeAsync(t,e){return this._executeAsync(t,e)}disposeIntermediateTensors(){this.clonedTensorsMap&&(Object.values(this.clonedTensorsMap).forEach(t=>{for(let e of t)e&&!e.isDisposed&&e.dispose()}),this.clonedTensorsMap=null)}getIntermediateTensors(){return this.clonedTensorsMap}async _executeAsync(t,e,n=!1,o={},s={}){this.disposeIntermediateTensors(),n||(t=this.mapInputs(t),this.checkInputs(t),this.checkInputShapeAndType(t),e=this.mapOutputs(e),this.checkOutputs(e));try{this.keepIntermediateTensors=L().getBool(\"KEEP_INTERMEDIATE_TENSORS\")}catch(m){this.keepIntermediateTensors=!1,console.warn(m.message)}let i=new Uh(this.weightMap,o,s,this.functionExecutorMap,this.parseNodeNameCache);this.keepIntermediateTensors&&(this.clonedTensorsMap=this.cloneTensorMap(this.weightMap));let a=await this.executeWithControlFlow(t,i,e,n),u=e.map(m=>pr(m,a,i)),l=u.map(m=>m.id),c=Object.keys(t).map(m=>t[m].id),p=new Set([...l,...c,...this.weightIds]);return Object.values(a).forEach(m=>{m.forEach(f=>{f&&!f.isDisposed&&!p.has(f.id)&&f.dispose()})}),this.parent==null&&i.dispose(p),u}async executeFunctionAsync(t,e,n){let o=t.reduce((s,i,a)=>(s[this.inputs[a].name]=i,s),{});return this._executeAsync(o,this.outputNodes,!0,e,n)}async executeWithControlFlow(t,e,n,o){let s=Object.keys(t),i=s.map(I=>this.graph.nodes[In(I)[0]]),a=n.map(I=>In(I)[0]),u=new Set(a),l=a.map(I=>this.graph.nodes[I]);l.length===0&&(l=this._outputs);let{usedNodes:c,missingInputs:p,dynamicNode:m,syncInputs:f}=Dk(t,l,this.weightMap,this._initNodes),d=[...i,...this.graph.weights,...this._initNodes||[]].map(I=>({node:I,contexts:e.currentContext})),h=Object.assign({},this.weightMap);Object.keys(t).forEach(I=>{let[N,E]=In(I),A=[];A[E]=t[I],h[N]=A});let g={},x=this.getFrozenTensorIds(h),b={};for(;d.length>0;){let I=this.processStack(i,d,e,h,b,x,u,g,c);await Promise.all(I)}m==null&&!o&&console.warn(\"This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.\");let w=l.filter(I=>!Bu(I)&&!pr(I.name,h,e)).map(I=>I.name);if(w.length>0){let I=\"\";throw m!=null&&(I=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${f}]`),new Error(`Cannot compute the outputs [${w}] from the provided inputs [${s}]. Consider providing the following inputs: [${p}]. ${I}`)}return h}processStack(t,e,n,o,s,i,a,u,l){let c=[];for(;e.length>0;){let p=e.pop();n.currentContext=p.contexts;let m=\"\";if(p.node.op===\"Enter\"&&v(\"isConstant\",p.node,o,n)&&([m]=bi(p.node.name,n)),o[p.node.name]==null){let f=Ak(p.node,o,n,this._resourceManager);m||([m]=bi(p.node.name,n));let d=n.currentContext;y.isPromise(f)?c.push(f.then(h=>(o[m]=h,this.keepIntermediateTensors&&(this.clonedTensorsMap[m]=this.cloneTensorList(h)),n.currentContext=d,this.checkTensorForDisposal(m,p.node,o,n,i,a,u),this.processChildNodes(p.node,e,n,o,s,l),h))):(o[m]=f,this.keepIntermediateTensors&&(this.clonedTensorsMap[m]=this.cloneTensorList(f)),this.checkTensorForDisposal(m,p.node,o,n,i,a,u),this.processChildNodes(p.node,e,n,o,s,l))}else this.processChildNodes(p.node,e,n,o,s,l)}return c}processChildNodes(t,e,n,o,s,i){t.children.forEach(a=>{let[u]=bi(a.name,n);s[u]||!i.has(a.name)||(a.op===\"Merge\"?a.inputNames.some(l=>!!pr(l,o,n))&&(s[u]=!0,e.push({contexts:n.currentContext,node:a})):a.inputNames.every(l=>!!pr(l,o,n))&&(s[u]=!0,e.push({contexts:n.currentContext,node:a})))})}dispose(){Object.keys(this.weightMap).forEach(t=>this.weightMap[t].forEach(e=>e.dispose()))}checkInputShapeAndType(t){Object.keys(t).forEach(e=>{let n=t[e],[o]=In(e),s=this.graph.nodes[o];if(s.attrParams.shape&&s.attrParams.shape.value){let i=s.attrParams.shape.value,a=i.length===n.shape.length&&n.shape.every((u,l)=>i[l]===-1||i[l]===u);y.assert(a,()=>`The shape of dict['${s.name}'] provided in model.execute(dict) must be [${i}], but was [${n.shape}]`)}s.attrParams.dtype&&s.attrParams.dtype.value&&y.assert(n.dtype===s.attrParams.dtype.value,()=>`The dtype of dict['${s.name}'] provided in model.execute(dict) must be ${s.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(t){var e,n;let o={};for(let s in t){let i=(n=(e=this._signature)===null||e===void 0?void 0:e.inputs)===null||n===void 0?void 0:n[s];i!=null?o[i.name]=t[s]:o[s]=t[s]}return o}checkInputs(t){let e=Object.keys(t).filter(n=>{let[o]=In(n);return this.graph.nodes[o]==null});if(e.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${e}] that are not part of graph`)}mapOutputs(t){return t.map(e=>{var n,o;let s=(o=(n=this._signature)===null||n===void 0?void 0:n.outputs)===null||o===void 0?void 0:o[e];return s!=null?s.name:e},{})}checkOutputs(t){t.forEach(e=>{let[n]=In(e);if(!this.graph.nodes[n])throw new Error(`The output '${e}' is not found in the graph`)})}};var nw=class{constructor(t={},e={}){this.hashTableNameToHandle=t,this.hashTableMap=e}addHashTable(t,e){this.hashTableNameToHandle[t]=e.handle,this.hashTableMap[e.id]=e}getHashTableHandleByName(t){return this.hashTableNameToHandle[t]}getHashTableById(t){return this.hashTableMap[t]}dispose(){for(let t in this.hashTableMap)this.hashTableMap[t].clearAndClose(),delete this.hashTableMap[t];for(let t in this.hashTableNameToHandle)this.hashTableNameToHandle[t].dispose(),delete this.hashTableNameToHandle[t]}};var htt=\"?tfjs-format=file\",gtt=\"model.json\",qh=class{get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}get modelStructuredOutputKeys(){return this.structuredOutputKeys}constructor(t,e={},n=Mr){this.modelUrl=t,this.loadOptions=e,this.version=\"n/a\",this.io=n,e==null&&(this.loadOptions={}),this.resourceManager=new nw}findIOHandler(){let t=this.modelUrl;if(t.load!=null)this.handler=t;else if(this.loadOptions.requestInit!=null)this.handler=this.io.browserHTTPRequest(t,this.loadOptions);else{let e=this.io.getLoadHandlers(t,this.loadOptions);if(e.length===0)e.push(this.io.browserHTTPRequest(t,this.loadOptions));else if(e.length>1)throw new Error(`Found more than one (${e.length}) load handlers for URL '${[t]}'`);this.handler=e[0]}}load(){if(this.findIOHandler(),this.handler.load==null)throw new Error(\"Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.\");let t=this.handler.load();return y.isPromise(t)?t.then(e=>e.getWeightStream==null?this.loadSync(e):this.loadStreaming(e)):this.loadSync(t)}loadSync(t){let e=this.io.decodeWeights(t.weightData,t.weightSpecs);return this.loadWithWeightMap(t,e)}async loadStreaming(t){if(t.getWeightStream==null)throw new Error(\"Model artifacts missing streamWeights function\");let e=await ax(t.getWeightStream(),t.weightSpecs);return this.loadWithWeightMap(t,e)}loadWithWeightMap(t,e){this.artifacts=t;let n=this.artifacts.modelTopology,o=this.artifacts.signature;if(this.artifacts.userDefinedMetadata!=null){let s=this.artifacts.userDefinedMetadata;s.signature!=null&&(o=s.signature),s.structuredOutputKeys!=null&&(this.structuredOutputKeys=s.structuredOutputKeys)}if(this.signature=o,this.version=`${n.versions.producer}.${n.versions.minConsumer}`,this.executor=new Hh(Wh.Instance.transformGraph(n,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(e),this.executor.resourceManager=this.resourceManager,t.modelInitializer!=null&&t.modelInitializer.node!=null){let s=Wh.Instance.transformGraph(t.modelInitializer);this.initializer=new Hh(s),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializerSignature=t.initializerSignature}return!0}async save(t,e){if(typeof t==\"string\"){let n=this.io.getSaveHandlers(t);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${t}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${t}'`);t=n[0]}if(t.save==null)throw new Error(\"GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.\");return t.save(this.artifacts)}addStructuredOutputNames(t){if(this.structuredOutputKeys){let e=t instanceof Lt?[t]:t,n={};return e.forEach((o,s)=>n[this.structuredOutputKeys[s]]=o),n}return t}predict(t,e){let n=this.execute(t,this.outputNodes);return this.addStructuredOutputNames(n)}async predictAsync(t,e){let n=await this.executeAsync(t,this.outputNodes);return this.addStructuredOutputNames(n)}normalizeInputs(t){var e;if(!(t instanceof Lt)&&!Array.isArray(t)){let s=(e=this.signature)===null||e===void 0?void 0:e.inputs;if(s!=null)for(let i in s){let a=s[i];a.resourceId!=null&&(t[i]=this.resourceIdToCapturedInput[a.resourceId])}return t}t=Array.isArray(t)?t:[t];let n=Object.keys(this.resourceIdToCapturedInput).length;if(t.length+n!==this.inputNodes.length)throw new Error(`Input tensor count mismatch, the graph model has ${this.inputNodes.length-n} non-resource placeholders, while there are ${t.length} input tensors provided.`);let o=0;return this.inputNodes.reduce((s,i)=>{var a,u,l;let c=(l=(u=(a=this.signature)===null||a===void 0?void 0:a.inputs)===null||u===void 0?void 0:u[i])===null||l===void 0?void 0:l.resourceId;return c!=null?s[i]=this.resourceIdToCapturedInput[c]:s[i]=t[o++],s},{})}normalizeOutputs(t){return t=t||this.outputNodes,Array.isArray(t)?t:[t]}executeInitializerGraph(){return this.initializer==null?[]:this.initializerSignature==null?this.initializer.execute({},[]):this.initializer.execute({},Object.keys(this.initializerSignature.outputs))}async executeInitializerGraphAsync(){return this.initializer==null?[]:this.initializerSignature==null?this.initializer.executeAsync({},[]):this.initializer.executeAsync({},Object.keys(this.initializerSignature.outputs))}setResourceIdToCapturedInput(t){if(this.resourceIdToCapturedInput={},this.initializerSignature){let e=this.initializerSignature.outputs,n=Object.keys(e);for(let o=0;o1?n:n[0]}async executeAsync(t,e){this.resourceIdToCapturedInput==null&&this.setResourceIdToCapturedInput(await this.executeInitializerGraphAsync()),t=this.normalizeInputs(t),e=this.normalizeOutputs(e);let n=await this.executor.executeAsync(t,e);return n.length>1?n:n[0]}getIntermediateTensors(){return this.executor.getIntermediateTensors()}disposeIntermediateTensors(){this.executor.disposeIntermediateTensors()}convertTensorMapToTensorsMap(t){return Object.keys(t).reduce((e,n)=>(e[n]=[t[n]],e),{})}dispose(){this.executor.dispose(),this.initializer&&(this.initializer.dispose(),this.resourceIdToCapturedInput&&Tt(this.resourceIdToCapturedInput)),this.resourceManager.dispose()}};async function xtt(r,t={},e=Mr){if(r==null)throw new Error(\"modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model\");t==null&&(t={}),t.fromTFHub&&typeof r==\"string\"&&(r=btt(r));let n=new qh(r,t,e);return await n.load(),n}function ytt(r){if(r==null)throw new Error(\"modelUrl in loadGraphModelSync() cannot be null. Please provide model artifacts or an IOHandler that loads the model\");let t;if(r instanceof Array){let[n,o]=r;if(!n)throw new Error(\"modelJSON must be the first element of the array\");if(!o||!(o instanceof ArrayBuffer))throw new Error(\"An ArrayBuffer of weights must be the second element of the array\");if(!(\"modelTopology\"in n))throw new Error(\"Model JSON is missing 'modelTopology'\");if(!(\"weightsManifest\"in n))throw new Error(\"Model JSON is missing 'weightsManifest'\");let s=Mr.getWeightSpecs(n.weightsManifest),i=Mr.getModelArtifactsForJSONSync(n,s,o);t=Mr.fromMemorySync(i)}else if(\"load\"in r)t=r;else if(\"modelTopology\"in r&&\"weightSpecs\"in r&&\"weightData\"in r)t=Mr.fromMemorySync(r);else throw new Error(\"Unknown model format\");let e=new qh(t);return e.load(),e}function btt(r){return r.endsWith(\"/\")||(r=r+\"/\"),`${r}${gtt}${htt}`}var VF=\"4.22.0\";var aO={};Kt(aO,{CSVDataset:()=>id,Dataset:()=>Ii,FileDataSource:()=>ud,TextLineDataset:()=>sd,URLDataSource:()=>cd,array:()=>ZF,csv:()=>rO,func:()=>nO,generator:()=>oO,microphone:()=>iO,version_data:()=>Jk,webcam:()=>sO,zip:()=>JF});var YF=Gl(hh());var KF=Gl(hh());function GF(r,t){return ow(r,t)}function ow(r,t,e=new Map,n=new Set){if(r==null)return null;if(typeof Blob==\"function\"&&r instanceof Blob)return r.slice();if(n.has(r))throw new Error(\"Circular references are not supported.\");if(e.has(r))return e.get(r);let o=t(r);if(o.recurse&&o.value!==null)throw new Error(\"A deep map function may not return both a value and recurse=true.\");if(o.recurse)if(Vu(r)){let s=Array.isArray(r)?[]:{};n.add(r);for(let i in r){let a=r[i],u=ow(a,t,e,n);s[i]=u}return n.delete(r),r.__proto__&&(s.__proto__=r.__proto__),s}else throw new Error(`Can't recurse into non-iterable type: ${r}`);else return e.set(r,o.value),o.value}function WF(r,t=Rk){return UF(r,t)}function UF(r,t,e=new Set){let n=r[0];if(e.has(n))throw new Error(\"Circular references are not supported.\");let o=t(r);if(o.recurse&&o.value!==null)throw new Error(\"A deep zip function may not return both a value and recurse=true.\");if(o.recurse)if(Vu(n)){let s=Array.isArray(n)?[]:{};e.add(n);for(let i in n){let a=r.map(l=>l[i]),u=UF(a,t,e);s[i]=u}return e.delete(n),s}else throw new Error(`Can't recurse into non-iterable type: ${n}`);else return o.value}function Rk(r){return r===null?null:Vu(r[0])?{value:null,recurse:!0}:{value:r,recurse:!1}}async function sw(r,t){let e=new Map;ow(r,t,e);for(let o of Array.from(e.keys())){let s=e.get(o);if(y.isPromise(s)){let i=await s;e.set(o,i)}}return ow(r,t,e)}function Vu(r){let t=!1;if(L().get(\"IS_BROWSER\"))t=r instanceof TextDecoder;else{let{StringDecoder:e}=$k();t=r instanceof e}return r!=null&&!ArrayBuffer.isView(r)&&(Array.isArray(r)||typeof r==\"object\"&&!(r instanceof Lt)&&!(r instanceof Promise)&&!t)}function HF(r){return r==null||wtt(r)||Array.isArray(r)||typeof r==\"object\"&&r instanceof Lt||y.isTypedArray(r)}function wtt(r){return r===null||typeof r!=\"object\"&&typeof r!=\"function\"}function qF(r){return GF(r,Itt)}function Itt(r){return r instanceof Lt?{value:r.clone(),recurse:!1}:Vu(r)?{value:null,recurse:!0}:{value:r,recurse:!1}}var od=class{constructor(t){if(this.capacity=t,this.begin=0,this.end=0,t==null)throw new RangeError(\"Can't create a ring buffer of unknown capacity.\");if(t<1)throw new RangeError(\"Can't create ring buffer of capacity < 1.\");this.data=new Array(t),this.doubledCapacity=2*t}wrap(t){for(;t<0;)t+=this.doubledCapacity;return t%this.doubledCapacity}get(t){if(t<0)throw new RangeError(\"Can't get item at a negative index.\");return this.data[t%this.capacity]}set(t,e){if(t<0)throw new RangeError(\"Can't set item at a negative index.\");this.data[t%this.capacity]=e}length(){let t=this.end-this.begin;return t<0&&(t=this.doubledCapacity+t),t}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(t){if(this.isFull())throw new RangeError(\"Ring buffer is full.\");this.set(this.end,t),this.end=this.wrap(this.end+1)}pushAll(t){for(let e of t)this.push(e)}pop(){if(this.isEmpty())throw new RangeError(\"Ring buffer is empty.\");this.end=this.wrap(this.end-1);let t=this.get(this.end);return this.set(this.end,void 0),t}unshift(t){if(this.isFull())throw new RangeError(\"Ring buffer is full.\");this.begin=this.wrap(this.begin-1),this.set(this.begin,t)}shift(){if(this.isEmpty())throw new RangeError(\"Ring buffer is empty.\");let t=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),t}shuffleExcise(t){if(this.isEmpty())throw new RangeError(\"Ring buffer is empty.\");let e=this.wrap(this.begin+t),n=this.get(e);return this.set(e,this.pop()),n}};var Kh=class r extends od{constructor(){super(r.INITIAL_CAPACITY)}isFull(){return!1}push(t){super.isFull()&&this.expand(),super.push(t)}unshift(t){super.isFull()&&this.expand(),super.unshift(t)}expand(){let t=this.capacity*2,e=new Array(t),n=this.length();for(let o=0;oe===!0)}rowMajorBatch(t,e=!0){return new zk(this,t,e)}columnMajorBatch(t,e=!0,n=Rk){return this.rowMajorBatch(t,e).map(s=>WF(s,n))}concatenate(t,e){return new aw(qk([this,t]),e)}take(t){return t<0||t==null?this:new Lk(this,t)}skip(t){return t<0||t==null?this:new Pk(this,t)}prefetch(t){return new lw(this,t)}shuffle(t,e){return new Hk(this,t,e)}serial(){return new Mk(this)}},Fk=class extends er{constructor(t){super(),this.items=t,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let t=this.items[this.trav];return this.trav++,{value:qF(t),done:!1}}},Ok=class extends er{constructor(t){super(),this.nextFn=t}summary(){return\"Function call\"}async next(){try{return this.nextFn()}catch(t){throw t.message=`Error thrown while iterating through a dataset: ${t.message}`,t}}},Mk=class extends er{constructor(t){super(),this.upstream=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},Pk=class extends er{constructor(t,e){super(),this.upstream=t,this.maxCount=e,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++ Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},zk=class extends er{constructor(t,e,n=!0){super(),this.upstream=t,this.batchSize=e,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let t=[];for(;t.length0?{value:t,done:!1}:{value:null,done:!0};t.push(e.value)}return{value:t,done:!1}}},Bk=class extends er{constructor(t,e){super(),this.upstream=t,this.predicate=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let t=await this.upstream.next();if(t.done||this.predicate(t.value))return t;Tt(t.value)}}},Vk=class extends er{constructor(t,e){super(),this.upstream=t,this.transform=e}summary(){return`${this.upstream.summary()} -> Map`}async next(){let t=await this.upstream.next();if(t.done)return{value:null,done:!0};let e=Io.getTensorsInContainer(t.value),n=this.transform(t.value),o=Io.getTensorsInContainer(n);for(let s of e)Io.isTensorInList(s,o)||s.dispose();return{value:n,done:!1}}},Gk=class extends er{constructor(t,e){super(),this.upstream=t,this.handler=e,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(t){if(!this.handler(t))return{value:null,done:!0}}}},iw=class extends er{constructor(t,e){super(),this.upstream=t,this.transform=e}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let t=await this.upstream.next();if(t.done)return{value:null,done:!0};let e=Io.getTensorsInContainer(t.value),n=await this.transform(t.value),o=Io.getTensorsInContainer(n);for(let s of e)Io.isTensorInList(s,o)||s.dispose();return{value:n,done:!1}}},Zc=class extends er{constructor(){super(),this.outputQueue=new Kh,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},Wk=class extends Zc{constructor(t,e){super(),this.upstream=t,this.transform=e}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let t=await this.upstream.next();if(t.done)return!1;let e=Io.getTensorsInContainer(t.value),n=this.transform(t.value),o=Io.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let s of e)Io.isTensorInList(s,o)||s.dispose();return!0}},aw=class extends er{constructor(t,e){super(),this.baseErrorHandler=e,this.lastRead=null,this.iterator=null,this.moreIterators=t}summary(){return\"TODO: fill in upstream of chained summaries -> Chained\"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(t){if(await t,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let e=await this.iterator.next();return e.done?(this.iterator=null,this.readFromChain(t)):e}},Dl;(function(r){r[r.FAIL=0]=\"FAIL\",r[r.SHORTEST=1]=\"SHORTEST\",r[r.LONGEST=2]=\"LONGEST\"})(Dl||(Dl={}));var Uk=class extends er{constructor(t,e=Dl.FAIL){super(),this.iterators=t,this.mismatchMode=e,this.count=0,this.currentPromise=null}summary(){return\"{TODO: fill in upstream of zip summaries} -> Zip\"}async nextState(t){await t;let e=0,n=0;function o(i){return i instanceof er?{value:i.next().then(u=>(e++,u.done&&n++,u.value)),recurse:!1}:{value:null,recurse:!0}}let s=await sw(this.iterators,o);if(e===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case Dl.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case Dl.SHORTEST:return{value:null,done:!0};case Dl.LONGEST:default:}return this.count++,{value:s,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},lw=class extends er{constructor(t,e){super(),this.upstream=t,this.bufferSize=e,this.buffer=new od(e)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let t=this.upstream.next();this.buffer.push(t)}}next(){return this.refill(),this.buffer.shift()}},Hk=class extends lw{constructor(t,e,n){super(t,e),this.upstream=t,this.windowSize=e,this.upstreamExhausted=!1,this.random=KF.alea(n||y.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(t){return Math.floor(this.random()*t)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let t=this.chooseIndex(),e=await this.buffer.shuffleExcise(t);if(e.done)this.upstreamExhausted=!0;else return this.refill(),e}return{value:null,done:!0}}};var Ii=class{constructor(){this.size=null}batch(t,e=!0){let n=this;y.assert(t>0,()=>`batchSize needs to be positive, but it is\n ${t}`);let o;return this.size===1/0||this.size==null?o=this.size:e?o=Math.ceil(this.size/t):o=Math.floor(this.size/t),En(async()=>(await n.iterator()).columnMajorBatch(t,e,Ctt),o)}concatenate(t){let e=this,n;return this.size===1/0||t.size===1/0?n=1/0:this.size!=null&&t.size!=null?n=this.size+t.size:n=null,En(async()=>(await e.iterator()).concatenate(await t.iterator()),n)}filter(t){let e=this,n;return this.size===1/0?n=1/0:n=null,En(async()=>(await e.iterator()).filter(o=>B(()=>t(o))),n)}async forEachAsync(t){return(await this.iterator()).forEachAsync(t)}map(t){let e=this;return En(async()=>(await e.iterator()).map(n=>B(()=>t(n))),this.size)}mapAsync(t){let e=this;return En(async()=>(await e.iterator()).mapAsync(t),this.size)}prefetch(t){if(t==null)throw new RangeError(\"`Dataset.prefetch()` requires bufferSize to be specified.\");let e=this;return En(async()=>(await e.iterator()).prefetch(t),this.size)}repeat(t){let e=this,n;return this.size!=null&&t>0?n=this.size*t:t===0?n=0:this.size!=null&&(t===void 0||t<0)?n=1/0:n=null,En(async()=>{let o=jh(async()=>({value:await e.iterator(),done:!1}));return jF(o.take(t))},n)}skip(t){let e=this,n;return this.size!=null&&t>=0&&this.size>=t?n=this.size-t:this.size!=null&&(this.size(await e.iterator()).skip(t),n)}shuffle(t,e,n=!0){if(t==null||t<0)throw this.size==null?new RangeError(\"`Dataset.shuffle()` requires bufferSize to be specified.\"):new RangeError(`\\`Dataset.shuffle()\\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \\`tf.Tensor\\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let o=this,s=YF.alea(e||y.now().toString());return En(async()=>{let i=s.int32();return n&&(i+=s.int32()),(await o.iterator()).shuffle(t,i.toString())},this.size)}take(t){let e=this,n;return this.size!=null&&this.size>t?n=t:this.size!=null&&this.size<=t?n=this.size:n=null,En(async()=>(await e.iterator()).take(t),n)}async toArray(){if(this.size===1/0)throw new Error(\"Can not convert infinite data stream to array.\");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===1/0)throw new Error(\"Can not convert infinite data stream to array.\");return(await this.iterator()).toArrayForTest()}};Ii.MAX_BUFFER_SIZE=1e4;function En(r,t=null){return new class extends Ii{constructor(){super(...arguments),this.size=t}async iterator(){return r()}}}function ZF(r){return En(async()=>qk(r),r.length)}function JF(r){if(!Vu(r))throw new Error(\"The argument to zip() must be an object or array.\");let t;if(Array.isArray(r))for(let e=0;e{let e=await sw(r,n=>{if(n instanceof Ii)return{value:n.iterator(),recurse:!1};if(Vu(n))return{value:null,recurse:!0};throw new Error(\"Leaves of the structure passed to zip() must be Datasets, not primitives.\")});return XF(e,Dl.SHORTEST)},t)}function Ctt(r){if(r===null)return null;let t=r[0];return HF(t)?{value:vtt(r),recurse:!1}:{value:null,recurse:!0}}function vtt(r){if(r.length===0)throw new Error(\"Can't make a batch of zero elements.\");return r[0]instanceof Lt?Fe(r):ir(r)}var sd=class extends Ii{constructor(t){super(),this.input=t}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`\n`).map(o=>(o.endsWith(\"\\r\")&&(o=o.slice(0,-1)),o))}};var uw='\"',Xh=Symbol(\"out\"),QF=Symbol(\"field\"),cw=Symbol(\"quote\"),Kk=Symbol(\"quoteafterquote\"),tO=Symbol(\"quoteinquote\"),id=class extends Ii{async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let t=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!t)throw new Error(\"Column names must be provided if there is no header line.\");this.fullColumnNames&&t&&y.assert(t.length===this.fullColumnNames.length,()=>\"The length of provided columnNames (\"+this.fullColumnNames.length.toString()+\") does not match the length of the header line read from file (\"+t.length.toString()+\").\"),this.fullColumnNames||(this.fullColumnNames=t);let e=this.fullColumnNames.reduce((o,s)=>(o[s]=o[s]+1||1,o),{}),n=Object.keys(e).filter(o=>e[o]>1);if(y.assert(n.length===0,()=>\"Duplicate column names found: \"+n.toString()),this.columnConfigs){for(let o of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(o)===-1)throw new Error('The key \"'+o+'\" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+\").\")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let e=await(await this.base.iterator()).next();if(e.done)throw new Error(\"No data was found for CSV parsing.\");let n=e.value;return this.parseRow(n,!1)}else return null}constructor(t,e){super(),this.input=t,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=\",\",this.delimWhitespace=!1,this.base=new sd(t),e||(e={}),this.hasHeader=e.hasHeader!==!1,this.fullColumnNames=e.columnNames,this.columnConfigs=e.columnConfigs,this.configuredColumnsOnly=e.configuredColumnsOnly,e.delimWhitespace?(y.assert(e.delimiter==null,()=>\"Delimiter should not be provided when delimWhitespace is true.\"),this.delimWhitespace=!0,this.delimiter=\" \"):this.delimiter=e.delimiter?e.delimiter:\",\"}async iterator(){this.columnNamesValidated||await this.setColumnNames();let t=await this.base.iterator();return this.hasHeader&&(t=t.skip(1)),t.map(e=>this.makeDataElement(e))}makeDataElement(t){let e=this.parseRow(t),n={},o={};for(let s=0;s14||!Number.isInteger(e))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=t.numFramesPerSpectrogram||43,this.sampleRateHz=t.sampleRateHz,this.columnTruncateLength=t.columnTruncateLength||this.fftSize,this.audioTrackConstraints=t.audioTrackConstraints,this.smoothingTimeConstant=t.smoothingTimeConstant||0,this.includeSpectrogram=t.includeSpectrogram!==!1,this.includeWaveform=t.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error(\"Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.\")}summary(){return\"microphone\"}static async create(t={}){if(!L().get(\"IS_BROWSER\"))throw new Error(\"microphone API is only supported in browser environment.\");let e=new r(t);return await e.start(),e}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error(\"Could not obtain audio from microphone.\");let t=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new t,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let e=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,e.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let t,e,n=await this.getAudioData();if(this.includeSpectrogram){let o=this.flattenQueue(n.freqDataQueue);t=this.getTensorFromAudioDataArray(o,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let o=this.flattenQueue(n.timeDataQueue);e=this.getTensorFromAudioDataArray(o,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:t,waveform:e},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let t=[],e=[],n=0;return new Promise(o=>{let s=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-1/0&&o({freqDataQueue:t,timeDataQueue:e}),t.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),e.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(s),o({freqDataQueue:t,timeDataQueue:e}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error(\"Can not convert infinite audio stream to array.\")}getSampleRate(){return this.sampleRateHz}flattenQueue(t){let e=t[0].length,n=new Float32Array(t.length*e);return t.forEach((o,s)=>n.set(o,s*e)),n}getTensorFromAudioDataArray(t,e){let n=new Float32Array(y.sizeFromShape(e));return n.set(t,n.length-t.length),ir(n,e)}};var mw=class r extends er{constructor(t,e){if(super(),this.webcamVideoElement=t,this.webcamConfig=e,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=Oe([0],\"int32\"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,o=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,s=(1-n)/2,i=(1-o)/2,a=s+n,u=o+i;this.cropBox=pi([i,s,u,a],[1,4])}else this.cropBox=pi([0,0,1,1],[1,4])}summary(){return\"webcam\"}static async create(t,e={}){if(!L().get(\"IS_BROWSER\"))throw new Error(\"tf.data.webcam is only supported in browser environment.\");if(!t){if(t=document.createElement(\"video\"),!e.resizeWidth||!e.resizeHeight)throw new Error(\"Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.\");t.width=e.resizeWidth,t.height=e.resizeHeight}let n=new r(t,e);return await n.start(),n}async start(){this.webcamConfig.facingMode&&y.assert(this.webcamConfig.facingMode===\"user\"||this.webcamConfig.facingMode===\"environment\",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:\"user\",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(t){throw t.message=`Error thrown while initializing video stream: ${t.message}`,t}if(!this.stream)throw new Error(\"Could not obtain video from webcam.\");try{this.webcamVideoElement.srcObject=this.stream}catch(t){console.log(t),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(t=>{this.webcamVideoElement.onloadedmetadata=()=>{t()}})}async next(){if(this.isClosed)return{value:null,done:!0};let t;try{t=_y.fromPixels(this.webcamVideoElement)}catch(e){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(e)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(t),done:!1}}catch(e){throw new Error(`Error thrown cropping the video: ${e.message}`)}finally{t.dispose()}else return{value:t,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(t){return B(()=>{let e=je(J(t,\"float32\"),0),n;n=fn.cropAndResize(e,this.cropBox,this.cropBoxInd,this.cropSize,\"bilinear\");let o=n.shape;return R(n,o.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(e=>e.stop());try{this.webcamVideoElement.srcObject=null}catch(e){console.log(e),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error(\"Can not convert infinite video stream to array.\")}};var ad=class{};var Yh=class extends er{split(t){return new jk(this,t)}},jk=class extends Yh{constructor(t,e){super(),this.upstream=t,this.impl=new Xk(t,e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},Xk=class extends Zc{constructor(t,e){super(),this.upstream=t,this.separator=e,this.carryover=\"\"}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let t=await this.upstream.next();if(t.done)return this.carryover===\"\"?!1:(this.outputQueue.push(this.carryover),this.carryover=\"\",!0);let e=t.value.split(this.separator);e[0]=this.carryover+e[0];for(let n of e.slice(0,-1))this.outputQueue.push(n);return this.carryover=e[e.length-1],!0}};var fw=class extends er{decodeUTF8(){return new Yk(this)}},Yk=class extends Yh{constructor(t){super(),this.upstream=t,this.impl=new Zk(t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},Zk=class extends Zc{constructor(t){if(super(),this.upstream=t,L().get(\"IS_BROWSER\"))this.decoder=new TextDecoder(\"utf-8\");else{let{StringDecoder:e}=$k();this.decoder=new e(\"utf8\")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let t=await this.upstream.next(),e;if(t.done)return!1;e=t.value;let n;return L().get(\"IS_BROWSER\")?n=this.decoder.decode(e,{stream:!0}):n=this.decoder.write(Buffer.from(e.buffer)),this.outputQueue.push(n),!0}};var ld=class extends fw{constructor(t,e={}){super(),this.file=t,this.options=e,y.assert(t instanceof Uint8Array||(L().get(\"IS_BROWSER\")?t instanceof File||t instanceof Blob:!1),()=>\"FileChunkIterator only supports File, Blob and Uint8Array right now.\"),this.offset=e.offset||0,this.chunkSize=e.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((e,n)=>{let o=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)e(new Uint8Array(this.file.slice(this.offset,o)));else{let s=new FileReader;s.onload=a=>{let u=s.result;if(u instanceof ArrayBuffer&&(u=new Uint8Array(u)),!(u instanceof Uint8Array))return n(new TypeError(\"FileReader returned unknown type.\"));e(u)},s.onabort=a=>n(new Error(\"Aborted\")),s.onerror=a=>n(new Error(a.type));let i=this.file.slice(this.offset,o);s.readAsArrayBuffer(i)}this.offset=o}),done:!1}}};async function eO(r,t={},e){let n,o;typeof r==\"string\"?n=r:(n=r.url,o=Stt(r));let s=await(e||y.fetch)(n,o);if(s.ok){let i=new Uint8Array(await s.arrayBuffer());return new ld(i,t)}else throw new Error(s.statusText)}var Stt=r=>({method:r.method,headers:r.headers,body:r.body,mode:r.mode,credentials:r.credentials,cache:r.cache,redirect:r.redirect,referrer:r.referrer,integrity:r.integrity});function dw(r){return typeof r==\"string\"&&r.slice(0,7)===\"file://\"}var ud=class extends ad{constructor(t,e={}){super(),this.input=t,this.options=e}async iterator(){if(dw(this.input)&&L().get(\"IS_NODE\")){let t=hw();this.input=t.readFileSync(this.input.slice(7))}return new ld(this.input,this.options)}};var cd=class extends ad{constructor(t,e={}){super(),this.url=t,this.fileOptions=e}async iterator(){return dw(this.url)?new ud(this.url,this.fileOptions).iterator():eO(this.url,this.fileOptions)}};function rO(r,t={}){return new id(new cd(r),t)}function nO(r){let t=jh(r);return En(async()=>t)}function oO(r){return En(async()=>{let t=await r();return jh(()=>t.next())})}async function sO(r,t){return mw.create(r,t)}async function iO(r){return pw.create(r)}var Jk=\"4.22.0\";function tt(r,t){Array.isArray(r)||(r=[r]),r.forEach(e=>{e!=null&&y.assert(e.dtype!==\"complex64\",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var Ntt=Xr.whereImpl,pd=class r extends Bo{nextDataId(){return r.nextDataId++}constructor(){super(),this.blockSize=48,this.firstUse=!0,this.data=new Ta(this,Bn())}write(t,e,n){this.firstUse&&(this.firstUse=!1,L().get(\"IS_NODE\")&&S.warn(`\n============================\nHi, looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, visit https://github.com/tensorflow/tfjs-node for more details. \n============================`));let o={id:this.nextDataId()};return this.data.set(o,{values:t,dtype:n,refCount:1}),o}makeTensorInfo(t,e,n){let o;if(e===\"string\"&&n!=null&&n.length>0&&y.isString(n[0])){let s=n.map(i=>y.encodeString(i));o=this.write(s,t,e)}else o=this.write(n,t,e);return{dataId:o,shape:t,dtype:e}}refCount(t){return this.data.has(t)?this.data.get(t).refCount:0}incRef(t){let e=this.data.get(t);e.refCount++}decRef(t){if(this.data.has(t)){let e=this.data.get(t);e.refCount--}}move(t,e,n,o,s){this.data.set(t,{values:e,dtype:o,refCount:s})}numDataIds(){return this.data.numDataIds()}async read(t){return this.readSync(t)}readSync(t){let{dtype:e,complexTensorInfos:n}=this.data.get(t);if(e===\"complex64\"){let o=this.readSync(n.real.dataId),s=this.readSync(n.imag.dataId);return S.mergeRealAndImagArrays(o,s)}return y.convertBackendValuesAndArrayBuffer(this.data.get(t).values,e)}bufferSync(t){let e=this.readSync(t.dataId);if(t.dtype===\"string\")try{let n=e.map(o=>y.decodeString(o));return wt(t.shape,t.dtype,n)}catch(n){throw new Error(\"Failed to decode encoded string bytes into utf-8\")}return wt(t.shape,t.dtype,e)}makeOutput(t,e,n){return Bn().makeTensorFromTensorInfo(this.makeTensorInfo(e,n,t),this)}disposeData(t,e=!1){if(this.data.has(t)){if(this.data.get(t).refCount--,!e&&this.data.get(t).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(t);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(t)}return!0}disposeIntermediateTensorInfo(t){this.disposeData(t.dataId)}async time(t){let e=y.now();return t(),{kernelMs:y.now()-e}}memory(){return{unreliable:!0,reasons:[\"The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less.\"]}}where(t){tt([t],\"where\");let e=this.readSync(t.dataId);return Ntt(t.shape,e)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};pd.nextDataId=0;var Ew={};Kt(Ew,{addImpl:()=>eT,bincountImpl:()=>dd,bincountReduceImpl:()=>gw,bitwiseAndImpl:()=>rT,castImpl:()=>tT,ceilImpl:()=>nT,concatImpl:()=>Jc,equalImpl:()=>oT,expImpl:()=>iT,expm1Impl:()=>lT,floorDivImpl:()=>cT,floorImpl:()=>uT,gatherNdImpl:()=>xw,gatherV2Impl:()=>yw,greaterEqualImpl:()=>mT,greaterImpl:()=>pT,lessEqualImpl:()=>dT,lessImpl:()=>fT,linSpaceImpl:()=>bw,logImpl:()=>hT,maxImpl:()=>ww,maximumImpl:()=>gT,minimumImpl:()=>xT,multiplyImpl:()=>Zh,negImpl:()=>yT,notEqualImpl:()=>bT,prodImpl:()=>wT,raggedGatherImpl:()=>Iw,raggedRangeImpl:()=>Cw,raggedTensorToTensorImpl:()=>vw,rangeImpl:()=>tp,rsqrtImpl:()=>CT,scatterImpl:()=>Ci,sigmoidImpl:()=>LO,simpleAbsImpl:()=>Qk,sliceImpl:()=>ep,sparseFillEmptyRowsImpl:()=>Sw,sparseReshapeImpl:()=>Nw,sparseSegmentReductionImpl:()=>gd,sqrtImpl:()=>VO,squaredDifferenceImpl:()=>ST,staticRegexReplaceImpl:()=>NT,stridedSliceImpl:()=>kw,stringNGramsImpl:()=>rp,stringSplitImpl:()=>np,stringToHashBucketFastImpl:()=>op,subImpl:()=>TT,tileImpl:()=>Tw,topKImpl:()=>_w,transposeImpl:()=>hd,uniqueImpl:()=>sp});function Qk(r){let t=new Float32Array(r.length);for(let e=0;e{let{x:t}=r.inputs,e=r.backend;tt(t,\"abs\");let n=new Float32Array(y.sizeFromShape(t.shape)),o=e.data.get(t.dataId).values;return n=Qk(o),e.makeOutput(n,t.shape,t.dtype)},lO={kernelName:Ai,backendName:\"cpu\",kernelFunc:ktt};function Qt(r){return(t,e,n,o,s)=>{let i=S.assertAndGetBroadcastShape(t,e),a=i.length,u=y.computeStrides(i),l=y.sizeFromShape(i),c=y.getTypedArrayFromDType(s,l),p=t.length,m=e.length,f=y.computeStrides(t),d=y.computeStrides(e),h=S.getBroadcastDims(t,i),g=S.getBroadcastDims(e,i);if(h.length+g.length===0)for(let x=0;xw[A]=0);let I=y.locToIndex(w,p,f),N=b.slice(-m);g.forEach(A=>N[A]=0);let E=y.locToIndex(N,m,d);c[x]=r(n[I],o[E])}return[c,i]}}function Ir(r){let{inputs:t,backend:e}=r,{real:n,imag:o}=t,s=e.data.get(n.dataId).values,i=e.data.get(o.dataId).values,a=e.makeTensorInfo(n.shape,\"complex64\"),u=e.data.get(a.dataId);return u.complexTensorInfos={real:e.makeTensorInfo(n.shape,\"float32\",s),imag:e.makeTensorInfo(o.shape,\"float32\",i)},a}var uO={kernelName:Ap,backendName:\"cpu\",kernelFunc:Ir};function md(r,t,e=\"float32\"){if(e===\"complex64\"){let o=md(r,t,\"float32\"),s=md(r,t,\"float32\");return Ir({inputs:{real:o,imag:s},backend:r})}let n=y.makeZerosTypedArray(y.sizeFromShape(t),e);return r.makeTensorInfo(t,e,n)}function Zr(r){let{inputs:t,backend:e}=r,{x:n}=t;return e.incRef(n.dataId),{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}var cO={kernelName:go,backendName:\"cpu\",kernelFunc:Zr};function Ro(r){let{inputs:t,backend:e}=r,{input:n}=t,o=e.data.get(n.dataId).complexTensorInfos.real,s=e.data.get(o.dataId).values;return e.makeTensorInfo(o.shape,o.dtype,s)}var pO={kernelName:Vp,backendName:\"cpu\",kernelFunc:Ro};function tT(r,t,e,n){if(n===\"int32\"){let o=Int32Array.from(r);return[t,\"int32\",o]}if(n===\"bool\"){let o=y.toTypedArray([0],e),[s,i]=Qt((a,u)=>a!==u?1:0)(t,[],r,o,\"bool\");return[i,\"bool\",s]}throw new Error(`Error in Cast: failed to cast ${e} to ${n}`)}function Fo(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{dtype:s}=n;if(s===\"complex64\"){if(o.dtype===\"complex64\")return Zr({inputs:{x:o},backend:e});let c=md(e,o.shape,o.dtype),p=Fo({inputs:{x:o},backend:e,attrs:{dtype:\"float32\"}}),m=Ir({inputs:{real:p,imag:c},backend:e});return e.disposeIntermediateTensorInfo(c),e.disposeIntermediateTensorInfo(p),m}if(o.dtype===\"complex64\"){let c=Ro({inputs:{input:o},backend:e}),p=Fo({inputs:{x:c},backend:e,attrs:{dtype:s}});return e.disposeIntermediateTensorInfo(c),p}if(!y.hasEncodingLoss(o.dtype,s)){let c=Zr({inputs:{x:o},backend:e});return{dataId:c.dataId,shape:c.shape,dtype:s}}let i=e.data.get(o.dataId).values,[a,u,l]=tT(i,o.shape,o.dtype,s);return e.makeTensorInfo(a,u,l)}var mO={kernelName:fo,backendName:\"cpu\",kernelFunc:Fo};function oe(r,t,e,n){return e==null?({inputs:o,backend:s})=>{let{a:i,b:a}=o,u=s;tt([i,a],r);let l=u.data.get(i.dataId).values,c=u.data.get(a.dataId).values,p=i.dtype===\"string\"?S.fromUint8ToStringArray(l):l,m=i.dtype===\"string\"?S.fromUint8ToStringArray(c):c,f=n||i.dtype,[d,h]=t(i.shape,a.shape,p,m,f);return u.makeTensorInfo(h,f,d)}:({inputs:o,backend:s})=>{let{a:i,b:a}=o,u=s;if(i.dtype===\"complex64\"||a.dtype===\"complex64\"){let l=Fo({inputs:{x:i},backend:u,attrs:{dtype:\"complex64\"}}),c=u.data.get(l.dataId),p=c.complexTensorInfos.real,m=c.complexTensorInfos.imag,f=u.data.get(p.dataId).values,d=u.data.get(m.dataId).values,h=Fo({inputs:{x:a},backend:u,attrs:{dtype:\"complex64\"}}),g=u.data.get(h.dataId),x=g.complexTensorInfos.real,b=g.complexTensorInfos.imag,w=u.data.get(x.dataId).values,I=u.data.get(b.dataId).values,[N,E,A]=e(i.shape,a.shape,f,d,w,I),D=u.makeTensorInfo(A,\"float32\",N),F=u.makeTensorInfo(A,\"float32\",E),M=Ir({inputs:{real:D,imag:F},backend:u});return u.disposeIntermediateTensorInfo(l),u.disposeIntermediateTensorInfo(h),u.disposeIntermediateTensorInfo(D),u.disposeIntermediateTensorInfo(F),M}else{let l=u.data.get(i.dataId).values,c=u.data.get(a.dataId).values,p=n||i.dtype,[m,f]=t(i.shape,a.shape,l,c,p);return u.makeTensorInfo(f,p,m)}}}function fd(r){return(t,e,n,o,s,i)=>{let a=S.assertAndGetBroadcastShape(t,e),u=y.sizeFromShape(a),l=a.length,c=y.computeStrides(a),p=y.getTypedArrayFromDType(\"float32\",u),m=y.getTypedArrayFromDType(\"float32\",u),f=S.getBroadcastDims(t,a),d=S.getBroadcastDims(e,a),h=S.mergeRealAndImagArrays(n,o),g=S.mergeRealAndImagArrays(s,i),x=t.length,b=y.computeStrides(t),w=e.length,I=y.computeStrides(e);if(f.length+d.length===0)for(let N=0;NA[G]=0);let D=y.locToIndex(A,x,b),F=E.slice(-w);d.forEach(G=>F[G]=0);let M=y.locToIndex(F,w,I),V=r(h[D*2],h[D*2+1],g[M*2],g[M*2+1]);p[N]=V.real,m[N]=V.imag}return[p,m,a]}}var eT=Qt((r,t)=>r+t),Ttt=fd((r,t,e,n)=>({real:r+e,imag:t+n})),ya=oe(no,eT,Ttt),fO={kernelName:no,backendName:\"cpu\",kernelFunc:ya};function dd(r,t,e,n,o){let s=y.sizeFromShape(n),i=y.makeZerosTypedArray(o,e);for(let a=0;a=o||(s>0?i[u]+=t[a]:i[u]+=1)}return i}function gw(r,t,e,n=!1){let o=r.shape[0],s=r.shape[1],i=wt([o,e],t.dtype);for(let a=0;a=e||(n?i.set(1,a,l):t.size>0?i.set(i.get(a,l)+t.get(a,u),a,l):i.set(i.get(a,l)+1,a,l))}return i}var rT=Qt((r,t)=>r&t),_tt=oe($a,rT),dO={kernelName:$a,backendName:\"cpu\",kernelFunc:_tt};function _r(r){return(t,e,n)=>{let o=y.getArrayFromDType(e,t.length);for(let s=0;s{let{x:i}=n;tt(i,r);let a=s,u=a.data.get(i.dataId).values,l;if(i.dtype===\"string\"){if(!Array.isArray(u))throw new Error(\"String tensor's value was not an instance of Array\");l=S.fromUint8ToStringArray(u)}else l=u;let c=e||i.dtype,p=t(l,c,o);return a.makeTensorInfo(i.shape,c,p)}}var nT=_r(r=>Math.ceil(r)),Ett=An(Jo,nT),hO={kernelName:Jo,backendName:\"cpu\",kernelFunc:Ett};function Jc(r,t,e,n){let o=y.getArrayFromDType(e,y.sizeFromShape(t));if(n&&e!==\"string\"){let s=0;r.forEach(i=>{let a=y.sizeFromShape(i.shape);o.set(i.vals,s),s+=a})}else{let s=0;r.forEach(i=>{let a=e===\"string\"?S.fromUint8ToStringArray(i.vals):i.vals,u=0;for(let l=0;lr===t?1:0),sT=oe(za,oT,null,\"bool\"),gO={kernelName:za,backendName:\"cpu\",kernelFunc:sT};var iT=_r(r=>Math.exp(r)),aT=An(cs,iT,\"float32\"),xO={kernelName:cs,backendName:\"cpu\",kernelFunc:aT};var lT=_r(r=>Math.expm1(r)),Att=An(ps,lT),yO={kernelName:ps,backendName:\"cpu\",kernelFunc:Att};var uT=_r(r=>Math.floor(r)),Dtt=An(ms,uT),bO={kernelName:ms,backendName:\"cpu\",kernelFunc:Dtt};var cT=Qt((r,t)=>Math.floor(r/t)),$tt=oe(fs,cT,null,\"int32\"),wO={kernelName:fs,backendName:\"cpu\",kernelFunc:$tt};function xw(r,t,e,n,o,s,i,a,u){let l=wt([n,s],e);for(let c=0;c=u/s)throw new Error(`Invalid indices: ${p} does not index into ${a}`);for(let f=0;fr>t?1:0),Rtt=oe(Ga,pT,null,\"bool\"),IO={kernelName:Ga,backendName:\"cpu\",kernelFunc:Rtt};var mT=Qt((r,t)=>r>=t?1:0),Ftt=oe(hs,mT,null,\"bool\"),CO={kernelName:hs,backendName:\"cpu\",kernelFunc:Ftt};var fT=Qt((r,t)=>rr<=t?1:0),Mtt=oe(Ua,dT,null,\"bool\"),SO={kernelName:Ua,backendName:\"cpu\",kernelFunc:Mtt};function bw(r,t,e){let n=(t-r)/(e-1),o=y.makeZerosTypedArray(e,\"float32\");o[0]=r;for(let s=1;sMath.log(r)),Ptt=An(ws,hT),NO={kernelName:ws,backendName:\"cpu\",kernelFunc:Ptt};function ww(r,t,e,n){let o=y.getTypedArrayFromDType(n,y.sizeFromShape(e));for(let s=0;sa)&&(a=l)}o[s]=a}return o}var gT=Qt((r,t)=>Math.max(r,t)),Ltt=oe(Ss,gT),kO={kernelName:Ss,backendName:\"cpu\",kernelFunc:Ltt};var xT=Qt((r,t)=>Math.min(r,t)),ztt=oe(_s,xT),TO={kernelName:_s,backendName:\"cpu\",kernelFunc:ztt};var Zh=Qt((r,t)=>r*t),Btt=fd((r,t,e,n)=>({real:r*e-t*n,imag:r*n+t*e})),Qc=oe(Ds,Zh,Btt),_O={kernelName:Ds,backendName:\"cpu\",kernelFunc:Qc};function yT(r,t,e){let n=y.createScalarValue(-1,e);return Zh([],t,n,r,e)}function Vtt(r){let{inputs:t,backend:e}=r,{x:n}=t;tt(n,\"neg\");let o=e.data.get(n.dataId).values,[s,i]=yT(o,n.shape,n.dtype);return e.makeTensorInfo(i,n.dtype,s)}var EO={kernelName:zi,backendName:\"cpu\",kernelFunc:Vtt};var bT=Qt((r,t)=>r!==t?1:0),Gtt=oe(Za,bT,null,\"bool\"),AO={kernelName:Za,backendName:\"cpu\",kernelFunc:Gtt};function hd(r,t,e,n,o){let s=t.length,i=y.sizeFromShape(t),a=y.computeStrides(t),u=y.computeStrides(o),l=y.getTypedArrayFromDType(e,y.sizeFromShape(o));for(let c=0;ce.disposeIntermediateTensorInfo(b)),e.makeTensorInfo(x,g,d)}var $O={kernelName:Ms,backendName:\"cpu\",kernelFunc:Wtt};function Utt(r,t,e){r.forEach((n,o)=>{if(n<0||n>=e){let s=y.indexToLoc(o,t.length,y.computeStrides(t)).join(\",\");throw new Error(`indices[${s}] = ${n} is not in [0, ${e})`)}})}function Htt(r,t){for(let e=0;eo)throw new Error(\"Ragged splits must not point past values\");for(let s=1;sn[s])throw new Error(\"Ragged splits must be sorted in ascending order\")}}function qtt(r,t,e,n){let o=[],s=0,i=t.length-1+e.length,a=new Array(i).fill(null).map(()=>[0]);Htt(e,n);let u=1;for(let l=0;l=0){let h=a[d],g=h[h.length-1]-f[c];for(let x=c;xo[i]=s)}return t}function RO(r,t){let e=r.slice(0,t);for(;e.length1)throw new Error(\"starts must be a scalar or vector\");if(o.length>1)throw new Error(\"limits must be a scalar or vector\");if(i.length>1)throw new Error(\"deltas must be a scalar or vector\");let a=t.length===0,u=o.length===0,l=i.length===0,c=[];a||c.push(t[0]),u||c.push(o[0]),l||c.push(i[0]);for(let g=1;g0&&bx)I=0;else if(I=Math.ceil(Math.abs((b-x)/w)),I>FO)throw new Error(`Requires ((limit - start) / delta) <= ${FO}`);m[g+1]=m[g]+I}let f=m[p],d=y.getArrayFromDType(e,f),h=0;for(let g=0;gn&&(n=s)}return n}static getMaxWidthValueRowID(t){let e=t.length;if(e===0)return 0;let n=0,o=t[0],s=0;for(let i=1;i\"Final length of result must be equal to firstDimension.\"),s}calculateOutputIndexRowSplit(t,e,n,o){let s=t.length,i=[];for(let a=0;a0&&i.length!==t[s-1])throw new Error(\"Invalid row split size.\");return i}calculateOutputIndexValueRowID(t,e,n,o){let s=t.length,i=[];if(s===0)return[];let a=0,u=t[0];if(u>=e.length)throw new Error(`Got currentValueRowId=${u}, which is not less than ${e.length}`);let l=e[u];i.push(l);for(let c=1;c=0&&(++a,a=e.length)throw new Error(`Got nextValueRowId=${p} which is not less than ${e.length}`);l=e[p]}i.push(l)}if(i.length!==t.length)throw new Error(\"Invalid row ids.\");return i}calculateOutputIndex(t,e,n,o){let s=this.getRowPartitionTensor(t),i=this.getRowPartitionTypeByDimension(t);switch(i){case Oo.VALUE_ROWIDS:return this.calculateOutputIndexValueRowID(s,e,n,o);case Oo.ROW_SPLITS:if(s.length-1>e.length)throw new Error(`Row partition size is greater than output size: ${s.length-1} > ${e.length}`);return this.calculateOutputIndexRowSplit(s,e,n,o);default:throw new Error(`Unsupported partition type: ${Oo[i]}`)}}getFirstDimensionSize(){let t=this.rowPartitionValues[0];if(this.rowPartitionTypes.length===0)throw new Error(\"No row_partition_types given.\");let e=this.rowPartitionTypes[0];switch(e){case Oo.FIRST_DIM_SIZE:return t[0];case Oo.VALUE_ROWIDS:throw new Error(\"Cannot handle VALUE_ROWIDS in first dimension.\");case Oo.ROW_SPLITS:return this.rowPartitionValuesShapes[0][0]-1;default:throw new Error(`Cannot handle type ${Oo[e]}`)}}compute(){if(this.rowPartitionValues[0].length<=0)throw new Error(\"Invalid first partition input. Tensor requires at least one element.\");let e=this.getFirstDimensionSize(),n=this.calculateOutputSize(e),o=new Array(this.raggedRank+1);o[o.length-1]=1;for(let u=o.length-2;u>=0;--u)o[u]=o[u+1]*n[u+1];let s=MO(n,!1),i=y.getArrayFromDType(this.valuesDType,y.sizeFromShape(s));if(o[0]*n[0]>0){let u=this.calculateFirstParentOutputIndex(e,o[0],n[0]);for(let l=1;l<=this.raggedRank;++l)u=this.calculateOutputIndex(l-1,u,o[l],n[l]);this.setOutput(this.raggedRank,u,i,s)}return[s,i]}setOutput(t,e,n,o){if(n.length===0)return;let s=this.values,i=n,a=o.slice();a=a.slice(t+1);let u=y.sizeFromShape(a),l=e.length,c=this.defaultValue;if(c.length!==u&&c.length!==1){let d=this.defaultValueShape;B(()=>{let h=R(c,d);c=sa(h,a).dataSync()})}let p=0,m=0,f=0;for(let d=0;d<=l;++d){let h=d=l){let g=n.length;h=Math.floor(g/u)}if(h>f)if(this.defaultValue.length===1)i.subarray(f*u,h*u).fill(this.defaultValue[0]),f=h;else for(;h>f;){let g=i.slice(f*u);OO(g,c,u),++f}h<0?(p=d+1,m=f):(p=d,m=f,f=m+1)}}};function OO(r,t,e){for(let n=0;n= 0`);if(n<-1)throw new Error(`Dimension ${n} must be >= -1`);n=-1}e.push(n)}return e}function vw(r,t,e,n,o,s,i,a,u,l){return new IT(r,t,e,n,o,s,i,a,u,l).compute()}function tp(r,t,e,n){let o=r===t,s=r1;if(o||s||i)return y.makeZerosTypedArray(0,n);let a=Math.abs(Math.ceil((t-r)/e)),u=y.makeZerosTypedArray(a,n);t1/Math.sqrt(r)),Ytt=An(Us,CT),PO={kernelName:Us,backendName:\"cpu\",kernelFunc:Ytt};function Ci(r,t,e,n,o,s,i,a,u,l){let c=[n/o,o],p=r.values,m=t.values;if(n===0)return wt(e,t.dtype);let f=u instanceof le?u:wt(c,t.dtype);typeof u==\"string\"||typeof u==\"number\"?f.values.fill(u):typeof u==\"boolean\"&&f.values.fill(+u);for(let d=0;d=n/o)throw new Error(`Invalid indices: ${h} does not index into ${e}`);for(let x=0;x1/(1+Math.exp(-r))),vT=At(Xs,r=>1/(1+Math.exp(-r))),zO={kernelName:Xs,backendName:\"cpu\",kernelFunc:vT};function ep(r,t,e,n,o){let s=Be.isSliceContinous(n,t,e),i=y.sizeFromShape(e),a=y.computeStrides(n);if(s){let p=Be.computeFlatOffset(t,a);return o===\"string\"?r.slice(p,p+i):r.subarray(p,p+i)}let u=o===\"string\"?S.fromUint8ToStringArray(r):r,l=wt(n,o,u),c=wt(e,o);for(let p=0;pd+t[h]);c.set(l.get(...f),...m)}return o===\"string\"?S.fromStringArrayToUint8(c.values):c.values}function Mo(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{begin:s,size:i}=n;tt(o,\"slice\");let[a,u]=Be.parseSliceParams(o,s,i);Be.assertParamsValid(o,a,u);let l=e.data.get(o.dataId).values,c=ep(l,a,u,o.shape,o.dtype);return e.makeTensorInfo(u,o.dtype,c)}var BO={kernelName:Ui,backendName:\"cpu\",kernelFunc:Mo};function Sw(r,t,e,n,o,s,i){let a=t[0],u=s[0],l=new Array(u),c=new Array(a),p=t[1];if(u===0){if(a!==0)throw new Error(S.getSparseFillEmptyRowsIndicesDenseShapeMismatch(a));let g=y.getArrayFromDType(e,0),x=y.getArrayFromDType(o,0);return[g,[0,p],x,l,c]}let m=!0,f=0,d=new Array(u).fill(0);for(let g=0;g=u)throw new Error(S.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(g,x,u));++d[x],m=m&&x>=f,f=x}let h=!0;for(let g=0;g0&&(d[g]+=d[g-1])}if(h&&m){let g=r,x=n;for(let b=0;b0){f[m-1]=1;for(let g=m-2;g>=0;--g)f[g]=f[g+1]*n[g+1]}let d=[];if(a>0){d[a-1]=1;for(let g=a-2;g>=0;--g)d[g]=d[g+1]*u[g+1]}let h=y.getArrayFromDType(e,i*a);for(let g=0;g0?o[a-1]+1:0;if(p<0)throw new Error(S.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let m=t.slice();m[0]=p;let f=m.reduce((w,I)=>w*I,1),d=y.getArrayFromDType(e,f);if(a===0)return p>0&&d.fill(i),[d,m];if(p<=0)throw new Error(S.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let h=0,g=1,x=0,b=o[h];for(;;){let w=0;if(g=w)throw new Error(S.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage())}if(b<0||b>=p)throw new Error(S.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(b,p));b>x&&d.fill(i,x*l,b*l);for(let I=h;I=u[0])throw new Error(S.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(I,n[I],u[0]));for(let E=0;Ea)break}return xMath.sqrt(r)),Ztt=At(Zs,r=>Math.sqrt(r)),GO={kernelName:Zs,backendName:\"cpu\",kernelFunc:Ztt};var ST=Qt((r,t)=>{let e=r-t;return e*e}),Jtt=oe(ti,ST),WO={kernelName:ti,backendName:\"cpu\",kernelFunc:Jtt};var NT=_r((r,t)=>{let{pattern:e,replaceGlobal:n,rewrite:o}=t;return r.replace(new RegExp(e,n?\"g\":\"\"),o)}),Qtt=An(ec,NT),UO={kernelName:ec,backendName:\"cpu\",kernelFunc:Qtt};function kw(r,t,e,n){let o=wt(r,t.dtype);for(let s=0;s0?0:a-u),f=0;f+=l*this.leftPad.length;for(let b=0;bb.forEach(w=>h[g++]=w);for(let b=0;b0){x(t[m+p-1]);for(let b=0;b0){let u=e[0];if(u!==0)throw new Error(`First split value must be 0, got ${u}`);for(let l=1;l=u;if(c=c&&e[l]<=n,!c)throw new Error(`Invalid split value ${e[l]}, must be in [${u}, ${n}]`);u=e[l]}if(u!==n)throw new Error(`Last split value must be data size. Expected ${n}, got ${u}`)}let s=o-1,i=y.getArrayFromDType(\"int32\",o);if(n===0||o===0){let u=new Array(n);for(let l=0;l<=s;++l)i[l]=0;return[u,i]}i[0]=0;for(let u=1;u<=s;++u){let l=e[u]-e[u-1],c=0;this.nGramWidths.forEach(p=>{c+=this.getNumNGrams(l,p)}),this.preserveShort&&l>0&&c===0&&(c=1),i[u]=i[u-1]+c}let a=new Array(i[s]);for(let u=0;u{let m=e[u+1]-e[u],f=this.getNumNGrams(m,p);this.createNGrams(t,l,a,c,f,p),c+=f}),this.preserveShort&&c===i[u]){let p=e[u+1]-e[u];if(p===0)continue;let m=p+2*this.padWidth;this.createNGrams(t,l,a,c,1,m)}}return[a,i]}};function rp(r,t,e,n,o,s,i,a){return new kT(e,n,o,s,i,a).compute(r,t)}function tet(r,t,e,n){if(!r.length)return;if(t.length===0){for(let s=0;sr-t),eet=fd((r,t,e,n)=>({real:r-e,imag:t-n})),Jh=oe(ei,TT,eet),HO={kernelName:ei,backendName:\"cpu\",kernelFunc:Jh};function Tw(r,t){let e=new Array(r.rank);for(let o=0;o{let e=t.value-r.value;return e===0?r.index-t.index:e};function qO(r,t,e=0,n=r.length-1){for(;n>e;){if(n-e>600){let a=n-e+1,u=t-e+1,l=Math.log(a),c=.5*Math.exp(2*l/3),p=.5*Math.sqrt(l*c*(a-c)/a)*Math.sign(u-a/2),m=Math.max(e,Math.floor(t-u*c/a+p)),f=Math.min(n,Math.floor(t+(a-u)*c/a+p));qO(r,t,m,f)}let o=r[t],s=e,i=n;for(y.swap(r,e,t),Qh(r[n],o)>0&&y.swap(r,e,n);s0;)i=i-1}Qh(r[e],o)===0?y.swap(r,e,i):(i=i+1,y.swap(r,i,n)),i<=t&&(e=i+1),t<=i&&(n=i-1)}}function _w(r,t,e,n,o){let s=t[t.length-1],[i,a]=[r.length/s,s],u=y.getTypedArrayFromDType(e,i*n),l=y.getTypedArrayFromDType(\"int32\",i*n);for(let p=0;pd[w]={value:b,index:w}),n{for(let g=0;gnew pd,1);var _T=At(ls,r=>r>=0?r:Math.exp(r)-1),jO={kernelName:ls,backendName:\"cpu\",kernelFunc:_T};function ET(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{alpha:s}=n;tt([o],\"leakyRelu\");let i=y.sizeFromShape(o.shape),a=e.data.get(o.dataId).values,u=y.getTypedArrayFromDType(\"float32\",i);for(let l=0;lr<0?t*r:r);function AT(r){let{inputs:t,backend:e}=r,{x:n,alpha:o}=t;tt([n,o],\"prelu\");let s=e.data.get(n.dataId).values,i=e.data.get(o.dataId).values,[a,u]=ret(n.shape,o.shape,s,i,\"float32\");return e.makeTensorInfo(u,\"float32\",a)}var YO={kernelName:Os,backendName:\"cpu\",kernelFunc:AT};var DT=At(Ls,r=>Math.max(0,r)),ZO={kernelName:Ls,backendName:\"cpu\",kernelFunc:DT};var $T=At(Vs,r=>Math.min(Math.max(0,r),6)),JO={kernelName:Vs,backendName:\"cpu\",kernelFunc:$T};function ip(r,t,e,n,o){if(e===\"linear\")return Zr({inputs:{x:t},backend:r});if(e===\"relu\")return DT({inputs:{x:t},backend:r});if(e===\"elu\")return _T({inputs:{x:t},backend:r});if(e===\"relu6\")return $T({inputs:{x:t},backend:r});if(e===\"prelu\")return AT({inputs:{x:t,alpha:n},backend:r});if(e===\"leakyrelu\")return ET({inputs:{x:t},backend:r,attrs:{alpha:o}});if(e===\"sigmoid\")return vT({inputs:{x:t},backend:r});throw new Error(`Activation ${e} has not been implemented for the CPU backend.`)}function te(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{shape:s}=n,i=y.sizeFromShape(o.shape),a=y.inferFromImplicitShape(s,i),u=y.sizeFromShape(a);y.assert(i===u,()=>`The new shape (${a}) has ${u} elements and the old shape (${o.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`),e.incRef(o.dataId);let l=e.data.get(o.dataId);if(l.complexTensorInfos!=null){let c=l.complexTensorInfos.real,p=l.complexTensorInfos.imag;c.shape=a,p.shape=a}return{dataId:o.dataId,shape:a,dtype:o.dtype}}var QO={kernelName:Gi,backendName:\"cpu\",kernelFunc:te};function RT(r){let{inputs:t,backend:e,attrs:n}=r,{a:o,b:s}=t,{transposeA:i,transposeB:a}=n;tt([o,s],\"matMul\");let u=o.shape.length,l=s.shape.length,c=i?o.shape[u-2]:o.shape[u-1],p=a?s.shape[l-1]:s.shape[l-2],m=i?o.shape[u-1]:o.shape[u-2],f=a?s.shape[l-2]:s.shape[l-1],d=o.shape.slice(0,-2),h=s.shape.slice(0,-2),g=y.sizeFromShape(d),x=y.sizeFromShape(h),w=Hr.assertAndGetBroadcastShape(o.shape.slice(0,-2),s.shape.slice(0,-2)).concat([m,f]);y.assert(c===p,()=>`Error in matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${o.shape} and ${s.shape} and transposeA=${i} and transposeB=${a} must match.`);let I=i?[g,c,m]:[g,m,c],N=a?[x,f,p]:[x,p,f],E=te({inputs:{x:o},backend:e,attrs:{shape:I}}),A=te({inputs:{x:s},backend:e,attrs:{shape:N}}),D=i?E.shape[1]:E.shape[2],F=i?E.shape[2]:E.shape[1],M=a?A.shape[1]:A.shape[2],V=Math.max(g,x),G=e.data.get(E.dataId).values,W=e.data.get(A.dataId).values,q=y.computeStrides(E.shape),H=y.computeStrides(A.shape),[j,Y,Z]=i?[q[0],1,q[1]]:[q[0],q[1],1],[et,nt,st]=a?[1,H[1],H[0]]:[H[1],1,H[0]],lt=F*M,ot=wt([V,F,M],E.dtype),it=ot.values,ft=e.blockSize;for(let gt=0;gtMath.acos(r)),rM={kernelName:Go,backendName:\"cpu\",kernelFunc:oet};var set=At(Wo,r=>Math.acosh(r)),nM={kernelName:Wo,backendName:\"cpu\",kernelFunc:set};function iet(r){let{inputs:t,backend:e}=r,n=t;tt(t,\"addN\");let o=n.map(a=>e.data.get(a.dataId).values),s=wt(n[0].shape,n[0].dtype),i=s.values;for(let a=0;ab&&(b=N,w=I)}f[g]=w}return l.forEach(g=>e.disposeIntermediateTensorInfo(g)),e.makeTensorInfo(c,\"int32\",f)}var aM={kernelName:Di,backendName:\"cpu\",kernelFunc:cet};function pet(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s}=n;tt(o,\"argMin\");let i=y.parseAxisParam(s,o.shape),a=S.getAxesPermutation(i,o.shape.length),u=o,l=[];a!=null&&(u=We({inputs:{x:o},backend:e,attrs:{perm:a}}),l.push(u),i=S.getInnerMostAxes(i.length,u.shape.length)),i=[i[0]],S.assertAxesAreInnerMostDims(\"argMin\",i,u.shape.length);let[c,p]=S.computeOutAndReduceShapes(u.shape,i),m=y.sizeFromShape(c),f=y.makeZerosTypedArray(m,\"int32\"),d=y.sizeFromShape(p),h=e.data.get(u.dataId).values;for(let g=0;ge.disposeIntermediateTensorInfo(g)),e.makeTensorInfo(c,\"int32\",f)}var lM={kernelName:$i,backendName:\"cpu\",kernelFunc:pet};var met=At(Ho,r=>Math.asin(r)),uM={kernelName:Ho,backendName:\"cpu\",kernelFunc:met};var fet=At(qo,r=>Math.asinh(r)),cM={kernelName:qo,backendName:\"cpu\",kernelFunc:fet};var det=At(Ko,r=>Math.atan(r)),pM={kernelName:Ko,backendName:\"cpu\",kernelFunc:det};var het=Qt((r,t)=>Math.atan2(r,t)),get=oe(Xo,het),mM={kernelName:Xo,backendName:\"cpu\",kernelFunc:get};var xet=At(jo,r=>Math.atanh(r)),fM={kernelName:jo,backendName:\"cpu\",kernelFunc:xet};function xd(r,t,e,n,o,s){let i=o.strideHeight,a=o.strideWidth,u=o.dilationHeight,l=o.dilationWidth,c=o.effectiveFilterHeight,p=o.effectiveFilterWidth,m=o.padInfo.top,f=o.padInfo.left,d=s===\"max\"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,h=wt(o.outShape,e),g=h.values,x=o.outShape[1]*o.outShape[2]*o.outShape[3],b=o.outShape[2]*o.outShape[3],w=o.outShape[3];for(let I=0;IY?Y=ft:s===\"avg\"&&(Z+=ft,et++)}if(isNaN(Y))break}let nt=G+W*w+A;g[nt]=s===\"avg\"?Z/et:Y}}}return h}function Aw(r,t,e,n,o=!1,s=!1){let i=wt(n.outShape,\"int32\"),a=n.strideHeight,u=n.strideWidth,l=n.dilationHeight,c=n.dilationWidth,p=n.effectiveFilterHeight,m=n.effectiveFilterWidth,f=n.padInfo.top,d=n.padInfo.left,h=wt(t,e,r);for(let g=0;gM&&(M=j,o?V=s?((g*n.inHeight+G)*n.inWidth+q)*n.inChannels+x:(G*n.inWidth+q)*n.inChannels+x:V=W*m+H)}}i.set(V,g,b,E,x)}}return i}function Dw(r,t,e,n,o,s){let i=o.strideDepth,a=o.strideHeight,u=o.strideWidth,l=o.dilationDepth,c=o.dilationHeight,p=o.dilationWidth,m=o.effectiveFilterDepth,f=o.effectiveFilterHeight,d=o.effectiveFilterWidth,h=o.padInfo.front,g=o.padInfo.top,x=o.padInfo.left,b=s===\"max\"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,w=wt(o.outShape,e),I=w.values,N=o.outShape[1]*o.outShape[2]*o.outShape[3]*o.outShape[4],E=o.outShape[2]*o.outShape[3]*o.outShape[4],A=o.outShape[3]*o.outShape[4],D=o.outShape[4];for(let F=0;FRt?Rt=Ae:s===\"avg\"&&(Dt+=Ae,Ht++),isNaN(Rt))break}if(isNaN(Rt))break}if(isNaN(Rt))break}let qt=Ct+G;I[qt]=s===\"avg\"?Dt/Math.max(Ht,1):Rt}}}}return w}function dM(r,t){let e=wt(t.outShape,\"int32\"),n=t.strideDepth,o=t.strideHeight,s=t.strideWidth,i=t.dilationDepth,a=t.dilationHeight,u=t.dilationWidth,l=t.effectiveFilterDepth,c=t.effectiveFilterHeight,p=t.effectiveFilterWidth,m=t.padInfo.front,f=t.padInfo.top,d=t.padInfo.left;for(let h=0;h=W&&(W=st,q=j*c*p+Z*c+nt)}}}e.set(q,h,x,N,F,g)}}}return e}function yet(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t;tt(o,\"avgPool\");let{filterSize:s,strides:i,pad:a,dimRoundingMode:u}=n,l=1;y.assert(S.eitherStridesOrDilationsAreOne(i,l),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${l}'`);let c=S.computePool2DInfo(o.shape,s,i,l,a,u),p;if(c.filterWidth===1&&c.filterHeight===1&&y.arraysEqual(c.inShape,c.outShape))p=Zr({inputs:{x:o},backend:e});else{let m=e.data.get(o.dataId).values,f=y.computeStrides(o.shape),d=xd(m,o.shape,o.dtype,f,c,\"avg\");p=e.makeTensorInfo(c.outShape,o.dtype,d.values)}return p}var hM={kernelName:Yo,backendName:\"cpu\",kernelFunc:yet};function bet(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{filterSize:s,strides:i,pad:a,dimRoundingMode:u,dataFormat:l}=n;tt(o,\"avgPool3d\");let c=S.computePool3DInfo(o.shape,s,i,1,a,u,l),p=e.data.get(o.dataId).values,m=Dw(p,o.shape,o.dtype,y.computeStrides(o.shape),c,\"avg\");return e.makeTensorInfo(m.shape,\"float32\",m.values)}var gM={kernelName:Ri,backendName:\"cpu\",kernelFunc:bet};function wet(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,input:s}=t,{filterSize:i,strides:a,pad:u,dimRoundingMode:l}=n;tt([o,s],\"avgPool3DGrad\");let c=S.computePool3DInfo(s.shape,i,a,1,u,l),p=c.strideDepth,m=c.strideHeight,f=c.strideWidth,d=c.filterDepth,h=c.filterHeight,g=c.filterWidth,x=c.dilationDepth,b=c.dilationHeight,w=c.dilationWidth,I=c.effectiveFilterDepth,N=c.effectiveFilterHeight,E=c.effectiveFilterWidth,A=I-1-c.padInfo.front,D=E-1-c.padInfo.left,F=N-1-c.padInfo.top,M=wt(s.shape,\"float32\"),V=1/(d*h*g),G=e.bufferSync(o);for(let W=0;W=c.outDepth||Math.floor(ot)!==ot))for(let it=0;it=c.outHeight||Math.floor(ft)!==ft))for(let gt=0;gt=c.outWidth||Math.floor(Ct)!==Ct)continue;let Rt=G.get(W,ot,ft,Ct,q);st+=Rt}}}M.set(st*V,W,H,j,Y,q)}return e.makeTensorInfo(M.shape,M.dtype,M.values)}var xM={kernelName:Hl,backendName:\"cpu\",kernelFunc:wet};function Iet(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,input:s}=t,i=s;tt([o,s],\"avgPoolGrad\");let{filterSize:a,strides:u,pad:l}=n,c=S.computePool2DInfo(i.shape,a,u,1,l),p=c.strideHeight,m=c.strideWidth,f=c.filterHeight,d=c.filterWidth,h=c.dilationHeight,g=c.dilationWidth,x=c.effectiveFilterHeight,b=c.effectiveFilterWidth,w=b-1-c.padInfo.left,I=x-1-c.padInfo.top,N=wt(i.shape,\"float32\"),E=1/(f*d),A=e.data.get(o.dataId).values,D=wt(o.shape,\"float32\",A);for(let F=0;F=c.outHeight||Math.floor(Y)!==Y))for(let Z=0;Z=c.outWidth||Math.floor(et)!==et)continue;let nt=D.get(F,Y,et,M);H+=nt}}N.set(H*E,F,V,G,M)}return e.makeTensorInfo(N.shape,N.dtype,N.values)}var yM={kernelName:Ul,backendName:\"cpu\",kernelFunc:Iet};function Cet(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,scale:s,offset:i,mean:a,variance:u}=t;y.assert(a.shape.length===u.shape.length,()=>\"Batch normalization gradient requires mean and variance to have equal ranks.\"),y.assert(i==null||a.shape.length===i.shape.length,()=>\"Batch normalization gradient requires mean and offset to have equal ranks.\"),y.assert(s==null||a.shape.length===s.shape.length,()=>\"Batch normalization gradient requires mean and scale to have equal ranks.\"),tt([o,a,u,s,i],\"batchNorm\");let{varianceEpsilon:l}=n;l==null&&(l=.001);let c=e.data.get(o.dataId).values,p=e.data.get(a.dataId).values,m=e.data.get(u.dataId).values,f=s?e.data.get(s.dataId).values:new Float32Array([1]),d=i?e.data.get(i.dataId).values:new Float32Array([0]),h=new Float32Array(c.length),g=d.length,x=f.length,b=m.length,w=p.length,I=0,N=0,E=0,A=0;for(let D=0;D=g&&(I=0),N>=w&&(N=0),E>=x&&(E=0),A>=b&&(A=0);return e.makeTensorInfo(o.shape,o.dtype,h)}var bM={kernelName:ds,backendName:\"cpu\",kernelFunc:Cet};function vet(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{blockShape:s,crops:i}=n;tt([o],\"batchToSpaceND\");let a=s.reduce((x,b)=>x*b),u=S.getReshaped(o.shape,s,a),l=S.getPermuted(u.length,s.length),c=S.getReshapedPermuted(o.shape,s,a),p=S.getSliceBeginCoords(i,s.length),m=S.getSliceSize(c,i,s.length),f=te({inputs:{x:o},backend:e,attrs:{shape:u}}),d=We({inputs:{x:f},backend:e,attrs:{perm:l}}),h=te({inputs:{x:d},backend:e,attrs:{shape:c}}),g=Mo({inputs:{x:h},backend:e,attrs:{begin:p,size:m}});return e.disposeIntermediateTensorInfo(f),e.disposeIntermediateTensorInfo(d),e.disposeIntermediateTensorInfo(h),g}var wM={kernelName:Fi,backendName:\"cpu\",kernelFunc:vet};function Net(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,weights:s}=t,{size:i}=n,a=e.data.get(o.dataId).values,u=e.data.get(s.dataId).values,l=dd(a,u,s.dtype,s.shape,i);return e.makeTensorInfo([i],s.dtype,l)}var IM={kernelName:Da,backendName:\"cpu\",kernelFunc:Net};function ket(r){let{inputs:t,backend:e}=r,{s0:n,s1:o}=t,s=e.data.get(n.dataId).values,i=e.data.get(o.dataId).values,a=S.assertAndGetBroadcastShape(Array.from(s),Array.from(i));return e.makeTensorInfo([a.length],\"int32\",Int32Array.from(a))}var CM={kernelName:ql,backendName:\"cpu\",kernelFunc:ket};var Tet=At(ho,(r,t)=>{let e=t;return r>e.clipValueMax?e.clipValueMax:r{let{x:t}=r.inputs,e=r.backend,n=new Float32Array(y.sizeFromShape(t.shape)),o=e.data.get(t.dataId),s=o.complexTensorInfos.real,i=o.complexTensorInfos.imag,a=e.data.get(s.dataId).values,u=e.data.get(i.dataId).values;for(let l=0;lh.shape);S.assertParamsConsistent(i,s);let a=S.computeOutShape(t.map(h=>h.shape),s);if(y.sizeFromShape(a)===0)return e.makeTensorInfo(a,t[0].dtype,[]);let u=t.filter(h=>y.sizeFromShape(h.shape)>0);if(u.length===1)return Zr({inputs:{x:u[0]},backend:e});if(u[0].dtype===\"complex64\"){let h=u.map(I=>Ro({inputs:{input:I},backend:e})),g=u.map(I=>ba({inputs:{input:I},backend:e})),x=Gu({inputs:h,backend:e,attrs:{axis:s}}),b=Gu({inputs:g,backend:e,attrs:{axis:s}}),w=Ir({inputs:{real:x,imag:b},backend:e});return h.forEach(I=>e.disposeIntermediateTensorInfo(I)),g.forEach(I=>e.disposeIntermediateTensorInfo(I)),e.disposeIntermediateTensorInfo(x),e.disposeIntermediateTensorInfo(b),w}let l=u.map(h=>{let x=[-1,y.sizeFromShape(h.shape.slice(s))];return te({inputs:{x:h},backend:e,attrs:{shape:x}})}),c=l.map(h=>({vals:e.data.get(h.dataId).values,shape:h.shape}));a=S.computeOutShape(l.map(h=>h.shape),1);let p=l[0].shape[0]===1,m=Jc(c,a,t[0].dtype,p),f=S.computeOutShape(u.map(h=>h.shape),s),d=e.makeTensorInfo(f,t[0].dtype,m);return l.forEach(h=>e.disposeIntermediateTensorInfo(h)),d}var kM={kernelName:Oi,backendName:\"cpu\",kernelFunc:Gu};function FT(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s}=t,{strides:i,pad:a,dataFormat:u,dilations:l,dimRoundingMode:c}=n;tt([o,s],\"conv2d\");let p=S.convertConv2DDataFormat(u),m=S.computeConv2DInfo(o.shape,s.shape,i,l,a,c,!1,p),f=m.filterHeight,d=m.filterWidth,h=m.dilationHeight,g=m.dilationWidth,x=m.padInfo.left,b=m.padInfo.top,w=m.dataFormat===\"channelsLast\",I=new le(m.outShape,o.dtype),N=y.computeStrides(o.shape),E=y.computeStrides(s.shape),A=N[0],D=w?N[1]:N[2],F=w?N[2]:1,M=w?1:N[1],V=I.strides[0],G=w?I.strides[1]:I.strides[2],W=w?I.strides[2]:1,q=w?1:I.strides[1],H=e.data.get(o.dataId).values,j=e.data.get(s.dataId).values,Y=I.values;for(let Z=0;Z=m.inHeight)continue;let gt=it*E[0],Ct=et+ft*D;for(let Rt=0;Rt=m.inWidth)continue;let ye=gt+qt*E[1],re=Ct+pe*F,be=ye;for(let de=0;de=l.inDepth)continue;let Z=j*F[0],et=V+Y*D[1];for(let nt=0;nt=l.inHeight)continue;let ft=Z+ot*F[1],gt=et+it*D[2];for(let Ct=0;Ct=l.inWidth)continue;let pe=ft+Ht*F[2],ye=gt+qt*l.inChannels,re=pe;for(let be=0;beMath.cos(r)),RM={kernelName:rs,backendName:\"cpu\",kernelFunc:Fet};var Oet=At(ns,r=>Math.cosh(r)),FM={kernelName:ns,backendName:\"cpu\",kernelFunc:Oet};function Met(r){let{inputs:t,backend:e,attrs:n}=r,{image:o,boxes:s,boxInd:i}=t,{cropSize:a,method:u,extrapolationValue:l}=n,[c,p,m,f]=o.shape,d=s.shape[0],[h,g]=a,x=wt([d,h,g,f],\"float32\"),b=e.data.get(s.dataId).values,w=e.data.get(i.dataId).values,I=e.data.get(o.dataId).values,N=y.computeStrides(o.shape),E=y.computeStrides(x.shape);for(let A=0;A=c)continue;let q=h>1?(V-F)*(p-1)/(h-1):0,H=g>1?(G-M)*(m-1)/(g-1):0;for(let j=0;j1?F*(p-1)+j*q:.5*(F+V)*(p-1);if(Y<0||Y>p-1){for(let Z=0;Z1?M*(m-1)+st*H:.5*(M+G)*(m-1);if(lt<0||lt>m-1){for(let gt=0;gt1?M*(m-1)+Z*H:.5*(M+G)*(m-1);if(et<0||et>m-1){for(let lt=0;ltx+d-b-1:(x,b)=>x+b;for(let x=0;xx+d-b-1:(x,b)=>x+b;for(let x=0;x`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${i}`);let a=o.shape[0],u=o.shape[1],l=o.shape[2],c=o.shape[3],p=u*s,m=l*s,f=c/(s*s),d=e.data.get(o.dataId).values,h=new Float32Array(a*p*m*f),g=0;for(let x=0;x`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${m}'`);let f=S.computeConv2DInfo(o.shape,s.shape,i,m,a,l,!0),{filterHeight:d,filterWidth:h,dilationHeight:g,dilationWidth:x,padInfo:b}=f,w=b.left,I=b.top,N=f.outChannels/f.inChannels,E=new le(f.outShape,o.dtype),A=e.data.get(o.dataId).values,D=e.data.get(s.dataId).values,F=E.values;for(let M=0;M=f.inHeight)continue;let Z=j*p[0],et=V+Y*c[1];for(let nt=0;nt=f.inWidth)continue;let ft=Z+ot*p[1],gt=et+it*f.inChannels,Ct=st,Rt=ft;for(let Dt=0;Dt{let{x:n,filter:o}=r,{strides:s,pad:i,dilations:a}=e,u=t,l=u.data.get(n.dataId).values,c=n.shape.length,p=u.data.get(o.dataId).values,m=o.shape.length,{batchSize:f,inHeight:d,inWidth:h,inChannels:g,outHeight:x,outWidth:b,padInfo:w,strideHeight:I,strideWidth:N,filterHeight:E,filterWidth:A,dilationHeight:D,dilationWidth:F,outShape:M}=S.computeDilation2DInfo(n.shape,o.shape,s,i,\"NHWC\",a),V=y.sizeFromShape(M),G=M.length,W=y.getArrayFromDType(n.dtype,V);for(let H=0;H=0&&it=0&>st&&(st=Dt)}}}let lt=y.locToIndex([H,j,Z,nt],G,y.computeStrides(M));W[lt]=st}}}return{dataId:u.write(y.toTypedArray(W,n.dtype),M,n.dtype),shape:M,dtype:n.dtype}}};var HM={kernelName:Zl,backendName:\"cpu\",kernelFunc:({inputs:r,backend:t,attrs:e})=>{let{x:n,filter:o,dy:s}=r,{strides:i,pad:a,dilations:u}=e,l=t,c=y.toNestedArray(n.shape,l.data.get(n.dataId).values),p=y.toNestedArray(o.shape,l.data.get(o.dataId).values),{batchSize:m,inHeight:f,inWidth:d,inChannels:h,outHeight:g,outWidth:x,padInfo:b,strideHeight:w,strideWidth:I,filterHeight:N,filterWidth:E,dilationHeight:A,dilationWidth:D,outShape:F}=S.computeDilation2DInfo(n.shape,o.shape,i,a,\"NHWC\",u);y.assert(s.rank===F.length,()=>`Error in ${Zl}, dy must have the same rank as output ${F.length}, but got ${s.rank}`);let M=y.toNestedArray(F,l.data.get(s.dataId).values),V=y.makeZerosNestedTypedArray(o.shape,o.dtype);for(let W=0;W=0&&ot=0&&ftet&&(et=gt,nt=lt,st=it)}}}V[nt][st][Z]+=M[W][q][j][Z]}}}return{dataId:l.write(y.toTypedArray(V,n.dtype),o.shape,o.dtype),shape:o.shape,dtype:o.dtype}}};var qM={kernelName:Yl,backendName:\"cpu\",kernelFunc:({inputs:r,backend:t,attrs:e})=>{let{x:n,filter:o,dy:s}=r,{strides:i,pad:a,dilations:u}=e,l=t,c=y.toNestedArray(n.shape,l.data.get(n.dataId).values),p=y.toNestedArray(o.shape,l.data.get(o.dataId).values),{batchSize:m,inHeight:f,inWidth:d,inChannels:h,outHeight:g,outWidth:x,padInfo:b,strideHeight:w,strideWidth:I,filterHeight:N,filterWidth:E,dilationHeight:A,dilationWidth:D,outShape:F}=S.computeDilation2DInfo(n.shape,o.shape,i,a,\"NHWC\",u);y.assert(s.rank===F.length,()=>`Error in ${Yl}, dy must have the same rank as output ${F.length}, but got ${s.rank}`);let M=y.toNestedArray(F,l.data.get(s.dataId).values),V=y.makeZerosNestedTypedArray(n.shape,n.dtype);for(let W=0;W=0&&ot=0&&ftet&&(et=gt,nt=ot,st=ft)}}}V[W][nt][st][Z]+=M[W][q][j][Z]}}}return{dataId:l.write(y.toTypedArray(V,n.dtype),n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}};function Uet(r){let{inputs:t,backend:e,attrs:n}=r,{image:o}=t,{canvas:s,options:i}=n,{contextOptions:a,imageOptions:u}=i||{},l=(u==null?void 0:u.alpha)||1,c=(a==null?void 0:a.contextType)||\"2d\";if(c!==\"2d\")throw new Error(`Context type ${a.contextType} is not supported by the CPU backend.`);let p=s.getContext(c,(a==null?void 0:a.contextAttributes)||{});if(p==null)throw new Error(`Could not get the context with ${c} type.`);let[m,f]=o.shape.slice(0,2),d=o.shape.length===2?1:o.shape[2],h=e.data.get(o.dataId).values,g=o.dtype===\"float32\"?255:1,x=new Uint8ClampedArray(f*m*4);for(let w=0;w1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${A}.`)}else if(o.dtype===\"int32\"&&(A<0||A>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${A}.`);d===1?(I[0]=A*g,I[1]=A*g,I[2]=A*g):I[E]=A*g}let N=w*4;x[N+0]=Math.round(I[0]),x[N+1]=Math.round(I[1]),x[N+2]=Math.round(I[2]),x[N+3]=Math.round(I[3])}s.width=f,s.height=m;let b=new ImageData(x,f,m);return p.putImageData(b,0,0),o}var KM={kernelName:Qd,backendName:\"cpu\",kernelFunc:Uet};function $l(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,keepDims:i}=n;tt(o,\"sum\");let a;o.dtype===\"bool\"?a=Fo({inputs:{x:o},backend:e,attrs:{dtype:\"int32\"}}):a=Zr({inputs:{x:o},backend:e});let u=a.shape.length,l=y.parseAxisParam(s,a.shape),c=S.getAxesPermutation(l,u),p=l,m=a;c!=null&&(m=We({inputs:{x:a},backend:e,attrs:{perm:c}}),p=S.getInnerMostAxes(p.length,u)),S.assertAxesAreInnerMostDims(\"sum\",p,m.shape.length);let[f,d]=S.computeOutAndReduceShapes(m.shape,p),h=S.upcastType(m.dtype,\"int32\"),g=md(e,f,h),x=y.sizeFromShape(d),b=e.data.get(g.dataId).values,w=e.data.get(m.dataId).values;for(let I=0;I=0&&(m=$l({inputs:{x:m},backend:e,attrs:{axis:l[h]-(i.length-f),keepDims:!1}}),d.push(m)),f--)}for(let h of d)h!==m&&e.disposeIntermediateTensorInfo(h);return m}var XM={kernelName:Fp,backendName:\"cpu\",kernelFunc:Het};function qet(r){let{inputs:t,backend:e}=r,{dy:n,y:o}=t;tt([n,o],\"eluGrad\");let s=new Float32Array(y.sizeFromShape(o.shape)),i=e.data.get(o.dataId).values,a=e.data.get(n.dataId).values;for(let u=0;u=0?s[u]=a[u]:s[u]=a[u]*(l+1)}return e.makeTensorInfo(o.shape,\"float32\",s)}var YM={kernelName:La,backendName:\"cpu\",kernelFunc:qet};var Ket=S.ERF_P,jet=S.ERF_A1,Xet=S.ERF_A2,Yet=S.ERF_A3,Zet=S.ERF_A4,Jet=S.ERF_A5,Qet=At(us,r=>{let t=Math.sign(r),e=Math.abs(r),n=1/(1+Ket*e);return t*(1-((((Jet*n+Zet)*n+Yet)*n+Xet)*n+jet)*n*Math.exp(-e*e))}),ZM={kernelName:us,backendName:\"cpu\",kernelFunc:Qet};function yd(r){let{inputs:t,backend:e,attrs:n}=r,{input:o}=t,{dim:s}=n,i=o.shape.length,a=o.shape.slice(),u=s;return s<0&&(y.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),u=i+s+1),a.splice(u,0,1),te({inputs:{x:o},backend:e,attrs:{shape:a}})}var JM={kernelName:Mi,backendName:\"cpu\",kernelFunc:yd};var trt=Qt((r,t)=>r/t),tg=oe(as,trt),eg={kernelName:as,backendName:\"cpu\",kernelFunc:tg};function $w(r,t,e){let n=r.shape,o=n[0],s=n[1],i=e.data.get(r.dataId),a=i.complexTensorInfos.real,u=i.complexTensorInfos.imag,l=[o,s],c=y.sizeFromShape(l),p=y.getTypedArrayFromDType(\"float32\",c),m=y.getTypedArrayFromDType(\"float32\",c);for(let g=0;g{let{image:n}=r,o=e,s=y.getTypedArrayFromDType(n.dtype,y.sizeFromShape(n.shape)),[i,a,u,l]=n.shape,c=o.data.get(n.dataId).values;for(let m=0;m=0&&w=0,()=>`GatherV2: the index value ${N} is not in [0, ${c-1}]`)}let p=a;a==null&&(p=0);let m=y.sizeFromShape(s.shape),f=S.segment_util.collectGatherOpShapeInfo(o,s,u,p),d=te({inputs:{x:o},backend:e,attrs:{shape:[f.batchSize,f.outerSize,f.dimSize,f.sliceSize]}}),h=te({inputs:{x:s},backend:e,attrs:{shape:[f.batchSize,m/f.batchSize]}}),g=[f.batchSize,f.outerSize,m/f.batchSize,f.sliceSize],x=e.bufferSync(h),b=e.bufferSync(d),w=yw(b,x,g);return e.disposeIntermediateTensorInfo(d),e.disposeIntermediateTensorInfo(h),e.makeTensorInfo(f.outputShape,w.dtype,w.values)}var sP={kernelName:Pi,backendName:\"cpu\",kernelFunc:urt};function crt(r){let{inputs:t,backend:e}=r,{input:n}=t,o=y.sizeFromShape(n.shape),s=n.shape[n.shape.length-1],i=o/s,a=te({inputs:{x:n},backend:e,attrs:{shape:[i,s]}}),u=$w(a,!0,e),l=te({inputs:{x:u},backend:e,attrs:{shape:n.shape}});return e.disposeIntermediateTensorInfo(a),e.disposeIntermediateTensorInfo(u),l}var iP={kernelName:Mp,backendName:\"cpu\",kernelFunc:crt};var prt=At(gs,r=>Number.isFinite(r)?1:0,\"bool\"),aP={kernelName:gs,backendName:\"cpu\",kernelFunc:prt};var mrt=At(xs,r=>Math.abs(r)===1/0?1:0,\"bool\"),lP={kernelName:xs,backendName:\"cpu\",kernelFunc:mrt};var frt=At(ys,r=>Number.isNaN(r)?1:0,\"bool\"),uP={kernelName:ys,backendName:\"cpu\",kernelFunc:frt};function drt(r){let{backend:t,attrs:e}=r,{start:n,stop:o,num:s}=e,i=bw(n,o,s);return t.makeTensorInfo([i.length],\"float32\",i)}var cP={kernelName:Ha,backendName:\"cpu\",kernelFunc:drt};var hrt=At(Is,r=>Math.log1p(r)),pP={kernelName:Is,backendName:\"cpu\",kernelFunc:hrt};var grt=Qt((r,t)=>r&&t),xrt=oe(qa,grt,null,\"bool\"),mP={kernelName:qa,backendName:\"cpu\",kernelFunc:xrt};var yrt=At(Ka,r=>r?0:1,\"bool\"),fP={kernelName:Ka,backendName:\"cpu\",kernelFunc:yrt};var brt=Qt((r,t)=>r||t),wrt=oe(ja,brt,null,\"bool\"),dP={kernelName:ja,backendName:\"cpu\",kernelFunc:wrt};function Irt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{depthRadius:s,bias:i,alpha:a,beta:u}=n;tt(o,\"LRN\");let l=o.shape[3],c=l-1,p=e.data.get(o.dataId).values,m=y.sizeFromShape(o.shape),f=new Float32Array(m);function d(h){let g=h%l,x=h-g+Math.max(0,g-s),b=h-g+Math.min(g+s,c),w=0;for(;x<=b;x++){let I=p[x];w+=I*I}return w}for(let h=0;h`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${l}'`);let c=S.computePool2DInfo(o.shape,s,i,l,a,u),p;if(c.filterWidth===1&&c.filterHeight===1&&y.arraysEqual(c.inShape,c.outShape))p=Zr({inputs:{x:o},backend:e});else{let m=e.data.get(o.dataId).values,f=y.computeStrides(o.shape),d=xd(m,o.shape,o.dtype,f,c,\"max\");p=e.makeTensorInfo(c.outShape,o.dtype,d.values)}return p}var yP={kernelName:Ns,backendName:\"cpu\",kernelFunc:vrt};function Srt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{filterSize:s,strides:i,pad:a,dimRoundingMode:u,dataFormat:l}=n;tt(o,\"maxPool3d\");let c=S.computePool3DInfo(o.shape,s,i,1,a,u,l),p=e.data.get(o.dataId).values,m=Dw(p,o.shape,o.dtype,y.computeStrides(o.shape),c,\"max\");return e.makeTensorInfo(m.shape,\"float32\",m.values)}var bP={kernelName:Li,backendName:\"cpu\",kernelFunc:Srt};function Nrt(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,input:s}=t,{filterSize:i,strides:a,pad:u,dimRoundingMode:l}=n;tt([o,s],\"maxPool3DGrad\");let c=S.computePool3DInfo(s.shape,i,a,1,u,l),p=e.bufferSync(s),m=dM(p,c),f=c.strideDepth,d=c.strideHeight,h=c.strideWidth,g=c.dilationDepth,x=c.dilationHeight,b=c.dilationWidth,w=c.effectiveFilterDepth,I=c.effectiveFilterHeight,N=c.effectiveFilterWidth,E=w-1-c.padInfo.front,A=N-1-c.padInfo.left,D=I-1-c.padInfo.top,F=wt(s.shape,\"float32\"),M=e.bufferSync(o);for(let V=0;V=c.outDepth||Math.floor(st)!==st))for(let lt=0;lt=c.outHeight||Math.floor(ot)!==ot))for(let it=0;it=c.outWidth||Math.floor(ft)!==ft)continue;let gt=w*I*N-1-m.get(V,st,ot,ft,G),Ct=nt*I*N+lt*N+it,Rt=gt===Ct?1:0;if(Rt===0)continue;let Dt=M.get(V,st,ot,ft,G);et+=Dt*Rt}}}F.set(et,V,W,q,H,G)}return e.makeTensorInfo(F.shape,F.dtype,F.values)}var wP={kernelName:tu,backendName:\"cpu\",kernelFunc:Nrt};function krt(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,input:s,output:i}=t,a=s;tt([s,i],\"maxPoolGrad\");let{filterSize:u,strides:l,pad:c,dimRoundingMode:p}=n,m=S.computePool2DInfo(a.shape,u,l,1,c,p),f=e.data.get(a.dataId).values,d=wt(m.outShape,a.dtype,Aw(f,a.shape,a.dtype,m).values),h=m.strideHeight,g=m.strideWidth,x=m.dilationHeight,b=m.dilationWidth,w=m.effectiveFilterHeight,I=m.effectiveFilterWidth,N=I-1-m.padInfo.left,E=w-1-m.padInfo.top,A=wt(a.shape,\"float32\"),D=e.data.get(o.dataId).values,F=wt(o.shape,\"float32\",D);for(let M=0;M=m.outHeight||Math.floor(Z)!==Z))for(let et=0;et=m.outWidth||Math.floor(nt)!==nt)continue;let st=w*I-1-d.get(M,Z,nt,V),lt=Y*I+et,ot=st===lt?1:0;if(ot===0)continue;let it=F.get(M,Z,nt,V);j+=it*ot}}A.set(j,M,G,W,V)}return e.makeTensorInfo(A.shape,A.dtype,A.values)}var IP={kernelName:Ql,backendName:\"cpu\",kernelFunc:krt};function CP(r,t,e,n,o){let s=y.computeStrides(t),i=xd(r,t,e,s,o,\"max\"),a=Aw(r,t,e,o,!0,n);return[i.values,a.values]}var vP={kernelName:eu,backendName:\"cpu\",kernelFunc:({inputs:r,attrs:t,backend:e})=>{let{x:n}=r,{filterSize:o,strides:s,pad:i,includeBatchInIndex:a}=t,u=e;tt(n,\"MaxPoolWithArgmax\");let l=u.data.get(n.dataId).values,c=S.computePool2DInfo(n.shape,o,s,[1,1],i),[p,m]=CP(l,n.shape,n.dtype,a,c),f=u.write(p,c.outShape,n.dtype),d=u.write(m,c.outShape,n.dtype);return[{dataId:f,shape:c.outShape,dtype:n.dtype},{dataId:d,shape:c.outShape,dtype:\"int32\"}]}};function Trt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,keepDims:i}=n,a=y.parseAxisParam(s,o.shape),l=S.computeOutAndReduceShapes(o.shape,a)[1],c=y.sizeFromShape(l),p=[],m=e.makeTensorInfo([],\"float32\",new Float32Array([c]));p.push(m);let f=Fo({inputs:{x:o},backend:e,attrs:{dtype:\"float32\"}});p.push(f);let d=tg({inputs:{a:f,b:m},backend:e});p.push(d);let h=$l({inputs:{x:d},backend:e,attrs:{axis:s,keepDims:i}});return p.forEach(g=>e.disposeIntermediateTensorInfo(g)),h}var SP={kernelName:ks,backendName:\"cpu\",kernelFunc:Trt};function _rt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,keepDims:i}=n;tt(o,\"min\");let a=y.parseAxisParam(s,o.shape),u=a,l=S.getAxesPermutation(u,o.shape.length),c=o;l!=null&&(c=We({inputs:{x:o},backend:e,attrs:{perm:l}}),u=S.getInnerMostAxes(u.length,o.shape.length)),S.assertAxesAreInnerMostDims(\"min\",u,c.shape.length);let[p,m]=S.computeOutAndReduceShapes(c.shape,u),f=y.sizeFromShape(m),d=y.makeZerosTypedArray(y.sizeFromShape(p),c.dtype),h=e.data.get(c.dataId).values;for(let x=0;xw[0]+o.shape[I]+w[1]),u=s.map(w=>w[0]),l=s.map((w,I)=>w[0]+o.shape[I]),c=i===\"reflect\"?0:1,p=e.data.get(o.dataId).values,m=o.shape.length,f=y.computeStrides(o.shape),d=y.sizeFromShape(a),h=a.length,g=y.computeStrides(a),x=y.getTypedArrayFromDType(o.dtype,d);for(let w=0;w=l[E]&&(I[E]=(l[E]-1)*2-I[E]+c);I=I.map((E,A)=>E-u[A]);let N=y.locToIndex(I,m,f);x[w]=p[N]}return{dataId:e.write(x,a,o.dtype),shape:a,dtype:o.dtype}}var kP={kernelName:Es,backendName:\"cpu\",kernelFunc:Ert};var Art=Qt((r,t)=>{let e=r%t;return r<0&&t<0||r>=0&&t>=0?e:(e+t)%t}),Drt=oe(As,Art),TP={kernelName:As,backendName:\"cpu\",kernelFunc:Drt};var EP=Gl(hh());function LT(r){let{inputs:t,backend:e,attrs:n}=r,{logits:o}=t,{dim:s}=n,i=o.shape.length,a=s;if(a===-1&&(a=i-1),a!==i-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${i} and dim was ${a}`);let u=y.parseAxisParam([a],o.shape),l=PT({inputs:{x:o},backend:e,attrs:{reductionIndices:u,keepDims:!1}}),c=S.expandShapeToKeepDim(l.shape,u),p=te({inputs:{x:l},backend:e,attrs:{shape:c}}),m=Jh({inputs:{a:o,b:p},backend:e}),f=aT({inputs:{x:m},backend:e}),d=$l({inputs:{x:f},backend:e,attrs:{axis:u,keepDims:!1}}),h=te({inputs:{x:d},backend:e,attrs:{shape:c}}),g=tg({inputs:{a:f,b:h},backend:e});return e.disposeIntermediateTensorInfo(l),e.disposeIntermediateTensorInfo(p),e.disposeIntermediateTensorInfo(m),e.disposeIntermediateTensorInfo(f),e.disposeIntermediateTensorInfo(d),e.disposeIntermediateTensorInfo(h),g}var _P={kernelName:Qs,backendName:\"cpu\",kernelFunc:LT};function $rt(r){let{inputs:t,backend:e,attrs:n}=r,{logits:o}=t,{numSamples:s,seed:i,normalized:a}=n;tt(o,\"multinomial\");let u=a?o:LT({inputs:{logits:o},backend:e,attrs:{dim:-1}}),l=u.shape[0],c=u.shape[1],p=e.data.get(u.dataId).values,m=[l,s],f=y.makeZerosTypedArray(y.sizeFromShape(m),\"int32\");for(let d=0;d=0&&p[m]{y.assertShapesMatch(s,c.shape,\"All tensors passed to stack must have matching shapes\"),y.assert(i===c.dtype,()=>\"All tensors passed to stack must have matching dtypes\")});let a=[],u=t.map(c=>{let p=yd({inputs:{input:c},backend:e,attrs:{dim:o}});return a.push(p),p}),l=Gu({inputs:u,backend:e,attrs:{axis:o}});return a.forEach(c=>e.disposeIntermediateTensorInfo(c)),l}var LP={kernelName:Vi,backendName:\"cpu\",kernelFunc:zT};function Brt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{paddings:s,constantValue:i}=n;tt(o,\"pad\");let a=s.map((b,w)=>b[0]+o.shape[w]+b[1]),u=s.map(b=>b[0]),l=e.data.get(o.dataId).values,c=y.sizeFromShape(o.shape),p=o.shape.length,m=y.computeStrides(o.shape),f=y.sizeFromShape(a),d=a.length,h=y.computeStrides(a),g=y.getTypedArrayFromDType(o.dtype,f);i!==0&&g.fill(i);for(let b=0;bE+u[A]),N=y.locToIndex(I,d,h);g[N]=l[b]}return{dataId:e.write(g,a,o.dtype),shape:a,dtype:o.dtype}}var Rw={kernelName:Rs,backendName:\"cpu\",kernelFunc:Brt};var Vrt=Qt((r,t)=>Math.pow(r,t)),Grt=oe(Fs,Vrt),zP={kernelName:Fs,backendName:\"cpu\",kernelFunc:Grt};function Wrt(r){let{inputs:t,backend:e,attrs:n}=r,{paramsNestedSplits:o,paramsDenseValues:s,indices:i}=t,{outputRaggedRank:a}=n,u=o.map(x=>e.data.get(x.dataId).values),l=o.map(x=>x.shape),c=e.data.get(s.dataId).values,p=e.data.get(i.dataId).values,[m,f,d]=Iw(u,l,c,s.shape,s.dtype,p,i.shape,a),h=m.map(x=>e.makeTensorInfo([x.length],\"int32\",x)),g=e.makeTensorInfo(d,s.dtype,f);return h.concat([g])}var BP={kernelName:Lp,backendName:\"cpu\",kernelFunc:Wrt};function Urt(r){let{inputs:t,backend:e}=r,{starts:n,limits:o,deltas:s}=t,i=e.data.get(n.dataId).values,a=e.data.get(o.dataId).values,u=e.data.get(s.dataId).values,[l,c]=Cw(i,n.shape,n.dtype,a,o.shape,u,s.shape),p=e.makeTensorInfo([l.length],\"int32\",l),m=e.makeTensorInfo([c.length],n.dtype,c);return[p,m]}var VP={kernelName:zp,backendName:\"cpu\",kernelFunc:Urt};function Hrt(r){let{inputs:t,backend:e,attrs:n}=r,{shape:o,values:s,defaultValue:i,rowPartitionTensors:a}=t,{rowPartitionTypes:u}=n,l=e.data.get(o.dataId).values,c=e.data.get(s.dataId).values,p=e.data.get(i.dataId).values,m=a.map(g=>e.data.get(g.dataId).values),f=a.map(g=>g.shape),[d,h]=vw(l,o.shape,c,s.shape,s.dtype,p,i.shape,m,f,u);return e.makeTensorInfo(d,s.dtype,h)}var GP={kernelName:Bp,backendName:\"cpu\",kernelFunc:Hrt};function qrt(r){let{backend:t,attrs:e}=r,{start:n,stop:o,dtype:s,step:i}=e,a=tp(n,o,i,s);return t.makeTensorInfo([a.length],s,a)}var WP={kernelName:ru,backendName:\"cpu\",kernelFunc:qrt};var Krt=At(Ps,r=>1/r),UP={kernelName:Ps,backendName:\"cpu\",kernelFunc:Krt};function jrt(r){let{inputs:t,backend:e,attrs:n}=r,{images:o}=t,{alignCorners:s,halfPixelCenters:i,size:a}=n;tt(o,\"resizeBilinear\");let u=y.computeStrides(o.shape),[l,c]=a,[p,m,f,d]=o.shape,h=e.data.get(o.dataId).values,g=new Float32Array(y.sizeFromShape([p,l,c,d])),x=[s&&l>1?m-1:m,s&&c>1?f-1:f],b=[s&&l>1?l-1:l,s&&c>1?c-1:c],w=0,I=x[0]/b[0],N=x[1]/b[1];for(let E=0;E1?l-1:l,i&&f>1?c-1:c],g=[i&&m>1?m-1:m,i&&f>1?f-1:f],x=h[0]/g[0],b=h[1]/g[1],w=e.data.get(s.dataId).values,I=0;for(let N=0;N1?m-1:m,s&&c>1?f-1:f],b=[s&&l>1?l-1:l,s&&c>1?c-1:c],w=x[0]/b[0],I=x[1]/b[1],N=0;for(let E=0;E1?c-1:c,i&&d>1?p-1:p],b=[i&&f>1?f-1:f,i&&d>1?d-1:d],w=x[0]/b[0],I=x[1]/b[1],N=1/w,E=1/I,A=Math.ceil(N)*2+2,D=Math.ceil(E)*2+2;for(let F=0;F=f)continue;let ot=M+lt*u[1],it=lt*w,ft=Math.min(c-1,i?Math.round(it):Math.floor(it));if(V===ft)for(let gt=0;gt=d)continue;let Rt=ot+Ct*u[2],Dt=Ct*I,Ht=Math.min(p-1,i?Math.round(Dt):Math.floor(Dt));H===Ht&&(nt+=g[Rt+et])}}h[j+et]=nt}}}}return e.makeTensorInfo(o.shape,o.dtype,h)}var jP={kernelName:el,backendName:\"cpu\",kernelFunc:Zrt};function Jrt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{dims:s}=n;tt(o,\"reverse\");let i=o.shape.length,a=y.parseAxisParam(s,o.shape);if(i===0)return Zr({inputs:{x:o},backend:e});let u=new le(o.shape,o.dtype),l=e.bufferSync(o);for(let c=0;cm[f]=o.shape[f]-1-m[f]),u.set(l.get(...m),...p)}return e.makeTensorInfo(u.shape,u.dtype,u.values)}var XP={kernelName:Gs,backendName:\"cpu\",kernelFunc:Jrt};var YP={kernelName:pl,backendName:\"cpu\",kernelFunc:({inputs:r,attrs:t,backend:e})=>{let{image:n}=r,{radians:o,fillValue:s,center:i}=t,a=e,u=y.getTypedArrayFromDType(n.dtype,y.sizeFromShape(n.shape)),[l,c,p,m]=n.shape,[f,d]=S.getImageCenter(i,c,p),h=255,g=Math.sin(o),x=Math.cos(o),b=a.data.get(n.dataId).values;for(let I=0;I=0&&q=0&&H{let t=Math.floor(r);return r-t<.5?Math.floor(r):r-t>.5?Math.ceil(r):t%2===0?t:t+1}),ZP={kernelName:Ws,backendName:\"cpu\",kernelFunc:Qrt};function tnt(r){let{inputs:t,backend:e,attrs:n}=r,{indices:o,updates:s}=t,{shape:i}=n,{sliceRank:a,numUpdates:u,sliceSize:l,strides:c,outputSize:p}=S.calculateShapes(s,o,i),m=!0,f=e.bufferSync(o),d=e.bufferSync(s),h=Ci(f,d,i,p,l,u,a,c,0,m);return e.makeTensorInfo(i,h.dtype,h.values)}var JP={kernelName:nl,backendName:\"cpu\",kernelFunc:tnt};function ent(r,t){let e=0,n=r.length,o=0;for(;e1||o.shape.length===1?1:y.sizeFromShape(o.shape.slice(1));for(let d=0;dr>=0?int*r:snt*(Math.exp(r)-1)),rL={kernelName:Hs,backendName:\"cpu\",kernelFunc:ant};var lnt=At(js,r=>r<0?-1:r>0?1:0),nL={kernelName:js,backendName:\"cpu\",kernelFunc:lnt};var unt=At(qs,r=>Math.sin(r)),oL={kernelName:qs,backendName:\"cpu\",kernelFunc:unt};var cnt=At(Ks,r=>Math.sinh(r)),sL={kernelName:Ks,backendName:\"cpu\",kernelFunc:cnt};var pnt=11920928955078125e-23,iL=Math.log(pnt)+2,mnt=At(Ys,r=>{let t=r>-iL,e=rNumber(g)))),e.makeTensorInfo([h.length],n.dtype,new Int32Array(h))]}var uL={kernelName:nu,backendName:\"cpu\",kernelFunc:dnt};function hnt(r){let{inputs:t,backend:e}=r,{inputIndices:n,inputShape:o,newShape:s}=t;if(n.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape\n ${n.shape}`);if(o.shape.length!==1)throw new Error(`Input shape should be a vector but received shape\n ${o.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(e.data.get(o.dataId).values),a=e.data.get(n.dataId).values,u=Array.from(e.data.get(s.dataId).values),[l,c,p]=Nw(a,n.shape,n.dtype,i,u);return[e.makeTensorInfo(c,n.dtype,l),e.makeTensorInfo([p.length],s.dtype,new Int32Array(p))]}var cL={kernelName:il,backendName:\"cpu\",kernelFunc:hnt};function gnt(r){let{inputs:t,backend:e}=r,{data:n,indices:o,segmentIds:s}=t;if(n.shape.length<1)throw new Error(\"Data should be at least 1 dimensional but received scalar\");if(o.shape.length!==1)throw new Error(`Indices should be a vector but received shape\n ${o.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape\n ${s.shape}`);if(o.shape[0]!==s.shape[0])throw new Error(\"segmentIds and indices should have same size.\");let i=e.data.get(n.dataId).values,a=e.data.get(o.dataId).values,u=e.data.get(s.dataId).values,[l,c]=gd(i,n.shape,n.dtype,a,u,!0);return e.makeTensorInfo(c,n.dtype,l)}var pL={kernelName:ou,backendName:\"cpu\",kernelFunc:gnt};function xnt(r){let{inputs:t,backend:e}=r,{data:n,indices:o,segmentIds:s}=t;if(n.shape.length<1)throw new Error(\"Data should be at least 1 dimensional but received scalar\");if(o.shape.length!==1)throw new Error(`Indices should be a vector but received shape\n ${o.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape\n ${s.shape}`);if(o.shape[0]!==s.shape[0])throw new Error(\"segmentIds and indices should have same size.\");let i=e.data.get(n.dataId).values,a=e.data.get(o.dataId).values,u=e.data.get(s.dataId).values,[l,c]=gd(i,n.shape,n.dtype,a,u);return e.makeTensorInfo(c,n.dtype,l)}var mL={kernelName:su,backendName:\"cpu\",kernelFunc:xnt};function ynt(r){let{inputs:t,backend:e,attrs:n}=r,{sparseIndices:o,sparseValues:s,defaultValue:i}=t,{outputShape:a}=n,{sliceRank:u,numUpdates:l,sliceSize:c,strides:p,outputSize:m}=S.calculateShapes(s,o,a),f=!1,d=e.bufferSync(o),h;switch(s.dtype){case\"bool\":{let g=e.bufferSync(s),x=!!e.data.get(i.dataId).values[0];h=Ci(d,g,a,m,c,l,u,p,x,f);break}case\"float32\":{let g=e.bufferSync(s),x=e.data.get(i.dataId).values[0];h=Ci(d,g,a,m,c,l,u,p,x,f);break}case\"int32\":{let g=e.bufferSync(s),x=e.data.get(i.dataId).values[0];h=Ci(d,g,a,m,c,l,u,p,x,f);break}case\"string\":{let g=e.bufferSync(s),x=y.decodeString(e.data.get(i.dataId).values[0]);h=Ci(d,g,a,m,c,l,u,p,x,f);break}default:throw new Error(`Unsupported type ${s.dtype}`)}return e.makeTensorInfo(a,h.dtype,h.values)}var fL={kernelName:al,backendName:\"cpu\",kernelFunc:ynt};function bnt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{numOrSizeSplits:s,axis:i}=n,a=y.parseAxisParam(i,o.shape)[0],u=S.prepareSplitSize(o,s,a),l=new Array(o.shape.length).fill(0),c=o.shape.slice();return u.map(p=>{let m=[...c];m[a]=p;let f=Mo({inputs:{x:o},backend:e,attrs:{begin:l,size:m}});return l[a]+=p,f})}var dL={kernelName:qi,backendName:\"cpu\",kernelFunc:bnt};var hL={kernelName:iu,backendName:\"cpu\",kernelFunc:({inputs:r,backend:t})=>{let{x:e}=r,n=t;tt(e,\"square\");let o=n.data.get(e.dataId).values,s=new Float32Array(o.length);for(let a=0;a{let e=t;return isNaN(r)?NaN:r>0?1:e.alpha}),gL={kernelName:xo,backendName:\"cpu\",kernelFunc:wnt};function Int(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{begin:s,end:i,strides:a,beginMask:u,endMask:l,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:m}=n;tt(o,\"stridedSlice\");let{finalShapeSparse:f,finalShape:d,isIdentity:h,sliceDim0:g,isSimpleSlice:x,begin:b,end:w,strides:I}=Be.sliceInfo(o.shape,s,i,a,u,l,c,p,m),N;if(h)N=te({inputs:{x:o},backend:e,attrs:{shape:d}});else if(g||x){y.assert(o.shape.length>=1,()=>`Input must have rank at least 1, got: ${o.shape.length}`);let E=Be.computeOutShape(b,w,I),A=Mo({inputs:{x:o},backend:e,attrs:{begin:b,size:E}});N=te({inputs:{x:A},backend:e,attrs:{shape:d}}),e.disposeIntermediateTensorInfo(A)}else{let E=e.bufferSync(o),A=kw(f,E,I,b);N=e.makeTensorInfo(d,A.dtype,A.values)}return N}var xL={kernelName:ll,backendName:\"cpu\",kernelFunc:Int};function Cnt(r){let{inputs:t,backend:e,attrs:n}=r,{separator:o,nGramWidths:s,leftPad:i,rightPad:a,padWidth:u,preserveShortSequences:l}=n,{data:c,dataSplits:p}=t,m=e.data.get(c.dataId).values,f=e.data.get(p.dataId).values,[d,h]=rp(m,f,o,s,i,a,u,l);return[e.makeTensorInfo([d.length],\"string\",d),e.makeTensorInfo(p.shape,\"int32\",h)]}var yL={kernelName:au,backendName:\"cpu\",kernelFunc:Cnt};function vnt(r){let{inputs:t,backend:e,attrs:n}=r,{skipEmpty:o}=n,{input:s,delimiter:i}=t;if(s.dtype!==\"string\")throw new Error(\"Input must be of datatype string\");if(s.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${s.shape}`);if(i.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${i.shape}`);let a=e.data.get(s.dataId).values,u=e.data.get(i.dataId).values[0],[l,c,p]=np(a,u,o),m=c.length;return[e.makeTensorInfo([m,2],\"int32\",l),e.makeTensorInfo([m],\"string\",c),e.makeTensorInfo([2],\"int32\",new Int32Array(p))]}var bL={kernelName:lu,backendName:\"cpu\",kernelFunc:vnt};function Snt(r){let{inputs:t,backend:e,attrs:n}=r,{numBuckets:o}=n,{input:s}=t;if(s.dtype!==\"string\")throw new Error(\"Input must be of datatype string\");if(o<=0)throw new Error(\"Number of buckets must be at least 1\");let i=e.data.get(s.dataId).values,a=op(i,o);return e.makeTensorInfo(s.shape,\"int32\",a)}var wL={kernelName:uu,backendName:\"cpu\",kernelFunc:Snt};var Nnt=At(ri,r=>Math.tan(r)),IL={kernelName:ri,backendName:\"cpu\",kernelFunc:Nnt};var knt=At(ni,r=>Math.tanh(r)),CL={kernelName:ni,backendName:\"cpu\",kernelFunc:knt};function Tnt(r){let{inputs:t,backend:e}=r,{tensor:n,indices:o,updates:s}=t,{sliceRank:i,numUpdates:a,sliceSize:u,strides:l,outputSize:c}=S.calculateShapes(s,o,n.shape),p=!1,m=e.bufferSync(o),f=e.bufferSync(s),d=e.bufferSync(n),h=Ci(m,f,n.shape,c,u,a,i,l,d,p);return e.makeTensorInfo(n.shape,h.dtype,h.values)}var vL={kernelName:ol,backendName:\"cpu\",kernelFunc:Tnt};function _nt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{reps:s}=n;tt(o,\"tile\");let i=Tw(e.bufferSync(o),s);return e.makeTensorInfo(i.shape,i.dtype,i.values)}var SL={kernelName:oo,backendName:\"cpu\",kernelFunc:_nt};function Ent(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{k:s,sorted:i}=n;tt(o,\"topk\");let a=e.data.get(o.dataId).values,[u,l]=_w(a,o.shape,o.dtype,s,i);return[e.makeTensorInfo(u.shape,u.dtype,u.values),e.makeTensorInfo(l.shape,l.dtype,l.values)]}var NL={kernelName:ul,backendName:\"cpu\",kernelFunc:Ent};function Ant(r){let{inputs:t,attrs:e,backend:n}=r,{image:o,transforms:s}=t,{interpolation:i,fillMode:a,fillValue:u,outputShape:l}=e,[c,p,m,f]=o.shape,[d,h]=l!=null?l:[p,m],g=[c,d,h,f],x=y.computeStrides(o.shape),b=x[0],w=x[1],I=x[2],N=y.computeStrides(g),E=N[0],A=N[1],D=N[2],F=y.getTypedArrayFromDType(o.dtype,y.sizeFromShape(g));F.fill(u);let M=n.data.get(o.dataId).values,V=n.data.get(s.dataId).values;for(let W=0;Wt-1)if(t<=1)e=0;else{let n=2*t;e-=n*Math.trunc(e/n),e>=t&&(e=n-e-1)}return y.clamp(0,e,t-1)}function $nt(r,t){let e=r;if(e<0)if(t<=1)e=0;else{let n=t-1;e+=t*(Math.trunc(-e/n)+1)}else if(e>t-1)if(t<=1)e=0;else{let n=t-1;e-=t*Math.trunc(e/n)}return y.clamp(0,e,t-1)}function Rnt(r,t){return r}function Fnt(r,t){return y.clamp(0,r,t-1)}function og(r,t,e,n,o,s,i,a,u,l,c){let p=i*n+a*o+u*s+l;return 0<=a&&ae.disposeIntermediateTensorInfo(d)),f}var AL={kernelName:pu,backendName:\"cpu\",kernelFunc:znt};var Bnt=[eM,lO,rM,nM,fO,oM,sM,iM,aM,lM,uM,cM,pM,mM,fM,hM,gM,xM,yM,tM,bM,wM,IM,dO,CM,mO,hO,vM,uO,SM,kM,TM,_M,EM,AM,DM,$M,RM,FM,OM,MM,PM,LM,zM,BM,VM,GM,WM,UM,HM,qM,KM,XM,jO,YM,gO,ZM,xO,JM,yO,QM,tP,eP,bO,wO,rP,nP,oP,sP,IO,CO,cO,iP,NM,aP,lP,uP,XO,vO,SO,cP,NO,pP,mP,fP,dP,hP,gP,xP,kO,yP,bP,wP,IP,vP,SP,NP,TO,kP,TP,AP,_O,EO,DP,$P,RP,AO,FP,PP,LP,Rw,zP,YO,$O,BP,VP,GP,WP,pO,eg,UP,ZO,JO,QO,HP,qP,KP,jP,XP,YP,ZP,PO,JP,tL,eL,rL,zO,nL,oL,sL,BO,_P,aL,lL,uL,cL,pL,mL,fL,dL,GO,hL,WO,UO,gL,xL,yL,bL,wL,HO,jM,IL,CL,vL,SL,NL,TL,DO,_L,EL,AL,OP];for(let r of Bnt)rc(r);var Cd={};Kt(Cd,{assertNotComplex:()=>vi,bindCanvasToFramebuffer:()=>Xnt,bindColorTextureToFramebuffer:()=>lg,bindTextureToProgramUniformSampler:()=>e1,bindTextureUnit:()=>FL,bindVertexBufferToProgramAttribute:()=>zw,callAndCheck:()=>ht,canBeRepresented:()=>WT,createFragmentShader:()=>HT,createFramebuffer:()=>JT,createProgram:()=>qT,createStaticIndexBuffer:()=>XT,createStaticVertexBuffer:()=>jT,createTexture:()=>YT,createVertexShader:()=>UT,getBatchDim:()=>Fl,getExtensionOrThrow:()=>bd,getFramebufferErrorMessage:()=>OL,getMaxTexturesInShader:()=>o1,getNumChannels:()=>Knt,getProgramUniformLocation:()=>t1,getProgramUniformLocationOrThrow:()=>QT,getRowsCols:()=>Ol,getShapeAs3D:()=>Id,getTextureShapeFromLogicalShape:()=>r1,getWebGLDisjointQueryTimerVersion:()=>s1,getWebGLErrorMessage:()=>RL,getWebGLMaxTextureSize:()=>n1,hasExtension:()=>Kn,isCapableOfRenderingToFloatTexture:()=>i1,isDownloadFloatTextureEnabled:()=>a1,isReshapeFree:()=>Uu,isWebGLFenceEnabled:()=>l1,isWebGLVersionEnabled:()=>Vw,linkProgram:()=>KT,logShaderSourceAndInfoLog:()=>Lw,resetMaxTextureSize:()=>Ynt,resetMaxTexturesInShader:()=>Znt,unbindColorTextureFromFramebuffer:()=>Bw,unbindTextureUnit:()=>jnt,validateFramebuffer:()=>wd,validateProgram:()=>ag,validateTextureSize:()=>ZT});var ap={},Fw={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function BT(r,t){ap[r]=t}function qn(r,t){if(!(r in ap)||t!=null){let n=Gnt(r,t);if(n!==null)ap[r]=n;else return console.log(\"Could not get context for WebGL version\",r),null}let e=ap[r];return e==null||e.isContextLost()?(delete ap[r],qn(r)):(e.disable(e.DEPTH_TEST),e.disable(e.STENCIL_TEST),e.disable(e.BLEND),e.disable(e.DITHER),e.disable(e.POLYGON_OFFSET_FILL),e.disable(e.SAMPLE_COVERAGE),e.enable(e.SCISSOR_TEST),e.enable(e.CULL_FACE),e.cullFace(e.BACK),ap[r])}function Vnt(r){if(!L().getBool(\"IS_SAFARI\")&&typeof OffscreenCanvas!=\"undefined\"&&r===2)return new OffscreenCanvas(300,150);if(typeof document!=\"undefined\")return document.createElement(\"canvas\");throw new Error(\"Cannot create a canvas in this context\")}function Gnt(r,t){if(r!==1&&r!==2)throw new Error(\"Cannot get WebGL rendering context, WebGL is disabled.\");let e=t==null?Vnt(r):t;return e.addEventListener(\"webglcontextlost\",n=>{n.preventDefault(),delete ap[r]},!1),L().getBool(\"SOFTWARE_WEBGL_ENABLED\")&&(Fw.failIfMajorPerformanceCaveat=!1),r===1?e.getContext(\"webgl\",Fw)||e.getContext(\"experimental-webgl\",Fw):e.getContext(\"webgl2\",Fw)}var Wu;(function(r){r[r.DENSE=0]=\"DENSE\",r[r.SHARED_BATCH=1]=\"SHARED_BATCH\"})(Wu||(Wu={}));var Jr;(function(r){r[r.RENDER=0]=\"RENDER\",r[r.UPLOAD=1]=\"UPLOAD\",r[r.PIXELS=2]=\"PIXELS\",r[r.DOWNLOAD=3]=\"DOWNLOAD\"})(Jr||(Jr={}));var Lr;(function(r){r[r.UNPACKED_FLOAT16=0]=\"UNPACKED_FLOAT16\",r[r.UNPACKED_FLOAT32=1]=\"UNPACKED_FLOAT32\",r[r.PACKED_4X1_UNSIGNED_BYTE=2]=\"PACKED_4X1_UNSIGNED_BYTE\",r[r.PACKED_2X2_FLOAT32=3]=\"PACKED_2X2_FLOAT32\",r[r.PACKED_2X2_FLOAT16=4]=\"PACKED_2X2_FLOAT16\"})(Lr||(Lr={}));function lp(r,t){return[t,r]}function DL(r,t){return r*t}function sg(r){let t=y.sizeFromShape(r),e=Math.ceil(t/4);return y.sizeToSquarishShape(e)}function wa(r,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(r/2))]}function $L(r,t){let[e,n]=wa(r,t);return e*n*4}function ig(r,t){let e=r,n,o,s,i,a,u,l,c,p,m;return L().getNumber(\"WEBGL_VERSION\")===2?(n=e.R32F,o=e.R16F,s=e.RGBA16F,i=e.RGBA32F,a=e.RED,l=4,c=1,p=e.HALF_FLOAT,m=e.FLOAT,u=e.RGBA8):(n=r.RGBA,o=r.RGBA,s=r.RGBA,i=e.RGBA,a=r.RGBA,l=4,c=4,p=t!=null?t.HALF_FLOAT_OES:null,m=r.FLOAT,u=r.RGBA),{internalFormatFloat:n,internalFormatHalfFloat:o,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:i,textureFormatFloat:a,downloadTextureFormat:u,downloadUnpackNumChannels:l,defaultNumChannels:c,textureTypeHalfFloat:p,textureTypeFloat:m}}function ht(r,t){let e=t();return L().getBool(\"DEBUG\")&&Wnt(r),e}function Wnt(r){let t=r.getError();if(t!==r.NO_ERROR)throw new Error(\"WebGL Error: \"+RL(r,t))}var Unt=596e-10,Hnt=65504;function WT(r){return!!(L().getBool(\"WEBGL_RENDER_FLOAT32_ENABLED\")||r===0||Untr.getExtension(t),'Extension \"'+t+'\" not supported on this browser.')}function UT(r,t){let e=Rl(r,()=>r.createShader(r.VERTEX_SHADER),\"Unable to create vertex WebGLShader.\");if(ht(r,()=>r.shaderSource(e,t)),ht(r,()=>r.compileShader(e)),r.getShaderParameter(e,r.COMPILE_STATUS)===!1)throw console.log(r.getShaderInfoLog(e)),new Error(\"Failed to compile vertex shader.\");return e}function HT(r,t){let e=Rl(r,()=>r.createShader(r.FRAGMENT_SHADER),\"Unable to create fragment WebGLShader.\");if(ht(r,()=>r.shaderSource(e,t)),ht(r,()=>r.compileShader(e)),L().get(\"ENGINE_COMPILE_ONLY\"))return e;if(r.getShaderParameter(e,r.COMPILE_STATUS)===!1)throw Lw(t,r.getShaderInfoLog(e)),new Error(\"Failed to compile fragment shader.\");return e}var qnt=/ERROR: [0-9]+:([0-9]+):/g;function Lw(r,t){let e=qnt.exec(t);if(e==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(r);return}let n=+e[1],o=r.split(`\n`),s=o.length.toString().length+2,i=o.map((p,m)=>y.rightPad((m+1).toString(),s)+p),a=0;for(let p=0;pr.createProgram(),\"Unable to create WebGLProgram.\")}function KT(r,t){if(ht(r,()=>r.linkProgram(t)),!L().get(\"ENGINE_COMPILE_ONLY\")&&r.getProgramParameter(t,r.LINK_STATUS)===!1)throw console.log(r.getProgramInfoLog(t)),new Error(\"Failed to link vertex and fragment shaders.\")}function ag(r,t){if(ht(r,()=>r.validateProgram(t)),r.getProgramParameter(t,r.VALIDATE_STATUS)===!1)throw console.log(r.getProgramInfoLog(t)),new Error(\"Shader program validation failed.\")}function jT(r,t){let e=Rl(r,()=>r.createBuffer(),\"Unable to create WebGLBuffer\");return ht(r,()=>r.bindBuffer(r.ARRAY_BUFFER,e)),ht(r,()=>r.bufferData(r.ARRAY_BUFFER,t,r.STATIC_DRAW)),e}function XT(r,t){let e=Rl(r,()=>r.createBuffer(),\"Unable to create WebGLBuffer\");return ht(r,()=>r.bindBuffer(r.ELEMENT_ARRAY_BUFFER,e)),ht(r,()=>r.bufferData(r.ELEMENT_ARRAY_BUFFER,t,r.STATIC_DRAW)),e}function Knt(){return L().getNumber(\"WEBGL_VERSION\")===2?1:4}function YT(r){return Rl(r,()=>r.createTexture(),\"Unable to create WebGLTexture.\")}function ZT(r,t){let e=L().getNumber(\"WEBGL_MAX_TEXTURE_SIZE\");if(r<=0||t<=0){let n=`[${r}x${t}]`;throw new Error(\"Requested texture size \"+n+\" is invalid.\")}if(r>e||t>e){let n=`[${r}x${t}]`,o=`[${e}x${e}]`;throw new Error(\"Requested texture size \"+n+\" greater than WebGL maximum on this browser / GPU \"+o+\".\")}}function JT(r){return Rl(r,()=>r.createFramebuffer(),\"Unable to create WebGLFramebuffer.\")}function zw(r,t,e,n,o,s,i){let a=r.getAttribLocation(t,e);return a===-1?!1:(ht(r,()=>r.bindBuffer(r.ARRAY_BUFFER,n)),ht(r,()=>r.vertexAttribPointer(a,o,r.FLOAT,!1,s,i)),ht(r,()=>r.enableVertexAttribArray(a)),!0)}function FL(r,t,e){ML(r,e),ht(r,()=>r.activeTexture(r.TEXTURE0+e)),ht(r,()=>r.bindTexture(r.TEXTURE_2D,t))}function jnt(r,t){ML(r,t),ht(r,()=>r.activeTexture(r.TEXTURE0+t)),ht(r,()=>r.bindTexture(r.TEXTURE_2D,null))}function QT(r,t,e){return Rl(r,()=>r.getUniformLocation(t,e),'uniform \"'+e+'\" not present in program.')}function t1(r,t,e){return r.getUniformLocation(t,e)}function e1(r,t,e,n){ht(r,()=>FL(r,t,n)),ht(r,()=>r.uniform1i(e,n))}function Xnt(r){ht(r,()=>r.bindFramebuffer(r.FRAMEBUFFER,null)),ht(r,()=>r.viewport(0,0,r.canvas.width,r.canvas.height)),ht(r,()=>r.scissor(0,0,r.canvas.width,r.canvas.height))}function lg(r,t,e){ht(r,()=>r.bindFramebuffer(r.FRAMEBUFFER,e)),ht(r,()=>r.framebufferTexture2D(r.FRAMEBUFFER,r.COLOR_ATTACHMENT0,r.TEXTURE_2D,t,0))}function Bw(r,t){ht(r,()=>r.bindFramebuffer(r.FRAMEBUFFER,t)),ht(r,()=>r.framebufferTexture2D(r.FRAMEBUFFER,r.COLOR_ATTACHMENT0,r.TEXTURE_2D,null,0))}function wd(r){let t=r.checkFramebufferStatus(r.FRAMEBUFFER);if(t!==r.FRAMEBUFFER_COMPLETE)throw new Error(\"Error binding framebuffer: \"+OL(r,t))}function OL(r,t){switch(t){case r.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return\"FRAMEBUFFER_INCOMPLETE_ATTACHMENT\";case r.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return\"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT\";case r.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return\"FRAMEBUFFER_INCOMPLETE_DIMENSIONS\";case r.FRAMEBUFFER_UNSUPPORTED:return\"FRAMEBUFFER_UNSUPPORTED\";default:return`unknown error ${t}`}}function Rl(r,t,e){let n=ht(r,()=>t());if(n==null)throw new Error(e);return n}function ML(r,t){let e=r.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,n=t+r.TEXTURE0;if(ne){let o=`[gl.TEXTURE0, gl.TEXTURE${e}]`;throw new Error(`textureUnit must be in ${o}.`)}}function Fl(r,t=2){return y.sizeFromShape(r.slice(0,r.length-t))}function Ol(r){if(r.length===0)throw Error(\"Cannot get rows and columns of an empty shape array.\");return[r.length>1?r[r.length-2]:1,r[r.length-1]]}function Id(r){let t=[1,1,1];return r.length===0||r.length===1&&r[0]===1||(t=[Fl(r),...Ol(r)]),t}function r1(r,t=!1){let e=L().getNumber(\"WEBGL_MAX_TEXTURE_SIZE\"),n=L().getNumber(\"WEBGL_MAX_SIZE_FOR_NARROW_TEXTURE\");n===1/0&&L().getBool(\"WEBGL_AUTO_SQUARIFY_NARROW_TEXTURE_SHAPE\")&&(n=e/2),t&&(e=e*2,n=n*2,r=r.map((a,u)=>u>=r.length-2?y.nearestLargerEven(r[u]):r[u]),r.length===1&&(r=[2,r[0]])),r.length!==2&&(r=y.squeezeShape(r).newShape);let o=y.sizeFromShape(r),s=null;r.length<=1&&o<=e?s=[1,o]:r.length===2&&r[0]<=e&&r[1]<=e?s=r:r.length===3&&r[0]*r[1]<=e&&r[2]<=e?s=[r[0]*r[1],r[2]]:r.length===3&&r[0]<=e&&r[1]*r[2]<=e?s=[r[0],r[1]*r[2]]:r.length===4&&r[0]*r[1]*r[2]<=e&&r[3]<=e?s=[r[0]*r[1]*r[2],r[3]]:r.length===4&&r[0]<=e&&r[1]*r[2]*r[3]<=e&&(s=[r[0],r[1]*r[2]*r[3]]);let i=s!=null&&Math.max(...s)>n&&Math.min(...s)<=(t?2:1)&&Math.min(...s)>0;if(s==null||i)if(t){let a=Fl(r),u=2,l=2;r.length&&([u,l]=Ol(r)),o=a*(u/2)*(l/2),s=y.sizeToSquarishShape(o).map(c=>c*2)}else s=y.sizeToSquarishShape(o);return s}function Ow(r){return r%2===0}function Uu(r,t){if(r=r.slice(-2),t=t.slice(-2),y.arraysEqual(r,t)||!r.length||!t.length||r[0]===0||r[1]===0||t[0]===0||t[1]===0)return!0;if(r.length!==t.length){let e=r[r.length-1],n=t[t.length-1];if(e===n||Ow(e)&&Ow(n)&&(r[0]===1||t[0]===1))return!0}return r[1]===t[1]&&Ow(r[0])&&Ow(t[0])}var Mw,Pw;function n1(r){if(Mw==null){let t=qn(r);Mw=t.getParameter(t.MAX_TEXTURE_SIZE)}return Mw}function Ynt(){Mw=null}function Znt(){Pw=null}function o1(r){if(Pw==null){let t=qn(r);Pw=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,Pw)}function s1(r){if(r===0)return 0;let t,e=qn(r);return Kn(e,\"EXT_disjoint_timer_query_webgl2\")&&r===2?t=2:Kn(e,\"EXT_disjoint_timer_query\")?t=1:t=0,t}function Kn(r,t){return r.getExtension(t)!=null}function Vw(r){try{if(qn(r)!=null)return!0}catch(t){return console.log(\"Error when getting WebGL context: \",t),!1}return!1}function i1(r){if(r===0)return!1;let t=qn(r);if(r===1){if(!Kn(t,\"OES_texture_float\"))return!1}else if(!Kn(t,\"EXT_color_buffer_float\"))return!1;return GT(t)}function a1(r){if(r===0)return!1;let t=qn(r);if(r===1){if(!Kn(t,\"OES_texture_float\")||!Kn(t,\"WEBGL_color_buffer_float\"))return!1}else{if(Kn(t,\"EXT_color_buffer_float\"))return GT(t);let n=\"EXT_color_buffer_half_float\";if(Kn(t,n)){let o=t.getExtension(n);return Jnt(t,o)}return!1}return GT(t)}function GT(r){let t=ig(r),e=r.createTexture();r.bindTexture(r.TEXTURE_2D,e),r.texImage2D(r.TEXTURE_2D,0,t.internalFormatFloat,1,1,0,t.textureFormatFloat,t.textureTypeFloat,null);let s=r.createFramebuffer();r.bindFramebuffer(r.FRAMEBUFFER,s),r.framebufferTexture2D(r.FRAMEBUFFER,r.COLOR_ATTACHMENT0,r.TEXTURE_2D,e,0);let i=r.checkFramebufferStatus(r.FRAMEBUFFER)===r.FRAMEBUFFER_COMPLETE;return r.bindTexture(r.TEXTURE_2D,null),r.bindFramebuffer(r.FRAMEBUFFER,null),r.deleteTexture(e),r.deleteFramebuffer(s),i}function Jnt(r,t){let e=ig(r,t),n=r.createTexture();r.bindTexture(r.TEXTURE_2D,n),r.texImage2D(r.TEXTURE_2D,0,e.internalFormatHalfFloat,1,1,0,e.textureFormatFloat,e.textureTypeHalfFloat,null);let i=r.createFramebuffer();r.bindFramebuffer(r.FRAMEBUFFER,i),r.framebufferTexture2D(r.FRAMEBUFFER,r.COLOR_ATTACHMENT0,r.TEXTURE_2D,n,0);let a=r.checkFramebufferStatus(r.FRAMEBUFFER)===r.FRAMEBUFFER_COMPLETE;return r.bindTexture(r.TEXTURE_2D,null),r.bindFramebuffer(r.FRAMEBUFFER,null),r.deleteTexture(n),r.deleteFramebuffer(i),a}function l1(r){return r!==2?!1:qn(r).fenceSync!=null}function vi(r,t){Array.isArray(r)||(r=[r]),r.forEach(e=>{e!=null&&y.assert(e.dtype!==\"complex64\",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var kt=L();kt.registerFlag(\"HAS_WEBGL\",()=>kt.getNumber(\"WEBGL_VERSION\")>0);kt.registerFlag(\"WEBGL_VERSION\",()=>Vw(2)?2:Vw(1)?1:0);kt.registerFlag(\"WEBGL_CHECK_NUMERICAL_PROBLEMS\",()=>!1);kt.registerFlag(\"WEBGL_BUFFER_SUPPORTED\",()=>kt.get(\"WEBGL_VERSION\")===2);kt.registerFlag(\"WEBGL_CPU_FORWARD\",()=>!0);kt.registerFlag(\"WEBGL_FORCE_F16_TEXTURES\",()=>!1);kt.registerFlag(\"WEBGL_PACK\",()=>kt.getBool(\"HAS_WEBGL\"));kt.registerFlag(\"WEBGL_PACK_NORMALIZATION\",()=>kt.getBool(\"WEBGL_PACK\"));kt.registerFlag(\"WEBGL_PACK_CLIP\",()=>kt.getBool(\"WEBGL_PACK\"));kt.registerFlag(\"WEBGL_PACK_DEPTHWISECONV\",()=>kt.getBool(\"WEBGL_PACK\"));kt.registerFlag(\"WEBGL_PACK_BINARY_OPERATIONS\",()=>kt.getBool(\"WEBGL_PACK\"));kt.registerFlag(\"WEBGL_PACK_UNARY_OPERATIONS\",()=>kt.getBool(\"WEBGL_PACK\"));kt.registerFlag(\"WEBGL_PACK_ARRAY_OPERATIONS\",()=>kt.getBool(\"WEBGL_PACK\"));kt.registerFlag(\"WEBGL_PACK_IMAGE_OPERATIONS\",()=>kt.getBool(\"WEBGL_PACK\"));kt.registerFlag(\"WEBGL_PACK_REDUCE\",()=>kt.getBool(\"WEBGL_PACK\"));kt.registerFlag(\"WEBGL_LAZILY_UNPACK\",()=>kt.getBool(\"WEBGL_PACK\"));kt.registerFlag(\"WEBGL_CONV_IM2COL\",()=>kt.getBool(\"WEBGL_PACK\"));kt.registerFlag(\"WEBGL_PACK_CONV2DTRANSPOSE\",()=>kt.getBool(\"WEBGL_PACK\"));kt.registerFlag(\"WEBGL_MAX_TEXTURE_SIZE\",()=>n1(kt.getNumber(\"WEBGL_VERSION\")));kt.registerFlag(\"WEBGL_MAX_TEXTURES_IN_SHADER\",()=>o1(kt.getNumber(\"WEBGL_VERSION\")));kt.registerFlag(\"WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION\",()=>{let r=kt.getNumber(\"WEBGL_VERSION\");return r===0?0:s1(r)});kt.registerFlag(\"WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE\",()=>kt.getNumber(\"WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION\")>0&&!du.isMobile());kt.registerFlag(\"WEBGL_RENDER_FLOAT32_CAPABLE\",()=>i1(kt.getNumber(\"WEBGL_VERSION\")));kt.registerFlag(\"WEBGL_RENDER_FLOAT32_ENABLED\",()=>kt.getBool(\"WEBGL_FORCE_F16_TEXTURES\")?!1:kt.getBool(\"WEBGL_RENDER_FLOAT32_CAPABLE\"));kt.registerFlag(\"WEBGL_DOWNLOAD_FLOAT_ENABLED\",()=>a1(kt.getNumber(\"WEBGL_VERSION\")));kt.registerFlag(\"WEBGL_FENCE_API_ENABLED\",()=>l1(kt.getNumber(\"WEBGL_VERSION\")));kt.registerFlag(\"WEBGL_SIZE_UPLOAD_UNIFORM\",()=>kt.getBool(\"WEBGL_RENDER_FLOAT32_ENABLED\")?4:0);kt.registerFlag(\"WEBGL_DELETE_TEXTURE_THRESHOLD\",()=>-1,r=>{if(typeof r!=\"number\")throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be a number but got ${r}.`);if(r<0&&r!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${r}.`)});kt.registerFlag(\"WEBGL_FLUSH_THRESHOLD\",()=>du.isMobile()?1:-1,r=>{if(typeof r!=\"number\")throw new Error(`WEBGL_FLUSH_THRESHOLD must be a number but got ${r}.`);if(r<0&&r!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${r}.`)});kt.registerFlag(\"CPU_HANDOFF_SIZE_THRESHOLD\",()=>128);kt.registerFlag(\"WEBGL_USE_SHAPES_UNIFORMS\",()=>!1);kt.registerFlag(\"TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD\",()=>1e5);kt.registerFlag(\"TOPK_K_CPU_HANDOFF_THRESHOLD\",()=>128);kt.registerFlag(\"WEBGL_EXP_CONV\",()=>!1);kt.registerFlag(\"SOFTWARE_WEBGL_ENABLED\",()=>kt.getBool(\"IS_TEST\"));kt.registerFlag(\"WEBGL_MAX_SIZE_FOR_NARROW_TEXTURE\",()=>1/0);kt.registerFlag(\"WEBGL_AUTO_SQUARIFY_NARROW_TEXTURE_SHAPE\",()=>!1);kt.registerFlag(\"WEBGL2_ISNAN_CUSTOM\",()=>!1);kt.registerFlag(\"ENGINE_COMPILE_ONLY\",()=>!1);function Ue(){let r,t,e,n,o,s,i,a,u,l;return L().getNumber(\"WEBGL_VERSION\")===2?(r=\"#version 300 es\",t=\"in\",e=\"out\",n=\"in\",o=\"texture\",s=\"outputColor\",i=\"out vec4 outputColor;\",a=L().getBool(\"WEBGL2_ISNAN_CUSTOM\")?`\n bool isnan_custom(float val) {\n uint floatToUint = floatBitsToUint(val);\n return (floatToUint & 0x7fffffffu) > 0x7f800000u;\n }\n\n bvec4 isnan_custom(vec4 val) {\n return bvec4(isnan_custom(val.x),\n isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));\n }\n\n #define isnan(value) isnan_custom(value)\n `:\"\",u=\"\",l=`\n #define round(value) newRound(value)\n int newRound(float value) {\n return int(floor(value + 0.5));\n }\n\n ivec4 newRound(vec4 value) {\n return ivec4(floor(value + vec4(0.5)));\n }\n `):(r=\"\",t=\"attribute\",e=\"varying\",n=\"varying\",o=\"texture2D\",s=\"gl_FragColor\",i=\"\",a=`\n #define isnan(value) isnan_custom(value)\n bool isnan_custom(float val) {\n return (val > 0. || val < 1. || val == 0.) ? false : true;\n }\n bvec4 isnan_custom(vec4 val) {\n return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));\n }\n `,u=`\n uniform float INFINITY;\n\n bool isinf(float val) {\n return abs(val) == INFINITY;\n }\n bvec4 isinf(vec4 val) {\n return equal(abs(val), vec4(INFINITY));\n }\n `,l=`\n int round(float value) {\n return int(floor(value + 0.5));\n }\n\n ivec4 round(vec4 value) {\n return ivec4(floor(value + vec4(0.5)));\n }\n `),{version:r,attribute:t,varyingVs:e,varyingFs:n,texture2D:o,output:s,defineOutput:i,defineSpecialNaN:a,defineSpecialInf:u,defineRound:l}}function Si(r,t,e=\"index\"){let n=y.computeStrides(t);return n.map((o,s)=>{let i=`int ${r[s]} = ${e} / ${o}`,a=s===n.length-1?`int ${r[s+1]} = ${e} - ${r[s]} * ${o}`:`index -= ${r[s]} * ${o}`;return`${i}; ${a};`}).join(\"\")}function up(r,t,e=\"index\"){let n=y.computeStrides(t);return n.map((o,s)=>{let i=`int ${r[s]} = ${e} / outShapeStrides[${s}]`,a=s===n.length-1?`int ${r[s+1]} = ${e} - ${r[s]} * outShapeStrides[${s}]`:`index -= ${r[s]} * outShapeStrides[${s}]`;return`${i}; ${a};`}).join(\"\")}function Qnt(r,t){let e=r.length,n=r.map(s=>`${t}[${s}]`),o=new Array(e-1);o[e-2]=n[e-1];for(let s=e-3;s>=0;--s)o[s]=`(${o[s+1]} * ${n[s+1]})`;return o}function PL(r,t,e=\"index\"){let n=r.map((s,i)=>i),o=Qnt(n,t);return o.map((s,i)=>{let a=`int ${r[i]} = ${e} / ${o[i]}`,u=i===o.length-1?`int ${r[i+1]} = ${e} - ${r[i]} * ${o[i]}`:`index -= ${r[i]} * ${o[i]}`;return`${a}; ${u};`}).join(\"\")}function vd(r){let t=y.computeStrides(r).map(e=>e.toString());return`\n int getFlatIndex(ivec3 coords) {\n return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;\n }\n`}function Sd(){return`\n int getFlatIndex(ivec3 coords) {\n return coords.x * outShapeStrides[0] + coords.y * outShapeStrides[1] + coords.z;\n }\n`}var Gw=`\n const float FLOAT_MAX = 1.70141184e38;\n const float FLOAT_MIN = 1.17549435e-38;\n\n lowp vec4 encode_float(highp float v) {\n if (isnan(v)) {\n return vec4(255, 255, 255, 255);\n }\n\n highp float av = abs(v);\n\n if(av < FLOAT_MIN) {\n return vec4(0.0, 0.0, 0.0, 0.0);\n } else if(v > FLOAT_MAX) {\n return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;\n } else if(v < -FLOAT_MAX) {\n return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;\n }\n\n highp vec4 c = vec4(0,0,0,0);\n\n highp float e = floor(log2(av));\n highp float m = exp2(fract(log2(av))) - 1.0;\n\n c[2] = floor(128.0 * m);\n m -= c[2] / 128.0;\n c[1] = floor(32768.0 * m);\n m -= c[1] / 32768.0;\n c[0] = floor(8388608.0 * m);\n\n highp float ebias = e + 127.0;\n c[3] = floor(ebias / 2.0);\n ebias -= c[3] * 2.0;\n c[2] += floor(ebias) * 128.0;\n\n c[3] += 128.0 * step(0.0, -v);\n\n return c / 255.0;\n }\n`;var{getBroadcastDims:LL}=S;function zL(r,t,e){let n=[];if(r.forEach(f=>{let d=y.sizeFromShape(f.shapeInfo.logicalShape);if(f.shapeInfo.isUniform?n.push(`uniform float ${f.name}${d>1?`[${d}]`:\"\"};`):(n.push(`uniform sampler2D ${f.name};`),n.push(`uniform int offset${f.name};`)),e.enableShapeUniforms){let{uniformShape:h}=Ww(e.packedInputs,f.shapeInfo.logicalShape,f.shapeInfo.texShape);switch(h.length){case 1:n.push(`uniform int ${f.name}Shape;`);break;case 2:n.push(`uniform ivec2 ${f.name}Shape;`);break;case 3:n.push(`uniform ivec3 ${f.name}Shape;`);break;case 4:n.push(`uniform ivec4 ${f.name}Shape;`);break;default:break}n.push(`uniform ivec2 ${f.name}TexShape;`)}}),e.enableShapeUniforms){switch(t.logicalShape.length){case 1:n.push(\"uniform int outShape;\");break;case 2:n.push(\"uniform ivec2 outShape;\"),n.push(\"uniform int outShapeStrides;\");break;case 3:n.push(\"uniform ivec3 outShape;\"),n.push(\"uniform ivec2 outShapeStrides;\");break;case 4:n.push(\"uniform ivec4 outShape;\"),n.push(\"uniform ivec3 outShapeStrides;\");break;default:break}n.push(\"uniform ivec2 outTexShape;\")}e.customUniforms&&e.customUniforms.forEach(f=>{n.push(`uniform ${f.type} ${f.name}${f.arrayIndex?`[${f.arrayIndex}]`:\"\"};`)});let o=n.join(`\n`),s=r.map(f=>tot(f,t,e.packedInputs,e.enableShapeUniforms)).join(`\n`),i=t.texShape,a=Ue(),u=not(a),l,c,p=iot(a);return t.isPacked?(l=eot(t.logicalShape,i,e.enableShapeUniforms),c=sot(a)):(l=rot(t.logicalShape,i,e.enableShapeUniforms),c=oot(a)),e.packedInputs&&(p+=cot),[p,u,c,o,l,s,e.userCode].join(`\n`)}function kd(r,t=!1){let e=r.shapeInfo.logicalShape;switch(e.length){case 0:return Cot(r,t);case 1:return Sot(r,t);case 2:return kot(r,t);case 3:return _ot(r,t);case 4:return Aot(r,t);case 5:return Dot(r);case 6:return $ot(r);default:throw new Error(`${e.length}-D input sampling is not yet supported`)}}function BL(r,t){switch(r.shapeInfo.logicalShape.length){case 0:return Iot(r);case 1:return vot(r,t);case 2:return Not(r,t);case 3:return Tot(r,t);default:return Eot(r,t)}}function tot(r,t,e=!1,n){let o=\"\";e?o+=BL(r,n):o+=kd(r,n);let s=r.shapeInfo.logicalShape,i=t.logicalShape;return s.length<=i.length&&(e?o+=Rot(r,t):o+=Fot(r,t)),o}function eot(r,t,e){switch(r.length){case 0:return VL();case 1:return pot(r,t,e);case 2:return bot(r,t,e);case 3:return fot(r,t,e);default:return hot(r,t,e)}}function rot(r,t,e){switch(r.length){case 0:return VL();case 1:return mot(r,t,e);case 2:return wot(r,t,e);case 3:return dot(r,t,e);case 4:return got(r,t,e);case 5:return xot(r,t);case 6:return yot(r,t);default:throw new Error(`${r.length}-D output sampling is not yet supported`)}}function not(r){return`\n float sampleTexture(sampler2D textureSampler, vec2 uv) {\n return ${r.texture2D}(textureSampler, uv).r;\n }\n `}function oot(r){return`\n void setOutput(float val) {\n ${r.output} = vec4(val, 0, 0, 0);\n }\n `}function sot(r){return`\n void setOutput(vec4 val) {\n ${r.output} = val;\n }\n `}function iot(r){return`${r.version}\n precision highp float;\n precision highp int;\n precision highp sampler2D;\n ${r.varyingFs} vec2 resultUV;\n ${r.defineOutput}\n const vec2 halfCR = vec2(0.5, 0.5);\n\n struct ivec5\n {\n int x;\n int y;\n int z;\n int w;\n int u;\n };\n\n struct ivec6\n {\n int x;\n int y;\n int z;\n int w;\n int u;\n int v;\n };\n\n uniform float NAN;\n ${r.defineSpecialNaN}\n ${r.defineSpecialInf}\n ${r.defineRound}\n\n int imod(int x, int y) {\n return x - y * (x / y);\n }\n\n int idiv(int a, int b, float sign) {\n int res = a / b;\n int mod = imod(a, b);\n if (sign < 0. && mod != 0) {\n res -= 1;\n }\n return res;\n }\n\n //Based on the work of Dave Hoskins\n //https://www.shadertoy.com/view/4djSRW\n #define HASHSCALE1 443.8975\n float random(float seed){\n vec2 p = resultUV * seed;\n vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);\n p3 += dot(p3, p3.yzx + 19.19);\n return fract((p3.x + p3.y) * p3.z);\n }\n\n ${aot}\n ${lot}\n ${uot}\n `}var aot=`\nvec2 uvFromFlat(int texNumR, int texNumC, int index) {\n int texR = index / texNumC;\n int texC = index - texR * texNumC;\n return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);\n}\nvec2 packedUVfrom1D(int texNumR, int texNumC, int index) {\n int texelIndex = index / 2;\n int texR = texelIndex / texNumC;\n int texC = texelIndex - texR * texNumC;\n return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);\n}\n`,lot=`\nvec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,\n int texNumC, int row, int col) {\n int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);\n int texR = texelIndex / texNumC;\n int texC = texelIndex - texR * texNumC;\n return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);\n}\n`,uot=`\nvec2 packedUVfrom3D(int texNumR, int texNumC,\n int texelsInBatch, int texelsInLogicalRow, int b,\n int row, int col) {\n int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);\n int texR = index / texNumC;\n int texC = index - texR * texNumC;\n return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);\n}\n`,cot=`\n float getChannel(vec4 frag, vec2 innerDims) {\n vec2 modCoord = mod(innerDims, 2.);\n return modCoord.x == 0. ?\n (modCoord.y == 0. ? frag.r : frag.g) :\n (modCoord.y == 0. ? frag.b : frag.a);\n }\n float getChannel(vec4 frag, int dim) {\n float modCoord = mod(float(dim), 2.);\n return modCoord == 0. ? frag.r : frag.g;\n }\n`;function VL(){return`\n int getOutputCoords() {\n return 0;\n }\n `}function pot(r,t,e){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return n[0]===1?e?`\n int getOutputCoords() {\n return 2 * int(resultUV.x * ceil(float(outTexShape[1]) / 2.0));\n }\n `:`\n int getOutputCoords() {\n return 2 * int(resultUV.x * ${n[1]}.0);\n }\n `:n[1]===1?e?`\n int getOutputCoords() {\n return 2 * int(resultUV.y * ceil(float(outTexShape[0]) / 2.0));\n }\n `:`\n int getOutputCoords() {\n return 2 * int(resultUV.y * ${n[0]}.0);\n }\n `:e?`\n int getOutputCoords() {\n ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));\n ivec2 resTexRC = ivec2(resultUV.yx *\n vec2(packedTexShape[0], packedTexShape[1]));\n return 2 * (resTexRC.x * packedTexShape[1] + resTexRC.y);\n }\n `:`\n int getOutputCoords() {\n ivec2 resTexRC = ivec2(resultUV.yx *\n vec2(${n[0]}, ${n[1]}));\n return 2 * (resTexRC.x * ${n[1]} + resTexRC.y);\n }\n `}function mot(r,t,e){return t[0]===1?e?`\n int getOutputCoords() {\n return int(resultUV.x * float(outTexShape[1]));\n }\n `:`\n int getOutputCoords() {\n return int(resultUV.x * ${t[1]}.0);\n }\n `:t[1]===1?e?`\n int getOutputCoords() {\n return int(resultUV.y * float(outTexShape[0]));\n }\n `:`\n int getOutputCoords() {\n return int(resultUV.y * ${t[0]}.0);\n }\n `:e?`\n int getOutputCoords() {\n ivec2 resTexRC = ivec2(resultUV.yx *\n vec2(outTexShape[0], outTexShape[1]));\n return resTexRC.x * outTexShape[1] + resTexRC.y;\n }\n `:`\n int getOutputCoords() {\n ivec2 resTexRC = ivec2(resultUV.yx *\n vec2(${t[0]}, ${t[1]}));\n return resTexRC.x * ${t[1]} + resTexRC.y;\n }\n `}function fot(r,t,e){if(e)return`\n ivec3 getOutputCoords() {\n ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));\n int texelsInLogicalRow = int(ceil(float(outShape[2]) / 2.0));\n int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[1]) / 2.0));\n ivec2 resTexRC = ivec2(resultUV.yx *\n vec2(packedTexShape[0], packedTexShape[1]));\n int index = resTexRC.x * packedTexShape[1] + resTexRC.y;\n\n int b = index / texelsInBatch;\n index -= b * texelsInBatch;\n\n int r = 2 * (index / texelsInLogicalRow);\n int c = imod(index, texelsInLogicalRow) * 2;\n\n return ivec3(b, r, c);\n }\n `;let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],o=Math.ceil(r[2]/2),s=o*Math.ceil(r[1]/2);return`\n ivec3 getOutputCoords() {\n ivec2 resTexRC = ivec2(resultUV.yx *\n vec2(${n[0]}, ${n[1]}));\n int index = resTexRC.x * ${n[1]} + resTexRC.y;\n\n int b = index / ${s};\n index -= b * ${s};\n\n int r = 2 * (index / ${o});\n int c = imod(index, ${o}) * 2;\n\n return ivec3(b, r, c);\n }\n `}function dot(r,t,e){if(e)return`\n ivec3 getOutputCoords() {\n ivec2 resTexRC = ivec2(resultUV.yx *\n vec2(outTexShape[0], outTexShape[1]));\n int index = resTexRC.x * outTexShape[1] + resTexRC.y;\n ${up([\"r\",\"c\",\"d\"],r)}\n return ivec3(r, c, d);\n }\n`;let n=Si([\"r\",\"c\",\"d\"],r);return`\n ivec3 getOutputCoords() {\n ivec2 resTexRC = ivec2(resultUV.yx *\n vec2(${t[0]}, ${t[1]}));\n int index = resTexRC.x * ${t[1]} + resTexRC.y;\n ${n}\n return ivec3(r, c, d);\n }\n `}function hot(r,t,e){if(e)return`\n ivec4 getOutputCoords() {\n ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));\n ivec2 resTexRC = ivec2(resultUV.yx *\n vec2(packedTexShape[0], packedTexShape[1]));\n int index = resTexRC.x * packedTexShape[1] + resTexRC.y;\n\n int texelsInLogicalRow = int(ceil(float(outShape[3]) / 2.0));\n int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[2]) / 2.0));\n int texelsInBatchN = texelsInBatch * outShape[1];\n\n int b2 = index / texelsInBatchN;\n index -= b2 * texelsInBatchN;\n\n int b = index / texelsInBatch;\n index -= b * texelsInBatch;\n\n int r = 2 * (index / texelsInLogicalRow);\n int c = imod(index, texelsInLogicalRow) * 2;\n\n return ivec4(b2, b, r, c);\n }\n `;let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],o=Math.ceil(r[r.length-1]/2),s=o*Math.ceil(r[r.length-2]/2),i=s,a=\"\",u=\"b, r, c\";for(let l=2;l=1?c=\"coords = 0;\":c=a.map(b=>`coords.${p[b+l]} = 0;`).join(`\n`);let m=\"\";i<2&&s>0?m=\"coords\":m=r.shapeInfo.logicalShape.map((b,w)=>`coords.${p[w+l]}`).join(\", \");let f=\"return outputValue;\",h=y.sizeFromShape(r.shapeInfo.logicalShape)===1,x=y.sizeFromShape(t.logicalShape)===1;if(s===1&&!h&&!x)f=`\n return vec4(outputValue.xy, outputValue.xy);\n `;else if(h&&!x)i===1?f=`\n return vec4(outputValue.x, outputValue.x, 0., 0.);\n `:f=`\n return vec4(outputValue.x);\n `;else if(a.length){let b=s-2,w=s-1;a.indexOf(b)>-1&&a.indexOf(w)>-1?f=\"return vec4(outputValue.x);\":a.indexOf(b)>-1?f=\"return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);\":a.indexOf(w)>-1&&(f=\"return vec4(outputValue.xx, outputValue.zz);\")}return`\n vec4 ${o}() {\n ${u} coords = getOutputCoords();\n ${c}\n vec4 outputValue = get${n}(${m});\n ${f}\n }\n `}function Fot(r,t){let e=r.name,n=e.charAt(0).toUpperCase()+e.slice(1),o=\"get\"+n+\"AtOutCoords\",s=t.texShape,i=r.shapeInfo.texShape,a=r.shapeInfo.logicalShape.length,u=t.logicalShape.length;if(!r.shapeInfo.isUniform&&a===u&&r.shapeInfo.flatOffset==null&&y.arraysEqual(i,s))return`\n float ${o}() {\n return sampleTexture(${e}, resultUV);\n }\n `;let l=zt(u),c=LL(r.shapeInfo.logicalShape,t.logicalShape),p=u-a,m,f=[\"x\",\"y\",\"z\",\"w\",\"u\",\"v\"];a===0?m=\"\":u<2&&c.length>=1?m=\"coords = 0;\":m=c.map(h=>`coords.${f[h+p]} = 0;`).join(`\n`);let d=\"\";return u<2&&a>0?d=\"coords\":d=r.shapeInfo.logicalShape.map((h,g)=>`coords.${f[g+p]}`).join(\", \"),`\n float ${o}() {\n ${l} coords = getOutputCoords();\n ${m}\n return get${n}(${d});\n }\n `}function zt(r){if(r<=1)return\"int\";if(r===2)return\"ivec2\";if(r===3)return\"ivec3\";if(r===4)return\"ivec4\";if(r===5)return\"ivec5\";if(r===6)return\"ivec6\";throw Error(`GPU for rank ${r} is not yet supported`)}function Ww(r,t,e){let{newShape:n,keptDims:o}=y.squeezeShape(t),s=t.length,i=r&&s===3&&t[0]===1,a=i?t.slice(1):n,u=!r&&s>1&&!y.arraysEqual(t,e)&&n.lengthr[e]).join(\", \")}function WL(r,t,e,n){let o=e.map((c,p)=>{let m={logicalShape:c.shape,texShape:c.isUniform?null:c.texData.texShape,isUniform:c.isUniform,isPacked:c.isUniform?!1:c.texData.isPacked,flatOffset:null};return c.texData!=null&&c.texData.slice!=null&&c.texData.slice.flatOffset>0&&(m.flatOffset=c.texData.slice.flatOffset),{name:t.variableNames[p],shapeInfo:m}}),s=o.map(c=>c.shapeInfo),i={logicalShape:n.shape,texShape:n.texData.texShape,isUniform:!1,isPacked:n.texData.isPacked,flatOffset:null},a=zL(o,i,t),u=HT(r.gl,a),l=r.createProgram(u);return L().get(\"ENGINE_COMPILE_ONLY\")?{program:t,fragmentShader:u,source:a,webGLProgram:l,inShapeInfos:s,outShapeInfo:i,variablesLocations:null,customUniformLocations:null,infLoc:null,nanLoc:null,outShapeLocation:null,outShapeStridesLocation:null,outTexShapeLocation:null}:(r.buildVao(l),Object.assign({program:t,fragmentShader:u,source:a,webGLProgram:l,inShapeInfos:s,outShapeInfo:i},u1(r,t,l)))}function u1(r,t,e){let n=[],o=[],s,i,a,u=null,l=null;l=r.getUniformLocation(e,\"NAN\",!1),L().getNumber(\"WEBGL_VERSION\")===1&&(u=r.getUniformLocation(e,\"INFINITY\",!1));let c=!1;for(let p of t.variableNames){let m={name:p,uniform:r.getUniformLocation(e,p,c),offset:r.getUniformLocation(e,`offset${p}`,c)};t.enableShapeUniforms&&(m.shape=r.getUniformLocation(e,`${p}Shape`,c),m.texShape=r.getUniformLocation(e,`${p}TexShape`,c)),n.push(m)}if(t.enableShapeUniforms&&(s=r.getUniformLocation(e,\"outShape\",c),a=r.getUniformLocation(e,\"outShapeStrides\",c),i=r.getUniformLocation(e,\"outTexShape\",c)),t.customUniforms)for(let p of t.customUniforms)o.push(r.getUniformLocation(e,p.name,c));return{variablesLocations:n,customUniformLocations:o,infLoc:u,nanLoc:l,outShapeLocation:s,outShapeStridesLocation:a,outTexShapeLocation:i}}function GL(r,t){if(r.length!==t.length)throw Error(`Binary was compiled with ${r.length} inputs, but was executed with ${t.length} inputs`);r.forEach((e,n)=>{let o=e.logicalShape,s=t[n],i=s.shape;if(!y.arraysEqual(o,i))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${o} and ${i} must match`);if(e.isUniform&&s.isUniform)return;let a=e.texShape,u=s.isUniform?null:s.texData.texShape;if(!y.arraysEqual(a,u))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${a} and ${u} must match`)})}function UL(r,t,e,n,o){t.program.enableShapeUniforms||(GL(t.inShapeInfos,e),GL([t.outShapeInfo],[n]));let s=n.texData.texture,i=n.texData.texShape;n.texData.isPacked?r.setOutputPackedMatrixTexture(s.texture,i[0],i[1]):r.setOutputMatrixTexture(s.texture,i[0],i[1]),r.setProgram(t.webGLProgram),r.bindVertexArray(t.webGLProgram.vao),L().getNumber(\"WEBGL_VERSION\")===1&&t.infLoc!==null&&r.gl.uniform1f(t.infLoc,1/0),t.nanLoc!==null&&r.gl.uniform1f(t.nanLoc,NaN);for(let u=0;u{let a=i.texData!=null&&i.texData.slice!=null&&i.texData.slice.flatOffset>0;if(r.enableShapeUniforms&&!i.isUniform){let u=i.texData.texShape,{useSqueezeShape:l,uniformShape:c,keptDims:p}=Ww(r.packedInputs,i.shape,u),m=\"\",f=\"\",d=\"\";if(c.length===1&&r.packedInputs){let N=[Math.ceil(u[0]/2),Math.ceil(u[1]/2)];m=`${N[0]>1}_${N[1]>1}`}else if(c.length===2&&!r.packedInputs)f=`${c[0]>1}_${c[1]>1}`;else if(c.length>2&&!r.packedInputs){let N=y.computeStrides(c);d=`${N[0]===u[1]}_${N[N.length-1]===u[1]}`}let h=i.shape.length,g=c.length===2&&y.arraysEqual(i.shape,u),x=y.sizeFromShape(i.shape)===1,b=S.getBroadcastDims(i.shape,e.shape),w=!r.packedInputs&&h===e.shape.length&&y.arraysEqual(u,e.texData.texShape),I=r.packedInputs||c.length>2?\"\":`${u[0]>1}_${u[1]>1}`;n+=`${h}_${w}_${l?p:\"\"}_${c.length}_${x}_${b}_${g}_${m}_${f}_${d}_${I}_${a}`}else{let u=i.isUniform?\"uniform\":i.texData.texShape;n+=`${i.shape}_${u}_${a}`}});let o=r.userCode,s=r.constructor.name;return s+=\"_\"+n+\"_\"+o+`${L().getNumber(\"WEBGL_VERSION\")}`,s}function he(r){return L().getBool(\"WEBGL_USE_SHAPES_UNIFORMS\")&&r<=4}var Uw=class{constructor(t){this.variableNames=[\"A\"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=Wu.DENSE,this.customUniforms=[{name:\"texShape\",type:\"ivec2\"}];let e=Ue();this.outputShape=t,this.enableShapeUniforms=he(this.outputShape.length),this.userCode=`\n ivec3 outCoordsFromFlatIndex(int index) {\n ${this.enableShapeUniforms?up([\"r\",\"c\",\"d\"],t):Si([\"r\",\"c\",\"d\"],t)}\n return ivec3(r, c, d);\n }\n\n void main() {\n ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));\n int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);\n\n vec4 result = vec4(0.);\n\n for (int i=0; i<4; i++) {\n int flatIndex = index + i;\n ivec3 rc = outCoordsFromFlatIndex(flatIndex);\n result[i] = getA(rc.x, rc.y, rc.z);\n }\n\n ${e.output} = result;\n }\n `}};var Hw=class{constructor(t){this.variableNames=[\"A\"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=Wu.DENSE,this.customUniforms=[{name:\"texShape\",type:\"ivec2\"}];let e=Ue();this.outputShape=t,this.enableShapeUniforms=he(this.outputShape.length),this.userCode=`\n ivec3 outCoordsFromFlatIndex(int index) {\n ${this.enableShapeUniforms?up([\"r\",\"c\",\"d\"],t):Si([\"r\",\"c\",\"d\"],t)}\n return ivec3(r, c, d);\n }\n\n void main() {\n ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));\n int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);\n\n vec4 result = vec4(0.);\n\n for (int i=0; i<4; i++) {\n int flatIndex = index + i;\n ivec3 rc = outCoordsFromFlatIndex(flatIndex);\n result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));\n }\n\n ${e.output} = result;\n }\n `}};var qw=class{constructor(t){this.variableNames=[\"A\"],this.outTexUsage=Jr.DOWNLOAD;let e=Ue();this.outputShape=t,this.userCode=`\n ${Gw}\n\n void main() {\n float x = getAAtOutCoords();\n ${e.output} = encode_float(x);\n }\n `}};var Kw=class{constructor(t){this.variableNames=[\"A\"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=Jr.DOWNLOAD;let e=Ue();this.outputShape=t,this.userCode=`\n ${Gw}\n\n void main() {\n ivec3 coords = getOutputCoords();\n float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));\n ${e.output} = encode_float(x);\n }\n `}};var Pot={R:0,G:1,B:2,A:3},ug=class{constructor(t,e=!1,n=\"RGBA\"){this.variableNames=[\"A\"],this.customUniforms=[{name:\"texShape\",type:\"ivec2\"}];let o=Ue();this.outputShape=t,this.enableShapeUniforms=he(this.outputShape.length);let s=\"result\";e&&(s=\"floor(result * 255. + 0.5)\");let i=\"\";for(let a=0;ay1,createBufferFromOutputTexture:()=>I1,createFloat16MatrixTexture:()=>d1,createFloat16PackedMatrixTexture:()=>x1,createFloat32MatrixTexture:()=>f1,createIndexBuffer:()=>m1,createPackedMatrixTexture:()=>g1,createUnsignedBytesMatrixTexture:()=>h1,createVertexBuffer:()=>p1,createVertexShader:()=>c1,downloadByteEncodedFloatMatrixFromOutputTexture:()=>v1,downloadFloat32MatrixFromBuffer:()=>C1,downloadMatrixFromPackedOutputTexture:()=>N1,downloadPackedMatrixFromBuffer:()=>S1,getInternalFormatForFloat16MatrixTexture:()=>Yw,getInternalFormatForFloat16PackedMatrixTexture:()=>Qw,getInternalFormatForFloat32MatrixTexture:()=>Xw,getInternalFormatForPackedMatrixTexture:()=>Jw,getInternalFormatForUnsignedBytesMatrixTexture:()=>Zw,uploadDenseMatrixToTexture:()=>b1,uploadPixelDataToTexture:()=>w1});function c1(r){let t=Ue(),e=`${t.version}\n precision highp float;\n ${t.attribute} vec3 clipSpacePos;\n ${t.attribute} vec2 uv;\n ${t.varyingVs} vec2 resultUV;\n\n void main() {\n gl_Position = vec4(clipSpacePos, 1);\n resultUV = uv;\n }`;return UT(r,e)}function p1(r){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return jT(r,t)}function m1(r){let t=new Uint16Array([0,1,2,2,1,3]);return XT(r,t)}function cg(r,t,e,n,o,s){ZT(t,e);let i=YT(r),a=r.TEXTURE_2D;return ht(r,()=>r.bindTexture(a,i)),ht(r,()=>r.texParameteri(a,r.TEXTURE_WRAP_S,r.CLAMP_TO_EDGE)),ht(r,()=>r.texParameteri(a,r.TEXTURE_WRAP_T,r.CLAMP_TO_EDGE)),ht(r,()=>r.texParameteri(a,r.TEXTURE_MIN_FILTER,r.NEAREST)),ht(r,()=>r.texParameteri(a,r.TEXTURE_MAG_FILTER,r.NEAREST)),L().getNumber(\"WEBGL_VERSION\")===1?ht(r,()=>r.texImage2D(a,0,n,t,e,0,o,s,null)):ht(r,()=>r.texStorage2D(a,1,n,t,e)),ht(r,()=>r.bindTexture(r.TEXTURE_2D,null)),{texture:i,texShape:[e,t]}}function Xw(r){return r.internalFormatFloat}function f1(r,t,e,n){let[o,s]=lp(t,e);return cg(r,o,s,Xw(n),n.textureFormatFloat,r.FLOAT)}function Yw(r){return r.internalFormatHalfFloat}function d1(r,t,e,n){let[o,s]=lp(t,e);return cg(r,o,s,Yw(n),n.textureFormatFloat,n.textureTypeHalfFloat)}function Zw(r){return r.downloadTextureFormat}function h1(r,t,e,n){let[o,s]=lp(t,e);return cg(r,o,s,Zw(n),r.RGBA,r.UNSIGNED_BYTE)}function Jw(r){return r.internalFormatPackedFloat}function g1(r,t,e,n){let[o,s]=wa(t,e);return cg(r,o,s,Jw(n),r.RGBA,r.FLOAT)}function Qw(r){return r.internalFormatPackedHalfFloat}function x1(r,t,e,n){let[o,s]=wa(t,e);return cg(r,o,s,Qw(n),r.RGBA,n.textureTypeHalfFloat)}function y1(r,t,e){return ht(r,()=>r.bindBuffer(r.ARRAY_BUFFER,e)),zw(r,t,\"clipSpacePos\",e,3,20,0)&&zw(r,t,\"uv\",e,2,20,12)}function b1(r,t,e,n,o,s){ht(r,()=>r.bindTexture(r.TEXTURE_2D,t));let i,a,u;o instanceof Uint8Array?(i=new Uint8Array(e*n*4),a=r.UNSIGNED_BYTE,u=r.RGBA):(i=new Float32Array(e*n*4),a=r.FLOAT,u=s.internalFormatPackedFloat),i.set(o),L().getNumber(\"WEBGL_VERSION\")===2?ht(r,()=>r.texSubImage2D(r.TEXTURE_2D,0,0,0,e,n,r.RGBA,a,i)):ht(r,()=>r.texImage2D(r.TEXTURE_2D,0,u,e,n,0,r.RGBA,a,i)),ht(r,()=>r.bindTexture(r.TEXTURE_2D,null))}function w1(r,t,e){ht(r,()=>r.bindTexture(r.TEXTURE_2D,t)),e.data instanceof Uint8Array?L().getNumber(\"WEBGL_VERSION\")===2?ht(r,()=>r.texSubImage2D(r.TEXTURE_2D,0,0,0,e.width,e.height,r.RGBA,r.UNSIGNED_BYTE,e.data)):ht(r,()=>r.texImage2D(r.TEXTURE_2D,0,r.RGBA,e.width,e.height,0,r.RGBA,r.UNSIGNED_BYTE,e.data)):L().getNumber(\"WEBGL_VERSION\")===2?ht(r,()=>r.texSubImage2D(r.TEXTURE_2D,0,0,0,r.RGBA,r.UNSIGNED_BYTE,e)):ht(r,()=>r.texImage2D(r.TEXTURE_2D,0,r.RGBA,r.RGBA,r.UNSIGNED_BYTE,e)),ht(r,()=>r.bindTexture(r.TEXTURE_2D,null))}function I1(r,t,e,n){let o=r.createBuffer();ht(r,()=>r.bindBuffer(r.PIXEL_PACK_BUFFER,o));let a=4*4*t*e;return ht(r,()=>r.bufferData(r.PIXEL_PACK_BUFFER,a,r.STREAM_READ)),ht(r,()=>r.readPixels(0,0,e,t,r.RGBA,r.FLOAT,0)),ht(r,()=>r.bindBuffer(r.PIXEL_PACK_BUFFER,null)),o}function C1(r,t,e){let n=r,o=new Float32Array(e);return n.bindBuffer(n.PIXEL_PACK_BUFFER,t),n.getBufferSubData(n.PIXEL_PACK_BUFFER,0,o),n.bindBuffer(n.PIXEL_PACK_BUFFER,null),o}function v1(r,t,e,n){let[o,s]=lp(t,e),i=4,a=new Uint8Array(DL(t*e,i));return ht(r,()=>r.readPixels(0,0,o,s,n.downloadTextureFormat,r.UNSIGNED_BYTE,a)),new Float32Array(a.buffer)}function S1(r,t,e,n,o,s,i,a){let u=r,l=new Float32Array($L(s,i));return u.bindBuffer(u.PIXEL_PACK_BUFFER,t),u.getBufferSubData(u.PIXEL_PACK_BUFFER,0,l),u.bindBuffer(u.PIXEL_PACK_BUFFER,null),l}function N1(r,t,e){let n=new Float32Array(t*e*4);return ht(r,()=>r.readPixels(0,0,e,t,r.RGBA,r.FLOAT,n)),n}var pp=class{constructor(t){this.outputTexture=null,this.program=null,this.disposed=!1,this.itemsToPoll=[];let e=L().getNumber(\"WEBGL_VERSION\");if(t!=null?(this.gl=t,BT(e,t)):this.gl=qn(e),t=this.gl,L().getNumber(\"WEBGL_VERSION\")===2){let s=t;this.createVertexArray=()=>ht(s,()=>s.createVertexArray()),this.bindVertexArray=i=>ht(s,()=>s.bindVertexArray(i)),this.deleteVertexArray=i=>ht(s,()=>s.deleteVertexArray(i)),this.getVertexArray=()=>ht(s,()=>s.getParameter(s.VERTEX_ARRAY_BINDING))}else if(t!=null){let s=t.getExtension(\"OES_vertex_array_object\");if(s==null)throw new Error(\"All WebGL1 implementations are expected to offer OES_vertex_array_object.\");this.createVertexArray=()=>ht(t,()=>s.createVertexArrayOES()),this.bindVertexArray=i=>ht(t,()=>s.bindVertexArrayOES(i)),this.deleteVertexArray=i=>ht(t,()=>s.deleteVertexArrayOES(i)),this.getVertexArray=()=>ht(t,()=>t.getParameter(s.VERTEX_ARRAY_BINDING_OES))}let n=\"WEBGL_color_buffer_float\",o=\"EXT_color_buffer_half_float\";if(this.parallelCompilationExtension=this.gl.getExtension(\"KHR_parallel_shader_compile\"),L().getNumber(\"WEBGL_VERSION\")===1){let s=\"OES_texture_float\",i=\"OES_texture_half_float\";if(this.textureFloatExtension=bd(this.gl,s),Kn(this.gl,i))this.textureHalfFloatExtension=bd(this.gl,i);else if(L().get(\"WEBGL_FORCE_F16_TEXTURES\"))throw new Error(\"GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.\");if(this.colorBufferFloatExtension=this.gl.getExtension(n),Kn(this.gl,o))this.colorBufferHalfFloatExtension=bd(this.gl,o);else if(L().get(\"WEBGL_FORCE_F16_TEXTURES\"))throw new Error(\"GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.\")}else if(n=\"EXT_color_buffer_float\",Kn(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(Kn(this.gl,o))this.colorBufferHalfFloatExtension=this.gl.getExtension(o);else throw new Error(\"GL context does not support color renderable floats\");this.vertexBuffer=p1(this.gl),this.indexBuffer=m1(this.gl),this.framebuffer=JT(this.gl),this.textureConfig=ig(this.gl,this.textureHalfFloatExtension)}get debug(){return L().getBool(\"DEBUG\")}dispose(){if(this.disposed)return;this.program!=null&&console.warn(\"Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing.\"),this.outputTexture!=null&&console.warn(\"Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.\");let t=this.gl;ht(t,()=>t.finish()),ht(t,()=>t.bindFramebuffer(t.FRAMEBUFFER,null)),ht(t,()=>t.deleteFramebuffer(this.framebuffer)),ht(t,()=>t.bindBuffer(t.ARRAY_BUFFER,null)),ht(t,()=>t.bindBuffer(t.ELEMENT_ARRAY_BUFFER,null)),ht(t,()=>t.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(t,e){return this.throwIfDisposed(),f1(this.gl,t,e,this.textureConfig)}createFloat16MatrixTexture(t,e){return this.throwIfDisposed(),d1(this.gl,t,e,this.textureConfig)}createUnsignedBytesMatrixTexture(t,e){return this.throwIfDisposed(),h1(this.gl,t,e,this.textureConfig)}uploadPixelDataToTexture(t,e){this.throwIfDisposed(),w1(this.gl,t,e)}uploadDenseMatrixToTexture(t,e,n,o){this.throwIfDisposed(),b1(this.gl,t,e,n,o,this.textureConfig)}createFloat16PackedMatrixTexture(t,e){return this.throwIfDisposed(),x1(this.gl,t,e,this.textureConfig)}createPackedMatrixTexture(t,e){return this.throwIfDisposed(),g1(this.gl,t,e,this.textureConfig)}deleteMatrixTexture(t){this.throwIfDisposed(),this.outputTexture===t&&(Bw(this.gl,this.framebuffer),this.outputTexture=null),ht(this.gl,()=>this.gl.deleteTexture(t))}downloadByteEncodedFloatMatrixFromOutputTexture(t,e,n){return this.downloadMatrixDriver(t,()=>v1(this.gl,e,n,this.textureConfig))}downloadPackedMatrixFromBuffer(t,e,n,o,s,i){return S1(this.gl,t,e,n,o,s,i,this.textureConfig)}downloadFloat32MatrixFromBuffer(t,e){return C1(this.gl,t,e)}createBufferFromTexture(t,e,n){this.bindTextureToFrameBuffer(t);let o=I1(this.gl,e,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),o}createAndWaitForFence(){let t=this.createFence(this.gl);return this.pollFence(t)}createFence(t){let e,n;if(L().getBool(\"WEBGL_FENCE_API_ENABLED\")){let o=t,s=o.fenceSync(o.SYNC_GPU_COMMANDS_COMPLETE,0);t.flush(),n=()=>{let i=o.clientWaitSync(s,0,0);return i===o.ALREADY_SIGNALED||i===o.CONDITION_SATISFIED},e=s}else L().getNumber(\"WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION\")>0?(e=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(e,L().getNumber(\"WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION\"))):n=()=>!0;return{query:e,isFencePassed:n}}downloadMatrixFromPackedTexture(t,e,n){return this.downloadMatrixDriver(t,()=>N1(this.gl,e,n))}createProgram(t){this.throwIfDisposed();let e=this.gl;this.vertexShader==null&&(this.vertexShader=c1(e));let n=qT(e);ht(e,()=>e.attachShader(n,this.vertexShader)),ht(e,()=>e.attachShader(n,t)),KT(e,n);let o=Object.assign(n,{vao:this.createVertexArray()});return this.debug&&ag(e,o),o}buildVao(t){this.setProgram(t),this.bindVertexArray(t.vao);let e=this.gl;ht(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,this.indexBuffer)),y1(e,t,this.vertexBuffer)}deleteProgram(t){this.throwIfDisposed(),t===this.program&&(this.program=null),t!=null&&(ht(this.gl,()=>this.gl.deleteProgram(t)),this.deleteVertexArray(t.vao))}setProgram(t){this.throwIfDisposed(),this.program=t,this.program!=null&&this.debug&&ag(this.gl,this.program),ht(this.gl,()=>this.gl.useProgram(t))}getUniformLocation(t,e,n=!0){return this.throwIfDisposed(),n?QT(this.gl,t,e):t1(this.gl,t,e)}getAttributeLocation(t,e){return this.throwIfDisposed(),ht(this.gl,()=>this.gl.getAttribLocation(t,e))}getUniformLocationNoThrow(t,e){return this.throwIfDisposed(),this.gl.getUniformLocation(t,e)}setInputMatrixTexture(t,e,n){this.throwIfDisposed(),this.throwIfNoProgram(),e1(this.gl,t,e,n)}setOutputMatrixTexture(t,e,n){this.setOutputMatrixTextureDriver(t,n,e)}setOutputPackedMatrixTexture(t,e,n){this.throwIfDisposed();let[o,s]=wa(e,n);this.setOutputMatrixTextureDriver(t,o,s)}setOutputMatrixWriteRegion(t,e,n,o){this.setOutputMatrixWriteRegionDriver(n,t,o,e)}setOutputPackedMatrixWriteRegion(t,e,n,o){throw new Error(\"setOutputPackedMatrixWriteRegion not implemented.\")}debugValidate(){this.program!=null&&ag(this.gl,this.program),wd(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let t=this.gl;if(this.debug){let e=this.getVertexArray();console.assert(e===this.program.vao,\"VAO changed between setProgram and executeProgram!\"),this.debugValidate()}ht(t,()=>t.drawElements(t.TRIANGLES,6,t.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),ht(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=bd(this.gl,L().getNumber(\"WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION\")===2?\"EXT_disjoint_timer_query_webgl2\":\"EXT_disjoint_timer_query\")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(L().getNumber(\"WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION\")===2){let n=this.gl,o=this.getQueryTimerExtensionWebGL2(),s=n.createQuery();return n.beginQuery(o.TIME_ELAPSED_EXT,s),s}let t=this.getQueryTimerExtensionWebGL1(),e=t.createQueryEXT();return t.beginQueryEXT(t.TIME_ELAPSED_EXT,e),e}endQuery(){if(L().getNumber(\"WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION\")===2){let e=this.gl,n=this.getQueryTimerExtensionWebGL2();e.endQuery(n.TIME_ELAPSED_EXT);return}let t=this.getQueryTimerExtensionWebGL1();t.endQueryEXT(t.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(t){return await y.repeatedTry(()=>this.disposed||this.isQueryAvailable(t,L().getNumber(\"WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION\"))),this.getQueryTime(t,L().getNumber(\"WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION\"))}getQueryTime(t,e){if(e===0)return null;if(e===2){let n=this.gl;return n.getQueryParameter(t,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(t,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(t,e){if(e===0)return!0;if(e===2){let n=this.gl,o=this.getQueryTimerExtensionWebGL2(),s=n.getQueryParameter(t,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(o.GPU_DISJOINT_EXT)),s&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),o=n.getQueryObjectEXT(t,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),o&&!this.disjoint}}pollFence(t){return new Promise(e=>{this.addItemToPoll(()=>t.isFencePassed(),()=>e())})}pollItems(){let t=Lot(this.itemsToPoll.map(e=>e.isDoneFn));for(let e=0;e<=t;++e){let{resolveFn:n}=this.itemsToPoll[e];n()}this.itemsToPoll=this.itemsToPoll.slice(t+1)}addItemToPoll(t,e){if(this.itemsToPoll.push({isDoneFn:t,resolveFn:e}),this.itemsToPoll.length>1)return;let n;\"setTimeoutCustom\"in L().platform&&(n=L().platform.setTimeoutCustom.bind(L().platform)),y.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0),()=>0,null,n)}bindTextureToFrameBuffer(t){this.throwIfDisposed(),lg(this.gl,t,this.framebuffer),this.debug&&wd(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(lg(this.gl,this.outputTexture,this.framebuffer),this.debug&&wd(this.gl)):Bw(this.gl,this.framebuffer)}downloadMatrixDriver(t,e){this.bindTextureToFrameBuffer(t);let n=e();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(t,e,n){this.throwIfDisposed();let o=this.gl;lg(o,t,this.framebuffer),this.debug&&wd(o),this.outputTexture=t,ht(o,()=>o.viewport(0,0,e,n)),ht(o,()=>o.scissor(0,0,e,n))}setOutputMatrixWriteRegionDriver(t,e,n,o){this.throwIfDisposed(),ht(this.gl,()=>this.gl.scissor(t,e,n,o))}throwIfDisposed(){if(this.disposed)throw new Error(\"Attempted to use disposed GPGPUContext.\")}throwIfNoProgram(){if(this.program==null)throw new Error(\"No GPU program is currently set.\")}};function Lot(r){let t=0;for(;t`${r}.${e}`)}function rr(r,t){return t===1?[r]:T1(r,t)}function Pz(r,t){if(r===1)return\"rc\";let e=\"\";for(let n=0;n ${this.enableShapeUniforms?\"outShape\":this.outputShape[0]}`;let e=\"\";for(let n=this.rank-2;n= ${this.enableShapeUniforms?`outShape[${n}]`:this.outputShape[n]}`,n= ${n};\n bool rEdge = rp1 >= ${o};\n `}getOutput(t){let e=this.getSourceCoordsArr(t);return this.rank===1?`getA(rc), (rc + 1 >= ${this.enableShapeUniforms?\"outShape\":this.outputShape[0]} ? 0. : getA(rc + 1)), 0, 0`:`getA(${e[0]}),\n cEdge ? 0. : getA(${e[1]}),\n rEdge ? 0. : getA(${e[2]}),\n rEdge || cEdge ? 0. : getA(${e[3]})`}};var Ad=class{constructor(t,e){this.variableNames=[\"A\"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:\"inputShape\",type:\"ivec3\"}],this.outputShape=t,this.enableShapeUniforms=he(this.outputShape.length);let n=\"\";for(let o=0;o<4;o++){let s=\"thisRC = rc;\";o%2===1&&(s+=\"thisRC.z += 1;\"),o>1&&(s+=\"thisRC.y += 1;\"),n+=`\n ${s}\n ${o>0?\"if(thisRC.y < rows && thisRC.z < cols){\":\"\"}\n int flatIndex = getFlatIndex(thisRC);\n\n ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);\n vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));\n\n result[${o}] =\n getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);\n ${o>0?\"}\":\"\"}\n `}this.userCode=`\n ${zot(e,this.enableShapeUniforms)}\n ${this.enableShapeUniforms?Sd():vd(t)}\n\n void main() {\n ivec3 rc = getOutputCoords();\n\n vec4 result = vec4(0.);\n\n ivec3 thisRC;\n int rows = ${this.enableShapeUniforms?\"outShape[1]\":t[1]};\n int cols = ${this.enableShapeUniforms?\"outShape[2]\":t[2]};\n\n ${n}\n\n setOutput(result);\n }\n `}};function zot(r,t){return`\n ivec3 inputCoordsFromReshapedOutCoords(int index) {\n ${t?PL([\"r\",\"c\",\"d\"],\"inputShape\"):Si([\"r\",\"c\",\"d\"],r)}\n return ivec3(r, c, d);\n }\n `}var oI=class{constructor(t){this.gpgpu=t,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.usedTextures={},this.logEnabled=!1}acquireTexture(t,e,n){let o=zz(e,n),s=Bz(t,o,n);s in this.freeTextures||(this.freeTextures[s]=[]),s in this.usedTextures||(this.usedTextures[s]=[]);let i=Lz(t,o,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[s].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=i,this.log();let u=this.freeTextures[s].pop();return this.usedTextures[s].push(u),u}let a;return o===Lr.PACKED_2X2_FLOAT32?a=this.gpgpu.createPackedMatrixTexture(t[0],t[1]):o===Lr.PACKED_2X2_FLOAT16?a=this.gpgpu.createFloat16PackedMatrixTexture(t[0],t[1]):o===Lr.UNPACKED_FLOAT32?a=this.gpgpu.createFloat32MatrixTexture(t[0],t[1]):o===Lr.UNPACKED_FLOAT16?a=this.gpgpu.createFloat16MatrixTexture(t[0],t[1]):o===Lr.PACKED_4X1_UNSIGNED_BYTE&&(a=this.gpgpu.createUnsignedBytesMatrixTexture(t[0],t[1])),this.usedTextures[s].push(a),this.numUsedTextures++,this._numBytesAllocated+=i,this.log(),a}releaseTexture(t,e,n,o){if(this.freeTextures==null)return;let s=zz(n,o),i=Bz(e,s,o);i in this.freeTextures||(this.freeTextures[i]=[]);let a=Lz(e,s,this.gpgpu.gl,this.gpgpu.textureConfig,o),u=L().getNumber(\"WEBGL_DELETE_TEXTURE_THRESHOLD\");u!==-1&&this._numBytesAllocated>u?(this.gpgpu.deleteMatrixTexture(t.texture),this._numBytesAllocated-=a):(this.freeTextures[i].push(t),this.numFreeTextures++,this._numBytesFree+=a),this.numUsedTextures--;let l=this.usedTextures[i],c=l&&l.indexOf(t);if(c==null||c<0)throw new Error(\"Cannot release a texture that was never provided by this texture manager\");l[c]=l[l.length-1],l.pop(),this.log()}log(){if(!this.logEnabled)return;let t=this.numFreeTextures+this.numUsedTextures;console.log(\"Free/Used\",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${t})`);let e=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*e)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let t in this.freeTextures)this.freeTextures[t].forEach(e=>{this.gpgpu.deleteMatrixTexture(e.texture)});for(let t in this.usedTextures)this.usedTextures[t].forEach(e=>{this.gpgpu.deleteMatrixTexture(e.texture)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function Bot(r,t){let e=r;if(t===e.R32F)return 4;if(t===e.R16F)return 2;if(t===e.RGBA32F)return 16;if(t===r.RGBA)return 16;if(t===e.RGBA16F)return 8;if(t===e.RGBA8)return 4;throw new Error(`Unknown internal format ${t}`)}function Lz(r,t,e,n,o){let s=Vot(t,n),i;if(o){let[u,l]=wa(r[0],r[1]);i=u*l}else{let[u,l]=lp(r[0],r[1]);i=u*l}let a=Bot(e,s);return i*a}function Vot(r,t){switch(r){case Lr.PACKED_2X2_FLOAT32:return Jw(t);case Lr.PACKED_2X2_FLOAT16:return Qw(t);case Lr.UNPACKED_FLOAT32:return Xw(t);case Lr.UNPACKED_FLOAT16:return Yw(t);case Lr.PACKED_4X1_UNSIGNED_BYTE:return Zw(t);default:throw new Error(`Unknown physical texture type ${r}`)}}function Got(r){return L().getBool(\"WEBGL_RENDER_FLOAT32_ENABLED\")?r?Lr.PACKED_2X2_FLOAT32:Lr.UNPACKED_FLOAT32:r?Lr.PACKED_2X2_FLOAT16:Lr.UNPACKED_FLOAT16}function zz(r,t){if(r===Jr.UPLOAD)return Lr.PACKED_2X2_FLOAT32;if(r===Jr.RENDER||r==null)return Got(t);if(r===Jr.DOWNLOAD||r===Jr.PIXELS)return Lr.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${r}`)}function Bz(r,t,e){return`${r[0]}_${r[1]}_${t}_${e}`}var zr=class{constructor(t,e){this.variableNames=[\"A\"],this.outputShape=t,this.enableShapeUniforms=he(this.outputShape.length),this.userCode=`\n float unaryOperation(float x) {\n ${e}\n }\n\n void main() {\n float x = getAAtOutCoords();\n float y = unaryOperation(x);\n\n setOutput(y);\n }\n `}},xr=\"if (isnan(x)) return x;\",Vz=\"return x;\",_1=\"return abs(x);\";var Gz=\"return (x >= 0.0) ? x : (exp(x) - 1.0);\",Wz=xr+`\n return (x < 0.0) ? 0.0 : x;\n`,Uz=xr+`\n return (x < 0.0) ? 0.0 : min(6.0, x);\n`,Ia=\"return x;\",Hz=\"return 1.0 / (1.0 + exp(-1.0 * x));\";var Kz=\"return x;\",jz=`\n vec4 result;\n\n result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);\n result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);\n result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);\n result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);\n\n return result;\n`,Xz=`\n vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));\n bvec4 isNaN = isnan(x);\n\n result.r = isNaN.r ? x.r : result.r;\n result.g = isNaN.g ? x.g : result.g;\n result.b = isNaN.b ? x.b : result.b;\n result.a = isNaN.a ? x.a : result.a;\n\n return result;\n`,Yz=`\n vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));\n bvec4 isNaN = isnan(x);\n\n result.r = isNaN.r ? x.r : result.r;\n result.g = isNaN.g ? x.g : result.g;\n result.b = isNaN.b ? x.b : result.b;\n result.a = isNaN.a ? x.a : result.a;\n\n return result;\n`,Zz=\"return 1.0 / (1.0 + exp(-1.0 * x));\",Dn=class{constructor(t,e){this.variableNames=[\"A\"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t,this.enableShapeUniforms=he(this.outputShape.length),this.userCode=`\n vec4 unaryOperation(vec4 x) {\n ${e}\n }\n\n void main() {\n vec4 x = getAAtOutCoords();\n vec4 y = unaryOperation(x);\n\n setOutput(y);\n }\n `}};var sI=class{constructor(t){this.variableNames=[\"A\"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=t,this.enableShapeUniforms=he(this.outputShape.length);let e=t.length,n=rr(\"rc\",e),o=zt(e),s=Pz(e,n),i=n.slice(-2),a=e<=1?\"rc\":`vec2(${i.join(\",\")})`;this.userCode=`\n void main() {\n ${o} rc = getOutputCoords();\n vec4 packedInput = getA(${s});\n\n setOutput(getChannel(packedInput, ${a}));\n }\n `}};var Uot=Xr.whereImpl,Hot=1e-7,qot=1e-4,iI={};function Kot(r){return r in iI||(iI[r]={}),iI[r]}var jot=L().getNumber(\"CPU_HANDOFF_SIZE_THRESHOLD\"),Xot=600;function Yot(){return L().global.screen==null?1024:L().global.screen.height*L().global.screen.width*window.devicePixelRatio*Xot/1024/1024}var Dd=class r extends Bo{nextDataId(){return r.nextDataId++}constructor(t){if(super(),this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!L().getBool(\"HAS_WEBGL\"))throw new Error(\"WebGL is not supported on this device\");let e;if(t!=null){if(t instanceof pp)e=t;else{let n=qn(L().getNumber(\"WEBGL_VERSION\"),t);e=new pp(n)}this.binaryCache={},this.gpgpuCreatedLocally=!1}else{let n=qn(L().getNumber(\"WEBGL_VERSION\"));e=new pp(n),this.binaryCache=Kot(L().getNumber(\"WEBGL_VERSION\")),this.gpgpuCreatedLocally=!0}this.gpgpu=e,this.canvas=this.gpgpu.gl.canvas,this.textureManager=new oI(this.gpgpu),this.numMBBeforeWarning=Yot(),this.texData=new Ta(this,Bn())}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}writeTexture(t,e,n,o,s,i){let a=this.makeTensorInfo(e,n),u=this.texData.get(a.dataId);u.isPacked=!1,u.texture={texture:t,texShape:[o,s]},u.texShape=[o,s];let l=Id(e),c=new ug(l,!1,i),p=this.runWebGLProgram(c,[a],n,[[o,s]]);return p.shape=e,u.texture=null,this.disposeIntermediateTensorInfo(a),p.dataId}write(t,e,n){if((L().getBool(\"WEBGL_CHECK_NUMERICAL_PROBLEMS\")||L().getBool(\"DEBUG\"))&&this.checkNumericalProblems(t),n===\"complex64\"&&t!=null)throw new Error(\"Cannot write to a complex64 dtype. Please use tf.complex(real, imag).\");let o={id:this.nextDataId()};return this.texData.set(o,{shape:e,dtype:n,values:t,usage:Jr.UPLOAD,refCount:1}),o}refCount(t){return this.texData.has(t)?this.texData.get(t).refCount:0}incRef(t){let e=this.texData.get(t);e.refCount++}decRef(t){if(this.texData.has(t)){let e=this.texData.get(t);e.refCount--}}move(t,e,n,o,s){if(L().getBool(\"DEBUG\")&&this.checkNumericalProblems(e),o===\"complex64\")throw new Error(\"Cannot write to a complex64 dtype. Please use tf.complex(real, imag).\");this.texData.set(t,{shape:n,dtype:o,values:e,usage:Jr.UPLOAD,refCount:s})}disposeIntermediateTensorInfo(t){this.disposeData(t.dataId)}readSync(t){let e=this.texData.get(t),{values:n,dtype:o,complexTensorInfos:s,slice:i,shape:a,isPacked:u}=e;if(i!=null){let m;u?m=new Dn(a,Ia):m=new zr(a,Ia);let f=this.runWebGLProgram(m,[{dataId:t,shape:a,dtype:o}],o),d=this.readSync(f.dataId);return this.disposeIntermediateTensorInfo(f),d}if(n!=null)return this.convertAndCacheOnCPU(t);if(o===\"string\")return n;let l=this.activeTimers!=null,c;l&&(c=y.now());let p;if(o===\"complex64\"){let m=this.readSync(s.real.dataId),f=this.readSync(s.imag.dataId);p=S.mergeRealAndImagArrays(m,f)}else p=this.getValuesFromTexture(t);return l&&(this.downloadWaitMs+=y.now()-c),this.convertAndCacheOnCPU(t,p)}async read(t){if(this.pendingRead.has(t)){let d=this.pendingRead.get(t);return new Promise(h=>d.push(h))}let e=this.texData.get(t),{values:n,shape:o,slice:s,dtype:i,complexTensorInfos:a,isPacked:u}=e;if(s!=null){let d;u?d=new Dn(o,Ia):d=new zr(o,Ia);let h=this.runWebGLProgram(d,[{dataId:t,shape:o,dtype:i}],i),g=this.read(h.dataId);return this.disposeIntermediateTensorInfo(h),g}if(n!=null)return this.convertAndCacheOnCPU(t);if(L().getBool(\"DEBUG\")&&!L().getBool(\"WEBGL_DOWNLOAD_FLOAT_ENABLED\")&&L().getNumber(\"WEBGL_VERSION\")===2)throw new Error(\"tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.\");let l=null,c;if(i!==\"complex64\"&&L().get(\"WEBGL_BUFFER_SUPPORTED\")){c=this.decode(t);let d=this.texData.get(c.dataId);l=this.gpgpu.createBufferFromTexture(d.texture.texture,...sg(o))}this.pendingRead.set(t,[]),i!==\"complex64\"&&await this.gpgpu.createAndWaitForFence();let p;if(i===\"complex64\"){let d=await Promise.all([this.read(a.real.dataId),this.read(a.imag.dataId)]),h=d[0],g=d[1];p=S.mergeRealAndImagArrays(h,g)}else if(l==null)p=this.getValuesFromTexture(t);else{let d=y.sizeFromShape(o);p=this.gpgpu.downloadFloat32MatrixFromBuffer(l,d)}if(c!=null&&this.disposeIntermediateTensorInfo(c),l!=null){let d=this.gpgpu.gl;ht(d,()=>d.deleteBuffer(l))}let m=this.convertAndCacheOnCPU(t,p),f=this.pendingRead.get(t);return this.pendingRead.delete(t),f.forEach(d=>d(m)),this.pendingDisposal.has(t)&&(this.pendingDisposal.delete(t),this.disposeData(t)&&Bn().removeDataId(t,this),this.pendingDeletes--),m}readToGPU(t,e={}){let n=this.texData.get(t),{values:o,shape:s,slice:i,dtype:a,isPacked:u,texture:l}=n;if(a===\"complex64\")throw new Error(\"Does not support reading texture for complex64 dtype.\");if(i!=null){let f;u?f=new Dn(s,Ia):f=new zr(s,Ia);let d=this.runWebGLProgram(f,[{dataId:t,shape:s,dtype:a}],a),h=this.readToGPU(d,e);return this.disposeIntermediateTensorInfo(d),h}if(l==null)throw o!=null?new Error(\"Data is not on GPU but on CPU.\"):new Error(\"There is no data on GPU or CPU.\");let c=this.decode(t,e.customTexShape),p=Bn().makeTensorFromTensorInfo(c),m=this.texData.get(c.dataId);return Object.assign({tensorRef:p},m.texture)}bufferSync(t){let e=this.readSync(t.dataId);if(t.dtype===\"string\")try{let n=e.map(o=>y.decodeString(o));return wt(t.shape,t.dtype,n)}catch(n){throw new Error(\"Failed to decode encoded string bytes into utf-8\")}return wt(t.shape,t.dtype,e)}checkNumericalProblems(t){if(t!=null)for(let e=0;e0}time(t){let e=this.activeTimers,n=[],o=!1;this.programTimersStack==null?(this.programTimersStack=n,o=!0):this.activeTimers.push(n),this.activeTimers=n,t();let s=y.flatten(this.activeTimers.map(u=>u.query)).filter(u=>u!=null),i=y.flatten(this.activeTimers.map(u=>u.name)).filter(u=>u!=null);this.activeTimers=e,o&&(this.programTimersStack=null);let a={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};return(async()=>{if(L().getNumber(\"WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE\")>0){let u=await Promise.all(s);a.kernelMs=y.sum(u),a.getExtraProfileInfo=()=>u.map((l,c)=>({name:i[c],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(\", \")}else a.kernelMs={error:\"WebGL query timers are not supported in this environment.\"};return this.uploadWaitMs=0,this.downloadWaitMs=0,a})()}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return L().getNumber(\"WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE\")>0?this.gpgpu.beginQuery():{startMs:y.now(),endMs:null}}endTimer(t){return L().getNumber(\"WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE\")>0?(this.gpgpu.endQuery(),t):(t.endMs=y.now(),t)}async getQueryTime(t){if(L().getNumber(\"WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE\")>0)return this.gpgpu.waitForQueryAndGetTime(t);let e=t;return e.endMs-e.startMs}disposeData(t,e=!1){if(this.pendingDisposal.has(t))return!1;if(!this.texData.has(t))return!0;if(e?this.texData.get(t).refCount=0:this.texData.get(t).refCount--,!e&&this.texData.get(t).refCount>0)return!1;if(this.pendingRead.has(t))return this.pendingDisposal.add(t),this.pendingDeletes++,!1;this.releaseGPUData(t);let{complexTensorInfos:n}=this.texData.get(t);return n!=null&&(this.disposeData(n.real.dataId,e),this.disposeData(n.imag.dataId,e)),this.texData.delete(t),!0}releaseGPUData(t){let{texture:e,dtype:n,texShape:o,usage:s,isPacked:i,slice:a}=this.texData.get(t),u=a&&a.origDataId||t,l=this.dataRefCount.get(u);l>1?this.dataRefCount.set(u,l-1):(this.dataRefCount.delete(u),e!=null&&(this.numBytesInGPU-=this.computeBytes(o,n),this.textureManager.releaseTexture(e,o,s,i)));let c=this.texData.get(t);c.texture=null,c.texShape=null,c.isPacked=!1,c.slice=null}getTexture(t){return this.uploadToGPU(t),this.texData.get(t).texture.texture}getDataInfo(t){return this.texData.get(t)}shouldExecuteOnCPU(t,e=jot){return L().getBool(\"WEBGL_CPU_FORWARD\")&&t.every(n=>this.texData.get(n.dataId).texture==null&&y.sizeFromShape(n.shape)0&&y.isString(n[0])){let s=n.map(i=>y.encodeString(i));o=this.write(s,t,e)}else o=this.write(n,t,e);return this.texData.get(o).usage=null,{dataId:o,shape:t,dtype:e}}makeOutput(t,e,n){return Bn().makeTensorFromTensorInfo(this.makeTensorInfo(t,e,n),this)}unpackTensor(t){let e=new sI(t.shape);return this.runWebGLProgram(e,[t],t.dtype)}packTensor(t){let e=new nI(t.shape);return this.runWebGLProgram(e,[t],t.dtype,null,!0)}packedReshape(t,e){let n=[Fl(t.shape),...Ol(t.shape)],o={dtype:t.dtype,shape:n,dataId:t.dataId},s=[Fl(e),...Ol(e)],i=new Ad(s,n),a=!0,u=[n],l=this.runWebGLProgram(i,[o],t.dtype,u,a);return{dataId:l.dataId,shape:e,dtype:l.dtype}}decode(t,e){let n=this.texData.get(t),{isPacked:o,shape:s,dtype:i}=n;if(e!=null){let m=y.sizeFromShape(s),f=e[0]*e[1]*4;y.assert(m<=f,()=>\"customTexShape is too small. Row * Column * 4 should be equal or larger than the size of the tensor data.\")}let a=Id(s),u;o?u=new Hw(a):u=new Uw(a);let l=!0,c=[e!=null?e:sg(a)],p=this.runWebGLProgram(u,[{shape:a,dtype:i,dataId:t}],i,c,l,e);return{dtype:i,shape:s,dataId:p.dataId}}runWebGLProgram(t,e,n,o,s=!1,i){let a=this.makeTensorInfo(t.outputShape,n),u=this.texData.get(a.dataId);if(t.packedOutput&&(u.isPacked=!0),t.outPackingScheme===Wu.DENSE){let x=i!=null?i:sg(t.outputShape);u.texShape=x.map(b=>b*2)}if(t.outTexUsage!=null&&(u.usage=t.outTexUsage),y.sizeFromShape(a.shape)===0)return u.values=y.getTypedArrayFromDType(a.dtype,0),a;let l=[],c=e.map(x=>{if(x.dtype===\"complex64\")throw new Error(\"GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.\");let b=this.texData.get(x.dataId);if(b.texture==null){if(!t.packedInputs&&y.sizeFromShape(x.shape)<=L().getNumber(\"WEBGL_SIZE_UPLOAD_UNIFORM\"))return{shape:x.shape,texData:null,isUniform:!0,uniformValues:b.values};t.packedInputs&&(b.isPacked=!0,b.shape=x.shape)}if(this.uploadToGPU(x.dataId),!!b.isPacked!=!!t.packedInputs)x=b.isPacked?this.unpackTensor(x):this.packTensor(x),l.push(x),b=this.texData.get(x.dataId);else if(b.isPacked&&!Uu(b.shape,x.shape)){let w=x,I=x.shape;x.shape=b.shape,x=this.packedReshape(x,I),l.push(x),b=this.texData.get(x.dataId),w.shape=I}return{shape:x.shape,texData:b,isUniform:!1}});this.uploadToGPU(a.dataId);let p={shape:a.shape,texData:u,isUniform:!1},m=HL(t,c,p),f=this.getAndSaveBinary(m,()=>WL(this.gpgpu,t,c,p)),d=this.activeTimers!=null,h;d&&(h=this.startTimer()),L().get(\"ENGINE_COMPILE_ONLY\")||UL(this.gpgpu,f,c,p,o),l.forEach(x=>this.disposeIntermediateTensorInfo(x)),d&&(h=this.endTimer(h),this.activeTimers.push({name:t.constructor.name,query:this.getQueryTime(h)}));let g=L().getNumber(\"WEBGL_FLUSH_THRESHOLD\");if(g>0){let x=y.now();x-this.lastGlFlushTime>g&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=x)}if(!L().getBool(\"WEBGL_LAZILY_UNPACK\")&&u.isPacked&&s===!1){let x=this.unpackTensor(a);return this.disposeIntermediateTensorInfo(a),x}return a}compileAndRun(t,e,n,o,s=!1){return n=n||e[0].dtype,this.runWebGLProgram(t,e,n,o,s)}getAndSaveBinary(t,e){return t in this.binaryCache||(this.binaryCache[t]=e()),this.binaryCache[t]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(L().getBool(\"IS_TEST\")||Object.keys(this.binaryCache).forEach(e=>{this.gpgpu.deleteProgram(this.binaryCache[e].webGLProgram),delete this.binaryCache[e]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!=\"undefined\"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=B(()=>{if(!L().get(\"WEBGL_RENDER_FLOAT32_ENABLED\")){let t=L().getBool(\"DEBUG\");L().set(\"DEBUG\",!1);let e=this.abs(pt(1e-8)).dataSync()[0];if(L().set(\"DEBUG\",t),e>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?Hot:qot}uploadToGPU(t){let e=this.texData.get(t),{shape:n,dtype:o,values:s,texture:i,usage:a,isPacked:u}=e;if(i!=null)return;let l=this.activeTimers!=null,c;l&&(c=y.now());let p=e.texShape;if(p==null&&(p=r1(n,u),e.texShape=p),s!=null){let m=Id(n),f,d=p[1],h=p[0],g=s instanceof Uint8Array||s instanceof Uint8ClampedArray;(u||!g)&&([d,h]=wa(p[0],p[1])),u?f=new jw(m,g):f=new ug(m,g);let x=g?[h,d]:p,b=this.makeTensorInfo(x,o),w=this.texData.get(b.dataId);g?w.usage=Jr.PIXELS:w.usage=Jr.UPLOAD,w.texShape=x,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(b.dataId),d,h,s);let I=[[h,d]],E=this.runWebGLProgram(f,[b],o,I,!0),A=this.texData.get(E.dataId);e.texShape=A.texShape,e.isPacked=A.isPacked,e.usage=A.usage,L().get(\"ENGINE_COMPILE_ONLY\")?this.disposeData(E.dataId):(e.texture=A.texture,e.values=null,this.texData.delete(E.dataId)),this.disposeIntermediateTensorInfo(b),l&&(this.uploadWaitMs+=y.now()-c)}else{let m=this.acquireTexture(p,a,o,u);e.texture=m}}convertAndCacheOnCPU(t,e){let n=this.texData.get(t),{dtype:o}=n;return e!=null&&(n.values=Zot(e,o)),n.values}acquireTexture(t,e,n,o){if(this.numBytesInGPU+=this.computeBytes(t,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let s=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${s} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(t,e,o)}computeBytes(t,e){return t[0]*t[1]*y.bytesPerElement(e)}checkCompileCompletion(){for(let[,t]of Object.entries(this.binaryCache))this.checkCompletion_(t)}async checkCompileCompletionAsync(){let t=[];if(this.gpgpu.parallelCompilationExtension){for(let[,e]of Object.entries(this.binaryCache))t.push(this.checkCompletionAsync_(e));return Promise.all(t)}else{for(let[,e]of Object.entries(this.binaryCache)){let n=new Promise(o=>{try{this.checkCompletion_(e),o(!0)}catch(s){throw s}});t.push(n)}return Promise.all(t)}}async checkCompletionAsync_(t){return this.gpgpu.gl.getProgramParameter(t.webGLProgram,this.gpgpu.parallelCompilationExtension.COMPLETION_STATUS_KHR)?this.checkCompletion_(t):(await Ch(),this.checkCompletionAsync_(t))}checkCompletion_(t){if(this.gpgpu.gl.getProgramParameter(t.webGLProgram,this.gpgpu.gl.LINK_STATUS)===!1)throw console.log(this.gpgpu.gl.getProgramInfoLog(t.webGLProgram)),this.gpgpu.gl.getShaderParameter(t.fragmentShader,this.gpgpu.gl.COMPILE_STATUS)===!1?(Lw(t.source,this.gpgpu.gl.getShaderInfoLog(t.fragmentShader)),new Error(\"Failed to compile fragment shader.\")):new Error(\"Failed to link vertex and fragment shaders.\");return!0}getUniformLocations(){for(let t of Object.values(this.binaryCache)){this.gpgpu.buildVao(t.webGLProgram);let{variablesLocations:e,customUniformLocations:n,infLoc:o,nanLoc:s,outShapeLocation:i,outShapeStridesLocation:a,outTexShapeLocation:u}=u1(this.gpgpu,t.program,t.webGLProgram);t.variablesLocations=e,t.customUniformLocations=n,t.infLoc=o,t.nanLoc=s,t.outShapeLocation=i,t.outShapeStridesLocation=a,t.outTexShapeLocation=u}}createTensorFromGPUData(t,e,n){t.channels=t.channels||\"RGBA\";let{texture:o,height:s,width:i,channels:a}=t,u=Bn().backend;if(!u.gpgpu.gl.isTexture(o))throw new Error(\"The texture is invalid. Also, please make sure the texture and the TFJS WebGL backend are using the same canvas. If you want to use your own custom canvas, you have to create and use the custom TFJS WebGL backend created from the canvas through 'new tf.MathBackendWebGL(customCanvas)'.\");let l=u.writeTexture(o,e,n,s,i,a);return Bn().makeTensorFromDataId(l,e,n,u)}};Dd.nextDataId=0;function Zot(r,t){if(t===\"float32\"||t===\"complex64\")return r;if(t===\"int32\"||t===\"bool\"){let e=t===\"int32\"?new Int32Array(r.length):new Uint8Array(r.length);for(let n=0;nnew Dd,2);var T$e={forceHalfFloat:Qz};var $d=`\n if (isnan(a)) return a;\n if (isnan(b)) return b;\n`;var $n=class{constructor(t,e,n){this.variableNames=[\"A\",\"B\"],this.outputShape=S.assertAndGetBroadcastShape(e,n),this.enableShapeUniforms=he(this.outputShape.length),this.userCode=`\n float binaryOperation(float a, float b) {\n ${t}\n }\n\n void main() {\n float a = getAAtOutCoords();\n float b = getBAtOutCoords();\n setOutput(binaryOperation(a, b));\n }\n `}};var Xn=`\n result.r = isNaN.r ? NAN : result.r;\n result.g = isNaN.g ? NAN : result.g;\n result.b = isNaN.b ? NAN : result.b;\n result.a = isNaN.a ? NAN : result.a;\n`;var jn=class{constructor(t,e,n,o=!1){this.variableNames=[\"A\",\"B\"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=S.assertAndGetBroadcastShape(e,n);let s=this.outputShape.length;this.enableShapeUniforms=he(s);let i=\"\";if(o)if(s===0||y.sizeFromShape(this.outputShape)===1)i=`\n result.y = 0.;\n result.z = 0.;\n result.w = 0.;\n `;else if(i=`\n ${zt(s)} coords = getOutputCoords();\n `,s===1)this.enableShapeUniforms?i+=`\n result.y = (coords + 1) >= outShape ? 0. : result.y;\n result.z = 0.;\n result.w = 0.;\n `:i+=`\n result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;\n result.z = 0.;\n result.w = 0.;\n `;else{let u=rr(\"coords\",s);this.enableShapeUniforms?i+=`\n bool nextRowOutOfBounds =\n (${u[s-2]} + 1) >= outShape[${s} - 2];\n bool nextColOutOfBounds =\n (${u[s-1]} + 1) >= outShape[${s} - 1];\n result.y = nextColOutOfBounds ? 0. : result.y;\n result.z = nextRowOutOfBounds ? 0. : result.z;\n result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;\n `:i+=`\n bool nextRowOutOfBounds =\n (${u[s-2]} + 1) >= ${this.outputShape[s-2]};\n bool nextColOutOfBounds =\n (${u[s-1]} + 1) >= ${this.outputShape[s-1]};\n result.y = nextColOutOfBounds ? 0. : result.y;\n result.z = nextRowOutOfBounds ? 0. : result.z;\n result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;\n `}this.userCode=`\n vec4 binaryOperation(vec4 a, vec4 b) {\n ${t}\n }\n\n void main() {\n vec4 a = getAAtOutCoords();\n vec4 b = getBAtOutCoords();\n\n vec4 result = binaryOperation(a, b);\n ${i}\n\n setOutput(result);\n }\n `}};function nr(r){let{inputs:t,backend:e}=r,{x:n}=t;return e.incRef(n.dataId),{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}var t3={kernelName:go,backendName:\"webgl\",kernelFunc:nr};function Rn(r){let{inputs:t,backend:e}=r,{real:n,imag:o}=t,s=e.makeTensorInfo(n.shape,\"complex64\"),i=e.texData.get(s.dataId),a=nr({inputs:{x:n},backend:e}),u=nr({inputs:{x:o},backend:e});return i.complexTensorInfos={real:a,imag:u},s}var e3={kernelName:Ap,backendName:\"webgl\",kernelFunc:Rn};var E1=\"return (a < 0.) ? b * a : a;\",A1=`\n vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));\n return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);\n`;function Jot(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{alpha:s}=n,i=e.makeTensorInfo([],\"float32\",y.createScalarValue(s,\"float32\")),a=L().getBool(\"WEBGL_PACK_BINARY_OPERATIONS\")?new jn(A1,o.shape,i.shape):new $n(E1,o.shape,i.shape),u=e.runWebGLProgram(a,[o,i],\"float32\");return e.disposeIntermediateTensorInfo(i),u}var r3={kernelName:bs,backendName:\"webgl\",kernelFunc:Jot};var D1=\"return (a < 0.) ? b * a : a;\",$1=`\n vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));\n return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);\n`;function Qot(r){let{inputs:t,backend:e}=r,{x:n,alpha:o}=t,s=L().getBool(\"WEBGL_PACK_BINARY_OPERATIONS\")?new jn($1,n.shape,o.shape):new $n(D1,n.shape,o.shape);return e.runWebGLProgram(s,[n,o],\"float32\")}var n3={kernelName:Os,backendName:\"webgl\",kernelFunc:Qot};var Po=\"if (isnan(x)) return x;\";function It({opSnippet:r,packedOpSnippet:t,cpuKernelImpl:e,dtype:n}){return({inputs:o,backend:s})=>{let{x:i}=o,a=s,u=n||i.dtype;if(a.shouldExecuteOnCPU([i])&&e!=null){let p=a.texData.get(i.dataId),m=e(p.values,u);return a.makeTensorInfo(i.shape,u,m)}let l=L().getBool(\"WEBGL_PACK_UNARY_OPERATIONS\")&&t!=null,c;return l?c=new Dn(i.shape,t):c=new zr(i.shape,r),a.runWebGLProgram(c,[i],u)}}function ce({opSnippet:r,packedOpSnippet:t,checkOutOfBounds:e=!1,supportsComplex:n=!1,cpuKernelImpl:o,dtype:s}){return({inputs:i,backend:a})=>{let{a:u,b:l}=i,c=a;if(n&&u.dtype===\"complex64\"){let d=c.texData.get(u.dataId),h=c.texData.get(l.dataId),[g,x]=[[d.complexTensorInfos.real,h.complexTensorInfos.real],[d.complexTensorInfos.imag,h.complexTensorInfos.imag]].map(w=>{let[I,N]=w,E={dataId:I.dataId,dtype:I.dtype,shape:u.shape},A={dataId:N.dataId,dtype:N.dtype,shape:l.shape},D=new $n(r,u.shape,l.shape);return c.runWebGLProgram(D,[E,A],ur(I.dtype,N.dtype))}),b=Rn({inputs:{real:g,imag:x},backend:c});return c.disposeIntermediateTensorInfo(g),c.disposeIntermediateTensorInfo(x),b}let p=s||ur(u.dtype,l.dtype);if((u.dtype===\"string\"||l.dtype===\"string\"||c.shouldExecuteOnCPU([u,l]))&&o!=null){let d=c.texData.get(u.dataId).values,h=c.texData.get(l.dataId).values,g=u.dtype===\"string\"?S.fromUint8ToStringArray(d):d,x=u.dtype===\"string\"?S.fromUint8ToStringArray(h):h,[b,w]=o(u.shape,l.shape,g,x,p),I=c.makeTensorInfo(w,p),N=c.texData.get(I.dataId);return N.values=b,I}let m=L().getBool(\"WEBGL_PACK_BINARY_OPERATIONS\")&&t!=null,f;return m?f=new jn(t,u.shape,l.shape,e):f=new $n(r,u.shape,l.shape),c.runWebGLProgram(f,[u,l],p)}}function Ml(r,t=!1){if(r===\"linear\")return t?Kz:Vz;if(r===\"relu\")return t?Xz:Wz;if(r===\"elu\")return t?jz:Gz;if(r===\"relu6\")return t?Yz:Uz;if(r===\"prelu\")return t?$1:D1;if(r===\"leakyrelu\")return t?A1:E1;if(r===\"sigmoid\")return t?Zz:Hz;throw new Error(`Activation ${r} has not been implemented for the WebGL backend.`)}var Rd=class{constructor(t,e,n,o=!1,s=!1,i=!1,a=null,u=!1,l=!1){this.variableNames=[\"matrixA\",\"matrixB\"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n,this.enableShapeUniforms=he(this.outputShape.length);let c=o?t[1]:t[2],p=Math.ceil(c/2),m=o?\"i * 2, rc.y\":\"rc.y, i * 2\",f=s?\"rc.z, i * 2\":\"i * 2, rc.z\",d=o?[\"a.xxyy\",\"a.zzww\"]:[\"a.xxzz\",\"a.yyww\"],h=s?[\"b.xzxz\",\"b.ywyw\"]:[\"b.xyxy\",\"b.zwzw\"],g=\"\",x=\"\";a&&(u?g=`vec4 activation(vec4 a) {\n vec4 b = getPreluActivationWeightsAtOutCoords();\n ${a}\n }`:l?g=`vec4 activation(vec4 a) {\n vec4 b = getLeakyreluAlphaAtOutCoords();\n ${a}\n }`:g=`vec4 activation(vec4 x) {\n ${a}\n }`,x=\"result = activation(result);\");let b=i?\"result += getBiasAtOutCoords();\":\"\";i&&this.variableNames.push(\"bias\"),u&&this.variableNames.push(\"preluActivationWeights\"),l&&this.variableNames.push(\"leakyreluAlpha\");let w=\"rc.x\",I=\"rc.x\";t[0]`The new shape (${u}) has ${l} elements and the old shape (${o.shape}) has ${a} elements. The new shape and old shape must have the same number of elements.`);let c=i.texData.get(o.dataId);return c.isPacked&&!Uu(o.shape,u)&&!(c.texture!==null&&Uu(c.shape,u))?i3(o,u,i):(i.incRef(o.dataId),{dataId:o.dataId,shape:u,dtype:o.dtype})}var a3={kernelName:Gi,backendName:\"webgl\",kernelFunc:rt};var fg=class{constructor(t,e){this.variableNames=[\"x\"];let{windowSize:n,batchSize:o,inSize:s,outSize:i}=t;this.outputShape=[o,i];let a=Math.floor(n/4)*4,u=n%4,l=\"sumValue += dot(values, ones);\";if(e!=null){let p=1/e;l=`sumValue += dot(values * ${y.isInt(p)?p.toPrecision(2):p}, ones);`}let c=\"\";s%n>0&&(c=`\n if (inIdx < 0 || inIdx >= ${s}) {\n return 0.0;\n }\n `),this.userCode=`\n const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);\n\n float getValue(int batch, int inIdx) {\n ${c}\n return getX(batch, inIdx);\n }\n\n void main() {\n ivec2 coords = getOutputCoords();\n int batch = coords[0];\n int outIdx = coords[1];\n int inOffset = outIdx * ${n};\n\n float sumValue = 0.0;\n\n for (int i = 0; i < ${a}; i += 4) {\n int inIdx = inOffset + i;\n vec4 values = vec4(\n getValue(batch, inIdx),\n getValue(batch, inIdx + 1),\n getValue(batch, inIdx + 2),\n getValue(batch, inIdx + 3)\n );\n\n ${l}\n }\n\n int inIdx = inOffset + ${a};\n if (${u===1}) {\n vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);\n\n ${l}\n } else if (${u===2}) {\n vec4 values = vec4(\n getValue(batch, inIdx),\n getValue(batch, inIdx + 1), 0.0, 0.0);\n\n ${l}\n } else if (${u===3}) {\n vec4 values = vec4(\n getValue(batch, inIdx),\n getValue(batch, inIdx + 1),\n getValue(batch, inIdx + 2), 0.0);\n\n ${l}\n }\n setOutput(sumValue);\n }\n `}};var aI=class{constructor(t,e){this.variableNames=[\"x\"];let{windowSize:n,batchSize:o,inSize:s,outSize:i}=t;this.outputShape=[o,i];let a=\"0.0\",u=\"\";e===\"prod\"?a=\"1.0\":e===\"min\"?(a=\"1.0 / 1e-20\",u=\"min\"):e===\"max\"&&(a=\"-1.0 / 1e-20\",u=\"max\");let l=`${e}(${e}(${e}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;e===\"sum\"?l=\"sumValue\":e===\"prod\"?l=\"prodValue\":e===\"all\"?l=\"allValue\":e===\"any\"&&(l=\"anyValue\");let c=Math.floor(n/4)*4,p=n%4,m=`\n if (${e===\"sum\"}) {\n sumValue += dot(values, ones);\n } else if (${e===\"prod\"}) {\n vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);\n prodValue *= tmp[0] * tmp[1];\n } else {\n minMaxValue = ${u}(values, minMaxValue);\n if (${e===\"min\"} || ${e===\"max\"}) {\n minMaxValue = ${u}(values, minMaxValue);\n bvec4 isNaN = isnan(values);\n if (isNaN.r || isNaN.g || isNaN.b || isNaN.a) {\n minMaxValue = vec4(NAN);\n }\n }\n }\n `,f=\"vec4\";e===\"all\"?(a=\"1.0\",m=`\n bool reducedAllValue = all(values);\n float floatedReducedAllValue = float(reducedAllValue);\n allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);\n `,f=\"bvec4\"):e===\"any\"&&(a=\"0.0\",m=`\n bool reducedAnyValue = any(values);\n float floatedReducedAnyValue = float(reducedAnyValue);\n anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);\n `,f=\"bvec4\");let d=\"\";s%n>0&&(d=`\n if (inIdx < 0 || inIdx >= ${s}) {\n return initializationValue;\n }\n `),this.userCode=`\n const float initializationValue = ${a};\n const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);\n\n float getValue(int batch, int inIdx) {\n ${d}\n return getX(batch, inIdx);\n }\n\n void main() {\n ivec2 coords = getOutputCoords();\n int batch = coords[0];\n int outIdx = coords[1];\n int inOffset = outIdx * ${n};\n\n vec4 minMaxValue = vec4(${a});\n float prodValue = 1.0;\n float sumValue = 0.0;\n float allValue = 1.0;\n float anyValue = 0.0;\n\n for (int i = 0; i < ${c}; i += 4) {\n int inIdx = inOffset + i;\n ${f} values = ${f}(\n getValue(batch, inIdx),\n getValue(batch, inIdx + 1),\n getValue(batch, inIdx + 2),\n getValue(batch, inIdx + 3)\n );\n\n ${m}\n }\n\n int inIdx = inOffset + ${c};\n if (${p===1}) {\n ${f} values = ${f}(\n getValue(batch, inIdx),\n initializationValue,\n initializationValue,\n initializationValue\n );\n\n ${m}\n } else if (${p===2}) {\n ${f} values = ${f}(\n getValue(batch, inIdx),\n getValue(batch, inIdx + 1),\n initializationValue,\n initializationValue\n );\n\n ${m}\n } else if (${p===3}) {\n ${f} values = ${f}(\n getValue(batch, inIdx),\n getValue(batch, inIdx + 1),\n getValue(batch, inIdx + 2),\n initializationValue\n );\n\n ${m}\n }\n setOutput(${l});\n }\n `}};function est(r){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let e=t.length?t[t.length-1].outSize:r[1],n=S.computeOptimalWindowSize(e);t.push({inSize:e,windowSize:n,outSize:Math.ceil(e/n)})}return t}function Yn(r,t,e,n){let o=est(r.shape),s=r;for(let i=0;i6)throw Error(`Transpose for rank ${t} is not yet supported`);let e=[\"resRC.x\",\"resRC.y\",\"resRC.z\",\"resRC.w\",\"resRC.u\",\"resRC.v\"],n=new Array(t);for(let o=0;o6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let o=zt(this.rank),s=T1(\"rc\",this.rank),i=new Array(this.rank);for(let c=0;c`Error in matMul: inner shapes (${p}) and (${m}) of Tensors with shapes ${r.shape} and ${t.shape} and transposeA=${e} and transposeB=${n} must match.`);let N=e?[x,p,f]:[x,f,p],E=n?[b,d,m]:[b,m,d],A=rt({inputs:{x:r},backend:o,attrs:{shape:N}}),D=rt({inputs:{x:t},backend:o,attrs:{shape:E}}),F=[A,D],M=Math.max(x,b),V=e?A.shape[1]:A.shape[2],G=s!=null,W=i!=null,q=u===\"leakyrelu\",H=u!=null?Ml(u,!0):null,j=G||W||q||H!=null,Y;if((f===1||d===1)&&V>F1&&j===!1){let et=A,nt=D;e&&(et=Pe({inputs:{x:A},backend:o,attrs:{perm:[0,2,1]}}),F.push(et)),n&&(nt=Pe({inputs:{x:D},backend:o,attrs:{perm:[0,2,1]}}),F.push(nt));let st=d!==1,lt=d===1,ot=et;st&&(ot=rt({inputs:{x:et},backend:o,attrs:{shape:[M,V,1]}}),F.push(ot));let it=d===1?2:1,ft=nt;lt&&(ft=rt({inputs:{x:nt},backend:o,attrs:{shape:[M,1,V]}}),F.push(ft));let gt=mg({inputs:{a:ot,b:ft},backend:o});Y=fp({inputs:{x:gt},backend:o,attrs:{axis:it,keepDims:!0}}),F.push(gt)}else{let et=ur(r.dtype,t.dtype),nt=new Rd(N,E,[M,f,d],e,n,G,H,W,q),st=[A,D];if(s!=null&&st.push(s),W&&st.push(i),q){let lt=o.makeTensorInfo([],\"float32\",y.createScalarValue(a,\"float32\"));st.push(lt),F.push(lt)}Y=o.runWebGLProgram(nt,st,et)}let Z=rt({inputs:{x:Y},backend:o,attrs:{shape:I}});F.push(Y);for(let et of F)o.disposeIntermediateTensorInfo(et);return Z}function nst(r){let{inputs:t,backend:e,attrs:n}=r,{a:o,b:s,bias:i,preluActivationWeights:a}=t,{transposeA:u,transposeB:l,activation:c,leakyreluAlpha:p}=n;return dp({a:o,b:s,transposeA:u,transposeB:l,backend:e,bias:i,preluActivationWeights:a,leakyreluAlpha:p,activation:c})}var p3={kernelName:Xi,backendName:\"webgl\",kernelFunc:nst};var m3=\"return abs(x);\";function ost(r){let{inputs:t,backend:e}=r,{x:n}=t;if(e.shouldExecuteOnCPU([n])&&n.dtype!==\"complex64\"){let s=e.texData.get(n.dataId),i=eI(s.values);return e.makeTensorInfo(n.shape,n.dtype,i)}let o;return L().getBool(\"WEBGL_PACK_UNARY_OPERATIONS\")?o=new Dn(n.shape,m3):o=new zr(n.shape,m3),e.runWebGLProgram(o,[n],n.dtype)}var f3={kernelName:Ai,backendName:\"webgl\",kernelFunc:ost};var sst=xr+`\n if (abs(x) > 1.) {\n return NAN;\n }\n return acos(x);\n`,ist=It({opSnippet:sst}),d3={kernelName:Go,backendName:\"webgl\",kernelFunc:ist};var ast=xr+`\n if (x < 1.0) return NAN;\nreturn log(x + sqrt(x * x - 1.0));`,lst=It({opSnippet:ast}),h3={kernelName:Wo,backendName:\"webgl\",kernelFunc:lst};var g3=\"return a + b;\",ust=ce({opSnippet:g3,packedOpSnippet:g3,supportsComplex:!0,cpuKernelImpl:qL}),x3={kernelName:no,backendName:\"webgl\",kernelFunc:ust};var cI=class{constructor(t,e){this.outputShape=[],this.outputShape=t,this.variableNames=e.map((s,i)=>`T${i}`);let n=[];this.variableNames.forEach(s=>{n.push(`float v${s} = get${s}AtOutCoords();`)});let o=this.variableNames.map(s=>`v${s}`).join(\" + \");this.userCode=`\n void main() {\n ${n.join(`\n `)}\n\n float result = ${o};\n setOutput(result);\n }\n `}};var pI=class{constructor(t,e){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t,this.variableNames=e.map((s,i)=>`T${i}`);let n=[];this.variableNames.forEach(s=>{n.push(`vec4 v${s} = get${s}AtOutCoords();`)});let o=this.variableNames.map(s=>`v${s}`).join(\" + \");this.userCode=`\n void main() {\n ${n.join(`\n `)}\n\n vec4 result = ${o};\n setOutput(result);\n }\n `}};function mI(r){let{inputs:t,backend:e}=r,n=t;if(n.length===1)return nr({inputs:{x:n[0]},backend:e});if(n.length>L().getNumber(\"WEBGL_MAX_TEXTURES_IN_SHADER\")){let u=Math.floor(n.length/2),l=mI({inputs:n.slice(0,u),backend:e}),c=mI({inputs:n.slice(u),backend:e});return mI({inputs:[l,c],backend:e})}let o=n.map(u=>u.dtype).reduce((u,l)=>ur(u,l)),s=n.map(u=>u.shape),a=L().getBool(\"WEBGL_PACK\")?new pI(n[0].shape,s):new cI(n[0].shape,s);return e.runWebGLProgram(a,n,o)}var y3={kernelName:Uo,backendName:\"webgl\",kernelFunc:mI};function cst(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,keepDims:i}=n,a=o.shape.length,u=y.parseAxisParam(s,o.shape),l=u,c=S.getAxesPermutation(l,a),p=o;c!=null&&(p=Pe({inputs:{x:o},backend:e,attrs:{perm:c}}),l=S.getInnerMostAxes(l.length,a)),S.assertAxesAreInnerMostDims(\"all\",l,a);let[m,f]=S.computeOutAndReduceShapes(p.shape,l),d=y.sizeFromShape(f),h=rt({inputs:{x:p},backend:e,attrs:{shape:[-1,d]}}),g=Yn(h,h.dtype,\"all\",e),x;if(i){let b=S.expandShapeToKeepDim(m,u);x=rt({inputs:{x:g},backend:e,attrs:{shape:b}})}else x=rt({inputs:{x:g},backend:e,attrs:{shape:m}});return e.disposeIntermediateTensorInfo(h),e.disposeIntermediateTensorInfo(g),c!=null&&e.disposeIntermediateTensorInfo(p),x}var b3={kernelName:Ea,backendName:\"webgl\",kernelFunc:cst};function pst(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,keepDims:i}=n,a=o.shape.length,u=y.parseAxisParam(s,o.shape),l=u,c=S.getAxesPermutation(l,a),p=o;c!=null&&(p=Pe({inputs:{x:o},backend:e,attrs:{perm:c}}),l=S.getInnerMostAxes(l.length,a)),S.assertAxesAreInnerMostDims(\"any\",l,a);let[m,f]=S.computeOutAndReduceShapes(p.shape,l),d=y.sizeFromShape(f),h=rt({inputs:{x:p},backend:e,attrs:{shape:[-1,d]}}),g=Yn(h,h.dtype,\"any\",e),x;if(i){let b=S.expandShapeToKeepDim(m,u);x=rt({inputs:{x:g},backend:e,attrs:{shape:b}})}else x=rt({inputs:{x:g},backend:e,attrs:{shape:m}});return e.disposeIntermediateTensorInfo(h),e.disposeIntermediateTensorInfo(g),c!=null&&e.disposeIntermediateTensorInfo(p),x}var w3={kernelName:Aa,backendName:\"webgl\",kernelFunc:pst};var fI=class{constructor(t,e,n){this.variableNames=[\"A\"];let{windowSize:o,batchSize:s,outSize:i}=t;n||this.variableNames.push(\"bestIndicesA\"),this.outputShape=[s,i];let a=e===\"max\"?\">\":\"<\",u=n?\"inOffset + i;\":\"round(getBestIndicesA(batch, inOffset + i));\";this.userCode=`\n void main() {\n ivec2 coords = getOutputCoords();\n int batch = coords[0];\n int outIdx = coords[1];\n int inOffset = outIdx * ${o};\n\n int bestIndex = inOffset;\n float bestValue = getA(batch, bestIndex);\n\n for (int i = 0; i < ${o}; i++) {\n int inIdx = ${u};\n float candidate = getA(batch, inIdx);\n if (candidate ${a} bestValue) {\n bestValue = candidate;\n bestIndex = inIdx;\n }\n }\n setOutput(float(bestIndex));\n }\n `}};var dI=class{constructor(t,e,n,o){this.variableNames=[\"A\"],this.packedInputs=!0,this.packedOutput=!0,y.assert(t.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let s=t[t.length-1],i=Math.ceil(s/e);this.outputShape=t.slice(0,-1),i>1&&this.outputShape.push(i),o||this.variableNames.push(\"bestIndicesA\");let a=this.outputShape,u=a.length,l=zt(u),c=rr(\"coords\",u),p,m;if(i===1){m=u+1;let D=zt(m);p=`\n ${D} sourceLocR = ${D}(${c.join()}, 0);\n ++${c[u-1]};\n ${D} sourceLocG = ${D}(${c.join()}, 0);\n ++${c[u-2]};\n ${D} sourceLocA = ${D}(${c.join()}, 0);\n --${c[u-1]};\n ${D} sourceLocB = ${D}(${c.join()}, 0);\n --${c[u-2]};`}else m=u,p=`\n ${l} sourceLocR = coords;\n ++${c[u-1]};\n ${l} sourceLocG = coords;\n ++${c[u-2]};\n ${l} sourceLocA = coords;\n --${c[u-1]};\n ${l} sourceLocB = coords;\n --${c[u-2]};`;let f=[\"x\",\"y\",\"z\",\"w\",\"u\",\"v\"].slice(0,m),d=\".\"+f[m-1],h=f.map(D=>\"int \"+D),g=rr(\"sourceLocR\",m-1).concat(\"inIdx.r\"),x=rr(\"sourceLocG\",m-1).concat(\"inIdx.g\"),b=rr(\"sourceLocB\",m-1).concat(\"inIdx.b\"),w=rr(\"sourceLocA\",m-1).concat(\"inIdx.a\"),I=n===\"max\"?\"greaterThan\":\"lessThan\",N=o?\"\":`\n inIdx = round(vec4(getBestIndicesAChannel(${g.join()}),\n getBestIndicesAChannel(${x.join()}),\n getBestIndicesAChannel(${b.join()}),\n getBestIndicesAChannel(${w.join()})));`,E=`vec4(\n getAChannel(${g.join()}),\n hasNextCol ? getAChannel(${x.join()}) : 0.,\n hasNextRow ? getAChannel(${b.join()}) : 0.,\n hasNextRow && hasNextCol ? getAChannel(${w.join()}) : 0.)`,A=o?\"\":`\n float getBestIndicesAChannel(${h.join()}) {\n return getChannel(getBestIndicesA(${f.join()}),\n vec2(${f.slice(-2).join()}));\n }`;this.userCode=`\n float getAChannel(${h.join()}) {\n return getChannel(getA(${f.join()}),\n vec2(${f.slice(-2).join()}));\n }\n ${A}\n void main() {\n ${l} coords = getOutputCoords();\n bool hasNextCol = ${c[u-1]} < ${a[u-1]-1};\n bool hasNextRow = ${c[u-2]} < ${a[u-2]-1};\n ${p}\n ivec4 srcIdx = ivec4(sourceLocR${d}, sourceLocG${d},\n sourceLocB${d}, sourceLocA${d}) * ${e};\n ivec4 inIdx = srcIdx;\n vec4 bestIndex = vec4(inIdx);\n vec4 bestValue = ${E};\n\n for (int i = 0; i < ${e}; i++) {\n inIdx = srcIdx;\n ${N}\n vec4 candidate = ${E};\n bvec4 nan = isnan(candidate);\n bvec4 replace = bvec4(\n vec4(${I}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));\n\n bestValue = vec4(replace.x ? candidate.x : bestValue.x,\n replace.y ? candidate.y : bestValue.y,\n replace.z ? candidate.z : bestValue.z,\n replace.w ? candidate.w : bestValue.w);\n bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));\n srcIdx++;\n }\n setOutput(bestIndex);\n }\n `}};function I3(r,t,e,n=null){let o=t.shape[0],s=t.shape[1];n!=null&&(o=n.shape[0],s=n.shape[1]);let i=S.computeOptimalWindowSize(s),a={windowSize:i,inSize:s,batchSize:o,outSize:Math.ceil(s/i)},u=new fI(a,e,n==null),l=[t];n!=null&&l.push(n);let c=r.runWebGLProgram(u,l,\"int32\");if(c.shape[1]===1)return c;let p=I3(r,t,e,c);return r.disposeIntermediateTensorInfo(c),p}function C3(r,t,e,n=null){let o=n!=null?n.shape:t.shape,s=o[o.length-1],i=S.computeOptimalWindowSize(s),a=new dI(o,i,e,n==null),u=n==null?[t]:[t,n],l=r.runWebGLProgram(a,u,\"int32\");if(l.shape.length===t.shape.length){let c=C3(r,t,e,l);return r.disposeIntermediateTensorInfo(l),c}return l}function hI(r,t,e,n){let o=[e];if(S.assertAxesAreInnerMostDims(\"arg\"+n.charAt(0).toUpperCase()+n.slice(1),o,t.shape.length),!L().getBool(\"WEBGL_PACK_REDUCE\")||t.shape.length<=2){let s=[],i=r.texData.get(t.dataId),a=i!==null&&i.isPacked,u=t;a&&(u=r.unpackTensor(t),s.push(u));let[l,c]=S.computeOutAndReduceShapes(u.shape,o),p=y.sizeFromShape(c),m=rt({inputs:{x:u},backend:r,attrs:{shape:[-1,p]}});s.push(m);let f=I3(r,m,n);s.push(f);let d=rt({inputs:{x:f},backend:r,attrs:{shape:l}});return s.forEach(h=>r.disposeIntermediateTensorInfo(h)),d}return C3(r,t,n)}function mst(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s}=n,i=y.parseAxisParam(s,o.shape),a=S.getAxesPermutation(i,o.shape.length),u=o,l=[];a!=null&&(u=Pe({inputs:{x:o},backend:e,attrs:{perm:a}}),l.push(u),i=S.getInnerMostAxes(i.length,u.shape.length)),S.assertAxesAreInnerMostDims(\"argMax\",[i[0]],u.shape.length);let c=hI(e,u,i[0],\"max\");return l.forEach(p=>e.disposeIntermediateTensorInfo(p)),c}var v3={kernelName:Di,backendName:\"webgl\",kernelFunc:mst};function fst(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s}=n,i=y.parseAxisParam(s,o.shape),a=S.getAxesPermutation(i,o.shape.length),u=o,l=[];a!=null&&(u=Pe({inputs:{x:o},backend:e,attrs:{perm:a}}),l.push(u),i=S.getInnerMostAxes(i.length,u.shape.length)),S.assertAxesAreInnerMostDims(\"argMin\",[i[0]],u.shape.length);let c=hI(e,u,i[0],\"min\");return l.forEach(p=>e.disposeIntermediateTensorInfo(p)),c}var S3={kernelName:$i,backendName:\"webgl\",kernelFunc:fst};var dst=xr+`\n if (abs(x) > 1.) {\n return NAN;\n }\n return asin(x);\n`,hst=It({opSnippet:dst}),N3={kernelName:Ho,backendName:\"webgl\",kernelFunc:hst};var gst=xr+\"return log(x + sqrt(x * x + 1.0));\",xst=It({opSnippet:gst}),k3={kernelName:qo,backendName:\"webgl\",kernelFunc:xst};var yst=xr+`\n return atan(x);\n`,bst=It({opSnippet:yst}),T3={kernelName:Ko,backendName:\"webgl\",kernelFunc:bst};var wst=$d+`\n return atan(a, b);\n`,Ist=`\n vec4 result = atan(a, b);\n bvec4 isNaNA = isnan(a);\n bvec4 isNaNB = isnan(b);\n bvec4 isNaN = bvec4(isNaNA.x || isNaNB.x, isNaNA.y || isNaNB.y, isNaNA.z || isNaNB.z, isNaNA.w || isNaNB.w);\n `+Xn+`\n return result;\n`,Cst=ce({opSnippet:wst,packedOpSnippet:Ist}),_3={kernelName:Xo,backendName:\"webgl\",kernelFunc:Cst};var vst=xr+`\n if ((x < -1.0) || (x > 1.0)) return NAN;\nreturn (log(1.0 + x) - log(1.0 - x)) / 2.0;`,Sst=It({opSnippet:vst}),E3={kernelName:jo,backendName:\"webgl\",kernelFunc:Sst};var Ni=class{constructor(t,e,n,o=!1,s=!1){if(this.variableNames=[\"x\"],e===\"avg\"&&n)throw new Error(\"Cannot compute positions for average pool.\");let i=t.filterWidth,a=t.strideHeight,u=t.strideWidth,l=t.dilationHeight,c=t.dilationWidth,p=t.effectiveFilterHeight,m=t.effectiveFilterWidth,f=t.padInfo.top,d=t.padInfo.left;this.outputShape=t.outShape;let h=e===\"avg\",g=`((batch * ${t.inHeight} + xR) * ${t.inWidth} + xC) * ${t.inChannels} + d`,x=`(xR * ${t.inWidth} + xC) * ${t.inChannels} + d`,b=\"0.0\";if(h||(b=\"-1.0 / 1e-20\"),n){let D=\">=\";this.userCode=`\n const ivec2 strides = ivec2(${a}, ${u});\n const ivec2 pads = ivec2(${f}, ${d});\n\n void main() {\n ivec4 coords = getOutputCoords();\n int batch = coords[0];\n int d = coords[3];\n\n ivec2 xRCCorner = coords.yz * strides - pads;\n int xRCorner = xRCCorner.x;\n int xCCorner = xRCCorner.y;\n\n // max/min x(?, ?, d) to get y(yR, yC, d).\n // ? = to be determined\n float minMaxValue = 0.0;\n float minMaxValueFound = 0.0;\n int minMaxPosition = 0;\n float avgValue = 0.0;\n\n for (int wR = 0; wR < ${p};\n wR += ${l}) {\n int xR = xRCorner + wR;\n\n if (xR < 0 || xR >= ${t.inHeight}) {\n continue;\n }\n\n for (int wC = 0; wC < ${m};\n wC += ${c}) {\n int xC = xCCorner + wC;\n\n if (xC < 0 || xC >= ${t.inWidth}) {\n continue;\n }\n\n float value = getX(batch, xR, xC, d);\n\n // If a min / max value has already been found, use it. If not,\n // use the current value.\n float currMinMaxValue = mix(\n value, minMaxValue, minMaxValueFound);\n if (value ${D} currMinMaxValue) {\n minMaxValue = value;\n minMaxValueFound = 1.0;\n minMaxPosition = ${o?s?g:x:`wR * ${m} + wC`};\n }\n }\n }\n setOutput(float(minMaxPosition));\n }\n `;return}let w=\"max\",I=`${e}(${e}(${e}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;e===\"avg\"&&(I=\"avgValue / max(count, 1.0)\");let N=Math.floor(i/4)*4,E=i%4,A=`\n if (${h}) {\n avgValue += dot(values, ones);\n } else {\n minMaxValue = ${w}(values, minMaxValue);\n }\n `;this.userCode=`\n const ivec2 strides = ivec2(${a}, ${u});\n const ivec2 pads = ivec2(${f}, ${d});\n const float initializationValue = ${b};\n const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);\n\n float count = 0.0;\n\n float getValue(int batch, int xR, int xC, int d) {\n if (xC < 0 || xC >= ${t.inWidth}) {\n return initializationValue;\n }\n count += 1.0;\n return getX(batch, xR, xC, d);\n }\n\n void main() {\n ivec4 coords = getOutputCoords();\n int batch = coords[0];\n int d = coords[3];\n\n ivec2 xRCCorner = coords.yz * strides - pads;\n int xRCorner = xRCCorner.x;\n int xCCorner = xRCCorner.y;\n\n // max/min x(?, ?, d) to get y(yR, yC, d).\n // ? = to be determined\n vec4 minMaxValue = vec4(${b});\n float avgValue = 0.0;\n count = 0.0;\n\n for (int wR = 0; wR < ${p};\n wR += ${l}) {\n int xR = xRCorner + wR;\n\n if (xR < 0 || xR >= ${t.inHeight}) {\n continue;\n }\n\n for (int wC = 0; wC < ${N}; wC += 4) {\n int xC = xCCorner + wC * ${c};\n\n vec4 values = vec4(\n getValue(batch, xR, xC, d),\n getValue(batch, xR, xC + ${c}, d),\n getValue(batch, xR, xC + 2 * ${c}, d),\n getValue(batch, xR, xC + 3 * ${c}, d)\n );\n\n ${A}\n }\n\n int xC = xCCorner + ${N};\n if (${E===1}) {\n vec4 values = vec4(\n getValue(batch, xR, xC, d),\n initializationValue,\n initializationValue,\n initializationValue\n );\n\n ${A}\n } else if (${E===2}) {\n vec4 values = vec4(\n getValue(batch, xR, xC, d),\n getValue(batch, xR, xC + ${c}, d),\n initializationValue,\n initializationValue\n );\n\n ${A}\n } else if (${E===3}) {\n vec4 values = vec4(\n getValue(batch, xR, xC, d),\n getValue(batch, xR, xC + ${c}, d),\n getValue(batch, xR, xC + 2 * ${c}, d),\n initializationValue\n );\n\n ${A}\n }\n }\n setOutput(${I});\n }\n `}},qu=class{constructor(t,e,n,o=!1,s=!1){if(this.variableNames=[\"x\"],e===\"avg\"&&n)throw new Error(\"Cannot compute positions for average pool.\");let i=t.filterWidth,a=t.strideDepth,u=t.strideHeight,l=t.strideWidth,c=t.dilationDepth,p=t.dilationHeight,m=t.dilationWidth,f=t.effectiveFilterDepth,d=t.effectiveFilterHeight,h=t.effectiveFilterWidth,g=t.padInfo.front,x=t.padInfo.top,b=t.padInfo.left;this.outputShape=t.outShape;let w=e===\"avg\",I=\"0.0\";if(w||(I=\"-1.0 / 1e-20\"),n){let M=\">=\";this.userCode=`\n const ivec3 strides =\n ivec3(${a}, ${u}, ${l});\n const ivec3 pads = ivec3(${g}, ${x}, ${b});\n\n void main() {\n ivec5 coords = getOutputCoords();\n int batch = coords.x;\n int ch = coords.u;\n\n ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;\n int xDCorner = xCorner.x;\n int xRCorner = xCorner.y;\n int xCCorner = xCorner.z;\n\n // max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).\n // ? = to be determined\n float minMaxValue = 0.0;\n float minMaxValueFound = 0.0;\n int minMaxPosition = 0;\n\n for (int wD = 0; wD < ${f};\n wD += ${c}) {\n int xD = xDCorner + wD;\n\n if (xD < 0 || xD >= ${t.inDepth}) {\n continue;\n }\n\n for (int wR = 0; wR < ${d};\n wR += ${p}) {\n int xR = xRCorner + wR;\n\n if (xR < 0 || xR >= ${t.inHeight}) {\n continue;\n }\n\n for (int wC = 0; wC < ${h};\n wC += ${m}) {\n int xC = xCCorner + wC;\n\n if (xC < 0 || xC >= ${t.inWidth}) {\n continue;\n }\n\n float value = getX(batch, xD, xR, xC, ch);\n\n // If a min / max value has already been found, use it. If not,\n // use the current value.\n float currMinMaxValue = mix(\n value, minMaxValue, minMaxValueFound);\n if (value ${M} currMinMaxValue) {\n minMaxValue = value;\n minMaxValueFound = 1.0;\n minMaxPosition = ${o?s?`(((batch * ${t.inDepth} + xD) * ${t.inHeight} + xR) * ${t.inWidth} + xC) * ${t.inChannels} + ch`:`((xD * ${t.inHeight} + xR) * ${t.inWidth} + xC) * ${t.inChannels} + ch`:`wD * ${d} * ${h} +\n wR * ${h} + wC`};\n }\n }\n }\n }\n setOutput(float(minMaxPosition));\n }\n `;return}let N=\"max\",E=`${e}(${e}(${e}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;e===\"avg\"&&(E=\"avgValue / max(count, 1.0)\");let A=Math.floor(i/4)*4,D=i%4,F=`\n if (${w}) {\n avgValue += dot(values, ones);\n } else {\n minMaxValue = ${N}(values, minMaxValue);\n }\n `;this.userCode=`\n const ivec3 strides =\n ivec3(${a}, ${u}, ${l});\n const ivec3 pads = ivec3(${g}, ${x}, ${b});\n const float initializationValue = ${I};\n const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);\n\n float count = 0.0;\n\n float getValue(int batch, int xD, int xR, int xC, int ch) {\n if (xC < 0 || xC >= ${t.inWidth}) {\n return initializationValue;\n }\n count += 1.0;\n return getX(batch, xD, xR, xC, ch);\n }\n\n void main() {\n ivec5 coords = getOutputCoords();\n int batch = coords.x;\n int ch = coords.u;\n\n ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;\n int xDCorner = xCorner.x;\n int xRCorner = xCorner.y;\n int xCCorner = xCorner.z;\n\n // max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).\n // ? = to be determined\n vec4 minMaxValue = vec4(${I});\n float avgValue = 0.0;\n count = 0.0;\n\n for (int wD = 0; wD < ${f};\n wD += ${c}) {\n int xD = xDCorner + wD;\n\n if (xD < 0 || xD >= ${t.inDepth}) {\n continue;\n }\n\n for (int wR = 0; wR < ${d};\n wR += ${p}) {\n int xR = xRCorner + wR;\n\n if (xR < 0 || xR >= ${t.inHeight}) {\n continue;\n }\n\n for (int wC = 0; wC < ${A}; wC += 4) {\n int xC = xCCorner + wC * ${m};\n\n vec4 values = vec4(\n getValue(batch, xD, xR, xC, ch),\n getValue(batch, xD, xR, xC + ${m}, ch),\n getValue(batch, xD, xR, xC + 2 * ${m}, ch),\n getValue(batch, xD, xR, xC + 3 * ${m}, ch)\n );\n\n ${F}\n }\n\n int xC = xCCorner + ${A};\n if (${D===1}) {\n vec4 values = vec4(\n getValue(batch, xD, xR, xC, ch),\n initializationValue,\n initializationValue,\n initializationValue\n );\n\n ${F}\n } else if (${D===2}) {\n vec4 values = vec4(\n getValue(batch, xD, xR, xC, ch),\n getValue(batch, xD, xR, xC + ${m}, ch),\n initializationValue,\n initializationValue\n );\n\n ${F}\n } else if (${D===3}) {\n vec4 values = vec4(\n getValue(batch, xD, xR, xC, ch),\n getValue(batch, xD, xR, xC + ${m}, ch),\n getValue(batch, xD, xR, xC + 2 * ${m}, ch),\n initializationValue\n );\n\n ${F}\n }\n }\n }\n setOutput(${E});\n }\n `}};function Nst(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t;vi(o,\"avgPool\");let{filterSize:s,strides:i,pad:a,dimRoundingMode:u}=n,l=1;y.assert(S.eitherStridesOrDilationsAreOne(i,l),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${l}'`);let c=S.computePool2DInfo(o.shape,s,i,l,a,u);if(c.filterWidth===1&&c.filterHeight===1&&y.arraysEqual(c.inShape,c.outShape))return nr({inputs:{x:o},backend:e});let p=new Ni(c,\"avg\",!1);return e.runWebGLProgram(p,[o],\"float32\")}var A3={kernelName:Yo,backendName:\"webgl\",kernelFunc:Nst};function kst(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{filterSize:s,strides:i,pad:a,dimRoundingMode:u,dataFormat:l}=n,c=[1,1,1],p=S.computePool3DInfo(o.shape,s,i,c,a,u,l),m=new qu(p,\"avg\",!1);return e.runWebGLProgram(m,[o],\"float32\")}var D3={kernelName:Ri,backendName:\"webgl\",kernelFunc:kst};var gI=class{constructor(t){this.variableNames=[\"dy\"],this.outputShape=t.inShape;let e=t.filterHeight,n=t.filterWidth,o=t.strideHeight,s=t.strideWidth,i=t.dilationHeight,a=t.dilationWidth,u=t.effectiveFilterHeight,l=t.effectiveFilterWidth,c=u-1-t.padInfo.top,p=l-1-t.padInfo.left,m=1/(e*n);this.userCode=`\n const ivec2 pads = ivec2(${c}, ${p});\n const float avgMultiplier = float(${m});\n\n void main() {\n ivec4 coords = getOutputCoords();\n int b = coords[0];\n int d = coords[3];\n\n ivec2 dyRCCorner = coords.yz - pads;\n int dyRCorner = dyRCCorner.x;\n int dyCCorner = dyRCCorner.y;\n\n // Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).\n // ? = to be determined. : = across all values in that axis.\n float dotProd = 0.0;\n for (int wR = 0; wR < ${u};\n wR += ${i}) {\n float dyR = float(dyRCorner + wR) / ${o}.0;\n\n if (dyR < 0.0 || dyR >= ${t.outHeight}.0 || fract(dyR) > 0.0) {\n continue;\n }\n int idyR = int(dyR);\n\n for (int wC = 0; wC < ${l};\n wC+= ${a}) {\n float dyC = float(dyCCorner + wC) / ${s}.0;\n\n if (dyC < 0.0 || dyC >= ${t.outWidth}.0 ||\n fract(dyC) > 0.0) {\n continue;\n }\n int idyC = int(dyC);\n\n float dyValue = getDy(b, idyR, idyC, d);\n\n dotProd += dyValue * avgMultiplier;\n }\n }\n setOutput(dotProd);\n }\n `}},xI=class{constructor(t){this.variableNames=[\"dy\"],this.outputShape=t.inShape;let e=t.filterDepth,n=t.filterHeight,o=t.filterWidth,s=t.strideDepth,i=t.strideHeight,a=t.strideWidth,u=t.dilationDepth,l=t.dilationHeight,c=t.dilationWidth,p=t.effectiveFilterDepth,m=t.effectiveFilterHeight,f=t.effectiveFilterWidth,d=p-1-t.padInfo.front,h=m-1-t.padInfo.top,g=f-1-t.padInfo.left,x=1/(e*n*o);this.userCode=`\n const ivec3 pads = ivec3(${d}, ${h}, ${g});\n const float avgMultiplier = float(${x});\n\n void main() {\n ivec5 coords = getOutputCoords();\n int batch = coords.x;\n int ch = coords.u;\n\n ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;\n int dyDCorner = dyCorner.x;\n int dyRCorner = dyCorner.y;\n int dyCCorner = dyCorner.z;\n\n // Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get\n // dx(xD, xR, xC, ch).\n // ? = to be determined. : = across all values in that axis.\n float dotProd = 0.0;\n\n for (int wD = 0; wD < ${p};\n wD += ${u}) {\n float dyD = float(dyDCorner + wD) / ${s}.0;\n\n if (dyD < 0.0 || dyD >= ${t.outDepth}.0 || fract(dyD) > 0.0) {\n continue;\n }\n int idyD = int(dyD);\n\n for (int wR = 0; wR < ${m};\n wR += ${l}) {\n float dyR = float(dyRCorner + wR) / ${i}.0;\n\n if (dyR < 0.0 || dyR >= ${t.outHeight}.0 ||\n fract(dyR) > 0.0) {\n continue;\n }\n int idyR = int(dyR);\n\n for (int wC = 0; wC < ${f};\n wC += ${c}) {\n float dyC = float(dyCCorner + wC) / ${a}.0;\n\n if (dyC < 0.0 || dyC >= ${t.outWidth}.0 ||\n fract(dyC) > 0.0) {\n continue;\n }\n int idyC = int(dyC);\n\n float dyValue = getDy(batch, idyD, idyR, idyC, ch);\n\n dotProd += dyValue * avgMultiplier;\n }\n }\n }\n setOutput(dotProd);\n }\n `}};function Tst(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,input:s}=t,i=s,{filterSize:a,strides:u,pad:l,dimRoundingMode:c}=n,p=[1,1,1],m=S.computePool3DInfo(i.shape,a,u,p,l,c),f=new xI(m);return e.runWebGLProgram(f,[o],i.dtype)}var $3={kernelName:Hl,backendName:\"webgl\",kernelFunc:Tst};function _st(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,input:s}=t,i=s;vi([o,s],\"avgPoolGrad\");let{filterSize:a,strides:u,pad:l}=n,c=S.computePool2DInfo(i.shape,a,u,1,l),p=new gI(c);return e.runWebGLProgram(p,[o],i.dtype)}var R3={kernelName:Ul,backendName:\"webgl\",kernelFunc:_st};function Est(r){let{inputs:t,backend:e,attrs:n}=r,{a:o,b:s}=t,{transposeA:i,transposeB:a}=n;return dp({a:o,b:s,transposeA:i,transposeB:a,backend:e})}var F3={kernelName:Zo,backendName:\"webgl\",kernelFunc:Est};var yI=class{constructor(t,e,n,o,s,i){this.outputShape=[],this.variableNames=[\"x\",\"mean\",\"variance\"],S.assertAndGetBroadcastShape(t,e),S.assertAndGetBroadcastShape(t,n);let a=\"0.0\";o!=null&&(S.assertAndGetBroadcastShape(t,o),this.variableNames.push(\"offset\"),a=\"getOffsetAtOutCoords()\");let u=\"1.0\";s!=null&&(S.assertAndGetBroadcastShape(t,s),this.variableNames.push(\"scale\"),u=\"getScaleAtOutCoords()\"),this.outputShape=t,this.userCode=`\n void main() {\n float x = getXAtOutCoords();\n float mean = getMeanAtOutCoords();\n float variance = getVarianceAtOutCoords();\n float offset = ${a};\n float scale = ${u};\n float inv = scale * inversesqrt(variance + float(${i}));\n setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));\n }\n `}};var bI=class{constructor(t,e,n,o,s,i){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=[\"x\",\"mean\",\"variance\"],S.assertAndGetBroadcastShape(t,e),S.assertAndGetBroadcastShape(t,n);let a=\"vec4(0.0)\";o!=null&&(S.assertAndGetBroadcastShape(t,o),this.variableNames.push(\"offset\"),a=\"getOffsetAtOutCoords()\");let u=\"vec4(1.0)\";s!=null&&(S.assertAndGetBroadcastShape(t,s),this.variableNames.push(\"scale\"),u=\"getScaleAtOutCoords()\"),this.outputShape=t,this.userCode=`\n void main() {\n vec4 offset = ${a};\n vec4 scale = ${u};\n\n vec4 x = getXAtOutCoords();\n vec4 mean = getMeanAtOutCoords();\n vec4 variance = getVarianceAtOutCoords();\n\n vec4 inv = scale * inversesqrt(variance + vec4(${i}));\n\n setOutput((x - mean) * inv + offset);\n }\n `}};var Ast=({inputs:r,backend:t,attrs:e})=>{let{x:n,mean:o,variance:s,offset:i,scale:a}=r;y.assert(o.shape.length===s.shape.length,()=>\"Batch normalization gradient requires mean and variance to have equal ranks.\"),y.assert(i==null||o.shape.length===i.shape.length,()=>\"Batch normalization gradient requires mean and offset to have equal ranks.\"),y.assert(a==null||o.shape.length===a.shape.length,()=>\"Batch normalization gradient requires mean and scale to have equal ranks.\");let{varianceEpsilon:u}=e;u==null&&(u=.001);let l=[n,o,s],c=null;i!=null&&(c=i.shape,l.push(i));let p=null;a!=null&&(p=a.shape,l.push(a));let m=L().getBool(\"WEBGL_PACK_NORMALIZATION\")?new bI(n.shape,o.shape,s.shape,c,p,u):new yI(n.shape,o.shape,s.shape,c,p,u);return t.runWebGLProgram(m,l,l[0].dtype)},O3={kernelName:ds,backendName:\"webgl\",kernelFunc:Ast};var wI=class{constructor(t){this.variableNames=[\"source\"],this.outputShape=t,this.rank=t.length;let e=zt(this.rank);this.customUniforms=[{name:\"start\",arrayIndex:this.rank,type:\"int\"}];let n=Dst(this.rank),o,s=t.map((i,a)=>`sourceLoc.${O1[a]} = start[${a}] + coords.${O1[a]};`);o=`\n ${e} sourceLoc;\n ${e} coords = getOutputCoords();\n ${s.join(`\n`)}\n `,this.userCode=`\n void main() {\n ${o}\n setOutput(getSource(${n}));\n }\n `}},O1=[\"x\",\"y\",\"z\",\"w\",\"u\",\"v\"];function Dst(r){if(r===1)return\"sourceLoc\";if(r<=6)return O1.slice(0,r).map(t=>\"sourceLoc.\"+t).join(\",\");throw Error(`Slicing for rank ${r} is not yet supported`)}var II=class{constructor(t){this.variableNames=[\"source\"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t,this.rank=t.length,this.customUniforms=[{name:\"start\",arrayIndex:this.rank,type:\"int\"}];let e=zt(this.rank),n=rr(\"coords\",this.rank),o=rr(\"sourceLoc\",this.rank),s=this.rank===1?\"sourceLoc\":`vec2(${o.slice(-2).join()})`,i=`getChannel(getSource(${o.join()}), ${s})`,a=`\n result.x = ${i};\n if (++${n[this.rank-1]} < ${t[this.rank-1]}) {\n ++${o[this.rank-1]};\n result.y = ${i};\n --${o[this.rank-1]};\n }\n `,u=this.rank===1?\"\":`\n --${n[this.rank-1]};\n if (++${n[this.rank-2]} < ${t[this.rank-2]}) {\n ++${o[this.rank-2]};\n result.z = ${i};\n if (++${n[this.rank-1]} < ${t[this.rank-1]}) {\n ++${o[this.rank-1]};\n result.w = ${i};\n }\n }\n `,l=this.rank<=4?`sourceLoc = coords +\n ${e}(${t.map((c,p)=>`start[${p}]`).join()});`:t.map((c,p)=>`${o[p]} = ${n[p]} + start[${p}];`).join(`\n`);this.userCode=`\n void main() {\n ${e} coords = getOutputCoords();\n ${e} sourceLoc;\n ${l}\n vec4 result = vec4(0.);\n ${a}\n ${u}\n setOutput(result);\n }\n `}};function $st(r,t,e,n){let o=n.texData.get(r.dataId),s=n.makeTensorInfo(e,r.dtype),i=n.texData.get(s.dataId);Object.assign(i,o),i.refCount=1,i.shape=e,i.dtype=r.dtype;let a=Be.computeFlatOffset(t,y.computeStrides(r.shape));o.slice&&(a+=o.slice.flatOffset),i.slice={flatOffset:a,origDataId:o.slice&&o.slice.origDataId||r.dataId};let u=n.dataRefCount.get(i.slice.origDataId)||1;return n.dataRefCount.set(i.slice.origDataId,u+1),s}function ki(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{begin:s,size:i}=n,[a,u]=Be.parseSliceParams(o,s,i);if(Be.assertParamsValid(o,a,u),y.sizeFromShape(u)===0)return e.makeTensorInfo(u,o.dtype,[]);if(e.shouldExecuteOnCPU([o])||o.dtype===\"string\"){let p=e.texData.get(o.dataId),m=Sz(p.values,a,u,o.shape,o.dtype);return e.makeTensorInfo(u,o.dtype,m)}let{isPacked:l}=e.texData.get(o.dataId),c=Be.isSliceContinous(o.shape,a,u);if(l||!c){let p=L().getBool(\"WEBGL_PACK_ARRAY_OPERATIONS\")?new II(u):new wI(u),m=[a];return e.runWebGLProgram(p,[o],o.dtype,m)}return e.uploadToGPU(o.dataId),$st(o,a,u,e)}var M3={kernelName:Ui,backendName:\"webgl\",kernelFunc:ki};var Rst=r=>{let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{blockShape:s,crops:i}=n;y.assert(o.shape.length<=4,()=>\"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet\");let a=s.reduce((b,w)=>b*w),u=S.getReshaped(o.shape,s,a),l=S.getPermuted(u.length,s.length),c=S.getReshapedPermuted(o.shape,s,a),p=S.getSliceBeginCoords(i,s.length),m=S.getSliceSize(c,i,s.length),f=[],d=rt({inputs:{x:o},backend:e,attrs:{shape:u}}),h=Pe({inputs:{x:d},backend:e,attrs:{perm:l}}),g=rt({inputs:{x:h},backend:e,attrs:{shape:c}}),x=ki({inputs:{x:g},backend:e,attrs:{begin:p,size:m}});return f.push(d),f.push(h),f.push(g),f.forEach(b=>e.disposeIntermediateTensorInfo(b)),x},P3={kernelName:Fi,backendName:\"webgl\",kernelFunc:Rst};function Fst(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,weights:s}=t,{size:i}=n,a=e.readSync(o.dataId),u=e.readSync(s.dataId),l=tI(a,u,s.dtype,s.shape,i);return e.makeTensorInfo([i],s.dtype,l)}var L3={kernelName:Da,backendName:\"webgl\",kernelFunc:Fst};var Ost=`\n int r = int(a.r) & int(b.r);\n int g = int(a.g) & int(b.g);\n int rb = int(a.b) & int(b.b);\n int ra = int(a.a) & int(b.a);\n return vec4(r, g, rb, ra);\n`,Mst=`\n return float(int(a.r) & int(b.r));\n`;function Pst(r){let{inputs:t,backend:e}=r,{a:n,b:o}=t,s=L().getBool(\"WEBGL_PACK_BINARY_OPERATIONS\"),i=L().getNumber(\"WEBGL_VERSION\");if(e.shouldExecuteOnCPU([n,o])||i===1){let u=e.texData.get(n.dataId).values,l=e.texData.get(o.dataId).values,[c,p]=jL(n.shape,o.shape,u,l,n.dtype),m=e.makeTensorInfo(p,n.dtype),f=e.texData.get(m.dataId);return f.values=c,m}let a;return s?a=new jn(Ost,n.shape,o.shape,!1):a=new $n(Mst,n.shape,o.shape),e.runWebGLProgram(a,[n,o],n.dtype)}var z3={kernelName:$a,backendName:\"webgl\",kernelFunc:Pst};function Lst(r){let{inputs:t,backend:e}=r,{s0:n,s1:o}=t,s=e.readSync(n.dataId),i=e.readSync(o.dataId),a=S.assertAndGetBroadcastShape(Array.from(s),Array.from(i));return e.makeTensorInfo([a.length],\"int32\",Int32Array.from(a))}var B3={kernelName:ql,backendName:\"webgl\",kernelFunc:Lst};var zst=\"return float(a != b);\",M1=ce({opSnippet:zst,cpuKernelImpl:hz,dtype:\"bool\"}),V3={kernelName:Za,backendName:\"webgl\",kernelFunc:M1};function Pl(r){let{inputs:t,backend:e}=r,{input:n}=t,o=e.texData.get(n.dataId);return nr({inputs:{x:o.complexTensorInfos.real},backend:e})}var G3={kernelName:Vp,backendName:\"webgl\",kernelFunc:Pl};var Bst=\"return float(int(x));\";function W3(r,t){let e=new zr(r.shape,Bst),n=t.runWebGLProgram(e,[r],\"int32\");return{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}function P1(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{dtype:s}=n;if(s===\"complex64\"){if(o.dtype===\"complex64\")return nr({inputs:{x:o},backend:e});let i=ke(o.shape),a=P1({inputs:{x:o},backend:e,attrs:{dtype:\"float32\"}}),u=Rn({inputs:{real:a,imag:i},backend:e});return i.dispose(),e.disposeIntermediateTensorInfo(a),u}if(o.dtype===\"complex64\"){let i=Pl({inputs:{input:o},backend:e}),a=P1({inputs:{x:i},backend:e,attrs:{dtype:s}});return e.disposeIntermediateTensorInfo(i),a}if(!y.hasEncodingLoss(o.dtype,s)){let i=nr({inputs:{x:o},backend:e});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(e.shouldExecuteOnCPU([o])){let i=e.texData.get(o.dataId).values,[a,u,l]=XL(i,o.shape,o.dtype,s);return e.makeTensorInfo(a,u,l)}if(s===\"int32\")return W3(o,e);if(s===\"bool\"){let i=e.makeTensorInfo([],\"bool\",y.getTypedArrayFromDType(\"bool\",1)),u=M1({inputs:{a:o,b:i},backend:e});return e.disposeIntermediateTensorInfo(i),u}throw new Error(`Error in Cast: failed to cast ${o.dtype} to ${s}`)}var U3={kernelName:fo,backendName:\"webgl\",kernelFunc:P1};var H3=\"return ceil(x);\",Vst=It({opSnippet:H3,packedOpSnippet:H3,cpuKernelImpl:YL}),q3={kernelName:Jo,backendName:\"webgl\",kernelFunc:Vst};var CI=class{constructor(t){this.variableNames=[\"A\"],this.customUniforms=[{name:\"minVal\",type:\"float\"},{name:\"maxVal\",type:\"float\"}],this.outputShape=t,this.userCode=`\n\n void main() {\n float value = getAAtOutCoords();\n if (isnan(value)) {\n setOutput(value);\n return;\n }\n\n setOutput(clamp(value, minVal, maxVal));\n }\n `}};var vI=class{constructor(t){this.variableNames=[\"A\"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:\"minVal\",type:\"float\"},{name:\"maxVal\",type:\"float\"}],this.outputShape=t,this.userCode=`\n void main() {\n vec4 value = getAAtOutCoords();\n\n if (any(isnan(value))) {\n setOutput(value);\n return;\n }\n\n setOutput(clamp(value, vec4(minVal), vec4(maxVal)));\n }\n `}};function Gst(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{clipValueMin:s,clipValueMax:i}=n,a;L().getBool(\"WEBGL_PACK_CLIP\")?a=new vI(o.shape):a=new CI(o.shape);let u=[[s],[i]];return e.runWebGLProgram(a,[o],o.dtype,u)}var K3={kernelName:ho,backendName:\"webgl\",kernelFunc:Gst};var SI=class{constructor(t){this.variableNames=[\"real\",\"imag\"],this.outputShape=t,this.userCode=`\n void main() {\n float re = abs(getRealAtOutCoords());\n float im = abs(getImagAtOutCoords());\n float mx = max(re, im);\n\n // sadly the length function in glsl is not underflow-safe\n // (at least not on Intel GPUs). So the safe solution is\n // to ensure underflow-safety in all cases.\n setOutput(\n mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))\n );\n }\n `}};function j3(r,t){return{dataId:t.dataId,dtype:t.dtype,shape:r.shape}}function Wst(r){let{inputs:t,backend:e}=r,{x:n}=t,o=e.texData.get(n.dataId),s=new SI(n.shape),i=[j3(n,o.complexTensorInfos.real),j3(n,o.complexTensorInfos.imag)];return e.runWebGLProgram(s,i,i[0].dtype)}var X3={kernelName:Kl,backendName:\"webgl\",kernelFunc:Wst};var NI=class{constructor(t){this.outputShape=[],this.outputShape=S.computeOutShape(t,1),this.variableNames=t.map((i,a)=>`T${a}`);let e=new Array(t.length-1);e[0]=t[0][1];for(let i=1;i`T${g}`);let u=new Array(t.length-1);u[0]=t[0][e];for(let h=1;h= ${u[h-1]}) {\n return getChannel(\n getT${h}(${kI(a,l,g)}),\n vec2(${kI(c,l,g)}));\n }`}let f=u.length,d=u[u.length-1];m+=`\n return getChannel(\n getT${f}(${kI(a,l,d)}),\n vec2(${kI(c,l,d)}));`,this.userCode=`\n float getValue(${a.map(h=>\"int \"+h)}) {\n ${m}\n }\n\n void main() {\n ${s} coords = getOutputCoords();\n vec4 result = vec4(getValue(${i}), 0., 0., 0.);\n\n ${i[o-1]} = ${i[o-1]} + 1;\n if (${i[o-1]} < ${n[o-1]}) {\n result.g = getValue(${i});\n }\n\n ${i[o-2]} = ${i[o-2]} + 1;\n if (${i[o-2]} < ${n[o-2]}) {\n result.a = getValue(${i});\n }\n\n ${i[o-1]} = ${i[o-1]} - 1;\n if (${i[o-2]} < ${n[o-2]} &&\n ${i[o-1]} < ${n[o-1]}) {\n result.b = getValue(${i});\n }\n setOutput(result);\n }\n `}};function kI(r,t,e){let n=r.indexOf(t);return r.map((s,i)=>i===n?`${s} - ${e}`:s).join()}function hp(r){let{inputs:t,backend:e}=r,{input:n}=t,o=e.texData.get(n.dataId);return nr({inputs:{x:o.complexTensorInfos.imag},backend:e})}var Y3={kernelName:Pp,backendName:\"webgl\",kernelFunc:hp};function Fd(r,t,e){let n=r[0].dtype;if(n===\"complex64\"){let f=r.map(b=>Pl({inputs:{input:b},backend:e})),d=r.map(b=>hp({inputs:{input:b},backend:e})),h=Fd(f,t,e),g=Fd(d,t,e),x=Rn({inputs:{real:h,imag:g},backend:e});return f.forEach(b=>e.disposeIntermediateTensorInfo(b)),d.forEach(b=>e.disposeIntermediateTensorInfo(b)),e.disposeIntermediateTensorInfo(h),e.disposeIntermediateTensorInfo(g),x}let o=e.shouldExecuteOnCPU(r);if(n===\"string\"&&(o=!0),o){let f=r.map(I=>{let E=[-1,y.sizeFromShape(I.shape.slice(t))];return rt({inputs:{x:I},backend:e,attrs:{shape:E}})}),d=f.map(I=>({vals:e.readSync(I.dataId),shape:I.shape})),h=S.computeOutShape(f.map(I=>I.shape),1),g=f[0].shape[0]===1,x=ZL(d,h,n,g),b=S.computeOutShape(r.map(I=>I.shape),t),w=e.makeTensorInfo(b,n,x);return f.forEach(I=>e.disposeIntermediateTensorInfo(I)),w}let s=r.filter(f=>y.sizeFromShape(f.shape)>0),i=L().getBool(\"WEBGL_PACK_ARRAY_OPERATIONS\")&&s[0].shape.length>1;if(s.length===1){let f=i?new zr(r[0].shape,Ia):new Dn(r[0].shape,Ia);return e.runWebGLProgram(f,r,n)}let a=L().getNumber(\"WEBGL_MAX_TEXTURES_IN_SHADER\");if(s.length>a){let f=[];for(let h=0;hd.shape),t);return e.runWebGLProgram(f,s,n)}let{tensors2D:u,outShape:l}=Ust(s,t,e),c=new NI(u.map(f=>f.shape)),p=e.runWebGLProgram(c,u,n);u.forEach(f=>e.disposeIntermediateTensorInfo(f));let m=rt({inputs:{x:p},attrs:{shape:l},backend:e});return e.disposeIntermediateTensorInfo(p),m}function Ust(r,t,e){let n=S.computeOutShape(r.map(s=>s.shape),t);return{tensors2D:r.map(s=>rt({inputs:{x:s},attrs:{shape:[-1,y.sizeFromShape(s.shape.slice(t))]},backend:e})),outShape:n}}function L1(r){let{inputs:t,backend:e,attrs:n}=r,{axis:o}=n,s=y.parseAxisParam(o,t[0].shape)[0],i=t.map(l=>l.shape);S.assertParamsConsistent(i,s);let a=S.computeOutShape(t.map(l=>l.shape),s);if(y.sizeFromShape(a)===0)return e.makeTensorInfo(a,t[0].dtype,[]);let u=t.filter(l=>y.sizeFromShape(l.shape)>0);return u.length===1?nr({inputs:{x:u[0]},backend:e}):Fd(u,s,e)}var Z3={kernelName:Oi,backendName:\"webgl\",kernelFunc:L1};var Od=class{constructor(t,e=!1,n=null,o=!1,s=!1){this.variableNames=[\"x\",\"W\"],this.outputShape=t.outShape;let i=t.padInfo.top,a=t.padInfo.left,u=t.strideHeight,l=t.strideWidth,c=t.dilationHeight,p=t.dilationWidth,m=t.filterHeight,f=t.filterWidth,d=Math.floor(t.inChannels/4)*4,h=t.inChannels%4,g=t.dataFormat===\"channelsLast\",x=g?1:2,b=g?2:3,w=g?3:1,I=\"\",N=\"\";n&&(o?I=`float activation(float a) {\n float b = getPreluActivationWeightsAtOutCoords();\n ${n}\n }`:s?I=`float activation(float a) {\n float b = getLeakyreluAlphaAtOutCoords();\n ${n}\n }`:I=`\n float activation(float x) {\n ${n}\n }\n `,N=\"result = activation(result);\");let E=e?\"result += getBiasAtOutCoords();\":\"\";e&&this.variableNames.push(\"bias\"),o&&this.variableNames.push(\"preluActivationWeights\"),s&&this.variableNames.push(\"leakyreluAlpha\"),this.userCode=`\n ${I}\n\n const ivec2 strides = ivec2(${u}, ${l});\n const ivec2 pads = ivec2(${i}, ${a});\n\n void main() {\n ivec4 coords = getOutputCoords();\n int batch = coords[0];\n int d2 = coords[${w}];\n\n ivec2 xRCCorner =\n ivec2(coords[${x}], coords[${b}]) * strides - pads;\n int xRCorner = xRCCorner.x;\n int xCCorner = xRCCorner.y;\n\n // Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).\n // ? = to be determined. : = across all values in that axis.\n float dotProd = 0.0;\n for (int wR = 0; wR < ${m}; wR++) {\n int xR = xRCorner + wR * ${c};\n\n if (xR < 0 || xR >= ${t.inHeight}) {\n continue;\n }\n\n for (int wC = 0; wC < ${f}; wC++) {\n int xC = xCCorner + wC * ${p};\n\n if (xC < 0 || xC >= ${t.inWidth}) {\n continue;\n }\n\n for (int d1 = 0; d1 < ${d}; d1 += 4) {\n vec4 wValues = vec4(\n getW(wR, wC, d1, d2),\n getW(wR, wC, d1 + 1, d2),\n getW(wR, wC, d1 + 2, d2),\n getW(wR, wC, d1 + 3, d2)\n );\n\n if (${g}) {\n vec4 xValues = vec4(\n getX(batch, xR, xC, d1),\n getX(batch, xR, xC, d1 + 1),\n getX(batch, xR, xC, d1 + 2),\n getX(batch, xR, xC, d1 + 3)\n );\n dotProd += dot(xValues, wValues);\n } else {\n vec4 xValues = vec4(\n getX(batch, d1, xR, xC),\n getX(batch, d1 + 1, xR, xC),\n getX(batch, d1 + 2, xR, xC),\n getX(batch, d1 + 3, xR, xC)\n );\n dotProd += dot(xValues, wValues);\n }\n }\n\n if (${h===1}) {\n\n if (${g}) {\n dotProd +=\n getX(batch, xR, xC, ${d}) *\n getW(wR, wC, ${d}, d2);\n } else {\n dotProd +=\n getX(batch, ${d}, xR, xC) *\n getW(wR, wC, ${d}, d2);\n }\n\n } else if (${h===2}) {\n vec2 wValues = vec2(\n getW(wR, wC, ${d}, d2),\n getW(wR, wC, ${d} + 1, d2)\n );\n\n if (${g}) {\n vec2 xValues = vec2(\n getX(batch, xR, xC, ${d}),\n getX(batch, xR, xC, ${d} + 1)\n );\n dotProd += dot(xValues, wValues);\n } else {\n vec2 xValues = vec2(\n getX(batch, ${d}, xR, xC),\n getX(batch, ${d} + 1, xR, xC)\n );\n dotProd += dot(xValues, wValues);\n }\n\n } else if (${h===3}) {\n vec3 wValues = vec3(\n getW(wR, wC, ${d}, d2),\n getW(wR, wC, ${d} + 1, d2),\n getW(wR, wC, ${d} + 2, d2)\n );\n\n if (${g}) {\n vec3 xValues = vec3(\n getX(batch, xR, xC, ${d}),\n getX(batch, xR, xC, ${d} + 1),\n getX(batch, xR, xC, ${d} + 2)\n );\n dotProd += dot(xValues, wValues);\n } else {\n vec3 xValues = vec3(\n getX(batch, ${d}, xR, xC),\n getX(batch, ${d} + 1, xR, xC),\n getX(batch, ${d} + 2, xR, xC)\n );\n dotProd += dot(xValues, wValues);\n }\n\n }\n }\n }\n\n float result = dotProd;\n ${E}\n ${N}\n setOutput(result);\n }\n `}},_I=class{constructor(t){this.variableNames=[\"x\",\"W\"],this.outputShape=t.outShape;let e=t.padInfo.front,n=t.padInfo.top,o=t.padInfo.left,s=t.strideDepth,i=t.strideHeight,a=t.strideWidth,u=t.dilationDepth,l=t.dilationHeight,c=t.dilationWidth,p=t.filterDepth,m=t.filterHeight,f=t.filterWidth,d=Math.floor(t.inChannels/4)*4,h=t.inChannels%4;this.userCode=`\n const ivec3 strides = ivec3(${s}, ${i}, ${a});\n const ivec3 pads = ivec3(${e}, ${n}, ${o});\n\n void main() {\n ivec5 coords = getOutputCoords();\n int batch = coords.x;\n int d2 = coords.u;\n\n ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;\n int xFCorner = xFRCCorner.x;\n int xRCorner = xFRCCorner.y;\n int xCCorner = xFRCCorner.z;\n\n // Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get\n // y(yF, yR, yC, d2). ? = to be determined. : = across all\n // values in that axis.\n float dotProd = 0.0;\n for (int wF = 0; wF < ${p}; wF++) {\n int xF = xFCorner + wF * ${u};\n\n if (xF < 0 || xF >= ${t.inDepth}) {\n continue;\n }\n\n for (int wR = 0; wR < ${m}; wR++) {\n int xR = xRCorner + wR * ${l};\n\n if (xR < 0 || xR >= ${t.inHeight}) {\n continue;\n }\n\n for (int wC = 0; wC < ${f}; wC++) {\n int xC = xCCorner + wC * ${c};\n\n if (xC < 0 || xC >= ${t.inWidth}) {\n continue;\n }\n\n for (int d1 = 0; d1 < ${d}; d1 += 4) {\n vec4 xValues = vec4(\n getX(batch, xF, xR, xC, d1),\n getX(batch, xF, xR, xC, d1 + 1),\n getX(batch, xF, xR, xC, d1 + 2),\n getX(batch, xF, xR, xC, d1 + 3)\n );\n vec4 wValues = vec4(\n getW(wF, wR, wC, d1, d2),\n getW(wF, wR, wC, d1 + 1, d2),\n getW(wF, wR, wC, d1 + 2, d2),\n getW(wF, wR, wC, d1 + 3, d2)\n );\n\n dotProd += dot(xValues, wValues);\n }\n\n if (${h===1}) {\n dotProd +=\n getX(batch, xF, xR, xC, ${d}) *\n getW(wF, wR, wC, ${d}, d2);\n } else if (${h===2}) {\n vec2 xValues = vec2(\n getX(batch, xF, xR, xC, ${d}),\n getX(batch, xF, xR, xC, ${d} + 1)\n );\n vec2 wValues = vec2(\n getW(wF, wR, wC, ${d}, d2),\n getW(wF, wR, wC, ${d} + 1, d2)\n );\n dotProd += dot(xValues, wValues);\n } else if (${h===3}) {\n vec3 xValues = vec3(\n getX(batch, xF, xR, xC, ${d}),\n getX(batch, xF, xR, xC, ${d} + 1),\n getX(batch, xF, xR, xC, ${d} + 2)\n );\n vec3 wValues = vec3(\n getW(wF, wR, wC, ${d}, d2),\n getW(wF, wR, wC, ${d} + 1, d2),\n getW(wF, wR, wC, ${d} + 2, d2)\n );\n dotProd += dot(xValues, wValues);\n }\n }\n }\n }\n setOutput(dotProd);\n }\n `}};var Md=class{constructor(t,e=!1,n=null,o=!1,s=!1){this.variableNames=[\"x\",\"W\"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:\"pads\",type:\"ivec2\"},{name:\"strides\",type:\"ivec2\"},{name:\"dilations\",type:\"ivec2\"},{name:\"inDims\",type:\"ivec2\"}],this.outputShape=t.outShape,this.enableShapeUniforms=he(this.outputShape.length);let i=t.padInfo.left,a=t.strideWidth,u=t.dilationWidth,l=t.filterHeight,c=t.filterWidth,p=c,m=`\n int xR; int xC; int xCOffset;\n vec4 wTexel; vec4 previous; vec4 final;`;for(let g=0;g=0 && xR < inDims[0]) {\n `;for(let g=0;g<(p+1)/2;g++){let x=g*2;if(m+=`\n xC = xCCorner + ${x*u};\n `,a===1){if(x= 0 && xCOffset < inDims[1] && xTexelC${x}Ready == 0) {\n xTexelC${x} = getX(batch, xR, xCOffset, d1);\n\n // Need to manually clear unused channels in case\n // we're reading from recycled texture.\n if (xCOffset + 1 >= inDims[1]) {\n xTexelC${x}.zw = vec2(0.0);\n }\n xTexelC${x}Ready = 1;\n }\n `,u===1&&x>0?m+=`\n xC${x} = vec4(xTexelC${x-2}.zw, xTexelC${x}.xy);\n `:m+=`\n xCOffset = xC + 1 - 2;\n\n if (xCOffset >= 0 && xCOffset < inDims[1]) {\n previous = getX(batch, xR, xCOffset, d1);\n\n // Need to manually clear unused channels in case\n // we're reading from recycled texture.\n if (xCOffset + 1 >= inDims[1]) {\n previous.zw = vec2(0.0);\n }\n\n xC${x} = vec4(previous.zw, xTexelC${x}.xy);\n } else {\n xC${x} = vec4(0.0, 0.0, xTexelC${x}.xy);\n }\n `):m+=`\n if (xC >= 0 && xC < inDims[1] && xTexelC${x}Ready == 0) {\n xTexelC${x} = getX(batch, xR, xC, d1);\n if (xC + 1 >= inDims[1]) {\n xTexelC${x}.zw = vec2(0.0);\n }\n xTexelC${x}Ready = 1;\n }\n\n xC${x} = xTexelC${x};\n `,x+1= 0 && xCOffset < inDims[1] && xTexelC${x+1}Ready == 0) {\n xTexelC${x+1} = getX(batch, xR, xCOffset, d1);\n\n // Need to manually clear unused channels in case\n // we're reading from recycled texture.\n if (xCOffset + 1 >= inDims[1]) {\n xTexelC${x+1}.zw = vec2(0.0);\n }\n xTexelC${x+1}Ready = 1;\n }\n `,u>1?m+=`\n xCOffset -= 2;\n if (xCOffset >= 0 && xCOffset < inDims[1]) {\n previous = getX(batch, xR, xCOffset, d1);\n xC${x+1} = vec4(previous.zw, xTexelC${x+1}.xy);\n } else {\n xC${x+1} = vec4(0.0, 0.0, xTexelC${x+1}.xy);\n }\n `:m+=`\n xC${x+1} = vec4(xTexelC${x}.zw, xTexelC${x+1}.xy);\n `):b===1?m+=`\n xC${x+1} = xTexelC${x};\n `:m+=`\n xCOffset = xC + ${b};\n\n if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${x+1}Ready == 0) {\n xTexelC${x+1} = getX(batch, xR, xCOffset, d1);\n if (xCOffset + 1 >= inDims[1]) {\n xTexelC${x+1}.zw = vec2(0.0);\n }\n xTexelC${x+1}Ready = 1;\n }\n\n xC${x+1} = xTexelC${x+1};\n `}}else x= 0 && xCOffset < inDims[1] && xTexelC${x}Ready == 0) {\n xTexelC${x} = getX(batch, xR, xCOffset, d1);\n // Need to manually clear unused channels in case\n // we're reading from recycled texture.\n if (xCOffset + 1 >= inDims[1]) {\n xTexelC${x}.zw = vec2(0.0);\n }\n xTexelC${x}Ready = 1;\n }\n\n if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${x+1}Ready == 0) {\n xTexelC${x+1} = getX(batch, xR, xC + 1, d1);\n // Need to manually clear unused channels in case\n // we're reading from recycled texture.\n if (xC + 2 >= inDims[1]) {\n xTexelC${x+1}.zw = vec2(0.0);\n }\n xTexelC${x+1}Ready = 1;\n }\n\n xC${x} = vec4(xTexelC${x}.zw, xTexelC${x+1}.zw);\n `,x+1= 0 && xCOffset < inDims[1]) {\n final = getX(batch, xR, xCOffset, d1);\n }\n xC${x+1} = vec4(xTexelC${x+1}.xy, final.xy);\n `)):(m+=`\n if(xC >= 0 && xC < inDims[1] && xTexelC${x}Ready == 0) {\n xTexelC${x} = getX(batch, xR, xC, d1);\n if (xC + 1 >= inDims[1]) {\n xTexelC${x}.zw = vec2(0.0);\n }\n xTexelC${x}Ready = 1;\n }\n\n xCOffset = xC + strides[1];\n if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${x+1}Ready == 0) {\n xTexelC${x+1} = getX(batch, xR, xCOffset, d1);\n if (xCOffset + 1 >= inDims[1]) {\n xTexelC${x+1}.zw = vec2(0.);\n }\n xTexelC${x+1}Ready = 1;\n }\n\n xC${x} = vec4(\n xTexelC${x}.xy, xTexelC${x+1}.xy);\n `,x+1= 0) {\n // Use custom imod instead mod. On Intel GPU, mod may generate\n // unexpected value.\n // https://github.com/tensorflow/tfjs/issues/5447\n offsetX = imod(blockIndex, outWidth) * stride[1] - pad[1];\n d1 = offsetX + dilation[1] * (imod(pos, itemsPerBlockRow) /\n inChannels);\n\n if(d1 < inputShape[${a}] && d1 >= 0) {\n\n ch = imod(pos, inChannels);\n\n if (${s}) {\n innerDims = vec2(d1, ch);\n result[${c*2+p}] = getChannel(\n getA(rc.x, d0, int(innerDims.x),\n int(innerDims.y)), innerDims);\n } else {\n innerDims = vec2(d0, d1);\n result[${c*2+p}] = getChannel(\n getA(rc.x, ch, int(innerDims.x),\n int(innerDims.y)), innerDims);\n }\n }\n }\n }\n `;this.userCode=`\n void main() {\n ivec3 rc = getOutputCoords();\n\n vec4 result = vec4(0);\n\n int blockIndex, pos, offsetY, d0, offsetX, d1, ch;\n vec2 innerDims;\n\n ${l}\n\n ${o.output} = result;\n }\n `}};function AI(r,t){let e=r.length;return e>=3?t?[...r.slice(0,-3),r[e-3]*r[e-2],r[e-1]]:[...r.slice(0,-3),r[e-3],r[e-2]*r[e-1]]:!t&&e===1&&r[0]>1?[r[0],1]:null}function DI({x:r,filter:t,convInfo:e,backend:n,bias:o=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:a=null}){let u=r.shape,l=n.texData.get(r.dataId),c=e.inChannels,p=u[0]*u[1]*u[2],m=e.outChannels,f=e.dataFormat===\"channelsLast\",d=!1,h=!1,g,x=[];if(s!=null){let I=AI(s.shape,f);I!=null&&(s=rt({inputs:{x:s},backend:n,attrs:{shape:I}}),x.push(s))}if(o!=null){let I=AI(o.shape,f);I!=null&&(o=rt({inputs:{x:o},backend:n,attrs:{shape:I}}),x.push(o))}if(!((p===1||m===1)&&c>F1)&&l.isPacked&&f&&l.texture!=null&&u[2]%2!==0&&y.arraysEqual(l.shape.slice(-3),u.slice(-3))){let I=u[0]*u[1]*(u[2]+1),N={dataId:r.dataId,shape:[1,I,e.inChannels],dtype:r.dtype},E=l.shape;l.shape=l.shape.slice(),l.shape[l.shape.length-2]++,y.assert(Uu(l.shape,N.shape),()=>`packed reshape ${l.shape} to ${N.shape} isn't free`);let A=rt({inputs:{x:t},backend:n,attrs:{shape:[1,e.inChannels,e.outChannels]}});x.push(A);let D=dp({a:N,b:A,backend:n,transposeA:d,transposeB:h,bias:o,activation:a,preluActivationWeights:s,leakyreluAlpha:i}),F=n.texData.get(D.dataId);y.assert(F.isPacked,()=>\"batchMatMul result is expected to be packed\"),l.shape=E,F.shape=e.outShape,g=nr({inputs:{x:D},backend:n}),g.shape=e.outShape,x.push(D)}else{let I=e.outHeight*e.outWidth,N=rt({inputs:{x:r},backend:n,attrs:{shape:f?[e.batchSize,I,e.inChannels]:[e.batchSize,e.inChannels,I]}}),E=rt({inputs:{x:t},backend:n,attrs:{shape:[1,e.inChannels,e.outChannels]}}),A=dp({a:f?N:E,b:f?E:N,transposeA:!f,transposeB:h,backend:n,bias:o,activation:a,preluActivationWeights:s,leakyreluAlpha:i});g=rt({inputs:{x:A},backend:n,attrs:{shape:e.outShape}}),x.push(N),x.push(E),x.push(A)}for(let I of x)n.disposeIntermediateTensorInfo(I);return g}function $I({x:r,filter:t,convInfo:e,backend:n,bias:o=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:a=null}){let{filterWidth:u,filterHeight:l,inChannels:c,outWidth:p,outHeight:m,dataFormat:f}=e,d=f===\"channelsLast\",h=u*l*c,g=m*p,x=[e.batchSize,h,g],b=!0,w=!1,I=[];if(s!=null){let Z=AI(s.shape,d);Z!=null&&(s=rt({inputs:{x:s},backend:n,attrs:{shape:Z}}),I.push(s))}if(o!=null){let Z=AI(o.shape,d);Z!=null&&(o=rt({inputs:{x:o},backend:n,attrs:{shape:Z}}),I.push(o))}let N=rt({inputs:{x:t},backend:n,attrs:{shape:[1,h,y.sizeFromShape(t.shape)/h]}});I.push(N);let E=new EI(x,e),A=[r.shape,[e.padInfo.top,e.padInfo.left],[e.strideHeight,e.strideWidth],[e.dilationHeight,e.dilationWidth],[e.inChannels],[e.filterWidth*e.inChannels],[e.outWidth]],D=n.runWebGLProgram(E,[r],\"float32\",A),F=rt({inputs:{x:D},backend:n,attrs:{shape:x}});I.push(D),I.push(F);let M=o!=null,V=s!=null,G=a===\"leakyrelu\",W=a?Ml(a,!0):null,q=new Rd(d?F.shape:N.shape,d?N.shape:F.shape,d?[e.batchSize,g,e.outChannels]:[e.batchSize,e.outChannels,g],b,w,M,W,V,G),H=d?[F,N]:[N,F];if(o&&H.push(o),V&&H.push(s),G){let Z=n.makeTensorInfo([],\"float32\",y.createScalarValue(i,\"float32\"));H.push(Z),I.push(Z)}let j=n.runWebGLProgram(q,H,\"float32\"),Y=rt({inputs:{x:j},backend:n,attrs:{shape:e.outShape}});I.push(j);for(let Z of I)n.disposeIntermediateTensorInfo(Z);return Y}function Hst(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s}=t,{strides:i,pad:a,dataFormat:u,dilations:l,dimRoundingMode:c}=n,p=S.convertConv2DDataFormat(u),m=S.computeConv2DInfo(o.shape,s.shape,i,l,a,c,!1,p),f;if(m.filterHeight===1&&m.filterWidth===1&&m.dilationHeight===1&&m.dilationWidth===1&&m.strideHeight===1&&m.strideWidth===1&&(m.padInfo.type===\"SAME\"||m.padInfo.type===\"VALID\"))f=DI({x:o,filter:s,convInfo:m,backend:e});else if(m.strideWidth<=2&&p===\"channelsLast\"&&L().getBool(\"WEBGL_EXP_CONV\")){let h=new Md(m),g=[[m.padInfo.top,m.padInfo.left],[m.strideHeight,m.strideWidth],[m.dilationHeight,m.dilationWidth],[m.inHeight,m.inWidth]];f=e.runWebGLProgram(h,[o,s],\"float32\",g)}else if(L().getBool(\"WEBGL_CONV_IM2COL\"))f=$I({x:o,filter:s,convInfo:m,backend:e});else{let h=new Od(m);f=e.runWebGLProgram(h,[o,s],\"float32\")}let d=rt({inputs:{x:f},backend:e,attrs:{shape:m.outShape}});return e.disposeIntermediateTensorInfo(f),d}var J3={kernelName:Qo,backendName:\"webgl\",kernelFunc:Hst};var RI=class{constructor(t){this.variableNames=[\"x\",\"dy\"],this.outputShape=t.filterShape;let e=t.strideHeight,n=t.strideWidth,o=t.padInfo.top,s=t.padInfo.left,i=t.dataFormat===\"channelsLast\";this.userCode=`\n void main() {\n ivec4 coords = getOutputCoords();\n int wR = coords.x;\n int wC = coords.y;\n int d1 = coords.z;\n int d2 = coords.w;\n\n // Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).\n // ? = to be determined. : = across all values in that axis.\n float dotProd = 0.0;\n\n for (int b = 0; b < ${t.batchSize}; b++) {\n for (int yR = 0; yR < ${t.outHeight}; yR++) {\n int xR = wR + yR * ${e} - ${o};\n\n if (xR < 0 || xR >= ${t.inHeight}) {\n continue;\n }\n\n for (int yC = 0; yC < ${t.outWidth}; yC++) {\n int xC = wC + yC * ${n} - ${s};\n\n if (xC < 0 || xC >= ${t.inWidth}) {\n continue;\n }\n\n ${i?`float dyValue = getDy(b, yR, yC, d2);\n float xValue = getX(b, xR, xC, d1);\n dotProd += (xValue * dyValue);`:`float dyValue = getDy(b, d2, yR, yC);\n float xValue = getX(b, d1, xR, xC);\n dotProd += (xValue * dyValue);`}\n }\n }\n }\n setOutput(dotProd);\n }\n `}},FI=class{constructor(t){this.variableNames=[\"dy\",\"W\"],this.outputShape=t.inShape;let e=t.filterHeight,n=t.filterWidth,o=t.strideHeight,s=t.strideWidth,i=t.dataFormat===\"channelsLast\",a=e-1-t.padInfo.top,u=n-1-t.padInfo.left,l=i?1:2,c=i?2:3,p=i?3:1;this.userCode=`\n const ivec2 pads = ivec2(${a}, ${u});\n\n void main() {\n ivec4 coords = getOutputCoords();\n int batch = coords[0];\n int d1 = coords[${p}];\n\n ivec2 dyCorner = ivec2(coords[${l}], coords[${c}]) - pads;\n int dyRCorner = dyCorner.x;\n int dyCCorner = dyCorner.y;\n\n // Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).\n // ? = to be determined. : = across all values in that axis.\n float dotProd = 0.0;\n for (int wR = 0; wR < ${e}; wR++) {\n float dyR = float(dyRCorner + wR) / ${o}.0;\n\n if (dyR < 0.0 || dyR >= ${t.outHeight}.0 || fract(dyR) > 0.0) {\n continue;\n }\n int idyR = int(dyR);\n\n int wRPerm = ${e} - 1 - wR;\n\n for (int wC = 0; wC < ${n}; wC++) {\n float dyC = float(dyCCorner + wC) / ${s}.0;\n\n if (dyC < 0.0 || dyC >= ${t.outWidth}.0 ||\n fract(dyC) > 0.0) {\n continue;\n }\n int idyC = int(dyC);\n\n int wCPerm = ${n} - 1 - wC;\n\n for (int d2 = 0; d2 < ${t.outChannels}; d2++) {\n\n if (${i}) {\n float xValue = getDy(batch, idyR, idyC, d2);\n float wValue = getW(wRPerm, wCPerm, d1, d2);\n dotProd += xValue * wValue;\n } else {\n float xValue = getDy(batch, d2, idyR, idyC);\n float wValue = getW(wRPerm, wCPerm, d1, d2);\n dotProd += xValue * wValue;\n }\n\n }\n }\n }\n setOutput(dotProd);\n }\n `}},OI=class{constructor(t){this.variableNames=[\"x\",\"dy\"],this.outputShape=t.filterShape;let e=t.strideDepth,n=t.strideHeight,o=t.strideWidth,s=t.padInfo.front,i=t.padInfo.top,a=t.padInfo.left;this.userCode=`\n void main() {\n ivec5 coords = getOutputCoords();\n int wF = coords.x;\n int wR = coords.y;\n int wC = coords.z;\n int d1 = coords.w;\n int d2 = coords.u;\n\n float dotProd = 0.0;\n\n for (int b = 0; b < ${t.batchSize}; b++) {\n for (int yF = 0; yF < ${t.outDepth}; yF++) {\n int xF = wF + yF * ${e} - ${s};\n\n if (xF < 0 || xF >= ${t.inDepth}) {\n continue;\n }\n\n for (int yR = 0; yR < ${t.outHeight}; yR++) {\n int xR = wR + yR * ${n} - ${i};\n\n if (xR < 0 || xR >= ${t.inHeight}) {\n continue;\n }\n\n for (int yC = 0; yC < ${t.outWidth}; yC++) {\n int xC = wC + yC * ${o} - ${a};\n\n if (xC < 0 || xC >= ${t.inWidth}) {\n continue;\n }\n\n float dyValue = getDy(b, yF, yR, yC, d2);\n float xValue = getX(b, xF, xR, xC, d1);\n dotProd += (xValue * dyValue);\n }\n }\n }\n }\n setOutput(dotProd);\n }\n `}},MI=class{constructor(t){this.variableNames=[\"dy\",\"W\"],this.outputShape=t.inShape;let e=t.filterDepth,n=t.filterHeight,o=t.filterWidth,s=t.strideDepth,i=t.strideHeight,a=t.strideWidth,u=e-1-t.padInfo.front,l=n-1-t.padInfo.top,c=o-1-t.padInfo.left;this.userCode=`\n const ivec3 pads = ivec3(${u}, ${l}, ${c});\n\n void main() {\n ivec5 coords = getOutputCoords();\n int batch = coords.x;\n int d1 = coords.u;\n\n\n ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;\n int dyFCorner = dyCorner.x;\n int dyRCorner = dyCorner.y;\n int dyCCorner = dyCorner.z;\n\n float dotProd = 0.0;\n for (int wF = 0; wF < ${e}; wF++) {\n float dyF = float(dyFCorner + wF) / ${s}.0;\n\n if (dyF < 0.0 || dyF >= ${t.outDepth}.0 || fract(dyF) > 0.0) {\n continue;\n }\n int idyF = int(dyF);\n\n int wFPerm = ${e} - 1 - wF;\n\n for (int wR = 0; wR < ${n}; wR++) {\n float dyR = float(dyRCorner + wR) / ${i}.0;\n\n if (dyR < 0.0 || dyR >= ${t.outHeight}.0 ||\n fract(dyR) > 0.0) {\n continue;\n }\n int idyR = int(dyR);\n\n int wRPerm = ${n} - 1 - wR;\n\n for (int wC = 0; wC < ${o}; wC++) {\n float dyC = float(dyCCorner + wC) / ${a}.0;\n\n if (dyC < 0.0 || dyC >= ${t.outWidth}.0 ||\n fract(dyC) > 0.0) {\n continue;\n }\n int idyC = int(dyC);\n\n int wCPerm = ${o} - 1 - wC;\n\n for (int d2 = 0; d2 < ${t.outChannels}; d2++) {\n float xValue = getDy(batch, idyF, idyR, idyC, d2);\n float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);\n dotProd += xValue * wValue;\n }\n }\n }\n }\n setOutput(dotProd);\n }\n `}};function qst(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,dy:s}=t,{strides:i,pad:a,dataFormat:u,dimRoundingMode:l,filterShape:c}=n,p=S.convertConv2DDataFormat(u),m=S.computeConv2DInfo(o.shape,c,i,1,a,l,!1,p),f=new RI(m);return e.runWebGLProgram(f,[o,s],\"float32\")}var Q3={kernelName:Dp,backendName:\"webgl\",kernelFunc:qst};var PI=class{constructor(t){this.variableNames=[\"dy\",\"W\"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:\"strides\",type:\"vec2\"}],this.outputShape=t.inShape,this.enableShapeUniforms=he(this.outputShape.length);let e=t.filterHeight,n=t.filterWidth,o=e-1-t.padInfo.top,s=n-1-t.padInfo.left;this.userCode=`\n const ivec2 pads = ivec2(${o}, ${s});\n\n void main() {\n ivec4 coords = getOutputCoords();\n int batch = coords[0];\n int d1 = coords[3];\n\n ivec2 dyCorner = ivec2(coords[1], coords[2]) - pads;\n int dyRCorner = dyCorner.x;\n int dyCCorner = dyCorner.y;\n\n vec4 result = vec4(0.);\n for (int wR = 0; wR < ${e}; wR++) {\n float dyR = float(dyRCorner + wR) / strides[0];\n if (dyR < 0.0 || dyR >= ${t.outHeight}.0 || fract(dyR) > 0.0) {\n continue;\n }\n int idyR = int(dyR);\n int wRPerm = ${e} - 1 - wR;\n\n for (int wC = 0; wC < ${n}; wC++) {\n int wCPerm = ${n} - 1 - wC;\n\n float dyC = float(dyCCorner + wC) / strides[1];\n bool idyCVal = (dyC >= 0.0) && (dyC < ${t.outWidth}.0)\n && (fract(dyC) == 0.0);\n int idyC = int(dyC);\n\n float dyC2 = float(dyCCorner + wC + 1) / strides[1];\n bool idyCVal2 = (dyC2 >= 0.0) && (dyC2 < ${t.outWidth}.0)\n && (fract(dyC2) == 0.0);\n int idyC2 = int(dyC2);\n\n if (idyCVal && idyCVal2) {\n for (int d2 = 0; d2 < ${t.outChannels}; d2 += 2) {\n vec4 wValue = getW(wRPerm, wCPerm, d1, d2);\n vec4 dySample = getDy(batch, idyR, idyC, d2);\n vec4 dySample2 = (idyC / 2 == idyC2 / 2) ?\n dySample : getDy(batch, idyR, idyC2, d2);\n\n vec2 dyValue = mod(float(idyC), 2.) == 0. ?\n dySample.xy : dySample.zw;\n result.xy += vec2(dot(dyValue, wValue.xy),\n dot(dyValue, wValue.zw));\n\n dyValue = mod(float(idyC2), 2.) == 0. ?\n dySample2.xy : dySample2.zw;\n result.zw += vec2(dot(dyValue, wValue.xy),\n dot(dyValue, wValue.zw));\n }\n } else if (idyCVal) {\n for (int d2 = 0; d2 < ${t.outChannels}; d2 += 2) {\n vec4 wValue = getW(wRPerm, wCPerm, d1, d2);\n vec4 dySample = getDy(batch, idyR, idyC, d2);\n vec2 dyValue = mod(float(idyC), 2.) == 0. ?\n dySample.xy : dySample.zw;\n result.xy += vec2(dot(dyValue, wValue.xy),\n dot(dyValue, wValue.zw));\n }\n } else if (idyCVal2) {\n for (int d2 = 0; d2 < ${t.outChannels}; d2 += 2) {\n vec4 wValue = getW(wRPerm, wCPerm, d1, d2);\n vec4 dySample = getDy(batch, idyR, idyC2, d2);\n vec2 dyValue = mod(float(idyC2), 2.) == 0. ?\n dySample.xy : dySample.zw;\n result.zw += vec2(dot(dyValue, wValue.xy),\n dot(dyValue, wValue.zw));\n }\n }\n }\n }\n setOutput(result);\n }\n `}};function Kst(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,filter:s}=t,{inputShape:i,strides:a,pad:u,dataFormat:l,dimRoundingMode:c}=n,p=S.convertConv2DDataFormat(l),m=S.computeConv2DInfo(i,s.shape,a,1,u,c,!1,p);if(L().getBool(\"WEBGL_PACK_CONV2DTRANSPOSE\")&&p===\"channelsLast\"){let f=[[m.strideHeight,m.strideWidth]],d=new PI(m);return e.runWebGLProgram(d,[o,s],\"float32\",f)}else{let f=new FI(m);return e.runWebGLProgram(f,[o,s],\"float32\")}}var tB={kernelName:ts,backendName:\"webgl\",kernelFunc:Kst};function jst(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s}=t,{strides:i,pad:a,dilations:u}=n,l=S.computeConv3DInfo(o.shape,s.shape,i,u,a),c=new _I(l);return e.runWebGLProgram(c,[o,s],\"float32\")}var eB={kernelName:es,backendName:\"webgl\",kernelFunc:jst};function Xst(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,dy:s}=t,{strides:i,pad:a,filterShape:u}=n,l=S.computeConv3DInfo(o.shape,u,i,1,a),c=new OI(l);return e.runWebGLProgram(c,[o,s],\"float32\")}var rB={kernelName:Ra,backendName:\"webgl\",kernelFunc:Xst};function Yst(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,filter:s}=t,{pad:i,strides:a,inputShape:u}=n,l=S.computeConv3DInfo(u,s.shape,a,1,i),c=new MI(l);return e.runWebGLProgram(c,[o,s],\"float32\")}var nB={kernelName:Fa,backendName:\"webgl\",kernelFunc:Yst};var Zst=Po+`\n return cos(x);\n`,Jst=`\n vec4 result = cos(x);\n bvec4 isNaN = isnan(x);\n ${Xn}\n return result;\n`,Qst=It({opSnippet:Zst,packedOpSnippet:Jst}),oB={kernelName:rs,backendName:\"webgl\",kernelFunc:Qst};var tit=`\n float e2x = exp(-x);\n return (e2x + 1.0 / e2x) / 2.0;\n`,eit=It({opSnippet:tit}),sB={kernelName:ns,backendName:\"webgl\",kernelFunc:eit};var LI=class{constructor(t,e,n,o,s){this.variableNames=[\"Image\",\"Boxes\",\"BoxInd\"],this.outputShape=[];let[i,a,u,l]=t,[c]=e,[p,m]=n;this.outputShape=[c,p,m,l];let f=o===\"bilinear\"?1:0,[d,h]=[`${a-1}.0`,`${u-1}.0`],[g,x,b]=p>1?[`${(a-1)/(p-1)}`,\"(y2-y1) * height_ratio\",`y1*${d} + float(y)*(height_scale)`]:[\"0.0\",\"0.0\",`0.5 * (y1+y2) * ${d}`],[w,I,N]=m>1?[`${(u-1)/(m-1)}`,\"(x2-x1) * width_ratio\",`x1*${h} + float(x)*(width_scale)`]:[\"0.0\",\"0.0\",`0.5 * (x1+x2) * ${h}`];this.userCode=`\n const float height_ratio = float(${g});\n const float width_ratio = float(${w});\n void main() {\n ivec4 coords = getOutputCoords();\n int b = coords[0];\n int y = coords[1];\n int x = coords[2];\n int d = coords[3];\n\n // get box vals\n float y1 = getBoxes(b,0);\n float x1 = getBoxes(b,1);\n float y2 = getBoxes(b,2);\n float x2 = getBoxes(b,3);\n\n // get image in batch index\n int bInd = round(getBoxInd(b));\n if(bInd < 0 || bInd >= ${i}) {\n return;\n }\n\n float height_scale = ${x};\n float width_scale = ${I};\n\n float in_y = ${b};\n if( in_y < 0.0 || in_y > ${d} ) {\n setOutput(float(${s}));\n return;\n }\n float in_x = ${N};\n if( in_x < 0.0 || in_x > ${h} ) {\n setOutput(float(${s}));\n return;\n }\n\n vec2 sourceFracIndexCR = vec2(in_x,in_y);\n if(${f} == 1) {\n // Compute the four integer indices.\n ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);\n ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));\n\n float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);\n float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);\n float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);\n float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);\n\n vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);\n\n float top = topLeft + (topRight - topLeft) * fracCR.x;\n float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;\n float newValue = top + (bottom - top) * fracCR.y;\n setOutput(newValue);\n } else {\n // Compute the coordinators of nearest neighbor point.\n ivec2 sourceNearestCR = ivec2(floor(\n sourceFracIndexCR + vec2(0.5,0.5)));\n float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);\n setOutput(newValue);\n }\n }\n `}};var rit=r=>{let{inputs:t,backend:e,attrs:n}=r,{image:o,boxes:s,boxInd:i}=t,{cropSize:a,method:u,extrapolationValue:l}=n,c=new LI(o.shape,s.shape,a,u,l);return e.runWebGLProgram(c,[o,s,i],\"float32\")},iB={kernelName:Ma,backendName:\"webgl\",kernelFunc:rit};var gp;(function(r){r.Prod=\"*\",r.Sum=\"+\"})(gp||(gp={}));var dg=class{constructor(t,e,n,o){this.op=t,this.outputShape=e,this.variableNames=[\"x\"],this.customUniforms=[{name:\"index\",type:\"float\"}];let s=this.outputShape.length,i=this.op===gp.Prod?\"1.0\":\"0.0\",a=n?i:`getX(${aB(s,\"coords\",this.op)})`,u=this.outputShape[this.outputShape.length-1],l=\"\",c=\"\";n?(l=o?`end != ${u-1}`:\"end != 0\",c=o?\"end + 1\":\"end - 1\"):(l=o?`end + pow2 < ${u}`:\"end >= pow2\",c=o?\"end + pow2\":\"end - pow2\"),this.userCode=`\n void main() {\n ${zt(s)} coords = getOutputCoords();\n int end = ${lB(s,\"coords\",this.op)};\n float val = ${a};\n int pow2 = int(pow(2.0, index));\n if (${l}) {\n int idx = ${c};\n ${lB(s,\"coords\",this.op)} = idx;\n val ${this.op}= getX(${aB(s,\"coords\",this.op)});\n }\n setOutput(val);\n }\n `}};function aB(r,t,e){if(r===1)return`${t}`;if(r===2)return`${t}.x, ${t}.y`;if(r===3)return`${t}.x, ${t}.y, ${t}.z`;if(r===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw new Error(`Cumulative ${e} for rank ${r} is not yet supported`)}function lB(r,t,e){if(r===1)return`${t}`;if(r===2)return`${t}.y`;if(r===3)return`${t}.z`;if(r===4)return`${t}.w`;throw new Error(`Cumulative ${e} for rank ${r} is not yet supported`)}function zI(r,t,e,n,o,s){let i=t.shape.length,a=S.getAxesPermutation([n],i),u=t;a!=null&&(u=Pe({inputs:{x:t},backend:e,attrs:{perm:a}}));let l=S.getInnerMostAxes(1,i)[0];if(l!==i-1)throw new Error(`WebGL cumprod shader expects an inner-most axis=${t.shape.length-1} but got axis=${n}`);let c=u.shape[l],p=nr({inputs:{x:u},backend:e});for(let m=0;m<=Math.ceil(Math.log2(c))-1;m++){let f=new dg(r,u.shape,!1,s),d=[[m]],h=p;p=e.runWebGLProgram(f,[p],p.dtype,d),e.disposeIntermediateTensorInfo(h)}if(o){let m=new dg(r,u.shape,o,s),f=p;p=e.runWebGLProgram(m,[p],p.dtype),e.disposeIntermediateTensorInfo(f)}if(a!=null){let m=S.getUndoAxesPermutation(a),f=Pe({inputs:{x:p},backend:e,attrs:{perm:m}});return e.disposeIntermediateTensorInfo(p),e.disposeIntermediateTensorInfo(u),f}return p}function nit(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,exclusive:i,reverse:a}=n;return zI(gp.Prod,o,e,s,i,a)}var uB={kernelName:Oa,backendName:\"webgl\",kernelFunc:nit};function oit(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,exclusive:i,reverse:a}=n;return zI(gp.Sum,o,e,s,i,a)}var cB={kernelName:os,backendName:\"webgl\",kernelFunc:oit};function sit(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,weights:s}=t,{size:i,binaryOutput:a}=n;if(o.shape.length===1){let u=e.readSync(o.dataId),l=e.readSync(s.dataId),c=tI(u,l,s.dtype,s.shape,i);return e.makeTensorInfo([i],s.dtype,c)}else if(o.shape.length===2){let u=e.bufferSync(o),l=e.bufferSync(s),c=KL(u,l,i,a);return e.makeTensorInfo(c.shape,s.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${o.shape.length}.`)}var pB={kernelName:jl,backendName:\"webgl\",kernelFunc:sit};var BI=class{constructor(t,e,n){this.variableNames=[\"x\"],this.outputShape=[],this.outputShape=t,this.blockSize=e,this.dataFormat=n,this.userCode=`\n void main() {\n ivec4 coords = getOutputCoords();\n int b = coords[0];\n int h = ${this.getHeightCoordString()};\n int w = ${this.getWidthCoordString()};\n int d = ${this.getDepthCoordString()};\n\n int in_h = h / ${e};\n int offset_h = imod(h, ${e});\n int in_w = w / ${e};\n int offset_w = imod(w, ${e});\n int offset_d = (offset_h * ${e} + offset_w) *\n ${this.getOutputDepthSize()};\n int in_d = d + offset_d;\n\n float result = ${this.getInputSamplingString()};\n setOutput(result);\n }\n `}getHeightCoordString(){return this.dataFormat===\"NHWC\"?\"coords[1]\":\"coords[2]\"}getWidthCoordString(){return this.dataFormat===\"NHWC\"?\"coords[2]\":\"coords[3]\"}getDepthCoordString(){return this.dataFormat===\"NHWC\"?\"coords[3]\":\"coords[1]\"}getOutputDepthSize(){return this.dataFormat===\"NHWC\"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat===\"NHWC\"?\"getX(b, in_h, in_w, in_d)\":\"getX(b, in_d, in_h, in_w)\"}};function iit(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{blockSize:s,dataFormat:i}=n,a=o.shape[0],u=i===\"NHWC\"?o.shape[1]:o.shape[2],l=i===\"NHWC\"?o.shape[2]:o.shape[3],c=i===\"NHWC\"?o.shape[3]:o.shape[1],p=u*s,m=l*s,f=c/(s*s),d=i===\"NHWC\"?[a,p,m,f]:[a,f,p,m],h=new BI(d,s,i);return e.runWebGLProgram(h,[o],o.dtype)}var mB={kernelName:Pa,backendName:\"webgl\",kernelFunc:iit};var Pd=class{constructor(t,e=!1,n=null,o=!1,s=!1){this.variableNames=[\"x\",\"W\"],this.customUniforms=[{name:\"pads\",type:\"ivec2\"},{name:\"strides\",type:\"ivec2\"},{name:\"dilations\",type:\"ivec2\"},{name:\"inDims\",type:\"ivec2\"}],this.outputShape=t.outShape,this.enableShapeUniforms=he(this.outputShape.length);let i=t.filterHeight,a=t.filterWidth,u=t.outChannels/t.inChannels,l=\"\",c=\"\";n&&(o?l=`float activation(float a) {\n float b = getPreluActivationWeightsAtOutCoords();\n ${n}\n }`:s?l=`float activation(float a) {\n float b = getLeakyreluAlphaAtOutCoords();\n ${n}\n }`:l=`\n float activation(float x) {\n ${n}\n }\n `,c=\"result = activation(result);\");let p=e?\"result += getBiasAtOutCoords();\":\"\";e&&this.variableNames.push(\"bias\"),o&&this.variableNames.push(\"preluActivationWeights\"),s&&this.variableNames.push(\"leakyreluAlpha\"),this.userCode=`\n ${l}\n\n void main() {\n ivec4 coords = getOutputCoords();\n int batch = coords.x;\n ivec2 xRCCorner = coords.yz * strides - pads;\n int d2 = coords.w;\n int d1 = d2 / ${u};\n int q = d2 - d1 * ${u};\n\n int xRCorner = xRCCorner.x;\n int xCCorner = xRCCorner.y;\n\n // Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).\n // ? = to be determined. : = across all values in that axis.\n float dotProd = 0.0;\n // TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.\n for (int wR = 0; wR < ${i}; wR++) {\n int xR = xRCorner + wR * dilations[0];\n\n if (xR < 0 || xR >= inDims[0]) {\n continue;\n }\n\n for (int wC = 0; wC < ${a}; wC++) {\n int xC = xCCorner + wC * dilations[1];\n\n if (xC < 0 || xC >= inDims[1]) {\n continue;\n }\n\n float xVal = getX(batch, xR, xC, d1);\n float wVal = getW(wR, wC, d1, q);\n dotProd += xVal * wVal;\n }\n }\n\n float result = dotProd;\n ${p}\n ${c}\n setOutput(result);\n }\n `}};var Ld=class{constructor(t,e=!1,n=null,o=!1,s=!1){this.variableNames=[\"x\",\"W\"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:\"pads\",type:\"ivec2\"},{name:\"strides\",type:\"ivec2\"},{name:\"dilations\",type:\"ivec2\"},{name:\"inDims\",type:\"ivec2\"}],this.outputShape=t.outShape,this.enableShapeUniforms=he(this.outputShape.length);let i=t.outChannels/t.inChannels,a=t.padInfo.left,u=t.strideWidth,l=t.dilationWidth,c=t.filterHeight,p=t.filterWidth,m=p,f=`\n int xR; int xC; int xCOffset;\n vec4 wTexel; vec4 previous; vec4 final;`;for(let x=0;x=0 && xR < inDims[0]) {\n `;for(let x=0;x<(m+1)/2;x++){let b=x*2;if(f+=`\n xC = xCCorner + ${b*l};\n `,u===1){if(b= 0 && xCOffset < inDims[1] && xTexelC${b}Ready == 0) {\n xTexelC${b} = getX(batch, xR, xCOffset, d1);\n\n // Need to manually clear unused channels in case\n // we're reading from recycled texture.\n if (xCOffset + 1 >= inDims[1]) {\n xTexelC${b}.zw = vec2(0.0);\n }\n xTexelC${b}Ready = 1;\n }\n `,l===1&&b>0?f+=`\n xC${b} = vec4(xTexelC${b-2}.zw, xTexelC${b}.xy);\n `:f+=`\n xCOffset = xC + 1 - 2;\n\n if (xCOffset >= 0 && xCOffset < inDims[1]) {\n previous = getX(batch, xR, xCOffset, d1);\n\n // Need to manually clear unused channels in case\n // we're reading from recycled texture.\n if (xCOffset + 1 >= inDims[1]) {\n previous.zw = vec2(0.0);\n }\n\n xC${b} = vec4(previous.zw, xTexelC${b}.xy);\n } else {\n xC${b} = vec4(0.0, 0.0, xTexelC${b}.xy);\n }\n `):f+=`\n if (xC >= 0 && xC < inDims[1] && xTexelC${b}Ready == 0) {\n xTexelC${b} = getX(batch, xR, xC, d1);\n if (xC + 1 >= inDims[1]) {\n xTexelC${b}.zw = vec2(0.0);\n }\n xTexelC${b}Ready = 1;\n }\n\n xC${b} = xTexelC${b};\n `,b+1= 0 && xCOffset < inDims[1] && xTexelC${b+1}Ready == 0) {\n xTexelC${b+1} = getX(batch, xR, xCOffset, d1);\n\n // Need to manually clear unused channels in case\n // we're reading from recycled texture.\n if (xCOffset + 1 >= inDims[1]) {\n xTexelC${b+1}.zw = vec2(0.0);\n }\n xTexelC${b+1}Ready = 1;\n }\n `,l>1?f+=`\n xCOffset -= 2;\n if (xCOffset >= 0 && xCOffset < inDims[1]) {\n previous = getX(batch, xR, xCOffset, d1);\n xC${b+1} = vec4(previous.zw, xTexelC${b+1}.xy);\n } else {\n xC${b+1} = vec4(0.0, 0.0, xTexelC${b+1}.xy);\n }\n `:f+=`\n xC${b+1} = vec4(xTexelC${b}.zw, xTexelC${b+1}.xy);\n `):w===1?f+=`\n xC${b+1} = xTexelC${b};\n `:f+=`\n xCOffset = xC + ${w};\n\n if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b+1}Ready == 0) {\n xTexelC${b+1} = getX(batch, xR, xCOffset, d1);\n if (xCOffset + 1 >= inDims[1]) {\n xTexelC${b+1}.zw = vec2(0.0);\n }\n xTexelC${b+1}Ready = 1;\n }\n\n xC${b+1} = xTexelC${b+1};\n `}}else b= 0 && xCOffset < inDims[1] && xTexelC${b}Ready == 0) {\n xTexelC${b} = getX(batch, xR, xCOffset, d1);\n // Need to manually clear unused channels in case\n // we're reading from recycled texture.\n if (xCOffset + 1 >= inDims[1]) {\n xTexelC${b}.zw = vec2(0.0);\n }\n xTexelC${b}Ready = 1;\n }\n\n if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${b+1}Ready == 0) {\n xTexelC${b+1} = getX(batch, xR, xC + 1, d1);\n // Need to manually clear unused channels in case\n // we're reading from recycled texture.\n if (xC + 2 >= inDims[1]) {\n xTexelC${b+1}.zw = vec2(0.0);\n }\n xTexelC${b+1}Ready = 1;\n }\n\n xC${b} = vec4(xTexelC${b}.zw, xTexelC${b+1}.zw);\n `,b+1= 0 && xCOffset < inDims[1]) {\n final = getX(batch, xR, xCOffset, d1);\n }\n xC${b+1} = vec4(xTexelC${b+1}.xy, final.xy);\n `)):(f+=`\n if(xC >= 0 && xC < inDims[1] && xTexelC${b}Ready == 0) {\n xTexelC${b} = getX(batch, xR, xC, d1);\n if (xC + 1 >= inDims[1]) {\n xTexelC${b}.zw = vec2(0.0);\n }\n xTexelC${b}Ready = 1;\n }\n\n xCOffset = xC + strides[1];\n if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b+1}Ready == 0) {\n xTexelC${b+1} = getX(batch, xR, xCOffset, d1);\n if (xCOffset + 1 >= inDims[1]) {\n xTexelC${b+1}.zw = vec2(0.);\n }\n xTexelC${b+1}Ready = 1;\n }\n\n xC${b} = vec4(\n xTexelC${b}.xy, xTexelC${b+1}.xy);\n `,b+1`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let p=S.computeConv2DInfo(o.shape,s.shape,i,c,a,l,!0),m;L().getBool(\"WEBGL_PACK_DEPTHWISECONV\")&&p.strideWidth<=2&&p.outChannels/p.inChannels===1?m=new Ld(p):m=new Pd(p);let f=[[p.padInfo.top,p.padInfo.left],[p.strideHeight,p.strideWidth],[p.dilationHeight,p.dilationWidth],[p.inHeight,p.inWidth]];return e.runWebGLProgram(m,[o,s],\"float32\",f)}var fB={kernelName:ss,backendName:\"webgl\",kernelFunc:ait};var VI=class{constructor(t){this.variableNames=[\"x\",\"dy\"],this.outputShape=t.filterShape;let e=t.strideHeight,n=t.strideWidth,o=t.padInfo.top,s=t.padInfo.left,i=t.outChannels/t.inChannels;this.userCode=`\n void main() {\n ivec4 coords = getOutputCoords();\n int wR = coords.x;\n int wC = coords.y;\n int d1 = coords.z;\n int dm = coords.w;\n int d2 = d1 * ${i} + dm;\n\n float dotProd = 0.0;\n\n // TO DO: Vec4 over the batch size\n for (int b = 0; b < ${t.batchSize}; b++) {\n for (int yR = 0; yR < ${t.outHeight}; yR++) {\n int xR = wR + yR * ${e} - ${o};\n\n if (xR < 0 || xR >= ${t.inHeight}) {\n continue;\n }\n\n for (int yC = 0; yC < ${t.outWidth}; yC++) {\n int xC = wC + yC * ${n} - ${s};\n\n if (xC < 0 || xC >= ${t.inWidth}) {\n continue;\n }\n\n float dyValue = getDy(b, yR, yC, d2);\n float xValue = getX(b, xR, xC, d1);\n dotProd += (xValue * dyValue);\n }\n }\n }\n setOutput(dotProd);\n }\n `}},GI=class{constructor(t){this.variableNames=[\"dy\",\"W\"],this.outputShape=t.inShape;let e=t.filterHeight,n=t.filterWidth,o=t.strideHeight,s=t.strideWidth,i=e-1-t.padInfo.top,a=n-1-t.padInfo.left,u=t.outChannels/t.inChannels;this.userCode=`\n const ivec2 pads = ivec2(${i}, ${a});\n\n void main() {\n ivec4 coords = getOutputCoords();\n int batch = coords[0];\n int d1 = coords[3];\n ivec2 dyCorner = coords.yz - pads;\n int dyRCorner = dyCorner.x;\n int dyCCorner = dyCorner.y;\n\n float dotProd = 0.0;\n\n for (int wR = 0; wR < ${e}; wR++) {\n float dyR = float(dyRCorner + wR) / ${o}.0;\n\n if (dyR < 0.0 || dyR >= ${t.outHeight}.0 || fract(dyR) > 0.0) {\n continue;\n }\n int idyR = int(dyR);\n\n int wRPerm = ${e} - 1 - wR;\n\n for (int wC = 0; wC < ${n}; wC++) {\n float dyC = float(dyCCorner + wC) / ${s}.0;\n\n if (dyC < 0.0 || dyC >= ${t.outWidth}.0 ||\n fract(dyC) > 0.0) {\n continue;\n }\n int idyC = int(dyC);\n\n int wCPerm = ${n} - 1 - wC;\n\n // TO DO: Vec4 over the channelMul\n for (int dm = 0; dm < ${u}; dm++) {\n int d2 = d1 * ${u} + dm;\n float xValue = getDy(batch, idyR, idyC, d2);\n float wValue = getW(wRPerm, wCPerm, d1, dm);\n dotProd += xValue * wValue;\n }\n }\n }\n setOutput(dotProd);\n }\n `}};function lit(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,dy:s}=t,{strides:i,dilations:a,pad:u,dimRoundingMode:l,filterShape:c}=n,p=S.computeConv2DInfo(o.shape,c,i,a,u,l,!0),m=new VI(p);return e.runWebGLProgram(m,[o,s],\"float32\")}var dB={kernelName:$p,backendName:\"webgl\",kernelFunc:lit};function uit(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,filter:s}=t,{strides:i,dilations:a,pad:u,dimRoundingMode:l,inputShape:c}=n,p=S.computeConv2DInfo(c,s.shape,i,a,u,l,!0),m=new GI(p);return e.runWebGLProgram(m,[o,s],\"float32\")}var hB={kernelName:Rp,backendName:\"webgl\",kernelFunc:uit};var WI=class{constructor(t){this.variableNames=[\"X\"],this.outputShape=[t,t],this.userCode=`\n void main() {\n ivec2 coords = getOutputCoords();\n float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;\n setOutput(val);\n }\n `}};function cit(r){let{inputs:t,backend:e}=r,{x:n}=t,o=[...n.shape,...n.shape],s=y.sizeFromShape(n.shape),i=rt({inputs:{x:n},backend:e,attrs:{shape:[s]}}),a=new WI(s),u=e.runWebGLProgram(a,[i],i.dtype),l=rt({inputs:{x:u},backend:e,attrs:{shape:o}});return e.disposeIntermediateTensorInfo(i),e.disposeIntermediateTensorInfo(u),l}var gB={kernelName:Xl,backendName:\"webgl\",kernelFunc:cit};var UI=class{constructor(t){this.variableNames=[\"x\",\"W\"],this.outputShape=t.outShape;let{inHeight:e,inWidth:n,padInfo:o,strideHeight:s,strideWidth:i,filterHeight:a,filterWidth:u,dilationHeight:l,dilationWidth:c}=t,{top:p,left:m}=o;this.userCode=`\n const ivec2 strides = ivec2(${s}, ${i});\n const ivec2 pads = ivec2(${p}, ${m});\n const float neg_infinity = -3.4e38;\n\n void main() {\n ivec4 coords = getOutputCoords();\n int batch = coords.x;\n int d1 = coords.w;\n ivec2 outTopLeftCorner =\n coords.yz * strides - pads;\n int hBeg = outTopLeftCorner.x;\n int wBeg = outTopLeftCorner.y;\n\n float curVal = neg_infinity;\n for (int h = 0; h < ${a}; h++) {\n int hIn = hBeg + h * ${l};\n\n if (hIn >= 0 && hIn < ${e}) {\n for (int w = 0; w < ${u}; w++) {\n int wIn = wBeg + w * ${c};\n\n if (wIn >= 0 && wIn < ${n}) {\n float xVal = getX(batch, hIn, wIn, d1);\n float wVal = getW(h, w, d1);\n\n float val = xVal + wVal;\n if (val > curVal) {\n curVal = val;\n }\n }\n }\n }\n }\n\n float result = curVal;\n setOutput(result);\n }\n `}};function pit(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s}=t,{strides:i,pad:a,dilations:u}=n,l=S.computeDilation2DInfo(o.shape,s.shape,i,a,\"NHWC\",u),c,p=new UI(l);c=e.runWebGLProgram(p,[o,s],\"float32\");let m=rt({inputs:{x:c},backend:e,attrs:{shape:l.outShape}});return e.disposeIntermediateTensorInfo(c),m}var xB={kernelName:is,backendName:\"webgl\",kernelFunc:pit};function mit(r){let{inputs:t,backend:e,attrs:n}=r,{equation:o}=n,s=t,{allDims:i,summedDims:a,idDims:u}=S.decodeEinsumEquation(o,s.length);S.checkEinsumDimSizes(i.length,u,s);let{path:l,steps:c}=S.getEinsumComputePath(a,u),p=c.length,m=null,f=i.length,d=[];for(let h=0;h=0&&(m=fp({inputs:{x:m},backend:e,attrs:{axis:l[h]-(i.length-f),keepDims:!1}}),d.push(m)),f--)}for(let h of d)h!==m&&e.disposeIntermediateTensorInfo(h);return m}var yB={kernelName:Fp,backendName:\"webgl\",kernelFunc:mit};var fit=\"return (x >= 0.0) ? x : (exp(x) - 1.0);\",dit=`\n vec4 result;\n\n result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);\n result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);\n result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);\n result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);\n\n return result;\n`,hit=It({opSnippet:fit,packedOpSnippet:dit}),bB={kernelName:ls,backendName:\"webgl\",kernelFunc:hit};var git=\"return (b >= 0.0) ? a : a * (b + 1.0);\",xit=`\n vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));\n return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));\n`,yit=r=>{let{inputs:t,backend:e}=r,{dy:n,y:o}=t,s=L().getBool(\"WEBGL_PACK_BINARY_OPERATIONS\")?new jn(xit,n.shape,o.shape):new $n(git,n.shape,o.shape);return e.runWebGLProgram(s,[n,o],n.dtype)},wB={kernelName:La,backendName:\"webgl\",kernelFunc:yit};var bit=`\n return vec4(equal(a, b));\n`,wit=\"return float(a == b);\",Iit=ce({opSnippet:wit,packedOpSnippet:bit,dtype:\"bool\",cpuKernelImpl:JL}),IB={kernelName:za,backendName:\"webgl\",kernelFunc:Iit};var Cit=`\n // Error function is calculated approximately with elementary function.\n // See \"Handbook of Mathematical Functions with Formulas,\n // Graphs, and Mathematical Tables\", Abramowitz and Stegun.\n float p = ${S.ERF_P};\n float a1 = ${S.ERF_A1};\n float a2 = ${S.ERF_A2};\n float a3 = ${S.ERF_A3};\n float a4 = ${S.ERF_A4};\n float a5 = ${S.ERF_A5};\n\n float sign = sign(x);\n x = abs(x);\n float t = 1.0 / (1.0 + p * x);\n return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));\n`,vit=It({opSnippet:Cit}),CB={kernelName:us,backendName:\"webgl\",kernelFunc:vit};var Sit=Po+`\n return exp(x);\n`,Nit=`\n vec4 result = exp(x);\n bvec4 isNaN = isnan(x);\n result.r = isNaN.r ? x.r : result.r;\n result.g = isNaN.g ? x.g : result.g;\n result.b = isNaN.b ? x.b : result.b;\n result.a = isNaN.a ? x.a : result.a;\n\n return result;\n`,z1=It({opSnippet:Sit,packedOpSnippet:Nit,cpuKernelImpl:QL,dtype:\"float32\"}),vB={kernelName:cs,backendName:\"webgl\",kernelFunc:z1};function HI(r){let{inputs:t,attrs:e,backend:n}=r,{dim:o}=e,{input:s}=t,i=s.shape.length,a=s.shape.slice(),u=o;return o<0&&(y.assert(-(i+1)<=o,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),u=i+o+1),a.splice(u,0,1),rt({inputs:{x:s},backend:n,attrs:{shape:a}})}var SB={kernelName:Mi,backendName:\"webgl\",kernelFunc:HI};var NB=\"return exp(x) - 1.0;\",kit=It({opSnippet:NB,packedOpSnippet:NB,cpuKernelImpl:tz}),kB={kernelName:ps,backendName:\"webgl\",kernelFunc:kit};var hg=class{constructor(t,e,n){this.variableNames=[\"real\",\"imag\"];let o=e[1];this.outputShape=e;let s=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,i=n?`${o}.0`:\"1.0\",a;if(t===\"real\")a=\"return real * expR - imag * expI;\";else if(t===\"imag\")a=\"return real * expI + imag * expR;\";else throw new Error(`FFT component must be either \"real\" or \"imag\", got ${t}.`);this.userCode=`\n const float exponentMultiplier = ${s};\n\n float unaryOpComplex(float real, float expR, float imag, float expI) {\n ${a}\n }\n\n float mulMatDFT(int batch, int index) {\n float indexRatio = float(index) / float(${o});\n float exponentMultiplierTimesIndexRatio =\n exponentMultiplier * indexRatio;\n\n float result = 0.0;\n\n for (int i = 0; i < ${o}; i++) {\n // x = (-2|2 * PI / N) * index * i;\n float x = exponentMultiplierTimesIndexRatio * float(i);\n float expR = cos(x);\n float expI = sin(x);\n float real = getReal(batch, i);\n float imag = getImag(batch, i);\n\n result +=\n unaryOpComplex(real, expR, imag, expI) / ${i};\n }\n\n return result;\n }\n\n void main() {\n ivec2 coords = getOutputCoords();\n setOutput(mulMatDFT(coords[0], coords[1]));\n }\n `}};function qI(r,t,e){let n=e.texData.get(r.dataId),o=y.sizeFromShape(r.shape),s=r.shape[r.shape.length-1],i=o/s,a=rt({inputs:{x:r},backend:e,attrs:{shape:[i,s]}}),u=a.shape,l=new hg(\"real\",u,t),c=new hg(\"imag\",u,t),p=[{dataId:n.complexTensorInfos.real.dataId,dtype:n.complexTensorInfos.real.dtype,shape:u},{dataId:n.complexTensorInfos.imag.dataId,dtype:n.complexTensorInfos.imag.dtype,shape:u}],m=e.runWebGLProgram(l,p,\"float32\"),f=e.runWebGLProgram(c,p,\"float32\"),d=Rn({inputs:{real:m,imag:f},backend:e});e.disposeIntermediateTensorInfo(m),e.disposeIntermediateTensorInfo(f);let h=rt({inputs:{x:d},backend:e,attrs:{shape:r.shape}});return e.disposeIntermediateTensorInfo(a),e.disposeIntermediateTensorInfo(d),h}function Tit(r){let{inputs:t,backend:e}=r,{input:n}=t;return qI(n,!1,e)}var TB={kernelName:Op,backendName:\"webgl\",kernelFunc:Tit};var KI=class{constructor(t,e){this.outputShape=[],this.customUniforms=[{name:\"value\",type:\"float\"}],this.variableNames=[\"x\"],this.outputShape=t,this.userCode=`\n void main() {\n // Input can be obtained from uniform value.\n setOutput(value);\n }\n `}};function Ll(r){let{backend:t,attrs:e}=r,{shape:n,value:o}=e,{dtype:s}=e;if(s=s||y.inferDtype(o),s===\"string\"){let i=y.getArrayFromDType(s,y.sizeFromShape(n));return i.fill(o),t.makeTensorInfo(n,s,i)}else{let i=new KI(n,o),a=[[o]];return t.runWebGLProgram(i,[],s,a)}}var _B={kernelName:Jl,backendName:\"webgl\",kernelFunc:Ll};var jI=class{constructor(t){this.variableNames=[\"Image\"],this.outputShape=[];let e=t[2];this.outputShape=t,this.userCode=`\n void main() {\n ivec4 coords = getOutputCoords();\n int x = coords[2];\n\n int coordX = ${e} - x - 1;\n float outputValue;\n if(coordX >= 0 && coordX < ${e}) {\n outputValue = getImage(coords[0], coords[1], coordX, coords[3]);\n } else {\n outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);\n }\n setOutput(outputValue);\n }\n `}};var EB={kernelName:Ba,backendName:\"webgl\",kernelFunc:({inputs:r,backend:t})=>{let{image:e}=r,n=t,o=new jI(e.shape);return n.runWebGLProgram(o,[e],e.dtype)}};var AB=\"return floor(x);\",_it=It({opSnippet:AB,packedOpSnippet:AB,cpuKernelImpl:ez}),DB={kernelName:ms,backendName:\"webgl\",kernelFunc:_it};var Eit=`\n float s = sign(a) * sign(b);\n int ia = round(a);\n int ib = round(b);\n if (ib != 0) {\n // Windows (D3D) wants guaranteed non-zero int division at compile-time.\n return float(idiv(ia, ib, s));\n } else {\n return NAN;\n }\n`,Ait=`\n ivec4 ia = round(a);\n ivec4 ib = round(b);\n bvec4 cond = notEqual(ib, ivec4(0));\n ivec4 result = ivec4(0);\n vec4 s = sign(a) * sign(b);\n\n // Windows (D3D) wants guaranteed non-zero int division at compile-time.\n if (cond[0]) {\n result[0] = idiv(ia[0], ib[0], s[0]);\n }\n if (cond[1]) {\n result[1] = idiv(ia[1], ib[1], s[1]);\n }\n if (cond[2]) {\n result[2] = idiv(ia[2], ib[2], s[2]);\n }\n if (cond[3]) {\n result[3] = idiv(ia[3], ib[3], s[3]);\n }\n return vec4(result);\n`,Dit=ce({opSnippet:Eit,packedOpSnippet:Ait,dtype:\"int32\"}),$B={kernelName:fs,backendName:\"webgl\",kernelFunc:Dit};var XI=class{constructor(t){this.variableNames=[\"A\"];let e=Ue(),[n,o]=t;this.outputShape=t,this.userCode=`\n void main() {\n ivec3 coords = getOutputCoords();\n int texR = coords[0];\n int texC = coords[1];\n int depth = coords[2];\n vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${o}.0, ${n}.0);\n\n vec4 values = ${e.texture2D}(A, uv);\n float value;\n if (depth == 0) {\n value = values.r;\n } else if (depth == 1) {\n value = values.g;\n } else if (depth == 2) {\n value = values.b;\n } else if (depth == 3) {\n value = values.a;\n }\n\n setOutput(floor(value * 255.0 + 0.5));\n }\n `}};var YI=class{constructor(t){this.variableNames=[\"A\"],this.packedInputs=!1,this.packedOutput=!0;let e=Ue(),[n,o]=t;this.outputShape=t,this.userCode=`\n void main() {\n ivec3 coords = getOutputCoords();\n int texR = coords[0];\n int texC = coords[1];\n int depth = coords[2];\n\n vec4 result = vec4(0.);\n\n for(int row=0; row<=1; row++) {\n for(int col=0; col<=1; col++) {\n texC = coords[1] + row;\n depth = coords[2] + col;\n\n vec2 uv = (vec2(texC, texR) + halfCR) /\n vec2(${o}.0, ${n}.0);\n vec4 values = ${e.texture2D}(A, uv);\n float value;\n if (depth == 0) {\n value = values.r;\n } else if (depth == 1) {\n value = values.g;\n } else if (depth == 2) {\n value = values.b;\n } else if (depth == 3) {\n value = values.a;\n }\n\n result[row * 2 + col] = floor(value * 255.0 + 0.5);\n }\n }\n\n ${e.output} = result;\n }\n `}};var RB={kernelName:th,backendName:\"webgl\",kernelFunc:$it},zd,B1=L().getBool(\"CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU\");function $it(r){let{inputs:t,backend:e,attrs:n}=r,{pixels:o}=t,{numChannels:s}=n,i=typeof HTMLVideoElement!=\"undefined\"&&o instanceof HTMLVideoElement,a=typeof HTMLImageElement!=\"undefined\"&&o instanceof HTMLImageElement,[u,l]=i?[o.videoWidth,o.videoHeight]:[o.width,o.height],c=[l,u],p=[l,u,s];if(a||i){let h=L().getBool(\"CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU\");(zd==null||h!==B1)&&(B1=h,zd=document.createElement(\"canvas\").getContext(\"2d\",{willReadFrequently:B1})),zd.canvas.width=u,zd.canvas.height=l,zd.drawImage(o,0,0,u,l),o=zd.canvas}let m=e.makeTensorInfo(c,\"int32\");e.texData.get(m.dataId).usage=Jr.PIXELS,e.gpgpu.uploadPixelDataToTexture(e.getTexture(m.dataId),o);let f=L().getBool(\"WEBGL_PACK\")?new YI(p):new XI(p),d=e.runWebGLProgram(f,[m],\"int32\");return e.disposeData(m.dataId),d}function Rit(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s,bias:i,preluActivationWeights:a}=t,{strides:u,pad:l,dataFormat:c,dilations:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=n,h=S.convertConv2DDataFormat(c),g=S.computeConv2DInfo(o.shape,s.shape,u,p,l,m,!1,h),x,b=[],w=i!=null,I=a!=null,N=f===\"leakyrelu\",E=()=>{let D=[o,s],F=(M,V)=>{if(V===\"NCHW\"&&M.shape.length===1&&M.shape[0]!==1){let G=rt({inputs:{x:M},backend:e,attrs:{shape:[M.shape[0],1,1]}});return b.push(G),G}return M};if(w&&D.push(F(i,c)),I&&D.push(F(a,c)),N){let M=e.makeTensorInfo([],\"float32\",y.createScalarValue(d,\"float32\"));D.push(M),b.push(M)}return D};if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type===\"SAME\"||g.padInfo.type===\"VALID\"))x=DI({x:o,filter:s,convInfo:g,backend:e,bias:i,activation:f,preluActivationWeights:a,leakyreluAlpha:d});else if(g.strideWidth<=2&&h===\"channelsLast\"&&L().getBool(\"WEBGL_EXP_CONV\")){let D=f?Ml(f,!0):null,F=new Md(g,w,D,I,N),M=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],V=E();x=e.runWebGLProgram(F,V,\"float32\",M)}else if(L().getBool(\"WEBGL_CONV_IM2COL\"))x=$I({x:o,filter:s,convInfo:g,backend:e,bias:i,activation:f,preluActivationWeights:a,leakyreluAlpha:d});else{let D=f?Ml(f,!1):null,F=new Od(g,w,D,I,N),M=E();x=e.runWebGLProgram(F,M,\"float32\")}let A=rt({inputs:{x},backend:e,attrs:{shape:g.outShape}});return b.push(x),b.forEach(D=>e.disposeIntermediateTensorInfo(D)),A}var FB={kernelName:Yi,backendName:\"webgl\",kernelFunc:Rit};function Fit(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s,bias:i,preluActivationWeights:a}=t,{strides:u,pad:l,dilations:c,dimRoundingMode:p,activation:m,leakyreluAlpha:f}=n,d=[],h=c;h==null&&(h=[1,1]),y.assert(S.eitherStridesOrDilationsAreOne(u,h),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${u} and dilations '${h}'`);let g=S.computeConv2DInfo(o.shape,s.shape,u,h,l,p,!0),x=L().getBool(\"WEBGL_PACK_DEPTHWISECONV\")&&g.strideWidth<=2&&g.outChannels/g.inChannels===1,b=m?Ml(m,x):null,w=[o,s],I=i!=null,N=a!=null,E=m===\"leakyrelu\";if(I&&w.push(i),N&&w.push(a),E){let M=e.makeTensorInfo([],\"float32\",y.createScalarValue(f,\"float32\"));w.push(M),d.push(M)}let A;x?A=new Ld(g,I,b,N,E):A=new Pd(g,I,b,N,E);let D=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],F=e.runWebGLProgram(A,w,\"float32\",D);return d.forEach(M=>e.disposeIntermediateTensorInfo(M)),F}var OB={kernelName:Zi,backendName:\"webgl\",kernelFunc:Fit};var ZI=class{constructor(t,e,n,o){this.sliceDim=t,this.strides=e,this.paramsShape=o,this.variableNames=[\"x\",\"indices\"],this.outputShape=n;let s=zt(n.length),i=`\n int index;`;for(let a=0;a= ${this.paramsShape[a]};\n flattenIndex += index * ${this.strides[a]};`;this.userCode=`\n void main() {\n ${s} coords = getOutputCoords();\n int flattenIndex = 0;\n bool out_of_bounds = false;\n\n ${i}\n\n setOutput(out_of_bounds ? 0.0 : getX(flattenIndex, coords[1]));\n }\n `}};function Oit(r){let{inputs:t,backend:e}=r,{params:n,indices:o}=t,s=o.shape,i=s[s.length-1],a=y.sizeFromShape(n.shape),[u,l,c,p]=S.prepareAndValidate(n,o),m=rt({inputs:{x:o},backend:e,attrs:{shape:[l,i]}}),f=rt({inputs:{x:n},backend:e,attrs:{shape:[y.sizeFromShape(n.shape)/c,c]}});if(e.shouldExecuteOnCPU([n,o])||n.dtype===\"string\"){let x=e.readSync(o.dataId),b=e.bufferSync(n),w=rz(x,b,n.dtype,l,i,c,p,n.shape,a);return e.makeTensorInfo(u,n.dtype,w.values)}let d=new ZI(i,p,[l,c],n.shape),h=e.runWebGLProgram(d,[f,m],f.dtype),g=rt({inputs:{x:h},backend:e,attrs:{shape:u}});return e.disposeIntermediateTensorInfo(m),e.disposeIntermediateTensorInfo(f),e.disposeIntermediateTensorInfo(h),g}var MB={kernelName:Va,backendName:\"webgl\",kernelFunc:Oit};var JI=class{constructor(t,e){this.variableNames=[\"A\",\"indices\"],this.outputShape=e,this.rank=e.length;let n=zt(this.rank),o=Mit(t,2);this.userCode=`\n void main() {\n ${n} resRC = getOutputCoords();\n int index = int(getIndices(resRC.x, resRC.z));\n float inBounds = (index >= 0) && (index < ${t[2]}) ? 1.0 : 0.0;\n setOutput(inBounds * getA(${o}));\n }\n `}};function Mit(r,t){let e=[\"resRC.x\",\"resRC.y\",\"resRC.z\",\"resRC.w\"],n=[];for(let o=0;o=0,()=>`GatherV2: the index value ${N} is not in [0, ${w-1}]`)}}let l=S.segment_util.collectGatherOpShapeInfo(o,s,u,a),c=y.sizeFromShape(s.shape),p=[],m=rt({inputs:{x:o},backend:e,attrs:{shape:[l.batchSize,l.outerSize,l.dimSize,l.sliceSize]}}),f=rt({inputs:{x:s},backend:e,attrs:{shape:[l.batchSize,c/l.batchSize]}});p.push(m),p.push(f);let d=[l.batchSize,l.outerSize,c/l.batchSize,l.sliceSize];if(e.shouldExecuteOnCPU([o,s])||o.dtype===\"string\"){let b=e.bufferSync(f),w=e.bufferSync(m),I=nz(w,b,d);return p.forEach(N=>e.disposeIntermediateTensorInfo(N)),e.makeTensorInfo(l.outputShape,I.dtype,I.values)}let h=new JI(m.shape,d),g=e.runWebGLProgram(h,[m,f],m.dtype);p.push(g);let x=rt({inputs:{x:g},backend:e,attrs:{shape:l.outputShape}});return p.forEach(b=>e.disposeIntermediateTensorInfo(b)),x}var PB={kernelName:Pi,backendName:\"webgl\",kernelFunc:V1};var Pit=\"return float(a > b);\",Lit=`\n return vec4(greaterThan(a, b));\n`,zit=ce({opSnippet:Pit,packedOpSnippet:Lit,cpuKernelImpl:oz,dtype:\"bool\"}),LB={kernelName:Ga,backendName:\"webgl\",kernelFunc:zit};var Bit=\"return float(a >= b);\",Vit=`\n return vec4(greaterThanEqual(a, b));\n`,Git=ce({opSnippet:Bit,packedOpSnippet:Vit,dtype:\"bool\",cpuKernelImpl:sz}),zB={kernelName:hs,backendName:\"webgl\",kernelFunc:Git};function Wit(r){let{inputs:t,backend:e}=r,{input:n}=t;return qI(n,!0,e)}var BB={kernelName:Mp,backendName:\"webgl\",kernelFunc:Wit};var Uit=\"return float(!isnan(x) && !isinf(x));\",Hit=It({opSnippet:Uit,dtype:\"bool\"}),VB={kernelName:gs,backendName:\"webgl\",kernelFunc:Hit};var qit=\"return float(isinf(x));\",Kit=It({opSnippet:qit,dtype:\"bool\"}),GB={kernelName:xs,backendName:\"webgl\",kernelFunc:Kit};var jit=\"return float(isnan(x));\",Xit=It({opSnippet:jit,dtype:\"bool\"}),WB={kernelName:ys,backendName:\"webgl\",kernelFunc:Xit};var Yit=\"return float(a < b);\",Zit=`\n return vec4(lessThan(a, b));\n`,Jit=ce({opSnippet:Yit,packedOpSnippet:Zit,cpuKernelImpl:iz,dtype:\"bool\"}),UB={kernelName:Wa,backendName:\"webgl\",kernelFunc:Jit};var Qit=\"return float(a <= b);\",tat=`\n return vec4(lessThanEqual(a, b));\n`,eat=ce({opSnippet:Qit,packedOpSnippet:tat,cpuKernelImpl:az,dtype:\"bool\"}),HB={kernelName:Ua,backendName:\"webgl\",kernelFunc:eat};function rat(r){let{backend:t,attrs:e}=r,{start:n,stop:o,num:s}=e,i=lz(n,o,s);return t.makeTensorInfo([i.length],\"float32\",i)}var qB={kernelName:Ha,backendName:\"webgl\",kernelFunc:rat};var nat=Po+`\n return x < 0.0 ? 0./0. : log(x);\n`,oat=`\n vec4 result = log(x);\n bvec4 isNaN = isnan(x);\n result.r = isNaN.r ? x.r : (x.r < 0.0 ? 0./0. : result.r);\n result.g = isNaN.g ? x.g : (x.g < 0.0 ? 0./0. : result.g);\n result.b = isNaN.b ? x.b : (x.b < 0.0 ? 0./0. : result.b);\n result.a = isNaN.a ? x.a : (x.a < 0.0 ? 0./0. : result.a);\n return result;\n`,sat=It({opSnippet:nat,packedOpSnippet:oat,cpuKernelImpl:uz}),KB={kernelName:ws,backendName:\"webgl\",kernelFunc:sat};var iat=Po+`\n return log(1.0 + x);\n`,aat=It({opSnippet:iat}),jB={kernelName:Is,backendName:\"webgl\",kernelFunc:aat};var lat=\"return float(a >= 1.0 && b >= 1.0);\",uat=`\n return vec4(\n vec4(greaterThanEqual(a, vec4(1.0))) *\n vec4(greaterThanEqual(b, vec4(1.0))));\n`,cat=ce({opSnippet:lat,packedOpSnippet:uat,dtype:\"bool\"}),XB={kernelName:qa,backendName:\"webgl\",kernelFunc:cat};var pat=\"return float(!(x >= 1.0));\",mat=It({opSnippet:pat}),YB={kernelName:Ka,backendName:\"webgl\",kernelFunc:mat};var fat=\"return float(a >= 1.0 || b >= 1.0);\",dat=`\n return min(\n vec4(greaterThanEqual(a, vec4(1.0))) +\n vec4(greaterThanEqual(b, vec4(1.0))),\n vec4(1.0));\n`,hat=ce({opSnippet:fat,packedOpSnippet:dat,dtype:\"bool\"}),ZB={kernelName:ja,backendName:\"webgl\",kernelFunc:hat};var QI=class{constructor(t,e,n,o,s){this.variableNames=[\"x\"],this.outputShape=[];let i=e,a=t[3]-1;this.outputShape=t;let u,l=`float(${n}) + float(${o}) * sum`;s===.5?u=`inversesqrt(${l})`:s===1?u=`1.0/(${l})`:u=`exp(log(${l}) * float(-${s}));`,this.userCode=`\n void main() {\n ivec4 coords = getOutputCoords();\n int b = coords[0];\n int r = coords[1];\n int c = coords[2];\n int d = coords[3];\n float x = getX(b, r, c, d);\n float sum = 0.0;\n for (int j = -${i}; j <= ${i}; j++) {\n int idx = d + j;\n if (idx >= 0 && idx <= ${a}) {\n float z = getX(b, r, c, idx);\n sum += z * z;\n }\n }\n float val = x * ${u};\n setOutput(val);\n }\n `}};var tC=class{constructor(t,e,n,o,s){this.variableNames=[\"x\"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let i=e,a=t[3]-1;this.outputShape=t;let u,l=`float(${n}) + float(${o}) * sum`;s===.5?u=`inversesqrt(${l})`:s===1?u=`1.0/(${l})`:u=`exp(log(${l}) * float(-${s}));`,this.userCode=`\n void main() {\n ivec4 coords = getOutputCoords();\n int b = coords.x;\n int r = coords.y;\n int c = coords.z;\n int d = coords.w;\n\n bool hasNextCol = d < ${this.outputShape[3]};\n bool hasNextRow = c < ${this.outputShape[2]};\n\n vec4 sum = vec4(0.);\n vec4 xFragAtOutputCoords = getX(b, r, c, d);\n\n vec4 xAtOutputCoords = vec4(\n getChannel(xFragAtOutputCoords, vec2(c, d)),\n hasNextCol ?\n getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,\n hasNextRow ?\n getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,\n (hasNextRow && hasNextCol) ?\n getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0\n );\n\n int firstChannel = d - ${i};\n vec2 cache = vec2(0.);\n if(firstChannel >= 0){\n vec4 firstChannelFrag = getX(b, r, c, firstChannel);\n cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));\n if(hasNextRow){\n cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));\n }\n }\n\n ivec2 depth = ivec2(d, d + 1);\n for (int j = - ${i}; j <= ${i}; j++) {\n ivec2 idx = depth + j;\n bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));\n bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${a}));\n\n bool depthInRange = aboveLowerBound.x && belowUpperBound.x;\n bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;\n\n if(depthInRange || depthPlusOneInRange){\n vec4 z = vec4(0.);\n vec4 xFragAtCurrentDepth;\n z.xz = cache.xy;\n if(depthPlusOneInRange && hasNextCol){\n xFragAtCurrentDepth = idx.y != d ?\n getX(b, r, c, idx.y) : xFragAtOutputCoords;\n z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));\n if(hasNextRow){\n z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));\n }\n }\n cache.xy = z.yw;\n sum += z * z;\n }\n }\n vec4 result = xAtOutputCoords * ${u};\n setOutput(result);\n }\n `}};var gat=r=>{let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{depthRadius:s,bias:i,alpha:a,beta:u}=n,l=L().getBool(\"WEBGL_PACK_NORMALIZATION\")?new tC(o.shape,s,i,a,u):new QI(o.shape,s,i,a,u);return e.runWebGLProgram(l,[o],o.dtype)},JB={kernelName:Cs,backendName:\"webgl\",kernelFunc:gat};var eC=class{constructor(t,e,n,o,s){this.variableNames=[\"inputImage\",\"outputImage\",\"dy\"],this.outputShape=[],this.outputShape=t,this.depth=t[3],this.depthRadius=e,this.bias=n,this.alpha=o,this.beta=s,this.userCode=`\n void main() {\n ivec4 coords = getOutputCoords();\n int b = coords[0];\n int r = coords[1];\n int c = coords[2];\n\n float result = 0.0;\n for (int d = 0; d < ${this.depth}; ++d) {\n int depthBegin = int(max(0.0, float(d - ${e})));\n int depthEnd = int(min(float(${this.depth}),\n float(d + ${e} + 1)));\n\n const int MIN_DEPTH_BEGIN = 0;\n const int MAX_DEPTH_END = ${this.depth};\n\n float norm = 0.0;\n for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {\n if (k < depthBegin){\n continue;\n }\n else if (k >= depthBegin && k < depthEnd) {\n norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);\n }\n else {\n break;\n }\n }\n\n norm = float(${o}) * norm + float(${n});\n\n for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){\n if (k < depthBegin){\n continue;\n }\n else if (k >= depthBegin && k < depthEnd){\n float dyi = -2.0 * float(${o})\n * float(${s})\n * getInputImage(b, r, c, k) * getOutputImage(b, r, c, d)\n / norm;\n if (k == d) {\n dyi += pow(norm, -1.0 * ${s});\n }\n if (k == coords[3]) {\n dyi *= getDy(b, r, c, d);\n result += dyi;\n }\n }\n else {\n break;\n }\n }\n }\n setOutput(result);\n }\n `}};var xat=r=>{let{inputs:t,backend:e,attrs:n}=r,{x:o,y:s,dy:i}=t,{depthRadius:a,bias:u,alpha:l,beta:c}=n,p=new eC(o.shape,a,u,l,c);return e.runWebGLProgram(p,[o,s,i],o.dtype)},QB={kernelName:Xa,backendName:\"webgl\",kernelFunc:xat};function tV(r,t,e,n){let o=y.sizeFromShape(t),i=y.sizeFromShape(r.shape)/o,a=rt({inputs:{x:r},attrs:{shape:[i,o]},backend:n}),u=Yn(a,r.dtype,\"max\",n),l=rt({inputs:{x:u},attrs:{shape:e},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(u),l}function G1(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{reductionIndices:s,keepDims:i}=n,a=o.shape.length,u=y.parseAxisParam(s,o.shape),l=u,c=S.getAxesPermutation(l,a),p=c!=null,m=e.shouldExecuteOnCPU([o]),f=o;if(p){if(m){let w=e.texData.get(f.dataId).values,I=new Array(a);for(let A=0;A`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${l}'`);let c=S.computePool2DInfo(o.shape,s,i,l,a,u);if(c.filterWidth===1&&c.filterHeight===1&&y.arraysEqual(c.inShape,c.outShape))return nr({inputs:{x:o},backend:e});let p=new Ni(c,\"max\",!1);return e.runWebGLProgram(p,[o],o.dtype)}var nV={kernelName:Ns,backendName:\"webgl\",kernelFunc:Iat};function Cat(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{filterSize:s,strides:i,pad:a,dataFormat:u,dimRoundingMode:l}=n,c=[1,1,1],p=S.computePool3DInfo(o.shape,s,i,c,a,l,u),m=new qu(p,\"max\",!1);return e.runWebGLProgram(m,[o],o.dtype)}var oV={kernelName:Li,backendName:\"webgl\",kernelFunc:Cat};var rC=class{constructor(t){this.variableNames=[\"dy\",\"maxPos\"],this.outputShape=t.inShape;let e=t.strideHeight,n=t.strideWidth,o=t.dilationHeight,s=t.effectiveFilterHeight,i=t.effectiveFilterWidth,a=s-1-t.padInfo.top,u=i-1-t.padInfo.left,l=s*i-1;this.userCode=`\n const ivec2 pads = ivec2(${a}, ${u});\n\n void main() {\n ivec4 coords = getOutputCoords();\n int b = coords[0];\n int d = coords[3];\n\n ivec2 dyRCCorner = coords.yz - pads;\n int dyRCorner = dyRCCorner.x;\n int dyCCorner = dyRCCorner.y;\n\n // Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).\n // ? = to be determined. : = across all values in that axis.\n float dotProd = 0.0;\n for (int wR = 0; wR < ${s};\n wR += ${o}) {\n float dyR = float(dyRCorner + wR) / ${e}.0;\n\n if (dyR < 0.0 || dyR >= ${t.outHeight}.0 || fract(dyR) > 0.0) {\n continue;\n }\n int idyR = int(dyR);\n\n for (int wC = 0; wC < ${i}; wC++) {\n float dyC = float(dyCCorner + wC) / ${n}.0;\n\n if (dyC < 0.0 || dyC >= ${t.outWidth}.0 ||\n fract(dyC) > 0.0) {\n continue;\n }\n int idyC = int(dyC);\n\n float dyValue = getDy(b, idyR, idyC, d);\n int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d));\n\n // Get the current value, check it against the value from the\n // position matrix.\n int curPosValue = wR * ${i} + wC;\n float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);\n\n dotProd += dyValue * mask;\n }\n }\n setOutput(dotProd);\n }\n `}},nC=class{constructor(t){this.variableNames=[\"dy\",\"maxPos\"],this.outputShape=t.inShape;let e=t.strideDepth,n=t.strideHeight,o=t.strideWidth,s=t.dilationDepth,i=t.dilationHeight,a=t.dilationWidth,u=t.effectiveFilterDepth,l=t.effectiveFilterHeight,c=t.effectiveFilterWidth,p=u-1-t.padInfo.front,m=l-1-t.padInfo.top,f=c-1-t.padInfo.left,d=u*l*c-1;this.userCode=`\n const ivec3 pads = ivec3(${p}, ${m}, ${f});\n\n void main() {\n ivec5 coords = getOutputCoords();\n int batch = coords.x;\n int ch = coords.u;\n\n ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;\n int dyDCorner = dyCorner.x;\n int dyRCorner = dyCorner.y;\n int dyCCorner = dyCorner.z;\n\n // Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get\n // dx(xD, xR, xC, ch).\n // ? = to be determined. : = across all values in that axis.\n float dotProd = 0.0;\n\n for (int wD = 0; wD < ${u};\n wD += ${s}) {\n float dyD = float(dyDCorner + wD) / ${e}.0;\n\n if (dyD < 0.0 || dyD >= ${t.outDepth}.0 || fract(dyD) > 0.0) {\n continue;\n }\n int idyD = int(dyD);\n\n for (int wR = 0; wR < ${l};\n wR += ${i}) {\n float dyR = float(dyRCorner + wR) / ${n}.0;\n\n if (dyR < 0.0 || dyR >= ${t.outHeight}.0 ||\n fract(dyR) > 0.0) {\n continue;\n }\n int idyR = int(dyR);\n\n for (int wC = 0; wC < ${c};\n wC += ${a}) {\n float dyC = float(dyCCorner + wC) / ${o}.0;\n\n if (dyC < 0.0 || dyC >= ${t.outWidth}.0 ||\n fract(dyC) > 0.0) {\n continue;\n }\n int idyC = int(dyC);\n\n float dyValue = getDy(batch, idyD, idyR, idyC, ch);\n int maxPosValue = ${d} -\n int(getMaxPos(batch, idyD, idyR, idyC, ch));\n\n // Get the current value, check it against the value from the\n // position matrix.\n int curPosValue =\n wD * ${l} * ${c} +\n wR * ${c} + wC;\n float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);\n\n dotProd += dyValue * mask;\n }\n }\n }\n setOutput(dotProd);\n }\n `}};function vat(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,input:s}=t,i=s,{filterSize:a,strides:u,pad:l,dimRoundingMode:c}=n,p=[1,1,1],m=S.computePool3DInfo(i.shape,a,u,p,l,c),f=new qu(m,\"max\",!0),d=e.runWebGLProgram(f,[i],i.dtype),h=new nC(m),g=e.runWebGLProgram(h,[o,d],i.dtype);return e.disposeIntermediateTensorInfo(d),g}var sV={kernelName:tu,backendName:\"webgl\",kernelFunc:vat};function Sat(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,input:s,output:i}=t,a=s;vi([s,i],\"maxPoolGrad\");let{filterSize:u,strides:l,pad:c,dimRoundingMode:p}=n,m=S.computePool2DInfo(a.shape,u,l,1,c,p),f=!0,d=new Ni(m,\"max\",f),h=e.runWebGLProgram(d,[a],a.dtype),g=new rC(m),x=e.runWebGLProgram(g,[o,h],a.dtype);return e.disposeIntermediateTensorInfo(h),x}var iV={kernelName:Ql,backendName:\"webgl\",kernelFunc:Sat};function aV(r,t,e,n){let o=new Ni(e,\"max\",!1),s=n.runWebGLProgram(o,[r],\"float32\");o=new Ni(e,\"max\",!0,!0,t);let i=n.runWebGLProgram(o,[r],\"float32\");return[s,i]}var lV={kernelName:eu,backendName:\"webgl\",kernelFunc:({inputs:r,attrs:t,backend:e})=>{let{x:n}=r,{filterSize:o,strides:s,pad:i,includeBatchInIndex:a}=t,u=e;y.assert(n.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${n.shape.length}.`);let l=[1,1];y.assert(S.eitherStridesOrDilationsAreOne(s,l),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${l}'`);let c=S.computePool2DInfo(n.shape,o,s,l,i),[p,m]=aV(n,a,c,u);return[p,m]}};function uV(r,t,e,n){let o=y.sizeFromShape(t),i=y.sizeFromShape(r.shape)/o,a=rt({inputs:{x:r},attrs:{shape:[i,o]},backend:n}),u=Yn(a,\"float32\",\"mean\",n),l=rt({inputs:{x:u},attrs:{shape:e},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(u),l}var cV={kernelName:ks,backendName:\"webgl\",kernelFunc:({inputs:r,attrs:t,backend:e})=>{let{x:n}=r,{keepDims:o,axis:s}=t,i=e,a=n.shape.length,u=y.parseAxisParam(s,n.shape),l=u,c=S.getAxesPermutation(l,a),p=c!=null,m=i.shouldExecuteOnCPU([n]),f=[],d=n;if(p){if(m){let I=i.texData.get(d.dataId).values,N=new Array(a);for(let D=0;Dc[0]+t[p]+c[1]);let o=t.length,s=zt(o),i=e.map(c=>c[0]).join(\",\"),a=e.map((c,p)=>c[0]+t[p]).join(\",\"),u=[\"coords[0]\",\"coords[1]\",\"coords[2]\",\"coords[3]\"].slice(0,o),l=n===\"reflect\"?0:1;if(o===1){this.userCode=`\n int start = ${i};\n int end = ${a};\n\n void main() {\n int outC = getOutputCoords();\n if (outC < start) {\n outC = start * 2 - outC - ${l};\n } else if(outC >= end) {\n outC = (end - 1) * 2 - outC + ${l};\n }\n setOutput(getX(outC - start));\n }\n `;return}this.userCode=`\n ${s} start = ${s}(${i});\n ${s} end = ${s}(${a});\n\n void main() {\n ${s} outC = getOutputCoords();\n for (int i = 0; i < ${o}; i++) {\n if (outC[i] < start[i]) {\n outC[i] = start[i] * 2 - outC[i] - ${l};\n } else if(outC[i] >= end[i]) {\n outC[i] = (end[i] - 1) * 2 - outC[i] + ${l};\n }\n }\n ${s} coords = outC - start;\n setOutput(getX(${u}));\n }\n `}};var sC=class{constructor(t,e,n){this.variableNames=[\"x\"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e.map((d,h)=>d[0]+t[h]+d[1]);let o=t.length,s=zt(o),i=e.map(d=>d[0]).join(\",\"),a=e.map((d,h)=>d[0]+t[h]).join(\",\"),u=rr(\"rc\",o),l=rr(\"source\",o),c=`${u[o-1]} < ${this.outputShape[o-1]}`,p=o===1?\"source\":`vec2(${l.slice(-2).join()})`,m=n===\"reflect\"?0:1,f=\"\";if(o===1){let d=`\n ${s} source = rc;\n if (source < start) {\n source = start * 2 - source - ${m};\n } else if (source >= end) {\n source = (end - 1) * 2 - source + ${m};\n }\n source -= start;\n `;f=`\n ${s} rc = outputLoc;\n ${d}\n result[0] = getChannel(getX(${l.join()}), ${p});\n ${u[o-1]} += 1;\n if(${c}) {\n ${d}\n result[1] = getChannel(getX(${l.join()}), ${p});\n }\n `}else{let d=`\n ${s} source = rc;\n ${s} lt = ${s}(lessThan(source, start));\n ${s} gte = ${s}(greaterThanEqual(source, end));\n ${s} orig = 1 - (lt + gte);\n source = orig * source +\n lt * (start * 2 - source - ${m}) +\n gte * ((end - 1) * 2 - source + ${m});\n source -= start;\n `;f=`\n ${s} rc = outputLoc;\n ${d}\n result[0] = getChannel(getX(${l.join()}), ${p});\n ${u[o-1]} += 1;\n if(${c}) {\n ${d}\n result[1] = getChannel(getX(${l.join()}), ${p});\n }\n rc = outputLoc;\n ${u[o-2]} += 1;\n if(${u[o-2]} < ${this.outputShape[o-2]}) {\n ${d}\n result[2] = getChannel(getX(${l.join()}), ${p});\n ${u[o-1]} += 1;\n if(${c}) {\n ${d}\n result[3] = getChannel(getX(${l.join()}), ${p});\n }\n }\n `}this.userCode=`\n const ${s} start = ${s}(${i});\n const ${s} end = ${s}(${a});\n\n void main() {\n ${s} outputLoc = getOutputCoords();\n vec4 result = vec4(0.);\n ${f}\n setOutput(result);\n }\n `}};var Eat=({inputs:r,backend:t,attrs:e})=>{let{x:n}=r,{paddings:o,mode:s}=e,i=L().getBool(\"WEBGL_PACK_ARRAY_OPERATIONS\")?new sC(n.shape,o,s):new oC(n.shape,o,s);return t.runWebGLProgram(i,[n],n.dtype)},fV={kernelName:Es,backendName:\"webgl\",kernelFunc:Eat};var Aat=`if (b == 0.0) return NAN;\n return mod(a, b);`,Dat=`\n vec4 result = mod(a, b);\n bvec4 isNaN = equal(b, vec4(0.0));\n `+Xn+`\n return result;\n`,$at=ce({opSnippet:Aat,packedOpSnippet:Dat}),dV={kernelName:As,backendName:\"webgl\",kernelFunc:$at};var iC=class{constructor(t,e,n){this.variableNames=[\"probs\"],this.customUniforms=[{name:\"seed\",type:\"float\"}],this.outputShape=[t,n],this.userCode=`\n void main() {\n ivec2 coords = getOutputCoords();\n int batch = coords[0];\n\n float r = random(seed);\n float cdf = 0.0;\n\n for (int i = 0; i < ${e-1}; i++) {\n cdf += getProbs(batch, i);\n\n if (r < cdf) {\n setOutput(float(i));\n return;\n }\n }\n\n // If no other event happened, last event happened.\n setOutput(float(${e-1}));\n }\n `}};var Rat=`\nif (a == b) {\n return 1.0;\n};\nreturn a / b;`,Fat=`\n // vec4 one = vec4(equal(a, b));\n // return one + (vec4(1.0) - one) * a / b;\n vec4 result = a / b;\n if(a.x == b.x) {\n result.x = 1.;\n }\n if(a.y == b.y) {\n result.y = 1.;\n }\n if(a.z == b.z) {\n result.z = 1.;\n }\n if(a.w == b.w) {\n result.w = 1.;\n }\n\n return result;\n`,W1=ce({opSnippet:Rat,packedOpSnippet:Fat,checkOutOfBounds:!0}),hV={kernelName:as,backendName:\"webgl\",kernelFunc:W1};var gV=\"return a - b;\",U1=ce({opSnippet:gV,packedOpSnippet:gV,supportsComplex:!0,cpuKernelImpl:Rz}),xV={kernelName:ei,backendName:\"webgl\",kernelFunc:U1};function H1(r){let{inputs:t,backend:e,attrs:n}=r,{logits:o}=t,{dim:s}=n,i=y.parseAxisParam([s],o.shape),a=G1({inputs:{x:o},backend:e,attrs:{reductionIndices:i,keepDims:!1}}),u=S.expandShapeToKeepDim(a.shape,i),l=rt({inputs:{x:a},backend:e,attrs:{shape:u}}),c=U1({inputs:{a:o,b:l},backend:e}),p=z1({inputs:{x:c},backend:e}),m=fp({inputs:{x:p},backend:e,attrs:{axis:i,keepDims:!1}}),f=rt({inputs:{x:m},backend:e,attrs:{shape:u}}),d=W1({inputs:{a:p,b:f},backend:e});return e.disposeIntermediateTensorInfo(a),e.disposeIntermediateTensorInfo(l),e.disposeIntermediateTensorInfo(c),e.disposeIntermediateTensorInfo(p),e.disposeIntermediateTensorInfo(m),e.disposeIntermediateTensorInfo(f),d}var yV={kernelName:Qs,backendName:\"webgl\",kernelFunc:H1};function Oat(r){let{inputs:t,backend:e,attrs:n}=r,{logits:o}=t,{numSamples:s,seed:i,normalized:a}=n,u=a?o:H1({inputs:{logits:o},backend:e,attrs:{dim:o.shape.length-1}}),l=u.shape[0],c=u.shape[1],p=new iC(l,c,s),m=[[i]],f=e.runWebGLProgram(p,[u],\"int32\",m);return a||e.disposeIntermediateTensorInfo(u),f}var bV={kernelName:Ya,backendName:\"webgl\",kernelFunc:Oat};var Mat=xr+`\n return -x;\n`,Pat=`\n vec4 result = -x;\n bvec4 isNaN = isnan(x);\n\n result.r = isNaN.r ? x.r : result.r;\n result.g = isNaN.g ? x.g : result.g;\n result.b = isNaN.b ? x.b : result.b;\n result.a = isNaN.a ? x.a : result.a;\n\n return result;\n`;function Lat(r){let{inputs:t,backend:e}=r,{x:n}=t;if(e.shouldExecuteOnCPU([n])){let s=e.texData.get(n.dataId),[i,a]=dz(s.values,n.shape,n.dtype);return e.makeTensorInfo(a,n.dtype,i)}let o;return L().getBool(\"WEBGL_PACK_UNARY_OPERATIONS\")?o=new Dn(n.shape,Pat):o=new zr(n.shape,Mat),e.runWebGLProgram(o,[n],n.dtype)}var wV={kernelName:zi,backendName:\"webgl\",kernelFunc:Lat};var zat=Xr.nonMaxSuppressionV3Impl;function Bat(r){S.warn(\"tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead\");let{inputs:t,backend:e,attrs:n}=r,{boxes:o,scores:s}=t,{maxOutputSize:i,iouThreshold:a,scoreThreshold:u}=n,l=e.readSync(o.dataId),c=e.readSync(s.dataId),{selectedIndices:p}=zat(l,c,i,a,u);return e.makeTensorInfo([p.length],\"int32\",new Int32Array(p))}var IV={kernelName:Ja,backendName:\"webgl\",kernelFunc:Bat};var Vat=Xr.nonMaxSuppressionV4Impl;function Gat(r){S.warn(\"tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead\");let{inputs:t,backend:e,attrs:n}=r,{boxes:o,scores:s}=t,{maxOutputSize:i,iouThreshold:a,scoreThreshold:u,padToMaxOutputSize:l}=n,c=e.readSync(o.dataId),p=e.readSync(s.dataId),{selectedIndices:m,validOutputs:f}=Vat(c,p,i,a,u,l);return[e.makeTensorInfo([m.length],\"int32\",new Int32Array(m)),e.makeTensorInfo([],\"int32\",new Int32Array([f]))]}var CV={kernelName:Qa,backendName:\"webgl\",kernelFunc:Gat};var Wat=Xr.nonMaxSuppressionV5Impl;function Uat(r){S.warn(\"tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead\");let{inputs:t,backend:e,attrs:n}=r,{boxes:o,scores:s}=t,{maxOutputSize:i,iouThreshold:a,scoreThreshold:u,softNmsSigma:l}=n,c=e.readSync(o.dataId),p=e.readSync(s.dataId),m=i,f=a,d=u,h=l,{selectedIndices:g,selectedScores:x}=Wat(c,p,m,f,d,h);return[e.makeTensorInfo([g.length],\"int32\",new Int32Array(g)),e.makeTensorInfo([x.length],\"float32\",new Float32Array(x))]}var vV={kernelName:tl,backendName:\"webgl\",kernelFunc:Uat};var aC=class{constructor(t,e,n,o){this.variableNames=[\"indices\"],this.outputShape=[t,e],this.userCode=`\n void main() {\n ivec2 coords = getOutputCoords();\n int index = round(getIndices(coords.x));\n setOutput(mix(float(${o}), float(${n}),\n float(index == coords.y)));\n }\n `}};var Hat=r=>{let{inputs:t,backend:e,attrs:n}=r,{indices:o}=t,{dtype:s,depth:i,onValue:a,offValue:u}=n,l=y.sizeFromShape(o.shape),c=new aC(l,i,a,u),p=rt({inputs:{x:o},backend:e,attrs:{shape:[l]}}),m=e.runWebGLProgram(c,[p],s);e.disposeIntermediateTensorInfo(p);let f=[...o.shape,i],d=rt({inputs:{x:m},backend:e,attrs:{shape:f}});return e.disposeIntermediateTensorInfo(m),d},SV={kernelName:$s,backendName:\"webgl\",kernelFunc:Hat};function gg(r){let{inputs:t,backend:e}=r,{x:n}=t;if(n.dtype===\"complex64\"){let o=Pl({inputs:{input:n},backend:e}),s=gg({inputs:{x:o},backend:e}),i=hp({inputs:{input:n},backend:e}),a=gg({inputs:{x:i},backend:e}),u=Rn({inputs:{real:s,imag:a},backend:e});return e.disposeIntermediateTensorInfo(o),e.disposeIntermediateTensorInfo(s),e.disposeIntermediateTensorInfo(i),e.disposeIntermediateTensorInfo(a),u}else return Ll({attrs:{shape:n.shape,dtype:n.dtype,value:n.dtype===\"string\"?\"\":0},backend:e})}var NV={kernelName:ji,backendName:\"webgl\",kernelFunc:gg};function kV(r){let{inputs:t,backend:e}=r,{x:n}=t;if(n.dtype===\"string\")throw new Error(\"onesLike is not supported under string dtype\");if(n.dtype===\"complex64\"){let o=Pl({inputs:{input:n},backend:e}),s=kV({inputs:{x:o},backend:e}),i=hp({inputs:{input:n},backend:e}),a=gg({inputs:{x:i},backend:e}),u=Rn({inputs:{real:s,imag:a},backend:e});return e.disposeIntermediateTensorInfo(o),e.disposeIntermediateTensorInfo(s),e.disposeIntermediateTensorInfo(i),e.disposeIntermediateTensorInfo(a),u}else return Ll({attrs:{shape:n.shape,dtype:n.dtype,value:1},backend:e})}var TV={kernelName:Bi,backendName:\"webgl\",kernelFunc:kV};function qat(r){let{inputs:t,backend:e,attrs:n}=r,{axis:o}=n;if(t.length===1)return HI({inputs:{input:t[0]},backend:e,attrs:{dim:o}});let s=t[0].shape,i=t[0].dtype;t.forEach(c=>{y.assertShapesMatch(s,c.shape,\"All tensors passed to stack must have matching shapes\"),y.assert(i===c.dtype,()=>\"All tensors passed to stack must have matching dtypes\")});let a=[],u=t.map(c=>{let p=HI({inputs:{input:c},backend:e,attrs:{dim:o}});return a.push(p),p}),l=L1({inputs:u,backend:e,attrs:{axis:o}});return a.forEach(c=>e.disposeIntermediateTensorInfo(c)),l}var _V={kernelName:Vi,backendName:\"webgl\",kernelFunc:qat};var lC=class{constructor(t,e,n){this.variableNames=[\"x\"],this.customUniforms=[{name:\"value\",type:\"float\"}],this.outputShape=e.map((l,c)=>l[0]+t[c]+l[1]);let o=t.length,s=zt(o),i=e.map(l=>l[0]).join(\",\"),a=e.map((l,c)=>l[0]+t[c]).join(\",\"),u=[\"coords[0]\",\"coords[1]\",\"coords[2]\",\"coords[3]\"].slice(0,o);if(o===1){this.userCode=`\n int start = ${i};\n int end = ${a};\n\n void main() {\n int outC = getOutputCoords();\n if (outC < start || outC >= end) {\n setOutput(value);\n } else {\n setOutput(getX(outC - start));\n }\n }\n `;return}this.userCode=`\n ${s} start = ${s}(${i});\n ${s} end = ${s}(${a});\n\n void main() {\n ${s} outC = getOutputCoords();\n if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {\n setOutput(value);\n } else {\n ${s} coords = outC - start;\n setOutput(getX(${u}));\n }\n }\n `}};var uC=class{constructor(t,e,n){this.variableNames=[\"x\"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:\"value\",type:\"float\"}],this.outputShape=e.map((h,g)=>h[0]+t[g]+h[1]);let o=t.length,s=zt(o),i=e.map(h=>h[0]).join(\",\"),a=e.map((h,g)=>h[0]+t[g]).join(\",\"),u=rr(\"rc\",o),l=rr(\"source\",o),c=`${u[o-1]} < ${this.outputShape[o-1]}`,p=o===1?\"source\":`vec2(${l.slice(-2).join()})`,m=[`${s} rc = outputLoc;`,`${u[o-1]} += 1;\n if(${c}) {\n `,o===1?\"\":`}\n rc = outputLoc;\n ${u[o-2]} += 1;\n if(${u[o-2]} < ${this.outputShape[o-2]}) {`,o===1?\"\":` ${u[o-1]} += 1;\n if(${c}) {`],f=o===1?\"rc < start || rc >= end\":\"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))\",d=\"\";for(let h=0,g=o===1?2:4;h{let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{paddings:s,constantValue:i}=n;if(y.sizeFromShape(o.shape)===0){let l=s.map((c,p)=>c[0]+o.shape[p]+c[1]);return Ll({backend:e,attrs:{shape:l,value:i,dtype:o.dtype}})}let a=L().getBool(\"WEBGL_PACK_ARRAY_OPERATIONS\")?new uC(o.shape,s,i):new lC(o.shape,s,i),u=[[i]];return e.runWebGLProgram(a,[o],o.dtype,u)},EV={kernelName:Rs,backendName:\"webgl\",kernelFunc:q1};var Kat=`\n if(a < 0.0 && floor(b) < b){\n return NAN;\n }\n if (b == 0.0) {\n return 1.0;\n }\n return (round(mod(b, 2.0)) != 1) ?\n pow(abs(a), b) : sign(a) * pow(abs(a), b);\n`,jat=`\n // isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.\n vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));\n vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);\n vec4 result = multiplier * pow(abs(a), b);\n\n // Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS\n bvec4 isExpZero = equal(b, vec4(0.0));\n result.r = isExpZero.r ? 1.0 : result.r;\n result.g = isExpZero.g ? 1.0 : result.g;\n result.b = isExpZero.b ? 1.0 : result.b;\n result.a = isExpZero.a ? 1.0 : result.a;\n\n bvec4 isNaN1 = lessThan(a, vec4(0.0));\n bvec4 isNaN2 = lessThan(floor(b), b);\n bvec4 isNaN = bvec4(isNaN1.x && isNaN2.x, isNaN1.y && isNaN2.y, isNaN1.z && isNaN2.z, isNaN1.w && isNaN2.w);\n `+Xn+`\n return result;\n`,Xat=ce({opSnippet:Kat,packedOpSnippet:jat}),AV={kernelName:Fs,backendName:\"webgl\",kernelFunc:Xat};function Yat(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,keepDims:i}=n,a=o.shape.length,u=[],l=y.parseAxisParam(s,o.shape),c=l,p=S.getAxesPermutation(c,a),m=o;p!=null&&(m=Pe({inputs:{x:o},backend:e,attrs:{perm:p}}),c=S.getInnerMostAxes(c.length,a),u.push(m)),S.assertAxesAreInnerMostDims(\"prod\",c,a);let f;if(e.shouldExecuteOnCPU([m])){let d=e.texData.get(m.dataId).values,{outVals:h,outShape:g,outDtype:x}=gz(m.shape,m.dtype,d,c);f=e.makeTensorInfo(g,x,h)}else{let[d,h]=S.computeOutAndReduceShapes(m.shape,c),g=y.sizeFromShape(h),x=rt({inputs:{x:m},backend:e,attrs:{shape:[-1,g]}}),b=lc(o.dtype),w=Yn(x,b,\"prod\",e);f=rt({inputs:{x:w},backend:e,attrs:{shape:d}}),u.push(x),u.push(w)}if(i){u.push(f);let d=S.expandShapeToKeepDim(f.shape,l);f=rt({inputs:{x:f},backend:e,attrs:{shape:d}})}return u.forEach(d=>e.disposeIntermediateTensorInfo(d)),f}var DV={kernelName:Ms,backendName:\"webgl\",kernelFunc:Yat};function Zat(r){let{inputs:t,backend:e,attrs:n}=r,{paramsNestedSplits:o,paramsDenseValues:s,indices:i}=t,{outputRaggedRank:a}=n,u=o.map(x=>e.readSync(x.dataId)),l=o.map(x=>x.shape),c=e.readSync(s.dataId),p=e.readSync(i.dataId),[m,f,d]=xz(u,l,c,s.shape,s.dtype,p,i.shape,a),h=m.map(x=>e.makeTensorInfo([x.length],\"int32\",x)),g=e.makeTensorInfo(d,s.dtype,f);return h.concat([g])}var $V={kernelName:Lp,backendName:\"webgl\",kernelFunc:Zat};function Jat(r){let{inputs:t,backend:e}=r,{starts:n,limits:o,deltas:s}=t,i=e.readSync(n.dataId),a=e.readSync(o.dataId),u=e.readSync(s.dataId),[l,c]=yz(i,n.shape,n.dtype,a,o.shape,u,s.shape),p=e.makeTensorInfo([l.length],\"int32\",l),m=e.makeTensorInfo([c.length],n.dtype,c);return[p,m]}var RV={kernelName:zp,backendName:\"webgl\",kernelFunc:Jat};function Qat(r){let{inputs:t,backend:e,attrs:n}=r,{shape:o,values:s,defaultValue:i,rowPartitionTensors:a}=t,{rowPartitionTypes:u}=n,l=e.readSync(o.dataId),c=e.readSync(s.dataId),p=e.readSync(i.dataId),m=a.map(g=>e.readSync(g.dataId)),f=a.map(g=>g.shape),[d,h]=bz(l,o.shape,c,s.shape,s.dtype,p,i.shape,m,f,u);return e.makeTensorInfo(d,s.dtype,h)}var FV={kernelName:Bp,backendName:\"webgl\",kernelFunc:Qat};var K1=r=>{let{backend:t,attrs:e}=r,{start:n,stop:o,step:s,dtype:i}=e,a=wz(n,o,s,i);return t.makeTensorInfo([a.length],i,a)},OV={kernelName:ru,backendName:\"webgl\",kernelFunc:K1};var tlt=\"return 1.0 / x;\",elt=It({opSnippet:tlt}),MV={kernelName:Ps,backendName:\"webgl\",kernelFunc:elt};var rlt=xr+`\n return (x < 0.0) ? 0.0 : x;\n`,nlt=`\n vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));\n bvec4 isNaN = isnan(x);\n\n result.r = isNaN.r ? x.r : result.r;\n result.g = isNaN.g ? x.g : result.g;\n result.b = isNaN.b ? x.b : result.b;\n result.a = isNaN.a ? x.a : result.a;\n\n return result;\n`,olt=It({opSnippet:rlt,packedOpSnippet:nlt}),PV={kernelName:Ls,backendName:\"webgl\",kernelFunc:olt};var slt=xr+`\n return (x < 0.0) ? 0.0 : min(6.0, x);\n`,ilt=`\n vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));\n bvec4 isNaN = isnan(x);\n\n result.r = isNaN.r ? x.r : result.r;\n result.g = isNaN.g ? x.g : result.g;\n result.b = isNaN.b ? x.b : result.b;\n result.a = isNaN.a ? x.a : result.a;\n\n return result;\n`,alt=It({opSnippet:slt,packedOpSnippet:ilt}),LV={kernelName:Vs,backendName:\"webgl\",kernelFunc:alt};var cC=class{constructor(t,e,n,o,s){this.variableNames=[\"A\"],this.outputShape=[];let[i,a,u,l]=t;this.outputShape=[i,e,n,l];let c=[o&&e>1?a-1:a,o&&n>1?u-1:u],p=[o&&e>1?e-1:e,o&&n>1?n-1:n],m;s?m=\"(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)\":m=\"vec2(yRC) * effectiveInputOverOutputRatioRC\",this.userCode=`\n const vec2 effectiveInputOverOutputRatioRC = vec2(\n ${c[0]/p[0]},\n ${c[1]/p[1]});\n const vec2 inputShapeRC = vec2(${a}.0, ${u}.0);\n\n void main() {\n ivec4 coords = getOutputCoords();\n int b = coords[0];\n int d = coords[3];\n ivec2 yRC = coords.yz;\n\n // Fractional source index.\n vec2 sourceFracIndexRC = ${m};\n\n // Compute the four integer indices.\n ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));\n ivec2 sourceCeilRC = ivec2(\n min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));\n\n float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);\n float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);\n float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);\n float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);\n\n vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);\n\n float top = topLeft + (topRight - topLeft) * fracRC.y;\n float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;\n float newValue = top + (bottom - top) * fracRC.x;\n\n setOutput(newValue);\n }\n `}};var pC=class{constructor(t,e,n,o,s){this.variableNames=[\"A\"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[i,a,u,l]=t;this.outputShape=[i,e,n,l];let c=[o&&e>1?a-1:a,o&&n>1?u-1:u],p=[o&&e>1?e-1:e,o&&n>1?n-1:n],m;s?m=\"(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)\":m=\"vec3(yRC) * effectiveInputOverOutputRatioRC\",this.userCode=`\n const vec3 effectiveInputOverOutputRatioRC = vec3(\n ${c[0]/p[0]},\n ${c[1]/p[1]},\n ${c[1]/p[1]});\n const vec3 inputShapeRC = vec3(${a}.0, ${u}.0,\n ${u}.0);\n\n float getAValue(int b, int r, int c, int d) {\n return getChannel(getA(b, r, c, d), vec2(c, d));\n }\n\n void main() {\n ivec4 coords = getOutputCoords();\n int b = coords[0];\n int d = coords[3];\n // Calculate values for next column in yRC.z.\n ivec3 yRC = coords.yzz + ivec3(0, 0, 1);\n\n // Fractional source index.\n vec3 sourceFracIndexRC = ${m};\n\n // Compute the four integer indices.\n ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));\n ivec3 sourceCeilRC = ivec3(\n min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));\n\n // Should we calculate next column and row elements in 2x2 packed cell.\n bool hasNextCol = d < ${l-1};\n bool hasNextRow = coords.z < ${n-1};\n\n // In parallel, construct four corners for all four components in\n // packed 2x2 cell.\n vec4 topLeft = vec4(\n getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),\n hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)\n : 0.0,\n hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)\n : 0.0,\n (hasNextRow && hasNextCol) ?\n getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);\n\n vec4 bottomLeft = vec4(\n getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),\n hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)\n : 0.0,\n hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)\n : 0.0,\n (hasNextRow && hasNextCol) ?\n getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);\n\n vec4 topRight = vec4(\n getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),\n hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)\n : 0.0,\n hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)\n : 0.0,\n (hasNextRow && hasNextCol) ?\n getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);\n\n vec4 bottomRight = vec4(\n getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),\n hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)\n : 0.0,\n hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)\n : 0.0,\n (hasNextRow && hasNextCol) ?\n getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);\n\n vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);\n\n vec4 top = mix(topLeft, topRight, fracRC.yyzz);\n vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);\n vec4 newValue = mix(top, bottom, fracRC.x);\n\n setOutput(newValue);\n }\n `}};function llt(r){let{inputs:t,backend:e,attrs:n}=r,{images:o}=t,{alignCorners:s,halfPixelCenters:i,size:a}=n,[u,l]=a,c=L().getBool(\"WEBGL_PACK_IMAGE_OPERATIONS\")?new pC(o.shape,u,l,s,i):new cC(o.shape,u,l,s,i);return e.runWebGLProgram(c,[o],\"float32\")}var zV={kernelName:Bs,backendName:\"webgl\",kernelFunc:llt};var mC=class{constructor(t,e,n){this.variableNames=[\"dy\"],this.outputShape=[],this.outputShape=e;let[,o,s]=e,[,i,a]=t,u=[n&&i>1?o-1:o,n&&a>1?s-1:s],l=[n&&i>1?i-1:i,n&&a>1?a-1:a],c=u[0]/l[0],p=u[1]/l[1],m=1/c,f=1/p,d=Math.ceil(m)*2+2,h=Math.ceil(f)*2+2;this.userCode=`\n void main() {\n ivec4 coords = getOutputCoords();\n int b = coords[0];\n int d = coords[3];\n int r = coords[1];\n int c = coords[2];\n\n float accumulator = 0.0;\n\n const float heightScale = float(${c});\n const float widthScale = float(${p});\n\n const float invHeightScale = float(${m});\n const float invWidthScale = float(${f});\n\n const int winHeight = int(${d});\n const int winWidth = int(${h});\n\n // Compute bounds for where in dy we will look\n float startRLerp = floor(float(r) * invHeightScale);\n int startDyR = int(startRLerp - float(winHeight / 2));\n\n float startCLerp = floor(float(c) * invWidthScale);\n int startDyC = int(startCLerp - float(winWidth / 2));\n\n // Loop over dy\n for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {\n int dyR = dyROffset + startDyR;\n\n // Guard against the window exceeding the bounds of dy\n if (dyR < 0 || dyR >= ${i}) {\n continue;\n }\n\n for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {\n int dyC = dyCOffset + startDyC;\n\n // Guard against the window exceeding the bounds of dy\n if (dyC < 0 || dyC >= ${a}) {\n continue;\n }\n\n float dxR = float(dyR) * heightScale;\n int topDxRIndex = int(floor(dxR));\n int bottomDxRIndex = int(min(ceil(dxR), ${o-1}.0));\n float dxRLerp = dxR - float(topDxRIndex);\n float inverseDxRLerp = 1.0 - dxRLerp;\n\n float dxC = float(dyC) * widthScale;\n int leftDxCIndex = int(floor(dxC));\n int rightDxCIndex = int(min(ceil(dxC), ${s-1}.0));\n float dxCLerp = dxC - float(leftDxCIndex);\n float inverseDxCLerp = 1.0 - dxCLerp;\n\n if (r == topDxRIndex && c == leftDxCIndex) {\n // topLeft\n accumulator +=\n getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;\n }\n\n if (r == topDxRIndex && c == rightDxCIndex) {\n // topRight\n accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;\n }\n\n if (r == bottomDxRIndex && c == leftDxCIndex) {\n // bottomLeft\n accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;\n }\n\n if (r == bottomDxRIndex && c == rightDxCIndex) {\n // bottomRight\n accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;\n }\n }\n }\n // End loop over dy\n\n setOutput(accumulator);\n }\n `}};function ult(r){let{inputs:t,backend:e,attrs:n}=r,{images:o,dy:s}=t,{alignCorners:i}=n,a=new mC(s.shape,o.shape,i);return e.runWebGLProgram(a,[s],s.dtype)}var BV={kernelName:rl,backendName:\"webgl\",kernelFunc:ult};var fC=class{constructor(t,e,n,o,s){this.variableNames=[\"A\"],this.outputShape=[];let[i,a,u,l]=t;this.outputShape=[i,e,n,l];let c=[o&&e>1?a-1:a,o&&n>1?u-1:u],p=[o&&e>1?e-1:e,o&&n>1?n-1:n],m=o?\"0.5\":\"0.0\",f;s?f=\"max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))\":f=\"vec2(yRC) * effectiveInputOverOutputRatioRC\",this.userCode=`\n const vec2 effectiveInputOverOutputRatioRC = vec2(\n ${c[0]/p[0]},\n ${c[1]/p[1]});\n const vec2 inputShapeRC = vec2(${a}.0, ${u}.0);\n\n void main() {\n ivec4 coords = getOutputCoords();\n int b = coords[0];\n int d = coords[3];\n ivec2 yRC = coords.yz;\n\n // Fractional source index.\n vec2 sourceFracIndexRC = ${f};\n\n // Compute the coordinators of nearest neighbor point.\n ivec2 sourceNearestRC = ivec2(\n min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${m})));\n float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);\n\n setOutput(newValue);\n }\n `}};var dC=class{constructor(t,e,n,o,s){this.variableNames=[\"A\"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[i,a,u,l]=t;this.outputShape=[i,e,n,l];let c=[o&&e>1?a-1:a,o&&n>1?u-1:u],p=[o&&e>1?e-1:e,o&&n>1?n-1:n],m=o?\"0.5\":\"0.0\",f;s?f=\"max((vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC, vec3(0.0))\":f=\"vec3(yRC) * effectiveInputOverOutputRatioRC\",this.userCode=`\n const vec3 effectiveInputOverOutputRatioRC = vec3(\n ${c[0]/p[0]},\n ${c[1]/p[1]},\n ${c[1]/p[1]});\n const vec3 inputShapeRC = vec3(${a}.0, ${u}.0,\n ${u}.0);\n\n float getAValue(int b, int r, int c, int d) {\n return getChannel(getA(b, r, c, d), vec2(c, d));\n }\n\n void main() {\n ivec4 coords = getOutputCoords();\n int b = coords[0];\n int d = coords[3];\n // Calculate values for next column in yRC.z.\n ivec3 yRC = coords.yzz + ivec3(0, 0, 1);\n\n // Fractional source index.\n vec3 sourceFracIndexRC = ${f};\n\n // Compute the coordinators of nearest neighbor point.\n ivec3 sourceNearestRC = ivec3(\n min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${m})));\n\n // Should we calculate next column and row elements in 2x2 packed cell.\n bool hasNextCol = d < ${l-1};\n bool hasNextRow = coords.z < ${n-1};\n\n vec4 newValue = vec4(\n getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d),\n hasNextCol ? getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d + 1)\n : 0.0,\n hasNextRow ? getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d)\n : 0.0,\n (hasNextRow && hasNextCol) ?\n getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d + 1) : 0.0);\n\n setOutput(newValue);\n }\n `}};function clt(r){let{inputs:t,backend:e,attrs:n}=r,{images:o}=t,{alignCorners:s,halfPixelCenters:i,size:a}=n,[u,l]=a,c=L().getBool(\"WEBGL_PACK_IMAGE_OPERATIONS\")?new dC(o.shape,u,l,s,i):new fC(o.shape,u,l,s,i);return e.runWebGLProgram(c,[o],o.dtype)}var VV={kernelName:zs,backendName:\"webgl\",kernelFunc:clt};var hC=class{constructor(t,e,n){this.variableNames=[\"dy\"],this.outputShape=[],this.outputShape=e;let[,o,s]=e,[,i,a]=t,u=[n&&i>1?o-1:o,n&&a>1?s-1:s],l=[n&&i>1?i-1:i,n&&a>1?a-1:a],c=u[0]/l[0],p=u[1]/l[1],m=1/c,f=1/p,d=Math.ceil(m)*2+2,h=Math.ceil(f)*2+2;this.userCode=`\n void main() {\n ivec4 coords = getOutputCoords();\n int b = coords[0];\n int d = coords[3];\n int r = coords[1];\n int c = coords[2];\n\n float accumulator = 0.0;\n\n const float heightScale = float(${c});\n const float widthScale = float(${p});\n\n const float invHeightScale = float(${m});\n const float invWidthScale = float(${f});\n\n const int winHeight = int(${d});\n const int winWidth = int(${h});\n\n // Compute bounds for where in dy we will look\n float startRLerp = floor(float(r) * invHeightScale);\n int startDyR = int(floor(startRLerp - float(winHeight / 2)));\n\n float startCLerp = floor(float(c) * invWidthScale);\n int startDyC = int(floor(startCLerp - float(winWidth / 2)));\n\n // Loop over dy\n for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {\n int dyR = dyROffset + startDyR;\n\n // Guard against the window exceeding the bounds of dy\n if (dyR < 0 || dyR >= ${i}) {\n continue;\n }\n\n for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {\n int dyC = dyCOffset + startDyC;\n\n // Guard against the window exceeding the bounds of dy\n if (dyC < 0 || dyC >= ${a}) {\n continue;\n }\n\n float sourceFracRow =\n float(${u[0]}) *\n (float(dyR) / float(${l[0]}));\n\n float sourceFracCol =\n float(${u[1]}) *\n (float(dyC) / float(${l[1]}));\n\n int sourceNearestRow = int(min(\n float(int(${o}) - 1),\n ${n} ? float(round(sourceFracRow)) :\n float(floor(sourceFracRow))));\n\n int sourceNearestCol = int(min(\n float(int(${s}) - 1),\n ${n} ? float(round(sourceFracCol)) :\n float(floor(sourceFracCol))));\n\n if (r == sourceNearestRow && c == sourceNearestCol) {\n accumulator += getDy(b, dyR, dyC, d);\n }\n }\n }\n // End loop over dy\n\n setOutput(accumulator);\n }\n `}};function plt(r){let{inputs:t,backend:e,attrs:n}=r,{images:o,dy:s}=t,{alignCorners:i}=n,a=new hC(s.shape,o.shape,i);return e.runWebGLProgram(a,[s],s.dtype)}var GV={kernelName:el,backendName:\"webgl\",kernelFunc:plt};var gC=class{constructor(t,e){this.variableNames=[\"x\"];let n=t.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=t,n===1){this.userCode=`\n void main() {\n int coord = getOutputCoords();\n setOutput(getX(${t[0]} - coord - 1));\n }\n `;return}let o=a=>e.indexOf(a)!==-1&&t[a]!==1?`${t[a]} - coords[${a}] - 1`:`coords[${a}]`,s=t.map((a,u)=>o(u)).join(\",\"),i=zt(n);this.userCode=`\n void main() {\n ${i} coords = getOutputCoords();\n setOutput(getX(${s}));\n }\n `}};var xC=class{constructor(t,e){this.variableNames=[\"x\"],this.packedInputs=!0,this.packedOutput=!0;let n=t.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=t;let o=rr(\"rc\",n),s=`${o[n-1]} + 1 < ${this.outputShape[n-1]}`,i=`${o[n-2]} + 1 < ${this.outputShape[n-2]}`,a=zt(n);n===1?this.userCode=`\n void main(){\n int rc = getOutputCoords();\n vec4 result = vec4(0.);\n result.r = getChannel(getX(${t[0]} - rc - 1),\n ${t[0]} - rc - 1);\n if(${s}){\n result.g = getChannel(getX(${t[0]} - (rc + 1) - 1),\n ${t[0]} - (rc + 1) - 1);\n }\n setOutput(result);\n }\n `:this.userCode=`\n void main() {\n ${a} rc = getOutputCoords();\n vec4 result = vec4(0.);\n result.r = ${u(o.slice())};\n if(${s}){\n result.g = ${l(o.slice())};\n }\n if(${i}) {\n result.b = ${c(o.slice())};\n if(${s}) {\n result.a = ${p(o.slice())};\n }\n }\n setOutput(result);\n }\n `;function u(d){return m(d)}function l(d){return d[n-1]=\"(\"+d[n-1]+\" + 1)\",m(d)}function c(d){return d[n-2]=\"(\"+d[n-2]+\" + 1)\",m(d)}function p(d){return d[n-1]=\"(\"+d[n-1]+\" + 1)\",d[n-2]=\"(\"+d[n-2]+\" + 1)\",m(d)}function m(d){let h=t.map((b,w)=>f(w,d)),g=h.join(\",\"),x=h.slice(-2).join(\",\");return`getChannel(getX(${g}), vec2(${x}))`}function f(d,h){return e.indexOf(d)!==-1&&t[d]!==1?`${t[d]} - ${h[d]} - 1`:`${h[d]}`}}};function mlt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{dims:s}=n,i=o.shape.length,a=y.parseAxisParam(s,o.shape);if(i===0)return nr({inputs:{x:o},backend:e});let u=L().getBool(\"WEBGL_PACK_ARRAY_OPERATIONS\")?new xC(o.shape,a):new gC(o.shape,a);return e.runWebGLProgram(u,[o],o.dtype)}var WV={kernelName:Gs,backendName:\"webgl\",kernelFunc:mlt};var yC=class{constructor(t,e){this.variableNames=[\"Image\"],this.outputShape=[],this.customUniforms=[{name:\"params\",type:\"vec4\"}];let n=t[1],o=t[2];this.outputShape=t;let s=\"\";typeof e==\"number\"?s=`float outputValue = ${e.toFixed(2)};`:s=`\n vec3 fill = vec3(${e.join(\",\")});\n float outputValue = fill[coords[3]];`,this.userCode=`\n void main() {\n ivec4 coords = getOutputCoords();\n int x = coords[2];\n int y = coords[1];\n float coordXFloat = (float(x) - params[0]) * params[3] -\n (float(y) - params[1]) * params[2];\n float coordYFloat = (float(x) - params[0]) * params[2] +\n (float(y) - params[1]) * params[3];\n int coordX = int(round(coordXFloat + params[0]));\n int coordY = int(round(coordYFloat + params[1]));\n ${s}\n if(coordX >= 0 && coordX < ${o} && coordY >= 0 && coordY < ${n}) {\n outputValue = getImage(coords[0], coordY, coordX, coords[3]);\n }\n setOutput(outputValue);\n }\n `}};var UV={kernelName:pl,backendName:\"webgl\",kernelFunc:({inputs:r,attrs:t,backend:e})=>{let{image:n}=r,{radians:o,fillValue:s,center:i}=t,a=e,u=new yC(n.shape,s),[l,c]=S.getImageCenter(i,n.shape[1],n.shape[2]),p=[[l,c,Math.sin(o),Math.cos(o)]];return a.runWebGLProgram(u,[n],n.dtype,p)}};var flt=`\n // OpenGL ES does not support round function.\n // The algorithm is based on banker's rounding.\n float base = floor(x);\n if ((x - base) < 0.5) {\n return floor(x);\n } else if ((x - base) > 0.5) {\n return ceil(x);\n } else {\n if (mod(base, 2.0) == 0.0) {\n return base;\n } else {\n return base + 1.0;\n }\n }\n`,dlt=It({opSnippet:flt}),HV={kernelName:Ws,backendName:\"webgl\",kernelFunc:dlt};var hlt=\"return inversesqrt(x);\",glt=It({opSnippet:hlt,cpuKernelImpl:Iz}),qV={kernelName:Us,backendName:\"webgl\",kernelFunc:glt};var Ku=class{constructor(t,e,n,o,s,i,a=!0,u=!1){this.variableNames=[\"updates\",\"indices\",\"defaultValue\"],this.outputShape=i;let l=zt(s.length),c=zt(i.length),p=\"\";n===1?p=\"i\":n===2&&(p=\"i, j\");let m=`getIndices(${p})`,f=\"\";o===1?f=\"i\":o===2&&(f=\"i, coords[1]\");let d=`getUpdates(${f})`,h=\"\";u&&(h=\"coords[0], coords[1]\");let g=`getDefaultValue(${h})`,x=e>1?\"strides[j]\":\"strides\";this.userCode=`\n ${l} strides = ${l}(${s});\n\n void main() {\n ${c} coords = getOutputCoords();\n float sum = 0.0;\n bool found = false;\n for (int i = 0; i < ${t}; i++) {\n int flattenedIndex = 0;\n for (int j = 0; j < ${e}; j++) {\n int index = round(${m});\n flattenedIndex += index * ${x};\n }\n if (flattenedIndex == coords[0]) {\n sum += ${d};\n found = true;\n }\n }\n setOutput(mix(${g}, sum, float(found)));\n }\n `}};var bC=class{constructor(t,e,n,o,s,i,a=!0,u=!1){this.variableNames=[\"updates\",\"indices\",\"defaultValue\"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=i;let l=zt(s.length),c=zt(i.length),p=\"\";n===1?p=\"i\":n===2&&(p=\"i, j\");let m=`getIndices(${p})`,f=\"\";o===1?f=\"i\":o===2&&(f=\"i, coords[1]\");let d=`getUpdates(${f})`,h=\"\";u&&(h=\"coords[0], coords[1]\");let g=`getDefaultValue(${h})`,x=e>1?\"strides[j]\":\"strides\",b=e>1?\"strides[j + 1]\":\"strides\";this.userCode=`\n ${l} strides = ${l}(${s});\n\n void main() {\n ${c} coords = getOutputCoords();\n vec4 sum = vec4(0.);\n vec4 found = vec4(0.);\n for (int i = 0; i < ${t}; i+=2) {\n ivec2 flattenedIndex = ivec2(0);\n for (int j = 0; j < ${e}; j+=2) {\n ivec4 index = round(${m});\n flattenedIndex += index.xz * ${x};\n if (j + 1 < ${e}) {\n flattenedIndex += index.yw * ${b};\n }\n }\n if (flattenedIndex[0] == coords[0] || flattenedIndex[1] == coords[0] ||\n flattenedIndex[0] == coords[0] + 1 || flattenedIndex[1] == coords[0] + 1) {\n vec4 updVals = ${d};\n if (flattenedIndex[0] == coords[0]) {\n sum.xy += updVals.xy;\n found.xy = vec2(1.);\n } else if (flattenedIndex[0] == coords[0] + 1) {\n sum.zw += updVals.xy;\n found.zw = vec2(1.);\n }\n if (flattenedIndex[1] == coords[0]) {\n sum.xy += updVals.zw;\n found.xy = vec2(1.);\n } else if (flattenedIndex[1] == coords[0] + 1) {\n sum.zw += updVals.zw;\n found.zw = vec2(1.);\n }\n }\n }\n setOutput(mix(${g}, sum, found));\n }\n `}};function xlt(r){let{inputs:t,backend:e,attrs:n}=r,{indices:o,updates:s}=t,{shape:i}=n,{sliceRank:a,numUpdates:u,sliceSize:l,strides:c,outputSize:p}=S.calculateShapes(s,o,i),m=[p/l,l];if(p===0)return e.makeTensorInfo(i,o.dtype);let f=rt({inputs:{x:o},backend:e,attrs:{shape:[u,a]}}),d=rt({inputs:{x:s},backend:e,attrs:{shape:[u,l]}}),h=e.makeTensorInfo([],\"float32\",new Float32Array([0])),g;L().getBool(\"WEBGL_PACK\")?g=new bC(u,a,f.shape.length,d.shape.length,c,m):g=new Ku(u,a,f.shape.length,d.shape.length,c,m);let x=e.runWebGLProgram(g,[d,f,h],d.dtype),b=rt({inputs:{x},backend:e,attrs:{shape:i}});return e.disposeIntermediateTensorInfo(f),e.disposeIntermediateTensorInfo(d),e.disposeIntermediateTensorInfo(x),e.disposeIntermediateTensorInfo(h),b}var KV={kernelName:nl,backendName:\"webgl\",kernelFunc:xlt};var wC=class{constructor(t,e,n,o){this.variableNames=[\"sortedSequence\",\"values\"],this.customUniforms=[{name:\"numInputs\",type:\"int\"}],this.outputShape=[t,n];let s=\"while (left < right) {\",i=`for (int i = 0; i < ${Math.ceil(Math.log2(e+1))}; ++i) { if (left >= right) break;`,a=L().getNumber(\"WEBGL_VERSION\")===2?s:i,u=o===\"left\"?\"<\":\"<=\";this.userCode=`\n int findBound(int batch, float value) {\n int left = 0;\n int right = numInputs;\n int mid;\n ${a}\n mid = (left + right) / 2;\n if (getSortedSequence(batch, mid) ${u} value) {\n left = mid + 1;\n } else {\n right = mid;\n }\n }\n return right;\n }\n\n void main() {\n ivec2 coords = getOutputCoords();\n int batch = coords[0];\n int valueIndex = coords[1];\n\n float value = getValues(batch, valueIndex);\n\n setOutput(float(findBound(batch, value)));\n }\n `}};function ylt(r){let{inputs:t,backend:e,attrs:n}=r,{sortedSequence:o,values:s}=t,{side:i}=n,a=new wC(o.shape[0],o.shape[1],s.shape[1],i),u=[[o.shape[1]]];return e.runWebGLProgram(a,[o,s],\"int32\",u)}var jV={kernelName:sl,backendName:\"webgl\",kernelFunc:ylt};var IC=class{constructor(t,e,n){this.variableNames=[\"c\",\"a\",\"b\"],this.outputShape=e;let o,s;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)s=\"resRC\",o=\"resRC\";else{let a=[\"resRC.x\",\"resRC.y\",\"resRC.z\",\"resRC.w\"],u=[],l=[];for(let c=0;c= 1.0) {\n setOutput(getA(${s}));\n } else {\n setOutput(getB(${s}));\n }\n }\n `}};function blt(r){let{inputs:t,backend:e}=r,{condition:n,t:o,e:s}=t,i=new IC(n.shape.length,o.shape,o.shape.length);return e.runWebGLProgram(i,[n,o,s],ur(o.dtype,s.dtype))}var XV={kernelName:Wi,backendName:\"webgl\",kernelFunc:blt};var wlt=`\n // Stable and Attracting Fixed Point (0, 1) for Normalized Weights.\n // see: https://arxiv.org/abs/1706.02515\n float scaleAlpha = ${S.SELU_SCALEALPHA};\n float scale = ${S.SELU_SCALE};\n return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);\n`,Ilt=It({opSnippet:wlt}),YV={kernelName:Hs,backendName:\"webgl\",kernelFunc:Ilt};var Clt=Po+`\n return 1.0 / (1.0 + exp(-1.0 * x));\n`,vlt=`\n vec4 result = 1.0 / (1.0 + exp(-1.0 * x));\n bvec4 isNaN = isnan(x);\n\n result.r = isNaN.r ? x.r : result.r;\n result.g = isNaN.g ? x.g : result.g;\n result.b = isNaN.b ? x.b : result.b;\n result.a = isNaN.a ? x.a : result.a;\n\n return result;\n`,Slt=It({opSnippet:Clt,packedOpSnippet:vlt,cpuKernelImpl:vz}),ZV={kernelName:Xs,backendName:\"webgl\",kernelFunc:Slt};var Nlt=`\n if (isnan(x)) { return 0.0; }\n return sign(x);\n`,klt=It({opSnippet:Nlt}),JV={kernelName:js,backendName:\"webgl\",kernelFunc:klt};var Tlt=Po+`\n return sin(x);\n`,_lt=`\n vec4 result = sin(x);\n bvec4 isNaN = isnan(x);\n ${Xn}\n return result;\n`,Elt=It({opSnippet:Tlt,packedOpSnippet:_lt}),QV={kernelName:qs,backendName:\"webgl\",kernelFunc:Elt};var Alt=`\n float e2x = exp(x);\n return (e2x - 1.0 / e2x) / 2.0;\n`,Dlt=It({opSnippet:Alt}),tG={kernelName:Ks,backendName:\"webgl\",kernelFunc:Dlt};var $lt=`\n float epsilon = 1.1920928955078125e-7;\n float threshold = log(epsilon) + 2.0;\n\n bool too_large = x > -threshold;\n bool too_small = x < threshold;\n\n float result;\n float exp_x = exp(x);\n\n if (too_large){\n result = x;\n }\n else if (too_small){\n result = exp_x;\n }\n else{\n result = log(exp_x + 1.0);\n }\n return result;\n`,Rlt=It({opSnippet:$lt}),eG={kernelName:Ys,backendName:\"webgl\",kernelFunc:Rlt};var Flt=r=>{let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{blockShape:s,paddings:i}=n;y.assert(o.shape.length<=4,()=>\"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet\");let a=s.reduce((x,b)=>x*b),u=[[0,0]];u.push(...i);for(let x=1+s.length;xe.disposeIntermediateTensorInfo(x)),g},rG={kernelName:Hi,backendName:\"webgl\",kernelFunc:Flt};function Olt(r){let{inputs:t,backend:e}=r,{indices:n,values:o,denseShape:s,defaultValue:i}=t;if(s.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:\n ${s.shape}`);if(n.shape.length!==2)throw new Error(`Indices must be a matrix, saw:\n ${n.shape}`);if(o.shape.length!==1)throw new Error(`Values must be a vector, saw:\n ${o.shape}`);if(i.shape.length!==0)throw new Error(`Default value must be a scalar, saw:\n ${i.shape}`);let a=e.readSync(n.dataId),u=e.readSync(o.dataId),l=e.readSync(s.dataId),c=e.readSync(i.dataId)[0],[p,m,f,d,h]=Nz(a,n.shape,n.dtype,u,o.dtype,l,c);return[e.makeTensorInfo(m,n.dtype,p),e.makeTensorInfo([m[0]],o.dtype,f),e.makeTensorInfo([d.length],\"bool\",new Uint8Array(d.map(g=>Number(g)))),e.makeTensorInfo([h.length],n.dtype,new Int32Array(h))]}var nG={kernelName:nu,backendName:\"webgl\",kernelFunc:Olt};function Mlt(r){let{inputs:t,backend:e}=r,{inputIndices:n,inputShape:o,newShape:s}=t;if(n.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${n.shape}`);if(o.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${o.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(e.readSync(o.dataId)),a=e.readSync(n.dataId),u=Array.from(e.readSync(s.dataId)),[l,c,p]=kz(a,n.shape,n.dtype,i,u);return[e.makeTensorInfo(c,n.dtype,l),e.makeTensorInfo([p.length],s.dtype,new Int32Array(p))]}var oG={kernelName:il,backendName:\"webgl\",kernelFunc:Mlt};function Plt(r){let{inputs:t,backend:e}=r,{data:n,indices:o,segmentIds:s}=t;if(n.shape.length<1)throw new Error(\"Data should be at least 1 dimensional but received scalar\");if(o.shape.length!==1)throw new Error(`Indices should be a vector but received shape\n ${o.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape\n ${s.shape}`);let i=e.readSync(n.dataId),a=e.readSync(o.dataId),u=e.readSync(s.dataId),[l,c]=rI(i,n.shape,n.dtype,a,u,!0);return e.makeTensorInfo(c,n.dtype,l)}var sG={kernelName:ou,backendName:\"webgl\",kernelFunc:Plt};function Llt(r){let{inputs:t,backend:e}=r,{data:n,indices:o,segmentIds:s}=t;if(n.shape.length<1)throw new Error(\"Data should be at least 1 dimensional but received scalar\");if(o.shape.length!==1)throw new Error(`Indices should be a vector but received shape\n ${o.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape\n ${s.shape}`);let i=e.readSync(n.dataId),a=e.readSync(o.dataId),u=e.readSync(s.dataId),[l,c]=rI(i,n.shape,n.dtype,a,u);return e.makeTensorInfo(c,n.dtype,l)}var iG={kernelName:su,backendName:\"webgl\",kernelFunc:Llt};function zlt(r){let{inputs:t,backend:e,attrs:n}=r,{sparseIndices:o,sparseValues:s,defaultValue:i}=t,{outputShape:a}=n,{sliceRank:u,numUpdates:l,sliceSize:c,strides:p,outputSize:m}=S.calculateShapes(s,o,a),f=!1;if(s.dtype===\"string\"){let x=e.bufferSync(o),b=e.bufferSync(s),w=y.decodeString(e.readSync(i.dataId)[0]),I=Cz(x,b,a,m,c,l,u,p,w,f);return e.makeTensorInfo(a,I.dtype,I.values)}let d=new Ku(l,u,o.shape.length,s.shape.length,p,[m,1],f),h=e.runWebGLProgram(d,[s,o,i],s.dtype),g=rt({inputs:{x:h},backend:e,attrs:{shape:a}});return e.disposeIntermediateTensorInfo(h),g}var aG={kernelName:al,backendName:\"webgl\",kernelFunc:zlt};function Blt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{numOrSizeSplits:s,axis:i}=n,a=y.parseAxisParam(i,o.shape)[0],u=S.prepareSplitSize(o,s,a),l=o.shape.length,c=new Array(l).fill(0),p=o.shape.slice();return u.map(m=>{let f=[...p];f[a]=m;let d=ki({inputs:{x:o},backend:e,attrs:{begin:c,size:f}});return c[a]+=m,d})}var lG={kernelName:qi,backendName:\"webgl\",kernelFunc:Blt};var uG=\"return sqrt(x);\",Vlt=It({opSnippet:uG,packedOpSnippet:uG,cpuKernelImpl:Tz}),cG={kernelName:Zs,backendName:\"webgl\",kernelFunc:Vlt};var Glt=\"return x * x;\",Wlt=It({opSnippet:Glt}),pG={kernelName:iu,backendName:\"webgl\",kernelFunc:Wlt};var mG=\"return (a - b) * (a - b);\",Ult=ce({opSnippet:mG,packedOpSnippet:mG}),fG={kernelName:ti,backendName:\"webgl\",kernelFunc:Ult};function Hlt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t;if(o.dtype!==\"string\")throw new Error(\"Input must be of datatype string\");let s=e.readSync(o.dataId),i=S.fromUint8ToStringArray(s),a=_z(i,\"string\",n);return e.makeTensorInfo(o.shape,\"string\",a)}var dG={kernelName:ec,backendName:\"webgl\",kernelFunc:Hlt};function qlt({inputs:r,attrs:t,backend:e}){let{x:n}=r,o=xr+`\n return x > 0.0 ? 1.0 : float(${t.alpha});\n `,s=new zr(n.shape,o);return e.runWebGLProgram(s,[n],n.dtype)}var hG={kernelName:xo,backendName:\"webgl\",kernelFunc:qlt};var CC=class{constructor(t,e,n){this.variableNames=[\"x\"],this.outputShape=n;let o=n.length,s=zt(n.length),i=zt(n.length),a=\"\";if(o===1)a=\"coords * strides + begin\";else{let u=0;a=n.map((l,c)=>(u++,n.length===1?`coords * strides[${c}] + begin[${c}]`:`coords[${u-1}] * strides[${c}] + begin[${c}]`)).join(\",\")}this.userCode=`\n ${s} begin = ${s}(${t});\n ${s} strides = ${s}(${e});\n\n void main() {\n ${i} coords = getOutputCoords();\n setOutput(getX(${a}));\n }\n `}};function Klt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{begin:s,end:i,strides:a,beginMask:u,endMask:l,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:m}=n,{finalShapeSparse:f,finalShape:d,isIdentity:h,sliceDim0:g,isSimpleSlice:x,begin:b,end:w,strides:I}=Be.sliceInfo(o.shape,s,i,a,u,l,c,p,m),N;if(h)N=rt({inputs:{x:o},backend:e,attrs:{shape:d}});else if(g||x){y.assert(o.shape.length>=1,()=>`Input must have rank at least 1, got: ${o.shape.length}`);let A=Be.computeOutShape(b,w,I),D=ki({inputs:{x:o},backend:e,attrs:{begin:b,size:A}});N=rt({inputs:{x:D},backend:e,attrs:{shape:d}}),e.disposeIntermediateTensorInfo(D)}else if(e.shouldExecuteOnCPU([o])){let D=e.readSync(o.dataId),F=wt(o.shape,o.dtype,D),M=Ez(f,F,I,b);N=e.makeTensorInfo(d,o.dtype,M.values)}else{let D=new CC(b,I,f);N=e.runWebGLProgram(D,[o],o.dtype)}let E=rt({inputs:{x:N},backend:e,attrs:{shape:d}});return e.disposeIntermediateTensorInfo(N),E}var gG={kernelName:ll,backendName:\"webgl\",kernelFunc:Klt};function jlt(r){let{inputs:t,backend:e,attrs:n}=r,{separator:o,nGramWidths:s,leftPad:i,rightPad:a,padWidth:u,preserveShortSequences:l}=n,{data:c,dataSplits:p}=t,m=e.readSync(c.dataId),f=e.readSync(p.dataId),[d,h]=Az(m,f,o,s,i,a,u,l);return[e.makeTensorInfo([d.length],\"string\",d),e.makeTensorInfo(p.shape,\"int32\",h)]}var xG={kernelName:au,backendName:\"webgl\",kernelFunc:jlt};function Xlt(r){let{inputs:t,backend:e,attrs:n}=r,{skipEmpty:o}=n,{input:s,delimiter:i}=t;if(s.dtype!==\"string\")throw new Error(\"Input must be of datatype string\");if(s.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${s.shape}`);if(i.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${i.shape}`);let a=e.readSync(s.dataId),u=e.readSync(i.dataId)[0],[l,c,p]=Dz(a,u,o),m=c.length;return[e.makeTensorInfo([m,2],\"int32\",l),e.makeTensorInfo([m],\"string\",c),e.makeTensorInfo([2],\"int32\",new Int32Array(p))]}var yG={kernelName:lu,backendName:\"webgl\",kernelFunc:Xlt};function Ylt(r){let{inputs:t,backend:e,attrs:n}=r,{numBuckets:o}=n,{input:s}=t;if(s.dtype!==\"string\")throw new Error(\"Input must be of datatype string\");if(o<=0)throw new Error(\"Number of buckets must be at least 1\");let i=e.readSync(s.dataId),a=$z(i,o);return e.makeTensorInfo(s.shape,\"int32\",a)}var bG={kernelName:uu,backendName:\"webgl\",kernelFunc:Ylt};var Zlt=\"return tan(x);\",Jlt=It({opSnippet:Zlt}),wG={kernelName:ri,backendName:\"webgl\",kernelFunc:Jlt};var Qlt=`\n float e2x = exp(-2.0 * abs(x));\n return sign(x) * (1.0 - e2x) / (1.0 + e2x);\n`,tut=It({opSnippet:Qlt}),IG={kernelName:ni,backendName:\"webgl\",kernelFunc:tut};function eut(r){let{inputs:t,backend:e,attrs:n}=r,{tensor:o,indices:s,updates:i}=t,{}=n,{sliceRank:a,numUpdates:u,sliceSize:l,strides:c,outputSize:p}=S.calculateShapes(i,s,o.shape),m=[p/l,l];if(p===0)return e.makeTensorInfo(o.shape,s.dtype);let f=rt({inputs:{x:s},backend:e,attrs:{shape:[u,a]}}),d=rt({inputs:{x:i},backend:e,attrs:{shape:[u,l]}}),h=rt({inputs:{x:o},backend:e,attrs:{shape:m}}),g=new Ku(u,a,f.shape.length,d.shape.length,c,m,!1,!0),x=e.runWebGLProgram(g,[d,f,h],h.dtype),b=rt({inputs:{x},backend:e,attrs:{shape:o.shape}});return e.disposeIntermediateTensorInfo(f),e.disposeIntermediateTensorInfo(d),e.disposeIntermediateTensorInfo(h),e.disposeIntermediateTensorInfo(x),b}var CG={kernelName:ol,backendName:\"webgl\",kernelFunc:eut};var vC=class{constructor(t,e){this.variableNames=[\"A\"];let n=new Array(t.length);for(let i=0;i5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${r[0]})`;let e=[\"resRC.x\",\"resRC.y\",\"resRC.z\",\"resRC.w\",\"resRC.u\"],n=[];for(let o=0;o5){let u=e.readSync(o.dataId),l=o.dtype===\"string\"?u.map(m=>y.decodeString(m)):u,c=wt(o.shape,o.dtype,l),p=Fz(c,s);return e.makeTensorInfo(p.shape,p.dtype,p.values)}let i=new vC(o.shape,s);return e.runWebGLProgram(i,[o],o.dtype)}var vG={kernelName:oo,backendName:\"webgl\",kernelFunc:j1};var SC=class{constructor(t){this.variableNames=[\"x\",\"indices\"],this.customUniforms=[{name:\"n\",type:\"int\"},{name:\"firstPass\",type:\"int\"},{name:\"negativeInf\",type:\"float\"},{name:\"dir\",type:\"int\"},{name:\"inc\",type:\"int\"}],this.outputShape=t,this.userCode=`\n void main() {\n ivec2 coords = getOutputCoords();\n int batch = coords[0];\n int elemIdx = coords[1];\n\n // We compare elements pair-wise within a group of size 2 * inc.\n // The comparing rule for each group alternates between ascending\n // and descending. Within each group, we compare each pair at\n // positions i and i+inc. To decide whether an element at position i\n // is x0 or x1, we mod it by 2 * inc, if the result is smaller than\n // inc, it is in the first half of the group, we denote it as x0,\n // otherwise we denote it as x1.\n // For example, as shown in the Bitonic top K paper referenced above,\n // Figure5(a) shows that element[1] is in the\n // second half of the group when group size is 2, but it is in the\n // first half of the group when group size is 4.\n\n bool isFirstInPair = imod(elemIdx, 2 * inc) < inc;\n int i = isFirstInPair ? elemIdx : elemIdx - inc;\n\n int i0 = firstPass == 1 ? i : int(getIndices(batch, i));\n int i1 = firstPass == 1 ? i + inc : int(getIndices(batch, i + inc));\n float x0 = i0 < n ? getX(batch, i0) : negativeInf;\n float x1 = i1 < n ? getX(batch, i1) : negativeInf;\n\n // Denotes which direction indices are in (ascending or descending).\n bool reverse = imod(elemIdx, 2 * dir) >= dir;\n bool isGreater = x0 > x1 || (x0 == x1 && i1 > i0);\n if (reverse == isGreater) { // Elements in opposite order of direction\n int iTemp = i0;\n i0 = i1;\n i1 = iTemp;\n }\n if (isFirstInPair) {\n setOutput(float(i0));\n } else {\n setOutput(float(i1));\n }\n }\n `}},NC=class{constructor(t){this.variableNames=[\"x\",\"indices\"],this.customUniforms=[{name:\"n\",type:\"int\"},{name:\"firstPass\",type:\"int\"},{name:\"k\",type:\"int\"}],this.outputShape=t,this.userCode=`\n void main() {\n // Takes max of indices (0, k), (1, k + 1), (2, k + 2) ...\n ivec2 coords = getOutputCoords();\n int batch = coords[0];\n int elemIdx = coords[1];\n\n // The output size is half of the previous size.\n // If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _ (k=4),\n // we only need to output the indices at positions |, the indices at\n // positions _ can be thrown away, see Figure5(b) After Phase 2\n // (Merge phase) in the Bitonic Top K paper referenced above.\n // For example, the paper shows we only need to output the orange bars.\n // The output sequence should look like this | | | | | | | |.\n // Because the sequence is halved, to map the output index back\n // to the previous sequence to find the corresponding value,\n // we need to double the index. When we double the index,\n // we basically interpolate a position, so 2i looks like\n // | _ | _ | _ | _ | _ | _ | _. We move the | to the first k position\n // of each 2k positions by - elemIdx % k. E.g. for output at\n // index 4,5,6,7, we want to get the corresponding element at\n // original index 8,9,10,11, for output at index 8,9,10,11,\n // we want to get the corresponding element at original index\n // 16,17,18,19, so on and so forth.\n\n int i = elemIdx < k ? elemIdx : (elemIdx * 2 - imod(elemIdx, k));\n int i0 = firstPass == 1 ? i : int(getIndices(batch, i));\n int i1 = firstPass == 1 ? i + k : int(getIndices(batch, i + k));\n\n float x0 = getX(batch, i0);\n float x1 = i1 < n ? getX(batch, i1) : x0;\n\n setOutput(x0 >= x1 ? float(i0) : float(i1));\n }\n `}};function xp(r,t){t!==null&&r.disposeIntermediateTensorInfo(t)}function SG(r){let t=1;for(;tu){let M=e.readSync(o.dataId),[V,G]=Oz(M,l,o.dtype,s,i);return[e.makeTensorInfo(V.shape,V.dtype,V.values),e.makeTensorInfo(G.shape,G.dtype,G.values)]}if(s===0)return l[l.length-1]=0,[e.makeTensorInfo(l,o.dtype,[]),e.makeTensorInfo(l,\"int32\",[])];if(c===1)return[o,Ll({attrs:{shape:l,dtype:\"int32\",value:0},backend:e})];let p=e.texData.get(o.dataId),m=p!==null&&p.isPacked,f=m?e.unpackTensor(o):o,h=y.sizeFromShape(l)/c,g=rt({inputs:{x:f},attrs:{shape:[h,c]},backend:e});m&&xp(e,f);let x=SG(s),b=SG(c),w=null,I=()=>w===null?[g,g]:[g,w],N=(M,V,G)=>{let W=I(),q=new SC(G),j=[[c],[w===null?1:0],[Number.NEGATIVE_INFINITY],[M],[V]],Y=w;w=e.runWebGLProgram(q,W,\"int32\",j),xp(e,Y)};for(let M=1;M=1;G/=2)N(V,G,[h,b])}for(let M=b;M>x;M/=2){let V=I(),G=new NC([h,M/2]),q=[[c],[w===null?1:0],[x]],H=w;w=e.runWebGLProgram(G,V,\"int32\",q),xp(e,H);let j=x/2,Y=j*2;for(let Z=j;Z>=1;Z/=2)N(Y,Z,w.shape)}let E=w;w=ki({inputs:{x:w},backend:e,attrs:{begin:0,size:[h,s]}}),xp(e,E);let A=V1({inputs:{x:g,indices:w},backend:e,attrs:{axis:1,batchDims:1}});xp(e,g);let D=l.slice(0,-1);D.push(s),E=w,w=rt({inputs:{x:w},attrs:{shape:D},backend:e}),xp(e,E);let F=A;return A=rt({inputs:{x:A},attrs:{shape:D},backend:e}),xp(e,F),[A,w]}var NG={kernelName:ul,backendName:\"webgl\",kernelFunc:nut};var kC=class{constructor(t,e,n,o,s,i){this.variableNames=[\"Image\",\"Transforms\"],this.outputShape=i;let a=n===\"nearest\"?1:2,u;switch(o){case\"constant\":u=1;break;case\"reflect\":u=2;break;case\"wrap\":u=3;break;case\"nearest\":u=4;break;default:u=1;break}this.userCode=`\n float mapCoord(float outCoord, float len) {\n float inCoord = outCoord;\n if(${u} == 2) {\n if (inCoord < 0.0) {\n if (len <= 1.0) {\n inCoord = 0.0;\n } else {\n float sz2 = 2.0 * len;\n if (inCoord < sz2) {\n inCoord = sz2 * float(int(float(-inCoord / sz2))) +\n inCoord;\n }\n inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;\n }\n } else if (inCoord > len - 1.0) {\n if (len <= 1.0) {\n inCoord = 0.0;\n } else {\n float sz2 = 2.0 * len;\n inCoord -= sz2 * float(int(float(inCoord / sz2)));\n if (inCoord >= len) {\n inCoord = sz2 - inCoord - 1.0;\n }\n }\n }\n return clamp(inCoord, 0.0, len - 1.0);\n } else if (${u} == 3) {\n if (inCoord < 0.0) {\n if (len <= 1.0) {\n inCoord = 0.0;\n } else {\n float sz = len - 1.0;\n inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);\n }\n } else if (inCoord > len - 1.0) {\n if (len <= 1.0) {\n inCoord = 0.0;\n } else {\n float sz = len - 1.0;\n inCoord -= len * float(int(float(inCoord / sz)));\n }\n }\n return clamp(inCoord, 0.0, len - 1.0);\n } else if (${u} == 4) {\n return clamp(outCoord, 0.0, len - 1.0);\n } else {\n return outCoord;\n }\n }\n\n float readWithFillValue(int batch, int coordY, int coordX,\n int channel) {\n float outputValue;\n if (0 <= coordY && coordY < ${t} && 0 <= coordX && coordX < ${e}) {\n outputValue = getImage(batch, coordY, coordX, channel);\n } else {\n outputValue = float(${s});\n }\n return outputValue;\n }\n\n void main() {\n ivec4 coords = getOutputCoords();\n float outputValue;\n int batch = coords[0];\n int x = coords[2];\n int y = coords[1];\n int channel = coords[3];\n float xf = float(x);\n float yf = float(y);\n float a1 = getTransforms(batch, 0);\n float a2 = getTransforms(batch, 1);\n float a3 = getTransforms(batch, 2);\n float b1 = getTransforms(batch, 3);\n float b2 = getTransforms(batch, 4);\n float b3 = getTransforms(batch, 5);\n float c1 = getTransforms(batch, 6);\n float c2 = getTransforms(batch, 7);\n float projection = c1 * xf + c2 * yf + 1.0;\n if (projection == 0.0) {\n outputValue = float(${s});\n } else {\n float inX = (a1 * xf + a2 * yf + a3) / projection;\n float inY = (b1 * xf + b2 * yf + b3) / projection;\n float mapX = mapCoord(inX, float(${e}));\n float mapY = mapCoord(inY, float(${t}));\n\n if (${a} == 1) {\n int coordY = int(round(mapY));\n int coordX = int(round(mapX));\n outputValue = readWithFillValue(batch, coordY, coordX,\n channel);\n } else {\n float yFloor = floor(mapY);\n float xFloor = floor(mapX);\n float yCeil = yFloor + 1.0;\n float xCeil = xFloor + 1.0;\n float valueYFloor = (xCeil - mapX) *\n readWithFillValue(batch, int(yFloor), int(xFloor), channel) +\n (mapX - xFloor) *\n readWithFillValue(batch, int(yFloor), int(xCeil), channel);\n float valueYCeil = (xCeil - mapX) *\n readWithFillValue(batch, int(yCeil), int(xFloor), channel) +\n (mapX - xFloor) *\n readWithFillValue(batch, int(yCeil), int(xCeil), channel);\n outputValue = (yCeil - mapY) * valueYFloor +\n (mapY - yFloor) * valueYCeil;\n }\n }\n setOutput(outputValue);\n }\n `}};function out(r){let{inputs:t,backend:e,attrs:n}=r,{image:o,transforms:s}=t,{interpolation:i,fillMode:a,fillValue:u,outputShape:l}=n,[c,p,m,f]=o.shape,[d,h]=l!=null?l:[p,m],g=[c,d,h,f],x=new kC(p,m,i,a,u,g);return e.runWebGLProgram(x,[o,s],\"float32\")}var kG={kernelName:cl,backendName:\"webgl\",kernelFunc:out};function sut(r){let{inputs:t,attrs:e,backend:n}=r,{axis:o}=e,{x:s}=t;vi(s,\"unique\"),console.warn(\"WARNING: \",\"UI might be locked temporarily as data is being downloaded\");let i=n.readSync(s.dataId),{outputValues:a,outputShape:u,indices:l}=Mz(i,o,s.shape,s.dtype);return[n.makeTensorInfo(u,s.dtype,a),n.makeTensorInfo([l.length],\"int32\",l)]}var TG={kernelName:cu,backendName:\"webgl\",kernelFunc:sut};function iut(r){let{inputs:t,backend:e,attrs:n}=r,{value:o}=t,{axis:s}=n;s<0&&(s+=o.shape.length);let i=o,a=i.shape.length,u=o.shape[s],l=new Array(a-1),c=0;for(let h=0;he.disposeIntermediateTensorInfo(h)),d}var _G={kernelName:Ki,backendName:\"webgl\",kernelFunc:iut};var TC=class{constructor(t,e){this.variableNames=[\"x\",\"segmentIds\"];let n=t.windowSize,o=t.batchSize,s=t.inSize,i=t.numSegments,a=i*Math.ceil(s/n);this.outputShape=[o,a];let u=\"0.0\",l=\"sumValue\",c=Math.floor(n/4)*4,p=n%4,m=`\n sumValue += dot(values, segFilter);\n `,f=\"\";s%n>0&&(f=`\n if (inIdx < 0 || inIdx >= ${s}) {\n return initializationValue;\n }\n `);let d=\"\";s%n>0&&(d=`\n if (inIdx < 0 || inIdx >= ${s}) {\n return -1.0;\n }\n `),this.userCode=`\n const float initializationValue = ${u};\n\n float getValue(int batch, int inIdx) {\n ${f}\n return getX(batch, inIdx);\n }\n\n float getSegmentIdAtIndex(int inIdx) {\n ${d}\n return getSegmentIds(inIdx);\n }\n\n void main() {\n ivec2 coords = getOutputCoords();\n int batch = coords[0];\n int outIdx = coords[1];\n int inOffset = int(floor(float(outIdx) / float(\n ${i})) * float(${n}));\n int currentSeg = int(mod(float(outIdx), float(${i})));\n\n float sumValue = 0.0;\n\n for (int i = 0; i < ${c}; i += 4) {\n int inIdx = inOffset + i;\n vec4 values = vec4(\n getValue(batch, inIdx),\n getValue(batch, inIdx + 1),\n getValue(batch, inIdx + 2),\n getValue(batch, inIdx + 3)\n );\n\n vec4 segFilter = vec4(\n int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,\n int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,\n int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,\n int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0\n );\n\n ${m}\n }\n\n int inIdx = inOffset + ${c};\n if (${p===1}) {\n vec4 values = vec4(\n getValue(batch, inIdx),\n initializationValue,\n initializationValue,\n initializationValue\n );\n\n int inIdxSeg = int(getSegmentIdAtIndex(inIdx));\n\n vec4 segFilter = vec4(\n int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,\n 0,\n 0,\n 0\n );\n\n ${m}\n } else if (${p===2}) {\n vec4 values = vec4(\n getValue(batch, inIdx),\n getValue(batch, inIdx + 1),\n initializationValue,\n initializationValue\n );\n\n vec4 segFilter = vec4(\n int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,\n int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,\n 0,\n 0\n );\n\n ${m}\n } else if (${p===3}) {\n vec4 values = vec4(\n getValue(batch, inIdx),\n getValue(batch, inIdx + 1),\n getValue(batch, inIdx + 2),\n initializationValue\n );\n\n vec4 segFilter = vec4(\n int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,\n int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,\n int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,\n 0\n );\n\n ${m}\n }\n setOutput(${l});\n }\n `}};function aut(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,segmentIds:s}=t,{numSegments:i}=n,a=o.shape.length,u=[],l=0,c=S.getAxesPermutation([l],a),p=o;c!=null&&(p=Pe({inputs:{x:o},backend:e,attrs:{perm:c}}),u.push(p),l=S.getInnerMostAxes(1,a)[0]);let m=S.segment_util.computeOutShape(p.shape,l,i),f=y.sizeFromShape([p.shape[l]]),d=rt({inputs:{x:p},backend:e,attrs:{shape:[-1,f]}});u.push(d);let h=lc(o.dtype),g=(I,N,E,A,D)=>{let F=I.shape[0],M=I.shape[1],V=S.segment_util.segOpComputeOptimalWindowSize(M,D),G={windowSize:V,inSize:M,batchSize:F,numSegments:D},W=new TC(G,N),q=e.compileAndRun(W,[I,E],A);if(u.push(q),q.shape[1]===D)return q;let H=K1({backend:e,attrs:{start:0,stop:D,step:1,dtype:\"float32\"}}),j=j1({inputs:{x:H},backend:e,attrs:{reps:[M/V]}});return u.push(H),u.push(j),g(q,N,j,A,D)},x=g(d,\"unsortedSegmentSum\",s,h,i),b=rt({inputs:{x},backend:e,attrs:{shape:m}}),w=b;if(c!=null){u.push(b);let I=S.getUndoAxesPermutation(c);w=Pe({inputs:{x:w},backend:e,attrs:{perm:I}})}return u.forEach(I=>e.disposeIntermediateTensorInfo(I)),w}var EG={kernelName:pu,backendName:\"webgl\",kernelFunc:aut};var lut=[p3,f3,d3,h3,x3,y3,b3,w3,v3,S3,N3,k3,T3,_3,E3,A3,D3,$3,R3,F3,O3,P3,L3,z3,B3,U3,q3,K3,e3,X3,Z3,J3,Q3,tB,eB,rB,nB,oB,sB,iB,uB,cB,pB,mB,fB,dB,hB,gB,xB,yB,bB,wB,IB,CB,vB,SB,kB,TB,_B,EB,DB,$B,RB,FB,OB,MB,PB,LB,zB,t3,BB,Y3,VB,GB,WB,r3,UB,HB,qB,KB,jB,XB,YB,ZB,JB,QB,eV,rV,nV,oV,sV,iV,lV,cV,pV,mV,fV,dV,bV,s3,wV,IV,CV,vV,V3,SV,TV,_V,EV,AV,n3,DV,$V,RV,FV,OV,G3,hV,MV,PV,LV,a3,zV,BV,VV,GV,WV,UV,HV,qV,KV,jV,XV,YV,ZV,JV,QV,tG,M3,yV,eG,rG,nG,oG,sG,iG,aG,lG,cG,pG,fG,dG,hG,gG,xG,yG,bG,xV,u3,wG,IG,CG,vG,NG,kG,c3,TG,_G,EG,NV];for(let r of lut)rc(r);var Nt;(function(r){r[r.float32=0]=\"float32\",r[r.int32=1]=\"int32\",r[r.bool=2]=\"bool\",r[r.string=3]=\"string\",r[r.complex64=4]=\"complex64\"})(Nt||(Nt={}));var ju;(function(r){r[r.linear=0]=\"linear\",r[r.relu=1]=\"relu\",r[r.relu6=2]=\"relu6\",r[r.prelu=3]=\"prelu\",r[r.leakyrelu=4]=\"leakyrelu\",r[r.sigmoid=5]=\"sigmoid\",r[r.elu=6]=\"elu\"})(ju||(ju={}));var AG;function uut(r){AG=r.wasm.cwrap(Xi,null,[\"number\",\"array\",\"number\",\"number\",\"array\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\"])}function cut(r){let{inputs:t,backend:e,attrs:n}=r,{a:o,b:s,bias:i,preluActivationWeights:a}=t;if(o.dtype!==\"float32\"||s.dtype!==\"float32\")throw new Error(\"_FusedMatMul for non non-float32 tensors not yet supported.\");let{transposeA:u,transposeB:l,activation:c,leakyreluAlpha:p}=n,m=e.dataIdMap.get(o.dataId).id,f=e.dataIdMap.get(s.dataId).id,d=0;if(i!=null){let D=e.dataIdMap.get(i.dataId);if(D.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${D.shape.length}.`);d=D.id}let h=a==null?0:e.dataIdMap.get(a.dataId).id,g=ju[c];if(g==null)throw new Error(`${c} activation not yet supported for FusedConv2D in the wasm backend.`);let x=u?o.shape[2]:o.shape[1],b=l?s.shape[1]:s.shape[2],w=Hr.assertAndGetBroadcastShape(o.shape.slice(0,-2),s.shape.slice(0,-2)),I=e.makeOutput([...w,x,b],o.dtype),N=e.dataIdMap.get(I.dataId).id,E=new Uint8Array(new Int32Array(o.shape).buffer),A=new Uint8Array(new Int32Array(s.shape).buffer);return AG(m,E,o.shape.length,f,A,s.shape.length,u,l,g,d,h,p||0,N),I}var DG={kernelName:Xi,backendName:\"wasm\",setupFunc:uut,kernelFunc:cut};function yt(r,t){let e;function n(s){e=s.wasm.cwrap(r,null,[\"number\",\"number\",\"number\"])}function o(s){let{backend:i,inputs:{x:a}}=s,u=i.dataIdMap.get(a.dataId).id,l=i.makeOutput(a.shape,t||a.dtype),c=i.dataIdMap.get(l.dataId).id;return y.sizeFromShape(l.shape)===0||e(u,Nt[a.dtype],c),l}return{kernelName:r,backendName:\"wasm\",setupFunc:n,kernelFunc:o}}var $G=yt(Ai);var RG=yt(Go);var FG=yt(Wo);function ee(r,t,e){let n;function o(i){n=i.wasm.cwrap(r,null,[\"number\",\"array\",\"number\",\"number\",\"array\",\"number\",\"number\",\"number\"])}function s(i){let{backend:a,inputs:u}=i,{a:l,b:c}=u,p=a.dataIdMap.get(l.dataId).id,m=a.dataIdMap.get(c.dataId).id,f=e!=null?e:l.dtype,d=S.assertAndGetBroadcastShape(l.shape,c.shape),h=a.makeOutput(d,f);if(y.sizeFromShape(d)===0)return h;let g=new Uint8Array(new Int32Array(l.shape).buffer),x=new Uint8Array(new Int32Array(c.shape).buffer),b=a.dataIdMap.get(h.dataId).id;return n(p,g,l.shape.length,m,x,c.shape.length,Nt[l.dtype],b),h}return{kernelName:r,backendName:\"wasm\",setupFunc:o,kernelFunc:s}}var put=!0,OG=ee(no,put);var MG;function mut(r){MG=r.wasm.cwrap(Uo,null,[\"array\",\"number\",\"number\",\"number\"])}function fut(r){let{inputs:t,backend:e}=r,n=e.makeOutput(t[0].shape,t[0].dtype);if(y.sizeFromShape(n.shape)===0)return n;let o=t.map(a=>e.dataIdMap.get(a.dataId).id),s=new Uint8Array(new Int32Array(o).buffer),i=e.dataIdMap.get(n.dataId).id;return MG(s,o.length,Nt[n.dtype],i),n}var PG={kernelName:Uo,backendName:\"wasm\",setupFunc:mut,kernelFunc:fut};function yp(r){let{inputs:{x:t},backend:e}=r;if(t.dtype===\"string\")return ir(e.readSync(t.dataId),t.shape,t.dtype);let n=e.makeOutput(t.shape,t.dtype),o=e.typedArrayFromHeap(t);return e.typedArrayFromHeap(n).set(o),n}var LG={kernelName:go,backendName:\"wasm\",kernelFunc:yp};var zG;function dut(r){zG=r.wasm.cwrap(so,null,[\"number\",\"array\",\"number\",\"number\",\"number\",\"array\",\"number\"])}function mo(r){let{inputs:t,backend:e,attrs:n}=r,[o,s]=gut(t.x.shape,n.perm),i=!0;for(let d=0;d=o&&(s===-1||n[s]>n[i])&&(s=i);n[s]=o}return[e,n]}var BG={kernelName:so,backendName:\"wasm\",kernelFunc:mo,setupFunc:dut};function Cn(r,t,e){let n=r.shape,o=r.shape.length,s=y.parseAxisParam(t,n),i=s,a=S.getAxesPermutation(i,o),u=null,l=!1;if(a!=null){let c=new Array(o);for(let f=0;f`new shape: ${i}, old shape: ${n.shape}. New shape and old shape must have the same number of elements.`),r.backend.incRef(n.dataId),{dataId:n.dataId,shape:i,dtype:n.dtype}}var iW={kernelName:Gi,backendName:\"wasm\",kernelFunc:mr};var aW;function Eut(r){aW=r.wasm.cwrap(Zo,null,[\"number\",\"array\",\"number\",\"number\",\"array\",\"number\",\"number\",\"number\",\"number\"])}function Aut(r){let{inputs:t,backend:e,attrs:n}=r,{a:o,b:s}=t,{transposeA:i,transposeB:a}=n;if(o.dtype!==\"float32\"||s.dtype!==\"float32\")throw new Error(\"BatchMatMul for non non-float32 tensors not yet supported.\");let u=o.shape.length,l=s.shape.length,c=i?o.shape[u-2]:o.shape[u-1],p=a?s.shape[l-1]:s.shape[l-2],m=i?o.shape[u-1]:o.shape[u-2],f=a?s.shape[l-2]:s.shape[l-1],d=o.shape.slice(0,-2),h=s.shape.slice(0,-2),g=y.sizeFromShape(d),x=y.sizeFromShape(h),w=Hr.assertAndGetBroadcastShape(o.shape.slice(0,-2),s.shape.slice(0,-2)).concat([m,f]);y.assert(c===p,()=>`Error in matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${o.shape} and ${s.shape} and transposeA=${i} and transposeB=${a} must match.`);let I=i?[g,c,m]:[g,m,c],N=a?[x,f,p]:[x,p,f],E=mr({inputs:{x:o},backend:e,attrs:{shape:I}}),A=mr({inputs:{x:s},backend:e,attrs:{shape:N}}),D=e.dataIdMap.get(E.dataId).id,F=e.dataIdMap.get(A.dataId).id,M=i?E.shape[2]:E.shape[1],V=a?A.shape[1]:A.shape[2],G=Math.max(g,x),W=e.makeOutput([G,M,V],E.dtype),q=e.dataIdMap.get(W.dataId).id,H=new Uint8Array(new Int32Array(E.shape).buffer),j=new Uint8Array(new Int32Array(A.shape).buffer);return aW(D,H,E.shape.length,F,j,A.shape.length,i,a,q),e.disposeData(E.dataId),e.disposeData(A.dataId),W.shape=w,W}var lW={kernelName:Zo,backendName:\"wasm\",setupFunc:Eut,kernelFunc:Aut};function Lo(r){let{inputs:{x:t},attrs:{begin:e,size:n},backend:o}=r,[s,i]=Be.parseSliceParams(t,e,n),a=Be.isSliceContinous(t.shape,s,i),u=o.readSync(t.dataId),l=o.makeOutput(i,t.dtype),c=y.computeStrides(t.shape),p=o.dataIdMap.get(l.dataId);if(a){let d=Be.computeFlatOffset(s,c);return t.dtype===\"string\"?p.stringBytes=u.slice(d,d+y.sizeFromShape(i)):o.typedArrayFromHeap(l).set(u.subarray(d,d+y.sizeFromShape(i))),l}if(t.dtype===\"string\"){let d=ep(u,s,i,t.shape,t.dtype);return p.stringBytes=d,l}let m=o.typedArrayFromHeap(l),f=t.shape.length;if(f===2)Dut(u,c[0],m,s,i);else if(f===3)$ut(u,c[0],c[1],m,s,i);else if(f===4)Rut(u,c[0],c[1],c[2],m,s,i);else{let d=ep(u,s,i,t.shape,t.dtype);m.set(d)}return l}function Dut(r,t,e,n,o){let s=0,i=n[0],a=n[1],u=i+o[0];for(let l=i;lx*b),u=S.getReshaped(o.shape,s,a),l=S.getPermuted(u.length,s.length),c=S.getReshapedPermuted(o.shape,s,a),p=S.getSliceBeginCoords(i,s.length),m=S.getSliceSize(c,i,s.length),f=mr({inputs:{x:o},backend:e,attrs:{shape:u}}),d=mo({inputs:{x:f},backend:e,attrs:{perm:l}}),h=mr({inputs:{x:d},backend:e,attrs:{shape:c}}),g=Lo({inputs:{x:h},backend:e,attrs:{begin:p,size:m}});return e.disposeData(f.dataId),e.disposeData(d.dataId),e.disposeData(h.dataId),g}var cW={kernelName:Fi,backendName:\"wasm\",kernelFunc:Fut};var pW;function Out(r){pW=r.wasm.cwrap(Da,null,[\"number\",\"number\",\"boolean\",\"number\",\"number\",\"number\"])}function Mut(r){let{backend:t,inputs:e,attrs:n}=r,{x:o,weights:s}=e,{size:i}=n,a=s.shape.reduce((p,m)=>p*m,1)!==0,u=o.shape.length===1?[i]:[o.shape[0],i],l=t.makeOutput(u,s.dtype);function c(p){return t.dataIdMap.get(p.dataId).id}return pW(c(o),i,a,c(s),Nt[s.dtype],c(l)),l}var mW={kernelName:Da,backendName:\"wasm\",setupFunc:Out,kernelFunc:Mut};var Put=!0,fW=ee($a,Put);function Lut(r){let{inputs:t,backend:e}=r,{s0:n,s1:o}=t,s=e.typedArrayFromHeap(n),i=e.typedArrayFromHeap(o),a=S.assertAndGetBroadcastShape(Array.from(s),Array.from(i));return e.makeOutput([a.length],\"int32\",void 0,new Int32Array(a))}var dW={kernelName:ql,backendName:\"wasm\",kernelFunc:Lut};function Fn(r){let{inputs:{x:t},attrs:{dtype:e},backend:n}=r,o=n.makeOutput(t.shape,e),s=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(o).set(s),o}var hW={kernelName:fo,backendName:\"wasm\",kernelFunc:Fn};var gW=yt(Jo);var xW;function zut(r){xW=r.wasm.cwrap(ho,null,[\"number\",\"number\",\"number\",\"number\"])}function But(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{clipValueMin:s,clipValueMax:i}=n,a=e.dataIdMap.get(o.dataId).id,u=e.makeOutput(o.shape,o.dtype),l=e.dataIdMap.get(u.dataId).id;return xW(a,s,i,l),u}var yW={kernelName:ho,backendName:\"wasm\",setupFunc:zut,kernelFunc:But};function X1(r){let{inputs:t,backend:e}=r,n=y.parseAxisParam(r.attrs.axis,t[0].shape)[0],o=t.map(f=>f.shape);S.assertParamsConsistent(o,n);let s=S.computeOutShape(t.map(f=>f.shape),n),i=t.filter(f=>y.sizeFromShape(f.shape)>0);if(i.length===1)return yp({inputs:{x:i[0]},backend:e});let a=e.makeOutput(s,t[0].dtype);if(y.sizeFromShape(s)===0)return a;if(i[0].dtype===\"string\"){let f=i.map(w=>{let N=[-1,y.sizeFromShape(w.shape.slice(n))];return mr({inputs:{x:w},backend:e,attrs:{shape:N}})}),d=f.map(w=>({vals:e.readSync(w.dataId),shape:w.shape}));s=S.computeOutShape(f.map(w=>w.shape),1);let h=f[0].shape[0]===1,g=Jc(d,s,t[0].dtype,h),x=S.computeOutShape(i.map(w=>w.shape),n);a.shape=x;let b=e.dataIdMap.get(a.dataId);return b.stringBytes=S.fromStringArrayToUint8(g),f.forEach(w=>e.disposeData(w.dataId)),a}let u=y.sizeFromShape(i[0].shape.slice(0,n)),l=0,c=i.map(f=>{let d=y.sizeFromShape(f.shape.slice(n));return l+=d,d}),p=i.map(f=>e.typedArrayFromHeap(f)),m=e.typedArrayFromHeap(a);for(let f=0;f`cumprod does not support ${o.dtype} tensors in the WASM backend`);let l=S.getAxesPermutation([s],u),c=o;l!==null&&(c=mo({inputs:{x:o},attrs:{perm:l},backend:e}));let p=S.getInnerMostAxes(1,u)[0];S.assertAxesAreInnerMostDims(\"cumprod\",[p],u);let m=e.makeOutput(c.shape,c.dtype),f=c.shape[p],d=e.dataIdMap.get(c.dataId).id,h=e.dataIdMap.get(m.dataId).id;FW(d,i?1:0,a?1:0,f,h,Nt[o.dtype]);let g=m;if(l!==null){let x=S.getUndoAxesPermutation(l);g=mo({inputs:{x:m},attrs:{perm:x},backend:e}),e.disposeData(c.dataId),e.disposeData(m.dataId)}return g}var OW={kernelName:Oa,backendName:\"wasm\",setupFunc:Qut,kernelFunc:tct};var MW;function ect(r){MW=r.wasm.cwrap(os,null,[\"number\",\"number\",\"number\",\"number\",\"number\",\"number\"])}function rct(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,exclusive:i,reverse:a}=n,u=o.shape.length;y.assert(o.dtype===\"float32\"||o.dtype===\"int32\",()=>`cumsum does not support ${o.dtype} tensors in the WASM backend`);let l=S.getAxesPermutation([s],u),c=o;l!==null&&(c=mo({inputs:{x:o},attrs:{perm:l},backend:e}));let p=S.getInnerMostAxes(1,u)[0];S.assertAxesAreInnerMostDims(\"cumsum\",[p],u);let m=e.makeOutput(c.shape,c.dtype),f=c.shape[p],d=e.dataIdMap.get(c.dataId).id,h=e.dataIdMap.get(m.dataId).id;MW(d,i?1:0,a?1:0,f,h,Nt[o.dtype]);let g=m;if(l!==null){let x=S.getUndoAxesPermutation(l);g=mo({inputs:{x:m},attrs:{perm:x},backend:e}),e.disposeData(c.dataId),e.disposeData(m.dataId)}return g}var PW={kernelName:os,backendName:\"wasm\",setupFunc:ect,kernelFunc:rct};var LW;function nct(r){LW=r.wasm.cwrap(\"DenseBincount\",null,[\"number\",\"array\",\"number\",\"number\",\"boolean\",\"number\",\"number\",\"boolean\",\"number\"])}function oct(r){let{backend:t,inputs:e,attrs:n}=r,{x:o,weights:s}=e,{size:i,binaryOutput:a}=n,u=s.shape.reduce((m,f)=>m*f,1)!==0,l=o.shape.length===1?[i]:[o.shape[0],i],c=t.makeOutput(l,s.dtype);function p(m){return t.dataIdMap.get(m.dataId).id}return LW(p(o),new Uint8Array(new Int32Array(o.shape).buffer),o.shape.length,i,u,p(s),Nt[s.dtype],a,p(c)),c}var zW={kernelName:jl,backendName:\"wasm\",setupFunc:nct,kernelFunc:oct};var BW;function sct(r){BW=r.wasm.cwrap(Pa,null,[\"number\",\"number\",\"number\",\"array\",\"number\",\"array\",\"array\",\"number\",\"number\"])}function ict(r){let{backend:t,inputs:e,attrs:n}=r,{x:o}=e,{blockSize:s,dataFormat:i}=n,a=o.shape[0],u=i===\"NHWC\"?o.shape[1]:o.shape[2],l=i===\"NHWC\"?o.shape[2]:o.shape[3],c=i===\"NHWC\"?o.shape[3]:o.shape[1],p=u*s,m=l*s,f=c/(s*s),d=i===\"NHWC\"?[a,p,m,f]:[a,f,p,m],h=t.makeOutput(d,\"float32\"),x=t.dataIdMap.get(o.dataId).id,b=new Uint8Array(new Int32Array(y.computeStrides(o.shape)).buffer),w=new Uint8Array(new Int32Array(d).buffer),I=new Uint8Array(new Int32Array(y.computeStrides(d)).buffer),N=t.dataIdMap.get(h.dataId).id;return BW(x,s,i===\"NHWC\"?1:0,b,o.shape.length-1,w,I,d.length,N),h}var VW={kernelName:Pa,backendName:\"wasm\",setupFunc:sct,kernelFunc:ict};var GW;function act(r){GW=r.wasm.cwrap(ss,null,[\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\"])}function lct(r){let{inputs:t,attrs:e,backend:n}=r,{x:o,filter:s}=t,i=n.dataIdMap.get(o.dataId).id,a=n.dataIdMap.get(s.dataId).id,{strides:u,dilations:l,pad:c,dimRoundingMode:p}=e,m=l==null?[1,1]:l,f=S.computeConv2DInfo(o.shape,s.shape,u,m,c,p,!0),d=f.filterHeight,h=f.filterWidth,g=f.padInfo.top,x=f.padInfo.right,b=f.padInfo.bottom,w=f.padInfo.left,I=f.dilationHeight,N=f.dilationWidth,E=f.strideHeight,A=f.strideWidth,D=f.inChannels,F=f.outChannels,M=f.padInfo.type===\"SAME\"?1:0;if(f.dataFormat!==\"channelsLast\")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${f.dataFormat}'. Please use 'channelsLast'.`);let V=n.makeOutput(f.outShape,\"float32\"),G=n.dataIdMap.get(V.dataId).id;return GW(i,o.shape[0],o.shape[1],o.shape[2],a,d,h,g,x,b,w,M,I,N,E,A,D,F,G),V}var WW={kernelName:ss,backendName:\"wasm\",setupFunc:act,kernelFunc:lct};var UW;function uct(r){UW=r.wasm.cwrap(\"Diag\",null,[\"number\",\"number\",\"number\",\"number\"])}function cct(r){let{inputs:t,backend:e}=r,{x:n}=t,o=y.sizeFromShape(n.shape),s=e.makeOutput([...n.shape,...n.shape],n.dtype);return UW(e.dataIdMap.get(n.dataId).id,Nt[n.dtype],o,e.dataIdMap.get(s.dataId).id),s}var HW={kernelName:Xl,backendName:\"wasm\",setupFunc:uct,kernelFunc:cct};var qW;function pct(r){qW=r.wasm.cwrap(is,null,[\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\"])}function mct(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s}=t,{strides:i,pad:a,dilations:u}=n;if(o.dtype!==s.dtype)throw new Error(`Dilation2D error: x must have the same dtype as filter. Got ${o.dtype} and ${s.dtype}`);let l=S.computeDilation2DInfo(o.shape,s.shape,i,a,\"NHWC\",u),c=e.makeOutput(l.outShape,o.dtype);return qW(e.dataIdMap.get(o.dataId).id,e.dataIdMap.get(s.dataId).id,e.dataIdMap.get(c.dataId).id,Nt[o.dtype],l.batchSize,l.inChannels,l.inHeight,l.inWidth,l.outHeight,l.outWidth,l.strideHeight,l.strideWidth,l.dilationHeight,l.dilationWidth,l.filterHeight,l.filterWidth,l.padInfo.top,l.padInfo.left),c}var KW={kernelName:is,backendName:\"wasm\",setupFunc:pct,kernelFunc:mct};var jW;function fct(r){jW=r.wasm.cwrap(Zl,null,[\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\"])}function dct(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s,dy:i}=t,{strides:a,pad:u,dilations:l}=n;if(o.dtype!==s.dtype||o.dtype!==i.dtype)throw new Error(`Dilation2DBackpropFilter error: x must have the same dtype as filter and dy. Got ${o.dtype}, ${s.dtype}, and ${i.dtype}`);let c=S.computeDilation2DInfo(o.shape,s.shape,a,u,\"NHWC\",l),p=e.makeOutput(s.shape,s.dtype);return jW(e.dataIdMap.get(o.dataId).id,e.dataIdMap.get(s.dataId).id,e.dataIdMap.get(i.dataId).id,e.dataIdMap.get(p.dataId).id,Nt[o.dtype],c.batchSize,c.inChannels,c.inHeight,c.inWidth,c.outHeight,c.outWidth,c.strideHeight,c.strideWidth,c.dilationHeight,c.dilationWidth,c.filterHeight,c.filterWidth,c.padInfo.top,c.padInfo.left),p}var XW={kernelName:Zl,backendName:\"wasm\",setupFunc:fct,kernelFunc:dct};var YW;function hct(r){YW=r.wasm.cwrap(Yl,null,[\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\"])}function gct(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s,dy:i}=t,{strides:a,pad:u,dilations:l}=n;if(o.dtype!==s.dtype||o.dtype!==i.dtype)throw new Error(`Dilation2DBackpropInput error: x must have the same dtype as filter and dy. Got ${o.dtype}, ${s.dtype}, and ${i.dtype}`);let c=S.computeDilation2DInfo(o.shape,s.shape,a,u,\"NHWC\",l),p=e.makeOutput(o.shape,o.dtype);return YW(e.dataIdMap.get(o.dataId).id,e.dataIdMap.get(s.dataId).id,e.dataIdMap.get(i.dataId).id,e.dataIdMap.get(p.dataId).id,Nt[o.dtype],c.batchSize,c.inChannels,c.inHeight,c.inWidth,c.outHeight,c.outWidth,c.strideHeight,c.strideWidth,c.dilationHeight,c.dilationWidth,c.filterHeight,c.filterWidth,c.padInfo.top,c.padInfo.left),p}var ZW={kernelName:Yl,backendName:\"wasm\",setupFunc:hct,kernelFunc:gct};var JW=yt(ls);var QW;function xct(r){QW=r.wasm.cwrap(La,null,[\"number\",\"number\",\"number\"])}function yct(r){let{inputs:t,backend:e}=r,{dy:n,y:o}=t,s=e.makeOutput(o.shape,\"float32\"),i=a=>e.dataIdMap.get(a.dataId).id;return QW(i(o),i(n),i(s)),s}var tU={kernelName:La,backendName:\"wasm\",setupFunc:xct,kernelFunc:yct};var bct=!1,eU=ee(za,bct,\"bool\");var rU=yt(us);var nU=yt(cs,\"float32\");function EC(r){let{inputs:t,attrs:e,backend:n}=r,{input:o}=t,{dim:s}=e,i=o.shape.length,a=o.shape.slice(),u=s;return s<0&&(y.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),u=i+s+1),a.splice(u,0,1),mr({inputs:{x:o},backend:n,attrs:{shape:a}})}var oU={kernelName:Mi,backendName:\"wasm\",kernelFunc:EC};var sU=yt(ps,\"float32\");function Z1(r){let{attrs:{shape:t,value:e},backend:n}=r,{attrs:{dtype:o}}=r;o=o||y.inferDtype(e);let s=n.makeOutput(t,o);return n.typedArrayFromHeap(s).fill(e),s}var iU={kernelName:Jl,backendName:\"wasm\",kernelFunc:Z1};var aU;function wct(r){aU=r.wasm.cwrap(Ba,null,[\"number\",\"number\",\"number\",\"number\",\"number\",\"number\"])}function Ict(r){let{inputs:t,backend:e}=r,{image:n}=t,o=e.makeOutput(n.shape,n.dtype),s=e.dataIdMap.get(n.dataId).id,i=e.dataIdMap.get(o.dataId).id,[a,u,l,c]=n.shape;return aU(s,a,u,l,c,i),o}var lU={kernelName:Ba,backendName:\"wasm\",kernelFunc:Ict,setupFunc:wct};var uU=yt(ms);var Cct=!1,cU=ee(fs,Cct);var pU;function vct(r){pU=r.wasm.cwrap(ds,null,[\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\"])}function Sct(r){let{backend:t,inputs:e,attrs:n}=r,{varianceEpsilon:o}=n,{x:s,mean:i,variance:a,offset:u,scale:l}=e,c=t.dataIdMap.get(s.dataId).id,p=t.dataIdMap.get(i.dataId).id,m=t.dataIdMap.get(a.dataId).id,f=u!=null?t.dataIdMap.get(u.dataId).id:0,d=l!=null?t.dataIdMap.get(l.dataId).id:0,h=t.makeOutput(s.shape,s.dtype);if(y.sizeFromShape(s.shape)===0)return h;let g=t.dataIdMap.get(h.dataId).id;return pU(c,p,m,f,d,o,g),h}var mU={kernelName:ds,backendName:\"wasm\",setupFunc:vct,kernelFunc:Sct};var fU;function Nct(r){fU=r.wasm.cwrap(Yi,null,[\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\"])}function kct(r){let{inputs:t,attrs:e,backend:n}=r,{x:o,filter:s,bias:i,preluActivationWeights:a}=t,{strides:u,pad:l,dilations:c,dataFormat:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=e,h=S.computeConv2DInfo(o.shape,s.shape,u,c,l,m),g=ju[f];if(g==null)throw new Error(`${f} activation not yet supported for FusedConv2D in the wasm backend.`);let x=n.dataIdMap.get(o.dataId).id,b=n.dataIdMap.get(s.dataId).id,w=h.outChannels,I=0;if(i!=null){let ot=n.dataIdMap.get(i.dataId);if(ot.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${ot.shape.length}.`);if(ot.shape[0]!==w)throw new Error(`FusedConv2D bias shape (${ot.shape}) does not match the number of output channels (${w})`);I=ot.id}let N=h.filterHeight,E=h.filterWidth,A=h.padInfo.top,D=h.padInfo.right,F=h.padInfo.bottom,M=h.padInfo.left,V=h.dilationHeight,G=h.dilationWidth,W=h.strideHeight,q=h.strideWidth,H=h.inChannels,j=h.padInfo.type===\"SAME\"?1:0,Y=h.batchSize,Z=h.inHeight,et=h.inWidth;if(p!==\"NHWC\")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let nt=n.makeOutput(h.outShape,\"float32\"),st=n.dataIdMap.get(nt.dataId).id,lt=a==null?0:n.dataIdMap.get(a.dataId).id;return fU(x,Y,Z,et,b,N,E,I,A,D,F,M,j,V,G,W,q,H,w,g,lt,d||0,st),nt}var dU={kernelName:Yi,backendName:\"wasm\",setupFunc:Nct,kernelFunc:kct};var hU;function Tct(r){hU=r.wasm.cwrap(Zi,null,[\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\"])}function _ct(r){let{inputs:t,attrs:e,backend:n}=r,{x:o,filter:s,bias:i,preluActivationWeights:a}=t,{strides:u,pad:l,dilations:c,dataFormat:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=e,h=S.computeConv2DInfo(o.shape,s.shape,u,c,l,m,!0),g=ju[f];if(g==null)throw new Error(`${f} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let x=n.dataIdMap.get(o.dataId).id,b=n.dataIdMap.get(s.dataId).id,w=h.outChannels,I=0;if(i!=null){let ot=n.dataIdMap.get(i.dataId);if(ot.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${ot.shape.length}.`);if(ot.shape[0]!==w)throw new Error(`FusedDepthwiseConv2D bias shape (${ot.shape}) does not match the number of output channels (${w})`);I=ot.id}let N=h.filterHeight,E=h.filterWidth,A=h.padInfo.top,D=h.padInfo.right,F=h.padInfo.bottom,M=h.padInfo.left,V=h.dilationHeight,G=h.dilationWidth,W=h.strideHeight,q=h.strideWidth,H=h.inChannels,j=h.padInfo.type===\"SAME\"?1:0,Y=h.batchSize,Z=h.inHeight,et=h.inWidth;if(p!==\"NHWC\")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let nt=n.makeOutput(h.outShape,\"float32\"),st=n.dataIdMap.get(nt.dataId).id,lt=a==null?0:n.dataIdMap.get(a.dataId).id;return hU(x,Y,Z,et,b,N,E,I,A,D,F,M,j,V,G,W,q,H,w,g,lt,d||0,st),nt}var gU={kernelName:Zi,backendName:\"wasm\",setupFunc:Tct,kernelFunc:_ct};var xU;function Ect(r){xU=r.wasm.cwrap(Va,null,[\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"array\",\"number\"])}function Act(r){let{backend:t,inputs:e}=r,{params:n,indices:o}=e,[s,i,a,u]=Ey.prepareAndValidate(n,o),l=t.makeOutput(s,n.dtype);if(i===0)return l;let c=o.shape,p=c[c.length-1],f=t.dataIdMap.get(n.dataId).id,h=t.dataIdMap.get(o.dataId).id,g=new Uint8Array(new Int32Array(u).buffer),x=t.dataIdMap.get(l.dataId).id;return xU(f,Nt[n.dtype],h,i,p,a,g,x),l}var yU={kernelName:Va,backendName:\"wasm\",setupFunc:Ect,kernelFunc:Act};var bU;function Dct(r){bU=r.wasm.cwrap(\"Gather\",null,[\"number\",\"number\",\"array\",\"number\",\"number\",\"number\",\"array\",\"number\"])}function $ct(r){let{backend:t,inputs:e,attrs:n}=r,{x:o,indices:s}=e,{axis:i,batchDims:a}=n,u=y.parseAxisParam(i,o.shape)[0],l=t.readSync(s.dataId),c=o.shape[u];for(let F=0;F=0,()=>`GatherV2: the index value ${M} is not in [0, ${c-1}]`)}let p=S.segment_util.collectGatherOpShapeInfo(o,s,u,a),m=mr({inputs:{x:o},attrs:{shape:[p.batchSize,p.outerSize,p.dimSize,p.sliceSize]},backend:t}),f=y.sizeFromShape(s.shape),d=mr({inputs:{x:s},attrs:{shape:[p.batchSize,f/p.batchSize]},backend:t}),h=[p.batchSize,p.outerSize,f/p.batchSize,p.sliceSize],g=t.makeOutput(h,o.dtype);if(y.sizeFromShape(o.shape)===0)return g;let x=m.shape.length-1,w=t.dataIdMap.get(m.dataId).id,N=t.dataIdMap.get(d.dataId).id,E=t.dataIdMap.get(g.dataId).id,A=new Uint8Array(new Int32Array(y.computeStrides(m.shape)).buffer),D=new Uint8Array(new Int32Array(y.computeStrides(h)).buffer);return bU(w,Nt[o.dtype],A,x,N,p.batchSize,D,E),t.disposeData(m.dataId),t.disposeData(d.dataId),g.shape=p.outputShape,g}var wU={kernelName:Pi,backendName:\"wasm\",setupFunc:Dct,kernelFunc:$ct};var Rct=!1,IU=ee(Ga,Rct,\"bool\");var Fct=!1,CU=ee(hs,Fct,\"bool\");var vU=yt(gs,\"bool\");var SU=yt(xs,\"bool\");var NU=yt(ys,\"bool\");var kU;function Oct(r){kU=r.wasm.cwrap(bs,null,[\"number\",\"number\",\"number\",\"number\"])}function Mct(r){let{inputs:{x:t},attrs:{alpha:e},backend:n}=r,o=n.dataIdMap.get(t.dataId).id,s=n.makeOutput(t.shape,\"float32\");if(y.sizeFromShape(t.shape)!==0){let i=n.dataIdMap.get(s.dataId).id;kU(o,Nt[t.dtype],e,i)}return s}var TU={kernelName:bs,backendName:\"wasm\",setupFunc:Oct,kernelFunc:Mct};var Pct=!1,_U=ee(Wa,Pct,\"bool\");var Lct=!1,EU=ee(Ua,Lct,\"bool\");var AU;function zct(r){AU=r.wasm.cwrap(Ha,null,[\"number\",\"number\",\"number\",\"number\"])}function Bct(r){let{attrs:t,backend:e}=r,{start:n,stop:o,num:s}=t,i=Math.floor(s),a=e.makeOutput([i],\"float32\");return AU(e.dataIdMap.get(a.dataId).id,n,o,i),a}var DU={kernelName:Ha,backendName:\"wasm\",setupFunc:zct,kernelFunc:Bct};var $U=yt(ws);var RU=yt(Is);var Vct=!1,FU=ee(qa,Vct,\"bool\");var OU=yt(Ka);var Gct=!1,MU=ee(ja,Gct,\"bool\");var Wct=!1,PU=ee(E_,Wct,\"bool\");var LU;function Uct(r){LU=r.wasm.cwrap(Cs,null,[\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\"])}function Hct(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{depthRadius:s,bias:i,alpha:a,beta:u}=n;if(o.dtype!==\"float32\")throw new Error(\"LRN error: x must have dtype float32\");let l=e.makeOutput(o.shape,o.dtype);return LU(e.dataIdMap.get(o.dataId).id,e.dataIdMap.get(l.dataId).id,o.shape[3],s,i,a,u),l}var zU={kernelName:Cs,backendName:\"wasm\",setupFunc:Uct,kernelFunc:Hct};var BU;function qct(r){BU=r.wasm.cwrap(Xa,null,[\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\"])}function Kct(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,y:s,dy:i}=t,{depthRadius:a,bias:u,alpha:l,beta:c}=n;if(o.dtype!==\"float32\"||s.dtype!==\"float32\"||i.dtype!==\"float32\")throw new Error(\"LRNGrad error: x, y, and dy must have dtype float32\");let p=e.makeOutput(o.shape,o.dtype);return BU(e.dataIdMap.get(o.dataId).id,e.dataIdMap.get(s.dataId).id,e.dataIdMap.get(i.dataId).id,e.dataIdMap.get(p.dataId).id,i.shape[3],a,u,l,c),p}var VU={kernelName:Xa,backendName:\"wasm\",setupFunc:qct,kernelFunc:Kct};var GU;function jct(r){GU=r.wasm.cwrap(vs,null,[\"number\",\"number\",\"number\",\"number\"])}function Xct(r){let{backend:t,inputs:e,attrs:n}=r,{reductionIndices:o,keepDims:s}=n,{x:i}=e,u=t.dataIdMap.get(i.dataId).id,l=i,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=Cn(i,o,t);if(f){let w=t.dataIdMap.get(c.dataId).id;l=c,u=w}let d=l.shape.length;S.assertAxesAreInnerMostDims(\"max\",p,d);let[h,g]=S.computeOutAndReduceShapes(l.shape,p),x=y.sizeFromShape(g),b=t.makeOutput(h,i.dtype);if(y.sizeFromShape(l.shape)!==0){let w=t.dataIdMap.get(b.dataId).id;GU(u,Nt[i.dtype],x,w)}if(f&&t.disposeData(c.dataId),s){let w=S.expandShapeToKeepDim(b.shape,m);b.shape=w}return b}var WU={kernelName:vs,backendName:\"wasm\",setupFunc:jct,kernelFunc:Xct};var Yct=!1,UU=ee(Ss,Yct);var HU;function Zct(r){HU=r.wasm.cwrap(Ns,null,[\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\"])}function Jct(r){let{inputs:t,attrs:e,backend:n}=r,o=t.x,s=n.dataIdMap.get(o.dataId).id;y.assert(o.dtype===\"float32\",()=>`Error in MaxPool: only float32 input is supported. Got ${o.dtype}.`);let{filterSize:i,strides:a,pad:u,dimRoundingMode:l}=e,c=S.computePool2DInfo(o.shape,i,a,1,u,l),p=c.filterHeight,m=c.filterWidth,f=c.padInfo.top,d=c.padInfo.right,h=c.padInfo.bottom,g=c.padInfo.left,x=c.dilationHeight,b=c.dilationWidth,w=c.strideHeight,I=c.strideWidth,N=c.inChannels,E=c.outChannels;if(c.dataFormat!==\"channelsLast\")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);let A=n.makeOutput(c.outShape,\"float32\"),D=n.dataIdMap.get(A.dataId).id;return HU(s,o.shape[0],o.shape[1],o.shape[2],p,m,f,d,h,g,x,b,w,I,N,E,D),A}var qU={kernelName:Ns,backendName:\"wasm\",setupFunc:Zct,kernelFunc:Jct};var KU;function Qct(r){KU=r.wasm.cwrap(\"MaxPool3D\",null,[\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\"])}function tpt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{filterSize:s,strides:i,pad:a,dimRoundingMode:u,dataFormat:l}=n,c=S.computePool3DInfo(o.shape,s,i,1,a,u,l),p=e.makeOutput(c.outShape,o.dtype);return KU(e.dataIdMap.get(o.dataId).id,e.dataIdMap.get(p.dataId).id,c.batchSize,c.inChannels,c.inDepth,c.inHeight,c.inWidth,c.outDepth,c.outHeight,c.outWidth,c.strideDepth,c.strideHeight,c.strideWidth,c.dilationDepth,c.dilationHeight,c.dilationWidth,c.effectiveFilterDepth,c.effectiveFilterHeight,c.effectiveFilterWidth,c.padInfo.front,c.padInfo.top,c.padInfo.left),p}var jU={kernelName:Li,backendName:\"wasm\",setupFunc:Qct,kernelFunc:tpt};var XU;function ept(r){XU=r.wasm.cwrap(\"MaxPool3DGrad\",null,[\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\"])}function rpt(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,input:s}=t,{filterSize:i,strides:a,pad:u,dimRoundingMode:l}=n,c=S.computePool3DInfo(s.shape,i,a,1,u,l),p=e.makeOutput(s.shape,s.dtype);return XU(e.dataIdMap.get(s.dataId).id,e.dataIdMap.get(o.dataId).id,e.dataIdMap.get(p.dataId).id,c.batchSize,c.inChannels,c.inDepth,c.inHeight,c.inWidth,c.outDepth,c.outHeight,c.outWidth,c.strideDepth,c.strideHeight,c.strideWidth,c.dilationDepth,c.dilationHeight,c.dilationWidth,c.effectiveFilterDepth,c.effectiveFilterHeight,c.effectiveFilterWidth,c.padInfo.front,c.padInfo.top,c.padInfo.left),p}var YU={kernelName:tu,backendName:\"wasm\",setupFunc:ept,kernelFunc:rpt};var ZU;function npt(r){ZU=r.wasm.cwrap(\"MaxPoolGrad\",null,[\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\"])}function opt(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,input:s}=t,{filterSize:i,strides:a,pad:u,dimRoundingMode:l}=n,c=S.computePool2DInfo(s.shape,i,a,1,u,l),p=e.makeOutput(s.shape,s.dtype);return ZU(e.dataIdMap.get(s.dataId).id,e.dataIdMap.get(o.dataId).id,e.dataIdMap.get(p.dataId).id,c.batchSize,c.inChannels,c.inHeight,c.inWidth,c.outHeight,c.outWidth,c.strideHeight,c.strideWidth,c.dilationHeight,c.dilationWidth,c.effectiveFilterHeight,c.effectiveFilterWidth,c.padInfo.top,c.padInfo.left),p}var JU={kernelName:Ql,backendName:\"wasm\",setupFunc:npt,kernelFunc:opt};var QU;function spt(r){QU=r.wasm.cwrap(\"MaxPoolWithArgmax\",null,[\"number\",\"number\",\"number\",\"number\",\"boolean\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\"])}function ipt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{filterSize:s,strides:i,pad:a,includeBatchInIndex:u}=n;y.assert(o.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${o.shape.length}.`);let l=[1,1];y.assert(S.eitherStridesOrDilationsAreOne(i,l),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${l}'`);let c=S.computePool2DInfo(o.shape,s,i,[1,1],a),p=e.makeOutput(c.outShape,o.dtype),m=e.makeOutput(c.outShape,\"int32\");return QU(e.dataIdMap.get(o.dataId).id,e.dataIdMap.get(p.dataId).id,e.dataIdMap.get(m.dataId).id,Nt[o.dtype],u,c.batchSize,c.inChannels,c.inHeight,c.inWidth,c.outHeight,c.outWidth,c.strideHeight,c.strideWidth,c.dilationHeight,c.dilationWidth,c.effectiveFilterHeight,c.effectiveFilterWidth,c.padInfo.top,c.padInfo.left),[p,m]}var t4={kernelName:eu,backendName:\"wasm\",setupFunc:spt,kernelFunc:ipt};var e4;function apt(r){e4=r.wasm.cwrap(ks,null,[\"number, number, number\"])}function lpt(r){let{backend:t,inputs:e,attrs:n}=r,{axis:o,keepDims:s}=n,{x:i}=e,a=t.dataIdMap.get(i.dataId).id,u=a,l=i,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=Cn(i,o,t),d=p;if(f){let I=t.dataIdMap.get(c.dataId).id;I!==a&&(l=c,u=I,d=S.getInnerMostAxes(d.length,l.shape.length))}S.assertAxesAreInnerMostDims(\"mean\",d,l.shape.length);let[h,g]=S.computeOutAndReduceShapes(l.shape,d),x=y.sizeFromShape(g),b=l;l.dtype!==\"float32\"&&(b=Fn({backend:t,inputs:{x:l},attrs:{dtype:\"float32\"}}),u=t.dataIdMap.get(b.dataId).id);let w=t.makeOutput(h,\"float32\");if(y.sizeFromShape(l.shape)!==0){let I=t.dataIdMap.get(w.dataId).id;e4(u,x,I)}if(f&&t.disposeData(c.dataId),s){let I=S.expandShapeToKeepDim(w.shape,m);w.shape=I}return l.dtype!==\"float32\"&&t.disposeData(b.dataId),w}var r4={kernelName:ks,backendName:\"wasm\",setupFunc:apt,kernelFunc:lpt};var n4;function upt(r){n4=r.wasm.cwrap(Ts,null,[\"number\",\"number\",\"number\",\"number\"])}function cpt(r){let{backend:t,inputs:e,attrs:n}=r,{axis:o,keepDims:s}=n,{x:i}=e,a=t.dataIdMap.get(i.dataId).id,u=a,l=i,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=Cn(i,o,t);if(f){let w=t.dataIdMap.get(c.dataId).id;w!==a&&(l=c,u=w)}let d=l.shape.length;S.assertAxesAreInnerMostDims(\"min\",p,d);let[h,g]=S.computeOutAndReduceShapes(l.shape,p),x=y.sizeFromShape(g),b=t.makeOutput(h,l.dtype);if(y.sizeFromShape(l.shape)!==0){let w=t.dataIdMap.get(b.dataId).id;n4(u,Nt[i.dtype],x,w)}if(f&&t.disposeData(c.dataId),s){let w=S.expandShapeToKeepDim(b.shape,m);b.shape=w}return b}var o4={kernelName:Ts,backendName:\"wasm\",setupFunc:upt,kernelFunc:cpt};var ppt=!1,s4=ee(_s,ppt);var J1;(function(r){r[r.reflect=0]=\"reflect\",r[r.symmetric=1]=\"symmetric\"})(J1||(J1={}));var i4;function mpt(r){i4=r.wasm.cwrap(Es,null,[\"number\",\"array\",\"number\",\"number\",\"array\",\"array\",\"number\",\"number\"])}function fpt(r){let{inputs:{x:t},backend:e,attrs:{paddings:n,mode:o}}=r,s=n.map((d,h)=>d[0]+t.shape[h]+d[1]),i=e.dataIdMap.get(t.dataId).id,a=e.makeOutput(s,t.dtype),u=e.dataIdMap.get(a.dataId).id,l=new Uint8Array(new Int32Array(t.shape).buffer),c=n.map(d=>d[0]),p=n.map(d=>d[1]),m=new Uint8Array(new Int32Array(c).buffer),f=new Uint8Array(new Int32Array(p).buffer);return i4(i,l,t.shape.length,Nt[t.dtype],m,f,J1[o],u),a}var a4={kernelName:Es,backendName:\"wasm\",kernelFunc:fpt,setupFunc:mpt};var l4;function dpt(r){l4=r.wasm.cwrap(Qs,null,[\"number\",\"number\",\"number\",\"number\"])}function Q1(r){let{backend:t,inputs:{logits:e},attrs:{dim:n}}=r,o=t.dataIdMap.get(e.dataId).id,s=t.makeOutput(e.shape,e.dtype),i=t.dataIdMap.get(s.dataId).id,a=e.shape[n],u=y.sizeFromShape(e.shape)/a;return y.sizeFromShape(s.shape)===0||l4(o,i,a,u),s}var u4={kernelName:Qs,backendName:\"wasm\",setupFunc:dpt,kernelFunc:Q1};var c4;function hpt(r){c4=r.wasm.cwrap(Ya,null,[\"number\",\"number\",\"number\",\"number\",\"number\",\"number\"])}function gpt(r){let{inputs:t,backend:e,attrs:n}=r,{logits:o}=t,{numSamples:s,seed:i,normalized:a}=n;if(o.dtype!==\"float32\")throw new Error(`Tensor logits must have dtype float32, got ${o.dtype}`);let u=a?o:Q1({inputs:{logits:o},backend:e,attrs:{dim:o.shape.length-1}}),[l,c]=u.shape,p=e.makeOutput([l,s],\"int32\");return c4(e.dataIdMap.get(u.dataId).id,l,c,s,i,e.dataIdMap.get(p.dataId).id),a||e.disposeData(u.dataId),p}var p4={kernelName:Ya,backendName:\"wasm\",setupFunc:hpt,kernelFunc:gpt};var m4=ee(As,!0);var xpt=!0,f4=ee(Ds,xpt);var d4=yt(zi);function Bd(r,t){let e=new Int32Array(r.wasm.HEAPU8.buffer,t,4),n=e[0],o=e[1],s=e[2],i=e[3];return r.wasm._free(t),{pSelectedIndices:n,selectedSize:o,pSelectedScores:s,pValidOutputs:i}}var h4;function ypt(r){h4=r.wasm.cwrap(Ja,\"number\",[\"number\",\"number\",\"number\",\"number\",\"number\"])}function bpt(r){let{backend:t,inputs:e,attrs:n}=r,{iouThreshold:o,maxOutputSize:s,scoreThreshold:i}=n,{boxes:a,scores:u}=e,l=t.dataIdMap.get(a.dataId).id,c=t.dataIdMap.get(u.dataId).id,p=h4(l,c,s,o,i),{pSelectedIndices:m,selectedSize:f,pSelectedScores:d,pValidOutputs:h}=Bd(t,p);return t.wasm._free(d),t.wasm._free(h),t.makeOutput([f],\"int32\",m)}var g4={kernelName:Ja,backendName:\"wasm\",setupFunc:ypt,kernelFunc:bpt};var x4;function wpt(r){x4=r.wasm.cwrap(Qa,\"number\",[\"number\",\"number\",\"number\",\"number\",\"number\",\"bool\"])}function Ipt(r){let{backend:t,inputs:e,attrs:n}=r,{iouThreshold:o,maxOutputSize:s,scoreThreshold:i,padToMaxOutputSize:a}=n,{boxes:u,scores:l}=e,c=t.dataIdMap.get(u.dataId).id,p=t.dataIdMap.get(l.dataId).id,m=x4(c,p,s,o,i,a),{pSelectedIndices:f,selectedSize:d,pSelectedScores:h,pValidOutputs:g}=Bd(t,m);t.wasm._free(h);let x=t.makeOutput([d],\"int32\",f),b=t.makeOutput([],\"int32\",g);return[x,b]}var y4={kernelName:Qa,backendName:\"wasm\",setupFunc:wpt,kernelFunc:Ipt};var b4;function Cpt(r){b4=r.wasm.cwrap(tl,\"number\",[\"number\",\"number\",\"number\",\"number\",\"number\",\"number\"])}function vpt(r){let{backend:t,inputs:e,attrs:n}=r,{iouThreshold:o,maxOutputSize:s,scoreThreshold:i,softNmsSigma:a}=n,{boxes:u,scores:l}=e,c=t.dataIdMap.get(u.dataId).id,p=t.dataIdMap.get(l.dataId).id,m=b4(c,p,s,o,i,a),{pSelectedIndices:f,selectedSize:d,pSelectedScores:h,pValidOutputs:g}=Bd(t,m);t.wasm._free(g);let x=t.makeOutput([d],\"int32\",f),b=t.makeOutput([d],\"float32\",h);return[x,b]}var w4={kernelName:tl,backendName:\"wasm\",setupFunc:Cpt,kernelFunc:vpt};var Spt=!1,I4=ee(Za,Spt,\"bool\");var C4;function Npt(r){C4=r.wasm.cwrap($s,null,[\"number\",\"number\",\"number\",\"number\",\"number\"])}function kpt(r){let{inputs:t,backend:e,attrs:n}=r,{indices:o}=t,{dtype:s,depth:i,onValue:a,offValue:u}=n,l=e.makeOutput([...o.shape,i],s),c=e.dataIdMap.get(l.dataId).id,m=e.dataIdMap.get(o.dataId).id;return C4(m,i,a,u,c),l}var v4={kernelName:$s,backendName:\"wasm\",setupFunc:Npt,kernelFunc:kpt};function Tpt(r){let{inputs:{x:t},backend:e}=r,n=e.makeOutput(t.shape,t.dtype);return e.typedArrayFromHeap(n).fill(1),n}var S4={kernelName:Bi,backendName:\"wasm\",kernelFunc:Tpt};function _pt(r){let{inputs:t,backend:e,attrs:n}=r,{axis:o}=n;if(t.length===1)return EC({inputs:{input:t[0]},backend:e,attrs:{dim:o}});let s=t[0].shape,i=t[0].dtype;t.forEach(c=>{y.assertShapesMatch(s,c.shape,\"All tensors passed to stack must have matching shapes\"),y.assert(i===c.dtype,()=>\"All tensors passed to stack must have matching dtypes\")});let a=[],u=t.map(c=>{let p=EC({inputs:{input:c},backend:e,attrs:{dim:o}});return a.push(p),p}),l=X1({inputs:u,backend:e,attrs:{axis:o}});return a.forEach(c=>e.disposeData(c.dataId)),l}var N4={kernelName:Vi,backendName:\"wasm\",kernelFunc:_pt};var k4;function Ept(r){k4=r.wasm.cwrap(Rs,null,[\"number\",\"array\",\"number\",\"number\",\"array\",\"array\",\"number\",\"number\"])}function Apt(r){let{inputs:{x:t},backend:e,attrs:{paddings:n,constantValue:o}}=r,s=n.map((h,g)=>h[0]+t.shape[g]+h[1]);if(y.sizeFromShape(t.shape)===0)return Z1({backend:e,attrs:{shape:s,value:o,dtype:t.dtype}});let i=e.dataIdMap.get(t.dataId).id,a=e.makeOutput(s,t.dtype),l=e.dataIdMap.get(a.dataId).id,c=new Uint8Array(new Int32Array(t.shape).buffer),p=n.map(h=>h[0]),m=n.map(h=>h[1]),f=new Uint8Array(new Int32Array(p).buffer),d=new Uint8Array(new Int32Array(m).buffer);return k4(i,c,t.shape.length,Nt[t.dtype],f,d,o,l),a}var AC={kernelName:Rs,backendName:\"wasm\",kernelFunc:Apt,setupFunc:Ept};var Dpt=!1,T4=ee(Fs,Dpt);var _4;function $pt(r){_4=r.wasm.cwrap(Os,null,[\"number\",\"number\",\"number\"])}function Rpt(r){let{inputs:t,backend:e}=r,{x:n,alpha:o}=t,s=e.dataIdMap.get(n.dataId).id,i=e.dataIdMap.get(o.dataId).id,a=s,u=n,l=u;u.dtype!==\"float32\"&&(l=Fn({backend:e,inputs:{x:n},attrs:{dtype:\"float32\"}}),a=e.dataIdMap.get(l.dataId).id);let c=e.makeOutput(n.shape,\"float32\"),p=e.dataIdMap.get(c.dataId).id;return _4(a,i,p),u.dtype!==\"float32\"&&e.disposeData(l.dataId),c}var E4={kernelName:Os,backendName:\"wasm\",setupFunc:$pt,kernelFunc:Rpt};var A4;function Fpt(r){A4=r.wasm.cwrap(Ms,null,[\"number\",\"number\",\"number\",\"number\"])}function Opt(r){let{backend:t,inputs:e,attrs:n}=r,{axis:o,keepDims:s}=n,{x:i}=e,a=t.dataIdMap.get(i.dataId).id,u=a,l=i,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=Cn(i,o,t),d=p;if(f){let w=t.dataIdMap.get(c.dataId).id;w!==a&&(l=c,u=w,d=S.getInnerMostAxes(d.length,l.shape.length))}S.assertAxesAreInnerMostDims(\"prod\",d,l.shape.length);let[h,g]=S.computeOutAndReduceShapes(l.shape,d),x=y.sizeFromShape(g),b=t.makeOutput(h,l.dtype);if(y.sizeFromShape(l.shape)!==0){let w=t.dataIdMap.get(b.dataId).id;A4(u,x,Nt[b.dtype],w)}if(f&&t.disposeData(c.dataId),s){let w=S.expandShapeToKeepDim(b.shape,m);b.shape=w}return b}var D4={kernelName:Ms,backendName:\"wasm\",setupFunc:Fpt,kernelFunc:Opt};var Mpt=r=>{let{backend:t,attrs:e}=r,{start:n,stop:o,step:s,dtype:i}=e,a=tp(n,o,s,i),u=t.makeOutput([a.length],i);return t.typedArrayFromHeap(u).set(a),u},$4={kernelName:ru,backendName:\"wasm\",kernelFunc:Mpt};var Ppt=!0,R4=ee(as,Ppt);var F4=yt(Ps);var O4=yt(Ls);var M4=yt(Vs);var P4;function Lpt(r){P4=r.wasm.cwrap(Bs,null,[\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\"])}function zpt(r){let{backend:t,inputs:e,attrs:n}=r,{images:o}=e,{alignCorners:s,halfPixelCenters:i,size:a}=n,[u,l]=a,[c,p,m,f]=o.shape,d=[c,u,l,f],h=t.dataIdMap.get(o.dataId),g;h.dtype!==\"float32\"&&(g=Fn({backend:t,inputs:{x:o},attrs:{dtype:\"float32\"}}),h=t.dataIdMap.get(g.dataId));let x=h.id,b=t.makeOutput(d,\"float32\");if(y.sizeFromShape(o.shape)===0)return b;let w=t.dataIdMap.get(b.dataId).id;return P4(x,c,p,m,f,u,l,s?1:0,i?1:0,w),g!=null&&t.disposeData(g.dataId),b}var L4={kernelName:Bs,backendName:\"wasm\",setupFunc:Lpt,kernelFunc:zpt};var z4;function Bpt(r){z4=r.wasm.cwrap(rl,null,[\"number\",\"number\",\"number\",\"array\",\"array\",\"boolean\"])}function Vpt(r){let{inputs:t,backend:e,attrs:n}=r,{images:o,dy:s}=t,{alignCorners:i}=n,a=e.makeOutput(o.shape,\"float32\"),u=e.dataIdMap.get(o.dataId),l;return u.dtype!==\"float32\"&&(l=Fn({backend:e,inputs:{x:o},attrs:{dtype:\"float32\"}}),u=e.dataIdMap.get(l.dataId)),z4(e.dataIdMap.get(o.dataId).id,e.dataIdMap.get(s.dataId).id,e.dataIdMap.get(a.dataId).id,new Uint8Array(new Int32Array(o.shape).buffer),new Uint8Array(new Int32Array(s.shape).buffer),i),l!=null&&e.disposeData(l.dataId),a}var B4={kernelName:rl,backendName:\"wasm\",setupFunc:Bpt,kernelFunc:Vpt};var V4;function Gpt(r){V4=r.wasm.cwrap(zs,null,[\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\"])}function Wpt(r){let{backend:t,inputs:e,attrs:n}=r,{images:o}=e,{alignCorners:s,halfPixelCenters:i,size:a}=n,[u,l]=a,[c,p,m,f]=o.shape,d=[c,u,l,f],h=t.makeOutput(d,\"float32\");if(y.sizeFromShape(o.shape)===0)return h;let g=t.dataIdMap.get(o.dataId),x;g.dtype!==\"float32\"&&(x=Fn({backend:t,inputs:{x:o},attrs:{dtype:\"float32\"}}),g=t.dataIdMap.get(x.dataId));let b=g.id,w=t.dataIdMap.get(h.dataId).id;return V4(b,c,p,m,f,u,l,s?1:0,i?1:0,w),x!=null&&t.disposeData(x.dataId),h}var G4={kernelName:zs,backendName:\"wasm\",setupFunc:Gpt,kernelFunc:Wpt};var W4;function Upt(r){W4=r.wasm.cwrap(el,null,[\"number\",\"number\",\"number\",\"array\",\"array\",\"boolean\"])}function Hpt(r){let{inputs:t,backend:e,attrs:n}=r,{images:o,dy:s}=t,{alignCorners:i}=n,a=e.makeOutput(o.shape,\"float32\"),u=e.dataIdMap.get(o.dataId),l;return u.dtype!==\"float32\"&&(l=Fn({backend:e,inputs:{x:o},attrs:{dtype:\"float32\"}}),u=e.dataIdMap.get(l.dataId)),W4(e.dataIdMap.get(o.dataId).id,e.dataIdMap.get(s.dataId).id,e.dataIdMap.get(a.dataId).id,new Uint8Array(new Int32Array(o.shape).buffer),new Uint8Array(new Int32Array(s.shape).buffer),i),l!=null&&e.disposeData(l.dataId),a}var U4={kernelName:el,backendName:\"wasm\",setupFunc:Upt,kernelFunc:Hpt};var H4;function qpt(r){H4=r.wasm.cwrap(Gs,null,[\"number\",\"array\",\"number\",\"array\",\"number\",\"number\"])}function Kpt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{dims:s}=n,i=y.parseAxisParam(s,o.shape);if(o.shape.length===0)return yp({inputs:{x:o},backend:e});let a=e.makeOutput(o.shape,o.dtype),u=e.dataIdMap.get(o.dataId).id,l=e.dataIdMap.get(a.dataId).id,c=new Uint8Array(new Int32Array(i).buffer),p=new Uint8Array(new Int32Array(o.shape).buffer);H4(u,c,i.length,p,o.shape.length,l);let m=mr({inputs:{x:a},attrs:{shape:o.shape},backend:e});return e.disposeData(a.dataId),m}var q4={kernelName:Gs,backendName:\"wasm\",kernelFunc:Kpt,setupFunc:qpt};var K4;function jpt(r){K4=r.wasm.cwrap(pl,null,[\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"array\",\"number\",\"number\"])}function Xpt(r){let{inputs:t,backend:e,attrs:n}=r,{image:o}=t,{radians:s,fillValue:i,center:a}=n,u=e.makeOutput(o.shape,o.dtype),l=e.dataIdMap.get(o.dataId).id,c=e.dataIdMap.get(u.dataId).id,[p,m,f,d]=o.shape,[h,g]=S.getImageCenter(a,m,f),x=i===0,b=255,w=typeof i==\"number\"?[i,i,i,x?0:b]:[...i,b],I=new Uint8Array(new Int32Array(w).buffer);return K4(l,p,m,f,d,s,h,g,I,w.length,c),u}var j4={kernelName:pl,backendName:\"wasm\",kernelFunc:Xpt,setupFunc:jpt};var X4=yt(Ws);var Y4=yt(Us);var Z4;function Ypt(r){Z4=r.wasm.cwrap(nl,null,[\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"array\",\"number\",\"number\"])}function Zpt(r){let{backend:t,inputs:e,attrs:n}=r,{indices:o,updates:s}=e,{shape:i}=n,a=t.makeOutput(i,s.dtype);if(y.sizeFromShape(i)===0)return a;let{sliceRank:u,numUpdates:l,sliceSize:c,strides:p,outputSize:m}=$u.calculateShapes(s,o,i),d=t.dataIdMap.get(o.dataId).id,g=t.dataIdMap.get(s.dataId).id,x=new Uint8Array(new Int32Array(p).buffer),b=t.dataIdMap.get(a.dataId).id;return Z4(d,g,Nt[s.dtype],u,l,c,x,m,b),a}var J4={kernelName:nl,backendName:\"wasm\",setupFunc:Ypt,kernelFunc:Zpt};var Q4;function Jpt(r){Q4=r.wasm.cwrap(sl,null,[\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"bool\",\"number\"])}function Qpt(r){let{inputs:t,backend:e,attrs:n}=r,{sortedSequence:o,values:s}=t,{side:i}=n;if(o.dtype!==s.dtype)throw new Error(`SearchSorted error: sorted_sequence must have the same dtype as values. Got ${o.dtype} and ${s.dtype}`);let a=e.makeOutput(s.shape,\"int32\");function u(l){return e.dataIdMap.get(l.dataId).id}return Q4(u(o),u(s),o.shape[0],o.shape[1],s.shape[1],Nt[o.dtype],i===\"left\",u(a)),a}var tH={kernelName:sl,backendName:\"wasm\",setupFunc:Jpt,kernelFunc:Qpt};var eH;function tmt(r){eH=r.wasm.cwrap(\"SelectV2\",null,[\"number\",\"number\",\"number\",\"number\",\"number\"])}function emt(r){let{inputs:t,backend:e}=r,{condition:n,t:o,e:s}=t,i=e.dataIdMap.get(n.dataId).id,a=e.dataIdMap.get(o.dataId).id,u=e.dataIdMap.get(s.dataId).id,l=e.makeOutput(o.shape,o.dtype),c=e.dataIdMap.get(l.dataId).id,p=n.shape.length,m=o.shape.length,f=p===0||p>1||m===1?1:y.sizeFromShape(o.shape.slice(1));return eH(i,a,u,f,c),l}var rH={kernelName:Wi,backendName:\"wasm\",kernelFunc:emt,setupFunc:tmt};var nH=yt(Hs);var oH;function rmt(r){oH=r.wasm.cwrap(Xs,null,[\"number\",\"number\"])}function nmt(r){let{backend:t,inputs:{x:e}}=r,n=t.dataIdMap.get(e.dataId).id,o=t.makeOutput(e.shape,e.dtype),s=t.dataIdMap.get(o.dataId).id;return y.sizeFromShape(o.shape)===0||oH(n,s),o}var sH={kernelName:\"Sigmoid\",backendName:\"wasm\",setupFunc:rmt,kernelFunc:nmt};var iH=yt(js);var aH=yt(qs);var lH=yt(Ks);var uH=yt(Ys);function omt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{blockShape:s,paddings:i}=n,a=y.sizeFromShape(s),u=[[0,0]];u.push(...i);for(let E=1+s.length;E0?u+1:0;if(c<0)throw new Error(S.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let p=o.shape.slice();p[0]=c;let m=e.dataIdMap.get(o.dataId).id,f=e.dataIdMap.get(s.dataId).id,d=e.dataIdMap.get(i.dataId).id,h=e.makeOutput(p,o.dtype),g=e.dataIdMap.get(h.dataId).id,x=e.makeOutput([4],\"int32\"),b=e.dataIdMap.get(x.dataId).id;hH(m,Nt[o.dtype],o.shape[0],f,d,g,b,t,0);let w=e.readSync(x.dataId),I;switch(w[0]){case 0:{I=S.getSparseSegmentReductionNegativeSegmentIdsErrorMessage();break}case 1:{I=S.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage();break}case 2:I=S.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(w[1],w[2]);break;case 3:I=S.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(w[1],w[2],w[3]);break;default:I=\"\"}if(e.disposeData(x.dataId),I)throw e.disposeData(h.dataId),new Error(I);return h}function umt(r){return $C(r,!0)}var gH={kernelName:ou,backendName:\"wasm\",setupFunc:DC,kernelFunc:umt};function cmt(r){return $C(r,!1)}var xH={kernelName:su,backendName:\"wasm\",setupFunc:DC,kernelFunc:cmt};var yH;function pmt(r){yH=r.wasm.cwrap(al,null,[\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"array\",\"number\",\"number\"])}function mmt(r){let{backend:t,inputs:e,attrs:n}=r,{sparseIndices:o,sparseValues:s,defaultValue:i}=e,{outputShape:a}=n,u=t.makeOutput(a,i.dtype);if(y.sizeFromShape(a)===0)return u;let{sliceRank:l,numUpdates:c,sliceSize:p,strides:m,outputSize:f}=S.calculateShapes(s,o,a),d=t.dataIdMap.get(o.dataId).id,h=t.dataIdMap.get(s.dataId).id,g=t.dataIdMap.get(i.dataId).id,x=new Uint8Array(new Int32Array(m).buffer),b=t.dataIdMap.get(u.dataId).id;return yH(d,h,s.shape.length,g,Nt[i.dtype],l,c,p,x,f,b),u}var bH={kernelName:al,backendName:\"wasm\",setupFunc:pmt,kernelFunc:mmt};function fmt(r){let{inputs:t,attrs:e,backend:n}=r,{x:o}=t,{numOrSizeSplits:s,axis:i}=e,a=y.parseAxisParam(i,o.shape)[0],u=S.prepareSplitSize(o,s,a),l=new Array(o.shape.length).fill(0),c=o.shape.slice();return u.map(p=>{let m=[...c];m[a]=p;let f=Lo({inputs:{x:o},attrs:{begin:l,size:m},backend:n});return l[a]+=p,f})}var wH={kernelName:qi,backendName:\"wasm\",kernelFunc:fmt};var IH=yt(Zs);var CH=yt(iu);var dmt=!0,vH=ee(ti,dmt);var SH;function hmt(r){SH=r.wasm.cwrap(xo,null,[\"number\",\"number\",\"number\",\"number\"])}function gmt(r){let{backend:t,inputs:e,attrs:n}=r,{alpha:o}=n,{x:s}=e,i=t.dataIdMap.get(s.dataId).id,a=t.makeOutput(s.shape,s.dtype),u=t.dataIdMap.get(a.dataId).id;return SH(i,o,Nt[s.dtype],u),a}var NH={kernelName:xo,backendName:\"wasm\",setupFunc:hmt,kernelFunc:gmt};var kH;function xmt(r){kH=r.wasm.cwrap(ll,null,[\"number\",\"array\",\"number\",\"array\",\"array\",\"array\",\"array\",\"array\",\"number\",\"number\"])}function ymt(r){let{backend:t,inputs:e,attrs:n}=r,{x:o}=e,{begin:s,end:i,strides:a,beginMask:u,endMask:l,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:m}=n,{finalShapeSparse:f,finalShape:d,isIdentity:h,sliceDim0:g,isSimpleSlice:x,begin:b,end:w,strides:I}=Be.sliceInfo(o.shape,s,i,a,u,l,c,p,m),N;if(h)N=mr({inputs:{x:o},backend:t,attrs:{shape:d}});else if(g||x){y.assert(o.shape.length>=1,()=>`Input must have rank at least 1, got: ${o.shape.length}`);let E=Be.computeOutShape(b,w,I),A=Lo({inputs:{x:o},backend:t,attrs:{begin:b,size:E}});N=mr({inputs:{x:A},backend:t,attrs:{shape:d}}),t.disposeData(A.dataId)}else{let E=t.makeOutput(f,\"float32\"),A=t.dataIdMap.get(o.dataId).id,D=new Uint8Array(new Int32Array(y.computeStrides(o.shape)).buffer),F=new Uint8Array(new Int32Array(b).buffer),M=new Uint8Array(new Int32Array(w).buffer),V=new Uint8Array(new Int32Array(I).buffer),G=new Uint8Array(new Int32Array(f).buffer),W=new Uint8Array(new Int32Array(y.computeStrides(f)).buffer),q=t.dataIdMap.get(E.dataId).id;kH(A,D,o.shape.length,F,M,V,G,W,f.length,q),N=mr({inputs:{x:E},backend:t,attrs:{shape:d}}),t.disposeData(E.dataId)}return N}var TH={kernelName:ll,backendName:\"wasm\",setupFunc:xmt,kernelFunc:ymt};function bmt(r){let{backend:t,inputs:e,attrs:n}=r,{data:o,dataSplits:s}=e,{separator:i,nGramWidths:a,leftPad:u,rightPad:l,padWidth:c,preserveShortSequences:p}=n,m=t.readSync(o.dataId),f=t.readSync(s.dataId),[d,h]=rp(m,f,i,a,u,l,c,p),g=t.makeOutput([d.length],\"string\"),x=t.dataIdMap.get(g.dataId);x.stringBytes=d;let b=t.makeOutput(s.shape,\"int32\");return t.typedArrayFromHeap(b).set(h),[g,b]}var _H={kernelName:au,backendName:\"wasm\",kernelFunc:bmt};function wmt(r){let{backend:t,inputs:e,attrs:n}=r,{input:o,delimiter:s}=e,{skipEmpty:i}=n,a=t.readSync(o.dataId),u=t.readSync(s.dataId),[l,c,p]=np(a,u[0],i),m=c.length,f=t.makeOutput([m,2],\"int32\");t.typedArrayFromHeap(f).set(l);let h=t.makeOutput([m],\"string\"),g=t.dataIdMap.get(h.dataId);g.stringBytes=c;let x=t.makeOutput([2],\"int32\");return t.typedArrayFromHeap(x).set(p),[f,h,x]}var EH={kernelName:lu,backendName:\"wasm\",kernelFunc:wmt};function Imt(r){let{backend:t,inputs:e,attrs:n}=r,{input:o}=e,{numBuckets:s}=n,i=t.readSync(o.dataId),a=op(i,s),u=t.makeOutput(o.shape,\"int32\");return t.typedArrayFromHeap(u).set(a),u}var AH={kernelName:uu,backendName:\"wasm\",kernelFunc:Imt};var Cmt=!0,DH=ee(ei,Cmt);var $H;function vmt(r){$H=r.wasm.cwrap(Js,null,[\"number\",\"number\",\"number\",\"number\"])}function Smt(r){let{backend:t,inputs:e,attrs:n}=r,{axis:o,keepDims:s}=n,{x:i}=e,a=t.dataIdMap.get(i.dataId).id,u=a,l=i,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=Cn(i,o,t),d=p;if(f){let w=t.dataIdMap.get(c.dataId).id;w!==a&&(l=c,u=w,d=S.getInnerMostAxes(d.length,l.shape.length))}S.assertAxesAreInnerMostDims(\"sum\",d,l.shape.length);let[h,g]=S.computeOutAndReduceShapes(l.shape,d),x=y.sizeFromShape(g),b=t.makeOutput(h,l.dtype);if(y.sizeFromShape(l.shape)!==0){let w=t.dataIdMap.get(b.dataId).id;$H(u,x,Nt[b.dtype],w)}if(f&&t.disposeData(c.dataId),s){let w=S.expandShapeToKeepDim(b.shape,m);b.shape=w}return b}var RH={kernelName:Js,backendName:\"wasm\",setupFunc:vmt,kernelFunc:Smt};var FH=yt(ri);var OH=yt(ni);var MH;function Nmt(r){MH=r.wasm.cwrap(ol,null,[\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"array\",\"number\",\"number\",\"number\"])}function kmt(r){let{backend:t,inputs:e,attrs:n}=r,{tensor:o,indices:s,updates:i}=e,{}=n,a=t.makeOutput(o.shape,o.dtype);if(y.sizeFromShape(o.shape)===0)return a;let{sliceRank:u,numUpdates:l,sliceSize:c,strides:p,outputSize:m}=$u.calculateShapes(i,s,o.shape),d=t.dataIdMap.get(s.dataId).id,g=t.dataIdMap.get(i.dataId).id,b=t.dataIdMap.get(o.dataId).id,w=new Uint8Array(new Int32Array(p).buffer),I=t.dataIdMap.get(a.dataId).id;return MH(d,g,Nt[i.dtype],u,l,c,w,m,I,b),a}var PH={kernelName:ol,backendName:\"wasm\",setupFunc:Nmt,kernelFunc:kmt};var LH;function Tmt(r){LH=r.wasm.cwrap(oo,null,[\"number\",\"array\",\"number\",\"array\",\"number\",\"number\"])}function _mt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,s=e.dataIdMap.get(o.dataId).id,{reps:i}=n,a=new Array(o.shape.length);for(let m=0;m{let{x:n}=r,{k:o,sorted:s}=e,i=t.dataIdMap.get(n.dataId).id,a=new Uint8Array(new Int32Array(n.shape).buffer),u=n.shape.slice();u[u.length-1]=o;let l=t.makeOutput(u,n.dtype),c=t.dataIdMap.get(l.dataId).id,p=t.makeOutput(u,\"int32\"),m=t.dataIdMap.get(p.dataId).id;return BH(i,a,n.shape.length,Nt[n.dtype],o,s,c,m),[l,p]},VH={kernelName:ul,backendName:\"wasm\",setupFunc:Emt,kernelFunc:Amt};var GH;function Dmt(r){GH=r.wasm.cwrap(cl,null,[\"number\",\"number\",\"bool\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"array\",\"number\",\"array\",\"number\",\"number\",\"number\",\"number\",\"number\"])}function $mt(r){let{backend:t,inputs:e,attrs:n}=r,{image:o,transforms:s}=e,{interpolation:i,fillMode:a,fillValue:u,outputShape:l}=n,[c,p,m,f]=o.shape,[d,h]=l!=null?l:[p,m],g=[c,d,h,f],x=new Uint8Array(new Int32Array(y.computeStrides(o.shape)).buffer),b=new Uint8Array(new Int32Array(y.computeStrides(g)).buffer),w=t.makeOutput(g,o.dtype),I=t.dataIdMap.get(w.dataId).id,E=t.dataIdMap.get(o.dataId).id,D=t.dataIdMap.get(s.dataId).id,F=i===\"nearest\"?1:2,M;switch(a){case\"constant\":M=1;break;case\"reflect\":M=2;break;case\"wrap\":M=3;break;case\"nearest\":M=4;break;default:M=1;break}return GH(E,D,s.shape[0]>1,c,d,h,f,m,p,x,o.shape.length-1,b,g.length-1,F,M,u,I),w}var WH={kernelName:cl,backendName:\"wasm\",setupFunc:Dmt,kernelFunc:$mt};function Rmt(r){let{inputs:t,attrs:e,backend:n}=r,{axis:o}=e,{x:s}=t,{outputValues:i,outputShape:a,indices:u}=sp(n.readSync(s.dataId),o,s.shape,s.dtype);return[n.makeOutput(a,s.dtype,void 0,i),n.makeOutput([u.length],\"int32\",void 0,u)]}var UH={kernelName:cu,backendName:\"wasm\",kernelFunc:Rmt};function Fmt(r){let{inputs:t,backend:e,attrs:n}=r,{value:o}=t,{axis:s}=n;s<0&&(s+=o.shape.length);let i=o.shape[s],a=o.shape.length,u=new Array(a-1),l=0;for(let f=0;f({dataId:f,dtype:d,shape:u}))}var HH={kernelName:Ki,backendName:\"wasm\",kernelFunc:Fmt};function Omt(r){let{inputs:{x:t},backend:e}=r,n=e.makeOutput(t.shape,t.dtype);return e.typedArrayFromHeap(n).fill(0),n}var qH={kernelName:ji,backendName:\"wasm\",kernelFunc:Omt};var Mmt=[DG,$G,RG,FG,OG,PG,GG,UG,HG,qG,KG,jG,XG,YG,ZG,QG,sW,eW,nW,lW,cW,mW,fW,dW,hW,gW,yW,bW,IW,vW,NW,TW,EW,AW,DW,RW,OW,PW,zW,VW,WW,HW,KW,XW,ZW,JW,tU,eU,rU,nU,oU,sU,iU,lU,uU,cU,mU,dU,gU,yU,wU,IU,CU,LG,vU,SU,NU,TU,_U,EU,DU,RU,$U,FU,OU,MU,PU,zU,VU,WU,UU,qU,jU,YU,JU,t4,r4,o4,s4,a4,p4,m4,f4,d4,g4,y4,w4,I4,v4,S4,N4,AC,T4,E4,D4,$4,R4,F4,O4,M4,iW,L4,B4,G4,U4,q4,j4,X4,Y4,J4,tH,rH,nH,sH,iH,aH,lH,uW,u4,uH,cH,mH,dH,gH,xH,bH,wH,IH,CH,vH,NH,TH,_H,EH,AH,DH,RH,FH,OH,PH,zH,VH,WH,BG,UH,HH,qH];for(let r of Mmt)rc(r);var t_=L();t_.registerFlag(\"WASM_HAS_SIMD_SUPPORT\",async()=>{try{return WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11]))}catch(r){return!1}});t_.registerFlag(\"WASM_HAS_MULTITHREAD_SUPPORT\",async()=>{if(t_.get(\"IS_NODE\"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(r){return!1}});var a_=Gl(YH()),rq=Gl(JH()),l_=Gl(QH());var tq=a_.default||a_,Pmt=l_.default||l_,wg=class extends Bo{constructor(t){super(),this.wasm=t,this.dataIdNextNumber=1,this.wasm.tfjs.initWithThreadsCount(oq),i_=this.wasm.tfjs.getThreadsCount(),this.dataIdMap=new Ta(this,Bn())}write(t,e,n){let o={id:this.dataIdNextNumber++};return this.move(o,t,e,n,1),o}numDataIds(){return this.dataIdMap.numDataIds()}async time(t){let e=y.now();return t(),{kernelMs:y.now()-e}}move(t,e,n,o,s){let i=this.dataIdNextNumber++;if(o===\"string\"){let c=e;this.dataIdMap.set(t,{id:i,stringBytes:c,shape:n,dtype:o,memoryOffset:null,refCount:s});return}let a=y.sizeFromShape(n),u=a*y.bytesPerElement(o),l=this.wasm._malloc(u)>>>0;this.dataIdMap.set(t,{id:i,memoryOffset:l,shape:n,dtype:o,refCount:s}),this.wasm.tfjs.registerTensor(i,a,l),e!=null&&this.wasm.HEAPU8.set(new Uint8Array(e.buffer,e.byteOffset,u),l)}async read(t){return this.readSync(t)}readSync(t,e,n){let{memoryOffset:o,dtype:s,shape:i,stringBytes:a}=this.dataIdMap.get(t);if(s===\"string\")return(e==null||e===0)&&(n==null||n>=a.length)?a:a.slice(e,n);e=e||0,n=n||y.sizeFromShape(i);let u=y.bytesPerElement(s),l=this.wasm.HEAPU8.slice(o+e*u,o+n*u);return zmt(l.buffer,s)}disposeData(t,e=!1){if(this.dataIdMap.has(t)){let n=this.dataIdMap.get(t);if(n.refCount--,!e&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(t)}return!0}refCount(t){return this.dataIdMap.has(t)?this.dataIdMap.get(t).refCount:0}incRef(t){let e=this.dataIdMap.get(t);e!=null&&e.refCount++}floatPrecision(){return 32}getMemoryOffset(t){return this.dataIdMap.get(t).memoryOffset}dispose(){this.wasm.tfjs.dispose(),\"PThread\"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(t,e,n,o){let s;if(n==null)s=this.write(o!=null?o:null,t,e);else{let i=this.dataIdNextNumber++;s={id:i},this.dataIdMap.set(s,{id:i,memoryOffset:n,shape:t,dtype:e,refCount:1});let a=y.sizeFromShape(t);this.wasm.tfjs.registerTensor(i,a,n)}return{dataId:s,shape:t,dtype:e}}typedArrayFromHeap({shape:t,dtype:e,dataId:n}){let o=this.wasm.HEAPU8.buffer,{memoryOffset:s}=this.dataIdMap.get(n),i=y.sizeFromShape(t);switch(e){case\"float32\":return new Float32Array(o,s,i);case\"int32\":return new Int32Array(o,s,i);case\"bool\":return new Uint8Array(o,s,i);default:throw new Error(`Unknown dtype ${e}`)}}};function Lmt(r){return(t,e)=>(y.fetch(r,{credentials:\"same-origin\"}).then(n=>{n.ok||t.env.a(`failed to load wasm binary file at '${r}'`),n.arrayBuffer().then(o=>{WebAssembly.instantiate(o,t).then(s=>{e(s.instance,s.module)})})}),{})}function eq(r,t,e){if(OC!=null)return OC;let n=\"tfjs-backend-wasm.wasm\";return r&&t?n=\"tfjs-backend-wasm-threaded-simd.wasm\":r&&(n=\"tfjs-backend-wasm-simd.wasm\"),yg!=null&&yg[n]!=null?yg[n]:e+n}async function nq(){let[r,t]=await Promise.all([L().getAsync(\"WASM_HAS_SIMD_SUPPORT\"),L().getAsync(\"WASM_HAS_MULTITHREAD_SUPPORT\")]);return new Promise((e,n)=>{let o={};o.locateFile=(a,u)=>{if(a.endsWith(\".worker.js\")){let l=rq.wasmWorkerContents.replace(/\\n/g,\"\\\\n\"),c=new Blob([l],{type:\"application/javascript\"});return URL.createObjectURL(c)}return a.endsWith(\".wasm\")?eq(r,t,xg!=null?xg:u):u+a},u_&&(o.instantiateWasm=Lmt(eq(r,t,xg!=null?xg:\"\")));let s=!1;o.onAbort=()=>{if(s||bg)return;bg=!0,n({message:\"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers\"})};let i;t&&r&&OC==null?(o.mainScriptUrlOrBlob=new Blob([\"var WasmBackendModuleThreadedSimd = \"+tq.toString()],{type:\"text/javascript\"}),i=tq(o)):i=Pmt(o),i.then(a=>{s=!0,bg=!1;let u=null;a.tfjs={init:a.cwrap(\"init\",null,[]),initWithThreadsCount:a.cwrap(\"init_with_threads_count\",null,[\"number\"]),getThreadsCount:a.cwrap(\"get_threads_count\",\"number\",[]),registerTensor:a.cwrap(\"register_tensor\",null,[\"number\",\"number\",\"number\"]),disposeData:a.cwrap(\"dispose_data\",u,[\"number\"]),dispose:a.cwrap(\"dispose\",u,[])},e({wasm:a})}).catch(n)})}function zmt(r,t){switch(t){case\"float32\":return new Float32Array(r);case\"int32\":return new Int32Array(r);case\"bool\":return new Uint8Array(r);default:throw new Error(`Unknown dtype ${t}`)}}var Bmt=[\"tfjs-backend-wasm.wasm\",\"tfjs-backend-wasm-simd.wasm\",\"tfjs-backend-wasm-threaded-simd.wasm\"],OC=null,xg=null,yg={},bg=!1,u_=!1;function Vmt(r,t=!1){if(G0(\"setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release.\"),bg)throw new Error(\"The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`\");OC=r,u_=t}function Gmt(r,t=!1){if(bg)throw new Error(\"The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`\");if(typeof r==\"string\")xg=r;else{yg=r;let e=Bmt.filter(n=>yg[n]==null);if(e.length>0)throw new Error(`There were no entries found for the following binaries: ${e.join(\",\")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}u_=t}var oq=-1,i_=-1;function Wmt(r){oq=r}function Umt(){if(i_===-1)throw new Error(\"WASM backend not initialized.\");return i_}var Hmt=\"4.22.0\";var qmt=2;Xp(\"wasm\",async()=>{let{wasm:r}=await nq();return new wg(r)},qmt);var sq=\"4.22.0\",Kmt=\"4.22.0\",jmt=\"4.22.0\",Xmt=\"4.22.0\",Ymt=\"4.22.0\",Zmt={tfjs:sq,\"tfjs-core\":sq,\"tfjs-converter\":Kmt,\"tfjs-backend-cpu\":jmt,\"tfjs-backend-webgl\":Xmt,\"tfjs-backend-wasm\":Ymt};export{Ai as Abs,Go as Acos,Wo as Acosh,vc as AdadeltaOptimizer,Sc as AdagradOptimizer,Nc as AdamOptimizer,kc as AdamaxOptimizer,no as Add,Uo as AddN,Ea as All,Aa as Any,Di as ArgMax,$i as ArgMin,Ho as Asin,qo as Asinh,Ko as Atan,Xo as Atan2,jo as Atanh,Yo as AvgPool,Ri as AvgPool3D,Hl as AvgPool3DGrad,Ul as AvgPoolGrad,wg as BackendWasm,Zo as BatchMatMul,Fi as BatchToSpaceND,Da as Bincount,$a as BitwiseAnd,ql as BroadcastArgs,__ as BroadcastTo,zb as Callback,Xy as CallbackList,fo as Cast,Jo as Ceil,ho as ClipByValue,Ap as Complex,Kl as ComplexAbs,Oi as Concat,Qo as Conv2D,Dp as Conv2DBackpropFilter,ts as Conv2DBackpropInput,es as Conv3D,Ra as Conv3DBackpropFilterV2,Fa as Conv3DBackpropInputV2,rs as Cos,ns as Cosh,Ma as CropAndResize,Oa as Cumprod,os as Cumsum,Zy as CustomCallback,Ta as DataStorage,jl as DenseBincount,Pa as DepthToSpace,ss as DepthwiseConv2dNative,$p as DepthwiseConv2dNativeBackpropFilter,Rp as DepthwiseConv2dNativeBackpropInput,Xl as Diag,is as Dilation2D,Zl as Dilation2DBackpropFilter,Yl as Dilation2DBackpropInput,Qd as Draw,w0 as ENV,Bb as EarlyStopping,Fp as Einsum,ls as Elu,La as EluGrad,Zd as Environment,za as Equal,us as Erf,cs as Exp,Mi as ExpandDims,ps as Expm1,Op as FFT,Jl as Fill,Ba as FlipLeftRight,ms as Floor,fs as FloorDiv,th as FromPixels,ds as FusedBatchNorm,Yi as FusedConv2D,Zi as FusedDepthwiseConv2D,pp as GPGPUContext,Va as GatherNd,Pi as GatherV2,qh as GraphModel,Ga as Greater,hs as GreaterEqual,Yy as History,Mp as IFFT,go as Identity,Pp as Imag,Ce as InputSpec,gs as IsFinite,xs as IsInf,ys as IsNan,Bo as KernelBackend,Cs as LRN,Xa as LRNGrad,Th as LayerVariable,Un as LayersModel,bs as LeakyRelu,Wa as Less,Ua as LessEqual,Ha as LinSpace,ws as Log,Is as Log1p,A_ as LogSoftmax,qa as LogicalAnd,Ka as LogicalNot,ja as LogicalOr,E_ as LogicalXor,nft as LowerBound,pd as MathBackendCPU,Dd as MathBackendWebGL,oft as MatrixBandPart,vs as Max,Ns as MaxPool,Li as MaxPool3D,tu as MaxPool3DGrad,Ql as MaxPoolGrad,eu as MaxPoolWithArgmax,Ss as Maximum,ks as Mean,Ts as Min,_s as Minimum,Es as MirrorPad,As as Mod,Tc as MomentumOptimizer,Ya as Multinomial,Ds as Multiply,zi as Neg,Ja as NonMaxSuppressionV3,Qa as NonMaxSuppressionV4,tl as NonMaxSuppressionV5,Za as NotEqual,V0 as OP_SCOPE_SUFFIX,$s as OneHot,Bi as OnesLike,jr as Optimizer,Ih as OptimizerConstructors,Vi as Pack,Rs as PadV2,sft as Pool,Fs as Pow,Os as Prelu,Ms as Prod,_c as RMSPropOptimizer,po as RNN,Lp as RaggedGather,zp as RaggedRange,Bp as RaggedTensorToTensor,ru as Range,D0 as Rank,Vp as Real,as as RealDiv,Ps as Reciprocal,Je as Reduction,Ls as Relu,Vs as Relu6,Gi as Reshape,Bs as ResizeBilinear,rl as ResizeBilinearGrad,zs as ResizeNearestNeighbor,el as ResizeNearestNeighborGrad,Gs as Reverse,pl as RotateWithOffset,Ws as Round,Us as Rsqrt,Il as SGDOptimizer,nl as ScatterNd,sl as SearchSorted,Wi as Select,Hs as Selu,Wc as Sequential,Xs as Sigmoid,js as Sign,qs as Sin,Ks as Sinh,Ui as Slice,Qs as Softmax,Ys as Softplus,Hi as SpaceToBatchND,nu as SparseFillEmptyRows,il as SparseReshape,ou as SparseSegmentMean,su as SparseSegmentSum,al as SparseToDense,qi as SplitV,Zs as Sqrt,iu as Square,ti as SquaredDifference,ec as StaticRegexReplace,xo as Step,ll as StridedSlice,au as StringNGrams,lu as StringSplit,uu as StringToHashBucketFast,ei as Sub,Js as Sum,nn as SymbolicTensor,ri as Tan,ni as Tanh,Lt as Tensor,le as TensorBuffer,ol as TensorScatterUpdate,oo as Tile,ul as TopK,cl as Transform,so as Transpose,cu as Unique,Ki as Unpack,pu as UnsortedSegmentSum,ift as UpperBound,ml as Variable,ji as ZerosLike,Xi as _FusedMatMul,_e as abs,fx as acos,dx as acosh,K as add,EE as addN,tm as all,cc as any,ra as argMax,hx as argMin,gx as asin,xx as asinh,yx as atan,bx as atan2,wx as atanh,xu as avgPool,Ix as avgPool3d,sx as backend,S as backend_util,$E as basicLSTMCell,oa as batchNorm,Cx as batchNorm2d,vx as batchNorm3d,Sx as batchNorm4d,yu as batchToSpaceND,Nx as bincount,FE as bitwiseAnd,q5 as booleanMaskAsync,OE as broadcastArgs,sa as broadcastTo,Hr as broadcast_util,_y as browser,wt as buffer,xQ as callbacks,J as cast,kx as ceil,vr as clipByValue,un as clone,Sn as complex,ie as concat,Tx as concat1d,_x as concat2d,Ex as concat3d,Ax as concat4d,CR as constraints,rm as conv1d,Nn as conv2d,om as conv2dTranspose,Dx as conv3d,Rx as conv3dTranspose,fft as copyRegisteredKernels,bu as cos,sm as cosh,xh as cosineWindow,mc as cumprod,im as cumsum,pn as customGrad,aO as data,mh as denseBincount,G0 as deprecationWarn,Fx as depthToSpace,ia as depthwiseConv2d,IQ as deregisterOp,du as device_util,ME as diag,Ox as dilation2d,Sdt as disableDeprecationWarnings,Tt as dispose,Ndt as disposeVariables,ut as div,Mx as divNoNan,Px as dot,dN as dropout,wu as einsum,aa as elu,vdt as enableDebugMode,Cdt as enableProdMode,hN as enclosingPowerOfTwo,Bn as engine,LE as ensureShape,L as env,$r as equal,am as erf,Lx as euclideanNorm,Ke as exp,je as expandDims,zx as expm1,fc as eye,Au as fft,Co as fill,Adt as findBackend,Ddt as findBackendFactory,la as floor,Qp as floorDiv,Qz as forceHalfFloat,Ru as fused,ua as gather,r8 as gatherND,Ey as gather_util,oE as getBackend,v0 as getGradient,Wp as getKernel,Yg as getKernelsForBackend,Umt as getThreadsCount,k1 as gpgpu_util,X6 as grad,Y6 as grads,Re as greater,cn as greaterEqual,wl as ifft,Iu as imag,fn as image,s8 as inTopKAsync,vR as initializers,JN as input,Mr as io,bm as irfft,Bx as isFinite,Vx as isInf,Gx as isNaN,De as keep,Xr as kernel_impls,oF as layers,Cu as leakyRelu,yl as less,Vn as lessEqual,xN as linalg,VE as linspace,xtt as loadGraphModel,ytt as loadGraphModelSync,UR as loadLayersModel,Wx as localResponseNormalization,Nr as log,vu as log1p,qx as logSigmoid,lm as logSoftmax,Su as logSumExp,Fr as logicalAnd,Nu as logicalNot,um as logicalOr,Kx as logicalXor,aY as losses,GE as lowerBound,Bt as matMul,O2 as math,Sr as max,ku as maxPool,Xx as maxPool3d,WE as maxPoolWithArgmax,kn as maximum,Ne as mean,lh as memory,UE as meshgrid,sF as metrics,gl as min,lo as minimum,Yx as mirrorPad,Zx as mod,gJ as model,iF as models,dc as moments,X5 as movingAverage,$ as mul,HE as multiRNNCell,qE as multinomial,Ut as neg,Ch as nextFrame,xl as norm,ci as notEqual,ca as oneHot,ar as ones,wr as onesLike,k as op,KE as outerProduct,mn as pad,jE as pad1d,XE as pad2d,YE as pad3d,ZE as pad4d,Jx as pool,qr as pow,_u as prelu,mx as print,Qx as prod,kdt as profile,JE as raggedGather,QE as raggedRange,tA as raggedTensorToTensor,eA as rand,CA as randomGamma,xc as randomNormal,vA as randomStandardNormal,Gn as randomUniform,SA as randomUniformInt,pa as range,_dt as ready,bl as real,sy as reciprocal,Xp as registerBackend,yJ as registerCallbackConstructor,$_ as registerGradient,rc as registerKernel,wQ as registerOp,aF as regularizers,Or as relu,cm as relu6,Edt as removeBackend,R as reshape,dr as reverse,NA as reverse1d,kA as reverse2d,TA as reverse3d,_A as reverse4d,Du as rfft,pm as round,mm as rsqrt,pt as scalar,Z5 as scatterND,$u as scatter_util,dh as searchSorted,fm as selu,dm as separableConv2d,xJ as sequential,Q as serialization,OK as setBackend,$dt as setPlatform,Wmt as setThreadsCount,Vmt as setWasmPath,Gmt as setWasmPaths,BT as setWebGLContext,EA as setdiff1dAsync,Ew as shared,en as sigmoid,iy as sign,iY as signal,hm as sin,gm as sinh,Ot as slice,xm as slice1d,gh as slice2d,ym as slice3d,yc as slice4d,Be as slice_util,Eu as softmax,ui as softplus,Tu as spaceToBatchND,lY as sparse,t8 as sparseToDense,sY as spectral,hr as split,ge as sqrt,Wt as square,wm as squaredDifference,Wn as squeeze,Fe as stack,So as step,ay as stridedSlice,uY as string,at as sub,mt as sum,lc as sumOutType,ly as tan,li as tanh,ir as tensor,Oe as tensor1d,pi as tensor2d,uy as tensor3d,AA as tensor4d,DA as tensor5d,$A as tensor6d,FA as tensorScatterUpdate,Io as tensor_util,IA as test_util,B as tidy,Rr as tile,Tdt as time,cy as topk,Ac as train,Vt as transpose,Cm as truncatedNormal,py as unique,mft as unregisterGradient,pft as unregisterKernel,vm as unsortedSegmentSum,gr as unstack,ur as upcastType,OA as upperBound,y as util,Z6 as valueAndGrad,J6 as valueAndGrads,my as variable,Ux as variableGrads,Zmt as version,VF as version_converter,X2 as version_core,KO as version_cpu,jm as version_layers,Hmt as version_wasm,Jz as version_webgl,T$e as webgl,Cd as webgl_util,Ie as where,dy as whereAsync,ke as zeros,vt as zerosLike};\n", "export * from './drawContour';\nexport * from './drawDetections';\nexport * from './drawFaceExpressions';\nexport * from './DrawBox';\nexport * from './DrawFaceLandmarks';\nexport * from './DrawTextField';\n", "import { Point } from '../classes/index';\n\nexport function drawContour(\n ctx: CanvasRenderingContext2D,\n points: Point[],\n isClosed = false,\n) {\n ctx.beginPath();\n\n points.slice(1).forEach(({ x, y }, prevIdx) => {\n const from = points[prevIdx];\n ctx.moveTo(from.x, from.y);\n ctx.lineTo(x, y);\n });\n\n if (isClosed) {\n const from = points[points.length - 1];\n const to = points[0];\n if (!from || !to) {\n return;\n }\n\n ctx.moveTo(from.x, from.y);\n ctx.lineTo(to.x, to.y);\n }\n\n ctx.stroke();\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { Point } from '../classes/index';\nimport { Dimensions, IDimensions } from '../classes/Dimensions';\n\nexport function isTensor(tensor: any, dim: number) {\n return tensor instanceof tf.Tensor && tensor.shape.length === dim;\n}\n\nexport function isTensor1D(tensor: any): tensor is tf.Tensor1D {\n return isTensor(tensor, 1);\n}\n\nexport function isTensor2D(tensor: any): tensor is tf.Tensor2D {\n return isTensor(tensor, 2);\n}\n\nexport function isTensor3D(tensor: any): tensor is tf.Tensor3D {\n return isTensor(tensor, 3);\n}\n\nexport function isTensor4D(tensor: any): tensor is tf.Tensor4D {\n return isTensor(tensor, 4);\n}\n\nexport function isFloat(num: number) {\n return num % 1 !== 0;\n}\n\nexport function isEven(num: number) {\n return num % 2 === 0;\n}\n\nexport function round(num: number, prec = 2) {\n const f = 10 ** prec;\n return Math.floor(num * f) / f;\n}\n\nexport function isDimensions(obj: any): boolean {\n return obj && obj.width && obj.height;\n}\n\nexport function computeReshapedDimensions({ width, height }: IDimensions, inputSize: number) {\n const scale = inputSize / Math.max(height, width);\n return new Dimensions(Math.round(width * scale), Math.round(height * scale));\n}\n\nexport function getCenterPoint(pts: Point[]): Point {\n return pts.reduce((sum, pt) => sum.add(pt), new Point(0, 0))\n .div(new Point(pts.length, pts.length));\n}\n\nexport function range(num: number, start: number, step: number): number[] {\n return Array(num).fill(0).map((_, i) => start + (i * step));\n}\n\nexport function isValidNumber(num: any) {\n return !!num && (num !== Infinity) && (num !== -Infinity) && !Number.isNaN(num) || num === 0;\n}\n\nexport function isValidProbablitiy(num: any) {\n return isValidNumber(num) && num >= 0 && num <= 1.0;\n}\n", "import { isValidNumber } from '../utils/index';\n\nexport interface IDimensions {\n width: number\n height: number\n}\n\nexport class Dimensions implements IDimensions {\n private _width: number;\n\n private _height: number;\n\n constructor(width: number, height: number) {\n if (!isValidNumber(width) || !isValidNumber(height)) {\n throw new Error(`Dimensions.constructor - expected width and height to be valid numbers, instead have ${JSON.stringify({ width, height })}`);\n }\n\n this._width = width;\n this._height = height;\n }\n\n public get width(): number { return this._width; }\n\n public get height(): number { return this._height; }\n\n public reverse(): Dimensions {\n return new Dimensions(1 / this.width, 1 / this.height);\n }\n}\n", "export interface IPoint {\n x: number\n y: number\n}\n\nexport class Point implements IPoint {\n private _x: number;\n\n private _y: number;\n\n constructor(x: number, y: number) {\n this._x = x;\n this._y = y;\n }\n\n get x(): number { return this._x; }\n\n get y(): number { return this._y; }\n\n public add(pt: IPoint): Point {\n return new Point(this.x + pt.x, this.y + pt.y);\n }\n\n public sub(pt: IPoint): Point {\n return new Point(this.x - pt.x, this.y - pt.y);\n }\n\n public mul(pt: IPoint): Point {\n return new Point(this.x * pt.x, this.y * pt.y);\n }\n\n public div(pt: IPoint): Point {\n return new Point(this.x / pt.x, this.y / pt.y);\n }\n\n public abs(): Point {\n return new Point(Math.abs(this.x), Math.abs(this.y));\n }\n\n public magnitude(): number {\n return Math.sqrt((this.x ** 2) + (this.y ** 2));\n }\n\n public floor(): Point {\n return new Point(Math.floor(this.x), Math.floor(this.y));\n }\n}\n", "import { isDimensions, isValidNumber } from '../utils/index';\nimport { IBoundingBox } from './BoundingBox';\nimport { IDimensions } from './Dimensions';\nimport { Point } from './Point';\nimport { IRect } from './Rect';\n\nexport class Box implements IBoundingBox, IRect {\n public static isRect(rect: any): boolean {\n return !!rect && [rect.x, rect.y, rect.width, rect.height].every(isValidNumber);\n }\n\n public static assertIsValidBox(box: any, callee: string, allowNegativeDimensions = false) {\n if (!Box.isRect(box)) {\n throw new Error(`${callee} - invalid box: ${JSON.stringify(box)}, expected object with properties x, y, width, height`);\n }\n\n if (!allowNegativeDimensions && (box.width < 0 || box.height < 0)) {\n throw new Error(`${callee} - width (${box.width}) and height (${box.height}) must be positive numbers`);\n }\n }\n\n private _x: number;\n\n private _y: number;\n\n private _width: number;\n\n private _height: number;\n\n constructor(_box: IBoundingBox | IRect, allowNegativeDimensions = true) {\n const box = (_box || {}) as any;\n\n const isBbox = [box.left, box.top, box.right, box.bottom].every(isValidNumber);\n const isRect = [box.x, box.y, box.width, box.height].every(isValidNumber);\n\n if (!isRect && !isBbox) {\n throw new Error(`Box.constructor - expected box to be IBoundingBox | IRect, instead have ${JSON.stringify(box)}`);\n }\n\n const [x, y, width, height] = isRect\n ? [box.x, box.y, box.width, box.height]\n : [box.left, box.top, box.right - box.left, box.bottom - box.top];\n\n Box.assertIsValidBox({\n x, y, width, height,\n }, 'Box.constructor', allowNegativeDimensions);\n\n this._x = x;\n this._y = y;\n this._width = width;\n this._height = height;\n }\n\n public get x(): number { return this._x; }\n\n public get y(): number { return this._y; }\n\n public get width(): number { return this._width; }\n\n public get height(): number { return this._height; }\n\n public get left(): number { return this.x; }\n\n public get top(): number { return this.y; }\n\n public get right(): number { return this.x + this.width; }\n\n public get bottom(): number { return this.y + this.height; }\n\n public get area(): number { return this.width * this.height; }\n\n public get topLeft(): Point { return new Point(this.left, this.top); }\n\n public get topRight(): Point { return new Point(this.right, this.top); }\n\n public get bottomLeft(): Point { return new Point(this.left, this.bottom); }\n\n public get bottomRight(): Point { return new Point(this.right, this.bottom); }\n\n public round(): Box {\n const [x, y, width, height] = [this.x, this.y, this.width, this.height]\n .map((val) => Math.round(val));\n return new Box({\n x, y, width, height,\n });\n }\n\n public floor(): Box {\n const [x, y, width, height] = [this.x, this.y, this.width, this.height]\n .map((val) => Math.floor(val));\n return new Box({\n x, y, width, height,\n });\n }\n\n public toSquare(): Box {\n let {\n x, y, width, height,\n } = this;\n const diff = Math.abs(width - height);\n if (width < height) {\n x -= (diff / 2);\n width += diff;\n }\n if (height < width) {\n y -= (diff / 2);\n height += diff;\n }\n\n return new Box({ x, y, width, height });\n }\n\n public rescale(s: IDimensions | number): Box {\n const scaleX = isDimensions(s) ? (s as IDimensions).width : s as number;\n const scaleY = isDimensions(s) ? (s as IDimensions).height : s as number;\n return new Box({\n x: this.x * scaleX,\n y: this.y * scaleY,\n width: this.width * scaleX,\n height: this.height * scaleY,\n });\n }\n\n public pad(padX: number, padY: number): Box {\n const [x, y, width, height] = [\n this.x - (padX / 2),\n this.y - (padY / 2),\n this.width + padX,\n this.height + padY,\n ];\n return new Box({ x, y, width, height });\n }\n\n public clipAtImageBorders(imgWidth: number, imgHeight: number): Box {\n const { x, y, right, bottom } = this;\n const clippedX = Math.max(x, 0);\n const clippedY = Math.max(y, 0);\n\n const newWidth = right - clippedX;\n const newHeight = bottom - clippedY;\n const clippedWidth = Math.min(newWidth, imgWidth - clippedX);\n const clippedHeight = Math.min(newHeight, imgHeight - clippedY);\n\n return (new Box({ x: clippedX, y: clippedY, width: clippedWidth, height: clippedHeight })).floor();\n }\n\n public shift(sx: number, sy: number): Box {\n const { width, height } = this;\n const x = this.x + sx;\n const y = this.y + sy;\n\n return new Box({ x, y, width, height });\n }\n\n public padAtBorders(imageHeight: number, imageWidth: number) {\n const w = this.width + 1;\n const h = this.height + 1;\n\n const dx = 1;\n const dy = 1;\n let edx = w;\n let edy = h;\n\n let x = this.left;\n let y = this.top;\n let ex = this.right;\n let ey = this.bottom;\n\n if (ex > imageWidth) {\n edx = -ex + imageWidth + w;\n ex = imageWidth;\n }\n if (ey > imageHeight) {\n edy = -ey + imageHeight + h;\n ey = imageHeight;\n }\n if (x < 1) {\n edy = 2 - x;\n x = 1;\n }\n if (y < 1) {\n edy = 2 - y;\n y = 1;\n }\n\n return { dy, edy, dx, edx, y, ey, x, ex, w, h };\n }\n\n public calibrate(region: Box) {\n return new Box({\n left: this.left + (region.left * this.width),\n top: this.top + (region.top * this.height),\n right: this.right + (region.right * this.width),\n bottom: this.bottom + (region.bottom * this.height),\n }).toSquare().round();\n }\n}\n", "import { Box } from './Box';\n\nexport interface IBoundingBox {\n left: number\n top: number\n right: number\n bottom: number\n}\n\nexport class BoundingBox extends Box implements IBoundingBox {\n constructor(left: number, top: number, right: number, bottom: number, allowNegativeDimensions = false) {\n super({ left, top, right, bottom }, allowNegativeDimensions);\n }\n}\n", "import { Box } from './Box';\nimport { Dimensions, IDimensions } from './Dimensions';\nimport { IRect, Rect } from './Rect';\n\nexport class ObjectDetection {\n private _score: number;\n\n private _classScore: number;\n\n private _className: string;\n\n private _box: Rect;\n\n private _imageDims: Dimensions;\n\n constructor(\n score: number,\n classScore: number,\n className: string,\n relativeBox: IRect,\n imageDims: IDimensions,\n ) {\n this._imageDims = new Dimensions(imageDims.width, imageDims.height);\n this._score = score;\n this._classScore = classScore;\n this._className = className;\n this._box = new Box(relativeBox).rescale(this._imageDims);\n }\n\n public get score(): number { return this._score; }\n\n public get classScore(): number { return this._classScore; }\n\n public get className(): string { return this._className; }\n\n public get box(): Box { return this._box; }\n\n public get imageDims(): Dimensions { return this._imageDims; }\n\n public get imageWidth(): number { return this.imageDims.width; }\n\n public get imageHeight(): number { return this.imageDims.height; }\n\n public get relativeBox(): Box { return new Box(this._box).rescale(this.imageDims.reverse()); }\n\n public forSize(width: number, height: number): ObjectDetection {\n return new ObjectDetection(\n this.score,\n this.classScore,\n this.className,\n this.relativeBox,\n { width, height },\n );\n }\n}\n", "import { Box } from './Box';\nimport { IDimensions } from './Dimensions';\nimport { ObjectDetection } from './ObjectDetection';\nimport { Rect } from './Rect';\n\nexport interface IFaceDetecion {\n score: number\n box: Box\n}\n\nexport class FaceDetection extends ObjectDetection implements IFaceDetecion {\n constructor(\n score: number,\n relativeBox: Rect,\n imageDims: IDimensions,\n ) {\n super(score, score, '', relativeBox, imageDims);\n }\n\n public override forSize(width: number, height: number): FaceDetection {\n const { score, relativeBox, imageDims } = super.forSize(width, height);\n return new FaceDetection(score, relativeBox, imageDims);\n }\n}\n", "import { Box } from '../classes/Box';\n\nexport function iou(box1: Box, box2: Box, isIOU = true) {\n const width = Math.max(0.0, Math.min(box1.right, box2.right) - Math.max(box1.left, box2.left));\n const height = Math.max(0.0, Math.min(box1.bottom, box2.bottom) - Math.max(box1.top, box2.top));\n const interSection = width * height;\n\n return isIOU\n ? interSection / (box1.area + box2.area - interSection)\n : interSection / Math.min(box1.area, box2.area);\n}\n", "import { BoundingBox, IPoint } from '../classes/index';\n\nexport function minBbox(pts: IPoint[]): BoundingBox {\n const xs = pts.map((pt) => pt.x);\n const ys = pts.map((pt) => pt.y);\n const minX = xs.reduce((min, x) => (x < min ? x : min), Infinity);\n const minY = ys.reduce((min, y) => (y < min ? y : min), Infinity);\n const maxX = xs.reduce((max, x) => (max < x ? x : max), 0);\n const maxY = ys.reduce((max, y) => (max < y ? y : max), 0);\n\n return new BoundingBox(minX, minY, maxX, maxY);\n}\n", "import { Box } from '../classes/Box';\nimport { iou } from './iou';\n\nexport function nonMaxSuppression(\n boxes: Box[],\n scores: number[],\n iouThreshold: number,\n isIOU = true,\n): number[] {\n let indicesSortedByScore = scores\n .map((score, boxIndex) => ({ score, boxIndex }))\n .sort((c1, c2) => c1.score - c2.score)\n .map((c) => c.boxIndex);\n\n const pick: number[] = [];\n\n while (indicesSortedByScore.length > 0) {\n const curr = indicesSortedByScore.pop() as number;\n pick.push(curr);\n\n const indices = indicesSortedByScore;\n\n const outputs: number[] = [];\n for (let i = 0; i < indices.length; i++) {\n const idx = indices[i];\n\n const currBox = boxes[curr];\n const idxBox = boxes[idx];\n\n outputs.push(iou(currBox, idxBox, isIOU));\n }\n\n indicesSortedByScore = indicesSortedByScore.filter(\n (_, j) => outputs[j] <= iouThreshold,\n );\n }\n\n return pick;\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nexport function normalize(x: tf.Tensor4D, meanRgb: number[]): tf.Tensor4D {\n return tf.tidy(() => {\n const [r, g, b] = meanRgb;\n const avg_r = tf.fill([...x.shape.slice(0, 3), 1], r, 'float32');\n const avg_g = tf.fill([...x.shape.slice(0, 3), 1], g, 'float32');\n const avg_b = tf.fill([...x.shape.slice(0, 3), 1], b, 'float32');\n const avg_rgb = tf.concat([avg_r, avg_g, avg_b], 3);\n\n return tf.sub(x, avg_rgb);\n });\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\n/**\n * Pads the smaller dimension of an image tensor with zeros, such that width === height.\n *\n * @param imgTensor The image tensor.\n * @param isCenterImage (optional, default: false) If true, add an equal amount of padding on\n * both sides of the minor dimension oof the image.\n * @returns The padded tensor with width === height.\n */\nexport function padToSquare(imgTensor: tf.Tensor4D, isCenterImage = false): tf.Tensor4D {\n return tf.tidy(() => {\n const [height, width] = imgTensor.shape.slice(1);\n if (height === width) return imgTensor;\n const dimDiff = Math.abs(height - width);\n const paddingAmount = Math.round(dimDiff * (isCenterImage ? 0.5 : 1));\n const paddingAxis = height > width ? 2 : 1;\n const createPaddingTensor = (paddingAmountLocal: number): tf.Tensor => {\n const paddingTensorShape = imgTensor.shape.slice();\n paddingTensorShape[paddingAxis] = paddingAmountLocal;\n return tf.fill(paddingTensorShape, 0, 'float32');\n };\n const paddingTensorAppend = createPaddingTensor(paddingAmount);\n const remainingPaddingAmount = dimDiff - (paddingTensorAppend.shape[paddingAxis] as number);\n const paddingTensorPrepend = isCenterImage && remainingPaddingAmount ? createPaddingTensor(remainingPaddingAmount) : null;\n const tensorsToStack = [paddingTensorPrepend, imgTensor, paddingTensorAppend]\n .filter((t) => !!t)\n .map((t) => tf.cast(t as tf.Tensor4D, 'float32')) as tf.Tensor4D[];\n return tf.concat(tensorsToStack, paddingAxis);\n });\n}\n", "export function shuffleArray(inputArray: any[]) {\n const array = inputArray.slice();\n for (let i = array.length - 1; i > 0; i--) {\n const j = Math.floor(Math.random() * (i + 1));\n const x = array[i];\n array[i] = array[j];\n array[j] = x;\n }\n return array;\n}\n", "export * from './iou';\nexport * from './minBbox';\nexport * from './nonMaxSuppression';\nexport * from './normalize';\nexport * from './padToSquare';\nexport * from './shuffleArray';\n\nexport function sigmoid(x: number) {\n return 1 / (1 + Math.exp(-x));\n}\n\nexport function inverseSigmoid(x: number) {\n return Math.log(x / (1 - x));\n}\n", "import { Box } from './Box';\n\nexport interface IRect {\n x: number\n y: number\n width: number\n height: number\n}\n\nexport class Rect extends Box implements IRect {\n constructor(x: number, y: number, width: number, height: number, allowNegativeDimensions = false) {\n super({ x, y, width, height }, allowNegativeDimensions);\n }\n}\n", "import { minBbox } from '../ops/index';\nimport { getCenterPoint } from '../utils/index';\nimport { IBoundingBox } from './BoundingBox';\nimport { Box } from './Box';\nimport { Dimensions, IDimensions } from './Dimensions';\nimport { FaceDetection } from './FaceDetection';\nimport { Point } from './Point';\nimport { IRect, Rect } from './Rect';\n\n// face alignment constants\nconst relX = 0.5;\nconst relY = 0.43;\nconst relScale = 0.45;\n\nexport interface IFaceLandmarks {\n positions: Point[]\n shift: Point\n}\n\nexport class FaceLandmarks implements IFaceLandmarks {\n protected _shift: Point;\n\n protected _positions: Point[];\n\n protected _imgDims: Dimensions;\n\n constructor(\n relativeFaceLandmarkPositions: Point[],\n imgDims: IDimensions,\n shift: Point = new Point(0, 0),\n ) {\n const { width, height } = imgDims;\n this._imgDims = new Dimensions(width, height);\n this._shift = shift;\n this._positions = relativeFaceLandmarkPositions.map(\n (pt) => pt.mul(new Point(width, height)).add(shift),\n );\n }\n\n public get shift(): Point { return new Point(this._shift.x, this._shift.y); }\n\n public get imageWidth(): number { return this._imgDims.width; }\n\n public get imageHeight(): number { return this._imgDims.height; }\n\n public get positions(): Point[] { return this._positions; }\n\n public get relativePositions(): Point[] {\n return this._positions.map(\n (pt) => pt.sub(this._shift).div(new Point(this.imageWidth, this.imageHeight)),\n );\n }\n\n public forSize(width: number, height: number): T {\n return new (this.constructor as any)(\n this.relativePositions,\n { width, height },\n );\n }\n\n public shiftBy(x: number, y: number): T {\n return new (this.constructor as any)(\n this.relativePositions,\n this._imgDims,\n new Point(x, y),\n );\n }\n\n public shiftByPoint(pt: Point): T {\n return this.shiftBy(pt.x, pt.y);\n }\n\n /**\n * Aligns the face landmarks after face detection from the relative positions of the faces\n * bounding box, or it's current shift. This function should be used to align the face images\n * after face detection has been performed, before they are passed to the face recognition net.\n * This will make the computed face descriptor more accurate.\n *\n * @param detection (optional) The bounding box of the face or the face detection result. If\n * no argument was passed the position of the face landmarks are assumed to be relative to\n * it's current shift.\n * @returns The bounding box of the aligned face.\n */\n public align(\n detection?: FaceDetection | IRect | IBoundingBox | null,\n options: { useDlibAlignment?: boolean, minBoxPadding?: number } = { },\n ): Box {\n if (detection) {\n const box = detection instanceof FaceDetection\n ? detection.box.floor()\n : new Box(detection);\n\n return this.shiftBy(box.x, box.y).align(null, options);\n }\n\n const { useDlibAlignment, minBoxPadding } = { useDlibAlignment: false, minBoxPadding: 0.2, ...options };\n\n if (useDlibAlignment) {\n return this.alignDlib();\n }\n\n return this.alignMinBbox(minBoxPadding);\n }\n\n private alignDlib(): Box {\n const centers = this.getRefPointsForAlignment();\n\n const [leftEyeCenter, rightEyeCenter, mouthCenter] = centers;\n const distToMouth = (pt: Point) => mouthCenter.sub(pt).magnitude();\n const eyeToMouthDist = (distToMouth(leftEyeCenter) + distToMouth(rightEyeCenter)) / 2;\n\n const size = Math.floor(eyeToMouthDist / relScale);\n\n const refPoint = getCenterPoint(centers);\n // TODO: pad in case rectangle is out of image bounds\n const x = Math.floor(Math.max(0, refPoint.x - (relX * size)));\n const y = Math.floor(Math.max(0, refPoint.y - (relY * size)));\n\n return new Rect(x, y, Math.min(size, this.imageWidth + x), Math.min(size, this.imageHeight + y));\n }\n\n private alignMinBbox(padding: number): Box {\n const box = minBbox(this.positions);\n return box.pad(box.width * padding, box.height * padding);\n }\n\n protected getRefPointsForAlignment(): Point[] {\n throw new Error('getRefPointsForAlignment not implemented by base class');\n }\n}\n", "import { getCenterPoint } from '../utils/index';\nimport { FaceLandmarks } from './FaceLandmarks';\nimport { Point } from './Point';\n\nexport class FaceLandmarks5 extends FaceLandmarks {\n protected override getRefPointsForAlignment(): Point[] {\n const pts = this.positions;\n return [\n pts[0],\n pts[1],\n getCenterPoint([pts[3], pts[4]]),\n ];\n }\n}\n", "import { getCenterPoint } from '../utils/index';\nimport { FaceLandmarks } from './FaceLandmarks';\nimport { Point } from './Point';\n\nexport class FaceLandmarks68 extends FaceLandmarks {\n public getJawOutline(): Point[] {\n return this.positions.slice(0, 17);\n }\n\n public getLeftEyeBrow(): Point[] {\n return this.positions.slice(17, 22);\n }\n\n public getRightEyeBrow(): Point[] {\n return this.positions.slice(22, 27);\n }\n\n public getNose(): Point[] {\n return this.positions.slice(27, 36);\n }\n\n public getLeftEye(): Point[] {\n return this.positions.slice(36, 42);\n }\n\n public getRightEye(): Point[] {\n return this.positions.slice(42, 48);\n }\n\n public getMouth(): Point[] {\n return this.positions.slice(48, 68);\n }\n\n protected override getRefPointsForAlignment(): Point[] {\n return [\n this.getLeftEye(),\n this.getRightEye(),\n this.getMouth(),\n ].map(getCenterPoint);\n }\n}\n", "import { round } from '../utils/index';\n\nexport interface IFaceMatch {\n label: string\n distance: number\n}\n\nexport class FaceMatch implements IFaceMatch {\n private _label: string;\n private _distance: number;\n\n constructor(label: string, distance: number) {\n this._label = label;\n this._distance = distance;\n }\n\n public get label(): string { return this._label; }\n\n public get distance(): number { return this._distance; }\n\n public toString(withDistance = true): string {\n return `${this.label}${withDistance ? ` (${round(this.distance)})` : ''}`;\n }\n}\n", "import { isValidNumber } from '../utils/index';\nimport { IBoundingBox } from './BoundingBox';\nimport { Box } from './Box';\nimport { IRect } from './Rect';\n\nexport class LabeledBox extends Box {\n public static assertIsValidLabeledBox(box: any, callee: string) {\n Box.assertIsValidBox(box, callee);\n if (!isValidNumber(box.label)) {\n throw new Error(`${callee} - expected property label (${box.label}) to be a number`);\n }\n }\n\n private _label: number;\n\n constructor(box: IBoundingBox | IRect | any, label: number) {\n super(box);\n this._label = label;\n }\n\n public get label(): number { return this._label; }\n}\n", "export class LabeledFaceDescriptors {\n private _label: string;\n\n private _descriptors: Float32Array[];\n\n constructor(label: string, descriptors: Float32Array[]) {\n if (!(typeof label === 'string')) {\n throw new Error('LabeledFaceDescriptors - constructor expected label to be a string');\n }\n\n if (!Array.isArray(descriptors) || descriptors.some((desc) => !(desc instanceof Float32Array))) {\n throw new Error('LabeledFaceDescriptors - constructor expected descriptors to be an array of Float32Array');\n }\n\n this._label = label;\n this._descriptors = descriptors;\n }\n\n public get label(): string { return this._label; }\n\n public get descriptors(): Float32Array[] { return this._descriptors; }\n\n public toJSON(): any {\n return {\n label: this.label,\n descriptors: this.descriptors.map((d) => Array.from(d)),\n };\n }\n\n public static fromJSON(json: any): LabeledFaceDescriptors {\n const descriptors = json.descriptors.map((d: any) => new Float32Array(d));\n return new LabeledFaceDescriptors(json.label, descriptors);\n }\n}\n", "import { isValidProbablitiy } from '../utils/index';\nimport { IBoundingBox } from './BoundingBox';\nimport { LabeledBox } from './LabeledBox';\nimport { IRect } from './Rect';\n\nexport class PredictedBox extends LabeledBox {\n public static assertIsValidPredictedBox(box: any, callee: string) {\n LabeledBox.assertIsValidLabeledBox(box, callee);\n\n if (\n !isValidProbablitiy(box.score)\n || !isValidProbablitiy(box.classScore)\n ) {\n throw new Error(`${callee} - expected properties score (${box.score}) and (${box.classScore}) to be a number between [0, 1]`);\n }\n }\n\n private _score: number;\n\n private _classScore: number;\n\n constructor(box: IBoundingBox | IRect | any, label: number, score: number, classScore: number) {\n super(box, label);\n this._score = score;\n this._classScore = classScore;\n }\n\n public get score(): number { return this._score; }\n\n public get classScore(): number { return this._classScore; }\n}\n", "import { FaceDetection } from '../classes/FaceDetection';\n\nexport type WithFaceDetection = TSource & {\n detection: FaceDetection\n}\n\nexport function isWithFaceDetection(obj: any): obj is WithFaceDetection<{}> {\n return obj.detection instanceof FaceDetection;\n}\n\nexport function extendWithFaceDetection(sourceObj: TSource, detection: FaceDetection): WithFaceDetection {\n const extension = { detection };\n return { ...sourceObj, ...extension };\n}\n", "import { Environment } from './types';\n\nexport function createBrowserEnv(): Environment {\n const fetch = window.fetch;\n if (!fetch) throw new Error('fetch - missing fetch implementation for browser environment');\n\n const readFile = () => {\n throw new Error('readFile - filesystem not available for browser environment');\n };\n\n return {\n Canvas: HTMLCanvasElement,\n CanvasRenderingContext2D,\n Image: HTMLImageElement,\n ImageData,\n Video: HTMLVideoElement,\n createCanvasElement: () => document.createElement('canvas'),\n createImageElement: () => document.createElement('img'),\n createVideoElement: () => document.createElement('video'),\n fetch,\n readFile,\n };\n}\n", "export function isNodejs(): boolean {\n return typeof global === 'object'\n && typeof process !== 'undefined'\n && process.versions != null\n && process.versions.node != null;\n}\n", "import { FileSystem } from './types';\nimport { isNodejs } from './isNodejs';\n\nexport function createFileSystem(fs?: any): FileSystem {\n let requireFsError = '';\n if (!fs && isNodejs()) {\n try {\n // eslint-disable-next-line global-require, @typescript-eslint/no-require-imports\n fs = require('fs');\n } catch (err) {\n requireFsError = (err as any).toString();\n }\n }\n\n const readFile = fs\n // eslint-disable-next-line no-undef\n ? (filePath: string) => new Promise((resolve, reject) => { fs.readFile(filePath, (err: NodeJS.ErrnoException | null, buffer: string | Buffer) => (err ? reject(err) : resolve(buffer))); })\n : () => { throw new Error(`readFile - failed to require fs in nodejs environment with error: ${requireFsError}`); };\n return { readFile };\n}\n", "/* eslint-disable max-classes-per-file */\nimport { createFileSystem } from './createFileSystem';\nimport { Environment } from './types';\n\nexport function createNodejsEnv(): Environment {\n const Canvas: (new () => HTMLCanvasElement) = (global as any)['Canvas'] || global.HTMLCanvasElement;\n const Image = global.Image || global.HTMLImageElement;\n const Video: (new () => HTMLVideoElement) = (global as any)['Video'] || global.HTMLVideoElement;\n\n const createCanvasElement = () => {\n if (Canvas) return new Canvas();\n throw new Error('createCanvasElement - missing Canvas implementation for nodejs environment');\n };\n\n const createImageElement = () => {\n if (Image) return new Image();\n throw new Error('createImageElement - missing Image implementation for nodejs environment');\n };\n\n const createVideoElement = () => {\n if (Video) return new Video();\n throw new Error('createVideoElement - missing Video implementation for nodejs environment');\n };\n\n const fetch = global.fetch;\n // if (!fetch) throw new Error('fetch - missing fetch implementation for nodejs environment');\n\n const fileSystem = createFileSystem();\n\n return {\n Canvas: Canvas || class {},\n CanvasRenderingContext2D: global.CanvasRenderingContext2D || class {},\n Image: Image || class {},\n ImageData: global.ImageData || class {},\n Video: global.HTMLVideoElement || class {},\n createCanvasElement,\n createImageElement,\n createVideoElement,\n fetch,\n ...fileSystem,\n };\n}\n", "export function isBrowser(): boolean {\n return typeof window === 'object'\n && typeof document !== 'undefined'\n && typeof HTMLImageElement !== 'undefined'\n && typeof HTMLCanvasElement !== 'undefined'\n && typeof HTMLVideoElement !== 'undefined'\n && typeof ImageData !== 'undefined'\n && typeof CanvasRenderingContext2D !== 'undefined';\n}\n", "import { createBrowserEnv } from './createBrowserEnv';\nimport { createFileSystem } from './createFileSystem';\nimport { createNodejsEnv } from './createNodejsEnv';\nimport { isBrowser } from './isBrowser';\nimport { isNodejs } from './isNodejs';\nimport { Environment } from './types';\n\nlet environment: Environment | null;\n\nfunction getEnv(): Environment {\n if (!environment) {\n throw new Error('getEnv - environment is not defined, check isNodejs() and isBrowser()');\n }\n return environment;\n}\n\nfunction setEnv(env: Environment) {\n environment = env;\n}\n\nfunction initialize() {\n // check for isBrowser() first to prevent electron renderer process\n // to be initialized with wrong environment due to isNodejs() returning true\n if (isBrowser()) return setEnv(createBrowserEnv());\n if (isNodejs()) return setEnv(createNodejsEnv());\n return null;\n}\n\nfunction monkeyPatch(env: Partial) {\n if (!environment) {\n initialize();\n }\n\n if (!environment) {\n throw new Error('monkeyPatch - environment is not defined, check isNodejs() and isBrowser()');\n }\n\n const { Canvas = environment.Canvas, Image = environment.Image } = env;\n environment.Canvas = Canvas;\n environment.Image = Image;\n environment.createCanvasElement = env.createCanvasElement || (() => new Canvas());\n environment.createImageElement = env.createImageElement || (() => new Image());\n\n environment.ImageData = env.ImageData || environment.ImageData;\n environment.Video = env.Video || environment.Video;\n environment.fetch = env.fetch || environment.fetch;\n environment.readFile = env.readFile || environment.readFile;\n}\n\nexport const env = {\n getEnv,\n setEnv,\n initialize,\n createBrowserEnv,\n createFileSystem,\n createNodejsEnv,\n monkeyPatch,\n isBrowser,\n isNodejs,\n};\n\ninitialize();\n\nexport * from './types';\n", "import { env } from '../env/index';\n\nexport function resolveInput(arg: string | any) {\n if (!env.isNodejs() && typeof arg === 'string') {\n return document.getElementById(arg);\n }\n return arg;\n}\n", "import { env } from '../env/index';\nimport { resolveInput } from './resolveInput';\n\nexport function getContext2dOrThrow(canvasArg: string | HTMLCanvasElement | CanvasRenderingContext2D): CanvasRenderingContext2D {\n const { Canvas, CanvasRenderingContext2D } = env.getEnv();\n if (canvasArg instanceof CanvasRenderingContext2D) return canvasArg;\n const canvas = resolveInput(canvasArg);\n if (!(canvas instanceof Canvas)) throw new Error('resolveContext2d - expected canvas to be of instance of Canvas');\n const ctx = canvas.getContext('2d', { willReadFrequently: true });\n if (!ctx) throw new Error('resolveContext2d - canvas 2d context is null');\n return ctx;\n}\n", "/* eslint-disable max-classes-per-file */\nimport { IDimensions, IPoint } from '../classes/index';\nimport { getContext2dOrThrow } from '../dom/getContext2dOrThrow';\nimport { resolveInput } from '../dom/resolveInput';\n\n// eslint-disable-next-line no-shadow\nexport enum AnchorPosition {\n // eslint-disable-next-line no-unused-vars\n TOP_LEFT = 'TOP_LEFT',\n // eslint-disable-next-line no-unused-vars\n TOP_RIGHT = 'TOP_RIGHT',\n // eslint-disable-next-line no-unused-vars\n BOTTOM_LEFT = 'BOTTOM_LEFT',\n // eslint-disable-next-line no-unused-vars\n BOTTOM_RIGHT = 'BOTTOM_RIGHT'\n}\n\nexport interface IDrawTextFieldOptions {\n anchorPosition?: AnchorPosition\n backgroundColor?: string\n fontColor?: string\n fontSize?: number\n fontStyle?: string\n padding?: number\n}\n\nexport class DrawTextFieldOptions implements IDrawTextFieldOptions {\n public anchorPosition: AnchorPosition;\n\n public backgroundColor: string;\n\n public fontColor: string;\n\n public fontSize: number;\n\n public fontStyle: string;\n\n public padding: number;\n\n constructor(options: IDrawTextFieldOptions = {}) {\n const {\n anchorPosition, backgroundColor, fontColor, fontSize, fontStyle, padding,\n } = options;\n this.anchorPosition = anchorPosition || AnchorPosition.TOP_LEFT;\n this.backgroundColor = backgroundColor || 'rgba(0, 0, 0, 0.5)';\n this.fontColor = fontColor || 'rgba(255, 255, 255, 1)';\n this.fontSize = fontSize || 14;\n this.fontStyle = fontStyle || 'Georgia';\n this.padding = padding || 4;\n }\n}\n\nexport class DrawTextField {\n public text: string[];\n\n public anchor : IPoint;\n\n public options: DrawTextFieldOptions;\n\n constructor(\n text: string | string[] | DrawTextField,\n anchor: IPoint,\n options: IDrawTextFieldOptions = {},\n ) {\n // eslint-disable-next-line no-nested-ternary\n this.text = typeof text === 'string'\n ? [text]\n : (text instanceof DrawTextField ? text.text : text);\n this.anchor = anchor;\n this.options = new DrawTextFieldOptions(options);\n }\n\n measureWidth(ctx: CanvasRenderingContext2D): number {\n const { padding } = this.options;\n return this.text.map((l) => ctx.measureText(l).width).reduce((w0, w1) => (w0 < w1 ? w1 : w0), 0) + (2 * padding);\n }\n\n measureHeight(): number {\n const { fontSize, padding } = this.options;\n return this.text.length * fontSize + (2 * padding);\n }\n\n getUpperLeft(ctx: CanvasRenderingContext2D, canvasDims?: IDimensions): IPoint {\n const { anchorPosition } = this.options;\n const isShiftLeft = anchorPosition === AnchorPosition.BOTTOM_RIGHT || anchorPosition === AnchorPosition.TOP_RIGHT;\n const isShiftTop = anchorPosition === AnchorPosition.BOTTOM_LEFT || anchorPosition === AnchorPosition.BOTTOM_RIGHT;\n\n const textFieldWidth = this.measureWidth(ctx);\n const textFieldHeight = this.measureHeight();\n const x = (isShiftLeft ? this.anchor.x - textFieldWidth : this.anchor.x);\n const y = isShiftTop ? this.anchor.y - textFieldHeight : this.anchor.y;\n\n // adjust anchor if text box exceeds canvas borders\n if (canvasDims) {\n const { width, height } = canvasDims;\n const newX = Math.max(Math.min(x, width - textFieldWidth), 0);\n const newY = Math.max(Math.min(y, height - textFieldHeight), 0);\n return { x: newX, y: newY };\n }\n return { x, y };\n }\n\n draw(canvasArg: string | HTMLCanvasElement | CanvasRenderingContext2D) {\n const canvas = resolveInput(canvasArg);\n const ctx = getContext2dOrThrow(canvas);\n\n const {\n backgroundColor, fontColor, fontSize, fontStyle, padding,\n } = this.options;\n\n ctx.font = `${fontSize}px ${fontStyle}`;\n const maxTextWidth = this.measureWidth(ctx);\n const textHeight = this.measureHeight();\n\n ctx.fillStyle = backgroundColor;\n const upperLeft = this.getUpperLeft(ctx, canvas);\n ctx.fillRect(upperLeft.x, upperLeft.y, maxTextWidth, textHeight);\n\n ctx.fillStyle = fontColor;\n this.text.forEach((textLine, i) => {\n const x = padding + upperLeft.x;\n const y = padding + upperLeft.y + ((i + 1) * fontSize);\n ctx.fillText(textLine, x, y);\n });\n }\n}\n", "/* eslint-disable max-classes-per-file */\nimport { Box, IBoundingBox, IRect } from '../classes/index';\nimport { getContext2dOrThrow } from '../dom/getContext2dOrThrow';\nimport { AnchorPosition, DrawTextField, DrawTextFieldOptions, IDrawTextFieldOptions } from './DrawTextField';\n\nexport interface IDrawBoxOptions {\n boxColor?: string\n lineWidth?: number\n drawLabelOptions?: IDrawTextFieldOptions\n label?: string\n}\n\nexport class DrawBoxOptions {\n public boxColor: string;\n\n public lineWidth: number;\n\n public drawLabelOptions: DrawTextFieldOptions;\n\n public label?: string;\n\n constructor(options: IDrawBoxOptions = {}) {\n const {\n boxColor, lineWidth, label, drawLabelOptions,\n } = options;\n this.boxColor = boxColor || 'rgba(0, 0, 255, 1)';\n this.lineWidth = lineWidth || 2;\n this.label = label;\n\n const defaultDrawLabelOptions = {\n anchorPosition: AnchorPosition.BOTTOM_LEFT,\n backgroundColor: this.boxColor,\n };\n this.drawLabelOptions = new DrawTextFieldOptions({ ...defaultDrawLabelOptions, ...drawLabelOptions });\n }\n}\n\nexport class DrawBox {\n public box: Box;\n\n public options: DrawBoxOptions;\n\n constructor(\n box: IBoundingBox | IRect,\n options: IDrawBoxOptions = {},\n ) {\n this.box = new Box(box);\n this.options = new DrawBoxOptions(options);\n }\n\n draw(canvasArg: string | HTMLCanvasElement | CanvasRenderingContext2D) {\n const ctx = getContext2dOrThrow(canvasArg);\n\n const { boxColor, lineWidth } = this.options;\n\n const {\n x, y, width, height,\n } = this.box;\n ctx.strokeStyle = boxColor;\n ctx.lineWidth = lineWidth;\n ctx.strokeRect(x, y, width, height);\n\n const { label } = this.options;\n if (label) {\n new DrawTextField([label], { x: x - (lineWidth / 2), y }, this.options.drawLabelOptions).draw(canvasArg);\n }\n }\n}\n", "import { Box, IBoundingBox, IRect } from '../classes/index';\nimport { FaceDetection } from '../classes/FaceDetection';\nimport { isWithFaceDetection, WithFaceDetection } from '../factories/WithFaceDetection';\nimport { round } from '../utils/index';\nimport { DrawBox } from './DrawBox';\n\nexport type TDrawDetectionsInput = IRect | IBoundingBox | FaceDetection | WithFaceDetection<{}>\n\nexport function drawDetections(\n canvasArg: string | HTMLCanvasElement,\n detections: TDrawDetectionsInput | Array,\n) {\n const detectionsArray = Array.isArray(detections) ? detections : [detections];\n\n detectionsArray.forEach((det) => {\n // eslint-disable-next-line no-nested-ternary\n const score = det instanceof FaceDetection\n ? det.score\n : (isWithFaceDetection(det) ? det.detection.score : undefined);\n\n // eslint-disable-next-line no-nested-ternary\n const box = det instanceof FaceDetection\n ? det.box\n : (isWithFaceDetection(det) ? det.detection.box : new Box(det));\n\n const label = score ? `${round(score)}` : undefined;\n new DrawBox(box, { label }).draw(canvasArg);\n });\n}\n", "import { env } from '../env/index';\n\nexport function isMediaLoaded(media: HTMLImageElement | HTMLVideoElement) : boolean {\n const { Image, Video } = env.getEnv();\n\n return (media instanceof Image && media.complete)\n || (media instanceof Video && media.readyState >= 3);\n}\n", "import { env } from '../env/index';\nimport { isMediaLoaded } from './isMediaLoaded';\n\nexport function awaitMediaLoaded(media: HTMLImageElement | HTMLVideoElement | HTMLCanvasElement) {\n // eslint-disable-next-line consistent-return\n return new Promise((resolve, reject) => {\n if (media instanceof env.getEnv().Canvas || isMediaLoaded(media)) {\n resolve(null);\n return;\n }\n\n function onError(e: Event) {\n if (!e.currentTarget) return;\n // eslint-disable-next-line no-use-before-define\n e.currentTarget.removeEventListener('load', onLoad);\n e.currentTarget.removeEventListener('error', onError);\n reject(e);\n }\n\n function onLoad(e: Event) {\n if (!e.currentTarget) return;\n e.currentTarget.removeEventListener('load', onLoad);\n e.currentTarget.removeEventListener('error', onError);\n resolve(e);\n }\n\n media.addEventListener('load', onLoad);\n media.addEventListener('error', onError);\n });\n}\n", "import { env } from '../env/index';\n\nexport function bufferToImage(buf: Blob): Promise {\n return new Promise((resolve, reject) => {\n if (!(buf instanceof Blob)) reject(new Error('bufferToImage - expected buf to be of type: Blob'));\n const reader = new FileReader();\n reader.onload = () => {\n if (typeof reader.result !== 'string') reject(new Error('bufferToImage - expected reader.result to be a string, in onload'));\n const img = env.getEnv().createImageElement();\n img.onload = () => resolve(img);\n img.onerror = reject;\n img.src = reader.result as string;\n };\n reader.onerror = reject;\n reader.readAsDataURL(buf);\n });\n}\n", "import { Dimensions, IDimensions } from '../classes/Dimensions';\nimport { env } from '../env/index';\n\nexport function getMediaDimensions(input: HTMLImageElement | HTMLCanvasElement | HTMLVideoElement | IDimensions): Dimensions {\n const { Image, Video } = env.getEnv();\n\n if (input instanceof Image) {\n return new Dimensions(input.naturalWidth, input.naturalHeight);\n }\n if (input instanceof Video) {\n return new Dimensions(input.videoWidth, input.videoHeight);\n }\n return new Dimensions(input.width, input.height);\n}\n", "import { IDimensions } from '../classes/Dimensions';\nimport { env } from '../env/index';\nimport { getContext2dOrThrow } from './getContext2dOrThrow';\nimport { getMediaDimensions } from './getMediaDimensions';\nimport { isMediaLoaded } from './isMediaLoaded';\n\nexport function createCanvas({ width, height }: IDimensions): HTMLCanvasElement {\n const { createCanvasElement } = env.getEnv();\n const canvas = createCanvasElement();\n canvas.width = width;\n canvas.height = height;\n return canvas;\n}\n\nexport function createCanvasFromMedia(media: HTMLImageElement | HTMLVideoElement | ImageData, dims?: IDimensions): HTMLCanvasElement {\n const { ImageData } = env.getEnv();\n\n if (!(media instanceof ImageData) && !isMediaLoaded(media)) {\n throw new Error('createCanvasFromMedia - media has not finished loading yet');\n }\n\n const { width, height } = dims || getMediaDimensions(media);\n const canvas = createCanvas({ width, height });\n\n if (media instanceof ImageData) {\n getContext2dOrThrow(canvas).putImageData(media, 0, 0);\n } else {\n getContext2dOrThrow(canvas).drawImage(media, 0, 0, width, height);\n }\n return canvas;\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { env } from '../env/index';\nimport { isTensor4D } from '../utils/index';\n\nexport async function imageTensorToCanvas(\n imgTensor: tf.Tensor,\n canvas?: HTMLCanvasElement,\n): Promise {\n const targetCanvas = canvas || env.getEnv().createCanvasElement();\n\n const [height, width, numChannels] = imgTensor.shape.slice(isTensor4D(imgTensor) ? 1 : 0);\n const imgTensor3D = tf.tidy(() => imgTensor.as3D(height, width, numChannels).toInt());\n await tf['browser'].toPixels(imgTensor3D, targetCanvas);\n\n imgTensor3D.dispose();\n\n return targetCanvas;\n}\n", "import { env } from '../env/index';\n\nexport function isMediaElement(input: any) {\n const { Image, Canvas, Video } = env.getEnv();\n\n return input instanceof Image\n || input instanceof Canvas\n || input instanceof Video;\n}\n", "import { env } from '../env/index';\nimport { createCanvas, createCanvasFromMedia } from './createCanvas';\nimport { getContext2dOrThrow } from './getContext2dOrThrow';\nimport { getMediaDimensions } from './getMediaDimensions';\n\nexport function imageToSquare(input: HTMLImageElement | HTMLCanvasElement, inputSize: number, centerImage = false) {\n const { Image, Canvas } = env.getEnv();\n\n if (!(input instanceof Image || input instanceof Canvas)) {\n throw new Error('imageToSquare - expected arg0 to be HTMLImageElement | HTMLCanvasElement');\n }\n\n if (inputSize <= 0) return createCanvas({ width: 1, height: 1 });\n const dims = getMediaDimensions(input);\n const scale = inputSize / Math.max(dims.height, dims.width);\n const width = scale * dims.width;\n const height = scale * dims.height;\n\n const targetCanvas = createCanvas({ width: inputSize, height: inputSize });\n const inputCanvas = input instanceof Canvas ? input : createCanvasFromMedia(input);\n\n const offset = Math.abs(width - height) / 2;\n const dx = centerImage && width < height ? offset : 0;\n const dy = centerImage && height < width ? offset : 0;\n if (inputCanvas.width > 0 && inputCanvas.height > 0) getContext2dOrThrow(targetCanvas).drawImage(inputCanvas, dx, dy, width, height);\n\n return targetCanvas;\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { Dimensions } from '../classes/Dimensions';\nimport { env } from '../env/index';\nimport { padToSquare } from '../ops/padToSquare';\nimport { computeReshapedDimensions, isTensor3D, isTensor4D, range } from '../utils/index';\nimport { createCanvasFromMedia } from './createCanvas';\nimport { imageToSquare } from './imageToSquare';\nimport { TResolvedNetInput } from './types';\n\nexport class NetInput {\n private _imageTensors: Array = [];\n\n private _canvases: HTMLCanvasElement[] = [];\n\n private _batchSize: number;\n\n private _treatAsBatchInput = false;\n\n private _inputDimensions: number[][] = [];\n\n private _inputSize = 0;\n\n constructor(inputs: Array, treatAsBatchInput = false) {\n if (!Array.isArray(inputs)) {\n throw new Error(`NetInput.constructor - expected inputs to be an Array of TResolvedNetInput or to be instanceof tf.Tensor4D, instead have ${inputs}`);\n }\n\n this._treatAsBatchInput = treatAsBatchInput;\n this._batchSize = inputs.length;\n\n inputs.forEach((input, idx) => {\n if (isTensor3D(input)) {\n this._imageTensors[idx] = input;\n this._inputDimensions[idx] = input.shape;\n return;\n }\n\n if (isTensor4D(input)) {\n const batchSize = (input as any).shape[0];\n if (batchSize !== 1) {\n throw new Error(`NetInput - tf.Tensor4D with batchSize ${batchSize} passed, but not supported in input array`);\n }\n\n this._imageTensors[idx] = input;\n this._inputDimensions[idx] = (input as any).shape.slice(1);\n return;\n }\n\n // @ts-ignore\n const canvas = (input as any) instanceof env.getEnv().Canvas ? input : createCanvasFromMedia(input);\n this._canvases[idx] = canvas as HTMLCanvasElement;\n this._inputDimensions[idx] = [canvas.height, canvas.width, 3];\n });\n }\n\n public get imageTensors(): Array {\n return this._imageTensors;\n }\n\n public get canvases(): HTMLCanvasElement[] {\n return this._canvases;\n }\n\n public get isBatchInput(): boolean {\n return this.batchSize > 1 || this._treatAsBatchInput;\n }\n\n public get batchSize(): number {\n return this._batchSize;\n }\n\n public get inputDimensions(): number[][] {\n return this._inputDimensions;\n }\n\n public get inputSize(): number | undefined {\n return this._inputSize;\n }\n\n public get reshapedInputDimensions(): Dimensions[] {\n return range(this.batchSize, 0, 1).map(\n (_, batchIdx) => this.getReshapedInputDimensions(batchIdx),\n );\n }\n\n public getInput(batchIdx: number): tf.Tensor3D | tf.Tensor4D | HTMLCanvasElement {\n return this.canvases[batchIdx] || this.imageTensors[batchIdx];\n }\n\n public getInputDimensions(batchIdx: number): number[] {\n return this._inputDimensions[batchIdx];\n }\n\n public getInputHeight(batchIdx: number): number {\n return this._inputDimensions[batchIdx][0];\n }\n\n public getInputWidth(batchIdx: number): number {\n return this._inputDimensions[batchIdx][1];\n }\n\n public getReshapedInputDimensions(batchIdx: number): Dimensions {\n if (typeof this.inputSize !== 'number') {\n throw new Error('getReshapedInputDimensions - inputSize not set, toBatchTensor has not been called yet');\n }\n\n const width = this.getInputWidth(batchIdx);\n const height = this.getInputHeight(batchIdx);\n return computeReshapedDimensions({ width, height }, this.inputSize);\n }\n\n /**\n * Create a batch tensor from all input canvases and tensors\n * with size [batchSize, inputSize, inputSize, 3].\n *\n * @param inputSize Height and width of the tensor.\n * @param isCenterImage (optional, default: false) If true, add an equal amount of padding on\n * both sides of the minor dimension oof the image.\n * @returns The batch tensor.\n */\n public toBatchTensor(inputSize: number, isCenterInputs = true): tf.Tensor4D {\n this._inputSize = inputSize;\n\n return tf.tidy(() => {\n const inputTensors = range(this.batchSize, 0, 1).map((batchIdx) => {\n const input = this.getInput(batchIdx);\n\n if (input instanceof tf.Tensor) {\n let imgTensor = isTensor4D(input) ? input : tf.expandDims(input);\n imgTensor = padToSquare(imgTensor as tf.Tensor4D, isCenterInputs);\n\n if (imgTensor.shape[1] !== inputSize || imgTensor.shape[2] !== inputSize) {\n imgTensor = tf['image'].resizeBilinear(imgTensor as tf.Tensor4D, [inputSize, inputSize], false, false);\n }\n\n return imgTensor.as3D(inputSize, inputSize, 3);\n }\n\n if (input instanceof env.getEnv().Canvas) {\n return tf['browser'].fromPixels(imageToSquare(input, inputSize, isCenterInputs));\n }\n\n throw new Error(`toBatchTensor - at batchIdx ${batchIdx}, expected input to be instanceof tf.Tensor or instanceof HTMLCanvasElement, instead have ${input}`);\n });\n\n const batchTensor = tf.stack(inputTensors.map((t) => tf.cast(t, 'float32'))).as4D(this.batchSize, inputSize, inputSize, 3);\n // const batchTensor = tf.stack(inputTensors.map((t) => tf.cast(t, 'float32'))) as tf.Tensor4D;\n\n return batchTensor;\n });\n }\n}\n", "import { isTensor3D, isTensor4D } from '../utils/index';\nimport { awaitMediaLoaded } from './awaitMediaLoaded';\nimport { isMediaElement } from './isMediaElement';\nimport { NetInput } from './NetInput';\nimport { resolveInput } from './resolveInput';\nimport { TNetInput } from './types';\n\n/**\n * Validates the input to make sure, they are valid net inputs and awaits all media elements\n * to be finished loading.\n *\n * @param input The input, which can be a media element or an array of different media elements.\n * @returns A NetInput instance, which can be passed into one of the neural networks.\n */\nexport async function toNetInput(inputs: TNetInput): Promise {\n if (inputs instanceof NetInput) return inputs;\n const inputArgArray = Array.isArray(inputs) ? inputs : [inputs];\n if (!inputArgArray.length) throw new Error('toNetInput - empty array passed as input');\n const getIdxHint = (idx: number) => (Array.isArray(inputs) ? ` at input index ${idx}:` : '');\n const inputArray = inputArgArray.map(resolveInput);\n inputArray.forEach((input, i) => {\n if (!isMediaElement(input) && !isTensor3D(input) && !isTensor4D(input)) {\n if (typeof inputArgArray[i] === 'string') throw new Error(`toNetInput -${getIdxHint(i)} string passed, but could not resolve HTMLElement for element id ${inputArgArray[i]}`);\n throw new Error(`toNetInput -${getIdxHint(i)} expected media to be of type HTMLImageElement | HTMLVideoElement | HTMLCanvasElement | tf.Tensor3D, or to be an element id`);\n }\n if (isTensor4D(input)) {\n // if tf.Tensor4D is passed in the input array, the batch size has to be 1\n const batchSize = input.shape[0];\n if (batchSize !== 1) throw new Error(`toNetInput -${getIdxHint(i)} tf.Tensor4D with batchSize ${batchSize} passed, but not supported in input array`);\n }\n });\n // wait for all media elements being loaded\n await Promise.all(inputArray.map((input) => isMediaElement(input) && awaitMediaLoaded(input)));\n return new NetInput(inputArray, Array.isArray(inputs));\n}\n", "import { FaceDetection } from '../classes/FaceDetection';\nimport { Rect } from '../classes/Rect';\nimport { env } from '../env/index';\nimport { createCanvas } from './createCanvas';\nimport { getContext2dOrThrow } from './getContext2dOrThrow';\nimport { imageTensorToCanvas } from './imageTensorToCanvas';\nimport { toNetInput } from './toNetInput';\nimport { TNetInput } from './types';\n\n/**\n * Extracts the image regions containing the detected faces.\n *\n * @param input The image that face detection has been performed on.\n * @param detections The face detection results or face bounding boxes for that image.\n * @returns The Canvases of the corresponding image region for each detected face.\n */\nexport async function extractFaces(input: TNetInput, detections: Array): Promise {\n const { Canvas } = env.getEnv();\n let canvas = input as HTMLCanvasElement;\n if (!(input instanceof Canvas)) {\n const netInput = await toNetInput(input);\n if (netInput.batchSize > 1) throw new Error('extractFaces - batchSize > 1 not supported');\n const tensorOrCanvas = netInput.getInput(0);\n canvas = tensorOrCanvas instanceof Canvas ? tensorOrCanvas : await imageTensorToCanvas(tensorOrCanvas);\n }\n const ctx = getContext2dOrThrow(canvas);\n const boxes = detections\n .map((det) => (det instanceof FaceDetection ? det.forSize(canvas.width, canvas.height).box.floor() : det))\n .map((box) => box.clipAtImageBorders(canvas.width, canvas.height));\n return boxes.map(({ x, y, width, height }) => {\n const faceImg = createCanvas({ width, height });\n if (width > 0 && height > 0) getContext2dOrThrow(faceImg).putImageData(ctx.getImageData(x, y, width, height), 0, 0);\n return faceImg;\n });\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { Rect } from '../classes/index';\nimport { FaceDetection } from '../classes/FaceDetection';\nimport { isTensor3D, isTensor4D } from '../utils/index';\n\n/**\n * Extracts the tensors of the image regions containing the detected faces.\n * Useful if you want to compute the face descriptors for the face images.\n * Using this method is faster then extracting a canvas for each face and\n * converting them to tensors individually.\n *\n * @param imageTensor The image tensor that face detection has been performed on.\n * @param detections The face detection results or face bounding boxes for that image.\n * @returns Tensors of the corresponding image region for each detected face.\n */\nexport async function extractFaceTensors(imageTensor: tf.Tensor3D | tf.Tensor4D, detections: Array): Promise {\n if (!isTensor3D(imageTensor) && !isTensor4D(imageTensor)) {\n throw new Error('extractFaceTensors - expected image tensor to be 3D or 4D');\n }\n\n if (isTensor4D(imageTensor) && imageTensor.shape[0] > 1) {\n throw new Error('extractFaceTensors - batchSize > 1 not supported');\n }\n\n return tf.tidy(() => {\n const [imgHeight, imgWidth, numChannels] = imageTensor.shape.slice(isTensor4D(imageTensor) ? 1 : 0);\n const boxes = detections.map((det) => (det instanceof FaceDetection ? det.forSize(imgWidth, imgHeight).box : det))\n .map((box) => box.clipAtImageBorders(imgWidth, imgHeight));\n const faceTensors = boxes\n .filter((box) => box.width > 0 && box.height > 0)\n .map(({ x, y, width, height }) => tf.slice3d(imageTensor.as3D(imgHeight, imgWidth, numChannels), [y, x, 0], [height, width, numChannels]));\n return faceTensors;\n });\n}\n", "import { env } from '../env/index';\n\nexport async function fetchOrThrow(\n url: string,\n // eslint-disable-next-line no-undef\n init?: RequestInit,\n): Promise {\n const { fetch } = env.getEnv();\n const res = await fetch(url, init);\n if (!(res.status < 400)) {\n throw new Error(`failed to fetch: (${res.status}) ${res.statusText}, from url: ${res.url}`);\n }\n return res;\n}\n", "import { bufferToImage } from './bufferToImage';\nimport { fetchOrThrow } from './fetchOrThrow';\n\nexport async function fetchImage(uri: string): Promise {\n const res = await fetchOrThrow(uri);\n const blob = await (res).blob();\n\n if (!blob.type.startsWith('image/')) {\n throw new Error(`fetchImage - expected blob type to be of type image/*, instead have: ${blob.type}, for url: ${res.url}`);\n }\n return bufferToImage(blob);\n}\n", "import { fetchOrThrow } from './fetchOrThrow';\n\nexport async function fetchJson(uri: string): Promise {\n return (await fetchOrThrow(uri)).json();\n}\n", "import { fetchOrThrow } from './fetchOrThrow';\n\nexport async function fetchNetWeights(uri: string): Promise {\n return new Float32Array(await (await fetchOrThrow(uri)).arrayBuffer());\n}\n", "import { env } from '../env/index';\n\nexport function bufferToVideo(buf: Blob): Promise {\n return new Promise((resolve, reject) => {\n if (!(buf instanceof Blob)) reject(new Error('bufferToVideo - expected buf to be of type: Blob'));\n\n const video = env.getEnv().createVideoElement();\n video.oncanplay = () => resolve(video);\n video.onerror = reject;\n video.playsInline = true;\n video.muted = true;\n video.src = URL.createObjectURL(buf);\n video.play();\n });\n}\n", "import { bufferToVideo } from './bufferToVideo';\nimport { fetchOrThrow } from './fetchOrThrow';\n\nexport async function fetchVideo(uri: string): Promise {\n const res = await fetchOrThrow(uri);\n const blob = await (res).blob();\n\n if (!blob.type.startsWith('video/')) {\n throw new Error(`fetchVideo - expected blob type to be of type video/*, instead have: ${blob.type}, for url: ${res.url}`);\n }\n return bufferToVideo(blob);\n}\n", "export function getModelUris(uri: string | undefined, defaultModelName: string) {\n const defaultManifestFilename = `${defaultModelName}-weights_manifest.json`;\n\n if (!uri) {\n return {\n modelBaseUri: '',\n manifestUri: defaultManifestFilename,\n };\n }\n\n if (uri === '/') {\n return {\n modelBaseUri: '/',\n manifestUri: `/${defaultManifestFilename}`,\n };\n }\n // eslint-disable-next-line no-nested-ternary\n const protocol = uri.startsWith('http://') ? 'http://' : uri.startsWith('https://') ? 'https://' : '';\n uri = uri.replace(protocol, '');\n\n const parts = uri.split('/').filter((s) => s);\n\n const manifestFile = uri.endsWith('.json')\n ? parts[parts.length - 1]\n : defaultManifestFilename;\n\n let modelBaseUri = protocol + (uri.endsWith('.json') ? parts.slice(0, parts.length - 1) : parts).join('/');\n modelBaseUri = uri.startsWith('/') ? `/${modelBaseUri}` : modelBaseUri;\n\n return {\n modelBaseUri,\n manifestUri: modelBaseUri === '/' ? `/${manifestFile}` : `${modelBaseUri}/${manifestFile}`,\n };\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { getModelUris } from '../common/getModelUris';\nimport { fetchJson } from './fetchJson';\n\nexport async function loadWeightMap(\n uri: string | undefined,\n defaultModelName: string,\n): Promise {\n const { manifestUri, modelBaseUri } = getModelUris(uri, defaultModelName);\n // @ts-ignore\n const manifest = await fetchJson(manifestUri);\n // if (manifest['weightsManifest']) manifest = manifest['weightsManifest'];\n return tf['io'].loadWeights(manifest, modelBaseUri);\n}\n", "import { IDimensions } from '../classes/index';\nimport { getMediaDimensions } from './getMediaDimensions';\n\nexport function matchDimensions(input: IDimensions, reference: IDimensions, useMediaDimensions = false) {\n const { width, height } = useMediaDimensions\n ? getMediaDimensions(reference)\n : reference;\n input.width = width;\n input.height = height;\n return { width, height };\n}\n", "import * as tf from '../dist/tfjs.esm';\n\nimport { ParamMapping } from './common/index';\nimport { getModelUris } from './common/getModelUris';\nimport { loadWeightMap } from './dom/index';\nimport { env } from './env/index';\n\nexport abstract class NeuralNetwork {\n constructor(name: string) {\n this._name = name;\n }\n\n protected _params: TNetParams | undefined = undefined;\n\n protected _paramMappings: ParamMapping[] = [];\n\n public _name: any;\n\n public get params(): TNetParams | undefined { return this._params; }\n\n public get paramMappings(): ParamMapping[] { return this._paramMappings; }\n\n public get isLoaded(): boolean { return !!this.params; }\n\n public getParamFromPath(paramPath: string): tf.Tensor {\n const { obj, objProp } = this.traversePropertyPath(paramPath);\n return obj[objProp];\n }\n\n public reassignParamFromPath(paramPath: string, tensor: tf.Tensor) {\n const { obj, objProp } = this.traversePropertyPath(paramPath);\n obj[objProp].dispose();\n obj[objProp] = tensor;\n }\n\n public getParamList() {\n return this._paramMappings.map(({ paramPath }) => ({\n path: paramPath,\n tensor: this.getParamFromPath(paramPath),\n }));\n }\n\n public getTrainableParams() {\n return this.getParamList().filter((param) => param.tensor instanceof tf.Variable);\n }\n\n public getFrozenParams() {\n return this.getParamList().filter((param) => !(param.tensor instanceof tf.Variable));\n }\n\n public variable() {\n this.getFrozenParams().forEach(({ path, tensor }) => {\n this.reassignParamFromPath(path, tensor.variable());\n });\n }\n\n public freeze() {\n this.getTrainableParams().forEach(({ path, tensor: variable }) => {\n const tensor = tf.tensor(variable.dataSync());\n variable.dispose();\n this.reassignParamFromPath(path, tensor);\n });\n }\n\n public dispose(throwOnRedispose = true) {\n this.getParamList().forEach((param) => {\n if (throwOnRedispose && param.tensor.isDisposed) {\n throw new Error(`param tensor has already been disposed for path ${param.path}`);\n }\n param.tensor.dispose();\n });\n this._params = undefined;\n }\n\n public serializeParams(): Float32Array {\n return new Float32Array(\n this.getParamList()\n .map(({ tensor }) => Array.from(tensor.dataSync()) as number[])\n .reduce((flat, arr) => flat.concat(arr)),\n );\n }\n\n public async load(weightsOrUrl: Float32Array | string | undefined): Promise {\n if (weightsOrUrl instanceof Float32Array) {\n this.extractWeights(weightsOrUrl);\n return;\n }\n await this.loadFromUri(weightsOrUrl);\n }\n\n public async loadFromUri(uri: string | undefined) {\n if (uri && typeof uri !== 'string') {\n throw new Error(`${this._name}.loadFromUri - expected model uri`);\n }\n const weightMap = await loadWeightMap(uri, this.getDefaultModelName());\n this.loadFromWeightMap(weightMap);\n }\n\n public async loadFromDisk(filePath: string | undefined) {\n if (filePath && typeof filePath !== 'string') {\n throw new Error(`${this._name}.loadFromDisk - expected model file path`);\n }\n const { readFile } = env.getEnv();\n const { manifestUri, modelBaseUri } = getModelUris(filePath, this.getDefaultModelName());\n const fetchWeightsFromDisk = (filePaths: string[]) => Promise.all(filePaths.map((fp) => readFile(fp).then((buf) => (typeof buf === 'string' ? Buffer.from(buf) : buf.buffer))));\n // @ts-ignore async-vs-sync mismatch\n const loadWeights = tf['io'].weightsLoaderFactory(fetchWeightsFromDisk);\n const manifest = JSON.parse((await readFile(manifestUri)).toString());\n const weightMap = await loadWeights(manifest, modelBaseUri);\n this.loadFromWeightMap(weightMap);\n }\n\n public loadFromWeightMap(weightMap: tf.NamedTensorMap) {\n const { paramMappings, params } = this.extractParamsFromWeightMap(weightMap);\n this._paramMappings = paramMappings;\n this._params = params;\n }\n\n public extractWeights(weights: Float32Array) {\n const { paramMappings, params } = this.extractParams(weights);\n this._paramMappings = paramMappings;\n this._params = params;\n }\n\n private traversePropertyPath(paramPath: string) {\n if (!this.params) {\n throw new Error('traversePropertyPath - model has no loaded params');\n }\n\n const result = paramPath.split('/').reduce((res: { nextObj: any, obj?: any, objProp?: string }, objProp) => {\n // eslint-disable-next-line no-prototype-builtins\n if (!res.nextObj.hasOwnProperty(objProp)) {\n throw new Error(`traversePropertyPath - object does not have property ${objProp}, for path ${paramPath}`);\n }\n return { obj: res.nextObj, objProp, nextObj: res.nextObj[objProp] };\n }, { nextObj: this.params });\n\n const { obj, objProp } = result;\n if (!obj || !objProp || !(obj[objProp] instanceof tf.Tensor)) {\n throw new Error(`traversePropertyPath - parameter is not a tensor, for path ${paramPath}`);\n }\n\n return { obj, objProp };\n }\n\n protected abstract getDefaultModelName(): string\n\n // eslint-disable-next-line no-unused-vars\n protected abstract extractParamsFromWeightMap(weightMap: tf.NamedTensorMap): { params: TNetParams, paramMappings: ParamMapping[] }\n\n // eslint-disable-next-line no-unused-vars\n protected abstract extractParams(weights: Float32Array): { params: TNetParams, paramMappings: ParamMapping[] }\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { SeparableConvParams } from './types';\n\nexport function depthwiseSeparableConv(\n x: tf.Tensor4D,\n params: SeparableConvParams,\n stride: [number, number],\n): tf.Tensor4D {\n return tf.tidy(() => {\n let out = tf.separableConv2d(x, params.depthwise_filter, params.pointwise_filter, stride, 'same');\n out = tf.add(out, params.bias);\n return out;\n });\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { ConvParams, SeparableConvParams } from '../common/index';\nimport { depthwiseSeparableConv } from '../common/depthwiseSeparableConv';\nimport { DenseBlock3Params, DenseBlock4Params } from './types';\n\nexport function denseBlock3(\n x: tf.Tensor4D,\n denseBlockParams: DenseBlock3Params,\n isFirstLayer = false,\n): tf.Tensor4D {\n return tf.tidy(() => {\n const out1 = tf.relu(\n isFirstLayer\n ? tf.add(\n tf.conv2d(x, (denseBlockParams.conv0 as ConvParams).filters, [2, 2], 'same'),\n denseBlockParams.conv0.bias,\n )\n : depthwiseSeparableConv(x, denseBlockParams.conv0 as SeparableConvParams, [2, 2]),\n ) as tf.Tensor4D;\n const out2 = depthwiseSeparableConv(out1, denseBlockParams.conv1, [1, 1]);\n\n const in3 = tf.relu(tf.add(out1, out2)) as tf.Tensor4D;\n const out3 = depthwiseSeparableConv(in3, denseBlockParams.conv2, [1, 1]);\n\n return tf.relu(tf.add(out1, tf.add(out2, out3))) as tf.Tensor4D;\n });\n}\n\nexport function denseBlock4(\n x: tf.Tensor4D,\n denseBlockParams: DenseBlock4Params,\n isFirstLayer = false,\n isScaleDown = true,\n): tf.Tensor4D {\n return tf.tidy(() => {\n const out1 = tf.relu(\n isFirstLayer\n ? tf.add(\n tf.conv2d(x, (denseBlockParams.conv0 as ConvParams).filters, isScaleDown ? [2, 2] : [1, 1], 'same'),\n denseBlockParams.conv0.bias,\n )\n : depthwiseSeparableConv(x, denseBlockParams.conv0 as SeparableConvParams, isScaleDown ? [2, 2] : [1, 1]),\n ) as tf.Tensor4D;\n const out2 = depthwiseSeparableConv(out1, denseBlockParams.conv1, [1, 1]);\n\n const in3 = tf.relu(tf.add(out1, out2)) as tf.Tensor4D;\n const out3 = depthwiseSeparableConv(in3, denseBlockParams.conv2, [1, 1]);\n\n const in4 = tf.relu(tf.add(out1, tf.add(out2, out3))) as tf.Tensor4D;\n const out4 = depthwiseSeparableConv(in4, denseBlockParams.conv3, [1, 1]);\n\n return tf.relu(tf.add(out1, tf.add(out2, tf.add(out3, out4)))) as tf.Tensor4D;\n });\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { ConvParams } from './types';\n\nexport function convLayer(\n x: tf.Tensor4D,\n params: ConvParams,\n padding: 'valid' | 'same' = 'same',\n withRelu = false,\n): tf.Tensor4D {\n return tf.tidy(() => {\n const out = tf.add(\n tf.conv2d(x, params.filters, [1, 1], padding),\n params.bias,\n ) as tf.Tensor4D;\n\n return withRelu ? tf.relu(out) : out;\n });\n}\n", "import { ParamMapping } from './types';\n\nexport function disposeUnusedWeightTensors(weightMap: any, paramMappings: ParamMapping[]) {\n Object.keys(weightMap).forEach((path) => {\n if (!paramMappings.some((pm) => pm.originalPath === path)) {\n weightMap[path].dispose();\n }\n });\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { ConvParams, ExtractWeightsFunction, ParamMapping } from './types';\n\nexport function extractConvParamsFactory(\n extractWeights: ExtractWeightsFunction,\n paramMappings: ParamMapping[],\n) {\n return (\n channelsIn: number,\n channelsOut: number,\n filterSize: number,\n mappedPrefix: string,\n ): ConvParams => {\n const filters = tf.tensor4d(\n extractWeights(channelsIn * channelsOut * filterSize * filterSize),\n [filterSize, filterSize, channelsIn, channelsOut],\n );\n const bias = tf.tensor1d(extractWeights(channelsOut));\n\n paramMappings.push(\n { paramPath: `${mappedPrefix}/filters` },\n { paramPath: `${mappedPrefix}/bias` },\n );\n\n return { filters, bias };\n };\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { ExtractWeightsFunction, FCParams, ParamMapping } from './types';\n\nexport function extractFCParamsFactory(\n extractWeights: ExtractWeightsFunction,\n paramMappings: ParamMapping[],\n) {\n return (\n channelsIn: number,\n channelsOut: number,\n mappedPrefix: string,\n ): FCParams => {\n const fc_weights = tf.tensor2d(extractWeights(channelsIn * channelsOut), [channelsIn, channelsOut]);\n const fc_bias = tf.tensor1d(extractWeights(channelsOut));\n\n paramMappings.push(\n { paramPath: `${mappedPrefix}/weights` },\n { paramPath: `${mappedPrefix}/bias` },\n );\n\n return {\n weights: fc_weights,\n bias: fc_bias,\n };\n };\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\n// eslint-disable-next-line no-unused-vars\nexport type ExtractWeightsFunction = (numWeights: number) => Float32Array\n\nexport type ParamMapping = {\n originalPath?: string\n paramPath: string\n}\n\nexport type ConvParams = {\n filters: tf.Tensor4D\n bias: tf.Tensor1D\n}\n\nexport type FCParams = {\n weights: tf.Tensor2D\n bias: tf.Tensor1D\n}\n\nexport class SeparableConvParams {\n // eslint-disable-next-line no-useless-constructor\n constructor(\n // eslint-disable-next-line no-unused-vars\n public depthwise_filter: tf.Tensor4D,\n // eslint-disable-next-line no-unused-vars\n public pointwise_filter: tf.Tensor4D,\n // eslint-disable-next-line no-unused-vars\n public bias: tf.Tensor1D,\n // eslint-disable-next-line no-empty-function\n ) {}\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { ExtractWeightsFunction, ParamMapping, SeparableConvParams } from './types';\n\nexport function extractSeparableConvParamsFactory(\n extractWeights: ExtractWeightsFunction,\n paramMappings: ParamMapping[],\n) {\n return (channelsIn: number, channelsOut: number, mappedPrefix: string): SeparableConvParams => {\n const depthwise_filter = tf.tensor4d(extractWeights(3 * 3 * channelsIn), [3, 3, channelsIn, 1]);\n const pointwise_filter = tf.tensor4d(extractWeights(channelsIn * channelsOut), [1, 1, channelsIn, channelsOut]);\n const bias = tf.tensor1d(extractWeights(channelsOut));\n\n paramMappings.push(\n { paramPath: `${mappedPrefix}/depthwise_filter` },\n { paramPath: `${mappedPrefix}/pointwise_filter` },\n { paramPath: `${mappedPrefix}/bias` },\n );\n\n return new SeparableConvParams(\n depthwise_filter,\n pointwise_filter,\n bias,\n );\n };\n}\n\nexport function loadSeparableConvParamsFactory(\n // eslint-disable-next-line no-unused-vars\n extractWeightEntry: (originalPath: string, paramRank: number) => T,\n) {\n return (prefix: string): SeparableConvParams => {\n const depthwise_filter = extractWeightEntry(`${prefix}/depthwise_filter`, 4);\n const pointwise_filter = extractWeightEntry(`${prefix}/pointwise_filter`, 4);\n const bias = extractWeightEntry(`${prefix}/bias`, 1);\n\n return new SeparableConvParams(\n depthwise_filter,\n pointwise_filter,\n bias,\n );\n };\n}\n", "import { isTensor } from '../utils/index';\nimport { ParamMapping } from './types';\n\nexport function extractWeightEntryFactory(weightMap: any, paramMappings: ParamMapping[]) {\n return (originalPath: string, paramRank: number, mappedPath?: string) => {\n const tensor = weightMap[originalPath];\n\n if (!isTensor(tensor, paramRank)) {\n throw new Error(`expected weightMap[${originalPath}] to be a Tensor${paramRank}D, instead have ${tensor}`);\n }\n\n paramMappings.push(\n { originalPath, paramPath: mappedPath || originalPath },\n );\n\n return tensor;\n };\n}\n", "export function extractWeightsFactory(weights: Float32Array) {\n let remainingWeights = weights;\n\n function extractWeights(numWeights: number): Float32Array {\n const ret = remainingWeights.slice(0, numWeights);\n remainingWeights = remainingWeights.slice(numWeights);\n return ret;\n }\n\n function getRemainingWeights(): Float32Array {\n return remainingWeights;\n }\n\n return {\n extractWeights,\n getRemainingWeights,\n };\n}\n", "import { extractConvParamsFactory, extractSeparableConvParamsFactory, ExtractWeightsFunction, ParamMapping } from '../common/index';\nimport { DenseBlock3Params, DenseBlock4Params } from './types';\n\nexport function extractorsFactory(extractWeights: ExtractWeightsFunction, paramMappings: ParamMapping[]) {\n const extractConvParams = extractConvParamsFactory(extractWeights, paramMappings);\n const extractSeparableConvParams = extractSeparableConvParamsFactory(extractWeights, paramMappings);\n\n function extractDenseBlock3Params(channelsIn: number, channelsOut: number, mappedPrefix: string, isFirstLayer = false): DenseBlock3Params {\n const conv0 = isFirstLayer\n ? extractConvParams(channelsIn, channelsOut, 3, `${mappedPrefix}/conv0`)\n : extractSeparableConvParams(channelsIn, channelsOut, `${mappedPrefix}/conv0`);\n const conv1 = extractSeparableConvParams(channelsOut, channelsOut, `${mappedPrefix}/conv1`);\n const conv2 = extractSeparableConvParams(channelsOut, channelsOut, `${mappedPrefix}/conv2`);\n\n return { conv0, conv1, conv2 };\n }\n\n function extractDenseBlock4Params(channelsIn: number, channelsOut: number, mappedPrefix: string, isFirstLayer = false): DenseBlock4Params {\n const { conv0, conv1, conv2 } = extractDenseBlock3Params(channelsIn, channelsOut, mappedPrefix, isFirstLayer);\n const conv3 = extractSeparableConvParams(channelsOut, channelsOut, `${mappedPrefix}/conv3`);\n\n return {\n conv0, conv1, conv2, conv3,\n };\n }\n\n return {\n extractDenseBlock3Params,\n extractDenseBlock4Params,\n };\n}\n", "import { extractWeightsFactory, ParamMapping } from '../common/index';\nimport { extractorsFactory } from './extractorsFactory';\nimport { FaceFeatureExtractorParams } from './types';\n\nexport function extractParams(weights: Float32Array): { params: FaceFeatureExtractorParams, paramMappings: ParamMapping[] } {\n const paramMappings: ParamMapping[] = [];\n\n const {\n extractWeights,\n getRemainingWeights,\n } = extractWeightsFactory(weights);\n\n const {\n extractDenseBlock4Params,\n } = extractorsFactory(extractWeights, paramMappings);\n\n const dense0 = extractDenseBlock4Params(3, 32, 'dense0', true);\n const dense1 = extractDenseBlock4Params(32, 64, 'dense1');\n const dense2 = extractDenseBlock4Params(64, 128, 'dense2');\n const dense3 = extractDenseBlock4Params(128, 256, 'dense3');\n\n if (getRemainingWeights().length !== 0) {\n throw new Error(`weights remaing after extract: ${getRemainingWeights().length}`);\n }\n\n return {\n paramMappings,\n params: {\n dense0, dense1, dense2, dense3,\n },\n };\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { ConvParams } from './types';\n\n// eslint-disable-next-line no-unused-vars\nexport function loadConvParamsFactory(extractWeightEntry: (originalPath: string, paramRank: number) => T) {\n return (prefix: string): ConvParams => {\n const filters = extractWeightEntry(`${prefix}/filters`, 4);\n const bias = extractWeightEntry(`${prefix}/bias`, 1);\n\n return { filters, bias };\n };\n}\n", "import { extractWeightEntryFactory, loadSeparableConvParamsFactory, ParamMapping } from '../common/index';\nimport { loadConvParamsFactory } from '../common/loadConvParamsFactory';\nimport { DenseBlock3Params, DenseBlock4Params } from './types';\n\nexport function loadParamsFactory(weightMap: any, paramMappings: ParamMapping[]) {\n const extractWeightEntry = extractWeightEntryFactory(weightMap, paramMappings);\n\n const extractConvParams = loadConvParamsFactory(extractWeightEntry);\n const extractSeparableConvParams = loadSeparableConvParamsFactory(extractWeightEntry);\n\n function extractDenseBlock3Params(prefix: string, isFirstLayer = false): DenseBlock3Params {\n const conv0 = isFirstLayer\n ? extractConvParams(`${prefix}/conv0`)\n : extractSeparableConvParams(`${prefix}/conv0`);\n const conv1 = extractSeparableConvParams(`${prefix}/conv1`);\n const conv2 = extractSeparableConvParams(`${prefix}/conv2`);\n\n return { conv0, conv1, conv2 };\n }\n\n function extractDenseBlock4Params(prefix: string, isFirstLayer = false): DenseBlock4Params {\n const conv0 = isFirstLayer\n ? extractConvParams(`${prefix}/conv0`)\n : extractSeparableConvParams(`${prefix}/conv0`);\n const conv1 = extractSeparableConvParams(`${prefix}/conv1`);\n const conv2 = extractSeparableConvParams(`${prefix}/conv2`);\n const conv3 = extractSeparableConvParams(`${prefix}/conv3`);\n\n return {\n conv0, conv1, conv2, conv3,\n };\n }\n\n return {\n extractDenseBlock3Params,\n extractDenseBlock4Params,\n };\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { disposeUnusedWeightTensors, ParamMapping } from '../common/index';\nimport { loadParamsFactory } from './loadParamsFactory';\nimport { FaceFeatureExtractorParams } from './types';\n\nexport function extractParamsFromWeightMap(\n weightMap: tf.NamedTensorMap,\n): { params: FaceFeatureExtractorParams, paramMappings: ParamMapping[] } {\n const paramMappings: ParamMapping[] = [];\n\n const {\n extractDenseBlock4Params,\n } = loadParamsFactory(weightMap, paramMappings);\n\n const params = {\n dense0: extractDenseBlock4Params('dense0', true),\n dense1: extractDenseBlock4Params('dense1'),\n dense2: extractDenseBlock4Params('dense2'),\n dense3: extractDenseBlock4Params('dense3'),\n };\n\n disposeUnusedWeightTensors(weightMap, paramMappings);\n\n return { params, paramMappings };\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { NetInput, TNetInput, toNetInput } from '../dom/index';\nimport { NeuralNetwork } from '../NeuralNetwork';\nimport { normalize } from '../ops/index';\nimport { denseBlock4 } from './denseBlock';\nimport { extractParams } from './extractParams';\nimport { extractParamsFromWeightMap } from './extractParamsFromWeightMap';\nimport { FaceFeatureExtractorParams, IFaceFeatureExtractor } from './types';\n\nexport class FaceFeatureExtractor extends NeuralNetwork implements IFaceFeatureExtractor {\n constructor() {\n super('FaceFeatureExtractor');\n }\n\n public forwardInput(input: NetInput): tf.Tensor4D {\n const { params } = this;\n\n if (!params) {\n throw new Error('FaceFeatureExtractor - load model before inference');\n }\n\n return tf.tidy(() => {\n const batchTensor = tf.cast(input.toBatchTensor(112, true), 'float32');\n const meanRgb = [122.782, 117.001, 104.298];\n const normalized = normalize(batchTensor, meanRgb).div(255) as tf.Tensor4D;\n\n let out = denseBlock4(normalized, params.dense0, true);\n out = denseBlock4(out, params.dense1);\n out = denseBlock4(out, params.dense2);\n out = denseBlock4(out, params.dense3);\n out = tf.avgPool(out, [7, 7], [2, 2], 'valid');\n\n return out;\n });\n }\n\n public async forward(input: TNetInput): Promise {\n return this.forwardInput(await toNetInput(input));\n }\n\n protected getDefaultModelName(): string {\n return 'face_feature_extractor_model';\n }\n\n protected extractParamsFromWeightMap(weightMap: tf.NamedTensorMap) {\n return extractParamsFromWeightMap(weightMap);\n }\n\n protected extractParams(weights: Float32Array) {\n return extractParams(weights);\n }\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { FCParams } from './types';\n\nexport function fullyConnectedLayer(\n x: tf.Tensor2D,\n params: FCParams,\n): tf.Tensor2D {\n return tf.tidy(() => tf.add(\n tf.matMul(x, params.weights),\n params.bias,\n ));\n}\n", "import { extractFCParamsFactory, extractWeightsFactory, ParamMapping } from '../common/index';\nimport { NetParams } from './types';\n\nexport function extractParams(weights: Float32Array, channelsIn: number, channelsOut: number): { params: NetParams, paramMappings: ParamMapping[] } {\n const paramMappings: ParamMapping[] = [];\n\n const {\n extractWeights,\n getRemainingWeights,\n } = extractWeightsFactory(weights);\n\n const extractFCParams = extractFCParamsFactory(extractWeights, paramMappings);\n\n const fc = extractFCParams(channelsIn, channelsOut, 'fc');\n\n if (getRemainingWeights().length !== 0) {\n throw new Error(`weights remaing after extract: ${getRemainingWeights().length}`);\n }\n\n return {\n paramMappings,\n params: { fc },\n };\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { disposeUnusedWeightTensors, extractWeightEntryFactory, FCParams, ParamMapping } from '../common/index';\nimport { NetParams } from './types';\n\nexport function extractParamsFromWeightMap(\n weightMap: tf.NamedTensorMap,\n): { params: NetParams, paramMappings: ParamMapping[] } {\n const paramMappings: ParamMapping[] = [];\n\n const extractWeightEntry = extractWeightEntryFactory(weightMap, paramMappings);\n\n function extractFcParams(prefix: string): FCParams {\n const weights = extractWeightEntry(`${prefix}/weights`, 2);\n const bias = extractWeightEntry(`${prefix}/bias`, 1);\n return { weights, bias };\n }\n\n const params = {\n fc: extractFcParams('fc'),\n };\n\n disposeUnusedWeightTensors(weightMap, paramMappings);\n\n return { params, paramMappings };\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nexport function seperateWeightMaps(weightMap: tf.NamedTensorMap) {\n const featureExtractorMap: tf.NamedTensorMap = {};\n const classifierMap: tf.NamedTensorMap = {};\n\n Object.keys(weightMap).forEach((key) => {\n const map = key.startsWith('fc') ? classifierMap : featureExtractorMap;\n map[key] = weightMap[key];\n });\n\n return { featureExtractorMap, classifierMap };\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { fullyConnectedLayer } from '../common/fullyConnectedLayer';\nimport { NetInput } from '../dom/index';\nimport { FaceFeatureExtractorParams, IFaceFeatureExtractor, TinyFaceFeatureExtractorParams } from '../faceFeatureExtractor/types';\nimport { NeuralNetwork } from '../NeuralNetwork';\nimport { extractParams } from './extractParams';\nimport { extractParamsFromWeightMap } from './extractParamsFromWeightMap';\nimport { NetParams } from './types';\nimport { seperateWeightMaps } from './util';\n\nexport abstract class FaceProcessor<\n TExtractorParams extends FaceFeatureExtractorParams | TinyFaceFeatureExtractorParams\n>\n extends NeuralNetwork {\n protected _faceFeatureExtractor: IFaceFeatureExtractor;\n\n constructor(_name: string, faceFeatureExtractor: IFaceFeatureExtractor) {\n super(_name);\n this._faceFeatureExtractor = faceFeatureExtractor;\n }\n\n public get faceFeatureExtractor(): IFaceFeatureExtractor {\n return this._faceFeatureExtractor;\n }\n\n protected abstract override getDefaultModelName(): string\n\n protected abstract getClassifierChannelsIn(): number\n\n protected abstract getClassifierChannelsOut(): number\n\n public runNet(input: NetInput | tf.Tensor4D): tf.Tensor2D {\n const { params } = this;\n\n if (!params) {\n throw new Error(`${this._name} - load model before inference`);\n }\n\n return tf.tidy(() => {\n const bottleneckFeatures = input instanceof NetInput\n ? this.faceFeatureExtractor.forwardInput(input)\n : input;\n return fullyConnectedLayer(bottleneckFeatures.as2D(bottleneckFeatures.shape[0], -1), params.fc);\n });\n }\n\n public override dispose(throwOnRedispose = true) {\n this.faceFeatureExtractor.dispose(throwOnRedispose);\n super.dispose(throwOnRedispose);\n }\n\n public loadClassifierParams(weights: Float32Array) {\n const { params, paramMappings } = this.extractClassifierParams(weights);\n this._params = params;\n this._paramMappings = paramMappings;\n }\n\n public extractClassifierParams(weights: Float32Array) {\n return extractParams(weights, this.getClassifierChannelsIn(), this.getClassifierChannelsOut());\n }\n\n protected extractParamsFromWeightMap(weightMap: tf.NamedTensorMap) {\n const { featureExtractorMap, classifierMap } = seperateWeightMaps(weightMap);\n\n this.faceFeatureExtractor.loadFromWeightMap(featureExtractorMap);\n\n return extractParamsFromWeightMap(classifierMap);\n }\n\n protected extractParams(weights: Float32Array) {\n const cIn = this.getClassifierChannelsIn();\n const cOut = this.getClassifierChannelsOut();\n const classifierWeightSize = (cOut * cIn) + cOut;\n\n const featureExtractorWeights = weights.slice(0, weights.length - classifierWeightSize);\n const classifierWeights = weights.slice(weights.length - classifierWeightSize);\n\n this.faceFeatureExtractor.extractWeights(featureExtractorWeights);\n return this.extractClassifierParams(classifierWeights);\n }\n}\n", "export const FACE_EXPRESSION_LABELS = ['neutral', 'happy', 'sad', 'angry', 'fearful', 'disgusted', 'surprised'] as const;\n\nexport class FaceExpressions {\n public neutral = 0;\n public happy = 0;\n public sad = 0;\n public angry = 0;\n public fearful = 0;\n public disgusted = 0;\n public surprised = 0;\n\n constructor(probabilities: number[] | Float32Array) {\n if (probabilities.length !== 7) {\n throw new Error(`FaceExpressions.constructor - expected probabilities.length to be 7, have: ${probabilities.length}`);\n }\n\n FACE_EXPRESSION_LABELS.forEach((expression, idx) => {\n this[expression] = probabilities[idx];\n });\n }\n\n asSortedArray() {\n return FACE_EXPRESSION_LABELS\n .map((expression) => ({ expression, probability: this[expression] as number }))\n .sort((e0, e1) => e1.probability - e0.probability);\n }\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { NetInput, TNetInput, toNetInput } from '../dom/index';\nimport { FaceFeatureExtractor } from '../faceFeatureExtractor/FaceFeatureExtractor';\nimport { FaceFeatureExtractorParams } from '../faceFeatureExtractor/types';\nimport { FaceProcessor } from '../faceProcessor/FaceProcessor';\nimport { FaceExpressions } from './FaceExpressions';\n\nexport class FaceExpressionNet extends FaceProcessor {\n constructor(faceFeatureExtractor: FaceFeatureExtractor = new FaceFeatureExtractor()) {\n super('FaceExpressionNet', faceFeatureExtractor);\n }\n\n public forwardInput(input: NetInput | tf.Tensor4D): tf.Tensor2D {\n return tf.tidy(() => tf.softmax(this.runNet(input)));\n }\n\n public async forward(input: TNetInput): Promise {\n return this.forwardInput(await toNetInput(input));\n }\n\n public async predictExpressions(input: TNetInput) {\n const netInput = await toNetInput(input);\n const out = await this.forwardInput(netInput);\n const probabilitesByBatch = await Promise.all(tf.unstack(out).map(async (t) => {\n const data = t.dataSync();\n t.dispose();\n return data;\n }));\n out.dispose();\n\n const predictionsByBatch = probabilitesByBatch\n .map((probabilites) => new FaceExpressions(probabilites as Float32Array));\n\n return netInput.isBatchInput\n ? predictionsByBatch\n : predictionsByBatch[0];\n }\n\n protected getDefaultModelName(): string {\n return 'face_expression_model';\n }\n\n protected getClassifierChannelsIn(): number {\n return 256;\n }\n\n protected getClassifierChannelsOut(): number {\n return 7;\n }\n}\n", "import { FaceExpressions } from '../faceExpressionNet/FaceExpressions';\n\nexport type WithFaceExpressions = TSource & { expressions: FaceExpressions }\n\nexport function isWithFaceExpressions(obj: any): obj is WithFaceExpressions<{}> {\n return obj.expressions instanceof FaceExpressions;\n}\n\nexport function extendWithFaceExpressions(sourceObj: TSource, expressions: FaceExpressions): WithFaceExpressions {\n const extension = { expressions };\n return { ...sourceObj, ...extension };\n}\n", "import { IPoint, Point } from '../classes/index';\nimport { FaceExpressions } from '../faceExpressionNet/index';\nimport { isWithFaceDetection } from '../factories/WithFaceDetection';\nimport { isWithFaceExpressions, WithFaceExpressions } from '../factories/WithFaceExpressions';\nimport { round } from '../utils/index';\nimport { DrawTextField } from './DrawTextField';\n\nexport type DrawFaceExpressionsInput = FaceExpressions | WithFaceExpressions<{}>\n\nexport function drawFaceExpressions(canvasArg: string | HTMLCanvasElement, faceExpressions: DrawFaceExpressionsInput | Array, minConfidence = 0.1, textFieldAnchor?: IPoint) {\n const faceExpressionsArray = Array.isArray(faceExpressions) ? faceExpressions : [faceExpressions];\n\n faceExpressionsArray.forEach((e) => {\n // eslint-disable-next-line no-nested-ternary\n const expr = e instanceof FaceExpressions\n ? e\n : (isWithFaceExpressions(e) ? e.expressions : undefined);\n if (!expr) {\n throw new Error('drawFaceExpressions - expected faceExpressions to be FaceExpressions | WithFaceExpressions<{}> or array thereof');\n }\n\n const sorted = expr.asSortedArray();\n const resultsToDisplay = sorted.filter((exprLocal) => exprLocal.probability > minConfidence);\n\n const anchor = isWithFaceDetection(e)\n ? e.detection.box.bottomLeft\n : (textFieldAnchor || new Point(0, 0));\n\n const drawTextField = new DrawTextField(\n resultsToDisplay.map((exprLocal) => `${exprLocal.expression} (${round(exprLocal.probability)})`),\n anchor,\n );\n drawTextField.draw(canvasArg);\n });\n}\n", "import { Point } from '../classes';\nimport { FaceDetection } from '../classes/FaceDetection';\nimport { FaceLandmarks } from '../classes/FaceLandmarks';\nimport { FaceLandmarks68 } from '../classes/FaceLandmarks68';\nimport { isWithFaceDetection, WithFaceDetection } from './WithFaceDetection';\n\nexport type WithFaceLandmarks<\n TSource extends WithFaceDetection<{}>,\n TFaceLandmarks extends FaceLandmarks = FaceLandmarks68\n> = TSource & {\n landmarks: TFaceLandmarks;\n unshiftedLandmarks: TFaceLandmarks;\n alignedRect: FaceDetection;\n angle: {\n roll: number | undefined;\n pitch: number | undefined;\n yaw: number | undefined;\n };\n};\n\nexport function isWithFaceLandmarks(\n obj: any,\n): obj is WithFaceLandmarks, FaceLandmarks> {\n return (\n isWithFaceDetection(obj)\n && (obj as any)['landmarks'] instanceof FaceLandmarks\n && (obj as any)['unshiftedLandmarks'] instanceof FaceLandmarks\n && (obj as any)['alignedRect'] instanceof FaceDetection\n );\n}\n\nfunction calculateFaceAngle(mesh: FaceLandmarks) {\n // Helper to convert radians to degrees\n // eslint-disable-next-line no-unused-vars, @typescript-eslint/no-unused-vars\n const degrees = (radians: number) => (radians * 180) / Math.PI;\n const calcLengthBetweenTwoPoints = (a: Point, b: Point) => Math.sqrt((a.x - b.x) ** 2 + (a.y - b.y) ** 2);\n\n const angle = {\n roll: undefined,\n pitch: undefined,\n yaw: undefined,\n };\n\n const calcYaw = (leftPoint: Point, midPoint: Point, rightPoint: Point) => {\n // Calc x-distance from left side of the face (\"ear\") to facial midpoint (\"nose\")\n const leftToMidpoint = Math.floor(leftPoint.x - midPoint.x);\n // Calc x-distance from facial midpoint (\"nose\") to the right side of the face (\"ear\")\n const rightToMidpoint = Math.floor(midPoint.x - rightPoint.x);\n // Difference in distances coincidentally approximates to angles\n return leftToMidpoint - rightToMidpoint;\n };\n\n const calcRoll = (lever: Point, pivot: Point) => {\n // When rolling, the head seems to pivot from the nose/lips/chin area.\n // So, we'll choose any two points from the facial midline, where the first point should be the pivot, and the other \"lever\"\n // Plan/Execution: get the hypotenuse & opposite sides of a 90deg triangle ==> Calculate angle in radians\n const hypotenuse = Math.hypot(pivot.x - lever.x, pivot.y - lever.y);\n const opposite = pivot.y - lever.y;\n const angleInRadians = Math.asin(opposite / hypotenuse);\n const angleInDegrees = degrees(angleInRadians);\n const normalizeAngle = Math.floor(90 - angleInDegrees);\n // If lever more to the left of the pivot, then we're tilting left\n // \"-\" is negative direction. \"+\", or absence of a sign is positive direction\n const tiltDirection = pivot.x - lever.x < 0 ? -1 : 1;\n const result = normalizeAngle * tiltDirection;\n return result;\n };\n\n const calcPitch = (leftPoint: Point, midPoint: Point, rightPoint: Point) => {\n // Theory: While pitching, the nose is the most salient point --> That's what we'll use to make a trianle.\n // The \"base\" is between point that don't move when we pitch our head (i.e. an imaginary line running ear to ear through the nose).\n // Executuin: Get the opposite & adjacent lengths of the triangle from the ear's perspective. Use it to get angle.\n\n const base = calcLengthBetweenTwoPoints(leftPoint, rightPoint);\n // adjecent is base/2 technically.\n const baseCoords = new Point((leftPoint.x + rightPoint.x) / 2, (leftPoint.y + rightPoint.y) / 2);\n const midToBaseLength = calcLengthBetweenTwoPoints(midPoint, baseCoords);\n const angleInRadians = Math.atan(midToBaseLength / base);\n const angleInDegrees = Math.floor(degrees(angleInRadians));\n // Account for directionality.\n // pitch forwards (_i.e. tilting your head forwards) is positive (or no sign); backward is negative.\n const direction = baseCoords.y - midPoint.y < 0 ? -1 : 1;\n const result = angleInDegrees * direction;\n return result;\n };\n\n if (!mesh || !mesh.positions || mesh.positions.length !== 68) return angle;\n const pt = mesh.positions;\n angle.roll = calcRoll(pt[27], pt[66]);\n angle.pitch = calcPitch(pt[14], pt[30], pt[2]);\n angle.yaw = calcYaw(pt[14], pt[33], pt[2]);\n return angle;\n}\n\nexport function extendWithFaceLandmarks, TFaceLandmarks extends FaceLandmarks = FaceLandmarks68>(\n sourceObj: TSource,\n unshiftedLandmarks: TFaceLandmarks,\n): WithFaceLandmarks {\n const { box: shift } = sourceObj.detection;\n const landmarks = unshiftedLandmarks.shiftBy(shift.x, shift.y);\n const rect = landmarks.align();\n const { imageDims } = sourceObj.detection;\n const alignedRect = new FaceDetection(\n sourceObj.detection.score,\n rect.rescale(imageDims.reverse()),\n imageDims,\n );\n const angle = calculateFaceAngle(unshiftedLandmarks);\n const extension = { landmarks, unshiftedLandmarks, alignedRect, angle };\n return { ...sourceObj, ...extension };\n}\n", "/* eslint-disable max-classes-per-file */\nimport { IPoint } from '../classes/index';\nimport { FaceLandmarks } from '../classes/FaceLandmarks';\nimport { FaceLandmarks68 } from '../classes/FaceLandmarks68';\nimport { getContext2dOrThrow } from '../dom/getContext2dOrThrow';\nimport { WithFaceDetection } from '../factories/WithFaceDetection';\nimport { isWithFaceLandmarks, WithFaceLandmarks } from '../factories/WithFaceLandmarks';\nimport { drawContour } from './drawContour';\n\nexport interface IDrawFaceLandmarksOptions {\n drawLines?: boolean\n drawPoints?: boolean\n lineWidth?: number\n pointSize?: number\n lineColor?: string\n pointColor?: string\n}\n\nexport class DrawFaceLandmarksOptions {\n public drawLines: boolean;\n\n public drawPoints: boolean;\n\n public lineWidth: number;\n\n public pointSize: number;\n\n public lineColor: string;\n\n public pointColor: string;\n\n constructor(options: IDrawFaceLandmarksOptions = {}) {\n const {\n drawLines = true, drawPoints = true, lineWidth, lineColor, pointSize, pointColor,\n } = options;\n this.drawLines = drawLines;\n this.drawPoints = drawPoints;\n this.lineWidth = lineWidth || 1;\n this.pointSize = pointSize || 2;\n this.lineColor = lineColor || 'rgba(0, 255, 255, 1)';\n this.pointColor = pointColor || 'rgba(255, 0, 255, 1)';\n }\n}\n\nexport class DrawFaceLandmarks {\n public faceLandmarks: FaceLandmarks;\n\n public options: DrawFaceLandmarksOptions;\n\n constructor(\n faceLandmarks: FaceLandmarks,\n options: IDrawFaceLandmarksOptions = {},\n ) {\n this.faceLandmarks = faceLandmarks;\n this.options = new DrawFaceLandmarksOptions(options);\n }\n\n draw(canvasArg: string | HTMLCanvasElement | CanvasRenderingContext2D) {\n const ctx = getContext2dOrThrow(canvasArg);\n\n const {\n drawLines, drawPoints, lineWidth, lineColor, pointSize, pointColor,\n } = this.options;\n\n if (drawLines && this.faceLandmarks instanceof FaceLandmarks68) {\n ctx.strokeStyle = lineColor;\n ctx.lineWidth = lineWidth;\n drawContour(ctx, this.faceLandmarks.getJawOutline());\n drawContour(ctx, this.faceLandmarks.getLeftEyeBrow());\n drawContour(ctx, this.faceLandmarks.getRightEyeBrow());\n drawContour(ctx, this.faceLandmarks.getNose());\n drawContour(ctx, this.faceLandmarks.getLeftEye(), true);\n drawContour(ctx, this.faceLandmarks.getRightEye(), true);\n drawContour(ctx, this.faceLandmarks.getMouth(), true);\n }\n\n if (drawPoints) {\n ctx.strokeStyle = pointColor;\n ctx.fillStyle = pointColor;\n\n const drawPoint = (pt: IPoint) => {\n ctx.beginPath();\n ctx.arc(pt.x, pt.y, pointSize, 0, 2 * Math.PI);\n ctx.fill();\n };\n this.faceLandmarks.positions.forEach(drawPoint);\n }\n }\n}\n\nexport type DrawFaceLandmarksInput = FaceLandmarks | WithFaceLandmarks>\n\nexport function drawFaceLandmarks(\n canvasArg: string | HTMLCanvasElement,\n faceLandmarks: DrawFaceLandmarksInput | Array,\n) {\n const faceLandmarksArray = Array.isArray(faceLandmarks) ? faceLandmarks : [faceLandmarks];\n faceLandmarksArray.forEach((f) => {\n // eslint-disable-next-line no-nested-ternary\n const landmarks = f instanceof FaceLandmarks\n ? f\n : (isWithFaceLandmarks(f) ? f.landmarks : undefined);\n if (!landmarks) {\n throw new Error('drawFaceLandmarks - expected faceExpressions to be FaceLandmarks | WithFaceLandmarks> or array thereof');\n }\n\n new DrawFaceLandmarks(landmarks).draw(canvasArg);\n });\n}\n", "{\n \"name\": \"@vladmandic/face-api\",\n \"version\": \"1.7.14\",\n \"description\": \"FaceAPI: AI-powered Face Detection & Rotation Tracking, Face Description & Recognition, Age & Gender & Emotion Prediction for Browser and NodeJS using TensorFlow/JS\",\n \"sideEffects\": false,\n \"main\": \"dist/face-api.node.js\",\n \"module\": \"dist/face-api.esm.js\",\n \"browser\": \"dist/face-api.esm.js\",\n \"types\": \"types/face-api.d.ts\",\n \"author\": \"Vladimir Mandic \",\n \"bugs\": {\n \"url\": \"https://github.com/vladmandic/face-api/issues\"\n },\n \"homepage\": \"https://vladmandic.github.io/face-api/demo/webcam.html\",\n \"license\": \"MIT\",\n \"engines\": {\n \"node\": \">=14.0.0\"\n },\n \"repository\": {\n \"type\": \"git\",\n \"url\": \"git+https://github.com/vladmandic/face-api.git\"\n },\n \"scripts\": {\n \"start\": \"node --no-warnings demo/node.js\",\n \"build\": \"node build.js\",\n \"dev\": \"build --profile development\",\n \"typings\": \"build --profile typings\",\n \"lint\": \"eslint src/ demo/\",\n \"test\": \"node --trace-warnings test/test-node.js\",\n \"scan\": \"npx auditjs@latest ossi --dev --quiet\"\n },\n \"keywords\": [\n \"face-api\",\n \"faceapi\",\n \"face-detection\",\n \"age-gender\",\n \"emotion-detection\",\n \"face-recognition\",\n \"face\",\n \"face-description\",\n \"tensorflow\",\n \"tensorflowjs\",\n \"tfjs\"\n ],\n \"devDependencies\": {\n \"@canvas/image\": \"^2.0.0\",\n \"@microsoft/api-extractor\": \"^7.49.2\",\n \"@tensorflow/tfjs\": \"^4.22.0\",\n \"@tensorflow/tfjs-backend-cpu\": \"^4.22.0\",\n \"@tensorflow/tfjs-backend-wasm\": \"^4.22.0\",\n \"@tensorflow/tfjs-backend-webgl\": \"^4.22.0\",\n \"@tensorflow/tfjs-backend-webgpu\": \"4.22.0\",\n \"@tensorflow/tfjs-converter\": \"^4.22.0\",\n \"@tensorflow/tfjs-core\": \"^4.22.0\",\n \"@tensorflow/tfjs-data\": \"^4.22.0\",\n \"@tensorflow/tfjs-layers\": \"^4.22.0\",\n \"@tensorflow/tfjs-node\": \"^4.22.0\",\n \"@tensorflow/tfjs-node-gpu\": \"^4.22.0\",\n \"@types/node\": \"^22.13.1\",\n \"@types/offscreencanvas\": \"^2019.7.3\",\n \"@typescript-eslint/eslint-plugin\": \"^8.5.0\",\n \"@typescript-eslint/parser\": \"^8.5.0\",\n \"@vladmandic/build\": \"^0.10.2\",\n \"@vladmandic/pilogger\": \"^0.5.1\",\n \"ajv\": \"^8.17.1\",\n \"esbuild\": \"^0.24.2\",\n \"eslint\": \"8.57.0\",\n \"eslint-config-airbnb-base\": \"^15.0.0\",\n \"eslint-plugin-import\": \"^2.30.0\",\n \"eslint-plugin-json\": \"^4.0.1\",\n \"eslint-plugin-node\": \"^11.1.0\",\n \"eslint-plugin-promise\": \"^7.1.0\",\n \"node-fetch\": \"^3.3.2\",\n \"rimraf\": \"^6.0.1\",\n \"seedrandom\": \"^3.0.5\",\n \"tslib\": \"^2.8.1\",\n \"typedoc\": \"^0.27.6\",\n \"typescript\": \"5.7.3\"\n }\n}\n", "import { extractConvParamsFactory, extractSeparableConvParamsFactory, extractWeightsFactory } from '../common/index';\nimport { ExtractWeightsFunction, ParamMapping } from '../common/types';\nimport { range } from '../utils/index';\nimport { MainBlockParams, ReductionBlockParams, TinyXceptionParams } from './types';\n\nfunction extractorsFactory(extractWeights: ExtractWeightsFunction, paramMappings: ParamMapping[]) {\n const extractConvParams = extractConvParamsFactory(extractWeights, paramMappings);\n const extractSeparableConvParams = extractSeparableConvParamsFactory(extractWeights, paramMappings);\n\n function extractReductionBlockParams(channelsIn: number, channelsOut: number, mappedPrefix: string): ReductionBlockParams {\n const separable_conv0 = extractSeparableConvParams(channelsIn, channelsOut, `${mappedPrefix}/separable_conv0`);\n const separable_conv1 = extractSeparableConvParams(channelsOut, channelsOut, `${mappedPrefix}/separable_conv1`);\n const expansion_conv = extractConvParams(channelsIn, channelsOut, 1, `${mappedPrefix}/expansion_conv`);\n\n return { separable_conv0, separable_conv1, expansion_conv };\n }\n\n function extractMainBlockParams(channels: number, mappedPrefix: string): MainBlockParams {\n const separable_conv0 = extractSeparableConvParams(channels, channels, `${mappedPrefix}/separable_conv0`);\n const separable_conv1 = extractSeparableConvParams(channels, channels, `${mappedPrefix}/separable_conv1`);\n const separable_conv2 = extractSeparableConvParams(channels, channels, `${mappedPrefix}/separable_conv2`);\n\n return { separable_conv0, separable_conv1, separable_conv2 };\n }\n\n return {\n extractConvParams,\n extractSeparableConvParams,\n extractReductionBlockParams,\n extractMainBlockParams,\n };\n}\n\nexport function extractParams(weights: Float32Array, numMainBlocks: number): { params: TinyXceptionParams, paramMappings: ParamMapping[] } {\n const paramMappings: ParamMapping[] = [];\n\n const {\n extractWeights,\n getRemainingWeights,\n } = extractWeightsFactory(weights);\n\n const {\n extractConvParams,\n extractSeparableConvParams,\n extractReductionBlockParams,\n extractMainBlockParams,\n } = extractorsFactory(extractWeights, paramMappings);\n\n const entry_flow_conv_in = extractConvParams(3, 32, 3, 'entry_flow/conv_in');\n const entry_flow_reduction_block_0 = extractReductionBlockParams(32, 64, 'entry_flow/reduction_block_0');\n const entry_flow_reduction_block_1 = extractReductionBlockParams(64, 128, 'entry_flow/reduction_block_1');\n\n const entry_flow = {\n conv_in: entry_flow_conv_in,\n reduction_block_0: entry_flow_reduction_block_0,\n reduction_block_1: entry_flow_reduction_block_1,\n };\n\n const middle_flow: Record<`main_block_${number}`, MainBlockParams> = {};\n range(numMainBlocks, 0, 1).forEach((idx) => {\n middle_flow[`main_block_${idx}`] = extractMainBlockParams(128, `middle_flow/main_block_${idx}`);\n });\n\n const exit_flow_reduction_block = extractReductionBlockParams(128, 256, 'exit_flow/reduction_block');\n const exit_flow_separable_conv = extractSeparableConvParams(256, 512, 'exit_flow/separable_conv');\n\n const exit_flow = {\n reduction_block: exit_flow_reduction_block,\n separable_conv: exit_flow_separable_conv,\n };\n\n if (getRemainingWeights().length !== 0) {\n throw new Error(`weights remaing after extract: ${getRemainingWeights().length}`);\n }\n\n return {\n paramMappings,\n params: { entry_flow, middle_flow, exit_flow },\n };\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { disposeUnusedWeightTensors, extractWeightEntryFactory, loadSeparableConvParamsFactory, ParamMapping } from '../common/index';\nimport { loadConvParamsFactory } from '../common/loadConvParamsFactory';\nimport { range } from '../utils/index';\nimport { MainBlockParams, ReductionBlockParams, TinyXceptionParams } from './types';\n\nfunction loadParamsFactory(weightMap: any, paramMappings: ParamMapping[]) {\n const extractWeightEntry = extractWeightEntryFactory(weightMap, paramMappings);\n\n const extractConvParams = loadConvParamsFactory(extractWeightEntry);\n const extractSeparableConvParams = loadSeparableConvParamsFactory(extractWeightEntry);\n\n function extractReductionBlockParams(mappedPrefix: string): ReductionBlockParams {\n const separable_conv0 = extractSeparableConvParams(`${mappedPrefix}/separable_conv0`);\n const separable_conv1 = extractSeparableConvParams(`${mappedPrefix}/separable_conv1`);\n const expansion_conv = extractConvParams(`${mappedPrefix}/expansion_conv`);\n\n return { separable_conv0, separable_conv1, expansion_conv };\n }\n\n function extractMainBlockParams(mappedPrefix: string): MainBlockParams {\n const separable_conv0 = extractSeparableConvParams(`${mappedPrefix}/separable_conv0`);\n const separable_conv1 = extractSeparableConvParams(`${mappedPrefix}/separable_conv1`);\n const separable_conv2 = extractSeparableConvParams(`${mappedPrefix}/separable_conv2`);\n\n return { separable_conv0, separable_conv1, separable_conv2 };\n }\n\n return {\n extractConvParams,\n extractSeparableConvParams,\n extractReductionBlockParams,\n extractMainBlockParams,\n };\n}\n\nexport function extractParamsFromWeightMap(\n weightMap: tf.NamedTensorMap,\n numMainBlocks: number,\n): { params: TinyXceptionParams, paramMappings: ParamMapping[] } {\n const paramMappings: ParamMapping[] = [];\n\n const {\n extractConvParams,\n extractSeparableConvParams,\n extractReductionBlockParams,\n extractMainBlockParams,\n } = loadParamsFactory(weightMap, paramMappings);\n\n const entry_flow_conv_in = extractConvParams('entry_flow/conv_in');\n const entry_flow_reduction_block_0 = extractReductionBlockParams('entry_flow/reduction_block_0');\n const entry_flow_reduction_block_1 = extractReductionBlockParams('entry_flow/reduction_block_1');\n\n const entry_flow = {\n conv_in: entry_flow_conv_in,\n reduction_block_0: entry_flow_reduction_block_0,\n reduction_block_1: entry_flow_reduction_block_1,\n };\n\n const middle_flow: Record<`main_block_${number}`, MainBlockParams> = {};\n range(numMainBlocks, 0, 1).forEach((idx) => {\n middle_flow[`main_block_${idx}`] = extractMainBlockParams(`middle_flow/main_block_${idx}`);\n });\n\n const exit_flow_reduction_block = extractReductionBlockParams('exit_flow/reduction_block');\n const exit_flow_separable_conv = extractSeparableConvParams('exit_flow/separable_conv');\n\n const exit_flow = {\n reduction_block: exit_flow_reduction_block,\n separable_conv: exit_flow_separable_conv,\n };\n\n disposeUnusedWeightTensors(weightMap, paramMappings);\n\n return { params: { entry_flow, middle_flow, exit_flow }, paramMappings };\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { ConvParams, depthwiseSeparableConv } from '../common/index';\nimport { NetInput, TNetInput, toNetInput } from '../dom/index';\nimport { NeuralNetwork } from '../NeuralNetwork';\nimport { normalize } from '../ops/index';\nimport { range } from '../utils/index';\nimport { extractParams } from './extractParams';\nimport { extractParamsFromWeightMap } from './extractParamsFromWeightMap';\nimport { MainBlockParams, ReductionBlockParams, TinyXceptionParams } from './types';\n\nfunction conv(x: tf.Tensor4D, params: ConvParams, stride: [number, number]): tf.Tensor4D {\n return tf.add(tf.conv2d(x, params.filters, stride, 'same'), params.bias);\n}\n\nfunction reductionBlock(x: tf.Tensor4D, params: ReductionBlockParams, isActivateInput = true): tf.Tensor4D {\n let out = isActivateInput ? tf.relu(x) : x;\n out = depthwiseSeparableConv(out, params.separable_conv0, [1, 1]);\n out = depthwiseSeparableConv(tf.relu(out), params.separable_conv1, [1, 1]);\n out = tf.maxPool(out, [3, 3], [2, 2], 'same');\n out = tf.add(out, conv(x, params.expansion_conv, [2, 2]));\n return out;\n}\n\nfunction mainBlock(x: tf.Tensor4D, params: MainBlockParams): tf.Tensor4D {\n let out = depthwiseSeparableConv(tf.relu(x), params.separable_conv0, [1, 1]);\n out = depthwiseSeparableConv(tf.relu(out), params.separable_conv1, [1, 1]);\n out = depthwiseSeparableConv(tf.relu(out), params.separable_conv2, [1, 1]);\n out = tf.add(out, x);\n return out;\n}\n\nexport class TinyXception extends NeuralNetwork {\n private _numMainBlocks: number;\n\n constructor(numMainBlocks: number) {\n super('TinyXception');\n this._numMainBlocks = numMainBlocks;\n }\n\n public forwardInput(input: NetInput): tf.Tensor4D {\n const { params } = this;\n if (!params) {\n throw new Error('TinyXception - load model before inference');\n }\n return tf.tidy(() => {\n const batchTensor = tf.cast(input.toBatchTensor(112, true), 'float32');\n const meanRgb = [122.782, 117.001, 104.298];\n const normalized = normalize(batchTensor, meanRgb).div(255) as tf.Tensor4D;\n let out = tf.relu(conv(normalized, params.entry_flow.conv_in, [2, 2]));\n out = reductionBlock(out, params.entry_flow.reduction_block_0, false);\n out = reductionBlock(out, params.entry_flow.reduction_block_1);\n range(this._numMainBlocks, 0, 1).forEach((idx) => {\n out = mainBlock(out, params.middle_flow[`main_block_${idx}`]);\n });\n out = reductionBlock(out, params.exit_flow.reduction_block);\n out = tf.relu(depthwiseSeparableConv(out, params.exit_flow.separable_conv, [1, 1]));\n return out;\n });\n }\n\n public async forward(input: TNetInput): Promise {\n return this.forwardInput(await toNetInput(input));\n }\n\n protected getDefaultModelName(): string {\n return 'tiny_xception_model';\n }\n\n protected extractParamsFromWeightMap(weightMap: tf.NamedTensorMap) {\n return extractParamsFromWeightMap(weightMap, this._numMainBlocks);\n }\n\n protected extractParams(weights: Float32Array) {\n return extractParams(weights, this._numMainBlocks);\n }\n}\n", "import { extractFCParamsFactory, extractWeightsFactory, ParamMapping } from '../common/index';\nimport { NetParams } from './types';\n\nexport function extractParams(weights: Float32Array): { params: NetParams, paramMappings: ParamMapping[] } {\n const paramMappings: ParamMapping[] = [];\n\n const {\n extractWeights,\n getRemainingWeights,\n } = extractWeightsFactory(weights);\n\n const extractFCParams = extractFCParamsFactory(extractWeights, paramMappings);\n\n const age = extractFCParams(512, 1, 'fc/age');\n const gender = extractFCParams(512, 2, 'fc/gender');\n\n if (getRemainingWeights().length !== 0) {\n throw new Error(`weights remaing after extract: ${getRemainingWeights().length}`);\n }\n\n return {\n paramMappings,\n params: { fc: { age, gender } },\n };\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { disposeUnusedWeightTensors, extractWeightEntryFactory, FCParams, ParamMapping } from '../common/index';\nimport { NetParams } from './types';\n\nexport function extractParamsFromWeightMap(\n weightMap: tf.NamedTensorMap,\n): { params: NetParams, paramMappings: ParamMapping[] } {\n const paramMappings: ParamMapping[] = [];\n\n const extractWeightEntry = extractWeightEntryFactory(weightMap, paramMappings);\n\n function extractFcParams(prefix: string): FCParams {\n const weights = extractWeightEntry(`${prefix}/weights`, 2);\n const bias = extractWeightEntry(`${prefix}/bias`, 1);\n return { weights, bias };\n }\n\n const params = {\n fc: {\n age: extractFcParams('fc/age'),\n gender: extractFcParams('fc/gender'),\n },\n };\n\n disposeUnusedWeightTensors(weightMap, paramMappings);\n\n return { params, paramMappings };\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { FCParams } from '../common/index';\n\n// eslint-disable-next-line no-shadow\nexport enum Gender {\n // eslint-disable-next-line no-unused-vars\n FEMALE = 'female',\n // eslint-disable-next-line no-unused-vars\n MALE = 'male'\n}\n\nexport type AgeAndGenderPrediction = {\n age: number\n gender: Gender\n genderProbability: number\n}\n\nexport type NetOutput = { age: tf.Tensor1D, gender: tf.Tensor2D }\n\nexport type NetParams = {\n fc: {\n age: FCParams\n gender: FCParams\n }\n}\n", "import * as tf from '../../dist/tfjs.esm.js';\nimport { fullyConnectedLayer } from '../common/fullyConnectedLayer';\nimport { seperateWeightMaps } from '../faceProcessor/util';\nimport { TinyXception } from '../xception/TinyXception';\nimport { extractParams } from './extractParams';\nimport { extractParamsFromWeightMap } from './extractParamsFromWeightMap';\nimport { AgeAndGenderPrediction, Gender, NetOutput, NetParams } from './types';\nimport { NeuralNetwork } from '../NeuralNetwork';\nimport { NetInput, TNetInput, toNetInput } from '../dom/index';\n\nexport class AgeGenderNet extends NeuralNetwork {\n private _faceFeatureExtractor: TinyXception;\n\n constructor(faceFeatureExtractor: TinyXception = new TinyXception(2)) {\n super('AgeGenderNet');\n this._faceFeatureExtractor = faceFeatureExtractor;\n }\n\n public get faceFeatureExtractor(): TinyXception {\n return this._faceFeatureExtractor;\n }\n\n public runNet(input: NetInput | tf.Tensor4D): NetOutput {\n const { params } = this;\n\n if (!params) {\n throw new Error(`${this._name} - load model before inference`);\n }\n\n return tf.tidy(() => {\n const bottleneckFeatures = input instanceof NetInput\n ? this.faceFeatureExtractor.forwardInput(input)\n : input;\n\n const pooled = tf.avgPool(bottleneckFeatures, [7, 7], [2, 2], 'valid').as2D(bottleneckFeatures.shape[0], -1);\n const age = fullyConnectedLayer(pooled, params.fc.age).as1D();\n const gender = fullyConnectedLayer(pooled, params.fc.gender);\n return { age, gender };\n });\n }\n\n public forwardInput(input: NetInput | tf.Tensor4D): NetOutput {\n return tf.tidy(() => {\n const { age, gender } = this.runNet(input);\n return { age, gender: tf.softmax(gender) };\n });\n }\n\n public async forward(input: TNetInput): Promise {\n return this.forwardInput(await toNetInput(input));\n }\n\n public async predictAgeAndGender(input: TNetInput): Promise {\n const netInput = await toNetInput(input);\n const out = await this.forwardInput(netInput);\n\n const ages = tf.unstack(out.age);\n const genders = tf.unstack(out.gender);\n const ageAndGenderTensors = ages.map((ageTensor, i) => ({\n ageTensor,\n genderTensor: genders[i],\n }));\n\n const predictionsByBatch = await Promise.all(\n ageAndGenderTensors.map(async ({ ageTensor, genderTensor }) => {\n const age = (ageTensor.dataSync())[0];\n const probMale = (genderTensor.dataSync())[0];\n const isMale = probMale > 0.5;\n const gender = isMale ? Gender.MALE : Gender.FEMALE;\n const genderProbability = isMale ? probMale : (1 - probMale);\n\n ageTensor.dispose();\n genderTensor.dispose();\n return { age, gender, genderProbability };\n }),\n );\n out.age.dispose();\n out.gender.dispose();\n\n return netInput.isBatchInput ? predictionsByBatch as AgeAndGenderPrediction[] : predictionsByBatch[0] as AgeAndGenderPrediction;\n }\n\n protected getDefaultModelName(): string {\n return 'age_gender_model';\n }\n\n public override dispose(throwOnRedispose = true) {\n this.faceFeatureExtractor.dispose(throwOnRedispose);\n super.dispose(throwOnRedispose);\n }\n\n public loadClassifierParams(weights: Float32Array) {\n const { params, paramMappings } = this.extractClassifierParams(weights);\n this._params = params;\n this._paramMappings = paramMappings;\n }\n\n public extractClassifierParams(weights: Float32Array) {\n return extractParams(weights);\n }\n\n protected extractParamsFromWeightMap(weightMap: tf.NamedTensorMap) {\n const { featureExtractorMap, classifierMap } = seperateWeightMaps(weightMap);\n\n this.faceFeatureExtractor.loadFromWeightMap(featureExtractorMap);\n\n return extractParamsFromWeightMap(classifierMap);\n }\n\n protected extractParams(weights: Float32Array) {\n const classifierWeightSize = (512 * 1 + 1) + (512 * 2 + 2);\n\n const featureExtractorWeights = weights.slice(0, weights.length - classifierWeightSize);\n const classifierWeights = weights.slice(weights.length - classifierWeightSize);\n\n this.faceFeatureExtractor.extractWeights(featureExtractorWeights);\n return this.extractClassifierParams(classifierWeights);\n }\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { IDimensions, Point } from '../classes/index';\nimport { FaceLandmarks68 } from '../classes/FaceLandmarks68';\nimport { NetInput, TNetInput, toNetInput } from '../dom/index';\nimport { FaceFeatureExtractorParams, TinyFaceFeatureExtractorParams } from '../faceFeatureExtractor/types';\nimport { FaceProcessor } from '../faceProcessor/FaceProcessor';\nimport { isEven } from '../utils/index';\n\nexport abstract class FaceLandmark68NetBase<\n TExtractorParams extends FaceFeatureExtractorParams | TinyFaceFeatureExtractorParams\n>\n extends FaceProcessor {\n public postProcess(output: tf.Tensor2D, inputSize: number, originalDimensions: IDimensions[]): tf.Tensor2D {\n const inputDimensions = originalDimensions.map(({ width, height }) => {\n const scale = inputSize / Math.max(height, width);\n return {\n width: width * scale,\n height: height * scale,\n };\n });\n\n const batchSize = inputDimensions.length;\n\n return tf.tidy(() => {\n const createInterleavedTensor = (fillX: number, fillY: number) => tf.stack([tf.fill([68], fillX, 'float32'), tf.fill([68], fillY, 'float32')], 1).as2D(1, 136).as1D();\n\n // eslint-disable-next-line no-unused-vars\n const getPadding = (batchIdx: number, cond: (w: number, h: number) => boolean): number => {\n const { width, height } = inputDimensions[batchIdx];\n return cond(width, height) ? Math.abs(width - height) / 2 : 0;\n };\n\n const getPaddingX = (batchIdx: number) => getPadding(batchIdx, (w, h) => w < h);\n const getPaddingY = (batchIdx: number) => getPadding(batchIdx, (w, h) => h < w);\n\n const landmarkTensors = output\n .mul(tf.fill([batchSize, 136], inputSize, 'float32'))\n .sub(tf.stack(Array.from(Array(batchSize), (_, batchIdx) => createInterleavedTensor(\n getPaddingX(batchIdx),\n getPaddingY(batchIdx),\n ))))\n .div(tf.stack(Array.from(Array(batchSize), (_, batchIdx) => createInterleavedTensor(\n inputDimensions[batchIdx].width,\n inputDimensions[batchIdx].height,\n ))));\n\n return landmarkTensors as tf.Tensor2D;\n });\n }\n\n public forwardInput(input: NetInput): tf.Tensor2D {\n return tf.tidy(() => {\n const out = this.runNet(input);\n return this.postProcess(\n out,\n input.inputSize as number,\n input.inputDimensions.map(([height, width]) => ({ height, width })),\n );\n });\n }\n\n public async forward(input: TNetInput): Promise {\n return this.forwardInput(await toNetInput(input));\n }\n\n public async detectLandmarks(input: TNetInput): Promise {\n const netInput = await toNetInput(input);\n const landmarkTensors = tf.tidy(\n () => tf.unstack(this.forwardInput(netInput)),\n );\n\n const landmarksForBatch = await Promise.all(landmarkTensors.map(\n async (landmarkTensor, batchIdx) => {\n const landmarksArray = Array.from(landmarkTensor.dataSync());\n const xCoords = landmarksArray.filter((_, i) => isEven(i));\n const yCoords = landmarksArray.filter((_, i) => !isEven(i));\n\n return new FaceLandmarks68(\n Array(68).fill(0).map((_, i) => new Point(xCoords[i] as number, yCoords[i] as number)),\n {\n height: netInput.getInputHeight(batchIdx),\n width: netInput.getInputWidth(batchIdx),\n },\n );\n },\n ));\n\n landmarkTensors.forEach((t) => t.dispose());\n\n return netInput.isBatchInput ? landmarksForBatch as FaceLandmarks68[] : landmarksForBatch[0] as FaceLandmarks68;\n }\n\n protected getClassifierChannelsOut(): number {\n return 136;\n }\n}\n", "import { FaceFeatureExtractor } from '../faceFeatureExtractor/FaceFeatureExtractor';\nimport { FaceFeatureExtractorParams } from '../faceFeatureExtractor/types';\nimport { FaceLandmark68NetBase } from './FaceLandmark68NetBase';\n\nexport class FaceLandmark68Net extends FaceLandmark68NetBase {\n constructor(faceFeatureExtractor: FaceFeatureExtractor = new FaceFeatureExtractor()) {\n super('FaceLandmark68Net', faceFeatureExtractor);\n }\n\n protected getDefaultModelName(): string {\n return 'face_landmark_68_model';\n }\n\n protected getClassifierChannelsIn(): number {\n return 256;\n }\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { disposeUnusedWeightTensors, ParamMapping } from '../common/index';\nimport { loadParamsFactory } from './loadParamsFactory';\nimport { TinyFaceFeatureExtractorParams } from './types';\n\nexport function extractParamsFromWeightMapTiny(\n weightMap: tf.NamedTensorMap,\n): { params: TinyFaceFeatureExtractorParams, paramMappings: ParamMapping[] } {\n const paramMappings: ParamMapping[] = [];\n\n const {\n extractDenseBlock3Params,\n } = loadParamsFactory(weightMap, paramMappings);\n\n const params = {\n dense0: extractDenseBlock3Params('dense0', true),\n dense1: extractDenseBlock3Params('dense1'),\n dense2: extractDenseBlock3Params('dense2'),\n };\n\n disposeUnusedWeightTensors(weightMap, paramMappings);\n\n return { params, paramMappings };\n}\n", "import { extractWeightsFactory, ParamMapping } from '../common/index';\nimport { extractorsFactory } from './extractorsFactory';\nimport { TinyFaceFeatureExtractorParams } from './types';\n\nexport function extractParamsTiny(weights: Float32Array): { params: TinyFaceFeatureExtractorParams, paramMappings: ParamMapping[] } {\n const paramMappings: ParamMapping[] = [];\n\n const {\n extractWeights,\n getRemainingWeights,\n } = extractWeightsFactory(weights);\n\n const {\n extractDenseBlock3Params,\n } = extractorsFactory(extractWeights, paramMappings);\n\n const dense0 = extractDenseBlock3Params(3, 32, 'dense0', true);\n const dense1 = extractDenseBlock3Params(32, 64, 'dense1');\n const dense2 = extractDenseBlock3Params(64, 128, 'dense2');\n\n if (getRemainingWeights().length !== 0) {\n throw new Error(`weights remaing after extract: ${getRemainingWeights().length}`);\n }\n\n return {\n paramMappings,\n params: { dense0, dense1, dense2 },\n };\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { NetInput, TNetInput, toNetInput } from '../dom/index';\nimport { NeuralNetwork } from '../NeuralNetwork';\nimport { normalize } from '../ops/index';\nimport { denseBlock3 } from './denseBlock';\nimport { extractParamsFromWeightMapTiny } from './extractParamsFromWeightMapTiny';\nimport { extractParamsTiny } from './extractParamsTiny';\nimport { IFaceFeatureExtractor, TinyFaceFeatureExtractorParams } from './types';\n\nexport class TinyFaceFeatureExtractor extends NeuralNetwork implements IFaceFeatureExtractor {\n constructor() {\n super('TinyFaceFeatureExtractor');\n }\n\n public forwardInput(input: NetInput): tf.Tensor4D {\n const { params } = this;\n\n if (!params) {\n throw new Error('TinyFaceFeatureExtractor - load model before inference');\n }\n\n return tf.tidy(() => {\n const batchTensor = tf.cast(input.toBatchTensor(112, true), 'float32');\n const meanRgb = [122.782, 117.001, 104.298];\n const normalized = normalize(batchTensor, meanRgb).div(255) as tf.Tensor4D;\n\n let out = denseBlock3(normalized, params.dense0, true);\n out = denseBlock3(out, params.dense1);\n out = denseBlock3(out, params.dense2);\n out = tf.avgPool(out, [14, 14], [2, 2], 'valid');\n\n return out;\n });\n }\n\n public async forward(input: TNetInput): Promise {\n return this.forwardInput(await toNetInput(input));\n }\n\n protected getDefaultModelName(): string {\n return 'face_feature_extractor_tiny_model';\n }\n\n protected extractParamsFromWeightMap(weightMap: tf.NamedTensorMap) {\n return extractParamsFromWeightMapTiny(weightMap);\n }\n\n protected extractParams(weights: Float32Array) {\n return extractParamsTiny(weights);\n }\n}\n", "import { TinyFaceFeatureExtractor } from '../faceFeatureExtractor/TinyFaceFeatureExtractor';\nimport { TinyFaceFeatureExtractorParams } from '../faceFeatureExtractor/types';\nimport { FaceLandmark68NetBase } from './FaceLandmark68NetBase';\n\nexport class FaceLandmark68TinyNet extends FaceLandmark68NetBase {\n constructor(faceFeatureExtractor: TinyFaceFeatureExtractor = new TinyFaceFeatureExtractor()) {\n super('FaceLandmark68TinyNet', faceFeatureExtractor);\n }\n\n protected getDefaultModelName(): string {\n return 'face_landmark_68_tiny_model';\n }\n\n protected getClassifierChannelsIn(): number {\n return 128;\n }\n}\n", "import { FaceLandmark68Net } from './FaceLandmark68Net';\n\nexport * from './FaceLandmark68Net';\nexport * from './FaceLandmark68TinyNet';\nexport class FaceLandmarkNet extends FaceLandmark68Net {}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { ScaleLayerParams } from './types';\n\nexport function scale(x: tf.Tensor4D, params: ScaleLayerParams): tf.Tensor4D {\n return tf.add(tf.mul(x, params.weights), params.biases);\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { scale } from './scaleLayer';\nimport { ConvLayerParams } from './types';\n\nfunction convLayer(\n x: tf.Tensor4D,\n params: ConvLayerParams,\n strides: [number, number],\n withRelu: boolean,\n padding: 'valid' | 'same' = 'same',\n): tf.Tensor4D {\n const { filters, bias } = params.conv;\n\n let out = tf.conv2d(x, filters, strides, padding);\n out = tf.add(out, bias);\n out = scale(out, params.scale);\n return withRelu ? tf.relu(out) : out;\n}\n\nexport function conv(x: tf.Tensor4D, params: ConvLayerParams) {\n return convLayer(x, params, [1, 1], true);\n}\n\nexport function convNoRelu(x: tf.Tensor4D, params: ConvLayerParams) {\n return convLayer(x, params, [1, 1], false);\n}\n\nexport function convDown(x: tf.Tensor4D, params: ConvLayerParams) {\n return convLayer(x, params, [2, 2], true, 'valid');\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { ConvParams, extractWeightsFactory, ExtractWeightsFunction, ParamMapping } from '../common/index';\nimport { isFloat } from '../utils/index';\nimport { ConvLayerParams, NetParams, ResidualLayerParams, ScaleLayerParams } from './types';\n\nfunction extractorsFactory(extractWeights: ExtractWeightsFunction, paramMappings: ParamMapping[]) {\n function extractFilterValues(numFilterValues: number, numFilters: number, filterSize: number): tf.Tensor4D {\n const weights = extractWeights(numFilterValues);\n const depth = weights.length / (numFilters * filterSize * filterSize);\n\n if (isFloat(depth)) {\n throw new Error(`depth has to be an integer: ${depth}, weights.length: ${weights.length}, numFilters: ${numFilters}, filterSize: ${filterSize}`);\n }\n\n return tf.tidy(\n () => tf.transpose(\n tf.tensor4d(weights, [numFilters, depth, filterSize, filterSize]),\n [2, 3, 1, 0],\n ),\n );\n }\n\n function extractConvParams(\n numFilterValues: number,\n numFilters: number,\n filterSize: number,\n mappedPrefix: string,\n ): ConvParams {\n const filters = extractFilterValues(numFilterValues, numFilters, filterSize);\n const bias = tf.tensor1d(extractWeights(numFilters));\n\n paramMappings.push(\n { paramPath: `${mappedPrefix}/filters` },\n { paramPath: `${mappedPrefix}/bias` },\n );\n\n return { filters, bias };\n }\n\n function extractScaleLayerParams(numWeights: number, mappedPrefix: string): ScaleLayerParams {\n const weights = tf.tensor1d(extractWeights(numWeights));\n const biases = tf.tensor1d(extractWeights(numWeights));\n\n paramMappings.push(\n { paramPath: `${mappedPrefix}/weights` },\n { paramPath: `${mappedPrefix}/biases` },\n );\n\n return {\n weights,\n biases,\n };\n }\n\n function extractConvLayerParams(\n numFilterValues: number,\n numFilters: number,\n filterSize: number,\n mappedPrefix: string,\n ): ConvLayerParams {\n const conv = extractConvParams(numFilterValues, numFilters, filterSize, `${mappedPrefix}/conv`);\n const scale = extractScaleLayerParams(numFilters, `${mappedPrefix}/scale`);\n\n return { conv, scale };\n }\n\n function extractResidualLayerParams(\n numFilterValues: number,\n numFilters: number,\n filterSize: number,\n mappedPrefix: string,\n isDown = false,\n ): ResidualLayerParams {\n const conv1 = extractConvLayerParams((isDown ? 0.5 : 1) * numFilterValues, numFilters, filterSize, `${mappedPrefix}/conv1`);\n const conv2 = extractConvLayerParams(numFilterValues, numFilters, filterSize, `${mappedPrefix}/conv2`);\n\n return { conv1, conv2 };\n }\n\n return {\n extractConvLayerParams,\n extractResidualLayerParams,\n };\n}\n\nexport function extractParams(weights: Float32Array): { params: NetParams, paramMappings: ParamMapping[] } {\n const {\n extractWeights,\n getRemainingWeights,\n } = extractWeightsFactory(weights);\n\n const paramMappings: ParamMapping[] = [];\n\n const {\n extractConvLayerParams,\n extractResidualLayerParams,\n } = extractorsFactory(extractWeights, paramMappings);\n\n const conv32_down = extractConvLayerParams(4704, 32, 7, 'conv32_down');\n const conv32_1 = extractResidualLayerParams(9216, 32, 3, 'conv32_1');\n const conv32_2 = extractResidualLayerParams(9216, 32, 3, 'conv32_2');\n const conv32_3 = extractResidualLayerParams(9216, 32, 3, 'conv32_3');\n\n const conv64_down = extractResidualLayerParams(36864, 64, 3, 'conv64_down', true);\n const conv64_1 = extractResidualLayerParams(36864, 64, 3, 'conv64_1');\n const conv64_2 = extractResidualLayerParams(36864, 64, 3, 'conv64_2');\n const conv64_3 = extractResidualLayerParams(36864, 64, 3, 'conv64_3');\n\n const conv128_down = extractResidualLayerParams(147456, 128, 3, 'conv128_down', true);\n const conv128_1 = extractResidualLayerParams(147456, 128, 3, 'conv128_1');\n const conv128_2 = extractResidualLayerParams(147456, 128, 3, 'conv128_2');\n\n const conv256_down = extractResidualLayerParams(589824, 256, 3, 'conv256_down', true);\n const conv256_1 = extractResidualLayerParams(589824, 256, 3, 'conv256_1');\n const conv256_2 = extractResidualLayerParams(589824, 256, 3, 'conv256_2');\n const conv256_down_out = extractResidualLayerParams(589824, 256, 3, 'conv256_down_out');\n\n const fc = tf.tidy(\n () => tf.transpose(tf.tensor2d(extractWeights(256 * 128), [128, 256]), [1, 0]),\n );\n paramMappings.push({ paramPath: 'fc' });\n\n if (getRemainingWeights().length !== 0) {\n throw new Error(`weights remaing after extract: ${getRemainingWeights().length}`);\n }\n\n const params = {\n conv32_down,\n conv32_1,\n conv32_2,\n conv32_3,\n conv64_down,\n conv64_1,\n conv64_2,\n conv64_3,\n conv128_down,\n conv128_1,\n conv128_2,\n conv256_down,\n conv256_1,\n conv256_2,\n conv256_down_out,\n fc,\n };\n\n return { params, paramMappings };\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { disposeUnusedWeightTensors, extractWeightEntryFactory, ParamMapping } from '../common/index';\nimport { isTensor2D } from '../utils/index';\nimport { ConvLayerParams, NetParams, ResidualLayerParams, ScaleLayerParams } from './types';\n\nfunction extractorsFactory(weightMap: any, paramMappings: ParamMapping[]) {\n const extractWeightEntry = extractWeightEntryFactory(weightMap, paramMappings);\n\n function extractScaleLayerParams(prefix: string): ScaleLayerParams {\n const weights = extractWeightEntry(`${prefix}/scale/weights`, 1);\n const biases = extractWeightEntry(`${prefix}/scale/biases`, 1);\n\n return { weights, biases };\n }\n\n function extractConvLayerParams(prefix: string): ConvLayerParams {\n const filters = extractWeightEntry(`${prefix}/conv/filters`, 4);\n const bias = extractWeightEntry(`${prefix}/conv/bias`, 1);\n const scale = extractScaleLayerParams(prefix);\n\n return { conv: { filters, bias }, scale };\n }\n\n function extractResidualLayerParams(prefix: string): ResidualLayerParams {\n return {\n conv1: extractConvLayerParams(`${prefix}/conv1`),\n conv2: extractConvLayerParams(`${prefix}/conv2`),\n };\n }\n\n return {\n extractConvLayerParams,\n extractResidualLayerParams,\n };\n}\n\nexport function extractParamsFromWeightMap(\n weightMap: tf.NamedTensorMap,\n): { params: NetParams, paramMappings: ParamMapping[] } {\n const paramMappings: ParamMapping[] = [];\n\n const {\n extractConvLayerParams,\n extractResidualLayerParams,\n } = extractorsFactory(weightMap, paramMappings);\n\n const conv32_down = extractConvLayerParams('conv32_down');\n const conv32_1 = extractResidualLayerParams('conv32_1');\n const conv32_2 = extractResidualLayerParams('conv32_2');\n const conv32_3 = extractResidualLayerParams('conv32_3');\n\n const conv64_down = extractResidualLayerParams('conv64_down');\n const conv64_1 = extractResidualLayerParams('conv64_1');\n const conv64_2 = extractResidualLayerParams('conv64_2');\n const conv64_3 = extractResidualLayerParams('conv64_3');\n\n const conv128_down = extractResidualLayerParams('conv128_down');\n const conv128_1 = extractResidualLayerParams('conv128_1');\n const conv128_2 = extractResidualLayerParams('conv128_2');\n\n const conv256_down = extractResidualLayerParams('conv256_down');\n const conv256_1 = extractResidualLayerParams('conv256_1');\n const conv256_2 = extractResidualLayerParams('conv256_2');\n const conv256_down_out = extractResidualLayerParams('conv256_down_out');\n\n const { fc } = weightMap;\n paramMappings.push({ originalPath: 'fc', paramPath: 'fc' });\n\n if (!isTensor2D(fc)) {\n throw new Error(`expected weightMap[fc] to be a Tensor2D, instead have ${fc}`);\n }\n\n const params = {\n conv32_down,\n conv32_1,\n conv32_2,\n conv32_3,\n conv64_down,\n conv64_1,\n conv64_2,\n conv64_3,\n conv128_down,\n conv128_1,\n conv128_2,\n conv256_down,\n conv256_1,\n conv256_2,\n conv256_down_out,\n fc,\n };\n\n disposeUnusedWeightTensors(weightMap, paramMappings);\n\n return { params, paramMappings };\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { conv, convDown, convNoRelu } from './convLayer';\nimport { ResidualLayerParams } from './types';\n\nexport function residual(x: tf.Tensor4D, params: ResidualLayerParams): tf.Tensor4D {\n let out = conv(x, params.conv1);\n out = convNoRelu(out, params.conv2);\n out = tf.add(out, x);\n out = tf.relu(out);\n return out;\n}\n\nexport function residualDown(x: tf.Tensor4D, params: ResidualLayerParams): tf.Tensor4D {\n let out = convDown(x, params.conv1);\n out = convNoRelu(out, params.conv2);\n\n let pooled = tf.avgPool(x, 2, 2, 'valid') as tf.Tensor4D;\n const zeros = tf.zeros(pooled.shape);\n const isPad = pooled.shape[3] !== out.shape[3];\n const isAdjustShape = pooled.shape[1] !== out.shape[1] || pooled.shape[2] !== out.shape[2];\n\n if (isAdjustShape) {\n const padShapeX = [...out.shape] as [number, number, number, number];\n padShapeX[1] = 1;\n const zerosW = tf.zeros(padShapeX);\n out = tf.concat([out, zerosW], 1);\n\n const padShapeY = [...out.shape] as [number, number, number, number];\n padShapeY[2] = 1;\n const zerosH = tf.zeros(padShapeY);\n out = tf.concat([out, zerosH], 2);\n }\n\n pooled = isPad ? tf.concat([pooled, zeros], 3) : pooled;\n out = tf.add(pooled, out) as tf.Tensor4D;\n\n out = tf.relu(out);\n return out;\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { NetInput, TNetInput, toNetInput } from '../dom/index';\nimport { NeuralNetwork } from '../NeuralNetwork';\nimport { normalize } from '../ops/index';\nimport { convDown } from './convLayer';\nimport { extractParams } from './extractParams';\nimport { extractParamsFromWeightMap } from './extractParamsFromWeightMap';\nimport { residual, residualDown } from './residualLayer';\nimport { NetParams } from './types';\n\nexport class FaceRecognitionNet extends NeuralNetwork {\n constructor() {\n super('FaceRecognitionNet');\n }\n\n public forwardInput(input: NetInput): tf.Tensor2D {\n const { params } = this;\n\n if (!params) {\n throw new Error('FaceRecognitionNet - load model before inference');\n }\n\n return tf.tidy(() => {\n const batchTensor = tf.cast(input.toBatchTensor(150, true), 'float32');\n\n const meanRgb = [122.782, 117.001, 104.298];\n const normalized = normalize(batchTensor, meanRgb).div(255) as tf.Tensor4D;\n\n let out = convDown(normalized, params.conv32_down);\n out = tf.maxPool(out, 3, 2, 'valid');\n\n out = residual(out, params.conv32_1);\n out = residual(out, params.conv32_2);\n out = residual(out, params.conv32_3);\n\n out = residualDown(out, params.conv64_down);\n out = residual(out, params.conv64_1);\n out = residual(out, params.conv64_2);\n out = residual(out, params.conv64_3);\n\n out = residualDown(out, params.conv128_down);\n out = residual(out, params.conv128_1);\n out = residual(out, params.conv128_2);\n\n out = residualDown(out, params.conv256_down);\n out = residual(out, params.conv256_1);\n out = residual(out, params.conv256_2);\n out = residualDown(out, params.conv256_down_out);\n\n const globalAvg = out.mean([1, 2]) as tf.Tensor2D;\n const fullyConnected = tf.matMul(globalAvg, params.fc);\n\n return fullyConnected as tf.Tensor2D;\n });\n }\n\n public async forward(input: TNetInput): Promise {\n return this.forwardInput(await toNetInput(input));\n }\n\n public async computeFaceDescriptor(input: TNetInput): Promise {\n // @ts-ignore\n if (input?.shape?.some((dim) => dim <= 0)) return new Float32Array(128);\n const netInput = await toNetInput(input);\n const faceDescriptorTensors = tf.tidy(() => tf.unstack(this.forwardInput(netInput)));\n const faceDescriptorsForBatch = await Promise.all(faceDescriptorTensors.map((t) => t.data())) as Float32Array[];\n faceDescriptorTensors.forEach((t) => t.dispose());\n return netInput.isBatchInput ? faceDescriptorsForBatch : faceDescriptorsForBatch[0];\n }\n\n protected getDefaultModelName(): string {\n return 'face_recognition_model';\n }\n\n protected extractParamsFromWeightMap(weightMap: tf.NamedTensorMap) {\n return extractParamsFromWeightMap(weightMap);\n }\n\n protected extractParams(weights: Float32Array) {\n return extractParams(weights);\n }\n}\n", "import { FaceRecognitionNet } from './FaceRecognitionNet';\n\nexport * from './FaceRecognitionNet';\n\nexport function createFaceRecognitionNet(weights: Float32Array) {\n const net = new FaceRecognitionNet();\n net.extractWeights(weights);\n return net;\n}\n", "export type WithFaceDescriptor = TSource & {\n descriptor: Float32Array\n}\n\nexport function extendWithFaceDescriptor<\n TSource\n>(\n sourceObj: TSource,\n descriptor: Float32Array,\n): WithFaceDescriptor {\n const extension = { descriptor };\n return { ...sourceObj, ...extension };\n}\n", "export type WithAge = TSource & {\n age: number\n}\n\nexport function isWithAge(obj: any): obj is WithAge<{}> {\n return typeof obj.age === 'number';\n}\n\nexport function extendWithAge<\n TSource\n>(\n sourceObj: TSource,\n age: number,\n): WithAge {\n const extension = { age };\n return { ...sourceObj, ...extension };\n}\n", "import { Gender } from '../ageGenderNet/types';\nimport { isValidProbablitiy } from '../utils/index';\n\nexport type WithGender = TSource & {\n gender: Gender\n genderProbability: number\n}\n\nexport function isWithGender(obj: any): obj is WithGender<{}> {\n return (obj.gender === Gender.MALE || obj.gender === Gender.FEMALE)\n && isValidProbablitiy(obj.genderProbability);\n}\n\nexport function extendWithGender<\n TSource\n>(\n sourceObj: TSource,\n gender: Gender,\n genderProbability: number,\n): WithGender {\n const extension = { gender, genderProbability };\n return { ...sourceObj, ...extension };\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { ExtractWeightsFunction, ParamMapping, ConvParams, extractWeightsFactory } from '../common/index';\nimport { MobileNetV1, NetParams, PointwiseConvParams, PredictionLayerParams } from './types';\n\nfunction extractorsFactory(extractWeights: ExtractWeightsFunction, paramMappings: ParamMapping[]) {\n function extractDepthwiseConvParams(numChannels: number, mappedPrefix: string): MobileNetV1.DepthwiseConvParams {\n const filters = tf.tensor4d(extractWeights(3 * 3 * numChannels), [3, 3, numChannels, 1]);\n const batch_norm_scale = tf.tensor1d(extractWeights(numChannels));\n const batch_norm_offset = tf.tensor1d(extractWeights(numChannels));\n const batch_norm_mean = tf.tensor1d(extractWeights(numChannels));\n const batch_norm_variance = tf.tensor1d(extractWeights(numChannels));\n\n paramMappings.push(\n { paramPath: `${mappedPrefix}/filters` },\n { paramPath: `${mappedPrefix}/batch_norm_scale` },\n { paramPath: `${mappedPrefix}/batch_norm_offset` },\n { paramPath: `${mappedPrefix}/batch_norm_mean` },\n { paramPath: `${mappedPrefix}/batch_norm_variance` },\n );\n\n return {\n filters,\n batch_norm_scale,\n batch_norm_offset,\n batch_norm_mean,\n batch_norm_variance,\n };\n }\n\n function extractConvParams(\n channelsIn: number,\n channelsOut: number,\n filterSize: number,\n mappedPrefix: string,\n isPointwiseConv?: boolean,\n ): ConvParams {\n const filters = tf.tensor4d(\n extractWeights(channelsIn * channelsOut * filterSize * filterSize),\n [filterSize, filterSize, channelsIn, channelsOut],\n );\n const bias = tf.tensor1d(extractWeights(channelsOut));\n\n paramMappings.push(\n { paramPath: `${mappedPrefix}/filters` },\n { paramPath: `${mappedPrefix}/${isPointwiseConv ? 'batch_norm_offset' : 'bias'}` },\n );\n\n return { filters, bias };\n }\n\n function extractPointwiseConvParams(\n channelsIn: number,\n channelsOut: number,\n filterSize: number,\n mappedPrefix: string,\n ): PointwiseConvParams {\n const {\n filters,\n bias,\n } = extractConvParams(channelsIn, channelsOut, filterSize, mappedPrefix, true);\n\n return {\n filters,\n batch_norm_offset: bias,\n };\n }\n\n function extractConvPairParams(\n channelsIn: number,\n channelsOut: number,\n mappedPrefix: string,\n ): MobileNetV1.ConvPairParams {\n const depthwise_conv = extractDepthwiseConvParams(channelsIn, `${mappedPrefix}/depthwise_conv`);\n const pointwise_conv = extractPointwiseConvParams(channelsIn, channelsOut, 1, `${mappedPrefix}/pointwise_conv`);\n\n return { depthwise_conv, pointwise_conv };\n }\n\n function extractMobilenetV1Params(): MobileNetV1.Params {\n const conv_0 = extractPointwiseConvParams(3, 32, 3, 'mobilenetv1/conv_0');\n const conv_1 = extractConvPairParams(32, 64, 'mobilenetv1/conv_1');\n const conv_2 = extractConvPairParams(64, 128, 'mobilenetv1/conv_2');\n const conv_3 = extractConvPairParams(128, 128, 'mobilenetv1/conv_3');\n const conv_4 = extractConvPairParams(128, 256, 'mobilenetv1/conv_4');\n const conv_5 = extractConvPairParams(256, 256, 'mobilenetv1/conv_5');\n const conv_6 = extractConvPairParams(256, 512, 'mobilenetv1/conv_6');\n const conv_7 = extractConvPairParams(512, 512, 'mobilenetv1/conv_7');\n const conv_8 = extractConvPairParams(512, 512, 'mobilenetv1/conv_8');\n const conv_9 = extractConvPairParams(512, 512, 'mobilenetv1/conv_9');\n const conv_10 = extractConvPairParams(512, 512, 'mobilenetv1/conv_10');\n const conv_11 = extractConvPairParams(512, 512, 'mobilenetv1/conv_11');\n const conv_12 = extractConvPairParams(512, 1024, 'mobilenetv1/conv_12');\n const conv_13 = extractConvPairParams(1024, 1024, 'mobilenetv1/conv_13');\n return {\n conv_0,\n conv_1,\n conv_2,\n conv_3,\n conv_4,\n conv_5,\n conv_6,\n conv_7,\n conv_8,\n conv_9,\n conv_10,\n conv_11,\n conv_12,\n conv_13,\n };\n }\n\n function extractPredictionLayerParams(): PredictionLayerParams {\n const conv_0 = extractPointwiseConvParams(1024, 256, 1, 'prediction_layer/conv_0');\n const conv_1 = extractPointwiseConvParams(256, 512, 3, 'prediction_layer/conv_1');\n const conv_2 = extractPointwiseConvParams(512, 128, 1, 'prediction_layer/conv_2');\n const conv_3 = extractPointwiseConvParams(128, 256, 3, 'prediction_layer/conv_3');\n const conv_4 = extractPointwiseConvParams(256, 128, 1, 'prediction_layer/conv_4');\n const conv_5 = extractPointwiseConvParams(128, 256, 3, 'prediction_layer/conv_5');\n const conv_6 = extractPointwiseConvParams(256, 64, 1, 'prediction_layer/conv_6');\n const conv_7 = extractPointwiseConvParams(64, 128, 3, 'prediction_layer/conv_7');\n const box_encoding_0_predictor = extractConvParams(512, 12, 1, 'prediction_layer/box_predictor_0/box_encoding_predictor');\n const class_predictor_0 = extractConvParams(512, 9, 1, 'prediction_layer/box_predictor_0/class_predictor');\n const box_encoding_1_predictor = extractConvParams(1024, 24, 1, 'prediction_layer/box_predictor_1/box_encoding_predictor');\n const class_predictor_1 = extractConvParams(1024, 18, 1, 'prediction_layer/box_predictor_1/class_predictor');\n const box_encoding_2_predictor = extractConvParams(512, 24, 1, 'prediction_layer/box_predictor_2/box_encoding_predictor');\n const class_predictor_2 = extractConvParams(512, 18, 1, 'prediction_layer/box_predictor_2/class_predictor');\n const box_encoding_3_predictor = extractConvParams(256, 24, 1, 'prediction_layer/box_predictor_3/box_encoding_predictor');\n const class_predictor_3 = extractConvParams(256, 18, 1, 'prediction_layer/box_predictor_3/class_predictor');\n const box_encoding_4_predictor = extractConvParams(256, 24, 1, 'prediction_layer/box_predictor_4/box_encoding_predictor');\n const class_predictor_4 = extractConvParams(256, 18, 1, 'prediction_layer/box_predictor_4/class_predictor');\n const box_encoding_5_predictor = extractConvParams(128, 24, 1, 'prediction_layer/box_predictor_5/box_encoding_predictor');\n const class_predictor_5 = extractConvParams(128, 18, 1, 'prediction_layer/box_predictor_5/class_predictor');\n\n const box_predictor_0 = {\n box_encoding_predictor: box_encoding_0_predictor,\n class_predictor: class_predictor_0,\n };\n const box_predictor_1 = {\n box_encoding_predictor: box_encoding_1_predictor,\n class_predictor: class_predictor_1,\n };\n const box_predictor_2 = {\n box_encoding_predictor: box_encoding_2_predictor,\n class_predictor: class_predictor_2,\n };\n const box_predictor_3 = {\n box_encoding_predictor: box_encoding_3_predictor,\n class_predictor: class_predictor_3,\n };\n const box_predictor_4 = {\n box_encoding_predictor: box_encoding_4_predictor,\n class_predictor: class_predictor_4,\n };\n const box_predictor_5 = {\n box_encoding_predictor: box_encoding_5_predictor,\n class_predictor: class_predictor_5,\n };\n return {\n conv_0,\n conv_1,\n conv_2,\n conv_3,\n conv_4,\n conv_5,\n conv_6,\n conv_7,\n box_predictor_0,\n box_predictor_1,\n box_predictor_2,\n box_predictor_3,\n box_predictor_4,\n box_predictor_5,\n };\n }\n\n return {\n extractMobilenetV1Params,\n extractPredictionLayerParams,\n };\n}\n\nexport function extractParams(weights: Float32Array): { params: NetParams, paramMappings: ParamMapping[] } {\n const paramMappings: ParamMapping[] = [];\n const {\n extractWeights,\n getRemainingWeights,\n } = extractWeightsFactory(weights);\n const {\n extractMobilenetV1Params,\n extractPredictionLayerParams,\n } = extractorsFactory(extractWeights, paramMappings);\n const mobilenetv1 = extractMobilenetV1Params();\n const prediction_layer = extractPredictionLayerParams();\n const extra_dim = tf.tensor3d(\n extractWeights(5118 * 4),\n [1, 5118, 4],\n );\n const output_layer = {\n extra_dim,\n };\n paramMappings.push({ paramPath: 'output_layer/extra_dim' });\n if (getRemainingWeights().length !== 0) {\n throw new Error(`weights remaing after extract: ${getRemainingWeights().length}`);\n }\n\n return {\n params: {\n mobilenetv1,\n prediction_layer,\n output_layer,\n },\n paramMappings,\n };\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { ConvParams, disposeUnusedWeightTensors, extractWeightEntryFactory, ParamMapping } from '../common/index';\nimport { isTensor3D } from '../utils/index';\nimport { BoxPredictionParams, MobileNetV1, NetParams, PointwiseConvParams, PredictionLayerParams } from './types';\n\nfunction extractorsFactory(weightMap: any, paramMappings: ParamMapping[]) {\n const extractWeightEntry = extractWeightEntryFactory(weightMap, paramMappings);\n\n function extractPointwiseConvParams(prefix: string, idx: number, mappedPrefix: string): PointwiseConvParams {\n const filters = extractWeightEntry(`${prefix}/Conv2d_${idx}_pointwise/weights`, 4, `${mappedPrefix}/filters`);\n const batch_norm_offset = extractWeightEntry(`${prefix}/Conv2d_${idx}_pointwise/convolution_bn_offset`, 1, `${mappedPrefix}/batch_norm_offset`);\n return { filters, batch_norm_offset };\n }\n\n function extractConvPairParams(idx: number): MobileNetV1.ConvPairParams {\n const mappedPrefix = `mobilenetv1/conv_${idx}`;\n const prefixDepthwiseConv = `MobilenetV1/Conv2d_${idx}_depthwise`;\n const mappedPrefixDepthwiseConv = `${mappedPrefix}/depthwise_conv`;\n const mappedPrefixPointwiseConv = `${mappedPrefix}/pointwise_conv`;\n\n const filters = extractWeightEntry(`${prefixDepthwiseConv}/depthwise_weights`, 4, `${mappedPrefixDepthwiseConv}/filters`);\n const batch_norm_scale = extractWeightEntry(`${prefixDepthwiseConv}/BatchNorm/gamma`, 1, `${mappedPrefixDepthwiseConv}/batch_norm_scale`);\n const batch_norm_offset = extractWeightEntry(`${prefixDepthwiseConv}/BatchNorm/beta`, 1, `${mappedPrefixDepthwiseConv}/batch_norm_offset`);\n const batch_norm_mean = extractWeightEntry(`${prefixDepthwiseConv}/BatchNorm/moving_mean`, 1, `${mappedPrefixDepthwiseConv}/batch_norm_mean`);\n const batch_norm_variance = extractWeightEntry(`${prefixDepthwiseConv}/BatchNorm/moving_variance`, 1, `${mappedPrefixDepthwiseConv}/batch_norm_variance`);\n\n return {\n depthwise_conv: {\n filters,\n batch_norm_scale,\n batch_norm_offset,\n batch_norm_mean,\n batch_norm_variance,\n },\n pointwise_conv: extractPointwiseConvParams('MobilenetV1', idx, mappedPrefixPointwiseConv),\n };\n }\n\n function extractMobilenetV1Params(): MobileNetV1.Params {\n return {\n conv_0: extractPointwiseConvParams('MobilenetV1', 0, 'mobilenetv1/conv_0'),\n conv_1: extractConvPairParams(1),\n conv_2: extractConvPairParams(2),\n conv_3: extractConvPairParams(3),\n conv_4: extractConvPairParams(4),\n conv_5: extractConvPairParams(5),\n conv_6: extractConvPairParams(6),\n conv_7: extractConvPairParams(7),\n conv_8: extractConvPairParams(8),\n conv_9: extractConvPairParams(9),\n conv_10: extractConvPairParams(10),\n conv_11: extractConvPairParams(11),\n conv_12: extractConvPairParams(12),\n conv_13: extractConvPairParams(13),\n };\n }\n\n function extractConvParams(prefix: string, mappedPrefix: string): ConvParams {\n const filters = extractWeightEntry(`${prefix}/weights`, 4, `${mappedPrefix}/filters`);\n const bias = extractWeightEntry(`${prefix}/biases`, 1, `${mappedPrefix}/bias`);\n return { filters, bias };\n }\n\n function extractBoxPredictorParams(idx: number): BoxPredictionParams {\n const box_encoding_predictor = extractConvParams(\n `Prediction/BoxPredictor_${idx}/BoxEncodingPredictor`,\n `prediction_layer/box_predictor_${idx}/box_encoding_predictor`,\n );\n const class_predictor = extractConvParams(\n `Prediction/BoxPredictor_${idx}/ClassPredictor`,\n `prediction_layer/box_predictor_${idx}/class_predictor`,\n );\n return { box_encoding_predictor, class_predictor };\n }\n\n function extractPredictionLayerParams(): PredictionLayerParams {\n return {\n conv_0: extractPointwiseConvParams('Prediction', 0, 'prediction_layer/conv_0'),\n conv_1: extractPointwiseConvParams('Prediction', 1, 'prediction_layer/conv_1'),\n conv_2: extractPointwiseConvParams('Prediction', 2, 'prediction_layer/conv_2'),\n conv_3: extractPointwiseConvParams('Prediction', 3, 'prediction_layer/conv_3'),\n conv_4: extractPointwiseConvParams('Prediction', 4, 'prediction_layer/conv_4'),\n conv_5: extractPointwiseConvParams('Prediction', 5, 'prediction_layer/conv_5'),\n conv_6: extractPointwiseConvParams('Prediction', 6, 'prediction_layer/conv_6'),\n conv_7: extractPointwiseConvParams('Prediction', 7, 'prediction_layer/conv_7'),\n box_predictor_0: extractBoxPredictorParams(0),\n box_predictor_1: extractBoxPredictorParams(1),\n box_predictor_2: extractBoxPredictorParams(2),\n box_predictor_3: extractBoxPredictorParams(3),\n box_predictor_4: extractBoxPredictorParams(4),\n box_predictor_5: extractBoxPredictorParams(5),\n };\n }\n\n return {\n extractMobilenetV1Params,\n extractPredictionLayerParams,\n };\n}\n\nexport function extractParamsFromWeightMap(\n weightMap: tf.NamedTensorMap,\n): { params: NetParams, paramMappings: ParamMapping[] } {\n const paramMappings: ParamMapping[] = [];\n const {\n extractMobilenetV1Params,\n extractPredictionLayerParams,\n } = extractorsFactory(weightMap, paramMappings);\n const extra_dim = weightMap['Output/extra_dim'];\n paramMappings.push({ originalPath: 'Output/extra_dim', paramPath: 'output_layer/extra_dim' });\n if (!isTensor3D(extra_dim)) {\n throw new Error(`expected weightMap['Output/extra_dim'] to be a Tensor3D, instead have ${extra_dim}`);\n }\n\n const params = {\n mobilenetv1: extractMobilenetV1Params(),\n prediction_layer: extractPredictionLayerParams(),\n output_layer: {\n extra_dim,\n },\n };\n\n disposeUnusedWeightTensors(weightMap, paramMappings);\n return { params, paramMappings };\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { PointwiseConvParams } from './types';\n\nexport function pointwiseConvLayer(x: tf.Tensor4D, params: PointwiseConvParams, strides: [number, number]) {\n return tf.tidy(() => {\n let out = tf.conv2d(x, params.filters, strides, 'same');\n out = tf.add(out, params.batch_norm_offset);\n return tf.clipByValue(out, 0, 6);\n });\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { pointwiseConvLayer } from './pointwiseConvLayer';\nimport { MobileNetV1 } from './types';\n\nconst epsilon = 0.0010000000474974513;\n\nfunction depthwiseConvLayer(x: tf.Tensor4D, params: MobileNetV1.DepthwiseConvParams, strides: [number, number]) {\n return tf.tidy(() => {\n let out = tf.depthwiseConv2d(x, params.filters, strides, 'same');\n out = tf.batchNorm(\n out,\n params.batch_norm_mean,\n params.batch_norm_variance,\n params.batch_norm_offset,\n params.batch_norm_scale,\n epsilon,\n );\n return tf.clipByValue(out, 0, 6);\n });\n}\n\nfunction getStridesForLayerIdx(layerIdx: number): [number, number] {\n return [2, 4, 6, 12].some((idx) => idx === layerIdx) ? [2, 2] : [1, 1];\n}\n\nexport function mobileNetV1(x: tf.Tensor4D, params: MobileNetV1.Params) {\n return tf.tidy(() => {\n let conv11;\n let out = pointwiseConvLayer(x, params.conv_0, [2, 2]);\n\n const convPairParams = [\n params.conv_1,\n params.conv_2,\n params.conv_3,\n params.conv_4,\n params.conv_5,\n params.conv_6,\n params.conv_7,\n params.conv_8,\n params.conv_9,\n params.conv_10,\n params.conv_11,\n params.conv_12,\n params.conv_13,\n ];\n\n convPairParams.forEach((param, i) => {\n const layerIdx = i + 1;\n const depthwiseConvStrides = getStridesForLayerIdx(layerIdx);\n out = depthwiseConvLayer(out, param.depthwise_conv, depthwiseConvStrides);\n out = pointwiseConvLayer(out, param.pointwise_conv, [1, 1]);\n if (layerIdx === 11) conv11 = out;\n });\n\n if (conv11 === null) {\n throw new Error('mobileNetV1 - output of conv layer 11 is null');\n }\n\n return {\n out,\n conv11: conv11 as any,\n };\n });\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nfunction IOU(boxes: tf.Tensor2D, i: number, j: number) {\n const boxesData = boxes.arraySync();\n const yminI = Math.min(boxesData[i][0], boxesData[i][2]);\n const xminI = Math.min(boxesData[i][1], boxesData[i][3]);\n const ymaxI = Math.max(boxesData[i][0], boxesData[i][2]);\n const xmaxI = Math.max(boxesData[i][1], boxesData[i][3]);\n const yminJ = Math.min(boxesData[j][0], boxesData[j][2]);\n const xminJ = Math.min(boxesData[j][1], boxesData[j][3]);\n const ymaxJ = Math.max(boxesData[j][0], boxesData[j][2]);\n const xmaxJ = Math.max(boxesData[j][1], boxesData[j][3]);\n const areaI = (ymaxI - yminI) * (xmaxI - xminI);\n const areaJ = (ymaxJ - yminJ) * (xmaxJ - xminJ);\n if (areaI <= 0 || areaJ <= 0) return 0.0;\n const intersectionYmin = Math.max(yminI, yminJ);\n const intersectionXmin = Math.max(xminI, xminJ);\n const intersectionYmax = Math.min(ymaxI, ymaxJ);\n const intersectionXmax = Math.min(xmaxI, xmaxJ);\n const intersectionArea = Math.max(intersectionYmax - intersectionYmin, 0.0) * Math.max(intersectionXmax - intersectionXmin, 0.0);\n return intersectionArea / (areaI + areaJ - intersectionArea);\n}\n\nexport function nonMaxSuppression(\n boxes: tf.Tensor2D,\n scores: number[],\n maxOutputSize: number,\n iouThreshold: number,\n scoreThreshold: number,\n): number[] {\n const numBoxes = boxes.shape[0];\n const outputSize = Math.min(maxOutputSize, numBoxes);\n\n const candidates = scores\n .map((score, boxIndex) => ({ score, boxIndex }))\n .filter((c) => c.score > scoreThreshold)\n .sort((c1, c2) => c2.score - c1.score);\n\n const suppressFunc = (x: number) => (x <= iouThreshold ? 1 : 0);\n const selected: number[] = [];\n\n candidates.forEach((c) => {\n if (selected.length >= outputSize) return;\n const originalScore = c.score;\n for (let j = selected.length - 1; j >= 0; --j) {\n const iou = IOU(boxes, c.boxIndex, selected[j]);\n if (iou === 0.0) continue;\n c.score *= suppressFunc(iou);\n if (c.score <= scoreThreshold) break;\n }\n if (originalScore === c.score) {\n selected.push(c.boxIndex);\n }\n });\n return selected;\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { OutputLayerParams } from './types';\n\nfunction getCenterCoordinatesAndSizesLayer(x: tf.Tensor2D) {\n const vec = tf.unstack(tf.transpose(x, [1, 0]));\n\n const sizes = [\n tf.sub(vec[2], vec[0]),\n tf.sub(vec[3], vec[1]),\n ];\n const centers = [\n tf.add(vec[0], tf.div(sizes[0], 2)),\n tf.add(vec[1], tf.div(sizes[1], 2)),\n ];\n return { sizes, centers };\n}\n\nfunction decodeBoxesLayer(x0: tf.Tensor2D, x1: tf.Tensor2D) {\n const { sizes, centers } = getCenterCoordinatesAndSizesLayer(x0);\n\n const vec = tf.unstack(tf.transpose(x1, [1, 0]));\n const div0_out = tf.div(tf.mul(tf.exp(tf.div(vec[2], 5)), sizes[0]), 2);\n const add0_out = tf.add(tf.mul(tf.div(vec[0], 10), sizes[0]), centers[0]);\n const div1_out = tf.div(tf.mul(tf.exp(tf.div(vec[3], 5)), sizes[1]), 2);\n const add1_out = tf.add(tf.mul(tf.div(vec[1], 10), sizes[1]), centers[1]);\n\n return tf.transpose(\n tf.stack([\n tf.sub(add0_out, div0_out),\n tf.sub(add1_out, div1_out),\n tf.add(add0_out, div0_out),\n tf.add(add1_out, div1_out),\n ]),\n [1, 0],\n );\n}\n\nexport function outputLayer(boxPredictions: tf.Tensor4D, classPredictions: tf.Tensor4D, params: OutputLayerParams) {\n return tf.tidy(() => {\n const batchSize = boxPredictions.shape[0];\n\n let boxes = decodeBoxesLayer(\n tf.reshape(tf.tile(params.extra_dim, [batchSize, 1, 1]), [-1, 4]) as tf.Tensor2D,\n tf.reshape(boxPredictions, [-1, 4]) as tf.Tensor2D,\n );\n boxes = tf.reshape(boxes, [batchSize, (boxes.shape[0] / batchSize), 4]);\n\n const scoresAndClasses = tf.sigmoid(tf.slice(classPredictions, [0, 0, 1], [-1, -1, -1]));\n let scores = tf.slice(scoresAndClasses, [0, 0, 0], [-1, -1, 1]) as tf.Tensor;\n\n scores = tf.reshape(scores, [batchSize, scores.shape[1] as number]);\n\n const boxesByBatch = tf.unstack(boxes) as tf.Tensor2D[];\n const scoresByBatch = tf.unstack(scores) as tf.Tensor1D[];\n\n return { boxes: boxesByBatch, scores: scoresByBatch };\n });\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { convLayer } from '../common/index';\nimport { BoxPredictionParams } from './types';\n\nexport function boxPredictionLayer(\n x: tf.Tensor4D,\n params: BoxPredictionParams,\n) {\n return tf.tidy(() => {\n const batchSize = x.shape[0];\n const boxPredictionEncoding = tf.reshape(\n convLayer(x, params.box_encoding_predictor),\n [batchSize, -1, 1, 4],\n );\n const classPrediction = tf.reshape(\n convLayer(x, params.class_predictor),\n [batchSize, -1, 3],\n );\n return { boxPredictionEncoding, classPrediction };\n });\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { boxPredictionLayer } from './boxPredictionLayer';\nimport { pointwiseConvLayer } from './pointwiseConvLayer';\nimport { PredictionLayerParams } from './types';\n\nexport function predictionLayer(\n x: tf.Tensor4D,\n conv11: tf.Tensor4D,\n params: PredictionLayerParams,\n) {\n return tf.tidy(() => {\n const conv0 = pointwiseConvLayer(x, params.conv_0, [1, 1]);\n const conv1 = pointwiseConvLayer(conv0, params.conv_1, [2, 2]);\n const conv2 = pointwiseConvLayer(conv1, params.conv_2, [1, 1]);\n const conv3 = pointwiseConvLayer(conv2, params.conv_3, [2, 2]);\n const conv4 = pointwiseConvLayer(conv3, params.conv_4, [1, 1]);\n const conv5 = pointwiseConvLayer(conv4, params.conv_5, [2, 2]);\n const conv6 = pointwiseConvLayer(conv5, params.conv_6, [1, 1]);\n const conv7 = pointwiseConvLayer(conv6, params.conv_7, [2, 2]);\n\n const boxPrediction0 = boxPredictionLayer(conv11, params.box_predictor_0);\n const boxPrediction1 = boxPredictionLayer(x, params.box_predictor_1);\n const boxPrediction2 = boxPredictionLayer(conv1, params.box_predictor_2);\n const boxPrediction3 = boxPredictionLayer(conv3, params.box_predictor_3);\n const boxPrediction4 = boxPredictionLayer(conv5, params.box_predictor_4);\n const boxPrediction5 = boxPredictionLayer(conv7, params.box_predictor_5);\n\n const boxPredictions = tf.concat([\n boxPrediction0.boxPredictionEncoding,\n boxPrediction1.boxPredictionEncoding,\n boxPrediction2.boxPredictionEncoding,\n boxPrediction3.boxPredictionEncoding,\n boxPrediction4.boxPredictionEncoding,\n boxPrediction5.boxPredictionEncoding,\n ], 1) as tf.Tensor4D;\n\n const classPredictions = tf.concat([\n boxPrediction0.classPrediction,\n boxPrediction1.classPrediction,\n boxPrediction2.classPrediction,\n boxPrediction3.classPrediction,\n boxPrediction4.classPrediction,\n boxPrediction5.classPrediction,\n ], 1) as tf.Tensor4D;\n\n return {\n boxPredictions,\n classPredictions,\n };\n });\n}\n", "export interface ISsdMobilenetv1Options {\n minConfidence?: number\n maxResults?: number\n}\n\nexport class SsdMobilenetv1Options {\n protected _name = 'SsdMobilenetv1Options';\n\n private _minConfidence: number;\n\n private _maxResults: number;\n\n constructor({ minConfidence, maxResults }: ISsdMobilenetv1Options = {}) {\n this._minConfidence = minConfidence || 0.5;\n this._maxResults = maxResults || 100;\n\n if (typeof this._minConfidence !== 'number' || this._minConfidence <= 0 || this._minConfidence >= 1) {\n throw new Error(`${this._name} - expected minConfidence to be a number between 0 and 1`);\n }\n\n if (typeof this._maxResults !== 'number') {\n throw new Error(`${this._name} - expected maxResults to be a number`);\n }\n }\n\n get minConfidence(): number { return this._minConfidence; }\n\n get maxResults(): number { return this._maxResults; }\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { Rect } from '../classes/index';\nimport { FaceDetection } from '../classes/FaceDetection';\nimport { NetInput, TNetInput, toNetInput } from '../dom/index';\nimport { NeuralNetwork } from '../NeuralNetwork';\nimport { extractParams } from './extractParams';\nimport { extractParamsFromWeightMap } from './extractParamsFromWeightMap';\nimport { mobileNetV1 } from './mobileNetV1';\nimport { nonMaxSuppression } from './nonMaxSuppression';\nimport { outputLayer } from './outputLayer';\nimport { predictionLayer } from './predictionLayer';\nimport { ISsdMobilenetv1Options, SsdMobilenetv1Options } from './SsdMobilenetv1Options';\nimport { NetParams } from './types';\n\nexport class SsdMobilenetv1 extends NeuralNetwork {\n constructor() {\n super('SsdMobilenetv1');\n }\n\n public forwardInput(input: NetInput) {\n const { params } = this;\n if (!params) throw new Error('SsdMobilenetv1 - load model before inference');\n return tf.tidy(() => {\n const batchTensor = tf.cast(input.toBatchTensor(512, false), 'float32');\n const x = tf.sub(tf.div(batchTensor, 127.5), 1) as tf.Tensor4D; // input is normalized -1..1\n const features = mobileNetV1(x, params.mobilenetv1);\n const { boxPredictions, classPredictions } = predictionLayer(features.out, features.conv11, params.prediction_layer);\n return outputLayer(boxPredictions, classPredictions, params.output_layer);\n });\n }\n\n public async forward(input: TNetInput) {\n return this.forwardInput(await toNetInput(input));\n }\n\n public async locateFaces(input: TNetInput, options: ISsdMobilenetv1Options = {}): Promise {\n const { maxResults, minConfidence } = new SsdMobilenetv1Options(options);\n const netInput = await toNetInput(input);\n const { boxes: _boxes, scores: _scores } = this.forwardInput(netInput);\n const boxes = _boxes[0];\n const scores = _scores[0];\n for (let i = 1; i < _boxes.length; i++) {\n _boxes[i].dispose();\n _scores[i].dispose();\n }\n const scoresData = Array.from(scores.dataSync());\n const iouThreshold = 0.5;\n const indices = nonMaxSuppression(boxes, scoresData as number[], maxResults, iouThreshold, minConfidence);\n const reshapedDims = netInput.getReshapedInputDimensions(0);\n const inputSize = netInput.inputSize as number;\n const padX = inputSize / reshapedDims.width;\n const padY = inputSize / reshapedDims.height;\n const boxesData = boxes.arraySync();\n const results = indices\n .map((idx) => {\n const [top, bottom] = [\n Math.max(0, boxesData[idx][0]),\n Math.min(1.0, boxesData[idx][2]),\n ].map((val) => val * padY);\n const [left, right] = [\n Math.max(0, boxesData[idx][1]),\n Math.min(1.0, boxesData[idx][3]),\n ].map((val) => val * padX);\n return new FaceDetection(\n scoresData[idx] as number,\n new Rect(left, top, right - left, bottom - top),\n { height: netInput.getInputHeight(0), width: netInput.getInputWidth(0) },\n );\n });\n boxes.dispose();\n scores.dispose();\n return results;\n }\n\n protected getDefaultModelName(): string {\n return 'ssd_mobilenetv1_model';\n }\n\n protected extractParamsFromWeightMap(weightMap: tf.NamedTensorMap) {\n return extractParamsFromWeightMap(weightMap);\n }\n\n protected extractParams(weights: Float32Array) {\n return extractParams(weights);\n }\n}\n", "import { SsdMobilenetv1 } from './SsdMobilenetv1';\n\nexport * from './SsdMobilenetv1';\nexport * from './SsdMobilenetv1Options';\n\nexport function createSsdMobilenetv1(weights: Float32Array) {\n const net = new SsdMobilenetv1();\n net.extractWeights(weights);\n return net;\n}\n\nexport function createFaceDetectionNet(weights: Float32Array) {\n return createSsdMobilenetv1(weights);\n}\n\n// alias for backward compatibily\nexport class FaceDetectionNet extends SsdMobilenetv1 {}\n", "import { Point } from '../classes/index';\n\nexport const IOU_THRESHOLD = 0.4;\n\nexport const BOX_ANCHORS = [\n new Point(0.738768, 0.874946),\n new Point(2.42204, 2.65704),\n new Point(4.30971, 7.04493),\n new Point(10.246, 4.59428),\n new Point(12.6868, 11.8741),\n];\n\nexport const BOX_ANCHORS_SEPARABLE = [\n new Point(1.603231, 2.094468),\n new Point(6.041143, 7.080126),\n new Point(2.882459, 3.518061),\n new Point(4.266906, 5.178857),\n new Point(9.041765, 10.66308),\n];\n\nexport const MEAN_RGB_SEPARABLE: [number, number, number] = [117.001, 114.697, 97.404];\n\nexport const DEFAULT_MODEL_NAME = 'tiny_yolov2_model';\nexport const DEFAULT_MODEL_NAME_SEPARABLE_CONV = 'tiny_yolov2_separable_conv_model';\n", "import { Point } from '../classes/Point';\n\nexport type TinyYolov2Config = {\n withSeparableConvs: boolean\n iouThreshold: number\n anchors: Point[]\n classes: string[]\n meanRgb?: [number, number, number]\n withClassScores?: boolean,\n filterSizes?: number[]\n isFirstLayerConv2d?: boolean\n}\n\nconst isNumber = (arg: any) => typeof arg === 'number';\n\nexport function validateConfig(config: any) {\n if (!config) {\n throw new Error(`invalid config: ${config}`);\n }\n\n if (typeof config.withSeparableConvs !== 'boolean') {\n throw new Error(`config.withSeparableConvs has to be a boolean, have: ${config.withSeparableConvs}`);\n }\n\n if (!isNumber(config.iouThreshold) || config.iouThreshold < 0 || config.iouThreshold > 1.0) {\n throw new Error(`config.iouThreshold has to be a number between [0, 1], have: ${config.iouThreshold}`);\n }\n\n if (\n !Array.isArray(config.classes)\n || !config.classes.length\n || !config.classes.every((c: any) => typeof c === 'string')\n ) {\n throw new Error(`config.classes has to be an array class names: string[], have: ${JSON.stringify(config.classes)}`);\n }\n\n if (\n !Array.isArray(config.anchors)\n || !config.anchors.length\n || !config.anchors.map((a: any) => a || {}).every((a: any) => isNumber(a.x) && isNumber(a.y))\n ) {\n throw new Error(`config.anchors has to be an array of { x: number, y: number }, have: ${JSON.stringify(config.anchors)}`);\n }\n\n if (config.meanRgb && (\n !Array.isArray(config.meanRgb)\n || config.meanRgb.length !== 3\n || !config.meanRgb.every(isNumber)\n )) {\n throw new Error(`config.meanRgb has to be an array of shape [number, number, number], have: ${JSON.stringify(config.meanRgb)}`);\n }\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nexport function leaky(x: tf.Tensor4D): tf.Tensor4D {\n return tf.tidy(() => {\n const min = tf.mul(x, tf.scalar(0.10000000149011612));\n return tf.add(tf.relu(tf.sub(x, min)), min);\n });\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { leaky } from './leaky';\nimport { ConvWithBatchNorm } from './types';\n\nexport function convWithBatchNorm(x: tf.Tensor4D, params: ConvWithBatchNorm): tf.Tensor4D {\n return tf.tidy(() => {\n let out = tf.pad(x, [[0, 0], [1, 1], [1, 1], [0, 0]]) as tf.Tensor4D;\n out = tf.conv2d(out, params.conv.filters, [1, 1], 'valid');\n out = tf.sub(out, params.bn.sub);\n out = tf.mul(out, params.bn.truediv);\n out = tf.add(out, params.conv.bias);\n return leaky(out);\n });\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { SeparableConvParams } from '../common/types';\nimport { leaky } from './leaky';\n\nexport function depthwiseSeparableConv(x: tf.Tensor4D, params: SeparableConvParams): tf.Tensor4D {\n return tf.tidy(() => {\n let out = tf.pad(x, [[0, 0], [1, 1], [1, 1], [0, 0]]) as tf.Tensor4D;\n out = tf.separableConv2d(out, params.depthwise_filter, params.pointwise_filter, [1, 1], 'valid');\n out = tf.add(out, params.bias);\n return leaky(out);\n });\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { extractConvParamsFactory } from '../common/index';\nimport { extractSeparableConvParamsFactory } from '../common/extractSeparableConvParamsFactory';\nimport { extractWeightsFactory } from '../common/extractWeightsFactory';\nimport { ExtractWeightsFunction, ParamMapping } from '../common/types';\nimport { TinyYolov2Config } from './config';\nimport { BatchNorm, ConvWithBatchNorm, TinyYolov2NetParams } from './types';\n\nfunction extractorsFactory(extractWeights: ExtractWeightsFunction, paramMappings: ParamMapping[]) {\n const extractConvParams = extractConvParamsFactory(extractWeights, paramMappings);\n\n function extractBatchNormParams(size: number, mappedPrefix: string): BatchNorm {\n const sub = tf.tensor1d(extractWeights(size));\n const truediv = tf.tensor1d(extractWeights(size));\n\n paramMappings.push(\n { paramPath: `${mappedPrefix}/sub` },\n { paramPath: `${mappedPrefix}/truediv` },\n );\n return { sub, truediv };\n }\n\n function extractConvWithBatchNormParams(channelsIn: number, channelsOut: number, mappedPrefix: string): ConvWithBatchNorm {\n const conv = extractConvParams(channelsIn, channelsOut, 3, `${mappedPrefix}/conv`);\n const bn = extractBatchNormParams(channelsOut, `${mappedPrefix}/bn`);\n return { conv, bn };\n }\n const extractSeparableConvParams = extractSeparableConvParamsFactory(extractWeights, paramMappings);\n\n return {\n extractConvParams,\n extractConvWithBatchNormParams,\n extractSeparableConvParams,\n };\n}\n\nexport function extractParams(\n weights: Float32Array,\n config: TinyYolov2Config,\n boxEncodingSize: number,\n filterSizes: number[],\n): { params: TinyYolov2NetParams, paramMappings: ParamMapping[] } {\n const {\n extractWeights,\n getRemainingWeights,\n } = extractWeightsFactory(weights);\n\n const paramMappings: ParamMapping[] = [];\n const {\n extractConvParams,\n extractConvWithBatchNormParams,\n extractSeparableConvParams,\n } = extractorsFactory(extractWeights, paramMappings);\n let params: TinyYolov2NetParams;\n\n if (config.withSeparableConvs) {\n const [s0, s1, s2, s3, s4, s5, s6, s7, s8] = filterSizes;\n const conv0 = config.isFirstLayerConv2d\n ? extractConvParams(s0, s1, 3, 'conv0')\n : extractSeparableConvParams(s0, s1, 'conv0');\n const conv1 = extractSeparableConvParams(s1, s2, 'conv1');\n const conv2 = extractSeparableConvParams(s2, s3, 'conv2');\n const conv3 = extractSeparableConvParams(s3, s4, 'conv3');\n const conv4 = extractSeparableConvParams(s4, s5, 'conv4');\n const conv5 = extractSeparableConvParams(s5, s6, 'conv5');\n const conv6 = s7 ? extractSeparableConvParams(s6, s7, 'conv6') : undefined;\n const conv7 = s8 ? extractSeparableConvParams(s7, s8, 'conv7') : undefined;\n const conv8 = extractConvParams(s8 || s7 || s6, 5 * boxEncodingSize, 1, 'conv8');\n params = {\n conv0, conv1, conv2, conv3, conv4, conv5, conv6, conv7, conv8,\n };\n } else {\n const [s0, s1, s2, s3, s4, s5, s6, s7, s8] = filterSizes;\n const conv0 = extractConvWithBatchNormParams(s0, s1, 'conv0');\n const conv1 = extractConvWithBatchNormParams(s1, s2, 'conv1');\n const conv2 = extractConvWithBatchNormParams(s2, s3, 'conv2');\n const conv3 = extractConvWithBatchNormParams(s3, s4, 'conv3');\n const conv4 = extractConvWithBatchNormParams(s4, s5, 'conv4');\n const conv5 = extractConvWithBatchNormParams(s5, s6, 'conv5');\n const conv6 = extractConvWithBatchNormParams(s6, s7, 'conv6');\n const conv7 = extractConvWithBatchNormParams(s7, s8, 'conv7');\n const conv8 = extractConvParams(s8, 5 * boxEncodingSize, 1, 'conv8');\n params = {\n conv0, conv1, conv2, conv3, conv4, conv5, conv6, conv7, conv8,\n };\n }\n if (getRemainingWeights().length !== 0) {\n throw new Error(`weights remaing after extract: ${getRemainingWeights().length}`);\n }\n return { params, paramMappings };\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { ConvParams } from '../common/index';\nimport { disposeUnusedWeightTensors } from '../common/disposeUnusedWeightTensors';\nimport { loadSeparableConvParamsFactory } from '../common/extractSeparableConvParamsFactory';\nimport { extractWeightEntryFactory } from '../common/extractWeightEntryFactory';\nimport { ParamMapping } from '../common/types';\nimport { TinyYolov2Config } from './config';\nimport { BatchNorm, ConvWithBatchNorm, TinyYolov2NetParams } from './types';\n\nfunction extractorsFactory(weightMap: any, paramMappings: ParamMapping[]) {\n const extractWeightEntry = extractWeightEntryFactory(weightMap, paramMappings);\n\n function extractBatchNormParams(prefix: string): BatchNorm {\n const sub = extractWeightEntry(`${prefix}/sub`, 1);\n const truediv = extractWeightEntry(`${prefix}/truediv`, 1);\n return { sub, truediv };\n }\n\n function extractConvParams(prefix: string): ConvParams {\n const filters = extractWeightEntry(`${prefix}/filters`, 4);\n const bias = extractWeightEntry(`${prefix}/bias`, 1);\n return { filters, bias };\n }\n\n function extractConvWithBatchNormParams(prefix: string): ConvWithBatchNorm {\n const conv = extractConvParams(`${prefix}/conv`);\n const bn = extractBatchNormParams(`${prefix}/bn`);\n return { conv, bn };\n }\n\n const extractSeparableConvParams = loadSeparableConvParamsFactory(extractWeightEntry);\n return {\n extractConvParams,\n extractConvWithBatchNormParams,\n extractSeparableConvParams,\n };\n}\n\nexport function extractParamsFromWeightMap(\n weightMap: tf.NamedTensorMap,\n config: TinyYolov2Config,\n): { params: TinyYolov2NetParams, paramMappings: ParamMapping[] } {\n const paramMappings: ParamMapping[] = [];\n\n const {\n extractConvParams,\n extractConvWithBatchNormParams,\n extractSeparableConvParams,\n } = extractorsFactory(weightMap, paramMappings);\n\n let params: TinyYolov2NetParams;\n\n if (config.withSeparableConvs) {\n // eslint-disable-next-line no-mixed-operators\n const numFilters = (config.filterSizes && config.filterSizes.length || 9);\n params = {\n conv0: config.isFirstLayerConv2d ? extractConvParams('conv0') : extractSeparableConvParams('conv0'),\n conv1: extractSeparableConvParams('conv1'),\n conv2: extractSeparableConvParams('conv2'),\n conv3: extractSeparableConvParams('conv3'),\n conv4: extractSeparableConvParams('conv4'),\n conv5: extractSeparableConvParams('conv5'),\n conv6: numFilters > 7 ? extractSeparableConvParams('conv6') : undefined,\n conv7: numFilters > 8 ? extractSeparableConvParams('conv7') : undefined,\n conv8: extractConvParams('conv8'),\n };\n } else {\n params = {\n conv0: extractConvWithBatchNormParams('conv0'),\n conv1: extractConvWithBatchNormParams('conv1'),\n conv2: extractConvWithBatchNormParams('conv2'),\n conv3: extractConvWithBatchNormParams('conv3'),\n conv4: extractConvWithBatchNormParams('conv4'),\n conv5: extractConvWithBatchNormParams('conv5'),\n conv6: extractConvWithBatchNormParams('conv6'),\n conv7: extractConvWithBatchNormParams('conv7'),\n conv8: extractConvParams('conv8'),\n };\n }\n\n disposeUnusedWeightTensors(weightMap, paramMappings);\n return { params, paramMappings };\n}\n", "export interface ITinyYolov2Options {\n inputSize?: number\n scoreThreshold?: number\n}\n\nexport class TinyYolov2Options {\n protected _name = 'TinyYolov2Options';\n\n private _inputSize: number;\n\n private _scoreThreshold: number;\n\n constructor({ inputSize, scoreThreshold }: ITinyYolov2Options = {}) {\n this._inputSize = inputSize || 416;\n this._scoreThreshold = scoreThreshold || 0.5;\n\n if (typeof this._inputSize !== 'number' || this._inputSize % 32 !== 0) {\n throw new Error(`${this._name} - expected inputSize to be a number divisible by 32`);\n }\n\n if (typeof this._scoreThreshold !== 'number' || this._scoreThreshold <= 0 || this._scoreThreshold >= 1) {\n throw new Error(`${this._name} - expected scoreThreshold to be a number between 0 and 1`);\n }\n }\n\n get inputSize(): number { return this._inputSize; }\n\n get scoreThreshold(): number { return this._scoreThreshold; }\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { BoundingBox } from '../classes/BoundingBox';\nimport { Dimensions } from '../classes/Dimensions';\nimport { ObjectDetection } from '../classes/ObjectDetection';\nimport { convLayer } from '../common/index';\nimport { ConvParams, SeparableConvParams } from '../common/types';\nimport { toNetInput } from '../dom/index';\nimport { NetInput } from '../dom/NetInput';\nimport { TNetInput } from '../dom/types';\nimport { NeuralNetwork } from '../NeuralNetwork';\nimport { sigmoid } from '../ops/index';\nimport { nonMaxSuppression } from '../ops/nonMaxSuppression';\nimport { normalize } from '../ops/normalize';\nimport { TinyYolov2Config, validateConfig } from './config';\nimport { convWithBatchNorm } from './convWithBatchNorm';\nimport { depthwiseSeparableConv } from './depthwiseSeparableConv';\nimport { extractParams } from './extractParams';\nimport { extractParamsFromWeightMap } from './extractParamsFromWeightMap';\nimport { leaky } from './leaky';\nimport { ITinyYolov2Options, TinyYolov2Options } from './TinyYolov2Options';\nimport { DefaultTinyYolov2NetParams, MobilenetParams, TinyYolov2ExtractBoxesResult, TinyYolov2NetParams } from './types';\n\nexport class TinyYolov2Base extends NeuralNetwork {\n public static DEFAULT_FILTER_SIZES = [3, 16, 32, 64, 128, 256, 512, 1024, 1024];\n\n private _config: TinyYolov2Config;\n\n constructor(config: TinyYolov2Config) {\n super('TinyYolov2');\n validateConfig(config);\n this._config = config;\n }\n\n public get config(): TinyYolov2Config {\n return this._config;\n }\n\n public get withClassScores(): boolean {\n return this.config.withClassScores || this.config.classes.length > 1;\n }\n\n public get boxEncodingSize(): number {\n return 5 + (this.withClassScores ? this.config.classes.length : 0);\n }\n\n public runTinyYolov2(x: tf.Tensor4D, params: DefaultTinyYolov2NetParams): tf.Tensor4D {\n let out = convWithBatchNorm(x, params.conv0);\n out = tf.maxPool(out, [2, 2], [2, 2], 'same');\n out = convWithBatchNorm(out, params.conv1);\n out = tf.maxPool(out, [2, 2], [2, 2], 'same');\n out = convWithBatchNorm(out, params.conv2);\n out = tf.maxPool(out, [2, 2], [2, 2], 'same');\n out = convWithBatchNorm(out, params.conv3);\n out = tf.maxPool(out, [2, 2], [2, 2], 'same');\n out = convWithBatchNorm(out, params.conv4);\n out = tf.maxPool(out, [2, 2], [2, 2], 'same');\n out = convWithBatchNorm(out, params.conv5);\n out = tf.maxPool(out, [2, 2], [1, 1], 'same');\n out = convWithBatchNorm(out, params.conv6);\n out = convWithBatchNorm(out, params.conv7);\n return convLayer(out, params.conv8, 'valid', false);\n }\n\n public runMobilenet(x: tf.Tensor4D, params: MobilenetParams): tf.Tensor4D {\n let out = this.config.isFirstLayerConv2d\n ? leaky(convLayer(x, params.conv0 as ConvParams, 'valid', false))\n : depthwiseSeparableConv(x, params.conv0 as SeparableConvParams);\n out = tf.maxPool(out, [2, 2], [2, 2], 'same');\n out = depthwiseSeparableConv(out, params.conv1);\n out = tf.maxPool(out, [2, 2], [2, 2], 'same');\n out = depthwiseSeparableConv(out, params.conv2);\n out = tf.maxPool(out, [2, 2], [2, 2], 'same');\n out = depthwiseSeparableConv(out, params.conv3);\n out = tf.maxPool(out, [2, 2], [2, 2], 'same');\n out = depthwiseSeparableConv(out, params.conv4);\n out = tf.maxPool(out, [2, 2], [2, 2], 'same');\n out = depthwiseSeparableConv(out, params.conv5);\n out = tf.maxPool(out, [2, 2], [1, 1], 'same');\n out = params.conv6 ? depthwiseSeparableConv(out, params.conv6) : out;\n out = params.conv7 ? depthwiseSeparableConv(out, params.conv7) : out;\n return convLayer(out, params.conv8, 'valid', false);\n }\n\n public forwardInput(input: NetInput, inputSize: number): tf.Tensor4D {\n const { params } = this;\n\n if (!params) {\n throw new Error('TinyYolov2 - load model before inference');\n }\n\n return tf.tidy(() => {\n let batchTensor = tf.cast(input.toBatchTensor(inputSize, false), 'float32');\n batchTensor = this.config.meanRgb\n ? normalize(batchTensor, this.config.meanRgb)\n : batchTensor;\n batchTensor = batchTensor.div(255) as tf.Tensor4D;\n return this.config.withSeparableConvs\n ? this.runMobilenet(batchTensor, params as MobilenetParams)\n : this.runTinyYolov2(batchTensor, params as DefaultTinyYolov2NetParams);\n });\n }\n\n public async forward(input: TNetInput, inputSize: number): Promise {\n return this.forwardInput(await toNetInput(input), inputSize);\n }\n\n public async detect(input: TNetInput, forwardParams: ITinyYolov2Options = {}): Promise {\n const { inputSize, scoreThreshold } = new TinyYolov2Options(forwardParams);\n const netInput = await toNetInput(input);\n const out = await this.forwardInput(netInput, inputSize);\n const out0 = tf.tidy(() => tf.unstack(out)[0].expandDims()) as tf.Tensor4D;\n const inputDimensions = {\n width: netInput.getInputWidth(0),\n height: netInput.getInputHeight(0),\n };\n\n const results = await this.extractBoxes(out0, netInput.getReshapedInputDimensions(0), scoreThreshold);\n out.dispose();\n out0.dispose();\n\n const boxes = results.map((res) => res.box);\n const scores = results.map((res) => res.score);\n const classScores = results.map((res) => res.classScore);\n const classNames = results.map((res) => this.config.classes[res.label]);\n\n const indices = nonMaxSuppression(\n boxes.map((box) => box.rescale(inputSize)),\n scores,\n this.config.iouThreshold,\n true,\n );\n\n const detections = indices.map((idx) => new ObjectDetection(\n scores[idx],\n classScores[idx],\n classNames[idx],\n boxes[idx],\n inputDimensions,\n ));\n return detections;\n }\n\n protected getDefaultModelName(): string {\n return '';\n }\n\n protected extractParamsFromWeightMap(weightMap: tf.NamedTensorMap) {\n return extractParamsFromWeightMap(weightMap, this.config);\n }\n\n protected extractParams(weights: Float32Array) {\n const filterSizes = this.config.filterSizes || TinyYolov2Base.DEFAULT_FILTER_SIZES;\n\n const numFilters = filterSizes ? filterSizes.length : undefined;\n if (numFilters !== 7 && numFilters !== 8 && numFilters !== 9) {\n throw new Error(`TinyYolov2 - expected 7 | 8 | 9 convolutional filters, but found ${numFilters} filterSizes in config`);\n }\n return extractParams(weights, this.config, this.boxEncodingSize, filterSizes);\n }\n\n protected async extractBoxes(\n outputTensor: tf.Tensor4D,\n inputBlobDimensions: Dimensions,\n scoreThreshold?: number,\n ) {\n const { width, height } = inputBlobDimensions;\n const inputSize = Math.max(width, height);\n const correctionFactorX = inputSize / width;\n const correctionFactorY = inputSize / height;\n\n const numCells = outputTensor.shape[1];\n const numBoxes = this.config.anchors.length;\n\n const [boxesTensor, scoresTensor, classScoresTensor] = tf.tidy(() => {\n const reshaped = outputTensor.reshape([numCells, numCells, numBoxes, this.boxEncodingSize]);\n\n const boxes = reshaped.slice([0, 0, 0, 0], [numCells, numCells, numBoxes, 4]);\n const scores = reshaped.slice([0, 0, 0, 4], [numCells, numCells, numBoxes, 1]);\n const classScores = this.withClassScores\n ? tf.softmax(reshaped.slice([0, 0, 0, 5], [numCells, numCells, numBoxes, this.config.classes.length]), 3)\n : tf.scalar(0);\n return [boxes, scores, classScores];\n });\n\n const results: TinyYolov2ExtractBoxesResult[] = [];\n const scoresData = await scoresTensor.array() as number[][][][];\n const boxesData = await boxesTensor.array() as number[][][][];\n for (let row = 0; row < numCells; row++) {\n for (let col = 0; col < numCells; col++) {\n for (let anchor = 0; anchor < numBoxes; anchor++) {\n const score = sigmoid(scoresData[row][col][anchor][0]);\n if (!scoreThreshold || score > scoreThreshold) {\n const ctX = ((col + sigmoid(boxesData[row][col][anchor][0])) / numCells) * correctionFactorX;\n const ctY = ((row + sigmoid(boxesData[row][col][anchor][1])) / numCells) * correctionFactorY;\n const widthLocal = ((Math.exp(boxesData[row][col][anchor][2]) * this.config.anchors[anchor].x) / numCells) * correctionFactorX;\n const heightLocal = ((Math.exp(boxesData[row][col][anchor][3]) * this.config.anchors[anchor].y) / numCells) * correctionFactorY;\n const x = (ctX - (widthLocal / 2));\n const y = (ctY - (heightLocal / 2));\n const pos = { row, col, anchor };\n const { classScore, label } = this.withClassScores\n ? await this.extractPredictedClass(classScoresTensor as tf.Tensor4D, pos)\n : { classScore: 1, label: 0 };\n results.push({\n box: new BoundingBox(x, y, x + widthLocal, y + heightLocal),\n score,\n classScore: score * classScore,\n label,\n ...pos,\n });\n }\n }\n }\n }\n\n boxesTensor.dispose();\n scoresTensor.dispose();\n classScoresTensor.dispose();\n return results;\n }\n\n private async extractPredictedClass(classesTensor: tf.Tensor4D, pos: { row: number, col: number, anchor: number }) {\n const { row, col, anchor } = pos;\n const classesData = await classesTensor.array();\n return Array(this.config.classes.length).fill(0)\n .map((_, i) => classesData[row][col][anchor][i])\n .map((classScore, label) => ({\n classScore,\n label,\n }))\n .reduce((max, curr) => (max.classScore > curr.classScore ? max : curr));\n }\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { FaceDetection, Point } from '../classes/index';\nimport { ParamMapping } from '../common/types';\nimport { TNetInput } from '../dom/types';\nimport {\n BOX_ANCHORS,\n BOX_ANCHORS_SEPARABLE,\n DEFAULT_MODEL_NAME,\n DEFAULT_MODEL_NAME_SEPARABLE_CONV,\n IOU_THRESHOLD,\n MEAN_RGB_SEPARABLE,\n} from './const';\nimport { TinyYolov2Base } from './TinyYolov2Base';\nimport { ITinyYolov2Options } from './TinyYolov2Options';\nimport { TinyYolov2NetParams } from './types';\n\nexport class TinyYolov2 extends TinyYolov2Base {\n constructor(withSeparableConvs = true) {\n const config = {\n withSeparableConvs,\n iouThreshold: IOU_THRESHOLD,\n classes: ['face'],\n ...(withSeparableConvs\n ? {\n anchors: BOX_ANCHORS_SEPARABLE,\n meanRgb: MEAN_RGB_SEPARABLE,\n }\n : {\n anchors: BOX_ANCHORS,\n withClassScores: true,\n }),\n };\n\n super(config);\n }\n\n public get withSeparableConvs(): boolean {\n return this.config.withSeparableConvs;\n }\n\n public get anchors(): Point[] {\n return this.config.anchors;\n }\n\n public async locateFaces(input: TNetInput, forwardParams: ITinyYolov2Options): Promise {\n const objectDetections = await this.detect(input, forwardParams);\n return objectDetections.map((det) => new FaceDetection(det.score, det.relativeBox, { width: det.imageWidth, height: det.imageHeight }));\n }\n\n protected override getDefaultModelName(): string {\n return this.withSeparableConvs ? DEFAULT_MODEL_NAME_SEPARABLE_CONV : DEFAULT_MODEL_NAME;\n }\n\n protected override extractParamsFromWeightMap(weightMap: tf.NamedTensorMap): { params: TinyYolov2NetParams, paramMappings: ParamMapping[] } {\n return super.extractParamsFromWeightMap(weightMap);\n }\n}\n", "import { TinyYolov2 } from './TinyYolov2';\n\nexport * from './TinyYolov2Options';\nexport * from './config';\nexport * from './types';\nexport { TinyYolov2 };\n\nexport function createTinyYolov2(weights: Float32Array, withSeparableConvs = true) {\n const net = new TinyYolov2(withSeparableConvs);\n net.extractWeights(weights);\n return net;\n}\n", "import { ITinyYolov2Options, TinyYolov2Options } from '../tinyYolov2/index';\n\nexport type ITinyFaceDetectorOptions = ITinyYolov2Options\n\nexport class TinyFaceDetectorOptions extends TinyYolov2Options {\n protected override _name = 'TinyFaceDetectorOptions';\n}\n", "export class ComposableTask {\n // eslint-disable-next-line no-unused-vars\n public async then(onfulfilled: (value: T) => T | PromiseLike): Promise {\n return onfulfilled(await this.run());\n }\n\n public async run(): Promise {\n throw new Error('ComposableTask - run is not implemented');\n }\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { FaceDetection } from '../classes/FaceDetection';\nimport { extractFaces, extractFaceTensors, TNetInput } from '../dom/index';\nimport { WithFaceDetection } from '../factories/WithFaceDetection';\nimport { isWithFaceLandmarks, WithFaceLandmarks } from '../factories/WithFaceLandmarks';\n\nexport async function extractAllFacesAndComputeResults, TResult>(\n parentResults: TSource[],\n input: TNetInput,\n // eslint-disable-next-line no-unused-vars\n computeResults: (faces: Array) => Promise,\n extractedFaces?: Array | null,\n // eslint-disable-next-line no-unused-vars\n getRectForAlignment: (parentResult: WithFaceLandmarks) => FaceDetection = ({ alignedRect }) => alignedRect,\n) {\n const faceBoxes = parentResults.map((parentResult) => (isWithFaceLandmarks(parentResult)\n ? getRectForAlignment(parentResult)\n : parentResult.detection));\n const faces: Array = extractedFaces || (\n input instanceof tf.Tensor\n ? await extractFaceTensors(input, faceBoxes)\n : await extractFaces(input, faceBoxes)\n );\n const results = await computeResults(faces);\n faces.forEach((f) => f instanceof tf.Tensor && f.dispose());\n return results;\n}\n\nexport async function extractSingleFaceAndComputeResult, TResult>(\n parentResult: TSource,\n input: TNetInput,\n // eslint-disable-next-line no-unused-vars\n computeResult: (face: HTMLCanvasElement | tf.Tensor3D) => Promise,\n extractedFaces?: Array | null,\n // eslint-disable-next-line no-unused-vars\n getRectForAlignment?: (parentResultLocal: WithFaceLandmarks) => FaceDetection,\n) {\n return extractAllFacesAndComputeResults(\n [parentResult],\n input,\n async (faces) => computeResult(faces[0]),\n extractedFaces,\n getRectForAlignment,\n );\n}\n", "import { Point } from '../classes/index';\n\nexport const IOU_THRESHOLD = 0.4;\n\nexport const BOX_ANCHORS = [\n new Point(1.603231, 2.094468),\n new Point(6.041143, 7.080126),\n new Point(2.882459, 3.518061),\n new Point(4.266906, 5.178857),\n new Point(9.041765, 10.66308),\n];\n\nexport const MEAN_RGB: [number, number, number] = [117.001, 114.697, 97.404];\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { FaceDetection, Point } from '../classes/index';\nimport { ParamMapping } from '../common/index';\nimport { TNetInput } from '../dom/index';\nimport { ITinyYolov2Options } from '../tinyYolov2/index';\nimport { TinyYolov2Base } from '../tinyYolov2/TinyYolov2Base';\nimport { TinyYolov2NetParams } from '../tinyYolov2/types';\nimport { BOX_ANCHORS, IOU_THRESHOLD, MEAN_RGB } from './const';\n\nexport class TinyFaceDetector extends TinyYolov2Base {\n constructor() {\n const config = {\n withSeparableConvs: true,\n iouThreshold: IOU_THRESHOLD,\n classes: ['face'],\n anchors: BOX_ANCHORS,\n meanRgb: MEAN_RGB,\n isFirstLayerConv2d: true,\n filterSizes: [3, 16, 32, 64, 128, 256, 512],\n };\n\n super(config);\n }\n\n public get anchors(): Point[] {\n return this.config.anchors;\n }\n\n public async locateFaces(input: TNetInput, forwardParams: ITinyYolov2Options): Promise {\n const objectDetections = await this.detect(input, forwardParams);\n return objectDetections.map((det) => new FaceDetection(det.score, det.relativeBox, { width: det.imageWidth, height: det.imageHeight }));\n }\n\n protected override getDefaultModelName(): string {\n return 'tiny_face_detector_model';\n }\n\n protected override extractParamsFromWeightMap(weightMap: tf.NamedTensorMap): { params: TinyYolov2NetParams, paramMappings: ParamMapping[] } {\n return super.extractParamsFromWeightMap(weightMap);\n }\n}\n", "import { AgeGenderNet } from '../ageGenderNet/AgeGenderNet';\nimport { AgeAndGenderPrediction } from '../ageGenderNet/types';\nimport { FaceDetection } from '../classes/FaceDetection';\nimport { FaceLandmarks68 } from '../classes/FaceLandmarks68';\nimport { TNetInput } from '../dom/index';\nimport { FaceExpressionNet } from '../faceExpressionNet/FaceExpressionNet';\nimport { FaceExpressions } from '../faceExpressionNet/FaceExpressions';\nimport { FaceLandmark68Net } from '../faceLandmarkNet/FaceLandmark68Net';\nimport { FaceLandmark68TinyNet } from '../faceLandmarkNet/FaceLandmark68TinyNet';\nimport { FaceRecognitionNet } from '../faceRecognitionNet/FaceRecognitionNet';\nimport { SsdMobilenetv1 } from '../ssdMobilenetv1/SsdMobilenetv1';\nimport { SsdMobilenetv1Options } from '../ssdMobilenetv1/SsdMobilenetv1Options';\nimport { TinyFaceDetector } from '../tinyFaceDetector/TinyFaceDetector';\nimport { TinyFaceDetectorOptions } from '../tinyFaceDetector/TinyFaceDetectorOptions';\nimport { ITinyYolov2Options, TinyYolov2 } from '../tinyYolov2/index';\n\nexport const nets = {\n ssdMobilenetv1: new SsdMobilenetv1(),\n tinyFaceDetector: new TinyFaceDetector(),\n tinyYolov2: new TinyYolov2(),\n faceLandmark68Net: new FaceLandmark68Net(),\n faceLandmark68TinyNet: new FaceLandmark68TinyNet(),\n faceRecognitionNet: new FaceRecognitionNet(),\n faceExpressionNet: new FaceExpressionNet(),\n ageGenderNet: new AgeGenderNet(),\n};\n\n/**\n * Attempts to detect all faces in an image using SSD Mobilenetv1 Network.\n *\n * @param input The input image.\n * @param options (optional, default: see SsdMobilenetv1Options constructor for default parameters).\n * @returns Bounding box of each face with score.\n */\nexport const ssdMobilenetv1 = (input: TNetInput, options: SsdMobilenetv1Options): Promise => nets.ssdMobilenetv1.locateFaces(input, options);\n\n/**\n * Attempts to detect all faces in an image using the Tiny Face Detector.\n *\n * @param input The input image.\n * @param options (optional, default: see TinyFaceDetectorOptions constructor for default parameters).\n * @returns Bounding box of each face with score.\n */\nexport const tinyFaceDetector = (input: TNetInput, options: TinyFaceDetectorOptions): Promise => nets.tinyFaceDetector.locateFaces(input, options);\n\n/**\n * Attempts to detect all faces in an image using the Tiny Yolov2 Network.\n *\n * @param input The input image.\n * @param options (optional, default: see TinyYolov2Options constructor for default parameters).\n * @returns Bounding box of each face with score.\n */\nexport const tinyYolov2 = (input: TNetInput, options: ITinyYolov2Options): Promise => nets.tinyYolov2.locateFaces(input, options);\n\n/**\n * Detects the 68 point face landmark positions of the face shown in an image.\n *\n * @param inputs The face image extracted from the bounding box of a face. Can\n * also be an array of input images, which will be batch processed.\n * @returns 68 point face landmarks or array thereof in case of batch input.\n */\nexport const detectFaceLandmarks = (input: TNetInput): Promise => nets.faceLandmark68Net.detectLandmarks(input);\n\n/**\n * Detects the 68 point face landmark positions of the face shown in an image\n * using a tinier version of the 68 point face landmark model, which is slightly\n * faster at inference, but also slightly less accurate.\n *\n * @param inputs The face image extracted from the bounding box of a face. Can\n * also be an array of input images, which will be batch processed.\n * @returns 68 point face landmarks or array thereof in case of batch input.\n */\nexport const detectFaceLandmarksTiny = (input: TNetInput): Promise => nets.faceLandmark68TinyNet.detectLandmarks(input);\n\n/**\n * Computes a 128 entry vector (face descriptor / face embeddings) from the face shown in an image,\n * which uniquely represents the features of that persons face. The computed face descriptor can\n * be used to measure the similarity between faces, by computing the euclidean distance of two\n * face descriptors.\n *\n * @param inputs The face image extracted from the aligned bounding box of a face. Can\n * also be an array of input images, which will be batch processed.\n * @returns Face descriptor with 128 entries or array thereof in case of batch input.\n */\nexport const computeFaceDescriptor = (input: TNetInput): Promise => nets.faceRecognitionNet.computeFaceDescriptor(input);\n\n/**\n * Recognizes the facial expressions from a face image.\n *\n * @param inputs The face image extracted from the bounding box of a face. Can\n * also be an array of input images, which will be batch processed.\n * @returns Facial expressions with corresponding probabilities or array thereof in case of batch input.\n */\nexport const recognizeFaceExpressions = (input: TNetInput): Promise => nets.faceExpressionNet.predictExpressions(input);\n\n/**\n * Predicts age and gender from a face image.\n *\n * @param inputs The face image extracted from the bounding box of a face. Can\n * also be an array of input images, which will be batch processed.\n * @returns Predictions with age, gender and gender probability or array thereof in case of batch input.\n */\nexport const predictAgeAndGender = (input: TNetInput): Promise => nets.ageGenderNet.predictAgeAndGender(input);\n\nexport const loadSsdMobilenetv1Model = (url: string) => nets.ssdMobilenetv1.load(url);\nexport const loadTinyFaceDetectorModel = (url: string) => nets.tinyFaceDetector.load(url);\nexport const loadTinyYolov2Model = (url: string) => nets.tinyYolov2.load(url);\nexport const loadFaceLandmarkModel = (url: string) => nets.faceLandmark68Net.load(url);\nexport const loadFaceLandmarkTinyModel = (url: string) => nets.faceLandmark68TinyNet.load(url);\nexport const loadFaceRecognitionModel = (url: string) => nets.faceRecognitionNet.load(url);\nexport const loadFaceExpressionModel = (url: string) => nets.faceExpressionNet.load(url);\nexport const loadAgeGenderModel = (url: string) => nets.ageGenderNet.load(url);\n\n// backward compatibility\nexport const loadFaceDetectionModel = loadSsdMobilenetv1Model;\nexport const locateFaces = ssdMobilenetv1;\nexport const detectLandmarks = detectFaceLandmarks;\n", "/* eslint-disable max-classes-per-file */\nimport * as tf from '../../dist/tfjs.esm';\n\nimport { TNetInput } from '../dom/index';\nimport { FaceExpressions } from '../faceExpressionNet/FaceExpressions';\nimport { WithFaceDetection } from '../factories/WithFaceDetection';\nimport { extendWithFaceExpressions, WithFaceExpressions } from '../factories/WithFaceExpressions';\nimport { WithFaceLandmarks } from '../factories/WithFaceLandmarks';\nimport { ComposableTask } from './ComposableTask';\nimport { ComputeAllFaceDescriptorsTask, ComputeSingleFaceDescriptorTask } from './ComputeFaceDescriptorsTasks';\nimport { extractAllFacesAndComputeResults, extractSingleFaceAndComputeResult } from './extractFacesAndComputeResults';\nimport { nets } from './nets';\nimport { PredictAllAgeAndGenderTask, PredictAllAgeAndGenderWithFaceAlignmentTask, PredictSingleAgeAndGenderTask, PredictSingleAgeAndGenderWithFaceAlignmentTask } from './PredictAgeAndGenderTask';\n\nexport class PredictFaceExpressionsTaskBase extends ComposableTask {\n constructor(\n // eslint-disable-next-line no-unused-vars\n protected parentTask: ComposableTask | Promise,\n // eslint-disable-next-line no-unused-vars\n protected input: TNetInput,\n // eslint-disable-next-line no-unused-vars\n protected extractedFaces?: Array,\n ) {\n super();\n }\n}\n\nexport class PredictAllFaceExpressionsTask> extends PredictFaceExpressionsTaskBase[], TSource[]> {\n public override async run(): Promise[]> {\n const parentResults = await this.parentTask;\n\n const faceExpressionsByFace = await extractAllFacesAndComputeResults(\n parentResults,\n this.input,\n async (faces) => Promise.all(\n faces.map((face) => nets.faceExpressionNet.predictExpressions(face) as Promise),\n ),\n this.extractedFaces,\n );\n\n return parentResults.map(\n (parentResult, i) => extendWithFaceExpressions(parentResult, faceExpressionsByFace[i]),\n );\n }\n\n withAgeAndGender() {\n return new PredictAllAgeAndGenderTask(this, this.input);\n }\n}\n\nexport class PredictSingleFaceExpressionsTask> extends PredictFaceExpressionsTaskBase | undefined, TSource | undefined> {\n public override async run(): Promise | undefined> {\n const parentResult = await this.parentTask;\n if (!parentResult) {\n return undefined;\n }\n\n const faceExpressions = await extractSingleFaceAndComputeResult(\n parentResult,\n this.input,\n (face) => nets.faceExpressionNet.predictExpressions(face) as Promise,\n this.extractedFaces,\n );\n\n return extendWithFaceExpressions(parentResult, faceExpressions);\n }\n\n withAgeAndGender() {\n return new PredictSingleAgeAndGenderTask(this, this.input);\n }\n}\n\nexport class PredictAllFaceExpressionsWithFaceAlignmentTask>> extends PredictAllFaceExpressionsTask {\n override withAgeAndGender() {\n return new PredictAllAgeAndGenderWithFaceAlignmentTask(this, this.input);\n }\n\n withFaceDescriptors() {\n return new ComputeAllFaceDescriptorsTask(this, this.input);\n }\n}\n\nexport class PredictSingleFaceExpressionsWithFaceAlignmentTask>> extends PredictSingleFaceExpressionsTask {\n override withAgeAndGender() {\n return new PredictSingleAgeAndGenderWithFaceAlignmentTask(this, this.input);\n }\n\n withFaceDescriptor() {\n return new ComputeSingleFaceDescriptorTask(this, this.input);\n }\n}\n", "/* eslint-disable max-classes-per-file */\nimport * as tf from '../../dist/tfjs.esm';\n\nimport { AgeAndGenderPrediction } from '../ageGenderNet/types';\nimport { TNetInput } from '../dom/index';\nimport { extendWithAge, WithAge } from '../factories/WithAge';\nimport { WithFaceDetection } from '../factories/WithFaceDetection';\nimport { WithFaceLandmarks } from '../factories/WithFaceLandmarks';\nimport { extendWithGender, WithGender } from '../factories/WithGender';\nimport { ComposableTask } from './ComposableTask';\nimport { ComputeAllFaceDescriptorsTask, ComputeSingleFaceDescriptorTask } from './ComputeFaceDescriptorsTasks';\nimport { extractAllFacesAndComputeResults, extractSingleFaceAndComputeResult } from './extractFacesAndComputeResults';\nimport { nets } from './nets';\nimport { PredictAllFaceExpressionsTask, PredictAllFaceExpressionsWithFaceAlignmentTask, PredictSingleFaceExpressionsTask, PredictSingleFaceExpressionsWithFaceAlignmentTask } from './PredictFaceExpressionsTask';\n\nexport class PredictAgeAndGenderTaskBase extends ComposableTask {\n constructor(\n // eslint-disable-next-line no-unused-vars\n protected parentTask: ComposableTask | Promise,\n // eslint-disable-next-line no-unused-vars\n protected input: TNetInput,\n // eslint-disable-next-line no-unused-vars\n protected extractedFaces?: Array,\n ) {\n super();\n }\n}\n\nexport class PredictAllAgeAndGenderTask> extends PredictAgeAndGenderTaskBase>[], TSource[]> {\n public override async run(): Promise>[]> {\n const parentResults = await this.parentTask;\n const ageAndGenderByFace = await extractAllFacesAndComputeResults(\n parentResults,\n this.input,\n async (faces) => Promise.all(faces.map((face) => nets.ageGenderNet.predictAgeAndGender(face) as Promise)),\n this.extractedFaces,\n );\n return parentResults.map((parentResult, i) => {\n const { age, gender, genderProbability } = ageAndGenderByFace[i];\n return extendWithAge(extendWithGender(parentResult, gender, genderProbability), age);\n });\n }\n\n withFaceExpressions() {\n return new PredictAllFaceExpressionsTask(this, this.input);\n }\n}\n\nexport class PredictSingleAgeAndGenderTask> extends PredictAgeAndGenderTaskBase> | undefined, TSource | undefined> {\n public override async run(): Promise> | undefined> {\n const parentResult = await this.parentTask;\n if (!parentResult) return undefined;\n const { age, gender, genderProbability } = await extractSingleFaceAndComputeResult(\n parentResult,\n this.input,\n (face) => nets.ageGenderNet.predictAgeAndGender(face) as Promise,\n this.extractedFaces,\n );\n return extendWithAge(extendWithGender(parentResult, gender, genderProbability), age);\n }\n\n withFaceExpressions() {\n return new PredictSingleFaceExpressionsTask(this, this.input);\n }\n}\n\nexport class PredictAllAgeAndGenderWithFaceAlignmentTask>> extends PredictAllAgeAndGenderTask {\n override withFaceExpressions() {\n return new PredictAllFaceExpressionsWithFaceAlignmentTask(this, this.input);\n }\n\n withFaceDescriptors() {\n return new ComputeAllFaceDescriptorsTask(this, this.input);\n }\n}\n\nexport class PredictSingleAgeAndGenderWithFaceAlignmentTask>> extends PredictSingleAgeAndGenderTask {\n override withFaceExpressions() {\n return new PredictSingleFaceExpressionsWithFaceAlignmentTask(this, this.input);\n }\n\n withFaceDescriptor() {\n return new ComputeSingleFaceDescriptorTask(this, this.input);\n }\n}\n", "/* eslint-disable max-classes-per-file */\nimport { TNetInput } from '../dom/index';\nimport { extendWithFaceDescriptor, WithFaceDescriptor } from '../factories/WithFaceDescriptor';\nimport { WithFaceDetection } from '../factories/WithFaceDetection';\nimport { WithFaceLandmarks } from '../factories/WithFaceLandmarks';\nimport { ComposableTask } from './ComposableTask';\nimport { extractAllFacesAndComputeResults, extractSingleFaceAndComputeResult } from './extractFacesAndComputeResults';\nimport { nets } from './nets';\nimport { PredictAllAgeAndGenderWithFaceAlignmentTask, PredictSingleAgeAndGenderWithFaceAlignmentTask } from './PredictAgeAndGenderTask';\nimport { PredictAllFaceExpressionsWithFaceAlignmentTask, PredictSingleFaceExpressionsWithFaceAlignmentTask } from './PredictFaceExpressionsTask';\n\nexport class ComputeFaceDescriptorsTaskBase extends ComposableTask {\n constructor(\n // eslint-disable-next-line no-unused-vars\n protected parentTask: ComposableTask | Promise,\n // eslint-disable-next-line no-unused-vars\n protected input: TNetInput,\n ) {\n super();\n }\n}\n\nexport class ComputeAllFaceDescriptorsTask>> extends ComputeFaceDescriptorsTaskBase[], TSource[]> {\n public override async run(): Promise[]> {\n const parentResults = await this.parentTask;\n const descriptors = await extractAllFacesAndComputeResults(\n parentResults,\n this.input,\n (faces) => Promise.all(faces.map((face) => nets.faceRecognitionNet.computeFaceDescriptor(face) as Promise)),\n null,\n (parentResult) => parentResult.landmarks.align(null, { useDlibAlignment: true }),\n );\n return descriptors.map((descriptor, i) => extendWithFaceDescriptor(parentResults[i], descriptor));\n }\n\n withFaceExpressions() {\n return new PredictAllFaceExpressionsWithFaceAlignmentTask(this, this.input);\n }\n\n withAgeAndGender() {\n return new PredictAllAgeAndGenderWithFaceAlignmentTask(this, this.input);\n }\n}\n\nexport class ComputeSingleFaceDescriptorTask>> extends ComputeFaceDescriptorsTaskBase | undefined, TSource | undefined> {\n public override async run(): Promise | undefined> {\n const parentResult = await this.parentTask;\n if (!parentResult) return undefined;\n const descriptor = await extractSingleFaceAndComputeResult(\n parentResult,\n this.input,\n (face) => nets.faceRecognitionNet.computeFaceDescriptor(face) as Promise,\n null,\n // eslint-disable-next-line no-shadow, @typescript-eslint/no-shadow\n (parentResult) => parentResult.landmarks.align(null, { useDlibAlignment: true }),\n );\n return extendWithFaceDescriptor(parentResult, descriptor);\n }\n\n withFaceExpressions() {\n return new PredictSingleFaceExpressionsWithFaceAlignmentTask(this, this.input);\n }\n\n withAgeAndGender() {\n return new PredictSingleAgeAndGenderWithFaceAlignmentTask(this, this.input);\n }\n}\n", "/* eslint-disable max-classes-per-file */\nimport * as tf from '../../dist/tfjs.esm';\n\nimport { FaceLandmarks68 } from '../classes/FaceLandmarks68';\nimport { extractFaces, extractFaceTensors, TNetInput } from '../dom/index';\nimport { FaceLandmark68Net } from '../faceLandmarkNet/FaceLandmark68Net';\nimport { FaceLandmark68TinyNet } from '../faceLandmarkNet/FaceLandmark68TinyNet';\nimport { WithFaceDetection } from '../factories/WithFaceDetection';\nimport { extendWithFaceLandmarks, WithFaceLandmarks } from '../factories/WithFaceLandmarks';\nimport { ComposableTask } from './ComposableTask';\nimport { ComputeAllFaceDescriptorsTask, ComputeSingleFaceDescriptorTask } from './ComputeFaceDescriptorsTasks';\nimport { nets } from './nets';\nimport { PredictAllAgeAndGenderWithFaceAlignmentTask, PredictSingleAgeAndGenderWithFaceAlignmentTask } from './PredictAgeAndGenderTask';\nimport { PredictAllFaceExpressionsWithFaceAlignmentTask, PredictSingleFaceExpressionsWithFaceAlignmentTask } from './PredictFaceExpressionsTask';\n\nexport class DetectFaceLandmarksTaskBase extends ComposableTask {\n constructor(\n // eslint-disable-next-line no-unused-vars\n protected parentTask: ComposableTask | Promise,\n // eslint-disable-next-line no-unused-vars\n protected input: TNetInput,\n // eslint-disable-next-line no-unused-vars\n protected useTinyLandmarkNet: boolean,\n ) {\n super();\n }\n\n protected get landmarkNet(): FaceLandmark68Net | FaceLandmark68TinyNet {\n return this.useTinyLandmarkNet\n ? nets.faceLandmark68TinyNet\n : nets.faceLandmark68Net;\n }\n}\n\nexport class DetectAllFaceLandmarksTask> extends DetectFaceLandmarksTaskBase[], TSource[]> {\n public override async run(): Promise[]> {\n const parentResults = await this.parentTask;\n const detections = parentResults.map((res) => res.detection);\n const faces: Array = this.input instanceof tf.Tensor\n ? await extractFaceTensors(this.input, detections)\n : await extractFaces(this.input, detections);\n const faceLandmarksByFace = await Promise.all(faces.map((face) => this.landmarkNet.detectLandmarks(face))) as FaceLandmarks68[];\n faces.forEach((f) => f instanceof tf.Tensor && f.dispose());\n const result = parentResults\n .filter((_parentResult, i) => faceLandmarksByFace[i])\n .map((parentResult, i) => extendWithFaceLandmarks(parentResult, faceLandmarksByFace[i]));\n return result;\n }\n\n withFaceExpressions() {\n return new PredictAllFaceExpressionsWithFaceAlignmentTask(this, this.input);\n }\n\n withAgeAndGender() {\n return new PredictAllAgeAndGenderWithFaceAlignmentTask(this, this.input);\n }\n\n withFaceDescriptors() {\n return new ComputeAllFaceDescriptorsTask(this, this.input);\n }\n}\n\nexport class DetectSingleFaceLandmarksTask> extends DetectFaceLandmarksTaskBase | undefined, TSource | undefined> {\n public override async run(): Promise | undefined> {\n const parentResult = await this.parentTask;\n if (!parentResult) {\n return undefined;\n }\n const { detection } = parentResult;\n const faces: Array = this.input instanceof tf.Tensor\n ? await extractFaceTensors(this.input, [detection])\n : await extractFaces(this.input, [detection]);\n const landmarks = await this.landmarkNet.detectLandmarks(faces[0]) as FaceLandmarks68;\n faces.forEach((f) => f instanceof tf.Tensor && f.dispose());\n return extendWithFaceLandmarks(parentResult, landmarks);\n }\n\n withFaceExpressions() {\n return new PredictSingleFaceExpressionsWithFaceAlignmentTask(this, this.input);\n }\n\n withAgeAndGender() {\n return new PredictSingleAgeAndGenderWithFaceAlignmentTask(this, this.input);\n }\n\n withFaceDescriptor() {\n return new ComputeSingleFaceDescriptorTask(this, this.input);\n }\n}\n", "/* eslint-disable max-classes-per-file */\nimport { FaceDetection } from '../classes/FaceDetection';\nimport { TNetInput } from '../dom/index';\nimport { extendWithFaceDetection, WithFaceDetection } from '../factories/WithFaceDetection';\nimport { SsdMobilenetv1Options } from '../ssdMobilenetv1/SsdMobilenetv1Options';\nimport { TinyFaceDetectorOptions } from '../tinyFaceDetector/TinyFaceDetectorOptions';\nimport { TinyYolov2Options } from '../tinyYolov2/index';\nimport { ComposableTask } from './ComposableTask';\nimport { DetectAllFaceLandmarksTask, DetectSingleFaceLandmarksTask } from './DetectFaceLandmarksTasks';\nimport { nets } from './nets';\nimport { PredictAllAgeAndGenderTask, PredictSingleAgeAndGenderTask } from './PredictAgeAndGenderTask';\nimport { PredictAllFaceExpressionsTask, PredictSingleFaceExpressionsTask } from './PredictFaceExpressionsTask';\nimport { FaceDetectionOptions } from './types';\n\nexport class DetectFacesTaskBase extends ComposableTask {\n // eslint-disable-next-line no-unused-vars\n constructor(protected input: TNetInput, protected options: FaceDetectionOptions = new SsdMobilenetv1Options()) {\n super();\n }\n}\n\nexport class DetectAllFacesTask extends DetectFacesTaskBase {\n public override async run(): Promise {\n const { input, options } = this;\n let result;\n if (options instanceof TinyFaceDetectorOptions) result = nets.tinyFaceDetector.locateFaces(input, options);\n else if (options instanceof SsdMobilenetv1Options) result = nets.ssdMobilenetv1.locateFaces(input, options);\n else if (options instanceof TinyYolov2Options) result = nets.tinyYolov2.locateFaces(input, options);\n else throw new Error('detectFaces - expected options to be instance of TinyFaceDetectorOptions | SsdMobilenetv1Options | TinyYolov2Options');\n return result;\n }\n\n private runAndExtendWithFaceDetections(): Promise[]> {\n return new Promise[]>((resolve, reject) => {\n this.run()\n .then((detections) => resolve(detections.map((detection) => extendWithFaceDetection({}, detection))))\n .catch((err) => reject(err));\n });\n }\n\n withFaceLandmarks(useTinyLandmarkNet = false) {\n return new DetectAllFaceLandmarksTask(\n this.runAndExtendWithFaceDetections(),\n this.input,\n useTinyLandmarkNet,\n );\n }\n\n withFaceExpressions() {\n return new PredictAllFaceExpressionsTask(\n this.runAndExtendWithFaceDetections(),\n this.input,\n );\n }\n\n withAgeAndGender() {\n return new PredictAllAgeAndGenderTask(\n this.runAndExtendWithFaceDetections(),\n this.input,\n );\n }\n}\n\nexport class DetectSingleFaceTask extends DetectFacesTaskBase {\n public override async run(): Promise {\n const faceDetections = await new DetectAllFacesTask(this.input, this.options);\n let faceDetectionWithHighestScore = faceDetections[0];\n faceDetections.forEach((faceDetection) => {\n if (faceDetection.score > faceDetectionWithHighestScore.score) faceDetectionWithHighestScore = faceDetection;\n });\n return faceDetectionWithHighestScore;\n }\n\n private runAndExtendWithFaceDetection(): Promise | undefined> {\n // eslint-disable-next-line no-async-promise-executor\n return new Promise | undefined>(async (resolve) => {\n const detection = await this.run();\n resolve(detection ? extendWithFaceDetection<{}>({}, detection) : undefined);\n });\n }\n\n withFaceLandmarks(useTinyLandmarkNet = false) {\n return new DetectSingleFaceLandmarksTask(\n this.runAndExtendWithFaceDetection(),\n this.input,\n useTinyLandmarkNet,\n );\n }\n\n withFaceExpressions() {\n return new PredictSingleFaceExpressionsTask(\n this.runAndExtendWithFaceDetection(),\n this.input,\n );\n }\n\n withAgeAndGender() {\n return new PredictSingleAgeAndGenderTask(\n this.runAndExtendWithFaceDetection(),\n this.input,\n );\n }\n}\n", "import { TNetInput } from '../dom/index';\nimport { SsdMobilenetv1Options } from '../ssdMobilenetv1/SsdMobilenetv1Options';\nimport { DetectAllFacesTask, DetectSingleFaceTask } from './DetectFacesTasks';\nimport { FaceDetectionOptions } from './types';\n\nexport function detectSingleFace(input: TNetInput, options: FaceDetectionOptions = new SsdMobilenetv1Options()): DetectSingleFaceTask {\n return new DetectSingleFaceTask(input, options);\n}\n\nexport function detectAllFaces(input: TNetInput, options: FaceDetectionOptions = new SsdMobilenetv1Options()): DetectAllFacesTask {\n return new DetectAllFacesTask(input, options);\n}\n", "import { TNetInput } from '../dom/index';\nimport { WithFaceDescriptor, WithFaceDetection, WithFaceLandmarks } from '../factories/index';\nimport { SsdMobilenetv1Options } from '../ssdMobilenetv1/index';\nimport { ITinyYolov2Options, TinyYolov2Options } from '../tinyYolov2/index';\nimport { detectAllFaces } from './detectFaces';\n\nexport async function allFacesSsdMobilenetv1(input: TNetInput, minConfidence?: number): Promise>>[]> {\n return detectAllFaces(input, new SsdMobilenetv1Options(minConfidence ? { minConfidence } : {}))\n .withFaceLandmarks()\n .withFaceDescriptors();\n}\n\nexport async function allFacesTinyYolov2(input: TNetInput, forwardParams: ITinyYolov2Options = {}): Promise>>[]> {\n return detectAllFaces(input, new TinyYolov2Options(forwardParams))\n .withFaceLandmarks()\n .withFaceDescriptors();\n}\n\nexport const allFaces = allFacesSsdMobilenetv1;\n", "export function euclideanDistance(arr1: number[] | Float32Array, arr2: number[] | Float32Array) {\n if (arr1.length !== arr2.length) throw new Error('euclideanDistance: arr1.length !== arr2.length');\n const desc1 = Array.from(arr1);\n const desc2 = Array.from(arr2);\n return Math.sqrt(\n desc1\n .map((val, i) => val - desc2[i])\n .reduce((res, diff) => res + (diff * diff), 0),\n );\n}\n", "import { FaceMatch } from '../classes/FaceMatch';\nimport { LabeledFaceDescriptors } from '../classes/LabeledFaceDescriptors';\nimport { euclideanDistance } from '../euclideanDistance';\nimport { WithFaceDescriptor } from '../factories/index';\n\nexport class FaceMatcher {\n private _labeledDescriptors: LabeledFaceDescriptors[];\n private _distanceThreshold: number;\n\n constructor(inputs: LabeledFaceDescriptors | WithFaceDescriptor | Float32Array | Array | Float32Array>, distanceThreshold = 0.6) {\n this._distanceThreshold = distanceThreshold;\n const inputArray = Array.isArray(inputs) ? inputs : [inputs];\n if (!inputArray.length) throw new Error('FaceRecognizer.constructor - expected atleast one input');\n let count = 1;\n const createUniqueLabel = () => `person ${count++}`;\n this._labeledDescriptors = inputArray.map((desc) => {\n if (desc instanceof LabeledFaceDescriptors) return desc;\n if (desc instanceof Float32Array) return new LabeledFaceDescriptors(createUniqueLabel(), [desc]);\n if (desc.descriptor && desc.descriptor instanceof Float32Array) return new LabeledFaceDescriptors(createUniqueLabel(), [desc.descriptor]);\n throw new Error('FaceRecognizer.constructor - expected inputs to be of type LabeledFaceDescriptors | WithFaceDescriptor | Float32Array | Array | Float32Array>');\n });\n }\n\n public get labeledDescriptors(): LabeledFaceDescriptors[] { return this._labeledDescriptors; }\n\n public get distanceThreshold(): number { return this._distanceThreshold; }\n\n public computeMeanDistance(queryDescriptor: Float32Array, descriptors: Float32Array[]): number {\n return descriptors\n .map((d) => euclideanDistance(d, queryDescriptor))\n .reduce((d1, d2) => d1 + d2, 0) / (descriptors.length || 1);\n }\n\n public matchDescriptor(queryDescriptor: Float32Array): FaceMatch {\n return this.labeledDescriptors\n .map(({ descriptors, label }) => new FaceMatch(label, this.computeMeanDistance(queryDescriptor, descriptors)))\n .reduce((best, curr) => (best.distance < curr.distance ? best : curr));\n }\n\n public findBestMatch(queryDescriptor: Float32Array): FaceMatch {\n const bestMatch = this.matchDescriptor(queryDescriptor);\n return (bestMatch.distance < this._distanceThreshold) ? bestMatch : new FaceMatch('unknown', bestMatch.distance);\n }\n\n public toJSON(): any {\n return {\n distanceThreshold: this._distanceThreshold,\n labeledDescriptors: this._labeledDescriptors.map((ld) => ld.toJSON()),\n };\n }\n\n public static fromJSON(json: any): FaceMatcher {\n const labeledDescriptors = json.labeledDescriptors.map((ld: any) => LabeledFaceDescriptors.fromJSON(ld));\n return new FaceMatcher(labeledDescriptors, json.distanceThreshold);\n }\n}\n", "import { TinyFaceDetector } from './TinyFaceDetector';\n\nexport * from './TinyFaceDetector';\nexport * from './TinyFaceDetectorOptions';\n\nexport function createTinyFaceDetector(weights: Float32Array) {\n const net = new TinyFaceDetector();\n net.extractWeights(weights);\n return net;\n}\n", "import { Dimensions, IDimensions } from './classes/index';\nimport { FaceDetection } from './classes/FaceDetection';\nimport { FaceLandmarks } from './classes/FaceLandmarks';\nimport { extendWithFaceDetection, isWithFaceDetection } from './factories/WithFaceDetection';\nimport { extendWithFaceLandmarks, isWithFaceLandmarks } from './factories/WithFaceLandmarks';\n\nexport function resizeResults(results: T, dimensions: IDimensions): T {\n const { width, height } = new Dimensions(dimensions.width, dimensions.height);\n\n if (width <= 0 || height <= 0) {\n throw new Error(`resizeResults - invalid dimensions: ${JSON.stringify({ width, height })}`);\n }\n\n if (Array.isArray(results)) {\n // return results.map(obj => resizeResults(obj, { width, height })) as any as T\n return (results as Array).map((obj) => resizeResults(obj, { width, height } as IDimensions)) as any as T;\n }\n\n if (isWithFaceLandmarks(results)) {\n const resizedDetection = results.detection.forSize(width, height);\n const resizedLandmarks = results.unshiftedLandmarks.forSize(resizedDetection.box.width, resizedDetection.box.height);\n return extendWithFaceLandmarks(extendWithFaceDetection(results, resizedDetection), resizedLandmarks);\n }\n\n if (isWithFaceDetection(results)) {\n return extendWithFaceDetection(results, results.detection.forSize(width, height));\n }\n\n if (results instanceof FaceLandmarks || results instanceof FaceDetection) {\n return (results as any).forSize(width, height);\n }\n\n return results;\n}\n", "import * as tf from '../dist/tfjs.esm';\nimport * as draw from './draw/index';\nimport * as utils from './utils/index';\nimport * as pkg from '../package.json';\n\nexport { tf, draw, utils };\n\nexport * from './ageGenderNet/index';\nexport * from './classes/index';\nexport * from './dom/index';\nexport * from './env/index';\nexport * from './faceExpressionNet/index';\nexport * from './faceLandmarkNet/index';\nexport * from './faceRecognitionNet/index';\nexport * from './factories/index';\nexport * from './globalApi/index';\nexport * from './ops/index';\nexport * from './ssdMobilenetv1/index';\nexport * from './tinyFaceDetector/index';\nexport * from './tinyYolov2/index';\nexport * from './euclideanDistance';\nexport * from './NeuralNetwork';\nexport * from './resizeResults';\n\nexport const version = pkg.version as string;\n\n// set webgl defaults\n// if (browser) tf.ENV.set('WEBGL_USE_SHAPES_UNIFORMS', true);\n"], + "sourcesContent": ["/*\n Face-API\n homepage: \n author: '\n*/\n\nvar zq=Object.create;var f0=Object.defineProperty;var Bq=Object.getOwnPropertyDescriptor;var Vq=Object.getOwnPropertyNames;var Gq=Object.getPrototypeOf,Wq=Object.prototype.hasOwnProperty;var br=(r,t)=>()=>(t||r((t={exports:{}}).exports,t),t.exports),Kt=(r,t)=>{for(var e in t)f0(r,e,{get:t[e],enumerable:!0})},Uq=(r,t,e,n)=>{if(t&&typeof t==\"object\"||typeof t==\"function\")for(let o of Vq(t))!Wq.call(r,o)&&o!==e&&f0(r,o,{get:()=>t[o],enumerable:!(n=Bq(t,o))||n.enumerable});return r};var Gl=(r,t,e)=>(e=r!=null?zq(Gq(r)):{},Uq(t||!r||!r.__esModule?f0(e,\"default\",{value:r,enumerable:!0}):e,r));var W_=br((gft,G_)=>{G_.exports=He;var yo=null;try{yo=new WebAssembly.Instance(new WebAssembly.Module(new Uint8Array([0,97,115,109,1,0,0,0,1,13,2,96,0,1,127,96,4,127,127,127,127,1,127,3,7,6,0,1,1,1,1,1,6,6,1,127,1,65,0,11,7,50,6,3,109,117,108,0,1,5,100,105,118,95,115,0,2,5,100,105,118,95,117,0,3,5,114,101,109,95,115,0,4,5,114,101,109,95,117,0,5,8,103,101,116,95,104,105,103,104,0,0,10,191,1,6,4,0,35,0,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,126,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,127,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,128,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,129,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,130,34,4,66,32,135,167,36,0,32,4,167,11])),{}).exports}catch(r){}function He(r,t,e){this.low=r|0,this.high=t|0,this.unsigned=!!e}He.prototype.__isLong__;Object.defineProperty(He.prototype,\"__isLong__\",{value:!0});function zn(r){return(r&&r.__isLong__)===!0}He.isLong=zn;var R_={},F_={};function oc(r,t){var e,n,o;return t?(r>>>=0,(o=0<=r&&r<256)&&(n=F_[r],n)?n:(e=qe(r,(r|0)<0?-1:0,!0),o&&(F_[r]=e),e)):(r|=0,(o=-128<=r&&r<128)&&(n=R_[r],n)?n:(e=qe(r,r<0?-1:0,!1),o&&(R_[r]=e),e))}He.fromInt=oc;function bo(r,t){if(isNaN(r))return t?nc:wo;if(t){if(r<0)return nc;if(r>=L_)return V_}else{if(r<=-M_)return Ln;if(r+1>=M_)return B_}return r<0?bo(-r,t).neg():qe(r%Hp|0,r/Hp|0,t)}He.fromNumber=bo;function qe(r,t,e){return new He(r,t,e)}He.fromBits=qe;var Jg=Math.pow;function k0(r,t,e){if(r.length===0)throw Error(\"empty string\");if(r===\"NaN\"||r===\"Infinity\"||r===\"+Infinity\"||r===\"-Infinity\")return wo;if(typeof t==\"number\"?(e=t,t=!1):t=!!t,e=e||10,e<2||360)throw Error(\"interior hyphen\");if(n===0)return k0(r.substring(1),t,e).neg();for(var o=bo(Jg(e,8)),s=wo,i=0;i>>0:this.low};xt.toNumber=function(){return this.unsigned?(this.high>>>0)*Hp+(this.low>>>0):this.high*Hp+(this.low>>>0)};xt.toString=function(t){if(t=t||10,t<2||36>>0,c=l.toString(t);if(i=u,i.isZero())return c+a;for(;c.length<6;)c=\"0\"+c;a=\"\"+c+a}};xt.getHighBits=function(){return this.high};xt.getHighBitsUnsigned=function(){return this.high>>>0};xt.getLowBits=function(){return this.low};xt.getLowBitsUnsigned=function(){return this.low>>>0};xt.getNumBitsAbs=function(){if(this.isNegative())return this.eq(Ln)?64:this.neg().getNumBitsAbs();for(var t=this.high!=0?this.high:this.low,e=31;e>0&&!(t&1<=0};xt.isOdd=function(){return(this.low&1)===1};xt.isEven=function(){return(this.low&1)===0};xt.equals=function(t){return zn(t)||(t=oi(t)),this.unsigned!==t.unsigned&&this.high>>>31===1&&t.high>>>31===1?!1:this.high===t.high&&this.low===t.low};xt.eq=xt.equals;xt.notEquals=function(t){return!this.eq(t)};xt.neq=xt.notEquals;xt.ne=xt.notEquals;xt.lessThan=function(t){return this.comp(t)<0};xt.lt=xt.lessThan;xt.lessThanOrEqual=function(t){return this.comp(t)<=0};xt.lte=xt.lessThanOrEqual;xt.le=xt.lessThanOrEqual;xt.greaterThan=function(t){return this.comp(t)>0};xt.gt=xt.greaterThan;xt.greaterThanOrEqual=function(t){return this.comp(t)>=0};xt.gte=xt.greaterThanOrEqual;xt.ge=xt.greaterThanOrEqual;xt.compare=function(t){if(zn(t)||(t=oi(t)),this.eq(t))return 0;var e=this.isNegative(),n=t.isNegative();return e&&!n?-1:!e&&n?1:this.unsigned?t.high>>>0>this.high>>>0||t.high===this.high&&t.low>>>0>this.low>>>0?-1:1:this.sub(t).isNegative()?-1:1};xt.comp=xt.compare;xt.negate=function(){return!this.unsigned&&this.eq(Ln)?Ln:this.not().add(Up)};xt.neg=xt.negate;xt.add=function(t){zn(t)||(t=oi(t));var e=this.high>>>16,n=this.high&65535,o=this.low>>>16,s=this.low&65535,i=t.high>>>16,a=t.high&65535,u=t.low>>>16,l=t.low&65535,c=0,p=0,m=0,f=0;return f+=s+l,m+=f>>>16,f&=65535,m+=o+u,p+=m>>>16,m&=65535,p+=n+a,c+=p>>>16,p&=65535,c+=e+i,c&=65535,qe(m<<16|f,c<<16|p,this.unsigned)};xt.subtract=function(t){return zn(t)||(t=oi(t)),this.add(t.neg())};xt.sub=xt.subtract;xt.multiply=function(t){if(this.isZero())return wo;if(zn(t)||(t=oi(t)),yo){var e=yo.mul(this.low,this.high,t.low,t.high);return qe(e,yo.get_high(),this.unsigned)}if(t.isZero())return wo;if(this.eq(Ln))return t.isOdd()?Ln:wo;if(t.eq(Ln))return this.isOdd()?Ln:wo;if(this.isNegative())return t.isNegative()?this.neg().mul(t.neg()):this.neg().mul(t).neg();if(t.isNegative())return this.mul(t.neg()).neg();if(this.lt(P_)&&t.lt(P_))return bo(this.toNumber()*t.toNumber(),this.unsigned);var n=this.high>>>16,o=this.high&65535,s=this.low>>>16,i=this.low&65535,a=t.high>>>16,u=t.high&65535,l=t.low>>>16,c=t.low&65535,p=0,m=0,f=0,d=0;return d+=i*c,f+=d>>>16,d&=65535,f+=s*c,m+=f>>>16,f&=65535,f+=i*l,m+=f>>>16,f&=65535,m+=o*c,p+=m>>>16,m&=65535,m+=s*l,p+=m>>>16,m&=65535,m+=i*u,p+=m>>>16,m&=65535,p+=n*c+o*l+s*u+i*a,p&=65535,qe(f<<16|d,p<<16|m,this.unsigned)};xt.mul=xt.multiply;xt.divide=function(t){if(zn(t)||(t=oi(t)),t.isZero())throw Error(\"division by zero\");if(yo){if(!this.unsigned&&this.high===-2147483648&&t.low===-1&&t.high===-1)return this;var e=(this.unsigned?yo.div_u:yo.div_s)(this.low,this.high,t.low,t.high);return qe(e,yo.get_high(),this.unsigned)}if(this.isZero())return this.unsigned?nc:wo;var n,o,s;if(this.unsigned){if(t.unsigned||(t=t.toUnsigned()),t.gt(this))return nc;if(t.gt(this.shru(1)))return z_;s=nc}else{if(this.eq(Ln)){if(t.eq(Up)||t.eq(N0))return Ln;if(t.eq(Ln))return Up;var i=this.shr(1);return n=i.div(t).shl(1),n.eq(wo)?t.isNegative()?Up:N0:(o=this.sub(t.mul(n)),s=n.add(o.div(t)),s)}else if(t.eq(Ln))return this.unsigned?nc:wo;if(this.isNegative())return t.isNegative()?this.neg().div(t.neg()):this.neg().div(t).neg();if(t.isNegative())return this.div(t.neg()).neg();s=wo}for(o=this;o.gte(t);){n=Math.max(1,Math.floor(o.toNumber()/t.toNumber()));for(var a=Math.ceil(Math.log(n)/Math.LN2),u=a<=48?1:Jg(2,a-48),l=bo(n),c=l.mul(t);c.isNegative()||c.gt(o);)n-=u,l=bo(n,this.unsigned),c=l.mul(t);l.isZero()&&(l=Up),s=s.add(l),o=o.sub(c)}return s};xt.div=xt.divide;xt.modulo=function(t){if(zn(t)||(t=oi(t)),yo){var e=(this.unsigned?yo.rem_u:yo.rem_s)(this.low,this.high,t.low,t.high);return qe(e,yo.get_high(),this.unsigned)}return this.sub(this.div(t).mul(t))};xt.mod=xt.modulo;xt.rem=xt.modulo;xt.not=function(){return qe(~this.low,~this.high,this.unsigned)};xt.and=function(t){return zn(t)||(t=oi(t)),qe(this.low&t.low,this.high&t.high,this.unsigned)};xt.or=function(t){return zn(t)||(t=oi(t)),qe(this.low|t.low,this.high|t.high,this.unsigned)};xt.xor=function(t){return zn(t)||(t=oi(t)),qe(this.low^t.low,this.high^t.high,this.unsigned)};xt.shiftLeft=function(t){return zn(t)&&(t=t.toInt()),(t&=63)===0?this:t<32?qe(this.low<>>32-t,this.unsigned):qe(0,this.low<>>t|this.high<<32-t,this.high>>t,this.unsigned):qe(this.high>>t-32,this.high>=0?0:-1,this.unsigned)};xt.shr=xt.shiftRight;xt.shiftRightUnsigned=function(t){if(zn(t)&&(t=t.toInt()),t&=63,t===0)return this;var e=this.high;if(t<32){var n=this.low;return qe(n>>>t|e<<32-t,e>>>t,this.unsigned)}else return t===32?qe(e,0,this.unsigned):qe(e>>>t-32,0,this.unsigned)};xt.shru=xt.shiftRightUnsigned;xt.shr_u=xt.shiftRightUnsigned;xt.toSigned=function(){return this.unsigned?qe(this.low,this.high,!1):this};xt.toUnsigned=function(){return this.unsigned?this:qe(this.low,this.high,!0)};xt.toBytes=function(t){return t?this.toBytesLE():this.toBytesBE()};xt.toBytesLE=function(){var t=this.high,e=this.low;return[e&255,e>>>8&255,e>>>16&255,e>>>24,t&255,t>>>8&255,t>>>16&255,t>>>24]};xt.toBytesBE=function(){var t=this.high,e=this.low;return[t>>>24,t>>>16&255,t>>>8&255,t&255,e>>>24,e>>>16&255,e>>>8&255,e&255]};He.fromBytes=function(t,e,n){return n?He.fromBytesLE(t,e):He.fromBytesBE(t,e)};He.fromBytesLE=function(t,e){return new He(t[0]|t[1]<<8|t[2]<<16|t[3]<<24,t[4]|t[5]<<8|t[6]<<16|t[7]<<24,e)};He.fromBytesBE=function(t,e){return new He(t[4]<<24|t[5]<<16|t[6]<<8|t[7],t[0]<<24|t[1]<<16|t[2]<<8|t[3],e)}});var TE=br(()=>{});var _E=br(()=>{});var nA=br((rA,sN)=>{(function(r,t,e){function n(a){var u=this,l=i();u.next=function(){var c=2091639*u.s0+u.c*23283064365386963e-26;return u.s0=u.s1,u.s1=u.s2,u.s2=c-(u.c=c|0)},u.c=1,u.s0=l(\" \"),u.s1=l(\" \"),u.s2=l(\" \"),u.s0-=l(a),u.s0<0&&(u.s0+=1),u.s1-=l(a),u.s1<0&&(u.s1+=1),u.s2-=l(a),u.s2<0&&(u.s2+=1),l=null}function o(a,u){return u.c=a.c,u.s0=a.s0,u.s1=a.s1,u.s2=a.s2,u}function s(a,u){var l=new n(a),c=u&&u.state,p=l.next;return p.int32=function(){return l.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,c&&(typeof c==\"object\"&&o(c,l),p.state=function(){return o(l,{})}),p}function i(){var a=4022871197,u=function(l){l=String(l);for(var c=0;c>>0,p-=a,p*=a,a=p>>>0,p-=a,a+=p*4294967296}return(a>>>0)*23283064365386963e-26};return u}t&&t.exports?t.exports=s:e&&e.amd?e(function(){return s}):this.alea=s})(rA,typeof sN==\"object\"&&sN,typeof define==\"function\"&&define)});var sA=br((oA,iN)=>{(function(r,t,e){function n(i){var a=this,u=\"\";a.x=0,a.y=0,a.z=0,a.w=0,a.next=function(){var c=a.x^a.x<<11;return a.x=a.y,a.y=a.z,a.z=a.w,a.w^=a.w>>>19^c^c>>>8},i===(i|0)?a.x=i:u+=i;for(var l=0;l>>0)/4294967296};return c.double=function(){do var p=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=u.next,c.quick=c,l&&(typeof l==\"object\"&&o(l,u),c.state=function(){return o(u,{})}),c}t&&t.exports?t.exports=s:e&&e.amd?e(function(){return s}):this.xor128=s})(oA,typeof iN==\"object\"&&iN,typeof define==\"function\"&&define)});var aA=br((iA,aN)=>{(function(r,t,e){function n(i){var a=this,u=\"\";a.next=function(){var c=a.x^a.x>>>2;return a.x=a.y,a.y=a.z,a.z=a.w,a.w=a.v,(a.d=a.d+362437|0)+(a.v=a.v^a.v<<4^(c^c<<1))|0},a.x=0,a.y=0,a.z=0,a.w=0,a.v=0,i===(i|0)?a.x=i:u+=i;for(var l=0;l>>4),a.next()}function o(i,a){return a.x=i.x,a.y=i.y,a.z=i.z,a.w=i.w,a.v=i.v,a.d=i.d,a}function s(i,a){var u=new n(i),l=a&&a.state,c=function(){return(u.next()>>>0)/4294967296};return c.double=function(){do var p=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=u.next,c.quick=c,l&&(typeof l==\"object\"&&o(l,u),c.state=function(){return o(u,{})}),c}t&&t.exports?t.exports=s:e&&e.amd?e(function(){return s}):this.xorwow=s})(iA,typeof aN==\"object\"&&aN,typeof define==\"function\"&&define)});var uA=br((lA,lN)=>{(function(r,t,e){function n(i){var a=this;a.next=function(){var l=a.x,c=a.i,p,m,f;return p=l[c],p^=p>>>7,m=p^p<<24,p=l[c+1&7],m^=p^p>>>10,p=l[c+3&7],m^=p^p>>>3,p=l[c+4&7],m^=p^p<<7,p=l[c+7&7],p=p^p<<13,m^=p^p<<9,l[c]=m,a.i=c+1&7,m};function u(l,c){var p,m,f=[];if(c===(c|0))m=f[0]=c;else for(c=\"\"+c,p=0;p0;--p)l.next()}u(a,i)}function o(i,a){return a.x=i.x.slice(),a.i=i.i,a}function s(i,a){i==null&&(i=+new Date);var u=new n(i),l=a&&a.state,c=function(){return(u.next()>>>0)/4294967296};return c.double=function(){do var p=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=u.next,c.quick=c,l&&(l.x&&o(l,u),c.state=function(){return o(u,{})}),c}t&&t.exports?t.exports=s:e&&e.amd?e(function(){return s}):this.xorshift7=s})(lA,typeof lN==\"object\"&&lN,typeof define==\"function\"&&define)});var pA=br((cA,uN)=>{(function(r,t,e){function n(i){var a=this;a.next=function(){var l=a.w,c=a.X,p=a.i,m,f;return a.w=l=l+1640531527|0,f=c[p+34&127],m=c[p=p+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=c[p]=f^m,a.i=p,f+(l^l>>>16)|0};function u(l,c){var p,m,f,d,h,g=[],x=128;for(c===(c|0)?(m=c,c=null):(c=c+\"\\0\",m=0,x=Math.max(x,c.length)),f=0,d=-32;d>>15,m^=m<<4,m^=m>>>13,d>=0&&(h=h+1640531527|0,p=g[d&127]^=m+h,f=p==0?f+1:0);for(f>=128&&(g[(c&&c.length||0)&127]=-1),f=127,d=4*128;d>0;--d)m=g[f+34&127],p=g[f=f+1&127],m^=m<<13,p^=p<<17,m^=m>>>15,p^=p>>>12,g[f]=m^p;l.w=h,l.X=g,l.i=f}u(a,i)}function o(i,a){return a.i=i.i,a.w=i.w,a.X=i.X.slice(),a}function s(i,a){i==null&&(i=+new Date);var u=new n(i),l=a&&a.state,c=function(){return(u.next()>>>0)/4294967296};return c.double=function(){do var p=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=u.next,c.quick=c,l&&(l.X&&o(l,u),c.state=function(){return o(u,{})}),c}t&&t.exports?t.exports=s:e&&e.amd?e(function(){return s}):this.xor4096=s})(cA,typeof uN==\"object\"&&uN,typeof define==\"function\"&&define)});var fA=br((mA,cN)=>{(function(r,t,e){function n(i){var a=this,u=\"\";a.next=function(){var c=a.b,p=a.c,m=a.d,f=a.a;return c=c<<25^c>>>7^p,p=p-m|0,m=m<<24^m>>>8^f,f=f-c|0,a.b=c=c<<20^c>>>12^p,a.c=p=p-m|0,a.d=m<<16^p>>>16^f,a.a=f-c|0},a.a=0,a.b=0,a.c=-1640531527,a.d=1367130551,i===Math.floor(i)?(a.a=i/4294967296|0,a.b=i|0):u+=i;for(var l=0;l>>0)/4294967296};return c.double=function(){do var p=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=u.next,c.quick=c,l&&(typeof l==\"object\"&&o(l,u),c.state=function(){return o(u,{})}),c}t&&t.exports?t.exports=s:e&&e.amd?e(function(){return s}):this.tychei=s})(mA,typeof cN==\"object\"&&cN,typeof define==\"function\"&&define)});var dA=br(()=>{});var gA=br((hA,ty)=>{(function(r,t,e){var n=256,o=6,s=52,i=\"random\",a=e.pow(n,o),u=e.pow(2,s),l=u*2,c=n-1,p;function m(w,I,N){var E=[];I=I==!0?{entropy:!0}:I||{};var A=g(h(I.entropy?[w,b(t)]:w==null?x():w,3),E),D=new f(E),F=function(){for(var M=D.g(o),V=a,G=0;M=l;)M/=2,V/=2,G>>>=1;return(M+G)/V};return F.int32=function(){return D.g(4)|0},F.quick=function(){return D.g(4)/4294967296},F.double=F,g(b(D.S),t),(I.pass||N||function(M,V,G,W){return W&&(W.S&&d(W,D),M.state=function(){return d(D,{})}),G?(e[i]=M,V):M})(F,A,\"global\"in I?I.global:this==e,I.state)}function f(w){var I,N=w.length,E=this,A=0,D=E.i=E.j=0,F=E.S=[];for(N||(w=[N++]);A{var BX=nA(),VX=sA(),GX=aA(),WX=uA(),UX=pA(),HX=fA(),hc=gA();hc.alea=BX;hc.xor128=VX;hc.xorwow=GX;hc.xorshift7=WX;hc.xor4096=UX;hc.tychei=HX;xA.exports=hc});var $k=br(()=>{});var hw=br(()=>{});var e_=br(()=>{});var KH=br(()=>{});var jH=br(()=>{});var XH=br(()=>{});var YH=br((RC,n_)=>{var r_=(()=>{var r=typeof document!=\"undefined\"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!=\"undefined\"&&(r=r||__filename),function(t){t=t||{};function e(){return it.buffer!=re&&Xe(it.buffer),be}function n(){return it.buffer!=re&&Xe(it.buffer),de}function o(){return it.buffer!=re&&Xe(it.buffer),Ee}function s(){return it.buffer!=re&&Xe(it.buffer),On}function i(){return it.buffer!=re&&Xe(it.buffer),lr}function a(){return it.buffer!=re&&Xe(it.buffer),Zn}function u(){return it.buffer!=re&&Xe(it.buffer),Br}var l=typeof t!=\"undefined\"?t:{},c,p;l.ready=new Promise(function(P,U){c=P,p=U});var m;typeof process!=\"undefined\"&&process.listeners&&(m={uncaughtException:process.listeners(\"uncaughtException\"),unhandledRejection:process.listeners(\"unhandledRejection\")});var f=Object.assign({},l),d=[],h=\"./this.program\",g=(P,U)=>{throw U},x=typeof window==\"object\",b=typeof importScripts==\"function\",w=typeof process==\"object\"&&typeof process.versions==\"object\"&&typeof process.versions.node==\"string\",I=l.ENVIRONMENT_IS_PTHREAD||!1,N=\"\";function E(P){return l.locateFile?l.locateFile(P,N):N+P}var A,D,F,M;function V(P){if(P instanceof Yu)return;Y(\"exiting due to exception: \"+P)}if(w){var G=hw(),W=e_();b?N=W.dirname(N)+\"/\":N=__dirname+\"/\",A=(U,dt)=>(U=wp(U)?new URL(U):W.normalize(U),G.readFileSync(U,dt?void 0:\"utf8\")),F=U=>{var dt=A(U,!0);return dt.buffer||(dt=new Uint8Array(dt)),dt},D=(U,dt,Pt)=>{U=wp(U)?new URL(U):W.normalize(U),G.readFile(U,function(Jt,Zt){Jt?Pt(Jt):dt(Zt.buffer)})},process.argv.length>1&&(h=process.argv[1].replace(/\\\\/g,\"/\")),d=process.argv.slice(2),process.on(\"uncaughtException\",function(U){if(!(U instanceof Yu))throw U}),process.on(\"unhandledRejection\",function(U){throw U}),g=(U,dt)=>{if(zo())throw process.exitCode=U,dt;V(dt),process.exit(U)},l.inspect=function(){return\"[Emscripten Module object]\"};let P;try{P=KH()}catch(U){throw console.error('The \"worker_threads\" module is not supported in this node.js build - perhaps a newer version is needed?'),U}global.Worker=P.Worker}else(x||b)&&(b?N=self.location.href:typeof document!=\"undefined\"&&document.currentScript&&(N=document.currentScript.src),typeof r!=\"undefined\"&&r&&(N=r),N.indexOf(\"blob:\")!==0?N=N.substr(0,N.replace(/[?#].*/,\"\").lastIndexOf(\"/\")+1):N=\"\",w||(A=P=>{var U=new XMLHttpRequest;return U.open(\"GET\",P,!1),U.send(null),U.responseText},b&&(F=P=>{var U=new XMLHttpRequest;return U.open(\"GET\",P,!1),U.responseType=\"arraybuffer\",U.send(null),new Uint8Array(U.response)}),D=(P,U,dt)=>{var Pt=new XMLHttpRequest;Pt.open(\"GET\",P,!0),Pt.responseType=\"arraybuffer\",Pt.onload=()=>{if(Pt.status==200||Pt.status==0&&Pt.response){U(Pt.response);return}dt()},Pt.onerror=dt,Pt.send(null)}),M=P=>document.title=P);w&&typeof performance==\"undefined\"&&(global.performance=jH().performance);var q=console.log.bind(console),H=console.warn.bind(console);w&&(q=P=>G.writeSync(1,P+`\n`),H=P=>G.writeSync(2,P+`\n`));var j=l.print||q,Y=l.printErr||H;Object.assign(l,f),f=null,l.arguments&&(d=l.arguments),l.thisProgram&&(h=l.thisProgram),l.quit&&(g=l.quit);var Z=4,et=Atomics.load,nt=Atomics.store,st=Atomics.compareExchange,lt;l.wasmBinary&&(lt=l.wasmBinary);var ot=l.noExitRuntime||!0;typeof WebAssembly!=\"object\"&&Xu(\"no native wasm support detected\");var it,ft,gt=!1,Ct;function Rt(P,U){P||Xu(U)}var Dt=typeof TextDecoder!=\"undefined\"?new TextDecoder(\"utf8\"):void 0;function Ht(P,U,dt){U>>>=0;for(var Pt=U+dt,Jt=U;P[Jt]&&!(Jt>=Pt);)++Jt;if(Jt-U>16&&P.buffer&&Dt)return Dt.decode(P.buffer instanceof SharedArrayBuffer?P.slice(U,Jt):P.subarray(U,Jt));for(var Zt=\"\";U>10,56320|eo&1023)}}return Zt}function qt(P,U){return P>>>=0,P?Ht(n(),P,U):\"\"}function pe(P,U,dt,Pt){if(dt>>>=0,!(Pt>0))return 0;for(var Jt=dt,Zt=dt+Pt-1,bt=0;bt=55296&&$t<=57343){var or=P.charCodeAt(++bt);$t=65536+(($t&1023)<<10)|or&1023}if($t<=127){if(dt>=Zt)break;U[dt++>>>0]=$t}else if($t<=2047){if(dt+1>=Zt)break;U[dt++>>>0]=192|$t>>6,U[dt++>>>0]=128|$t&63}else if($t<=65535){if(dt+2>=Zt)break;U[dt++>>>0]=224|$t>>12,U[dt++>>>0]=128|$t>>6&63,U[dt++>>>0]=128|$t&63}else{if(dt+3>=Zt)break;U[dt++>>>0]=240|$t>>18,U[dt++>>>0]=128|$t>>12&63,U[dt++>>>0]=128|$t>>6&63,U[dt++>>>0]=128|$t&63}}return U[dt>>>0]=0,dt-Jt}function ye(P,U,dt){return pe(P,n(),U,dt)}var re,be,de,Ee,Ae,On,lr,Zn,Br;I&&(re=l.buffer);function Xe(P){re=P,l.HEAP8=be=new Int8Array(P),l.HEAP16=Ee=new Int16Array(P),l.HEAP32=On=new Int32Array(P),l.HEAPU8=de=new Uint8Array(P),l.HEAPU16=Ae=new Uint16Array(P),l.HEAPU32=lr=new Uint32Array(P),l.HEAPF32=Zn=new Float32Array(P),l.HEAPF64=Br=new Float64Array(P)}var Vr=l.INITIAL_MEMORY||16777216;if(I)it=l.wasmMemory,re=l.buffer;else if(l.wasmMemory)it=l.wasmMemory;else if(it=new WebAssembly.Memory({initial:Vr/65536,maximum:65536,shared:!0}),!(it.buffer instanceof SharedArrayBuffer))throw Y(\"requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag\"),w&&Y(\"(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and/or recent version)\"),Error(\"bad memory\");it&&(re=it.buffer),Vr=re.byteLength,Xe(re);var Gr,Jn=[],Qn=[],Qr=[],Ca=!1;function zo(){return ot}function Ti(){if(l.preRun)for(typeof l.preRun==\"function\"&&(l.preRun=[l.preRun]);l.preRun.length;)Vd(l.preRun.shift());Ud(Jn)}function Er(){Ca=!0,!I&&Ud(Qn)}function va(){if(!I){if(l.postRun)for(typeof l.postRun==\"function\"&&(l.postRun=[l.postRun]);l.postRun.length;)c_(l.postRun.shift());Ud(Qr)}}function Vd(P){Jn.unshift(P)}function Gd(P){Qn.unshift(P)}function c_(P){Qr.unshift(P)}var zl=0,bp=null,Sa=null;function MC(P){zl++,l.monitorRunDependencies&&l.monitorRunDependencies(zl)}function Ig(P){if(zl--,l.monitorRunDependencies&&l.monitorRunDependencies(zl),zl==0&&(bp!==null&&(clearInterval(bp),bp=null),Sa)){var U=Sa;Sa=null,U()}}function Xu(P){l.onAbort&&l.onAbort(P),P=\"Aborted(\"+P+\")\",Y(P),gt=!0,Ct=1,P+=\". Build with -sASSERTIONS for more info.\";var U=new WebAssembly.RuntimeError(P);throw p(U),U}var PC=\"data:application/octet-stream;base64,\";function Cg(P){return P.startsWith(PC)}function wp(P){return P.startsWith(\"file://\")}var tn;tn=\"tfjs-backend-wasm-threaded-simd.wasm\",Cg(tn)||(tn=E(tn));function vg(P){try{if(P==tn&<)return new Uint8Array(lt);if(F)return F(P);throw\"both async and sync fetching of the wasm failed\"}catch(U){Xu(U)}}function LC(){if(!lt&&(x||b)){if(typeof fetch==\"function\"&&!wp(tn))return fetch(tn,{credentials:\"same-origin\"}).then(function(P){if(!P.ok)throw\"failed to load wasm binary file at '\"+tn+\"'\";return P.arrayBuffer()}).catch(function(){return vg(tn)});if(D)return new Promise(function(P,U){D(tn,function(dt){P(new Uint8Array(dt))},U)})}return Promise.resolve().then(function(){return vg(tn)})}function zC(){var P={env:Mg,wasi_snapshot_preview1:Mg};function U(bt,$t){var or=bt.exports;if(l.asm=or,jC(l.asm._emscripten_tls_init),Gr=l.asm.__indirect_function_table,Gd(l.asm.__wasm_call_ctors),ft=$t,!I){var eo=Yt.unusedWorkers.length;Yt.unusedWorkers.forEach(function(ka){Yt.loadWasmModuleToWorker(ka,function(){--eo||Ig(\"wasm-instantiate\")})})}}I||MC(\"wasm-instantiate\");function dt(bt){U(bt.instance,bt.module)}function Pt(bt){return LC().then(function($t){return WebAssembly.instantiate($t,P)}).then(function($t){return $t}).then(bt,function($t){Y(\"failed to asynchronously prepare wasm: \"+$t),Xu($t)})}function Jt(){return!lt&&typeof WebAssembly.instantiateStreaming==\"function\"&&!Cg(tn)&&!wp(tn)&&!w&&typeof fetch==\"function\"?fetch(tn,{credentials:\"same-origin\"}).then(function(bt){var $t=WebAssembly.instantiateStreaming(bt,P);return $t.then(dt,function(or){return Y(\"wasm streaming compile failed: \"+or),Y(\"falling back to ArrayBuffer instantiation\"),Pt(dt)})}):Pt(dt)}if(l.instantiateWasm)try{var Zt=l.instantiateWasm(P,U);return Zt}catch(bt){Y(\"Module.instantiateWasm callback failed with error: \"+bt),p(bt)}return Jt().catch(p),{}}var p_,m_,Sg={};function Yu(P){this.name=\"ExitStatus\",this.message=\"Program terminated with exit(\"+P+\")\",this.status=P}function BC(P){var U=Yt.pthreads[P];delete Yt.pthreads[P],U.terminate(),c0(P),Yt.runningWorkers.splice(Yt.runningWorkers.indexOf(U),1),U.pthread_ptr=0}function VC(P){var U=Yt.pthreads[P];U.postMessage({cmd:\"cancel\"})}function Wd(P){var U=Yt.pthreads[P];Rt(U),Yt.returnWorkerToPool(U)}function GC(P){var U=Yt.getNewWorker();if(!U)return 6;Yt.runningWorkers.push(U),Yt.pthreads[P.pthread_ptr]=U,U.pthread_ptr=P.pthread_ptr;var dt={cmd:\"run\",start_routine:P.startRoutine,arg:P.arg,pthread_ptr:P.pthread_ptr};return U.runPthread=()=>{w&&U.ref(),U.postMessage(dt,P.transferList),delete U.runPthread},U.loaded&&U.runPthread(),0}var Ng={varargs:void 0,get:function(){Ng.varargs+=4;var P=s()[Ng.varargs-4>>>2];return P},getStr:function(P){var U=qt(P);return U}};function kg(P){if(I)return Bl(1,1,P);Ct=P,zo()||(Yt.terminateAllThreads(),l.onExit&&l.onExit(P),gt=!0),g(P,new Yu(P))}function WC(P,U){if(Ct=P,!U&&I)throw _g(P),\"unwind\";kg(P)}var Tg=WC;function UC(P){if(P instanceof Yu||P==\"unwind\")return Ct;g(1,P)}var Yt={unusedWorkers:[],runningWorkers:[],tlsInitFunctions:[],pthreads:{},init:function(){I?Yt.initWorker():Yt.initMainThread()},initMainThread:function(){for(var P=8;P--;)Yt.allocateUnusedWorker()},initWorker:function(){ot=!1},setExitStatus:function(P){Ct=P},terminateAllThreads:function(){for(var P of Object.values(Yt.pthreads))Yt.returnWorkerToPool(P);for(var P of Yt.unusedWorkers)P.terminate();Yt.unusedWorkers=[]},returnWorkerToPool:function(P){var U=P.pthread_ptr;delete Yt.pthreads[U],Yt.unusedWorkers.push(P),Yt.runningWorkers.splice(Yt.runningWorkers.indexOf(P),1),P.pthread_ptr=0,w&&P.unref(),c0(U)},receiveObjectTransfer:function(P){},threadInitTLS:function(){Yt.tlsInitFunctions.forEach(P=>P())},loadWasmModuleToWorker:function(P,U){P.onmessage=Zt=>{var bt=Zt.data,$t=bt.cmd;if(P.pthread_ptr&&(Yt.currentProxiedOperationCallerThread=P.pthread_ptr),bt.targetThread&&bt.targetThread!=Gg()){var or=Yt.pthreads[bt.targetThread];or?or.postMessage(bt,bt.transferList):Y('Internal error! Worker sent a message \"'+$t+'\" to target pthread '+bt.targetThread+\", but that thread no longer exists!\"),Yt.currentProxiedOperationCallerThread=void 0;return}$t===\"processProxyingQueue\"?Hd(bt.queue):$t===\"spawnThread\"?GC(bt):$t===\"cleanupThread\"?Wd(bt.thread):$t===\"killThread\"?BC(bt.thread):$t===\"cancelThread\"?VC(bt.thread):$t===\"loaded\"?(P.loaded=!0,w&&P.unref(),U&&U(P),P.runPthread&&P.runPthread()):$t===\"print\"?j(\"Thread \"+bt.threadId+\": \"+bt.text):$t===\"printErr\"?Y(\"Thread \"+bt.threadId+\": \"+bt.text):$t===\"alert\"?alert(\"Thread \"+bt.threadId+\": \"+bt.text):bt.target===\"setimmediate\"?P.postMessage(bt):$t===\"callHandler\"?l[bt.handler](...bt.args):$t&&Y(\"worker sent an unknown command \"+$t),Yt.currentProxiedOperationCallerThread=void 0},P.onerror=Zt=>{var bt=\"worker sent an error!\";throw Y(bt+\" \"+Zt.filename+\":\"+Zt.lineno+\": \"+Zt.message),Zt},w&&(P.on(\"message\",function(Zt){P.onmessage({data:Zt})}),P.on(\"error\",function(Zt){P.onerror(Zt)}),P.on(\"detachedExit\",function(){}));var dt=[],Pt=[\"onExit\",\"onAbort\",\"print\",\"printErr\"];for(var Jt of Pt)l.hasOwnProperty(Jt)&&dt.push(Jt);P.postMessage({cmd:\"load\",handlers:dt,urlOrBlob:l.mainScriptUrlOrBlob||r,wasmMemory:it,wasmModule:ft})},allocateUnusedWorker:function(){var P,U=E(\"tfjs-backend-wasm-threaded-simd.worker.js\");P=new Worker(U),Yt.unusedWorkers.push(P)},getNewWorker:function(){return Yt.unusedWorkers.length==0&&(Yt.allocateUnusedWorker(),Yt.loadWasmModuleToWorker(Yt.unusedWorkers[0])),Yt.unusedWorkers.pop()}};l.PThread=Yt;function Ud(P){for(;P.length>0;)P.shift()(l)}function HC(){var P=Gg(),U=s()[P+52>>>2],dt=s()[P+56>>>2],Pt=U-dt;y_(U,Pt),Wg(U)}l.establishStackSpace=HC;function _g(P){if(I)return Bl(2,0,P);try{Tg(P)}catch(U){UC(U)}}var Ip=[];function qC(P){var U=Ip[P];return U||(P>=Ip.length&&(Ip.length=P+1),Ip[P]=U=Gr.get(P)),U}function KC(P,U){var dt=qC(P)(U);zo()?Yt.setExitStatus(dt):x_(dt)}l.invokeEntryPoint=KC;function jC(P){Yt.tlsInitFunctions.push(P)}function XC(P){d_(P,!b,1,!x),Yt.threadInitTLS()}function YC(P){I?postMessage({cmd:\"cleanupThread\",thread:P}):Wd(P)}function Eg(P,U,dt,Pt){return I?Bl(3,1,P,U,dt,Pt):Ag(P,U,dt,Pt)}function Ag(P,U,dt,Pt){if(typeof SharedArrayBuffer==\"undefined\")return Y(\"Current environment does not support SharedArrayBuffer, pthreads are not available!\"),6;var Jt=[],Zt=0;if(I&&(Jt.length===0||Zt))return Eg(P,U,dt,Pt);if(Zt)return Zt;var bt={startRoutine:dt,pthread_ptr:P,arg:Pt,transferList:Jt};return I?(bt.cmd=\"spawnThread\",postMessage(bt,Jt),0):GC(bt)}function ZC(){return 65536}var JC=!0;function QC(){return JC}function Hd(P){Atomics.store(s(),P>>2,1),Gg()&&g_(P),Atomics.compareExchange(s(),P>>2,1,0)}l.executeNotifiedProxyingQueue=Hd;function tv(P,U,dt,Pt){if(P==U)setTimeout(()=>Hd(Pt));else if(I)postMessage({targetThread:P,cmd:\"processProxyingQueue\",queue:Pt});else{var Jt=Yt.pthreads[P];if(!Jt)return;Jt.postMessage({cmd:\"processProxyingQueue\",queue:Pt})}return 1}function ev(P,U,dt){return-1}function rv(){Xu(\"\")}function Zu(P){Zu.shown||(Zu.shown={}),Zu.shown[P]||(Zu.shown[P]=1,w&&(P=\"warning: \"+P),Y(P))}function nv(){w||b||Zu(\"Blocking on the main thread is very dangerous, see https://emscripten.org/docs/porting/pthreads.html#blocking-on-the-main-browser-thread\")}function ov(){return Date.now()}function Dg(){return 4294901760}function sv(){return Dg()}var qd;w?qd=()=>{var P=process.hrtime();return P[0]*1e3+P[1]/1e6}:qd=()=>performance.timeOrigin+performance.now();function iv(P,U,dt){n().copyWithin(P>>>0,U>>>0,U+dt>>>0)}function av(){return w?XH().cpus().length:navigator.hardwareConcurrency}function lv(P){var U=p0(),dt=P();return Wg(U),dt}function Bl(P,U){var dt=arguments.length-2,Pt=arguments;return lv(()=>{for(var Jt=dt,Zt=Ug(Jt*8),bt=Zt>>3,$t=0;$t>>0]=or}return h_(P,Jt,Zt,U)})}var Kd=[];function uv(P,U,dt){Kd.length=U;for(var Pt=dt>>3,Jt=0;Jt>>0];var Zt=P<0,bt=Zt?Sg[-P-1]:yv[P];return bt.apply(null,Kd)}function cv(P){try{return it.grow(P-re.byteLength+65535>>>16),Xe(it.buffer),1}catch(U){}}function pv(P){var U=n().length;if(P=P>>>0,P<=U)return!1;var dt=Dg();if(P>dt)return!1;let Pt=(or,eo)=>or+(eo-or%eo)%eo;for(var Jt=1;Jt<=4;Jt*=2){var Zt=U*(1+.2/Jt);Zt=Math.min(Zt,P+100663296);var bt=Math.min(dt,Pt(Math.max(P,Zt),65536)),$t=cv(bt);if($t)return!0}return!1}function mv(){throw\"unwind\"}function $g(P){return I?Bl(4,1,P):52}function Rg(P,U,dt,Pt,Jt){return I?Bl(5,1,P,U,dt,Pt,Jt):70}var fv=[null,[],[]];function dv(P,U){var dt=fv[P];U===0||U===10?((P===1?j:Y)(Ht(dt,0)),dt.length=0):dt.push(U)}function Fg(P,U,dt,Pt){if(I)return Bl(6,1,P,U,dt,Pt);for(var Jt=0,Zt=0;Zt>>2],$t=i()[U+4>>>2];U+=8;for(var or=0;or<$t;or++)dv(P,n()[bt+or>>>0]);Jt+=$t}return i()[Pt>>>2]=Jt,0}function Og(P){var U=l[\"_\"+P];return U}function hv(P,U){e().set(P,U>>>0)}function gv(P,U,dt,Pt,Jt){var Zt={string:Mn=>{var Np=0;if(Mn!=null&&Mn!==0){var I_=(Mn.length<<2)+1;Np=Ug(I_),ye(Mn,Np,I_)}return Np},array:Mn=>{var Np=Ug(Mn.length);return hv(Mn,Np),Np}};function bt(Mn){return U===\"string\"?qt(Mn):U===\"boolean\"?!!Mn:Mn}var $t=Og(P),or=[],eo=0;if(Pt)for(var ka=0;kabt===\"number\"||bt===\"boolean\"),Zt=U!==\"string\";return Zt&&Jt&&!Pt?Og(P):function(){return gv(P,U,dt,arguments,Pt)}}Yt.init();var yv=[null,kg,_g,Eg,$g,Rg,Fg],Mg={__emscripten_init_main_thread_js:XC,__emscripten_thread_cleanup:YC,__pthread_create_js:Ag,_emscripten_default_pthread_stack_size:ZC,_emscripten_get_now_is_monotonic:QC,_emscripten_notify_task_queue:tv,_emscripten_set_offscreencanvas_size:ev,abort:rv,emscripten_check_blocking_allowed:nv,emscripten_date_now:ov,emscripten_get_heap_max:sv,emscripten_get_now:qd,emscripten_memcpy_big:iv,emscripten_num_logical_cores:av,emscripten_receive_on_main_thread_js:uv,emscripten_resize_heap:pv,emscripten_unwind_to_js_event_loop:mv,exit:Tg,fd_close:$g,fd_seek:Rg,fd_write:Fg,memory:it||l.wasmMemory},f_=zC(),bv=l.___wasm_call_ctors=function(){return(bv=l.___wasm_call_ctors=l.asm.__wasm_call_ctors).apply(null,arguments)},wv=l._init=function(){return(wv=l._init=l.asm.init).apply(null,arguments)},Iv=l._init_with_threads_count=function(){return(Iv=l._init_with_threads_count=l.asm.init_with_threads_count).apply(null,arguments)},Cv=l._get_threads_count=function(){return(Cv=l._get_threads_count=l.asm.get_threads_count).apply(null,arguments)},vv=l._register_tensor=function(){return(vv=l._register_tensor=l.asm.register_tensor).apply(null,arguments)},Sv=l._dispose_data=function(){return(Sv=l._dispose_data=l.asm.dispose_data).apply(null,arguments)},Nv=l._dispose=function(){return(Nv=l._dispose=l.asm.dispose).apply(null,arguments)},kv=l._Abs=function(){return(kv=l._Abs=l.asm.Abs).apply(null,arguments)},Tv=l._Acos=function(){return(Tv=l._Acos=l.asm.Acos).apply(null,arguments)},_v=l._Acosh=function(){return(_v=l._Acosh=l.asm.Acosh).apply(null,arguments)},Ev=l._Add=function(){return(Ev=l._Add=l.asm.Add).apply(null,arguments)},Av=l._AddN=function(){return(Av=l._AddN=l.asm.AddN).apply(null,arguments)},Dv=l._All=function(){return(Dv=l._All=l.asm.All).apply(null,arguments)},$v=l._Any=function(){return($v=l._Any=l.asm.Any).apply(null,arguments)},Rv=l._ArgMax=function(){return(Rv=l._ArgMax=l.asm.ArgMax).apply(null,arguments)},Fv=l._ArgMin=function(){return(Fv=l._ArgMin=l.asm.ArgMin).apply(null,arguments)},Ov=l._Asin=function(){return(Ov=l._Asin=l.asm.Asin).apply(null,arguments)},Mv=l._Asinh=function(){return(Mv=l._Asinh=l.asm.Asinh).apply(null,arguments)},Pv=l._Atan=function(){return(Pv=l._Atan=l.asm.Atan).apply(null,arguments)},Lv=l._Atan2=function(){return(Lv=l._Atan2=l.asm.Atan2).apply(null,arguments)},zv=l._Atanh=function(){return(zv=l._Atanh=l.asm.Atanh).apply(null,arguments)},Bv=l._AvgPool=function(){return(Bv=l._AvgPool=l.asm.AvgPool).apply(null,arguments)},Vv=l._AvgPool3D=function(){return(Vv=l._AvgPool3D=l.asm.AvgPool3D).apply(null,arguments)},Gv=l._AvgPool3DGrad=function(){return(Gv=l._AvgPool3DGrad=l.asm.AvgPool3DGrad).apply(null,arguments)},Wv=l._AvgPoolGrad=function(){return(Wv=l._AvgPoolGrad=l.asm.AvgPoolGrad).apply(null,arguments)},Uv=l._BatchMatMul=function(){return(Uv=l._BatchMatMul=l.asm.BatchMatMul).apply(null,arguments)},Hv=l._Bincount=function(){return(Hv=l._Bincount=l.asm.Bincount).apply(null,arguments)},qv=l._BitwiseAnd=function(){return(qv=l._BitwiseAnd=l.asm.BitwiseAnd).apply(null,arguments)},Kv=l._Ceil=function(){return(Kv=l._Ceil=l.asm.Ceil).apply(null,arguments)},jv=l._ClipByValue=function(){return(jv=l._ClipByValue=l.asm.ClipByValue).apply(null,arguments)},Xv=l._Conv2D=function(){return(Xv=l._Conv2D=l.asm.Conv2D).apply(null,arguments)},Yv=l._Conv2DBackpropInput=function(){return(Yv=l._Conv2DBackpropInput=l.asm.Conv2DBackpropInput).apply(null,arguments)},Zv=l._Conv3D=function(){return(Zv=l._Conv3D=l.asm.Conv3D).apply(null,arguments)},Jv=l._Conv3DBackpropFilterV2=function(){return(Jv=l._Conv3DBackpropFilterV2=l.asm.Conv3DBackpropFilterV2).apply(null,arguments)},Qv=l._Conv3DBackpropInputV2=function(){return(Qv=l._Conv3DBackpropInputV2=l.asm.Conv3DBackpropInputV2).apply(null,arguments)},tS=l._Cos=function(){return(tS=l._Cos=l.asm.Cos).apply(null,arguments)},eS=l._Cosh=function(){return(eS=l._Cosh=l.asm.Cosh).apply(null,arguments)},rS=l._CropAndResize=function(){return(rS=l._CropAndResize=l.asm.CropAndResize).apply(null,arguments)},nS=l._Cumprod=function(){return(nS=l._Cumprod=l.asm.Cumprod).apply(null,arguments)},oS=l._Cumsum=function(){return(oS=l._Cumsum=l.asm.Cumsum).apply(null,arguments)},sS=l._DenseBincount=function(){return(sS=l._DenseBincount=l.asm.DenseBincount).apply(null,arguments)},iS=l._DepthToSpace=function(){return(iS=l._DepthToSpace=l.asm.DepthToSpace).apply(null,arguments)},aS=l._DepthwiseConv2dNative=function(){return(aS=l._DepthwiseConv2dNative=l.asm.DepthwiseConv2dNative).apply(null,arguments)},lS=l._Diag=function(){return(lS=l._Diag=l.asm.Diag).apply(null,arguments)},uS=l._Dilation2D=function(){return(uS=l._Dilation2D=l.asm.Dilation2D).apply(null,arguments)},cS=l._Dilation2DBackpropFilter=function(){return(cS=l._Dilation2DBackpropFilter=l.asm.Dilation2DBackpropFilter).apply(null,arguments)},pS=l._Dilation2DBackpropInput=function(){return(pS=l._Dilation2DBackpropInput=l.asm.Dilation2DBackpropInput).apply(null,arguments)},mS=l._Elu=function(){return(mS=l._Elu=l.asm.Elu).apply(null,arguments)},fS=l._EluGrad=function(){return(fS=l._EluGrad=l.asm.EluGrad).apply(null,arguments)},dS=l._Equal=function(){return(dS=l._Equal=l.asm.Equal).apply(null,arguments)},hS=l._Erf=function(){return(hS=l._Erf=l.asm.Erf).apply(null,arguments)},gS=l._Exp=function(){return(gS=l._Exp=l.asm.Exp).apply(null,arguments)},xS=l._Expm1=function(){return(xS=l._Expm1=l.asm.Expm1).apply(null,arguments)},yS=l._FlipLeftRight=function(){return(yS=l._FlipLeftRight=l.asm.FlipLeftRight).apply(null,arguments)},bS=l._Floor=function(){return(bS=l._Floor=l.asm.Floor).apply(null,arguments)},wS=l._FloorDiv=function(){return(wS=l._FloorDiv=l.asm.FloorDiv).apply(null,arguments)},IS=l._FusedBatchNorm=function(){return(IS=l._FusedBatchNorm=l.asm.FusedBatchNorm).apply(null,arguments)},CS=l._FusedConv2D=function(){return(CS=l._FusedConv2D=l.asm.FusedConv2D).apply(null,arguments)},vS=l._FusedDepthwiseConv2D=function(){return(vS=l._FusedDepthwiseConv2D=l.asm.FusedDepthwiseConv2D).apply(null,arguments)},SS=l._Gather=function(){return(SS=l._Gather=l.asm.Gather).apply(null,arguments)},NS=l._GatherNd=function(){return(NS=l._GatherNd=l.asm.GatherNd).apply(null,arguments)},kS=l._Greater=function(){return(kS=l._Greater=l.asm.Greater).apply(null,arguments)},TS=l._GreaterEqual=function(){return(TS=l._GreaterEqual=l.asm.GreaterEqual).apply(null,arguments)},_S=l._IsFinite=function(){return(_S=l._IsFinite=l.asm.IsFinite).apply(null,arguments)},ES=l._IsInf=function(){return(ES=l._IsInf=l.asm.IsInf).apply(null,arguments)},AS=l._IsNan=function(){return(AS=l._IsNan=l.asm.IsNan).apply(null,arguments)},DS=l._LRN=function(){return(DS=l._LRN=l.asm.LRN).apply(null,arguments)},$S=l._LRNGrad=function(){return($S=l._LRNGrad=l.asm.LRNGrad).apply(null,arguments)},RS=l._LeakyRelu=function(){return(RS=l._LeakyRelu=l.asm.LeakyRelu).apply(null,arguments)},FS=l._Less=function(){return(FS=l._Less=l.asm.Less).apply(null,arguments)},OS=l._LessEqual=function(){return(OS=l._LessEqual=l.asm.LessEqual).apply(null,arguments)},MS=l._LinSpace=function(){return(MS=l._LinSpace=l.asm.LinSpace).apply(null,arguments)},PS=l._Log=function(){return(PS=l._Log=l.asm.Log).apply(null,arguments)},LS=l._Log1p=function(){return(LS=l._Log1p=l.asm.Log1p).apply(null,arguments)},zS=l._LogicalAnd=function(){return(zS=l._LogicalAnd=l.asm.LogicalAnd).apply(null,arguments)},BS=l._LogicalNot=function(){return(BS=l._LogicalNot=l.asm.LogicalNot).apply(null,arguments)},VS=l._LogicalOr=function(){return(VS=l._LogicalOr=l.asm.LogicalOr).apply(null,arguments)},GS=l._LogicalXor=function(){return(GS=l._LogicalXor=l.asm.LogicalXor).apply(null,arguments)},WS=l._Max=function(){return(WS=l._Max=l.asm.Max).apply(null,arguments)},US=l._MaxPool=function(){return(US=l._MaxPool=l.asm.MaxPool).apply(null,arguments)},HS=l._MaxPool3D=function(){return(HS=l._MaxPool3D=l.asm.MaxPool3D).apply(null,arguments)},qS=l._MaxPool3DGrad=function(){return(qS=l._MaxPool3DGrad=l.asm.MaxPool3DGrad).apply(null,arguments)},KS=l._MaxPoolGrad=function(){return(KS=l._MaxPoolGrad=l.asm.MaxPoolGrad).apply(null,arguments)},jS=l._MaxPoolWithArgmax=function(){return(jS=l._MaxPoolWithArgmax=l.asm.MaxPoolWithArgmax).apply(null,arguments)},XS=l._Maximum=function(){return(XS=l._Maximum=l.asm.Maximum).apply(null,arguments)},YS=l._Mean=function(){return(YS=l._Mean=l.asm.Mean).apply(null,arguments)},ZS=l._Min=function(){return(ZS=l._Min=l.asm.Min).apply(null,arguments)},JS=l._Minimum=function(){return(JS=l._Minimum=l.asm.Minimum).apply(null,arguments)},QS=l._MirrorPad=function(){return(QS=l._MirrorPad=l.asm.MirrorPad).apply(null,arguments)},t0=l._Mod=function(){return(t0=l._Mod=l.asm.Mod).apply(null,arguments)},e0=l._Multinomial=function(){return(e0=l._Multinomial=l.asm.Multinomial).apply(null,arguments)},r0=l._Multiply=function(){return(r0=l._Multiply=l.asm.Multiply).apply(null,arguments)},n0=l._Neg=function(){return(n0=l._Neg=l.asm.Neg).apply(null,arguments)},o0=l._NonMaxSuppressionV3=function(){return(o0=l._NonMaxSuppressionV3=l.asm.NonMaxSuppressionV3).apply(null,arguments)},s0=l._NonMaxSuppressionV4=function(){return(s0=l._NonMaxSuppressionV4=l.asm.NonMaxSuppressionV4).apply(null,arguments)},Pg=l._NonMaxSuppressionV5=function(){return(Pg=l._NonMaxSuppressionV5=l.asm.NonMaxSuppressionV5).apply(null,arguments)},Lg=l._NotEqual=function(){return(Lg=l._NotEqual=l.asm.NotEqual).apply(null,arguments)},jd=l._OneHot=function(){return(jd=l._OneHot=l.asm.OneHot).apply(null,arguments)},i0=l._PadV2=function(){return(i0=l._PadV2=l.asm.PadV2).apply(null,arguments)},a0=l._Pow=function(){return(a0=l._Pow=l.asm.Pow).apply(null,arguments)},Cp=l._Prelu=function(){return(Cp=l._Prelu=l.asm.Prelu).apply(null,arguments)},zg=l._Prod=function(){return(zg=l._Prod=l.asm.Prod).apply(null,arguments)},vp=l._RealDiv=function(){return(vp=l._RealDiv=l.asm.RealDiv).apply(null,arguments)},Sp=l._Reciprocal=function(){return(Sp=l._Reciprocal=l.asm.Reciprocal).apply(null,arguments)},l0=l._Relu=function(){return(l0=l._Relu=l.asm.Relu).apply(null,arguments)},X=l._Relu6=function(){return(X=l._Relu6=l.asm.Relu6).apply(null,arguments)},ct=l._ResizeBilinear=function(){return(ct=l._ResizeBilinear=l.asm.ResizeBilinear).apply(null,arguments)},Ft=l._ResizeBilinearGrad=function(){return(Ft=l._ResizeBilinearGrad=l.asm.ResizeBilinearGrad).apply(null,arguments)},me=l._ResizeNearestNeighbor=function(){return(me=l._ResizeNearestNeighbor=l.asm.ResizeNearestNeighbor).apply(null,arguments)},Ye=l._ResizeNearestNeighborGrad=function(){return(Ye=l._ResizeNearestNeighborGrad=l.asm.ResizeNearestNeighborGrad).apply(null,arguments)},Ze=l._Reverse=function(){return(Ze=l._Reverse=l.asm.Reverse).apply(null,arguments)},se=l._RotateWithOffset=function(){return(se=l._RotateWithOffset=l.asm.RotateWithOffset).apply(null,arguments)},ne=l._Round=function(){return(ne=l._Round=l.asm.Round).apply(null,arguments)},yr=l._Rsqrt=function(){return(yr=l._Rsqrt=l.asm.Rsqrt).apply(null,arguments)},to=l._ScatterNd=function(){return(to=l._ScatterNd=l.asm.ScatterNd).apply(null,arguments)},Na=l._SearchSorted=function(){return(Na=l._SearchSorted=l.asm.SearchSorted).apply(null,arguments)},Bg=l._SelectV2=function(){return(Bg=l._SelectV2=l.asm.SelectV2).apply(null,arguments)},Xd=l._Selu=function(){return(Xd=l._Selu=l.asm.Selu).apply(null,arguments)},u0=l._Sigmoid=function(){return(u0=l._Sigmoid=l.asm.Sigmoid).apply(null,arguments)},on=l._Sign=function(){return(on=l._Sign=l.asm.Sign).apply(null,arguments)},Vl=l._Sin=function(){return(Vl=l._Sin=l.asm.Sin).apply(null,arguments)},Vg=l._Sinh=function(){return(Vg=l._Sinh=l.asm.Sinh).apply(null,arguments)},iq=l._Softmax=function(){return(iq=l._Softmax=l.asm.Softmax).apply(null,arguments)},aq=l._Softplus=function(){return(aq=l._Softplus=l.asm.Softplus).apply(null,arguments)},lq=l._SparseFillEmptyRows=function(){return(lq=l._SparseFillEmptyRows=l.asm.SparseFillEmptyRows).apply(null,arguments)},uq=l._SparseReshape=function(){return(uq=l._SparseReshape=l.asm.SparseReshape).apply(null,arguments)},cq=l._SparseSegmentReduction=function(){return(cq=l._SparseSegmentReduction=l.asm.SparseSegmentReduction).apply(null,arguments)},pq=l._SparseToDense=function(){return(pq=l._SparseToDense=l.asm.SparseToDense).apply(null,arguments)},mq=l._Sqrt=function(){return(mq=l._Sqrt=l.asm.Sqrt).apply(null,arguments)},fq=l._Square=function(){return(fq=l._Square=l.asm.Square).apply(null,arguments)},dq=l._SquaredDifference=function(){return(dq=l._SquaredDifference=l.asm.SquaredDifference).apply(null,arguments)},hq=l._Step=function(){return(hq=l._Step=l.asm.Step).apply(null,arguments)},gq=l._StridedSlice=function(){return(gq=l._StridedSlice=l.asm.StridedSlice).apply(null,arguments)},xq=l._Sub=function(){return(xq=l._Sub=l.asm.Sub).apply(null,arguments)},yq=l._Sum=function(){return(yq=l._Sum=l.asm.Sum).apply(null,arguments)},bq=l._Tan=function(){return(bq=l._Tan=l.asm.Tan).apply(null,arguments)},wq=l._Tanh=function(){return(wq=l._Tanh=l.asm.Tanh).apply(null,arguments)},Iq=l._TensorScatterUpdate=function(){return(Iq=l._TensorScatterUpdate=l.asm.TensorScatterUpdate).apply(null,arguments)},Cq=l._Tile=function(){return(Cq=l._Tile=l.asm.Tile).apply(null,arguments)},vq=l._TopK=function(){return(vq=l._TopK=l.asm.TopK).apply(null,arguments)},Sq=l._Transform=function(){return(Sq=l._Transform=l.asm.Transform).apply(null,arguments)},Nq=l._Transpose=function(){return(Nq=l._Transpose=l.asm.Transpose).apply(null,arguments)},kq=l.__FusedMatMul=function(){return(kq=l.__FusedMatMul=l.asm._FusedMatMul).apply(null,arguments)},Tq=l._malloc=function(){return(Tq=l._malloc=l.asm.malloc).apply(null,arguments)},_q=l._free=function(){return(_q=l._free=l.asm.free).apply(null,arguments)},Eq=l.__emscripten_tls_init=function(){return(Eq=l.__emscripten_tls_init=l.asm._emscripten_tls_init).apply(null,arguments)},Gg=l._pthread_self=function(){return(Gg=l._pthread_self=l.asm.pthread_self).apply(null,arguments)},Aq=l.___errno_location=function(){return(Aq=l.___errno_location=l.asm.__errno_location).apply(null,arguments)},d_=l.__emscripten_thread_init=function(){return(d_=l.__emscripten_thread_init=l.asm._emscripten_thread_init).apply(null,arguments)},Dq=l.__emscripten_thread_crashed=function(){return(Dq=l.__emscripten_thread_crashed=l.asm._emscripten_thread_crashed).apply(null,arguments)},$q=l._emscripten_main_thread_process_queued_calls=function(){return($q=l._emscripten_main_thread_process_queued_calls=l.asm.emscripten_main_thread_process_queued_calls).apply(null,arguments)},Rq=l._emscripten_main_browser_thread_id=function(){return(Rq=l._emscripten_main_browser_thread_id=l.asm.emscripten_main_browser_thread_id).apply(null,arguments)},h_=l._emscripten_run_in_main_runtime_thread_js=function(){return(h_=l._emscripten_run_in_main_runtime_thread_js=l.asm.emscripten_run_in_main_runtime_thread_js).apply(null,arguments)},Fq=l._emscripten_dispatch_to_thread_=function(){return(Fq=l._emscripten_dispatch_to_thread_=l.asm.emscripten_dispatch_to_thread_).apply(null,arguments)},g_=l.__emscripten_proxy_execute_task_queue=function(){return(g_=l.__emscripten_proxy_execute_task_queue=l.asm._emscripten_proxy_execute_task_queue).apply(null,arguments)},c0=l.__emscripten_thread_free_data=function(){return(c0=l.__emscripten_thread_free_data=l.asm._emscripten_thread_free_data).apply(null,arguments)},x_=l.__emscripten_thread_exit=function(){return(x_=l.__emscripten_thread_exit=l.asm._emscripten_thread_exit).apply(null,arguments)},y_=l._emscripten_stack_set_limits=function(){return(y_=l._emscripten_stack_set_limits=l.asm.emscripten_stack_set_limits).apply(null,arguments)},p0=l.stackSave=function(){return(p0=l.stackSave=l.asm.stackSave).apply(null,arguments)},Wg=l.stackRestore=function(){return(Wg=l.stackRestore=l.asm.stackRestore).apply(null,arguments)},Ug=l.stackAlloc=function(){return(Ug=l.stackAlloc=l.asm.stackAlloc).apply(null,arguments)},Oq=l.dynCall_iijjiiii=function(){return(Oq=l.dynCall_iijjiiii=l.asm.dynCall_iijjiiii).apply(null,arguments)},Mq=l.dynCall_jiji=function(){return(Mq=l.dynCall_jiji=l.asm.dynCall_jiji).apply(null,arguments)};l.keepRuntimeAlive=zo,l.wasmMemory=it,l.cwrap=xv,l.ExitStatus=Yu,l.PThread=Yt;var Hg;Sa=function P(){Hg||b_(),Hg||(Sa=P)};function b_(P){if(P=P||d,zl>0)return;if(I){c(l),Er(),startWorker(l);return}if(Ti(),zl>0)return;function U(){Hg||(Hg=!0,l.calledRun=!0,!gt&&(Er(),c(l),l.onRuntimeInitialized&&l.onRuntimeInitialized(),va()))}l.setStatus?(l.setStatus(\"Running...\"),setTimeout(function(){setTimeout(function(){l.setStatus(\"\")},1),U()},1)):U()}if(l.preInit)for(typeof l.preInit==\"function\"&&(l.preInit=[l.preInit]);l.preInit.length>0;)l.preInit.pop()();b_();var qg;m&&(qg={uncaughtException:process.listeners(\"uncaughtException\").filter(function(P){return!m.uncaughtException.indexOf(P)>-1}),unhandledRejection:process.listeners(\"unhandledRejection\").filter(function(P){return!m.unhandledRejection.indexOf(P)>-1})});var Kg;if(typeof WasmBackendModule!=\"undefined\")Kg=WasmBackendModule;else if(typeof t!=\"undefined\")Kg=t;else throw new Error(\"Could not find wasm module in post.js\");if(qg){var Pq=Kg._dispose;Kg._dispose=function(){Pq(),qg.uncaughtException.forEach(function(P){process.removeListener(\"uncaughtException\",P)}),qg.unhandledRejection.forEach(function(P){process.removeListener(\"unhandledRejection\",P)})}}return t.ready}})();typeof RC==\"object\"&&typeof n_==\"object\"?n_.exports=r_:typeof define==\"function\"&&define.amd?define([],function(){return r_}):typeof RC==\"object\"&&(RC.WasmBackendModuleThreadedSimd=r_)});var JH=br((fnr,ZH)=>{ZH.exports.wasmWorkerContents=`\"use strict\";var Module={};var ENVIRONMENT_IS_NODE=typeof process==\"object\"&&typeof process.versions==\"object\"&&typeof process.versions.node==\"string\";if(ENVIRONMENT_IS_NODE){var nodeWorkerThreads=require(\"worker_threads\");var parentPort=nodeWorkerThreads.parentPort;parentPort.on(\"message\",data=>onmessage({data:data}));var fs=require(\"fs\");Object.assign(global,{self:global,require:require,Module:Module,location:{href:__filename},Worker:nodeWorkerThreads.Worker,importScripts:function(f){(0,eval)(fs.readFileSync(f,\"utf8\")+\"//# sourceURL=\"+f)},postMessage:function(msg){parentPort.postMessage(msg)},performance:global.performance||{now:function(){return Date.now()}}})}var initializedJS=false;var pendingNotifiedProxyingQueues=[];function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(\" \");if(ENVIRONMENT_IS_NODE){fs.writeSync(2,text+\"\n\");return}console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(\" \");postMessage({cmd:\"alert\",text:text,threadId:Module[\"_pthread_self\"]()})}var err=threadPrintErr;self.alert=threadAlert;Module[\"instantiateWasm\"]=(info,receiveInstance)=>{var instance=new WebAssembly.Instance(Module[\"wasmModule\"],info);receiveInstance(instance);Module[\"wasmModule\"]=null;return instance.exports};self.onunhandledrejection=e=>{throw e.reason??e};self.startWorker=instance=>{Module=instance;postMessage({\"cmd\":\"loaded\"})};self.onmessage=e=>{try{if(e.data.cmd===\"load\"){Module[\"wasmModule\"]=e.data.wasmModule;for(const handler of e.data.handlers){Module[handler]=function(){postMessage({cmd:\"callHandler\",handler:handler,args:[...arguments]})}}Module[\"wasmMemory\"]=e.data.wasmMemory;Module[\"buffer\"]=Module[\"wasmMemory\"].buffer;Module[\"ENVIRONMENT_IS_PTHREAD\"]=true;if(typeof e.data.urlOrBlob==\"string\"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module)}else if(e.data.cmd===\"run\"){Module[\"__emscripten_thread_init\"](e.data.pthread_ptr,0,0,1);Module[\"establishStackSpace\"]();Module[\"PThread\"].receiveObjectTransfer(e.data);Module[\"PThread\"].threadInitTLS();if(!initializedJS){pendingNotifiedProxyingQueues.forEach(queue=>{Module[\"executeNotifiedProxyingQueue\"](queue)});pendingNotifiedProxyingQueues=[];initializedJS=true}try{Module[\"invokeEntryPoint\"](e.data.start_routine,e.data.arg)}catch(ex){if(ex!=\"unwind\"){if(ex instanceof Module[\"ExitStatus\"]){if(Module[\"keepRuntimeAlive\"]()){}else{Module[\"__emscripten_thread_exit\"](ex.status)}}else{throw ex}}}}else if(e.data.cmd===\"cancel\"){if(Module[\"_pthread_self\"]()){Module[\"__emscripten_thread_exit\"](-1)}}else if(e.data.target===\"setimmediate\"){}else if(e.data.cmd===\"processProxyingQueue\"){if(initializedJS){Module[\"executeNotifiedProxyingQueue\"](e.data.queue)}else{pendingNotifiedProxyingQueues.push(e.data.queue)}}else if(e.data.cmd){err(\"worker.js received unknown command \"+e.data.cmd);err(e.data)}}catch(ex){if(Module[\"__emscripten_thread_crashed\"]){Module[\"__emscripten_thread_crashed\"]()}throw ex}};`});var QH=br((FC,s_)=>{var o_=(()=>{var r=typeof document!=\"undefined\"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!=\"undefined\"&&(r=r||__filename),function(t){t=t||{};var e=typeof t!=\"undefined\"?t:{},n,o;e.ready=new Promise(function(X,ct){n=X,o=ct});var s;typeof process!=\"undefined\"&&process.listeners&&(s={uncaughtException:process.listeners(\"uncaughtException\"),unhandledRejection:process.listeners(\"unhandledRejection\")});var i=Object.assign({},e),a=[],u=\"./this.program\",l=(X,ct)=>{throw ct},c=typeof window==\"object\",p=typeof importScripts==\"function\",m=typeof process==\"object\"&&typeof process.versions==\"object\"&&typeof process.versions.node==\"string\",f=\"\";function d(X){return e.locateFile?e.locateFile(X,f):f+X}var h,g,x,b;function w(X){if(X instanceof bp)return;A(\"exiting due to exception: \"+X)}if(m){var I=hw(),N=e_();p?f=N.dirname(f)+\"/\":f=__dirname+\"/\",h=(X,ct)=>(X=Ti(X)?new URL(X):N.normalize(X),I.readFileSync(X,ct?void 0:\"utf8\")),x=X=>{var ct=h(X,!0);return ct.buffer||(ct=new Uint8Array(ct)),ct},g=(X,ct,Ft)=>{X=Ti(X)?new URL(X):N.normalize(X),I.readFile(X,function(me,Ye){me?Ft(me):ct(Ye.buffer)})},process.argv.length>1&&(u=process.argv[1].replace(/\\\\/g,\"/\")),a=process.argv.slice(2),process.on(\"uncaughtException\",function(X){if(!(X instanceof bp))throw X}),process.on(\"unhandledRejection\",function(X){throw X}),l=(X,ct)=>{if(de())throw process.exitCode=X,ct;w(ct),process.exit(X)},e.inspect=function(){return\"[Emscripten Module object]\"}}else(c||p)&&(p?f=self.location.href:typeof document!=\"undefined\"&&document.currentScript&&(f=document.currentScript.src),r&&(f=r),f.indexOf(\"blob:\")!==0?f=f.substr(0,f.replace(/[?#].*/,\"\").lastIndexOf(\"/\")+1):f=\"\",h=X=>{var ct=new XMLHttpRequest;return ct.open(\"GET\",X,!1),ct.send(null),ct.responseText},p&&(x=X=>{var ct=new XMLHttpRequest;return ct.open(\"GET\",X,!1),ct.responseType=\"arraybuffer\",ct.send(null),new Uint8Array(ct.response)}),g=(X,ct,Ft)=>{var me=new XMLHttpRequest;me.open(\"GET\",X,!0),me.responseType=\"arraybuffer\",me.onload=()=>{if(me.status==200||me.status==0&&me.response){ct(me.response);return}Ft()},me.onerror=Ft,me.send(null)},b=X=>document.title=X);var E=e.print||console.log.bind(console),A=e.printErr||console.warn.bind(console);Object.assign(e,i),i=null,e.arguments&&(a=e.arguments),e.thisProgram&&(u=e.thisProgram),e.quit&&(l=e.quit);var D=4,F;e.wasmBinary&&(F=e.wasmBinary);var M=e.noExitRuntime||!0;typeof WebAssembly!=\"object\"&&Qr(\"no native wasm support detected\");var V,G=!1,W;function q(X,ct){X||Qr(ct)}var H=typeof TextDecoder!=\"undefined\"?new TextDecoder(\"utf8\"):void 0;function j(X,ct,Ft){ct>>>=0;for(var me=ct+Ft,Ye=ct;X[Ye]&&!(Ye>=me);)++Ye;if(Ye-ct>16&&X.buffer&&H)return H.decode(X.subarray(ct,Ye));for(var Ze=\"\";ct>10,56320|to&1023)}}return Ze}function Y(X,ct){return X>>>=0,X?j(lt,X,ct):\"\"}function Z(X,ct,Ft,me){if(Ft>>>=0,!(me>0))return 0;for(var Ye=Ft,Ze=Ft+me-1,se=0;se=55296&&ne<=57343){var yr=X.charCodeAt(++se);ne=65536+((ne&1023)<<10)|yr&1023}if(ne<=127){if(Ft>=Ze)break;ct[Ft++>>>0]=ne}else if(ne<=2047){if(Ft+1>=Ze)break;ct[Ft++>>>0]=192|ne>>6,ct[Ft++>>>0]=128|ne&63}else if(ne<=65535){if(Ft+2>=Ze)break;ct[Ft++>>>0]=224|ne>>12,ct[Ft++>>>0]=128|ne>>6&63,ct[Ft++>>>0]=128|ne&63}else{if(Ft+3>=Ze)break;ct[Ft++>>>0]=240|ne>>18,ct[Ft++>>>0]=128|ne>>12&63,ct[Ft++>>>0]=128|ne>>6&63,ct[Ft++>>>0]=128|ne&63}}return ct[Ft>>>0]=0,Ft-Ye}function et(X,ct,Ft){return Z(X,lt,ct,Ft)}var nt,st,lt,ot,it,ft,gt,Ct,Rt;function Dt(X){nt=X,e.HEAP8=st=new Int8Array(X),e.HEAP16=ot=new Int16Array(X),e.HEAP32=ft=new Int32Array(X),e.HEAPU8=lt=new Uint8Array(X),e.HEAPU16=it=new Uint16Array(X),e.HEAPU32=gt=new Uint32Array(X),e.HEAPF32=Ct=new Float32Array(X),e.HEAPF64=Rt=new Float64Array(X)}var Ht=e.INITIAL_MEMORY||16777216,qt,pe=[],ye=[],re=[],be=!1;function de(){return M}function Ee(){if(e.preRun)for(typeof e.preRun==\"function\"&&(e.preRun=[e.preRun]);e.preRun.length;)lr(e.preRun.shift());Sa(pe)}function Ae(){be=!0,Sa(ye)}function On(){if(e.postRun)for(typeof e.postRun==\"function\"&&(e.postRun=[e.postRun]);e.postRun.length;)Br(e.postRun.shift());Sa(re)}function lr(X){pe.unshift(X)}function Zn(X){ye.unshift(X)}function Br(X){re.unshift(X)}var Xe=0,Vr=null,Gr=null;function Jn(X){Xe++,e.monitorRunDependencies&&e.monitorRunDependencies(Xe)}function Qn(X){if(Xe--,e.monitorRunDependencies&&e.monitorRunDependencies(Xe),Xe==0&&(Vr!==null&&(clearInterval(Vr),Vr=null),Gr)){var ct=Gr;Gr=null,ct()}}function Qr(X){e.onAbort&&e.onAbort(X),X=\"Aborted(\"+X+\")\",A(X),G=!0,W=1,X+=\". Build with -sASSERTIONS for more info.\";var ct=new WebAssembly.RuntimeError(X);throw o(ct),ct}var Ca=\"data:application/octet-stream;base64,\";function zo(X){return X.startsWith(Ca)}function Ti(X){return X.startsWith(\"file://\")}var Er;Er=\"tfjs-backend-wasm.wasm\",zo(Er)||(Er=d(Er));function va(X){try{if(X==Er&&F)return new Uint8Array(F);if(x)return x(X);throw\"both async and sync fetching of the wasm failed\"}catch(ct){Qr(ct)}}function Vd(){if(!F&&(c||p)){if(typeof fetch==\"function\"&&!Ti(Er))return fetch(Er,{credentials:\"same-origin\"}).then(function(X){if(!X.ok)throw\"failed to load wasm binary file at '\"+Er+\"'\";return X.arrayBuffer()}).catch(function(){return va(Er)});if(g)return new Promise(function(X,ct){g(Er,function(Ft){X(new Uint8Array(Ft))},ct)})}return Promise.resolve().then(function(){return va(Er)})}function Gd(){var X={env:Wd,wasi_snapshot_preview1:Wd};function ct(se,ne){var yr=se.exports;e.asm=yr,V=e.asm.memory,Dt(V.buffer),qt=e.asm.__indirect_function_table,Zn(e.asm.__wasm_call_ctors),Qn(\"wasm-instantiate\")}Jn(\"wasm-instantiate\");function Ft(se){ct(se.instance)}function me(se){return Vd().then(function(ne){return WebAssembly.instantiate(ne,X)}).then(function(ne){return ne}).then(se,function(ne){A(\"failed to asynchronously prepare wasm: \"+ne),Qr(ne)})}function Ye(){return!F&&typeof WebAssembly.instantiateStreaming==\"function\"&&!zo(Er)&&!Ti(Er)&&!m&&typeof fetch==\"function\"?fetch(Er,{credentials:\"same-origin\"}).then(function(se){var ne=WebAssembly.instantiateStreaming(se,X);return ne.then(Ft,function(yr){return A(\"wasm streaming compile failed: \"+yr),A(\"falling back to ArrayBuffer instantiation\"),me(Ft)})}):me(Ft)}if(e.instantiateWasm)try{var Ze=e.instantiateWasm(X,ct);return Ze}catch(se){A(\"Module.instantiateWasm callback failed with error: \"+se),o(se)}return Ye().catch(o),{}}var c_,zl;function bp(X){this.name=\"ExitStatus\",this.message=\"Program terminated with exit(\"+X+\")\",this.status=X}function Sa(X){for(;X.length>0;)X.shift()(e)}function MC(){Qr(\"\")}function Ig(){return 4294901760}function Xu(){return Ig()}function PC(X,ct,Ft){lt.copyWithin(X>>>0,ct>>>0,ct+Ft>>>0)}function Cg(X){try{return V.grow(X-nt.byteLength+65535>>>16),Dt(V.buffer),1}catch(ct){}}function wp(X){var ct=lt.length;X=X>>>0;var Ft=Ig();if(X>Ft)return!1;let me=(yr,to)=>yr+(to-yr%to)%to;for(var Ye=1;Ye<=4;Ye*=2){var Ze=ct*(1+.2/Ye);Ze=Math.min(Ze,X+100663296);var se=Math.min(Ft,me(Math.max(X,Ze),65536)),ne=Cg(se);if(ne)return!0}return!1}var tn={varargs:void 0,get:function(){tn.varargs+=4;var X=ft[tn.varargs-4>>>2];return X},getStr:function(X){var ct=Y(X);return ct}};function vg(X){return 52}function LC(X,ct,Ft,me,Ye){return 70}var zC=[null,[],[]];function p_(X,ct){var Ft=zC[X];ct===0||ct===10?((X===1?E:A)(j(Ft,0)),Ft.length=0):Ft.push(ct)}function m_(X,ct,Ft,me){for(var Ye=0,Ze=0;Ze>>2],ne=gt[ct+4>>>2];ct+=8;for(var yr=0;yr>>0]);Ye+=ne}return gt[me>>>2]=Ye,0}function Sg(X){var ct=e[\"_\"+X];return ct}function Yu(X,ct){st.set(X,ct>>>0)}function BC(X,ct,Ft,me,Ye){var Ze={string:on=>{var Vl=0;if(on!=null&&on!==0){var Vg=(on.length<<2)+1;Vl=jd(Vg),et(on,Vl,Vg)}return Vl},array:on=>{var Vl=jd(on.length);return Yu(on,Vl),Vl}};function se(on){return ct===\"string\"?Y(on):ct===\"boolean\"?!!on:on}var ne=Sg(X),yr=[],to=0;if(me)for(var Na=0;Nase===\"number\"||se===\"boolean\"),Ze=ct!==\"string\";return Ze&&Ye&&!me?Sg(X):function(){return BC(X,ct,Ft,arguments,me)}}var Wd={abort:MC,emscripten_get_heap_max:Xu,emscripten_memcpy_big:PC,emscripten_resize_heap:wp,fd_close:vg,fd_seek:LC,fd_write:m_},GC=Gd(),Ng=e.___wasm_call_ctors=function(){return(Ng=e.___wasm_call_ctors=e.asm.__wasm_call_ctors).apply(null,arguments)},kg=e._init=function(){return(kg=e._init=e.asm.init).apply(null,arguments)},WC=e._init_with_threads_count=function(){return(WC=e._init_with_threads_count=e.asm.init_with_threads_count).apply(null,arguments)},Tg=e._get_threads_count=function(){return(Tg=e._get_threads_count=e.asm.get_threads_count).apply(null,arguments)},UC=e._register_tensor=function(){return(UC=e._register_tensor=e.asm.register_tensor).apply(null,arguments)},Yt=e._dispose_data=function(){return(Yt=e._dispose_data=e.asm.dispose_data).apply(null,arguments)},Ud=e._dispose=function(){return(Ud=e._dispose=e.asm.dispose).apply(null,arguments)},HC=e._Abs=function(){return(HC=e._Abs=e.asm.Abs).apply(null,arguments)},_g=e._Acos=function(){return(_g=e._Acos=e.asm.Acos).apply(null,arguments)},Ip=e._Acosh=function(){return(Ip=e._Acosh=e.asm.Acosh).apply(null,arguments)},qC=e._Add=function(){return(qC=e._Add=e.asm.Add).apply(null,arguments)},KC=e._AddN=function(){return(KC=e._AddN=e.asm.AddN).apply(null,arguments)},jC=e._All=function(){return(jC=e._All=e.asm.All).apply(null,arguments)},XC=e._Any=function(){return(XC=e._Any=e.asm.Any).apply(null,arguments)},YC=e._ArgMax=function(){return(YC=e._ArgMax=e.asm.ArgMax).apply(null,arguments)},Eg=e._ArgMin=function(){return(Eg=e._ArgMin=e.asm.ArgMin).apply(null,arguments)},Ag=e._Asin=function(){return(Ag=e._Asin=e.asm.Asin).apply(null,arguments)},ZC=e._Asinh=function(){return(ZC=e._Asinh=e.asm.Asinh).apply(null,arguments)},JC=e._Atan=function(){return(JC=e._Atan=e.asm.Atan).apply(null,arguments)},QC=e._Atan2=function(){return(QC=e._Atan2=e.asm.Atan2).apply(null,arguments)},Hd=e._Atanh=function(){return(Hd=e._Atanh=e.asm.Atanh).apply(null,arguments)},tv=e._AvgPool=function(){return(tv=e._AvgPool=e.asm.AvgPool).apply(null,arguments)},ev=e._AvgPool3D=function(){return(ev=e._AvgPool3D=e.asm.AvgPool3D).apply(null,arguments)},rv=e._AvgPool3DGrad=function(){return(rv=e._AvgPool3DGrad=e.asm.AvgPool3DGrad).apply(null,arguments)},Zu=e._AvgPoolGrad=function(){return(Zu=e._AvgPoolGrad=e.asm.AvgPoolGrad).apply(null,arguments)},nv=e._BatchMatMul=function(){return(nv=e._BatchMatMul=e.asm.BatchMatMul).apply(null,arguments)},ov=e._Bincount=function(){return(ov=e._Bincount=e.asm.Bincount).apply(null,arguments)},Dg=e._BitwiseAnd=function(){return(Dg=e._BitwiseAnd=e.asm.BitwiseAnd).apply(null,arguments)},sv=e._Ceil=function(){return(sv=e._Ceil=e.asm.Ceil).apply(null,arguments)},qd=e._ClipByValue=function(){return(qd=e._ClipByValue=e.asm.ClipByValue).apply(null,arguments)},iv=e._Conv2D=function(){return(iv=e._Conv2D=e.asm.Conv2D).apply(null,arguments)},av=e._Conv2DBackpropInput=function(){return(av=e._Conv2DBackpropInput=e.asm.Conv2DBackpropInput).apply(null,arguments)},lv=e._Conv3D=function(){return(lv=e._Conv3D=e.asm.Conv3D).apply(null,arguments)},Bl=e._Conv3DBackpropFilterV2=function(){return(Bl=e._Conv3DBackpropFilterV2=e.asm.Conv3DBackpropFilterV2).apply(null,arguments)},Kd=e._Conv3DBackpropInputV2=function(){return(Kd=e._Conv3DBackpropInputV2=e.asm.Conv3DBackpropInputV2).apply(null,arguments)},uv=e._Cos=function(){return(uv=e._Cos=e.asm.Cos).apply(null,arguments)},cv=e._Cosh=function(){return(cv=e._Cosh=e.asm.Cosh).apply(null,arguments)},pv=e._CropAndResize=function(){return(pv=e._CropAndResize=e.asm.CropAndResize).apply(null,arguments)},mv=e._Cumprod=function(){return(mv=e._Cumprod=e.asm.Cumprod).apply(null,arguments)},$g=e._Cumsum=function(){return($g=e._Cumsum=e.asm.Cumsum).apply(null,arguments)},Rg=e._DenseBincount=function(){return(Rg=e._DenseBincount=e.asm.DenseBincount).apply(null,arguments)},fv=e._DepthToSpace=function(){return(fv=e._DepthToSpace=e.asm.DepthToSpace).apply(null,arguments)},dv=e._DepthwiseConv2dNative=function(){return(dv=e._DepthwiseConv2dNative=e.asm.DepthwiseConv2dNative).apply(null,arguments)},Fg=e._Diag=function(){return(Fg=e._Diag=e.asm.Diag).apply(null,arguments)},Og=e._Dilation2D=function(){return(Og=e._Dilation2D=e.asm.Dilation2D).apply(null,arguments)},hv=e._Dilation2DBackpropFilter=function(){return(hv=e._Dilation2DBackpropFilter=e.asm.Dilation2DBackpropFilter).apply(null,arguments)},gv=e._Dilation2DBackpropInput=function(){return(gv=e._Dilation2DBackpropInput=e.asm.Dilation2DBackpropInput).apply(null,arguments)},xv=e._Elu=function(){return(xv=e._Elu=e.asm.Elu).apply(null,arguments)},yv=e._EluGrad=function(){return(yv=e._EluGrad=e.asm.EluGrad).apply(null,arguments)},Mg=e._Equal=function(){return(Mg=e._Equal=e.asm.Equal).apply(null,arguments)},f_=e._Erf=function(){return(f_=e._Erf=e.asm.Erf).apply(null,arguments)},bv=e._Exp=function(){return(bv=e._Exp=e.asm.Exp).apply(null,arguments)},wv=e._Expm1=function(){return(wv=e._Expm1=e.asm.Expm1).apply(null,arguments)},Iv=e._FlipLeftRight=function(){return(Iv=e._FlipLeftRight=e.asm.FlipLeftRight).apply(null,arguments)},Cv=e._Floor=function(){return(Cv=e._Floor=e.asm.Floor).apply(null,arguments)},vv=e._FloorDiv=function(){return(vv=e._FloorDiv=e.asm.FloorDiv).apply(null,arguments)},Sv=e._FusedBatchNorm=function(){return(Sv=e._FusedBatchNorm=e.asm.FusedBatchNorm).apply(null,arguments)},Nv=e._FusedConv2D=function(){return(Nv=e._FusedConv2D=e.asm.FusedConv2D).apply(null,arguments)},kv=e._FusedDepthwiseConv2D=function(){return(kv=e._FusedDepthwiseConv2D=e.asm.FusedDepthwiseConv2D).apply(null,arguments)},Tv=e._Gather=function(){return(Tv=e._Gather=e.asm.Gather).apply(null,arguments)},_v=e._GatherNd=function(){return(_v=e._GatherNd=e.asm.GatherNd).apply(null,arguments)},Ev=e._Greater=function(){return(Ev=e._Greater=e.asm.Greater).apply(null,arguments)},Av=e._GreaterEqual=function(){return(Av=e._GreaterEqual=e.asm.GreaterEqual).apply(null,arguments)},Dv=e._IsFinite=function(){return(Dv=e._IsFinite=e.asm.IsFinite).apply(null,arguments)},$v=e._IsInf=function(){return($v=e._IsInf=e.asm.IsInf).apply(null,arguments)},Rv=e._IsNan=function(){return(Rv=e._IsNan=e.asm.IsNan).apply(null,arguments)},Fv=e._LRN=function(){return(Fv=e._LRN=e.asm.LRN).apply(null,arguments)},Ov=e._LRNGrad=function(){return(Ov=e._LRNGrad=e.asm.LRNGrad).apply(null,arguments)},Mv=e._LeakyRelu=function(){return(Mv=e._LeakyRelu=e.asm.LeakyRelu).apply(null,arguments)},Pv=e._Less=function(){return(Pv=e._Less=e.asm.Less).apply(null,arguments)},Lv=e._LessEqual=function(){return(Lv=e._LessEqual=e.asm.LessEqual).apply(null,arguments)},zv=e._LinSpace=function(){return(zv=e._LinSpace=e.asm.LinSpace).apply(null,arguments)},Bv=e._Log=function(){return(Bv=e._Log=e.asm.Log).apply(null,arguments)},Vv=e._Log1p=function(){return(Vv=e._Log1p=e.asm.Log1p).apply(null,arguments)},Gv=e._LogicalAnd=function(){return(Gv=e._LogicalAnd=e.asm.LogicalAnd).apply(null,arguments)},Wv=e._LogicalNot=function(){return(Wv=e._LogicalNot=e.asm.LogicalNot).apply(null,arguments)},Uv=e._LogicalOr=function(){return(Uv=e._LogicalOr=e.asm.LogicalOr).apply(null,arguments)},Hv=e._LogicalXor=function(){return(Hv=e._LogicalXor=e.asm.LogicalXor).apply(null,arguments)},qv=e._Max=function(){return(qv=e._Max=e.asm.Max).apply(null,arguments)},Kv=e._MaxPool=function(){return(Kv=e._MaxPool=e.asm.MaxPool).apply(null,arguments)},jv=e._MaxPool3D=function(){return(jv=e._MaxPool3D=e.asm.MaxPool3D).apply(null,arguments)},Xv=e._MaxPool3DGrad=function(){return(Xv=e._MaxPool3DGrad=e.asm.MaxPool3DGrad).apply(null,arguments)},Yv=e._MaxPoolGrad=function(){return(Yv=e._MaxPoolGrad=e.asm.MaxPoolGrad).apply(null,arguments)},Zv=e._MaxPoolWithArgmax=function(){return(Zv=e._MaxPoolWithArgmax=e.asm.MaxPoolWithArgmax).apply(null,arguments)},Jv=e._Maximum=function(){return(Jv=e._Maximum=e.asm.Maximum).apply(null,arguments)},Qv=e._Mean=function(){return(Qv=e._Mean=e.asm.Mean).apply(null,arguments)},tS=e._Min=function(){return(tS=e._Min=e.asm.Min).apply(null,arguments)},eS=e._Minimum=function(){return(eS=e._Minimum=e.asm.Minimum).apply(null,arguments)},rS=e._MirrorPad=function(){return(rS=e._MirrorPad=e.asm.MirrorPad).apply(null,arguments)},nS=e._Mod=function(){return(nS=e._Mod=e.asm.Mod).apply(null,arguments)},oS=e._Multinomial=function(){return(oS=e._Multinomial=e.asm.Multinomial).apply(null,arguments)},sS=e._Multiply=function(){return(sS=e._Multiply=e.asm.Multiply).apply(null,arguments)},iS=e._Neg=function(){return(iS=e._Neg=e.asm.Neg).apply(null,arguments)},aS=e._NonMaxSuppressionV3=function(){return(aS=e._NonMaxSuppressionV3=e.asm.NonMaxSuppressionV3).apply(null,arguments)},lS=e._NonMaxSuppressionV4=function(){return(lS=e._NonMaxSuppressionV4=e.asm.NonMaxSuppressionV4).apply(null,arguments)},uS=e._NonMaxSuppressionV5=function(){return(uS=e._NonMaxSuppressionV5=e.asm.NonMaxSuppressionV5).apply(null,arguments)},cS=e._NotEqual=function(){return(cS=e._NotEqual=e.asm.NotEqual).apply(null,arguments)},pS=e._OneHot=function(){return(pS=e._OneHot=e.asm.OneHot).apply(null,arguments)},mS=e._PadV2=function(){return(mS=e._PadV2=e.asm.PadV2).apply(null,arguments)},fS=e._Pow=function(){return(fS=e._Pow=e.asm.Pow).apply(null,arguments)},dS=e._Prelu=function(){return(dS=e._Prelu=e.asm.Prelu).apply(null,arguments)},hS=e._Prod=function(){return(hS=e._Prod=e.asm.Prod).apply(null,arguments)},gS=e._RealDiv=function(){return(gS=e._RealDiv=e.asm.RealDiv).apply(null,arguments)},xS=e._Reciprocal=function(){return(xS=e._Reciprocal=e.asm.Reciprocal).apply(null,arguments)},yS=e._Relu=function(){return(yS=e._Relu=e.asm.Relu).apply(null,arguments)},bS=e._Relu6=function(){return(bS=e._Relu6=e.asm.Relu6).apply(null,arguments)},wS=e._ResizeBilinear=function(){return(wS=e._ResizeBilinear=e.asm.ResizeBilinear).apply(null,arguments)},IS=e._ResizeBilinearGrad=function(){return(IS=e._ResizeBilinearGrad=e.asm.ResizeBilinearGrad).apply(null,arguments)},CS=e._ResizeNearestNeighbor=function(){return(CS=e._ResizeNearestNeighbor=e.asm.ResizeNearestNeighbor).apply(null,arguments)},vS=e._ResizeNearestNeighborGrad=function(){return(vS=e._ResizeNearestNeighborGrad=e.asm.ResizeNearestNeighborGrad).apply(null,arguments)},SS=e._Reverse=function(){return(SS=e._Reverse=e.asm.Reverse).apply(null,arguments)},NS=e._RotateWithOffset=function(){return(NS=e._RotateWithOffset=e.asm.RotateWithOffset).apply(null,arguments)},kS=e._Round=function(){return(kS=e._Round=e.asm.Round).apply(null,arguments)},TS=e._Rsqrt=function(){return(TS=e._Rsqrt=e.asm.Rsqrt).apply(null,arguments)},_S=e._ScatterNd=function(){return(_S=e._ScatterNd=e.asm.ScatterNd).apply(null,arguments)},ES=e._SearchSorted=function(){return(ES=e._SearchSorted=e.asm.SearchSorted).apply(null,arguments)},AS=e._SelectV2=function(){return(AS=e._SelectV2=e.asm.SelectV2).apply(null,arguments)},DS=e._Selu=function(){return(DS=e._Selu=e.asm.Selu).apply(null,arguments)},$S=e._Sigmoid=function(){return($S=e._Sigmoid=e.asm.Sigmoid).apply(null,arguments)},RS=e._Sign=function(){return(RS=e._Sign=e.asm.Sign).apply(null,arguments)},FS=e._Sin=function(){return(FS=e._Sin=e.asm.Sin).apply(null,arguments)},OS=e._Sinh=function(){return(OS=e._Sinh=e.asm.Sinh).apply(null,arguments)},MS=e._Softmax=function(){return(MS=e._Softmax=e.asm.Softmax).apply(null,arguments)},PS=e._Softplus=function(){return(PS=e._Softplus=e.asm.Softplus).apply(null,arguments)},LS=e._SparseFillEmptyRows=function(){return(LS=e._SparseFillEmptyRows=e.asm.SparseFillEmptyRows).apply(null,arguments)},zS=e._SparseReshape=function(){return(zS=e._SparseReshape=e.asm.SparseReshape).apply(null,arguments)},BS=e._SparseSegmentReduction=function(){return(BS=e._SparseSegmentReduction=e.asm.SparseSegmentReduction).apply(null,arguments)},VS=e._SparseToDense=function(){return(VS=e._SparseToDense=e.asm.SparseToDense).apply(null,arguments)},GS=e._Sqrt=function(){return(GS=e._Sqrt=e.asm.Sqrt).apply(null,arguments)},WS=e._Square=function(){return(WS=e._Square=e.asm.Square).apply(null,arguments)},US=e._SquaredDifference=function(){return(US=e._SquaredDifference=e.asm.SquaredDifference).apply(null,arguments)},HS=e._Step=function(){return(HS=e._Step=e.asm.Step).apply(null,arguments)},qS=e._StridedSlice=function(){return(qS=e._StridedSlice=e.asm.StridedSlice).apply(null,arguments)},KS=e._Sub=function(){return(KS=e._Sub=e.asm.Sub).apply(null,arguments)},jS=e._Sum=function(){return(jS=e._Sum=e.asm.Sum).apply(null,arguments)},XS=e._Tan=function(){return(XS=e._Tan=e.asm.Tan).apply(null,arguments)},YS=e._Tanh=function(){return(YS=e._Tanh=e.asm.Tanh).apply(null,arguments)},ZS=e._TensorScatterUpdate=function(){return(ZS=e._TensorScatterUpdate=e.asm.TensorScatterUpdate).apply(null,arguments)},JS=e._Tile=function(){return(JS=e._Tile=e.asm.Tile).apply(null,arguments)},QS=e._TopK=function(){return(QS=e._TopK=e.asm.TopK).apply(null,arguments)},t0=e._Transform=function(){return(t0=e._Transform=e.asm.Transform).apply(null,arguments)},e0=e._Transpose=function(){return(e0=e._Transpose=e.asm.Transpose).apply(null,arguments)},r0=e.__FusedMatMul=function(){return(r0=e.__FusedMatMul=e.asm._FusedMatMul).apply(null,arguments)},n0=e._malloc=function(){return(n0=e._malloc=e.asm.malloc).apply(null,arguments)},o0=e._free=function(){return(o0=e._free=e.asm.free).apply(null,arguments)},s0=e.___errno_location=function(){return(s0=e.___errno_location=e.asm.__errno_location).apply(null,arguments)},Pg=e.stackSave=function(){return(Pg=e.stackSave=e.asm.stackSave).apply(null,arguments)},Lg=e.stackRestore=function(){return(Lg=e.stackRestore=e.asm.stackRestore).apply(null,arguments)},jd=e.stackAlloc=function(){return(jd=e.stackAlloc=e.asm.stackAlloc).apply(null,arguments)},i0=e.dynCall_iijjiiii=function(){return(i0=e.dynCall_iijjiiii=e.asm.dynCall_iijjiiii).apply(null,arguments)},a0=e.dynCall_jiji=function(){return(a0=e.dynCall_jiji=e.asm.dynCall_jiji).apply(null,arguments)};e.cwrap=VC;var Cp;Gr=function X(){Cp||zg(),Cp||(Gr=X)};function zg(X){if(X=X||a,Xe>0||(Ee(),Xe>0))return;function ct(){Cp||(Cp=!0,e.calledRun=!0,!G&&(Ae(),n(e),e.onRuntimeInitialized&&e.onRuntimeInitialized(),On()))}e.setStatus?(e.setStatus(\"Running...\"),setTimeout(function(){setTimeout(function(){e.setStatus(\"\")},1),ct()},1)):ct()}if(e.preInit)for(typeof e.preInit==\"function\"&&(e.preInit=[e.preInit]);e.preInit.length>0;)e.preInit.pop()();zg();var vp;s&&(vp={uncaughtException:process.listeners(\"uncaughtException\").filter(function(X){return!s.uncaughtException.indexOf(X)>-1}),unhandledRejection:process.listeners(\"unhandledRejection\").filter(function(X){return!s.unhandledRejection.indexOf(X)>-1})});var Sp;if(typeof t!=\"undefined\")Sp=t;else if(typeof WasmBackendModuleThreadedSimd!=\"undefined\")Sp=WasmBackendModuleThreadedSimd;else throw new Error(\"Could not find wasm module in post.js\");if(vp){var l0=Sp._dispose;Sp._dispose=function(){l0(),vp.uncaughtException.forEach(function(X){process.removeListener(\"uncaughtException\",X)}),vp.unhandledRejection.forEach(function(X){process.removeListener(\"unhandledRejection\",X)})}}return t.ready}})();typeof FC==\"object\"&&typeof s_==\"object\"?s_.exports=o_:typeof define==\"function\"&&define.amd?define([],function(){return o_}):typeof FC==\"object\"&&(FC.WasmBackendModule=o_)});var Ta=class{constructor(t,e){this.backend=t,this.dataMover=e,this.data=new WeakMap,this.dataIdsCount=0}get(t){return this.data.has(t)||this.dataMover.moveData(this.backend,t),this.data.get(t)}set(t,e){this.dataIdsCount++,this.data.set(t,e)}has(t){return this.data.has(t)}delete(t){return this.dataIdsCount--,this.data.delete(t)}numDataIds(){return this.dataIdsCount}},Bo=class{refCount(t){return Pn(\"refCount\")}incRef(t){return Pn(\"incRef\")}timerAvailable(){return!0}time(t){return Pn(\"time\")}read(t){return Pn(\"read\")}readSync(t){return Pn(\"readSync\")}readToGPU(t,e){return Pn(\"readToGPU\")}numDataIds(){return Pn(\"numDataIds\")}disposeData(t,e){return Pn(\"disposeData\")}write(t,e,n){return Pn(\"write\")}move(t,e,n,o,s){return Pn(\"move\")}createTensorFromGPUData(t,e,n){return Pn(\"createTensorFromGPUData\")}memory(){return Pn(\"memory\")}floatPrecision(){return Pn(\"floatPrecision\")}epsilon(){return this.floatPrecision()===32?1e-7:1e-4}dispose(){return Pn(\"dispose\")}};function Pn(r){throw new Error(`'${r}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function C_(r){let t=r.length,e=0;for(;t>0;)e=Math.random()*t|0,t--,jg(r,t,e)}function Hq(r,t){if(r.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${r.length}Second array length was ${t.length}`);let e=r.length,n=0;for(;e>0;)n=Math.random()*e|0,e--,jg(r,e,n),jg(t,e,n)}function kp(r,t,e){return Math.max(r,Math.min(t,e))}function qq(r){return r%2===0?r:r+1}function jg(r,t,e){let n=r[t];r[t]=r[e],r[e]=n}function Kq(r){let t=0;for(let e=0;ee+` Shapes ${r} and ${t} must match`)}function ro(r){_(r!=null,()=>\"The input to the tensor constructor must be a non-null value.\")}function jt(r){if(r.length===0)return 1;let t=r[0];for(let e=1;e0,e,n){return new Promise((o,s)=>{let i=0,a=()=>{if(r()){o();return}i++;let u=t(i);if(e!=null&&i>=e){s();return}n!=null?n(a,u):setTimeout(a,u)};a()})}function eK(r,t){let e=1,n=-1;for(let s=0;s=0)e*=r[s];else if(r[s]===-1){if(n!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${n} and dim ${s}`);n=s}else if(r[s]<0)throw Error(`Shapes can not be < 0. Found ${r[s]} at dim ${s}`);if(n===-1){if(t>0&&t!==e)throw Error(`Size(${t}) must match the product of shape ${r}`);return r}if(e===0)throw Error(`Cannot infer the missing size in [${r}] when there are 0 elements`);if(t%e!==0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${e}`);let o=r.slice();return o[n]=t/e,o}function fr(r,t){let e=t.length;return r=r==null?t.map((n,o)=>o):[].concat(r),_(r.every(n=>n>=-e&&n`All values in axis param must be in range [-${e}, ${e}) but got axis ${r}`),_(r.every(n=>_a(n)),()=>`All values in axis param must be integers but got axis ${r}`),r.map(n=>n<0?e+n:n)}function h0(r,t){let e=[],n=[],o=t!=null&&Array.isArray(t)&&t.length===0,s=t==null||o?null:fr(t,r).sort(),i=0;for(let a=0;aa)&&r[a]===1&&(e.push(r[a]),n.push(a)),s[i]<=a&&i++}r[a]!==1&&(e.push(r[a]),n.push(a))}return{newShape:e,keptDims:n}}function g0(r,t){return Xg(r,t)}function Xg(r,t){let e=null;if(r==null||r===\"float32\")e=new Float32Array(t);else if(r===\"int32\")e=new Int32Array(t);else if(r===\"bool\")e=new Uint8Array(t);else if(r===\"string\")e=new Array(t);else throw new Error(`Unknown data type ${r}`);return e}function x0(r,t){for(let e=0;et+=e.length),t}function Vo(r){return typeof r==\"string\"||r instanceof String}function v_(r){return typeof r==\"boolean\"}function S_(r){return typeof r==\"number\"}function Wl(r){return Array.isArray(r)?Wl(r[0]):r instanceof Float32Array?\"float32\":r instanceof Int32Array||r instanceof Uint8Array||r instanceof Uint8ClampedArray?\"int32\":S_(r)?\"float32\":Vo(r)?\"string\":v_(r)?\"bool\":\"float32\"}function _i(r){return!!(r&&r.constructor&&r.call&&r.apply)}function _p(r,t){for(let e=t;e=0;--n)e[n]=e[n+1]*r[n+1];return e}function N_(r,t,e,n=!1){let o=new Array;if(t.length===1){let s=t[0]*(n?2:1);for(let i=0;iu*l)*(n?2:1);for(let u=0;uo*s)*(e?2:1);if(n===0)return[];if(n!==t.length)throw new Error(`[${r}] does not match the input size ${t.length}${e?\" for a complex tensor\":\"\"}.`);return N_(0,r,t,e)}function nK(r,t){if(Array.isArray(r))return r;if(t===\"float32\")return r instanceof Float32Array?r:new Float32Array(r);if(t===\"int32\")return r instanceof Int32Array?r:new Int32Array(r);if(t===\"bool\"||t===\"string\")return Uint8Array.from(new Int32Array(r));throw new Error(`Unknown dtype ${t}`)}function Yd(r,t){let e=Ep(r,t);for(let n=0;nn*o,1);if(t==null||t===\"float32\")return Ju(r,new Float32Array(e));if(t===\"int32\")return Ju(r,new Int32Array(e));if(t===\"bool\")return Ju(r,new Uint8Array(e));throw new Error(`Unknown data type ${t}`)}function Le(r){r.forEach(t=>{_(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${r}].`)})}function sK(r,t,e){if(t===0)return 0;if(t===1)return r[0];let n=r[r.length-1];for(let o=0;o{let[o,s]=n.split(\":\");this.urlFlags[o]=cK(o,s)})}};function lK(r){let t={};return r.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(e,...n)=>(uK(t,n[0],n[1]),n.join(\"=\"))),t}function uK(r,t,e){r[decodeURIComponent(t)]=decodeURIComponent(e||\"\")}function cK(r,t){let e=t.toLowerCase();return e===\"true\"||e===\"false\"?e===\"true\":`${+e}`===e?+e:t}function L(){return w0}var w0=null;function T_(r){w0=r}var I0;function C0(){if(I0==null){let r;if(typeof window!=\"undefined\")r=window;else if(typeof global!=\"undefined\")r=global;else if(typeof process!=\"undefined\")r=process;else if(typeof self!=\"undefined\")r=self;else throw new Error(\"Could not find a global object\");I0=r}return I0}function pK(){let r=C0();return r._tfGlobals==null&&(r._tfGlobals=new Map),r._tfGlobals}function Jd(r,t){let e=pK();if(e.has(r))return e.get(r);{let n=t();return e.set(r,n),e.get(r)}}var Ai=\"Abs\",Go=\"Acos\",Wo=\"Acosh\",no=\"Add\",Uo=\"AddN\",Ea=\"All\",Aa=\"Any\",Di=\"ArgMax\",$i=\"ArgMin\",Ho=\"Asin\",qo=\"Asinh\",Ko=\"Atan\",jo=\"Atanh\",Xo=\"Atan2\",Yo=\"AvgPool\",Ul=\"AvgPoolGrad\",Ri=\"AvgPool3D\",Hl=\"AvgPool3DGrad\",Zo=\"BatchMatMul\",Fi=\"BatchToSpaceND\",Da=\"Bincount\",$a=\"BitwiseAnd\",__=\"BroadcastTo\",ql=\"BroadcastArgs\",fo=\"Cast\",Jo=\"Ceil\",ho=\"ClipByValue\",Ap=\"Complex\",Kl=\"ComplexAbs\",Oi=\"Concat\",Qo=\"Conv2D\",Dp=\"Conv2DBackpropFilter\",ts=\"Conv2DBackpropInput\",es=\"Conv3D\",Ra=\"Conv3DBackpropFilterV2\",Fa=\"Conv3DBackpropInputV2\",rs=\"Cos\",ns=\"Cosh\",Oa=\"Cumprod\",os=\"Cumsum\",Ma=\"CropAndResize\",jl=\"DenseBincount\",Pa=\"DepthToSpace\",ss=\"DepthwiseConv2dNative\",$p=\"DepthwiseConv2dNativeBackpropFilter\",Rp=\"DepthwiseConv2dNativeBackpropInput\",Xl=\"Diag\",is=\"Dilation2D\",Yl=\"Dilation2DBackpropInput\",Zl=\"Dilation2DBackpropFilter\",Qd=\"Draw\",as=\"RealDiv\",Fp=\"Einsum\",ls=\"Elu\",La=\"EluGrad\",us=\"Erf\",za=\"Equal\",cs=\"Exp\",Mi=\"ExpandDims\",ps=\"Expm1\",Op=\"FFT\",Jl=\"Fill\",Ba=\"FlipLeftRight\",ms=\"Floor\",fs=\"FloorDiv\",ds=\"FusedBatchNorm\",Pi=\"GatherV2\",Va=\"GatherNd\",Ga=\"Greater\",hs=\"GreaterEqual\",go=\"Identity\",Mp=\"IFFT\",Pp=\"Imag\",gs=\"IsFinite\",xs=\"IsInf\",ys=\"IsNan\",bs=\"LeakyRelu\",Wa=\"Less\",Ua=\"LessEqual\",Ha=\"LinSpace\",ws=\"Log\",Is=\"Log1p\",qa=\"LogicalAnd\",Ka=\"LogicalNot\",ja=\"LogicalOr\",E_=\"LogicalXor\",A_=\"LogSoftmax\",nft=\"LowerBound\",Cs=\"LRN\",Xa=\"LRNGrad\",oft=\"MatrixBandPart\",vs=\"Max\",Ss=\"Maximum\",Ns=\"MaxPool\",Ql=\"MaxPoolGrad\",Li=\"MaxPool3D\",tu=\"MaxPool3DGrad\",eu=\"MaxPoolWithArgmax\",ks=\"Mean\",Ts=\"Min\",_s=\"Minimum\",Es=\"MirrorPad\",As=\"Mod\",Ya=\"Multinomial\",Ds=\"Multiply\",zi=\"Neg\",Za=\"NotEqual\",Ja=\"NonMaxSuppressionV3\",Qa=\"NonMaxSuppressionV4\",tl=\"NonMaxSuppressionV5\",Bi=\"OnesLike\",$s=\"OneHot\",Vi=\"Pack\",Rs=\"PadV2\",sft=\"Pool\",Fs=\"Pow\",Os=\"Prelu\",Ms=\"Prod\",Lp=\"RaggedGather\",zp=\"RaggedRange\",Bp=\"RaggedTensorToTensor\",ru=\"Range\",Vp=\"Real\",Ps=\"Reciprocal\",Ls=\"Relu\",Gi=\"Reshape\",zs=\"ResizeNearestNeighbor\",el=\"ResizeNearestNeighborGrad\",Bs=\"ResizeBilinear\",rl=\"ResizeBilinearGrad\",Vs=\"Relu6\",Gs=\"Reverse\",Ws=\"Round\",Us=\"Rsqrt\",nl=\"ScatterNd\",ol=\"TensorScatterUpdate\",sl=\"SearchSorted\",Wi=\"Select\",Hs=\"Selu\",Ui=\"Slice\",qs=\"Sin\",Ks=\"Sinh\",js=\"Sign\",Xs=\"Sigmoid\",Ys=\"Softplus\",Zs=\"Sqrt\",Js=\"Sum\",Hi=\"SpaceToBatchND\",qi=\"SplitV\",Qs=\"Softmax\",nu=\"SparseFillEmptyRows\",il=\"SparseReshape\",ou=\"SparseSegmentMean\",su=\"SparseSegmentSum\",al=\"SparseToDense\",ti=\"SquaredDifference\",iu=\"Square\",ec=\"StaticRegexReplace\",ll=\"StridedSlice\",au=\"StringNGrams\",lu=\"StringSplit\",uu=\"StringToHashBucketFast\",ei=\"Sub\",ri=\"Tan\",ni=\"Tanh\",oo=\"Tile\",ul=\"TopK\",cl=\"Transform\",so=\"Transpose\",cu=\"Unique\",Ki=\"Unpack\",pu=\"UnsortedSegmentSum\",ift=\"UpperBound\",ji=\"ZerosLike\",xo=\"Step\",th=\"FromPixels\",pl=\"RotateWithOffset\",Xi=\"_FusedMatMul\",Yi=\"FusedConv2D\",Zi=\"FusedDepthwiseConv2D\";function Ji(...r){L().getBool(\"IS_TEST\")||L().getBool(\"PROD\")||console.warn(...r)}function mK(...r){L().getBool(\"IS_TEST\")||L().getBool(\"PROD\")||console.log(...r)}var Gp=Jd(\"kernelRegistry\",()=>new Map),eh=Jd(\"gradRegistry\",()=>new Map);function Wp(r,t){let e=S0(r,t);return Gp.get(e)}function v0(r){return eh.get(r)}function Yg(r){let t=Gp.entries(),e=[];for(;;){let{done:n,value:o}=t.next();if(n)break;let[s,i]=o,[a]=s.split(\"_\");a===r&&e.push(i)}return e}function rc(r){let{kernelName:t,backendName:e}=r,n=S0(t,e);Gp.has(n)&&Ji(`The kernel '${t}' for backend '${e}' is already registered`),Gp.set(n,r)}function $_(r){let{kernelName:t}=r;eh.has(t)&&L().getBool(\"DEBUG\")&&Ji(`Overriding the gradient for '${t}'`),eh.set(t,r)}function pft(r,t){let e=S0(r,t);if(!Gp.has(e))throw new Error(`The kernel '${r}' for backend '${t}' is not registered`);Gp.delete(e)}function mft(r){if(!eh.has(r))throw new Error(`The gradient '${r}' for backend is not registered`);eh.delete(r)}function fft(r,t){Yg(r).forEach(n=>{let o=Object.assign({},n,{backendName:t});rc(o)})}function S0(r,t){return`${t}_${r}`}var y={};Kt(y,{arraysEqual:()=>sn,arraysEqualWithNull:()=>d0,assert:()=>_,assertNonNegativeIntegerDimensions:()=>Le,assertNonNull:()=>ro,assertShapesMatch:()=>$e,bytesFromStringArray:()=>b0,bytesPerElement:()=>Tp,checkConversionForErrors:()=>x0,clamp:()=>kp,computeStrides:()=>Ei,convertBackendValuesAndArrayBuffer:()=>nK,createScalarValue:()=>bK,createShuffledIndices:()=>Qq,decodeString:()=>Kp,distSquared:()=>Xq,encodeString:()=>fu,fetch:()=>IK,fingerPrint64:()=>yK,flatten:()=>si,getArrayFromDType:()=>Xg,getTypedArrayFromDType:()=>g0,hasEncodingLoss:()=>rK,hexToLong:()=>rh,indexToLoc:()=>iK,inferDtype:()=>Wl,inferFromImplicitShape:()=>eK,isBoolean:()=>v_,isFunction:()=>_i,isInt:()=>_a,isNumber:()=>S_,isPromise:()=>tc,isScalarShape:()=>Yq,isString:()=>Vo,isTypedArray:()=>sr,isValidDtype:()=>y0,locToIndex:()=>sK,makeOnesTypedArray:()=>Yd,makeZerosNestedTypedArray:()=>oK,makeZerosTypedArray:()=>Ep,nearestDivisor:()=>_p,nearestLargerEven:()=>qq,now:()=>ac,parseAxisParam:()=>fr,randUniform:()=>jq,repeatedTry:()=>tK,rightPad:()=>Qu,shuffle:()=>C_,shuffleCombo:()=>Hq,sizeFromShape:()=>jt,sizeToSquarishShape:()=>Jq,squeezeShape:()=>h0,sum:()=>Kq,swap:()=>jg,tanh:()=>Zq,toNestedArray:()=>Ju,toTypedArray:()=>qp});function Zg(r){return r instanceof Float32Array||r instanceof Int32Array||r instanceof Uint8Array||r instanceof Uint8ClampedArray}var _0=Gl(W_());var ic=_0.default||_0;function rh(r){return ic.fromString(r,!0,16)}var H_=rh(\"c3a5c85c97cb3127\"),sc=rh(\"b492b66fbe98f273\"),an=rh(\"9ae16a3b2f90404f\");function T0(r){return r.xor(r.shru(47))}function q_(r,t,e){let n=r.slice(t,t+e);return ic.fromBytes(Array.from(n),!0,!0)}function ze(r,t){return q_(r,t,8)}function U_(r,t){return q_(r,t,4)}function Ar(r,t){return t===0?r:r.shru(t).or(r.shl(64-t))}function mu(r,t,e=rh(\"9ddfea08eb382d69\")){let n=r.xor(t).mul(e);n=n.xor(n.shru(47));let o=t.xor(n).mul(e);return o=o.xor(o.shru(47)),o=o.mul(e),o}function dK(r,t,e,n,o,s){o=o.add(r),s=Ar(s.add(o).add(n),21);let i=o;return o=o.add(t),o=o.add(e),s=s.add(Ar(o,44)),[o.add(n),s.add(i)]}function Qg(r,t,e,n){return dK(ze(r,t),ze(r,t+8),ze(r,t+16),ze(r,t+24),e,n)}function hK(r,t=r.length){if(t>=8){let e=an.add(t*2),n=ze(r,0).add(an),o=ze(r,t-8),s=Ar(o,37).mul(e).add(n),i=Ar(n,25).add(o).mul(e);return mu(s,i,e)}if(t>=4){let e=an.add(t*2),n=U_(r,0);return mu(n.shl(3).add(t),U_(r,t-4),e)}if(t>0){let e=r[0],n=r[t>>1],o=r[t-1],s=e+(n<<8),i=t+(o<<2);return T0(an.mul(s).xor(H_.mul(i))).mul(an)}return an}function gK(r,t=r.length){let e=an.add(t*2),n=ze(r,0).mul(sc),o=ze(r,8),s=ze(r,t-8).mul(e),i=ze(r,t-16).mul(an);return mu(Ar(n.add(o),43).add(Ar(s,30)).add(i),n.add(Ar(o.add(an),18)).add(s),e)}function xK(r,t=r.length){let e=an.add(t*2),n=ze(r,0).mul(an),o=ze(r,8),s=ze(r,t-8).mul(e),i=ze(r,t-16).mul(an),a=Ar(n.add(o),43).add(Ar(s,30)).add(i),u=mu(a,n.add(Ar(o.add(an),18)).add(s),e),l=ze(r,16).mul(e),c=ze(r,24),p=a.add(ze(r,t-32)).mul(e),m=u.add(ze(r,t-24)).mul(e);return mu(Ar(l.add(c),43).add(Ar(p,30)).add(m),l.add(Ar(c.add(n),18)).add(p),e)}function yK(r,t=r.length){let e=ic.fromNumber(81,!0);if(t<=32)return t<=16?hK(r,t):gK(r,t);if(t<=64)return xK(r,t);let n=e,o=e.mul(sc).add(113),s=T0(o.mul(an).add(113)).mul(an),i=[ic.UZERO,ic.UZERO],a=[ic.UZERO,ic.UZERO];n=n.mul(an).add(ze(r,0));let u=0,l=(t-1>>6)*64,c=l+(t-1&63)-63;do n=Ar(n.add(o).add(i[0]).add(ze(r,u+8)),37).mul(sc),o=Ar(o.add(i[1]).add(ze(r,u+48)),42).mul(sc),n=n.xor(a[1]),o=o.add(i[0]).add(ze(r,u+40)),s=Ar(s.add(a[0]),33).mul(sc),i=Qg(r,u,i[1].mul(sc),n.add(a[0])),a=Qg(r,u+32,s.add(a[1]),o.add(ze(r,u+16))),[s,n]=[n,s],u+=64;while(u!==l);let p=sc.add(s.and(255).shl(1));return u=c,a[0]=a[0].add(t-1&63),i[0]=i[0].add(a[0]),a[0]=a[0].add(i[0]),n=Ar(n.add(o).add(i[0]).add(ze(r,u+8)),37).mul(p),o=Ar(o.add(i[1]).add(ze(r,u+48)),42).mul(p),n=n.xor(a[1].mul(9)),o=o.add(i[0].mul(9).add(ze(r,u+40))),s=Ar(s.add(a[0]),33).mul(p),i=Qg(r,u,i[1].mul(p),n.add(a[0])),a=Qg(r,u+32,s.add(a[1]),o.add(ze(r,u+16))),[s,n]=[n,s],mu(mu(i[0],a[0],p).add(T0(o).mul(H_)).add(s),mu(i[1],a[1],p).add(n),p)}function bK(r,t){return t===\"string\"?fu(r):qp([r],t)}function wK(r,t){return r instanceof Float32Array&&t===\"float32\"||r instanceof Int32Array&&t===\"int32\"||r instanceof Uint8Array&&t===\"bool\"}function qp(r,t){if(t===\"string\")throw new Error(\"Cannot convert a string[] to a TypedArray\");if(Array.isArray(r)&&(r=si(r)),L().getBool(\"DEBUG\")&&x0(r,t),wK(r,t))return r;if(t==null||t===\"float32\"||t===\"complex64\")return new Float32Array(r);if(t===\"int32\")return new Int32Array(r);if(t===\"bool\"){let e=new Uint8Array(r.length);for(let n=0;n{o=n()},i,a=ac();if(this.backendTimer.timerAvailable())i=this.backendTimer.time(s);else{s();for(let l of o)l.dataSync();i=Promise.resolve({kernelMs:ac()-a})}if(L().getBool(\"CHECK_COMPUTATION_FOR_ERRORS\"))for(let l=0;l{CK(p,c.dtype,t)})}return{kernelName:t,outputs:o,inputs:e,timeMs:i.then(l=>l.kernelMs),extraInfo:i.then(l=>l.getExtraProfileInfo!=null?l.getExtraProfileInfo():\"\")}}logKernelProfile(t){let{kernelName:e,outputs:n,timeMs:o,inputs:s,extraInfo:i}=t;n.forEach(a=>{Promise.all([a.data(),o,i]).then(u=>{this.logger.logKernelProfile(e,a,u[0],u[1],s,u[2])})})}};function CK(r,t,e){if(t!==\"float32\")return!1;for(let n=0;n0?h:\"\"} `}}console.log(`%c${u}\t%c${a}\t%c${l}D ${p}\t%c${c}\t%c${m}\t%c${i}`,\"font-weight:bold\",\"color:red\",\"color:blue\",\"color: orange\",\"color: green\",\"color: steelblue\")}};function K_(r,t,e){let n={},o={};for(let u=0;un[h.id]=!0),f=!0,o[l.id]=!0;break}if(f)break}}let s={};s[e.id]=!0;let i={};for(let u=r.length-1;u>=0;u--){let l=r[u],c=l.inputs;for(let p=0;p=0;o--){let s=t[o],i=[];if(s.outputs.forEach(u=>{let l=r[u.id];l!=null?i.push(l):i.push(null)}),s.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${s.kernelName}.`);let a=s.gradient(i);for(let u in s.inputs){if(!(u in a))throw new Error(`Cannot backprop through input ${u}. Available gradients found: ${Object.keys(a)}.`);let l=e(()=>a[u]());if(l.dtype!==\"float32\")throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input ${u} must have 'float32' dtype, but has '${l.dtype}'`);let c=s.inputs[u];if(!sn(l.shape,c.shape))throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input '${u}' has shape '${l.shape}', which does not match the shape of the input '${c.shape}'`);if(r[c.id]==null)r[c.id]=l;else{let p=r[c.id];r[c.id]=n(p,l),p.dispose()}}}}var X_=20,nh=3,A0=7;function Y_(r,t,e,n){let o=Ei(t),s=vK(r,t,e,o),i=t.length,a=ex(r,t,e,o,s),u=[\"Tensor\"];return n&&(u.push(` dtype: ${e}`),u.push(` rank: ${i}`),u.push(` shape: [${t}]`),u.push(\" values:\")),u.push(a.map(l=>\" \"+l).join(`\n`)),u.join(`\n`)}function vK(r,t,e,n){let o=jt(t),s=n[n.length-1],i=new Array(s).fill(0),a=t.length,u=e===\"complex64\"?sh(r):r;if(a>1)for(let l=0;lX_){let g=nh*i,x=Array.from(r.slice(0,g)),b=Array.from(r.slice((a-nh)*i,a*i));return e===\"complex64\"&&(x=sh(x),b=sh(b)),[\"[\"+x.map((w,I)=>oh(w,o[I],e)).join(\", \")+\", ..., \"+b.map((w,I)=>oh(w,o[a-nh+I],e)).join(\", \")+\"]\"]}return[\"[\"+(e===\"complex64\"?sh(r):Array.from(r)).map((g,x)=>oh(g,o[x],e)).join(\", \")+\"]\"]}let l=t.slice(1),c=n.slice(1),p=n[0]*i,m=[];if(a>X_){for(let h=0;h0?m[0]+f:\"\");for(let h=1;h`Length of values '${o}' does not match the size inferred by the shape '${this.size}'.`)}if(e===\"complex64\")throw new Error(\"complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).\");this.values=n||Xg(e,this.size),this.strides=Ei(t)}set(t,...e){e.length===0&&(e=[0]),_(e.length===this.rank,()=>`The number of provided coordinates (${e.length}) must match the rank (${this.rank})`);let n=this.locToIndex(e);this.values[n]=t}get(...t){t.length===0&&(t=[0]);let e=0;for(let o of t){if(o<0||o>=this.shape[e]){let s=`Requested out of range element at ${t}. Buffer shape=${this.shape}`;throw new Error(s)}e++}let n=t[t.length-1];for(let o=0;oKp(n))}catch(n){throw new Error(\"Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().\")}}return t}dataToGPU(t){return this.throwIfDisposed(),ii().readToGPU(this.dataId,t)}dataSync(){this.throwIfDisposed();let t=ii().readSync(this.dataId);if(this.dtype===\"string\")try{return t.map(e=>Kp(e))}catch(e){throw new Error(\"Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().\")}return t}async bytes(){this.throwIfDisposed();let t=await ii().read(this.dataId);return this.dtype===\"string\"?t:new Uint8Array(t.buffer)}dispose(){this.isDisposed||(this.kerasMask&&this.kerasMask.dispose(),ii().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error(\"Tensor is disposed.\")}print(t=!1){return jp.print(this,t)}clone(){return this.throwIfDisposed(),jp.clone(this)}toString(t=!1){let e=this.dataSync();return Y_(e,this.shape,this.dtype,t)}cast(t){return this.throwIfDisposed(),jp.cast(this,t)}variable(t=!0,e,n){return this.throwIfDisposed(),ii().makeVariable(this,t,e,n)}};Object.defineProperty(Lt,Symbol.hasInstance,{value:r=>!!r&&r.data!=null&&r.dataSync!=null&&r.throwIfDisposed!=null});function O(){return Jd(\"Tensor\",()=>Lt)}O();var ml=class extends Lt{constructor(t,e,n,o){super(t.shape,t.dtype,t.dataId,o),this.trainable=e,this.name=n}assign(t){if(t.dtype!==this.dtype)throw new Error(`dtype of the new value (${t.dtype}) and previous value (${this.dtype}) must match`);if(!sn(t.shape,this.shape))throw new Error(`shape of the new value (${t.shape}) and previous value (${this.shape}) must match`);ii().disposeTensor(this),this.dataId=t.dataId,ii().incRef(this,null)}dispose(){ii().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(ml,Symbol.hasInstance,{value:r=>r instanceof Lt&&r.assign!=null&&r.assign instanceof Function});var Io={};Kt(Io,{assertTypesMatch:()=>M0,getTensorsInContainer:()=>ih,isTensorInList:()=>kK,makeTypesMatch:()=>Xt});var D0;(function(r){r.R0=\"R0\",r.R1=\"R1\",r.R2=\"R2\",r.R3=\"R3\",r.R4=\"R4\",r.R5=\"R5\",r.R6=\"R6\"})(D0||(D0={}));var $0;(function(r){r.float32=\"float32\",r.int32=\"int32\",r.bool=\"int32\",r.complex64=\"complex64\"})($0||($0={}));var R0;(function(r){r.float32=\"float32\",r.int32=\"int32\",r.bool=\"bool\",r.complex64=\"complex64\"})(R0||(R0={}));var F0;(function(r){r.float32=\"float32\",r.int32=\"float32\",r.bool=\"float32\",r.complex64=\"complex64\"})(F0||(F0={}));var O0;(function(r){r.float32=\"complex64\",r.int32=\"complex64\",r.bool=\"complex64\",r.complex64=\"complex64\"})(O0||(O0={}));var NK={float32:F0,int32:$0,bool:R0,complex64:O0};function ur(r,t){if(r===\"string\"||t===\"string\"){if(r===\"string\"&&t===\"string\")return\"string\";throw new Error(`Can not upcast ${r} with ${t}`)}return NK[r][t]}function lc(r){return ur(r,\"int32\")}function rx(r){return r!=null&&typeof r==\"object\"&&\"texture\"in r&&r.texture instanceof WebGLTexture}function nx(r){return typeof GPUBuffer!=\"undefined\"&&r!=null&&typeof r==\"object\"&&\"buffer\"in r&&r.buffer instanceof GPUBuffer}function Xt(r,t){if(r.dtype===t.dtype)return[r,t];let e=ur(r.dtype,t.dtype);return[r.cast(e),t.cast(e)]}function M0(r,t){_(r.dtype===t.dtype,()=>`The dtypes of the first(${r.dtype}) and second(${t.dtype}) input must match`)}function kK(r,t){return t.some(e=>e.id===r.id)}function ih(r){let t=[];return eE(r,t,new Set),t}function eE(r,t,e){if(r==null)return;if(r instanceof Lt){t.push(r);return}if(!TK(r))return;let n=r;for(let o in n){let s=n[o];e.has(s)||(e.add(s),eE(s,t,e))}}function TK(r){return Array.isArray(r)||typeof r==\"object\"}function P0(r){return r.kernelName!=null}var ox=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(t=>t.name)))}}}dispose(){for(let t in this.registeredVariables)this.registeredVariables[t].dispose()}},ah=class r{constructor(t){this.ENV=t,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new ox}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let t=this.getSortedBackends();for(let e=0;e{e.setupFunc!=null&&e.setupFunc(this.backendInstance)})}disposeRegisteredKernels(t){Yg(t).forEach(n=>{n.disposeFunc!=null&&n.disposeFunc(this.registry[t])})}initializeBackend(t){let e=this.registryFactory[t];if(e==null)throw new Error(`Cannot initialize backend ${t}, no registration found.`);try{let n=e.factory();if(n&&!(n instanceof Bo)&&typeof n.then==\"function\"){let o=++this.pendingBackendInitId,s=n.then(i=>o(othis.registryFactory[e].priority-this.registryFactory[t].priority)}initializeBackendsAndReturnBest(){let t=this.getSortedBackends();for(let e=0;ethis.startScope(n),()=>this.endScope(o),()=>(o=e(),o instanceof Promise&&console.error(\"Cannot return a Promise inside of tidy.\"),o))}scopedRun(t,e,n){t();try{let o=n();return e(),o}catch(o){throw e(),o}}nextTensorId(){return r.nextTensorId++}nextVariableId(){return r.nextVariableId++}clone(t){let e=T.runKernel(go,{x:t}),n={x:t},o=i=>({x:()=>{let a=\"float32\",u={x:i},l={dtype:a};return T.runKernel(fo,u,l)}}),s=[];return this.addTapeNode(this.state.activeScope.name,n,[e],o,s,{}),e}runKernel(t,e,n){if(this.backendName==null&&this.backend,!(Wp(t,this.backendName)!=null))throw new Error(`Kernel '${t}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:t,inputs:e,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool(\"IS_TEST\")}checkKernelForMemLeak(t,e,n){let o=this.backend.numDataIds(),s=0;n.forEach(u=>{s+=u.dtype===\"complex64\"?3:1});let i=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],a=o-e-s-i;if(a>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${a} data ids) after running '${t}'`)}runKernelFunc(t){let e,n=[],o=this.isTapeOn(),s=this.state.numBytes,i=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let a;this.backendName==null&&this.backend;let u,l=P0(t)?t.kernelName:this.state.activeScope!=null?this.state.activeScope.name:\"\";if(P0(t)){let{kernelName:d,inputs:h,attrs:g}=t;this.backendName==null&&this.backend;let x=Wp(d,this.backendName);_(x!=null,()=>`Cannot find registered kernel '${d}' for backend '${this.backendName}'`),a=()=>{let b=this.backend.numDataIds();u=x.kernelFunc({inputs:h,attrs:g,backend:this.backend});let w=Array.isArray(u)?u:[u];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(d,b,w);let I=w.map(N=>N.rank!=null?N:this.makeTensorFromTensorInfo(N));if(o){let N=this.getTensorsForGradient(d,h,I);n=this.saveTensorsForBackwardMode(N)}return I}}else{let{forwardFunc:d}=t,h=g=>{o&&(n=g.map(x=>this.keep(this.clone(x))))};a=()=>{let g=this.backend.numDataIds();u=this.tidy(()=>d(this.backend,h));let x=Array.isArray(u)?u:[u];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,g,x),x}}let{inputs:c,attrs:p}=t,m=P0(t)?null:t.backwardsFunc,f;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool(\"DEBUG\")&&!this.state.profiling?e=a():(f=this.profiler.profileKernel(l,c,()=>a()),this.ENV.getBool(\"DEBUG\")&&this.profiler.logKernelProfile(f),e=f.outputs)}),o&&this.addTapeNode(l,c,e,m,n,p),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-s,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-i,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(c).map(d=>c[d]!=null?c[d].shape:null),outputShapes:e.map(d=>d.shape),kernelTimeMs:f.timeMs,extraInfo:f.extraInfo}),Array.isArray(u)?e:e[0]}saveTensorsForBackwardMode(t){return t.map(n=>this.keep(this.clone(n)))}getTensorsForGradient(t,e,n){let o=v0(t);if(o!=null){let s=o.inputsToSave||[],i=o.outputsToSave||[],a;o.saveAllInputs?(_(Array.isArray(e),()=>\"saveAllInputs is true, expected inputs to be an array.\"),a=Object.keys(e).map(l=>e[l])):a=s.map(l=>e[l]);let u=n.filter((l,c)=>i[c]);return a.concat(u)}return[]}makeTensor(t,e,n,o){if(t==null)throw new Error(\"Values passed to engine.makeTensor() are null\");n=n||\"float32\",o=o||this.backend;let s=t;n===\"string\"&&Vo(t[0])&&(s=t.map(u=>fu(u)));let i=o.write(s,e,n),a=new Lt(e,n,i,this.nextTensorId());if(this.trackTensor(a,o),n===\"string\"){let u=this.state.tensorInfo.get(i),l=b0(s);this.state.numBytes+=l-u.bytes,u.bytes=l}return a}makeTensorFromDataId(t,e,n,o){n=n||\"float32\";let s={dataId:t,shape:e,dtype:n};return this.makeTensorFromTensorInfo(s,o)}makeTensorFromTensorInfo(t,e){let{dataId:n,shape:o,dtype:s}=t,i=new Lt(o,s,n,this.nextTensorId());return this.trackTensor(i,e),i}makeVariable(t,e=!0,n,o){n=n||this.nextVariableId().toString(),o!=null&&o!==t.dtype&&(t=t.cast(o));let s=new ml(t,e,n,this.nextTensorId());if(this.state.registeredVariables[s.name]!=null)throw new Error(`Variable with name ${s.name} was already registered`);return this.state.registeredVariables[s.name]=s,this.incRef(s,this.backend),s}trackTensor(t,e){this.state.numTensors++,t.dtype===\"string\"&&this.state.numStringTensors++;let n=0;t.dtype!==\"complex64\"&&t.dtype!==\"string\"&&(n=t.size*Tp(t.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(t.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(t.dataId,{backend:e||this.backend,dtype:t.dtype,shape:t.shape,bytes:n})),t instanceof ml||this.track(t)}incRef(t,e){this.trackTensor(t,e),this.backend.incRef(t.dataId)}removeDataId(t,e){this.state.tensorInfo.has(t)&&this.state.tensorInfo.get(t).backend===e&&(this.state.tensorInfo.delete(t),this.state.numDataBuffers--)}disposeTensor(t){if(!this.state.tensorInfo.has(t.dataId))return;let e=this.state.tensorInfo.get(t.dataId);if(this.state.numTensors--,t.dtype===\"string\"&&(this.state.numStringTensors--,this.state.numBytes-=e.bytes),t.dtype!==\"complex64\"&&t.dtype!==\"string\"){let n=t.size*Tp(t.dtype);this.state.numBytes-=n}e.backend.disposeData(t.dataId)&&this.removeDataId(t.dataId,e.backend)}disposeVariables(){for(let t in this.state.registeredVariables){let e=this.state.registeredVariables[t];this.disposeVariable(e)}}disposeVariable(t){this.disposeTensor(t),this.state.registeredVariables[t.name]!=null&&delete this.state.registeredVariables[t.name]}memory(){let t=this.backend.memory();return t.numTensors=this.state.numTensors,t.numDataBuffers=this.state.numDataBuffers,t.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(t.unreliable=!0,t.reasons==null&&(t.reasons=[]),t.reasons.push(\"Memory usage by string tensors is approximate (2 bytes per character)\")),t}async profile(t){this.state.profiling=!0;let e=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await t(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(o=>o.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-e,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let o of this.state.activeProfile.kernels)o.kernelTimeMs=await o.kernelTimeMs,o.extraInfo=await o.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(t,e,n,o,s,i){let a={id:this.state.nextTapeNodeId++,kernelName:t,inputs:e,outputs:n,saved:s},u=v0(t);u!=null&&(o=u.gradFunc),o!=null&&(a.gradient=l=>(l=l.map((c,p)=>{if(c==null){let m=n[p],f=Ep(m.size,m.dtype);return this.makeTensor(f,m.shape,m.dtype)}return c}),o(l.length>1?l:l[0],s,i))),this.state.activeTape.push(a)}keep(t){return t.kept=!0,t}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(t){let e={track:[],name:\"unnamed scope\",id:this.state.nextScopeId++};t&&(e.name=t),this.state.scopeStack.push(e),this.state.activeScope=e}endScope(t){let e=ih(t),n=new Set(e.map(s=>s.id));for(let s=0;s{!s.kept&&s.scopeId===o.id&&this.track(s)})}gradients(t,e,n,o=!1){if(_(e.length>0,()=>\"gradients() received an empty list of xs.\"),n!=null&&n.dtype!==\"float32\")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let s=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy(\"forward\",t));_(s instanceof Lt,()=>\"The result y returned by f() must be a tensor.\");let i=K_(this.state.activeTape,e,s);if(!o&&i.length===0&&e.length>0)throw new Error(\"Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.\");return this.tidy(\"backward\",()=>{let a={};a[s.id]=n==null?_K(s.shape):n,j_(a,i,l=>this.tidy(l),EK);let u=e.map(l=>a[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let c of l.saved)c.dispose()}),this.state.activeTape=null),{value:s,grads:u}})}customGrad(t){return _(_i(t),()=>\"The f passed in customGrad(f) must be a function.\"),(...e)=>{_(e.every(a=>a instanceof Lt),()=>\"The args passed in customGrad(f)(x1, x2,...) must all be tensors\");let n,o={};e.forEach((a,u)=>{o[u]=a});let s=(a,u)=>(n=t(...e,u),_(n.value instanceof Lt,()=>\"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor\"),_(_i(n.gradFunc),()=>\"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function.\"),n.value),i=(a,u)=>{let l=n.gradFunc(a,u),c=Array.isArray(l)?l:[l];_(c.length===e.length,()=>\"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...).\"),_(c.every(m=>m instanceof Lt),()=>\"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.\");let p={};return c.forEach((m,f)=>{p[f]=()=>m}),p};return this.runKernelFunc({forwardFunc:s,backwardsFunc:i,inputs:o})}}readSync(t){return this.state.tensorInfo.get(t).backend.readSync(t)}read(t){return this.state.tensorInfo.get(t).backend.read(t)}readToGPU(t,e){return this.state.tensorInfo.get(t).backend.readToGPU(t,e)}async time(t){let e=ac(),n=await this.backend.time(t);return n.wallMs=ac()-e,n}track(t){return this.state.activeScope!=null&&(t.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(t)),t}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new ox;for(let t in this.registry)this.disposeRegisteredKernels(t),this.registry[t].dispose(),delete this.registry[t];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};ah.nextTensorId=0;ah.nextVariableId=0;function _K(r){let t=Yd(jt(r),\"float32\");return T.makeTensor(t,r,\"float32\")}function L0(){let r=C0();if(r._tfengine==null){let t=new Zd(r);r._tfengine=new ah(t)}return T_(r._tfengine.ENV),J_(()=>r._tfengine),r._tfengine}var T=L0();function EK(r,t){let e={a:r,b:t};return T.runKernel(no,e)}var du={};Kt(du,{isBrowser:()=>B0,isMobile:()=>$K,mockIsMobile:()=>DK});function AK(){return typeof navigator!=\"undefined\"&&navigator!=null}var z0;function DK(r){z0=r}function $K(r){if(z0!==void 0)return z0;if(r||AK()){if(r||(r=navigator),r.product===\"ReactNative\")return!0;let t=r.userAgent||r.vendor||(typeof window!=\"undefined\"?window.opera:\"\");if(!t){let e=r;return e.userAgentData&&e.userAgentData.mobile}return/(android|bb\\d+|meego).+mobile|avantgo|bada\\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\\-(n|u)|c55\\/|capi|ccwa|cdm\\-|cell|chtm|cldc|cmd\\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\\-s|devi|dica|dmob|do(c|p)o|ds(12|\\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\\-|_)|g1 u|g560|gene|gf\\-5|g\\-mo|go(\\.w|od)|gr(ad|un)|haie|hcit|hd\\-(m|p|t)|hei\\-|hi(pt|ta)|hp( i|ip)|hs\\-c|ht(c(\\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\\-(20|go|ma)|i230|iac( |\\-|\\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\\/)|klon|kpt |kwc\\-|kyo(c|k)|le(no|xi)|lg( g|\\/(k|l|u)|50|54|\\-[a-w])|libw|lynx|m1\\-w|m3ga|m50\\/|ma(te|ui|xo)|mc(01|21|ca)|m\\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\\-2|po(ck|rt|se)|prox|psio|pt\\-g|qa\\-a|qc(07|12|21|32|60|\\-[2-7]|i\\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\\-|oo|p\\-)|sdk\\/|se(c(\\-|0|1)|47|mc|nd|ri)|sgh\\-|shar|sie(\\-|m)|sk\\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\\-|v\\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\\-|tdg\\-|tel(i|m)|tim\\-|t\\-mo|to(pl|sh)|ts(70|m\\-|m3|m5)|tx\\-9|up(\\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\\-|your|zeto|zte\\-/i.test(t.substr(0,4))}return!1}function B0(){return typeof window!=\"undefined\"&&window.document!=null||typeof WorkerGlobalScope!=\"undefined\"}var vn=L();vn.registerFlag(\"DEBUG\",()=>!1,r=>{r&&console.warn(\"Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.\")});vn.registerFlag(\"IS_BROWSER\",()=>B0());vn.registerFlag(\"IS_NODE\",()=>typeof process!=\"undefined\"&&typeof process.versions!=\"undefined\"&&typeof process.versions.node!=\"undefined\");vn.registerFlag(\"IS_CHROME\",()=>typeof navigator!=\"undefined\"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));vn.registerFlag(\"IS_SAFARI\",()=>typeof navigator!=\"undefined\"&&navigator!=null&&navigator.userAgent!=null&&/Safari/.test(navigator.userAgent)&&/Apple/.test(navigator.vendor));vn.registerFlag(\"PROD\",()=>!1);vn.registerFlag(\"TENSORLIKE_CHECK_SHAPE_CONSISTENCY\",()=>vn.getBool(\"DEBUG\"));vn.registerFlag(\"DEPRECATION_WARNINGS_ENABLED\",()=>!0);vn.registerFlag(\"IS_TEST\",()=>!1);vn.registerFlag(\"CHECK_COMPUTATION_FOR_ERRORS\",()=>vn.getBool(\"DEBUG\"));vn.registerFlag(\"WRAP_TO_IMAGEBITMAP\",()=>!1);vn.registerFlag(\"CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU\",()=>!1);vn.registerFlag(\"USE_SETTIMEOUTCUSTOM\",()=>!1);function Wr(r,t){let e=r;if(sr(r))return t===\"string\"?[]:[r.length];if(rx(r)){let o=r.channels||\"RGBA\";return[r.height,r.width*o.length]}else if(nx(r))return[r.buffer.size/(t==null?4:Tp(t))];if(!Array.isArray(r))return[];let n=[];for(;Array.isArray(e)||sr(e)&&t!==\"string\";)n.push(e.length),e=e[0];return Array.isArray(r)&&L().getBool(\"TENSORLIKE_CHECK_SHAPE_CONSISTENCY\")&&nE(r,n,[]),n}function nE(r,t,e){if(e=e||[],!Array.isArray(r)&&!sr(r)){_(t.length===0,()=>`Element arr[${e.join(\"][\")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}_(t.length>0,()=>`Element arr[${e.join(\"][\")}] should be a primitive, but is an array of ${r.length} elements`),_(r.length===t[0],()=>`Element arr[${e.join(\"][\")}] should have ${t[0]} elements, but has ${r.length} elements`);let n=t.slice(1);for(let o=0;o=0&&(o=n),rE(n,o,t,e),r==null||!sr(r)&&!Array.isArray(r)&&typeof r!=\"number\"&&typeof r!=\"boolean\"&&typeof r!=\"string\"){let u=r==null?\"null\":r.constructor.name;throw new Error(`Argument '${t}' passed to '${e}' must be a Tensor or TensorLike, but got '${u}'`)}let s=Wr(r,o);!sr(r)&&!Array.isArray(r)&&(r=[r]);let a=o!==\"string\"?qp(r,o):si(r,[],!0);return T.makeTensor(a,s,o)}function fl(r,t,e,n=\"numeric\"){if(!Array.isArray(r))throw new Error(`Argument ${t} passed to ${e} must be a \\`Tensor[]\\` or \\`TensorLike[]\\``);return r.map((s,i)=>C(s,`${t}[${i}]`,e,n))}var V0=\"__op\";function k(r){let t=Object.keys(r);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let e=t[0],n=r[e];e.endsWith(\"_\")&&(e=e.substring(0,e.length-1)),e=e+V0;let o=(...s)=>{T.startScope(e);try{let i=n(...s);return tc(i)&&console.error(\"Cannot return a Promise inside of tidy.\"),T.endScope(i),i}catch(i){throw T.endScope(null),i}};return Object.defineProperty(o,\"name\",{value:e,configurable:!0}),o}function RK(r,t){let e=C(r,\"real\",\"complex\"),n=C(t,\"imag\",\"complex\");$e(e.shape,n.shape,`real and imag shapes, ${e.shape} and ${n.shape}, must match in call to tf.complex().`);let o={real:e,imag:n};return T.runKernel(Ap,o)}var Sn=k({complex_:RK});function ln(r,t,e,n){if(n==null)n=Wl(r);else if(n===\"complex64\")throw new Error(\"Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).\");if(nx(r)||rx(r)){if(n!==\"float32\"&&n!==\"int32\")throw new Error(`Creating tensor from GPU data only supports 'float32'|'int32' dtype, while the dtype is ${n}.`);return T.backend.createTensorFromGPUData(r,t||e,n)}if(!sr(r)&&!Array.isArray(r)&&typeof r!=\"number\"&&typeof r!=\"boolean\"&&typeof r!=\"string\")throw new Error(\"values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray\");if(t!=null){Le(t);let o=jt(t),s=jt(e);_(o===s,()=>`Based on the provided shape, [${t}], the tensor should have ${o} values but has ${s}`);for(let i=0;i`Error creating a new Tensor. Inferred shape (${e}) does not match the provided shape (${t}). `)}}return!sr(r)&&!Array.isArray(r)&&(r=[r]),t=t||e,r=n!==\"string\"?qp(r,n):si(r,[],!0),T.makeTensor(r,t,n)}function ir(r,t,e){let n=Wr(r,e);return ln(r,t,n,e)}var dl={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8};var Ur=class r{static join(t){return new r(t).slice()}constructor(t){if(this.shards=[],this.previousShardIndex=0,t==null||(t instanceof Array||(t=[t]),t=t.map(n=>sr(n)?n.buffer:n),t.length===0))return;this.bufferUniformSize=t[0].byteLength;let e=0;for(let n=0;n=this.byteLength)return-1;if(this.bufferUniformSize!=null)return this.previousShardIndex=Math.floor(t/this.bufferUniformSize),this.previousShardIndex;function e(o){return t=o.end?1:0}if(e(this.shards[this.previousShardIndex])===0)return this.previousShardIndex;let n=FK(this.shards,e);return n===-1?-1:(this.previousShardIndex=n,this.previousShardIndex)}};function FK(r,t){let e=0,n=r.length;for(;e<=n;){let o=Math.floor((n-e)/2)+e,s=t(r[o]);if(s===0)return o;s<0?n=o:e=o+1}return-1}function Cdt(){L().set(\"PROD\",!0)}function vdt(){L().set(\"DEBUG\",!0)}function Sdt(){L().set(\"DEPRECATION_WARNINGS_ENABLED\",!1),console.warn(\"TensorFlow.js deprecation warnings have been disabled.\")}function G0(r){L().getBool(\"DEPRECATION_WARNINGS_ENABLED\")&&console.warn(r+\" You can disable deprecation warnings with tf.disableDeprecationWarnings().\")}tE(G0);function Ndt(){T.disposeVariables()}function Bn(){return T}function lh(){return T.memory()}function kdt(r){return T.profile(r)}function B(r,t){return T.tidy(r,t)}function Tt(r){ih(r).forEach(e=>e.dispose())}function De(r){return T.keep(r)}function Tdt(r){return T.time(r)}function OK(r){return T.setBackend(r)}function _dt(){return T.ready()}function oE(){return T.backendName}function Edt(r){T.removeBackend(r)}function Adt(r){return T.findBackend(r)}function Ddt(r){return T.findBackendFactory(r)}function Xp(r,t,e=1){return T.registerBackend(r,t,e)}function sx(){return T.backend}function $dt(r,t){L().setPlatform(r,t)}var hu=4;async function aE(r,t){let e=[],n=[],o=Array.isArray(r)?r.map(i=>i.name):Object.keys(r);for(let i=0;i{let m=await u.bytes(),f=m.reduce((g,x)=>g+x.length,0)+hu*m.length,d=new Uint8Array(f),h=0;for(let g=0;ge.slice(o+a,o+u));n[s.name]=lE(s,e.slice(o,o+i)),o+=i}return n}function MK(r,t){let e=jt(r.shape),n;if(\"quantization\"in r){let o=r.quantization;n=dl[o.dtype]}else if(r.dtype===\"string\"){let o=0;for(let s=0;s(o=await sE(n,o,c),o.slice(l,c)));o=await sE(n,o,i);let a=o.slice(0,i);o=o.slice(i);let u=lE(s,a);if(e[s.name]=u,oE()===\"webgpu\"){let l=sx();\"uploadToGPU\"in l&&jt(u.shape)>=L().get(\"WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD\")&&l.uploadToGPU(u.dataId)}}return e}function LK(r){if(r===null)throw new Error(`Invalid input value: ${JSON.stringify(r)}`);let t=0,e=[];r.forEach(s=>{if(t+=s.byteLength,e.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let n=new Uint8Array(t),o=0;return e.forEach(s=>{n.set(new Uint8Array(s.buffer),o),o+=s.byteLength}),n.buffer}var W0=typeof Buffer!=\"undefined\"&&(typeof Blob==\"undefined\"||typeof atob==\"undefined\"||typeof btoa==\"undefined\");function iE(r){return W0?Buffer.byteLength(r,\"utf8\"):new Blob([r]).size}function uE(r){if(W0)return Buffer.from(r).toString(\"base64\");let t=new Uint8Array(r),e=\"\";for(let n=0,o=t.length;n{let n=e<<13,o=0;for(;!(n&8388608);)o-=8388608,n<<=1;return n&=-8388609,o+=947912704,n|o},t=new Uint32Array(2048);t[0]=0;for(let e=1;e<1024;e++)t[e]=r(e);for(let e=1024;e<2048;e++)t[e]=939524096+(e-1024<<13);return t}function BK(){let r=new Uint32Array(64);r[0]=0,r[31]=1199570944,r[32]=2147483648,r[63]=3347054592;for(let t=1;t<31;t++)r[t]=t<<23;for(let t=33;t<63;t++)r[t]=2147483648+(t-32<<23);return r}function VK(){let r=new Uint32Array(64);for(let t=0;t<64;t++)r[t]=1024;return r[0]=r[32]=0,r}function GK(){let r=zK(),t=BK(),e=VK();return n=>{let o=new ArrayBuffer(4*n.length),s=new Uint32Array(o);for(let i=0;i>10]+(a&1023)]+t[a>>10];s[i]=u}return new Float32Array(o)}}var Cr=class r{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return r.instance==null&&(r.instance=new r),r.instance}static registerSaveRouter(t){r.getInstance().saveRouters.push(t)}static registerLoadRouter(t){r.getInstance().loadRouters.push(t)}static getSaveHandlers(t){return r.getHandlers(t,\"save\")}static getLoadHandlers(t,e){return r.getHandlers(t,\"load\",e)}static getHandlers(t,e,n){let o=[];return(e===\"load\"?r.getInstance().loadRouters:r.getInstance().saveRouters).forEach(i=>{let a=i(t,n);a!==null&&o.push(a)}),o}},mE=r=>Cr.registerSaveRouter(r),fE=r=>Cr.registerLoadRouter(r),dE=r=>Cr.getSaveHandlers(r),hE=(r,t)=>Cr.getLoadHandlers(r,t);var q0=\"tensorflowjs\",K0=1,uc=\"models_store\",gu=\"model_info_store\";function gE(){if(!L().getBool(\"IS_BROWSER\"))throw new Error(\"Failed to obtain IndexedDB factory because the current environmentis not a web browser.\");let r=typeof window==\"undefined\"?self:window,t=r.indexedDB||r.mozIndexedDB||r.webkitIndexedDB||r.msIndexedDB||r.shimIndexedDB;if(t==null)throw new Error(\"The current browser does not appear to support IndexedDB.\");return t}function j0(r){let t=r.result;t.createObjectStore(uc,{keyPath:\"modelPath\"}),t.createObjectStore(gu,{keyPath:\"modelPath\"})}var ta=class{constructor(t){if(this.indexedDB=gE(),t==null||!t)throw new Error(\"For IndexedDB, modelPath must not be null, undefined or empty.\");this.modelPath=t}async save(t){if(t.modelTopology instanceof ArrayBuffer)throw new Error(\"BrowserLocalStorage.save() does not support saving model topology in binary formats yet.\");return this.databaseAction(this.modelPath,t)}async load(){return this.databaseAction(this.modelPath)}databaseAction(t,e){return new Promise((n,o)=>{let s=this.indexedDB.open(q0,K0);s.onupgradeneeded=()=>j0(s),s.onsuccess=()=>{let i=s.result;if(e==null){let a=i.transaction(uc,\"readonly\"),l=a.objectStore(uc).get(this.modelPath);l.onsuccess=()=>{if(l.result==null)return i.close(),o(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(l.result.modelArtifacts)},l.onerror=c=>(i.close(),o(l.error)),a.oncomplete=()=>i.close()}else{e.weightData=Ur.join(e.weightData);let a=Qi(e),u=i.transaction(gu,\"readwrite\"),l=u.objectStore(gu),c;try{c=l.put({modelPath:this.modelPath,modelArtifactsInfo:a})}catch(m){return o(m)}let p;c.onsuccess=()=>{p=i.transaction(uc,\"readwrite\");let m=p.objectStore(uc),f;try{f=m.put({modelPath:this.modelPath,modelArtifacts:e,modelArtifactsInfo:a})}catch(d){return o(d)}f.onsuccess=()=>n({modelArtifactsInfo:a}),f.onerror=d=>{l=u.objectStore(gu);let h=l.delete(this.modelPath);h.onsuccess=()=>(i.close(),o(f.error)),h.onerror=g=>(i.close(),o(f.error))}},c.onerror=m=>(i.close(),o(c.error)),u.oncomplete=()=>{p==null?i.close():p.oncomplete=()=>i.close()}}},s.onerror=i=>o(s.error)})}};ta.URL_SCHEME=\"indexeddb://\";var xE=r=>L().getBool(\"IS_BROWSER\")&&!Array.isArray(r)&&r.startsWith(ta.URL_SCHEME)?WK(r.slice(ta.URL_SCHEME.length)):null;Cr.registerSaveRouter(xE);Cr.registerLoadRouter(xE);function WK(r){return new ta(r)}function UK(r){return r.startsWith(ta.URL_SCHEME)?r.slice(ta.URL_SCHEME.length):r}var ux=class{constructor(){this.indexedDB=gE()}async listModels(){return new Promise((t,e)=>{let n=this.indexedDB.open(q0,K0);n.onupgradeneeded=()=>j0(n),n.onsuccess=()=>{let o=n.result,s=o.transaction(gu,\"readonly\"),a=s.objectStore(gu).getAll();a.onsuccess=()=>{let u={};for(let l of a.result)u[l.modelPath]=l.modelArtifactsInfo;t(u)},a.onerror=u=>(o.close(),e(a.error)),s.oncomplete=()=>o.close()},n.onerror=o=>e(n.error)})}async removeModel(t){return t=UK(t),new Promise((e,n)=>{let o=this.indexedDB.open(q0,K0);o.onupgradeneeded=()=>j0(o),o.onsuccess=()=>{let s=o.result,i=s.transaction(gu,\"readwrite\"),a=i.objectStore(gu),u=a.get(t),l;u.onsuccess=()=>{if(u.result==null)return s.close(),n(new Error(`Cannot find model with path '${t}' in IndexedDB.`));{let c=a.delete(t),p=()=>{l=s.transaction(uc,\"readwrite\");let f=l.objectStore(uc).delete(t);f.onsuccess=()=>e(u.result.modelArtifactsInfo),f.onerror=d=>n(u.error)};c.onsuccess=p,c.onerror=m=>(p(),s.close(),n(u.error))}},u.onerror=c=>(s.close(),n(u.error)),i.oncomplete=()=>{l==null?s.close():l.oncomplete=()=>s.close()}},o.onerror=s=>n(o.error)})}};var hl=\"/\",Zp=\"tensorflowjs_models\",yE=\"info\",HK=\"model_topology\",qK=\"weight_specs\",KK=\"weight_data\",jK=\"model_metadata\";function bE(r){return{info:[Zp,r,yE].join(hl),topology:[Zp,r,HK].join(hl),weightSpecs:[Zp,r,qK].join(hl),weightData:[Zp,r,KK].join(hl),modelMetadata:[Zp,r,jK].join(hl)}}function wE(r){for(let t of Object.values(r))window.localStorage.removeItem(t)}function XK(r){let t=r.split(hl);if(t.length<3)throw new Error(`Invalid key format: ${r}`);return t.slice(1,t.length-1).join(hl)}function YK(r){return r.startsWith(ea.URL_SCHEME)?r.slice(ea.URL_SCHEME.length):r}var ea=class{constructor(t){if(!L().getBool(\"IS_BROWSER\")||typeof window==\"undefined\"||typeof window.localStorage==\"undefined\")throw new Error(\"The current environment does not support local storage.\");if(this.LS=window.localStorage,t==null||!t)throw new Error(\"For local storage, modelPath must not be null, undefined or empty.\");this.modelPath=t,this.keys=bE(this.modelPath)}async save(t){if(t.modelTopology instanceof ArrayBuffer)throw new Error(\"BrowserLocalStorage.save() does not support saving model topology in binary formats yet.\");{let e=JSON.stringify(t.modelTopology),n=JSON.stringify(t.weightSpecs),o=Qi(t),s=Ur.join(t.weightData);try{this.LS.setItem(this.keys.info,JSON.stringify(o)),this.LS.setItem(this.keys.topology,e),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,uE(s));let i={format:t.format,generatedBy:t.generatedBy,convertedBy:t.convertedBy,signature:t.signature!=null?t.signature:void 0,userDefinedMetadata:t.userDefinedMetadata!=null?t.userDefinedMetadata:void 0,modelInitializer:t.modelInitializer!=null?t.modelInitializer:void 0,initializerSignature:t.initializerSignature!=null?t.initializerSignature:void 0,trainingConfig:t.trainingConfig!=null?t.trainingConfig:void 0};return this.LS.setItem(this.keys.modelMetadata,JSON.stringify(i)),{modelArtifactsInfo:o}}catch(i){throw wE(this.keys),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${o.modelTopologyBytes}, weightSpecsBytes=${o.weightSpecsBytes}, weightDataBytes=${o.weightDataBytes}.`)}}}async load(){let t=JSON.parse(this.LS.getItem(this.keys.info));if(t==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(t.modelTopologyType!==\"JSON\")throw new Error(\"BrowserLocalStorage does not support loading non-JSON model topology yet.\");let e={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);e.modelTopology=n;let o=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(o==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);e.weightSpecs=o;let s=this.LS.getItem(this.keys.modelMetadata);if(s!=null){let a=JSON.parse(s);e.format=a.format,e.generatedBy=a.generatedBy,e.convertedBy=a.convertedBy,a.signature!=null&&(e.signature=a.signature),a.userDefinedMetadata!=null&&(e.userDefinedMetadata=a.userDefinedMetadata),a.modelInitializer!=null&&(e.modelInitializer=a.modelInitializer),a.initializerSignature!=null&&(e.initializerSignature=a.initializerSignature),a.trainingConfig!=null&&(e.trainingConfig=a.trainingConfig)}let i=this.LS.getItem(this.keys.weightData);if(i==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return e.weightData=cE(i),e}};ea.URL_SCHEME=\"localstorage://\";var IE=r=>L().getBool(\"IS_BROWSER\")&&!Array.isArray(r)&&r.startsWith(ea.URL_SCHEME)?ZK(r.slice(ea.URL_SCHEME.length)):null;Cr.registerSaveRouter(IE);Cr.registerLoadRouter(IE);function ZK(r){return new ea(r)}var cx=class{constructor(){_(L().getBool(\"IS_BROWSER\"),()=>\"Current environment is not a web browser\"),_(typeof window==\"undefined\"||typeof window.localStorage!=\"undefined\",()=>\"Current browser does not appear to support localStorage\"),this.LS=window.localStorage}async listModels(){let t={},e=Zp+hl,n=hl+yE;for(let o=0;o\"scheme must not be undefined or null.\"),t.endsWith(Jp)&&(t=t.slice(0,t.indexOf(Jp))),_(t.length>0,()=>\"scheme must not be an empty string.\");let n=r.getInstance();_(n.managers[t]==null,()=>`A model store manager is already registered for scheme '${t}'.`),n.managers[t]=e}static getManager(t){let e=r.getInstance().managers[t];if(e==null)throw new Error(`Cannot find model manager for scheme '${t}'`);return e}static getSchemes(){return Object.keys(r.getInstance().managers)}};function px(r){if(r.indexOf(Jp)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${ai.getSchemes().join(\",\")}`);return{scheme:r.split(Jp)[0],path:r.split(Jp)[1]}}async function CE(r,t,e=!1){_(r!==t,()=>`Old path and new path are the same: '${r}'`);let n=Cr.getLoadHandlers(r);_(n.length>0,()=>`Copying failed because no load handler is found for source URL ${r}.`),_(n.length<2,()=>`Copying failed because more than one (${n.length}) load handlers for source URL ${r}.`);let o=n[0],s=Cr.getSaveHandlers(t);_(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),_(s.length<2,()=>`Copying failed because more than one (${n.length}) save handlers for destination URL ${t}.`);let i=s[0],a=px(r).scheme,u=px(r).path,l=a===px(r).scheme,c=await o.load();e&&l&&await ai.getManager(a).removeModel(u);let p=await i.save(c);return e&&!l&&await ai.getManager(a).removeModel(u),p.modelArtifactsInfo}async function vE(){let r=ai.getSchemes(),t={};for(let e of r){let n=await ai.getManager(e).listModels();for(let o in n){let s=e+Jp+o;t[s]=n[o]}}return t}async function SE(r){let t=px(r);return ai.getManager(t.scheme).removeModel(t.path)}async function NE(r,t){return CE(r,t,!1)}async function kE(r,t){return CE(r,t,!0)}var X0=class{constructor(){this.messageName=\"setTimeoutCustom\",this.functionRefs=[],this.handledMessageCount=0,this.hasEventListener=!1}fetch(t,e){return fetch(t,e)}now(){return performance.now()}encode(t,e){if(e!==\"utf-8\"&&e!==\"utf8\")throw new Error(`Browser's encoder only supports utf-8, but got ${e}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(t)}decode(t,e){return new TextDecoder(e).decode(t)}setTimeoutCustom(t,e){if(typeof window==\"undefined\"||!L().getBool(\"USE_SETTIMEOUTCUSTOM\")){setTimeout(t,e);return}this.functionRefs.push(t),setTimeout(()=>{window.postMessage({name:this.messageName,index:this.functionRefs.length-1},\"*\")},e),this.hasEventListener||(this.hasEventListener=!0,window.addEventListener(\"message\",n=>{if(n.source===window&&n.data.name===this.messageName){n.stopPropagation();let o=this.functionRefs[n.data.index];o(),this.handledMessageCount++,this.handledMessageCount===this.functionRefs.length&&(this.functionRefs=[],this.handledMessageCount=0)}},!0))}isTypedArray(t){return Zg(t)}};if(L().get(\"IS_BROWSER\")){L().setPlatform(\"browser\",new X0);try{ai.registerManager(ea.URL_SCHEME,new cx)}catch(r){}try{ai.registerManager(ta.URL_SCHEME,new ux)}catch(r){}}var JK={importFetch:()=>TE()},Y0;var Z0=class{constructor(){this.util=_E(),this.textEncoder=new this.util.TextEncoder}fetch(t,e){return L().global.fetch!=null?L().global.fetch(t,e):(Y0==null&&(Y0=JK.importFetch()),Y0(t,e))}now(){let t=process.hrtime();return t[0]*1e3+t[1]/1e6}encode(t,e){if(e!==\"utf-8\"&&e!==\"utf8\")throw new Error(`Node built-in encoder only supports utf-8, but got ${e}`);return this.textEncoder.encode(t)}decode(t,e){return t.length===0?\"\":new this.util.TextDecoder(e).decode(t)}isTypedArray(t){return this.util.types.isFloat32Array(t)||this.util.types.isInt32Array(t)||this.util.types.isUint8Array(t)||this.util.types.isUint8ClampedArray(t)}};L().get(\"IS_NODE\")&&!L().get(\"IS_BROWSER\")&&L().setPlatform(\"node\",new Z0);function wt(r,t=\"float32\",e){return t=t||\"float32\",Le(r),new le(r,t,e)}function QK(r,t){let e=C(r,\"x\",\"cast\");if(!y0(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t===\"string\"&&e.dtype!==\"string\"||t!==\"string\"&&e.dtype===\"string\")throw new Error(\"Only strings can be casted to strings\");let n={x:e},o={dtype:t};return T.runKernel(fo,n,o)}var J=k({cast_:QK});function tj(r){let e={x:C(r,\"x\",\"clone\",\"string_or_numeric\")};return T.runKernel(go,e)}var un=k({clone_:tj});function mx(r,t=!1){console.log(r.toString(t))}L0();var ej={buffer:wt,cast:J,clone:un,print:mx};Q_(ej);function rj(r,t){let e=C(r,\"a\",\"add\"),n=C(t,\"b\",\"add\");[e,n]=Xt(e,n);let o={a:e,b:n};return T.runKernel(no,o)}var K=k({add_:rj});function nj(r,t){let e=C(r,\"a\",\"floorDiv\"),n=C(t,\"b\",\"floorDiv\");[e,n]=Xt(e,n);let o={a:e,b:n};return T.runKernel(fs,o)}var Qp=k({floorDiv_:nj});function oj(r,t){let e=C(r,\"a\",\"div\"),n=C(t,\"b\",\"div\");if([e,n]=Xt(e,n),e.dtype===\"int32\"&&n.dtype===\"int32\")return Qp(e,n);let o={a:e,b:n},s={};return T.runKernel(as,o,s)}var ut=k({div_:oj});function sj(r,t){let e=C(r,\"a\",\"mul\"),n=C(t,\"b\",\"mul\");[e,n]=Xt(e,n);let o={a:e,b:n};return T.runKernel(Ds,o)}var $=k({mul_:sj});function ij(r){let t=C(r,\"x\",\"abs\");if(t.dtype===\"complex64\"){let e={x:t};return T.runKernel(Kl,e)}else{let e={x:t};return T.runKernel(Ai,e)}}var _e=k({abs_:ij});function aj(r){let e={x:C(r,\"x\",\"acos\")};return T.runKernel(Go,e)}var fx=k({acos_:aj});function lj(r){let e={x:C(r,\"x\",\"acosh\")};return T.runKernel(Wo,e)}var dx=k({acosh_:lj});function uj(r){_(Array.isArray(r),()=>\"The argument passed to tf.addN() must be a list of tensors\"),_(r.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${r.length}`);let t=r.map((o,s)=>C(o,`tensors${s}`,\"addN\")),e=t[0];t.forEach(o=>{if(o.dtype!==e.dtype)throw new Error(\"All tensors passed to tf.addN() must have the same dtype\")}),t.forEach(o=>{if(!sn(o.shape,e.shape))throw new Error(\"All tensors passed to tf.addN() must have the same shape\")});let n=t;return T.runKernel(Uo,n)}var EE=k({addN_:uj});function cj(r,t=null,e=!1){let o={x:C(r,\"x\",\"all\",\"bool\")},s={axis:t,keepDims:e};return T.runKernel(Ea,o,s)}var tm=k({all_:cj});function pj(r,t=null,e=!1){let o={x:C(r,\"x\",\"any\",\"bool\")},s={axis:t,keepDims:e};return T.runKernel(Aa,o,s)}var cc=k({any_:pj});function mj(r,t=0){let n={x:C(r,\"x\",\"argMax\")},o={axis:t};return T.runKernel(Di,n,o)}var ra=k({argMax_:mj});function fj(r,t=0){let n={x:C(r,\"x\",\"argMin\")},o={axis:t};return T.runKernel($i,n,o)}var hx=k({argMin_:fj});function dj(r){let e={x:C(r,\"x\",\"asin\")};return T.runKernel(Ho,e)}var gx=k({asin_:dj});function hj(r){let e={x:C(r,\"x\",\"asinh\")};return T.runKernel(qo,e)}var xx=k({asinh_:hj});function gj(r){let e={x:C(r,\"x\",\"atan\")};return T.runKernel(Ko,e)}var yx=k({atan_:gj});function xj(r,t){let e=C(r,\"a\",\"atan2\"),n=C(t,\"b\",\"atan2\");[e,n]=Xt(e,n);let o={a:e,b:n};return T.runKernel(Xo,o)}var bx=k({atan2_:xj});function yj(r){let e={x:C(r,\"x\",\"atanh\")};return T.runKernel(jo,e)}var wx=k({atanh_:yj});function bj(r,t,e,n,o=\"NHWC\",s){let i=r[3],a=[...t,i],u=DE(o);return pc(r,a,e,s,n,null,null,u)}function Q0(r,t,e,n,o,s,i=\"channelsLast\"){let[a,u]=ch(t),l;if(i===\"channelsLast\")l=[a,u,r[3],r[3]];else if(i===\"channelsFirst\")l=[a,u,r[1],r[1]];else throw new Error(`Unknown dataFormat ${i}`);return pc(r,l,e,n,o,s,!1,i)}function wj(r,t,e,n,o,s,i=\"NDHWC\"){let[a,u,l]=J0(t),c,p;if(i===\"NDHWC\")p=\"channelsLast\",c=[a,u,l,r[4],r[4]];else if(i===\"NCDHW\")p=\"channelsFirst\",c=[a,u,l,r[1],r[1]];else throw new Error(`Unknown dataFormat ${i}`);return AE(r,c,e,n,o,!1,p,s)}function pc(r,t,e,n,o,s,i=!1,a=\"channelsLast\"){let[u,l,c,p]=[-1,-1,-1,-1];if(a===\"channelsLast\")[u,l,c,p]=r;else if(a===\"channelsFirst\")[u,p,l,c]=r;else throw new Error(`Unknown dataFormat ${a}`);let[m,f,,d]=t,[h,g]=ch(e),[x,b]=ch(n),w=em(m,x),I=em(f,b),{padInfo:N,outHeight:E,outWidth:A}=vj(o,l,c,h,g,w,I,s,a),D=i?d*p:d,F;return a===\"channelsFirst\"?F=[u,D,E,A]:a===\"channelsLast\"&&(F=[u,E,A,D]),{batchSize:u,dataFormat:a,inHeight:l,inWidth:c,inChannels:p,outHeight:E,outWidth:A,outChannels:D,padInfo:N,strideHeight:h,strideWidth:g,filterHeight:m,filterWidth:f,effectiveFilterHeight:w,effectiveFilterWidth:I,dilationHeight:x,dilationWidth:b,inShape:r,outShape:F,filterShape:t}}function AE(r,t,e,n,o,s=!1,i=\"channelsLast\",a){let[u,l,c,p,m]=[-1,-1,-1,-1,-1];if(i===\"channelsLast\")[u,l,c,p,m]=r;else if(i===\"channelsFirst\")[u,m,l,c,p]=r;else throw new Error(`Unknown dataFormat ${i}`);let[f,d,h,,g]=t,[x,b,w]=J0(e),[I,N,E]=J0(n),A=em(f,I),D=em(d,N),F=em(h,E),{padInfo:M,outDepth:V,outHeight:G,outWidth:W}=Sj(o,l,c,p,x,b,w,A,D,F,a),q=s?g*m:g,H;return i===\"channelsFirst\"?H=[u,q,V,G,W]:i===\"channelsLast\"&&(H=[u,V,G,W,q]),{batchSize:u,dataFormat:i,inDepth:l,inHeight:c,inWidth:p,inChannels:m,outDepth:V,outHeight:G,outWidth:W,outChannels:q,padInfo:M,strideDepth:x,strideHeight:b,strideWidth:w,filterDepth:f,filterHeight:d,filterWidth:h,effectiveFilterDepth:A,effectiveFilterHeight:D,effectiveFilterWidth:F,dilationDepth:I,dilationHeight:N,dilationWidth:E,inShape:r,outShape:H,filterShape:t}}function Ij(r,t,e,n,o){n==null&&(n=tN(r,t,e));let s=r[0],i=r[1],a=ph((s-t+2*n)/e+1,o),u=ph((i-t+2*n)/e+1,o);return[a,u]}function Cj(r,t,e,n,o,s){o==null&&(o=tN(r,t[0],n[0]));let i=[0,0,0,e];for(let a=0;a<3;a++)r[a]+2*o>=t[a]&&(i[a]=ph((r[a]-t[a]+2*o)/n[a]+1,s));return i}function tN(r,t,e,n=1){let o=em(t,n);return Math.floor((r[0]*(e-1)-e+o)/2)}function ch(r){return typeof r==\"number\"?[r,r,r]:r.length===2?[r[0],r[1],1]:r}function J0(r){return typeof r==\"number\"?[r,r,r]:r}function em(r,t){return t<=1?r:r+(r-1)*(t-1)}function vj(r,t,e,n,o,s,i,a,u){let l,c,p;if(typeof r==\"number\"){l={top:r,bottom:r,left:r,right:r,type:r===0?\"VALID\":\"NUMBER\"};let f=Ij([t,e],s,n,r,a);c=f[0],p=f[1]}else if(r===\"same\"){c=Math.ceil(t/n),p=Math.ceil(e/o);let m=Math.max(0,(c-1)*n+s-t),f=Math.max(0,(p-1)*o+i-e),d=Math.floor(m/2),h=m-d,g=Math.floor(f/2),x=f-g;l={top:d,bottom:h,left:g,right:x,type:\"SAME\"}}else if(r===\"valid\")l={top:0,bottom:0,left:0,right:0,type:\"VALID\"},c=Math.ceil((t-s+1)/n),p=Math.ceil((e-i+1)/o);else if(typeof r==\"object\"){let m=u===\"channelsLast\"?r[1][0]:r[2][0],f=u===\"channelsLast\"?r[1][1]:r[2][1],d=u===\"channelsLast\"?r[2][0]:r[3][0],h=u===\"channelsLast\"?r[2][1]:r[3][1];l={top:m,bottom:f,left:d,right:h,type:m===0&&f===0&&d===0&&h===0?\"VALID\":\"EXPLICIT\"},c=ph((t-s+m+f)/n+1,a),p=ph((e-i+d+h)/o+1,a)}else throw Error(`Unknown padding parameter: ${r}`);return{padInfo:l,outHeight:c,outWidth:p}}function Sj(r,t,e,n,o,s,i,a,u,l,c){let p,m,f,d;if(r===\"valid\"&&(r=0),typeof r==\"number\"){p={top:r,bottom:r,left:r,right:r,front:r,back:r,type:r===0?\"VALID\":\"NUMBER\"};let g=Cj([t,e,n,1],[a,u,l],1,[o,s,i],r,c);m=g[0],f=g[1],d=g[2]}else if(r===\"same\"){m=Math.ceil(t/o),f=Math.ceil(e/s),d=Math.ceil(n/i);let h=(m-1)*o+a-t,g=(f-1)*s+u-e,x=(d-1)*i+l-n,b=Math.floor(h/2),w=h-b,I=Math.floor(g/2),N=g-I,E=Math.floor(x/2),A=x-E;p={top:I,bottom:N,left:E,right:A,front:b,back:w,type:\"SAME\"}}else throw Error(`Unknown padding parameter: ${r}`);return{padInfo:p,outDepth:m,outHeight:f,outWidth:d}}function ph(r,t){if(!t)return Math.trunc(r);switch(t){case\"round\":return Math.round(r);case\"ceil\":return Math.ceil(r);case\"floor\":return Math.floor(r);default:throw new Error(`Unknown roundingMode ${t}`)}}function io(r){let[t,e,n]=ch(r);return t===1&&e===1&&n===1}function Dr(r,t){return io(r)||io(t)}function na(r){return ch(r).every(t=>t>0)}function DE(r){if(r===\"NHWC\")return\"channelsLast\";if(r===\"NCHW\")return\"channelsFirst\";throw new Error(`Unknown dataFormat ${r}`)}function Se(r,t,e){if(e!=null){if(typeof t==\"string\")throw Error(`Error in ${r}: pad must be an integer when using dimRoundingMode ${e} but got pad ${t}.`);if(typeof t==\"number\")_(_a(t),()=>`Error in ${r}: pad must be an integer when using dimRoundingMode ${e} but got pad ${t}.`);else if(typeof t==\"object\")t.forEach(n=>{n.forEach(o=>{_(_a(o),()=>`Error in ${r}: pad must be an integer when using dimRoundingMode ${e} but got pad ${o}.`)})});else throw Error(`Error in ${r}: Unknown padding parameter: ${t}`)}}function Nj(r,t){let n={x:C(r,\"x\",\"reshape\",\"string_or_numeric\")},o={shape:t};return T.runKernel(Gi,n,o)}var R=k({reshape_:Nj});function kj(r,t,e,n,o){let s=C(r,\"x\",\"avgPool\",\"float32\"),i=1;_(Dr(e,i),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${e} and dilations '${i}'`);let a=s,u=!1;s.rank===3&&(u=!0,a=R(s,[1,s.shape[0],s.shape[1],s.shape[2]])),_(a.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${a.rank}.`),Se(\"avgPool\",n,o);let l={x:a},c={filterSize:t,strides:e,pad:n,dimRoundingMode:o},p=T.runKernel(Yo,l,c);return p=J(p,s.dtype),u?R(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var xu=k({avgPool_:kj});function Tj(r,t,e,n,o,s=\"NDHWC\"){let i=C(r,\"x\",\"avgPool3d\",\"float32\"),a=i,u=!1;i.rank===4&&(u=!0,a=R(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),_(a.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${a.rank}.`),_(s===\"NDHWC\",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),_(typeof e==\"number\"&&e>0||Array.isArray(e)&&e[0]>0&&e[1]>0&&e[2]>0,()=>`Error in avgPool3d: Stride must be > 0, but got '${e}'`),Se(\"avgPool3d\",n,o);let l={x:a},c={filterSize:t,strides:e,pad:n,dimRoundingMode:o,dataFormat:s},p=T.runKernel(Ri,l,c);return p=J(p,a.dtype),u?R(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var Ix=k({avgPool3d_:Tj});function _j(r,t=0){_(r.length>=1,()=>\"Pass at least one tensor to concat\");let e=fl(r,\"tensors\",\"concat\",\"string_or_numeric\");if(e[0].dtype===\"complex64\"&&e.forEach(s=>{if(s.dtype!==\"complex64\")throw new Error(`Cannot concatenate complex64 tensors with a tensor\n with dtype ${s.dtype}. `)}),e.length===1)return un(e[0]);let n=e,o={axis:t};return T.runKernel(Oi,n,o)}var ie=k({concat_:_j});function Ej(r,t,e=!1,n=!1){let o=C(r,\"a\",\"matMul\"),s=C(t,\"b\",\"matMul\");[o,s]=Xt(o,s);let i={a:o,b:s},a={transposeA:e,transposeB:n};return T.runKernel(Zo,i,a)}var Bt=k({matMul_:Ej});function Aj(r){let e={x:C(r,\"x\",\"sigmoid\",\"float32\")};return T.runKernel(Xs,e)}var en=k({sigmoid_:Aj});function Dj(r,t,e){let n=C(r,\"x\",\"slice\",\"string_or_numeric\");if(n.rank===0)throw new Error(\"Slicing scalar is not possible\");let o={x:n},s={begin:t,size:e};return T.runKernel(Ui,o,s)}var Ot=k({slice_:Dj});function $j(r){let e={x:C(r,\"x\",\"tanh\",\"float32\")};return T.runKernel(ni,e)}var li=k({tanh_:$j});function Rj(r,t,e,n,o,s){let i=C(r,\"forgetBias\",\"basicLSTMCell\"),a=C(t,\"lstmKernel\",\"basicLSTMCell\"),u=C(e,\"lstmBias\",\"basicLSTMCell\"),l=C(n,\"data\",\"basicLSTMCell\"),c=C(o,\"c\",\"basicLSTMCell\"),p=C(s,\"h\",\"basicLSTMCell\"),m=ie([l,p],1),f=Bt(m,a),d=K(f,u),h=d.shape[0],g=d.shape[1]/4,x=[h,g],b=Ot(d,[0,0],x),w=Ot(d,[0,g],x),I=Ot(d,[0,g*2],x),N=Ot(d,[0,g*3],x),E=K($(en(b),li(w)),$(c,en(K(i,I)))),A=$(li(E),en(N));return[E,A]}var $E=k({basicLSTMCell_:Rj});function Fj(r,t,e){let n=C(r,\"x\",\"batchToSpaceND\"),o=t.reduce((a,u)=>a*u);_(n.rank>=1+t.length,()=>`input rank is ${n.rank} but should be > than blockShape.length ${t.length}`),_(e.length===t.length,()=>`crops.length is ${e.length} but should be equal to blockShape.length ${t.length}`),_(n.shape[0]%o===0,()=>`input tensor batch is ${n.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(\" * \")} === ${o}`);let s={x:n},i={blockShape:t,crops:e};return T.runKernel(Fi,s,i)}var yu=k({batchToSpaceND_:Fj});function RE(r){let t;return r.rank===0||r.rank===1?t=R(r,[1,1,1,r.size]):r.rank===2?t=R(r,[1,1,r.shape[0],r.shape[1]]):r.rank===3?t=R(r,[1,r.shape[0],r.shape[1],r.shape[2]]):t=r,t}function Oj(r,t,e,n,o,s){s==null&&(s=.001);let i=C(r,\"x\",\"batchNorm\"),a=C(t,\"mean\",\"batchNorm\"),u=C(e,\"variance\",\"batchNorm\"),l;o!=null&&(l=C(o,\"scale\",\"batchNorm\"));let c;n!=null&&(c=C(n,\"offset\",\"batchNorm\")),_(a.rank===u.rank,()=>\"Batch normalization gradient requires mean and variance to have equal ranks.\"),_(c==null||a.rank===c.rank,()=>\"Batch normalization gradient requires mean and offset to have equal ranks.\"),_(l==null||a.rank===l.rank,()=>\"Batch normalization gradient requires mean and scale to have equal ranks.\");let m={x:RE(i),scale:l,offset:c,mean:a,variance:u},f={varianceEpsilon:s},d=T.runKernel(ds,m,f);return R(d,i.shape)}var oa=k({batchNorm_:Oj});function Mj(r,t,e,n,o,s){let i=C(r,\"x\",\"batchNorm\"),a=C(t,\"mean\",\"batchNorm\"),u=C(e,\"variance\",\"batchNorm\"),l;o!=null&&(l=C(o,\"scale\",\"batchNorm\"));let c;return n!=null&&(c=C(n,\"offset\",\"batchNorm\")),_(i.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${i.rank}.`),_(a.rank===2||a.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${a.rank}.`),_(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${u.rank}.`),l!=null&&_(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${l.rank}.`),c!=null&&_(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${c.rank}.`),oa(i,a,u,c,l,s)}var Cx=k({batchNorm2d_:Mj});function Pj(r,t,e,n,o,s){let i=C(r,\"x\",\"batchNorm\"),a=C(t,\"mean\",\"batchNorm\"),u=C(e,\"variance\",\"batchNorm\"),l;o!=null&&(l=C(o,\"scale\",\"batchNorm\"));let c;return n!=null&&(c=C(n,\"offset\",\"batchNorm\")),_(i.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${i.rank}.`),_(a.rank===3||a.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${a.rank}.`),_(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${u.rank}.`),l!=null&&_(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${l.rank}.`),c!=null&&_(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${c.rank}.`),oa(i,a,u,c,l,s)}var vx=k({batchNorm3d_:Pj});function Lj(r,t,e,n,o,s){let i=C(r,\"x\",\"batchNorm\"),a=C(t,\"mean\",\"batchNorm\"),u=C(e,\"variance\",\"batchNorm\"),l;o!=null&&(l=C(o,\"scale\",\"batchNorm\"));let c;return n!=null&&(c=C(n,\"offset\",\"batchNorm\")),_(i.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${i.rank}.`),_(a.rank===4||a.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${a.rank}.`),_(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${u.rank}.`),l!=null&&_(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${l.rank}.`),c!=null&&_(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${c.rank}.`),oa(i,a,u,c,l,s)}var Sx=k({batchNorm4d_:Lj});function zj(r,t,e){let n=C(r,\"x\",\"bincount\"),o=C(t,\"weights\",\"bincount\");_(n.dtype===\"int32\",()=>`Error in bincount: input dtype must be int32, but got ${n.dtype}`),_(e>=0,()=>`size must be non-negative, but got ${e}.`),_(o.size===n.size||o.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${n.shape}, weights shape: ${o.shape}.`);let s={x:n,weights:o},i={size:e};return T.runKernel(Da,s,i)}var Nx=k({bincount_:zj});function Bj(r,t){let e=C(r,\"x\",\"bitwiseAnd\"),n=C(t,\"y\",\"bitwiseAnd\");if(!sn(e.shape,n.shape))throw new Error(`BitwiseAnd: Tensors must have the same shape. x: ${e.shape}, y: ${n.shape}`);if(e.dtype!==\"int32\"||n.dtype!==\"int32\")throw new Error(`BitwiseAnd: Only supports 'int32' values in tensor, found type of x: ${e.dtype} and type of y: ${n.dtype}`);let o={a:e,b:n};return T.runKernel($a,o)}var FE=k({bitwiseAnd_:Bj});function Vj(r,t){let e=C(r,\"s0\",\"broadcastArgs\",\"int32\"),n=C(t,\"s1\",\"broadcastArgs\",\"int32\");if(e.rank!==1)throw new Error(`broadcastArgs(): first input must be a vector (rank=1). Has rank ${e.rank}`);if(n.rank!==1)throw new Error(`broadcastArgs(): second input must be a vector (rank=1). Has rank ${n.rank}`);let o={s0:e,s1:n};return T.runKernel(ql,o)}var OE=k({broadcastArgs_:Vj});function Gj(r,t){let e=C(r,\"broadcastTo\",\"x\"),n=e.shape;if(Le(t),t.lengthe.rank){let l=e.shape.slice();for(;l.length=0;l--)if(o[l]===t[l])s[l]=1;else if(e.shape[l]!==1)throw new Error(`broadcastTo(): [${n}] cannot be broadcast to [${t}].`);if(s.map((l,c)=>l>1?c:-1).filter(l=>l>=0).length===0)return un(e);let a={x:e},u={reps:s};return T.runKernel(oo,a,u)}var sa=k({broadcastTo_:Gj});function Wj(r){let e={x:C(r,\"x\",\"ceil\",\"float32\")};return T.runKernel(Jo,e)}var kx=k({ceil_:Wj});function Co(r,t,e){Le(r),e=e||Wl(t);let n={shape:r,value:t,dtype:e};return T.runKernel(Jl,{},n)}function Uj(r,t,e){let n=C(r,\"x\",\"clipByValue\");if(_(t<=e,()=>`Error in clip: min (${t}) must be less than or equal to max (${e}).`),t===e)return Co(n.shape,t,n.dtype);let o={x:n},s={clipValueMin:t,clipValueMax:e};return T.runKernel(ho,o,s)}var vr=k({clipByValue_:Uj});function Hj(r){return ie(r,0)}var Tx=k({concat1d_:Hj});function qj(r,t){return ie(r,t)}var _x=k({concat2d_:qj});function Kj(r,t){return ie(r,t)}var Ex=k({concat3d_:Kj});function jj(r,t){return ie(r,t)}var Ax=k({concat4d_:jj});function Xj(r,t,e,n,o=\"NHWC\",s=[1,1],i){let a=C(r,\"x\",\"conv2d\",\"float32\"),u=C(t,\"filter\",\"conv2d\",\"float32\"),l=a,c=!1;a.rank===3&&(c=!0,l=R(a,[1,a.shape[0],a.shape[1],a.shape[2]])),_(l.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${l.rank}.`),_(u.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${u.rank}.`),Se(\"conv2d\",n,i);let p=o===\"NHWC\"?l.shape[3]:l.shape[1];_(p===u.shape[2],()=>`Error in conv2d: depth of input (${p}) must match input depth for filter ${u.shape[2]}.`),_(Dr(e,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${e} and dilations '${s}'`),_(na(s),()=>\"Error in conv2D: Dilated rates should be larger than 0.\"),_(na(e),()=>\"Error in conv2D: Strides should be larger than 0.\");let m={x:l,filter:u},f={strides:e,pad:n,dataFormat:o,dilations:s,dimRoundingMode:i},d=T.runKernel(Qo,m,f);return c?R(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Nn=k({conv2d_:Xj});function Yj(r,t,e,n,o=\"NWC\",s=1,i){let a=C(r,\"x\",\"conv1d\"),u=C(t,\"filter\",\"conv1d\"),l=a,c=!1;a.rank===2&&(c=!0,l=R(a,[1,a.shape[0],a.shape[1]])),_(l.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${l.rank}.`),_(u.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${u.rank}.`),Se(\"conv1d\",n,i),_(l.shape[2]===u.shape[1],()=>`Error in conv1d: depth of input (${l.shape[2]}) must match input depth for filter ${u.shape[1]}.`),_(Dr(e,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${e} and dilation '${s}'`),_(na(s),()=>\"Error in conv1D: Dilated rates should be larger than 0.\"),_(na(e),()=>\"Error in conv1D: Stride should be larger than 0.\"),_(o===\"NWC\",()=>`Error in conv1d: got dataFormat of ${o} but only NWC is currently supported.`);let p=R(u,[1,u.shape[0],u.shape[1],u.shape[2]]),m=R(l,[l.shape[0],1,l.shape[1],l.shape[2]]),g=Nn(m,p,[1,e],n,\"NHWC\",[1,s],i);return c?R(g,[g.shape[2],g.shape[3]]):R(g,[g.shape[0],g.shape[2],g.shape[3]])}var rm=k({conv1d_:Yj});function Zj(r,t,e,n,o,s=\"NHWC\",i){_(r.length===t.rank,()=>`Length of inShape (${r.length}) and rank of dy (${t.rank}) must match`);let a=r,u=t,l=!1;t.rank===3&&(l=!0,u=R(t,[1,t.shape[0],t.shape[1],t.shape[2]]),a=[1,r[0],r[1],r[2]]),_(a.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${a.length}.`),_(u.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${u.rank}`),_(e.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${e.rank}`);let c=s===\"NHWC\"?a[3]:a[1],p=s===\"NHWC\"?u.shape[3]:u.shape[1];_(c===e.shape[2],()=>`Error in conv2dDerInput: depth of input (${c}) must match input depth for filter ${e.shape[2]}.`),_(p===e.shape[3],()=>`Error in conv2dDerInput: depth of output (${p}) must match output depth for filter ${e.shape[3]}.`),Se(\"conv2dDerInput\",o,i);let m={dy:u,filter:e},f={strides:n,pad:o,dataFormat:s,dimRoundingMode:i,inputShape:a},d=T.runKernel(ts,m,f);return l?R(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var nm=k({conv2DBackpropInput_:Zj});function Jj(r,t,e,n,o,s){let i=C(r,\"x\",\"conv2dTranspose\"),a=C(t,\"filter\",\"conv2dTranspose\");return nm(e,i,a,n,o,\"NHWC\",s)}var om=k({conv2dTranspose_:Jj});function Qj(r,t,e,n,o=\"NDHWC\",s=[1,1,1]){let i=C(r,\"x\",\"conv3d\"),a=C(t,\"filter\",\"conv3d\"),u=i,l=!1;i.rank===4&&(l=!0,u=R(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),_(u.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${u.rank}.`),_(a.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${a.rank}.`),_(u.shape[4]===a.shape[3],()=>`Error in conv3d: depth of input (${u.shape[4]}) must match input depth for filter ${a.shape[3]}.`),_(Dr(e,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${e} and dilations '${s}'`),_(o===\"NDHWC\",()=>`Error in conv3d: got dataFormat of ${o} but only NDHWC is currently supported.`),_(na(s),()=>\"Error in conv3D: Dilated rates should be larger than 0.\"),_(na(e),()=>\"Error in conv3D: Strides should be larger than 0.\");let c={x:u,filter:a},p={strides:e,pad:n,dataFormat:o,dilations:s},m=T.runKernel(es,c,p);return l?R(m,[m.shape[1],m.shape[2],m.shape[3],m.shape[4]]):m}var Dx=k({conv3d_:Qj});function t6(r,t,e,n,o){_(r.length===t.rank,()=>`Length of inShape (${r.length}) and rank of dy (${t.rank}) must match`);let s=r,i=t,a=!1;t.rank===4&&(a=!0,i=R(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),s=[1,r[0],r[1],r[2],r[3]]);let u=s[4],l=i.shape[4];_(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),_(i.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${i.rank}`),_(e.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${e.rank}`),_(u===e.shape[3],()=>`Error in conv3dDerInput: depth of input (${u}) must match input depth for filter ${e.shape[3]}.`),_(l===e.shape[4],()=>`Error in conv3dDerInput: depth of output (${l}) must match output depth for filter ${e.shape[4]}.`);let c={dy:i,filter:e},p={pad:o,strides:n,inputShape:s},m=T.runKernel(Fa,c,p);return a?R(m,[m.shape[1],m.shape[2],m.shape[3],m.shape[4]]):m}var $x=k({conv3DBackpropInput_:t6});function e6(r,t,e,n,o){let s=C(r,\"x\",\"conv3dTranspose\"),i=C(t,\"filter\",\"conv3dTranspose\");return $x(e,s,i,n,o)}var Rx=k({conv3dTranspose_:e6});function r6(r){let e={x:C(r,\"x\",\"cos\",\"float32\")};return T.runKernel(rs,e)}var bu=k({cos_:r6});function n6(r){let e={x:C(r,\"x\",\"cosh\",\"float32\")};return T.runKernel(ns,e)}var sm=k({cosh_:n6});function o6(r,t=0,e=!1,n=!1){let s={x:C(r,\"x\",\"cumprod\")},i={axis:t,exclusive:e,reverse:n};return T.runKernel(Oa,s,i)}var mc=k({cumprod_:o6});function s6(r,t=0,e=!1,n=!1){let s={x:C(r,\"x\",\"cumsum\")},i={axis:t,exclusive:e,reverse:n};return T.runKernel(os,s,i)}var im=k({cumsum_:s6});function i6(r,t,e,n=!1){let o=C(r,\"x\",\"denseBincount\"),s=C(t,\"weights\",\"denseBincount\");_(o.dtype===\"int32\",()=>`Error in denseBincount: input dtype must be int32, but got ${o.dtype}`),_(o.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${o.rank}.`),_(e>=0,()=>`size must be non-negative, but got ${e}.`),_(s.size===o.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${o.shape}, weights shape: ${s.shape}.`);let i={x:o,weights:s},a={size:e,binaryOutput:n};return T.runKernel(jl,i,a)}var mh=k({denseBincount_:i6});function a6(r,t,e=\"NHWC\"){let n=C(r,\"x\",\"depthToSpace\",\"float32\"),o=e===\"NHWC\"?n.shape[1]:n.shape[2],s=e===\"NHWC\"?n.shape[2]:n.shape[3],i=e===\"NHWC\"?n.shape[3]:n.shape[1];_(t>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${t}`),_(o*t>=0,()=>`Negative dimension size caused by overflow when multiplying\n ${o} and ${t} for depthToSpace with input shape\n ${n.shape}`),_(s*t>=0,()=>`Negative dimension size caused by overflow when multiplying\n ${s} and ${t} for depthToSpace with input shape\n ${n.shape}`),_(i%(t*t)===0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${i} for depthToSpace with input shape ${n.shape}`);let a={x:n},u={blockSize:t,dataFormat:e};return T.runKernel(Pa,a,u)}var Fx=k({depthToSpace_:a6});function l6(r,t,e,n,o=\"NHWC\",s=[1,1],i){let a=C(r,\"x\",\"depthwiseConv2d\",\"float32\"),u=C(t,\"filter\",\"depthwiseConv2d\",\"float32\"),l=a,c=!1;a.rank===3&&(c=!0,l=R(a,[1,a.shape[0],a.shape[1],a.shape[2]])),_(l.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${l.rank}.`),_(u.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${u.rank}.`);let p=o===\"NHWC\"?l.shape[3]:l.shape[1];_(p===u.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${p}) must match the inChannels dimension in filter ${u.shape[2]}.`),Se(\"depthwiseConv2d\",n,i);let m={x:l,filter:u},f={strides:e,pad:n,dataFormat:o,dilations:s,dimRoundingMode:i},d=T.runKernel(ss,m,f);return c?R(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var ia=k({depthwiseConv2d_:l6});function u6(r){let e={x:C(r,\"x\",\"diag\")};return T.runKernel(Xl,e)}var ME=k({diag_:u6});function c6(r,t,e,n,o=[1,1],s=\"NHWC\"){let i=C(r,\"x\",\"dilation2d\"),a=C(t,\"filter\",\"dilation2d\");_(i.rank===3||i.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${i.rank}.`),_(a.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${a.rank}.`),_(s===\"NHWC\",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let u=i,l=!1;i.rank===3&&(u=R(i,[1,i.shape[0],i.shape[1],i.shape[2]]),l=!0),_(u.shape[3]===a.shape[2],()=>`Error in dilation2d: input and filter must have the same depth: ${u.shape[3]} vs ${a.shape[2]}`);let c={x:u,filter:a},p={strides:e,pad:n,dilations:o},m=T.runKernel(is,c,p);return l?R(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var Ox=k({dilation2d_:c6});var Hr={};Kt(Hr,{assertAndGetBroadcastShape:()=>Mt,getBroadcastDims:()=>PE,getReductionAxes:()=>we});function PE(r,t){let e=r.length,n=[];for(let o=0;o1&&i===1&&n.unshift(s)}return n}function we(r,t){let e=[];for(let n=0;n1)&&e.unshift(s)}return e}function Mt(r,t){let e=Math.max(r.length,t.length),n=new Array(e);for(let o=0;o`Error in dot: inputs must all be rank 1 or 2, but got ranks ${e.rank} and ${n.rank}.`);let o=e.rank===1?e.size:e.shape[1],s=n.rank===1?n.size:n.shape[0];if(_(o===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${o} and ${s}.`),e.rank===1&&n.rank===1){let i=R(e,[1,-1]),a=R(n,[-1,1]),u=Bt(i,a);return R(u,[])}else if(e.rank===1&&n.rank===2){let i=R(e,[1,-1]),a=R(n,[n.shape[0],n.shape[1]]),u=Bt(i,a);return R(u,[u.size])}else if(e.rank===2&&n.rank===1){let i=R(n,[-1,1]),a=Bt(e,i);return R(a,[a.size])}else{let i=R(n,[n.shape[0],n.shape[1]]);return Bt(e,i)}}var Px=k({dot_:h6});function g6(r,...t){let e=t.map((o,s)=>C(o,`tensors${s}`,\"einsum\")),n={equation:r};return T.runKernel(Fp,e,n)}var wu=k({einsum_:g6});function x6(r){let e={x:C(r,\"x\",\"elu\",\"float32\")};return T.runKernel(ls,e)}var aa=k({elu_:x6});function y6(r,t){let e=C(r,\"x\",\"ensureShape\",\"string_or_numeric\");if(!d0(e.shape,t))throw new Error(`EnsureShape: Shape of tensor ${e.shape} is not compatible with expected shape ${t}`);return r}var LE=k({ensureShape_:y6});function b6(r){let t=C(r,\"x\",\"erf\");_(t.dtype===\"int32\"||t.dtype===\"float32\",()=>\"Input dtype must be `int32` or `float32`.\"),t.dtype===\"int32\"&&(t=J(t,\"float32\"));let e={x:t};return T.runKernel(us,e)}var am=k({erf_:b6});function eN(r,t){for(let e=0;er[s]);return[e,o]}function vo(r,t){let e=t.map(n=>1);return zE(r,e,t)}function w6(r,t,e){_(eN(t,e),()=>`${r} supports only inner-most axes for now. Got axes ${t} and rank-${e} input.`)}function nN(r,t){if(eN(r,t))return null;let e=[];for(let n=0;ne.push(n)),e}function fh(r){return r.map((t,e)=>[e,t]).sort((t,e)=>t[1]-e[1]).map(t=>t[0])}function I6(r,t){let e=[];for(let n=t-r;n\"Axis must be <= rank of the tensor\");let n={input:e},o={dim:t};return T.runKernel(Mi,n,o)}var je=k({expandDims_:D6});function $6(r){let e={x:C(r,\"x\",\"expm1\")};return T.runKernel(ps,e)}var zx=k({expm1_:$6});function R6(r,t){let e=C(r,\"x\",\"tile\",\"string_or_numeric\");_(e.rank===t.length,()=>`Error in transpose: rank of input ${e.rank} must match length of reps ${t}.`);let n={x:e},o={reps:t};return T.runKernel(oo,n,o)}var Rr=k({tile_:R6});function F6(r,t,e,n=\"float32\"){t==null&&(t=r);let o=wt([r,t],n),s=r<=t?r:t;for(let a=0;a`Error in localResponseNormalization: x must be rank 3 or 4 but got\n rank ${s.rank}.`),_(_a(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let i=s,a=!1;s.rank===3&&(a=!0,i=R(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let u={x:i},l={depthRadius:t,bias:e,alpha:n,beta:o},c=T.runKernel(Cs,u,l);return a?R(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var Wx=k({localResponseNormalization_:q6});function K6(r){let e={x:C(r,\"x\",\"log\",\"float32\")};return T.runKernel(ws,e)}var Nr=k({log_:K6});function j6(r){let e={x:C(r,\"x\",\"log1p\")};return T.runKernel(Is,e)}var vu=k({log1p_:j6});function X6(r){return _(_i(r),()=>\"The f passed in grad(f) must be a function\"),(t,e)=>{let n=C(t,\"x\",\"tf.grad\",\"string_or_numeric\"),o=e!=null?C(e,\"dy\",\"tf.grad\"):null;return T.tidy(()=>{let{value:s,grads:i}=T.gradients(()=>r(n),[n],o);return o!=null&&$e(s.shape,o.shape,\"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)\"),Hx(i),i[0]})}}function Y6(r){return _(_i(r),()=>\"The f passed in grads(f) must be a function\"),(t,e)=>{_(Array.isArray(t),()=>\"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s\");let n=fl(t,\"args\",\"tf.grads\",\"string_or_numeric\"),o=e!=null?C(e,\"dy\",\"tf.grads\"):null;return T.tidy(()=>{let{value:s,grads:i}=T.gradients(()=>r(...n),n,o);return o!=null&&$e(s.shape,o.shape,\"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])\"),Hx(i),i})}}function Z6(r){return _(_i(r),()=>\"The f passed in valueAndGrad(f) must be a function\"),(t,e)=>{_(t instanceof Lt,()=>\"The x passed in valueAndGrad(f)(x) must be a tensor\"),_(e==null||e instanceof Lt,()=>\"The dy passed in valueAndGrad(f)(x, dy) must be a tensor\");let{grads:n,value:o}=T.gradients(()=>r(t),[t],e);return Hx(n),{grad:n[0],value:o}}}function J6(r){return _(_i(r),()=>\"The f passed in valueAndGrads(f) must be a function\"),(t,e)=>{_(Array.isArray(t)&&t.every(o=>o instanceof Lt),()=>\"The args passed in valueAndGrads(f)(args) must be array of tensors\"),_(e==null||e instanceof Lt,()=>\"The dy passed in valueAndGrads(f)(args, dy) must be a tensor\");let n=T.gradients(()=>r(...t),t,e);return e!=null&&$e(n.value.shape,e.shape,\"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])\"),Hx(n.grads),n}}function Ux(r,t){_(_i(r),()=>\"The f passed in variableGrads(f) must be a function\"),_(t==null||Array.isArray(t)&&t.every(l=>l instanceof ml),()=>\"The varList passed in variableGrads(f, varList) must be an array of variables\");let e=t!=null;if(!e){t=[];for(let l in T.registeredVariables)t.push(T.registeredVariables[l])}let n=e?t.filter(l=>!l.trainable):null,o=t.length;t=t.filter(l=>l.trainable),_(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${o} variables is trainable.`);let s=!0,{value:i,grads:a}=T.gradients(r,t,null,s);_(a.some(l=>l!=null),()=>\"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize().\"),_(i.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${i.rank} tensor`);let u={};return t.forEach((l,c)=>{a[c]!=null&&(u[l.name]=a[c])}),n!=null&&n.forEach(l=>u[l.name]=null),{value:i,grads:u}}function pn(r){return T.customGrad(r)}function Hx(r){if(r.filter(e=>e==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that\n the f you passed encloses all operations that lead from x to y.`)}function Q6(r){let e={x:C(r,\"x\",\"neg\")};return T.runKernel(zi,e)}var Ut=k({neg_:Q6});function tX(r){let e={x:C(r,\"x\",\"softplus\")};return T.runKernel(Ys,e)}var ui=k({softplus_:tX});function eX(r){let t=C(r,\"x\",\"logSigmoid\");return pn(n=>({value:Ut(ui(Ut(n))),gradFunc:i=>$(i,en(Ut(n)))}))(t)}var qx=k({logSigmoid_:eX});function rX(r,t){let e=C(r,\"a\",\"sub\"),n=C(t,\"b\",\"sub\");[e,n]=Xt(e,n);let o={a:e,b:n};return T.runKernel(ei,o)}var at=k({sub_:rX});function nX(r,t=-1){let e=C(r,\"logits\",\"logSoftmax\");if(t===-1&&(t=e.rank-1),t!==e.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${e.rank} and axis was ${t}`);return pn((o,s)=>{let a=Sr(o,t,!0),u=at(o,a),l=at(J(u,\"float32\"),Nr(mt(Ke(u),t,!0)));return s([l]),{value:l,gradFunc:(p,m)=>{let[f]=m,d=!0,h=Ke(f);return at(p,$(mt(p,t,d),h))}}})(e)}var lm=k({logSoftmax_:nX});function oX(r,t=null,e=!1){let n=C(r,\"x\",\"logSumExp\"),o=fr(t,n.shape),s=Sr(n,o,!0),i=at(n,s),a=Ke(i),u=mt(a,o),l=Nr(u),c=K(R(s,l.shape),l);if(e){let p=vo(c.shape,o);return R(c,p)}return c}var Su=k({logSumExp_:oX});function sX(r,t){let e=C(r,\"a\",\"logicalAnd\",\"bool\"),n=C(t,\"b\",\"logicalAnd\",\"bool\");Mt(e.shape,n.shape);let o={a:e,b:n};return T.runKernel(qa,o)}var Fr=k({logicalAnd_:sX});function iX(r){let e={x:C(r,\"x\",\"logicalNot\",\"bool\")};return T.runKernel(Ka,e)}var Nu=k({logicalNot_:iX});function aX(r,t){let e=C(r,\"a\",\"logicalOr\",\"bool\"),n=C(t,\"b\",\"logicalOr\",\"bool\");Mt(e.shape,n.shape);let o={a:e,b:n};return T.runKernel(ja,o)}var um=k({logicalOr_:aX});function lX(r,t){let e=C(r,\"a\",\"logicalXor\",\"bool\"),n=C(t,\"b\",\"logicalXor\",\"bool\");return Mt(e.shape,n.shape),Fr(um(r,t),Nu(Fr(r,t)))}var Kx=k({logicalXor_:lX});var jx=2147483648;function uX(r,t,e=\"left\"){let n=C(r,\"sortedSequence\",\"searchSorted\"),o=C(t,\"values\",\"searchSorted\"),s=n.shape[n.shape.length-1],i=o.shape[o.shape.length-1],a=R(n,[-1,s]),u=R(o,[-1,i]);if(a.rank<2)throw new Error(\"Sorted input argument must be at least 2-dimensional\");if(a.shape[0]!==u.shape[0])throw new Error(\"Leading dimension of 'sortedSequence' and 'values' must match.\");if(jt(u.shape)>=jx)throw new Error(`values tensor size must less than ${jx}`);if(a.shape[1]>=jx)throw new Error(`trailing dim_size must less than ${jx} for int32 output type, was ${a.shape[1]}`);let l={sortedSequence:a,values:u},c={side:e};return T.runKernel(sl,l,c)}var dh=k({searchSorted_:uX});function GE(r,t){return dh(r,t,\"left\")}function cX(r,t,e,n,o){let s=C(r,\"x\",\"maxPool\"),i=1,a=s,u=!1;s.rank===3&&(u=!0,a=R(s,[1,s.shape[0],s.shape[1],s.shape[2]])),_(a.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${a.rank}.`),_(Dr(e,i),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${e} and dilations '${i}'`),Se(\"maxPool\",n,o);let l={x:a},c={filterSize:t,strides:e,pad:n,dimRoundingMode:o},p=T.runKernel(Ns,l,c);return u?R(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var ku=k({maxPool_:cX});function pX(r,t=[1,1,1],e,n,o,s=\"NDHWC\"){let i=C(r,\"x\",\"maxPool3d\"),a=i,u=!1;i.rank===4&&(u=!0,a=R(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),_(a.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${a.rank}.`),_(s===\"NDHWC\",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),Se(\"maxPool3d\",n,o);let l={x:a},c={filterSize:t,strides:e,pad:n,dimRoundingMode:o,dataFormat:s},p=T.runKernel(Li,l,c);return u?R(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var Xx=k({maxPool3d_:pX});function mX(r,t,e,n,o=!1){let i={x:C(r,\"x\",\"maxPoolWithArgmax\")},a={filterSize:t,strides:e,pad:n,includeBatchInIndex:o},u=T.runKernel(eu,i,a);return{result:u[0],indexes:u[1]}}var WE=k({maxPoolWithArgmax_:mX});function fX(r,t){let e=C(r,\"a\",\"maximum\"),n=C(t,\"b\",\"maximum\");[e,n]=Xt(e,n),e.dtype===\"bool\"&&(e=J(e,\"int32\"),n=J(n,\"int32\")),Mt(e.shape,n.shape);let o={a:e,b:n};return T.runKernel(Ss,o)}var kn=k({maximum_:fX});function dX(r,t=null,e=!1){let o={x:C(r,\"x\",\"mean\")},s={axis:t,keepDims:e};return T.runKernel(ks,o,s)}var Ne=k({mean_:dX});function ke(r,t=\"float32\"){if(Le(r),t===\"complex64\"){let n=ke(r,\"float32\"),o=ke(r,\"float32\");return Sn(n,o)}let e=Ep(jt(r),t);return T.makeTensor(e,r,t)}function ar(r,t=\"float32\"){if(Le(r),t===\"complex64\"){let n=ar(r,\"float32\"),o=ke(r,\"float32\");return Sn(n,o)}let e=Yd(jt(r),t);return T.makeTensor(e,r,t)}function UE(r,t,{indexing:e=\"xy\"}={}){if(e!==\"xy\"&&e!==\"ij\")throw new TypeError(`${e} is not a valid third argument to meshgrid`);if(r===void 0)return[];let n=C(r,\"x\",\"meshgrid\",r instanceof Lt?r.dtype:\"float32\");if(t===void 0)return[n];let o=C(t,\"y\",\"meshgrid\",t instanceof Lt?t.dtype:\"float32\"),s=jt(n.shape),i=jt(o.shape);return e===\"xy\"?(n=R(n,[1,-1]),o=R(o,[-1,1]),[Bt(ar([i,1],n.dtype),n),Bt(o,ar([1,s],o.dtype))]):(n=R(n,[-1,1]),o=R(o,[1,-1]),[Bt(n,ar([1,i],n.dtype)),Bt(ar([s,1],o.dtype),o)])}function hX(r,t){let e=C(r,\"a\",\"minimum\"),n=C(t,\"b\",\"minimum\");[e,n]=Xt(e,n),e.dtype===\"bool\"&&(e=J(e,\"int32\"),n=J(n,\"int32\")),Mt(e.shape,n.shape);let o={a:e,b:n};return T.runKernel(_s,o)}var lo=k({minimum_:hX});function gX(r,t,e){_(e===\"reflect\"||e===\"symmetric\",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${e}.`);let n=C(r,\"x\",\"mirrorPad\");if(n.rank===0)throw new Error(\"mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad\");_(t.length===n.rank,()=>`Padding doesn't match input. Must be ${n.rank}. Got ${t.length}.`);let o=e===\"reflect\"?1:0;for(let a=0;a\"Invalid number of paddings. Must be length of 2 each.\"),_(t[a][0]>=0&&t[a][0]<=n.shape[a]-o&&t[a][1]>=0&&t[a][1]<=n.shape[a]-o,()=>`Padding in dimension ${a} cannot be greater than or equal to ${n.shape[a]-o} or less than 0 for input of shape ${n.shape}`);let s={paddings:t,mode:e},i={x:n};return T.runKernel(Es,i,s)}var Yx=k({mirrorPad_:gX});function xX(r,t){let e=C(r,\"a\",\"mod\"),n=C(t,\"b\",\"mod\");[e,n]=Xt(e,n);let o={a:e,b:n};return T.runKernel(As,o)}var Zx=k({mod_:xX});function yX(r,t=null,e=!1){r=C(r,\"x\",\"moments\");let n=fr(t,r.shape),o=Ne(r,n,e),s=o.shape;e||(s=vo(o.shape,n));let i=Wt(at(J(r,\"float32\"),R(o,s))),a=Ne(i,n,e);return{mean:o,variance:a}}var dc=k({moments_:yX});function bX(r,t,e,n){let o=C(t,\"data\",\"multiRNNCell\"),s=fl(e,\"c\",\"multiRNNCell\"),i=fl(n,\"h\",\"multiRNNCell\"),a=o,u=[];for(let p=0;p2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${i}`);e=e||Math.random();let u={logits:i===1?R(o,[1,-1]):o},l={numSamples:t,seed:e,normalized:n},c=T.runKernel(Ya,u,l);return i===1?R(c,[c.size]):c}var qE=k({multinomial_:wX});function IX(r,t){let e=C(r,\"a\",\"notEqual\",\"string_or_numeric\"),n=C(t,\"b\",\"notEqual\",\"string_or_numeric\");[e,n]=Xt(e,n),Mt(e.shape,n.shape);let o={a:e,b:n};return T.runKernel(Za,o)}var ci=k({notEqual_:IX});function CX(r,t,e=1,n=0,o=\"int32\"){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let i={indices:C(r,\"indices\",\"oneHot\",\"int32\")},a={dtype:o,depth:t,onValue:e,offValue:n};return T.runKernel($s,i,a)}var ca=k({oneHot_:CX});function vX(r){let e={x:C(r,\"x\",\"onesLike\")};return T.runKernel(Bi,e)}var wr=k({onesLike_:vX});function SX(r,t){let e=C(r,\"v1\",\"outerProduct\"),n=C(t,\"v2\",\"outerProduct\");_(e.rank===1&&n.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${e.rank} and ${n.rank}.`);let o=R(e,[-1,1]),s=R(n,[1,-1]);return Bt(o,s)}var KE=k({outerProduct_:SX});function NX(r,t,e=0){let n=C(r,\"x\",\"pad\");if(n.rank===0)throw new Error(\"pad(scalar) is not defined. Pass non-scalar to pad\");let o={paddings:t,constantValue:e},s={x:n};return T.runKernel(Rs,s,o)}var mn=k({pad_:NX});function kX(r,t,e=0){return _(t.length===2,()=>\"Invalid number of paddings. Must be length of 2.\"),mn(r,[t],e)}var jE=k({pad1d_:kX});function TX(r,t,e=0){return _(t.length===2&&t[0].length===2&&t[1].length===2,()=>\"Invalid number of paddings. Must be length of 2 each.\"),mn(r,t,e)}var XE=k({pad2d_:TX});function _X(r,t,e=0){return _(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>\"Invalid number of paddings. Must be length of 2 each.\"),mn(r,t,e)}var YE=k({pad3d_:_X});function EX(r,t,e=0){return _(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>\"Invalid number of paddings. Must be length of 2 each.\"),mn(r,t,e)}var ZE=k({pad4d_:EX});function AX(r,t,e){let n=C(r,\"x\",\"spaceToBatchND\");_(n.rank>=1+t.length,()=>`input rank ${n.rank} should be > than [blockShape] ${t.length}`),_(e.length===t.length,()=>`paddings.shape[0] ${e.length} must be equal to [blockShape] ${t.length}`),_(n.shape.reduce((i,a,u)=>u>0&&u<=t.length?i&&(a+e[u-1][0]+e[u-1][1])%t[u-1]===0:i,!0),()=>`input spatial dimensions ${n.shape.slice(1)} with paddings ${e.toString()} must be divisible by blockShapes ${t.toString()}`);let o={x:n},s={blockShape:t,paddings:e};return T.runKernel(Hi,o,s)}var Tu=k({spaceToBatchND_:AX});function DX(r,t,e,n,o,s,i){o==null&&(o=[1,1]),s==null&&(s=1),n===0&&(n=\"valid\");let a=C(r,\"x\",\"maxPool\"),u=a,l=!1;a.rank===3&&(l=!0,u=R(a,[1,a.shape[0],a.shape[1],a.shape[2]])),_(Dr(s,o),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${o}'`);let c=Q0(u.shape,t,s,o,n),p=[c.dilationHeight,c.dilationWidth],m;n===\"same\"?m=RX([c.filterHeight,c.filterWidth],p):m=[[0,0],[0,0]];let f=p[0]===1&&p[1]===1,[d,h]=$X([c.inHeight,c.inWidth],p,m),g=f?n:\"valid\",x=f?u:Tu(u,p,d),w=(e===\"avg\"?()=>xu(x,t,s,g,i):()=>ku(x,t,s,g,i))(),I=f?w:yu(w,p,h);return l?R(I,[I.shape[1],I.shape[2],I.shape[3]]):I}function $X(r,t,e){let n=e.map(c=>c[0]),o=e.map(c=>c[1]),s=r.concat(n,o),i=t.map((c,p)=>(c-s[p]%c)%c),a=o.map((c,p)=>c+i[p]),u=t.map((c,p)=>[n[p],a[p]]),l=t.map((c,p)=>[0,i[p]]);return[u,l]}function RX(r,t){let n=r.map((i,a)=>i+(i-1)*(t[a]-1)).map(i=>i-1),o=n.map(i=>Math.floor(i/2)),s=n.map((i,a)=>i-o[a]);return n.map((i,a)=>[o[a],s[a]])}var Jx=k({pool_:DX});function FX(r,t){let e=C(r,\"x\",\"prelu\"),n=C(t,\"alpha\",\"prelu\"),o={x:e,alpha:n};return T.runKernel(Os,o)}var _u=k({prelu_:FX});function OX(r,t=null,e=!1){let n=C(r,\"x\",\"prod\");n.dtype===\"bool\"&&(n=J(n,\"int32\"));let o={x:n},s={axis:t,keepDims:e};return T.runKernel(Ms,o,s)}var Qx=k({prod_:OX});function MX(r,t,e,n){let o=r.map((c,p)=>C(c,`tensors${p}`,\"raggedGather\",\"int32\")),s=C(t,\"paramsDenseValues\",\"raggedGather\"),i=C(e,\"indices\",\"raggedGather\",\"int32\"),a={paramsNestedSplits:o,paramsDenseValues:s,indices:i},u={outputRaggedRank:n},l=T.runKernel(Lp,a,u);return{outputNestedSplits:l.slice(0,l.length-1),outputDenseValues:l[l.length-1]}}var JE=k({raggedGather_:MX});function PX(r,t,e){let n=C(r,\"starts\",\"raggedRange\"),o=C(t,\"limits\",\"raggedRange\",n.dtype),s=C(e,\"deltas\",\"raggedRange\",n.dtype),i={starts:n,limits:o,deltas:s},a=T.runKernel(zp,i);return{rtNestedSplits:a[0],rtDenseValues:a[1]}}var QE=k({raggedRange_:PX});function LX(r,t,e,n,o){let s=C(r,\"shape\",\"raggedTensorToTensor\",\"int32\"),i=C(t,\"values\",\"raggedTensorToTensor\"),a=C(e,\"defaultValue\",\"raggedTensorToTensor\",i.dtype),u=n.map((p,m)=>C(p,`tensors${m}`,\"raggedTensorToTensor\",\"int32\")),l={shape:s,values:i,defaultValue:a,rowPartitionTensors:u},c={rowPartitionTypes:o};return T.runKernel(Bp,l,c)}var tA=k({raggedTensorToTensor_:LX});function zX(r,t,e){Le(r);let n=jt(r),o=null;if(e==null||e===\"float32\")o=new Float32Array(n);else if(e===\"int32\")o=new Int32Array(n);else if(e===\"bool\")o=new Uint8Array(n);else throw new Error(`Unknown data type ${e}`);for(let s=0;syA,createVideoElement:()=>JX,encodeStrings:()=>wA,expectArrayBuffersEqual:()=>ZX,expectArraysClose:()=>KX,expectArraysEqual:()=>XX,expectNumbersClose:()=>bA,expectPromiseToFail:()=>jX,expectValuesInRange:()=>YX,play:()=>QX,testEpsilon:()=>ey});var qX=.001,yA=.1;function KX(r,t,e){return e==null&&(e=ey()),pN(r,t,(n,o)=>mN(n,o,e))}function ey(){return T.backend.floatPrecision()===32?qX:yA}function pN(r,t,e){let n=!0;if((sr(r)||sr(t))&&(n=!1),sr(r)&&sr(t)&&(n=!0),n){let i=r.constructor.name,a=t.constructor.name;if(i!==a)throw new Error(`Arrays are of different type. Actual: ${i}. Expected: ${a}`)}if(Array.isArray(r)&&Array.isArray(t)){let i=Wr(r),a=Wr(t);if(!sn(i,a))throw new Error(`Arrays have different shapes. Actual: [${i}]. Expected: [${a}]`)}let o=sr(r)?r:si(r),s=sr(t)?t:si(t);if(o.length!==s.length)throw new Error(`Arrays have different lengths actual: ${o.length} vs expected: ${s.length}.\nActual: ${o}.\nExpected: ${s}.`);for(let i=0;it.fail(),()=>t()),typeof expect!=\"undefined\"&&expect().nothing()}function XX(r,t){let e=typeof t==\"string\"||typeof t==\"number\"||typeof t==\"boolean\"?[t]:t;return Vo(r)||Vo(r[0])||Vo(t)||Vo(t[0])?pN(r,e,(n,o)=>n==o):pN(r,t,(n,o)=>mN(n,o,0))}function bA(r,t,e){if(e==null&&(e=ey()),!mN(r,t,e))throw new Error(`Numbers differ: actual === ${r}, expected === ${t}`);typeof expect!=\"undefined\"&&expect().nothing()}function mN(r,t,e){return!isFinite(r)&&!isFinite(t)?!0:!(isNaN(r)||isNaN(t)||Math.abs(r-t)>e)}function YX(r,t,e){for(let n=0;ne)throw new Error(`Value out of range:${r[n]} low: ${t}, high: ${e}`)}function ZX(r,t){let e=new Float32Array(r),n=new Float32Array(t);if(e.length!==n.length)throw new Error(`Expected ArrayBuffer to be of length ${n.length}, but it was ${e.length}`);for(let o=0;o{t.addEventListener(\"loadeddata\",n=>e(t)),t.load()})}async function QX(r){await r.play(),\"requestVideoFrameCallback\"in r&&await new Promise(t=>{r.requestVideoFrameCallback(t)})}var gc=class{constructor(t,e,n,o,s){this.mean=t,this.stdDev=e,this.dtype=n,this.nextVal=NaN,this.truncated=o,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let i=s||Math.random();this.random=oy.alea(i.toString())}nextValue(){if(!isNaN(this.nextVal)){let o=this.nextVal;return this.nextVal=NaN,o}let t,e,n=!1;for(;!n;){let o,s,i;do o=2*this.random()-1,s=2*this.random()-1,i=o*o+s*s;while(i>=1||i===0);let a=Math.sqrt(-2*Math.log(i)/i);t=this.mean+this.stdDev*o*a,e=this.mean+this.stdDev*s*a,(!this.truncated||this.isValidTruncated(t))&&(n=!0)}return(!this.truncated||this.isValidTruncated(e))&&(this.nextVal=this.convertValue(e)),this.convertValue(t)}convertValue(t){return this.dtype==null||this.dtype===\"float32\"?t:Math.round(t)}isValidTruncated(t){return t<=this.upper&&t>=this.lower}},ry=class{constructor(t,e,n,o){this.alpha=t,this.beta=1/e,this.dtype=n;let s=o||Math.random();this.randu=oy.alea(s.toString()),this.randn=new gc(0,1,n,!1,this.randu()),t<1?this.d=t+2/3:this.d=t-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let t,e,n,o,s,i;for(;;){do o=this.randn.nextValue(),i=1+this.c*o;while(i<=0);if(i*=i*i,t=o*o,e=1-.331*t*t,n=.5*t+this.d*(1-i+Math.log(i)),s=this.randu(),sthis.dtype==null||this.dtype===\"float32\",this.min=t,this.range=e-t,this.dtype=n,o==null&&(o=Math.random()),typeof o==\"number\"&&(o=o.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${t} - ${e} <= 1 and dtype is not float`);this.random=oy.alea(o)}convertValue(t){return this.canReturnFloat()?t:Math.round(t)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function t5(r,t,e=1,n=\"float32\",o){if(Le(r),e==null&&(e=1),n==null&&(n=\"float32\"),n!==\"float32\"&&n!==\"int32\")throw new Error(`Unsupported data type ${n}`);let s=new ry(t,e,n,o),i=wt(r,n);for(let a=0;a`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),dr(t,0)}var NA=k({reverse1d_:c5});function p5(r,t){let e=C(r,\"x\",\"reverse\");return _(e.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${e.rank}.`),dr(e,t)}var kA=k({reverse2d_:p5});function m5(r,t){let e=C(r,\"x\",\"reverse\");return _(e.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${e.rank}.`),dr(e,t)}var TA=k({reverse3d_:m5});function f5(r,t){let e=C(r,\"x\",\"reverse\");return _(e.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${e.rank}.`),dr(e,t)}var _A=k({reverse4d_:f5});function d5(r){let e={x:C(r,\"x\",\"round\")};return T.runKernel(Ws,e)}var pm=k({round_:d5});function h5(r){let e={x:C(r,\"x\",\"rsqrt\",\"float32\")};return T.runKernel(Us,e)}var mm=k({rsqrt_:h5});function g5(r){let e={x:C(r,\"x\",\"selu\")};return T.runKernel(Hs,e)}var fm=k({selu_:g5});function x5(r,t,e,n,o,s=[1,1],i=\"NHWC\"){let a=C(r,\"x\",\"separableConv2d\"),u=C(t,\"depthwiseFilter\",\"separableConv2d\"),l=C(e,\"pointwiseFilter\",\"separableConv2d\"),c=a,p=!1;if(a.rank===3&&(p=!0,c=R(a,[1,a.shape[0],a.shape[1],a.shape[2]])),i===\"NCHW\")throw new Error(\"separableConv2d currently does not support dataFormat NCHW; only NHWC is supported\");_(c.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${c.rank}.`),_(u.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${u.rank}.`),_(l.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${u.rank}.`),_(l.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${l.shape[0]}.`),_(l.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${l.shape[1]}.`);let m=u.shape[2],f=u.shape[3];_(l.shape[2]===m*f,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${m*f}, but got ${l.shape[2]}.`);let d=ia(c,u,n,o,i,s),g=Nn(d,l,1,\"valid\",i);return p?R(g,[g.shape[1],g.shape[2],g.shape[3]]):g}var dm=k({separableConv2d_:x5});async function y5(r,t){let e=C(r,\"x\",\"setdiff1d\"),n=C(t,\"y\",\"setdiff1d\");_(e.dtype===n.dtype,()=>`x and y should have the same dtype, but got x (${e.dtype}) and y (${n.dtype}).`),_(e.rank===1,()=>`x should be 1D tensor, but got x (${e.shape}).`),_(n.rank===1,()=>`y should be 1D tensor, but got y (${n.shape}).`);let o=await e.data(),s=await n.data(),i=new Set(s),a=0;for(let c=0;c`slice1d expects a rank-1 tensor, but got a rank-${n.rank} tensor`),Ot(n,[t],[e])}var xm=k({slice1d_:C5});function v5(r,t,e){let n=C(r,\"x\",\"slice2d\");return _(n.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${n.rank} tensor`),Ot(n,t,e)}var gh=k({slice2d_:v5});function S5(r,t,e){let n=C(r,\"x\",\"slice3d\");return _(n.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${n.rank} tensor`),Ot(n,t,e)}var ym=k({slice3d_:S5});function N5(r,t,e){let n=C(r,\"x\",\"slice4d\");return _(n.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${n.rank} tensor`),Ot(n,t,e)}var yc=k({slice4d_:N5});function k5(r,t=-1){let e=C(r,\"logits\",\"softmax\",\"float32\");if(t===-1&&(t=e.rank-1),t!==e.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${e.rank} and dim was ${t}`);let n={logits:e},o={dim:t};return T.runKernel(Qs,n,o)}var Eu=k({softmax_:k5});function T5(r){_(r.dtype===\"complex64\",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${r.dtype}.`);let t={input:r};return T.runKernel(Op,t)}var Au=k({fft_:T5});function _5(r){_(r.dtype===\"complex64\",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${r.dtype}.`);let t={input:r};return T.runKernel(Mp,t)}var wl=k({ifft_:_5});function E5(r){let t=r.shape[r.shape.length-1],e=r.size/t,n;if(t<=2){let o=R(r,[e,t]);n=wl(o)}else{let o=[e,2*(t-1)],s=R(bl(r),[e,t]),i=R(Iu(r),[e,t]),a=dr(Ot(s,[0,1],[e,t-2]),1),u=$(dr(Ot(i,[0,1],[e,t-2]),1),pt(-1)),l=ie([s,a],1),c=ie([i,u],1),p=R(Sn(l,c),[o[0],o[1]]);n=wl(p)}if(n=bl(n),r.rank===3&&r.shape[0]!==0){let o=n,s=r.shape[0];n=R(n,[s,n.shape[0]/s,n.shape[1]]),o.dispose()}return n}var bm=k({irfft_:E5});function A5(r,t,e=0){let o={x:C(r,\"x\",\"split\")},s={numOrSizeSplits:t,axis:e};return T.runKernel(qi,o,s)}var hr=k({split_:A5});function D5(r,t){_(r.dtype===\"float32\",()=>`The dtype for rfft() must be real value but got ${r.dtype}`);let e=r.shape[r.shape.length-1],n=r.size/e,o;if(t!=null&&t0),h=r.shape.map(g=>g);h[r.shape.length-1]=t,o=Ot(r,d,h),e=t}else if(t!=null&&t>e){let d=r.shape.map(h=>h);d[r.shape.length-1]=t-e,o=ie([r,ke(d)],r.shape.length-1),e=t}else o=r;let s=vt(o),i=R(Sn(o,s),[n,e]),a=Au(i),u=Math.floor(e/2)+1,l=bl(a),c=Iu(a),p=hr(l,[u,e-u],l.shape.length-1),m=hr(c,[u,e-u],c.shape.length-1),f=o.shape.slice();return f[o.shape.length-1]=u,R(Sn(p[0],m[0]),f)}var Du=k({rfft_:D5});function $5(r,t){let e=C(r,\"a\",\"squaredDifference\"),n=C(t,\"b\",\"squaredDifference\");[e,n]=Xt(e,n),Mt(e.shape,n.shape);let o={a:e,b:n},s={};return T.runKernel(ti,o,s)}var wm=k({squaredDifference_:$5});function R5(r,t){let e=C(r,\"x\",\"squeeze\",\"string_or_numeric\");return R(e,h0(e.shape,t).newShape)}var Wn=k({squeeze_:R5});function F5(r,t=0){let e=fl(r,\"tensors\",\"stack\",\"string_or_numeric\");_(e.length>=1,()=>\"Pass at least one tensor to tf.stack\"),e.length>0&&_(t<=e[0].rank,()=>\"Axis must be <= rank of the tensor\");let n=e,o={axis:t};return T.runKernel(Vi,n,o)}var Fe=k({stack_:F5});function O5(r,t=0){let n={x:C(r,\"x\",\"step\")},o={alpha:t};return T.runKernel(xo,n,o)}var So=k({step_:O5});function M5(r,t,e,n,o=0,s=0,i=0,a=0,u=0){let c={x:C(r,\"x\",\"stridedSlice\",\"string_or_numeric\")},p={begin:t,end:e,strides:n,beginMask:o,endMask:s,ellipsisMask:i,newAxisMask:a,shrinkAxisMask:u};return T.runKernel(ll,c,p)}var ay=k({stridedSlice_:M5});function P5(r){let e={x:C(r,\"x\",\"tan\",\"float32\")};return T.runKernel(ri,e)}var ly=k({tan_:P5});function Oe(r,t){ro(r);let e=Wr(r,t);if(e.length!==1)throw new Error(\"tensor1d() requires values to be a flat/TypedArray\");return ln(r,null,e,t)}function pi(r,t,e){if(ro(r),t!=null&&t.length!==2)throw new Error(\"tensor2d() requires shape to have two numbers\");let n=Wr(r,e);if(n.length!==2&&n.length!==1)throw new Error(\"tensor2d() requires values to be number[][] or flat/TypedArray\");if(n.length===1&&t==null)throw new Error(\"tensor2d() requires shape to be provided when `values` are a flat/TypedArray\");return ln(r,t,n,e)}function uy(r,t,e){if(ro(r),t!=null&&t.length!==3)throw new Error(\"tensor3d() requires shape to have three numbers\");let n=Wr(r,e);if(n.length!==3&&n.length!==1)throw new Error(\"tensor3d() requires values to be number[][][] or flat/TypedArray\");if(n.length===1&&t==null)throw new Error(\"tensor3d() requires shape to be provided when `values` are a flat array\");return ln(r,t,n,e)}function AA(r,t,e){if(ro(r),t!=null&&t.length!==4)throw new Error(\"tensor4d() requires shape to have four numbers\");let n=Wr(r,e);if(n.length!==4&&n.length!==1)throw new Error(\"tensor4d() requires values to be number[][][][] or flat/TypedArray\");if(n.length===1&&t==null)throw new Error(\"tensor4d() requires shape to be provided when `values` are a flat array\");return ln(r,t,n,e)}function DA(r,t,e){if(ro(r),t!=null&&t.length!==5)throw new Error(\"tensor5d() requires shape to have five numbers\");let n=Wr(r,e);if(n.length!==5&&n.length!==1)throw new Error(\"tensor5d() requires values to be number[][][][][] or flat/TypedArray\");if(n.length===1&&t==null)throw new Error(\"tensor5d() requires shape to be provided when `values` are a flat array\");return ln(r,t,n,e)}function $A(r,t,e){if(ro(r),t!=null&&t.length!==6)throw new Error(\"tensor6d() requires shape to have six numbers\");let n=Wr(r,e);if(n.length!==6&&n.length!==1)throw new Error(\"tensor6d() requires values to be number[][][][][][] or flat/TypedArray\");if(n.length===1&&t==null)throw new Error(\"tensor6d() requires shape to be provided when `values` are a flat array\");return t=t||n,ln(r,t,n,e)}var $u={};Kt($u,{calculateShapes:()=>RA,validateInput:()=>Im,validateUpdateShape:()=>fN});function fN(r,t,e){let n=t.rank>1?t.shape[t.rank-1]:1,o=t.rank>1?t.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${e.shape}, indices.shape: ${t.shape}, shape: ${r}, sliceDim: ${n}, and batchDim: ${o}.`;if(e.rank1?t.shape[n-1]:1,s=e.length,i=1;for(let p=o;p= 0 but got ${t}`);if(t>o)throw new Error(`'k' passed to topk() must be <= the last dimension (${o}) but got ${t}`);let s={x:n},i={k:t,sorted:e},[a,u]=T.runKernel(ul,s,i);return{values:a,indices:u}}var cy=k({topk_:z5});function B5(r,t=0,e=1,n,o){if(Le(r),n!=null&&n===\"bool\")throw new Error(\"Unsupported data type $ { dtype }\");let s=new gc(t,e,n,!0,o),i=wt(r,n);for(let a=0;a0,()=>\"The input tensor must be at least 1D\");let n={x:e},o={axis:t},[s,i]=T.runKernel(cu,n,o);return{values:s,indices:i}}var py=k({unique_:V5});function G5(r,t,e){let n=C(r,\"x\",\"unsortedSegmentSum\"),o=C(t,\"segmentIds\",\"unsortedSegmentSum\",\"int32\");_(_a(e),()=>\"numSegments must be of dtype int\");let s={x:n,segmentIds:o},i={numSegments:e};return T.runKernel(pu,s,i)}var vm=k({unsortedSegmentSum_:G5});function W5(r,t=0){let e=C(r,\"x\",\"unstack\",\"string_or_numeric\");_(t>=-e.shape.length&&t`Axis = ${t} is not in [-${e.shape.length}, ${e.shape.length})`);let n={value:e},o={axis:t};return T.runKernel(Ki,n,o)}var gr=k({unstack_:W5});function OA(r,t){return dh(r,t,\"right\")}function my(r,t=!0,e,n){return T.makeVariable(r,t,e,n)}function fy(r,t){let e=[];for(let s=0;s0,()=>\"mask cannot be scalar\"),$e(a.slice(s,s+i),o.shape,\"mask's shape must match the first K dimensions of tensor's shape,\");let u=1;for(let h=s;ha).reverse()),_(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(i=>{_(i>=0&&i`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let o={x:n},s={perm:t};return n.dtype===\"complex64\"?B(()=>{let i=bl(n),a=Iu(n);return i=T.runKernel(so,{x:i},s),a=T.runKernel(so,{x:a},s),e&&(a=Ut(a)),Sn(i,a)}):T.runKernel(so,o,s)}var Vt=k({transpose_:K5});function j5(r,t,e,n,o=!0){let s=C(r,\"v\",\"movingAverage\"),i=C(t,\"x\",\"movingAverage\"),a=C(e,\"decay\",\"movingAverage\");M0(s,i),_(sn(s.shape,i.shape),()=>\"Shape mismatch in v and x\");let u=pt(1),l=at(u,a),c=$(at(i,s),l);if(o){_(n!=null,()=>\"When using zeroDebias: true, step is required.\");let p=C(n,\"step\",\"movingAverage\");c=ut(c,at(u,qr(a,p)))}return K(s,c)}var X5=k({movingAverage_:j5});function Y5(r,t,e){Le(e);let n=C(r,\"indices\",\"scatterND\",\"int32\"),o=C(t,\"updates\",\"scatterND\");Im(o,n,e);let s={indices:n,updates:o},i={shape:e};return T.runKernel(nl,s,i)}var Z5=k({scatterND_:Y5});function MA(r,t,e,n){if(r.dtype!==\"int32\")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${r.dtype}.`);if(r.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${r.shape}.`);let o=r.rank>0?r.shape[0]:1,s=r.rank>1?r.shape[1]:1;if(e.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${e.length}, should be: ${s}.`);let i=t.size;if(!(t.rank===0||t.rank===1&&i===o))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${o}]`);if(t.dtype!==n.dtype)throw new Error(\"sparseValues.dtype must match defaultValues.dtype\")}function Q5(r,t,e,n=0){Le(e);let o=C(r,\"sparseIndices\",\"sparseToDense\",\"int32\"),s=C(t,\"sparseValues\",\"sparseToDense\",\"string_or_numeric\"),i=C(n,\"defaultValue\",\"sparseToDense\",s.dtype);MA(o,s,e,i);let a={sparseIndices:o,sparseValues:s,defaultValue:i},u={outputShape:e};return T.runKernel(al,a,u)}var t8=k({sparseToDense_:Q5});function e8(r,t){let e=C(t,\"indices\",\"gatherND\",\"int32\"),o={params:C(r,\"x\",\"gatherND\",\"string_or_numeric\"),indices:e};return T.runKernel(Va,o)}var r8=k({gatherND_:e8});function PA(r,t){if(t==null)return r.shape.slice();if(sn(r.shape,t))return t;if(r.shape.length===t.length){let e=[];for(let n=0;n`x has to be a floating point tensor since it's going to be scaled, but got a ${o.dtype} tensor instead.`),_(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return r instanceof Lt?o.clone():o;let s=PA(o,e),i=1-t,a=ut(la(K(Gn(s,0,1,\"float32\",n),i)),i);return $(o,a)}var dN=k({dropout_:n8});function hN(r){return Math.floor(Math.pow(2,Math.ceil(Math.log(r)/Math.log(2))))}function xh(r,t,e){let n=1-r%2,o=new Float32Array(r);for(let s=0;s1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${n.rank}`),_(n.rank-1===o.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${n.rank} and targets rank ${o.rank}`),$e(n.shape.slice(0,n.shape.length-1),o.shape,\"predictions's shape should be align with the targets' shape, except the last dimension.\");let s=n.shape[n.shape.length-1];_(e>0&&e<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${e}`);let i=await n.data(),a=await o.data(),[u,l]=[i.length/s,s],c=g0(\"bool\",u);for(let p=0;pg.value-h.value),c[p]=0;for(let h=0;hLA,depthwiseConv2d:()=>zA,matMul:()=>BA});function i8(r,t,e,n,o,s=\"NHWC\",i){let a=r;r.rank===3&&(a=R(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let u=t;u.rank===3&&(u=R(t,[1,t.shape[0],t.shape[1],t.shape[2]])),_(a.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${a.shape}.`),_(u.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${u.shape}.`),_(e.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${e}.`);let l=s===\"NHWC\"?a.shape[3]:a.shape[1],c=s===\"NHWC\"?u.shape[3]:u.shape[1];_(l===e[2],()=>`Error in conv2dDerFilter: depth of input ${l}) must match input depth in filter (${e[2]}.`),_(c===e[3],()=>`Error in conv2dDerFilter: depth of dy (${c}) must match output depth for filter (${e[3]}).`),Se(\"conv2dDerFilter\",o,i);let p={x:a,dy:u},m={strides:n,pad:o,dataFormat:s,dimRoundingMode:i,filterShape:e};return T.runKernel(Dp,p,m)}var Sm=k({conv2DBackpropFilter_:i8});function bc(r,t,e){if(e==null||e===\"linear\")return r;if(e===\"relu\")return $(r,So(t));throw new Error(`Cannot compute gradient for fused activation ${e}.`)}function wc(r,t){let e=t,n=we(r.shape,t.shape);return n.length>0&&(e=mt(e,n)),R(e,r.shape)}function Ic(r,t,e,n){if(t===\"linear\")return r;if(t===\"relu\")return Or(r);if(t===\"elu\")return aa(r);if(t===\"relu6\")return cm(r);if(t===\"prelu\")return _u(r,e);if(t===\"leakyrelu\")return Cu(r,n);if(t===\"sigmoid\")return en(r);throw new Error(`Unknown fused activation ${t}.`)}var Cc=(r,t)=>!(r>0)||t===\"linear\";function a8({x:r,filter:t,strides:e,pad:n,dataFormat:o=\"NHWC\",dilations:s=[1,1],dimRoundingMode:i,bias:a,activation:u=\"linear\",preluActivationWeights:l,leakyreluAlpha:c}){if(u=u||\"linear\",Cc(T.state.gradientDepth,u)===!1){_(o===\"NHWC\",()=>`Error in fused conv2d: got dataFormat of ${o} but only NHWC is currently supported for the case of gradient depth is 0 and the activation is not linear.`);let E=Nn(r,t,e,n,o,s,i);return a!=null&&(E=K(E,a)),Ic(E,u,l,c)}let p=C(r,\"x\",\"conv2d\",\"float32\"),m=C(t,\"filter\",\"conv2d\",\"float32\"),f=p,d=!1;p.rank===3&&(d=!0,f=R(p,[1,p.shape[0],p.shape[1],p.shape[2]])),_(f.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${f.rank}.`),_(m.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${m.rank}.`),Se(\"fused conv2d\",n,i);let h=o===\"NHWC\"?f.shape[3]:f.shape[1];_(m.shape[2]===h,()=>`Error in conv2d: depth of input (${h}) must match input depth for filter ${m.shape[2]}.`),_(Dr(e,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${e} and dilations '${s}'`);let g=pc(f.shape,m.shape,e,s,n,i),x;a!=null&&(x=C(a,\"bias\",\"fused conv2d\"),[x]=Xt(x,p),o===\"NHWC\"?Mt(g.outShape,x.shape):(_(x.shape.length<=1,()=>`Error in fused conv2d: only supports scalar or 1-D Tensor bias for NCHW format but got the bias of rank-${x.shape.length}.`),_(x.shape.length===0||x.shape[0]===g.outChannels||x.shape[0]===1,()=>`Error in fused conv2d: bias shape (${x.shape}) is not compatible with the number of output channels (${g.outChannels})`)));let b;if(l!=null){let E=l.shape;if(_(E.length<=1||E.length===3,()=>`Error in fused conv2d: only supports scalar, 1-D Tensor or 3-D Tensor PReLU activation weights but got a tensor of rank-${E.length}.`),E.length===1)_(E[0]===1||E[0]===g.outChannels,()=>`Error in fused conv2d: PReLU activation weights (${E}) is not compatible with the number of output channels (${g.outChannels}).`);else if(E.length===3)try{Mt(E,g.outShape)}catch(A){let D=`Error in fused conv2d: PReLU activation weights (${E}) is not compatible with the output shape of the conv2d (${g.outShape}).`;throw Error(D)}b=C(l,\"prelu weights\",\"fused conv2d\")}let w=(E,A)=>{_(o===\"NHWC\",()=>`Error in gradient of fused conv2D: got dataFormat of ${o} but only NHWC is currently supported.`);let[D,F,M,V]=A,G=bc(E,M,u);_(io(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let W=nm(F.shape,G,D,e,n),q=Sm(F,G,D.shape,e,n),H=[W,q];if(V!=null){let j=wc(V,G);H.push(j)}return H},I={x:f,filter:m,bias:x,preluActivationWeights:b},N={strides:e,pad:n,dataFormat:o,dilations:s,dimRoundingMode:i,activation:u,leakyreluAlpha:c};return a==null?pn((A,D,F)=>{let M=T.runKernel(Yi,I,N);return F([D,A,M]),d&&(M=R(M,[M.shape[1],M.shape[2],M.shape[3]])),{value:M,gradFunc:w}})(f,m):pn((A,D,F,M)=>{let V=T.runKernel(Yi,I,N);return M([D,A,V,F]),d&&(V=R(V,[V.shape[1],V.shape[2],V.shape[3]])),{value:V,gradFunc:w}})(f,m,x)}var LA=k({fusedConv2d_:a8});function l8(r,t,e,n,o,s=[1,1],i){let a=r;r.rank===3&&(a=R(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let u=t;u.rank===3&&(u=R(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let l={x:a,dy:u},c={strides:n,pad:o,dimRoundingMode:i,dilations:s,filterShape:e};return T.runKernel($p,l,c)}var hy=k({depthwiseConv2dNativeBackpropFilter_:l8});function u8(r,t,e,n,o,s=[1,1],i){let a=t,u=!1;t.rank===3&&(u=!0,a=R(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let l={dy:a,filter:e},c={strides:n,pad:o,dimRoundingMode:i,dilations:s,inputShape:r},p=T.runKernel(Rp,l,c);return u?R(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var gy=k({depthwiseConv2dNativeBackpropInput_:u8});function c8({x:r,filter:t,strides:e,pad:n,dataFormat:o=\"NHWC\",dilations:s=[1,1],dimRoundingMode:i,bias:a,activation:u=\"linear\",preluActivationWeights:l,leakyreluAlpha:c}){if(Cc(T.state.gradientDepth,u)===!1){let N=ia(r,t,e,n,o,s,i);return a!=null&&(N=K(N,a)),Ic(N,u,l,c)}let p=C(r,\"x\",\"depthwiseConv2d\",\"float32\"),m=C(t,\"filter\",\"depthwiseConv2d\",\"float32\"),f=p,d=!1;p.rank===3&&(d=!0,f=R(p,[1,p.shape[0],p.shape[1],p.shape[2]])),_(f.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${f.rank}.`),_(m.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${m.rank}.`),_(f.shape[3]===m.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${f.shape[3]}) must match the inChannels dimension in filter ${m.shape[2]}.`),s==null&&(s=[1,1]),_(Dr(e,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${e} and dilations '${s}'`),Se(\"fused depthwiseConv2d\",n,i);let h=pc(f.shape,m.shape,e,s,n,i,!0),g;a!=null&&(g=C(a,\"bias\",\"fused conv2d\"),[g]=Xt(g,p),Mt(h.outShape,g.shape));let x;l!=null&&(x=C(l,\"prelu weights\",\"fused depthwiseConv2d\"));let b=(N,E)=>{_(io(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[A,D,F,M]=E,V=bc(N,F,u),G=gy(D.shape,V,A,e,n,s,i),W=hy(D,V,A.shape,e,n,s,i);if(M!=null){let q=wc(g,V);return[G,W,q]}return[G,W]},w={x:f,filter:m,bias:g,preluActivationWeights:x},I={strides:e,pad:n,dataFormat:o,dilations:s,dimRoundingMode:i,activation:u,leakyreluAlpha:c};return a==null?pn((E,A,D)=>{let F=T.runKernel(Zi,w,I);return D([A,E,F]),d&&(F=R(F,[F.shape[1],F.shape[2],F.shape[3]])),{value:F,gradFunc:b}})(f,m):pn((E,A,D,F)=>{let M=T.runKernel(Zi,w,I);return F([A,E,M,D]),d&&(M=R(M,[M.shape[1],M.shape[2],M.shape[3]])),{value:M,gradFunc:b}})(f,m,g)}var zA=k({fusedDepthwiseConv2d_:c8});function p8({a:r,b:t,transposeA:e=!1,transposeB:n=!1,bias:o,activation:s=\"linear\",preluActivationWeights:i,leakyreluAlpha:a=.2}){if(Cc(T.state.gradientDepth,s)===!1){let V=Bt(r,t,e,n);return o!=null&&(V=K(V,o)),Ic(V,s,i,a)}let u=C(r,\"a\",\"fused matMul\"),l=C(t,\"b\",\"fused matMul\");[u,l]=Xt(u,l);let c=e?u.shape[u.rank-2]:u.shape[u.rank-1],p=n?l.shape[l.rank-1]:l.shape[l.rank-2],m=e?u.shape[u.rank-1]:u.shape[u.rank-2],f=n?l.shape[l.rank-2]:l.shape[l.rank-1],d=u.shape.slice(0,-2),h=l.shape.slice(0,-2),g=jt(d),x=jt(h);_(c===p,()=>`Error in fused matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${u.shape} and ${l.shape} and transposeA=${e} and transposeB=${n} must match.`);let w=Mt(u.shape.slice(0,-2),l.shape.slice(0,-2)).concat([m,f]),I=e?R(u,[g,c,m]):R(u,[g,m,c]),N=n?R(l,[x,f,p]):R(l,[x,p,f]),E;o!=null&&(E=C(o,\"bias\",\"fused matMul\"),[E]=Xt(E,u),Mt(w,E.shape));let A;i!=null&&(A=C(i,\"prelu weights\",\"fused matMul\"));let D=(V,G)=>{let[W,q,H,j]=G,Y=bc(R(V,H.shape),H,s),Z,et;if(!e&&!n?(Z=Bt(Y,q,!1,!0),et=Bt(W,Y,!0,!1)):!e&&n?(Z=Bt(Y,q,!1,!1),et=Bt(Y,W,!0,!1)):e&&!n?(Z=Bt(q,Y,!1,!0),et=Bt(W,Y,!1,!1)):(Z=Bt(q,Y,!0,!0),et=Bt(Y,W,!0,!0)),o!=null){let nt=wc(j,Y);return[Z,et,nt]}else return[Z,et]},F={a:I,b:N,bias:E,preluActivationWeights:A},M={transposeA:e,transposeB:n,activation:s,leakyreluAlpha:a};return o==null?pn((G,W,q)=>{let H=T.runKernel(Xi,F,M);return q([G,W,H]),{value:R(H,w),gradFunc:D}})(I,N):pn((G,W,q,H)=>{let j=T.runKernel(Xi,F,M);return H([G,W,j,q]),{value:R(j,w),gradFunc:D}})(I,N,E)}var BA=k({fusedMatMul_:p8});function m8(r){return xh(r,.54,.46)}var VA=k({hammingWindow_:m8});function f8(r){return xh(r,.5,.5)}var xy=k({hannWindow_:f8});function d8(r,t,e,n=!1,o=0){let s=0,i=[];for(;s+t<=r.size;)i.push(Ot(r,s,t)),s+=e;if(n)for(;s`Error in cropAndResize: image must be rank 4,but got rank ${i.rank}.`),_(a.rank===2&&a.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${l},4] but had shape ${a.shape}.`),_(u.rank===1&&u.shape[0]===l,()=>`Error in cropAndResize: boxInd must be have size [${l}] but had shape ${a.shape}.`),_(n.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${n.length}.`),_(n[0]>=1&&n[1]>=1,()=>`cropSize must be atleast [1,1], but was ${n}`),_(o===\"bilinear\"||o===\"nearest\",()=>`method must be bilinear or nearest, but was ${o}`);let c={image:i,boxes:a,boxInd:u},p={method:o,extrapolationValue:s,cropSize:n};return T.runKernel(Ma,c,p)}var WA=k({cropAndResize_:g8});function x8(r){let t=C(r,\"image\",\"flipLeftRight\",\"float32\");_(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let e={image:t};return T.runKernel(Ba,e,{})}var UA=k({flipLeftRight_:x8});function y8(r){let t=C(r,\"image\",\"grayscaleToRGB\"),e=t.rank-1,n=t.shape[e];_(t.rank>=2,()=>`Error in grayscaleToRGB: images must be at least rank 2, but got rank ${t.rank}.`),_(n===1,()=>`Error in grayscaleToRGB: last dimension of a grayscale image should be size 1, but got size ${n}.`);let o=new Array(t.rank);return o.fill(1,0,e),o[e]=3,Rr(t,o)}var HA=k({grayscaleToRGB_:y8});function b8(r){let t=C(r,\"image\",\"RGBToGrayscale\"),e=t.rank-1,n=t.shape[e];_(t.rank>=2,()=>`Error in RGBToGrayscale: images must be at least rank 2, but got rank ${t.rank}.`),_(n===3,()=>`Error in RGBToGrayscale: last dimension of an RGB image should be size 3, but got size ${n}.`);let o=t.dtype,s=J(t,\"float32\"),i=Oe([.2989,.587,.114]),a;switch(t.rank){case 2:a=wu(\"ij,j->i\",s,i);break;case 3:a=wu(\"ijk,k->ij\",s,i);break;case 4:a=wu(\"ijkl,l->ijk\",s,i);break;case 5:a=wu(\"ijklm,m->ijkl\",s,i);break;case 6:a=wu(\"ijklmn,n->ijklm\",s,i);break;default:throw new Error(\"Not a valid tensor rank.\")}return a=je(a,-1),J(a,o)}var qA=k({rgbToGrayscale_:b8});function w8(r,t,e=0,n=.5){let o=C(r,\"image\",\"rotateWithOffset\",\"float32\");_(o.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${o.rank}.`);let s={image:o},i={radians:t,fillValue:e,center:n};return T.runKernel(pl,s,i)}var KA=k({rotateWithOffset_:w8});function No(r,t,e,n,o,s){n==null&&(n=.5),o==null&&(o=Number.NEGATIVE_INFINITY),s==null&&(s=0);let i=r.shape[0];return e=Math.min(e,i),_(0<=n&&n<=1,()=>`iouThreshold must be in [0, 1], but was '${n}'`),_(r.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${r.rank}'`),_(r.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${r.shape[1]}`),_(t.rank===1,()=>\"scores must be a 1D tensor\"),_(t.shape[0]===i,()=>`scores has incompatible shape with boxes. Expected ${i}, but was ${t.shape[0]}`),_(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:e,iouThreshold:n,scoreThreshold:o,softNmsSigma:s}}function I8(r,t,e,n=.5,o=Number.NEGATIVE_INFINITY){let s=C(r,\"boxes\",\"nonMaxSuppression\",\"float32\"),i=C(t,\"scores\",\"nonMaxSuppression\",\"float32\"),a=No(s,i,e,n,o);e=a.maxOutputSize,n=a.iouThreshold,o=a.scoreThreshold;let u={maxOutputSize:e,iouThreshold:n,scoreThreshold:o};return T.runKernel(Ja,{boxes:s,scores:i},u)}var jA=k({nonMaxSuppression_:I8});function XA(r,t,e){let n=C8(r,t,e),o=n<0?-(n+1):n;r.splice(o,0,t)}function C8(r,t,e){return S8(r,t,e||v8)}function v8(r,t){return r>t?1:r>>1);let a=e(t,r[s]);a>0?n=s+1:(o=s,i=!a)}return i?n:-n-1}function by(r,t,e,n,o){return gN(r,t,e,n,o,0)}function wy(r,t,e,n,o,s){return gN(r,t,e,n,o,0,!1,s,!0)}function Iy(r,t,e,n,o,s){return gN(r,t,e,n,o,s,!0)}function gN(r,t,e,n,o,s,i=!1,a=!1,u=!1){let l=[];for(let g=0;go&&l.push({score:t[g],boxIndex:g,suppressBeginIndex:0});l.sort(YA);let c=s>0?-.5/s:0,p=[],m=[];for(;p.length0;){let g=l.pop(),{score:x,boxIndex:b,suppressBeginIndex:w}=g;if(x=w;--N){let E=N8(r,b,p[N]);if(E>=n){I=!0;break}if(g.score=g.score*k8(n,c,E),g.score<=o)break}g.suppressBeginIndex=p.length,I||(g.score===x?(p.push(b),m.push(g.score)):g.score>o&&XA(l,g,YA))}let f=p.length,d=e-f;a&&d>0&&(p.push(...new Array(d).fill(0)),m.push(...new Array(d).fill(0)));let h={selectedIndices:p};return i&&(h.selectedScores=m),u&&(h.validOutputs=f),h}function N8(r,t,e){let n=r.subarray(t*4,t*4+4),o=r.subarray(e*4,e*4+4),s=Math.min(n[0],n[2]),i=Math.min(n[1],n[3]),a=Math.max(n[0],n[2]),u=Math.max(n[1],n[3]),l=Math.min(o[0],o[2]),c=Math.min(o[1],o[3]),p=Math.max(o[0],o[2]),m=Math.max(o[1],o[3]),f=(a-s)*(u-i),d=(p-l)*(m-c);if(f<=0||d<=0)return 0;let h=Math.max(s,l),g=Math.max(i,c),x=Math.min(a,p),b=Math.min(u,m),w=Math.max(x-h,0)*Math.max(b-g,0);return w/(f+d-w)}function k8(r,t,e){let n=Math.exp(t*e*e);return e<=r?n:0}function YA(r,t){return r.score-t.score||r.score===t.score&&t.boxIndex-r.boxIndex}async function T8(r,t,e,n=.5,o=Number.NEGATIVE_INFINITY){let s=C(r,\"boxes\",\"nonMaxSuppressionAsync\"),i=C(t,\"scores\",\"nonMaxSuppressionAsync\"),a=No(s,i,e,n,o);e=a.maxOutputSize,n=a.iouThreshold,o=a.scoreThreshold;let u=await Promise.all([s.data(),i.data()]),l=u[0],c=u[1],{selectedIndices:p}=by(l,c,e,n,o);return s!==r&&s.dispose(),i!==t&&i.dispose(),Oe(p,\"int32\")}var ZA=T8;function _8(r,t,e,n=.5,o=Number.NEGATIVE_INFINITY,s=0){let i=C(r,\"boxes\",\"nonMaxSuppression\"),a=C(t,\"scores\",\"nonMaxSuppression\"),u=No(i,a,e,n,o,s);e=u.maxOutputSize,n=u.iouThreshold,o=u.scoreThreshold,s=u.softNmsSigma;let l={boxes:i,scores:a},c={maxOutputSize:e,iouThreshold:n,scoreThreshold:o,softNmsSigma:s},p=T.runKernel(tl,l,c);return{selectedIndices:p[0],selectedScores:p[1]}}var JA=k({nonMaxSuppressionWithScore_:_8});async function E8(r,t,e,n=.5,o=Number.NEGATIVE_INFINITY,s=0){let i=C(r,\"boxes\",\"nonMaxSuppressionAsync\"),a=C(t,\"scores\",\"nonMaxSuppressionAsync\"),u=No(i,a,e,n,o,s);e=u.maxOutputSize,n=u.iouThreshold,o=u.scoreThreshold,s=u.softNmsSigma;let l=await Promise.all([i.data(),a.data()]),c=l[0],p=l[1],{selectedIndices:m,selectedScores:f}=Iy(c,p,e,n,o,s);return i!==r&&i.dispose(),a!==t&&a.dispose(),{selectedIndices:Oe(m,\"int32\"),selectedScores:Oe(f)}}var QA=E8;function A8(r,t,e,n=.5,o=Number.NEGATIVE_INFINITY,s=!1){let i=C(r,\"boxes\",\"nonMaxSuppression\"),a=C(t,\"scores\",\"nonMaxSuppression\"),u=No(i,a,e,n,o,null),l=u.maxOutputSize,c=u.iouThreshold,p=u.scoreThreshold,m={boxes:i,scores:a},f={maxOutputSize:l,iouThreshold:c,scoreThreshold:p,padToMaxOutputSize:s},d=T.runKernel(Qa,m,f);return{selectedIndices:d[0],validOutputs:d[1]}}var t2=k({nonMaxSuppressionPadded_:A8});async function D8(r,t,e,n=.5,o=Number.NEGATIVE_INFINITY,s=!1){let i=C(r,\"boxes\",\"nonMaxSuppressionAsync\"),a=C(t,\"scores\",\"nonMaxSuppressionAsync\"),u=No(i,a,e,n,o,null),l=u.maxOutputSize,c=u.iouThreshold,p=u.scoreThreshold,[m,f]=await Promise.all([i.data(),a.data()]),{selectedIndices:d,validOutputs:h}=wy(m,f,l,c,p,s);return i!==r&&i.dispose(),a!==t&&a.dispose(),{selectedIndices:Oe(d,\"int32\"),validOutputs:pt(h,\"int32\")}}var e2=D8;function $8(r,t,e=!1,n=!1){let o=C(r,\"images\",\"resizeBilinear\");_(o.rank===3||o.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${o.rank}.`),_(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),_(n===!1||e===!1,()=>\"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.\");let s=o,i=!1;o.rank===3&&(i=!0,s=R(o,[1,o.shape[0],o.shape[1],o.shape[2]]));let[]=t,a={images:s},u={alignCorners:e,halfPixelCenters:n,size:t},l=T.runKernel(Bs,a,u);return i?R(l,[l.shape[1],l.shape[2],l.shape[3]]):l}var Cy=k({resizeBilinear_:$8});function R8(r,t,e=!1,n=!1){let o=C(r,\"images\",\"resizeNearestNeighbor\");_(o.rank===3||o.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${o.rank}.`),_(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),_(o.dtype===\"float32\"||o.dtype===\"int32\",()=>\"`images` must have `int32` or `float32` as dtype\"),_(n===!1||e===!1,()=>\"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.\");let s=o,i=!1;o.rank===3&&(i=!0,s=R(o,[1,o.shape[0],o.shape[1],o.shape[2]]));let[]=t,a={images:s},u={alignCorners:e,halfPixelCenters:n,size:t},l=T.runKernel(zs,a,u);return i?R(l,[l.shape[1],l.shape[2],l.shape[3]]):l}var vy=k({resizeNearestNeighbor_:R8});function F8(r,t=\"binary\",e=!1,n=.5){let o=C(r,\"image\",\"threshold\"),s=.2989,i=.587,a=.114,u=o.shape[0]*o.shape[1],l=$(Oe([n]),255),c,p,m,f;if(_(o.rank===3,()=>`Error in threshold: image must be rank 3,but got rank ${o.rank}.`),_(o.shape[2]===3||o.shape[2]===1,()=>`Error in threshold: image color channel must be equal to 3 or 1but got ${o.shape[2]}.`),_(o.dtype===\"int32\"||o.dtype===\"float32\",()=>`Error in dtype: image dtype must be int32 or float32,but got dtype ${o.dtype}.`),_(t===\"otsu\"||t===\"binary\",()=>`Method must be binary or otsu, but was ${t}`),o.shape[2]===3){[c,p,m]=hr(o,[1,1,1],-1);let g=$(c,s),x=$(p,i),b=$(m,a);f=K(K(g,x),b)}else f=r;if(t===\"otsu\"){let g=Nx(J(pm(f),\"int32\"),ir([]),256);l=O8(g,u)}let d=e?Vn(f,l):Re(f,l);return J($(d,255),\"int32\")}function O8(r,t){let e=Oe([-1]),n=Oe([0]),o=Oe([0]),s,i,a,u,l,c;for(let p=0;p`Error in transform: image must be rank 4,but got rank ${i.rank}.`),_(a.rank===2&&(a.shape[0]===i.shape[0]||a.shape[0]===1)&&a.shape[1]===8,()=>\"Error in transform: Input transform should be batch x 8 or 1 x 8\"),_(s==null||s.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${s}.`);let u={image:i,transforms:a},l={interpolation:e,fillMode:n,fillValue:o,outputShape:s};return T.runKernel(cl,u,l)}var n2=k({transform_:M8});function P8(r,t,e){let n=C(r,\"a\",\"bandPart\");_(n.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${n.rank}.`);let o=n.shape,[s,i]=n.shape.slice(-2),a,u;typeof t==\"number\"?(_(t%1===0,()=>`bandPart(): numLower must be an integer, got ${t}.`),_(t<=s,()=>`bandPart(): numLower (${t}) must not be greater than the number of rows (${s}).`),a=C(t<0?s:t,\"numLower\",\"bandPart\")):(_(t.dtype===\"int32\",()=>\"bandPart(): numLower's dtype must be an int32.\"),a=Ie(yl(t,0),s,lo(t,s))),typeof e==\"number\"?(_(e%1===0,()=>`bandPart(): numUpper must be an integer, got ${e}.`),_(e<=i,()=>`bandPart(): numUpper (${e}) must not be greater than the number of columns (${i}).`),u=C(e<0?i:e,\"numUpper\",\"bandPart\")):(_(e.dtype===\"int32\",()=>\"bandPart(): numUpper's dtype must be an int32.\"),u=Ie(yl(e,0),i,lo(e,i)));let l=R(pa(0,s,1,\"int32\"),[-1,1]),c=pa(0,i,1,\"int32\"),p=at(l,c),m=Fr(Vn(p,a),cn(p,Ut(u))),f=ke([s,i],n.dtype);return R(Fe(gr(R(n,[-1,s,i])).map(d=>Ie(m,d,f))),o)}var o2=k({bandPart_:P8});function L8(r){let t;if(Array.isArray(r)){t=!1,_(r!=null&&r.length>0,()=>\"Gram-Schmidt process: input must not be null, undefined, or empty\");let o=r[0].shape[0];for(let s=1;s`Gram-Schmidt: Non-unique lengths found in the input vectors: (${r[s].shape[0]} vs. ${o})`)}else t=!0,r=hr(r,r.shape[0],0).map(o=>Wn(o,[0]));_(r.length<=r[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${r.length}) exceeds number of dimensions (${r[0].shape[0]}).`);let e=[],n=r;for(let o=0;o{let s=n[o];if(o>0)for(let i=0;i=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${r.rank}`),r.rank===2)return i2(r,t);{let e=r.shape.slice(0,r.shape.length-2).reduce((u,l)=>u*l),n=gr(R(r,[e,r.shape[r.shape.length-2],r.shape[r.shape.length-1]]),0),o=[],s=[];n.forEach(u=>{let[l,c]=i2(u,t);o.push(l),s.push(c)});let i=R(Fe(o,0),r.shape),a=R(Fe(s,0),r.shape);return[i,a]}}function i2(r,t=!1){return T.tidy(()=>{_(r.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${r.shape.length}D Tensor.`);let e=r.shape[0],n=r.shape[1],o=fc(e),s=un(r),i=pi([[1]],[1,1]),a=un(i),u=e>=n?n:e;for(let l=0;l{let f=Ot(s,[l,l],[e-l,1]),d=xl(f),h=Ot(s,[l,l],[1,1]),g=Ie(Re(h,0),pi([[-1]]),pi([[1]])),x=at(h,$(g,d)),b=ut(f,x);b.shape[0]===1?a=un(i):a=ie([i,Ot(b,[1,0],[b.shape[0]-1,b.shape[1]])],0);let w=Ut(ut(Bt(g,x),d)),I=Ot(s,[l,0],[e-l,n]),N=$(w,a),E=Vt(a);if(l===0)s=at(I,Bt(N,Bt(E,I)));else{let F=at(I,Bt(N,Bt(E,I)));s=ie([Ot(s,[0,0],[l,n]),F],0)}let A=Vt(N),D=Ot(o,[0,l],[e,o.shape[1]-l]);if(l===0)o=at(D,Bt(Bt(D,a),A));else{let F=at(D,Bt(Bt(D,a),A));o=ie([Ot(o,[0,0],[e,l]),F],1)}return[a,s,o]}),Tt([c,p,m])}return!t&&e>n&&(o=Ot(o,[0,0],[e,n]),s=Ot(s,[0,0],[n,n])),[o,s]})}var a2=k({qr_:z8});var Je;(function(r){r[r.NONE=0]=\"NONE\",r[r.MEAN=1]=\"MEAN\",r[r.SUM=2]=\"SUM\",r[r.SUM_BY_NONZERO_WEIGHTS=3]=\"SUM_BY_NONZERO_WEIGHTS\"})(Je||(Je={}));function B8(r,t,e=Je.SUM_BY_NONZERO_WEIGHTS){let n=C(r,\"losses\",\"computeWeightedLoss\"),o=null;t!=null&&(o=C(t,\"weights\",\"computeWeightedLoss\"));let s=o==null?n:$(n,o);if(e===Je.NONE)return s;if(e===Je.SUM)return mt(s);if(e===Je.MEAN){if(o==null)return Ne(s);{let i=n.size/o.size,a=ut(mt(s),mt(o));return i>1?ut(a,pt(i)):a}}if(e===Je.SUM_BY_NONZERO_WEIGHTS){if(o==null)return ut(mt(s),pt(n.size));{let i=$(o,ar(n.shape)),a=J(mt(ci(i,pt(0))),\"float32\");return ut(mt(s),a)}}throw Error(`Unknown reduction: ${e}`)}var Kr=k({computeWeightedLoss_:B8});function V8(r,t,e,n=Je.SUM_BY_NONZERO_WEIGHTS){let o=C(r,\"labels\",\"absoluteDifference\"),s=C(t,\"predictions\",\"absoluteDifference\"),i=null;e!=null&&(i=C(e,\"weights\",\"absoluteDifference\")),$e(o.shape,s.shape,\"Error in absoluteDifference: \");let a=_e(at(o,s));return Kr(a,i,n)}var l2=k({absoluteDifference_:V8});function G8(r,t,e,n,o=Je.SUM_BY_NONZERO_WEIGHTS){let s=C(r,\"labels\",\"cosineDistance\"),i=C(t,\"predictions\",\"cosineDistance\"),a=null;n!=null&&(a=C(n,\"weights\",\"cosineDistance\")),$e(s.shape,i.shape,\"Error in cosineDistance: \");let u=pt(1),l=at(u,mt($(s,i),e,!0));return Kr(l,a,o)}var u2=k({cosineDistance_:G8});function W8(r,t,e,n=Je.SUM_BY_NONZERO_WEIGHTS){let o=C(r,\"labels\",\"hingeLoss\"),s=C(t,\"predictions\",\"hingeLoss\"),i=null;e!=null&&(i=C(e,\"weights\",\"hingeLoss\")),$e(o.shape,s.shape,\"Error in hingeLoss: \");let a=pt(1);o=at($(pt(2),o),a);let u=Or(at(a,$(o,s)));return Kr(u,i,n)}var c2=k({hingeLoss_:W8});function U8(r,t,e,n=1,o=Je.SUM_BY_NONZERO_WEIGHTS){let s=C(r,\"labels\",\"huberLoss\"),i=C(t,\"predictions\",\"huberLoss\"),a=null;e!=null&&(a=C(e,\"weights\",\"huberLoss\")),$e(s.shape,i.shape,\"Error in huberLoss: \");let u=pt(n),l=_e(at(i,s)),c=lo(l,u),p=at(l,c),m=K($(pt(.5),Wt(c)),$(u,p));return Kr(m,a,o)}var p2=k({huberLoss_:U8});function H8(r,t,e,n=1e-7,o=Je.SUM_BY_NONZERO_WEIGHTS){let s=C(r,\"labels\",\"logLoss\"),i=C(t,\"predictions\",\"logLoss\"),a=null;e!=null&&(a=C(e,\"weights\",\"logLoss\")),$e(s.shape,i.shape,\"Error in logLoss: \");let u=pt(1),l=pt(n),c=Ut($(s,Nr(K(i,l)))),p=$(at(u,s),Nr(K(at(u,i),l))),m=at(c,p);return Kr(m,a,o)}var m2=k({logLoss_:H8});function q8(r,t,e,n=Je.SUM_BY_NONZERO_WEIGHTS){let o=C(r,\"labels\",\"meanSquaredError\"),s=C(t,\"predictions\",\"meanSquaredError\"),i=null;e!=null&&(i=C(e,\"weights\",\"meanSquaredError\")),$e(o.shape,s.shape,\"Error in meanSquaredError: \");let a=wm(o,s);return Kr(a,i,n)}var f2=k({meanSquaredError_:q8});function K8(r,t){let e=C(r,\"labels\",\"sigmoidCrossEntropyWithLogits\"),n=C(t,\"logits\",\"sigmoidCrossEntropyWithLogits\");$e(e.shape,n.shape,\"Error in sigmoidCrossEntropyWithLogits: \");let o=Or(n),s=$(n,e),i=vu(Ke(Ut(_e(n))));return K(at(o,s),i)}function j8(r,t,e,n=0,o=Je.SUM_BY_NONZERO_WEIGHTS){let s=C(r,\"multiClassLabels\",\"sigmoidCrossEntropy\"),i=C(t,\"logits\",\"sigmoidCrossEntropy\"),a=null;if(e!=null&&(a=C(e,\"weights\",\"sigmoidCrossEntropy\")),$e(s.shape,i.shape,\"Error in sigmoidCrossEntropy: \"),n>0){let l=pt(n),c=pt(1),p=pt(.5);s=K($(s,at(c,l)),$(p,l))}let u=K8(s,i);return Kr(u,a,o)}var d2=k({sigmoidCrossEntropy_:j8});function X8(r,t,e=-1){if(e===-1&&(e=t.rank-1),e!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${e}`);return pn((o,s,i)=>{let u=Su(s,[e],!0),l=at(J(s,\"float32\"),u);i([o,l]);let c=Ut($(l,o));return{value:mt(c,[e]),gradFunc:(f,d)=>{let[h,g]=d,x=vo(f.shape,[e]);return[$(R(f,x),at(J(h,\"float32\"),Ke(g))),$(R(f,x),at(Ke(g),J(h,\"float32\")))]}}})(r,t)}function Y8(r,t,e,n=0,o=Je.SUM_BY_NONZERO_WEIGHTS){let s=C(r,\"onehotLabels\",\"softmaxCrossEntropy\"),i=C(t,\"logits\",\"softmaxCrossEntropy\"),a=null;if(e!=null&&(a=C(e,\"weights\",\"softmaxCrossEntropy\")),$e(s.shape,i.shape,\"Error in softmaxCrossEntropy: \"),n>0){let l=pt(n),c=pt(1),p=pt(s.shape[1]);s=K($(s,at(c,l)),ut(l,p))}let u=X8(s,i);return Kr(u,a,o)}var h2=k({softmaxCrossEntropy_:Y8});function Z8(r,t,e,n){let o=C(r,\"indices\",\"sparseFillEmptyRows\",\"int32\"),s=C(t,\"values\",\"sparseFillEmptyRows\"),i=C(e,\"denseShape\",\"sparseFillEmptyRows\",\"int32\"),a=C(n,\"defaultValue\",\"sparseFillEmptyRows\",s.dtype);if(o.rank!==2)throw new Error(`Indices should be Tensor2D but received shape\n ${o.shape}`);if(s.rank!==1)throw new Error(`Values should be Tensor1D but received shape ${s.shape}`);if(i.rank!==1)throw new Error(`Dense shape should be Tensor1D but received shape ${i.shape}`);if(a.rank!==0)throw new Error(`Default value should be a scalar but received shape ${a.shape}`);let u={indices:o,values:s,denseShape:i,defaultValue:a},l=T.runKernel(nu,u);return{outputIndices:l[0],outputValues:l[1],emptyRowIndicator:l[2],reverseIndexMap:l[3]}}var g2=k({sparseFillEmptyRows_:Z8});function J8(r,t,e){let n=C(r,\"inputIndices\",\"sparseReshape\",\"int32\"),o=C(t,\"inputShape\",\"sparseReshape\",\"int32\"),s=C(e,\"newShape\",\"sparseReshape\",\"int32\");if(n.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape\n ${n.shape}`);if(o.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${o.shape}`);if(s.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${s.shape}`);let i={inputIndices:n,inputShape:o,newShape:s},a=T.runKernel(il,i);return{outputIndices:a[0],outputShape:a[1]}}var x2=k({sparseReshape_:J8});function Q8(r,t,e){let n=C(r,\"data\",\"sparseSegmentMean\"),o=C(t,\"indices\",\"sparseSegmentMean\",\"int32\"),s=C(e,\"segmentIds\",\"sparseSegmentMean\",\"int32\");if(n.rank<1)throw new Error(\"Data should be at least 1 dimensional but received scalar\");if(o.rank!==1)throw new Error(`Indices should be Tensor1D but received shape\n ${o.shape}`);if(s.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape\n ${s.shape}`);let i={data:n,indices:o,segmentIds:s};return T.runKernel(ou,i)}var y2=k({sparseSegmentMean_:Q8});function tY(r,t,e){let n=C(r,\"data\",\"sparseSegmentSum\"),o=C(t,\"indices\",\"sparseSegmentSum\",\"int32\"),s=C(e,\"segmentIds\",\"sparseSegmentSum\",\"int32\");if(n.rank<1)throw new Error(\"Data should be at least 1 dimensional but received scalar\");if(o.rank!==1)throw new Error(`Indices should be Tensor1D but received shape\n ${o.shape}`);if(s.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape\n ${s.shape}`);let i={data:n,indices:o,segmentIds:s};return T.runKernel(su,i)}var b2=k({sparseSegmentSum_:tY});function eY(r,t,e,n,o,s,i,a){let u=C(r,\"data\",\"stringNGrams\",\"string\");if(u.dtype!==\"string\")throw new Error(\"Data must be of datatype string\");if(u.shape.length!==1)throw new Error(`Data must be a vector, saw: ${u.shape}`);let l=C(t,\"dataSplits\",\"stringNGrams\");if(l.dtype!==\"int32\")throw new Error(\"Data splits must be of datatype int32\");let c={separator:e,nGramWidths:n,leftPad:o,rightPad:s,padWidth:i,preserveShortSequences:a},p={data:u,dataSplits:l},m=T.runKernel(au,p,c);return{nGrams:m[0],nGramsSplits:m[1]}}var w2=k({stringNGrams_:eY});function rY(r,t,e=!0){let n=C(r,\"input\",\"stringSplit\",\"string\"),o=C(t,\"delimiter\",\"stringSplit\",\"string\");if(n.rank!==1)throw new Error(`Input should be Tensor1D but received shape ${n.shape}`);if(o.rank!==0)throw new Error(`Delimiter should be a scalar but received shape ${o.shape}`);let s={skipEmpty:e},i={input:n,delimiter:o},a=T.runKernel(lu,i,s);return{indices:a[0],values:a[1],shape:a[2]}}var I2=k({stringSplit_:rY});function nY(r,t){let e=C(r,\"input\",\"stringToHashBucketFast\",\"string\"),n={numBuckets:t};if(t<=0)throw new Error(\"Number of buckets must be at least 1\");let o={input:e};return T.runKernel(uu,o,n)}var C2=k({stringToHashBucketFast_:nY});function oY(r,t,e,n=!0){let o=C(r,\"input\",\"staticRegexReplace\",\"string\"),s={pattern:t,rewrite:e,replaceGlobal:n};return T.runKernel(ec,{x:o},s)}var v2=k({staticRegexReplace_:oY});var sY={fft:Au,ifft:wl,rfft:Du,irfft:bm},iY={hammingWindow:VA,hannWindow:xy,frame:yy,stft:GA},fn={flipLeftRight:UA,grayscaleToRGB:HA,resizeNearestNeighbor:vy,resizeBilinear:Cy,rgbToGrayscale:qA,rotateWithOffset:KA,cropAndResize:WA,nonMaxSuppression:jA,nonMaxSuppressionAsync:ZA,nonMaxSuppressionWithScore:JA,nonMaxSuppressionWithScoreAsync:QA,nonMaxSuppressionPadded:t2,nonMaxSuppressionPaddedAsync:e2,threshold:r2,transform:n2},xN={bandPart:o2,gramSchmidt:s2,qr:a2},aY={absoluteDifference:l2,computeWeightedLoss:Kr,cosineDistance:u2,hingeLoss:c2,huberLoss:p2,logLoss:m2,meanSquaredError:f2,sigmoidCrossEntropy:d2,softmaxCrossEntropy:h2},lY={sparseFillEmptyRows:g2,sparseReshape:x2,sparseSegmentMean:y2,sparseSegmentSum:b2},uY={stringNGrams:w2,stringSplit:I2,stringToHashBucketFast:C2,staticRegexReplace:v2};var Q={};Kt(Q,{Serializable:()=>yh,SerializationMap:()=>Sy,getRegisteredName:()=>pY,registerClass:()=>bN});var cY=new Map,yN=new Map,yh=class{getClassName(){return this.constructor.className}static fromConfig(t,e){return new t(e)}},Sy=class r{constructor(){this.classNameMap={}}static getMap(){return r.instance==null&&(r.instance=new r),r.instance}static register(t){r.getMap().classNameMap[t.className]=[t,t.fromConfig]}};function bN(r,t,e){_(r.className!=null,()=>\"Class being registered does not have the static className property defined.\"),_(typeof r.className==\"string\",()=>\"className is required to be a string, but got type \"+typeof r.className),_(r.className.length>0,()=>\"Class being registered has an empty-string as its className, which is disallowed.\"),typeof t==\"undefined\"&&(t=\"Custom\"),typeof e==\"undefined\"&&(e=r.className);let n=e,o=t+\">\"+n;return Sy.register(r),cY.set(o,r),yN.set(r,o),r}function pY(r){return yN.has(r)?yN.get(r):r.className}var jr=class extends yh{minimize(t,e=!1,n){let{value:o,grads:s}=this.computeGradients(t,n);if(n!=null){let i=n.map(a=>({name:a.name,tensor:s[a.name]}));this.applyGradients(i)}else this.applyGradients(s);return Tt(s),e?o:(o.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(t,e){return Ux(t,e)}dispose(){this.iterations_!=null&&Tt(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:\"iter\",tensor:pt(this.iterations_,\"int32\")}}async getWeights(){throw new Error(\"getWeights() is not implemented for this optimizer yet.\")}async setWeights(t){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(t){return this.iterations_=(await t[0].tensor.data())[0],t.slice(1)}};Object.defineProperty(jr,Symbol.hasInstance,{value:r=>r.minimize!=null&&r.computeGradients!=null&&r.applyGradients!=null});var vc=class extends jr{static get className(){return\"Adadelta\"}constructor(t,e,n=null){super(),this.learningRate=t,this.rho=e,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=T.backend.epsilon())}applyGradients(t){(Array.isArray(t)?t.map(n=>n.name):Object.keys(t)).forEach((n,o)=>{let s=T.registeredVariables[n],i=!1;this.accumulatedGrads[o]==null&&(this.accumulatedGrads[o]={originalName:`${n}/accum_grad`,variable:B(()=>vt(s).variable(i))}),this.accumulatedUpdates[o]==null&&(this.accumulatedUpdates[o]={originalName:`${n}/accum_var`,variable:B(()=>vt(s).variable(i))});let a=Array.isArray(t)?t[o].tensor:t[n];if(a==null)return;let u=this.accumulatedGrads[o].variable,l=this.accumulatedUpdates[o].variable;B(()=>{let c=K($(u,this.rho),$(Wt(a),1-this.rho)),p=$(ut(ge(K(l,this.epsilon)),ge(K(u,this.epsilon))),a),m=K($(l,this.rho),$(Wt(p),1-this.rho));u.assign(c),l.assign(m);let f=K($(p,-this.learningRate),s);s.assign(f)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(Tt(this.accumulatedGrads.map(t=>t.variable)),Tt(this.accumulatedUpdates.map(t=>t.variable)))}async getWeights(){let t=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(t.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(t){t=await this.extractIterations(t);let e=t.length/2,n=!1;this.accumulatedGrads=t.slice(0,e).map(o=>({originalName:o.name,variable:o.tensor.variable(n)})),this.accumulatedUpdates=t.slice(e,e*2).map(o=>({originalName:o.name,variable:o.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(t,e){return new t(e.learningRate,e.rho,e.epsilon)}};var Sc=class extends jr{static get className(){return\"Adagrad\"}constructor(t,e=.1){super(),this.learningRate=t,this.initialAccumulatorValue=e,this.accumulatedGrads=[]}applyGradients(t){(Array.isArray(t)?t.map(n=>n.name):Object.keys(t)).forEach((n,o)=>{let s=T.registeredVariables[n];this.accumulatedGrads[o]==null&&(this.accumulatedGrads[o]={originalName:`${n}/accumulator`,variable:B(()=>Co(s.shape,this.initialAccumulatorValue).variable(!1))});let i=Array.isArray(t)?t[o].tensor:t[n];if(i==null)return;let a=this.accumulatedGrads[o].variable;B(()=>{let u=K(a,Wt(i));a.assign(u);let l=K($(ut(i,ge(K(u,T.backend.epsilon()))),-this.learningRate),s);s.assign(l)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&Tt(this.accumulatedGrads.map(t=>t.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(t){t=await this.extractIterations(t);let e=!1;this.accumulatedGrads=t.map(n=>({originalName:n.name,variable:n.tensor.variable(e)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(t,e){return new t(e.learningRate,e.initialAccumulatorValue)}};var Nc=class extends jr{static get className(){return\"Adam\"}constructor(t,e,n,o=null){super(),this.learningRate=t,this.beta1=e,this.beta2=n,this.epsilon=o,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],B(()=>{this.accBeta1=pt(e).variable(),this.accBeta2=pt(n).variable()}),o==null&&(this.epsilon=T.backend.epsilon())}applyGradients(t){let e=Array.isArray(t)?t.map(n=>n.name):Object.keys(t);B(()=>{let n=at(1,this.accBeta1),o=at(1,this.accBeta2);e.forEach((s,i)=>{let a=T.registeredVariables[s],u=!1;this.accumulatedFirstMoment[i]==null&&(this.accumulatedFirstMoment[i]={originalName:`${s}/m`,variable:B(()=>vt(a).variable(u))}),this.accumulatedSecondMoment[i]==null&&(this.accumulatedSecondMoment[i]={originalName:`${s}/v`,variable:B(()=>vt(a).variable(u))});let l=Array.isArray(t)?t[i].tensor:t[s];if(l==null)return;let c=this.accumulatedFirstMoment[i].variable,p=this.accumulatedSecondMoment[i].variable,m=K($(c,this.beta1),$(l,1-this.beta1)),f=K($(p,this.beta2),$(Wt(l),1-this.beta2)),d=ut(m,n),h=ut(f,o);c.assign(m),p.assign(f);let g=K($(ut(d,K(ge(h),this.epsilon)),-this.learningRate),a);a.assign(g)}),this.accBeta1.assign($(this.accBeta1,this.beta1)),this.accBeta2.assign($(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&Tt(this.accumulatedFirstMoment.map(t=>t.variable)),this.accumulatedSecondMoment!=null&&Tt(this.accumulatedSecondMoment.map(t=>t.variable))}async getWeights(){let t=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(t.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(t){t=await this.extractIterations(t),B(()=>{this.accBeta1.assign(qr(this.beta1,this.iterations_+1)),this.accBeta2.assign(qr(this.beta2,this.iterations_+1))});let e=t.length/2,n=!1;this.accumulatedFirstMoment=t.slice(0,e).map(o=>({originalName:o.name,variable:o.tensor.variable(n)})),this.accumulatedSecondMoment=t.slice(e,e*2).map(o=>({originalName:o.name,variable:o.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(t,e){return new t(e.learningRate,e.beta1,e.beta2,e.epsilon)}};var kc=class extends jr{static get className(){return\"Adamax\"}constructor(t,e,n,o=null,s=0){super(),this.learningRate=t,this.beta1=e,this.beta2=n,this.epsilon=o,this.decay=s,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],B(()=>{this.iteration=pt(0).variable(),this.accBeta1=pt(e).variable()}),o==null&&(this.epsilon=T.backend.epsilon())}applyGradients(t){let e=Array.isArray(t)?t.map(n=>n.name):Object.keys(t);B(()=>{let n=at(1,this.accBeta1),o=ut(-this.learningRate,K($(this.iteration,this.decay),1));e.forEach((s,i)=>{let a=T.registeredVariables[s],u=!1;this.accumulatedFirstMoment[i]==null&&(this.accumulatedFirstMoment[i]={originalName:`${s}/m`,variable:vt(a).variable(u)}),this.accumulatedWeightedInfNorm[i]==null&&(this.accumulatedWeightedInfNorm[i]={originalName:`${s}/v`,variable:vt(a).variable(u)});let l=Array.isArray(t)?t[i].tensor:t[s];if(l==null)return;let c=this.accumulatedFirstMoment[i].variable,p=this.accumulatedWeightedInfNorm[i].variable,m=K($(c,this.beta1),$(l,1-this.beta1)),f=$(p,this.beta2),d=_e(l),h=kn(f,d);c.assign(m),p.assign(h);let g=K($(ut(o,n),ut(m,K(h,this.epsilon))),a);a.assign(g)}),this.iteration.assign(K(this.iteration,1)),this.accBeta1.assign($(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&Tt(this.accumulatedFirstMoment.map(t=>t.variable)),this.accumulatedWeightedInfNorm!=null&&Tt(this.accumulatedWeightedInfNorm.map(t=>t.variable))}async getWeights(){throw new Error(\"getWeights() is not implemented for Adamax yet.\")}async setWeights(t){throw new Error(\"setWeights() is not implemented for Adamax yet.\")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(t,e){return new t(e.learningRate,e.beta1,e.beta2,e.epsilon,e.decay)}};var Il=class extends jr{static get className(){return\"SGD\"}constructor(t){super(),this.learningRate=t,this.setLearningRate(t)}applyGradients(t){(Array.isArray(t)?t.map(n=>n.name):Object.keys(t)).forEach((n,o)=>{let s=Array.isArray(t)?t[o].tensor:t[n];if(s==null)return;let i=T.registeredVariables[n];B(()=>{let a=K($(this.c,s),i);i.assign(a)})}),this.incrementIterations()}setLearningRate(t){this.learningRate=t,this.c!=null&&this.c.dispose(),this.c=De(pt(-t))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(t){if(t=await this.extractIterations(t),t.length!==0)throw new Error(\"SGD optimizer does not have settable weights.\")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(t,e){return new t(e.learningRate)}};var Tc=class extends Il{static get className(){return\"Momentum\"}constructor(t,e,n=!1){super(t),this.learningRate=t,this.momentum=e,this.useNesterov=n,this.accumulations=[],this.m=pt(this.momentum)}applyGradients(t){(Array.isArray(t)?t.map(n=>n.name):Object.keys(t)).forEach((n,o)=>{let s=T.registeredVariables[n];this.accumulations[o]==null&&(this.accumulations[o]={originalName:`${n}/momentum`,variable:B(()=>vt(s).variable(!1))});let i=this.accumulations[o].variable,a=Array.isArray(t)?t[o].tensor:t[n];a!=null&&B(()=>{let u,l=K($(this.m,i),a);this.useNesterov?u=K($(this.c,K(a,$(l,this.m))),s):u=K($(this.c,l),s),i.assign(l),s.assign(u)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&Tt(this.accumulations.map(t=>t.variable))}setMomentum(t){this.momentum=t}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(t){t=await this.extractIterations(t);let e=!1;this.accumulations=t.map(n=>({originalName:n.name,variable:n.tensor.variable(e)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(t,e){return new t(e.learningRate,e.momentum,e.useNesterov)}};var _c=class extends jr{static get className(){return\"RMSProp\"}constructor(t,e=.9,n=0,o=null,s=!1){if(super(),this.learningRate=t,this.decay=e,this.momentum=n,this.epsilon=o,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=s,o==null&&(this.epsilon=T.backend.epsilon()),t==null)throw new Error(\"learningRate for RMSPropOptimizer must be defined.\")}applyGradients(t){(Array.isArray(t)?t.map(n=>n.name):Object.keys(t)).forEach((n,o)=>{let s=T.registeredVariables[n],i=!1;this.accumulatedMeanSquares[o]==null&&(this.accumulatedMeanSquares[o]={originalName:`${n}/rms`,variable:B(()=>vt(s).variable(i))}),this.accumulatedMoments[o]==null&&(this.accumulatedMoments[o]={originalName:`${n}/momentum`,variable:B(()=>vt(s).variable(i))}),this.accumulatedMeanGrads[o]==null&&this.centered&&(this.accumulatedMeanGrads[o]={originalName:`${n}/mg`,variable:B(()=>vt(s).variable(i))});let a=Array.isArray(t)?t[o].tensor:t[n];if(a==null)return;let u=this.accumulatedMeanSquares[o].variable,l=this.accumulatedMoments[o].variable;B(()=>{let c=K($(u,this.decay),$(Wt(a),1-this.decay));if(this.centered){let p=this.accumulatedMeanGrads[o].variable,m=K($(p,this.decay),$(a,1-this.decay)),f=ut($(a,this.learningRate),ge(at(c,K(Wt(m),this.epsilon)))),d=K($(l,this.momentum),f);u.assign(c),p.assign(m),l.assign(d);let h=at(s,d);s.assign(h)}else{let p=K($(u,this.decay),$(Wt(a),1-this.decay)),m=K($(l,this.momentum),ut($(a,this.learningRate),ge(K(p,this.epsilon))));u.assign(p),l.assign(m);let f=at(s,m);s.assign(f)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&Tt(this.accumulatedMeanSquares.map(t=>t.variable)),this.accumulatedMeanGrads!=null&&this.centered&&Tt(this.accumulatedMeanGrads.map(t=>t.variable)),this.accumulatedMoments!=null&&Tt(this.accumulatedMoments.map(t=>t.variable))}async getWeights(){let t=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&t.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(t.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(t){t=await this.extractIterations(t);let e=this.centered?t.length/3:t.length/2,n=!1;this.accumulatedMeanSquares=t.slice(0,e).map(o=>({originalName:o.name,variable:o.tensor.variable(n)})),this.accumulatedMoments=t.slice(e,e*2).map(o=>({originalName:o.name,variable:o.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=t.slice(e*2,e*3).map(o=>({originalName:o.name,variable:o.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(t,e){return new t(e.learningRate,e.decay,e.momentum,e.epsilon,e.centered)}};var mY=[vc,Sc,Nc,kc,Tc,_c,Il];function S2(){for(let r of mY)bN(r)}var Mr={};Kt(Mr,{CompositeArrayBuffer:()=>Ur,browserFiles:()=>k2,browserHTTPRequest:()=>A2,concatenateArrayBuffers:()=>pE,copyModel:()=>NE,decodeWeights:()=>ix,decodeWeightsStream:()=>ax,encodeWeights:()=>aE,fromMemory:()=>D2,fromMemorySync:()=>NN,getLoadHandlers:()=>hE,getModelArtifactsForJSON:()=>Yp,getModelArtifactsForJSONSync:()=>H0,getModelArtifactsInfoForJSON:()=>Qi,getSaveHandlers:()=>dE,getWeightSpecs:()=>uh,http:()=>ky,isHTTPScheme:()=>Ny,listModels:()=>vE,loadWeights:()=>_2,moveModel:()=>kE,registerLoadRouter:()=>fE,registerSaveRouter:()=>mE,removeModel:()=>SE,weightsLoaderFactory:()=>vN,withSaveHandler:()=>$2,withSaveHandlerSync:()=>R2});var fY=\"model\",dY=\".json\",hY=\".weights.bin\";function N2(r){return new Promise(t=>setTimeout(t)).then(r)}var Nm=class r{constructor(t){if(!L().getBool(\"IS_BROWSER\"))throw new Error(\"browserDownloads() cannot proceed because the current environment is not a browser.\");t.startsWith(r.URL_SCHEME)&&(t=t.slice(r.URL_SCHEME.length)),(t==null||t.length===0)&&(t=fY),this.modelJsonFileName=t+dY,this.weightDataFileName=t+hY}async save(t){if(typeof document==\"undefined\")throw new Error(\"Browser downloads are not supported in this environment since `document` is not present\");let e=Ur.join(t.weightData),n=window.URL.createObjectURL(new Blob([e],{type:\"application/octet-stream\"}));if(t.modelTopology instanceof ArrayBuffer)throw new Error(\"BrowserDownloads.save() does not support saving model topology in binary formats yet.\");{let o=[{paths:[\"./\"+this.weightDataFileName],weights:t.weightSpecs}],s=lx(t,o),i=window.URL.createObjectURL(new Blob([JSON.stringify(s)],{type:\"application/json\"})),a=this.modelJsonAnchor==null?document.createElement(\"a\"):this.modelJsonAnchor;if(a.download=this.modelJsonFileName,a.href=i,await N2(()=>a.dispatchEvent(new MouseEvent(\"click\"))),t.weightData!=null){let u=this.weightDataAnchor==null?document.createElement(\"a\"):this.weightDataAnchor;u.download=this.weightDataFileName,u.href=n,await N2(()=>u.dispatchEvent(new MouseEvent(\"click\")))}return{modelArtifactsInfo:Qi(t)}}}};Nm.URL_SCHEME=\"downloads://\";var wN=class{constructor(t){if(t==null||t.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${t}`);this.jsonFile=t[0],this.weightsFiles=t.slice(1)}async load(){return new Promise((t,e)=>{let n=new FileReader;n.onload=o=>{let s=JSON.parse(o.target.result),i=s.modelTopology;if(i==null){e(new Error(`modelTopology field is missing from file ${this.jsonFile.name}`));return}if(s.weightsManifest==null){e(new Error(`weightManifest field is missing from file ${this.jsonFile.name}`));return}if(this.weightsFiles.length===0){t({modelTopology:i});return}let u=Yp(s,l=>this.loadWeights(l));t(u)},n.onerror=o=>e(`Failed to read model topology and weights manifest JSON from file '${this.jsonFile.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),n.readAsText(this.jsonFile)})}loadWeights(t){let e=[],n=[];for(let i of t)e.push(...i.weights),n.push(...i.paths);let o=this.checkManifestAndWeightFiles(t),s=n.map(i=>this.loadWeightsFile(i,o[i]));return Promise.all(s).then(i=>[e,i])}loadWeightsFile(t,e){return new Promise((n,o)=>{let s=new FileReader;s.onload=i=>{let a=i.target.result;n(a)},s.onerror=i=>o(`Failed to weights data from file of path '${t}'.`),s.readAsArrayBuffer(e)})}checkManifestAndWeightFiles(t){let e=[],n=this.weightsFiles.map(s=>U0(s.name)),o={};for(let s of t)s.paths.forEach(i=>{let a=U0(i);if(e.indexOf(a)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${a}'`);if(e.push(a),n.indexOf(a)===-1)throw new Error(`Weight file with basename '${a}' is not provided.`);o[i]=this.weightsFiles[n.indexOf(a)]});if(e.length!==this.weightsFiles.length)throw new Error(`Mismatch in the number of files in weights manifest (${e.length}) and the number of weight files provided (${this.weightsFiles.length}).`);return o}},gY=r=>L().getBool(\"IS_BROWSER\")&&!Array.isArray(r)&&r.startsWith(Nm.URL_SCHEME)?xY(r.slice(Nm.URL_SCHEME.length)):null;Cr.registerSaveRouter(gY);function xY(r=\"model\"){return new Nm(r)}function k2(r){return new wN(r)}function IN(r,t,e,n){i(r),e=e==null?0:e,n=n==null?1:n,a(e,n);let o=0,s=u=>(u.then(l=>{let c=e+ ++o/r.length*(n-e);return t(c),l}),u);function i(u){_(u!=null&&Array.isArray(u)&&u.length>0,()=>\"promises must be a none empty array\")}function a(u,l){_(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${u}`),_(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${l}`),_(l>=u,()=>`startFraction must be no more than endFraction, but got startFraction ${u} and endFraction ${l}`)}return Promise.all(r.map(s))}async function CN(r,t){t==null&&(t={});let e=t.fetchFunc==null?L().platform.fetch:t.fetchFunc,n=r.map(p=>e(p,t.requestInit,{isBinary:!0})),a=(t.onProgress==null?await Promise.all(n):await IN(n,t.onProgress,0,.5)).map(p=>p.arrayBuffer());return t.onProgress==null?await Promise.all(a):await IN(a,t.onProgress,.5,1)}function T2(r,t){var e;let n=t.fetchFunc==null?L().platform.fetch:t.fetchFunc,o=0,s;return(e=t.onProgress)===null||e===void 0||e.call(t,0),new ReadableStream({pull:async i=>{for(var a;oCN(i,{requestInit:n}))(r,t,e)}function vN(r){return async(t,e=\"\",n)=>{let o=t.map(()=>!1),s={},i=n!=null?n.map(()=>!1):[],a=[];if(t.forEach((f,d)=>{let h=0;f.weights.forEach(g=>{let x=\"quantization\"in g?g.quantization.dtype:g.dtype,b=dl[x]*jt(g.shape),w=()=>{o[d]=!0,s[d]==null&&(s[d]=[]),s[d].push({manifestEntry:g,groupOffset:h,sizeBytes:b})};n!=null?n.forEach((I,N)=>{I===g.name&&(w(),i[N]=!0)}):w(),a.push(g.name),h+=b})}),!i.every(f=>f)){let f=n.filter((d,h)=>!i[h]);throw new Error(`Could not find weights in manifest with names: ${f.join(\", \")}. \nManifest JSON has weights with names: ${a.join(\", \")}.`)}let u=o.reduce((f,d,h)=>(d&&f.push(h),f),[]),l=[];u.forEach(f=>{t[f].paths.forEach(d=>{let h=e+(e.endsWith(\"/\")?\"\":\"/\")+d;l.push(h)})});let c=await r(l),p={},m=0;return u.forEach(f=>{let d=t[f].paths.length,h=new Ur(c.slice(m,m+d));s[f].forEach(x=>{let b=h.slice(x.groupOffset,x.groupOffset+x.sizeBytes),w=ix(b,[x.manifestEntry]);for(let I in w)p[I]=w[I]}),m+=d}),p}}var yY=\"application/octet-stream\",bY=\"application/json\",bh=class{constructor(t,e){if(this.DEFAULT_METHOD=\"POST\",e==null&&(e={}),this.weightPathPrefix=e.weightPathPrefix,this.weightUrlConverter=e.weightUrlConverter,e.fetchFunc!=null?(_(typeof e.fetchFunc==\"function\",()=>\"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)\"),this.fetch=e.fetchFunc):this.fetch=L().platform.fetch,_(t!=null&&t.length>0,()=>\"URL path for http must not be null, undefined or empty.\"),Array.isArray(t)&&_(t.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${t.length}).`),this.path=t,e.requestInit!=null&&e.requestInit.body!=null)throw new Error(\"requestInit is expected to have no pre-existing body, but has one.\");this.requestInit=e.requestInit||{},this.loadOptions=e}async save(t){if(t.modelTopology instanceof ArrayBuffer)throw new Error(\"BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.\");let e=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);e.body=new FormData;let n=[{paths:[\"./model.weights.bin\"],weights:t.weightSpecs}],o=lx(t,n);if(e.body.append(\"model.json\",new Blob([JSON.stringify(o)],{type:bY}),\"model.json\"),t.weightData!=null){let i=Ur.join(t.weightData);e.body.append(\"model.weights.bin\",new Blob([i],{type:yY}),\"model.weights.bin\")}let s=await this.fetch(this.path,e);if(s.ok)return{modelArtifactsInfo:Qi(t),responses:[s]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${s.status}.`)}async loadModelJSON(){let t=await this.fetch(this.path,this.requestInit);if(!t.ok)throw new Error(`Request to ${this.path} failed with status code ${t.status}. Please verify this URL points to the model JSON of the model to load.`);let e;try{e=await t.json()}catch(s){let i=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(\".pb\")?i+=\" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.\":i+=\" Please make sure the server is serving valid JSON for this request.\",new Error(i)}let n=e.modelTopology,o=e.weightsManifest;if(n==null&&o==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);return e}async load(){if(this.loadOptions.streamWeights)return this.loadStream();let t=await this.loadModelJSON();return Yp(t,e=>this.loadWeights(e))}async loadStream(){let t=await this.loadModelJSON(),e=await this.getWeightUrls(t.weightsManifest),n=uh(t.weightsManifest),o=()=>T2(e,this.loadOptions);return Object.assign(Object.assign({},t),{weightSpecs:n,getWeightStream:o})}async getWeightUrls(t){let e=Array.isArray(this.path)?this.path[1]:this.path,[n,o]=wY(e),s=this.weightPathPrefix||n,i=[],a=[];for(let u of t)for(let l of u.paths)this.weightUrlConverter!=null?a.push(this.weightUrlConverter(l)):i.push(s+l+o);return this.weightUrlConverter&&i.push(...await Promise.all(a)),i}async loadWeights(t){let e=await this.getWeightUrls(t),n=uh(t),o=await CN(e,this.loadOptions);return[n,o]}};bh.URL_SCHEME_REGEX=/^https?:\\/\\//;function wY(r){let t=r.lastIndexOf(\"/\"),e=r.lastIndexOf(\"?\"),n=r.substring(0,t),o=e>t?r.substring(e):\"\";return[n+\"/\",o]}function Ny(r){return r.match(bh.URL_SCHEME_REGEX)!=null}var E2=(r,t)=>{if(typeof fetch==\"undefined\"&&(t==null||t.fetchFunc==null))return null;{let e=!0;if(Array.isArray(r)?e=r.every(n=>Ny(n)):e=Ny(r),e)return ky(r,t)}return null};Cr.registerSaveRouter(E2);Cr.registerLoadRouter(E2);function ky(r,t){return new bh(r,t)}function A2(r,t){return ky(r,t)}var wh=class{constructor(t){this.modelArtifacts=t}load(){return this.modelArtifacts}},Ty=class{constructor(t){this.saveHandler=t}save(t){return this.saveHandler(t)}},SN=class{constructor(t){t.load&&(this.load=()=>Promise.resolve(t.load())),t.save&&(this.save=e=>Promise.resolve(t.save(e)))}};function D2(r,t,e,n){let o=arguments;return new SN(NN(...o))}function NN(r,t,e,n){return arguments.length===1?r.modelTopology!=null||r.weightSpecs!=null?new wh(r):(console.warn(\"Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release.\"),new wh({modelTopology:r})):(console.warn(\"Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release.\"),new wh({modelTopology:r,weightSpecs:t,weightData:e,trainingConfig:n}))}function $2(r){return new Ty(r)}function R2(r){return new Ty(r)}var O2={};Kt(O2,{confusionMatrix:()=>F2});function IY(r,t,e){let n=C(r,\"labels\",\"confusionMatrix\"),o=C(t,\"predictions\",\"confusionMatrix\");_(e==null||e>0&&Number.isInteger(e),()=>`If provided, numClasses must be a positive integer, but got ${e}`),_(n.rank===1,()=>`Expected the rank of labels to be 1, but got ${n.rank}`),_(o.rank===1,()=>`Expected the rank of predictions to be 1, but got ${o.rank}`),_(n.shape[0]===o.shape[0],()=>`Mismatch in the number of examples: ${n.shape[0]} vs. ${o.shape[0]}. Labels and predictions should have the same number of elements.`),_(e>0&&Number.isInteger(e),()=>`numClasses is required to be a positive integer, but got ${e}`);let s=ca(J(n,\"int32\"),e),i=ca(J(o,\"int32\"),e),a=Vt(s),u=Bt(a,i);return J(u,\"int32\")}var F2=k({confusionMatrix_:IY});var _y={};Kt(_y,{draw:()=>EY,fromPixels:()=>AY,fromPixelsAsync:()=>kY,toPixels:()=>_Y});var Ec,M2=!1;function P2(r,t=3){if(t>4)throw new Error(\"Cannot construct Tensor with more than 4 channels from pixels.\");if(r==null)throw new Error(\"pixels passed to tf.browser.fromPixels() can not be null\");let e=!1,n=!1,o=!1,s=!1,i=!1,a=!1;if(r.data instanceof Uint8Array)e=!0;else if(typeof ImageData!=\"undefined\"&&r instanceof ImageData)n=!0;else if(typeof HTMLVideoElement!=\"undefined\"&&r instanceof HTMLVideoElement)o=!0;else if(typeof HTMLImageElement!=\"undefined\"&&r instanceof HTMLImageElement)s=!0;else if(r.getContext!=null)i=!0;else if(typeof ImageBitmap!=\"undefined\"&&r instanceof ImageBitmap)a=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${r.constructor.name}`);if(Wp(th,T.backendName)!=null){let d={pixels:r},h={numChannels:t};return T.runKernel(th,d,h)}let[l,c]=o?[r.videoWidth,r.videoHeight]:[r.width,r.height],p;if(i)p=r.getContext(\"2d\").getImageData(0,0,l,c).data;else if(n||e)p=r.data;else if(s||o||a){if(Ec==null)if(typeof document==\"undefined\")if(typeof OffscreenCanvas!=\"undefined\"&&typeof OffscreenCanvasRenderingContext2D!=\"undefined\")Ec=new OffscreenCanvas(1,1).getContext(\"2d\");else throw new Error(\"Cannot parse input in current context. Reason: OffscreenCanvas Context2D rendering is not supported.\");else Ec=document.createElement(\"canvas\").getContext(\"2d\",{willReadFrequently:!0});Ec.canvas.width=l,Ec.canvas.height=c,Ec.drawImage(r,0,0,l,c),p=Ec.getImageData(0,0,l,c).data}let m;if(t===4)m=new Int32Array(p);else{let d=l*c;m=new Int32Array(d*t);for(let h=0;h4||t===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${t}`);if(r.dtype!==\"float32\"&&r.dtype!==\"int32\")throw new Error(`Unsupported type for toPixels: ${r.dtype}. Please use float32 or int32 tensors.`)}function TY(r){let t=(r==null?void 0:r.alpha)||1;if(t>1||t<0)throw new Error(`Alpha value ${t} is suppoed to be in range [0 - 1].`)}async function _Y(r,t){let e=C(r,\"img\",\"toPixels\");if(!(r instanceof Lt)){let l=e;e=J(l,\"int32\"),l.dispose()}L2(e);let[n,o]=e.shape.slice(0,2),s=e.rank===2?1:e.shape[2],i=await e.data(),a=e.dtype===\"float32\"?255:1,u=new Uint8ClampedArray(o*n*4);for(let l=0;l1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${f}.`)}else if(e.dtype===\"int32\"&&(f<0||f>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${f}.`);s===1?(c[0]=f*a,c[1]=f*a,c[2]=f*a):c[m]=f*a}let p=l*4;u[p+0]=Math.round(c[0]),u[p+1]=Math.round(c[1]),u[p+2]=Math.round(c[2]),u[p+3]=Math.round(c[3])}if(t!=null){M2||Wp(Qd,T.backendName)!=null&&(console.warn(\"tf.browser.toPixels is not efficient to draw tensor on canvas. Please try tf.browser.draw instead.\"),M2=!0),t.width=o,t.height=n;let l=t.getContext(\"2d\"),c=new ImageData(u,o,n);l.putImageData(c,0,0)}return e!==r&&e.dispose(),u}function EY(r,t,e){let n=C(r,\"img\",\"draw\");if(!(r instanceof Lt)){let i=n;n=J(i,\"int32\"),i.dispose()}L2(n),TY(e==null?void 0:e.imageOptions);let o={image:n},s={canvas:t,options:e};T.runKernel(Qd,o,s)}var AY=k({fromPixels_:P2});var Ey={};Kt(Ey,{prepareAndValidate:()=>z2});function z2(r,t){let e=r.shape.length,n=t.shape.length;if(e<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${e}.`);if(n<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${n}.`);if(t.dtype!==\"int32\")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[n-1]>e)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[n-1]} vs. ${e}`);if(jt(r.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${r.shape}.`);let o=t.shape,s=o[o.length-1],i=1;for(let p=0;pp/l),1].slice(0,s);return[u,i,l,c]}var Be={};Kt(Be,{assertParamsValid:()=>$Y,computeFlatOffset:()=>PY,computeOutShape:()=>FY,getNormalizedAxes:()=>OY,isSliceContinous:()=>MY,maskToAxes:()=>RY,parseSliceParams:()=>TN,sliceInfo:()=>LY,startForAxis:()=>K2,startIndicesWithElidedDims:()=>U2,stopForAxis:()=>j2,stopIndicesWithElidedDims:()=>H2,stridesForAxis:()=>q2,stridesWithElidedDims:()=>V2});var kN=-2,DY=-1;function $Y(r,t,e){let n=r.shape.length;_(n===t.length,()=>`Error in slice${n}D: Length of begin ${t} must match the rank of the array (${n}).`),_(n===e.length,()=>`Error in slice${n}D: Length of size ${e} must match the rank of the array (${n}).`);for(let o=0;o`Error in slice${n}D: begin[${o}] + size[${o}] (${t[o]+e[o]}) would overflow input.shape[${o}] (${r.shape[o]})`)}function RY(r){let t=[],e=0;for(;r>0;)r&1&&t.push(e),r/=2,e++;return t}function FY(r,t,e){let n=[];for(let o=0;o0){let f=t[0],d=e+1;c=U2(i,f,d,n,r),p=H2(a,f,d,o,r),m=V2(s,f,d,r)}else for(let f=0;f-1)s[a]=0;else{let u=G2(t,e,a),l=n[u];r&1<-1)s[a]=Number.MAX_SAFE_INTEGER;else{let u=G2(t,e,a),l=n[u];r&1<0?i=Number.MIN_SAFE_INTEGER:i=Number.MAX_SAFE_INTEGER);let u=n[o];return i<0&&(i+=u),i=kp(0,i,u-1),i}function j2(r,t,e,n,o,s){let i=t[o],a=e[o]||1;(r&1<0?i=Number.MAX_SAFE_INTEGER:i=Number.MIN_SAFE_INTEGER);let u=n[o];return i<0&&(i+=u),a>0?i=kp(0,i,u):i=kp(-1,i,u-1),i}function MY(r,t,e){let n=e.length;for(let o=0;o1){n=o;break}for(let o=n+1;o0||e[o]!==r[o])return!1;return!0}function PY(r,t){let e=r.length>0?r[r.length-1]:1;for(let n=0;n{_(i!==-1,()=>\"slice() does not support negative begin indexing.\")});let s;return e==null?s=new Array(o).fill(-1):typeof e==\"number\"?s=[e,...new Array(o-1).fill(-1)]:e.lengthi>=0?i:(_(i===-1,()=>`Negative size values should be exactly -1 but got ${i} for the slice() size at index ${a}.`),r.shape[a]-n[a])),[n,s]}function LY(r,t,e,n,o,s,i,a,u){let l;if(n==null?(l=new Array(t.length),l.fill(1)):l=n,i!=null&&i&i-1)throw new Error(\"Multiple ellipses in slice is not allowed.\");let c=!1,p={dims:l.length,numAddAxisAfterEllipsis:0,begin:t.slice(),end:e.slice(),strides:l.slice(),beginMask:o,endMask:s,ellipsisMask:i,newAxisMask:a,shrinkAxisMask:u};for(let w=0;w0?0:-1,m.strides[w]>0?N:N-1];if(I&&m.strides[w]<=0)throw Error(\"only stride 1 allowed on non-range indexing.\");h=h&&m.strides[w]===1;let D=!!(m.beginMask&1<=N)throw Error(`slice index ${m.begin[w]} of dimension ${w} out of bounds.`)}else m.begin[w]=B2(m.begin[w],0,m.strides[w],N,E,A),m.end[w]=B2(m.end[w],1,m.strides[w],N,E,A);let V=m.strides[w]===1&&m.begin[w]===0&&m.end[w]===N;f=f&&V,d=d&&(w===0&&m.strides[w]===1||V)}else f=f&&m.strides[w]===1&&D,d=d&&(w===0&&m.strides[w]===1||D);let F,M=!1;if(m.beginValid&&m.endValid?(F=m.end[w]-m.begin[w],M=!0):I?(F=1,M=!0):D&&N>=0&&(m.strides[w]<0?F=-N:F=N,M=!0),M){let V;F===0||F<0!=m.strides[w]<0?V=0:V=Math.trunc(F/m.strides[w])+(F%m.strides[w]!==0?1:0),g.push(V)}else g.push(-1)}for(let w=0;w=0?x.push(g[I]):I===kN&&x.push(1)}return{finalShapeSparse:x.filter((w,I)=>m.finalShapeGatherIndices[I]!==kN),finalShape:x,isIdentity:f,sliceDim0:d,isSimpleSlice:h,begin:m.begin,end:m.end,strides:m.strides}}function zY(r,t){t.beginMask=0,t.endMask=0,t.shrinkAxisMask=0;let e=0;t.beginValid=r.begin!=null,t.endValid=r.end!=null,t.begin=new Array(t.dims),t.end=new Array(t.dims),t.strides=new Array(t.dims),t.finalShapeGatherIndices=[],t.finalShapeGatherIndicesSparse=[],t.inputShapeGatherIndicesSparse=new Array(t.dims);for(let n=0;n0?s[t]:s[t+1&1];{let i=r<0?n+r:r;return is[1]?s[1]:i}}var X2=\"4.22.0\";var Ih=class{static sgd(t){return new Il(t)}static momentum(t,e,n=!1){return new Tc(t,e,n)}static rmsprop(t,e=.9,n=0,o=null,s=!1){return new _c(t,e,n,o,s)}static adam(t=.001,e=.9,n=.999,o=null){return new Nc(t,e,n,o)}static adadelta(t=.001,e=.95,n=null){return new vc(t,e,n)}static adamax(t=.002,e=.9,n=.999,o=null,s=0){return new kc(t,e,n,o,s)}static adagrad(t,e=.1){return new Sc(t,e)}};var Ac=Ih;var BY=typeof requestAnimationFrame!=\"undefined\"?requestAnimationFrame:typeof setImmediate!=\"undefined\"?setImmediate:r=>r();function Ch(){return new Promise(r=>BY(()=>r()))}var S={};Kt(S,{ERF_A1:()=>eZ,ERF_A2:()=>rZ,ERF_A3:()=>nZ,ERF_A4:()=>oZ,ERF_A5:()=>sZ,ERF_P:()=>tZ,PARALLELIZE_THRESHOLD:()=>Ay,RowPartitionType:()=>ma,SELU_SCALE:()=>EN,SELU_SCALEALPHA:()=>_N,applyActivation:()=>Ic,assertAndGetBroadcastShape:()=>Mt,assertAxesAreInnerMostDims:()=>w6,assertParamsConsistent:()=>VY,assignToTypedArray:()=>pZ,axesAreInnerMostDims:()=>eN,calculateShapes:()=>RA,checkEinsumDimSizes:()=>xZ,checkPadOnDimRoundingMode:()=>Se,combineLocations:()=>zE,combineRaggedTensorToTensorShapes:()=>WY,complexWithEvenIndex:()=>lZ,complexWithOddIndex:()=>uZ,computeConv2DInfo:()=>pc,computeConv3DInfo:()=>AE,computeDefaultPad:()=>tN,computeDilation2DInfo:()=>bj,computeOptimalWindowSize:()=>KY,computeOutAndReduceShapes:()=>rN,computeOutShape:()=>GY,computePool2DInfo:()=>Q0,computePool3DInfo:()=>wj,convertConv2DDataFormat:()=>DE,decodeEinsumEquation:()=>hZ,eitherStridesOrDilationsAreOne:()=>Dr,expandShapeToKeepDim:()=>vo,exponent:()=>fZ,exponents:()=>mZ,fromStringArrayToUint8:()=>LZ,fromUint8ToStringArray:()=>PZ,getAxesPermutation:()=>nN,getBroadcastDims:()=>PE,getComplexWithIndex:()=>cZ,getEinsumComputePath:()=>yZ,getEinsumPermutation:()=>gZ,getFusedBiasGradient:()=>wc,getFusedDyActivation:()=>bc,getImageCenter:()=>jY,getInnerMostAxes:()=>I6,getPermuted:()=>YY,getRaggedRank:()=>HY,getReductionAxes:()=>we,getReshaped:()=>XY,getReshapedPermuted:()=>ZY,getRowPartitionTypesHelper:()=>UY,getSliceBeginCoords:()=>JY,getSliceSize:()=>QY,getSparseFillEmptyRowsIndicesDenseShapeMismatch:()=>CZ,getSparseFillEmptyRowsNegativeIndexErrorMessage:()=>vZ,getSparseFillEmptyRowsOutOfRangeIndexErrorMessage:()=>SZ,getSparseReshapeEmptyTensorZeroOutputDimErrorMessage:()=>TZ,getSparseReshapeInputOutputMismatchErrorMessage:()=>EZ,getSparseReshapeInputOutputMultipleErrorMessage:()=>_Z,getSparseReshapeMultipleNegativeOneOutputDimErrorMessage:()=>NZ,getSparseReshapeNegativeOutputDimErrorMessage:()=>kZ,getSparseSegmentReductionIndicesOutOfRangeErrorMessage:()=>RZ,getSparseSegmentReductionNegativeSegmentIdsErrorMessage:()=>AZ,getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage:()=>DZ,getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage:()=>$Z,getUndoAxesPermutation:()=>fh,isIdentityPermutation:()=>bZ,log:()=>mK,mergeRealAndImagArrays:()=>iZ,prepareAndValidate:()=>z2,prepareSplitSize:()=>IZ,segment_util:()=>DN,shouldFuse:()=>Cc,slice_util:()=>Be,splitRealAndImagArrays:()=>aZ,stridesOrDilationsArePositive:()=>na,tupleValuesAreOne:()=>io,upcastType:()=>ur,validateDefaultValueShape:()=>qY,validateInput:()=>Im,validateUpdateShape:()=>fN,warn:()=>Ji});function VY(r,t){let e=r[0].length;r.forEach((o,s)=>{_(o.length===e,()=>`Error in concat${e}D: rank of tensors[${s}] must be the same as the rank of the rest (${e})`)}),_(t>=0&&t`Error in concat${e}D: axis must be between 0 and ${e-1}.`);let n=r[0];r.forEach((o,s)=>{for(let i=0;i`Error in concat${e}D: Shape of tensors[${s}] (${o}) does not match the shape of the rest (${n}) along the non-concatenated axis ${s}.`)})}function GY(r,t){let e=r[0].slice();for(let n=1;n=0)if(a>=0){if(a!==s)throw new Error(`rt input.shape and shape=${t} are incompatible: rt input.shape[${o+r}] = ${s} but shape[${o+r}] = ${a}`)}else n[i]=s}return n}function UY(r){let t={FIRST_DIM_SIZE:ma.FIRST_DIM_SIZE,VALUE_ROWIDS:ma.VALUE_ROWIDS,ROW_LENGTHS:ma.ROW_LENGTHS,ROW_SPLITS:ma.ROW_SPLITS,ROW_LIMITS:ma.ROW_LIMITS,ROW_STARTS:ma.ROW_STARTS},e=[];for(let n of r)if(n in t)e.push(t[n]);else break;return e}function HY(r){return r.length===0?0:r[0]===ma.FIRST_DIM_SIZE?r.length-1:r.length}function qY(r,t){if(r==null||t==null)return;let e=r.length,n=t.length;if(e>=n)throw new Error(`defaultValue.shape=${r} and ragged tensor flatValues.shape=${t}, are incompatible: defaultValue.rank = ${e} must be less than ragged tensor input flatValues.rank = ${n})`);for(let o=0;o=0&&i>=0&&s!==1&&s!==i)throw new Error(`defaultValue.shape=${r}, and ragged tensor input flatValues.shape=${t} are incompatible: defaultValue.shape[${o-r.length}] = ${s} but ragged tensor input.flatValues.shape[${o-r.length}] = ${i}`)}}var Ay=30;function KY(r){return r<=Ay?r:_p(r,Math.floor(Math.sqrt(r)))}function jY(r,t,e){let n=e*(typeof r==\"number\"?r:r[0]),o=t*(typeof r==\"number\"?r:r[1]);return[n,o]}function XY(r,t,e,n=!0){let o=[];if(n)o=o.concat(t.slice(0)),o.push(r[0]/e),o=o.concat(r.slice(1));else{o=o.concat(r[0]);let s=t.length;for(let i=0;i=t*2+1||i%2===1?s.push(i):o.push(i);n.push(...o),n.push(0),n.push(...s)}return n}function ZY(r,t,e,n=!0){let o=[];n?o.push(r[0]/e):o.push(r[0]*e);for(let s=1;s\",dZ=/->/g,Y2=\",\",Z2=\"...\";function hZ(r,t){r=r.replace(/\\s/g,\"\");let e=(r.length-r.replace(dZ,\"\").length)/AN.length;if(e<1)throw new Error(\"Equations without an arrow are not supported.\");if(e>1)throw new Error(`Equation must contain exactly one arrow (\"${AN}\").`);let[n,o]=r.split(AN);_(n.indexOf(Z2)===-1,()=>`The ellipsis notation (\"${Z2}\") is not supported yet.`);let s=n.split(Y2),i=s.length;if(t!==i)throw new Error(`Expected ${i} input tensors, received ${t}`);if(i>2)throw new Error(\"Support for more than 2 input tensors is not implemented yet.\");let a=[];for(let m=0;md.indexOf(f)!==-1))throw new Error(`Output subscripts contain the label ${f} not present in the input subscripts.`);a.indexOf(f)===-1&&a.push(f)}for(let m=0;mo!==-1),{permutationIndices:e,expandDims:n}}function xZ(r,t,e){let n=new Array(r);for(let o=0;o`Expected dimension ${n[t[o][i]]} at axis ${i} of input shaped ${JSON.stringify(s)}, but got dimension ${s[i]}`)}}function yZ(r,t){let e=r,n=[],o=0;r.length===0&&e.push(-1),o=r.length+1;for(let i=0;it===e)}function wZ(r,t){let e=[];for(let n=0;n\"Number of splits must evenly divide the axis.\"),n=new Array(t).fill(r.shape[e]/t);else{let o=t.reduce((i,a)=>(a===-1&&(i+=1),i),0);_(o<=1,()=>\"There should be only one negative value in split array.\");let s=t.indexOf(-1);if(s!==-1){let i=t.reduce((a,u)=>u>0?a+u:a);t[s]=r.shape[e]-i}_(r.shape[e]===t.reduce((i,a)=>i+a),()=>\"The sum of sizes must match the size of the axis dimension.\"),n=t}return n}function CZ(r){return`Received SparseTensor with denseShape[0] = 0 but\n indices.shape[0] = ${r}`}function vZ(r,t){return`indices(${r}, 0) is invalid: ${t} < 0`}function SZ(r,t,e){return`indices(${r}, 0) is invalid: ${t} >= ${e}`}function NZ(r,t){return`only one output dimension may be -1, not both ${r} and ${t}`}function kZ(r,t){return`size ${r} must be non-negative, not ${t}`}function TZ(){return\"reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero\"}function _Z(r,t){let e=jt(r),n=jt(t);return`Input to reshape is a SparseTensor with ${e}\n dense values, but the requested shape requires a multiple of ${n}. inputShape=${r} outputShape= ${t}`}function EZ(r,t){let e=jt(r),n=jt(t);return`Input to reshape is a tensor with ${e} dense values, but the requested shape has ${n}. inputShape=${r} outputShape=${t}`}function AZ(){return\"segment ids must be >= 0\"}function DZ(){return\"segment ids are not increasing\"}function $Z(r,t){return`Segment id ${r} out of range [0, ${t}), possibly because segmentIds input is not sorted.`}function RZ(r,t,e){return`Bad: indices[${r}] == ${t} out of range [0, ${e})`}var DN={};Kt(DN,{collectGatherOpShapeInfo:()=>MZ,computeOutShape:()=>OZ,segOpComputeOptimalWindowSize:()=>FZ});function FZ(r,t){let e=!1,n;for(r<=Ay?(n=r,e=!0):n=_p(r,Math.floor(Math.sqrt(r)));!e;)n>t||n===r?e=!0:n=_p(r,n+1);return n}function OZ(r,t,e){let n=[],o=r.length;for(let s=0;so))throw new Error(`Expect batchDims in the range of [-${o}, ${o}], but got ${n}`);if(n<0&&(n+=o),n>s)throw new Error(`batchDims (${n}) must be less than rank(x) (\n ${s}).`);if(eKp(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function LZ(r){return r.map(t=>fu(t))}var Xr={};Kt(Xr,{nonMaxSuppressionV3Impl:()=>by,nonMaxSuppressionV4Impl:()=>wy,nonMaxSuppressionV5Impl:()=>Iy,whereImpl:()=>fy});S2();var Dy={kernelName:Ai,inputsToSave:[\"x\"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>$(r,So(J(e,\"float32\"),-1))}}};var J2={kernelName:Go,inputsToSave:[\"x\"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>{let n=Wt(J(e,\"float32\")),o=ge(at(pt(1),n));return Ut(ut(r,o))}}}};var Q2={kernelName:Wo,inputsToSave:[\"x\"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>{let n=ge(at(Wt(J(e,\"float32\")),1));return ut(r,n)}}}};var tD={kernelName:no,inputsToSave:[\"a\",\"b\"],gradFunc:(r,t)=>{let[e,n]=t,o=Mt(e.shape,n.shape);return{a:()=>{let a=r,u=we(e.shape,o);return u.length>0&&(a=mt(a,u)),R(a,e.shape)},b:()=>{let a=r,u=we(n.shape,o);return u.length>0&&(a=mt(a,u)),R(a,n.shape)}}}};var eD={kernelName:Uo,saveAllInputs:!0,gradFunc:(r,t)=>{let e={};return t.forEach((n,o)=>{e[o]=()=>r.clone()}),e}};var rD={kernelName:Di,inputsToSave:[\"x\"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>vt(e)}}};var nD={kernelName:$i,inputsToSave:[\"x\"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>vt(e)}}};var oD={kernelName:Ho,inputsToSave:[\"x\"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>ut(r,ge(at(pt(1),Wt(J(e,\"float32\")))))}}};var sD={kernelName:qo,inputsToSave:[\"x\"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>{let n=ge(K(pt(1),Wt(J(e,\"float32\"))));return ut(r,n)}}}};var iD={kernelName:Xo,inputsToSave:[\"a\",\"b\"],gradFunc:(r,t)=>{let[e,n]=t,o=Mt(e.shape,n.shape);return{a:()=>{let a=K(Wt(e),Wt(n)),u=$(r,ut(n,a)),l=we(e.shape,o);return l.length>0&&(u=mt(u,l)),R(u,e.shape)},b:()=>{let a=K(Wt(e),Wt(n)),u=Ut($(r,ut(e,a))),l=we(n.shape,o);return l.length>0&&(u=mt(u,l)),R(u,n.shape)}}}};var aD={kernelName:Ko,inputsToSave:[\"x\"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>ut(r,K(Wt(J(e,\"float32\")),1))}}};var lD={kernelName:jo,inputsToSave:[\"x\"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>ut(r,at(pt(1),Wt(J(e,\"float32\"))))}}};function zZ(r,t,e,n,o,s){let i=C(r,\"dy\",\"avgPool3dGrad\"),a=C(t,\"input\",\"avgPool3dGrad\"),u=i,l=a,c=!1;a.rank===4&&(c=!0,u=R(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),l=R(a,[1,a.shape[0],a.shape[1],a.shape[2],a.shape[3]])),_(u.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${u.rank}.`),_(l.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${l.rank}.`),Se(\"avgPool3dGrad\",o,s);let p={dy:u,input:l},m={filterSize:e,strides:n,pad:o,dimRoundingMode:s},f=T.runKernel(Hl,p,m);return c?R(f,[f.shape[1],f.shape[2],f.shape[3],f.shape[4]]):f}var uD=k({avgPool3dGrad_:zZ});var cD={kernelName:Ri,inputsToSave:[\"x\"],gradFunc:(r,t,e)=>{let[n]=t,{filterSize:o,strides:s,pad:i,dimRoundingMode:a}=e;return{x:()=>uD(r,n,o,s,i,a)}}};function BZ(r,t,e,n,o){let s=C(r,\"dy\",\"avgPoolGrad\"),i=C(t,\"input\",\"avgPoolGrad\");_(i.rank===s.rank,()=>`Rank of input (${i.rank}) does not match rank of dy (${s.rank})`);let a=i,u=s,l=!1;i.rank===3&&(l=!0,a=R(i,[1,i.shape[0],i.shape[1],i.shape[2]]),u=R(s,[1,s.shape[0],s.shape[1],s.shape[2]])),_(u.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${u.rank}.`),_(a.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${a.rank}.`);let c={dy:u,input:a},p={filterSize:e,strides:n,pad:o},m=T.runKernel(Ul,c,p);return l?R(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var pD=k({avgPoolGrad_:BZ});var mD={kernelName:Yo,inputsToSave:[\"x\"],gradFunc:(r,t,e)=>{let[n]=t,{filterSize:o,strides:s,pad:i}=e;return{x:()=>pD(r,n,o,s,i)}}};var fD={kernelName:Zo,inputsToSave:[\"a\",\"b\"],gradFunc:(r,t,e)=>{let[n,o]=t,{transposeA:s,transposeB:i}=e;return!s&&!i?{a:()=>Bt(r,o,!1,!0),b:()=>Bt(n,r,!0,!1)}:!s&&i?{a:()=>Bt(r,o,!1,!1),b:()=>Bt(r,n,!0,!1)}:s&&!i?{a:()=>Bt(o,r,!1,!0),b:()=>Bt(n,r,!1,!1)}:{a:()=>Bt(o,r,!0,!0),b:()=>Bt(r,n,!0,!0)}}};var dD={kernelName:Fi,gradFunc:(r,t,e)=>{let{blockShape:n,crops:o}=e;return{x:()=>Tu(r,n,o)}}};var hD={kernelName:__,gradFunc:(r,t,e)=>{let n=e,o=n.inputShape,s=n.shape,i=Array.from(s);for(let u=o.length-1;u>=0;u--)if(o[u]===s[u])i[u]=1;else if(o[u]!==1)throw new Error(`broadcastTo(): [${o}] cannot be broadcast to [${s}].`);let a=[];for(let u=0;u1&&a.push(u);return{x:()=>mt(r,a,!0)}}};var gD={kernelName:fo,gradFunc:r=>({x:()=>r.clone()})};var xD={kernelName:Jo,gradFunc:r=>({x:()=>vt(r)})};var yD={kernelName:ho,inputsToSave:[\"x\"],gradFunc:(r,t,e)=>{let[n]=t,{clipValueMin:o,clipValueMax:s}=e;return{x:()=>Ie(Fr(cn(n,o),Vn(n,s)),r,vt(r))}}};var bD={kernelName:Kl,inputsToSave:[\"x\"],gradFunc:Dy.gradFunc};var wD={kernelName:Oi,saveAllInputs:!0,gradFunc:(r,t,e)=>{let n=t.map(u=>u.shape),{axis:o}=e,s=fr(o,t[0].shape)[0],i=n.map(u=>u[s]);return hr(r,i,s).map(u=>()=>u)}};var ID={kernelName:Qo,inputsToSave:[\"x\",\"filter\"],gradFunc:(r,t,e)=>{let[n,o]=t,{dilations:s,strides:i,pad:a,dataFormat:u}=e;return _(io(s),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`),{x:()=>nm(n.shape,r,o,i,a,u),filter:()=>Sm(n,r,o.shape,i,a,u)}}};var CD={kernelName:ts,inputsToSave:[\"dy\",\"filter\"],gradFunc:(r,t,e)=>{let[n,o]=t,{strides:s,pad:i,dataFormat:a,dimRoundingMode:u}=e;return{dy:()=>Nn(r,o,s,i,a,1,u),filter:()=>Sm(r,n,o.shape,s,i,a,u)}}};function VZ(r,t,e,n,o){let s=r;r.rank===4&&(s=R(r,[1,r.shape[0],r.shape[1],r.shape[2],r.shape[3]]));let i=t;i.rank===4&&(i=R(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),_(s.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${s.shape}.`),_(i.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${i.shape}.`),_(e.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${e}.`),_(s.shape[4]===e[3],()=>`Error in conv3dDerFilter: depth of input ${s.shape[4]}) must match input depth in filter (${e[3]}.`),_(i.shape[4]===e[4],()=>`Error in conv3dDerFilter: depth of dy (${i.shape[4]}) must match output depth for filter (${e[4]}).`);let a={x:s,dy:i},u={strides:n,pad:o,filterShape:e};return T.runKernel(Ra,a,u)}var vD=k({conv3DBackpropFilter_:VZ});var SD={kernelName:es,inputsToSave:[\"x\",\"filter\"],gradFunc:(r,t,e)=>{let{dilations:n,strides:o,pad:s}=e;_(io(n),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${n}'`);let[i,a]=t;return{x:()=>$x(i.shape,r,a,o,s),filter:()=>vD(i,r,a.shape,o,s)}}};var ND={kernelName:rs,inputsToSave:[\"x\"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>$(Ut(hm(J(e,\"float32\"))),r)}}};var kD={kernelName:ns,inputsToSave:[\"x\"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>$(gm(J(e,\"float32\")),r)}}};var TD={kernelName:os,inputsToSave:[\"x\"],gradFunc:(r,t,e)=>{let[n]=t,{axis:o,exclusive:s,reverse:i}=e;return{x:()=>{let a=nN([o],n.rank),u=im(r,o,s,!i);return a!=null&&(u=Vt(u,a)),u}}}};var _D={kernelName:ss,inputsToSave:[\"x\",\"filter\"],gradFunc:(r,t,e)=>{let{dilations:n,strides:o,pad:s,dimRoundingMode:i}=e,a=n==null?[1,1]:n;_(io(a),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${a}'`);let[u,l]=t;return _(u.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${u.rank}.`),_(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${l.rank}.`),_(u.shape[3]===l.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${u.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),_(Dr(o,a),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${a}'.`),Se(\"depthwiseConv2d\",s,i),{x:()=>gy(u.shape,r,l,o,s,a,i),filter:()=>hy(u,r,l.shape,o,s,a,i)}}};var ED={kernelName:is,inputsToSave:[\"x\",\"filter\"],gradFunc:(r,t,e)=>{let[n,o]=t,s={x:n,filter:o,dy:r},i={x:n,filter:o,dy:r};return{x:()=>T.runKernel(Yl,s,e),filter:()=>T.runKernel(Zl,i,e)}}};var AD={kernelName:ls,outputsToSave:[!0],gradFunc:(r,t)=>{let[e]=t,n={dy:r,y:e};return{x:()=>T.runKernel(La,n)}}};var DD={kernelName:us,inputsToSave:[\"x\"],gradFunc:(r,t)=>{let[e]=t,n=$(Ke(Ut(Wt(e))),2/Math.sqrt(Math.PI));return{x:()=>$(r,n)}}};var $D={kernelName:cs,outputsToSave:[!0],gradFunc:(r,t)=>{let[e]=t;return{x:()=>$(r,e)}}};var RD={kernelName:Mi,inputsToSave:[\"input\"],gradFunc:(r,t)=>{let[e]=t;return{input:()=>R(r,e.shape)}}};var FD={kernelName:ps,inputsToSave:[\"x\"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>$(r,Ke(e))}}};var OD={kernelName:ms,gradFunc:r=>({x:()=>vt(r)})};var MD={kernelName:fs,inputsToSave:[\"a\",\"b\"],gradFunc:(r,t)=>{let[e,n]=t,o=Mt(e.shape,n.shape);return{a:()=>{let a=ut(r,J(n,\"float32\")),u=we(e.shape,o);return u.length>0?R(mt(a,u),e.shape):a},b:()=>{let a=$(r,J(e,\"float32\")),u=we(n.shape,o);u.length>0&&(a=R(mt(a,u),n.shape));let l=Wt(n);return Ut(ut(a,J(l,\"float32\")))}}}};var PD={kernelName:ds,inputsToSave:[\"x\",\"mean\",\"variance\",\"scale\"],gradFunc:(r,t,e)=>{let{varianceEpsilon:n}=e,[o,s,i,a]=t,u=a==null?pt(1):a,l=we(s.shape,o.shape),c=[];if(s.rank===1){for(let I=0;Is.rank===1?R($($(r,Rr(R(f,[1,1,1,s.shape[0]]),c)),u),o.shape):R($($(r,f),u),o.shape),mean:()=>{let I=$($(f,pt(-1)),m);return s.rank===1&&(I=mt(I,l)),R(I,s.shape)},variance:()=>{let I=$($(d,p),m);return s.rank===1&&(I=mt(I,l)),R(I,s.shape)},scale:()=>{let I=$(p,f),N=$(r,I);return s.rank===1&&(N=mt(N,l)),R(N,s.shape)},offset:()=>{let I=r;return s.rank===1&&(I=mt(I,l)),R(I,s.shape)}}}};var BD={kernelName:Pi,inputsToSave:[\"x\",\"indices\"],gradFunc:(r,t,e)=>{let[n,o]=t,{axis:s,batchDims:i}=e,a=fr(s,n.shape)[0],u=(l,c,p)=>()=>{let m=l.shape,f=c.size,d=m.slice(0,a),h=d.length,g=m.slice(s,m.length).slice(1),x=g.length,b=LD(0,h),w=LD(h+1,h+1+x),I=zD([d,[f],g]),N=R(p,I),E=R(c,[f]),A=zD([[h],b,w]),D=Vt(N,A),F=vm(D,E,l.shape[a]),M=fh(A);return F=Vt(F,M),F};if(i===1){let l=n.shape[0],c=n.split(l,0);return{x:()=>Fe(c.map((f,d)=>u(f,o.slice(d,1),r.slice(d,1))())).reshape(n.shape),indices:()=>o}}else return{x:u(n,o,r),indices:()=>o}}};function LD(r,t){let e=[];for(let n=r;n{let[e,n]=t;return{a:()=>vt(e),b:()=>vt(n)}}};var GD={kernelName:go,gradFunc:r=>({x:()=>J(r,\"float32\")})};var WD={kernelName:gs,gradFunc:r=>({x:()=>vt(r)})};var UD={kernelName:xs,gradFunc:r=>({x:()=>vt(r)})};var HD={kernelName:ys,gradFunc:r=>({x:()=>vt(r)})};var qD={kernelName:bs,inputsToSave:[\"x\"],gradFunc:(r,t,e)=>{let[n]=t,{alpha:o}=e,s=Re(n,0);return{x:()=>Ie(s,r,$(r,o))}}};var KD={kernelName:Is,inputsToSave:[\"x\"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>ut(r,K(e,1))}}};var jD={kernelName:ws,inputsToSave:[\"x\"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>ut(r,J(e,\"float32\"))}}};var XD={kernelName:A_,inputsToSave:[],outputsToSave:[!0],gradFunc:(r,t,e)=>{let[n]=t,{axis:o}=e;return{logits:()=>{let i=Ke(n);return at(r,$(mt(r,o,!0),i))}}}};function GZ(r,t,e,n=5,o=1,s=1,i=.5){let a={x:r,y:t,dy:e},u={depthRadius:n,bias:o,alpha:s,beta:i};return T.runKernel(Xa,a,u)}var YD=k({localResponseNormalizationBackprop_:GZ});var ZD={kernelName:Cs,inputsToSave:[\"x\"],outputsToSave:[!0],gradFunc:(r,t,e)=>{let[n,o]=t,{depthRadius:s,bias:i,alpha:a,beta:u}=e;return{x:()=>YD(n,o,r,s,i,a,u)}}};function $y(r,t,e,n){return t.rank$(r,J($r(e,t),r.dtype))}}var $N={kernelName:vs,inputsToSave:[\"x\"],outputsToSave:[!0],gradFunc:(r,t,e)=>{let n=e,{reductionIndices:o}=n,s=t[0],i=t[1],a=fr(o,s.shape),u=$y(r,i,s,a);return{x:()=>u.x()}}};var JD={kernelName:Ss,inputsToSave:[\"a\",\"b\"],gradFunc:(r,t)=>{let[e,n]=t;return{a:()=>$(r,J(cn(e,n),\"float32\")),b:()=>$(r,J(yl(e,n),\"float32\"))}}};function WZ(r,t,e,n,o,s,i){let a=C(r,\"dy\",\"maxPool3dGrad\"),u=C(t,\"input\",\"maxPool3dGrad\"),l=C(e,\"output\",\"maxPool3dGrad\"),c=a,p=u,m=l,f=!1;u.rank===4&&(f=!0,c=R(a,[1,a.shape[0],a.shape[1],a.shape[2],a.shape[3]]),p=R(u,[1,u.shape[0],u.shape[1],u.shape[2],u.shape[3]]),m=R(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]])),_(c.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${c.rank}.`),_(p.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${p.rank}.`),_(m.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${m.rank}.`),Se(\"maxPool3dGrad\",s,i);let d={dy:c,input:p,output:m},h={filterSize:n,strides:o,pad:s,dimRoundingMode:i},g=T.runKernel(tu,d,h);return f?R(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var QD=k({maxPool3dGrad_:WZ});var t$={kernelName:Li,inputsToSave:[\"x\"],outputsToSave:[!0],gradFunc:(r,t,e)=>{let[n,o]=t,{filterSize:s,strides:i,pad:a,dimRoundingMode:u}=e;return{x:()=>QD(r,n,o,s,i,a,u)}}};function UZ(r,t,e,n,o,s,i){let a=C(r,\"dy\",\"maxPoolGrad\"),u=C(t,\"input\",\"maxPoolGrad\"),l=C(e,\"output\",\"maxPoolGrad\");_(u.rank===a.rank,()=>`Rank of input (${u.rank}) does not match rank of dy (${a.rank})`),_(a.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${a.rank}.`),_(u.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${u.rank}.`),Se(\"maxPoolGrad\",s,i);let c={dy:a,input:u,output:l},p={filterSize:n,strides:o,pad:s,dimRoundingMode:i};return T.runKernel(Ql,c,p)}var e$=k({maxPoolGrad_:UZ});var r$={kernelName:Ns,inputsToSave:[\"x\"],outputsToSave:[!0],gradFunc:(r,t,e)=>{let[n,o]=t,{filterSize:s,strides:i,pad:a}=e;return{x:()=>e$(r,n,o,s,i,a)}}};var n$={kernelName:ks,inputsToSave:[\"x\"],gradFunc:(r,t,e)=>{let[n]=t,{axis:o}=e,s=fr(o,n.shape),a=rN(n.shape,s)[1],u=jt(a);return{x:()=>{let c=n.shape.slice();s.forEach(f=>{c[f]=1});let p=R(r,c);return ut($(p,ar(n.shape,\"float32\")),u)}}}};var o$={kernelName:Ts,inputsToSave:[\"x\"],outputsToSave:[!0],gradFunc:(r,t,e)=>{let n=e,{axis:o}=n,[s,i]=t,a=fr(o,s.shape),u=$y(r,i,s,a);return{x:()=>u.x()}}};var s$={kernelName:_s,inputsToSave:[\"a\",\"b\"],gradFunc:(r,t)=>{let[e,n]=t;return{a:()=>$(r,J(Vn(e,n),\"float32\")),b:()=>$(r,J(Re(e,n),\"float32\"))}}};var i$={kernelName:Es,inputsToSave:[\"x\"],gradFunc:(r,t,e)=>{let n=t[0],{paddings:o}=e,s=o.map(i=>i[0]);return{x:()=>Ot(r,s,n.shape)}}};var a$={kernelName:As,inputsToSave:[\"a\",\"b\"],gradFunc:(r,t)=>{let[e,n]=t,o=Mt(e.shape,n.shape);return{a:()=>{let a=we(e.shape,o);return a.length>0?R(mt(r,a),e.shape):r},b:()=>{let a=$(r,Ut(la(ut(e,n)))),u=we(n.shape,o);return u.length>0?R(mt(a,u),n.shape):a}}}};var l$={kernelName:Ds,inputsToSave:[\"a\",\"b\"],gradFunc:(r,t)=>{let[e,n]=t,o=Mt(e.shape,n.shape);return{a:()=>{let a=$(r,J(n,\"float32\")),u=we(e.shape,o);return u.length>0?R(mt(a,u),e.shape):a},b:()=>{let a=$(r,J(e,\"float32\")),u=we(n.shape,o);return u.length>0?R(mt(a,u),n.shape):a}}}};var u$={kernelName:zi,gradFunc:r=>({x:()=>Ut(r)})};var c$={kernelName:$s,inputsToSave:[\"indices\"],gradFunc:(r,t)=>{let e=t[0];return{indices:()=>ke(e.shape,\"float32\")}}};var p$={kernelName:Bi,gradFunc:r=>({x:()=>vt(r)})};var m$={kernelName:Vi,saveAllInputs:!0,gradFunc:(r,t,e)=>{let{axis:n}=e;return gr(r,n).map(s=>()=>s)}};var RN={kernelName:Rs,inputsToSave:[\"x\"],gradFunc:(r,t,e)=>{let n=t[0],{paddings:o}=e,s=o.map(i=>i[0]);return{x:()=>Ot(r,s,n.shape)}}};var f$={kernelName:Fs,inputsToSave:[\"a\",\"b\"],outputsToSave:[!0],gradFunc:(r,t)=>{let[e,n,o]=t,s=e,i=n,a=Mt(s.shape,i.shape);return{a:()=>{let c=J(i,\"float32\"),p=$(r,$(c,qr(s,at(c,pt(1))))),m=we(s.shape,a);return m.length>0&&(p=mt(p,m)),R(p,s.shape)},b:()=>{let c=Re(s,0),p=Ie(c,Nr(s),vt(s)),m=$(r,$(o,p)),f=we(i.shape,a);return f.length>0&&(m=mt(m,f)),R(m,i.shape)}}}};var d$={kernelName:Os,inputsToSave:[\"x\",\"alpha\"],gradFunc:(r,t)=>{let[e,n]=t,o=Re(e,0);return{x:()=>Ie(o,r,$(r,n)),alpha:()=>{let s=Ie(o,vt(r),$(r,e)),i=we(n.shape,r.shape);return i.length>0&&(s=mt(s,i)),R(s,n.shape)}}}};function HZ(r,t,e){let n=r.shape.slice();n[e]=1;let o=R(t,n),s=mc(r,e,!0,!1),i=mc(r,e,!0,!0),a=$(s,i);return $(o,a)}function qZ(r,t,e){let n=r.shape.length,o=n-e.length,s=S.getAxesPermutation(e,n),i=r;s!=null&&(i=Vt(r,s));let a=i.shape.slice(),l=a.splice(n-e.length,e.length).reduce((m,f)=>m*f,1);a.push(l);let c=i.reshape(a),p=HZ(c,t,o);if(p=p.reshape(i.shape),s!=null){let m=S.getUndoAxesPermutation(s);p=Vt(p,m)}return p}var h$={kernelName:Ms,inputsToSave:[\"x\"],gradFunc:(r,t,e)=>{let[n]=t,{axis:o}=e,s=[];return o==null?s=n.shape.map((i,a)=>a):typeof o==\"number\"?s=[o]:s=o,{x:()=>qZ(n,r,s)}}};var g$={kernelName:as,inputsToSave:[\"a\",\"b\"],gradFunc:(r,t)=>{let[e,n]=t,o=Mt(e.shape,n.shape);return{a:()=>{let a=ut(r,J(n,\"float32\")),u=we(e.shape,o);return u.length>0?R(mt(a,u),e.shape):a},b:()=>{let a=$(r,J(e,\"float32\")),u=we(n.shape,o);u.length>0&&(a=R(mt(a,u),n.shape));let l=Wt(n);return Ut(ut(a,J(l,\"float32\")))}}}};var x$={kernelName:Ps,inputsToSave:[\"x\"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>ut(r,Ut(Wt(e)))}}};var y$={kernelName:Vs,inputsToSave:[\"x\"],gradFunc:(r,t)=>{let[e]=t,n=$(Vn(e,6),So(e));return{x:()=>$(r,J(n,\"float32\"))}}};var b$={kernelName:Ls,inputsToSave:[\"x\"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>$(r,J(So(e),\"float32\"))}}};var w$={kernelName:Gi,inputsToSave:[\"x\"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>R(r,e.shape)}}};var I$={kernelName:Bs,inputsToSave:[\"images\"],gradFunc:(r,t,e)=>{let[n]=t,o={dy:r,images:n};return{images:()=>T.runKernel(rl,o,e)}}};var C$={kernelName:zs,inputsToSave:[\"images\"],gradFunc:(r,t,e)=>{let[n]=t,o={dy:r,images:n};return{images:()=>T.runKernel(el,o,e)}}};var v$={kernelName:Gs,gradFunc:(r,t,e)=>{let{dims:n}=e,o=fr(n,r.shape);return{x:()=>dr(r,o)}}};var S$={kernelName:Ws,gradFunc:r=>({x:()=>vt(r)})};var N$={kernelName:Us,inputsToSave:[\"x\"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>Ut(ut(r,$(qr(e,1.5),2)))}}};var k$={kernelName:Wi,inputsToSave:[\"condition\"],gradFunc:(r,t)=>{let[e]=t;return{condition:()=>J(vt(e),\"float32\"),t:()=>$(r,J(e,r.dtype)),e:()=>$(r,J(Nu(e),r.dtype))}}};var T$={kernelName:Hs,inputsToSave:[\"x\"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>{let n=Re(e,pt(0)),o=pt(_N),s=pt(EN),i=$(r,s),a=$($(r,o),Ke(J(e,\"float32\")));return Ie(n,i,a)}}}};var _$={kernelName:Xs,outputsToSave:[!0],gradFunc:(r,t)=>{let[e]=t;return{x:()=>$(r,$(e,at(pt(1),e)))}}};var E$={kernelName:js,gradFunc:r=>({x:()=>vt(r)})};var A$={kernelName:qs,inputsToSave:[\"x\"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>$(bu(J(e,\"float32\")),r)}}};var D$={kernelName:Ks,inputsToSave:[\"x\"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>$(sm(J(e,\"float32\")),r)}}};var $$={kernelName:Ui,inputsToSave:[\"x\"],gradFunc:(r,t,e)=>{let[n]=t,{begin:o,size:s}=e,i=n.shape,[a,u]=TN(n,o,s),l=[];for(let c=0;cmn(r,l)}}};var R$={kernelName:Qs,outputsToSave:[!0],gradFunc:(r,t,e)=>{let[n]=t,{dim:o}=e,s=!0,i=$(r,n);return{logits:()=>at(i,$(mt(i,[o],s),n))}}};var F$={kernelName:Ys,inputsToSave:[\"x\"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>$(r,en(e))}}};var FN={kernelName:Hi,gradFunc:(r,t,e)=>{let{blockShape:n,paddings:o}=e;return{x:()=>yu(r,n,o)}}};var ON={kernelName:qi,gradFunc:(r,t,e)=>{let{axis:n}=e;return{x:()=>ie(r,n)}}};var O$={kernelName:Zs,inputsToSave:[\"x\"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>ut(r,$(ge(J(e,\"float32\")),2))}}};var M$={kernelName:iu,inputsToSave:[\"x\"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>$(r,$(J(e,\"float32\"),2))}}};var P$={kernelName:ti,inputsToSave:[\"a\",\"b\"],gradFunc:(r,t)=>{let[e,n]=t,o=pt(2);return{a:()=>$(r,$(o,at(e,n))),b:()=>$(r,$(o,at(n,e)))}}};var L$={kernelName:xo,gradFunc:r=>({x:()=>vt(r)})};var z$={kernelName:ei,inputsToSave:[\"a\",\"b\"],gradFunc:(r,t)=>{let[e,n]=t,o=Mt(e.shape,n.shape);return{a:()=>{let a=r,u=we(e.shape,o);return u.length>0&&(a=mt(a,u)),R(a,e.shape)},b:()=>{let a=r,u=we(n.shape,o);return u.length>0&&(a=mt(a,u)),R(Ut(a),n.shape)}}}};var B$={kernelName:Js,inputsToSave:[\"x\"],gradFunc:(r,t,e)=>{let[n]=t,o=n.shape.slice(),{axis:s}=e;fr(s,n.shape).forEach(l=>{o[l]=1});let a=R(r,o),u=$(a,ar(n.shape,\"float32\"));return{x:()=>u}}};var V$={kernelName:ri,inputsToSave:[\"x\"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>ut(r,Wt(bu(e)))}}};var G$={kernelName:ni,outputsToSave:[!0],gradFunc:(r,t)=>{let[e]=t;return{x:()=>$(at(pt(1),Wt(e)),r)}}};var W$={kernelName:oo,inputsToSave:[\"x\"],gradFunc:(r,t,e)=>{let[n]=t,{reps:o}=e;return{x:()=>{let i=vt(n);if(n.rank===1)for(let a=0;a{let n=e,{perm:o}=n,s=fh(o);return{x:()=>Vt(r,s)}}};var H$={kernelName:Ki,gradFunc:(r,t,e)=>{let n=e,{axis:o}=n;return{value:()=>Fe(r,o)}}};var q$={kernelName:pu,inputsToSave:[\"segmentIds\"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>KZ(r,e)}}};function KZ(r,t){let e=kn(t,vt(t)),n=ua(r,e),o=cn(t,pt(0,\"int32\")),s=n.rank-o.rank;for(let a=0;a({x:()=>vt(r)})};var jZ=[Dy,J2,Q2,tD,eD,rD,nD,oD,sD,iD,aD,lD,cD,mD,fD,dD,hD,gD,xD,yD,bD,wD,CD,ID,SD,ND,kD,TD,_D,ED,g$,AD,DD,$D,RD,FD,MD,OD,PD,BD,VD,GD,WD,UD,HD,qD,KD,jD,XD,ZD,$N,$N,JD,t$,r$,n$,o$,s$,i$,a$,l$,u$,c$,p$,m$,RN,RN,f$,d$,h$,x$,y$,b$,w$,I$,C$,v$,S$,N$,k$,T$,_$,E$,A$,D$,$$,R$,F$,FN,FN,ON,ON,O$,P$,M$,L$,z$,B$,V$,G$,W$,U$,H$,q$,K$];for(let r of jZ)$_(r);O().prototype.abs=function(){return this.throwIfDisposed(),_e(this)};O().prototype.acos=function(){return this.throwIfDisposed(),fx(this)};O().prototype.acosh=function(){return this.throwIfDisposed(),dx(this)};O().prototype.add=function(r){return this.throwIfDisposed(),K(this,r)};O().prototype.all=function(r,t){return this.throwIfDisposed(),tm(this,r,t)};O().prototype.any=function(r,t){return this.throwIfDisposed(),cc(this,r,t)};O().prototype.argMax=function(r){return this.throwIfDisposed(),ra(this,r)};O().prototype.argMin=function(r){return this.throwIfDisposed(),hx(this,r)};O().prototype.asScalar=function(){return this.throwIfDisposed(),_(this.size===1,()=>\"The array must have only 1 element.\"),R(this,[])};O().prototype.asType=function(r){return this.throwIfDisposed(),J(this,r)};O().prototype.as1D=function(){return this.throwIfDisposed(),R(this,[this.size])};O().prototype.as2D=function(r,t){return this.throwIfDisposed(),R(this,[r,t])};O().prototype.as3D=function(r,t,e){return this.throwIfDisposed(),R(this,[r,t,e])};O().prototype.as4D=function(r,t,e,n){return this.throwIfDisposed(),R(this,[r,t,e,n])};O().prototype.as5D=function(r,t,e,n,o){return this.throwIfDisposed(),R(this,[r,t,e,n,o])};O().prototype.asin=function(){return this.throwIfDisposed(),gx(this)};O().prototype.asinh=function(){return this.throwIfDisposed(),xx(this)};O().prototype.atan=function(){return this.throwIfDisposed(),yx(this)};O().prototype.atan2=function(r){return this.throwIfDisposed(),bx(this,r)};O().prototype.atanh=function(){return this.throwIfDisposed(),wx(this)};O().prototype.avgPool=function(r,t,e,n){return this.throwIfDisposed(),xu(this,r,t,e,n)};O().prototype.batchToSpaceND=function(r,t){return this.throwIfDisposed(),yu(this,r,t)};O().prototype.batchNorm=function(r,t,e,n,o){return this.throwIfDisposed(),oa(this,r,t,e,n,o)};O().prototype.broadcastTo=function(r){return this.throwIfDisposed(),sa(this,r)};O().prototype.cast=function(r){return this.throwIfDisposed(),J(this,r)};O().prototype.ceil=function(){return this.throwIfDisposed(),kx(this)};O().prototype.clipByValue=function(r,t){return this.throwIfDisposed(),vr(this,r,t)};O().prototype.concat=function(r,t){return this.throwIfDisposed(),r instanceof Lt&&(r=[r]),ie([this,...r],t)};O().prototype.conv1d=function(r,t,e,n,o,s){return this.throwIfDisposed(),rm(this,r,t,e,n,o,s)};O().prototype.conv2dTranspose=function(r,t,e,n,o){return this.throwIfDisposed(),om(this,r,t,e,n,o)};O().prototype.conv2d=function(r,t,e,n,o,s){return this.throwIfDisposed(),Nn(this,r,t,e,n,o,s)};O().prototype.cos=function(){return this.throwIfDisposed(),bu(this)};O().prototype.cosh=function(){return this.throwIfDisposed(),sm(this)};O().prototype.cumprod=function(r,t,e){return this.throwIfDisposed(),mc(this,r,t,e)};O().prototype.cumsum=function(r,t,e){return this.throwIfDisposed(),im(this,r,t,e)};O().prototype.depthToSpace=function(r,t){return this.throwIfDisposed(),Fx(this,r,t)};O().prototype.depthwiseConv2d=function(r,t,e,n,o,s){return this.throwIfDisposed(),ia(this,r,t,e,n,o,s)};O().prototype.dilation2d=function(r,t,e,n,o){return this.throwIfDisposed(),Ox(this,r,t,e,n,o)};O().prototype.divNoNan=function(r){return this.throwIfDisposed(),Mx(this,r)};O().prototype.div=function(r){return this.throwIfDisposed(),ut(this,r)};O().prototype.dot=function(r){return this.throwIfDisposed(),Px(this,r)};O().prototype.elu=function(){return this.throwIfDisposed(),aa(this)};O().prototype.equal=function(r){return this.throwIfDisposed(),$r(this,r)};O().prototype.erf=function(){return this.throwIfDisposed(),am(this)};O().prototype.euclideanNorm=function(r,t){return this.throwIfDisposed(),Lx(this,r,t)};O().prototype.exp=function(){return this.throwIfDisposed(),Ke(this)};O().prototype.expandDims=function(r){return this.throwIfDisposed(),je(this,r)};O().prototype.expm1=function(){return this.throwIfDisposed(),zx(this)};O().prototype.fft=function(){return this.throwIfDisposed(),Au(this)};O().prototype.flatten=function(){return this.throwIfDisposed(),R(this,[this.size])};O().prototype.floor=function(){return this.throwIfDisposed(),la(this)};O().prototype.floorDiv=function(r){return this.throwIfDisposed(),Qp(this,r)};O().prototype.gather=function(r,t,e){return this.throwIfDisposed(),ua(this,r,t,e)};O().prototype.greaterEqual=function(r){return this.throwIfDisposed(),cn(this,r)};O().prototype.greater=function(r){return this.throwIfDisposed(),Re(this,r)};O().prototype.ifft=function(){return this.throwIfDisposed(),wl(this)};O().prototype.irfft=function(){return this.throwIfDisposed(),bm(this)};O().prototype.isFinite=function(){return this.throwIfDisposed(),Bx(this)};O().prototype.isInf=function(){return this.throwIfDisposed(),Vx(this)};O().prototype.isNaN=function(){return this.throwIfDisposed(),Gx(this)};O().prototype.leakyRelu=function(r){return this.throwIfDisposed(),Cu(this,r)};O().prototype.lessEqual=function(r){return this.throwIfDisposed(),Vn(this,r)};O().prototype.less=function(r){return this.throwIfDisposed(),yl(this,r)};O().prototype.localResponseNormalization=function(r,t,e,n){return this.throwIfDisposed(),Wx(this,r,t,e,n)};O().prototype.logSigmoid=function(){return this.throwIfDisposed(),qx(this)};O().prototype.logSoftmax=function(r){return this.throwIfDisposed(),lm(this,r)};O().prototype.logSumExp=function(r,t){return this.throwIfDisposed(),Su(this,r,t)};O().prototype.log=function(){return this.throwIfDisposed(),Nr(this)};O().prototype.log1p=function(){return this.throwIfDisposed(),vu(this)};O().prototype.logicalAnd=function(r){return this.throwIfDisposed(),Fr(this,r)};O().prototype.logicalNot=function(){return this.throwIfDisposed(),Nu(this)};O().prototype.logicalOr=function(r){return this.throwIfDisposed(),um(this,r)};O().prototype.logicalXor=function(r){return this.throwIfDisposed(),Kx(this,r)};O().prototype.matMul=function(r,t,e){return this.throwIfDisposed(),Bt(this,r,t,e)};O().prototype.maxPool=function(r,t,e,n){return this.throwIfDisposed(),ku(this,r,t,e,n)};O().prototype.max=function(r,t){return this.throwIfDisposed(),Sr(this,r,t)};O().prototype.maximum=function(r){return this.throwIfDisposed(),kn(this,r)};O().prototype.mean=function(r,t){return this.throwIfDisposed(),Ne(this,r,t)};O().prototype.min=function(r,t){return this.throwIfDisposed(),gl(this,r,t)};O().prototype.minimum=function(r){return this.throwIfDisposed(),lo(this,r)};O().prototype.mirrorPad=function(r,t){return this.throwIfDisposed(),Yx(this,r,t)};O().prototype.mod=function(r){return this.throwIfDisposed(),Zx(this,r)};O().prototype.mul=function(r){return this.throwIfDisposed(),$(this,r)};O().prototype.neg=function(){return this.throwIfDisposed(),Ut(this)};O().prototype.norm=function(r,t,e){return this.throwIfDisposed(),xl(this,r,t,e)};O().prototype.notEqual=function(r){return this.throwIfDisposed(),ci(this,r)};O().prototype.oneHot=function(r,t=1,e=0){return this.throwIfDisposed(),ca(this,r,t,e)};O().prototype.onesLike=function(){return this.throwIfDisposed(),wr(this)};O().prototype.pad=function(r,t){return this.throwIfDisposed(),mn(this,r,t)};O().prototype.pool=function(r,t,e,n,o,s){return this.throwIfDisposed(),Jx(this,r,t,e,n,o,s)};O().prototype.pow=function(r){return this.throwIfDisposed(),qr(this,r)};O().prototype.prelu=function(r){return this.throwIfDisposed(),_u(this,r)};O().prototype.prod=function(r,t){return this.throwIfDisposed(),Qx(this,r,t)};O().prototype.reciprocal=function(){return this.throwIfDisposed(),sy(this)};O().prototype.relu=function(){return this.throwIfDisposed(),Or(this)};O().prototype.relu6=function(){return this.throwIfDisposed(),cm(this)};O().prototype.reshapeAs=function(r){return this.throwIfDisposed(),R(this,r.shape)};O().prototype.reshape=function(r){return this.throwIfDisposed(),R(this,r)};O().prototype.resizeBilinear=function(r,t,e){return this.throwIfDisposed(),Cy(this,r,t,e)};O().prototype.resizeNearestNeighbor=function(r,t,e){return this.throwIfDisposed(),vy(this,r,t,e)};O().prototype.reverse=function(r){return this.throwIfDisposed(),dr(this,r)};O().prototype.rfft=function(){return this.throwIfDisposed(),Du(this)};O().prototype.round=function(){return this.throwIfDisposed(),pm(this)};O().prototype.rsqrt=function(){return this.throwIfDisposed(),mm(this)};O().prototype.selu=function(){return this.throwIfDisposed(),fm(this)};O().prototype.separableConv2d=function(r,t,e,n,o,s){return this.throwIfDisposed(),dm(this,r,t,e,n,o,s)};O().prototype.sigmoid=function(){return this.throwIfDisposed(),en(this)};O().prototype.sign=function(){return this.throwIfDisposed(),iy(this)};O().prototype.sin=function(){return this.throwIfDisposed(),hm(this)};O().prototype.sinh=function(){return this.throwIfDisposed(),gm(this)};O().prototype.slice=function(r,t){return this.throwIfDisposed(),Ot(this,r,t)};O().prototype.softmax=function(r){return this.throwIfDisposed(),Eu(this,r)};O().prototype.softplus=function(){return this.throwIfDisposed(),ui(this)};O().prototype.spaceToBatchND=function(r,t){return this.throwIfDisposed(),Tu(this,r,t)};O().prototype.split=function(r,t){return this.throwIfDisposed(),hr(this,r,t)};O().prototype.sqrt=function(){return this.throwIfDisposed(),ge(this)};O().prototype.square=function(){return this.throwIfDisposed(),Wt(this)};O().prototype.squaredDifference=function(r){return this.throwIfDisposed(),wm(this,r)};O().prototype.squeeze=function(r){return this.throwIfDisposed(),Wn(this,r)};O().prototype.stack=function(r,t){this.throwIfDisposed();let e=r instanceof Lt?[this,r]:[this,...r];return Fe(e,t)};O().prototype.step=function(r){return this.throwIfDisposed(),So(this,r)};O().prototype.stridedSlice=function(r,t,e,n,o,s,i,a){return this.throwIfDisposed(),ay(this,r,t,e,n,o,s,i,a)};O().prototype.sub=function(r){return this.throwIfDisposed(),at(this,r)};O().prototype.sum=function(r,t){return this.throwIfDisposed(),mt(this,r,t)};O().prototype.tan=function(){return this.throwIfDisposed(),ly(this)};O().prototype.tanh=function(){return this.throwIfDisposed(),li(this)};O().prototype.tile=function(r){return this.throwIfDisposed(),Rr(this,r)};O().prototype.toBool=function(){return this.throwIfDisposed(),J(this,\"bool\")};O().prototype.toFloat=function(){return this.throwIfDisposed(),J(this,\"float32\")};O().prototype.toInt=function(){return this.throwIfDisposed(),J(this,\"int32\")};O().prototype.topk=function(r,t){return this.throwIfDisposed(),cy(this,r,t)};O().prototype.transpose=function(r){return this.throwIfDisposed(),Vt(this,r)};O().prototype.unique=function(r){return this.throwIfDisposed(),py(this,r)};O().prototype.unsortedSegmentSum=function(r,t){return this.throwIfDisposed(),vm(this,r,t)};O().prototype.unstack=function(r){return this.throwIfDisposed(),gr(this,r)};O().prototype.where=function(r,t){return this.throwIfDisposed(),Ie(r,this,t)};O().prototype.zerosLike=function(){return this.throwIfDisposed(),vt(this)};var uo=class r extends Error{constructor(t){super(t),Object.setPrototypeOf(this,r.prototype)}},dn=class r extends Error{constructor(t){super(t),Object.setPrototypeOf(this,r.prototype)}},z=class r extends Error{constructor(t){super(t),Object.setPrototypeOf(this,r.prototype)}},_t=class r extends Error{constructor(t){super(t),Object.setPrototypeOf(this,r.prototype)}},Ry=class r extends Error{constructor(t){super(t),Object.setPrototypeOf(this,r.prototype)}};var vh=class{constructor(t){this.maxEntries=t||100,this.cache=new Map}get(t){let e;return this.cache.has(t)&&(e=this.cache.get(t),this.cache.delete(t),this.cache.set(t,e)),e}put(t,e){if(this.cache.has(t))this.cache.delete(t);else if(this.cache.size>=this.maxEntries){let n=this.cache.keys().next().value;this.cache.delete(n)}this.cache.set(t,e)}getMaxEntries(){return this.maxEntries}setMaxEntries(t){if(t<0)throw new Error(`The maxEntries of LRU caches must be at least 0, but got ${t}.`);if(this.maxEntries>t)for(let e=0;ee.toUpperCase())}var ko={};function km(r){if(r==null)return null;let t={};return t.className=r.getClassName(),t.config=r.getConfig(),t}function MN(r){if(!(r==null||typeof r!=\"object\"))if(Array.isArray(r))r.forEach(t=>MN(t));else{let t=Object.keys(r);for(let e of t){let n=r[e];n!=null&&typeof n==\"object\"&&(!Array.isArray(n)&&n.type===\"ndarray\"&&typeof n.value==\"number\"?r[e]=n.value:MN(n))}}}function fa(r,t={},e={},n=\"object\",o=!1){if(typeof r==\"string\"){let s=r,i;if(s in e)i=e[s];else if(s in ko)i=ko[s];else if(i=t[s],i==null)throw new z(`Unknown ${n}: ${r}. This may be due to one of the following reasons:\n1. The ${n} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.\n2. The custom ${n} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return i}else{let s=r;if(s.className==null||s.config==null)throw new z(`${n}: Improper config format: ${JSON.stringify(s)}.\n'className' and 'config' must set.`);let i=s.className,a,u;if(i in e?[a,u]=e[i]:i in ko?[a,u]=ko.className:i in t&&([a,u]=t[i]),a==null)throw new z(`Unknown ${n}: ${i}. This may be due to one of the following reasons:\n1. The ${n} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.\n2. The custom ${n} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(u!=null){let l={};for(let f of Object.keys(ko))l[f]=ko[f];for(let f of Object.keys(e))l[f]=e[f];let c=s.config;c.customObjects=l;let p=Object.assign({},ko);for(let f of Object.keys(e))ko[f]=e[f];MN(s.config);let m=u(a,s.config,e,o);return ko=Object.assign({},p),m}else{let l=Object.assign({},ko);for(let p of Object.keys(e))ko[p]=e[p];let c=new a(s.config);return ko=Object.assign({},l),c}}}function XZ(r,t){return rt?1:0}function Sh(r,t){return-1*XZ(r,t)}function Eo(r){if(r==null)return r;let t=[];for(let e of r)t.indexOf(e)===-1&&t.push(e);return t}function j$(r){if(r==null)throw new z(`Invalid value in obj: ${JSON.stringify(r)}`);for(let t in r)if(r.hasOwnProperty(t))return!1;return!0}function da(r,t,e){if(e!=null&&r.indexOf(e)<0)throw new z(`${e} is not a valid ${t}. Valid values are ${r} or null/undefined.`)}function Fy(r,t,e=0,n=1/0){return co(e>=0),co(n>=e),Array.isArray(r)&&r.length>=e&&r.length<=n&&r.every(o=>typeof o===t)}function tr(r,t){Array.isArray(r)?(y.assert(r.length>0,()=>`${t} is unexpectedly an empty array.`),r.forEach((e,n)=>tr(e,`element ${n+1} of ${t}`))):y.assert(Number.isInteger(r)&&r>0,()=>`Expected ${t} to be a positive integer, but got ${X$(r)}.`)}function X$(r){return r===null?\"null\":Array.isArray(r)?\"[\"+r.map(t=>X$(t)).join(\",\")+\"]\":typeof r==\"string\"?`\"${r}\"`:`${r}`}function Y$(r,t,e){let n=e!=null?e():y.now(),o;return(...i)=>{let a=e!=null?e():y.now();return a-n0){let e=`${r}_${t}`;return Tm.set(e,1),e}else return r}var JZ=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\\._\\/]*$/);function oR(r){return!!r.match(JZ)}function sR(r){return r===parseInt(r.toString(),10)}function Ao(r,t,e){t==null&&(t=0),e==null&&(e=r.length);let n=1;for(let o=t;ot&&(t=n)}return t}function gn(r,t){if(t{if(r.shape.length!==2)throw new z(`repeat() expects a rank-2 tensor, but received a rank-${r.shape.length} tensor.`);let e=Sl(r,1);return Vy(e,[1,t,1])})}function aR(r){let t=[Ao(r.shape)];return R(r,t)}function lR(r){if(r.rank<=1)throw new z(`batchFlatten requires a minimum rank of 2. Got rank: ${r.rank}.`);let t=[r.shape[0],Ao(r.shape,1)];return R(r,t)}function vl(r,t,e){return B(()=>{switch(r.rank){case 1:return xm(r,t,e);case 2:return gh(r,[t,0],[e,r.shape[1]]);case 3:return ym(r,[t,0,0],[e,r.shape[1],r.shape[2]]);case 4:return yc(r,[t,0,0,0],[e,r.shape[1],r.shape[2],r.shape[3]]);case 5:return Ot(r,[t,0,0,0,0],[e,r.shape[1],r.shape[2],r.shape[3],r.shape[4]]);case 6:return Ot(r,[t,0,0,0,0,0],[e,r.shape[1],r.shape[2],r.shape[3],r.shape[4],r.shape[5]]);default:throw new z(`sliceAlongFirstAxis() received an unsupported tensor rank: ${r.rank}`)}})}function BN(r,t,e){return B(()=>{switch(r.rank){case 1:return xm(r,t,e);case 2:return gh(r,[0,t],[r.shape[0],e]);case 3:return ym(r,[0,0,t],[r.shape[0],r.shape[1],e]);case 4:return yc(r,[0,0,0,t],[r.shape[0],r.shape[1],r.shape[2],e]);default:throw new z(`sliceAlongLastAxis() received an unsupported tensor rank: ${r.rank}`)}})}function kh(r,t,e,n){return B(()=>{switch(r.rank){case 1:return xm(r,t,e);case 2:switch(n){case 1:return vl(r,t,e);case 2:return BN(r,t,e);default:throw new z(`The axis is not within the rank of the tensor ${n}`)}case 3:switch(n){case 1:return vl(r,t,e);case 2:return ym(r,[0,t,0],[r.shape[0],e,r.shape[2]]);case 3:return BN(r,t,e);default:throw new z(`The axis is not within the rank of the tensor ${n}`)}case 4:switch(n){case 1:return vl(r,t,e);case 2:return yc(r,[0,t,0,0],[r.shape[0],e,r.shape[2],r.shape[3]]);case 3:return yc(r,[0,0,t,0],[r.shape[0],r.shape[1],e,r.shape[3]]);case 4:return BN(r,t,e);default:throw new z(`The axis is not within the rank of the tensor ${n}`)}default:throw new z(`sliceAlongLastAxis() received an unsupported tensor rank: ${r.rank}`)}})}function _m(r,t=-1){let e;return t<0&&(e=r[0].rank,e!==0?t=e:t=0),t===r[0].rank&&(t=-1),ie(r,t)}function GN(r,t){switch(r.rank){case 1:return Tx([r,t]);case 2:return _x([r,t],0);case 3:return Ex([r,t],0);case 4:return Ax([r,t],0);default:throw new z(`concatAlongFirstAxis() received an unsupported tensor rank: ${r.rank}`)}}function Vy(r,t){if(Array.isArray(t)||(t=[t]),r.rank!==t.length)throw new z(`The length of input n (${t.length}) does not match the number of dimensions in input x (${r.rank})`);return Rr(r,t)}function Em(r,t=0,e=1,n,o){return xc(r,t,e,n,o)}function Do(r,t,e,n){if(r.rank<2||t.rank<2)throw new _t(`dot requires both inputs to be rank >= 2 but got x shape = ${r.shape} and y shape = ${t.shape}`);if(t.rank>=3){let o=r.shape.slice(-1)[0],s=t.shape.slice(-2)[0];if(o!==s)throw new _t(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${r.shape} and y shape = ${t.shape}`)}if(r.rank===2&&t.rank===2)return Ru.matMul({a:r,b:t,transposeA:!1,transposeB:!1,bias:n?VN(r.rank,n,xn()):null,activation:e});{let o=r.shape.slice(),s=o.pop();r=R(r,[-1,s]);let i=t.shape.slice(),a=i.pop(),u=i.pop(),l=[...i,a],c=Array.from({length:t.rank},(d,h)=>h===0?t.rank-2:h<=t.rank-2?h-1:h);t=R(Vt(t,c),[u,-1]);let p=[...o,...l];return R(Ru.matMul({a:r,b:t,transposeA:!1,transposeB:!1,bias:n?VN(r.rank,n,xn()):null,activation:e}),p)}}function Gy(r,t,e){return B(()=>(Array.isArray(t)?t=Oe(t,\"int32\"):t=J(t,\"int32\"),ua(r,t,e)))}function $c(r){return $(r,r)}function VN(r,t,e){let n=t.shape;if(t.rank!==1&&t.rank!==r)throw new z(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${r}`);if(r===5){if(e===\"channelsFirst\")return n.length===1?R(t,[1,n[0],1,1,1]):R(t,[1,n[3],n[0],n[1],n[2]]);if(e===\"channelsLast\")return n.length===1?R(t,[1,1,1,1,n[0]]):R(t,[1].concat(n))}else if(r===4){if(e===\"channelsFirst\")return n.length===1?R(t,[1,n[0],1,1]):R(t,[1,n[2],n[0],n[1]]);if(e===\"channelsLast\")return n.length===1?R(t,[1,1,1,n[0]]):R(t,[1].concat(n))}else if(r===3){if(e===\"channelsFirst\")return n.length===1?R(t,[1,n[0],1]):R(t,[1,n[1],n[0]]);if(e===\"channelsLast\")return n.length===1?R(t,[1,1,n[0]]):R(t,[1].concat(n))}else if(r<3)return t;throw new z(`Unsupported input rank by biasAdd: ${t.rank}`)}function yn(r,t,e){return B(()=>(e==null&&(e=xn()),Me(e),K(r,VN(r.rank,t,e))))}function uR(r,t=1){if(t!==1)throw new _t(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return aa(r)}function cR(r){return B(()=>ut(r,K(_e(r),1)))}function Wy(r,t,e,n){return B(()=>dN(r,t,e,n))}function pR(r){return B(()=>{let t=K(.5,$(.2,r));return vr(t,0,1)})}function Ou(r,t,e=!1){return e?r():t()}var mR=[\"fanIn\",\"fanOut\",\"fanAvg\"],fR=[\"normal\",\"uniform\",\"truncatedNormal\"];function QZ(r){da(mR,\"FanMode\",r)}function t7(r){da(fR,\"Distribution\",r)}var bn=class extends Q.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},Am=class extends bn{apply(t,e){return ke(t,e)}};Am.className=\"Zeros\";Q.registerClass(Am);var Mu=class extends bn{apply(t,e){return ar(t,e)}};Mu.className=\"Ones\";Q.registerClass(Mu);var Dm=class extends bn{constructor(t){if(super(),typeof t!=\"object\")throw new z(`Expected argument of type ConstantConfig but got ${t}`);if(t.value===void 0)throw new z(`config must have value set but got ${t}`);this.value=t.value}apply(t,e){return B(()=>$(pt(this.value),ar(t,e)))}getConfig(){return{value:this.value}}};Dm.className=\"Constant\";Q.registerClass(Dm);var $m=class extends bn{constructor(t){super(),this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=t.minval||this.DEFAULT_MINVAL,this.maxval=t.maxval||this.DEFAULT_MAXVAL,this.seed=t.seed}apply(t,e){return Gn(t,this.minval,this.maxval,e,this.seed)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};$m.className=\"RandomUniform\";Q.registerClass($m);var Rm=class extends bn{constructor(t){super(),this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=t.mean||this.DEFAULT_MEAN,this.stddev=t.stddev||this.DEFAULT_STDDEV,this.seed=t.seed}apply(t,e){if(e=e||\"float32\",e!==\"float32\"&&e!==\"int32\")throw new _t(`randomNormal does not support dType ${e}.`);return Em(t,this.mean,this.stddev,e,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};Rm.className=\"RandomNormal\";Q.registerClass(Rm);var Fm=class extends bn{constructor(t){super(),this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=t.mean||this.DEFAULT_MEAN,this.stddev=t.stddev||this.DEFAULT_STDDEV,this.seed=t.seed}apply(t,e){if(e=e||\"float32\",e!==\"float32\"&&e!==\"int32\")throw new _t(`truncatedNormal does not support dType ${e}.`);return Cm(t,this.mean,this.stddev,e,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};Fm.className=\"TruncatedNormal\";Q.registerClass(Fm);var Om=class extends bn{constructor(t){super(),this.gain=t.gain!=null?t.gain:1}apply(t,e){return B(()=>{if(t.length!==2||t[0]!==t[1])throw new z(\"Identity matrix initializer can only be used for 2D square matrices.\");return $(this.gain,fc(t[0]))})}getConfig(){return{gain:this.gain}}};Om.className=\"Identity\";Q.registerClass(Om);function e7(r,t=\"channelsLast\"){let e,n;if(Me(t),r.length===2)e=r[0],n=r[1];else if([3,4,5].indexOf(r.length)!==-1){if(t===\"channelsFirst\"){let o=Ao(r,2);e=r[1]*o,n=r[0]*o}else if(t===\"channelsLast\"){let o=Ao(r,0,r.length-2);e=r[r.length-2]*o,n=r[r.length-1]*o}}else{let o=Ao(r);e=Math.sqrt(o),n=Math.sqrt(o)}return[e,n]}var Yr=class extends bn{constructor(t){if(super(),t.scale<0)throw new z(`scale must be a positive float. Got: ${t.scale}`);this.scale=t.scale==null?1:t.scale,this.mode=t.mode==null?\"fanIn\":t.mode,QZ(this.mode),this.distribution=t.distribution==null?\"normal\":t.distribution,t7(this.distribution),this.seed=t.seed}apply(t,e){let n=e7(t),o=n[0],s=n[1],i=this.scale;if(this.mode===\"fanIn\"?i/=Math.max(1,o):this.mode===\"fanOut\"?i/=Math.max(1,s):i/=Math.max(1,(o+s)/2),this.distribution===\"normal\"){let a=Math.sqrt(i);if(e=e||\"float32\",e!==\"float32\"&&e!==\"int32\")throw new _t(`${this.getClassName()} does not support dType ${e}.`);return Cm(t,0,a,e,this.seed)}else{let a=Math.sqrt(3*i);return Gn(t,-a,a,e,this.seed)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};Yr.className=\"VarianceScaling\";Q.registerClass(Yr);var Rc=class extends Yr{constructor(t){super({scale:1,mode:\"fanAvg\",distribution:\"uniform\",seed:t==null?null:t.seed})}getClassName(){return Yr.className}};Rc.className=\"GlorotUniform\";Q.registerClass(Rc);var Fc=class extends Yr{constructor(t){super({scale:1,mode:\"fanAvg\",distribution:\"normal\",seed:t==null?null:t.seed})}getClassName(){return Yr.className}};Fc.className=\"GlorotNormal\";Q.registerClass(Fc);var Oc=class extends Yr{constructor(t){super({scale:2,mode:\"fanIn\",distribution:\"normal\",seed:t==null?null:t.seed})}getClassName(){return Yr.className}};Oc.className=\"HeNormal\";Q.registerClass(Oc);var Mc=class extends Yr{constructor(t){super({scale:2,mode:\"fanIn\",distribution:\"uniform\",seed:t==null?null:t.seed})}getClassName(){return Yr.className}};Mc.className=\"HeUniform\";Q.registerClass(Mc);var Pc=class extends Yr{constructor(t){super({scale:1,mode:\"fanIn\",distribution:\"normal\",seed:t==null?null:t.seed})}getClassName(){return Yr.className}};Pc.className=\"LeCunNormal\";Q.registerClass(Pc);var Lc=class extends Yr{constructor(t){super({scale:1,mode:\"fanIn\",distribution:\"uniform\",seed:t==null?null:t.seed})}getClassName(){return Yr.className}};Lc.className=\"LeCunUniform\";Q.registerClass(Lc);var Mm=class extends bn{constructor(t){super(),this.DEFAULT_GAIN=1,this.ELEMENTS_WARN_SLOW=2e3,this.gain=t.gain==null?this.DEFAULT_GAIN:t.gain,this.seed=t.seed}apply(t,e){return B(()=>{if(t.length<2)throw new _t(\"Shape must be at least 2D.\");if(e!==\"int32\"&&e!==\"float32\"&&e!==void 0)throw new TypeError(`Unsupported data type ${e}.`);e=e;let n=y.sizeFromShape(t.slice(0,-1)),o=t[t.length-1],s=n*o;s>this.ELEMENTS_WARN_SLOW&&console.warn(`Orthogonal initializer is being called on a matrix with more than ${this.ELEMENTS_WARN_SLOW} (${s}) elements: Slowness may result.`);let i=[Math.max(o,n),Math.min(o,n)],a=Em(i,0,1,e,this.seed),u=xN.qr(a,!1),l=u[0],p=u[1].flatten().stridedSlice([0],[Math.min(o,n)*Math.min(o,n)],[Math.min(o,n)+1]);return l=$(l,p.sign()),nn*o);return t}var xR=\"Variable\",Th=class{constructor(t,e=\"float32\",n=xR,o=!0,s=null){this.dtype=e==null?\"float32\":e,this.shape=t.shape,this.id=Py(),n=n==null?xR:n,this.originalName=Ly(n),this.name=zy(this.originalName),this.trainable_=o,this.constraint=s,this.val=my(t,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(t){return this.assertNotDisposed(),n7(this.val,t),this.val.id!==t.id&&(this.val.assign(t),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(t){this.trainable_=t,this.val.trainable=t}};function n7(r,t){if(r.shape.toString()!==t.shape.toString())throw new Error(\"Shape mismatch: \"+JSON.stringify(r.shape)+\" vs. \"+JSON.stringify(t.shape))}function _h(r){return r.map(t=>t.read())}function zm(r){r.forEach(t=>{t[0].write(t[1])})}var Ce=class{constructor(t){this.dtype=t.dtype,this.shape=t.shape,t.shape!=null?this.ndim=t.shape.length:this.ndim=t.ndim,this.maxNDim=t.maxNDim,this.minNDim=t.minNDim,this.axes=t.axes||{}}},nn=class{constructor(t,e,n,o,s,i,a){this.dtype=t,this.shape=e,this.sourceLayer=n,this.inputs=o,this.callArgs=s,this.outputTensorIndex=a,this.id=Py(),i!=null&&(this.originalName=Ly(i),this.name=zy(this.originalName)),this.rank=e.length}},o7=0,Nl=class{constructor(t,e){this.callArgs=e,this.id=o7++,this.outboundLayer=t.outboundLayer,this.inboundLayers=t.inboundLayers,this.nodeIndices=t.nodeIndices,this.tensorIndices=t.tensorIndices,this.inputTensors=t.inputTensors,this.outputTensors=t.outputTensors,this.inputMasks=t.inputMasks,this.outputMasks=t.outputMasks,this.inputShapes=t.inputShapes,this.outputShapes=t.outputShapes;for(let n of t.inboundLayers)n!=null&&n.outboundNodes.push(this);t.outboundLayer.inboundNodes.push(this)}getConfig(){let t=[];for(let e of this.inboundLayers)e!=null?t.push(e.name):t.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:t,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},s7=0,Et=class extends Q.Serializable{constructor(t={}){super(),this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=s7++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let e=t.name;if(!e){let n=this.getClassName();e=_o(n)+\"_\"+Fu(n)}if(this.name=e,this.trainable_=t.trainable==null?!0:t.trainable,t.inputShape!=null||t.batchInputShape!=null){let n;if(t.batchInputShape!=null)n=t.batchInputShape;else if(t.inputShape!=null){let s=null;t.batchSize!=null&&(s=t.batchSize),n=[s].concat(t.inputShape)}this.batchInputShape=n;let o=t.dtype;o==null&&(o=t.inputDType),o==null&&(o=\"float32\"),this.dtype=o}t.weights!=null?this.initialWeights=t.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(t,e){return t.name+\"_ib-\"+e.toString()}getNodeAtIndex(t,e){if(this.inboundNodes.length===0)throw new dn(`The layer has never been called and thus has no defined ${e}.`);if(this.inboundNodes.length<=t)throw new z(`Asked to get ${e} at node ${t}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[t]}getInputAt(t){return kr(this.getNodeAtIndex(t,\"input\").inputTensors)}getOutputAt(t){return kr(this.getNodeAtIndex(t,\"output\").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new uo(`Layer ${this.name} has multiple inbound nodes, hence the notion of \"layer input\" is ill-defined. Use \\`getInputAt(nodeIndex)\\` instead.`);if(this.inboundNodes.length===0)throw new uo(`Layer ${this.name} is not connected, no input to return.`);return kr(this.getNodeAtIndex(0,\"input\").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new uo(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new uo(`Layer ${this.name} has multiple inbound nodes, hence the notion of \"layer output\" is ill-defined. Use \\`getOutputAt(nodeIndex)\\` instead.`);return kr(this.getNodeAtIndex(0,\"output\").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(t=>t())}get updates(){return this._updates}get built(){return this._built}set built(t){this._built=t}get trainable(){return this.trainable_}set trainable(t){this._trainableWeights.forEach(e=>e.trainable=t),this.trainable_=t}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(t=>t.trainable):[]}set trainableWeights(t){this._trainableWeights=t}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(t=>!t.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(t){this._nonTrainableWeights=t}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error(\"Cannot call the resetStates() method of a non-stateful Layer object.\")}assertInputCompatibility(t){let e=ue(t);if(this.inputSpec==null||this.inputSpec.length===0)return;let n=ue(this.inputSpec);if(e.length!==n.length)throw new z(`Layer ${this.name} expects ${n.length} inputs, but it received ${e.length} input tensors. Input received: ${t}`);for(let o=0;oi.maxNDim)throw new z(`Input ${o} is incompatible with layer ${this.name}: expected max_ndim=${i.maxNDim}, found ndim=${a}`);if(i.minNDim!=null&&a=0?u[c]:u[u.length+c];if(p!=null&&[p,null].indexOf(m)===-1)throw new z(`Input ${o} is incompatible with layer ${this.name}: expected axis ${c} of input shape to have value ${p} but got shape ${u}.`)}}if(i.shape!=null)for(let u=0;u{if(!this.built){this.assertInputCompatibility(t);let i=[];for(let a of ue(t))i.push(a.shape);this.build(kr(i)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&s&&(this._refCount=1)}if(this.assertInputCompatibility(t),s){let i=this.call(t,e);this.supportsMasking&&this.setMaskMetadata(t,i);let a=ue(i),u=[];for(let l of a)n.indexOf(l)!==-1&&(l=l.clone()),u.push(l);if(i=kr(u),this.activityRegularizer!=null)throw new _t(\"Layer invocation in the presence of activity regularizer(s) is not supported yet.\");return i}else{let i=i7(t),a=this.computeOutputShape(i),u,l=a7(t);if(this.warnOnIncompatibleInputShape(Array.isArray(t)?i[0]:i),a!=null&&a.length>0&&Array.isArray(a[0])?u=a.map((c,p)=>new nn(l,c,this,ue(t),e,this.name,p)):u=new nn(l,a,this,ue(t),e,this.name),this.addInboundNode(t,u,null,null,i,a,e),this._refCount++,this.activityRegularizer!=null)throw new _t(\"Layer invocation in the presence of activity regularizer(s) is not supported yet.\");return u}})}warnOnIncompatibleInputShape(t){if(this.batchInputShape!=null)if(t.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(t)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let e=!1;this.batchInputShape.forEach((n,o)=>{n!=null&&t[o]!=null&&t[o]!==n&&(e=!0)}),e&&console.warn(`The shape of the input tensor (${JSON.stringify(t)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new uo(`The layer ${this.name} has never been called and thus has no defined output shape.`);let t=[];for(let e of this.inboundNodes){let n=JSON.stringify(e.outputShapes);t.indexOf(n)===-1&&t.push(n)}if(t.length===1){let e=this.inboundNodes[0].outputShapes;return Array.isArray(e)&&Array.isArray(e[0])&&e.length===1?e[0]:e}else throw new uo(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of \"output shape\" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new dn(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return Lm(this.weights)}build(t){this.built=!0}getWeights(t=!1){return _h(t?this.trainableWeights:this.weights)}setWeights(t){B(()=>{let e=this.weights;if(e.length!==t.length)throw new z(`You called setWeights(weights) on layer \"${this.name}\" with a weight list of length ${t.length}, but the layer was expecting ${e.length} weights. Provided weights: ${t}...`);if(e.length===0)return;let n=[],o=_h(e);for(let s=0;ss.apply(c.read())),i==null&&(i=!0),i?this._trainableWeights.push(c):this._nonTrainableWeights.push(c),c}setFastWeightInitDuringBuild(t){this.fastWeightInitDuringBuild=t}addLoss(t){t==null||Array.isArray(t)&&t.length===0||(t=ue(t),this._losses!==void 0&&this._losses!==null&&this.losses.push(...t))}computeOutputShape(t){return t}computeMask(t,e){if(!this.supportsMasking){if(e!=null)if(Array.isArray(e))e.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return e}setMaskMetadata(t,e,n){if(!this.supportsMasking)return;let o=this.computeMask(t,n),s=ue(e),i=ue(o);if(s.length!==i.length)throw new Error(`${this.name} outputs ${s.length} tensors but ${s.length} masks for those tensors`);for(let a=0;at.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let t=0;return--this._refCount===0&&(t=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:t}}};function i7(r){r=ue(r);let t=[];for(let e of r)t.push(e.shape);return kr(t)}function a7(r){return\"float32\"}function WN(r,t,e){if((t==null||e!=null&&e>0)&&(t=r.sourceLayer,e=r.nodeIndex),t.inboundNodes.length===0)return[r];{let n=t.inboundNodes[e];if(n.inboundLayers.length===0)return n.inputTensors;{let o=[];for(let s=0;sd.name),u=[],l=t.names();for(let d of a)l.indexOf(d)!==-1?u.push(t.getValue(d)):u.push(null);n!=null&&(n.maxNumTensors=-1/0,n.minNumTensors=1/0);let c=a.join(\",\")+\"|\"+t.names().sort().join(\",\"),p=qy.get(c),m;if(p==null){let d=p7(i,t);p=d.sorted,m=d.recipientCounts,qy.put(c,p),Ky.put(c,m)}m={},o||Object.assign(m,Ky.get(c));let f=new ha(t);for(let d=0;dn.maxNumTensors&&(n.maxNumTensors=F),F0,()=>\"Expected at least one fetch, got none\");let e=[],n={};if(r.length===1){let o=yR(r[0],t);e=o.sorted,n=o.recipientMap}else{let o=new Set;for(let s of r){let{sorted:i,recipientMap:a}=yR(s,t);for(let u of i)o.has(u.name)||(e.push(u),o.add(u.name));for(let u in a)n[u]==null&&(n[u]=new Set),a[u].forEach(l=>n[u].add(l))}}return{sorted:e,recipientCounts:m7(n)}}function m7(r){let t={};for(let e in r)t[e]=r[e].size;return t}function yR(r,t){let e=new Set,n=[],o={};for(let a of t.names())e.add(a);let s=[],i=[];for(s.push(r);s.length>0;){let a=s[s.length-1];if(e.has(a.name)){s.pop();continue}let u=i[i.length-1]===s.length-1;if(a.inputs.length===0||u)s.pop(),n.push(a),e.add(a.name),u&&i.pop();else{i.push(s.length-1);for(let l of a.inputs)o[l.name]==null&&(o[l.name]=new Set),o[l.name].add(a.name),!e.has(l.name)&&s.push(l)}}return{sorted:n,recipientMap:o}}function f7(r){let t;if(r.sourceLayer.inboundNodes.length===1)t=r.sourceLayer.output;else{let e=null;for(let n=0;n100,bR);var CR={};Kt(CR,{maxNorm:()=>h7,minMaxNorm:()=>y7,nonNeg:()=>x7,unitNorm:()=>g7});function UN(r,t){return B(()=>ge(mt($(r,r),t,!0)))}var Bc=class extends Q.Serializable{getConfig(){return{}}},Bm=class extends Bc{constructor(t){super(),this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=t.maxValue!=null?t.maxValue:this.defaultMaxValue,this.axis=t.axis!=null?t.axis:this.defaultAxis}apply(t){return B(()=>{let e=UN(t,this.axis),n=vr(e,0,this.maxValue);return $(t,ut(n,K(cr(),e)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};Bm.className=\"MaxNorm\";Q.registerClass(Bm);var Vm=class extends Bc{constructor(t){super(),this.defaultAxis=0,this.axis=t.axis!=null?t.axis:this.defaultAxis}apply(t){return B(()=>ut(t,K(cr(),UN(t,this.axis))))}getConfig(){return{axis:this.axis}}};Vm.className=\"UnitNorm\";Q.registerClass(Vm);var Gm=class extends Bc{apply(t){return Or(t)}};Gm.className=\"NonNeg\";Q.registerClass(Gm);var Wm=class extends Bc{constructor(t){super(),this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=t.minValue!=null?t.minValue:this.defaultMinValue,this.maxValue=t.maxValue!=null?t.maxValue:this.defaultMaxValue,this.rate=t.rate!=null?t.rate:this.defaultRate,this.axis=t.axis!=null?t.axis:this.defaultAxis}apply(t){return B(()=>{let e=UN(t,this.axis),n=K($(this.rate,vr(e,this.minValue,this.maxValue)),$(1-this.rate,e));return $(t,ut(n,K(cr(),e)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};Wm.className=\"MinMaxNorm\";Q.registerClass(Wm);var wR={maxNorm:\"MaxNorm\",minMaxNorm:\"MinMaxNorm\",nonNeg:\"NonNeg\",unitNorm:\"UnitNorm\"};function Ve(r){return km(r)}function IR(r,t={}){return fa(r,Q.SerializationMap.getMap().classNameMap,t,\"constraint\")}function Ge(r){if(r==null)return null;if(typeof r==\"string\"){let e={className:r in wR?wR[r]:r,config:{}};return IR(e)}else return r instanceof Bc?r:IR(r)}function h7(r){return new Bm(r)}function g7(r){return new Vm(r)}function x7(){return new Gm}function y7(r){return new Wm(r)}var vR={};Kt(vR,{constant:()=>I7,glorotNormal:()=>_7,glorotUniform:()=>T7,heNormal:()=>E7,heUniform:()=>A7,identity:()=>N7,leCunNormal:()=>D7,leCunUniform:()=>$7,ones:()=>w7,orthogonal:()=>R7,randomNormal:()=>v7,randomUniform:()=>C7,truncatedNormal:()=>S7,varianceScaling:()=>k7,zeros:()=>b7});function b7(){return new Am}function w7(){return new Mu}function I7(r){return new Dm(r)}function C7(r){return new $m(r)}function v7(r){return new Rm(r)}function S7(r){return new Fm(r)}function N7(r){return new Om(r)}function k7(r){return new Yr(r)}function T7(r){return new Rc(r)}function _7(r){return new Fc(r)}function E7(r){return new Oc(r)}function A7(r){return new Mc(r)}function D7(r){return new Pc(r)}function $7(r){return new Lc(r)}function R7(r){return new Mm(r)}var oF={};Kt(oF,{Layer:()=>Et,RNN:()=>po,RNNCell:()=>Tl,activation:()=>JJ,add:()=>a9,alphaDropout:()=>U9,average:()=>l9,averagePooling1d:()=>ok,averagePooling2d:()=>sk,averagePooling3d:()=>ik,avgPool1d:()=>x9,avgPool2d:()=>b9,avgPool3d:()=>I9,avgPooling1d:()=>y9,avgPooling2d:()=>w9,avgPooling3d:()=>C9,batchNormalization:()=>d9,bidirectional:()=>M9,categoryEncoding:()=>X9,centerCrop:()=>K9,concatenate:()=>u9,conv1d:()=>WJ,conv2d:()=>UJ,conv2dTranspose:()=>HJ,conv3d:()=>qJ,conv3dTranspose:()=>KJ,convLstm2d:()=>$9,convLstm2dCell:()=>R9,cropping2D:()=>XJ,dense:()=>QJ,depthwiseConv2d:()=>ZJ,dot:()=>f9,dropout:()=>t9,elu:()=>PJ,embedding:()=>i9,flatten:()=>r9,gaussianDropout:()=>W9,gaussianNoise:()=>G9,globalAveragePooling1d:()=>v9,globalAveragePooling2d:()=>S9,globalMaxPool1d:()=>L9,globalMaxPool2d:()=>z9,globalMaxPooling1d:()=>tF,globalMaxPooling2d:()=>eF,gru:()=>k9,gruCell:()=>T9,input:()=>JN,inputLayer:()=>MJ,layerNormalization:()=>h9,leakyReLU:()=>zJ,lstm:()=>_9,lstmCell:()=>E9,masking:()=>H9,maxPool1d:()=>B9,maxPool2d:()=>V9,maxPooling1d:()=>rF,maxPooling2d:()=>nF,maxPooling3d:()=>N9,maximum:()=>c9,minimum:()=>p9,multiply:()=>m9,permute:()=>s9,prelu:()=>BJ,randomWidth:()=>Y9,reLU:()=>LJ,repeatVector:()=>n9,rescaling:()=>q9,reshape:()=>o9,resizing:()=>j9,rnn:()=>F9,separableConv2d:()=>jJ,simpleRNN:()=>A9,simpleRNNCell:()=>D9,softmax:()=>VJ,spatialDropout1d:()=>e9,stackedRNNCells:()=>O9,thresholdedReLU:()=>GJ,timeDistributed:()=>P9,upSampling2d:()=>YJ,zeroPadding2d:()=>g9});async function ga(r){if(r==null)return;let t=[],e=[],n=[];for(let o in r){let s=r[o];if(typeof s!=\"number\"){let i=s;t.push(i.data()),e.push(o),n.push(i)}}if(t.length>0){let o=await Promise.all(t);for(let s=0;sK(this.totals[o],$(s,n)));this.totals[o]=a,i!=null&&i.dispose()}}}async onEpochEnd(t,e){if(e!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]==\"number\"?e[n]=this.totals[n]/this.seen:B(()=>{let o=$(ut(1,this.seen),this.totals[n]);e[n]=o,this.totals[n].dispose(),De(e[n])}))}},Yy=class extends kl{async onTrainBegin(t){this.epoch=[],this.history={}}async onEpochEnd(t,e){e==null&&(e={}),this.epoch.push(t);for(let n in e)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(e[n])}async syncData(){let t=[],e=[],n=[];for(let s in this.history){let i=this.history[s];for(let a=0;anew Zy(n,t))}var Um=class r{constructor(){}static registerCallbackConstructor(t,e){y.assert(t>=0&&Number.isInteger(t),()=>`Verbosity level is expected to be an integer >= 0, but got ${t}`),r.checkForDuplicate(e),r.constructors[t]==null&&(r.constructors[t]=[]),r.constructors[t].push(e)}static checkForDuplicate(t){for(let e in r.constructors)r.constructors[+e].forEach(o=>{if(o===t)throw new z(\"Duplicate callback constructor.\")})}static clear(){r.constructors={}}static createCallbacks(t){let e=[];for(let n in r.constructors){let o=+n;t>=o&&e.push(...r.constructors[o])}return e.map(n=>new n)}};Um.constructors={};function Qy(r,t,e,n,o,s,i,a,u){let l=new Yy,c=[new HN,...Um.createCallbacks(t)];r!=null&&c.push(...r),c.push(l);let p=new Xy(c);return p.setParams({epochs:e,initialEpoch:n,samples:o,steps:s,batchSize:i,verbose:t,doValidation:a,metrics:u}),{callbackList:p,history:l}}function wn(r,t={},e=!1){return fa(r,Q.SerializationMap.getMap().classNameMap,t,\"layer\",e)}function Eh(r,t){return B(()=>{r.dtype!==\"float32\"&&(r=J(r,\"float32\"));let e=mt($c(r),t,!0),n=Co(e.shape,cr()),o=ge(kn(e,n));return ut(r,o)})}function xa(r,t){return B(()=>Ne($c(at(t,r)),-1))}function Hm(r,t){return B(()=>Ne(_e(at(t,r)),-1))}function Pu(r,t){return B(()=>{let e=at(r,t),n=vr(_e(r),cr(),Number.MAX_VALUE),o=_e(ut(e,n));return $(100,Ne(o,-1))})}function O7(r,t){return B(()=>{let e=vr(t,cr(),Number.MAX_VALUE),n=Nr(K(1,e)),o=vr(r,cr(),Number.MAX_VALUE),s=Nr(K(1,o));return Ne($c(at(n,s)),-1)})}function M7(r,t){return B(()=>{let e=kn(0,at(1,$(r,t)));return Ne($c(e),-1)})}function P7(r,t){return B(()=>{let e=kn(0,at(1,$(r,t)));return Ne(e,-1)})}function L7(r,t){return B(()=>{let e=mt($(r,t),-1),n=Sr($(at(1,r),t),-1);return kn(0,K(1,at(n,e)))})}function z7(r,t){return B(()=>{let e=Math.log(2),n=at(t,r),o=at(K(n,ui($(-2,n))),e);return Ne(o,-1)})}function Vc(r,t,e=!1){return B(()=>{if(e)t=Eu(t);else{let n=mt(t,t.shape.length-1,!0);t=ut(t,n)}return t=vr(t,cr(),1-cr()),Ut(mt($(J(r,\"float32\"),Nr(t)),t.shape.length-1))})}function qm(r,t,e=!1){return B(()=>{let n=J(la(aR(r)),\"int32\");t=vr(t,cr(),1-cr());let o=t.shape,s=R(ca(n,o[o.length-1]),o);return Vc(s,t,e)})}function B7(r,t){if(!y.arraysEqual(r.shape,t.shape))throw new z(`logits and labels must have the same shape, but got shapes ${JSON.stringify(r.shape)} and ${JSON.stringify(t.shape)}`);return B(()=>{let e=Or(t),n=Ut(_e(t));return K(at(e,$(t,r)),vu(Ke(n)))})}function Km(r,t){return B(()=>{let e;return e=vr(t,cr(),1-cr()),e=Nr(ut(e,at(1,e))),Ne(B7(r,e),-1)})}function V7(r,t){return B(()=>{let e=vr(r,cr(),1),n=vr(t,cr(),1);return mt($(r,Nr(ut(e,n))),-1)})}function G7(r,t){return B(()=>{let e=Nr(K(cr(),t));return Ne(at(t,$(r,e)),-1)})}function Dh(r,t){return B(()=>{let e=Eh(r,-1),n=Eh(t,-1),o=$(e,n);return Ut(mt(o,-1))})}var Ah={meanSquaredError:xa,meanAbsoluteError:Hm,meanAbsolutePercentageError:Pu,meanSquaredLogarithmicError:O7,squaredHinge:M7,hinge:P7,categoricalHinge:L7,logcosh:z7,categoricalCrossentropy:Vc,sparseCategoricalCrossentropy:qm,binaryCrossentropy:Km,kullbackLeiblerDivergence:V7,poisson:G7,cosineProximity:Dh};function tb(r){if(typeof r==\"string\"){if(r in Ah)return Ah[r];let t=`Unknown loss ${r}`;throw r.toLowerCase().includes(\"softmaxcrossentropy\")&&(t=`Unknown loss ${r}. Use \"categoricalCrossentropy\" as the string name for tf.losses.softmaxCrossEntropy`),new z(t)}else return r}function $h(r,t){return B(()=>{let e=$(.5,wr(t)),n=rn(Re(t,e),r.dtype);return Ne($r(r,n),-1)})}function Rh(r,t){return B(()=>rn($r(ra(r,-1),ra(t,-1)),\"float32\"))}function kR(r,t){return B(()=>J(mt(Fr($r(r,1),$r(t,1))),\"float32\"))}function W7(r,t){return B(()=>J(mt(Fr($r(r,1),$r(t,0))),\"float32\"))}function U7(r,t){return B(()=>J(mt(Fr($r(r,0),$r(t,1))),\"float32\"))}function qN(r,t){return B(()=>{let e=kR(r,t),n=U7(r,t),o=K(e,n);return J(Ie(Re(o,0),ut(e,o),0),\"float32\")})}function TR(r,t){return B(()=>{let e=kR(r,t),n=W7(r,t),o=K(e,n);return J(Ie(Re(o,0),ut(e,o),0),\"float32\")})}function rb(r,t){return Km(r,t)}function nb(r,t){return r.rank===t.rank&&(r=Wn(r,[r.rank-1])),t=ra(t,-1),t.dtype!==r.dtype&&(t=J(t,r.dtype)),J($r(r,t),\"float32\")}function _R(r,t){return B(()=>{let e=r.sub(t).square().sum(),n=r.sub(r.mean()).square().sum();return pt(1).sub(e.div(n))})}var H7=xa,q7=xa,K7=Hm,j7=Hm,X7=Pu,Y7=Pu,Fh=Vc,Z7=Dh,KN=qm,eb={binaryAccuracy:$h,categoricalAccuracy:Rh,precision:qN,categoricalCrossentropy:Fh,sparseCategoricalCrossentropy:KN,mse:H7,MSE:q7,mae:K7,MAE:j7,mape:X7,MAPE:Y7,cosine:Z7};function ER(r){if(typeof r==\"string\"&&r in eb)return eb[r];if(typeof r!=\"string\"&&r!=null)return r;throw new z(`Unknown metric ${r}`)}function Oh(r){if(co(r!==null,`Unknown LossOrMetricFn ${r}`),typeof r==\"string\")return r;{let t;for(let e of Object.keys(Ah))if(Ah[e]===r){t=e;break}if(t!==void 0)return t;for(let e of Object.keys(eb))if(eb[e]===r){t=e;break}return t!==void 0?t:r.name}}function DR(r){let t={Adagrad:()=>Ac.adagrad(.01),Adadelta:()=>Ac.adadelta(1,.95,cr()),Adam:()=>Ac.adam(.001,.9,.999,cr()),Adamax:()=>Ac.adamax(.002,.9,.999,cr(),0),RMSProp:()=>Ac.rmsprop(.001,.9,0,cr()),SGD:()=>Ac.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,r in t)return t[r]();throw new z(`Unknown Optimizer ${r}`)}function XN(r,t,e=!1){if(r==null||typeof r!=\"object\"||Object.getPrototypeOf(r)!==Object.prototype||!jN(r))throw new Error(\"User-defined metadata is expected to be a JSON object, but is not.\");if(e){let n=JSON.stringify(r);n.length>1048576&&console.warn(`User-defined metadata of model \"${t}\" is too large in size (length=${n.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= 1048576.`)}}function jN(r){if(r===null)return!0;if(typeof r==\"object\")if(Object.getPrototypeOf(r)===Object.prototype){let t=Object.keys(r);for(let e of t)if(typeof e!=\"string\"||!jN(r[e]))return!1;return!0}else if(Array.isArray(r)){for(let t of r)if(!jN(t))return!1;return!0}else return!1;else{let t=typeof r;return t===\"string\"||t===\"number\"||t===\"boolean\"}}function $R(r,t,e,n=console.log){let o=tJ(r),s=[\"Layer (type)\",\"Input Shape\",\"Output shape\",\"Param #\"];o?(t=t||90,e=e||[.32,.61,.89,1]):(t=t||115,e=e||[.24,.48,.7,.8,1]),e[e.length-1]<=1&&(e=e.map(c=>Math.floor(t*c)));let i;if(!o){s.push(\"Receives inputs\"),i=[];for(let c in r.nodesByDepth)i.push(...r.nodesByDepth[c])}n(\"_\".repeat(t)),ob(s,e,n),n(\"=\".repeat(t));let a=r.layers;for(let c=0;c1||o.length===1&&o[0].inboundLayers.length>1){t=!1;break}n.push(...o)}if(t)for(let o of r.layers){let s=!1;for(let i of o.inboundNodes)if(n.indexOf(i)!==-1)if(s){t=!1;break}else s=!0;if(!t)break}return t}function ob(r,t,e=console.log){let n=\"\";for(let o=0;o0&&(n=n.slice(0,n.length-1)+\" \"),n+=r[o],n=n.slice(0,t[o]),n+=\" \".repeat(t[o]-n.length);e(n)}function eJ(r,t,e){let n,o;try{o=r.inboundNodes.map(u=>JSON.stringify(u.inputShapes)).join(\",\")}catch(u){o=\"multiple\"}try{n=JSON.stringify(r.outputShape)}catch(u){n=\"multiple\"}let s=r.name,i=r.getClassName(),a=[`${s} (${i})`,o,n,r.countParams().toString()];ob(a,t,e)}function rJ(r,t,e,n){let o,s;try{s=r.inboundNodes.map(p=>JSON.stringify(p.inputShapes)).join(\",\")}catch(p){s=\"multiple\"}try{o=JSON.stringify(r.outputShape)}catch(p){o=\"multiple\"}let i=[];for(let p of r.inboundNodes)if(!(e!=null&&e.length>0&&e.indexOf(p)===-1))for(let m=0;m{let t=Object.keys(r);if(t.length===0)return!1;let e=t[0].split(\"/\");return!isNaN(parseInt(e[e.length-1],10))},ib=class r extends Et{constructor(t){if(super({}),this.containerNodes=new Set,this.name=t.name,this.name==null){let b=this.getClassName().toLowerCase();this.name=Fu(b)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(t.inputs)?this.inputs=t.inputs.slice():this.inputs=[t.inputs],Array.isArray(t.outputs)?this.outputs=t.outputs.slice():this.outputs=[t.outputs],Eo(this.inputs).length!==this.inputs.length)throw new z(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(b=>b.name)}`);Eo(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(b=>b.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let b of this.outputs){let w=b.sourceLayer,I=b.nodeIndex,N=b.tensorIndex;this.outputLayers.push(w),this.outputLayersNodeIndices.push(I),this.outputLayersTensorIndices.push(N)}for(let b of this.inputs){let w=b.sourceLayer,I=b.nodeIndex,N=b.tensorIndex;co(I===0,\"input layer has >1 nodes\"),co(N===0,\"input layer has >1 tensors\"),this.inputLayers.push(w),this.inputLayersNodeIndices.push(I),this.inputLayersTensorIndices.push(N)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let b=0;bb.shape),this.internalOutputShapes=this.outputs.map(b=>b.shape);let e={},n={},o={},s={},i={},a=[],u=(b,w,I,N,E,A)=>{(N==null||E==null||A==null)&&(N=b.sourceLayer,E=b.nodeIndex,A=b.tensorIndex);let D=N.inboundNodes[E];if(I.indexOf(D)!==-1)throw new dn(`The tensor ${b.name} at layer \"${N.name}\" is part of a cycle.`);if(w.indexOf(D)!==-1)return;this.containerNodes.add(r.nodeKey(N,E)),N.id in i||(i[N.id]=Object.keys(i).length),I.indexOf(D)===-1&&I.push(D);let F=D.inboundLayers.length;for(let M=0;M=0;)I.splice(I.indexOf(D),1);a.push(D)},l=[],c=[];for(let b of this.outputs)u(b,l,c);let p=a.slice().reverse();for(let b of p){n[b.id]=b,b.id in e||(e[b.id]=0);let w=e[b.id],I=o[b.outboundLayer.id]==null?0:o[b.outboundLayer.id];w=Math.max(w,I),o[b.outboundLayer.id]=w,s[b.outboundLayer.id]=b.outboundLayer,e[b.id]=w;for(let N=0;NparseInt(b,10)).sort(Sh);this.layers=[];for(let b of d){let w=f[b];w.sort((I,N)=>{let E=i[I.id],A=i[N.id];return EA?1:0});for(let I of w)I instanceof r&&this.internalContainerRefs.push(I),this.layers.push(I)}this.layersByDepth=f,d=Object.keys(m).map(b=>parseInt(b,10)).sort(Sh);let h=this.inputs.slice(),g=[];for(let b of d)for(let w of m[b]){let I=w.outboundLayer;if(I!=null){for(let N of w.inputTensors)if(h.indexOf(N)===-1)throw new dn(`Graph disconnected: cannot obtain value for tensor ${N} at layer \"${I.name}\". The following previous layers were accessed without issue: ${g}`);for(let N of w.outputTensors)h.push(N);g.push(I.name)}}this.nodesByDepth=m;let x=this.layers.map(b=>b.name);for(let b of x){let w=x.filter(I=>I===b).length;if(w!==1)throw new dn(`The name \"${b}\" is used ${w} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(x))}this.outboundNodes=[],this.inboundNodes=[],new Nl({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(b=>null),outputMasks:this.outputs.map(b=>null),inputShapes:this.inputs.map(b=>b.shape),outputShapes:this.outputs.map(b=>b.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let t={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount===0){for(let e of this.layers)t.numDisposedVariables+=e.dispose().numDisposedVariables;for(let e of this.internalContainerRefs)t.numDisposedVariables+=e.dispose().numDisposedVariables}return t.refCountAfterDispose=this._refCount,t}get trainable(){return this.trainable_}set trainable(t){this.layers.forEach(e=>{e._trainableWeights.forEach(n=>n.trainable=t)}),this.trainable_=t}get trainableWeights(){if(this._trainableWeights.length>0)throw new z(\"Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.\");if(!this.trainable)return[];let t=[];for(let e of this.layers)t=t.concat(e.trainableWeights);return t}get nonTrainableWeights(){let t=[];for(let e of this.layers)t.push(...e.nonTrainableWeights);if(!this.trainable){let e=[];for(let n of this.layers)e.push(...n.trainableWeights);return e.concat(t)}return t}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(t,e=!0){let n={},o=0,s=nJ(t);s&&this.parseWeights(t);for(let a of this.layers)for(let[u,l]of a.weights.entries()){let c=s?`${l.name.split(\"/\").slice(0,-1).join(\"/\")+\"/\"}${u}`:l.originalName;if(n[c]!=null)throw new z(`Duplicate weight name: ${c}`);n[c]=l,o++}let i=[];for(let a in t){let u=a;if(n[a]==null){let l=a.split(\"/\");u=l.slice(0,-2).concat([l[l.length-1]]).join(\"/\")}if(n[u]!=null)i.push([n[u],t[a]]);else if(e)throw new z(`Provided weight data has no target variable: ${a}`);delete n[u]}if(e){let a=[];for(let u in n)a.push(u);if(a.length>0)throw new z(`${a.length} of ${o} weights are not set: ${a}`)}zm(i)}parseWeights(t){for(let e in Object.keys(t)){let n=e.split(\"/\"),o=[\"vars\",\"layer_checkpoint_dependencies\"],s=n.map(i=>i.startsWith(\"_\")?i.slice(1):i).filter(i=>!o.includes(i)).join(\"/\");s!==e&&(t[s]=t[e],delete t[e])}}updatedConfig(){let t=this.getConfig(),e={};return e.className=this.getClassName(),e.config=t,e.kerasVersion=`tfjs-layers ${jm}`,e.backend=\"TensorFlow.js\",e}toJSON(t,e=!0){let n=sb(this.updatedConfig());return e?JSON.stringify(n):n}call(t,e){return B(()=>{t=ue(t);let n=new ha;for(let o=0;o{t=ue(t);let n;return e==null?n=To(null,t.length):n=ue(e),this.runInternalGraph(t,n)[1]})}computeOutputShape(t){let e=Pm(t);if(e.length!==this.inputLayers.length)throw new z(`Invalid inputShape argument ${t}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let a=0;aparseInt(a,10)).sort(Sh);if(o.length>1)for(let a of o){let u=this.nodesByDepth[a];for(let l of u){let c=l.outboundLayer;if(this.inputLayers.map(h=>h.id).indexOf(c.id)!==-1)continue;let p=[];for(let h=0;hparseInt(u,10)).sort(Sh);for(let u of o){let l=this.nodesByDepth[u];for(let c of l){let p=c.outboundLayer,m=c.inputTensors,f=c.outputTensors,d=new Array;for(let h of m)h.id in n&&d.push(n[h.id]);if(d.length===m.length){let h={},g,x,b,w;if(c.callArgs!=null&&(h=c.callArgs),d.length===1){let[I,N]=d[0];h.mask==null&&(h.mask=N),b=ue(p.call(I,h)),w=ue(p.computeMask(I,N)),g=[I],x=[N]}else g=d.map(I=>I[0]),x=d.map(I=>I[1]),h.mask==null&&(h.mask=x),b=ue(p.call(g,h)),w=ue(p.computeMask(g,x));if(p.activityRegularizer)throw new _t(\"LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.\");for(let I=0;I{let t=[];for(let e of this.layers)for(let n=0;n0){let h=[];for(let g=0;g0&&g.apply(kr(b),w)}function l(g){let x=g.name,b=wn(g,e.customObjects!=null?e.customObjects:{});b.setFastWeightInitDuringBuild(o),s[x]=b,g.inboundNodes.forEach(I=>{if(!(I instanceof Array))throw new z(`Corrupted configuration, expected array for nodeData: ${I}`);a(b,I)})}let c=e.name,p=e.layers;for(let g of p)l(g);for(;!j$(i);)for(let g of p){let x=s[g.name];if(x.name in i){let b=i[x.name];delete i[x.name];for(let w of b)u(x,w)}}let m=[],f=[],d=e.inputLayers;for(let g of d){let x=g[0],b=g[1],w=g[2];co(x in s);let N=s[x].inboundNodes[b].outputTensors;m.push(N[w])}let h=e.outputLayers;for(let g of h){let x=g[0],b=g[1],w=g[2];co(x in s);let N=s[x].inboundNodes[b].outputTensors;f.push(N[w])}return new t({inputs:m,outputs:f,name:c})}get stateful(){if(this._stateful)throw new z(\"Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.\");for(let t of this.layers)if(t.stateful)return!0;return!1}resetStates(){B(()=>{this.layers.forEach(t=>{t.stateful&&t.resetStates()})})}};function oJ(r,t,e){let n=t.length;if(r==null||Array.isArray(r)&&r.length===0)return t.map(o=>null);if(n===1)return Array.isArray(r)&&r.length===1?r:typeof r==\"object\"&&t[0]in r?[r[t[0]]]:[r];if(Array.isArray(r)){if(r.length!==n)throw new Error(`Provided ${e} is an array of ${r.length} element(s), but the model has ${n} outputs. Make sure a set of weights is provided for each model output.`);return r}else if(typeof r==\"object\"&&Object.keys(r).length>0&&typeof r[Object.keys(r)[0]]==\"object\"){let o=[];return t.forEach(s=>{s in r?o.push(r[s]):o.push(null)}),o}else throw new Error(`The model has multiple (${n}) outputs, so ${e} must be either an array with ${n} elements or an object with ${t} keys. Provided ${e} not understood: ${JSON.stringify(r)}`)}function ab(r,t){return oJ(r,t,\"classWeight\")}async function lb(r,t,e,n){if(t!=null||n!=null)throw new Error(\"Support sampleWeight is not implemented yet\");if(e!=null){let o=B(()=>{if(r.shape.length===1)return un(r);if(r.shape.length===2){if(r.shape[1]>1)return ra(r,1);if(r.shape[1]===1)return R(r,[r.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${r.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${r.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),s=Array.from(await o.data());Tt(o);let i=[];return s.forEach(a=>{if(e[a]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${a} exists in the data but not in classWeight`);i.push(e[a])}),Oe(i,\"float32\")}else return null}function FR(r,t){return $(r,t)}var sJ=32;function PR(r,t){let e,n,o=t;e=o.xs,n=o.ys,y.assert(e!=null&&n!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \\`{xs: xVal, ys: yVal}\\`, where the two values may be \\`tf.Tensor\\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let s=OR(\"input\",r.inputNames,e),i=OR(\"output\",r.outputNames,n),a=s[0].shape[0];y.assert(s.length===r.inputs.length,()=>`LayersModel has ${r.inputs.length} inputs, but the dataset provides ${s.length} inputs. (Expected input keys: ${JSON.stringify(r.inputNames)})`),y.assert(i.length===r.outputs.length,()=>`LayersModel has ${r.outputs.length} outputs, but the dataset provides ${i.length} outputs. (Expected output keys: ${JSON.stringify(r.outputNames)})`);for(let u=0;u`Batch size mismatch: input ${r.inputNames[u]} has ${s[u].shape[0]}; expected ${a} based on input ${r.inputNames[0]}.`);for(let u=0;u`Batch size mismatch: output ${r.outputNames[u]} has ${i[u].shape[0]}; expected ${a} based on input ${r.inputNames[0]}.`);return{xs:s,ys:i}}function OR(r,t,e){if(e instanceof Lt)return[e];if(Array.isArray(e))return y.assert(e.length===t.length,()=>`Received an array of ${e.length} Tensors, but expected ${t.length} to match the ${r} keys ${t}.`),e;{let n=[];for(let o of t){if(e[o]==null)throw new z(`The feature data generated by the dataset lacks the required ${r} key '${o}'.`);n.push(e[o])}return n}}function iJ(r){if(r.length===3)throw new _t(\"Validation with sample weights is not implemented yet.\");return{xs:r[0],ys:r[1]}}async function LR(r,t,e){let n=e.batchesPerEpoch!=null;if(y.assert(r.optimizer!=null,()=>\"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig).\"),y.assert(e!=null,()=>\"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call.\"),y.assert(e.epochs!=null&&e.epochs>0&&Number.isInteger(e.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${e.epochs}`),y.assert(!n||e.batchesPerEpoch>0&&Number.isInteger(e.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${e.batchesPerEpoch}`),y.assert(e.validationSplit==null,()=>\"`validationSplit` is not supported by `fitDataset()`. Use validationData instead.\"),r.isTraining)throw new Error(\"Cannot start training because another fit() call is ongoing.\");r.isTraining=!0;try{let o=e.validationData!=null,s,i;if(o)if(MR(e.validationData))y.assert(e.validationBatches==null||e.validationBatches>0&&Number.isInteger(e.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${e.validationBatches}`);else{let g=iJ(e.validationData);s=g.xs,i=g.ys}let a=r.makeTrainFunction(),u=r.getDedupedMetricsNames(),l;o?l=u.slice().concat(u.map(g=>\"val_\"+g)):l=u.slice();let c=Jy(e.callbacks,e.yieldEvery),p=e.verbose==null?1:e.verbose,{callbackList:m,history:f}=Qy(c,p,e.epochs,null,null,aJ(t,e),null,o,l);m.setModel(r),r.history=f,await m.onTrainBegin(),r.stopTraining_=!1;let d=e.initialEpoch==null?0:e.initialEpoch,h=await t.iterator();for(;d=e.batchesPerEpoch:w.done){if(o){let I;MR(e.validationData)?I=ue(await r.evaluateDataset(e.validationData,{batches:e.validationBatches})):I=ue(r.evaluate(s,i,{batchSize:e.validationBatchSize==null?sJ:e.validationBatchSize,verbose:0}));for(let N=0;N0)throw new _t(\"Verbose mode is not implemented yet.\");y.assert(!n||e.batches>0&&Number.isInteger(e.batches),()=>`Test loop expects \\`batches\\` to be a positive integer, but received ${JSON.stringify(e.batches)}`);let i=lJ(t)?t:await t.iterator(),a=0,u=0;for(;!n||u{if(l.value){let{xs:c,ys:p}=PR(r,l.value),m=c.concat(p),f=B(()=>o(m));if(Tt(m),u===0)for(let h=0;hK(s[h],$(d,g))),u>0&&Tt(x)}Tt(f),a+=d,++u}return s}),l.done){n&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \\`batches\\` batches (in this case, ${e.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let l=0;l0&&Number.isInteger(r),()=>`batchSize is required to be a positive integer, but got ${r}`)}function Xm(r,t,e){return r==null?[null]:Array.isArray(r)?r.map(n=>vl(n,t,e-t)):vl(r,t,e-t)}function cb(r,t){return B(()=>r==null?null:Array.isArray(r)?r.map(e=>cb(e,t)):Gy(r,t.dtype===\"int32\"?t:J(t,\"int32\")))}function pb(r,t){let e=[],n=0,o=null;for(;n=r&&(o=r),e.push([n,o]),n=o;return e}function YN(r){let t=[];r instanceof Lt&&(r=[r]);for(let e=0;ee.push(o.id));else if(t!=null)for(let o in t){let s=t[o];e.push(s.id)}let n=[];if(r instanceof Lt)e.indexOf(r.id)===-1&&n.push(r);else if(Array.isArray(r))r.forEach(o=>{e.indexOf(o.id)===-1&&n.push(o)});else if(r!=null)for(let o in r){let s=r[o];e.indexOf(s.id)===-1&&n.push(s)}n.forEach(o=>{o.isDisposed||o.dispose()})}function uJ(r){return r instanceof Lt}function ZN(r){return Array.isArray(r)}function BR(r){return!uJ(r)&&!ZN(r)}function VR(r,t,e,n=!0,o=\"\"){if(t==null||t.length===0){if(r!=null){let i=!1;if(ZN(r)&&r.length>0)i=!0;else if(BR(r)){for(let a in r)if(r.hasOwnProperty(a)){i=!0;break}}else i=!0;if(i)throw new z(`Error when checking model ${o} expected no data, but got ${r}`)}return[]}if(r==null)return t.map(i=>null);let s;if(BR(r)){r=r,s=[];for(let i of t){if(r[i]==null)throw new z(`No data provided for \"${i}\". Need data for each key in: ${t}`);s.push(r[i])}}else if(ZN(r)){if(r=r,r.length!==t.length)throw new z(`Error when checking model ${o}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${r}`);s=r}else{if(r=r,t.length>1)throw new z(`The model ${o} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${r.shape}`);s=[r]}if(s=YN(s),e!=null)for(let i=0;i=0&&l!==c)throw new z(`${o} expected a batch of elements where each example has shape [${e[i].slice(1,e[i].length)}] (i.e.,tensor shape [*,${e[i].slice(1,e[i].length)}]) but the ${o} received an input with ${a.shape[0]} examples, each with shape [${a.shape.slice(1,a.shape.length)}] (tensor shape [${a.shape}])`)}}return s}function cJ(r,t,e){let n=Eo(r.map(s=>s.shape[0]));n.sort();let o=Eo(t.map(s=>s.shape[0]));if(o.sort(),n.length>1)throw new z(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(r.map(s=>s.shape))}`);if(o.length>1)throw new z(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(s=>s.shape))}`);if(n.length>0&&o.length>0&&!y.arraysEqual(n,o))throw new z(`Input Tensors should have the same number of samples as target Tensors. Found ${n[0]} input sample(s) and ${o[0]} target sample(s).`)}function pJ(r,t,e){let n=[xa,Km,Vc];for(let o=0;o1)throw new z(`The model expects ${t.length} ${o} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(r.shape)}.`);s=[r]}if(e!=null)for(let i=0;i[]);let e;if(typeof r==\"string\"||typeof r==\"function\")e=[r];else if(Array.isArray(r)||typeof r==\"object\")e=r;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${r}`);if(Array.isArray(e))return t.map(n=>e);{let n=[];for(let o of t){let s=e.hasOwnProperty(o)?e[o]:[];Array.isArray(s)||(s=[s]),n.push(s)}return n}}var fJ=\"layers-model\",Un=class extends ib{constructor(t){super(t),this.isTraining=!1}summary(t,e,n=console.log){if(!this.built)throw new z(\"This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).\");$R(this,t,e,n)}compile(t){if(t.loss==null&&(t.loss=[]),this.loss=t.loss,typeof t.optimizer==\"string\")this.optimizer_=DR(t.optimizer),this.isOptimizerOwned=!0;else{if(!(t.optimizer instanceof jr))throw new z(\"User-defined optimizer must be an instance of tf.Optimizer.\");this.optimizer_=t.optimizer,this.isOptimizerOwned=!1}let e=[];if(!Array.isArray(t.loss)&&typeof t.loss!=\"string\"&&typeof t.loss!=\"function\"){t.loss=t.loss;for(let i in t.loss)if(this.outputNames.indexOf(i)===-1)throw new z(`Unknown entry in loss dictionary: \"${i}\". Only expected the following keys: ${this.outputNames}`);for(let i of this.outputNames)t.loss[i]==null&&console.warn(`Output \"${i}\" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${i} during training`),e.push(tb(t.loss[i]))}else if(Array.isArray(t.loss)){if(t.loss.length!==this.outputs.length)throw new z(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${t.loss}.`);e=t.loss.map(a=>tb(a))}else{let i=tb(t.loss);this.outputs.forEach(a=>{e.push(i)})}this.lossFunctions=e,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let i=0;i{for(let i=0;i1&&(this.metricsTensors.push([a,i]),this.metricsNames.push(this.outputNames[i]+\"_loss\"))}});let o=mJ(t.metrics,this.outputNames),s=(i,a,u)=>{this.outputNames.length>1&&(a=this.outputNames[i]+\"_\"+a),this.metricsNames.push(a),this.metricsTensors.push([u,i])};fi(\"metric\",()=>{for(let i=0;i{let c=\"\",p,m,f;for(let d of l){if(typeof d==\"string\"&&[\"accuracy\",\"acc\",\"crossentropy\",\"ce\"].indexOf(d)!==-1){let g=this.internalOutputShapes[i];g[g.length-1]===1||this.lossFunctions[i]===Km?[\"accuracy\",\"acc\"].indexOf(d)!==-1?m=$h:[\"crossentropy\",\"ce\"].indexOf(d)!==-1&&(m=rb):this.lossFunctions[i]===qm?[\"accuracy\",\"acc\"].indexOf(d)!==-1?m=nb:[\"crossentropy\",\"ce\"].indexOf(d)!==-1&&(m=KN):[\"accuracy\",\"acc\"].indexOf(d)!==-1?m=Rh:[\"crossentropy\",\"ce\"].indexOf(d)!==-1&&(m=Fh);let x;[\"accuracy\",\"acc\"].indexOf(d)!==-1?x=\"acc\":[\"crossentropy\",\"ce\"].indexOf(d)!==-1&&(x=\"ce\"),f=m,p=c+x}else f=ER(d),p=c+Oh(d);let h;fi(p,()=>{h=f}),s(i,p,h)}})(a)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn(\"Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?\")}evaluate(t,e,n={}){let o=n.batchSize==null?32:n.batchSize;ub(o);let i=this.standardizeUserDataXY(t,e,!0,o);try{let a=i[0].concat(i[1]);this.makeTestFunction();let u=this.testFunction,l=this.testLoop(u,a,o,n.verbose,n.steps);return kr(l)}finally{$o(i[0],t),$o(i[1],e)}}async evaluateDataset(t,e){return this.makeTestFunction(),zR(this,t,e)}checkNumSamples(t,e,n,o=\"steps\"){let s;if(n!=null){if(s=null,e!=null)throw new z(`If ${o} is set, batchSize must be null or undefined.Got batchSize = ${e}`)}else if(t!=null)Array.isArray(t)?s=t[0].shape[0]:s=t.shape[0];else throw new z(`Either the input data should have a defined shape, or ${o} shoud be specified.`);return s}execute(t,e){if(Array.isArray(e)&&e.length===0)throw new z(\"`outputs` is an empty Array, which is not allowed.\");let n=Array.isArray(e),o=n?e:[e],s=this.retrieveSymbolicTensors(o),i=new ha;if(t instanceof Lt&&(t=[t]),Array.isArray(t)){if(t.length!==this.inputs.length)throw new z(`The number of inputs provided (${t.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let u=0;ua.name);for(let a=0;a0){let o=[];throw e.forEach((s,i)=>{s==null&&o.push(t[i])}),new z(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(o)}`)}return e}predictLoop(t,e=32,n=!1){return B(()=>{let o=this.checkNumSamples(t);if(n)throw new _t(\"Verbose predictLoop() is not implemented yet.\");let s=pb(o,e),i=this.outputs.map(a=>[]);for(let a=0;a{let l=s[a][0],c=s[a][1],p=Xm(t,l,c),m=[];if(Array.isArray(p))for(let d=0;di[c].push(l));return kr(i.map(a=>ie(a,0)))})}predict(t,e={}){let n=YN(t);GR(n,this.inputNames,this.feedInputShapes,!1);try{let o=e.batchSize==null?32:e.batchSize;return ub(o),this.predictLoop(n,o)}finally{$o(n,t)}}predictOnBatch(t){GR(t,this.inputNames,this.feedInputShapes,!0);let e=(Array.isArray(t)?t[0]:t).shape[0];return this.predictLoop(t,e)}standardizeUserDataXY(t,e,n=!0,o){if(this.optimizer_==null)throw new dn(\"You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).\");let s=[];for(let i=0;i0&&t[0].shape[0]%o!==0)throw new z(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${o}. Found: ${t[0].shape[0]} sample(s).`);return[t,e]}async standardizeUserData(t,e,n,o,s=!0,i){let[a,u]=this.standardizeUserDataXY(t,e,s,i);if(n!=null)throw new Error(\"sample weight is not supported yet.\");let l=null;if(o!=null){let c=ab(o,this.outputNames);l=[];for(let p=0;p{let i=this.checkNumSamples(e,n,s,\"steps\"),a=[];if(o>0)throw new _t(\"Verbose mode is not implemented yet.\");if(s!=null)throw new _t(\"steps mode in testLoop() is not implemented yet\");{let u=pb(i,n),l=Oe(gn(0,i));for(let c=0;c1){let i=PN(t.slice(0,n),o);s+=`_${i}`}e.push(s)}return e}makeTrainFunction(){return t=>{let e=[],n=t.slice(0,this.inputs.length),o=t.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=t.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),i=[],a=()=>{let p=[];for(let h=0;h1&&h{d=K(d,h)}),d},u=this.collectedTrainableWeights.map(p=>p.read());return[this.optimizer_.minimize(a,!0,u)].concat(i)}}makeTestFunction(){this.testFunction=t=>B(()=>{let e=[],n,o=t.slice(0,this.inputs.length),s=t.slice(this.inputs.length,this.inputs.length+this.outputs.length),i=[];for(let l=0;l0){if(g=!0,n.validationData.length===2)u=n.validationData[0],l=n.validationData[1];else throw n.validationData.length===3?new _t(\"validationData including sample weights is not supported yet.\"):new z(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${n.validationData} is invalid.`);let M=await this.standardizeUserData(u,l,null,null,!0,f);c=M[0],p=M[1],x=c.concat(p)}else if(n.validationSplit!=null&&n.validationSplit>0&&n.validationSplit<1){g=!0;let F=Math.floor(o[0].shape[0]*(1-n.validationSplit)),M=o[0].shape[0];c=Xm(o,F,M),i=o,o=Xm(o,0,F),p=Xm(s,F,M),a=s,s=Xm(s,0,F),x=c.concat(p)}else n.validationSteps!=null&&(g=!0);let b=o.concat(s).concat(m);this.checkTrainableWeightsConsistency();let w=this.makeTrainFunction(),I=this.getDedupedMetricsNames(),N,E;g?(this.makeTestFunction(),N=this.testFunction,E=I.slice().concat(I.map(F=>\"val_\"+F))):(N=null,x=[],E=I.slice());let A=Jy(n.callbacks,n.yieldEvery);return await this.fitLoop(w,b,I,f,n.epochs,n.verbose,A,N,x,n.shuffle,E,n.initialEpoch,null,null)}finally{this.isTraining=!1,$o(o,t),$o(s,e),$o(i,t),$o(a,e),$o(c,u),$o(p,l),m!=null&&Tt(m)}}async fitLoop(t,e,n,o,s,i,a,u,l,c,p,m,f,d){o==null&&(o=32),s==null&&(s=1),c==null&&(c=!0),m==null&&(m=0);let h=!1;if(u!=null&&l!=null&&(h=!0),d!=null&&(h=!0,f==null))throw new z(\"Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.\");let g=this.checkNumSamples(e,o,f,\"steps_per_epoch\"),x;g!=null&&(x=gn(0,g)),i==null&&(i=1);let{callbackList:b,history:w}=Qy(a,i,s,m,g,f,o,h,p);b.setModel(this),this.history=w,await b.onTrainBegin(),this.stopTraining_=!1;for(let I=m;I{let M=A[D][0],V=A[D][1],G=vl(E,M,V-M);F.batch=D,F.size=V-M;let W=cb(e,G),q=t(W);for(let H=0;H_o(e))}else{let e=Object.keys(this.loss);t={};let n=this.loss;for(let o of e)if(typeof n[o]==\"string\")t[o]=_o(n[o]);else throw new Error(\"Serialization of non-string loss is not supported.\")}return t}getMetricIdentifiers(){if(typeof this.metrics==\"string\"||typeof this.metrics==\"function\")return[_o(Oh(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(t=>_o(Oh(t)));{let t={};for(let e in this.metrics)t[e]=_o(Oh(this.metrics[e]));return t}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(t){if(t.weighted_metrics!=null)throw new Error(\"Loading weight_metrics is not supported yet.\");if(t.loss_weights!=null)throw new Error(\"Loading loss_weights is not supported yet.\");if(t.sample_weight_mode!=null)throw new Error(\"Loading sample_weight_mode is not supported yet.\");let e=Gc(t.optimizer_config),n=wn(e),o;if(typeof t.loss==\"string\")o=Cl(t.loss);else if(Array.isArray(t.loss))o=t.loss.map(i=>Cl(i));else if(t.loss!=null){o={};for(let i in t.loss)o[i]=Cl(t.loss[i])}let s;if(Array.isArray(t.metrics))s=t.metrics.map(i=>Cl(i));else if(t.metrics!=null){s={};for(let i in t.metrics)s[i]=Cl(t.metrics[i])}this.compile({loss:o,metrics:s,optimizer:n})}async save(t,e){if(typeof t==\"string\"){let l=Mr.getSaveHandlers(t);if(l.length===0)throw new z(`Cannot find any save handlers for URL '${t}'`);if(l.length>1)throw new z(`Found more than one (${l.length}) save handlers for URL '${t}'`);t=l[0]}if(t.save==null)throw new z(\"LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.\");let n=await Mr.encodeWeights(this.getNamedWeights(e)),a={modelTopology:this.toJSON(null,!1),format:fJ,generatedBy:`TensorFlow.js tfjs-layers v${jm}`,convertedBy:null};if((e==null?!1:e.includeOptimizer)&&this.optimizer!=null){a.trainingConfig=this.getTrainingConfig();let l=\"optimizer\",{data:c,specs:p}=await Mr.encodeWeights(await this.optimizer.getWeights(),l);n.specs.push(...p),n.data=Mr.concatenateArrayBuffers([n.data,c])}return this.userDefinedMetadata!=null&&(XN(this.userDefinedMetadata,this.name,!0),a.userDefinedMetadata=this.userDefinedMetadata),a.weightData=n.data,a.weightSpecs=n.specs,t.save(a)}setUserDefinedMetadata(t){XN(t,this.name),this.userDefinedMetadata=t}getUserDefinedMetadata(){return this.userDefinedMetadata}};Un.className=\"Model\";Q.registerClass(Un);var mb=class extends Un{};mb.className=\"Functional\";Q.registerClass(mb);async function WR(r,t){\"modelTopology\"in r||(r={modelTopology:r}),r=r;let e=r.modelTopology;e.model_config!=null&&(e=e.model_config);let n=Gc(e),o=wn(n,t);if(r.weightsManifest!=null){let s=await Mr.loadWeights(r.weightsManifest,r.pathPrefix,o.weights.map(a=>a.originalName)),i={};for(let a of o.weights)i[a.originalName]=s[a.originalName];o.loadWeights(i),Tt(s)}return o}async function UR(r,t){if(t==null&&(t={}),typeof r==\"string\"){let e=Mr.getLoadHandlers(r,t);if(e.length===0)e.push(Mr.browserHTTPRequest(r,t));else if(e.length>1)throw new z(`Found more than one (${e.length}) load handlers for URL '${r}'`);r=e[0]}return dJ(r,void 0,t)}async function dJ(r,t,e){if(e==null&&(e={}),r.load==null)throw new z(\"Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.\");let n=await r.load(),o=n.modelTopology;o.model_config!=null&&(o=o.model_config);let s=e.strict==null?!0:e.strict,i=n.weightData!=null&&n.weightSpecs!=null&&s,a=wn(Gc(o),t,i),u=n.trainingConfig;if(u!=null&&a.loadTrainingConfig(u),n.userDefinedMetadata!=null&&a.setUserDefinedMetadata(n.userDefinedMetadata),n.weightData!=null){if(n.weightSpecs==null)throw new z(\"LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.\");let{modelWeights:l,optimizerWeights:c}=hJ(n.weightData,n.weightSpecs);a.loadWeights(l,s),a.optimizer!=null&&c.length>0&&await a.optimizer.setWeights(c),Tt(l),Tt(c.map(p=>p.tensor))}return a}function hJ(r,t){let e=Mr.decodeWeights(r,t),n={},o=[];return t.forEach(s=>{s.group===\"optimizer\"?o.push({name:s.name,tensor:e[s.name]}):n[s.name]=e[s.name]}),{modelWeights:n,optimizerWeights:o}}var Wc=class r extends Un{constructor(t){if(super({inputs:[],outputs:[]}),t=t||{},this.trainable=!0,this.built=!1,this.name=t.name!=null?t.name:Fu(\"sequential_\"),t.layers!=null)for(let e of t.layers)this.add(e)}checkShape(t){if(t.inboundNodes[0].outputTensors[0].shape.some(n=>n<0))throw new z(`Negative dimension size caused by adding layer ${t.name} with input shape [${t.inboundNodes[0].inputTensors[0].shape}]`)}add(t){let e=t instanceof r||t instanceof Un,n;if(e){if(n=t,n.outputs.length!==1)throw new z(\"All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.\");if(n.inputs.length!==1)throw new z(\"All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.\")}if(this.outputs.length===0){if(t.inboundNodes.length===0){if(t.batchInputShape==null)throw new z(\"The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.\");let o=Hy({batchShape:t.batchInputShape,dtype:t.dtype,name:t.name+\"_input\"});t.apply(o)}if(e)this.outputs=n.outputs,this.inputs=n.inputs;else{if(t.inboundNodes.length!==1)throw new z(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${t.name} which has ${t.inboundNodes.length} pre-existing inbound connections.`);if(t.inboundNodes[0].outputTensors.length!==1)throw new z(\"All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.\");this.checkShape(t),this.outputs=[t.inboundNodes[0].outputTensors[0]],this.inputs=WN(this.outputs[0])}this.inboundNodes=[],new Nl({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:To(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(o=>o.shape),outputShapes:this.outputs[0].shape})}else{let o=t.apply(this.outputs[0]);if(Array.isArray(o))throw new TypeError(\"All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.\");this.checkShape(t),this.outputs=[o],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(t),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError(\"There are no layers in the model.\");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let t=this.layers.length-1;this.layers[t].outboundNodes=[],this.outputs=[this.layers[t].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(t,e){return this.model==null&&this.build(),this.model.call(t,e)}build(t){if(Gt(t),this.inputs.length===0||this.outputs.length===0)throw new TypeError(\"Sequential model cannot be built: model is empty. Add some layers first.\");this.model=new Un({inputs:this.inputs,outputs:this.outputs[0],name:this.name+\"_model\"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(t,e,n=console.log){this.built||this.build(),super.summary(t,e,n)}setWeights(t){this.model==null&&this.build(),this.model.setWeights(t)}evaluate(t,e,n={}){if(!this.built)throw new dn(\"The model needs to be compiled before being used.\");return this.model.evaluate(t,e,n)}async evaluateDataset(t,e){if(!this.built)throw new dn(\"The model needs to be compiled before being used.\");return this.model.evaluateDataset(t,e)}predict(t,e={}){return this.model==null&&this.build(),this.model.predict(t,e)}predictOnBatch(t){return this.model==null&&this.build(),this.model.predictOnBatch(t)}compile(t){this.build(),this.model.compile(t),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(t){this.model.optimizer=t}async fit(t,e,n={}){if(!this.built)throw new dn(\"The model needs to be compiled before being used.\");return this.model.fit(t,e,n)}async fitDataset(t,e){if(!this.built)throw new dn(\"The model needs to be compiled before being used.\");return this.model.fitDataset(t,e)}async trainOnBatch(t,e){return this.model.trainOnBatch(t,e)}static fromConfig(t,e,n={},o=!1){let s,i={};if(e instanceof Array){if(e[0].className==null||e[0].className===\"Merge\")throw new z(\"Legacy serialization format not supported yet.\");s=e}else y.assert(e.layers!=null,()=>\"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field.\"),s=e.layers,delete e.layers,i=e;let a=new t(i);if(!(a instanceof r))throw new _t(`Sequential.fromConfig called on non-Sequential input: ${a}`);for(let u of s){let c=wn(u,void 0,o);o&&c.setFastWeightInitDuringBuild(!0),a.add(c)}return a}set stopTraining(t){if(this.model==null)throw new z(\"Cannot set the stopTraining property of a sequential model before it is compiled.\");this.model.stopTraining=t}get stopTraining(){if(this.model==null)throw new z(\"Cannot get the stopTraining property of a sequential model before it is compiled.\");return this.model.stopTraining}getConfig(){let t=[];for(let e of this.layers){let n={};n.className=e.getClassName(),n.config=e.getConfig(),t.push(n)}return{name:this.name,layers:t}}};Wc.className=\"Sequential\";Q.registerClass(Wc);function gJ(r){return new Un(r)}function xJ(r){return new Wc(r)}function JN(r){return Hy(r)}function yJ(r,t){Um.registerCallbackConstructor(r,t)}var Pr=class extends Q.Serializable{getConfig(){return{}}},fb=class extends Pr{apply(t,e=1){return uR(t,e)}};fb.className=\"elu\";Q.registerClass(fb);var db=class extends Pr{apply(t){return fm(t)}};db.className=\"selu\";Q.registerClass(db);var hb=class extends Pr{apply(t){return Or(t)}};hb.className=\"relu\";Q.registerClass(hb);var gb=class extends Pr{apply(t){return B(()=>lo(6,Or(t)))}};gb.className=\"relu6\";Q.registerClass(gb);var xb=class extends Pr{apply(t){return t}};xb.className=\"linear\";Q.registerClass(xb);var yb=class extends Pr{apply(t){return en(t)}};yb.className=\"sigmoid\";Q.registerClass(yb);var bb=class extends Pr{apply(t){return pR(t)}};bb.className=\"hardSigmoid\";Q.registerClass(bb);var wb=class extends Pr{apply(t){return ui(t)}};wb.className=\"softplus\";Q.registerClass(wb);var Ib=class extends Pr{apply(t){return cR(t)}};Ib.className=\"softsign\";Q.registerClass(Ib);var Cb=class extends Pr{apply(t){return li(t)}};Cb.className=\"tanh\";Q.registerClass(Cb);var Ym=class extends Pr{apply(t,e=-1){return Eu(t,e)}};Ym.className=\"softmax\";Q.registerClass(Ym);var vb=class extends Pr{apply(t,e=-1){return lm(t,e)}};vb.className=\"logSoftmax\";Q.registerClass(vb);var Sb=class extends Pr{apply(t){return B(()=>B(()=>{let e=Math.sqrt(2),n=$(.5,K(1,am(ut(t,e))));return $(t,n)}))}};Sb.className=\"gelu\";Q.registerClass(Sb);var Nb=class extends Pr{apply(t){return B(()=>$(.5,$(t,K(1,li($(ge(ut(2,Math.PI)),K(t,$(.044715,qr(t,3)))))))))}};Nb.className=\"gelu_new\";Q.registerClass(Nb);var kb=class extends Pr{apply(t){return B(()=>$(t,li(ui(t))))}};kb.className=\"mish\";Q.registerClass(kb);var Tb=class extends Pr{apply(t,e=1){return B(()=>$(en($(t,e)),t))}};Tb.className=\"swish\";Q.registerClass(Tb);function gi(r){return r.getClassName()}function QN(r,t={}){return fa(r,Q.SerializationMap.getMap().classNameMap,t,\"activation\")}function xi(r){if(r==null){let t={};return t.className=\"linear\",t.config={},QN(t)}if(typeof r==\"string\"){let t={};return t.className=r,t.config={},QN(t)}else return r instanceof Pr?r:QN(r)}function tk(r){if(r!=null&&typeof r!=\"object\")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${r}`)}var _b=class extends Q.Serializable{},Lu=class extends _b{constructor(t){super(),tk(t),this.l1=t==null||t.l1==null?.01:t.l1,this.l2=t==null||t.l2==null?.01:t.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(t){return B(()=>{let e=ke([1]);return this.hasL1&&(e=K(e,mt($(this.l1,_e(t))))),this.hasL2&&(e=K(e,mt($(this.l2,$c(t))))),R(e,[])})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(t,e){return new t({l1:e.l1,l2:e.l2})}};Lu.className=\"L1L2\";Q.registerClass(Lu);function KR(r){return tk(r),new Lu({l1:r!=null?r.l1:null,l2:0})}function jR(r){return tk(r),new Lu({l2:r!=null?r.l2:null,l1:0})}var HR={l1l2:\"L1L2\"};function fe(r){return km(r)}function qR(r,t={}){return fa(r,Q.SerializationMap.getMap().classNameMap,t,\"regularizer\")}function ve(r){if(r==null)return null;if(typeof r==\"string\"){let e={className:r in HR?HR[r]:r,config:{}};return qR(e)}else return r instanceof _b?r:qR(r)}var Zm=class extends Et{constructor(t){super(t==null?{}:t),this.supportsMasking=!0,t!=null&&(this.maxValue=t.maxValue)}call(t,e){t=St(t);let n=Or(t);return this.maxValue!=null&&(n=vr(n,0,this.maxValue)),n}computeOutputShape(t){return t}getConfig(){let t={maxValue:this.maxValue},e=super.getConfig();return Object.assign(t,e),t}};Zm.className=\"ReLU\";Q.registerClass(Zm);var Jm=class extends Et{constructor(t){super(t==null?{}:t),this.DEFAULT_ALPHA=.3,t==null&&(t={}),this.alpha=t.alpha==null?this.DEFAULT_ALPHA:t.alpha}call(t,e){let n=St(t);return Cu(n,this.alpha)}computeOutputShape(t){return t}getConfig(){let t={alpha:this.alpha},e=super.getConfig();return Object.assign(t,e),t}};Jm.className=\"LeakyReLU\";Q.registerClass(Jm);var Qm=class extends Et{constructor(t){if(super(t==null?{}:t),this.DEFAULT_ALPHA_INITIALIZER=\"zeros\",t==null&&(t={}),this.supportsMasking=!0,this.alphaInitializer=xe(t.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=ve(t.alphaRegularizer),this.alphaConstraint=Ge(t.alphaConstraint),t.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(t.sharedAxes))this.sharedAxes=t.sharedAxes;else if(typeof t.sharedAxes==\"number\")this.sharedAxes=[t.sharedAxes];else throw new z(`Expected sharedAxes to be a number or an array of numbers, but got ${t.sharedAxes}`)}build(t){t=Gt(t);let e=t.slice(1);if(this.sharedAxes!=null)for(let o of this.sharedAxes)e[o-1]=1;this.alpha=this.addWeight(\"alpha\",e,\"float32\",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let o=1;o{let n=St(t),o=e.mask;if(o!=null){let s=$(at(ar(n.shape),J(o,n.dtype)),pt(-1e9));n=K(n,s)}return this.axis instanceof Array?this.axis.length>1?Ke(at(n,Su(n,this.axis,!0))):this.softmax(n,this.axis[0]):this.softmax(n,this.axis)})}computeOutputShape(t){return t}getConfig(){let t={axis:this.axis},e=super.getConfig();return Object.assign(t,e),t}};rf.className=\"Softmax\";Q.registerClass(rf);function zu(r,t,e){if(typeof r==\"number\")return To(r,t);if(r.length!==t)throw new z(`The ${e} argument must be an integer or tuple of ${t} integers. Received: ${r.length} elements.`);for(let n=0;n(Me(t),t===\"channelsFirst\"?Vt(r,[0,2,3,1]):r))}function ek(r,t){return B(()=>(Me(t),t===\"channelsFirst\"?Vt(r,[0,2,3,4,1]):r))}function wJ(r,t,e,n=1,o=\"valid\",s,i=1){return B(()=>{if(s==null&&(s=xn()),Me(s),r.shape.length!==3)throw new z(`The input of a conv1dWithBias operation should be 3, but is ${r.shape.length} instead.`);if(t.shape.length!==3)throw new z(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(e!=null&&e.shape.length!==1)throw new z(`The bias for a conv1dWithBias operation should be 1, but is ${e.shape.length} instead`);if(s===\"channelsFirst\"&&(r=Vt(r,[0,2,1])),o===\"causal\")throw new _t(\"The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.\");let a=rm(r,t,n,o===\"same\"?\"same\":\"valid\",\"NWC\",i);return e!=null&&(a=yn(a,e)),a})}function XR(r,t,e,n=[1,1],o=\"valid\",s,i,a=null){return B(()=>{if(s==null&&(s=xn()),Me(s),r.rank!==3&&r.rank!==4)throw new z(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${r.rank}.`);if(t.rank!==3&&t.rank!==4)throw new z(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${r.rank}.`);let u=Ph(r,s);if(o===\"causal\")throw new _t(\"The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.\");return u=Ru.conv2d({x:u,filter:t,strides:n,pad:o===\"same\"?\"same\":\"valid\",dilations:i,dataFormat:\"NHWC\",bias:e,activation:a}),s===\"channelsFirst\"&&(u=Vt(u,[0,3,1,2])),u})}function IJ(r,t,e,n=[1,1,1],o=\"valid\",s,i){return B(()=>{if(s==null&&(s=xn()),Me(s),r.rank!==4&&r.rank!==5)throw new z(`conv3dWithBias expects input to be of rank 4 or 5, but received ${r.rank}.`);if(t.rank!==4&&t.rank!==5)throw new z(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${r.rank}.`);let a=ek(r,s);if(o===\"causal\")throw new _t(\"The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.\");return a=Dx(a,t,n,o===\"same\"?\"same\":\"valid\",\"NDHWC\",i),e!=null&&(a=yn(a,e)),s===\"channelsFirst\"&&(a=Vt(a,[0,4,1,2,3])),a})}var Mh=class r extends Et{constructor(t,e){if(super(e),this.bias=null,this.DEFAULT_KERNEL_INITIALIZER=\"glorotNormal\",this.DEFAULT_BIAS_INITIALIZER=\"zeros\",r.verifyArgs(e),this.rank=t,tr(this.rank,\"rank\"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new _t(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=zu(e.kernelSize,t,\"kernelSize\"),this.strides=zu(e.strides==null?1:e.strides,t,\"strides\"),this.padding=e.padding==null?\"valid\":e.padding,hn(this.padding),this.dataFormat=e.dataFormat==null?\"channelsLast\":e.dataFormat,Me(this.dataFormat),this.activation=xi(e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.biasInitializer=xe(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=Ge(e.biasConstraint),this.biasRegularizer=ve(e.biasRegularizer),this.activityRegularizer=ve(e.activityRegularizer),this.dilationRate=zu(e.dilationRate==null?1:e.dilationRate,t,\"dilationRate\"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new z(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate==\"number\")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new z(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate==\"number\")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new z(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(t){if(co(\"kernelSize\"in t,\"required key 'kernelSize' not in config\"),typeof t.kernelSize!=\"number\"&&!Fy(t.kernelSize,\"number\",1,3))throw new z(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(t.kernelSize)}.`)}getConfig(){let t={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:gi(this.activation),useBias:this.useBias,biasInitializer:Te(this.biasInitializer),biasRegularizer:fe(this.biasRegularizer),activityRegularizer:fe(this.activityRegularizer),biasConstraint:Ve(this.biasConstraint)},e=super.getConfig();return Object.assign(t,e),t}},nf=class r extends Mh{constructor(t,e){super(t,e),this.kernel=null,r.verifyArgs(e),this.filters=e.filters,tr(this.filters,\"filters\"),this.kernelInitializer=xe(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=Ge(e.kernelConstraint),this.kernelRegularizer=ve(e.kernelRegularizer)}build(t){t=Gt(t);let e=this.dataFormat===\"channelsFirst\"?1:t.length-1;if(t[e]==null)throw new z(`The channel dimension of the input should be defined. Found ${t[e]}`);let n=t[e],o=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight(\"kernel\",o,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight(\"bias\",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[e]:n}}],this.built=!0}call(t,e){return B(()=>{t=St(t);let n,o=this.bias==null?null:this.bias.read(),s=Oy(this.activation.getClassName());if(s!=null&&this.rank===2)n=XR(t,this.kernel.read(),o,this.strides,this.padding,this.dataFormat,this.dilationRate,s);else{if(this.rank===1)n=wJ(t,this.kernel.read(),o,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=XR(t,this.kernel.read(),o,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=IJ(t,this.kernel.read(),o,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new _t(\"convolutions greater than 3D are not implemented yet.\");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(t){t=Gt(t);let e=[],n=this.dataFormat===\"channelsLast\"?t.slice(1,t.length-1):t.slice(2);for(let s=0;s 0 but got ${JSON.stringify(t.filters)}`)}},Uc=class r extends nf{constructor(t){super(2,t),r.verifyArgs(t)}getConfig(){let t=super.getConfig();return delete t.rank,t}static verifyArgs(t){if(typeof t.kernelSize!=\"number\"&&!Fy(t.kernelSize,\"number\",1,2))throw new z(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(t.kernelSize)}.`)}};Uc.className=\"Conv2D\";Q.registerClass(Uc);var Hc=class r extends nf{constructor(t){super(3,t),r.verifyArgs(t)}getConfig(){let t=super.getConfig();return delete t.rank,t}static verifyArgs(t){if(typeof t.kernelSize!=\"number\"&&!(Array.isArray(t.kernelSize)&&(t.kernelSize.length===1||t.kernelSize.length===3)))throw new z(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(t.kernelSize)}.`)}};Hc.className=\"Conv3D\";Q.registerClass(Hc);var of=class extends Uc{constructor(t){if(super(t),this.inputSpec=[new Ce({ndim:4})],this.padding!==\"same\"&&this.padding!==\"valid\")throw new z(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(t){if(t=Gt(t),t.length!==4)throw new z(\"Input should have rank 4; Received input shape: \"+JSON.stringify(t));let e=this.dataFormat===\"channelsFirst\"?1:t.length-1;if(t[e]==null)throw new z(\"The channel dimension of the inputs should be defined. Found `None`.\");let n=t[e],o=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight(\"kernel\",o,\"float32\",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight(\"bias\",[this.filters],\"float32\",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Ce({ndim:4,axes:{[e]:n}})],this.built=!0}call(t,e){return B(()=>{let n=St(t);if(n.shape.length!==4)throw new z(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let o=n.shape,s=o[0],i,a;this.dataFormat===\"channelsFirst\"?(i=2,a=3):(i=1,a=2);let u=o[i],l=o[a],c=this.kernelSize[0],p=this.kernelSize[1],m=this.strides[0],f=this.strides[1],d=yi(u,m,c,this.padding),h=yi(l,f,p,this.padding),g=[s,d,h,this.filters];this.dataFormat!==\"channelsLast\"&&(n=Vt(n,[0,2,3,1]));let x=om(n,this.kernel.read(),g,this.strides,this.padding);return this.dataFormat!==\"channelsLast\"&&(x=Vt(x,[0,3,1,2])),this.bias!=null&&(x=yn(x,this.bias.read(),this.dataFormat)),this.activation!=null&&(x=this.activation.apply(x)),x})}computeOutputShape(t){t=Gt(t);let e=t.slice(),n,o,s;this.dataFormat===\"channelsFirst\"?(n=1,o=2,s=3):(n=3,o=1,s=2);let i=this.kernelSize[0],a=this.kernelSize[1],u=this.strides[0],l=this.strides[1];return e[n]=this.filters,e[o]=yi(e[o],u,i,this.padding),e[s]=yi(e[s],l,a,this.padding),e}getConfig(){let t=super.getConfig();return delete t.dilationRate,t}};of.className=\"Conv2DTranspose\";Q.registerClass(of);var sf=class extends Hc{constructor(t){if(super(t),this.inputSpec=[new Ce({ndim:5})],this.padding!==\"same\"&&this.padding!==\"valid\")throw new z(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(t){if(t=Gt(t),t.length!==5)throw new z(\"Input should have rank 5; Received input shape: \"+JSON.stringify(t));let e=this.dataFormat===\"channelsFirst\"?1:t.length-1;if(t[e]==null)throw new z(\"The channel dimension of the inputs should be defined. Found `None`.\");let n=t[e],o=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight(\"kernel\",o,\"float32\",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight(\"bias\",[this.filters],\"float32\",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Ce({ndim:5,axes:{[e]:n}})],this.built=!0}call(t,e){return B(()=>{let n=St(t);if(n.shape.length!==5)throw new z(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let o=n.shape,s=o[0],i,a,u;this.dataFormat===\"channelsFirst\"?(u=2,i=3,a=4):(u=1,i=2,a=3);let l=o[u],c=o[i],p=o[a],m=this.kernelSize[0],f=this.kernelSize[1],d=this.kernelSize[2],h=this.strides[0],g=this.strides[1],x=this.strides[2],b=yi(l,h,m,this.padding),w=yi(c,g,f,this.padding),I=yi(p,x,d,this.padding),N=[s,b,w,I,this.filters];this.dataFormat!==\"channelsLast\"&&(n=Vt(n,[0,2,3,4,1]));let E=Rx(n,this.kernel.read(),N,this.strides,this.padding);return this.dataFormat!==\"channelsLast\"&&(E=Vt(E,[0,4,1,2,3])),this.bias!==null&&(E=yn(E,this.bias.read(),this.dataFormat)),this.activation!==null&&(E=this.activation.apply(E)),E})}computeOutputShape(t){t=Gt(t);let e=t.slice(),n,o,s,i;this.dataFormat===\"channelsFirst\"?(n=1,o=2,s=3,i=4):(n=4,o=1,s=2,i=3);let a=this.kernelSize[0],u=this.kernelSize[1],l=this.kernelSize[2],c=this.strides[0],p=this.strides[1],m=this.strides[2];return e[n]=this.filters,e[o]=yi(e[o],c,a,this.padding),e[s]=yi(e[s],p,u,this.padding),e[i]=yi(e[i],m,l,this.padding),e}getConfig(){let t=super.getConfig();return delete t.dilationRate,t}};sf.className=\"Conv3DTranspose\";Q.registerClass(sf);var Eb=class extends nf{constructor(t,e){if(super(t,e),this.DEFAULT_DEPTHWISE_INITIALIZER=\"glorotUniform\",this.DEFAULT_POINTWISE_INITIALIZER=\"glorotUniform\",this.depthwiseKernel=null,this.pointwiseKernel=null,e.filters==null)throw new z(\"The `filters` configuration field is required by SeparableConv, but is unspecified.\");if(e.kernelInitializer!=null||e.kernelRegularizer!=null||e.kernelConstraint!=null)throw new z(\"Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.\");if(e.padding!=null&&e.padding!==\"same\"&&e.padding!==\"valid\")throw new z(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(e.padding)}`);this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=xe(e.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=ve(e.depthwiseRegularizer),this.depthwiseConstraint=Ge(e.depthwiseConstraint),this.pointwiseInitializer=xe(e.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=ve(e.pointwiseRegularizer),this.pointwiseConstraint=Ge(e.pointwiseConstraint)}build(t){if(t=Gt(t),t.length{t=St(t);let n;if(this.rank===1)throw new _t(\"1D separable convolution is not implemented yet.\");return this.rank===2&&(this.dataFormat===\"channelsFirst\"&&(t=Vt(t,[0,2,3,1])),n=dm(t,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,\"NHWC\")),this.useBias&&(n=yn(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat===\"channelsFirst\"&&(n=Vt(n,[0,3,1,2])),n})}getConfig(){let t=super.getConfig();return delete t.rank,delete t.kernelInitializer,delete t.kernelRegularizer,delete t.kernelConstraint,t.depthwiseInitializer=Te(this.depthwiseInitializer),t.pointwiseInitializer=Te(this.pointwiseInitializer),t.depthwiseRegularizer=fe(this.depthwiseRegularizer),t.pointwiseRegularizer=fe(this.pointwiseRegularizer),t.depthwiseConstraint=Ve(this.depthwiseConstraint),t.pointwiseConstraint=Ve(this.pointwiseConstraint),t}};Eb.className=\"SeparableConv\";var af=class extends Eb{constructor(t){super(2,t)}};af.className=\"SeparableConv2D\";Q.registerClass(af);var lf=class r extends nf{constructor(t){super(1,t),r.verifyArgs(t),this.inputSpec=[{ndim:3}]}getConfig(){let t=super.getConfig();return delete t.rank,delete t.dataFormat,t}static verifyArgs(t){if(typeof t.kernelSize!=\"number\"&&!Fy(t.kernelSize,\"number\",1,1))throw new z(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(t.kernelSize)}.`)}};lf.className=\"Conv1D\";Q.registerClass(lf);var uf=class extends Et{constructor(t){super(t),typeof t.cropping==\"number\"?this.cropping=[[t.cropping,t.cropping],[t.cropping,t.cropping]]:typeof t.cropping[0]==\"number\"?this.cropping=[[t.cropping[0],t.cropping[0]],[t.cropping[1],t.cropping[1]]]:this.cropping=t.cropping,this.dataFormat=t.dataFormat===void 0?\"channelsLast\":t.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(t){return this.dataFormat===\"channelsFirst\"?[t[0],t[1],t[2]-this.cropping[0][0]-this.cropping[0][1],t[3]-this.cropping[1][0]-this.cropping[1][1]]:[t[0],t[1]-this.cropping[0][0]-this.cropping[0][1],t[2]-this.cropping[1][0]-this.cropping[1][1],t[3]]}call(t,e){return B(()=>{if(t=St(t),this.dataFormat===\"channelsLast\"){let n=kh(t,this.cropping[0][0],t.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return kh(n,this.cropping[1][0],t.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=kh(t,this.cropping[0][0],t.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return kh(n,this.cropping[1][0],t.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let t={cropping:this.cropping,dataFormat:this.dataFormat},e=super.getConfig();return Object.assign(t,e),t}};uf.className=\"Cropping2D\";Q.registerClass(uf);var cf=class extends Et{constructor(t){super(t),this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=t.size==null?this.DEFAULT_SIZE:t.size,this.dataFormat=t.dataFormat==null?\"channelsLast\":t.dataFormat,Me(this.dataFormat),this.interpolation=t.interpolation==null?\"nearest\":t.interpolation,nR(this.interpolation)}computeOutputShape(t){if(this.dataFormat===\"channelsFirst\"){let e=t[2]==null?null:this.size[0]*t[2],n=t[3]==null?null:this.size[1]*t[3];return[t[0],t[1],e,n]}else{let e=t[1]==null?null:this.size[0]*t[1],n=t[2]==null?null:this.size[1]*t[2];return[t[0],e,n,t[3]]}}call(t,e){return B(()=>{let n=St(t),o=n.shape;if(this.dataFormat===\"channelsFirst\"){n=Vt(n,[0,2,3,1]);let s=this.size[0]*o[2],i=this.size[1]*o[3],a=this.interpolation===\"nearest\"?fn.resizeNearestNeighbor(n,[s,i]):fn.resizeBilinear(n,[s,i]);return Vt(a,[0,3,1,2])}else{let s=this.size[0]*o[1],i=this.size[1]*o[2];return this.interpolation===\"nearest\"?fn.resizeNearestNeighbor(n,[s,i]):fn.resizeBilinear(n,[s,i])}})}getConfig(){let t={size:this.size,dataFormat:this.dataFormat,interpolation:this.interpolation},e=super.getConfig();return Object.assign(t,e),t}};cf.className=\"UpSampling2D\";Q.registerClass(cf);function CJ(r,t,e=[1,1],n=\"valid\",o,s){return B(()=>{o==null&&(o=xn()),Me(o);let i=Ph(r,o);if(r.rank!==4)throw new z(`Input for depthwiseConv2d is required to be 4-D, but is instead ${r.rank}-D`);if(t.rank!==4)throw new z(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return i=ia(i,t,e,n===\"same\"?\"same\":\"valid\",\"NHWC\",s),o===\"channelsFirst\"&&(i=Vt(i,[0,3,1,2])),i})}var pf=class extends Mh{constructor(t){super(2,t),this.depthwiseKernel=null,this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=xe(t.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=Ge(t.depthwiseConstraint),this.depthwiseRegularizer=ve(t.depthwiseRegularizer)}build(t){if(t=Gt(t),t.length<4)throw new z(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(t)}.`);let e=this.dataFormat===\"channelsFirst\"?1:3;if(t[e]==null||t[e]<0)throw new z(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${t[e]}).`);let n=t[e],o=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight(\"depthwise_kernel\",o,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight(\"bias\",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(t,e){return B(()=>{t=St(t);let n=CJ(t,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=yn(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(t){t=Gt(t);let e=this.dataFormat===\"channelsFirst\"?t[2]:t[1],n=this.dataFormat===\"channelsFirst\"?t[3]:t[2],o=this.dataFormat===\"channelsFirst\"?t[1]*this.depthMultiplier:t[3]*this.depthMultiplier,s=Tn(e,this.kernelSize[0],this.padding,this.strides[0]),i=Tn(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat===\"channelsFirst\"?[t[0],o,s,i]:[t[0],s,i,o]}getConfig(){let t=super.getConfig();return t.depthMultiplier=this.depthMultiplier,t.depthwiseInitializer=Te(this.depthwiseInitializer),t.depthwiseRegularizer=fe(this.depthwiseRegularizer),t.depthwiseConstraint=Ve(this.depthwiseRegularizer),t}};pf.className=\"DepthwiseConv2D\";Q.registerClass(pf);function rk(r,t,e,n){if(Array.isArray(r)){if(t!=null||e!=null)throw new z(\"When inputs is an array, neither initialState or constants should be provided\");n!=null&&(e=r.slice(r.length-n,r.length),r=r.slice(0,r.length-n)),r.length>1&&(t=r.slice(1,r.length)),r=r[0]}function o(s){return s==null||Array.isArray(s)?s:[s]}return t=o(t),e=o(e),{inputs:r,initialState:t,constants:e}}function nk(r,t,e,n=!1,o,s,i=!1,a=!1){return B(()=>{let u=t.shape.length;if(u<3)throw new z(`Input should be at least 3D, but is ${u}D.`);let l=[1,0].concat(gn(2,u));if(t=Vt(t,l),s!=null)throw new _t(\"The rnn() functoin of the deeplearn.js backend does not support constants yet.\");i&&console.warn(\"Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend.\"),o!=null&&(o=J(J(o,\"bool\"),\"float32\"),o.rank===u-1&&(o=je(o,-1)),o=Vt(o,l)),n&&(t=dr(t,0),o!=null&&(o=dr(o,0)));let c=[],p,m=e,f=t.shape[0],d=gr(t),h;o!=null&&(h=gr(o));for(let x=0;xr(b,m));if(o==null)p=w[0],m=w[1];else{let I=B(()=>{let N=h[x],E=at(wr(N),N),A=K($(w[0],N),$(m[0],E)),D=m.map((F,M)=>K($(w[1][M],N),$(F,E)));return{output:A,newStates:D}});p=I.output,m=I.newStates}a&&c.push(p)}let g;return a&&(g=Fe(c,1)),[p,g,m]})}var po=class r extends Et{constructor(t){super(t);let e;if(t.cell==null)throw new z(\"cell property is missing for the constructor of RNN.\");if(Array.isArray(t.cell)?e=new jc({cells:t.cell}):e=t.cell,e.stateSize==null)throw new z(\"The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).\");this.cell=e,this.returnSequences=t.returnSequences==null?!1:t.returnSequences,this.returnState=t.returnState==null?!1:t.returnState,this.goBackwards=t.goBackwards==null?!1:t.goBackwards,this._stateful=t.stateful==null?!1:t.stateful,this.unroll=t.unroll==null?!1:t.unroll,this.supportsMasking=!0,this.inputSpec=[new Ce({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let t=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return gn(0,t).map(e=>null)}else return this.states_}setStates(t){this.states_=t}computeOutputShape(t){Uy(t)&&(t=t[0]),t=t;let e=this.cell.stateSize;Array.isArray(e)||(e=[e]);let n=e[0],o;if(this.returnSequences?o=[t[0],t[1],n]:o=[t[0],n],this.returnState){let s=[];for(let i of e)s.push([t[0],i]);return[o].concat(s)}else return o}computeMask(t,e){return B(()=>{Array.isArray(e)&&(e=e[0]);let n=this.returnSequences?e:null;if(this.returnState){let o=this.states.map(s=>null);return[n].concat(o)}else return n})}get states(){if(this.states_==null){let t=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,e=[];for(let n=0;na.shape[a.shape.length-1]),i))throw new z(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=i.map(a=>new Ce({shape:[null,a]}));this.stateful&&this.resetStates()}resetStates(t,e=!1){B(()=>{if(!this.stateful)throw new uo(\"Cannot call resetStates() on an RNN Layer that is not stateful.\");let n=this.inputSpec[0].shape[0];if(n==null)throw new z(\"If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \\n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.\");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(o=>ke([n,o])):this.states_=[ke([n,this.cell.stateSize])];else if(t==null)Tt(this.states_),this.keptStates!=null&&(Tt(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(o=>ke([n,o])):this.states_[0]=ke([n,this.cell.stateSize]);else{if(Array.isArray(t)||(t=[t]),t.length!==this.states_.length)throw new z(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${t.length} state value(s). Input received: ${t}`);e===!0?this.keptStates.push(this.states_.slice()):Tt(this.states_);for(let o=0;oDe(o.clone()))})}apply(t,e){let n=e==null?null:e.initialState,o=e==null?null:e.constants;e==null&&(e={});let s=rk(t,n,o,this.numConstants);t=s.inputs,n=s.initialState,o=s.constants;let i=[],a=[];if(n!=null){e.initialState=n,i=i.concat(n),this.stateSpec=[];for(let l of n)this.stateSpec.push(new Ce({shape:l.shape}));a=a.concat(this.stateSpec)}if(o!=null&&(e.constants=o,i=i.concat(o),this.numConstants=o.length),i[0]instanceof nn){let l=[t].concat(i),c=this.inputSpec.concat(a),p=this.inputSpec;this.inputSpec=c;let m=super.apply(l,e);return this.inputSpec=p,m}else return super.apply(t,e)}call(t,e){return B(()=>{let n=e==null?null:e.mask,o=e==null?null:e.training,s=e==null?null:e.initialState;t=St(t),s==null&&(this.stateful?s=this.states_:s=this.getInitialState(t));let i=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(s.length!==i)throw new z(`RNN Layer has ${i} state(s) but was passed ${s.length} initial state(s).`);this.unroll&&console.warn(\"Ignoring unroll = true for RNN layer, due to imperative backend.\");let a={training:o},l=nk((d,h)=>{let g=this.cell.call([d].concat(h),a);return[g[0],g.slice(1)]},t,s,this.goBackwards,n,null,this.unroll,this.returnSequences),c=l[0],p=l[1],m=l[2];this.stateful&&this.resetStates(m,o);let f=this.returnSequences?p:c;return this.returnState?[f].concat(m):f})}getInitialState(t){return B(()=>{let e=ke(t.shape);return e=mt(e,[1,2]),e=Sl(e),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?Vy(e,[1,n]):e):this.cell.stateSize>1?[Vy(e,[1,this.cell.stateSize])]:[e]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(t){super.setFastWeightInitDuringBuild(t),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(t)}getConfig(){let t=super.getConfig(),e={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(e.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===r.className&&(e.cell={className:this.cell.getClassName(),config:n}),Object.assign(Object.assign(Object.assign({},n),t),e)}static fromConfig(t,e,n={}){let o=e.cell,s=wn(o,n);return new t(Object.assign(e,{cell:s}))}};po.className=\"RNN\";Q.registerClass(po);var Tl=class extends Et{},qc=class extends Tl{constructor(t){super(t),this.DEFAULT_ACTIVATION=\"tanh\",this.DEFAULT_KERNEL_INITIALIZER=\"glorotNormal\",this.DEFAULT_RECURRENT_INITIALIZER=\"orthogonal\",this.DEFAULT_BIAS_INITIALIZER=\"zeros\",this.units=t.units,tr(this.units,\"units\"),this.activation=xi(t.activation==null?this.DEFAULT_ACTIVATION:t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.kernelInitializer=xe(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=xe(t.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=xe(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=ve(t.kernelRegularizer),this.recurrentRegularizer=ve(t.recurrentRegularizer),this.biasRegularizer=ve(t.biasRegularizer),this.kernelConstraint=Ge(t.kernelConstraint),this.recurrentConstraint=Ge(t.recurrentConstraint),this.biasConstraint=Ge(t.biasConstraint),this.dropout=Dc([1,di([0,t.dropout==null?0:t.dropout])]),this.recurrentDropout=Dc([1,di([0,t.recurrentDropout==null?0:t.recurrentDropout])]),this.dropoutFunc=t.dropoutFunc,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(t){t=Gt(t),this.kernel=this.addWeight(\"kernel\",[t[t.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight(\"recurrent_kernel\",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight(\"bias\",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(t,e){return B(()=>{if(t=t,t.length!==2)throw new z(`SimpleRNNCell expects 2 input Tensors, got ${t.length}.`);let n=t[1];t=t[0];let o=e.training==null?!1:e.training;0wr(t),rate:this.dropout,training:o,dropoutFunc:this.dropoutFunc})),0wr(n),rate:this.recurrentDropout,training:o,dropoutFunc:this.dropoutFunc}));let s,i=this.dropoutMask,a=this.recurrentDropoutMask;i!=null?s=Do($(t,i),this.kernel.read()):s=Do(t,this.kernel.read()),this.bias!=null&&(s=yn(s,this.bias.read())),a!=null&&(n=$(n,a));let u=K(s,Do(n,this.recurrentKernel.read()));return this.activation!=null&&(u=this.activation.apply(u)),[u,u]})}getConfig(){let t=super.getConfig(),e={units:this.units,activation:gi(this.activation),useBias:this.useBias,kernelInitializer:Te(this.kernelInitializer),recurrentInitializer:Te(this.recurrentInitializer),biasInitializer:Te(this.biasInitializer),kernelRegularizer:fe(this.kernelRegularizer),recurrentRegularizer:fe(this.recurrentRegularizer),biasRegularizer:fe(this.biasRegularizer),activityRegularizer:fe(this.activityRegularizer),kernelConstraint:Ve(this.kernelConstraint),recurrentConstraint:Ve(this.recurrentConstraint),biasConstraint:Ve(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign(Object.assign({},t),e)}};qc.className=\"SimpleRNNCell\";Q.registerClass(qc);var mf=class extends po{constructor(t){t.cell=new qc(t),super(t)}call(t,e){return B(()=>{this.cell.dropoutMask!=null&&(Tt(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Tt(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=e==null?null:e.mask,o=e==null?null:e.training,s=e==null?null:e.initialState;return super.call(t,{mask:n,training:o,initialState:s})})}static fromConfig(t,e){return new t(e)}};mf.className=\"SimpleRNN\";Q.registerClass(mf);var Kc=class extends Tl{constructor(t){if(super(t),this.DEFAULT_ACTIVATION=\"tanh\",this.DEFAULT_RECURRENT_ACTIVATION=\"hardSigmoid\",this.DEFAULT_KERNEL_INITIALIZER=\"glorotNormal\",this.DEFAULT_RECURRENT_INITIALIZER=\"orthogonal\",this.DEFAULT_BIAS_INITIALIZER=\"zeros\",t.resetAfter)throw new z(\"GRUCell does not support reset_after parameter set to true.\");this.units=t.units,tr(this.units,\"units\"),this.activation=xi(t.activation===void 0?this.DEFAULT_ACTIVATION:t.activation),this.recurrentActivation=xi(t.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:t.recurrentActivation),this.useBias=t.useBias==null?!0:t.useBias,this.kernelInitializer=xe(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=xe(t.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=xe(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=ve(t.kernelRegularizer),this.recurrentRegularizer=ve(t.recurrentRegularizer),this.biasRegularizer=ve(t.biasRegularizer),this.kernelConstraint=Ge(t.kernelConstraint),this.recurrentConstraint=Ge(t.recurrentConstraint),this.biasConstraint=Ge(t.biasConstraint),this.dropout=Dc([1,di([0,t.dropout==null?0:t.dropout])]),this.recurrentDropout=Dc([1,di([0,t.recurrentDropout==null?0:t.recurrentDropout])]),this.dropoutFunc=t.dropoutFunc,this.implementation=t.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(t){t=Gt(t);let e=t[t.length-1];this.kernel=this.addWeight(\"kernel\",[e,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight(\"recurrent_kernel\",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight(\"bias\",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(t,e){return B(()=>{if(t=t,t.length!==2)throw new z(`GRUCell expects 2 input Tensors (inputs, h, c), got ${t.length}.`);let n=e.training==null?!1:e.training,o=t[1];t=t[0],0wr(t),rate:this.dropout,training:n,count:3,dropoutFunc:this.dropoutFunc})),0wr(o),rate:this.recurrentDropout,training:n,count:3,dropoutFunc:this.dropoutFunc}));let s=this.dropoutMask,i=this.recurrentDropoutMask,a,u,l;0{this.cell.dropoutMask!=null&&(Tt(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Tt(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=e==null?null:e.mask,o=e==null?null:e.training,s=e==null?null:e.initialState;return super.call(t,{mask:n,training:o,initialState:s})})}static fromConfig(t,e){return e.implmentation===0&&(e.implementation=1),new t(e)}};ff.className=\"GRU\";Q.registerClass(ff);var _l=class extends Tl{constructor(t){super(t),this.DEFAULT_ACTIVATION=\"tanh\",this.DEFAULT_RECURRENT_ACTIVATION=\"hardSigmoid\",this.DEFAULT_KERNEL_INITIALIZER=\"glorotNormal\",this.DEFAULT_RECURRENT_INITIALIZER=\"orthogonal\",this.DEFAULT_BIAS_INITIALIZER=\"zeros\",this.units=t.units,tr(this.units,\"units\"),this.activation=xi(t.activation===void 0?this.DEFAULT_ACTIVATION:t.activation),this.recurrentActivation=xi(t.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:t.recurrentActivation),this.useBias=t.useBias==null?!0:t.useBias,this.kernelInitializer=xe(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=xe(t.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=xe(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=t.unitForgetBias,this.kernelRegularizer=ve(t.kernelRegularizer),this.recurrentRegularizer=ve(t.recurrentRegularizer),this.biasRegularizer=ve(t.biasRegularizer),this.kernelConstraint=Ge(t.kernelConstraint),this.recurrentConstraint=Ge(t.recurrentConstraint),this.biasConstraint=Ge(t.biasConstraint),this.dropout=Dc([1,di([0,t.dropout==null?0:t.dropout])]),this.recurrentDropout=Dc([1,di([0,t.recurrentDropout==null?0:t.recurrentDropout])]),this.dropoutFunc=t.dropoutFunc,this.implementation=t.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(t){var e;t=Gt(t);let n=t[t.length-1];this.kernel=this.addWeight(\"kernel\",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight(\"recurrent_kernel\",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let o;if(this.useBias){if(this.unitForgetBias){let s=this.biasInitializer,i=this.units;o=new(e=class extends bn{apply(u,l){let c=s.apply([i]),p=new Mu().apply([i]),m=s.apply([i*2]);return GN(GN(c,p),m)}},e.className=\"CustomInit\",e)}else o=this.biasInitializer;this.bias=this.addWeight(\"bias\",[this.units*4],null,o,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(t,e){return B(()=>{let n=e.training==null?!1:e.training;if(t=t,t.length!==3)throw new z(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${t.length}.`);let o=t[1],s=t[2];t=t[0],0wr(t),rate:this.dropout,training:n,count:4,dropoutFunc:this.dropoutFunc})),0wr(o),rate:this.recurrentDropout,training:n,count:4,dropoutFunc:this.dropoutFunc}));let i=this.dropoutMask,a=this.recurrentDropoutMask,u,l,c,p;0{this.cell.dropoutMask!=null&&(Tt(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Tt(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=e==null?null:e.mask,o=e==null?null:e.training,s=e==null?null:e.initialState;return super.call(t,{mask:n,training:o,initialState:s})})}static fromConfig(t,e){return e.implmentation===0&&(e.implementation=1),new t(e)}};df.className=\"LSTM\";Q.registerClass(df);var jc=class extends Tl{constructor(t){super(t),this.cells=t.cells}get stateSize(){let t=[];for(let e of this.cells.slice().reverse())Array.isArray(e.stateSize)?t.push(...e.stateSize):t.push(e.stateSize);return t}call(t,e){return B(()=>{t=t;let n=t.slice(1),o=[];for(let a of this.cells.slice().reverse())Array.isArray(a.stateSize)?o.push(n.splice(0,a.stateSize.length)):o.push(n.splice(0,1));o.reverse();let s=[],i;for(let a=0;a{fi(`RNNCell_${o}`,()=>{n.build(t),Array.isArray(n.stateSize)?e=n.stateSize[0]:e=n.stateSize,t=[t[0],e]})}),this.built=!0}getConfig(){let t=super.getConfig(),e=s=>({className:s.getClassName(),config:s.getConfig()}),o={cells:this.cells.map(e)};return Object.assign(Object.assign({},t),o)}static fromConfig(t,e,n={}){let o=[];for(let s of e.cells)o.push(wn(s,n));return new t({cells:o})}get trainableWeights(){if(!this.trainable)return[];let t=[];for(let e of this.cells)t.push(...e.trainableWeights);return t}get nonTrainableWeights(){let t=[];for(let e of this.cells)t.push(...e.nonTrainableWeights);if(!this.trainable){let e=[];for(let n of this.cells)e.push(...n.trainableWeights);return e.concat(t)}return t}getWeights(){let t=[];for(let e of this.cells)t.push(...e.weights);return _h(t)}setWeights(t){let e=[];for(let n of this.cells){let o=n.weights.length,s=t.splice(o);for(let i=0;is!=null?s(t(),e):Wy(t(),e),a=()=>Ou(i,t,n);return!o||o<=1?De(a().clone()):Array(o).fill(void 0).map(a).map(l=>De(l.clone()))}var vJ=function(r,t){var e={};for(var n in r)Object.prototype.hasOwnProperty.call(r,n)&&t.indexOf(n)<0&&(e[n]=r[n]);if(r!=null&&typeof Object.getOwnPropertySymbols==\"function\")for(var o=0,n=Object.getOwnPropertySymbols(r);o{if(this.cell.dropoutMask!=null&&(Tt(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Tt(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),e&&e.constants)throw new z(\"ConvRNN2D cell does not support constants\");let n=e==null?null:e.mask,o=e==null?null:e.training,s=e==null?null:e.initialState;return super.call(t,{mask:n,training:o,initialState:s})})}computeOutputShape(t){let e=this.computeSingleOutputShape(t);return this.returnSequences||(e=[e[0],...e.slice(2)]),this.returnState&&(e=[e,...Array(2).fill([t[0],...e.slice(-3)])]),e}getInitialState(t){return B(()=>{let{stateSize:e}=this.cell,n=t.shape,o=this.computeSingleOutputShape(n),s=[o[0],...o.slice(2)],i=ke(s);return Array.isArray(e)?Array(e.length).fill(i):[i]})}resetStates(t,e=!1){B(()=>{if(!this.stateful)throw new uo(\"Cannot call resetStates() on an RNN Layer that is not stateful.\");let n=this.inputSpec[0].shape,o=this.computeSingleOutputShape(n),s=[o[0],...o.slice(2)];if(n[0]==null)throw new z(\"If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \\n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.\");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>ke(s)):this.states_=[ke(s)];else if(t==null)Tt(this.states_),this.keptStates!=null&&(Tt(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>ke(s)):this.states_[0]=ke(s);else{if(Array.isArray(t)||(t=[t]),t.length!==this.states_.length)throw new z(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${t.length} state value(s). Input received: ${t}`);e?this.keptStates.push(this.states_.slice()):Tt(this.states_);for(let a=0;aDe(a.clone()))})}computeSingleOutputShape(t){let{dataFormat:e,filters:n,kernelSize:o,padding:s,strides:i,dilationRate:a}=this.cell,u=e===\"channelsFirst\",l=t[u?3:2],c=t[u?4:3],p=Tn(l,o[0],s,i[0],a[0]),m=Tn(c,o[1],s,i[1],a[1]);return[...t.slice(0,2),...u?[n,p,m]:[p,m,n]]}};Ab.className=\"ConvRNN2D\";var Xc=class extends _l{constructor(t){let{filters:e,kernelSize:n,strides:o,padding:s,dataFormat:i,dilationRate:a}=t;super(Object.assign(Object.assign({},t),{units:e})),this.filters=e,tr(this.filters,\"filters\"),this.kernelSize=zu(n,2,\"kernelSize\"),this.kernelSize.forEach(u=>tr(u,\"kernelSize\")),this.strides=zu(o||1,2,\"strides\"),this.strides.forEach(u=>tr(u,\"strides\")),this.padding=s||\"valid\",hn(this.padding),this.dataFormat=i||\"channelsLast\",Me(this.dataFormat),this.dilationRate=zu(a||1,2,\"dilationRate\"),this.dilationRate.forEach(u=>tr(u,\"dilationRate\"))}build(t){var e;t=Gt(t);let n=this.dataFormat===\"channelsFirst\"?1:t.length-1;if(t[n]==null)throw new z(`The channel dimension of the input should be defined. Found ${t[n]}`);let o=t[n],s=4,i=this.kernelSize.concat([o,this.filters*s]);this.kernel=this.addWeight(\"kernel\",i,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let a=this.kernelSize.concat([this.filters,this.filters*s]);if(this.recurrentKernel=this.addWeight(\"recurrent_kernel\",a,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let u;if(this.unitForgetBias){let l=this.biasInitializer,c=this.filters;u=new(e=class extends bn{apply(m,f){let d=l.apply([c]),h=ar([c]),g=l.apply([c*2]);return _m([d,h,g])}},e.className=\"CustomInit\",e)}else u=this.biasInitializer;this.bias=this.addWeight(\"bias\",[this.filters*s],null,u,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(t,e){return B(()=>{if(t.length!==3)throw new z(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${t.length}.`);let n=e.training||!1,o=t[0],s=t[1],i=t[2],a=4;0wr(o),rate:this.dropout,training:n,count:a,dropoutFunc:this.dropoutFunc}));let u=this.dropoutMask,l=(nt,st,lt)=>!st||!st[lt]?nt:$(st[lt],nt),c=l(o,u,0),p=l(o,u,1),m=l(o,u,2),f=l(o,u,3);0wr(s),rate:this.recurrentDropout,training:n,count:a,dropoutFunc:this.dropoutFunc}));let d=this.recurrentDropoutMask,h=l(s,d,0),g=l(s,d,1),x=l(s,d,2),b=l(s,d,3),w=3,[I,N,E,A]=hr(this.kernel.read(),a,w),[D,F,M,V]=this.useBias?hr(this.bias.read(),a):[null,null,null,null];c=this.inputConv(c,I,D,this.padding),p=this.inputConv(p,N,F,this.padding),m=this.inputConv(m,E,M,this.padding),f=this.inputConv(f,A,V,this.padding);let[G,W,q,H]=hr(this.recurrentKernel.read(),a,w);h=this.recurrentConv(h,G),g=this.recurrentConv(g,W),x=this.recurrentConv(x,q),b=this.recurrentConv(b,H);let j=this.recurrentActivation.apply(K(c,h)),Y=this.recurrentActivation.apply(K(p,g)),Z=K($(Y,i),$(j,this.activation.apply(K(m,x)))),et=$(this.recurrentActivation.apply(K(f,b)),this.activation.apply(Z));return[et,et,Z]})}getConfig(){let t=super.getConfig(),{units:e}=t,n=vJ(t,[\"units\"]),o={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign(Object.assign({},n),o)}inputConv(t,e,n,o){let s=Nn(t,e,this.strides,o||\"valid\",this.dataFormat===\"channelsFirst\"?\"NCHW\":\"NHWC\",this.dilationRate);return n?yn(s,n,this.dataFormat):s}recurrentConv(t,e){return Nn(t,e,1,\"same\",this.dataFormat===\"channelsFirst\"?\"NCHW\":\"NHWC\")}};Xc.className=\"ConvLSTM2DCell\";Q.registerClass(Xc);var hf=class extends Ab{constructor(t){let e=new Xc(t);super(Object.assign(Object.assign({},t),{cell:e}))}static fromConfig(t,e){return new t(e)}};hf.className=\"ConvLSTM2D\";Q.registerClass(hf);var Yc=class extends Et{constructor(t){super(t),this.rate=Math.max(Math.min(t.rate,1),0),this.noiseShape=t.noiseShape,this.seed=t.seed,this.supportsMasking=!0}getNoiseShape(t){if(this.noiseShape==null)return this.noiseShape;let e=t.shape,n=[];for(let o=0;o{this.invokeCallHook(t,e);let n=St(t);if(0Wy(n,this.rate,s,this.seed),()=>n,o)}return t})}getConfig(){let t={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},e=super.getConfig();return Object.assign(t,e),t}dispose(){return super.dispose()}};Yc.className=\"Dropout\";Q.registerClass(Yc);var gf=class extends Yc{constructor(t){super(t),this.inputSpec=[{ndim:3}]}getNoiseShape(t){let e=t.shape;return[e[0],1,e[2]]}};gf.className=\"SpatialDropout1D\";Q.registerClass(gf);var xf=class extends Et{constructor(t){if(super(t),this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER=\"glorotNormal\",this.DEFAULT_BIAS_INITIALIZER=\"zeros\",t.batchInputShape==null&&t.inputShape==null&&t.inputDim!=null){let e=null;t.batchSize!=null&&(e=t.batchSize),this.batchInputShape=[e,t.inputDim]}this.units=t.units,tr(this.units,\"units\"),this.activation=xi(t.activation),t.useBias!=null&&(this.useBias=t.useBias),this.kernelInitializer=xe(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=xe(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=Ge(t.kernelConstraint),this.biasConstraint=Ge(t.biasConstraint),this.kernelRegularizer=ve(t.kernelRegularizer),this.biasRegularizer=ve(t.biasRegularizer),this.activityRegularizer=ve(t.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(t){t=Gt(t);let e=t[t.length-1];this.kernel==null&&(this.kernel=this.addWeight(\"kernel\",[e,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight(\"bias\",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:e}}],this.built=!0}computeOutputShape(t){t=Gt(t);let e=t.slice();return e[e.length-1]=this.units,e}call(t,e){return B(()=>{this.invokeCallHook(t,e);let n=St(t),o=Oy(this.activation.getClassName()),s;return o!=null?s=Do(n,this.kernel.read(),o,this.bias?this.bias.read():null):(s=Do(n,this.kernel.read()),this.bias!=null&&(s=yn(s,this.bias.read())),this.activation!=null&&(s=this.activation.apply(s))),s})}getConfig(){let t={units:this.units,activation:gi(this.activation),useBias:this.useBias,kernelInitializer:Te(this.kernelInitializer),biasInitializer:Te(this.biasInitializer),kernelRegularizer:fe(this.kernelRegularizer),biasRegularizer:fe(this.biasRegularizer),activityRegularizer:fe(this.activityRegularizer),kernelConstraint:Ve(this.kernelConstraint),biasConstraint:Ve(this.biasConstraint)},e=super.getConfig();return Object.assign(t,e),t}};xf.className=\"Dense\";Q.registerClass(xf);var yf=class extends Et{constructor(t){t=t||{},super(t),this.inputSpec=[{minNDim:3}],this.dataFormat=t.dataFormat}computeOutputShape(t){t=Gt(t);for(let e of t.slice(1))if(e==null)throw new z(`The shape of the input to \"Flatten\" is not fully defined (got ${t.slice(1)}). Make sure to pass a complete \"input_shape\" or \"batch_input_shape\" argument to the first layer in your model.`);return[t[0],Ao(t,1)]}call(t,e){return B(()=>{this.invokeCallHook(t,e);let n=St(t);if(this.dataFormat===\"channelsFirst\"&&n.rank>1){let o=[0];for(let s=2;s{this.invokeCallHook(t,e);let n=St(t);return this.activation.apply(n)})}getConfig(){let t={activation:gi(this.activation)},e=super.getConfig();return Object.assign(t,e),t}};bf.className=\"Activation\";Q.registerClass(bf);var wf=class extends Et{constructor(t){super(t),this.n=t.n,this.inputSpec=[{ndim:2}]}computeOutputShape(t){return[t[0],this.n,t[1]]}call(t,e){return B(()=>(t=St(t),iR(t,this.n)))}getConfig(){let t={n:this.n},e=super.getConfig();return Object.assign(t,e),t}};wf.className=\"RepeatVector\";Q.registerClass(wf);var If=class extends Et{constructor(t){super(t),this.targetShape=t.targetShape;for(let e=0;e{this.invokeCallHook(t,e);let n=St(t),o=n.shape,s=o.slice(0,1).concat(this.fixUnknownDimension(o.slice(1),this.targetShape));return R(n,s)})}getConfig(){let t={targetShape:this.targetShape},e=super.getConfig();return Object.assign(t,e),t}};If.className=\"Reshape\";Q.registerClass(If);var Cf=class extends Et{constructor(t){if(super(t),t.dims==null)throw new Error(\"Required configuration field `dims` is missing during Permute constructor call.\");if(!Array.isArray(t.dims))throw new Error(`Permute constructor requires \\`dims\\` to be an Array, but received ${t.dims} instead.`);let e=gn(1,t.dims.length+1);if(!y.arraysEqual(t.dims.slice().sort(),e))throw new Error(\"Invalid permutation `dims`: \"+JSON.stringify(t.dims)+\" `dims` must contain consecutive integers starting from 1.\");this.dims=t.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new Ce({ndim:this.dims.length+1})]}computeOutputShape(t){t=Gt(t);let e=t.slice();return this.dims.forEach((n,o)=>{e[o+1]=t[n]}),e}call(t,e){return Vt(St(t),this.dimsIncludingBatch)}getConfig(){let t={dims:this.dims},e=super.getConfig();return Object.assign(t,e),t}};Cf.className=\"Permute\";Q.registerClass(Cf);var vf=class extends Et{constructor(t){super(t==null?{}:t),this.supportsMasking=!0,t!=null?this.maskValue=t.maskValue==null?0:t.maskValue:this.maskValue=0}computeOutputShape(t){return t}getConfig(){let t=super.getConfig(),e={maskValue:this.maskValue};return Object.assign(e,t),e}computeMask(t,e){let n=St(t);return cc(ci(n,this.maskValue),-1)}call(t,e){return B(()=>{this.invokeCallHook(t,e);let n=St(t),i=cc(ci(n,this.maskValue),-1,!0);return $(n,J(i,n.dtype))})}};vf.className=\"Masking\";Q.registerClass(vf);var Sf=class extends Et{constructor(t){if(super(t),this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER=\"randomUniform\",t.batchInputShape==null&&t.inputShape==null){let e=null;t.batchSize!=null&&(e=t.batchSize),t.inputLength==null?this.batchInputShape=[e,null]:this.batchInputShape=[e].concat(ue(t.inputLength))}this.inputDim=t.inputDim,tr(this.inputDim,\"inputDim\"),this.outputDim=t.outputDim,tr(this.outputDim,\"outputDim\"),this.embeddingsInitializer=xe(t.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=ve(t.embeddingsRegularizer),this.activityRegularizer=ve(t.activityRegularizer),this.embeddingsConstraint=Ge(t.embeddingsConstraint),this.maskZero=t.maskZero,this.supportsMasking=t.maskZero,this.inputLength=t.inputLength}build(t){this.embeddings=this.addWeight(\"embeddings\",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(t){}computeMask(t,e){return B(()=>this.maskZero?(t=St(t),ci(t,vt(t))):null)}computeOutputShape(t){if(t=Gt(t),this.inputLength==null)return[...t,this.outputDim];let e=ue(this.inputLength);if(e.length!==t.length-1)throw new z(`\"inputLength\" is ${this.inputLength}, but received input shape has shape ${t}`);{let n=0;for(let o=0;o{this.invokeCallHook(t,e);let n=St(t);n.dtype!==\"int32\"&&(n=rn(n,\"int32\"));let o=Gy(this.embeddings.read(),R(n,[n.size]));return R(o,Gt(this.computeOutputShape(n.shape)))})}getConfig(){let t={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:Te(this.embeddingsInitializer),embeddingsRegularizer:fe(this.embeddingsRegularizer),activityRegularizer:fe(this.activityRegularizer),embeddingsConstraint:Ve(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},e=super.getConfig();return Object.assign(t,e),t}};Sf.className=\"Embedding\";Q.registerClass(Sf);var Al=class extends Et{constructor(t){super(t||{}),this.supportsMasking=!0}mergeFunction(t){throw new _t}computeElementwiseOpOutputShape(t,e){if(t==null||e==null)return null;if(t.length1)throw new z(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(t)}.`);let n=t[0]==null?null:t[0].slice(1);for(let s=1;ss.length);t.indexOf(null)===-1&&Eo(o).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(t,e){return B(()=>{if(t=t,this.reshapeRequired){let n=[],o=t.map(s=>s.rank);if(o.indexOf(null)===-1){let s=di(o);for(let i of t){let a=i.rank;for(let u=0;u1){let c=gn(1,l).concat([0]);n.push(Vt(u,c)),s=!0}else n.push(u)}let i=this.mergeFunction(n),a=i.rank;if(s){if(a==null){let u=i.shape,l=u.length,c=u[l-1],p=[c].concat(u.slice(0,u.length-1));i=R(Vt(R(i,[-1,c]),[1,0]),p)}else if(a>1){let u=[a-1].concat(gn(0,a-1));i=Vt(i,u)}}return i}}else return this.mergeFunction(t)})}computeOutputShape(t){t=t;let e;t[0]==null?e=null:e=t[0].slice(1);for(let o=1;o{if(e==null)return null;if(!Array.isArray(e))throw new z(\"`mask` should be an Array\");if(!Array.isArray(t))throw new z(\"`inputs` should be an Array\");if(e.length!==t.length)throw new z(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${t.length} vs ${e.length})`);if(e.every(o=>o==null))return null;e=e.map(o=>o==null?o:je(o,0));let n=e[0];for(let o=1;o{let e=t[0].clone();for(let n=1;n{let e=t[0].clone();for(let n=1;n{let e=t[0].clone();for(let n=1;n{let e=t[0];for(let n=1;n{let e=t[0];for(let n=1;n1)throw new z(\"A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: \"+JSON.stringify(t))}mergeFunction(t){return B(()=>_m(t,this.axis))}computeOutputShape(t){if(!(Array.isArray(t)&&Array.isArray(t[0])))throw new z(\"A `Concatenate` layer should be called on a list of inputs.\");let e=t,n=e[0].slice(),o=this.axis<0?n.length+this.axis:this.axis;for(let s of e.slice(1)){if(n[o]==null||s[o]==null){n[o]=null;break}n[o]+=s[o]}return n}computeMask(t,e){if(e==null)return null;if(!Array.isArray(e))throw new z(\"`mask` should be an array for Concatenate\");if(!Array.isArray(t))throw new z(\"`inputs` should be an array for Concatenate\");if(e.length!==t.length)throw new z(`Mismatch in the length of mask (${e.length}) and the legnth of inputs (${t.length})`);return B(()=>{let n=!0;if(e.forEach(i=>{if(i!=null){n=!1;return}}),n)return null;let o=[];for(let i=0;i3||t.shape.length>3)throw new _t(\"batchDot is not implemented for tensors of 4D or higher rank yet\");if(y.assert(r.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${r.shape.length}`),y.assert(r.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof e==\"number\"&&(e=[e,e]),r.dtype===\"complex64\"||t.dtype===\"complex64\")throw new _t(\"batchDot is not implemented for complex64-type Tensors yet.\");let n=r.shape.length,o=t.shape.length;e==null&&(e=[n-1,o-2]);let s=e;return B(()=>{let i;if(n>o){i=n-o;let u=[];for(let l=0;ln){i=o-n;let u=[];for(let l=0;l0){let u;n>o?u=n+o-3:u=n-1;let l=[];for(let c=u;c\"A `Dot` layer should be called on a list of exactly 2 inputs.\");let e=t[0],n=t[1];if(e.length>3||n.length>3)throw new _t(\"Dot layer does not support tensors of 4D or higher rank yet.\");let o=this.interpretAxes(e,n);if(e[o[0]]!==n[o[1]])throw new z(`Dimension incompatibility: ${e[o[0]]} !== ${n[o[1]]}`)}mergeFunction(t){if(t.length!==2)throw new z(`A \\`Dot\\` layer must be called on exactly 2 inputs, but received ${t.length} input(s).`);let e=t[0],n=t[1],o;return Array.isArray(this.axes)?o=this.axes.map((s,i)=>Lh(s,t[i].shape.length)):o=[Lh(this.axes,e.shape.length),Lh(this.axes,n.shape.length)],this.normalize&&(e=Eh(e,o[0]),n=Eh(n,o[1])),SJ(e,n,o)}interpretAxes(t,e){let n;return Array.isArray(this.axes)?n=this.axes:n=[Lh(this.axes,t.length),Lh(this.axes,e.length)],n}computeOutputShape(t){y.assert(Array.isArray(t)&&t.length===2&&Array.isArray(t[0])&&Array.isArray(t[1]),()=>\"A `Dot` layer should be called on a list of exactly 2 inputs.\");let e=t[0].slice(),n=t[1].slice();if(e.length>3||n.length>3)throw new _t(\"Dot layer does not support tensors of 4D or higher rank yet.\");let o=this.interpretAxes(e,n);e.splice(o[0],1),n.splice(o[1],1),n.splice(0,1);let s=e.concat(n);return s.length===1&&s.push(1),s}computeMask(t,e){return null}getConfig(){let t={axes:this.axes,normalize:this.normalize},e=super.getConfig();return Object.assign(t,e),t}};Df.className=\"Dot\";Q.registerClass(Df);var $f=class extends Et{constructor(t){super(t),this.supportsMasking=!0,this.stddev=t.stddev}computeOutputShape(t){return t}getConfig(){let t=super.getConfig(),e={stddev:this.stddev};return Object.assign(e,t),e}call(t,e){return B(()=>{this.invokeCallHook(t,e);let n=St(t);return Ou(()=>K(Em(n.shape,0,this.stddev),n),()=>n,e.training||!1)})}};$f.className=\"GaussianNoise\";Q.registerClass($f);var Rf=class extends Et{constructor(t){super(t),this.supportsMasking=!0,this.rate=t.rate}computeOutputShape(t){return t}getConfig(){let t=super.getConfig(),e={rate:this.rate};return Object.assign(e,t),e}call(t,e){return B(()=>{this.invokeCallHook(t,e);let n=St(t);return this.rate>0&&this.rate<1?Ou(()=>{let s=Math.sqrt(this.rate/(1-this.rate));return $(n,Em(n.shape,1,s))},()=>n,e.training||!1):n})}};Rf.className=\"GaussianDropout\";Q.registerClass(Rf);var Ff=class extends Et{constructor(t){super(t),this.supportsMasking=!0,this.rate=t.rate,this.noiseShape=t.noiseShape}_getNoiseShape(t){return this.noiseShape||St(t).shape}computeOutputShape(t){return t}getConfig(){let t=super.getConfig(),e={rate:this.rate};return Object.assign(e,t),e}call(t,e){return B(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(t);return Ou(()=>{let s=St(t),u=-1.6732632423543772*1.0507009873554805,l=cn(Gn(n),this.rate);l=rn(l,\"float32\");let c=((1-this.rate)*(1+this.rate*u**2))**-.5,p=-c*u*this.rate,m=K($(s,l),$(K(l,-1),u));return K($(m,c),p)},()=>St(t),e.training||!1)}return t})}};Ff.className=\"AlphaDropout\";Q.registerClass(Ff);function zh(r,t,e,n,o,s=.001){let i;if(r.rank===2)i=Cx(r,t,e,n,o,s);else if(r.rank===3)i=vx(r,t,e,n,o,s);else if(r.rank===4)i=Sx(r,t,e,n,o,s);else throw new _t(`batchNormalization is not implemented for array of rank ${r.rank} yet`);return i}function NJ(r,t,e,n,o=.001){return B(()=>{let s=dc(r,n),i=s.mean,a=s.variance;return[zh(r,i,a,e,t,o),i,a]})}function kJ(r,t,e,n,o=.001){return B(()=>{let s=dc(r,n),i=s.mean,a=s.variance,u=[];for(let d of gn(0,r.rank))n.indexOf(d)!==-1?u.push(1):u.push(r.shape[d]);let l=R(i,u),c=R(a,u),p=t==null?null:R(t,u),m=e==null?null:R(e,u);return[zh(r,l,c,m,p,o),i,a]})}function TJ(r,t,e,n,o=.001){return y.arraysEqual(n.slice().sort(),gn(0,r.rank-1))?NJ(r,t,e,n,o):kJ(r,t,e,n,o)}var Of=class extends Et{constructor(t){t==null&&(t={}),super(t),this.supportsMasking=!0,this.axis=t.axis==null?-1:t.axis,this.momentum=t.momentum==null?.99:t.momentum,this.epsilon=t.epsilon==null?.001:t.epsilon,this.center=t.center==null?!0:t.center,this.scale=t.scale==null?!0:t.scale,this.betaInitializer=xe(t.betaInitializer||\"zeros\"),this.gammaInitializer=xe(t.gammaInitializer||\"ones\"),this.movingMeanInitializer=xe(t.movingMeanInitializer||\"zeros\"),this.movingVarianceInitializer=xe(t.movingVarianceInitializer||\"ones\"),this.betaConstraint=Ge(t.betaConstraint),this.gammaConstraint=Ge(t.gammaConstraint),this.betaRegularizer=ve(t.betaRegularizer),this.gammaRegularizer=ve(t.gammaRegularizer)}build(t){t=Gt(t);let e=this.axis>=0?this.axis:this.axis+t.length,n=t[e];if(n==null)throw new z(`Axis ${e} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(t)}.`);this.inputSpec=[new Ce({ndim:t.length,axes:{[e]:n}})];let o=[n];this.scale&&(this.gamma=this.addWeight(\"gamma\",o,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight(\"beta\",o,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight(\"moving_mean\",o,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight(\"moving_variance\",o,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(t,e){return B(()=>{let n=e.training==null?!1:e.training,o=St(t),s=o.shape,i=s.length,a=gn(0,i),u=this.axis>=0?this.axis:this.axis+i;a.splice(u,1);let l=To(1,i);l[u]=s[u];let c=a.slice();c.sort();let p=!y.arraysEqual(c,gn(0,i).slice(0,i-1)),m=()=>{if(p){let b=R(this.movingMean.read(),l),w=R(this.movingVariance.read(),l),I=this.center?R(this.beta.read(),l):null,N=this.scale?R(this.gamma.read(),l):null;return zh(o,b,w,I,N,this.epsilon)}else return zh(o,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return m();let[f,d,h]=TJ(o,this.gamma.read(),this.beta.read(),a,this.epsilon),g=(b,w,I)=>{B(()=>{let N=1-I,E=b.read(),A=$(at(E,w),N);b.write(at(E,A))})};return(()=>{g(this.movingMean,d,this.momentum),g(this.movingVariance,h,this.momentum)})(),f})}getConfig(){let t={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Te(this.betaInitializer),gammaInitializer:Te(this.gammaInitializer),movingMeanInitializer:Te(this.movingMeanInitializer),movingVarianceInitializer:Te(this.movingVarianceInitializer),betaRegularizer:fe(this.betaRegularizer),gammaRegularizer:fe(this.gammaRegularizer),betaConstraint:Ve(this.betaConstraint),gammaConstraint:Ve(this.gammaConstraint)},e=super.getConfig();return Object.assign(t,e),t}};Of.className=\"BatchNormalization\";Q.registerClass(Of);var Mf=class extends Et{constructor(t){if(t==null&&(t={}),super(t),this.axis=t.axis==null?-1:t.axis,typeof this.axis==\"number\"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let e of this.axis)if(!Number.isInteger(e))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=t.epsilon==null?.001:t.epsilon,this.center=t.center==null?!0:t.center,this.scale=t.scale==null?!0:t.scale,this.betaInitializer=xe(t.betaInitializer||\"zeros\"),this.gammaInitializer=xe(t.gammaInitializer||\"ones\"),this.betaRegularizer=ve(t.betaRegularizer),this.gammaRegularizer=ve(t.gammaRegularizer),this.supportsMasking=!0}build(t){t=Gt(t);let e=t.length;typeof this.axis==\"number\"&&(this.axis=[this.axis]);for(let s=0;s=e)throw new Error(`Invalid axis: ${s}`);if(this.axis.length!==Eo(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(s=>t[s]),o=!0;this.scale?this.gamma=this.addWeight(\"gamma\",n,\"float32\",this.gammaInitializer,this.gammaRegularizer,o):this.gamma=null,this.center?this.beta=this.addWeight(\"beta\",n,\"float32\",this.betaInitializer,this.betaRegularizer,o):this.beta=null,this.built=!0}call(t,e){let n=St(t),o=n.shape,s=o.length;return B(()=>{let{mean:a,variance:u}=dc(n,this.axis,!0),l=To(1,s);for(let h of this.axis)l[h]=o[h];let c=h=>h!=null&&h.shape.length!==s?R(h,l):h,p=this.scale?c(this.gamma.read()):null,m=this.center?c(this.beta.read()):null,f=[],d=[];for(let h=0;h{if(r.rank!==4)throw new z(`temporalPadding expects input tensor to be 4-D, but received a ${r.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new z(\"spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.\");if(e==null&&(e=xn()),e!==\"channelsLast\"&&e!==\"channelsFirst\")throw new z(`Unknown data format: ${e}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let n;return e===\"channelsFirst\"?n=[[0,0],[0,0],t[0],t[1]]:n=[[0,0],t[0],t[1],[0,0]],mn(r,n)})}var Pf=class extends Et{constructor(t){if(t==null&&(t={}),super(t),this.dataFormat=t.dataFormat==null?xn():t.dataFormat,t.padding==null)this.padding=[[1,1],[1,1]];else if(typeof t.padding==\"number\")this.padding=[[t.padding,t.padding],[t.padding,t.padding]];else{if(t.padding=t.padding,t.padding.length!==2)throw new z(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${t.padding.length} array.`);let e,n;if(typeof t.padding[0]==\"number\")e=[t.padding[0],t.padding[0]],n=[t.padding[1],t.padding[1]];else{if(t.padding=t.padding,t.padding[0].length!==2)throw new z(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${t.padding[0].length} array.`);if(e=t.padding[0],t.padding[1].length!==2)throw new z(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${t.padding[1].length} array.`);n=t.padding[1]}this.padding=[e,n]}this.inputSpec=[new Ce({ndim:4})]}computeOutputShape(t){t=Gt(t);let e,n;return this.dataFormat===\"channelsFirst\"?(t[2]!=null&&t[2]>=0?e=t[2]+this.padding[0][0]+this.padding[0][1]:e=null,t[3]!=null&&t[3]>=0?n=t[3]+this.padding[1][0]+this.padding[1][1]:n=null,[t[0],t[1],e,n]):(t[1]!=null&&t[1]>=0?e=t[1]+this.padding[0][0]+this.padding[0][1]:e=null,t[2]!=null&&t[2]>=0?n=t[2]+this.padding[1][0]+this.padding[1][1]:n=null,[t[0],e,n,t[3]])}call(t,e){return B(()=>_J(St(t),this.padding,this.dataFormat))}getConfig(){let t={padding:this.padding,dataFormat:this.dataFormat},e=super.getConfig();return Object.assign(t,e),t}};Pf.className=\"ZeroPadding2D\";Q.registerClass(Pf);function Mb(r,t,e,n,o,s){return B(()=>{Me(o),LN(s),hn(n),e==null&&(e=[1,1]),n==null&&(n=\"valid\"),o==null&&(o=xn()),s==null&&(s=\"max\"),r=Ph(r,o);let i,a=n===\"same\"?\"same\":\"valid\";return s===\"max\"?i=ku(r,t,e,a):i=xu(r,t,e,a),o===\"channelsFirst\"&&(i=Vt(i,[0,3,1,2])),i})}function YR(r,t,e,n,o,s){return B(()=>{Me(o),LN(s),hn(n),e==null&&(e=[1,1,1]),n==null&&(n=\"valid\"),o==null&&(o=xn()),s==null&&(s=\"max\"),r=ek(r,o);let i,a=n===\"same\"?\"same\":\"valid\";return s===\"max\"?i=Xx(r,t,e,a):i=Ix(r,t,e,a),o===\"channelsFirst\"&&(i=Vt(i,[0,4,1,2,3])),i})}var Db=class extends Et{constructor(t){if(t.poolSize==null&&(t.poolSize=2),super(t),typeof t.poolSize==\"number\")this.poolSize=[t.poolSize];else if(Array.isArray(t.poolSize)&&t.poolSize.length===1&&typeof t.poolSize[0]==\"number\")this.poolSize=t.poolSize;else throw new z(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(t.poolSize)}`);if(tr(this.poolSize,\"poolSize\"),t.strides==null)this.strides=this.poolSize;else if(typeof t.strides==\"number\")this.strides=[t.strides];else if(Array.isArray(t.strides)&&t.strides.length===1&&typeof t.strides[0]==\"number\")this.strides=t.strides;else throw new z(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(t.strides)}`);tr(this.strides,\"strides\"),this.padding=t.padding==null?\"valid\":t.padding,hn(this.padding),this.inputSpec=[new Ce({ndim:3})]}computeOutputShape(t){t=Gt(t);let e=Tn(t[1],this.poolSize[0],this.padding,this.strides[0]);return[t[0],e,t[2]]}call(t,e){return B(()=>{this.invokeCallHook(t,e),t=Sl(St(t),2);let n=this.poolingFunction(St(t),[this.poolSize[0],1],[this.strides[0],1],this.padding,\"channelsLast\");return Wn(n,[2])})}getConfig(){let t={poolSize:this.poolSize,padding:this.padding,strides:this.strides},e=super.getConfig();return Object.assign(t,e),t}},Lf=class extends Db{constructor(t){super(t)}poolingFunction(t,e,n,o,s){return Me(s),hn(o),Mb(t,e,n,o,s,\"max\")}};Lf.className=\"MaxPooling1D\";Q.registerClass(Lf);var zf=class extends Db{constructor(t){super(t)}poolingFunction(t,e,n,o,s){return Me(s),hn(o),Mb(t,e,n,o,s,\"avg\")}};zf.className=\"AveragePooling1D\";Q.registerClass(zf);var $b=class extends Et{constructor(t){if(t.poolSize==null&&(t.poolSize=[2,2]),super(t),this.poolSize=Array.isArray(t.poolSize)?t.poolSize:[t.poolSize,t.poolSize],t.strides==null)this.strides=this.poolSize;else if(Array.isArray(t.strides)){if(t.strides.length!==2)throw new z(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${t.strides.length}.`);this.strides=t.strides}else this.strides=[t.strides,t.strides];tr(this.poolSize,\"poolSize\"),tr(this.strides,\"strides\"),this.padding=t.padding==null?\"valid\":t.padding,this.dataFormat=t.dataFormat==null?\"channelsLast\":t.dataFormat,Me(this.dataFormat),hn(this.padding),this.inputSpec=[new Ce({ndim:4})]}computeOutputShape(t){t=Gt(t);let e=this.dataFormat===\"channelsFirst\"?t[2]:t[1],n=this.dataFormat===\"channelsFirst\"?t[3]:t[2];return e=Tn(e,this.poolSize[0],this.padding,this.strides[0]),n=Tn(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat===\"channelsFirst\"?[t[0],t[1],e,n]:[t[0],e,n,t[3]]}call(t,e){return B(()=>(this.invokeCallHook(t,e),this.poolingFunction(St(t),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let t={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},e=super.getConfig();return Object.assign(t,e),t}},Bf=class extends $b{constructor(t){super(t)}poolingFunction(t,e,n,o,s){return Me(s),hn(o),Mb(t,e,n,o,s,\"max\")}};Bf.className=\"MaxPooling2D\";Q.registerClass(Bf);var Vf=class extends $b{constructor(t){super(t)}poolingFunction(t,e,n,o,s){return Me(s),hn(o),Mb(t,e,n,o,s,\"avg\")}};Vf.className=\"AveragePooling2D\";Q.registerClass(Vf);var Rb=class extends Et{constructor(t){if(t.poolSize==null&&(t.poolSize=[2,2,2]),super(t),this.poolSize=Array.isArray(t.poolSize)?t.poolSize:[t.poolSize,t.poolSize,t.poolSize],t.strides==null)this.strides=this.poolSize;else if(Array.isArray(t.strides)){if(t.strides.length!==3)throw new z(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${t.strides.length}.`);this.strides=t.strides}else this.strides=[t.strides,t.strides,t.strides];tr(this.poolSize,\"poolSize\"),tr(this.strides,\"strides\"),this.padding=t.padding==null?\"valid\":t.padding,this.dataFormat=t.dataFormat==null?\"channelsLast\":t.dataFormat,Me(this.dataFormat),hn(this.padding),this.inputSpec=[new Ce({ndim:5})]}computeOutputShape(t){t=Gt(t);let e=this.dataFormat===\"channelsFirst\"?t[2]:t[1],n=this.dataFormat===\"channelsFirst\"?t[3]:t[2],o=this.dataFormat===\"channelsFirst\"?t[4]:t[3];return e=Tn(e,this.poolSize[0],this.padding,this.strides[0]),n=Tn(n,this.poolSize[1],this.padding,this.strides[1]),o=Tn(o,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat===\"channelsFirst\"?[t[0],t[1],e,n,o]:[t[0],e,n,o,t[4]]}call(t,e){return B(()=>(this.invokeCallHook(t,e),this.poolingFunction(St(t),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let t={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},e=super.getConfig();return Object.assign(t,e),t}},Gf=class extends Rb{constructor(t){super(t)}poolingFunction(t,e,n,o,s){return Me(s),hn(o),YR(t,e,n,o,s,\"max\")}};Gf.className=\"MaxPooling3D\";Q.registerClass(Gf);var Wf=class extends Rb{constructor(t){super(t)}poolingFunction(t,e,n,o,s){return Me(s),hn(o),YR(t,e,n,o,s,\"avg\")}};Wf.className=\"AveragePooling3D\";Q.registerClass(Wf);var Fb=class extends Et{constructor(t){super(t),this.inputSpec=[new Ce({ndim:3})]}computeOutputShape(t){return[t[0],t[2]]}call(t,e){throw new _t}},Uf=class extends Fb{constructor(t){super(t||{})}call(t,e){return B(()=>{let n=St(t);return Ne(n,1)})}};Uf.className=\"GlobalAveragePooling1D\";Q.registerClass(Uf);var Hf=class extends Fb{constructor(t){super(t||{})}call(t,e){return B(()=>{let n=St(t);return Sr(n,1)})}};Hf.className=\"GlobalMaxPooling1D\";Q.registerClass(Hf);var Ob=class extends Et{constructor(t){super(t),this.dataFormat=t.dataFormat==null?\"channelsLast\":t.dataFormat,Me(this.dataFormat),this.inputSpec=[new Ce({ndim:4})]}computeOutputShape(t){return t=t,this.dataFormat===\"channelsLast\"?[t[0],t[3]]:[t[0],t[1]]}call(t,e){throw new _t}getConfig(){let t={dataFormat:this.dataFormat},e=super.getConfig();return Object.assign(t,e),t}},qf=class extends Ob{call(t,e){return B(()=>{let n=St(t);return this.dataFormat===\"channelsLast\"?Ne(n,[1,2]):Ne(n,[2,3])})}};qf.className=\"GlobalAveragePooling2D\";Q.registerClass(qf);var Kf=class extends Ob{call(t,e){return B(()=>{let n=St(t);return this.dataFormat===\"channelsLast\"?Sr(n,[1,2]):Sr(n,[2,3])})}};Kf.className=\"GlobalMaxPooling2D\";Q.registerClass(Kf);var Pb=class extends Et{constructor(t){super(t),this.layer=t.layer}build(t){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(t){this.layer!=null&&(this.layer.trainable=t)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(t){this.layer.setWeights(t)}getConfig(){let t={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},e=super.getConfig();return Object.assign(t,e),t}setFastWeightInitDuringBuild(t){super.setFastWeightInitDuringBuild(t),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(t)}static fromConfig(t,e,n={}){let o=e.layer,s=wn(o,n);delete e.layer;let i={layer:s};return Object.assign(i,e),new t(i)}},jf=class extends Pb{constructor(t){super(t),this.supportsMasking=!0}build(t){if(t=Gt(t),t.length<3)throw new z(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(t)}`);this.inputSpec=[{shape:t}];let e=[t[0]].concat(t.slice(2));this.layer.built||(this.layer.build(e),this.layer.built=!0),super.build(t)}computeOutputShape(t){t=Gt(t);let e=[t[0]].concat(t.slice(2)),n=this.layer.computeOutputShape(e),o=t[1];return[n[0],o].concat(n.slice(1))}call(t,e){return B(()=>(t=St(t),nk((i,a)=>[St(this.layer.call(i,e)),[]],t,[],!1,null,null,!1,!0)[1]))}};jf.className=\"TimeDistributed\";Q.registerClass(jf);function EJ(r){da(eR,\"BidirectionalMergeMode\",r)}var AJ=\"concat\",Xf=class extends Pb{constructor(t){super(t);let e=t.layer.getConfig(),n={};n.className=t.layer.getClassName(),n.config=e,this.forwardLayer=wn(n),e.goBackwards=e.goBackwards!==!0;let o={};if(o.className=t.layer.getClassName(),o.config=e,this.backwardLayer=wn(o),this.forwardLayer.name=\"forward_\"+this.forwardLayer.name,this.backwardLayer.name=\"backward_\"+this.backwardLayer.name,this.mergeMode=t.mergeMode===void 0?AJ:t.mergeMode,EJ(this.mergeMode),t.weights)throw new _t(\"weights support is not implemented for Bidirectional layer yet.\");this._stateful=t.layer.stateful,this.returnSequences=t.layer.returnSequences,this.returnState=t.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=t.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(t){this._trainable=t,this.forwardLayer!=null&&(this.forwardLayer.trainable=t),this.backwardLayer!=null&&(this.backwardLayer.trainable=t)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(t){let e=t.length,n=Math.floor(e/2);this.forwardLayer.setWeights(t.slice(0,n)),this.backwardLayer.setWeights(t.slice(n))}computeOutputShape(t){let e=this.forwardLayer.computeOutputShape(t);Array.isArray(e)&&Array.isArray(e[0])||(e=[e]),e=e;let n,o,s;return this.returnState&&(s=e.slice(1)),n=e[0],n=n,this.mergeMode===\"concat\"?(n[n.length-1]*=2,o=[n]):this.mergeMode==null?o=[n,n.slice()]:o=[n],this.returnState?this.mergeMode==null?o.concat(s).concat(s.slice()):[n].concat(s).concat(s.slice()):kr(o)}apply(t,e){let n=e==null?null:e.initialState,o=e==null?null:e.constants;e==null&&(e={});let s=rk(t,n,o,this.numConstants);if(t=s.inputs,n=s.initialState,o=s.constants,Array.isArray(t)&&(n=t.slice(1),t=t[0]),(n==null||n.length===0)&&o==null)return super.apply(t,e);let i=[],a=[];if(n!=null){let l=n.length;if(l%2>0)throw new z(\"When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.\");e.initialState=n,i.push(...n);let c=n.map(p=>new Ce({shape:p.shape}));this.forwardLayer.stateSpec=c.slice(0,l/2),this.backwardLayer.stateSpec=c.slice(l/2),a.push(...c)}if(o!=null)throw new _t(\"Support for constants in Bidirectional layers is not implemented yet.\");let u=i[0]instanceof nn;for(let l of i)if(l instanceof nn!==u)throw new z(\"The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors\");if(u){let l=[t].concat(i),c=this.inputSpec.concat(a),p=this.inputSpec;this.inputSpec=c;let m=super.apply(l,e);return this.inputSpec=p,m}else return super.apply(t,e)}call(t,e){return B(()=>{let n=e.initialState,o,s;if(n==null)o=this.forwardLayer.call(t,e),s=this.backwardLayer.call(t,e);else{let u=n.slice(0,n.length/2),l=n.slice(n.length/2);o=this.forwardLayer.call(t,Object.assign(e,{initialState:u})),s=this.backwardLayer.call(t,Object.assign(e,{initialState:l}))}let i;this.returnState&&(Array.isArray(o)&&(i=o.slice(1).concat(s.slice(1))),o=o[0],s=s[0]),this.returnSequences&&(s=dr(s,1));let a;return this.mergeMode===\"concat\"?a=_m([o,s]):this.mergeMode===\"sum\"?a=K(o,s):this.mergeMode===\"ave\"?a=$(.5,K(o,s)):this.mergeMode===\"mul\"?a=$(o,s):this.mergeMode==null&&(a=[o,s]),this.returnState?this.mergeMode==null?a.concat(i):[a].concat(i):a})}resetStates(t){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(t){fi(this.forwardLayer.name,()=>{this.forwardLayer.build(t)}),fi(this.backwardLayer.name,()=>{this.backwardLayer.build(t)}),this.built=!0}computeMask(t,e){Array.isArray(e)&&(e=e[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[e,e]:n=e:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let s=this.forwardLayer.states.map(i=>null);return Array.isArray(n)?n.concat(s).concat(s):[n].concat(s).concat(s)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(t){super.setFastWeightInitDuringBuild(t),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(t),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(t)}getConfig(){let t={mergeMode:this.mergeMode},e=super.getConfig();return Object.assign(t,e),t}static fromConfig(t,e){let n=wn(e.layer);if(delete e.layer,e.numConstants!=null)throw new _t(\"Deserialization of a Bidirectional layer with numConstants present is not supported yet.\");let o=e;return o.layer=n,new t(o)}};Xf.className=\"Bidirectional\";Q.registerClass(Xf);var Yf=class extends Et{constructor(t){super(t),this.scale=t.scale,t.offset?this.offset=t.offset:this.offset=0}getConfig(){let t={scale:this.scale,offset:this.offset},e=super.getConfig();return Object.assign(t,e),t}call(t,e){return B(()=>(t=St(t),t.dtype!==\"float32\"&&(t=rn(t,\"float32\")),K($(t,this.scale),this.offset)))}};Yf.className=\"Rescaling\";Q.registerClass(Yf);var{resizeBilinear:DJ,cropAndResize:$J}=fn,Zf=class extends Et{constructor(t){super(t),this.height=t.height,this.width=t.width}centerCrop(t,e,n,o,s,i,a,u){return B(()=>{let l,c=!1,p=e/i,m=n/a,f=(o+e)/i,d=(s+n)/a,h=[p,m,f,d],g=[];t.rank===3?(c=!0,l=Fe([t])):l=t;for(let N=0;N{let s=DJ(t,[e,n]);return rn(s,o)})}call(t,e){return B(()=>{let n=St(t),o=n.dtype,s=n.shape,i=s[s.length-3],a=s[s.length-2],u=0;i!==this.height&&(u=Math.floor((i-this.height)/2));let l=0;return a!==this.width&&(l=Math.floor((a-this.width)/2),l===0&&(l=1)),u>=0&&l>=0?this.centerCrop(n,u,l,this.height,this.width,i,a,o):this.upsize(t,this.height,this.width,o)})}getConfig(){let t={height:this.height,width:this.width},e=super.getConfig();return Object.assign(t,e),t}computeOutputShape(t){t=Gt(t);let e=t.length-3,n=t.length-2;return t[e]=this.height,t[n]=this.width,t}};Zf.className=\"CenterCrop\";Q.registerClass(Zf);function ZR(r,t,e,n){let o=St(r);if(o.dtype!==\"int32\"&&(o=rn(o,\"int32\")),t===\"int\")return o;let s=o.shape;if(o.rank===0&&(o=je(o,-1)),t===\"oneHot\"&&o.shape[o.shape.length-1]!==1&&(o=je(o,-1)),o.rank>2)throw new z(`When outputMode is not int, maximum output rank is 2 Received outputMode ${t} and input shape ${s} which would result in output rank ${o.rank}.`);let i=[\"multiHot\",\"oneHot\"].includes(t),a=o,u;if(typeof n!=\"undefined\"&&t===\"count\"?u=mh(a,n,e,i):u=mh(a,[],e,i),t!==\"tfIdf\")return u;if(n)return $(u,n);throw new z(\"When outputMode is 'tfIdf', weights must be provided.\")}var Jf=class extends Et{constructor(t){super(t),this.numTokens=t.numTokens,t.outputMode?this.outputMode=t.outputMode:this.outputMode=\"multiHot\"}getConfig(){let t={numTokens:this.numTokens,outputMode:this.outputMode},e=super.getConfig();return Object.assign(t,e),t}computeOutputShape(t){return t=Gt(t),t==null?[this.numTokens]:this.outputMode===\"oneHot\"&&t[t.length-1]!==1?(t.push(this.numTokens),t):(t[t.length-1]=this.numTokens,t)}call(t,e){return B(()=>{t=St(t),t.dtype!==\"int32\"&&(t=rn(t,\"int32\"));let n;if(typeof e.countWeights!=\"undefined\"){if(this.outputMode!==\"count\")throw new z(`countWeights is not used when outputMode !== count.\n Received countWeights=${e.countWeights}`);n=St(e.countWeights)}let o=Sr(t),s=gl(t),i=Re(this.numTokens,o).bufferSync().get(0),a=cn(s,0).bufferSync().get(0);if(!(i&&a))throw new z(`Input values must be between 0 < values <= numTokens with numTokens=${this.numTokens}`);return ZR(t,this.outputMode,this.numTokens,n)})}};Jf.className=\"CategoryEncoding\";Q.registerClass(Jf);var FJ=[\"bilinear\",\"nearest\"],JR=new Set(FJ),Qf=class extends Et{constructor(t){if(super(t),this.height=t.height,this.width=t.width,t.interpolation)if(JR.has(t.interpolation))this.interpolation=t.interpolation;else throw new z(`Invalid interpolation parameter: ${t.interpolation} is not implemented`);else this.interpolation=\"bilinear\";this.cropToAspectRatio=!!t.cropToAspectRatio}computeOutputShape(t){t=Gt(t);let e=t[2];return[this.height,this.width,e]}getConfig(){let t={height:this.height,width:this.width,interpolation:this.interpolation,cropToAspectRatio:this.cropToAspectRatio},e=super.getConfig();return Object.assign(t,e),t}call(t,e){return B(()=>{let n=[this.height,this.width];if(this.interpolation===\"bilinear\")return fn.resizeBilinear(t,n,!this.cropToAspectRatio);if(this.interpolation===\"nearest\")return fn.resizeNearestNeighbor(t,n,!this.cropToAspectRatio);throw new Error(`Interpolation is ${this.interpolation} but only ${[...JR]} are supported`)})}};Qf.className=\"Resizing\";Q.registerClass(Qf);var Bh=class{constructor(t){this.seed=t}next(){if(this.seed!==void 0)return this.seed++}};Bh.className=\"RandomSeed\";var Vh=class extends Et{constructor(t){super(t),this.randomGenerator=new Bh(t.seed)}getConfig(){let t={seed:this.randomGenerator.seed},e=super.getConfig();return Object.assign(t,e),t}};Vh.className=\"BaseRandomLayer\";var OJ=[\"bilinear\",\"nearest\"],QR=new Set(OJ),td=class extends Vh{constructor(t){super(t);let{factor:e,interpolation:n=\"bilinear\"}=t;if(this.factor=e,Array.isArray(this.factor)&&this.factor.length===2)this.widthLower=this.factor[0],this.widthUpper=this.factor[1];else if(!Array.isArray(this.factor)&&this.factor>0)this.widthLower=-this.factor,this.widthUpper=this.factor;else throw new z(`Invalid factor: ${this.factor}. Must be positive number or tuple of 2 numbers`);if(this.widthLower<-1||this.widthUpper<-1)throw new z(`factor must have values larger than -1. Got: ${this.factor}`);if(this.widthUpper{let n=St(t);this.imgHeight=n.shape[n.shape.length-3];let o=n.shape[n.shape.length-2];this.widthFactor=Gn([1],1+this.widthLower,1+this.widthUpper,\"float32\",this.randomGenerator.next());let s=this.widthFactor.dataSync()[0]*o;s=Math.round(s);let i=[this.imgHeight,s];switch(this.interpolation){case\"bilinear\":return fn.resizeBilinear(t,i);case\"nearest\":return fn.resizeNearestNeighbor(t,i);default:throw new Error(`Interpolation is ${this.interpolation}\n but only ${[...QR]} are supported`)}})}};td.className=\"RandomWidth\";Q.registerClass(td);function MJ(r){return new hi(r)}function PJ(r){return new tf(r)}function LJ(r){return new Zm(r)}function zJ(r){return new Jm(r)}function BJ(r){return new Qm(r)}function VJ(r){return new rf(r)}function GJ(r){return new ef(r)}function WJ(r){return new lf(r)}function UJ(r){return new Uc(r)}function HJ(r){return new of(r)}function qJ(r){return new Hc(r)}function KJ(r){return new sf(r)}function jJ(r){return new af(r)}function XJ(r){return new uf(r)}function YJ(r){return new cf(r)}function ZJ(r){return new pf(r)}function JJ(r){return new bf(r)}function QJ(r){return new xf(r)}function t9(r){return new Yc(r)}function e9(r){return new gf(r)}function r9(r){return new yf(r)}function n9(r){return new wf(r)}function o9(r){return new If(r)}function s9(r){return new Cf(r)}function i9(r){return new Sf(r)}function a9(r){return new Nf(r)}function l9(r){return new Tf(r)}function u9(r){return new Af(r)}function c9(r){return new _f(r)}function p9(r){return new Ef(r)}function m9(r){return new kf(r)}function f9(r){return new Df(r)}function d9(r){return new Of(r)}function h9(r){return new Mf(r)}function g9(r){return new Pf(r)}function ok(r){return new zf(r)}function x9(r){return ok(r)}function y9(r){return ok(r)}function sk(r){return new Vf(r)}function b9(r){return sk(r)}function w9(r){return sk(r)}function ik(r){return new Wf(r)}function I9(r){return ik(r)}function C9(r){return ik(r)}function v9(r){return new Uf(r)}function S9(r){return new qf(r)}function tF(r){return new Hf(r)}function eF(r){return new Kf(r)}function rF(r){return new Lf(r)}function nF(r){return new Bf(r)}function N9(r){return new Gf(r)}function k9(r){return new ff(r)}function T9(r){return new Kc(r)}function _9(r){return new df(r)}function E9(r){return new _l(r)}function A9(r){return new mf(r)}function D9(r){return new qc(r)}function $9(r){return new hf(r)}function R9(r){return new Xc(r)}function F9(r){return new po(r)}function O9(r){return new jc(r)}function M9(r){return new Xf(r)}function P9(r){return new jf(r)}var L9=tF,z9=eF,B9=rF,V9=nF;function G9(r){return new $f(r)}function W9(r){return new Rf(r)}function U9(r){return new Ff(r)}function H9(r){return new vf(r)}function q9(r){return new Yf(r)}function K9(r){return new Zf(r)}function j9(r){return new Qf(r)}function X9(r){return new Jf(r)}function Y9(r){return new td(r)}var sF={};Kt(sF,{MAPE:()=>aQ,MSE:()=>cQ,binaryAccuracy:()=>Z9,binaryCrossentropy:()=>J9,categoricalAccuracy:()=>tQ,categoricalCrossentropy:()=>eQ,cosineProximity:()=>oQ,mape:()=>lQ,meanAbsoluteError:()=>sQ,meanAbsolutePercentageError:()=>iQ,meanSquaredError:()=>uQ,mse:()=>pQ,precision:()=>rQ,r2Score:()=>mQ,recall:()=>nQ,sparseCategoricalAccuracy:()=>Q9});function Z9(r,t){return $h(r,t)}function J9(r,t){return rb(r,t)}function Q9(r,t){return nb(r,t)}function tQ(r,t){return Rh(r,t)}function eQ(r,t){return Fh(r,t)}function rQ(r,t){return qN(r,t)}function nQ(r,t){return TR(r,t)}function oQ(r,t){return Dh(r,t)}function sQ(r,t){return Hm(r,t)}function iQ(r,t){return Pu(r,t)}function aQ(r,t){return Pu(r,t)}function lQ(r,t){return Pu(r,t)}function uQ(r,t){return xa(r,t)}function cQ(r,t){return xa(r,t)}function pQ(r,t){return xa(r,t)}function mQ(r,t){return _R(r,t)}var iF={};Kt(iF,{modelFromJSON:()=>WR});var aF={};Kt(aF,{l1:()=>dQ,l1l2:()=>fQ,l2:()=>hQ});function fQ(r){return new Lu(r)}function dQ(r){return KR(r)}function hQ(r){return jR(r)}var zb=class extends kl{constructor(){super(...arguments),this.model=null}setModel(t){if(!(t instanceof Un))throw new Error(\"model must be a LayersModel, not some other Container\");this.model=t}};function Lb(r,t){return rt}var Bb=class extends zb{constructor(t){if(super(),t==null&&(t={}),t.restoreBestWeights)throw new _t(\"restoreBestWeights = True is not implemented in EarlyStopping yet.\");this.monitor=t.monitor||\"val_loss\",this.minDelta=Math.abs(t.minDelta||0),this.patience=t.patience||0,this.verbose=t.verbose||0,this.mode=t.mode||\"auto\",this.baseline=t.baseline,[\"auto\",\"min\",\"max\"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode=\"auto\"),this.mode===\"min\"?this.monitorFunc=Lb:this.mode===\"max\"?this.monitorFunc=lF:this.monitor.indexOf(\"acc\")!==-1?this.monitorFunc=lF:this.monitorFunc=Lb,this.monitorFunc===Lb&&(this.minDelta*=-1)}async onTrainBegin(t){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===Lb?1/0:-1/0}async onEpochEnd(t,e){await ga(e);let n=this.getMonitorValue(e);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=t,this.model.stopTraining=!0)))}async onTrainEnd(t){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(t){t==null&&(t={});let e=t[this.monitor];return e==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(t)}`),e}};function gQ(r){return new Bb(r)}var xQ={earlyStopping:gQ};var yQ=L();yQ.registerFlag(\"KEEP_INTERMEDIATE_TENSORS\",()=>!1,r=>{r&&console.warn(\"Keep intermediate tensors is ON. This will print the values of all intermediate tensors during model inference. Not all models support this mode. For details, check e2e/benchmarks/ model_config.js. This significantly impacts performance.\")});var _n;(function(r){r[r.DT_INVALID=0]=\"DT_INVALID\",r[r.DT_FLOAT=1]=\"DT_FLOAT\",r[r.DT_DOUBLE=2]=\"DT_DOUBLE\",r[r.DT_INT32=3]=\"DT_INT32\",r[r.DT_UINT8=4]=\"DT_UINT8\",r[r.DT_INT16=5]=\"DT_INT16\",r[r.DT_INT8=6]=\"DT_INT8\",r[r.DT_STRING=7]=\"DT_STRING\",r[r.DT_COMPLEX64=8]=\"DT_COMPLEX64\",r[r.DT_INT64=9]=\"DT_INT64\",r[r.DT_BOOL=10]=\"DT_BOOL\",r[r.DT_QINT8=11]=\"DT_QINT8\",r[r.DT_QUINT8=12]=\"DT_QUINT8\",r[r.DT_QINT32=13]=\"DT_QINT32\",r[r.DT_BFLOAT16=14]=\"DT_BFLOAT16\",r[r.DT_QINT16=15]=\"DT_QINT16\",r[r.DT_QUINT16=16]=\"DT_QUINT16\",r[r.DT_UINT16=17]=\"DT_UINT16\",r[r.DT_COMPLEX128=18]=\"DT_COMPLEX128\",r[r.DT_HALF=19]=\"DT_HALF\",r[r.DT_RESOURCE=20]=\"DT_RESOURCE\",r[r.DT_VARIANT=21]=\"DT_VARIANT\",r[r.DT_UINT32=22]=\"DT_UINT32\",r[r.DT_UINT64=23]=\"DT_UINT64\",r[r.DT_FLOAT_REF=101]=\"DT_FLOAT_REF\",r[r.DT_DOUBLE_REF=102]=\"DT_DOUBLE_REF\",r[r.DT_INT32_REF=103]=\"DT_INT32_REF\",r[r.DT_UINT8_REF=104]=\"DT_UINT8_REF\",r[r.DT_INT16_REF=105]=\"DT_INT16_REF\",r[r.DT_INT8_REF=106]=\"DT_INT8_REF\",r[r.DT_STRING_REF=107]=\"DT_STRING_REF\",r[r.DT_COMPLEX64_REF=108]=\"DT_COMPLEX64_REF\",r[r.DT_INT64_REF=109]=\"DT_INT64_REF\",r[r.DT_BOOL_REF=110]=\"DT_BOOL_REF\",r[r.DT_QINT8_REF=111]=\"DT_QINT8_REF\",r[r.DT_QUINT8_REF=112]=\"DT_QUINT8_REF\",r[r.DT_QINT32_REF=113]=\"DT_QINT32_REF\",r[r.DT_BFLOAT16_REF=114]=\"DT_BFLOAT16_REF\",r[r.DT_QINT16_REF=115]=\"DT_QINT16_REF\",r[r.DT_QUINT16_REF=116]=\"DT_QUINT16_REF\",r[r.DT_UINT16_REF=117]=\"DT_UINT16_REF\",r[r.DT_COMPLEX128_REF=118]=\"DT_COMPLEX128_REF\",r[r.DT_HALF_REF=119]=\"DT_HALF_REF\",r[r.DT_RESOURCE_REF=120]=\"DT_RESOURCE_REF\",r[r.DT_VARIANT_REF=121]=\"DT_VARIANT_REF\",r[r.DT_UINT32_REF=122]=\"DT_UINT32_REF\",r[r.DT_UINT64_REF=123]=\"DT_UINT64_REF\"})(_n||(_n={}));var uF;(function(r){let t;(function(e){e[e.LEGACY=0]=\"LEGACY\",e[e.V1=1]=\"V1\",e[e.V2=2]=\"V2\"})(t=r.CheckpointFormatVersion||(r.CheckpointFormatVersion={}))})(uF||(uF={}));var ak={};function wQ(r,t){let e={tfOpName:r,category:\"custom\",inputs:[],attrs:[],customExecutor:t};ak[r]=e}function Vb(r){return ak[r]}function IQ(r){delete ak[r]}function v(r,t,e,n,o){let s=t.inputParams[r];if(s&&s.inputIndexStart!==void 0){let a=s.inputIndexStart,u=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?a+1:s.inputIndexEnd,l=a<0?t.inputNames.length+a:a;if(s.type===\"tensor\")return pr(t.inputNames[l],e,n,o);if(s.type===\"tensors\"){let m=t.inputs.slice(a,u);return t.inputNames.slice(a,u).filter((d,h)=>{var g;return((g=m[h])===null||g===void 0?void 0:g.op)!==\"NoOp\"}).map(d=>pr(d,e,n,o))}let c=pr(t.inputNames[l],e,n,o),p=c.dataSync();return s.type===\"number\"?p[0]:y.toNestedArray(c.shape,p)}let i=t.attrParams[r];return i&&i.value}function pr(r,t,e,n){let[o,s]=In(r,e);if(n!=null){let a=n.getHashTableHandleByName(o);if(a!=null)return a}let i=e.currentContextIds.find(a=>!!t[Gb(o,a)]);return i!==void 0?t[Gb(o,i)][s]:void 0}function lk(r,t,e){return t[Gb(r,e.currentContextId)]}function bi(r,t){let[e,n,o]=In(r,t);return[Gb(e,t&&t.currentContextId),n,o]}function Gb(r,t){return t?`${r}-${t}`:r}function In(r,t){if(r===\"\")return[\"\",0,void 0];let e=t!=null&&t.parseNodeNameCache!=null;if(e){let s=t.parseNodeNameCache.get(r);if(s!=null)return s}let n=r.split(\":\"),o;if(n.length===1)o=[r,0,void 0];else{let s=n[0],i=n.length===3?n[1]:void 0,a=Number(n[n.length-1]);o=[s,a,i]}return e&&t.parseNodeNameCache.set(r,o),o}function Gh(r,t,e){let n=v(\"pad\",r,t,e);if(n===\"explicit\"){n=v(\"explicitPaddings\",r,t,e);let o=[[0,0],[0,0],[0,0],[0,0]];for(let s=0;s<4;s++)o[s][0]=n[s*2],o[s][1]=n[s*2+1];return o}return n}function wi(r){return r.kept?r:un(r)}var uk={};Kt(uk,{json:()=>CQ});var CQ=[{tfOpName:\"Add\",category:\"arithmetic\",inputs:[{start:0,name:\"a\",type:\"tensor\"},{start:1,name:\"b\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"AddV2\",category:\"arithmetic\",inputs:[{start:0,name:\"a\",type:\"tensor\"},{start:1,name:\"b\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"AddN\",category:\"arithmetic\",inputs:[{start:0,end:0,name:\"tensors\",type:\"tensors\"}]},{tfOpName:\"BiasAdd\",category:\"arithmetic\",inputs:[{start:0,name:\"a\",type:\"tensor\"},{start:1,name:\"b\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0},{tfName:\"data_format\",name:\"dataFormat\",type:\"string\",notSupported:!0}]},{tfOpName:\"Sub\",category:\"arithmetic\",inputs:[{start:0,name:\"a\",type:\"tensor\"},{start:1,name:\"b\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"RealDiv\",category:\"arithmetic\",inputs:[{start:0,name:\"a\",type:\"tensor\"},{start:1,name:\"b\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Div\",category:\"arithmetic\",inputs:[{start:0,name:\"a\",type:\"tensor\"},{start:1,name:\"b\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"DivNoNan\",category:\"arithmetic\",inputs:[{start:0,name:\"a\",type:\"tensor\"},{start:1,name:\"b\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"FloorDiv\",category:\"arithmetic\",inputs:[{start:0,name:\"a\",type:\"tensor\"},{start:1,name:\"b\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Mul\",category:\"arithmetic\",inputs:[{start:0,name:\"a\",type:\"tensor\"},{start:1,name:\"b\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Maximum\",category:\"arithmetic\",inputs:[{start:0,name:\"a\",type:\"tensor\"},{start:1,name:\"b\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Minimum\",category:\"arithmetic\",inputs:[{start:0,name:\"a\",type:\"tensor\"},{start:1,name:\"b\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Pow\",category:\"arithmetic\",inputs:[{start:0,name:\"a\",type:\"tensor\"},{start:1,name:\"b\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"SquaredDifference\",category:\"arithmetic\",inputs:[{start:0,name:\"a\",type:\"tensor\"},{start:1,name:\"b\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Mod\",category:\"arithmetic\",inputs:[{start:0,name:\"a\",type:\"tensor\"},{start:1,name:\"b\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"FloorMod\",category:\"arithmetic\",inputs:[{start:0,name:\"a\",type:\"tensor\"},{start:1,name:\"b\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]}];var ck={};Kt(ck,{json:()=>vQ});var vQ=[{tfOpName:\"Abs\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Acos\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Asin\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Atan\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Atan2\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"y\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Ceil\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"ClipByValue\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"clipValueMin\",type:\"number\"},{start:2,name:\"clipValueMax\",type:\"number\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Complex\",category:\"basic_math\",inputs:[{start:0,name:\"real\",type:\"tensor\"},{start:1,name:\"imag\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"ComplexAbs\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Cos\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Cosh\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Elu\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Exp\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Floor\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Log\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Imag\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0},{tfName:\"Tout\",name:\"outputType\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Neg\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Real\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0},{tfName:\"Tout\",name:\"outputType\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Prelu\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"alpha\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Relu\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Relu6\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Selu\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Sigmoid\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Sin\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Sinh\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Sqrt\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Rsqrt\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Square\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Tan\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Tanh\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Sign\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Round\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Expm1\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Log1p\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Reciprocal\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Softplus\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Asinh\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Acosh\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Atanh\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Erf\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"LeakyRelu\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"alpha\",name:\"alpha\",type:\"number\",defaultValue:.2},{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"IsNan\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"IsFinite\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"IsInf\",category:\"basic_math\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]}];var pk={};Kt(pk,{json:()=>SQ});var SQ=[{tfOpName:\"EmptyTensorList\",category:\"control\",inputs:[{start:0,name:\"elementShape\",type:\"shape\"},{start:1,name:\"maxNumElements\",type:\"number\"}],attrs:[{tfName:\"element_dtype\",name:\"elementDType\",type:\"dtype\"}]},{tfOpName:\"LoopCond\",category:\"control\",inputs:[{start:0,name:\"pred\",type:\"tensor\"}]},{tfOpName:\"Switch\",category:\"control\",inputs:[{start:0,name:\"data\",type:\"tensor\"},{start:1,name:\"pred\",type:\"tensor\"}]},{tfOpName:\"Merge\",category:\"control\",inputs:[{start:0,end:0,name:\"tensors\",type:\"tensors\"}]},{tfOpName:\"Enter\",category:\"control\",inputs:[{start:0,name:\"tensor\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0},{tfName:\"frame_name\",name:\"frameName\",type:\"string\"},{tfName:\"is_constant\",name:\"isConstant\",type:\"bool\"}]},{tfOpName:\"Exit\",category:\"control\",inputs:[{start:0,name:\"tensor\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"NextIteration\",category:\"control\",inputs:[{start:0,name:\"tensor\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"TensorArrayV3\",category:\"control\",inputs:[{start:0,name:\"size\",type:\"number\"}],attrs:[{tfName:\"dtype\",name:\"dtype\",type:\"dtype\"},{tfName:\"element_shape\",name:\"elementShape\",type:\"shape\"},{tfName:\"dynamic_size\",name:\"dynamicSize\",type:\"bool\"},{tfName:\"clear_after_read\",name:\"clearAfterRead\",type:\"bool\"},{tfName:\"identical_element_shapes\",name:\"identicalElementShapes\",type:\"bool\"},{tfName:\"tensor_array_name\",name:\"name\",type:\"string\"}]},{tfOpName:\"TensorArrayWriteV3\",category:\"control\",inputs:[{start:0,name:\"tensorArrayId\",type:\"tensor\"},{start:1,name:\"index\",type:\"number\"},{start:2,name:\"tensor\",type:\"tensor\"},{start:3,name:\"flowIn\",type:\"number\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"TensorArrayReadV3\",category:\"control\",inputs:[{start:0,name:\"tensorArrayId\",type:\"tensor\"},{start:1,name:\"index\",type:\"number\"},{start:2,name:\"flowIn\",type:\"number\"}],attrs:[{tfName:\"dtype\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"TensorArrayGatherV3\",category:\"control\",inputs:[{start:0,name:\"tensorArrayId\",type:\"tensor\"},{start:1,name:\"indices\",type:\"number[]\"},{start:2,name:\"flowIn\",type:\"number\"}],attrs:[{tfName:\"dtype\",name:\"dtype\",type:\"dtype\"},{tfName:\"element_shape\",name:\"elementShape\",type:\"shape\"}]},{tfOpName:\"TensorArrayScatterV3\",category:\"control\",inputs:[{start:0,name:\"tensorArrayId\",type:\"tensor\"},{start:1,name:\"indices\",type:\"number[]\"},{start:2,name:\"tensor\",type:\"tensor\"},{start:3,name:\"flowIn\",type:\"number\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\"}]},{tfOpName:\"TensorArrayConcatV3\",category:\"control\",inputs:[{start:0,name:\"tensorArrayId\",type:\"tensor\"},{start:1,name:\"flowIn\",type:\"number\"}],attrs:[{tfName:\"dtype\",name:\"dtype\",type:\"dtype\"},{tfName:\"element_shape_except0\",name:\"elementShapeExcept0\",type:\"shape\",notSupported:!0}]},{tfOpName:\"TensorArraySplitV3\",category:\"control\",inputs:[{start:0,name:\"tensorArrayId\",type:\"tensor\"},{start:1,name:\"tensor\",type:\"tensor\"},{start:2,name:\"lengths\",type:\"number[]\"},{start:3,name:\"flowIn\",type:\"number\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\"}]},{tfOpName:\"TensorArraySizeV3\",category:\"control\",inputs:[{start:0,name:\"tensorArrayId\",type:\"tensor\"},{start:1,name:\"flowIn\",type:\"number\"}]},{tfOpName:\"TensorArrayCloseV3\",category:\"control\",inputs:[{start:0,name:\"tensorArrayId\",type:\"tensor\"}]},{tfOpName:\"StatelessIf\",category:\"control\",inputs:[{start:0,name:\"cond\",type:\"tensor\"},{start:1,end:0,name:\"args\",type:\"tensors\"}],attrs:[{tfName:\"then_branch\",name:\"thenBranch\",type:\"func\"},{tfName:\"else_branch\",name:\"elseBranch\",type:\"func\"}]},{tfOpName:\"If\",category:\"control\",inputs:[{start:0,name:\"cond\",type:\"tensor\"},{start:1,end:0,name:\"args\",type:\"tensors\"}],attrs:[{tfName:\"then_branch\",name:\"thenBranch\",type:\"func\"},{tfName:\"else_branch\",name:\"elseBranch\",type:\"func\"}]},{tfOpName:\"StatelessWhile\",category:\"control\",inputs:[{start:0,end:0,name:\"args\",type:\"tensors\"}],attrs:[{tfName:\"cond\",name:\"cond\",type:\"func\"},{tfName:\"body\",name:\"body\",type:\"func\"}]},{tfOpName:\"While\",category:\"control\",inputs:[{start:0,end:0,name:\"args\",type:\"tensors\"}],attrs:[{tfName:\"cond\",name:\"cond\",type:\"func\"},{tfName:\"body\",name:\"body\",type:\"func\"}]},{tfOpName:\"TensorListScatter\",category:\"control\",inputs:[{start:0,name:\"tensor\",type:\"tensor\"},{start:1,name:\"indices\",type:\"number[]\"},{start:2,name:\"elementShape\",type:\"shape\"}],attrs:[{tfName:\"element_dtype\",name:\"elementDType\",type:\"dtype\"}]},{tfOpName:\"TensorListScatterV2\",category:\"control\",inputs:[{start:0,name:\"tensor\",type:\"tensor\"},{start:1,name:\"indices\",type:\"number[]\"},{start:2,name:\"elementShape\",type:\"shape\"},{start:3,name:\"numElements\",type:\"number\"}],attrs:[{tfName:\"element_dtype\",name:\"elementDType\",type:\"dtype\"}]},{tfOpName:\"TensorListGather\",category:\"control\",inputs:[{start:0,name:\"tensorListId\",type:\"tensor\"},{start:1,name:\"indices\",type:\"number[]\"},{start:2,name:\"elementShape\",type:\"shape\"}],attrs:[{tfName:\"element_dtype\",name:\"elementDType\",type:\"dtype\"}]},{tfOpName:\"TensorListGetItem\",category:\"control\",inputs:[{start:0,name:\"tensorListId\",type:\"tensor\"},{start:1,name:\"index\",type:\"number\"},{start:2,name:\"elementShape\",type:\"shape\"}],attrs:[{tfName:\"element_dtype\",name:\"elementDType\",type:\"dtype\"}]},{tfOpName:\"TensorListSetItem\",category:\"control\",inputs:[{start:0,name:\"tensorListId\",type:\"tensor\"},{start:1,name:\"index\",type:\"number\"},{start:2,name:\"tensor\",type:\"tensor\"}],attrs:[{tfName:\"element_dtype\",name:\"elementDType\",type:\"dtype\"}]},{tfOpName:\"TensorListReserve\",category:\"control\",inputs:[{start:0,name:\"elementShape\",type:\"shape\"},{start:1,name:\"numElements\",type:\"number\"}],attrs:[{tfName:\"element_dtype\",name:\"elementDType\",type:\"dtype\"}]},{tfOpName:\"TensorListFromTensor\",category:\"control\",inputs:[{start:0,name:\"tensor\",type:\"tensor\"},{start:1,name:\"elementShape\",type:\"shape\"}],attrs:[{tfName:\"element_dtype\",name:\"elementDType\",type:\"dtype\"}]},{tfOpName:\"TensorListStack\",category:\"control\",inputs:[{start:0,name:\"tensorListId\",type:\"tensor\"},{start:1,name:\"elementShape\",type:\"shape\"}],attrs:[{tfName:\"element_dtype\",name:\"elementDType\",type:\"dtype\"},{tfName:\"num_elements\",name:\"numElements\",type:\"dtype\"}]},{tfOpName:\"TensorListSplit\",category:\"control\",inputs:[{start:0,name:\"tensor\",type:\"tensor\"},{start:1,name:\"elementShape\",type:\"shape\"},{start:2,name:\"lengths\",type:\"number[]\"}],attrs:[{tfName:\"element_dtype\",name:\"elementDType\",type:\"dtype\"}]},{tfOpName:\"TensorListConcat\",category:\"control\",inputs:[{start:0,name:\"tensorListId\",type:\"tensor\"}],attrs:[{tfName:\"element_shape\",name:\"elementShape\",type:\"shape\"},{tfName:\"element_dtype\",name:\"elementDType\",type:\"dtype\"}]},{tfOpName:\"TensorListConcatV2\",category:\"control\",inputs:[{start:0,name:\"tensorListId\",type:\"tensor\"}],attrs:[{tfName:\"element_shape\",name:\"elementShape\",type:\"shape\"},{tfName:\"element_dtype\",name:\"elementDType\",type:\"dtype\"}]},{tfOpName:\"TensorListPopBack\",category:\"control\",inputs:[{start:0,name:\"tensorListId\",type:\"tensor\"},{start:1,name:\"elementShape\",type:\"shape\"}],attrs:[{tfName:\"element_dtype\",name:\"elementDType\",type:\"dtype\"}]},{tfOpName:\"TensorListPushBack\",category:\"control\",inputs:[{start:0,name:\"tensorListId\",type:\"tensor\"},{start:1,name:\"tensor\",type:\"tensor\"}],attrs:[{tfName:\"element_dtype\",name:\"elementDType\",type:\"dtype\"}]},{tfOpName:\"TensorListLength\",category:\"control\",inputs:[{start:0,name:\"tensorListId\",type:\"tensor\"}]},{tfOpName:\"TensorListResize\",category:\"control\",inputs:[{start:0,name:\"tensorListId\",type:\"tensor\"},{start:1,name:\"size\",type:\"number\"}]}];var mk={};Kt(mk,{json:()=>NQ});var NQ=[{tfOpName:\"AvgPool\",category:\"convolution\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"strides\",name:\"strides\",type:\"number[]\"},{tfName:\"padding\",name:\"pad\",type:\"string\"},{tfName:\"data_format\",name:\"dataFormat\",type:\"string\",notSupported:!0},{tfName:\"ksize\",name:\"kernelSize\",type:\"number[]\"},{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"MaxPool\",category:\"convolution\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"strides\",name:\"strides\",type:\"number[]\"},{tfName:\"padding\",name:\"pad\",type:\"string\"},{tfName:\"data_format\",name:\"dataFormat\",type:\"string\",notSupported:!0},{tfName:\"ksize\",name:\"kernelSize\",type:\"number[]\"},{tfName:\"explicit_paddings\",name:\"explicitPaddings\",type:\"number[]\",defaultValue:[],notSupported:!0},{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"MaxPoolWithArgmax\",category:\"convolution\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"strides\",name:\"strides\",type:\"number[]\"},{tfName:\"padding\",name:\"pad\",type:\"string\"},{tfName:\"ksize\",name:\"kernelSize\",type:\"number[]\"},{tfName:\"include_batch_in_index\",name:\"includeBatchInIndex\",type:\"bool\"},{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"AvgPool3D\",category:\"convolution\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"strides\",name:\"strides\",type:\"number[]\"},{tfName:\"padding\",name:\"pad\",type:\"string\"},{tfName:\"data_format\",name:\"dataFormat\",type:\"string\",notSupported:!0},{tfName:\"ksize\",name:\"kernelSize\",type:\"number[]\"},{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"MaxPool3D\",category:\"convolution\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"strides\",name:\"strides\",type:\"number[]\"},{tfName:\"padding\",name:\"pad\",type:\"string\"},{tfName:\"data_format\",name:\"dataFormat\",type:\"string\",notSupported:!0},{tfName:\"ksize\",name:\"kernelSize\",type:\"number[]\"},{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Conv1D\",category:\"convolution\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"filter\",type:\"tensor\"}],attrs:[{tfName:\"stride\",name:\"stride\",type:\"number\"},{tfName:\"padding\",name:\"pad\",type:\"string\"},{tfName:\"data_format\",name:\"dataFormat\",type:\"string\",defaultValue:\"NWC\"},{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0},{tfName:\"dilation\",name:\"dilation\",type:\"number\",defaultValue:1}]},{tfOpName:\"Conv2D\",category:\"convolution\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"filter\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0},{tfName:\"strides\",name:\"strides\",type:\"number[]\"},{tfName:\"padding\",name:\"pad\",type:\"string\"},{tfName:\"useCudnnOnGpu\",name:\"useCudnnOnGpu\",type:\"bool\"},{tfName:\"data_format\",name:\"dataFormat\",type:\"string\",defaultValue:\"NHWC\"},{tfName:\"explicit_paddings\",name:\"explicitPaddings\",type:\"number[]\",defaultValue:[]},{tfName:\"dilations\",name:\"dilations\",type:\"number[]\"}]},{tfOpName:\"_FusedConv2D\",category:\"convolution\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"filter\",type:\"tensor\"},{start:2,end:0,name:\"args\",type:\"tensors\"}],attrs:[{tfName:\"num_args\",name:\"numArgs\",type:\"number\"},{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0},{tfName:\"strides\",name:\"strides\",type:\"number[]\"},{tfName:\"padding\",name:\"pad\",type:\"string\"},{tfName:\"explicit_paddings\",name:\"explicitPaddings\",type:\"number[]\",defaultValue:[]},{tfName:\"use_cudnn_on_gpu\",name:\"useCudnnOnGpu\",type:\"bool\",defaultValue:!0},{tfName:\"data_format\",name:\"dataFormat\",type:\"string\",defaultValue:\"NHWC\"},{tfName:\"dilations\",name:\"dilations\",type:\"number[]\",defaultValue:[1,1,1,1]},{tfName:\"fused_ops\",name:\"fusedOps\",type:\"string[]\",defaultValue:[]},{tfName:\"epsilon\",name:\"epsilon\",type:\"number\",defaultValue:1e-4},{tfName:\"leakyrelu_alpha\",name:\"leakyreluAlpha\",type:\"number\",defaultValue:.2}]},{tfOpName:\"Conv2DBackpropInput\",category:\"convolution\",inputs:[{start:2,name:\"x\",type:\"tensor\"},{start:1,name:\"filter\",type:\"tensor\"},{start:0,name:\"outputShape\",type:\"number[]\"}],attrs:[{tfName:\"strides\",name:\"strides\",type:\"number[]\"},{tfName:\"padding\",name:\"pad\",type:\"string\"},{tfName:\"data_format\",name:\"dataFormat\",type:\"string\",notSupported:!0},{tfName:\"explicit_paddings\",name:\"explicitPaddings\",type:\"number[]\",defaultValue:[]},{tfName:\"dilations\",name:\"dilations\",type:\"number[]\",notSupported:!0}]},{tfOpName:\"DepthwiseConv2d\",category:\"convolution\",inputs:[{start:0,name:\"input\",type:\"tensor\"},{start:1,name:\"filter\",type:\"tensor\"}],attrs:[{tfName:\"strides\",name:\"strides\",type:\"number[]\"},{tfName:\"padding\",name:\"pad\",type:\"string\"},{tfName:\"data_format\",name:\"dataFormat\",type:\"string\",defaultValue:\"NHWC\"},{tfName:\"explicit_paddings\",name:\"explicitPaddings\",type:\"number[]\",defaultValue:[]},{tfName:\"dilations\",name:\"dilations\",type:\"number[]\"}]},{tfOpName:\"DepthwiseConv2dNative\",category:\"convolution\",inputs:[{start:0,name:\"input\",type:\"tensor\"},{start:1,name:\"filter\",type:\"tensor\"}],attrs:[{tfName:\"strides\",name:\"strides\",type:\"number[]\"},{tfName:\"padding\",name:\"pad\",type:\"string\"},{tfName:\"data_format\",name:\"dataFormat\",type:\"string\",defaultValue:\"NHWC\"},{tfName:\"explicit_paddings\",name:\"explicitPaddings\",type:\"number[]\",defaultValue:[]},{tfName:\"dilations\",name:\"dilations\",type:\"number[]\"}]},{tfOpName:\"FusedDepthwiseConv2dNative\",category:\"convolution\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"filter\",type:\"tensor\"},{start:2,end:0,name:\"args\",type:\"tensors\"}],attrs:[{tfName:\"num_args\",name:\"numArgs\",type:\"number\"},{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0},{tfName:\"strides\",name:\"strides\",type:\"number[]\"},{tfName:\"padding\",name:\"pad\",type:\"string\"},{tfName:\"data_format\",name:\"dataFormat\",type:\"string\",defaultValue:\"NHWC\"},{tfName:\"dilations\",name:\"dilations\",type:\"number[]\",defaultValue:[1,1,1,1]},{tfName:\"fused_ops\",name:\"fusedOps\",type:\"string[]\",defaultValue:[]},{tfName:\"explicit_paddings\",name:\"explicitPaddings\",type:\"number[]\",defaultValue:[]}]},{tfOpName:\"Conv3D\",category:\"convolution\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"filter\",type:\"tensor\"}],attrs:[{tfName:\"strides\",name:\"strides\",type:\"number[]\"},{tfName:\"padding\",name:\"pad\",type:\"string\"},{tfName:\"data_format\",name:\"dataFormat\",type:\"string\",defaultValue:\"NHWC\"},{tfName:\"dilations\",name:\"dilations\",type:\"number[]\"}]},{tfOpName:\"Dilation2D\",category:\"convolution\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"filter\",type:\"tensor\"}],attrs:[{tfName:\"strides\",name:\"strides\",type:\"number[]\"},{tfName:\"rates\",name:\"dilations\",type:\"number[]\"},{tfName:\"padding\",name:\"pad\",type:\"string\"}]}];var fk={};Kt(fk,{json:()=>kQ});var kQ=[{tfOpName:\"Fill\",category:\"creation\",inputs:[{start:0,name:\"shape\",type:\"number[]\"},{start:1,name:\"value\",type:\"number\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\"}]},{tfOpName:\"LinSpace\",category:\"creation\",inputs:[{start:0,name:\"start\",type:\"number\"},{start:1,name:\"stop\",type:\"number\"},{start:2,name:\"num\",type:\"number\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"OneHot\",category:\"creation\",inputs:[{start:0,name:\"indices\",type:\"tensor\"},{start:1,name:\"depth\",type:\"number\"},{start:2,name:\"onValue\",type:\"number\",defaultValue:1},{start:3,name:\"offValue\",type:\"number\",defaultValue:0}],attrs:[{tfName:\"axis\",name:\"axis\",type:\"number\",notSupported:!0},{tfName:\"T\",name:\"dtype\",type:\"dtype\"}]},{tfOpName:\"Ones\",category:\"creation\",inputs:[{start:0,name:\"shape\",type:\"number[]\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\"}]},{tfOpName:\"OnesLike\",category:\"creation\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"dtype\",name:\"dtype\",type:\"dtype\"}]},{tfOpName:\"RandomStandardNormal\",category:\"creation\",inputs:[{start:0,name:\"shape\",type:\"number[]\"}],attrs:[{tfName:\"seed\",name:\"seed\",type:\"number\",defaultValue:0},{tfName:\"seed2\",name:\"seed2\",type:\"number\",defaultValue:0,notSupported:!0},{tfName:\"dtype\",name:\"dtype\",type:\"dtype\"},{tfName:\"T\",name:\"T\",type:\"number\",notSupported:!0}]},{tfOpName:\"RandomUniform\",category:\"creation\",inputs:[{start:0,name:\"shape\",type:\"number[]\"}],attrs:[{tfName:\"minval\",name:\"minval\",type:\"number\",defaultValue:0},{tfName:\"maxval\",name:\"maxval\",type:\"number\",defaultValue:1},{tfName:\"dtype\",name:\"dtype\",type:\"dtype\"},{tfName:\"seed\",name:\"seed\",type:\"number\",defaultValue:0},{tfName:\"seed2\",name:\"seed2\",type:\"number\",defaultValue:0,notSupported:!0},{tfName:\"T\",name:\"T\",type:\"number\",notSupported:!0}]},{tfOpName:\"RandomUniformInt\",category:\"creation\",inputs:[{start:0,name:\"shape\",type:\"number[]\"}],attrs:[{tfName:\"minval\",name:\"minval\",type:\"number\"},{tfName:\"maxval\",name:\"maxval\",type:\"number\"},{tfName:\"seed\",name:\"seed\",type:\"number\",defaultValue:0},{tfName:\"seed2\",name:\"seed2\",type:\"number\",defaultValue:0,notSupported:!0}]},{tfOpName:\"Range\",category:\"creation\",inputs:[{start:0,name:\"start\",type:\"number\"},{start:1,name:\"stop\",type:\"number\"},{start:2,name:\"step\",type:\"number\",defaultValue:0}],attrs:[{tfName:\"Tidx\",name:\"dtype\",type:\"dtype\"}]},{tfOpName:\"TruncatedNormal\",category:\"creation\",inputs:[{start:0,name:\"shape\",type:\"number[]\"}],attrs:[{tfName:\"means\",name:\"mean\",type:\"number\",defaultValue:0},{tfName:\"stddev\",name:\"stdDev\",type:\"number\",defaultValue:1},{tfName:\"seed\",name:\"seed\",type:\"number\"},{tfName:\"seed2\",name:\"seed2\",type:\"number\",defaultValue:0,notSupported:!0},{tfName:\"dtype\",name:\"dtype\",type:\"dtype\"},{tfName:\"T\",name:\"T\",type:\"number\",notSupported:!0}]},{tfOpName:\"Zeros\",category:\"creation\",inputs:[{start:0,name:\"shape\",type:\"number[]\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\"}]},{tfOpName:\"ZerosLike\",category:\"creation\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\"}]},{tfOpName:\"Multinomial\",category:\"creation\",inputs:[{start:0,name:\"logits\",type:\"tensor\"},{start:1,name:\"numSamples\",type:\"number\"}],attrs:[{tfName:\"seed\",name:\"seed\",type:\"number\"},{tfName:\"seed2\",name:\"seed2\",type:\"number\"},{tfName:\"T\",name:\"dtype\",type:\"dtype\"},{tfName:\"output_dtype\",name:\"output_dtype\",type:\"dtype\"}]}];var dk={};Kt(dk,{json:()=>TQ});var TQ=[{tfOpName:\"NonMaxSuppressionV2\",category:\"dynamic\",inputs:[{start:0,name:\"boxes\",type:\"tensor\"},{start:1,name:\"scores\",type:\"tensor\"},{start:2,name:\"maxOutputSize\",type:\"number\"},{start:3,name:\"iouThreshold\",type:\"number\"}]},{tfOpName:\"NonMaxSuppressionV3\",category:\"dynamic\",inputs:[{start:0,name:\"boxes\",type:\"tensor\"},{start:1,name:\"scores\",type:\"tensor\"},{start:2,name:\"maxOutputSize\",type:\"number\"},{start:3,name:\"iouThreshold\",type:\"number\"},{start:4,name:\"scoreThreshold\",type:\"number\"}]},{tfOpName:\"NonMaxSuppressionV4\",category:\"dynamic\",inputs:[{start:0,name:\"boxes\",type:\"tensor\"},{start:1,name:\"scores\",type:\"tensor\"},{start:2,name:\"maxOutputSize\",type:\"number\"},{start:3,name:\"iouThreshold\",type:\"number\"},{start:4,name:\"scoreThreshold\",type:\"number\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0},{tfName:\"T_threshold\",name:\"threshold\",type:\"dtype\",notSupported:!0},{tfName:\"pad_to_max_output_size\",name:\"padToMaxOutputSize\",type:\"bool\"}]},{tfOpName:\"NonMaxSuppressionV5\",category:\"dynamic\",inputs:[{start:0,name:\"boxes\",type:\"tensor\"},{start:1,name:\"scores\",type:\"tensor\"},{start:2,name:\"maxOutputSize\",type:\"number\"},{start:3,name:\"iouThreshold\",type:\"number\"},{start:4,name:\"scoreThreshold\",type:\"number\"},{start:5,name:\"softNmsSigma\",type:\"number\"}]},{tfOpName:\"Where\",category:\"dynamic\",inputs:[{start:0,name:\"condition\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"ListDiff\",category:\"dynamic\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"y\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]}];var hk={};Kt(hk,{json:()=>_Q});var _Q=[{tfOpName:\"LowerBound\",category:\"evaluation\",inputs:[{start:0,name:\"sortedSequence\",type:\"tensor\"},{start:1,name:\"values\",type:\"tensor\"}]},{tfOpName:\"TopKV2\",category:\"evaluation\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"k\",type:\"number\"}],attrs:[{tfName:\"sorted\",name:\"sorted\",type:\"bool\"}]},{tfOpName:\"UpperBound\",category:\"evaluation\",inputs:[{start:0,name:\"sortedSequence\",type:\"tensor\"},{start:1,name:\"values\",type:\"tensor\"}]},{tfOpName:\"Unique\",category:\"evaluation\",inputs:[{start:0,name:\"x\",type:\"tensor\"}]},{tfOpName:\"UniqueV2\",category:\"evaluation\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"axis\",type:\"number\"}]}];var gk={};Kt(gk,{json:()=>EQ});var EQ=[{tfOpName:\"PlaceholderWithDefault\",category:\"graph\",inputs:[{start:0,name:\"default\",type:\"tensor\"}],attrs:[{tfName:\"shape\",name:\"shape\",type:\"shape\"},{tfName:\"dtype\",name:\"dtype\",type:\"dtype\"}]},{tfOpName:\"Placeholder\",category:\"graph\",attrs:[{tfName:\"shape\",name:\"shape\",type:\"shape\"},{tfName:\"dtype\",name:\"dtype\",type:\"dtype\"}]},{tfOpName:\"Const\",category:\"graph\"},{tfOpName:\"Identity\",category:\"graph\",inputs:[{start:0,name:\"x\",type:\"tensor\"}]},{tfOpName:\"IdentityN\",category:\"graph\",inputs:[{start:0,end:0,name:\"x\",type:\"tensors\"}]},{tfOpName:\"Snapshot\",category:\"graph\",inputs:[{start:0,name:\"x\",type:\"tensor\"}]},{tfOpName:\"Rank\",category:\"graph\",inputs:[{start:0,name:\"x\",type:\"tensor\"}]},{tfOpName:\"Size\",category:\"graph\",inputs:[{start:0,name:\"x\",type:\"tensor\"}]},{tfOpName:\"Shape\",category:\"graph\",inputs:[{start:0,name:\"x\",type:\"tensor\"}]},{tfOpName:\"ShapeN\",category:\"graph\",inputs:[{start:0,end:0,name:\"x\",type:\"tensors\"}]},{tfOpName:\"Print\",category:\"graph\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"data\",type:\"tensors\"}],attrs:[{tfName:\"message\",name:\"message\",type:\"string\"},{tfName:\"first_n\",name:\"firstN\",type:\"number\",notSupported:!0},{tfName:\"summarize\",name:\"summarize\",type:\"number\",defaultValue:3}]},{tfOpName:\"NoOp\",category:\"graph\",inputs:[]},{tfOpName:\"StopGradient\",category:\"graph\",inputs:[{start:0,name:\"x\",type:\"tensor\"}]},{tfOpName:\"FakeQuantWithMinMaxVars\",category:\"graph\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"min\",name:\"min\",type:\"number\"},{tfName:\"max\",name:\"max\",type:\"number\"}]}];var xk={};Kt(xk,{json:()=>AQ});var AQ=[{tfOpName:\"HashTable\",category:\"hash_table\",inputs:[],attrs:[{tfName:\"shared_name\",name:\"sharedName\",type:\"string\"},{tfName:\"use_node_name_sharing\",name:\"useNodeNameSharing\",type:\"bool\"},{tfName:\"key_dtype\",name:\"keyDType\",type:\"dtype\"},{tfName:\"value_dtype\",name:\"valueDType\",type:\"dtype\"}]},{tfOpName:\"HashTableV2\",category:\"hash_table\",inputs:[],attrs:[{tfName:\"shared_name\",name:\"sharedName\",type:\"string\"},{tfName:\"use_node_name_sharing\",name:\"useNodeNameSharing\",type:\"bool\"},{tfName:\"key_dtype\",name:\"keyDType\",type:\"dtype\"},{tfName:\"value_dtype\",name:\"valueDType\",type:\"dtype\"}]},{tfOpName:\"LookupTableImport\",category:\"hash_table\",inputs:[{start:0,name:\"tableHandle\",type:\"tensor\"},{start:1,name:\"keys\",type:\"tensor\"},{start:2,name:\"values\",type:\"tensor\"}],attrs:[{tfName:\"Tin\",name:\"tIn\",type:\"dtype\",notSupported:!0},{tfName:\"Tout\",name:\"tOut\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"LookupTableImportV2\",category:\"hash_table\",inputs:[{start:0,name:\"tableHandle\",type:\"tensor\"},{start:1,name:\"keys\",type:\"tensor\"},{start:2,name:\"values\",type:\"tensor\"}],attrs:[{tfName:\"Tin\",name:\"tIn\",type:\"dtype\",notSupported:!0},{tfName:\"Tout\",name:\"tOut\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"LookupTableFind\",category:\"hash_table\",inputs:[{start:0,name:\"tableHandle\",type:\"tensor\"},{start:1,name:\"keys\",type:\"tensor\"},{start:2,name:\"defaultValue\",type:\"tensor\"}],attrs:[{tfName:\"Tin\",name:\"tIn\",type:\"dtype\",notSupported:!0},{tfName:\"Tout\",name:\"tOut\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"LookupTableFindV2\",category:\"hash_table\",inputs:[{start:0,name:\"tableHandle\",type:\"tensor\"},{start:1,name:\"keys\",type:\"tensor\"},{start:2,name:\"defaultValue\",type:\"tensor\"}],attrs:[{tfName:\"Tin\",name:\"tIn\",type:\"dtype\",notSupported:!0},{tfName:\"Tout\",name:\"tOut\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"LookupTableSize\",category:\"hash_table\",inputs:[{start:0,name:\"tableHandle\",type:\"tensor\"}]},{tfOpName:\"LookupTableSizeV2\",category:\"hash_table\",inputs:[{start:0,name:\"tableHandle\",type:\"tensor\"}]},{tfOpName:\"InitializeTable\",category:\"hash_table\",inputs:[{start:0,name:\"tableHandle\",type:\"tensor\"},{start:1,name:\"keys\",type:\"tensor\"},{start:2,name:\"values\",type:\"tensor\"}]},{tfOpName:\"InitializeTableV2\",category:\"hash_table\",inputs:[{start:0,name:\"tableHandle\",type:\"tensor\"},{start:1,name:\"keys\",type:\"tensor\"},{start:2,name:\"values\",type:\"tensor\"}]}];var yk={};Kt(yk,{json:()=>DQ});var DQ=[{tfOpName:\"ResizeBilinear\",category:\"image\",inputs:[{start:0,name:\"images\",type:\"tensor\"},{start:1,name:\"size\",type:\"number[]\"}],attrs:[{tfName:\"align_corners\",name:\"alignCorners\",type:\"bool\"},{tfName:\"half_pixel_centers\",name:\"halfPixelCenters\",type:\"bool\"},{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"ResizeNearestNeighbor\",category:\"image\",inputs:[{start:0,name:\"images\",type:\"tensor\"},{start:1,name:\"size\",type:\"number[]\"}],attrs:[{tfName:\"align_corners\",name:\"alignCorners\",type:\"bool\"},{tfName:\"half_pixel_centers\",name:\"halfPixelCenters\",type:\"bool\"},{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"CropAndResize\",category:\"image\",inputs:[{start:0,name:\"image\",type:\"tensor\"},{start:1,name:\"boxes\",type:\"tensor\"},{start:2,name:\"boxInd\",type:\"tensor\"},{start:3,name:\"cropSize\",type:\"number[]\"}],attrs:[{tfName:\"method\",name:\"method\",type:\"string\"},{tfName:\"extrapolation_value\",name:\"extrapolationValue\",type:\"number\"}]},{tfOpName:\"ImageProjectiveTransformV3\",category:\"image\",inputs:[{start:0,name:\"images\",type:\"tensor\"},{start:1,name:\"transforms\",type:\"tensor\"},{start:2,name:\"outputShape\",type:\"number[]\"},{start:3,name:\"fillValue\",type:\"number\"}],attrs:[{tfName:\"interpolation\",name:\"interpolation\",type:\"string\"},{tfName:\"fill_mode\",name:\"fillMode\",type:\"string\"}]}];var bk={};Kt(bk,{json:()=>$Q});var $Q=[{tfOpName:\"Equal\",category:\"logical\",inputs:[{start:0,name:\"a\",type:\"tensor\"},{start:1,name:\"b\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"NotEqual\",category:\"logical\",inputs:[{start:0,name:\"a\",type:\"tensor\"},{start:1,name:\"b\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Greater\",category:\"logical\",inputs:[{start:0,name:\"a\",type:\"tensor\"},{start:1,name:\"b\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"GreaterEqual\",category:\"logical\",inputs:[{start:0,name:\"a\",type:\"tensor\"},{start:1,name:\"b\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Less\",category:\"logical\",inputs:[{start:0,name:\"a\",type:\"tensor\"},{start:1,name:\"b\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"LessEqual\",category:\"logical\",inputs:[{start:0,name:\"a\",type:\"tensor\"},{start:1,name:\"b\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"LogicalAnd\",category:\"logical\",inputs:[{start:0,name:\"a\",type:\"tensor\"},{start:1,name:\"b\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"LogicalNot\",category:\"logical\",inputs:[{start:0,name:\"a\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"LogicalOr\",category:\"logical\",inputs:[{start:0,name:\"a\",type:\"tensor\"},{start:1,name:\"b\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Select\",category:\"logical\",inputs:[{start:0,name:\"condition\",type:\"tensor\"},{start:1,name:\"a\",type:\"tensor\"},{start:2,name:\"b\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"SelectV2\",category:\"logical\",inputs:[{start:0,name:\"condition\",type:\"tensor\"},{start:1,name:\"a\",type:\"tensor\"},{start:2,name:\"b\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"BitwiseAnd\",category:\"logical\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"y\",type:\"tensor\"}]}];var wk={};Kt(wk,{json:()=>RQ});var RQ=[{tfOpName:\"_FusedMatMul\",category:\"matrices\",inputs:[{start:0,name:\"a\",type:\"tensor\"},{start:1,name:\"b\",type:\"tensor\"},{start:2,end:0,name:\"args\",type:\"tensors\"}],attrs:[{tfName:\"num_args\",name:\"numArgs\",type:\"number\"},{tfName:\"fused_ops\",name:\"fusedOps\",type:\"string[]\",defaultValue:[]},{tfName:\"epsilon\",name:\"epsilon\",type:\"number\",defaultValue:1e-4},{tfName:\"transpose_a\",name:\"transposeA\",type:\"bool\",defaultValue:!1},{tfName:\"transpose_b\",name:\"transposeB\",type:\"bool\",defaultValue:!1},{tfName:\"leakyrelu_alpha\",name:\"leakyreluAlpha\",type:\"number\",defaultValue:.2},{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"MatMul\",category:\"matrices\",inputs:[{start:0,name:\"a\",type:\"tensor\"},{start:1,name:\"b\",type:\"tensor\"}],attrs:[{tfName:\"transpose_a\",name:\"transposeA\",type:\"bool\",defaultValue:!1},{tfName:\"transpose_b\",name:\"transposeB\",type:\"bool\",defaultValue:!1},{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"BatchMatMul\",category:\"matrices\",inputs:[{start:0,name:\"a\",type:\"tensor\"},{start:1,name:\"b\",type:\"tensor\"}],attrs:[{tfName:\"adj_x\",name:\"transposeA\",type:\"bool\",defaultValue:!1},{tfName:\"adj_y\",name:\"transposeB\",type:\"bool\",defaultValue:!1},{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"BatchMatMulV2\",category:\"matrices\",inputs:[{start:0,name:\"a\",type:\"tensor\"},{start:1,name:\"b\",type:\"tensor\"}],attrs:[{tfName:\"adj_x\",name:\"transposeA\",type:\"bool\",defaultValue:!1},{tfName:\"adj_y\",name:\"transposeB\",type:\"bool\",defaultValue:!1},{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Transpose\",category:\"matrices\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"perm\",type:\"number[]\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Einsum\",category:\"matrices\",inputs:[{start:0,end:0,name:\"tensors\",type:\"tensors\"}],attrs:[{tfName:\"equation\",name:\"equation\",type:\"string\"},{tfName:\"N\",name:\"n\",type:\"number\",defaultValue:2},{tfName:\"T\",name:\"dtype\",type:\"dtype\"}]},{tfOpName:\"MatrixBandPart\",category:\"matrices\",inputs:[{start:0,name:\"a\",type:\"tensor\"},{start:1,name:\"numLower\",type:\"tensor\"},{start:1,name:\"numUpper\",type:\"tensor\"}]}];var Ik={};Kt(Ik,{json:()=>FQ});var FQ=[{tfOpName:\"EuclideanNorm\",category:\"normalization\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"axis\",type:\"number[]\"}],attrs:[{tfName:\"keep_dims\",name:\"keepDims\",type:\"bool\",defaultValue:!1}]},{tfOpName:\"FusedBatchNorm\",category:\"normalization\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"scale\",type:\"tensor\"},{start:2,name:\"offset\",type:\"tensor\"},{start:3,name:\"mean\",type:\"tensor\"},{start:4,name:\"variance\",type:\"tensor\"}],attrs:[{tfName:\"epsilon\",name:\"epsilon\",type:\"number\",defaultValue:.001},{tfName:\"data_format\",name:\"dataFormat\",type:\"string\",notSupported:!0}]},{tfOpName:\"FusedBatchNormV2\",category:\"normalization\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"scale\",type:\"tensor\"},{start:2,name:\"offset\",type:\"tensor\"},{start:3,name:\"mean\",type:\"tensor\"},{start:4,name:\"variance\",type:\"tensor\"}],attrs:[{tfName:\"epsilon\",name:\"epsilon\",type:\"number\",defaultValue:.001},{tfName:\"data_format\",name:\"dataFormat\",type:\"string\",notSupported:!0}]},{tfOpName:\"FusedBatchNormV3\",category:\"normalization\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"scale\",type:\"tensor\"},{start:2,name:\"offset\",type:\"tensor\"},{start:3,name:\"mean\",type:\"tensor\"},{start:4,name:\"variance\",type:\"tensor\"}],attrs:[{tfName:\"epsilon\",name:\"epsilon\",type:\"number\",defaultValue:.001},{tfName:\"data_format\",name:\"dataFormat\",type:\"string\",notSupported:!0}]},{tfOpName:\"LRN\",category:\"normalization\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"depth_radius\",name:\"radius\",type:\"number\",defaultValue:5},{tfName:\"bias\",name:\"bias\",type:\"number\",defaultValue:1},{tfName:\"alpha\",name:\"alpha\",type:\"number\",defaultValue:1},{tfName:\"beta\",name:\"beta\",type:\"number\",defaultValue:.5}]},{tfOpName:\"Softmax\",category:\"normalization\",inputs:[{start:0,name:\"x\",type:\"tensor\"}]},{tfOpName:\"LogSoftmax\",category:\"normalization\",inputs:[{start:0,name:\"x\",type:\"tensor\"}]}];var Ck={};Kt(Ck,{json:()=>OQ});var OQ=[{tfOpName:\"Bincount\",category:\"reduction\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"size\",type:\"number\"},{start:2,name:\"weights\",type:\"tensor\"}]},{tfOpName:\"DenseBincount\",category:\"reduction\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"size\",type:\"number\"},{start:2,name:\"weights\",type:\"tensor\"}],attrs:[{tfName:\"binary_output\",name:\"binaryOutput\",type:\"bool\"}]},{tfOpName:\"Max\",category:\"reduction\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"axis\",type:\"number[]\"}],attrs:[{tfName:\"keep_dims\",name:\"keepDims\",type:\"bool\"}]},{tfOpName:\"Mean\",category:\"reduction\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"axis\",type:\"number[]\"}],attrs:[{tfName:\"keep_dims\",name:\"keepDims\",type:\"bool\"}]},{tfOpName:\"Min\",category:\"reduction\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"axis\",type:\"number[]\"}],attrs:[{tfName:\"keep_dims\",name:\"keepDims\",type:\"bool\"}]},{tfOpName:\"Sum\",category:\"reduction\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"axis\",type:\"number[]\"}],attrs:[{tfName:\"keep_dims\",name:\"keepDims\",type:\"bool\"}]},{tfOpName:\"All\",category:\"reduction\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"axis\",type:\"number[]\"}],attrs:[{tfName:\"keep_dims\",name:\"keepDims\",type:\"bool\"}]},{tfOpName:\"Any\",category:\"reduction\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"axis\",type:\"number[]\"}],attrs:[{tfName:\"keep_dims\",name:\"keepDims\",type:\"bool\"}]},{tfOpName:\"ArgMax\",category:\"reduction\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"axis\",type:\"number\"}]},{tfOpName:\"ArgMin\",category:\"reduction\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"axis\",type:\"number\"}]},{tfOpName:\"Prod\",category:\"reduction\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"axis\",type:\"number[]\"}],attrs:[{tfName:\"keep_dims\",name:\"keepDims\",type:\"bool\"},{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"Cumprod\",category:\"reduction\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"axis\",type:\"number\"}],attrs:[{tfName:\"exclusive\",name:\"exclusive\",type:\"bool\"},{tfName:\"reverse\",name:\"reverse\",type:\"bool\"}]},{tfOpName:\"Cumsum\",category:\"reduction\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"axis\",type:\"number\"}],attrs:[{tfName:\"exclusive\",name:\"exclusive\",type:\"bool\"},{tfName:\"reverse\",name:\"reverse\",type:\"bool\"}]}];var vk={};Kt(vk,{json:()=>MQ});var MQ=[{tfOpName:\"ConcatV2\",category:\"slice_join\",inputs:[{start:0,end:-1,name:\"tensors\",type:\"tensors\"},{start:-1,name:\"axis\",type:\"number\"}],attrs:[{tfName:\"N\",name:\"n\",type:\"number\",defaultValue:2}]},{tfOpName:\"Concat\",category:\"slice_join\",inputs:[{start:1,end:0,name:\"tensors\",type:\"tensors\"},{start:0,name:\"axis\",type:\"number\"}],attrs:[{tfName:\"N\",name:\"n\",type:\"number\",defaultValue:2}]},{tfOpName:\"GatherV2\",category:\"slice_join\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"indices\",type:\"tensor\"},{start:2,name:\"axis\",type:\"number\",defaultValue:0}],attrs:[{tfName:\"batch_dims\",name:\"batchDims\",type:\"number\",defaultValue:0}]},{tfOpName:\"Gather\",category:\"slice_join\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"indices\",type:\"tensor\"}],attrs:[{tfName:\"validate_indices\",name:\"validateIndices\",type:\"bool\",notSupported:!0}]},{tfOpName:\"Reverse\",category:\"slice_join\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"dims\",type:\"bool[]\"}]},{tfOpName:\"ReverseV2\",category:\"slice_join\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"axis\",type:\"number[]\"}]},{tfOpName:\"Slice\",category:\"slice_join\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"begin\",type:\"number[]\"},{start:2,name:\"size\",type:\"number[]\"}]},{tfOpName:\"StridedSlice\",category:\"slice_join\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"begin\",type:\"number[]\"},{start:2,name:\"end\",type:\"number[]\"},{start:3,name:\"strides\",type:\"number[]\"}],attrs:[{tfName:\"begin_mask\",name:\"beginMask\",type:\"number\",defaultValue:0},{tfName:\"end_mask\",name:\"endMask\",type:\"number\",defaultValue:0},{tfName:\"new_axis_mask\",name:\"newAxisMask\",type:\"number\",defaultValue:0},{tfName:\"ellipsis_mask\",name:\"ellipsisMask\",type:\"number\",defaultValue:0},{tfName:\"shrink_axis_mask\",name:\"shrinkAxisMask\",type:\"number\",defaultValue:0}]},{tfOpName:\"Pack\",category:\"slice_join\",inputs:[{start:0,end:0,name:\"tensors\",type:\"tensors\"}],attrs:[{tfName:\"axis\",name:\"axis\",type:\"number\",defaultValue:0}]},{tfOpName:\"Unpack\",category:\"slice_join\",inputs:[{start:0,name:\"tensor\",type:\"tensor\"}],attrs:[{tfName:\"axis\",name:\"axis\",type:\"number\",defaultValue:0},{tfName:\"num\",name:\"num\",type:\"number\",defaultValue:0,notSupported:!0}]},{tfOpName:\"Tile\",category:\"slice_join\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"reps\",type:\"number[]\"}]},{tfOpName:\"Split\",category:\"slice_join\",inputs:[{start:0,name:\"axis\",type:\"number\",defaultValue:0},{start:1,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"num_split\",name:\"numOrSizeSplits\",type:\"number\",defaultValue:1}]},{tfOpName:\"SplitV\",category:\"slice_join\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"numOrSizeSplits\",type:\"number[]\"},{start:2,name:\"axis\",type:\"number\",defaultValue:0}]},{tfOpName:\"ScatterNd\",category:\"slice_join\",inputs:[{start:0,name:\"indices\",type:\"tensor\"},{start:1,name:\"values\",type:\"tensor\"},{start:2,name:\"shape\",type:\"number[]\"}]},{tfOpName:\"GatherNd\",category:\"slice_join\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"indices\",type:\"tensor\"}]},{tfOpName:\"SparseToDense\",category:\"slice_join\",inputs:[{start:0,name:\"sparseIndices\",type:\"tensor\"},{start:1,name:\"outputShape\",type:\"number[]\"},{start:2,name:\"sparseValues\",type:\"tensor\"},{start:3,name:\"defaultValue\",type:\"tensor\"}],attrs:[{tfName:\"validate_indices\",name:\"validateIndices\",type:\"bool\",defaultValue:!1,notSupported:!0}]},{tfOpName:\"TensorScatterUpdate\",category:\"slice_join\",inputs:[{start:0,name:\"tensor\",type:\"tensor\"},{start:1,name:\"indices\",type:\"tensor\"},{start:2,name:\"values\",type:\"tensor\"}]}];var Sk={};Kt(Sk,{json:()=>PQ});var PQ=[{tfOpName:\"SparseFillEmptyRows\",category:\"sparse\",inputs:[{start:0,name:\"indices\",type:\"tensor\"},{start:1,name:\"values\",type:\"tensor\"},{start:2,name:\"denseShape\",type:\"tensor\"},{start:3,name:\"defaultValue\",type:\"tensor\"}]},{tfOpName:\"SparseReshape\",category:\"sparse\",inputs:[{start:0,name:\"inputIndices\",type:\"tensor\"},{start:1,name:\"inputShape\",type:\"tensor\"},{start:2,name:\"newShape\",type:\"tensor\"}],attrs:[{tfName:\"T\",name:\"dtype\",type:\"dtype\",notSupported:!0}]},{tfOpName:\"SparseSegmentMean\",category:\"sparse\",inputs:[{start:0,name:\"data\",type:\"tensor\"},{start:1,name:\"indices\",type:\"tensor\"},{start:2,name:\"segmentIds\",type:\"tensor\"}]},{tfOpName:\"SparseSegmentSum\",category:\"sparse\",inputs:[{start:0,name:\"data\",type:\"tensor\"},{start:1,name:\"indices\",type:\"tensor\"},{start:2,name:\"segmentIds\",type:\"tensor\"}]}];var Nk={};Kt(Nk,{json:()=>LQ});var LQ=[{tfOpName:\"FFT\",category:\"spectral\",inputs:[{start:0,name:\"x\",type:\"tensor\"}]},{tfOpName:\"IFFT\",category:\"spectral\",inputs:[{start:0,name:\"x\",type:\"tensor\"}]},{tfOpName:\"RFFT\",category:\"spectral\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"fft_length\",type:\"number\",notSupported:!0}]},{tfOpName:\"IRFFT\",category:\"spectral\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"fft_length\",type:\"number\",notSupported:!0}]}];var kk={};Kt(kk,{json:()=>zQ});var zQ=[{tfOpName:\"StaticRegexReplace\",category:\"string\",inputs:[{start:0,name:\"input\",type:\"tensor\"}],attrs:[{tfName:\"pattern\",name:\"pattern\",type:\"string\"},{tfName:\"rewrite\",name:\"rewrite\",type:\"string\"},{tfName:\"replace_global\",name:\"replaceGlobal\",type:\"bool\"}]},{tfOpName:\"StringNGrams\",category:\"string\",inputs:[{start:0,name:\"data\",type:\"tensor\"},{start:1,name:\"dataSplits\",type:\"tensor\"}],attrs:[{tfName:\"separator\",name:\"separator\",type:\"string\"},{tfName:\"ngram_widths\",name:\"nGramWidths\",type:\"number[]\"},{tfName:\"left_pad\",name:\"leftPad\",type:\"string\"},{tfName:\"right_pad\",name:\"rightPad\",type:\"string\"},{tfName:\"pad_width\",name:\"padWidth\",type:\"number\"},{tfName:\"preserve_short_sequences\",name:\"preserveShortSequences\",type:\"bool\"}],outputs:[\"ngrams\",\"ngrams_splits\"]},{tfOpName:\"StringSplit\",category:\"string\",inputs:[{start:0,name:\"input\",type:\"tensor\"},{start:1,name:\"delimiter\",type:\"tensor\"}],attrs:[{tfName:\"skip_empty\",name:\"skipEmpty\",type:\"bool\"}],outputs:[\"indices\",\"values\",\"shape\"]},{tfOpName:\"StringToHashBucketFast\",category:\"string\",inputs:[{start:0,name:\"input\",type:\"tensor\"}],attrs:[{tfName:\"num_buckets\",name:\"numBuckets\",type:\"number\"}]}];var Tk={};Kt(Tk,{json:()=>BQ});var BQ=[{tfOpName:\"Cast\",category:\"transformation\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"SrcT\",name:\"sdtype\",type:\"dtype\",notSupported:!0},{tfName:\"DstT\",name:\"dtype\",type:\"dtype\"}]},{tfOpName:\"ExpandDims\",category:\"transformation\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"axis\",type:\"number\"}]},{tfOpName:\"MirrorPad\",category:\"transformation\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"padding\",type:\"number[]\"}],attrs:[{tfName:\"mode\",name:\"mode\",type:\"string\"}]},{tfOpName:\"Pad\",category:\"transformation\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"padding\",type:\"number[]\"}],attrs:[{tfName:\"constant_value\",name:\"constantValue\",type:\"number\",defaultValue:0}]},{tfOpName:\"PadV2\",category:\"transformation\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"padding\",type:\"number[]\"},{start:2,name:\"constantValue\",type:\"number\",defaultValue:0}]},{tfOpName:\"Reshape\",category:\"transformation\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"shape\",type:\"number[]\"}]},{tfOpName:\"EnsureShape\",category:\"transformation\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"shape\",type:\"number[]\"}]},{tfOpName:\"Squeeze\",category:\"transformation\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"axis\",tfDeprecatedName:\"squeeze_dims\",name:\"axis\",type:\"number[]\"}]},{tfOpName:\"SpaceToBatchND\",category:\"transformation\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"blockShape\",type:\"number[]\"},{start:2,name:\"paddings\",type:\"number[]\"}]},{tfOpName:\"BatchToSpaceND\",category:\"transformation\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"blockShape\",type:\"number[]\"},{start:2,name:\"crops\",type:\"number[]\"}]},{tfOpName:\"DepthToSpace\",category:\"transformation\",inputs:[{start:0,name:\"x\",type:\"tensor\"}],attrs:[{tfName:\"block_size\",name:\"blockSize\",type:\"number\"},{tfName:\"data_format\",name:\"dataFormat\",type:\"string\"}]},{tfOpName:\"BroadcastTo\",category:\"transformation\",inputs:[{start:0,name:\"x\",type:\"tensor\"},{start:1,name:\"shape\",type:\"number[]\"}],attrs:[]},{tfOpName:\"BroadcastArgs\",category:\"transformation\",inputs:[{start:0,name:\"s0\",type:\"tensor\"},{start:1,name:\"s1\",type:\"tensor\"}],attrs:[]}];var Wh=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let t=[uk,ck,pk,mk,fk,dk,hk,gk,xk,yk,bk,wk,Ik,Ck,vk,Sk,Nk,kk,Tk],e=[].concat(...t.map(n=>n.json));this.opMappers=e.reduce((n,o)=>(n[o.tfOpName]=o,n),{})}transformGraph(t,e={}){let n=t.node,o=[],s=[],i=[],a=n.reduce((h,g)=>(h[g.name]=this.mapNode(g),g.op.startsWith(\"Placeholder\")?o.push(h[g.name]):g.op===\"Const\"?s.push(h[g.name]):(g.input==null||g.input.length===0)&&i.push(h[g.name]),h),{}),u=[],l=[],c={},p={};e!=null&&(c=this.mapSignatureEntries(e.inputs),p=this.mapSignatureEntries(e.outputs));let m=Object.keys(a);m.forEach(h=>{let g=a[h];g.inputNames.forEach((x,b)=>{let[w,,I]=bi(x),N=a[w];if(N.outputs!=null){let E=N.outputs.indexOf(I);if(E!==-1){let A=`${w}:${E}`;g.inputNames[b]=A}}g.inputs.push(N),N.children.push(g)})}),Object.keys(p).length===0?m.forEach(h=>{let g=a[h];g.children.length===0&&l.push(g)}):Object.keys(p).forEach(h=>{let[g]=bi(h),x=a[g];x!=null&&(x.signatureKey=p[h],l.push(x))}),Object.keys(c).length>0?Object.keys(c).forEach(h=>{let[g]=bi(h),x=a[g];x&&(x.signatureKey=c[h],u.push(x))}):u=o;let f={};t.library!=null&&t.library.function!=null&&(f=t.library.function.reduce((h,g)=>(h[g.signature.name]=this.mapFunction(g),h),{}));let d={nodes:a,inputs:u,outputs:l,weights:s,placeholders:o,signature:e,functions:f};return i.length>0&&(d.initNodes=i),d}mapSignatureEntries(t){return Object.keys(t||{}).reduce((e,n)=>(e[t[n].name]=n,e),{})}mapNode(t){let e=Vb(t.op)||this.opMappers[t.op]||{};t.attr==null&&(t.attr={});let n={name:t.name,op:t.op,category:e.category,inputNames:(t.input||[]).map(o=>o.startsWith(\"^\")?o.slice(1):o),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:t.attr,outputs:e.outputs};return e.inputs!=null&&(n.inputParams=e.inputs.reduce((o,s)=>(o[s.name]={type:s.type,inputIndexStart:s.start,inputIndexEnd:s.end},o),{})),e.attrs!=null&&(n.attrParams=e.attrs.reduce((o,s)=>{let i=s.type,a;switch(s.type){case\"string\":a=Wb(t.attr,s.tfName,s.defaultValue),a===void 0&&s.tfDeprecatedName&&(a=Wb(t.attr,s.tfDeprecatedName,s.defaultValue));break;case\"string[]\":a=Yb(t.attr,s.tfName,s.defaultValue),a===void 0&&s.tfDeprecatedName&&(a=Yb(t.attr,s.tfDeprecatedName,s.defaultValue));break;case\"number\":a=Hb(t.attr,s.tfName,s.defaultValue||0),a===void 0&&s.tfDeprecatedName&&(a=Hb(t.attr,s.tfDeprecatedName,s.defaultValue));break;case\"number[]\":a=Xb(t.attr,s.tfName,s.defaultValue),a===void 0&&s.tfDeprecatedName&&(a=Xb(t.attr,s.tfDeprecatedName,s.defaultValue));break;case\"bool\":a=Ub(t.attr,s.tfName,s.defaultValue),a===void 0&&s.tfDeprecatedName&&(a=Ub(t.attr,s.tfDeprecatedName,s.defaultValue));break;case\"bool[]\":a=Jb(t.attr,s.tfName,s.defaultValue),a===void 0&&s.tfDeprecatedName&&(a=Jb(t.attr,s.tfDeprecatedName,s.defaultValue));break;case\"shape\":a=jb(t.attr,s.tfName,s.defaultValue),a===void 0&&s.tfDeprecatedName&&(a=jb(t.attr,s.tfDeprecatedName,s.defaultValue));break;case\"shape[]\":a=Zb(t.attr,s.tfName,s.defaultValue),a===void 0&&s.tfDeprecatedName&&(a=Zb(t.attr,s.tfDeprecatedName,s.defaultValue));break;case\"dtype\":a=qb(t.attr,s.tfName,s.defaultValue),a===void 0&&s.tfDeprecatedName&&(a=qb(t.attr,s.tfDeprecatedName,s.defaultValue));break;case\"dtype[]\":a=Kb(t.attr,s.tfName,s.defaultValue),a===void 0&&s.tfDeprecatedName&&(a=Kb(t.attr,s.tfDeprecatedName,s.defaultValue));break;case\"func\":a=cF(t.attr,s.tfName,s.defaultValue),a===void 0&&s.tfDeprecatedName&&(a=cF(t.attr,s.tfDeprecatedName,s.defaultValue));break;case\"tensor\":case\"tensors\":break;default:throw new Error(`Unsupported param type: ${s.type} for op: ${t.op}`)}return o[s.name]={value:a,type:i},o},{})),n}mapFunction(t){let e=t.nodeDef,n=[],o=[],s={};e!=null&&(s=e.reduce((p,m)=>(p[m.name]=this.mapNode(m),m.op===\"Const\"&&o.push(p[m.name]),p),{}));let i=[],a=[];t.signature.inputArg.forEach(p=>{let[m]=bi(p.name),f={name:m,op:\"Placeholder\",inputs:[],inputNames:[],category:\"graph\",inputParams:{},attrParams:{dtype:{value:_k(p.type),type:\"dtype\"}},children:[]};f.signatureKey=p.name,i.push(f),s[m]=f}),Object.keys(s).forEach(p=>{let m=s[p];m.inputNames.forEach((f,d)=>{let[h,,g]=bi(f),x=s[h];if(x.outputs!=null){let b=x.outputs.indexOf(g);if(b!==-1){let w=`${h}:${b}`;m.inputNames[d]=w}}m.inputs.push(x),x.children.push(m)})});let l=t.ret;t.signature.outputArg.forEach(p=>{let[m,f]=bi(l[p.name]),d=s[m];d!=null&&(d.defaultOutput=f,a.push(d))});let c=this.mapArgsToSignature(t);return{nodes:s,inputs:i,outputs:a,weights:o,placeholders:n,signature:c}}mapArgsToSignature(t){return{methodName:t.signature.name,inputs:t.signature.inputArg.reduce((e,n)=>(e[n.name]=this.mapArgToTensorInfo(n),e),{}),outputs:t.signature.outputArg.reduce((e,n)=>(e[n.name]=this.mapArgToTensorInfo(n,t.ret),e),{})}}mapArgToTensorInfo(t,e){let n=t.name;return e!=null&&(n=e[n]),{name:n,dtype:t.type}}};function VQ(r){let t=L().global;if(typeof t.atob!=\"undefined\")return t.atob(r);if(typeof Buffer!=\"undefined\")return new Buffer(r,\"base64\").toString();throw new Error(\"Unable to decode base64 in this environment. Missing built-in atob() or Buffer()\")}function pF(r,t){let e=Array.isArray(r)?String.fromCharCode.apply(null,r):VQ(r);return t?e:e.toLowerCase()}function Wb(r,t,e,n=!1){let o=r[t];return o!=null?pF(o.s,n):e}function Ub(r,t,e){let n=r[t];return n?n.b:e}function Hb(r,t,e){let n=r[t]||{},o=n.i!=null?n.i:n.f!=null?n.f:e;return typeof o==\"number\"?o:parseInt(o,10)}function _k(r){switch(typeof r==\"string\"&&(r=_n[r]),r){case _n.DT_FLOAT:case _n.DT_HALF:return\"float32\";case _n.DT_INT32:case _n.DT_INT64:case _n.DT_INT8:case _n.DT_UINT8:return\"int32\";case _n.DT_BOOL:return\"bool\";case _n.DT_DOUBLE:return\"float32\";case _n.DT_STRING:return\"string\";case _n.DT_COMPLEX64:case _n.DT_COMPLEX128:return\"complex64\";default:return null}}function cF(r,t,e){let n=r[t];return n&&n.func?n.func.name:e}function qb(r,t,e){let n=r[t];return n&&n.type?_k(n.type):e}function Kb(r,t,e){let n=r[t];return n&&n.list&&n.list.type?n.list.type.map(o=>_k(o)):e}function mF(r){if(!r.unknownRank)return r.dim!=null?r.dim.map(t=>typeof t.size==\"number\"?t.size:parseInt(t.size,10)):[]}function jb(r,t,e){let n=r[t];return n&&n.shape?mF(n.shape):e}function Xb(r,t,e){let n=r[t];return n?((n.list.f&&n.list.f.length?n.list.f:n.list.i)||[]).map(o=>typeof o==\"number\"?o:parseInt(o,10)):e}function Yb(r,t,e,n=!1){let o=r[t];return o&&o.list&&o.list.s?o.list.s.map(s=>pF(s,n)):e}function Zb(r,t,e){let n=r[t];return n&&n.list&&n.list.shape?n.list.shape.map(o=>mF(o)):e}function Jb(r,t,e){let n=r[t];return n&&n.list&&n.list.b?n.list.b:e}var Qb=class{constructor(t,e,n){this.node=t,this.tensorMap=e,this.context=n,this.inputs=[],this.attrs={},this.inputs=t.inputNames.map(o=>this.getInput(o)),t.rawAttrs!=null&&(this.attrs=Object.keys(t.rawAttrs).reduce((o,s)=>(o[s]=this.getAttr(s),o),{}))}getInput(t){return pr(t,this.tensorMap,this.context)}getAttr(t,e){let n=this.node.rawAttrs[t];if(n.tensor!=null)return pr(t,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return Hb(this.node.rawAttrs,t,e);if(n.s!=null)return Wb(this.node.rawAttrs,t,e);if(n.b!=null)return Ub(this.node.rawAttrs,t,e);if(n.shape!=null)return jb(this.node.rawAttrs,t,e);if(n.type!=null)return qb(this.node.rawAttrs,t,e);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return Xb(this.node.rawAttrs,t,e);if(n.list.s!=null)return Yb(this.node.rawAttrs,t,e);if(n.list.shape!=null)return Zb(this.node.rawAttrs,t,e);if(n.list.b!=null)return Jb(this.node.rawAttrs,t,e);if(n.list.type!=null)return Kb(this.node.rawAttrs,t,e)}return e}};var ae={};Kt(ae,{OP_SCOPE_SUFFIX:()=>V0,abs:()=>_e,acos:()=>fx,acosh:()=>dx,add:()=>K,addN:()=>EE,all:()=>tm,any:()=>cc,argMax:()=>ra,argMin:()=>hx,asin:()=>gx,asinh:()=>xx,atan:()=>yx,atan2:()=>bx,atanh:()=>wx,avgPool:()=>xu,avgPool3d:()=>Ix,basicLSTMCell:()=>$E,batchNorm:()=>oa,batchNorm2d:()=>Cx,batchNorm3d:()=>vx,batchNorm4d:()=>Sx,batchToSpaceND:()=>yu,bincount:()=>Nx,bitwiseAnd:()=>FE,booleanMaskAsync:()=>q5,broadcastArgs:()=>OE,broadcastTo:()=>sa,buffer:()=>wt,cast:()=>J,ceil:()=>kx,clipByValue:()=>vr,clone:()=>un,complex:()=>Sn,concat:()=>ie,concat1d:()=>Tx,concat2d:()=>_x,concat3d:()=>Ex,concat4d:()=>Ax,conv1d:()=>rm,conv2d:()=>Nn,conv2dTranspose:()=>om,conv3d:()=>Dx,conv3dTranspose:()=>Rx,cos:()=>bu,cosh:()=>sm,cosineWindow:()=>xh,cumprod:()=>mc,cumsum:()=>im,denseBincount:()=>mh,depthToSpace:()=>Fx,depthwiseConv2d:()=>ia,diag:()=>ME,dilation2d:()=>Ox,div:()=>ut,divNoNan:()=>Mx,dot:()=>Px,dropout:()=>dN,einsum:()=>wu,elu:()=>aa,enclosingPowerOfTwo:()=>hN,ensureShape:()=>LE,equal:()=>$r,erf:()=>am,euclideanNorm:()=>Lx,exp:()=>Ke,expandDims:()=>je,expm1:()=>zx,eye:()=>fc,fft:()=>Au,fill:()=>Co,floor:()=>la,floorDiv:()=>Qp,fused:()=>Ru,gather:()=>ua,gatherND:()=>r8,greater:()=>Re,greaterEqual:()=>cn,ifft:()=>wl,imag:()=>Iu,image:()=>fn,inTopKAsync:()=>s8,irfft:()=>bm,isFinite:()=>Bx,isInf:()=>Vx,isNaN:()=>Gx,leakyRelu:()=>Cu,less:()=>yl,lessEqual:()=>Vn,linalg:()=>xN,linspace:()=>VE,localResponseNormalization:()=>Wx,log:()=>Nr,log1p:()=>vu,logSigmoid:()=>qx,logSoftmax:()=>lm,logSumExp:()=>Su,logicalAnd:()=>Fr,logicalNot:()=>Nu,logicalOr:()=>um,logicalXor:()=>Kx,losses:()=>aY,lowerBound:()=>GE,matMul:()=>Bt,max:()=>Sr,maxPool:()=>ku,maxPool3d:()=>Xx,maxPoolWithArgmax:()=>WE,maximum:()=>kn,mean:()=>Ne,meshgrid:()=>UE,min:()=>gl,minimum:()=>lo,mirrorPad:()=>Yx,mod:()=>Zx,moments:()=>dc,movingAverage:()=>X5,mul:()=>$,multiRNNCell:()=>HE,multinomial:()=>qE,neg:()=>Ut,norm:()=>xl,notEqual:()=>ci,oneHot:()=>ca,ones:()=>ar,onesLike:()=>wr,op:()=>k,outerProduct:()=>KE,pad:()=>mn,pad1d:()=>jE,pad2d:()=>XE,pad3d:()=>YE,pad4d:()=>ZE,pool:()=>Jx,pow:()=>qr,prelu:()=>_u,print:()=>mx,prod:()=>Qx,raggedGather:()=>JE,raggedRange:()=>QE,raggedTensorToTensor:()=>tA,rand:()=>eA,randomGamma:()=>CA,randomNormal:()=>xc,randomStandardNormal:()=>vA,randomUniform:()=>Gn,randomUniformInt:()=>SA,range:()=>pa,real:()=>bl,reciprocal:()=>sy,relu:()=>Or,relu6:()=>cm,reshape:()=>R,reverse:()=>dr,reverse1d:()=>NA,reverse2d:()=>kA,reverse3d:()=>TA,reverse4d:()=>_A,rfft:()=>Du,round:()=>pm,rsqrt:()=>mm,scalar:()=>pt,scatterND:()=>Z5,searchSorted:()=>dh,selu:()=>fm,separableConv2d:()=>dm,setdiff1dAsync:()=>EA,sigmoid:()=>en,sign:()=>iy,signal:()=>iY,sin:()=>hm,sinh:()=>gm,slice:()=>Ot,slice1d:()=>xm,slice2d:()=>gh,slice3d:()=>ym,slice4d:()=>yc,softmax:()=>Eu,softplus:()=>ui,spaceToBatchND:()=>Tu,sparse:()=>lY,sparseToDense:()=>t8,spectral:()=>sY,split:()=>hr,sqrt:()=>ge,square:()=>Wt,squaredDifference:()=>wm,squeeze:()=>Wn,stack:()=>Fe,step:()=>So,stridedSlice:()=>ay,string:()=>uY,sub:()=>at,sum:()=>mt,tan:()=>ly,tanh:()=>li,tensor:()=>ir,tensor1d:()=>Oe,tensor2d:()=>pi,tensor3d:()=>uy,tensor4d:()=>AA,tensor5d:()=>DA,tensor6d:()=>$A,tensorScatterUpdate:()=>FA,tile:()=>Rr,topk:()=>cy,transpose:()=>Vt,truncatedNormal:()=>Cm,unique:()=>py,unsortedSegmentSum:()=>vm,unstack:()=>gr,upperBound:()=>OA,variable:()=>my,where:()=>Ie,whereAsync:()=>dy,zeros:()=>ke,zerosLike:()=>vt});var fF=(r,t,e,n=ae)=>{switch(r.op){case\"BiasAdd\":case\"AddV2\":case\"Add\":return[n.add(v(\"a\",r,t,e),v(\"b\",r,t,e))];case\"AddN\":return[n.addN(v(\"tensors\",r,t,e))];case\"FloorMod\":case\"Mod\":return[n.mod(v(\"a\",r,t,e),v(\"b\",r,t,e))];case\"Mul\":return[n.mul(v(\"a\",r,t,e),v(\"b\",r,t,e))];case\"RealDiv\":case\"Div\":return[n.div(v(\"a\",r,t,e),v(\"b\",r,t,e))];case\"DivNoNan\":return[n.divNoNan(v(\"a\",r,t,e),v(\"b\",r,t,e))];case\"FloorDiv\":return[n.floorDiv(v(\"a\",r,t,e),v(\"b\",r,t,e))];case\"Sub\":return[n.sub(v(\"a\",r,t,e),v(\"b\",r,t,e))];case\"Minimum\":return[n.minimum(v(\"a\",r,t,e),v(\"b\",r,t,e))];case\"Maximum\":return[n.maximum(v(\"a\",r,t,e),v(\"b\",r,t,e))];case\"Pow\":return[n.pow(v(\"a\",r,t,e),v(\"b\",r,t,e))];case\"SquaredDifference\":return[n.squaredDifference(v(\"a\",r,t,e),v(\"b\",r,t,e))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var dF=(r,t,e,n=ae)=>{switch(r.op){case\"Abs\":case\"ComplexAbs\":return[n.abs(v(\"x\",r,t,e))];case\"Acos\":return[n.acos(v(\"x\",r,t,e))];case\"Acosh\":return[n.acosh(v(\"x\",r,t,e))];case\"Asin\":return[n.asin(v(\"x\",r,t,e))];case\"Asinh\":return[n.asinh(v(\"x\",r,t,e))];case\"Atan\":return[n.atan(v(\"x\",r,t,e))];case\"Atan2\":return[n.atan2(v(\"x\",r,t,e),v(\"y\",r,t,e))];case\"Atanh\":return[n.atanh(v(\"x\",r,t,e))];case\"Ceil\":return[n.ceil(v(\"x\",r,t,e))];case\"Complex\":return[n.complex(v(\"real\",r,t,e),v(\"imag\",r,t,e))];case\"Cos\":return[n.cos(v(\"x\",r,t,e))];case\"Cosh\":return[n.cosh(v(\"x\",r,t,e))];case\"Elu\":return[n.elu(v(\"x\",r,t,e))];case\"Erf\":return[n.erf(v(\"x\",r,t,e))];case\"Exp\":return[n.exp(v(\"x\",r,t,e))];case\"Expm1\":return[n.expm1(v(\"x\",r,t,e))];case\"Floor\":return[n.floor(v(\"x\",r,t,e))];case\"Log\":return[n.log(v(\"x\",r,t,e))];case\"Log1p\":return[n.log1p(v(\"x\",r,t,e))];case\"Imag\":return[n.imag(v(\"x\",r,t,e))];case\"Neg\":return[n.neg(v(\"x\",r,t,e))];case\"Reciprocal\":return[n.reciprocal(v(\"x\",r,t,e))];case\"Real\":return[n.real(v(\"x\",r,t,e))];case\"Relu\":return[n.relu(v(\"x\",r,t,e))];case\"Round\":return[n.round(v(\"x\",r,t,e))];case\"Selu\":return[n.selu(v(\"x\",r,t,e))];case\"Sigmoid\":return[n.sigmoid(v(\"x\",r,t,e))];case\"Sin\":return[n.sin(v(\"x\",r,t,e))];case\"Sign\":return[n.sign(v(\"x\",r,t,e))];case\"Sinh\":return[n.sinh(v(\"x\",r,t,e))];case\"Softplus\":return[n.softplus(v(\"x\",r,t,e))];case\"Sqrt\":return[n.sqrt(v(\"x\",r,t,e))];case\"Square\":return[n.square(v(\"x\",r,t,e))];case\"Tanh\":return[n.tanh(v(\"x\",r,t,e))];case\"Tan\":return[n.tan(v(\"x\",r,t,e))];case\"ClipByValue\":return[n.clipByValue(v(\"x\",r,t,e),v(\"clipValueMin\",r,t,e),v(\"clipValueMax\",r,t,e))];case\"Relu6\":return[n.relu6(v(\"x\",r,t,e))];case\"Rsqrt\":return[n.rsqrt(pr(r.inputNames[0],t,e))];case\"LeakyRelu\":return[n.leakyRelu(v(\"x\",r,t,e),v(\"alpha\",r,t,e))];case\"Prelu\":return[n.prelu(v(\"x\",r,t,e),v(\"alpha\",r,t,e))];case\"IsNan\":return[n.isNaN(pr(r.inputNames[0],t,e))];case\"IsInf\":return[n.isInf(pr(r.inputNames[0],t,e))];case\"IsFinite\":return[n.isFinite(pr(r.inputNames[0],t,e))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};function Hn(r,t,e=\"\"){if(!(typeof r==\"number\"||typeof t==\"number\")){y.assert(r.length===t.length,()=>e+` Shapes ${r} and ${t} must match`);for(let n=0;ne+` Shapes ${r} and ${t} must match`)}}}function hF(r){return!(typeof r==\"number\"||r.some(t=>t<0))}function ed(r,t,e){let n=tw(r,e),o=!hF(n);if(o&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${n}`);if(o&&t.forEach(s=>{n=tw(s.shape,n)}),!hF(n))throw new Error(`Non-fully-defined elementShape: ${n}`);return n}function tw(r,t){if(typeof r==\"number\")return t;if(typeof t==\"number\")return r;if(r.length!==t.length)throw new Error(`Incompatible ranks during merge: ${r} vs. ${t}`);let e=[];for(let n=0;n=0&&s>=0&&o!==s)throw new Error(`Incompatible shape during merge: ${r} vs. ${t}`);e[n]=o>=0?o:s}return e}var ew=class{constructor(t,e,n,o,s,i,a){this.name=t,this.dtype=e,this.maxSize=n,this.elementShape=o,this.identicalElementShapes=s,this.dynamicSize=i,this.clearAfterRead=a,this.tensors=[],this.closed_=!1,this.idTensor=pt(0),De(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(t){this.tensors.forEach(e=>{(t==null||!t.has(e.tensor.id))&&e.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(t<0||t>=this.size())throw new Error(`Tried to read from index ${t}, but array size is: ${this.size()}`);let e=this.tensors[t];if(e.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${t} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(e.cleared=!0),e.read=!0,e.tensor}readMany(t){return t.map(e=>this.read(e))}write(t,e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(t<0||!this.dynamicSize&&t>=this.maxSize)throw new Error(`Tried to write to index ${t}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[t]||{};if(e.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${t},\n because the value dtype is ${e.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=e.shape),Hn(this.elementShape,e.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${t}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${t}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${t}, because it has already been written.`);n.tensor=e,De(e),n.written=!0,this.tensors[t]=n}writeMany(t,e){if(t.length!==e.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${t.length} is not the same as tensors size: ${e.length}.`);t.forEach((n,o)=>this.write(n,e[o]))}gather(t,e){if(e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${e}`);if(t)t=t.slice(0,this.size());else{t=[];for(let o=0;o=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(t,gr(e,0))}split(t,e){if(e.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${e.dtype}`);let n=0,o=t.map(u=>(n+=u,n));if(n!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to\n tensor.shape[0], but sum of lengths is\n ${n}, and tensor's shape is: ${e.shape}`);if(!this.dynamicSize&&t.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${t.length}), and the TensorArray is not marked as dynamically resizeable`);let s=n===0?0:e.size/n,i=[];B(()=>{e=R(e,[1,n,s]);for(let u=0;u{if(n!==s.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${s.dtype}`);Hn(e,s.shape,\"TensorList shape mismatch: \"),De(s)}),this.idTensor=pt(0),this.maxNumElements=o,De(this.idTensor)}copy(){return new r([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(t){this.tensors.forEach(e=>{(t==null||!t.has(e.id))&&e.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(t,e,n=-1){if(e!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);Hn(t,this.elementShape,\"TensorList shape mismatch: \");let o=ed(this.elementShape,this.tensors,t);return B(()=>{let s=this.tensors.map(i=>R(i,o));return Fe(s,0)})}popBack(t,e){if(e!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error(\"Trying to pop from an empty list.\");let n=ed(this.elementShape,this.tensors,t),o=this.tensors.pop();return o.kept=!1,Hn(o.shape,t,\"TensorList shape mismatch: \"),R(o,n)}pushBack(t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(Hn(t.shape,this.elementShape,\"TensorList shape mismatch: \"),this.maxNumElements===this.size())throw new Error(\"Trying to push element into a full list.\");De(t),this.tensors.push(t)}resize(t){if(t<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${t}`);if(this.maxNumElements!==-1&&t>this.maxNumElements)throw new Error(`TensorListResize input size ${t} is greater maxNumElement ${this.maxNumElements}.`);let e=new r([],this.elementShape,this.elementDtype,this.maxNumElements);e.tensors.length=t;for(let n=0;nthis.tensors.length)throw new Error(`Trying to access element ${t} in a list with ${this.tensors.length} elements.`);if(this.tensors[t]==null)throw new Error(`element at index ${t} is null.`);Hn(this.tensors[t].shape,e,\"TensorList shape mismatch: \");let o=ed(this.elementShape,this.tensors,e);return R(this.tensors[t],o)}setItem(t,e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(t<0||this.maxNumElements!==-1&&t>=this.maxNumElements)throw new Error(`Trying to set element ${t} in a list with max ${this.maxNumElements} elements.`);Hn(this.elementShape,e.shape,\"TensorList shape mismatch: \"),De(e),this.tensors[t]!=null&&(this.tensors[t].kept=!1),this.tensors[t]=e}gather(t,e,n){if(e!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e}, but list elements ${this.elementDtype}`);Hn(this.elementShape,n,\"TensorList shape mismatch: \"),t=t.slice(0,this.size());let o=ed(this.elementShape,this.tensors,n);return t.length===0?ir([],[0].concat(o)):B(()=>{let s=t.map(i=>R(this.tensors[i],o));return Fe(s,0)})}concat(t,e){if(t&&t!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${t}`);Hn(this.elementShape,e,\"TensorList shape mismatch: \");let n=ed(this.elementShape,this.tensors,e);return this.size()===0?ir([],[0].concat(n)):B(()=>{let o=this.tensors.map(s=>R(s,n));return ie(o,0)})}};function gF(r,t,e){let n=r.dtype;if(r.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${r.shape}`);if(r.dtype!==e)throw new Error(`Invalid data types; op elements ${r.dtype}, but list elements ${e}`);let o=r.shape.slice(1);Hn(o,t,\"TensorList shape mismatch: \");let s=gr(r);return new rd(s,t,n)}function xF(r,t,e,n){return new rd([],r,t,n)}function yF(r,t,e,n){if(t.length!==r.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${r.shape[0]}`);let o=Math.max(...t);if(n!=null&&n!==-1&&o>=n)throw new Error(`Max index must be < array size (${o} vs. ${n})`);let s=new rd([],e,r.dtype,n),i=gr(r,0);return t.forEach((a,u)=>{s.setItem(a,i[u])}),s}function bF(r,t,e){let n=0,o=t.map(c=>(n+=c,n));if(n!==r.shape[0])throw new Error(`Expected sum of lengths to be equal to\n tensor.shape[0], but sum of lengths is\n ${n}, and tensor's shape is: ${r.shape}`);let s=r.shape.slice(1),i=tw(s,e),a=n===0?0:r.size/n,u=B(()=>{let c=[];r=R(r,[1,n,a]);for(let p=0;p{switch(r.op){case\"If\":case\"StatelessIf\":{let n=v(\"thenBranch\",r,t,e),o=v(\"elseBranch\",r,t,e),s=v(\"cond\",r,t,e),i=v(\"args\",r,t,e);return(await s.data())[0]?e.functionMap[n].executeFunctionAsync(i,e.tensorArrayMap,e.tensorListMap):e.functionMap[o].executeFunctionAsync(i,e.tensorArrayMap,e.tensorListMap)}case\"While\":case\"StatelessWhile\":{let n=v(\"body\",r,t,e),o=v(\"cond\",r,t,e),s=v(\"args\",r,t,e),i=await e.functionMap[o].executeFunctionAsync(s,e.tensorArrayMap,e.tensorListMap),a=s.map(c=>c.id),u=await i[0].data();i.forEach(c=>{!c.kept&&a.indexOf(c.id)===-1&&c.dispose()});let l=s;for(;u[0];){let c=l;l=await e.functionMap[n].executeFunctionAsync(l,e.tensorArrayMap,e.tensorListMap);let p=l.map(f=>f.id);c.forEach(f=>{!f.kept&&a.indexOf(f.id)===-1&&p.indexOf(f.id)===-1&&f.dispose()});let m=await e.functionMap[o].executeFunctionAsync(l,e.tensorArrayMap,e.tensorListMap);u=await m[0].data(),m.forEach(f=>{!f.kept&&a.indexOf(f.id)===-1&&p.indexOf(f.id)===-1&&f.dispose()})}return l}case\"LoopCond\":{let n=v(\"pred\",r,t,e);return[wi(n)]}case\"Switch\":{let n=v(\"pred\",r,t,e),o=v(\"data\",r,t,e);return o.kept||(o=wi(o)),(await n.data())[0]?[void 0,o]:[o,void 0]}case\"Merge\":{let n=r.inputNames.find(o=>pr(o,t,e)!==void 0);if(n){let o=pr(n,t,e);return[wi(o)]}return}case\"Enter\":{let n=v(\"frameName\",r,t,e),o=v(\"tensor\",r,t,e);return e.enterFrame(n),[wi(o)]}case\"Exit\":{let n=v(\"tensor\",r,t,e);return e.exitFrame(),[wi(n)]}case\"NextIteration\":{let n=v(\"tensor\",r,t,e);return e.nextIteration(),[wi(n)]}case\"TensorArrayV3\":{let n=v(\"size\",r,t,e),o=v(\"dtype\",r,t,e),s=v(\"elementShape\",r,t,e),i=v(\"dynamicSize\",r,t,e),a=v(\"clearAfterRead\",r,t,e),u=v(\"identicalElementShapes\",r,t,e),l=v(\"name\",r,t,e),c=new ew(l,o,n,s,u,i,a);return e.addTensorArray(c),[c.idTensor,pt(1)]}case\"TensorArrayWriteV3\":{let n=v(\"tensorArrayId\",r,t,e),o=v(\"index\",r,t,e),s=v(\"tensor\",r,t,e),i=e.getTensorArray(n.id);return i.write(o,s),[i.idTensor]}case\"TensorArrayReadV3\":{let n=v(\"tensorArrayId\",r,t,e),o=v(\"index\",r,t,e);return[e.getTensorArray(n.id).read(o)]}case\"TensorArrayGatherV3\":{let n=v(\"tensorArrayId\",r,t,e),o=v(\"indices\",r,t,e),s=v(\"dtype\",r,t,e);return[e.getTensorArray(n.id).gather(o,s)]}case\"TensorArrayScatterV3\":{let n=v(\"tensorArrayId\",r,t,e),o=v(\"indices\",r,t,e),s=v(\"tensor\",r,t,e),i=e.getTensorArray(n.id);return i.scatter(o,s),[i.idTensor]}case\"TensorArrayConcatV3\":{let n=v(\"tensorArrayId\",r,t,e),o=e.getTensorArray(n.id),s=v(\"dtype\",r,t,e);return[o.concat(s)]}case\"TensorArraySplitV3\":{let n=v(\"tensorArrayId\",r,t,e),o=v(\"tensor\",r,t,e),s=v(\"lengths\",r,t,e),i=e.getTensorArray(n.id);return i.split(s,o),[i.idTensor]}case\"TensorArraySizeV3\":{let n=v(\"tensorArrayId\",r,t,e),o=e.getTensorArray(n.id);return[pt(o.size(),\"int32\")]}case\"TensorArrayCloseV3\":{let n=v(\"tensorArrayId\",r,t,e),o=e.getTensorArray(n.id);return o.clearAndClose(),[o.idTensor]}case\"TensorListSetItem\":{let n=v(\"tensorListId\",r,t,e),o=v(\"index\",r,t,e),s=v(\"tensor\",r,t,e),i=e.getTensorList(n.id);return i.setItem(o,s),[i.idTensor]}case\"TensorListGetItem\":{let n=v(\"tensorListId\",r,t,e),o=v(\"index\",r,t,e),s=v(\"elementShape\",r,t,e),i=v(\"elementDType\",r,t,e);return[e.getTensorList(n.id).getItem(o,s,i)]}case\"TensorListScatterV2\":case\"TensorListScatter\":{let n=v(\"indices\",r,t,e),o=v(\"tensor\",r,t,e),s=v(\"elementShape\",r,t,e),i=v(\"numElements\",r,t,e),a=yF(o,n,s,i);return e.addTensorList(a),[a.idTensor]}case\"TensorListReserve\":case\"EmptyTensorList\":{let n=v(\"elementShape\",r,t,e),o=v(\"elementDType\",r,t,e),s;r.op===\"TensorListReserve\"?s=\"numElements\":s=\"maxNumElements\";let i=v(s,r,t,e),a=r.op===\"TensorListReserve\"?-1:i,u=xF(n,o,i,a);return e.addTensorList(u),[u.idTensor]}case\"TensorListGather\":{let n=v(\"tensorListId\",r,t,e),o=v(\"indices\",r,t,e),s=v(\"elementShape\",r,t,e),i=v(\"elementDType\",r,t,e);return[e.getTensorList(n.id).gather(o,i,s)]}case\"TensorListStack\":{let n=v(\"tensorListId\",r,t,e),o=v(\"elementShape\",r,t,e),s=v(\"elementDType\",r,t,e),i=v(\"numElements\",r,t,e);return[e.getTensorList(n.id).stack(o,s,i)]}case\"TensorListFromTensor\":{let n=v(\"tensor\",r,t,e),o=v(\"elementShape\",r,t,e),s=v(\"elementDType\",r,t,e),i=gF(n,o,s);return e.addTensorList(i),[i.idTensor]}case\"TensorListConcat\":case\"TensorListConcatV2\":{let n=v(\"tensorListId\",r,t,e),o=e.getTensorList(n.id),s=v(\"dtype\",r,t,e),i=v(\"elementShape\",r,t,e);return[o.concat(s,i)]}case\"TensorListPushBack\":{let n=v(\"tensorListId\",r,t,e),o=v(\"tensor\",r,t,e),s=e.getTensorList(n.id);return s.pushBack(o),[s.idTensor]}case\"TensorListPopBack\":{let n=v(\"tensorListId\",r,t,e),o=v(\"elementShape\",r,t,e),s=v(\"elementDType\",r,t,e);return[e.getTensorList(n.id).popBack(o,s)]}case\"TensorListSplit\":{let n=v(\"tensor\",r,t,e),o=v(\"elementShape\",r,t,e),s=v(\"lengths\",r,t,e),i=bF(n,s,o);return e.addTensorList(i),[i.idTensor]}case\"TensorListLength\":{let n=v(\"tensorListId\",r,t,e),o=e.getTensorList(n.id);return[pt(o.size(),\"int32\")]}case\"TensorListResize\":{let n=v(\"tensorListId\",r,t,e),o=v(\"size\",r,t,e),i=e.getTensorList(n.id).resize(o);return e.addTensorList(i),[i.idTensor]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};function IF(r,t,e){let[n,o]=v(\"fusedOps\",r,t,e),s=n===\"biasadd\",i=!s,a=o===\"prelu\",u=n===\"fusedbatchnorm\",l=v(\"numArgs\",r,t,e);if(s){if(a&&l!==2)throw new Error(\"FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.\");if(!a&&s&&l!==1)throw new Error(\"FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.\")}if(u)throw new Error(\"FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported\");let c=v(\"strides\",r,t,e),p=Gh(r,t,e),m=v(\"dataFormat\",r,t,e).toUpperCase(),f=v(\"dilations\",r,t,e),[d,h]=v(\"args\",r,t,e);i&&(h=d,d=void 0);let g=v(\"leakyreluAlpha\",r,t,e);return{stride:c,pad:p,dataFormat:m,dilations:f,biasArg:d,preluArg:h,activationFunc:o,leakyreluAlpha:g}}var CF=(r,t,e,n=ae)=>{switch(r.op){case\"Conv1D\":{let o=v(\"stride\",r,t,e),s=v(\"pad\",r,t,e),i=v(\"dataFormat\",r,t,e).toUpperCase(),a=v(\"dilation\",r,t,e);return[n.conv1d(v(\"x\",r,t,e),v(\"filter\",r,t,e),o,s,i,a)]}case\"Conv2D\":{let o=v(\"strides\",r,t,e),s=Gh(r,t,e),i=v(\"dataFormat\",r,t,e).toUpperCase(),a=v(\"dilations\",r,t,e);return[n.conv2d(v(\"x\",r,t,e),v(\"filter\",r,t,e),[o[1],o[2]],s,i,[a[1],a[2]])]}case\"_FusedConv2D\":{let{stride:o,pad:s,dataFormat:i,dilations:a,biasArg:u,preluArg:l,activationFunc:c,leakyreluAlpha:p}=IF(r,t,e);return[n.fused.conv2d({x:v(\"x\",r,t,e),filter:v(\"filter\",r,t,e),strides:[o[1],o[2]],pad:s,dataFormat:i,dilations:[a[1],a[2]],bias:u,activation:c,preluActivationWeights:l,leakyreluAlpha:p})]}case\"FusedDepthwiseConv2dNative\":{let{stride:o,pad:s,dataFormat:i,dilations:a,biasArg:u,preluArg:l,activationFunc:c,leakyreluAlpha:p}=IF(r,t,e);return[n.fused.depthwiseConv2d({x:v(\"x\",r,t,e),filter:v(\"filter\",r,t,e),strides:[o[1],o[2]],pad:s,dataFormat:i,dilations:[a[1],a[2]],bias:u,activation:c,preluActivationWeights:l,leakyreluAlpha:p})]}case\"Conv2DBackpropInput\":case\"Conv2dTranspose\":{let o=v(\"outputShape\",r,t,e),s=v(\"strides\",r,t,e),i=Gh(r,t,e);return[n.conv2dTranspose(v(\"x\",r,t,e),v(\"filter\",r,t,e),o,[s[1],s[2]],i)]}case\"DepthwiseConv2dNative\":case\"DepthwiseConv2d\":{let o=v(\"strides\",r,t,e),s=Gh(r,t,e),i=v(\"dilations\",r,t,e),a=v(\"dataFormat\",r,t,e).toUpperCase();return[n.depthwiseConv2d(v(\"input\",r,t,e),v(\"filter\",r,t,e),[o[1],o[2]],s,a,[i[1],i[2]])]}case\"Conv3D\":{let o=v(\"strides\",r,t,e),s=v(\"pad\",r,t,e),i=v(\"dataFormat\",r,t,e).toUpperCase(),a=v(\"dilations\",r,t,e);return[n.conv3d(v(\"x\",r,t,e),v(\"filter\",r,t,e),[o[1],o[2],o[3]],s,i,[a[1],a[2],a[3]])]}case\"AvgPool\":{let o=v(\"strides\",r,t,e),s=v(\"pad\",r,t,e),i=v(\"kernelSize\",r,t,e);return[n.avgPool(v(\"x\",r,t,e),[i[1],i[2]],[o[1],o[2]],s)]}case\"MaxPool\":{let o=v(\"strides\",r,t,e),s=v(\"pad\",r,t,e),i=v(\"kernelSize\",r,t,e);return[n.maxPool(v(\"x\",r,t,e),[i[1],i[2]],[o[1],o[2]],s)]}case\"MaxPoolWithArgmax\":{let o=v(\"strides\",r,t,e),s=v(\"pad\",r,t,e),i=v(\"kernelSize\",r,t,e),a=v(\"includeBatchInIndex\",r,t,e),{result:u,indexes:l}=n.maxPoolWithArgmax(v(\"x\",r,t,e),[i[1],i[2]],[o[1],o[2]],s,a);return[u,l]}case\"AvgPool3D\":{let o=v(\"strides\",r,t,e),s=v(\"pad\",r,t,e),i=v(\"kernelSize\",r,t,e);return[n.avgPool3d(v(\"x\",r,t,e),[i[1],i[2],i[3]],[o[1],o[2],o[3]],s)]}case\"MaxPool3D\":{let o=v(\"strides\",r,t,e),s=v(\"pad\",r,t,e),i=v(\"kernelSize\",r,t,e);return[n.maxPool3d(v(\"x\",r,t,e),[i[1],i[2],i[3]],[o[1],o[2],o[3]],s)]}case\"Dilation2D\":{let o=v(\"strides\",r,t,e),s=v(\"pad\",r,t,e),i=v(\"dilations\",r,t,e),a=o[1],u=o[2],l=i[1],c=i[2];return[n.dilation2d(v(\"x\",r,t,e),v(\"filter\",r,t,e),[a,u],s,[l,c],\"NHWC\")]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var vF=(r,t,e,n=ae)=>{switch(r.op){case\"Fill\":{let o=v(\"shape\",r,t,e),s=v(\"dtype\",r,t,e),i=v(\"value\",r,t,e);return[n.fill(o,i,s)]}case\"LinSpace\":{let o=v(\"start\",r,t,e),s=v(\"stop\",r,t,e),i=v(\"num\",r,t,e);return[n.linspace(o,s,i)]}case\"Multinomial\":{let o=v(\"logits\",r,t,e),s=v(\"numSamples\",r,t,e),i=v(\"seed\",r,t,e);return[n.multinomial(o,s,i)]}case\"OneHot\":{let o=v(\"indices\",r,t,e),s=v(\"depth\",r,t,e),i=v(\"onValue\",r,t,e),a=v(\"offValue\",r,t,e),u=v(\"dtype\",r,t,e);return[n.oneHot(o,s,i,a,u)]}case\"Ones\":return[n.ones(v(\"shape\",r,t,e),v(\"dtype\",r,t,e))];case\"OnesLike\":return[n.onesLike(v(\"x\",r,t,e))];case\"RandomStandardNormal\":return[n.randomStandardNormal(v(\"shape\",r,t,e),v(\"dtype\",r,t,e),v(\"seed\",r,t,e))];case\"RandomUniform\":return[n.randomUniform(v(\"shape\",r,t,e),v(\"minval\",r,t,e),v(\"maxval\",r,t,e),v(\"dtype\",r,t,e))];case\"RandomUniformInt\":return[n.randomUniformInt(v(\"shape\",r,t,e),v(\"minval\",r,t,e),v(\"maxval\",r,t,e),v(\"seed\",r,t,e))];case\"Range\":{let o=v(\"start\",r,t,e),s=v(\"stop\",r,t,e),i=v(\"step\",r,t,e);return[n.range(o,s,i,v(\"dtype\",r,t,e))]}case\"TruncatedNormal\":{let o=v(\"shape\",r,t,e),s=v(\"mean\",r,t,e),i=v(\"stdDev\",r,t,e),a=v(\"seed\",r,t,e);return[n.truncatedNormal(o,s,i,v(\"dtype\",r,t,e),a)]}case\"Zeros\":return[n.zeros(v(\"shape\",r,t,e),v(\"dtype\",r,t,e))];case\"ZerosLike\":return[n.zerosLike(v(\"x\",r,t,e))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};function Ek(r,t,e){let n=v(\"boxes\",r,t,e),o=v(\"scores\",r,t,e),s=v(\"maxOutputSize\",r,t,e),i=v(\"iouThreshold\",r,t,e),a=v(\"scoreThreshold\",r,t,e),u=v(\"softNmsSigma\",r,t,e);return{boxes:n,scores:o,maxOutputSize:s,iouThreshold:i,scoreThreshold:a,softNmsSigma:u}}var SF=async(r,t,e,n,o=ae)=>{switch(r.op){case\"NonMaxSuppressionV5\":{let{boxes:s,scores:i,maxOutputSize:a,iouThreshold:u,scoreThreshold:l,softNmsSigma:c}=Ek(r,t,e),p=await o.image.nonMaxSuppressionWithScoreAsync(s,i,a,u,l,c);return[p.selectedIndices,p.selectedScores]}case\"NonMaxSuppressionV4\":{let{boxes:s,scores:i,maxOutputSize:a,iouThreshold:u,scoreThreshold:l}=Ek(r,t,e),c=v(\"padToMaxOutputSize\",r,t,e),p=await o.image.nonMaxSuppressionPaddedAsync(s,i,a,u,l,c);return[p.selectedIndices,p.validOutputs]}case\"NonMaxSuppressionV3\":case\"NonMaxSuppressionV2\":{let{boxes:s,scores:i,maxOutputSize:a,iouThreshold:u,scoreThreshold:l}=Ek(r,t,e);return[await o.image.nonMaxSuppressionAsync(s,i,a,u,l)]}case\"Where\":{let s=o.cast(v(\"condition\",r,t,e),\"bool\"),i=[await o.whereAsync(s)];return s.dispose(),i}case\"ListDiff\":return o.setdiff1dAsync(v(\"x\",r,t,e),v(\"y\",r,t,e));default:throw TypeError(`Node type ${r.op} is not implemented`)}};var NF=(r,t,e,n=ae)=>{switch(r.op){case\"LowerBound\":{let o=v(\"sortedSequence\",r,t,e),s=v(\"values\",r,t,e);return[n.lowerBound(o,s)]}case\"TopKV2\":{let o=v(\"x\",r,t,e),s=v(\"k\",r,t,e),i=v(\"sorted\",r,t,e),a=n.topk(o,s,i);return[a.values,a.indices]}case\"UpperBound\":{let o=v(\"sortedSequence\",r,t,e),s=v(\"values\",r,t,e);return[n.upperBound(o,s)]}case\"Unique\":{let o=v(\"x\",r,t,e),s=n.unique(o);return[s.values,s.indices]}case\"UniqueV2\":{let o=v(\"x\",r,t,e),s=v(\"axis\",r,t,e),i=n.unique(o,s);return[i.values,i.indices]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var kF=(r,t,e,n=ae)=>{switch(r.op){case\"Const\":return t[r.name];case\"PlaceholderWithDefault\":let o=v(\"default\",r,t,e);return[pr(r.name,t,e)||o];case\"Placeholder\":return[pr(r.name,t,e)];case\"Identity\":case\"StopGradient\":case\"FakeQuantWithMinMaxVars\":{let c=v(\"x\",r,t,e);return[wi(c)]}case\"IdentityN\":return v(\"x\",r,t,e).map(c=>wi(c));case\"Snapshot\":let s=v(\"x\",r,t,e);return[wi(s)];case\"Shape\":return[n.tensor1d(v(\"x\",r,t,e).shape,\"int32\")];case\"ShapeN\":return v(\"x\",r,t,e).map(c=>n.tensor1d(c.shape));case\"Size\":return[n.scalar(v(\"x\",r,t,e).size,\"int32\")];case\"Rank\":return[n.scalar(v(\"x\",r,t,e).rank,\"int32\")];case\"NoOp\":return[n.scalar(1)];case\"Print\":let i=v(\"x\",r,t,e),a=v(\"data\",r,t,e),u=v(\"message\",r,t,e),l=v(\"summarize\",r,t,e);console.warn(\"The graph has a tf.print() operation,usually used for debugging, which slows down performance.\"),console.log(u);for(let c=0;ct.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return pt(this.size(),\"int32\")}async import(t,e){this.checkKeyAndValueTensor(t,e);let n=await t.data();return this.tensorMap.forEach(o=>o.dispose()),this.tensorMap.clear(),B(()=>{let o=gr(e),s=n.length,i=o.length;y.assert(s===i,()=>`The number of elements doesn't match, keys has ${s} elements, the values has ${i} elements.`);for(let a=0;a{let o=[];for(let s=0;s{switch(r.op){case\"HashTable\":case\"HashTableV2\":{let o=n.getHashTableHandleByName(r.name);if(o!=null)return[o];{let s=v(\"keyDType\",r,t,e),i=v(\"valueDType\",r,t,e),a=new rw(s,i);return n.addHashTable(r.name,a),[a.handle]}}case\"InitializeTable\":case\"InitializeTableV2\":case\"LookupTableImport\":case\"LookupTableImportV2\":{let o=v(\"tableHandle\",r,t,e,n),s=v(\"keys\",r,t,e),i=v(\"values\",r,t,e);return[await n.getHashTableById(o.id).import(s,i)]}case\"LookupTableFind\":case\"LookupTableFindV2\":{let o=v(\"tableHandle\",r,t,e,n),s=v(\"keys\",r,t,e),i=v(\"defaultValue\",r,t,e);return[await n.getHashTableById(o.id).find(s,i)]}case\"LookupTableSize\":case\"LookupTableSizeV2\":{let o=v(\"tableHandle\",r,t,e,n);return[n.getHashTableById(o.id).tensorSize()]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var _F=(r,t,e,n=ae)=>{switch(r.op){case\"ResizeBilinear\":{let o=v(\"images\",r,t,e),s=v(\"size\",r,t,e),i=v(\"alignCorners\",r,t,e),a=v(\"halfPixelCenters\",r,t,e);return[n.image.resizeBilinear(o,[s[0],s[1]],i,a)]}case\"ResizeNearestNeighbor\":{let o=v(\"images\",r,t,e),s=v(\"size\",r,t,e),i=v(\"alignCorners\",r,t,e),a=v(\"halfPixelCenters\",r,t,e);return[n.image.resizeNearestNeighbor(o,[s[0],s[1]],i,a)]}case\"CropAndResize\":{let o=v(\"image\",r,t,e),s=v(\"boxes\",r,t,e),i=v(\"boxInd\",r,t,e),a=v(\"cropSize\",r,t,e),u=v(\"method\",r,t,e),l=v(\"extrapolationValue\",r,t,e);return[n.image.cropAndResize(o,s,i,a,u,l)]}case\"ImageProjectiveTransformV3\":{let o=v(\"images\",r,t,e),s=v(\"transforms\",r,t,e),i=v(\"outputShape\",r,t,e),a=v(\"fillValue\",r,t,e),u=v(\"interpolation\",r,t,e),l=v(\"fillMode\",r,t,e);return[n.image.transform(o,s,u.toLowerCase(),l.toLowerCase(),a,i)]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var EF=(r,t,e,n=ae)=>{switch(r.op){case\"Equal\":return[n.equal(v(\"a\",r,t,e),v(\"b\",r,t,e))];case\"NotEqual\":return[n.notEqual(v(\"a\",r,t,e),v(\"b\",r,t,e))];case\"Greater\":return[n.greater(v(\"a\",r,t,e),v(\"b\",r,t,e))];case\"GreaterEqual\":return[n.greaterEqual(v(\"a\",r,t,e),v(\"b\",r,t,e))];case\"Less\":return[n.less(v(\"a\",r,t,e),v(\"b\",r,t,e))];case\"LessEqual\":return[n.lessEqual(v(\"a\",r,t,e),v(\"b\",r,t,e))];case\"LogicalAnd\":return[n.logicalAnd(v(\"a\",r,t,e),v(\"b\",r,t,e))];case\"LogicalNot\":return[n.logicalNot(v(\"a\",r,t,e))];case\"LogicalOr\":return[n.logicalOr(v(\"a\",r,t,e),v(\"b\",r,t,e))];case\"Select\":case\"SelectV2\":return[n.where(v(\"condition\",r,t,e),v(\"a\",r,t,e),v(\"b\",r,t,e))];case\"BitwiseAnd\":return[n.bitwiseAnd(v(\"a\",r,t,e),v(\"b\",r,t,e))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var AF=(r,t,e,n=ae)=>{switch(r.op){case\"BatchMatMul\":case\"BatchMatMulV2\":case\"MatMul\":return[n.matMul(v(\"a\",r,t,e),v(\"b\",r,t,e),v(\"transposeA\",r,t,e),v(\"transposeB\",r,t,e))];case\"Einsum\":return[n.einsum(v(\"equation\",r,t,e),...v(\"tensors\",r,t,e))];case\"Transpose\":return[n.transpose(v(\"x\",r,t,e),v(\"perm\",r,t,e))];case\"_FusedMatMul\":let[o,s]=v(\"fusedOps\",r,t,e),i=o===\"biasadd\",a=s===\"prelu\",u=v(\"numArgs\",r,t,e),l=v(\"leakyreluAlpha\",r,t,e);if(i){if(a&&u!==2)throw new Error(\"Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.\");if(!a&&u!==1)throw new Error(\"Fused MatMul with BiasAdd must have one extra argument: bias.\")}let[c,p]=v(\"args\",r,t,e);return[n.fused.matMul({a:v(\"a\",r,t,e),b:v(\"b\",r,t,e),transposeA:v(\"transposeA\",r,t,e),transposeB:v(\"transposeB\",r,t,e),bias:c,activation:s,preluActivationWeights:p,leakyreluAlpha:l})];case\"MatrixBandPart\":return[n.linalg.bandPart(v(\"a\",r,t,e),v(\"numLower\",r,t,e),v(\"numUpper\",r,t,e))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var DF=(r,t,e,n=ae)=>{switch(r.op){case\"EuclideanNorm\":return[n.euclideanNorm(v(\"x\",r,t,e),v(\"axis\",r,t,e),v(\"keepDims\",r,t,e))];case\"FusedBatchNorm\":case\"FusedBatchNormV2\":return[n.batchNorm(v(\"x\",r,t,e),v(\"mean\",r,t,e),v(\"variance\",r,t,e),v(\"offset\",r,t,e),v(\"scale\",r,t,e),v(\"epsilon\",r,t,e))];case\"FusedBatchNormV3\":return[n.batchNorm(v(\"x\",r,t,e),v(\"mean\",r,t,e),v(\"variance\",r,t,e),v(\"offset\",r,t,e),v(\"scale\",r,t,e),v(\"epsilon\",r,t,e))];case\"LRN\":return[n.localResponseNormalization(v(\"x\",r,t,e),v(\"radius\",r,t,e),v(\"bias\",r,t,e),v(\"alpha\",r,t,e),v(\"beta\",r,t,e))];case\"Softmax\":return[n.softmax(v(\"x\",r,t,e))];case\"LogSoftmax\":return[n.logSoftmax(v(\"x\",r,t,e))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var $F=(r,t,e,n=ae)=>{switch(r.op){case\"RaggedGather\":{let{outputNestedSplits:o,outputDenseValues:s}=n.raggedGather(v(\"paramsNestedSplits\",r,t,e),v(\"paramsDenseValues\",r,t,e),v(\"indices\",r,t,e),v(\"outputRaggedRank\",r,t,e));return o.concat(s)}case\"RaggedRange\":{let{rtNestedSplits:o,rtDenseValues:s}=n.raggedRange(v(\"starts\",r,t,e),v(\"limits\",r,t,e),v(\"splits\",r,t,e));return[o,s]}case\"RaggedTensorToTensor\":return[n.raggedTensorToTensor(v(\"shape\",r,t,e),v(\"values\",r,t,e),v(\"defaultValue\",r,t,e),v(\"rowPartitionTensors\",r,t,e),v(\"rowPartitionTypes\",r,t,e))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var RF=(r,t,e,n=ae)=>{switch(r.op){case\"Max\":{let a=v(\"axis\",r,t,e),u=v(\"keepDims\",r,t,e);return[n.max(v(\"x\",r,t,e),a,u)]}case\"Mean\":{let a=v(\"axis\",r,t,e),u=v(\"keepDims\",r,t,e);return[n.mean(v(\"x\",r,t,e),a,u)]}case\"Min\":{let a=v(\"axis\",r,t,e),u=v(\"keepDims\",r,t,e);return[n.min(v(\"x\",r,t,e),a,u)]}case\"Sum\":{let a=v(\"axis\",r,t,e),u=v(\"keepDims\",r,t,e);return[n.sum(v(\"x\",r,t,e),a,u)]}case\"All\":{let a=v(\"axis\",r,t,e),u=v(\"keepDims\",r,t,e);return[n.all(v(\"x\",r,t,e),a,u)]}case\"Any\":{let a=v(\"axis\",r,t,e),u=v(\"keepDims\",r,t,e);return[n.any(v(\"x\",r,t,e),a,u)]}case\"ArgMax\":{let a=v(\"axis\",r,t,e);return[n.argMax(v(\"x\",r,t,e),a)]}case\"ArgMin\":{let a=v(\"axis\",r,t,e);return[n.argMin(v(\"x\",r,t,e),a)]}case\"Prod\":{let a=v(\"axis\",r,t,e),u=v(\"keepDims\",r,t,e);return[n.prod(v(\"x\",r,t,e),a,u)]}case\"Cumprod\":{let a=v(\"axis\",r,t,e),u=v(\"exclusive\",r,t,e),l=v(\"reverse\",r,t,e);return[n.cumprod(v(\"x\",r,t,e),a,u,l)]}case\"Cumsum\":{let a=v(\"axis\",r,t,e),u=v(\"exclusive\",r,t,e),l=v(\"reverse\",r,t,e);return[n.cumsum(v(\"x\",r,t,e),a,u,l)]}case\"Bincount\":let o=v(\"x\",r,t,e),s=v(\"weights\",r,t,e),i=v(\"size\",r,t,e);return[n.bincount(o,s,i)];case\"DenseBincount\":{let a=v(\"x\",r,t,e),u=v(\"weights\",r,t,e),l=v(\"size\",r,t,e),c=v(\"binaryOutput\",r,t,e);return[n.denseBincount(a,u,l,c)]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var FF=(r,t,e,n=ae)=>{switch(r.op){case\"ConcatV2\":case\"Concat\":{let o=v(\"n\",r,t,e),s=v(\"axis\",r,t,e),i=v(\"tensors\",r,t,e);return i=i.slice(0,o),[n.concat(i,s)]}case\"Gather\":{let o=v(\"x\",r,t,e),s=v(\"indices\",r,t,e);return[n.gather(o,n.cast(s,\"int32\"),0)]}case\"GatherV2\":{let o=v(\"axis\",r,t,e),s=v(\"batchDims\",r,t,e),i=v(\"x\",r,t,e),a=v(\"indices\",r,t,e);return[n.gather(i,n.cast(a,\"int32\"),o,s)]}case\"Reverse\":{let o=v(\"dims\",r,t,e),s=[];for(let a=0;a{let o=v(\"axis\",r,t,e),s=v(\"tensors\",r,t,e),i=s[0].shape,a=n.squeeze(s[0]).shape,u=s.map(l=>{let c=y.arraysEqual(l.shape,i);if(!c&&!y.arraysEqual(n.squeeze(l).shape,a))throw new Error(\"the input tensors shape does not match\");return c?l:n.reshape(l,i)});return[n.stack(u,o)]});case\"Unpack\":{let o=v(\"axis\",r,t,e),s=v(\"tensor\",r,t,e);return n.unstack(s,o)}case\"Tile\":{let o=v(\"reps\",r,t,e);return[n.tile(v(\"x\",r,t,e),o)]}case\"Split\":case\"SplitV\":{let o=v(\"axis\",r,t,e),s=v(\"numOrSizeSplits\",r,t,e),i=v(\"x\",r,t,e);return n.split(i,s,o)}case\"ScatterNd\":{let o=v(\"indices\",r,t,e),s=v(\"values\",r,t,e),i=v(\"shape\",r,t,e);return[n.scatterND(o,s,i)]}case\"GatherNd\":{let o=v(\"x\",r,t,e),s=v(\"indices\",r,t,e);return[n.gatherND(o,s)]}case\"SparseToDense\":{let o=v(\"sparseIndices\",r,t,e),s=v(\"outputShape\",r,t,e),i=v(\"sparseValues\",r,t,e),a=v(\"defaultValue\",r,t,e);return[n.sparseToDense(o,i,s,i.dtype===a.dtype?a:n.cast(a,i.dtype))]}case\"TensorScatterUpdate\":{let o=v(\"indices\",r,t,e),s=v(\"values\",r,t,e),i=v(\"tensor\",r,t,e);return[n.tensorScatterUpdate(i,o,s)]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var OF=(r,t,e,n=ae)=>{switch(r.op){case\"SparseFillEmptyRows\":{let{outputIndices:o,outputValues:s,emptyRowIndicator:i,reverseIndexMap:a}=n.sparse.sparseFillEmptyRows(v(\"indices\",r,t,e),v(\"values\",r,t,e),v(\"denseShape\",r,t,e),v(\"defaultValue\",r,t,e));return[o,s,i,a]}case\"SparseReshape\":{let{outputIndices:o,outputShape:s}=n.sparse.sparseReshape(v(\"inputIndices\",r,t,e),v(\"inputShape\",r,t,e),v(\"newShape\",r,t,e));return[o,s]}case\"SparseSegmentMean\":return[n.sparse.sparseSegmentMean(v(\"data\",r,t,e),v(\"indices\",r,t,e),v(\"segmentIds\",r,t,e))];case\"SparseSegmentSum\":return[n.sparse.sparseSegmentSum(v(\"data\",r,t,e),v(\"indices\",r,t,e),v(\"segmentIds\",r,t,e))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var MF=(r,t,e,n=ae)=>{switch(r.op){case\"FFT\":return[n.fft(v(\"x\",r,t,e))];case\"IFFT\":return[n.ifft(v(\"x\",r,t,e))];case\"RFFT\":return[n.rfft(v(\"x\",r,t,e))];case\"IRFFT\":return[n.irfft(v(\"x\",r,t,e))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var PF=(r,t,e,n=ae)=>{switch(r.op){case\"StaticRegexReplace\":return[n.string.staticRegexReplace(v(\"input\",r,t,e),v(\"pattern\",r,t,e),v(\"rewrite\",r,t,e),v(\"replaceGlobal\",r,t,e))];case\"StringNGrams\":{let{nGrams:o,nGramsSplits:s}=n.string.stringNGrams(v(\"data\",r,t,e),v(\"dataSplits\",r,t,e),v(\"separator\",r,t,e),v(\"nGramWidths\",r,t,e),v(\"leftPad\",r,t,e),v(\"rightPad\",r,t,e),v(\"padWidth\",r,t,e),v(\"preserveShortSequences\",r,t,e));return[o,s]}case\"StringSplit\":{let{indices:o,values:s,shape:i}=n.string.stringSplit(v(\"input\",r,t,e),v(\"delimiter\",r,t,e),v(\"skipEmpty\",r,t,e));return[o,s,i]}case\"StringToHashBucketFast\":return[n.string.stringToHashBucketFast(v(\"input\",r,t,e),v(\"numBuckets\",r,t,e))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var LF=(r,t,e,n=ae)=>{switch(r.op){case\"Cast\":return[n.cast(v(\"x\",r,t,e),v(\"dtype\",r,t,e))];case\"ExpandDims\":{let o=v(\"axis\",r,t,e);return[n.expandDims(v(\"x\",r,t,e),o)]}case\"Squeeze\":{let o=v(\"axis\",r,t,e);return[n.squeeze(v(\"x\",r,t,e),o)]}case\"Reshape\":return[n.reshape(v(\"x\",r,t,e),v(\"shape\",r,t,e))];case\"EnsureShape\":return[n.ensureShape(v(\"x\",r,t,e),v(\"shape\",r,t,e))];case\"MirrorPad\":return[n.mirrorPad(v(\"x\",r,t,e),v(\"padding\",r,t,e),v(\"mode\",r,t,e))];case\"PadV2\":case\"Pad\":return[n.pad(v(\"x\",r,t,e),v(\"padding\",r,t,e),v(\"constantValue\",r,t,e))];case\"SpaceToBatchND\":{let o=v(\"blockShape\",r,t,e),s=v(\"paddings\",r,t,e);return[n.spaceToBatchND(v(\"x\",r,t,e),o,s)]}case\"BatchToSpaceND\":{let o=v(\"blockShape\",r,t,e),s=v(\"crops\",r,t,e);return[n.batchToSpaceND(v(\"x\",r,t,e),o,s)]}case\"DepthToSpace\":{let o=v(\"blockSize\",r,t,e),s=v(\"dataFormat\",r,t,e).toUpperCase();return[n.depthToSpace(v(\"x\",r,t,e),o,s)]}case\"BroadcastTo\":return[n.broadcastTo(v(\"x\",r,t,e),v(\"shape\",r,t,e))];case\"BroadcastArgs\":return[n.broadcastArgs(v(\"s0\",r,t,e),v(\"s1\",r,t,e))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};function Ak(r,t,e,n,o=B){let s=((i,a,u)=>{switch(i.category){case\"arithmetic\":return o(()=>fF(i,a,u));case\"basic_math\":return o(()=>dF(i,a,u));case\"control\":return wF(i,a,u);case\"convolution\":return o(()=>CF(i,a,u));case\"creation\":return o(()=>vF(i,a,u));case\"dynamic\":return SF(i,a,u);case\"evaluation\":return o(()=>NF(i,a,u));case\"image\":return o(()=>_F(i,a,u));case\"graph\":return o(()=>kF(i,a,u));case\"logical\":return o(()=>EF(i,a,u));case\"matrices\":return o(()=>AF(i,a,u));case\"normalization\":return o(()=>DF(i,a,u));case\"ragged\":return o(()=>$F(i,a,u));case\"reduction\":return o(()=>RF(i,a,u));case\"slice_join\":return o(()=>FF(i,a,u));case\"sparse\":return o(()=>OF(i,a,u));case\"spectral\":return o(()=>MF(i,a,u));case\"string\":return o(()=>PF(i,a,u));case\"transformation\":return o(()=>LF(i,a,u));case\"hash_table\":return TF(i,a,u,n);case\"custom\":let l=Vb(i.op);if(l&&l.customExecutor)return l.customExecutor(new Qb(i,a,u));throw TypeError(`Custom op ${i.op} is not registered.`);default:throw TypeError(`Unknown op '${i.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(r,t,e);return y.isPromise(s)?s.then(i=>[].concat(i)):[].concat(s)}var Uh=class{constructor(t={},e={},n={},o={},s){this.weightMap=t,this.tensorArrayMap=e,this.tensorListMap=n,this.functionMap=o,this.parseNodeNameCache=s,this.rootContext={id:0,frameName:\"\",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(t,e){return{id:t,frameName:e,iterationId:0}}set currentContext(t){this.contexts!==t&&(this.contexts=t,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let t=[];for(let e=0;ee.id===0&&e.iterationId===0?\"\":`${e.frameName}-${e.iterationId}`).join(\"/\"):\"\"}enterFrame(t){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,t)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error(\"Cannot exit frame, the context is empty\")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let t=Object.assign({},this.contexts[this.contexts.length-1]);t.iterationId+=1,t.id=this.lastId,this.contexts.splice(-1,1,t),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error(\"Cannot increase frame iteration, the context is empty\")}getWeight(t){return this.weightMap[t]}addTensorArray(t){this.tensorArrayMap[t.id]=t}getTensorArray(t){return this.tensorArrayMap[t]}addTensorList(t){this.tensorListMap[t.id]=t}getTensorList(t){return this.tensorListMap[t]}dispose(t){for(let e in this.tensorArrayMap)this.tensorArrayMap[e].clearAndClose(t);for(let e in this.tensorListMap)this.tensorListMap[e].clearAndClose(t)}};function Dk(r,t,e,n){let o=new Set,s=[],i=null,a=null,u=new Set,l=new Set(Object.keys(r).map(m=>In(m)[0]));n=n||[];let c=new Set(n.map(m=>In(m.name)[0])),p=[...t];for(;p.length>0;){let m=p.pop();if((Bu(m)||ftt(m)||dtt(m))&&i==null&&(i=m,a=i.children.map(f=>f.name).filter(f=>o.has(f))),o.add(m.name),e[m.name]==null&&!l.has(m.name)&&!c.has(m.name)){if(m.inputs.length===0){s.push(m.name);continue}m.inputs.forEach(f=>{u.has(f.name)||(u.add(f.name),p.push(f))})}}return{inputs:r,outputs:t,usedNodes:o,missingInputs:s,dynamicNode:i,syncInputs:a}}function zF(r,t){let{usedNodes:e,inputs:n}=t,o=Object.keys(n).map(g=>In(g)[0]).map(g=>r.nodes[g]),s=r.initNodes||[],i=g=>e.has(typeof g==\"string\"?g:g.name);function a(g){return[...new Map(g.map(x=>[x.name,x])).values()]}let u=a([...o,...r.weights,...s]).filter(i),l=a([...u,...Object.values(r.nodes)]).filter(i),c=new Map(l.map(g=>[g.name,g])),p={};for(let g of l){p[g.name]=p[g.name]||0;for(let x of g.children)i(x)||(p[x.name]=Number.POSITIVE_INFINITY),p[x.name]=(p[x.name]||0)+1}let m=Object.entries(p).filter(([,g])=>g===0).map(([g])=>g),f=[...m];for(;m.length>0;){let g=m.pop(),x=c.get(g);for(let b of x.children.filter(i))--p[b.name]===0&&(f.push(b.name),m.push(b.name))}let d=f.map(g=>c.get(g)),h=ltt(d,u);return utt(h,u),h}function ltt(r,t){let e=new Map(r.map(i=>[i.name,i])),n=t.map(i=>i.name),o=new Set(n);for(;n.length>0;){let i=n.pop(),a=e.get(i);for(let u of a.children)!e.has(u.name)||o.has(u.name)||(o.add(u.name),n.push(u.name))}return r.filter(i=>o.has(i.name))}var nd=class extends Error{constructor(t){super(`NodesExecutionOrderError: ${t}`)}};function utt(r,t){let e=new Map(r.map((a,u)=>[a.name,u])),n=new Set(t.map(a=>a.name)),o=a=>n.has(typeof a==\"string\"?a:a.name),s=new Set(r.map(a=>a.name)),i=a=>s.has(typeof a==\"string\"?a:a.name);for(let a of r){for(let u of a.children.filter(i)){if(!e.has(u.name))throw new nd(`Child ${u.name} of node ${a.name} is unreachable.`);if(e.get(a.name)>e.get(u.name))throw new nd(`Node ${a.name} is scheduled to run after its child ${u.name}.`)}if(!o(a))for(let u of a.inputs){if(!e.has(u.name))throw new nd(`Input ${u.name} of node ${a.name} is unreachable.`);if(e.get(u.name)>e.get(a.name))throw new nd(`Node ${a.name} is scheduled to run before its input ${u.name}.`)}}}function BF(r){let t=new Map(r.map((a,u)=>[a.name,u])),e=Number.MAX_SAFE_INTEGER,n=r.map((a,u)=>Bu(a)?e:u),o=a=>{let u=n[t.get(a.name)];return u==null?-1:u},s=r.map((a,u)=>a.children.map(o).reduce((l,c)=>Math.max(l,c),n[u])),i=new Map;for(let a=0;at[n].map(o=>o.id));this._weightIds=[].concat(...e),this._weightMap=t}set resourceManager(t){this._resourceManager=t}get inputs(){return this._inputs.map(t=>({name:t.name,shape:t.attrParams.shape?t.attrParams.shape.value:void 0,dtype:t.attrParams.dtype?t.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(t=>({name:t.name,shape:t.attrParams.shape?t.attrParams.shape.value:void 0,dtype:t.attrParams.dtype?t.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(t=>t.signatureKey||t.name)}get outputNodes(){return this._outputs.map(t=>{let e=t.signatureKey||t.name;return t.defaultOutput?`${e}:${t.defaultOutput}`:e})}get functions(){return Object.keys(this._functions).reduce((t,e)=>(t[e]=this._functions[e].signature,t),{})}constructor(t,e){this.graph=t,this.parent=e,this.compiledMap=new Map,this.parseNodeNameCache=new Map,this._weightMap={},this.SEPARATOR=\",\",this._functions={},this._functionExecutorMap={},this.keepIntermediateTensors=!1,this._outputs=t.outputs,this._inputs=t.inputs,this._initNodes=t.initNodes,this._signature=t.signature,this._functions=t.functions,t.functions!=null&&Object.keys(t.functions).forEach(n=>{this._functionExecutorMap[n]=new r(t.functions[n],this)})}getCompilationKey(t,e){let n=t.map(s=>s.name).sort(),o=e.map(s=>s.name).sort();return n.join(this.SEPARATOR)+\"--\"+o.join(this.SEPARATOR)}compile(t,e){let n=Dk(t,e,this.weightMap,this._initNodes),{missingInputs:o,dynamicNode:s,syncInputs:i}=n;if(s!=null)throw new Error(`This execution contains the node '${s.name}', which has the dynamic op '${s.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${i}]`);if(o.length>0){let l=e.map(p=>p.name),c=Object.keys(t);throw new Error(`Cannot compute the outputs [${l}] from the provided inputs [${c}]. Missing the following inputs: [${o}]`)}let a=zF(this.graph,n),u=BF(a);return{orderedNodes:a,nodeLiveUntilMap:u}}cloneAndKeepTensor(t){if(t==null)return null;let e=t.clone();return De(e),e}cloneTensorList(t){return t?t.map(n=>this.cloneAndKeepTensor(n)):null}cloneTensorMap(t){return Object.fromEntries(Object.entries(t).map(([e,n])=>[e,this.cloneTensorList(n)]))}execute(t,e){this.disposeIntermediateTensors(),t=this.mapInputs(t);let n=Object.keys(t).sort();this.checkInputs(t),this.checkInputShapeAndType(t),e=this.mapOutputs(e),this.checkOutputs(e);let o=n.map(m=>this.graph.nodes[In(m)[0]]),s=e.map(m=>In(m)[0]),i=new Set(s),a=s.map(m=>this.graph.nodes[m]);a.length===0&&(a=this._outputs);let u=this.getCompilationKey(o,a),l=this.compiledMap.get(u);l==null&&(l=this.compile(t,a),this.compiledMap.set(u,l));try{this.keepIntermediateTensors=L().getBool(\"KEEP_INTERMEDIATE_TENSORS\")}catch(m){this.keepIntermediateTensors=!1,console.warn(m.message)}let c={},p={};return B(()=>{let m=new Uh(this.weightMap,c,p,this.functionExecutorMap,this.parseNodeNameCache),f=Object.assign({},this.weightMap);this.keepIntermediateTensors&&(this.clonedTensorsMap=this.cloneTensorMap(this.weightMap)),Object.keys(t).forEach(x=>{let[b,w]=In(x,m),I=[];I[w]=t[x],f[b]=I,this.keepIntermediateTensors&&(this.clonedTensorsMap[b]=this.cloneTensorList(I))});let d=this.getFrozenTensorIds(f),{orderedNodes:h,nodeLiveUntilMap:g}=l;for(let x of h){if(f[x.name])continue;let b=Ak(x,f,m,this._resourceManager);if(y.isPromise(b))throw new Error(`The execution of the op '${x.op}' returned a promise. Please use model.executeAsync() instead.`);f[x.name]=b,this.keepIntermediateTensors&&(this.clonedTensorsMap[x.name]=this.cloneTensorList(b)),this.checkTensorForDisposalWithNodeLiveUntilInfo(x,f,m,d,i,g.get(x.name))}return this.parent==null&&m.dispose(d),e.map(x=>pr(x,f,m))})}getFrozenTensorIds(t){let e=[].concat.apply([],Object.keys(t).map(n=>t[n]).map(n=>n.map(o=>o.id)));return new Set(e)}checkTensorForDisposal(t,e,n,o,s,i,a){if(!(Bu(e)||i.has(t))){for(let u of n[t])u!=null&&(a[u.id]=(a[u.id]||0)+e.children.length);for(let u of e.inputs){if(Bu(u))continue;let l=lk(u.name,n,o);if(l!=null)for(let c of l){if(!c||c.kept||s.has(c.id))continue;let p=a[c.id];p===1?(c.dispose(),delete a[c.id]):p!=null&&a[c.id]--}}}}checkTensorForDisposalWithNodeLiveUntilInfo(t,e,n,o,s,i){function a(u){return Bu(u)||s.has(u.name)}if(!(Bu(t)||i==null))for(let u of i){if(a(u))continue;let l=lk(u.name,e,n);for(let c of l)!c||c.kept||o.has(c.id)||c.dispose()}}async executeAsync(t,e){return this._executeAsync(t,e)}disposeIntermediateTensors(){this.clonedTensorsMap&&(Object.values(this.clonedTensorsMap).forEach(t=>{for(let e of t)e&&!e.isDisposed&&e.dispose()}),this.clonedTensorsMap=null)}getIntermediateTensors(){return this.clonedTensorsMap}async _executeAsync(t,e,n=!1,o={},s={}){this.disposeIntermediateTensors(),n||(t=this.mapInputs(t),this.checkInputs(t),this.checkInputShapeAndType(t),e=this.mapOutputs(e),this.checkOutputs(e));try{this.keepIntermediateTensors=L().getBool(\"KEEP_INTERMEDIATE_TENSORS\")}catch(m){this.keepIntermediateTensors=!1,console.warn(m.message)}let i=new Uh(this.weightMap,o,s,this.functionExecutorMap,this.parseNodeNameCache);this.keepIntermediateTensors&&(this.clonedTensorsMap=this.cloneTensorMap(this.weightMap));let a=await this.executeWithControlFlow(t,i,e,n),u=e.map(m=>pr(m,a,i)),l=u.map(m=>m.id),c=Object.keys(t).map(m=>t[m].id),p=new Set([...l,...c,...this.weightIds]);return Object.values(a).forEach(m=>{m.forEach(f=>{f&&!f.isDisposed&&!p.has(f.id)&&f.dispose()})}),this.parent==null&&i.dispose(p),u}async executeFunctionAsync(t,e,n){let o=t.reduce((s,i,a)=>(s[this.inputs[a].name]=i,s),{});return this._executeAsync(o,this.outputNodes,!0,e,n)}async executeWithControlFlow(t,e,n,o){let s=Object.keys(t),i=s.map(I=>this.graph.nodes[In(I)[0]]),a=n.map(I=>In(I)[0]),u=new Set(a),l=a.map(I=>this.graph.nodes[I]);l.length===0&&(l=this._outputs);let{usedNodes:c,missingInputs:p,dynamicNode:m,syncInputs:f}=Dk(t,l,this.weightMap,this._initNodes),d=[...i,...this.graph.weights,...this._initNodes||[]].map(I=>({node:I,contexts:e.currentContext})),h=Object.assign({},this.weightMap);Object.keys(t).forEach(I=>{let[N,E]=In(I),A=[];A[E]=t[I],h[N]=A});let g={},x=this.getFrozenTensorIds(h),b={};for(;d.length>0;){let I=this.processStack(i,d,e,h,b,x,u,g,c);await Promise.all(I)}m==null&&!o&&console.warn(\"This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.\");let w=l.filter(I=>!Bu(I)&&!pr(I.name,h,e)).map(I=>I.name);if(w.length>0){let I=\"\";throw m!=null&&(I=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${f}]`),new Error(`Cannot compute the outputs [${w}] from the provided inputs [${s}]. Consider providing the following inputs: [${p}]. ${I}`)}return h}processStack(t,e,n,o,s,i,a,u,l){let c=[];for(;e.length>0;){let p=e.pop();n.currentContext=p.contexts;let m=\"\";if(p.node.op===\"Enter\"&&v(\"isConstant\",p.node,o,n)&&([m]=bi(p.node.name,n)),o[p.node.name]==null){let f=Ak(p.node,o,n,this._resourceManager);m||([m]=bi(p.node.name,n));let d=n.currentContext;y.isPromise(f)?c.push(f.then(h=>(o[m]=h,this.keepIntermediateTensors&&(this.clonedTensorsMap[m]=this.cloneTensorList(h)),n.currentContext=d,this.checkTensorForDisposal(m,p.node,o,n,i,a,u),this.processChildNodes(p.node,e,n,o,s,l),h))):(o[m]=f,this.keepIntermediateTensors&&(this.clonedTensorsMap[m]=this.cloneTensorList(f)),this.checkTensorForDisposal(m,p.node,o,n,i,a,u),this.processChildNodes(p.node,e,n,o,s,l))}else this.processChildNodes(p.node,e,n,o,s,l)}return c}processChildNodes(t,e,n,o,s,i){t.children.forEach(a=>{let[u]=bi(a.name,n);s[u]||!i.has(a.name)||(a.op===\"Merge\"?a.inputNames.some(l=>!!pr(l,o,n))&&(s[u]=!0,e.push({contexts:n.currentContext,node:a})):a.inputNames.every(l=>!!pr(l,o,n))&&(s[u]=!0,e.push({contexts:n.currentContext,node:a})))})}dispose(){Object.keys(this.weightMap).forEach(t=>this.weightMap[t].forEach(e=>e.dispose()))}checkInputShapeAndType(t){Object.keys(t).forEach(e=>{let n=t[e],[o]=In(e),s=this.graph.nodes[o];if(s.attrParams.shape&&s.attrParams.shape.value){let i=s.attrParams.shape.value,a=i.length===n.shape.length&&n.shape.every((u,l)=>i[l]===-1||i[l]===u);y.assert(a,()=>`The shape of dict['${s.name}'] provided in model.execute(dict) must be [${i}], but was [${n.shape}]`)}s.attrParams.dtype&&s.attrParams.dtype.value&&y.assert(n.dtype===s.attrParams.dtype.value,()=>`The dtype of dict['${s.name}'] provided in model.execute(dict) must be ${s.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(t){var e,n;let o={};for(let s in t){let i=(n=(e=this._signature)===null||e===void 0?void 0:e.inputs)===null||n===void 0?void 0:n[s];i!=null?o[i.name]=t[s]:o[s]=t[s]}return o}checkInputs(t){let e=Object.keys(t).filter(n=>{let[o]=In(n);return this.graph.nodes[o]==null});if(e.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${e}] that are not part of graph`)}mapOutputs(t){return t.map(e=>{var n,o;let s=(o=(n=this._signature)===null||n===void 0?void 0:n.outputs)===null||o===void 0?void 0:o[e];return s!=null?s.name:e},{})}checkOutputs(t){t.forEach(e=>{let[n]=In(e);if(!this.graph.nodes[n])throw new Error(`The output '${e}' is not found in the graph`)})}};var nw=class{constructor(t={},e={}){this.hashTableNameToHandle=t,this.hashTableMap=e}addHashTable(t,e){this.hashTableNameToHandle[t]=e.handle,this.hashTableMap[e.id]=e}getHashTableHandleByName(t){return this.hashTableNameToHandle[t]}getHashTableById(t){return this.hashTableMap[t]}dispose(){for(let t in this.hashTableMap)this.hashTableMap[t].clearAndClose(),delete this.hashTableMap[t];for(let t in this.hashTableNameToHandle)this.hashTableNameToHandle[t].dispose(),delete this.hashTableNameToHandle[t]}};var htt=\"?tfjs-format=file\",gtt=\"model.json\",qh=class{get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}get modelStructuredOutputKeys(){return this.structuredOutputKeys}constructor(t,e={},n=Mr){this.modelUrl=t,this.loadOptions=e,this.version=\"n/a\",this.io=n,e==null&&(this.loadOptions={}),this.resourceManager=new nw}findIOHandler(){let t=this.modelUrl;if(t.load!=null)this.handler=t;else if(this.loadOptions.requestInit!=null)this.handler=this.io.browserHTTPRequest(t,this.loadOptions);else{let e=this.io.getLoadHandlers(t,this.loadOptions);if(e.length===0)e.push(this.io.browserHTTPRequest(t,this.loadOptions));else if(e.length>1)throw new Error(`Found more than one (${e.length}) load handlers for URL '${[t]}'`);this.handler=e[0]}}load(){if(this.findIOHandler(),this.handler.load==null)throw new Error(\"Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.\");let t=this.handler.load();return y.isPromise(t)?t.then(e=>e.getWeightStream==null?this.loadSync(e):this.loadStreaming(e)):this.loadSync(t)}loadSync(t){let e=this.io.decodeWeights(t.weightData,t.weightSpecs);return this.loadWithWeightMap(t,e)}async loadStreaming(t){if(t.getWeightStream==null)throw new Error(\"Model artifacts missing streamWeights function\");let e=await ax(t.getWeightStream(),t.weightSpecs);return this.loadWithWeightMap(t,e)}loadWithWeightMap(t,e){this.artifacts=t;let n=this.artifacts.modelTopology,o=this.artifacts.signature;if(this.artifacts.userDefinedMetadata!=null){let s=this.artifacts.userDefinedMetadata;s.signature!=null&&(o=s.signature),s.structuredOutputKeys!=null&&(this.structuredOutputKeys=s.structuredOutputKeys)}if(this.signature=o,this.version=`${n.versions.producer}.${n.versions.minConsumer}`,this.executor=new Hh(Wh.Instance.transformGraph(n,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(e),this.executor.resourceManager=this.resourceManager,t.modelInitializer!=null&&t.modelInitializer.node!=null){let s=Wh.Instance.transformGraph(t.modelInitializer);this.initializer=new Hh(s),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializerSignature=t.initializerSignature}return!0}async save(t,e){if(typeof t==\"string\"){let n=this.io.getSaveHandlers(t);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${t}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${t}'`);t=n[0]}if(t.save==null)throw new Error(\"GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.\");return t.save(this.artifacts)}addStructuredOutputNames(t){if(this.structuredOutputKeys){let e=t instanceof Lt?[t]:t,n={};return e.forEach((o,s)=>n[this.structuredOutputKeys[s]]=o),n}return t}predict(t,e){let n=this.execute(t,this.outputNodes);return this.addStructuredOutputNames(n)}async predictAsync(t,e){let n=await this.executeAsync(t,this.outputNodes);return this.addStructuredOutputNames(n)}normalizeInputs(t){var e;if(!(t instanceof Lt)&&!Array.isArray(t)){let s=(e=this.signature)===null||e===void 0?void 0:e.inputs;if(s!=null)for(let i in s){let a=s[i];a.resourceId!=null&&(t[i]=this.resourceIdToCapturedInput[a.resourceId])}return t}t=Array.isArray(t)?t:[t];let n=Object.keys(this.resourceIdToCapturedInput).length;if(t.length+n!==this.inputNodes.length)throw new Error(`Input tensor count mismatch, the graph model has ${this.inputNodes.length-n} non-resource placeholders, while there are ${t.length} input tensors provided.`);let o=0;return this.inputNodes.reduce((s,i)=>{var a,u,l;let c=(l=(u=(a=this.signature)===null||a===void 0?void 0:a.inputs)===null||u===void 0?void 0:u[i])===null||l===void 0?void 0:l.resourceId;return c!=null?s[i]=this.resourceIdToCapturedInput[c]:s[i]=t[o++],s},{})}normalizeOutputs(t){return t=t||this.outputNodes,Array.isArray(t)?t:[t]}executeInitializerGraph(){return this.initializer==null?[]:this.initializerSignature==null?this.initializer.execute({},[]):this.initializer.execute({},Object.keys(this.initializerSignature.outputs))}async executeInitializerGraphAsync(){return this.initializer==null?[]:this.initializerSignature==null?this.initializer.executeAsync({},[]):this.initializer.executeAsync({},Object.keys(this.initializerSignature.outputs))}setResourceIdToCapturedInput(t){if(this.resourceIdToCapturedInput={},this.initializerSignature){let e=this.initializerSignature.outputs,n=Object.keys(e);for(let o=0;o1?n:n[0]}async executeAsync(t,e){this.resourceIdToCapturedInput==null&&this.setResourceIdToCapturedInput(await this.executeInitializerGraphAsync()),t=this.normalizeInputs(t),e=this.normalizeOutputs(e);let n=await this.executor.executeAsync(t,e);return n.length>1?n:n[0]}getIntermediateTensors(){return this.executor.getIntermediateTensors()}disposeIntermediateTensors(){this.executor.disposeIntermediateTensors()}convertTensorMapToTensorsMap(t){return Object.keys(t).reduce((e,n)=>(e[n]=[t[n]],e),{})}dispose(){this.executor.dispose(),this.initializer&&(this.initializer.dispose(),this.resourceIdToCapturedInput&&Tt(this.resourceIdToCapturedInput)),this.resourceManager.dispose()}};async function xtt(r,t={},e=Mr){if(r==null)throw new Error(\"modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model\");t==null&&(t={}),t.fromTFHub&&typeof r==\"string\"&&(r=btt(r));let n=new qh(r,t,e);return await n.load(),n}function ytt(r){if(r==null)throw new Error(\"modelUrl in loadGraphModelSync() cannot be null. Please provide model artifacts or an IOHandler that loads the model\");let t;if(r instanceof Array){let[n,o]=r;if(!n)throw new Error(\"modelJSON must be the first element of the array\");if(!o||!(o instanceof ArrayBuffer))throw new Error(\"An ArrayBuffer of weights must be the second element of the array\");if(!(\"modelTopology\"in n))throw new Error(\"Model JSON is missing 'modelTopology'\");if(!(\"weightsManifest\"in n))throw new Error(\"Model JSON is missing 'weightsManifest'\");let s=Mr.getWeightSpecs(n.weightsManifest),i=Mr.getModelArtifactsForJSONSync(n,s,o);t=Mr.fromMemorySync(i)}else if(\"load\"in r)t=r;else if(\"modelTopology\"in r&&\"weightSpecs\"in r&&\"weightData\"in r)t=Mr.fromMemorySync(r);else throw new Error(\"Unknown model format\");let e=new qh(t);return e.load(),e}function btt(r){return r.endsWith(\"/\")||(r=r+\"/\"),`${r}${gtt}${htt}`}var VF=\"4.22.0\";var aO={};Kt(aO,{CSVDataset:()=>id,Dataset:()=>Ii,FileDataSource:()=>ud,TextLineDataset:()=>sd,URLDataSource:()=>cd,array:()=>ZF,csv:()=>rO,func:()=>nO,generator:()=>oO,microphone:()=>iO,version_data:()=>Jk,webcam:()=>sO,zip:()=>JF});var YF=Gl(hh());var KF=Gl(hh());function GF(r,t){return ow(r,t)}function ow(r,t,e=new Map,n=new Set){if(r==null)return null;if(typeof Blob==\"function\"&&r instanceof Blob)return r.slice();if(n.has(r))throw new Error(\"Circular references are not supported.\");if(e.has(r))return e.get(r);let o=t(r);if(o.recurse&&o.value!==null)throw new Error(\"A deep map function may not return both a value and recurse=true.\");if(o.recurse)if(Vu(r)){let s=Array.isArray(r)?[]:{};n.add(r);for(let i in r){let a=r[i],u=ow(a,t,e,n);s[i]=u}return n.delete(r),r.__proto__&&(s.__proto__=r.__proto__),s}else throw new Error(`Can't recurse into non-iterable type: ${r}`);else return e.set(r,o.value),o.value}function WF(r,t=Rk){return UF(r,t)}function UF(r,t,e=new Set){let n=r[0];if(e.has(n))throw new Error(\"Circular references are not supported.\");let o=t(r);if(o.recurse&&o.value!==null)throw new Error(\"A deep zip function may not return both a value and recurse=true.\");if(o.recurse)if(Vu(n)){let s=Array.isArray(n)?[]:{};e.add(n);for(let i in n){let a=r.map(l=>l[i]),u=UF(a,t,e);s[i]=u}return e.delete(n),s}else throw new Error(`Can't recurse into non-iterable type: ${n}`);else return o.value}function Rk(r){return r===null?null:Vu(r[0])?{value:null,recurse:!0}:{value:r,recurse:!1}}async function sw(r,t){let e=new Map;ow(r,t,e);for(let o of Array.from(e.keys())){let s=e.get(o);if(y.isPromise(s)){let i=await s;e.set(o,i)}}return ow(r,t,e)}function Vu(r){let t=!1;if(L().get(\"IS_BROWSER\"))t=r instanceof TextDecoder;else{let{StringDecoder:e}=$k();t=r instanceof e}return r!=null&&!ArrayBuffer.isView(r)&&(Array.isArray(r)||typeof r==\"object\"&&!(r instanceof Lt)&&!(r instanceof Promise)&&!t)}function HF(r){return r==null||wtt(r)||Array.isArray(r)||typeof r==\"object\"&&r instanceof Lt||y.isTypedArray(r)}function wtt(r){return r===null||typeof r!=\"object\"&&typeof r!=\"function\"}function qF(r){return GF(r,Itt)}function Itt(r){return r instanceof Lt?{value:r.clone(),recurse:!1}:Vu(r)?{value:null,recurse:!0}:{value:r,recurse:!1}}var od=class{constructor(t){if(this.capacity=t,this.begin=0,this.end=0,t==null)throw new RangeError(\"Can't create a ring buffer of unknown capacity.\");if(t<1)throw new RangeError(\"Can't create ring buffer of capacity < 1.\");this.data=new Array(t),this.doubledCapacity=2*t}wrap(t){for(;t<0;)t+=this.doubledCapacity;return t%this.doubledCapacity}get(t){if(t<0)throw new RangeError(\"Can't get item at a negative index.\");return this.data[t%this.capacity]}set(t,e){if(t<0)throw new RangeError(\"Can't set item at a negative index.\");this.data[t%this.capacity]=e}length(){let t=this.end-this.begin;return t<0&&(t=this.doubledCapacity+t),t}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(t){if(this.isFull())throw new RangeError(\"Ring buffer is full.\");this.set(this.end,t),this.end=this.wrap(this.end+1)}pushAll(t){for(let e of t)this.push(e)}pop(){if(this.isEmpty())throw new RangeError(\"Ring buffer is empty.\");this.end=this.wrap(this.end-1);let t=this.get(this.end);return this.set(this.end,void 0),t}unshift(t){if(this.isFull())throw new RangeError(\"Ring buffer is full.\");this.begin=this.wrap(this.begin-1),this.set(this.begin,t)}shift(){if(this.isEmpty())throw new RangeError(\"Ring buffer is empty.\");let t=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),t}shuffleExcise(t){if(this.isEmpty())throw new RangeError(\"Ring buffer is empty.\");let e=this.wrap(this.begin+t),n=this.get(e);return this.set(e,this.pop()),n}};var Kh=class r extends od{constructor(){super(r.INITIAL_CAPACITY)}isFull(){return!1}push(t){super.isFull()&&this.expand(),super.push(t)}unshift(t){super.isFull()&&this.expand(),super.unshift(t)}expand(){let t=this.capacity*2,e=new Array(t),n=this.length();for(let o=0;oe===!0)}rowMajorBatch(t,e=!0){return new zk(this,t,e)}columnMajorBatch(t,e=!0,n=Rk){return this.rowMajorBatch(t,e).map(s=>WF(s,n))}concatenate(t,e){return new aw(qk([this,t]),e)}take(t){return t<0||t==null?this:new Lk(this,t)}skip(t){return t<0||t==null?this:new Pk(this,t)}prefetch(t){return new lw(this,t)}shuffle(t,e){return new Hk(this,t,e)}serial(){return new Mk(this)}},Fk=class extends er{constructor(t){super(),this.items=t,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let t=this.items[this.trav];return this.trav++,{value:qF(t),done:!1}}},Ok=class extends er{constructor(t){super(),this.nextFn=t}summary(){return\"Function call\"}async next(){try{return this.nextFn()}catch(t){throw t.message=`Error thrown while iterating through a dataset: ${t.message}`,t}}},Mk=class extends er{constructor(t){super(),this.upstream=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},Pk=class extends er{constructor(t,e){super(),this.upstream=t,this.maxCount=e,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++ Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},zk=class extends er{constructor(t,e,n=!0){super(),this.upstream=t,this.batchSize=e,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let t=[];for(;t.length0?{value:t,done:!1}:{value:null,done:!0};t.push(e.value)}return{value:t,done:!1}}},Bk=class extends er{constructor(t,e){super(),this.upstream=t,this.predicate=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let t=await this.upstream.next();if(t.done||this.predicate(t.value))return t;Tt(t.value)}}},Vk=class extends er{constructor(t,e){super(),this.upstream=t,this.transform=e}summary(){return`${this.upstream.summary()} -> Map`}async next(){let t=await this.upstream.next();if(t.done)return{value:null,done:!0};let e=Io.getTensorsInContainer(t.value),n=this.transform(t.value),o=Io.getTensorsInContainer(n);for(let s of e)Io.isTensorInList(s,o)||s.dispose();return{value:n,done:!1}}},Gk=class extends er{constructor(t,e){super(),this.upstream=t,this.handler=e,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(t){if(!this.handler(t))return{value:null,done:!0}}}},iw=class extends er{constructor(t,e){super(),this.upstream=t,this.transform=e}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let t=await this.upstream.next();if(t.done)return{value:null,done:!0};let e=Io.getTensorsInContainer(t.value),n=await this.transform(t.value),o=Io.getTensorsInContainer(n);for(let s of e)Io.isTensorInList(s,o)||s.dispose();return{value:n,done:!1}}},Zc=class extends er{constructor(){super(),this.outputQueue=new Kh,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},Wk=class extends Zc{constructor(t,e){super(),this.upstream=t,this.transform=e}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let t=await this.upstream.next();if(t.done)return!1;let e=Io.getTensorsInContainer(t.value),n=this.transform(t.value),o=Io.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let s of e)Io.isTensorInList(s,o)||s.dispose();return!0}},aw=class extends er{constructor(t,e){super(),this.baseErrorHandler=e,this.lastRead=null,this.iterator=null,this.moreIterators=t}summary(){return\"TODO: fill in upstream of chained summaries -> Chained\"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(t){if(await t,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let e=await this.iterator.next();return e.done?(this.iterator=null,this.readFromChain(t)):e}},Dl;(function(r){r[r.FAIL=0]=\"FAIL\",r[r.SHORTEST=1]=\"SHORTEST\",r[r.LONGEST=2]=\"LONGEST\"})(Dl||(Dl={}));var Uk=class extends er{constructor(t,e=Dl.FAIL){super(),this.iterators=t,this.mismatchMode=e,this.count=0,this.currentPromise=null}summary(){return\"{TODO: fill in upstream of zip summaries} -> Zip\"}async nextState(t){await t;let e=0,n=0;function o(i){return i instanceof er?{value:i.next().then(u=>(e++,u.done&&n++,u.value)),recurse:!1}:{value:null,recurse:!0}}let s=await sw(this.iterators,o);if(e===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case Dl.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case Dl.SHORTEST:return{value:null,done:!0};case Dl.LONGEST:default:}return this.count++,{value:s,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},lw=class extends er{constructor(t,e){super(),this.upstream=t,this.bufferSize=e,this.buffer=new od(e)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let t=this.upstream.next();this.buffer.push(t)}}next(){return this.refill(),this.buffer.shift()}},Hk=class extends lw{constructor(t,e,n){super(t,e),this.upstream=t,this.windowSize=e,this.upstreamExhausted=!1,this.random=KF.alea(n||y.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(t){return Math.floor(this.random()*t)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let t=this.chooseIndex(),e=await this.buffer.shuffleExcise(t);if(e.done)this.upstreamExhausted=!0;else return this.refill(),e}return{value:null,done:!0}}};var Ii=class{constructor(){this.size=null}batch(t,e=!0){let n=this;y.assert(t>0,()=>`batchSize needs to be positive, but it is\n ${t}`);let o;return this.size===1/0||this.size==null?o=this.size:e?o=Math.ceil(this.size/t):o=Math.floor(this.size/t),En(async()=>(await n.iterator()).columnMajorBatch(t,e,Ctt),o)}concatenate(t){let e=this,n;return this.size===1/0||t.size===1/0?n=1/0:this.size!=null&&t.size!=null?n=this.size+t.size:n=null,En(async()=>(await e.iterator()).concatenate(await t.iterator()),n)}filter(t){let e=this,n;return this.size===1/0?n=1/0:n=null,En(async()=>(await e.iterator()).filter(o=>B(()=>t(o))),n)}async forEachAsync(t){return(await this.iterator()).forEachAsync(t)}map(t){let e=this;return En(async()=>(await e.iterator()).map(n=>B(()=>t(n))),this.size)}mapAsync(t){let e=this;return En(async()=>(await e.iterator()).mapAsync(t),this.size)}prefetch(t){if(t==null)throw new RangeError(\"`Dataset.prefetch()` requires bufferSize to be specified.\");let e=this;return En(async()=>(await e.iterator()).prefetch(t),this.size)}repeat(t){let e=this,n;return this.size!=null&&t>0?n=this.size*t:t===0?n=0:this.size!=null&&(t===void 0||t<0)?n=1/0:n=null,En(async()=>{let o=jh(async()=>({value:await e.iterator(),done:!1}));return jF(o.take(t))},n)}skip(t){let e=this,n;return this.size!=null&&t>=0&&this.size>=t?n=this.size-t:this.size!=null&&(this.size(await e.iterator()).skip(t),n)}shuffle(t,e,n=!0){if(t==null||t<0)throw this.size==null?new RangeError(\"`Dataset.shuffle()` requires bufferSize to be specified.\"):new RangeError(`\\`Dataset.shuffle()\\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \\`tf.Tensor\\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let o=this,s=YF.alea(e||y.now().toString());return En(async()=>{let i=s.int32();return n&&(i+=s.int32()),(await o.iterator()).shuffle(t,i.toString())},this.size)}take(t){let e=this,n;return this.size!=null&&this.size>t?n=t:this.size!=null&&this.size<=t?n=this.size:n=null,En(async()=>(await e.iterator()).take(t),n)}async toArray(){if(this.size===1/0)throw new Error(\"Can not convert infinite data stream to array.\");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===1/0)throw new Error(\"Can not convert infinite data stream to array.\");return(await this.iterator()).toArrayForTest()}};Ii.MAX_BUFFER_SIZE=1e4;function En(r,t=null){return new class extends Ii{constructor(){super(...arguments),this.size=t}async iterator(){return r()}}}function ZF(r){return En(async()=>qk(r),r.length)}function JF(r){if(!Vu(r))throw new Error(\"The argument to zip() must be an object or array.\");let t;if(Array.isArray(r))for(let e=0;e{let e=await sw(r,n=>{if(n instanceof Ii)return{value:n.iterator(),recurse:!1};if(Vu(n))return{value:null,recurse:!0};throw new Error(\"Leaves of the structure passed to zip() must be Datasets, not primitives.\")});return XF(e,Dl.SHORTEST)},t)}function Ctt(r){if(r===null)return null;let t=r[0];return HF(t)?{value:vtt(r),recurse:!1}:{value:null,recurse:!0}}function vtt(r){if(r.length===0)throw new Error(\"Can't make a batch of zero elements.\");return r[0]instanceof Lt?Fe(r):ir(r)}var sd=class extends Ii{constructor(t){super(),this.input=t}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`\n`).map(o=>(o.endsWith(\"\\r\")&&(o=o.slice(0,-1)),o))}};var uw='\"',Xh=Symbol(\"out\"),QF=Symbol(\"field\"),cw=Symbol(\"quote\"),Kk=Symbol(\"quoteafterquote\"),tO=Symbol(\"quoteinquote\"),id=class extends Ii{async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let t=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!t)throw new Error(\"Column names must be provided if there is no header line.\");this.fullColumnNames&&t&&y.assert(t.length===this.fullColumnNames.length,()=>\"The length of provided columnNames (\"+this.fullColumnNames.length.toString()+\") does not match the length of the header line read from file (\"+t.length.toString()+\").\"),this.fullColumnNames||(this.fullColumnNames=t);let e=this.fullColumnNames.reduce((o,s)=>(o[s]=o[s]+1||1,o),{}),n=Object.keys(e).filter(o=>e[o]>1);if(y.assert(n.length===0,()=>\"Duplicate column names found: \"+n.toString()),this.columnConfigs){for(let o of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(o)===-1)throw new Error('The key \"'+o+'\" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+\").\")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let e=await(await this.base.iterator()).next();if(e.done)throw new Error(\"No data was found for CSV parsing.\");let n=e.value;return this.parseRow(n,!1)}else return null}constructor(t,e){super(),this.input=t,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=\",\",this.delimWhitespace=!1,this.base=new sd(t),e||(e={}),this.hasHeader=e.hasHeader!==!1,this.fullColumnNames=e.columnNames,this.columnConfigs=e.columnConfigs,this.configuredColumnsOnly=e.configuredColumnsOnly,e.delimWhitespace?(y.assert(e.delimiter==null,()=>\"Delimiter should not be provided when delimWhitespace is true.\"),this.delimWhitespace=!0,this.delimiter=\" \"):this.delimiter=e.delimiter?e.delimiter:\",\"}async iterator(){this.columnNamesValidated||await this.setColumnNames();let t=await this.base.iterator();return this.hasHeader&&(t=t.skip(1)),t.map(e=>this.makeDataElement(e))}makeDataElement(t){let e=this.parseRow(t),n={},o={};for(let s=0;s14||!Number.isInteger(e))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=t.numFramesPerSpectrogram||43,this.sampleRateHz=t.sampleRateHz,this.columnTruncateLength=t.columnTruncateLength||this.fftSize,this.audioTrackConstraints=t.audioTrackConstraints,this.smoothingTimeConstant=t.smoothingTimeConstant||0,this.includeSpectrogram=t.includeSpectrogram!==!1,this.includeWaveform=t.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error(\"Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.\")}summary(){return\"microphone\"}static async create(t={}){if(!L().get(\"IS_BROWSER\"))throw new Error(\"microphone API is only supported in browser environment.\");let e=new r(t);return await e.start(),e}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error(\"Could not obtain audio from microphone.\");let t=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new t,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let e=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,e.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let t,e,n=await this.getAudioData();if(this.includeSpectrogram){let o=this.flattenQueue(n.freqDataQueue);t=this.getTensorFromAudioDataArray(o,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let o=this.flattenQueue(n.timeDataQueue);e=this.getTensorFromAudioDataArray(o,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:t,waveform:e},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let t=[],e=[],n=0;return new Promise(o=>{let s=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-1/0&&o({freqDataQueue:t,timeDataQueue:e}),t.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),e.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(s),o({freqDataQueue:t,timeDataQueue:e}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error(\"Can not convert infinite audio stream to array.\")}getSampleRate(){return this.sampleRateHz}flattenQueue(t){let e=t[0].length,n=new Float32Array(t.length*e);return t.forEach((o,s)=>n.set(o,s*e)),n}getTensorFromAudioDataArray(t,e){let n=new Float32Array(y.sizeFromShape(e));return n.set(t,n.length-t.length),ir(n,e)}};var mw=class r extends er{constructor(t,e){if(super(),this.webcamVideoElement=t,this.webcamConfig=e,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=Oe([0],\"int32\"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,o=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,s=(1-n)/2,i=(1-o)/2,a=s+n,u=o+i;this.cropBox=pi([i,s,u,a],[1,4])}else this.cropBox=pi([0,0,1,1],[1,4])}summary(){return\"webcam\"}static async create(t,e={}){if(!L().get(\"IS_BROWSER\"))throw new Error(\"tf.data.webcam is only supported in browser environment.\");if(!t){if(t=document.createElement(\"video\"),!e.resizeWidth||!e.resizeHeight)throw new Error(\"Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.\");t.width=e.resizeWidth,t.height=e.resizeHeight}let n=new r(t,e);return await n.start(),n}async start(){this.webcamConfig.facingMode&&y.assert(this.webcamConfig.facingMode===\"user\"||this.webcamConfig.facingMode===\"environment\",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:\"user\",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(t){throw t.message=`Error thrown while initializing video stream: ${t.message}`,t}if(!this.stream)throw new Error(\"Could not obtain video from webcam.\");try{this.webcamVideoElement.srcObject=this.stream}catch(t){console.log(t),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(t=>{this.webcamVideoElement.onloadedmetadata=()=>{t()}})}async next(){if(this.isClosed)return{value:null,done:!0};let t;try{t=_y.fromPixels(this.webcamVideoElement)}catch(e){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(e)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(t),done:!1}}catch(e){throw new Error(`Error thrown cropping the video: ${e.message}`)}finally{t.dispose()}else return{value:t,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(t){return B(()=>{let e=je(J(t,\"float32\"),0),n;n=fn.cropAndResize(e,this.cropBox,this.cropBoxInd,this.cropSize,\"bilinear\");let o=n.shape;return R(n,o.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(e=>e.stop());try{this.webcamVideoElement.srcObject=null}catch(e){console.log(e),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error(\"Can not convert infinite video stream to array.\")}};var ad=class{};var Yh=class extends er{split(t){return new jk(this,t)}},jk=class extends Yh{constructor(t,e){super(),this.upstream=t,this.impl=new Xk(t,e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},Xk=class extends Zc{constructor(t,e){super(),this.upstream=t,this.separator=e,this.carryover=\"\"}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let t=await this.upstream.next();if(t.done)return this.carryover===\"\"?!1:(this.outputQueue.push(this.carryover),this.carryover=\"\",!0);let e=t.value.split(this.separator);e[0]=this.carryover+e[0];for(let n of e.slice(0,-1))this.outputQueue.push(n);return this.carryover=e[e.length-1],!0}};var fw=class extends er{decodeUTF8(){return new Yk(this)}},Yk=class extends Yh{constructor(t){super(),this.upstream=t,this.impl=new Zk(t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},Zk=class extends Zc{constructor(t){if(super(),this.upstream=t,L().get(\"IS_BROWSER\"))this.decoder=new TextDecoder(\"utf-8\");else{let{StringDecoder:e}=$k();this.decoder=new e(\"utf8\")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let t=await this.upstream.next(),e;if(t.done)return!1;e=t.value;let n;return L().get(\"IS_BROWSER\")?n=this.decoder.decode(e,{stream:!0}):n=this.decoder.write(Buffer.from(e.buffer)),this.outputQueue.push(n),!0}};var ld=class extends fw{constructor(t,e={}){super(),this.file=t,this.options=e,y.assert(t instanceof Uint8Array||(L().get(\"IS_BROWSER\")?t instanceof File||t instanceof Blob:!1),()=>\"FileChunkIterator only supports File, Blob and Uint8Array right now.\"),this.offset=e.offset||0,this.chunkSize=e.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((e,n)=>{let o=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)e(new Uint8Array(this.file.slice(this.offset,o)));else{let s=new FileReader;s.onload=a=>{let u=s.result;if(u instanceof ArrayBuffer&&(u=new Uint8Array(u)),!(u instanceof Uint8Array))return n(new TypeError(\"FileReader returned unknown type.\"));e(u)},s.onabort=a=>n(new Error(\"Aborted\")),s.onerror=a=>n(new Error(a.type));let i=this.file.slice(this.offset,o);s.readAsArrayBuffer(i)}this.offset=o}),done:!1}}};async function eO(r,t={},e){let n,o;typeof r==\"string\"?n=r:(n=r.url,o=Stt(r));let s=await(e||y.fetch)(n,o);if(s.ok){let i=new Uint8Array(await s.arrayBuffer());return new ld(i,t)}else throw new Error(s.statusText)}var Stt=r=>({method:r.method,headers:r.headers,body:r.body,mode:r.mode,credentials:r.credentials,cache:r.cache,redirect:r.redirect,referrer:r.referrer,integrity:r.integrity});function dw(r){return typeof r==\"string\"&&r.slice(0,7)===\"file://\"}var ud=class extends ad{constructor(t,e={}){super(),this.input=t,this.options=e}async iterator(){if(dw(this.input)&&L().get(\"IS_NODE\")){let t=hw();this.input=t.readFileSync(this.input.slice(7))}return new ld(this.input,this.options)}};var cd=class extends ad{constructor(t,e={}){super(),this.url=t,this.fileOptions=e}async iterator(){return dw(this.url)?new ud(this.url,this.fileOptions).iterator():eO(this.url,this.fileOptions)}};function rO(r,t={}){return new id(new cd(r),t)}function nO(r){let t=jh(r);return En(async()=>t)}function oO(r){return En(async()=>{let t=await r();return jh(()=>t.next())})}async function sO(r,t){return mw.create(r,t)}async function iO(r){return pw.create(r)}var Jk=\"4.22.0\";function tt(r,t){Array.isArray(r)||(r=[r]),r.forEach(e=>{e!=null&&y.assert(e.dtype!==\"complex64\",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var Ntt=Xr.whereImpl,pd=class r extends Bo{nextDataId(){return r.nextDataId++}constructor(){super(),this.blockSize=48,this.firstUse=!0,this.data=new Ta(this,Bn())}write(t,e,n){this.firstUse&&(this.firstUse=!1,L().get(\"IS_NODE\")&&S.warn(`\n============================\nHi, looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, visit https://github.com/tensorflow/tfjs-node for more details. \n============================`));let o={id:this.nextDataId()};return this.data.set(o,{values:t,dtype:n,refCount:1}),o}makeTensorInfo(t,e,n){let o;if(e===\"string\"&&n!=null&&n.length>0&&y.isString(n[0])){let s=n.map(i=>y.encodeString(i));o=this.write(s,t,e)}else o=this.write(n,t,e);return{dataId:o,shape:t,dtype:e}}refCount(t){return this.data.has(t)?this.data.get(t).refCount:0}incRef(t){let e=this.data.get(t);e.refCount++}decRef(t){if(this.data.has(t)){let e=this.data.get(t);e.refCount--}}move(t,e,n,o,s){this.data.set(t,{values:e,dtype:o,refCount:s})}numDataIds(){return this.data.numDataIds()}async read(t){return this.readSync(t)}readSync(t){let{dtype:e,complexTensorInfos:n}=this.data.get(t);if(e===\"complex64\"){let o=this.readSync(n.real.dataId),s=this.readSync(n.imag.dataId);return S.mergeRealAndImagArrays(o,s)}return y.convertBackendValuesAndArrayBuffer(this.data.get(t).values,e)}bufferSync(t){let e=this.readSync(t.dataId);if(t.dtype===\"string\")try{let n=e.map(o=>y.decodeString(o));return wt(t.shape,t.dtype,n)}catch(n){throw new Error(\"Failed to decode encoded string bytes into utf-8\")}return wt(t.shape,t.dtype,e)}makeOutput(t,e,n){return Bn().makeTensorFromTensorInfo(this.makeTensorInfo(e,n,t),this)}disposeData(t,e=!1){if(this.data.has(t)){if(this.data.get(t).refCount--,!e&&this.data.get(t).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(t);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(t)}return!0}disposeIntermediateTensorInfo(t){this.disposeData(t.dataId)}async time(t){let e=y.now();return t(),{kernelMs:y.now()-e}}memory(){return{unreliable:!0,reasons:[\"The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less.\"]}}where(t){tt([t],\"where\");let e=this.readSync(t.dataId);return Ntt(t.shape,e)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};pd.nextDataId=0;var Ew={};Kt(Ew,{addImpl:()=>eT,bincountImpl:()=>dd,bincountReduceImpl:()=>gw,bitwiseAndImpl:()=>rT,castImpl:()=>tT,ceilImpl:()=>nT,concatImpl:()=>Jc,equalImpl:()=>oT,expImpl:()=>iT,expm1Impl:()=>lT,floorDivImpl:()=>cT,floorImpl:()=>uT,gatherNdImpl:()=>xw,gatherV2Impl:()=>yw,greaterEqualImpl:()=>mT,greaterImpl:()=>pT,lessEqualImpl:()=>dT,lessImpl:()=>fT,linSpaceImpl:()=>bw,logImpl:()=>hT,maxImpl:()=>ww,maximumImpl:()=>gT,minimumImpl:()=>xT,multiplyImpl:()=>Zh,negImpl:()=>yT,notEqualImpl:()=>bT,prodImpl:()=>wT,raggedGatherImpl:()=>Iw,raggedRangeImpl:()=>Cw,raggedTensorToTensorImpl:()=>vw,rangeImpl:()=>tp,rsqrtImpl:()=>CT,scatterImpl:()=>Ci,sigmoidImpl:()=>LO,simpleAbsImpl:()=>Qk,sliceImpl:()=>ep,sparseFillEmptyRowsImpl:()=>Sw,sparseReshapeImpl:()=>Nw,sparseSegmentReductionImpl:()=>gd,sqrtImpl:()=>VO,squaredDifferenceImpl:()=>ST,staticRegexReplaceImpl:()=>NT,stridedSliceImpl:()=>kw,stringNGramsImpl:()=>rp,stringSplitImpl:()=>np,stringToHashBucketFastImpl:()=>op,subImpl:()=>TT,tileImpl:()=>Tw,topKImpl:()=>_w,transposeImpl:()=>hd,uniqueImpl:()=>sp});function Qk(r){let t=new Float32Array(r.length);for(let e=0;e{let{x:t}=r.inputs,e=r.backend;tt(t,\"abs\");let n=new Float32Array(y.sizeFromShape(t.shape)),o=e.data.get(t.dataId).values;return n=Qk(o),e.makeOutput(n,t.shape,t.dtype)},lO={kernelName:Ai,backendName:\"cpu\",kernelFunc:ktt};function Qt(r){return(t,e,n,o,s)=>{let i=S.assertAndGetBroadcastShape(t,e),a=i.length,u=y.computeStrides(i),l=y.sizeFromShape(i),c=y.getTypedArrayFromDType(s,l),p=t.length,m=e.length,f=y.computeStrides(t),d=y.computeStrides(e),h=S.getBroadcastDims(t,i),g=S.getBroadcastDims(e,i);if(h.length+g.length===0)for(let x=0;xw[A]=0);let I=y.locToIndex(w,p,f),N=b.slice(-m);g.forEach(A=>N[A]=0);let E=y.locToIndex(N,m,d);c[x]=r(n[I],o[E])}return[c,i]}}function Ir(r){let{inputs:t,backend:e}=r,{real:n,imag:o}=t,s=e.data.get(n.dataId).values,i=e.data.get(o.dataId).values,a=e.makeTensorInfo(n.shape,\"complex64\"),u=e.data.get(a.dataId);return u.complexTensorInfos={real:e.makeTensorInfo(n.shape,\"float32\",s),imag:e.makeTensorInfo(o.shape,\"float32\",i)},a}var uO={kernelName:Ap,backendName:\"cpu\",kernelFunc:Ir};function md(r,t,e=\"float32\"){if(e===\"complex64\"){let o=md(r,t,\"float32\"),s=md(r,t,\"float32\");return Ir({inputs:{real:o,imag:s},backend:r})}let n=y.makeZerosTypedArray(y.sizeFromShape(t),e);return r.makeTensorInfo(t,e,n)}function Zr(r){let{inputs:t,backend:e}=r,{x:n}=t;return e.incRef(n.dataId),{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}var cO={kernelName:go,backendName:\"cpu\",kernelFunc:Zr};function Ro(r){let{inputs:t,backend:e}=r,{input:n}=t,o=e.data.get(n.dataId).complexTensorInfos.real,s=e.data.get(o.dataId).values;return e.makeTensorInfo(o.shape,o.dtype,s)}var pO={kernelName:Vp,backendName:\"cpu\",kernelFunc:Ro};function tT(r,t,e,n){if(n===\"int32\"){let o=Int32Array.from(r);return[t,\"int32\",o]}if(n===\"bool\"){let o=y.toTypedArray([0],e),[s,i]=Qt((a,u)=>a!==u?1:0)(t,[],r,o,\"bool\");return[i,\"bool\",s]}throw new Error(`Error in Cast: failed to cast ${e} to ${n}`)}function Fo(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{dtype:s}=n;if(s===\"complex64\"){if(o.dtype===\"complex64\")return Zr({inputs:{x:o},backend:e});let c=md(e,o.shape,o.dtype),p=Fo({inputs:{x:o},backend:e,attrs:{dtype:\"float32\"}}),m=Ir({inputs:{real:p,imag:c},backend:e});return e.disposeIntermediateTensorInfo(c),e.disposeIntermediateTensorInfo(p),m}if(o.dtype===\"complex64\"){let c=Ro({inputs:{input:o},backend:e}),p=Fo({inputs:{x:c},backend:e,attrs:{dtype:s}});return e.disposeIntermediateTensorInfo(c),p}if(!y.hasEncodingLoss(o.dtype,s)){let c=Zr({inputs:{x:o},backend:e});return{dataId:c.dataId,shape:c.shape,dtype:s}}let i=e.data.get(o.dataId).values,[a,u,l]=tT(i,o.shape,o.dtype,s);return e.makeTensorInfo(a,u,l)}var mO={kernelName:fo,backendName:\"cpu\",kernelFunc:Fo};function oe(r,t,e,n){return e==null?({inputs:o,backend:s})=>{let{a:i,b:a}=o,u=s;tt([i,a],r);let l=u.data.get(i.dataId).values,c=u.data.get(a.dataId).values,p=i.dtype===\"string\"?S.fromUint8ToStringArray(l):l,m=i.dtype===\"string\"?S.fromUint8ToStringArray(c):c,f=n||i.dtype,[d,h]=t(i.shape,a.shape,p,m,f);return u.makeTensorInfo(h,f,d)}:({inputs:o,backend:s})=>{let{a:i,b:a}=o,u=s;if(i.dtype===\"complex64\"||a.dtype===\"complex64\"){let l=Fo({inputs:{x:i},backend:u,attrs:{dtype:\"complex64\"}}),c=u.data.get(l.dataId),p=c.complexTensorInfos.real,m=c.complexTensorInfos.imag,f=u.data.get(p.dataId).values,d=u.data.get(m.dataId).values,h=Fo({inputs:{x:a},backend:u,attrs:{dtype:\"complex64\"}}),g=u.data.get(h.dataId),x=g.complexTensorInfos.real,b=g.complexTensorInfos.imag,w=u.data.get(x.dataId).values,I=u.data.get(b.dataId).values,[N,E,A]=e(i.shape,a.shape,f,d,w,I),D=u.makeTensorInfo(A,\"float32\",N),F=u.makeTensorInfo(A,\"float32\",E),M=Ir({inputs:{real:D,imag:F},backend:u});return u.disposeIntermediateTensorInfo(l),u.disposeIntermediateTensorInfo(h),u.disposeIntermediateTensorInfo(D),u.disposeIntermediateTensorInfo(F),M}else{let l=u.data.get(i.dataId).values,c=u.data.get(a.dataId).values,p=n||i.dtype,[m,f]=t(i.shape,a.shape,l,c,p);return u.makeTensorInfo(f,p,m)}}}function fd(r){return(t,e,n,o,s,i)=>{let a=S.assertAndGetBroadcastShape(t,e),u=y.sizeFromShape(a),l=a.length,c=y.computeStrides(a),p=y.getTypedArrayFromDType(\"float32\",u),m=y.getTypedArrayFromDType(\"float32\",u),f=S.getBroadcastDims(t,a),d=S.getBroadcastDims(e,a),h=S.mergeRealAndImagArrays(n,o),g=S.mergeRealAndImagArrays(s,i),x=t.length,b=y.computeStrides(t),w=e.length,I=y.computeStrides(e);if(f.length+d.length===0)for(let N=0;NA[G]=0);let D=y.locToIndex(A,x,b),F=E.slice(-w);d.forEach(G=>F[G]=0);let M=y.locToIndex(F,w,I),V=r(h[D*2],h[D*2+1],g[M*2],g[M*2+1]);p[N]=V.real,m[N]=V.imag}return[p,m,a]}}var eT=Qt((r,t)=>r+t),Ttt=fd((r,t,e,n)=>({real:r+e,imag:t+n})),ya=oe(no,eT,Ttt),fO={kernelName:no,backendName:\"cpu\",kernelFunc:ya};function dd(r,t,e,n,o){let s=y.sizeFromShape(n),i=y.makeZerosTypedArray(o,e);for(let a=0;a=o||(s>0?i[u]+=t[a]:i[u]+=1)}return i}function gw(r,t,e,n=!1){let o=r.shape[0],s=r.shape[1],i=wt([o,e],t.dtype);for(let a=0;a=e||(n?i.set(1,a,l):t.size>0?i.set(i.get(a,l)+t.get(a,u),a,l):i.set(i.get(a,l)+1,a,l))}return i}var rT=Qt((r,t)=>r&t),_tt=oe($a,rT),dO={kernelName:$a,backendName:\"cpu\",kernelFunc:_tt};function _r(r){return(t,e,n)=>{let o=y.getArrayFromDType(e,t.length);for(let s=0;s{let{x:i}=n;tt(i,r);let a=s,u=a.data.get(i.dataId).values,l;if(i.dtype===\"string\"){if(!Array.isArray(u))throw new Error(\"String tensor's value was not an instance of Array\");l=S.fromUint8ToStringArray(u)}else l=u;let c=e||i.dtype,p=t(l,c,o);return a.makeTensorInfo(i.shape,c,p)}}var nT=_r(r=>Math.ceil(r)),Ett=An(Jo,nT),hO={kernelName:Jo,backendName:\"cpu\",kernelFunc:Ett};function Jc(r,t,e,n){let o=y.getArrayFromDType(e,y.sizeFromShape(t));if(n&&e!==\"string\"){let s=0;r.forEach(i=>{let a=y.sizeFromShape(i.shape);o.set(i.vals,s),s+=a})}else{let s=0;r.forEach(i=>{let a=e===\"string\"?S.fromUint8ToStringArray(i.vals):i.vals,u=0;for(let l=0;lr===t?1:0),sT=oe(za,oT,null,\"bool\"),gO={kernelName:za,backendName:\"cpu\",kernelFunc:sT};var iT=_r(r=>Math.exp(r)),aT=An(cs,iT,\"float32\"),xO={kernelName:cs,backendName:\"cpu\",kernelFunc:aT};var lT=_r(r=>Math.expm1(r)),Att=An(ps,lT),yO={kernelName:ps,backendName:\"cpu\",kernelFunc:Att};var uT=_r(r=>Math.floor(r)),Dtt=An(ms,uT),bO={kernelName:ms,backendName:\"cpu\",kernelFunc:Dtt};var cT=Qt((r,t)=>Math.floor(r/t)),$tt=oe(fs,cT,null,\"int32\"),wO={kernelName:fs,backendName:\"cpu\",kernelFunc:$tt};function xw(r,t,e,n,o,s,i,a,u){let l=wt([n,s],e);for(let c=0;c=u/s)throw new Error(`Invalid indices: ${p} does not index into ${a}`);for(let f=0;fr>t?1:0),Rtt=oe(Ga,pT,null,\"bool\"),IO={kernelName:Ga,backendName:\"cpu\",kernelFunc:Rtt};var mT=Qt((r,t)=>r>=t?1:0),Ftt=oe(hs,mT,null,\"bool\"),CO={kernelName:hs,backendName:\"cpu\",kernelFunc:Ftt};var fT=Qt((r,t)=>rr<=t?1:0),Mtt=oe(Ua,dT,null,\"bool\"),SO={kernelName:Ua,backendName:\"cpu\",kernelFunc:Mtt};function bw(r,t,e){let n=(t-r)/(e-1),o=y.makeZerosTypedArray(e,\"float32\");o[0]=r;for(let s=1;sMath.log(r)),Ptt=An(ws,hT),NO={kernelName:ws,backendName:\"cpu\",kernelFunc:Ptt};function ww(r,t,e,n){let o=y.getTypedArrayFromDType(n,y.sizeFromShape(e));for(let s=0;sa)&&(a=l)}o[s]=a}return o}var gT=Qt((r,t)=>Math.max(r,t)),Ltt=oe(Ss,gT),kO={kernelName:Ss,backendName:\"cpu\",kernelFunc:Ltt};var xT=Qt((r,t)=>Math.min(r,t)),ztt=oe(_s,xT),TO={kernelName:_s,backendName:\"cpu\",kernelFunc:ztt};var Zh=Qt((r,t)=>r*t),Btt=fd((r,t,e,n)=>({real:r*e-t*n,imag:r*n+t*e})),Qc=oe(Ds,Zh,Btt),_O={kernelName:Ds,backendName:\"cpu\",kernelFunc:Qc};function yT(r,t,e){let n=y.createScalarValue(-1,e);return Zh([],t,n,r,e)}function Vtt(r){let{inputs:t,backend:e}=r,{x:n}=t;tt(n,\"neg\");let o=e.data.get(n.dataId).values,[s,i]=yT(o,n.shape,n.dtype);return e.makeTensorInfo(i,n.dtype,s)}var EO={kernelName:zi,backendName:\"cpu\",kernelFunc:Vtt};var bT=Qt((r,t)=>r!==t?1:0),Gtt=oe(Za,bT,null,\"bool\"),AO={kernelName:Za,backendName:\"cpu\",kernelFunc:Gtt};function hd(r,t,e,n,o){let s=t.length,i=y.sizeFromShape(t),a=y.computeStrides(t),u=y.computeStrides(o),l=y.getTypedArrayFromDType(e,y.sizeFromShape(o));for(let c=0;ce.disposeIntermediateTensorInfo(b)),e.makeTensorInfo(x,g,d)}var $O={kernelName:Ms,backendName:\"cpu\",kernelFunc:Wtt};function Utt(r,t,e){r.forEach((n,o)=>{if(n<0||n>=e){let s=y.indexToLoc(o,t.length,y.computeStrides(t)).join(\",\");throw new Error(`indices[${s}] = ${n} is not in [0, ${e})`)}})}function Htt(r,t){for(let e=0;eo)throw new Error(\"Ragged splits must not point past values\");for(let s=1;sn[s])throw new Error(\"Ragged splits must be sorted in ascending order\")}}function qtt(r,t,e,n){let o=[],s=0,i=t.length-1+e.length,a=new Array(i).fill(null).map(()=>[0]);Htt(e,n);let u=1;for(let l=0;l=0){let h=a[d],g=h[h.length-1]-f[c];for(let x=c;xo[i]=s)}return t}function RO(r,t){let e=r.slice(0,t);for(;e.length1)throw new Error(\"starts must be a scalar or vector\");if(o.length>1)throw new Error(\"limits must be a scalar or vector\");if(i.length>1)throw new Error(\"deltas must be a scalar or vector\");let a=t.length===0,u=o.length===0,l=i.length===0,c=[];a||c.push(t[0]),u||c.push(o[0]),l||c.push(i[0]);for(let g=1;g0&&bx)I=0;else if(I=Math.ceil(Math.abs((b-x)/w)),I>FO)throw new Error(`Requires ((limit - start) / delta) <= ${FO}`);m[g+1]=m[g]+I}let f=m[p],d=y.getArrayFromDType(e,f),h=0;for(let g=0;gn&&(n=s)}return n}static getMaxWidthValueRowID(t){let e=t.length;if(e===0)return 0;let n=0,o=t[0],s=0;for(let i=1;i\"Final length of result must be equal to firstDimension.\"),s}calculateOutputIndexRowSplit(t,e,n,o){let s=t.length,i=[];for(let a=0;a0&&i.length!==t[s-1])throw new Error(\"Invalid row split size.\");return i}calculateOutputIndexValueRowID(t,e,n,o){let s=t.length,i=[];if(s===0)return[];let a=0,u=t[0];if(u>=e.length)throw new Error(`Got currentValueRowId=${u}, which is not less than ${e.length}`);let l=e[u];i.push(l);for(let c=1;c=0&&(++a,a=e.length)throw new Error(`Got nextValueRowId=${p} which is not less than ${e.length}`);l=e[p]}i.push(l)}if(i.length!==t.length)throw new Error(\"Invalid row ids.\");return i}calculateOutputIndex(t,e,n,o){let s=this.getRowPartitionTensor(t),i=this.getRowPartitionTypeByDimension(t);switch(i){case Oo.VALUE_ROWIDS:return this.calculateOutputIndexValueRowID(s,e,n,o);case Oo.ROW_SPLITS:if(s.length-1>e.length)throw new Error(`Row partition size is greater than output size: ${s.length-1} > ${e.length}`);return this.calculateOutputIndexRowSplit(s,e,n,o);default:throw new Error(`Unsupported partition type: ${Oo[i]}`)}}getFirstDimensionSize(){let t=this.rowPartitionValues[0];if(this.rowPartitionTypes.length===0)throw new Error(\"No row_partition_types given.\");let e=this.rowPartitionTypes[0];switch(e){case Oo.FIRST_DIM_SIZE:return t[0];case Oo.VALUE_ROWIDS:throw new Error(\"Cannot handle VALUE_ROWIDS in first dimension.\");case Oo.ROW_SPLITS:return this.rowPartitionValuesShapes[0][0]-1;default:throw new Error(`Cannot handle type ${Oo[e]}`)}}compute(){if(this.rowPartitionValues[0].length<=0)throw new Error(\"Invalid first partition input. Tensor requires at least one element.\");let e=this.getFirstDimensionSize(),n=this.calculateOutputSize(e),o=new Array(this.raggedRank+1);o[o.length-1]=1;for(let u=o.length-2;u>=0;--u)o[u]=o[u+1]*n[u+1];let s=MO(n,!1),i=y.getArrayFromDType(this.valuesDType,y.sizeFromShape(s));if(o[0]*n[0]>0){let u=this.calculateFirstParentOutputIndex(e,o[0],n[0]);for(let l=1;l<=this.raggedRank;++l)u=this.calculateOutputIndex(l-1,u,o[l],n[l]);this.setOutput(this.raggedRank,u,i,s)}return[s,i]}setOutput(t,e,n,o){if(n.length===0)return;let s=this.values,i=n,a=o.slice();a=a.slice(t+1);let u=y.sizeFromShape(a),l=e.length,c=this.defaultValue;if(c.length!==u&&c.length!==1){let d=this.defaultValueShape;B(()=>{let h=R(c,d);c=sa(h,a).dataSync()})}let p=0,m=0,f=0;for(let d=0;d<=l;++d){let h=d=l){let g=n.length;h=Math.floor(g/u)}if(h>f)if(this.defaultValue.length===1)i.subarray(f*u,h*u).fill(this.defaultValue[0]),f=h;else for(;h>f;){let g=i.slice(f*u);OO(g,c,u),++f}h<0?(p=d+1,m=f):(p=d,m=f,f=m+1)}}};function OO(r,t,e){for(let n=0;n= 0`);if(n<-1)throw new Error(`Dimension ${n} must be >= -1`);n=-1}e.push(n)}return e}function vw(r,t,e,n,o,s,i,a,u,l){return new IT(r,t,e,n,o,s,i,a,u,l).compute()}function tp(r,t,e,n){let o=r===t,s=r1;if(o||s||i)return y.makeZerosTypedArray(0,n);let a=Math.abs(Math.ceil((t-r)/e)),u=y.makeZerosTypedArray(a,n);t1/Math.sqrt(r)),Ytt=An(Us,CT),PO={kernelName:Us,backendName:\"cpu\",kernelFunc:Ytt};function Ci(r,t,e,n,o,s,i,a,u,l){let c=[n/o,o],p=r.values,m=t.values;if(n===0)return wt(e,t.dtype);let f=u instanceof le?u:wt(c,t.dtype);typeof u==\"string\"||typeof u==\"number\"?f.values.fill(u):typeof u==\"boolean\"&&f.values.fill(+u);for(let d=0;d=n/o)throw new Error(`Invalid indices: ${h} does not index into ${e}`);for(let x=0;x1/(1+Math.exp(-r))),vT=At(Xs,r=>1/(1+Math.exp(-r))),zO={kernelName:Xs,backendName:\"cpu\",kernelFunc:vT};function ep(r,t,e,n,o){let s=Be.isSliceContinous(n,t,e),i=y.sizeFromShape(e),a=y.computeStrides(n);if(s){let p=Be.computeFlatOffset(t,a);return o===\"string\"?r.slice(p,p+i):r.subarray(p,p+i)}let u=o===\"string\"?S.fromUint8ToStringArray(r):r,l=wt(n,o,u),c=wt(e,o);for(let p=0;pd+t[h]);c.set(l.get(...f),...m)}return o===\"string\"?S.fromStringArrayToUint8(c.values):c.values}function Mo(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{begin:s,size:i}=n;tt(o,\"slice\");let[a,u]=Be.parseSliceParams(o,s,i);Be.assertParamsValid(o,a,u);let l=e.data.get(o.dataId).values,c=ep(l,a,u,o.shape,o.dtype);return e.makeTensorInfo(u,o.dtype,c)}var BO={kernelName:Ui,backendName:\"cpu\",kernelFunc:Mo};function Sw(r,t,e,n,o,s,i){let a=t[0],u=s[0],l=new Array(u),c=new Array(a),p=t[1];if(u===0){if(a!==0)throw new Error(S.getSparseFillEmptyRowsIndicesDenseShapeMismatch(a));let g=y.getArrayFromDType(e,0),x=y.getArrayFromDType(o,0);return[g,[0,p],x,l,c]}let m=!0,f=0,d=new Array(u).fill(0);for(let g=0;g=u)throw new Error(S.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(g,x,u));++d[x],m=m&&x>=f,f=x}let h=!0;for(let g=0;g0&&(d[g]+=d[g-1])}if(h&&m){let g=r,x=n;for(let b=0;b0){f[m-1]=1;for(let g=m-2;g>=0;--g)f[g]=f[g+1]*n[g+1]}let d=[];if(a>0){d[a-1]=1;for(let g=a-2;g>=0;--g)d[g]=d[g+1]*u[g+1]}let h=y.getArrayFromDType(e,i*a);for(let g=0;g0?o[a-1]+1:0;if(p<0)throw new Error(S.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let m=t.slice();m[0]=p;let f=m.reduce((w,I)=>w*I,1),d=y.getArrayFromDType(e,f);if(a===0)return p>0&&d.fill(i),[d,m];if(p<=0)throw new Error(S.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let h=0,g=1,x=0,b=o[h];for(;;){let w=0;if(g=w)throw new Error(S.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage())}if(b<0||b>=p)throw new Error(S.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(b,p));b>x&&d.fill(i,x*l,b*l);for(let I=h;I=u[0])throw new Error(S.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(I,n[I],u[0]));for(let E=0;Ea)break}return xMath.sqrt(r)),Ztt=At(Zs,r=>Math.sqrt(r)),GO={kernelName:Zs,backendName:\"cpu\",kernelFunc:Ztt};var ST=Qt((r,t)=>{let e=r-t;return e*e}),Jtt=oe(ti,ST),WO={kernelName:ti,backendName:\"cpu\",kernelFunc:Jtt};var NT=_r((r,t)=>{let{pattern:e,replaceGlobal:n,rewrite:o}=t;return r.replace(new RegExp(e,n?\"g\":\"\"),o)}),Qtt=An(ec,NT),UO={kernelName:ec,backendName:\"cpu\",kernelFunc:Qtt};function kw(r,t,e,n){let o=wt(r,t.dtype);for(let s=0;s0?0:a-u),f=0;f+=l*this.leftPad.length;for(let b=0;bb.forEach(w=>h[g++]=w);for(let b=0;b0){x(t[m+p-1]);for(let b=0;b0){let u=e[0];if(u!==0)throw new Error(`First split value must be 0, got ${u}`);for(let l=1;l=u;if(c=c&&e[l]<=n,!c)throw new Error(`Invalid split value ${e[l]}, must be in [${u}, ${n}]`);u=e[l]}if(u!==n)throw new Error(`Last split value must be data size. Expected ${n}, got ${u}`)}let s=o-1,i=y.getArrayFromDType(\"int32\",o);if(n===0||o===0){let u=new Array(n);for(let l=0;l<=s;++l)i[l]=0;return[u,i]}i[0]=0;for(let u=1;u<=s;++u){let l=e[u]-e[u-1],c=0;this.nGramWidths.forEach(p=>{c+=this.getNumNGrams(l,p)}),this.preserveShort&&l>0&&c===0&&(c=1),i[u]=i[u-1]+c}let a=new Array(i[s]);for(let u=0;u{let m=e[u+1]-e[u],f=this.getNumNGrams(m,p);this.createNGrams(t,l,a,c,f,p),c+=f}),this.preserveShort&&c===i[u]){let p=e[u+1]-e[u];if(p===0)continue;let m=p+2*this.padWidth;this.createNGrams(t,l,a,c,1,m)}}return[a,i]}};function rp(r,t,e,n,o,s,i,a){return new kT(e,n,o,s,i,a).compute(r,t)}function tet(r,t,e,n){if(!r.length)return;if(t.length===0){for(let s=0;sr-t),eet=fd((r,t,e,n)=>({real:r-e,imag:t-n})),Jh=oe(ei,TT,eet),HO={kernelName:ei,backendName:\"cpu\",kernelFunc:Jh};function Tw(r,t){let e=new Array(r.rank);for(let o=0;o{let e=t.value-r.value;return e===0?r.index-t.index:e};function qO(r,t,e=0,n=r.length-1){for(;n>e;){if(n-e>600){let a=n-e+1,u=t-e+1,l=Math.log(a),c=.5*Math.exp(2*l/3),p=.5*Math.sqrt(l*c*(a-c)/a)*Math.sign(u-a/2),m=Math.max(e,Math.floor(t-u*c/a+p)),f=Math.min(n,Math.floor(t+(a-u)*c/a+p));qO(r,t,m,f)}let o=r[t],s=e,i=n;for(y.swap(r,e,t),Qh(r[n],o)>0&&y.swap(r,e,n);s0;)i=i-1}Qh(r[e],o)===0?y.swap(r,e,i):(i=i+1,y.swap(r,i,n)),i<=t&&(e=i+1),t<=i&&(n=i-1)}}function _w(r,t,e,n,o){let s=t[t.length-1],[i,a]=[r.length/s,s],u=y.getTypedArrayFromDType(e,i*n),l=y.getTypedArrayFromDType(\"int32\",i*n);for(let p=0;pd[w]={value:b,index:w}),n{for(let g=0;gnew pd,1);var _T=At(ls,r=>r>=0?r:Math.exp(r)-1),jO={kernelName:ls,backendName:\"cpu\",kernelFunc:_T};function ET(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{alpha:s}=n;tt([o],\"leakyRelu\");let i=y.sizeFromShape(o.shape),a=e.data.get(o.dataId).values,u=y.getTypedArrayFromDType(\"float32\",i);for(let l=0;lr<0?t*r:r);function AT(r){let{inputs:t,backend:e}=r,{x:n,alpha:o}=t;tt([n,o],\"prelu\");let s=e.data.get(n.dataId).values,i=e.data.get(o.dataId).values,[a,u]=ret(n.shape,o.shape,s,i,\"float32\");return e.makeTensorInfo(u,\"float32\",a)}var YO={kernelName:Os,backendName:\"cpu\",kernelFunc:AT};var DT=At(Ls,r=>Math.max(0,r)),ZO={kernelName:Ls,backendName:\"cpu\",kernelFunc:DT};var $T=At(Vs,r=>Math.min(Math.max(0,r),6)),JO={kernelName:Vs,backendName:\"cpu\",kernelFunc:$T};function ip(r,t,e,n,o){if(e===\"linear\")return Zr({inputs:{x:t},backend:r});if(e===\"relu\")return DT({inputs:{x:t},backend:r});if(e===\"elu\")return _T({inputs:{x:t},backend:r});if(e===\"relu6\")return $T({inputs:{x:t},backend:r});if(e===\"prelu\")return AT({inputs:{x:t,alpha:n},backend:r});if(e===\"leakyrelu\")return ET({inputs:{x:t},backend:r,attrs:{alpha:o}});if(e===\"sigmoid\")return vT({inputs:{x:t},backend:r});throw new Error(`Activation ${e} has not been implemented for the CPU backend.`)}function te(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{shape:s}=n,i=y.sizeFromShape(o.shape),a=y.inferFromImplicitShape(s,i),u=y.sizeFromShape(a);y.assert(i===u,()=>`The new shape (${a}) has ${u} elements and the old shape (${o.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`),e.incRef(o.dataId);let l=e.data.get(o.dataId);if(l.complexTensorInfos!=null){let c=l.complexTensorInfos.real,p=l.complexTensorInfos.imag;c.shape=a,p.shape=a}return{dataId:o.dataId,shape:a,dtype:o.dtype}}var QO={kernelName:Gi,backendName:\"cpu\",kernelFunc:te};function RT(r){let{inputs:t,backend:e,attrs:n}=r,{a:o,b:s}=t,{transposeA:i,transposeB:a}=n;tt([o,s],\"matMul\");let u=o.shape.length,l=s.shape.length,c=i?o.shape[u-2]:o.shape[u-1],p=a?s.shape[l-1]:s.shape[l-2],m=i?o.shape[u-1]:o.shape[u-2],f=a?s.shape[l-2]:s.shape[l-1],d=o.shape.slice(0,-2),h=s.shape.slice(0,-2),g=y.sizeFromShape(d),x=y.sizeFromShape(h),w=Hr.assertAndGetBroadcastShape(o.shape.slice(0,-2),s.shape.slice(0,-2)).concat([m,f]);y.assert(c===p,()=>`Error in matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${o.shape} and ${s.shape} and transposeA=${i} and transposeB=${a} must match.`);let I=i?[g,c,m]:[g,m,c],N=a?[x,f,p]:[x,p,f],E=te({inputs:{x:o},backend:e,attrs:{shape:I}}),A=te({inputs:{x:s},backend:e,attrs:{shape:N}}),D=i?E.shape[1]:E.shape[2],F=i?E.shape[2]:E.shape[1],M=a?A.shape[1]:A.shape[2],V=Math.max(g,x),G=e.data.get(E.dataId).values,W=e.data.get(A.dataId).values,q=y.computeStrides(E.shape),H=y.computeStrides(A.shape),[j,Y,Z]=i?[q[0],1,q[1]]:[q[0],q[1],1],[et,nt,st]=a?[1,H[1],H[0]]:[H[1],1,H[0]],lt=F*M,ot=wt([V,F,M],E.dtype),it=ot.values,ft=e.blockSize;for(let gt=0;gtMath.acos(r)),rM={kernelName:Go,backendName:\"cpu\",kernelFunc:oet};var set=At(Wo,r=>Math.acosh(r)),nM={kernelName:Wo,backendName:\"cpu\",kernelFunc:set};function iet(r){let{inputs:t,backend:e}=r,n=t;tt(t,\"addN\");let o=n.map(a=>e.data.get(a.dataId).values),s=wt(n[0].shape,n[0].dtype),i=s.values;for(let a=0;ab&&(b=N,w=I)}f[g]=w}return l.forEach(g=>e.disposeIntermediateTensorInfo(g)),e.makeTensorInfo(c,\"int32\",f)}var aM={kernelName:Di,backendName:\"cpu\",kernelFunc:cet};function pet(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s}=n;tt(o,\"argMin\");let i=y.parseAxisParam(s,o.shape),a=S.getAxesPermutation(i,o.shape.length),u=o,l=[];a!=null&&(u=We({inputs:{x:o},backend:e,attrs:{perm:a}}),l.push(u),i=S.getInnerMostAxes(i.length,u.shape.length)),i=[i[0]],S.assertAxesAreInnerMostDims(\"argMin\",i,u.shape.length);let[c,p]=S.computeOutAndReduceShapes(u.shape,i),m=y.sizeFromShape(c),f=y.makeZerosTypedArray(m,\"int32\"),d=y.sizeFromShape(p),h=e.data.get(u.dataId).values;for(let g=0;ge.disposeIntermediateTensorInfo(g)),e.makeTensorInfo(c,\"int32\",f)}var lM={kernelName:$i,backendName:\"cpu\",kernelFunc:pet};var met=At(Ho,r=>Math.asin(r)),uM={kernelName:Ho,backendName:\"cpu\",kernelFunc:met};var fet=At(qo,r=>Math.asinh(r)),cM={kernelName:qo,backendName:\"cpu\",kernelFunc:fet};var det=At(Ko,r=>Math.atan(r)),pM={kernelName:Ko,backendName:\"cpu\",kernelFunc:det};var het=Qt((r,t)=>Math.atan2(r,t)),get=oe(Xo,het),mM={kernelName:Xo,backendName:\"cpu\",kernelFunc:get};var xet=At(jo,r=>Math.atanh(r)),fM={kernelName:jo,backendName:\"cpu\",kernelFunc:xet};function xd(r,t,e,n,o,s){let i=o.strideHeight,a=o.strideWidth,u=o.dilationHeight,l=o.dilationWidth,c=o.effectiveFilterHeight,p=o.effectiveFilterWidth,m=o.padInfo.top,f=o.padInfo.left,d=s===\"max\"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,h=wt(o.outShape,e),g=h.values,x=o.outShape[1]*o.outShape[2]*o.outShape[3],b=o.outShape[2]*o.outShape[3],w=o.outShape[3];for(let I=0;IY?Y=ft:s===\"avg\"&&(Z+=ft,et++)}if(isNaN(Y))break}let nt=G+W*w+A;g[nt]=s===\"avg\"?Z/et:Y}}}return h}function Aw(r,t,e,n,o=!1,s=!1){let i=wt(n.outShape,\"int32\"),a=n.strideHeight,u=n.strideWidth,l=n.dilationHeight,c=n.dilationWidth,p=n.effectiveFilterHeight,m=n.effectiveFilterWidth,f=n.padInfo.top,d=n.padInfo.left,h=wt(t,e,r);for(let g=0;gM&&(M=j,o?V=s?((g*n.inHeight+G)*n.inWidth+q)*n.inChannels+x:(G*n.inWidth+q)*n.inChannels+x:V=W*m+H)}}i.set(V,g,b,E,x)}}return i}function Dw(r,t,e,n,o,s){let i=o.strideDepth,a=o.strideHeight,u=o.strideWidth,l=o.dilationDepth,c=o.dilationHeight,p=o.dilationWidth,m=o.effectiveFilterDepth,f=o.effectiveFilterHeight,d=o.effectiveFilterWidth,h=o.padInfo.front,g=o.padInfo.top,x=o.padInfo.left,b=s===\"max\"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,w=wt(o.outShape,e),I=w.values,N=o.outShape[1]*o.outShape[2]*o.outShape[3]*o.outShape[4],E=o.outShape[2]*o.outShape[3]*o.outShape[4],A=o.outShape[3]*o.outShape[4],D=o.outShape[4];for(let F=0;FRt?Rt=Ae:s===\"avg\"&&(Dt+=Ae,Ht++),isNaN(Rt))break}if(isNaN(Rt))break}if(isNaN(Rt))break}let qt=Ct+G;I[qt]=s===\"avg\"?Dt/Math.max(Ht,1):Rt}}}}return w}function dM(r,t){let e=wt(t.outShape,\"int32\"),n=t.strideDepth,o=t.strideHeight,s=t.strideWidth,i=t.dilationDepth,a=t.dilationHeight,u=t.dilationWidth,l=t.effectiveFilterDepth,c=t.effectiveFilterHeight,p=t.effectiveFilterWidth,m=t.padInfo.front,f=t.padInfo.top,d=t.padInfo.left;for(let h=0;h=W&&(W=st,q=j*c*p+Z*c+nt)}}}e.set(q,h,x,N,F,g)}}}return e}function yet(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t;tt(o,\"avgPool\");let{filterSize:s,strides:i,pad:a,dimRoundingMode:u}=n,l=1;y.assert(S.eitherStridesOrDilationsAreOne(i,l),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${l}'`);let c=S.computePool2DInfo(o.shape,s,i,l,a,u),p;if(c.filterWidth===1&&c.filterHeight===1&&y.arraysEqual(c.inShape,c.outShape))p=Zr({inputs:{x:o},backend:e});else{let m=e.data.get(o.dataId).values,f=y.computeStrides(o.shape),d=xd(m,o.shape,o.dtype,f,c,\"avg\");p=e.makeTensorInfo(c.outShape,o.dtype,d.values)}return p}var hM={kernelName:Yo,backendName:\"cpu\",kernelFunc:yet};function bet(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{filterSize:s,strides:i,pad:a,dimRoundingMode:u,dataFormat:l}=n;tt(o,\"avgPool3d\");let c=S.computePool3DInfo(o.shape,s,i,1,a,u,l),p=e.data.get(o.dataId).values,m=Dw(p,o.shape,o.dtype,y.computeStrides(o.shape),c,\"avg\");return e.makeTensorInfo(m.shape,\"float32\",m.values)}var gM={kernelName:Ri,backendName:\"cpu\",kernelFunc:bet};function wet(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,input:s}=t,{filterSize:i,strides:a,pad:u,dimRoundingMode:l}=n;tt([o,s],\"avgPool3DGrad\");let c=S.computePool3DInfo(s.shape,i,a,1,u,l),p=c.strideDepth,m=c.strideHeight,f=c.strideWidth,d=c.filterDepth,h=c.filterHeight,g=c.filterWidth,x=c.dilationDepth,b=c.dilationHeight,w=c.dilationWidth,I=c.effectiveFilterDepth,N=c.effectiveFilterHeight,E=c.effectiveFilterWidth,A=I-1-c.padInfo.front,D=E-1-c.padInfo.left,F=N-1-c.padInfo.top,M=wt(s.shape,\"float32\"),V=1/(d*h*g),G=e.bufferSync(o);for(let W=0;W=c.outDepth||Math.floor(ot)!==ot))for(let it=0;it=c.outHeight||Math.floor(ft)!==ft))for(let gt=0;gt=c.outWidth||Math.floor(Ct)!==Ct)continue;let Rt=G.get(W,ot,ft,Ct,q);st+=Rt}}}M.set(st*V,W,H,j,Y,q)}return e.makeTensorInfo(M.shape,M.dtype,M.values)}var xM={kernelName:Hl,backendName:\"cpu\",kernelFunc:wet};function Iet(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,input:s}=t,i=s;tt([o,s],\"avgPoolGrad\");let{filterSize:a,strides:u,pad:l}=n,c=S.computePool2DInfo(i.shape,a,u,1,l),p=c.strideHeight,m=c.strideWidth,f=c.filterHeight,d=c.filterWidth,h=c.dilationHeight,g=c.dilationWidth,x=c.effectiveFilterHeight,b=c.effectiveFilterWidth,w=b-1-c.padInfo.left,I=x-1-c.padInfo.top,N=wt(i.shape,\"float32\"),E=1/(f*d),A=e.data.get(o.dataId).values,D=wt(o.shape,\"float32\",A);for(let F=0;F=c.outHeight||Math.floor(Y)!==Y))for(let Z=0;Z=c.outWidth||Math.floor(et)!==et)continue;let nt=D.get(F,Y,et,M);H+=nt}}N.set(H*E,F,V,G,M)}return e.makeTensorInfo(N.shape,N.dtype,N.values)}var yM={kernelName:Ul,backendName:\"cpu\",kernelFunc:Iet};function Cet(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,scale:s,offset:i,mean:a,variance:u}=t;y.assert(a.shape.length===u.shape.length,()=>\"Batch normalization gradient requires mean and variance to have equal ranks.\"),y.assert(i==null||a.shape.length===i.shape.length,()=>\"Batch normalization gradient requires mean and offset to have equal ranks.\"),y.assert(s==null||a.shape.length===s.shape.length,()=>\"Batch normalization gradient requires mean and scale to have equal ranks.\"),tt([o,a,u,s,i],\"batchNorm\");let{varianceEpsilon:l}=n;l==null&&(l=.001);let c=e.data.get(o.dataId).values,p=e.data.get(a.dataId).values,m=e.data.get(u.dataId).values,f=s?e.data.get(s.dataId).values:new Float32Array([1]),d=i?e.data.get(i.dataId).values:new Float32Array([0]),h=new Float32Array(c.length),g=d.length,x=f.length,b=m.length,w=p.length,I=0,N=0,E=0,A=0;for(let D=0;D=g&&(I=0),N>=w&&(N=0),E>=x&&(E=0),A>=b&&(A=0);return e.makeTensorInfo(o.shape,o.dtype,h)}var bM={kernelName:ds,backendName:\"cpu\",kernelFunc:Cet};function vet(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{blockShape:s,crops:i}=n;tt([o],\"batchToSpaceND\");let a=s.reduce((x,b)=>x*b),u=S.getReshaped(o.shape,s,a),l=S.getPermuted(u.length,s.length),c=S.getReshapedPermuted(o.shape,s,a),p=S.getSliceBeginCoords(i,s.length),m=S.getSliceSize(c,i,s.length),f=te({inputs:{x:o},backend:e,attrs:{shape:u}}),d=We({inputs:{x:f},backend:e,attrs:{perm:l}}),h=te({inputs:{x:d},backend:e,attrs:{shape:c}}),g=Mo({inputs:{x:h},backend:e,attrs:{begin:p,size:m}});return e.disposeIntermediateTensorInfo(f),e.disposeIntermediateTensorInfo(d),e.disposeIntermediateTensorInfo(h),g}var wM={kernelName:Fi,backendName:\"cpu\",kernelFunc:vet};function Net(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,weights:s}=t,{size:i}=n,a=e.data.get(o.dataId).values,u=e.data.get(s.dataId).values,l=dd(a,u,s.dtype,s.shape,i);return e.makeTensorInfo([i],s.dtype,l)}var IM={kernelName:Da,backendName:\"cpu\",kernelFunc:Net};function ket(r){let{inputs:t,backend:e}=r,{s0:n,s1:o}=t,s=e.data.get(n.dataId).values,i=e.data.get(o.dataId).values,a=S.assertAndGetBroadcastShape(Array.from(s),Array.from(i));return e.makeTensorInfo([a.length],\"int32\",Int32Array.from(a))}var CM={kernelName:ql,backendName:\"cpu\",kernelFunc:ket};var Tet=At(ho,(r,t)=>{let e=t;return r>e.clipValueMax?e.clipValueMax:r{let{x:t}=r.inputs,e=r.backend,n=new Float32Array(y.sizeFromShape(t.shape)),o=e.data.get(t.dataId),s=o.complexTensorInfos.real,i=o.complexTensorInfos.imag,a=e.data.get(s.dataId).values,u=e.data.get(i.dataId).values;for(let l=0;lh.shape);S.assertParamsConsistent(i,s);let a=S.computeOutShape(t.map(h=>h.shape),s);if(y.sizeFromShape(a)===0)return e.makeTensorInfo(a,t[0].dtype,[]);let u=t.filter(h=>y.sizeFromShape(h.shape)>0);if(u.length===1)return Zr({inputs:{x:u[0]},backend:e});if(u[0].dtype===\"complex64\"){let h=u.map(I=>Ro({inputs:{input:I},backend:e})),g=u.map(I=>ba({inputs:{input:I},backend:e})),x=Gu({inputs:h,backend:e,attrs:{axis:s}}),b=Gu({inputs:g,backend:e,attrs:{axis:s}}),w=Ir({inputs:{real:x,imag:b},backend:e});return h.forEach(I=>e.disposeIntermediateTensorInfo(I)),g.forEach(I=>e.disposeIntermediateTensorInfo(I)),e.disposeIntermediateTensorInfo(x),e.disposeIntermediateTensorInfo(b),w}let l=u.map(h=>{let x=[-1,y.sizeFromShape(h.shape.slice(s))];return te({inputs:{x:h},backend:e,attrs:{shape:x}})}),c=l.map(h=>({vals:e.data.get(h.dataId).values,shape:h.shape}));a=S.computeOutShape(l.map(h=>h.shape),1);let p=l[0].shape[0]===1,m=Jc(c,a,t[0].dtype,p),f=S.computeOutShape(u.map(h=>h.shape),s),d=e.makeTensorInfo(f,t[0].dtype,m);return l.forEach(h=>e.disposeIntermediateTensorInfo(h)),d}var kM={kernelName:Oi,backendName:\"cpu\",kernelFunc:Gu};function FT(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s}=t,{strides:i,pad:a,dataFormat:u,dilations:l,dimRoundingMode:c}=n;tt([o,s],\"conv2d\");let p=S.convertConv2DDataFormat(u),m=S.computeConv2DInfo(o.shape,s.shape,i,l,a,c,!1,p),f=m.filterHeight,d=m.filterWidth,h=m.dilationHeight,g=m.dilationWidth,x=m.padInfo.left,b=m.padInfo.top,w=m.dataFormat===\"channelsLast\",I=new le(m.outShape,o.dtype),N=y.computeStrides(o.shape),E=y.computeStrides(s.shape),A=N[0],D=w?N[1]:N[2],F=w?N[2]:1,M=w?1:N[1],V=I.strides[0],G=w?I.strides[1]:I.strides[2],W=w?I.strides[2]:1,q=w?1:I.strides[1],H=e.data.get(o.dataId).values,j=e.data.get(s.dataId).values,Y=I.values;for(let Z=0;Z=m.inHeight)continue;let gt=it*E[0],Ct=et+ft*D;for(let Rt=0;Rt=m.inWidth)continue;let ye=gt+qt*E[1],re=Ct+pe*F,be=ye;for(let de=0;de=l.inDepth)continue;let Z=j*F[0],et=V+Y*D[1];for(let nt=0;nt=l.inHeight)continue;let ft=Z+ot*F[1],gt=et+it*D[2];for(let Ct=0;Ct=l.inWidth)continue;let pe=ft+Ht*F[2],ye=gt+qt*l.inChannels,re=pe;for(let be=0;beMath.cos(r)),RM={kernelName:rs,backendName:\"cpu\",kernelFunc:Fet};var Oet=At(ns,r=>Math.cosh(r)),FM={kernelName:ns,backendName:\"cpu\",kernelFunc:Oet};function Met(r){let{inputs:t,backend:e,attrs:n}=r,{image:o,boxes:s,boxInd:i}=t,{cropSize:a,method:u,extrapolationValue:l}=n,[c,p,m,f]=o.shape,d=s.shape[0],[h,g]=a,x=wt([d,h,g,f],\"float32\"),b=e.data.get(s.dataId).values,w=e.data.get(i.dataId).values,I=e.data.get(o.dataId).values,N=y.computeStrides(o.shape),E=y.computeStrides(x.shape);for(let A=0;A=c)continue;let q=h>1?(V-F)*(p-1)/(h-1):0,H=g>1?(G-M)*(m-1)/(g-1):0;for(let j=0;j1?F*(p-1)+j*q:.5*(F+V)*(p-1);if(Y<0||Y>p-1){for(let Z=0;Z1?M*(m-1)+st*H:.5*(M+G)*(m-1);if(lt<0||lt>m-1){for(let gt=0;gt1?M*(m-1)+Z*H:.5*(M+G)*(m-1);if(et<0||et>m-1){for(let lt=0;ltx+d-b-1:(x,b)=>x+b;for(let x=0;xx+d-b-1:(x,b)=>x+b;for(let x=0;x`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${i}`);let a=o.shape[0],u=o.shape[1],l=o.shape[2],c=o.shape[3],p=u*s,m=l*s,f=c/(s*s),d=e.data.get(o.dataId).values,h=new Float32Array(a*p*m*f),g=0;for(let x=0;x`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${m}'`);let f=S.computeConv2DInfo(o.shape,s.shape,i,m,a,l,!0),{filterHeight:d,filterWidth:h,dilationHeight:g,dilationWidth:x,padInfo:b}=f,w=b.left,I=b.top,N=f.outChannels/f.inChannels,E=new le(f.outShape,o.dtype),A=e.data.get(o.dataId).values,D=e.data.get(s.dataId).values,F=E.values;for(let M=0;M=f.inHeight)continue;let Z=j*p[0],et=V+Y*c[1];for(let nt=0;nt=f.inWidth)continue;let ft=Z+ot*p[1],gt=et+it*f.inChannels,Ct=st,Rt=ft;for(let Dt=0;Dt{let{x:n,filter:o}=r,{strides:s,pad:i,dilations:a}=e,u=t,l=u.data.get(n.dataId).values,c=n.shape.length,p=u.data.get(o.dataId).values,m=o.shape.length,{batchSize:f,inHeight:d,inWidth:h,inChannels:g,outHeight:x,outWidth:b,padInfo:w,strideHeight:I,strideWidth:N,filterHeight:E,filterWidth:A,dilationHeight:D,dilationWidth:F,outShape:M}=S.computeDilation2DInfo(n.shape,o.shape,s,i,\"NHWC\",a),V=y.sizeFromShape(M),G=M.length,W=y.getArrayFromDType(n.dtype,V);for(let H=0;H=0&&it=0&>st&&(st=Dt)}}}let lt=y.locToIndex([H,j,Z,nt],G,y.computeStrides(M));W[lt]=st}}}return{dataId:u.write(y.toTypedArray(W,n.dtype),M,n.dtype),shape:M,dtype:n.dtype}}};var HM={kernelName:Zl,backendName:\"cpu\",kernelFunc:({inputs:r,backend:t,attrs:e})=>{let{x:n,filter:o,dy:s}=r,{strides:i,pad:a,dilations:u}=e,l=t,c=y.toNestedArray(n.shape,l.data.get(n.dataId).values),p=y.toNestedArray(o.shape,l.data.get(o.dataId).values),{batchSize:m,inHeight:f,inWidth:d,inChannels:h,outHeight:g,outWidth:x,padInfo:b,strideHeight:w,strideWidth:I,filterHeight:N,filterWidth:E,dilationHeight:A,dilationWidth:D,outShape:F}=S.computeDilation2DInfo(n.shape,o.shape,i,a,\"NHWC\",u);y.assert(s.rank===F.length,()=>`Error in ${Zl}, dy must have the same rank as output ${F.length}, but got ${s.rank}`);let M=y.toNestedArray(F,l.data.get(s.dataId).values),V=y.makeZerosNestedTypedArray(o.shape,o.dtype);for(let W=0;W=0&&ot=0&&ftet&&(et=gt,nt=lt,st=it)}}}V[nt][st][Z]+=M[W][q][j][Z]}}}return{dataId:l.write(y.toTypedArray(V,n.dtype),o.shape,o.dtype),shape:o.shape,dtype:o.dtype}}};var qM={kernelName:Yl,backendName:\"cpu\",kernelFunc:({inputs:r,backend:t,attrs:e})=>{let{x:n,filter:o,dy:s}=r,{strides:i,pad:a,dilations:u}=e,l=t,c=y.toNestedArray(n.shape,l.data.get(n.dataId).values),p=y.toNestedArray(o.shape,l.data.get(o.dataId).values),{batchSize:m,inHeight:f,inWidth:d,inChannels:h,outHeight:g,outWidth:x,padInfo:b,strideHeight:w,strideWidth:I,filterHeight:N,filterWidth:E,dilationHeight:A,dilationWidth:D,outShape:F}=S.computeDilation2DInfo(n.shape,o.shape,i,a,\"NHWC\",u);y.assert(s.rank===F.length,()=>`Error in ${Yl}, dy must have the same rank as output ${F.length}, but got ${s.rank}`);let M=y.toNestedArray(F,l.data.get(s.dataId).values),V=y.makeZerosNestedTypedArray(n.shape,n.dtype);for(let W=0;W=0&&ot=0&&ftet&&(et=gt,nt=ot,st=ft)}}}V[W][nt][st][Z]+=M[W][q][j][Z]}}}return{dataId:l.write(y.toTypedArray(V,n.dtype),n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}};function Uet(r){let{inputs:t,backend:e,attrs:n}=r,{image:o}=t,{canvas:s,options:i}=n,{contextOptions:a,imageOptions:u}=i||{},l=(u==null?void 0:u.alpha)||1,c=(a==null?void 0:a.contextType)||\"2d\";if(c!==\"2d\")throw new Error(`Context type ${a.contextType} is not supported by the CPU backend.`);let p=s.getContext(c,(a==null?void 0:a.contextAttributes)||{});if(p==null)throw new Error(`Could not get the context with ${c} type.`);let[m,f]=o.shape.slice(0,2),d=o.shape.length===2?1:o.shape[2],h=e.data.get(o.dataId).values,g=o.dtype===\"float32\"?255:1,x=new Uint8ClampedArray(f*m*4);for(let w=0;w1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${A}.`)}else if(o.dtype===\"int32\"&&(A<0||A>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${A}.`);d===1?(I[0]=A*g,I[1]=A*g,I[2]=A*g):I[E]=A*g}let N=w*4;x[N+0]=Math.round(I[0]),x[N+1]=Math.round(I[1]),x[N+2]=Math.round(I[2]),x[N+3]=Math.round(I[3])}s.width=f,s.height=m;let b=new ImageData(x,f,m);return p.putImageData(b,0,0),o}var KM={kernelName:Qd,backendName:\"cpu\",kernelFunc:Uet};function $l(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,keepDims:i}=n;tt(o,\"sum\");let a;o.dtype===\"bool\"?a=Fo({inputs:{x:o},backend:e,attrs:{dtype:\"int32\"}}):a=Zr({inputs:{x:o},backend:e});let u=a.shape.length,l=y.parseAxisParam(s,a.shape),c=S.getAxesPermutation(l,u),p=l,m=a;c!=null&&(m=We({inputs:{x:a},backend:e,attrs:{perm:c}}),p=S.getInnerMostAxes(p.length,u)),S.assertAxesAreInnerMostDims(\"sum\",p,m.shape.length);let[f,d]=S.computeOutAndReduceShapes(m.shape,p),h=S.upcastType(m.dtype,\"int32\"),g=md(e,f,h),x=y.sizeFromShape(d),b=e.data.get(g.dataId).values,w=e.data.get(m.dataId).values;for(let I=0;I=0&&(m=$l({inputs:{x:m},backend:e,attrs:{axis:l[h]-(i.length-f),keepDims:!1}}),d.push(m)),f--)}for(let h of d)h!==m&&e.disposeIntermediateTensorInfo(h);return m}var XM={kernelName:Fp,backendName:\"cpu\",kernelFunc:Het};function qet(r){let{inputs:t,backend:e}=r,{dy:n,y:o}=t;tt([n,o],\"eluGrad\");let s=new Float32Array(y.sizeFromShape(o.shape)),i=e.data.get(o.dataId).values,a=e.data.get(n.dataId).values;for(let u=0;u=0?s[u]=a[u]:s[u]=a[u]*(l+1)}return e.makeTensorInfo(o.shape,\"float32\",s)}var YM={kernelName:La,backendName:\"cpu\",kernelFunc:qet};var Ket=S.ERF_P,jet=S.ERF_A1,Xet=S.ERF_A2,Yet=S.ERF_A3,Zet=S.ERF_A4,Jet=S.ERF_A5,Qet=At(us,r=>{let t=Math.sign(r),e=Math.abs(r),n=1/(1+Ket*e);return t*(1-((((Jet*n+Zet)*n+Yet)*n+Xet)*n+jet)*n*Math.exp(-e*e))}),ZM={kernelName:us,backendName:\"cpu\",kernelFunc:Qet};function yd(r){let{inputs:t,backend:e,attrs:n}=r,{input:o}=t,{dim:s}=n,i=o.shape.length,a=o.shape.slice(),u=s;return s<0&&(y.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),u=i+s+1),a.splice(u,0,1),te({inputs:{x:o},backend:e,attrs:{shape:a}})}var JM={kernelName:Mi,backendName:\"cpu\",kernelFunc:yd};var trt=Qt((r,t)=>r/t),tg=oe(as,trt),eg={kernelName:as,backendName:\"cpu\",kernelFunc:tg};function $w(r,t,e){let n=r.shape,o=n[0],s=n[1],i=e.data.get(r.dataId),a=i.complexTensorInfos.real,u=i.complexTensorInfos.imag,l=[o,s],c=y.sizeFromShape(l),p=y.getTypedArrayFromDType(\"float32\",c),m=y.getTypedArrayFromDType(\"float32\",c);for(let g=0;g{let{image:n}=r,o=e,s=y.getTypedArrayFromDType(n.dtype,y.sizeFromShape(n.shape)),[i,a,u,l]=n.shape,c=o.data.get(n.dataId).values;for(let m=0;m=0&&w=0,()=>`GatherV2: the index value ${N} is not in [0, ${c-1}]`)}let p=a;a==null&&(p=0);let m=y.sizeFromShape(s.shape),f=S.segment_util.collectGatherOpShapeInfo(o,s,u,p),d=te({inputs:{x:o},backend:e,attrs:{shape:[f.batchSize,f.outerSize,f.dimSize,f.sliceSize]}}),h=te({inputs:{x:s},backend:e,attrs:{shape:[f.batchSize,m/f.batchSize]}}),g=[f.batchSize,f.outerSize,m/f.batchSize,f.sliceSize],x=e.bufferSync(h),b=e.bufferSync(d),w=yw(b,x,g);return e.disposeIntermediateTensorInfo(d),e.disposeIntermediateTensorInfo(h),e.makeTensorInfo(f.outputShape,w.dtype,w.values)}var sP={kernelName:Pi,backendName:\"cpu\",kernelFunc:urt};function crt(r){let{inputs:t,backend:e}=r,{input:n}=t,o=y.sizeFromShape(n.shape),s=n.shape[n.shape.length-1],i=o/s,a=te({inputs:{x:n},backend:e,attrs:{shape:[i,s]}}),u=$w(a,!0,e),l=te({inputs:{x:u},backend:e,attrs:{shape:n.shape}});return e.disposeIntermediateTensorInfo(a),e.disposeIntermediateTensorInfo(u),l}var iP={kernelName:Mp,backendName:\"cpu\",kernelFunc:crt};var prt=At(gs,r=>Number.isFinite(r)?1:0,\"bool\"),aP={kernelName:gs,backendName:\"cpu\",kernelFunc:prt};var mrt=At(xs,r=>Math.abs(r)===1/0?1:0,\"bool\"),lP={kernelName:xs,backendName:\"cpu\",kernelFunc:mrt};var frt=At(ys,r=>Number.isNaN(r)?1:0,\"bool\"),uP={kernelName:ys,backendName:\"cpu\",kernelFunc:frt};function drt(r){let{backend:t,attrs:e}=r,{start:n,stop:o,num:s}=e,i=bw(n,o,s);return t.makeTensorInfo([i.length],\"float32\",i)}var cP={kernelName:Ha,backendName:\"cpu\",kernelFunc:drt};var hrt=At(Is,r=>Math.log1p(r)),pP={kernelName:Is,backendName:\"cpu\",kernelFunc:hrt};var grt=Qt((r,t)=>r&&t),xrt=oe(qa,grt,null,\"bool\"),mP={kernelName:qa,backendName:\"cpu\",kernelFunc:xrt};var yrt=At(Ka,r=>r?0:1,\"bool\"),fP={kernelName:Ka,backendName:\"cpu\",kernelFunc:yrt};var brt=Qt((r,t)=>r||t),wrt=oe(ja,brt,null,\"bool\"),dP={kernelName:ja,backendName:\"cpu\",kernelFunc:wrt};function Irt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{depthRadius:s,bias:i,alpha:a,beta:u}=n;tt(o,\"LRN\");let l=o.shape[3],c=l-1,p=e.data.get(o.dataId).values,m=y.sizeFromShape(o.shape),f=new Float32Array(m);function d(h){let g=h%l,x=h-g+Math.max(0,g-s),b=h-g+Math.min(g+s,c),w=0;for(;x<=b;x++){let I=p[x];w+=I*I}return w}for(let h=0;h`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${l}'`);let c=S.computePool2DInfo(o.shape,s,i,l,a,u),p;if(c.filterWidth===1&&c.filterHeight===1&&y.arraysEqual(c.inShape,c.outShape))p=Zr({inputs:{x:o},backend:e});else{let m=e.data.get(o.dataId).values,f=y.computeStrides(o.shape),d=xd(m,o.shape,o.dtype,f,c,\"max\");p=e.makeTensorInfo(c.outShape,o.dtype,d.values)}return p}var yP={kernelName:Ns,backendName:\"cpu\",kernelFunc:vrt};function Srt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{filterSize:s,strides:i,pad:a,dimRoundingMode:u,dataFormat:l}=n;tt(o,\"maxPool3d\");let c=S.computePool3DInfo(o.shape,s,i,1,a,u,l),p=e.data.get(o.dataId).values,m=Dw(p,o.shape,o.dtype,y.computeStrides(o.shape),c,\"max\");return e.makeTensorInfo(m.shape,\"float32\",m.values)}var bP={kernelName:Li,backendName:\"cpu\",kernelFunc:Srt};function Nrt(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,input:s}=t,{filterSize:i,strides:a,pad:u,dimRoundingMode:l}=n;tt([o,s],\"maxPool3DGrad\");let c=S.computePool3DInfo(s.shape,i,a,1,u,l),p=e.bufferSync(s),m=dM(p,c),f=c.strideDepth,d=c.strideHeight,h=c.strideWidth,g=c.dilationDepth,x=c.dilationHeight,b=c.dilationWidth,w=c.effectiveFilterDepth,I=c.effectiveFilterHeight,N=c.effectiveFilterWidth,E=w-1-c.padInfo.front,A=N-1-c.padInfo.left,D=I-1-c.padInfo.top,F=wt(s.shape,\"float32\"),M=e.bufferSync(o);for(let V=0;V=c.outDepth||Math.floor(st)!==st))for(let lt=0;lt=c.outHeight||Math.floor(ot)!==ot))for(let it=0;it=c.outWidth||Math.floor(ft)!==ft)continue;let gt=w*I*N-1-m.get(V,st,ot,ft,G),Ct=nt*I*N+lt*N+it,Rt=gt===Ct?1:0;if(Rt===0)continue;let Dt=M.get(V,st,ot,ft,G);et+=Dt*Rt}}}F.set(et,V,W,q,H,G)}return e.makeTensorInfo(F.shape,F.dtype,F.values)}var wP={kernelName:tu,backendName:\"cpu\",kernelFunc:Nrt};function krt(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,input:s,output:i}=t,a=s;tt([s,i],\"maxPoolGrad\");let{filterSize:u,strides:l,pad:c,dimRoundingMode:p}=n,m=S.computePool2DInfo(a.shape,u,l,1,c,p),f=e.data.get(a.dataId).values,d=wt(m.outShape,a.dtype,Aw(f,a.shape,a.dtype,m).values),h=m.strideHeight,g=m.strideWidth,x=m.dilationHeight,b=m.dilationWidth,w=m.effectiveFilterHeight,I=m.effectiveFilterWidth,N=I-1-m.padInfo.left,E=w-1-m.padInfo.top,A=wt(a.shape,\"float32\"),D=e.data.get(o.dataId).values,F=wt(o.shape,\"float32\",D);for(let M=0;M=m.outHeight||Math.floor(Z)!==Z))for(let et=0;et=m.outWidth||Math.floor(nt)!==nt)continue;let st=w*I-1-d.get(M,Z,nt,V),lt=Y*I+et,ot=st===lt?1:0;if(ot===0)continue;let it=F.get(M,Z,nt,V);j+=it*ot}}A.set(j,M,G,W,V)}return e.makeTensorInfo(A.shape,A.dtype,A.values)}var IP={kernelName:Ql,backendName:\"cpu\",kernelFunc:krt};function CP(r,t,e,n,o){let s=y.computeStrides(t),i=xd(r,t,e,s,o,\"max\"),a=Aw(r,t,e,o,!0,n);return[i.values,a.values]}var vP={kernelName:eu,backendName:\"cpu\",kernelFunc:({inputs:r,attrs:t,backend:e})=>{let{x:n}=r,{filterSize:o,strides:s,pad:i,includeBatchInIndex:a}=t,u=e;tt(n,\"MaxPoolWithArgmax\");let l=u.data.get(n.dataId).values,c=S.computePool2DInfo(n.shape,o,s,[1,1],i),[p,m]=CP(l,n.shape,n.dtype,a,c),f=u.write(p,c.outShape,n.dtype),d=u.write(m,c.outShape,n.dtype);return[{dataId:f,shape:c.outShape,dtype:n.dtype},{dataId:d,shape:c.outShape,dtype:\"int32\"}]}};function Trt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,keepDims:i}=n,a=y.parseAxisParam(s,o.shape),l=S.computeOutAndReduceShapes(o.shape,a)[1],c=y.sizeFromShape(l),p=[],m=e.makeTensorInfo([],\"float32\",new Float32Array([c]));p.push(m);let f=Fo({inputs:{x:o},backend:e,attrs:{dtype:\"float32\"}});p.push(f);let d=tg({inputs:{a:f,b:m},backend:e});p.push(d);let h=$l({inputs:{x:d},backend:e,attrs:{axis:s,keepDims:i}});return p.forEach(g=>e.disposeIntermediateTensorInfo(g)),h}var SP={kernelName:ks,backendName:\"cpu\",kernelFunc:Trt};function _rt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,keepDims:i}=n;tt(o,\"min\");let a=y.parseAxisParam(s,o.shape),u=a,l=S.getAxesPermutation(u,o.shape.length),c=o;l!=null&&(c=We({inputs:{x:o},backend:e,attrs:{perm:l}}),u=S.getInnerMostAxes(u.length,o.shape.length)),S.assertAxesAreInnerMostDims(\"min\",u,c.shape.length);let[p,m]=S.computeOutAndReduceShapes(c.shape,u),f=y.sizeFromShape(m),d=y.makeZerosTypedArray(y.sizeFromShape(p),c.dtype),h=e.data.get(c.dataId).values;for(let x=0;xw[0]+o.shape[I]+w[1]),u=s.map(w=>w[0]),l=s.map((w,I)=>w[0]+o.shape[I]),c=i===\"reflect\"?0:1,p=e.data.get(o.dataId).values,m=o.shape.length,f=y.computeStrides(o.shape),d=y.sizeFromShape(a),h=a.length,g=y.computeStrides(a),x=y.getTypedArrayFromDType(o.dtype,d);for(let w=0;w=l[E]&&(I[E]=(l[E]-1)*2-I[E]+c);I=I.map((E,A)=>E-u[A]);let N=y.locToIndex(I,m,f);x[w]=p[N]}return{dataId:e.write(x,a,o.dtype),shape:a,dtype:o.dtype}}var kP={kernelName:Es,backendName:\"cpu\",kernelFunc:Ert};var Art=Qt((r,t)=>{let e=r%t;return r<0&&t<0||r>=0&&t>=0?e:(e+t)%t}),Drt=oe(As,Art),TP={kernelName:As,backendName:\"cpu\",kernelFunc:Drt};var EP=Gl(hh());function LT(r){let{inputs:t,backend:e,attrs:n}=r,{logits:o}=t,{dim:s}=n,i=o.shape.length,a=s;if(a===-1&&(a=i-1),a!==i-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${i} and dim was ${a}`);let u=y.parseAxisParam([a],o.shape),l=PT({inputs:{x:o},backend:e,attrs:{reductionIndices:u,keepDims:!1}}),c=S.expandShapeToKeepDim(l.shape,u),p=te({inputs:{x:l},backend:e,attrs:{shape:c}}),m=Jh({inputs:{a:o,b:p},backend:e}),f=aT({inputs:{x:m},backend:e}),d=$l({inputs:{x:f},backend:e,attrs:{axis:u,keepDims:!1}}),h=te({inputs:{x:d},backend:e,attrs:{shape:c}}),g=tg({inputs:{a:f,b:h},backend:e});return e.disposeIntermediateTensorInfo(l),e.disposeIntermediateTensorInfo(p),e.disposeIntermediateTensorInfo(m),e.disposeIntermediateTensorInfo(f),e.disposeIntermediateTensorInfo(d),e.disposeIntermediateTensorInfo(h),g}var _P={kernelName:Qs,backendName:\"cpu\",kernelFunc:LT};function $rt(r){let{inputs:t,backend:e,attrs:n}=r,{logits:o}=t,{numSamples:s,seed:i,normalized:a}=n;tt(o,\"multinomial\");let u=a?o:LT({inputs:{logits:o},backend:e,attrs:{dim:-1}}),l=u.shape[0],c=u.shape[1],p=e.data.get(u.dataId).values,m=[l,s],f=y.makeZerosTypedArray(y.sizeFromShape(m),\"int32\");for(let d=0;d=0&&p[m]{y.assertShapesMatch(s,c.shape,\"All tensors passed to stack must have matching shapes\"),y.assert(i===c.dtype,()=>\"All tensors passed to stack must have matching dtypes\")});let a=[],u=t.map(c=>{let p=yd({inputs:{input:c},backend:e,attrs:{dim:o}});return a.push(p),p}),l=Gu({inputs:u,backend:e,attrs:{axis:o}});return a.forEach(c=>e.disposeIntermediateTensorInfo(c)),l}var LP={kernelName:Vi,backendName:\"cpu\",kernelFunc:zT};function Brt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{paddings:s,constantValue:i}=n;tt(o,\"pad\");let a=s.map((b,w)=>b[0]+o.shape[w]+b[1]),u=s.map(b=>b[0]),l=e.data.get(o.dataId).values,c=y.sizeFromShape(o.shape),p=o.shape.length,m=y.computeStrides(o.shape),f=y.sizeFromShape(a),d=a.length,h=y.computeStrides(a),g=y.getTypedArrayFromDType(o.dtype,f);i!==0&&g.fill(i);for(let b=0;bE+u[A]),N=y.locToIndex(I,d,h);g[N]=l[b]}return{dataId:e.write(g,a,o.dtype),shape:a,dtype:o.dtype}}var Rw={kernelName:Rs,backendName:\"cpu\",kernelFunc:Brt};var Vrt=Qt((r,t)=>Math.pow(r,t)),Grt=oe(Fs,Vrt),zP={kernelName:Fs,backendName:\"cpu\",kernelFunc:Grt};function Wrt(r){let{inputs:t,backend:e,attrs:n}=r,{paramsNestedSplits:o,paramsDenseValues:s,indices:i}=t,{outputRaggedRank:a}=n,u=o.map(x=>e.data.get(x.dataId).values),l=o.map(x=>x.shape),c=e.data.get(s.dataId).values,p=e.data.get(i.dataId).values,[m,f,d]=Iw(u,l,c,s.shape,s.dtype,p,i.shape,a),h=m.map(x=>e.makeTensorInfo([x.length],\"int32\",x)),g=e.makeTensorInfo(d,s.dtype,f);return h.concat([g])}var BP={kernelName:Lp,backendName:\"cpu\",kernelFunc:Wrt};function Urt(r){let{inputs:t,backend:e}=r,{starts:n,limits:o,deltas:s}=t,i=e.data.get(n.dataId).values,a=e.data.get(o.dataId).values,u=e.data.get(s.dataId).values,[l,c]=Cw(i,n.shape,n.dtype,a,o.shape,u,s.shape),p=e.makeTensorInfo([l.length],\"int32\",l),m=e.makeTensorInfo([c.length],n.dtype,c);return[p,m]}var VP={kernelName:zp,backendName:\"cpu\",kernelFunc:Urt};function Hrt(r){let{inputs:t,backend:e,attrs:n}=r,{shape:o,values:s,defaultValue:i,rowPartitionTensors:a}=t,{rowPartitionTypes:u}=n,l=e.data.get(o.dataId).values,c=e.data.get(s.dataId).values,p=e.data.get(i.dataId).values,m=a.map(g=>e.data.get(g.dataId).values),f=a.map(g=>g.shape),[d,h]=vw(l,o.shape,c,s.shape,s.dtype,p,i.shape,m,f,u);return e.makeTensorInfo(d,s.dtype,h)}var GP={kernelName:Bp,backendName:\"cpu\",kernelFunc:Hrt};function qrt(r){let{backend:t,attrs:e}=r,{start:n,stop:o,dtype:s,step:i}=e,a=tp(n,o,i,s);return t.makeTensorInfo([a.length],s,a)}var WP={kernelName:ru,backendName:\"cpu\",kernelFunc:qrt};var Krt=At(Ps,r=>1/r),UP={kernelName:Ps,backendName:\"cpu\",kernelFunc:Krt};function jrt(r){let{inputs:t,backend:e,attrs:n}=r,{images:o}=t,{alignCorners:s,halfPixelCenters:i,size:a}=n;tt(o,\"resizeBilinear\");let u=y.computeStrides(o.shape),[l,c]=a,[p,m,f,d]=o.shape,h=e.data.get(o.dataId).values,g=new Float32Array(y.sizeFromShape([p,l,c,d])),x=[s&&l>1?m-1:m,s&&c>1?f-1:f],b=[s&&l>1?l-1:l,s&&c>1?c-1:c],w=0,I=x[0]/b[0],N=x[1]/b[1];for(let E=0;E1?l-1:l,i&&f>1?c-1:c],g=[i&&m>1?m-1:m,i&&f>1?f-1:f],x=h[0]/g[0],b=h[1]/g[1],w=e.data.get(s.dataId).values,I=0;for(let N=0;N1?m-1:m,s&&c>1?f-1:f],b=[s&&l>1?l-1:l,s&&c>1?c-1:c],w=x[0]/b[0],I=x[1]/b[1],N=0;for(let E=0;E1?c-1:c,i&&d>1?p-1:p],b=[i&&f>1?f-1:f,i&&d>1?d-1:d],w=x[0]/b[0],I=x[1]/b[1],N=1/w,E=1/I,A=Math.ceil(N)*2+2,D=Math.ceil(E)*2+2;for(let F=0;F=f)continue;let ot=M+lt*u[1],it=lt*w,ft=Math.min(c-1,i?Math.round(it):Math.floor(it));if(V===ft)for(let gt=0;gt=d)continue;let Rt=ot+Ct*u[2],Dt=Ct*I,Ht=Math.min(p-1,i?Math.round(Dt):Math.floor(Dt));H===Ht&&(nt+=g[Rt+et])}}h[j+et]=nt}}}}return e.makeTensorInfo(o.shape,o.dtype,h)}var jP={kernelName:el,backendName:\"cpu\",kernelFunc:Zrt};function Jrt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{dims:s}=n;tt(o,\"reverse\");let i=o.shape.length,a=y.parseAxisParam(s,o.shape);if(i===0)return Zr({inputs:{x:o},backend:e});let u=new le(o.shape,o.dtype),l=e.bufferSync(o);for(let c=0;cm[f]=o.shape[f]-1-m[f]),u.set(l.get(...m),...p)}return e.makeTensorInfo(u.shape,u.dtype,u.values)}var XP={kernelName:Gs,backendName:\"cpu\",kernelFunc:Jrt};var YP={kernelName:pl,backendName:\"cpu\",kernelFunc:({inputs:r,attrs:t,backend:e})=>{let{image:n}=r,{radians:o,fillValue:s,center:i}=t,a=e,u=y.getTypedArrayFromDType(n.dtype,y.sizeFromShape(n.shape)),[l,c,p,m]=n.shape,[f,d]=S.getImageCenter(i,c,p),h=255,g=Math.sin(o),x=Math.cos(o),b=a.data.get(n.dataId).values;for(let I=0;I=0&&q=0&&H{let t=Math.floor(r);return r-t<.5?Math.floor(r):r-t>.5?Math.ceil(r):t%2===0?t:t+1}),ZP={kernelName:Ws,backendName:\"cpu\",kernelFunc:Qrt};function tnt(r){let{inputs:t,backend:e,attrs:n}=r,{indices:o,updates:s}=t,{shape:i}=n,{sliceRank:a,numUpdates:u,sliceSize:l,strides:c,outputSize:p}=S.calculateShapes(s,o,i),m=!0,f=e.bufferSync(o),d=e.bufferSync(s),h=Ci(f,d,i,p,l,u,a,c,0,m);return e.makeTensorInfo(i,h.dtype,h.values)}var JP={kernelName:nl,backendName:\"cpu\",kernelFunc:tnt};function ent(r,t){let e=0,n=r.length,o=0;for(;e1||o.shape.length===1?1:y.sizeFromShape(o.shape.slice(1));for(let d=0;dr>=0?int*r:snt*(Math.exp(r)-1)),rL={kernelName:Hs,backendName:\"cpu\",kernelFunc:ant};var lnt=At(js,r=>r<0?-1:r>0?1:0),nL={kernelName:js,backendName:\"cpu\",kernelFunc:lnt};var unt=At(qs,r=>Math.sin(r)),oL={kernelName:qs,backendName:\"cpu\",kernelFunc:unt};var cnt=At(Ks,r=>Math.sinh(r)),sL={kernelName:Ks,backendName:\"cpu\",kernelFunc:cnt};var pnt=11920928955078125e-23,iL=Math.log(pnt)+2,mnt=At(Ys,r=>{let t=r>-iL,e=rNumber(g)))),e.makeTensorInfo([h.length],n.dtype,new Int32Array(h))]}var uL={kernelName:nu,backendName:\"cpu\",kernelFunc:dnt};function hnt(r){let{inputs:t,backend:e}=r,{inputIndices:n,inputShape:o,newShape:s}=t;if(n.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape\n ${n.shape}`);if(o.shape.length!==1)throw new Error(`Input shape should be a vector but received shape\n ${o.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(e.data.get(o.dataId).values),a=e.data.get(n.dataId).values,u=Array.from(e.data.get(s.dataId).values),[l,c,p]=Nw(a,n.shape,n.dtype,i,u);return[e.makeTensorInfo(c,n.dtype,l),e.makeTensorInfo([p.length],s.dtype,new Int32Array(p))]}var cL={kernelName:il,backendName:\"cpu\",kernelFunc:hnt};function gnt(r){let{inputs:t,backend:e}=r,{data:n,indices:o,segmentIds:s}=t;if(n.shape.length<1)throw new Error(\"Data should be at least 1 dimensional but received scalar\");if(o.shape.length!==1)throw new Error(`Indices should be a vector but received shape\n ${o.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape\n ${s.shape}`);if(o.shape[0]!==s.shape[0])throw new Error(\"segmentIds and indices should have same size.\");let i=e.data.get(n.dataId).values,a=e.data.get(o.dataId).values,u=e.data.get(s.dataId).values,[l,c]=gd(i,n.shape,n.dtype,a,u,!0);return e.makeTensorInfo(c,n.dtype,l)}var pL={kernelName:ou,backendName:\"cpu\",kernelFunc:gnt};function xnt(r){let{inputs:t,backend:e}=r,{data:n,indices:o,segmentIds:s}=t;if(n.shape.length<1)throw new Error(\"Data should be at least 1 dimensional but received scalar\");if(o.shape.length!==1)throw new Error(`Indices should be a vector but received shape\n ${o.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape\n ${s.shape}`);if(o.shape[0]!==s.shape[0])throw new Error(\"segmentIds and indices should have same size.\");let i=e.data.get(n.dataId).values,a=e.data.get(o.dataId).values,u=e.data.get(s.dataId).values,[l,c]=gd(i,n.shape,n.dtype,a,u);return e.makeTensorInfo(c,n.dtype,l)}var mL={kernelName:su,backendName:\"cpu\",kernelFunc:xnt};function ynt(r){let{inputs:t,backend:e,attrs:n}=r,{sparseIndices:o,sparseValues:s,defaultValue:i}=t,{outputShape:a}=n,{sliceRank:u,numUpdates:l,sliceSize:c,strides:p,outputSize:m}=S.calculateShapes(s,o,a),f=!1,d=e.bufferSync(o),h;switch(s.dtype){case\"bool\":{let g=e.bufferSync(s),x=!!e.data.get(i.dataId).values[0];h=Ci(d,g,a,m,c,l,u,p,x,f);break}case\"float32\":{let g=e.bufferSync(s),x=e.data.get(i.dataId).values[0];h=Ci(d,g,a,m,c,l,u,p,x,f);break}case\"int32\":{let g=e.bufferSync(s),x=e.data.get(i.dataId).values[0];h=Ci(d,g,a,m,c,l,u,p,x,f);break}case\"string\":{let g=e.bufferSync(s),x=y.decodeString(e.data.get(i.dataId).values[0]);h=Ci(d,g,a,m,c,l,u,p,x,f);break}default:throw new Error(`Unsupported type ${s.dtype}`)}return e.makeTensorInfo(a,h.dtype,h.values)}var fL={kernelName:al,backendName:\"cpu\",kernelFunc:ynt};function bnt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{numOrSizeSplits:s,axis:i}=n,a=y.parseAxisParam(i,o.shape)[0],u=S.prepareSplitSize(o,s,a),l=new Array(o.shape.length).fill(0),c=o.shape.slice();return u.map(p=>{let m=[...c];m[a]=p;let f=Mo({inputs:{x:o},backend:e,attrs:{begin:l,size:m}});return l[a]+=p,f})}var dL={kernelName:qi,backendName:\"cpu\",kernelFunc:bnt};var hL={kernelName:iu,backendName:\"cpu\",kernelFunc:({inputs:r,backend:t})=>{let{x:e}=r,n=t;tt(e,\"square\");let o=n.data.get(e.dataId).values,s=new Float32Array(o.length);for(let a=0;a{let e=t;return isNaN(r)?NaN:r>0?1:e.alpha}),gL={kernelName:xo,backendName:\"cpu\",kernelFunc:wnt};function Int(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{begin:s,end:i,strides:a,beginMask:u,endMask:l,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:m}=n;tt(o,\"stridedSlice\");let{finalShapeSparse:f,finalShape:d,isIdentity:h,sliceDim0:g,isSimpleSlice:x,begin:b,end:w,strides:I}=Be.sliceInfo(o.shape,s,i,a,u,l,c,p,m),N;if(h)N=te({inputs:{x:o},backend:e,attrs:{shape:d}});else if(g||x){y.assert(o.shape.length>=1,()=>`Input must have rank at least 1, got: ${o.shape.length}`);let E=Be.computeOutShape(b,w,I),A=Mo({inputs:{x:o},backend:e,attrs:{begin:b,size:E}});N=te({inputs:{x:A},backend:e,attrs:{shape:d}}),e.disposeIntermediateTensorInfo(A)}else{let E=e.bufferSync(o),A=kw(f,E,I,b);N=e.makeTensorInfo(d,A.dtype,A.values)}return N}var xL={kernelName:ll,backendName:\"cpu\",kernelFunc:Int};function Cnt(r){let{inputs:t,backend:e,attrs:n}=r,{separator:o,nGramWidths:s,leftPad:i,rightPad:a,padWidth:u,preserveShortSequences:l}=n,{data:c,dataSplits:p}=t,m=e.data.get(c.dataId).values,f=e.data.get(p.dataId).values,[d,h]=rp(m,f,o,s,i,a,u,l);return[e.makeTensorInfo([d.length],\"string\",d),e.makeTensorInfo(p.shape,\"int32\",h)]}var yL={kernelName:au,backendName:\"cpu\",kernelFunc:Cnt};function vnt(r){let{inputs:t,backend:e,attrs:n}=r,{skipEmpty:o}=n,{input:s,delimiter:i}=t;if(s.dtype!==\"string\")throw new Error(\"Input must be of datatype string\");if(s.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${s.shape}`);if(i.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${i.shape}`);let a=e.data.get(s.dataId).values,u=e.data.get(i.dataId).values[0],[l,c,p]=np(a,u,o),m=c.length;return[e.makeTensorInfo([m,2],\"int32\",l),e.makeTensorInfo([m],\"string\",c),e.makeTensorInfo([2],\"int32\",new Int32Array(p))]}var bL={kernelName:lu,backendName:\"cpu\",kernelFunc:vnt};function Snt(r){let{inputs:t,backend:e,attrs:n}=r,{numBuckets:o}=n,{input:s}=t;if(s.dtype!==\"string\")throw new Error(\"Input must be of datatype string\");if(o<=0)throw new Error(\"Number of buckets must be at least 1\");let i=e.data.get(s.dataId).values,a=op(i,o);return e.makeTensorInfo(s.shape,\"int32\",a)}var wL={kernelName:uu,backendName:\"cpu\",kernelFunc:Snt};var Nnt=At(ri,r=>Math.tan(r)),IL={kernelName:ri,backendName:\"cpu\",kernelFunc:Nnt};var knt=At(ni,r=>Math.tanh(r)),CL={kernelName:ni,backendName:\"cpu\",kernelFunc:knt};function Tnt(r){let{inputs:t,backend:e}=r,{tensor:n,indices:o,updates:s}=t,{sliceRank:i,numUpdates:a,sliceSize:u,strides:l,outputSize:c}=S.calculateShapes(s,o,n.shape),p=!1,m=e.bufferSync(o),f=e.bufferSync(s),d=e.bufferSync(n),h=Ci(m,f,n.shape,c,u,a,i,l,d,p);return e.makeTensorInfo(n.shape,h.dtype,h.values)}var vL={kernelName:ol,backendName:\"cpu\",kernelFunc:Tnt};function _nt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{reps:s}=n;tt(o,\"tile\");let i=Tw(e.bufferSync(o),s);return e.makeTensorInfo(i.shape,i.dtype,i.values)}var SL={kernelName:oo,backendName:\"cpu\",kernelFunc:_nt};function Ent(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{k:s,sorted:i}=n;tt(o,\"topk\");let a=e.data.get(o.dataId).values,[u,l]=_w(a,o.shape,o.dtype,s,i);return[e.makeTensorInfo(u.shape,u.dtype,u.values),e.makeTensorInfo(l.shape,l.dtype,l.values)]}var NL={kernelName:ul,backendName:\"cpu\",kernelFunc:Ent};function Ant(r){let{inputs:t,attrs:e,backend:n}=r,{image:o,transforms:s}=t,{interpolation:i,fillMode:a,fillValue:u,outputShape:l}=e,[c,p,m,f]=o.shape,[d,h]=l!=null?l:[p,m],g=[c,d,h,f],x=y.computeStrides(o.shape),b=x[0],w=x[1],I=x[2],N=y.computeStrides(g),E=N[0],A=N[1],D=N[2],F=y.getTypedArrayFromDType(o.dtype,y.sizeFromShape(g));F.fill(u);let M=n.data.get(o.dataId).values,V=n.data.get(s.dataId).values;for(let W=0;Wt-1)if(t<=1)e=0;else{let n=2*t;e-=n*Math.trunc(e/n),e>=t&&(e=n-e-1)}return y.clamp(0,e,t-1)}function $nt(r,t){let e=r;if(e<0)if(t<=1)e=0;else{let n=t-1;e+=t*(Math.trunc(-e/n)+1)}else if(e>t-1)if(t<=1)e=0;else{let n=t-1;e-=t*Math.trunc(e/n)}return y.clamp(0,e,t-1)}function Rnt(r,t){return r}function Fnt(r,t){return y.clamp(0,r,t-1)}function og(r,t,e,n,o,s,i,a,u,l,c){let p=i*n+a*o+u*s+l;return 0<=a&&ae.disposeIntermediateTensorInfo(d)),f}var AL={kernelName:pu,backendName:\"cpu\",kernelFunc:znt};var Bnt=[eM,lO,rM,nM,fO,oM,sM,iM,aM,lM,uM,cM,pM,mM,fM,hM,gM,xM,yM,tM,bM,wM,IM,dO,CM,mO,hO,vM,uO,SM,kM,TM,_M,EM,AM,DM,$M,RM,FM,OM,MM,PM,LM,zM,BM,VM,GM,WM,UM,HM,qM,KM,XM,jO,YM,gO,ZM,xO,JM,yO,QM,tP,eP,bO,wO,rP,nP,oP,sP,IO,CO,cO,iP,NM,aP,lP,uP,XO,vO,SO,cP,NO,pP,mP,fP,dP,hP,gP,xP,kO,yP,bP,wP,IP,vP,SP,NP,TO,kP,TP,AP,_O,EO,DP,$P,RP,AO,FP,PP,LP,Rw,zP,YO,$O,BP,VP,GP,WP,pO,eg,UP,ZO,JO,QO,HP,qP,KP,jP,XP,YP,ZP,PO,JP,tL,eL,rL,zO,nL,oL,sL,BO,_P,aL,lL,uL,cL,pL,mL,fL,dL,GO,hL,WO,UO,gL,xL,yL,bL,wL,HO,jM,IL,CL,vL,SL,NL,TL,DO,_L,EL,AL,OP];for(let r of Bnt)rc(r);var Cd={};Kt(Cd,{assertNotComplex:()=>vi,bindCanvasToFramebuffer:()=>Xnt,bindColorTextureToFramebuffer:()=>lg,bindTextureToProgramUniformSampler:()=>e1,bindTextureUnit:()=>FL,bindVertexBufferToProgramAttribute:()=>zw,callAndCheck:()=>ht,canBeRepresented:()=>WT,createFragmentShader:()=>HT,createFramebuffer:()=>JT,createProgram:()=>qT,createStaticIndexBuffer:()=>XT,createStaticVertexBuffer:()=>jT,createTexture:()=>YT,createVertexShader:()=>UT,getBatchDim:()=>Fl,getExtensionOrThrow:()=>bd,getFramebufferErrorMessage:()=>OL,getMaxTexturesInShader:()=>o1,getNumChannels:()=>Knt,getProgramUniformLocation:()=>t1,getProgramUniformLocationOrThrow:()=>QT,getRowsCols:()=>Ol,getShapeAs3D:()=>Id,getTextureShapeFromLogicalShape:()=>r1,getWebGLDisjointQueryTimerVersion:()=>s1,getWebGLErrorMessage:()=>RL,getWebGLMaxTextureSize:()=>n1,hasExtension:()=>Kn,isCapableOfRenderingToFloatTexture:()=>i1,isDownloadFloatTextureEnabled:()=>a1,isReshapeFree:()=>Uu,isWebGLFenceEnabled:()=>l1,isWebGLVersionEnabled:()=>Vw,linkProgram:()=>KT,logShaderSourceAndInfoLog:()=>Lw,resetMaxTextureSize:()=>Ynt,resetMaxTexturesInShader:()=>Znt,unbindColorTextureFromFramebuffer:()=>Bw,unbindTextureUnit:()=>jnt,validateFramebuffer:()=>wd,validateProgram:()=>ag,validateTextureSize:()=>ZT});var ap={},Fw={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function BT(r,t){ap[r]=t}function qn(r,t){if(!(r in ap)||t!=null){let n=Gnt(r,t);if(n!==null)ap[r]=n;else return console.log(\"Could not get context for WebGL version\",r),null}let e=ap[r];return e==null||e.isContextLost()?(delete ap[r],qn(r)):(e.disable(e.DEPTH_TEST),e.disable(e.STENCIL_TEST),e.disable(e.BLEND),e.disable(e.DITHER),e.disable(e.POLYGON_OFFSET_FILL),e.disable(e.SAMPLE_COVERAGE),e.enable(e.SCISSOR_TEST),e.enable(e.CULL_FACE),e.cullFace(e.BACK),ap[r])}function Vnt(r){if(!L().getBool(\"IS_SAFARI\")&&typeof OffscreenCanvas!=\"undefined\"&&r===2)return new OffscreenCanvas(300,150);if(typeof document!=\"undefined\")return document.createElement(\"canvas\");throw new Error(\"Cannot create a canvas in this context\")}function Gnt(r,t){if(r!==1&&r!==2)throw new Error(\"Cannot get WebGL rendering context, WebGL is disabled.\");let e=t==null?Vnt(r):t;return e.addEventListener(\"webglcontextlost\",n=>{n.preventDefault(),delete ap[r]},!1),L().getBool(\"SOFTWARE_WEBGL_ENABLED\")&&(Fw.failIfMajorPerformanceCaveat=!1),r===1?e.getContext(\"webgl\",Fw)||e.getContext(\"experimental-webgl\",Fw):e.getContext(\"webgl2\",Fw)}var Wu;(function(r){r[r.DENSE=0]=\"DENSE\",r[r.SHARED_BATCH=1]=\"SHARED_BATCH\"})(Wu||(Wu={}));var Jr;(function(r){r[r.RENDER=0]=\"RENDER\",r[r.UPLOAD=1]=\"UPLOAD\",r[r.PIXELS=2]=\"PIXELS\",r[r.DOWNLOAD=3]=\"DOWNLOAD\"})(Jr||(Jr={}));var Lr;(function(r){r[r.UNPACKED_FLOAT16=0]=\"UNPACKED_FLOAT16\",r[r.UNPACKED_FLOAT32=1]=\"UNPACKED_FLOAT32\",r[r.PACKED_4X1_UNSIGNED_BYTE=2]=\"PACKED_4X1_UNSIGNED_BYTE\",r[r.PACKED_2X2_FLOAT32=3]=\"PACKED_2X2_FLOAT32\",r[r.PACKED_2X2_FLOAT16=4]=\"PACKED_2X2_FLOAT16\"})(Lr||(Lr={}));function lp(r,t){return[t,r]}function DL(r,t){return r*t}function sg(r){let t=y.sizeFromShape(r),e=Math.ceil(t/4);return y.sizeToSquarishShape(e)}function wa(r,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(r/2))]}function $L(r,t){let[e,n]=wa(r,t);return e*n*4}function ig(r,t){let e=r,n,o,s,i,a,u,l,c,p,m;return L().getNumber(\"WEBGL_VERSION\")===2?(n=e.R32F,o=e.R16F,s=e.RGBA16F,i=e.RGBA32F,a=e.RED,l=4,c=1,p=e.HALF_FLOAT,m=e.FLOAT,u=e.RGBA8):(n=r.RGBA,o=r.RGBA,s=r.RGBA,i=e.RGBA,a=r.RGBA,l=4,c=4,p=t!=null?t.HALF_FLOAT_OES:null,m=r.FLOAT,u=r.RGBA),{internalFormatFloat:n,internalFormatHalfFloat:o,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:i,textureFormatFloat:a,downloadTextureFormat:u,downloadUnpackNumChannels:l,defaultNumChannels:c,textureTypeHalfFloat:p,textureTypeFloat:m}}function ht(r,t){let e=t();return L().getBool(\"DEBUG\")&&Wnt(r),e}function Wnt(r){let t=r.getError();if(t!==r.NO_ERROR)throw new Error(\"WebGL Error: \"+RL(r,t))}var Unt=596e-10,Hnt=65504;function WT(r){return!!(L().getBool(\"WEBGL_RENDER_FLOAT32_ENABLED\")||r===0||Untr.getExtension(t),'Extension \"'+t+'\" not supported on this browser.')}function UT(r,t){let e=Rl(r,()=>r.createShader(r.VERTEX_SHADER),\"Unable to create vertex WebGLShader.\");if(ht(r,()=>r.shaderSource(e,t)),ht(r,()=>r.compileShader(e)),r.getShaderParameter(e,r.COMPILE_STATUS)===!1)throw console.log(r.getShaderInfoLog(e)),new Error(\"Failed to compile vertex shader.\");return e}function HT(r,t){let e=Rl(r,()=>r.createShader(r.FRAGMENT_SHADER),\"Unable to create fragment WebGLShader.\");if(ht(r,()=>r.shaderSource(e,t)),ht(r,()=>r.compileShader(e)),L().get(\"ENGINE_COMPILE_ONLY\"))return e;if(r.getShaderParameter(e,r.COMPILE_STATUS)===!1)throw Lw(t,r.getShaderInfoLog(e)),new Error(\"Failed to compile fragment shader.\");return e}var qnt=/ERROR: [0-9]+:([0-9]+):/g;function Lw(r,t){let e=qnt.exec(t);if(e==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(r);return}let n=+e[1],o=r.split(`\n`),s=o.length.toString().length+2,i=o.map((p,m)=>y.rightPad((m+1).toString(),s)+p),a=0;for(let p=0;pr.createProgram(),\"Unable to create WebGLProgram.\")}function KT(r,t){if(ht(r,()=>r.linkProgram(t)),!L().get(\"ENGINE_COMPILE_ONLY\")&&r.getProgramParameter(t,r.LINK_STATUS)===!1)throw console.log(r.getProgramInfoLog(t)),new Error(\"Failed to link vertex and fragment shaders.\")}function ag(r,t){if(ht(r,()=>r.validateProgram(t)),r.getProgramParameter(t,r.VALIDATE_STATUS)===!1)throw console.log(r.getProgramInfoLog(t)),new Error(\"Shader program validation failed.\")}function jT(r,t){let e=Rl(r,()=>r.createBuffer(),\"Unable to create WebGLBuffer\");return ht(r,()=>r.bindBuffer(r.ARRAY_BUFFER,e)),ht(r,()=>r.bufferData(r.ARRAY_BUFFER,t,r.STATIC_DRAW)),e}function XT(r,t){let e=Rl(r,()=>r.createBuffer(),\"Unable to create WebGLBuffer\");return ht(r,()=>r.bindBuffer(r.ELEMENT_ARRAY_BUFFER,e)),ht(r,()=>r.bufferData(r.ELEMENT_ARRAY_BUFFER,t,r.STATIC_DRAW)),e}function Knt(){return L().getNumber(\"WEBGL_VERSION\")===2?1:4}function YT(r){return Rl(r,()=>r.createTexture(),\"Unable to create WebGLTexture.\")}function ZT(r,t){let e=L().getNumber(\"WEBGL_MAX_TEXTURE_SIZE\");if(r<=0||t<=0){let n=`[${r}x${t}]`;throw new Error(\"Requested texture size \"+n+\" is invalid.\")}if(r>e||t>e){let n=`[${r}x${t}]`,o=`[${e}x${e}]`;throw new Error(\"Requested texture size \"+n+\" greater than WebGL maximum on this browser / GPU \"+o+\".\")}}function JT(r){return Rl(r,()=>r.createFramebuffer(),\"Unable to create WebGLFramebuffer.\")}function zw(r,t,e,n,o,s,i){let a=r.getAttribLocation(t,e);return a===-1?!1:(ht(r,()=>r.bindBuffer(r.ARRAY_BUFFER,n)),ht(r,()=>r.vertexAttribPointer(a,o,r.FLOAT,!1,s,i)),ht(r,()=>r.enableVertexAttribArray(a)),!0)}function FL(r,t,e){ML(r,e),ht(r,()=>r.activeTexture(r.TEXTURE0+e)),ht(r,()=>r.bindTexture(r.TEXTURE_2D,t))}function jnt(r,t){ML(r,t),ht(r,()=>r.activeTexture(r.TEXTURE0+t)),ht(r,()=>r.bindTexture(r.TEXTURE_2D,null))}function QT(r,t,e){return Rl(r,()=>r.getUniformLocation(t,e),'uniform \"'+e+'\" not present in program.')}function t1(r,t,e){return r.getUniformLocation(t,e)}function e1(r,t,e,n){ht(r,()=>FL(r,t,n)),ht(r,()=>r.uniform1i(e,n))}function Xnt(r){ht(r,()=>r.bindFramebuffer(r.FRAMEBUFFER,null)),ht(r,()=>r.viewport(0,0,r.canvas.width,r.canvas.height)),ht(r,()=>r.scissor(0,0,r.canvas.width,r.canvas.height))}function lg(r,t,e){ht(r,()=>r.bindFramebuffer(r.FRAMEBUFFER,e)),ht(r,()=>r.framebufferTexture2D(r.FRAMEBUFFER,r.COLOR_ATTACHMENT0,r.TEXTURE_2D,t,0))}function Bw(r,t){ht(r,()=>r.bindFramebuffer(r.FRAMEBUFFER,t)),ht(r,()=>r.framebufferTexture2D(r.FRAMEBUFFER,r.COLOR_ATTACHMENT0,r.TEXTURE_2D,null,0))}function wd(r){let t=r.checkFramebufferStatus(r.FRAMEBUFFER);if(t!==r.FRAMEBUFFER_COMPLETE)throw new Error(\"Error binding framebuffer: \"+OL(r,t))}function OL(r,t){switch(t){case r.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return\"FRAMEBUFFER_INCOMPLETE_ATTACHMENT\";case r.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return\"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT\";case r.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return\"FRAMEBUFFER_INCOMPLETE_DIMENSIONS\";case r.FRAMEBUFFER_UNSUPPORTED:return\"FRAMEBUFFER_UNSUPPORTED\";default:return`unknown error ${t}`}}function Rl(r,t,e){let n=ht(r,()=>t());if(n==null)throw new Error(e);return n}function ML(r,t){let e=r.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,n=t+r.TEXTURE0;if(ne){let o=`[gl.TEXTURE0, gl.TEXTURE${e}]`;throw new Error(`textureUnit must be in ${o}.`)}}function Fl(r,t=2){return y.sizeFromShape(r.slice(0,r.length-t))}function Ol(r){if(r.length===0)throw Error(\"Cannot get rows and columns of an empty shape array.\");return[r.length>1?r[r.length-2]:1,r[r.length-1]]}function Id(r){let t=[1,1,1];return r.length===0||r.length===1&&r[0]===1||(t=[Fl(r),...Ol(r)]),t}function r1(r,t=!1){let e=L().getNumber(\"WEBGL_MAX_TEXTURE_SIZE\"),n=L().getNumber(\"WEBGL_MAX_SIZE_FOR_NARROW_TEXTURE\");n===1/0&&L().getBool(\"WEBGL_AUTO_SQUARIFY_NARROW_TEXTURE_SHAPE\")&&(n=e/2),t&&(e=e*2,n=n*2,r=r.map((a,u)=>u>=r.length-2?y.nearestLargerEven(r[u]):r[u]),r.length===1&&(r=[2,r[0]])),r.length!==2&&(r=y.squeezeShape(r).newShape);let o=y.sizeFromShape(r),s=null;r.length<=1&&o<=e?s=[1,o]:r.length===2&&r[0]<=e&&r[1]<=e?s=r:r.length===3&&r[0]*r[1]<=e&&r[2]<=e?s=[r[0]*r[1],r[2]]:r.length===3&&r[0]<=e&&r[1]*r[2]<=e?s=[r[0],r[1]*r[2]]:r.length===4&&r[0]*r[1]*r[2]<=e&&r[3]<=e?s=[r[0]*r[1]*r[2],r[3]]:r.length===4&&r[0]<=e&&r[1]*r[2]*r[3]<=e&&(s=[r[0],r[1]*r[2]*r[3]]);let i=s!=null&&Math.max(...s)>n&&Math.min(...s)<=(t?2:1)&&Math.min(...s)>0;if(s==null||i)if(t){let a=Fl(r),u=2,l=2;r.length&&([u,l]=Ol(r)),o=a*(u/2)*(l/2),s=y.sizeToSquarishShape(o).map(c=>c*2)}else s=y.sizeToSquarishShape(o);return s}function Ow(r){return r%2===0}function Uu(r,t){if(r=r.slice(-2),t=t.slice(-2),y.arraysEqual(r,t)||!r.length||!t.length||r[0]===0||r[1]===0||t[0]===0||t[1]===0)return!0;if(r.length!==t.length){let e=r[r.length-1],n=t[t.length-1];if(e===n||Ow(e)&&Ow(n)&&(r[0]===1||t[0]===1))return!0}return r[1]===t[1]&&Ow(r[0])&&Ow(t[0])}var Mw,Pw;function n1(r){if(Mw==null){let t=qn(r);Mw=t.getParameter(t.MAX_TEXTURE_SIZE)}return Mw}function Ynt(){Mw=null}function Znt(){Pw=null}function o1(r){if(Pw==null){let t=qn(r);Pw=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,Pw)}function s1(r){if(r===0)return 0;let t,e=qn(r);return Kn(e,\"EXT_disjoint_timer_query_webgl2\")&&r===2?t=2:Kn(e,\"EXT_disjoint_timer_query\")?t=1:t=0,t}function Kn(r,t){return r.getExtension(t)!=null}function Vw(r){try{if(qn(r)!=null)return!0}catch(t){return console.log(\"Error when getting WebGL context: \",t),!1}return!1}function i1(r){if(r===0)return!1;let t=qn(r);if(r===1){if(!Kn(t,\"OES_texture_float\"))return!1}else if(!Kn(t,\"EXT_color_buffer_float\"))return!1;return GT(t)}function a1(r){if(r===0)return!1;let t=qn(r);if(r===1){if(!Kn(t,\"OES_texture_float\")||!Kn(t,\"WEBGL_color_buffer_float\"))return!1}else{if(Kn(t,\"EXT_color_buffer_float\"))return GT(t);let n=\"EXT_color_buffer_half_float\";if(Kn(t,n)){let o=t.getExtension(n);return Jnt(t,o)}return!1}return GT(t)}function GT(r){let t=ig(r),e=r.createTexture();r.bindTexture(r.TEXTURE_2D,e),r.texImage2D(r.TEXTURE_2D,0,t.internalFormatFloat,1,1,0,t.textureFormatFloat,t.textureTypeFloat,null);let s=r.createFramebuffer();r.bindFramebuffer(r.FRAMEBUFFER,s),r.framebufferTexture2D(r.FRAMEBUFFER,r.COLOR_ATTACHMENT0,r.TEXTURE_2D,e,0);let i=r.checkFramebufferStatus(r.FRAMEBUFFER)===r.FRAMEBUFFER_COMPLETE;return r.bindTexture(r.TEXTURE_2D,null),r.bindFramebuffer(r.FRAMEBUFFER,null),r.deleteTexture(e),r.deleteFramebuffer(s),i}function Jnt(r,t){let e=ig(r,t),n=r.createTexture();r.bindTexture(r.TEXTURE_2D,n),r.texImage2D(r.TEXTURE_2D,0,e.internalFormatHalfFloat,1,1,0,e.textureFormatFloat,e.textureTypeHalfFloat,null);let i=r.createFramebuffer();r.bindFramebuffer(r.FRAMEBUFFER,i),r.framebufferTexture2D(r.FRAMEBUFFER,r.COLOR_ATTACHMENT0,r.TEXTURE_2D,n,0);let a=r.checkFramebufferStatus(r.FRAMEBUFFER)===r.FRAMEBUFFER_COMPLETE;return r.bindTexture(r.TEXTURE_2D,null),r.bindFramebuffer(r.FRAMEBUFFER,null),r.deleteTexture(n),r.deleteFramebuffer(i),a}function l1(r){return r!==2?!1:qn(r).fenceSync!=null}function vi(r,t){Array.isArray(r)||(r=[r]),r.forEach(e=>{e!=null&&y.assert(e.dtype!==\"complex64\",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var kt=L();kt.registerFlag(\"HAS_WEBGL\",()=>kt.getNumber(\"WEBGL_VERSION\")>0);kt.registerFlag(\"WEBGL_VERSION\",()=>Vw(2)?2:Vw(1)?1:0);kt.registerFlag(\"WEBGL_CHECK_NUMERICAL_PROBLEMS\",()=>!1);kt.registerFlag(\"WEBGL_BUFFER_SUPPORTED\",()=>kt.get(\"WEBGL_VERSION\")===2);kt.registerFlag(\"WEBGL_CPU_FORWARD\",()=>!0);kt.registerFlag(\"WEBGL_FORCE_F16_TEXTURES\",()=>!1);kt.registerFlag(\"WEBGL_PACK\",()=>kt.getBool(\"HAS_WEBGL\"));kt.registerFlag(\"WEBGL_PACK_NORMALIZATION\",()=>kt.getBool(\"WEBGL_PACK\"));kt.registerFlag(\"WEBGL_PACK_CLIP\",()=>kt.getBool(\"WEBGL_PACK\"));kt.registerFlag(\"WEBGL_PACK_DEPTHWISECONV\",()=>kt.getBool(\"WEBGL_PACK\"));kt.registerFlag(\"WEBGL_PACK_BINARY_OPERATIONS\",()=>kt.getBool(\"WEBGL_PACK\"));kt.registerFlag(\"WEBGL_PACK_UNARY_OPERATIONS\",()=>kt.getBool(\"WEBGL_PACK\"));kt.registerFlag(\"WEBGL_PACK_ARRAY_OPERATIONS\",()=>kt.getBool(\"WEBGL_PACK\"));kt.registerFlag(\"WEBGL_PACK_IMAGE_OPERATIONS\",()=>kt.getBool(\"WEBGL_PACK\"));kt.registerFlag(\"WEBGL_PACK_REDUCE\",()=>kt.getBool(\"WEBGL_PACK\"));kt.registerFlag(\"WEBGL_LAZILY_UNPACK\",()=>kt.getBool(\"WEBGL_PACK\"));kt.registerFlag(\"WEBGL_CONV_IM2COL\",()=>kt.getBool(\"WEBGL_PACK\"));kt.registerFlag(\"WEBGL_PACK_CONV2DTRANSPOSE\",()=>kt.getBool(\"WEBGL_PACK\"));kt.registerFlag(\"WEBGL_MAX_TEXTURE_SIZE\",()=>n1(kt.getNumber(\"WEBGL_VERSION\")));kt.registerFlag(\"WEBGL_MAX_TEXTURES_IN_SHADER\",()=>o1(kt.getNumber(\"WEBGL_VERSION\")));kt.registerFlag(\"WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION\",()=>{let r=kt.getNumber(\"WEBGL_VERSION\");return r===0?0:s1(r)});kt.registerFlag(\"WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE\",()=>kt.getNumber(\"WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION\")>0&&!du.isMobile());kt.registerFlag(\"WEBGL_RENDER_FLOAT32_CAPABLE\",()=>i1(kt.getNumber(\"WEBGL_VERSION\")));kt.registerFlag(\"WEBGL_RENDER_FLOAT32_ENABLED\",()=>kt.getBool(\"WEBGL_FORCE_F16_TEXTURES\")?!1:kt.getBool(\"WEBGL_RENDER_FLOAT32_CAPABLE\"));kt.registerFlag(\"WEBGL_DOWNLOAD_FLOAT_ENABLED\",()=>a1(kt.getNumber(\"WEBGL_VERSION\")));kt.registerFlag(\"WEBGL_FENCE_API_ENABLED\",()=>l1(kt.getNumber(\"WEBGL_VERSION\")));kt.registerFlag(\"WEBGL_SIZE_UPLOAD_UNIFORM\",()=>kt.getBool(\"WEBGL_RENDER_FLOAT32_ENABLED\")?4:0);kt.registerFlag(\"WEBGL_DELETE_TEXTURE_THRESHOLD\",()=>-1,r=>{if(typeof r!=\"number\")throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be a number but got ${r}.`);if(r<0&&r!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${r}.`)});kt.registerFlag(\"WEBGL_FLUSH_THRESHOLD\",()=>du.isMobile()?1:-1,r=>{if(typeof r!=\"number\")throw new Error(`WEBGL_FLUSH_THRESHOLD must be a number but got ${r}.`);if(r<0&&r!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${r}.`)});kt.registerFlag(\"CPU_HANDOFF_SIZE_THRESHOLD\",()=>128);kt.registerFlag(\"WEBGL_USE_SHAPES_UNIFORMS\",()=>!1);kt.registerFlag(\"TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD\",()=>1e5);kt.registerFlag(\"TOPK_K_CPU_HANDOFF_THRESHOLD\",()=>128);kt.registerFlag(\"WEBGL_EXP_CONV\",()=>!1);kt.registerFlag(\"SOFTWARE_WEBGL_ENABLED\",()=>kt.getBool(\"IS_TEST\"));kt.registerFlag(\"WEBGL_MAX_SIZE_FOR_NARROW_TEXTURE\",()=>1/0);kt.registerFlag(\"WEBGL_AUTO_SQUARIFY_NARROW_TEXTURE_SHAPE\",()=>!1);kt.registerFlag(\"WEBGL2_ISNAN_CUSTOM\",()=>!1);kt.registerFlag(\"ENGINE_COMPILE_ONLY\",()=>!1);function Ue(){let r,t,e,n,o,s,i,a,u,l;return L().getNumber(\"WEBGL_VERSION\")===2?(r=\"#version 300 es\",t=\"in\",e=\"out\",n=\"in\",o=\"texture\",s=\"outputColor\",i=\"out vec4 outputColor;\",a=L().getBool(\"WEBGL2_ISNAN_CUSTOM\")?`\n bool isnan_custom(float val) {\n uint floatToUint = floatBitsToUint(val);\n return (floatToUint & 0x7fffffffu) > 0x7f800000u;\n }\n\n bvec4 isnan_custom(vec4 val) {\n return bvec4(isnan_custom(val.x),\n isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));\n }\n\n #define isnan(value) isnan_custom(value)\n `:\"\",u=\"\",l=`\n #define round(value) newRound(value)\n int newRound(float value) {\n return int(floor(value + 0.5));\n }\n\n ivec4 newRound(vec4 value) {\n return ivec4(floor(value + vec4(0.5)));\n }\n `):(r=\"\",t=\"attribute\",e=\"varying\",n=\"varying\",o=\"texture2D\",s=\"gl_FragColor\",i=\"\",a=`\n #define isnan(value) isnan_custom(value)\n bool isnan_custom(float val) {\n return (val > 0. || val < 1. || val == 0.) ? false : true;\n }\n bvec4 isnan_custom(vec4 val) {\n return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));\n }\n `,u=`\n uniform float INFINITY;\n\n bool isinf(float val) {\n return abs(val) == INFINITY;\n }\n bvec4 isinf(vec4 val) {\n return equal(abs(val), vec4(INFINITY));\n }\n `,l=`\n int round(float value) {\n return int(floor(value + 0.5));\n }\n\n ivec4 round(vec4 value) {\n return ivec4(floor(value + vec4(0.5)));\n }\n `),{version:r,attribute:t,varyingVs:e,varyingFs:n,texture2D:o,output:s,defineOutput:i,defineSpecialNaN:a,defineSpecialInf:u,defineRound:l}}function Si(r,t,e=\"index\"){let n=y.computeStrides(t);return n.map((o,s)=>{let i=`int ${r[s]} = ${e} / ${o}`,a=s===n.length-1?`int ${r[s+1]} = ${e} - ${r[s]} * ${o}`:`index -= ${r[s]} * ${o}`;return`${i}; ${a};`}).join(\"\")}function up(r,t,e=\"index\"){let n=y.computeStrides(t);return n.map((o,s)=>{let i=`int ${r[s]} = ${e} / outShapeStrides[${s}]`,a=s===n.length-1?`int ${r[s+1]} = ${e} - ${r[s]} * outShapeStrides[${s}]`:`index -= ${r[s]} * outShapeStrides[${s}]`;return`${i}; ${a};`}).join(\"\")}function Qnt(r,t){let e=r.length,n=r.map(s=>`${t}[${s}]`),o=new Array(e-1);o[e-2]=n[e-1];for(let s=e-3;s>=0;--s)o[s]=`(${o[s+1]} * ${n[s+1]})`;return o}function PL(r,t,e=\"index\"){let n=r.map((s,i)=>i),o=Qnt(n,t);return o.map((s,i)=>{let a=`int ${r[i]} = ${e} / ${o[i]}`,u=i===o.length-1?`int ${r[i+1]} = ${e} - ${r[i]} * ${o[i]}`:`index -= ${r[i]} * ${o[i]}`;return`${a}; ${u};`}).join(\"\")}function vd(r){let t=y.computeStrides(r).map(e=>e.toString());return`\n int getFlatIndex(ivec3 coords) {\n return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;\n }\n`}function Sd(){return`\n int getFlatIndex(ivec3 coords) {\n return coords.x * outShapeStrides[0] + coords.y * outShapeStrides[1] + coords.z;\n }\n`}var Gw=`\n const float FLOAT_MAX = 1.70141184e38;\n const float FLOAT_MIN = 1.17549435e-38;\n\n lowp vec4 encode_float(highp float v) {\n if (isnan(v)) {\n return vec4(255, 255, 255, 255);\n }\n\n highp float av = abs(v);\n\n if(av < FLOAT_MIN) {\n return vec4(0.0, 0.0, 0.0, 0.0);\n } else if(v > FLOAT_MAX) {\n return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;\n } else if(v < -FLOAT_MAX) {\n return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;\n }\n\n highp vec4 c = vec4(0,0,0,0);\n\n highp float e = floor(log2(av));\n highp float m = exp2(fract(log2(av))) - 1.0;\n\n c[2] = floor(128.0 * m);\n m -= c[2] / 128.0;\n c[1] = floor(32768.0 * m);\n m -= c[1] / 32768.0;\n c[0] = floor(8388608.0 * m);\n\n highp float ebias = e + 127.0;\n c[3] = floor(ebias / 2.0);\n ebias -= c[3] * 2.0;\n c[2] += floor(ebias) * 128.0;\n\n c[3] += 128.0 * step(0.0, -v);\n\n return c / 255.0;\n }\n`;var{getBroadcastDims:LL}=S;function zL(r,t,e){let n=[];if(r.forEach(f=>{let d=y.sizeFromShape(f.shapeInfo.logicalShape);if(f.shapeInfo.isUniform?n.push(`uniform float ${f.name}${d>1?`[${d}]`:\"\"};`):(n.push(`uniform sampler2D ${f.name};`),n.push(`uniform int offset${f.name};`)),e.enableShapeUniforms){let{uniformShape:h}=Ww(e.packedInputs,f.shapeInfo.logicalShape,f.shapeInfo.texShape);switch(h.length){case 1:n.push(`uniform int ${f.name}Shape;`);break;case 2:n.push(`uniform ivec2 ${f.name}Shape;`);break;case 3:n.push(`uniform ivec3 ${f.name}Shape;`);break;case 4:n.push(`uniform ivec4 ${f.name}Shape;`);break;default:break}n.push(`uniform ivec2 ${f.name}TexShape;`)}}),e.enableShapeUniforms){switch(t.logicalShape.length){case 1:n.push(\"uniform int outShape;\");break;case 2:n.push(\"uniform ivec2 outShape;\"),n.push(\"uniform int outShapeStrides;\");break;case 3:n.push(\"uniform ivec3 outShape;\"),n.push(\"uniform ivec2 outShapeStrides;\");break;case 4:n.push(\"uniform ivec4 outShape;\"),n.push(\"uniform ivec3 outShapeStrides;\");break;default:break}n.push(\"uniform ivec2 outTexShape;\")}e.customUniforms&&e.customUniforms.forEach(f=>{n.push(`uniform ${f.type} ${f.name}${f.arrayIndex?`[${f.arrayIndex}]`:\"\"};`)});let o=n.join(`\n`),s=r.map(f=>tot(f,t,e.packedInputs,e.enableShapeUniforms)).join(`\n`),i=t.texShape,a=Ue(),u=not(a),l,c,p=iot(a);return t.isPacked?(l=eot(t.logicalShape,i,e.enableShapeUniforms),c=sot(a)):(l=rot(t.logicalShape,i,e.enableShapeUniforms),c=oot(a)),e.packedInputs&&(p+=cot),[p,u,c,o,l,s,e.userCode].join(`\n`)}function kd(r,t=!1){let e=r.shapeInfo.logicalShape;switch(e.length){case 0:return Cot(r,t);case 1:return Sot(r,t);case 2:return kot(r,t);case 3:return _ot(r,t);case 4:return Aot(r,t);case 5:return Dot(r);case 6:return $ot(r);default:throw new Error(`${e.length}-D input sampling is not yet supported`)}}function BL(r,t){switch(r.shapeInfo.logicalShape.length){case 0:return Iot(r);case 1:return vot(r,t);case 2:return Not(r,t);case 3:return Tot(r,t);default:return Eot(r,t)}}function tot(r,t,e=!1,n){let o=\"\";e?o+=BL(r,n):o+=kd(r,n);let s=r.shapeInfo.logicalShape,i=t.logicalShape;return s.length<=i.length&&(e?o+=Rot(r,t):o+=Fot(r,t)),o}function eot(r,t,e){switch(r.length){case 0:return VL();case 1:return pot(r,t,e);case 2:return bot(r,t,e);case 3:return fot(r,t,e);default:return hot(r,t,e)}}function rot(r,t,e){switch(r.length){case 0:return VL();case 1:return mot(r,t,e);case 2:return wot(r,t,e);case 3:return dot(r,t,e);case 4:return got(r,t,e);case 5:return xot(r,t);case 6:return yot(r,t);default:throw new Error(`${r.length}-D output sampling is not yet supported`)}}function not(r){return`\n float sampleTexture(sampler2D textureSampler, vec2 uv) {\n return ${r.texture2D}(textureSampler, uv).r;\n }\n `}function oot(r){return`\n void setOutput(float val) {\n ${r.output} = vec4(val, 0, 0, 0);\n }\n `}function sot(r){return`\n void setOutput(vec4 val) {\n ${r.output} = val;\n }\n `}function iot(r){return`${r.version}\n precision highp float;\n precision highp int;\n precision highp sampler2D;\n ${r.varyingFs} vec2 resultUV;\n ${r.defineOutput}\n const vec2 halfCR = vec2(0.5, 0.5);\n\n struct ivec5\n {\n int x;\n int y;\n int z;\n int w;\n int u;\n };\n\n struct ivec6\n {\n int x;\n int y;\n int z;\n int w;\n int u;\n int v;\n };\n\n uniform float NAN;\n ${r.defineSpecialNaN}\n ${r.defineSpecialInf}\n ${r.defineRound}\n\n int imod(int x, int y) {\n return x - y * (x / y);\n }\n\n int idiv(int a, int b, float sign) {\n int res = a / b;\n int mod = imod(a, b);\n if (sign < 0. && mod != 0) {\n res -= 1;\n }\n return res;\n }\n\n //Based on the work of Dave Hoskins\n //https://www.shadertoy.com/view/4djSRW\n #define HASHSCALE1 443.8975\n float random(float seed){\n vec2 p = resultUV * seed;\n vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);\n p3 += dot(p3, p3.yzx + 19.19);\n return fract((p3.x + p3.y) * p3.z);\n }\n\n ${aot}\n ${lot}\n ${uot}\n `}var aot=`\nvec2 uvFromFlat(int texNumR, int texNumC, int index) {\n int texR = index / texNumC;\n int texC = index - texR * texNumC;\n return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);\n}\nvec2 packedUVfrom1D(int texNumR, int texNumC, int index) {\n int texelIndex = index / 2;\n int texR = texelIndex / texNumC;\n int texC = texelIndex - texR * texNumC;\n return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);\n}\n`,lot=`\nvec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,\n int texNumC, int row, int col) {\n int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);\n int texR = texelIndex / texNumC;\n int texC = texelIndex - texR * texNumC;\n return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);\n}\n`,uot=`\nvec2 packedUVfrom3D(int texNumR, int texNumC,\n int texelsInBatch, int texelsInLogicalRow, int b,\n int row, int col) {\n int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);\n int texR = index / texNumC;\n int texC = index - texR * texNumC;\n return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);\n}\n`,cot=`\n float getChannel(vec4 frag, vec2 innerDims) {\n vec2 modCoord = mod(innerDims, 2.);\n return modCoord.x == 0. ?\n (modCoord.y == 0. ? frag.r : frag.g) :\n (modCoord.y == 0. ? frag.b : frag.a);\n }\n float getChannel(vec4 frag, int dim) {\n float modCoord = mod(float(dim), 2.);\n return modCoord == 0. ? frag.r : frag.g;\n }\n`;function VL(){return`\n int getOutputCoords() {\n return 0;\n }\n `}function pot(r,t,e){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return n[0]===1?e?`\n int getOutputCoords() {\n return 2 * int(resultUV.x * ceil(float(outTexShape[1]) / 2.0));\n }\n `:`\n int getOutputCoords() {\n return 2 * int(resultUV.x * ${n[1]}.0);\n }\n `:n[1]===1?e?`\n int getOutputCoords() {\n return 2 * int(resultUV.y * ceil(float(outTexShape[0]) / 2.0));\n }\n `:`\n int getOutputCoords() {\n return 2 * int(resultUV.y * ${n[0]}.0);\n }\n `:e?`\n int getOutputCoords() {\n ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));\n ivec2 resTexRC = ivec2(resultUV.yx *\n vec2(packedTexShape[0], packedTexShape[1]));\n return 2 * (resTexRC.x * packedTexShape[1] + resTexRC.y);\n }\n `:`\n int getOutputCoords() {\n ivec2 resTexRC = ivec2(resultUV.yx *\n vec2(${n[0]}, ${n[1]}));\n return 2 * (resTexRC.x * ${n[1]} + resTexRC.y);\n }\n `}function mot(r,t,e){return t[0]===1?e?`\n int getOutputCoords() {\n return int(resultUV.x * float(outTexShape[1]));\n }\n `:`\n int getOutputCoords() {\n return int(resultUV.x * ${t[1]}.0);\n }\n `:t[1]===1?e?`\n int getOutputCoords() {\n return int(resultUV.y * float(outTexShape[0]));\n }\n `:`\n int getOutputCoords() {\n return int(resultUV.y * ${t[0]}.0);\n }\n `:e?`\n int getOutputCoords() {\n ivec2 resTexRC = ivec2(resultUV.yx *\n vec2(outTexShape[0], outTexShape[1]));\n return resTexRC.x * outTexShape[1] + resTexRC.y;\n }\n `:`\n int getOutputCoords() {\n ivec2 resTexRC = ivec2(resultUV.yx *\n vec2(${t[0]}, ${t[1]}));\n return resTexRC.x * ${t[1]} + resTexRC.y;\n }\n `}function fot(r,t,e){if(e)return`\n ivec3 getOutputCoords() {\n ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));\n int texelsInLogicalRow = int(ceil(float(outShape[2]) / 2.0));\n int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[1]) / 2.0));\n ivec2 resTexRC = ivec2(resultUV.yx *\n vec2(packedTexShape[0], packedTexShape[1]));\n int index = resTexRC.x * packedTexShape[1] + resTexRC.y;\n\n int b = index / texelsInBatch;\n index -= b * texelsInBatch;\n\n int r = 2 * (index / texelsInLogicalRow);\n int c = imod(index, texelsInLogicalRow) * 2;\n\n return ivec3(b, r, c);\n }\n `;let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],o=Math.ceil(r[2]/2),s=o*Math.ceil(r[1]/2);return`\n ivec3 getOutputCoords() {\n ivec2 resTexRC = ivec2(resultUV.yx *\n vec2(${n[0]}, ${n[1]}));\n int index = resTexRC.x * ${n[1]} + resTexRC.y;\n\n int b = index / ${s};\n index -= b * ${s};\n\n int r = 2 * (index / ${o});\n int c = imod(index, ${o}) * 2;\n\n return ivec3(b, r, c);\n }\n `}function dot(r,t,e){if(e)return`\n ivec3 getOutputCoords() {\n ivec2 resTexRC = ivec2(resultUV.yx *\n vec2(outTexShape[0], outTexShape[1]));\n int index = resTexRC.x * outTexShape[1] + resTexRC.y;\n ${up([\"r\",\"c\",\"d\"],r)}\n return ivec3(r, c, d);\n }\n`;let n=Si([\"r\",\"c\",\"d\"],r);return`\n ivec3 getOutputCoords() {\n ivec2 resTexRC = ivec2(resultUV.yx *\n vec2(${t[0]}, ${t[1]}));\n int index = resTexRC.x * ${t[1]} + resTexRC.y;\n ${n}\n return ivec3(r, c, d);\n }\n `}function hot(r,t,e){if(e)return`\n ivec4 getOutputCoords() {\n ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));\n ivec2 resTexRC = ivec2(resultUV.yx *\n vec2(packedTexShape[0], packedTexShape[1]));\n int index = resTexRC.x * packedTexShape[1] + resTexRC.y;\n\n int texelsInLogicalRow = int(ceil(float(outShape[3]) / 2.0));\n int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[2]) / 2.0));\n int texelsInBatchN = texelsInBatch * outShape[1];\n\n int b2 = index / texelsInBatchN;\n index -= b2 * texelsInBatchN;\n\n int b = index / texelsInBatch;\n index -= b * texelsInBatch;\n\n int r = 2 * (index / texelsInLogicalRow);\n int c = imod(index, texelsInLogicalRow) * 2;\n\n return ivec4(b2, b, r, c);\n }\n `;let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],o=Math.ceil(r[r.length-1]/2),s=o*Math.ceil(r[r.length-2]/2),i=s,a=\"\",u=\"b, r, c\";for(let l=2;l=1?c=\"coords = 0;\":c=a.map(b=>`coords.${p[b+l]} = 0;`).join(`\n`);let m=\"\";i<2&&s>0?m=\"coords\":m=r.shapeInfo.logicalShape.map((b,w)=>`coords.${p[w+l]}`).join(\", \");let f=\"return outputValue;\",h=y.sizeFromShape(r.shapeInfo.logicalShape)===1,x=y.sizeFromShape(t.logicalShape)===1;if(s===1&&!h&&!x)f=`\n return vec4(outputValue.xy, outputValue.xy);\n `;else if(h&&!x)i===1?f=`\n return vec4(outputValue.x, outputValue.x, 0., 0.);\n `:f=`\n return vec4(outputValue.x);\n `;else if(a.length){let b=s-2,w=s-1;a.indexOf(b)>-1&&a.indexOf(w)>-1?f=\"return vec4(outputValue.x);\":a.indexOf(b)>-1?f=\"return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);\":a.indexOf(w)>-1&&(f=\"return vec4(outputValue.xx, outputValue.zz);\")}return`\n vec4 ${o}() {\n ${u} coords = getOutputCoords();\n ${c}\n vec4 outputValue = get${n}(${m});\n ${f}\n }\n `}function Fot(r,t){let e=r.name,n=e.charAt(0).toUpperCase()+e.slice(1),o=\"get\"+n+\"AtOutCoords\",s=t.texShape,i=r.shapeInfo.texShape,a=r.shapeInfo.logicalShape.length,u=t.logicalShape.length;if(!r.shapeInfo.isUniform&&a===u&&r.shapeInfo.flatOffset==null&&y.arraysEqual(i,s))return`\n float ${o}() {\n return sampleTexture(${e}, resultUV);\n }\n `;let l=zt(u),c=LL(r.shapeInfo.logicalShape,t.logicalShape),p=u-a,m,f=[\"x\",\"y\",\"z\",\"w\",\"u\",\"v\"];a===0?m=\"\":u<2&&c.length>=1?m=\"coords = 0;\":m=c.map(h=>`coords.${f[h+p]} = 0;`).join(`\n`);let d=\"\";return u<2&&a>0?d=\"coords\":d=r.shapeInfo.logicalShape.map((h,g)=>`coords.${f[g+p]}`).join(\", \"),`\n float ${o}() {\n ${l} coords = getOutputCoords();\n ${m}\n return get${n}(${d});\n }\n `}function zt(r){if(r<=1)return\"int\";if(r===2)return\"ivec2\";if(r===3)return\"ivec3\";if(r===4)return\"ivec4\";if(r===5)return\"ivec5\";if(r===6)return\"ivec6\";throw Error(`GPU for rank ${r} is not yet supported`)}function Ww(r,t,e){let{newShape:n,keptDims:o}=y.squeezeShape(t),s=t.length,i=r&&s===3&&t[0]===1,a=i?t.slice(1):n,u=!r&&s>1&&!y.arraysEqual(t,e)&&n.lengthr[e]).join(\", \")}function WL(r,t,e,n){let o=e.map((c,p)=>{let m={logicalShape:c.shape,texShape:c.isUniform?null:c.texData.texShape,isUniform:c.isUniform,isPacked:c.isUniform?!1:c.texData.isPacked,flatOffset:null};return c.texData!=null&&c.texData.slice!=null&&c.texData.slice.flatOffset>0&&(m.flatOffset=c.texData.slice.flatOffset),{name:t.variableNames[p],shapeInfo:m}}),s=o.map(c=>c.shapeInfo),i={logicalShape:n.shape,texShape:n.texData.texShape,isUniform:!1,isPacked:n.texData.isPacked,flatOffset:null},a=zL(o,i,t),u=HT(r.gl,a),l=r.createProgram(u);return L().get(\"ENGINE_COMPILE_ONLY\")?{program:t,fragmentShader:u,source:a,webGLProgram:l,inShapeInfos:s,outShapeInfo:i,variablesLocations:null,customUniformLocations:null,infLoc:null,nanLoc:null,outShapeLocation:null,outShapeStridesLocation:null,outTexShapeLocation:null}:(r.buildVao(l),Object.assign({program:t,fragmentShader:u,source:a,webGLProgram:l,inShapeInfos:s,outShapeInfo:i},u1(r,t,l)))}function u1(r,t,e){let n=[],o=[],s,i,a,u=null,l=null;l=r.getUniformLocation(e,\"NAN\",!1),L().getNumber(\"WEBGL_VERSION\")===1&&(u=r.getUniformLocation(e,\"INFINITY\",!1));let c=!1;for(let p of t.variableNames){let m={name:p,uniform:r.getUniformLocation(e,p,c),offset:r.getUniformLocation(e,`offset${p}`,c)};t.enableShapeUniforms&&(m.shape=r.getUniformLocation(e,`${p}Shape`,c),m.texShape=r.getUniformLocation(e,`${p}TexShape`,c)),n.push(m)}if(t.enableShapeUniforms&&(s=r.getUniformLocation(e,\"outShape\",c),a=r.getUniformLocation(e,\"outShapeStrides\",c),i=r.getUniformLocation(e,\"outTexShape\",c)),t.customUniforms)for(let p of t.customUniforms)o.push(r.getUniformLocation(e,p.name,c));return{variablesLocations:n,customUniformLocations:o,infLoc:u,nanLoc:l,outShapeLocation:s,outShapeStridesLocation:a,outTexShapeLocation:i}}function GL(r,t){if(r.length!==t.length)throw Error(`Binary was compiled with ${r.length} inputs, but was executed with ${t.length} inputs`);r.forEach((e,n)=>{let o=e.logicalShape,s=t[n],i=s.shape;if(!y.arraysEqual(o,i))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${o} and ${i} must match`);if(e.isUniform&&s.isUniform)return;let a=e.texShape,u=s.isUniform?null:s.texData.texShape;if(!y.arraysEqual(a,u))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${a} and ${u} must match`)})}function UL(r,t,e,n,o){t.program.enableShapeUniforms||(GL(t.inShapeInfos,e),GL([t.outShapeInfo],[n]));let s=n.texData.texture,i=n.texData.texShape;n.texData.isPacked?r.setOutputPackedMatrixTexture(s.texture,i[0],i[1]):r.setOutputMatrixTexture(s.texture,i[0],i[1]),r.setProgram(t.webGLProgram),r.bindVertexArray(t.webGLProgram.vao),L().getNumber(\"WEBGL_VERSION\")===1&&t.infLoc!==null&&r.gl.uniform1f(t.infLoc,1/0),t.nanLoc!==null&&r.gl.uniform1f(t.nanLoc,NaN);for(let u=0;u{let a=i.texData!=null&&i.texData.slice!=null&&i.texData.slice.flatOffset>0;if(r.enableShapeUniforms&&!i.isUniform){let u=i.texData.texShape,{useSqueezeShape:l,uniformShape:c,keptDims:p}=Ww(r.packedInputs,i.shape,u),m=\"\",f=\"\",d=\"\";if(c.length===1&&r.packedInputs){let N=[Math.ceil(u[0]/2),Math.ceil(u[1]/2)];m=`${N[0]>1}_${N[1]>1}`}else if(c.length===2&&!r.packedInputs)f=`${c[0]>1}_${c[1]>1}`;else if(c.length>2&&!r.packedInputs){let N=y.computeStrides(c);d=`${N[0]===u[1]}_${N[N.length-1]===u[1]}`}let h=i.shape.length,g=c.length===2&&y.arraysEqual(i.shape,u),x=y.sizeFromShape(i.shape)===1,b=S.getBroadcastDims(i.shape,e.shape),w=!r.packedInputs&&h===e.shape.length&&y.arraysEqual(u,e.texData.texShape),I=r.packedInputs||c.length>2?\"\":`${u[0]>1}_${u[1]>1}`;n+=`${h}_${w}_${l?p:\"\"}_${c.length}_${x}_${b}_${g}_${m}_${f}_${d}_${I}_${a}`}else{let u=i.isUniform?\"uniform\":i.texData.texShape;n+=`${i.shape}_${u}_${a}`}});let o=r.userCode,s=r.constructor.name;return s+=\"_\"+n+\"_\"+o+`${L().getNumber(\"WEBGL_VERSION\")}`,s}function he(r){return L().getBool(\"WEBGL_USE_SHAPES_UNIFORMS\")&&r<=4}var Uw=class{constructor(t){this.variableNames=[\"A\"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=Wu.DENSE,this.customUniforms=[{name:\"texShape\",type:\"ivec2\"}];let e=Ue();this.outputShape=t,this.enableShapeUniforms=he(this.outputShape.length),this.userCode=`\n ivec3 outCoordsFromFlatIndex(int index) {\n ${this.enableShapeUniforms?up([\"r\",\"c\",\"d\"],t):Si([\"r\",\"c\",\"d\"],t)}\n return ivec3(r, c, d);\n }\n\n void main() {\n ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));\n int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);\n\n vec4 result = vec4(0.);\n\n for (int i=0; i<4; i++) {\n int flatIndex = index + i;\n ivec3 rc = outCoordsFromFlatIndex(flatIndex);\n result[i] = getA(rc.x, rc.y, rc.z);\n }\n\n ${e.output} = result;\n }\n `}};var Hw=class{constructor(t){this.variableNames=[\"A\"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=Wu.DENSE,this.customUniforms=[{name:\"texShape\",type:\"ivec2\"}];let e=Ue();this.outputShape=t,this.enableShapeUniforms=he(this.outputShape.length),this.userCode=`\n ivec3 outCoordsFromFlatIndex(int index) {\n ${this.enableShapeUniforms?up([\"r\",\"c\",\"d\"],t):Si([\"r\",\"c\",\"d\"],t)}\n return ivec3(r, c, d);\n }\n\n void main() {\n ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));\n int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);\n\n vec4 result = vec4(0.);\n\n for (int i=0; i<4; i++) {\n int flatIndex = index + i;\n ivec3 rc = outCoordsFromFlatIndex(flatIndex);\n result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));\n }\n\n ${e.output} = result;\n }\n `}};var qw=class{constructor(t){this.variableNames=[\"A\"],this.outTexUsage=Jr.DOWNLOAD;let e=Ue();this.outputShape=t,this.userCode=`\n ${Gw}\n\n void main() {\n float x = getAAtOutCoords();\n ${e.output} = encode_float(x);\n }\n `}};var Kw=class{constructor(t){this.variableNames=[\"A\"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=Jr.DOWNLOAD;let e=Ue();this.outputShape=t,this.userCode=`\n ${Gw}\n\n void main() {\n ivec3 coords = getOutputCoords();\n float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));\n ${e.output} = encode_float(x);\n }\n `}};var Pot={R:0,G:1,B:2,A:3},ug=class{constructor(t,e=!1,n=\"RGBA\"){this.variableNames=[\"A\"],this.customUniforms=[{name:\"texShape\",type:\"ivec2\"}];let o=Ue();this.outputShape=t,this.enableShapeUniforms=he(this.outputShape.length);let s=\"result\";e&&(s=\"floor(result * 255. + 0.5)\");let i=\"\";for(let a=0;ay1,createBufferFromOutputTexture:()=>I1,createFloat16MatrixTexture:()=>d1,createFloat16PackedMatrixTexture:()=>x1,createFloat32MatrixTexture:()=>f1,createIndexBuffer:()=>m1,createPackedMatrixTexture:()=>g1,createUnsignedBytesMatrixTexture:()=>h1,createVertexBuffer:()=>p1,createVertexShader:()=>c1,downloadByteEncodedFloatMatrixFromOutputTexture:()=>v1,downloadFloat32MatrixFromBuffer:()=>C1,downloadMatrixFromPackedOutputTexture:()=>N1,downloadPackedMatrixFromBuffer:()=>S1,getInternalFormatForFloat16MatrixTexture:()=>Yw,getInternalFormatForFloat16PackedMatrixTexture:()=>Qw,getInternalFormatForFloat32MatrixTexture:()=>Xw,getInternalFormatForPackedMatrixTexture:()=>Jw,getInternalFormatForUnsignedBytesMatrixTexture:()=>Zw,uploadDenseMatrixToTexture:()=>b1,uploadPixelDataToTexture:()=>w1});function c1(r){let t=Ue(),e=`${t.version}\n precision highp float;\n ${t.attribute} vec3 clipSpacePos;\n ${t.attribute} vec2 uv;\n ${t.varyingVs} vec2 resultUV;\n\n void main() {\n gl_Position = vec4(clipSpacePos, 1);\n resultUV = uv;\n }`;return UT(r,e)}function p1(r){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return jT(r,t)}function m1(r){let t=new Uint16Array([0,1,2,2,1,3]);return XT(r,t)}function cg(r,t,e,n,o,s){ZT(t,e);let i=YT(r),a=r.TEXTURE_2D;return ht(r,()=>r.bindTexture(a,i)),ht(r,()=>r.texParameteri(a,r.TEXTURE_WRAP_S,r.CLAMP_TO_EDGE)),ht(r,()=>r.texParameteri(a,r.TEXTURE_WRAP_T,r.CLAMP_TO_EDGE)),ht(r,()=>r.texParameteri(a,r.TEXTURE_MIN_FILTER,r.NEAREST)),ht(r,()=>r.texParameteri(a,r.TEXTURE_MAG_FILTER,r.NEAREST)),L().getNumber(\"WEBGL_VERSION\")===1?ht(r,()=>r.texImage2D(a,0,n,t,e,0,o,s,null)):ht(r,()=>r.texStorage2D(a,1,n,t,e)),ht(r,()=>r.bindTexture(r.TEXTURE_2D,null)),{texture:i,texShape:[e,t]}}function Xw(r){return r.internalFormatFloat}function f1(r,t,e,n){let[o,s]=lp(t,e);return cg(r,o,s,Xw(n),n.textureFormatFloat,r.FLOAT)}function Yw(r){return r.internalFormatHalfFloat}function d1(r,t,e,n){let[o,s]=lp(t,e);return cg(r,o,s,Yw(n),n.textureFormatFloat,n.textureTypeHalfFloat)}function Zw(r){return r.downloadTextureFormat}function h1(r,t,e,n){let[o,s]=lp(t,e);return cg(r,o,s,Zw(n),r.RGBA,r.UNSIGNED_BYTE)}function Jw(r){return r.internalFormatPackedFloat}function g1(r,t,e,n){let[o,s]=wa(t,e);return cg(r,o,s,Jw(n),r.RGBA,r.FLOAT)}function Qw(r){return r.internalFormatPackedHalfFloat}function x1(r,t,e,n){let[o,s]=wa(t,e);return cg(r,o,s,Qw(n),r.RGBA,n.textureTypeHalfFloat)}function y1(r,t,e){return ht(r,()=>r.bindBuffer(r.ARRAY_BUFFER,e)),zw(r,t,\"clipSpacePos\",e,3,20,0)&&zw(r,t,\"uv\",e,2,20,12)}function b1(r,t,e,n,o,s){ht(r,()=>r.bindTexture(r.TEXTURE_2D,t));let i,a,u;o instanceof Uint8Array?(i=new Uint8Array(e*n*4),a=r.UNSIGNED_BYTE,u=r.RGBA):(i=new Float32Array(e*n*4),a=r.FLOAT,u=s.internalFormatPackedFloat),i.set(o),L().getNumber(\"WEBGL_VERSION\")===2?ht(r,()=>r.texSubImage2D(r.TEXTURE_2D,0,0,0,e,n,r.RGBA,a,i)):ht(r,()=>r.texImage2D(r.TEXTURE_2D,0,u,e,n,0,r.RGBA,a,i)),ht(r,()=>r.bindTexture(r.TEXTURE_2D,null))}function w1(r,t,e){ht(r,()=>r.bindTexture(r.TEXTURE_2D,t)),e.data instanceof Uint8Array?L().getNumber(\"WEBGL_VERSION\")===2?ht(r,()=>r.texSubImage2D(r.TEXTURE_2D,0,0,0,e.width,e.height,r.RGBA,r.UNSIGNED_BYTE,e.data)):ht(r,()=>r.texImage2D(r.TEXTURE_2D,0,r.RGBA,e.width,e.height,0,r.RGBA,r.UNSIGNED_BYTE,e.data)):L().getNumber(\"WEBGL_VERSION\")===2?ht(r,()=>r.texSubImage2D(r.TEXTURE_2D,0,0,0,r.RGBA,r.UNSIGNED_BYTE,e)):ht(r,()=>r.texImage2D(r.TEXTURE_2D,0,r.RGBA,r.RGBA,r.UNSIGNED_BYTE,e)),ht(r,()=>r.bindTexture(r.TEXTURE_2D,null))}function I1(r,t,e,n){let o=r.createBuffer();ht(r,()=>r.bindBuffer(r.PIXEL_PACK_BUFFER,o));let a=4*4*t*e;return ht(r,()=>r.bufferData(r.PIXEL_PACK_BUFFER,a,r.STREAM_READ)),ht(r,()=>r.readPixels(0,0,e,t,r.RGBA,r.FLOAT,0)),ht(r,()=>r.bindBuffer(r.PIXEL_PACK_BUFFER,null)),o}function C1(r,t,e){let n=r,o=new Float32Array(e);return n.bindBuffer(n.PIXEL_PACK_BUFFER,t),n.getBufferSubData(n.PIXEL_PACK_BUFFER,0,o),n.bindBuffer(n.PIXEL_PACK_BUFFER,null),o}function v1(r,t,e,n){let[o,s]=lp(t,e),i=4,a=new Uint8Array(DL(t*e,i));return ht(r,()=>r.readPixels(0,0,o,s,n.downloadTextureFormat,r.UNSIGNED_BYTE,a)),new Float32Array(a.buffer)}function S1(r,t,e,n,o,s,i,a){let u=r,l=new Float32Array($L(s,i));return u.bindBuffer(u.PIXEL_PACK_BUFFER,t),u.getBufferSubData(u.PIXEL_PACK_BUFFER,0,l),u.bindBuffer(u.PIXEL_PACK_BUFFER,null),l}function N1(r,t,e){let n=new Float32Array(t*e*4);return ht(r,()=>r.readPixels(0,0,e,t,r.RGBA,r.FLOAT,n)),n}var pp=class{constructor(t){this.outputTexture=null,this.program=null,this.disposed=!1,this.itemsToPoll=[];let e=L().getNumber(\"WEBGL_VERSION\");if(t!=null?(this.gl=t,BT(e,t)):this.gl=qn(e),t=this.gl,L().getNumber(\"WEBGL_VERSION\")===2){let s=t;this.createVertexArray=()=>ht(s,()=>s.createVertexArray()),this.bindVertexArray=i=>ht(s,()=>s.bindVertexArray(i)),this.deleteVertexArray=i=>ht(s,()=>s.deleteVertexArray(i)),this.getVertexArray=()=>ht(s,()=>s.getParameter(s.VERTEX_ARRAY_BINDING))}else if(t!=null){let s=t.getExtension(\"OES_vertex_array_object\");if(s==null)throw new Error(\"All WebGL1 implementations are expected to offer OES_vertex_array_object.\");this.createVertexArray=()=>ht(t,()=>s.createVertexArrayOES()),this.bindVertexArray=i=>ht(t,()=>s.bindVertexArrayOES(i)),this.deleteVertexArray=i=>ht(t,()=>s.deleteVertexArrayOES(i)),this.getVertexArray=()=>ht(t,()=>t.getParameter(s.VERTEX_ARRAY_BINDING_OES))}let n=\"WEBGL_color_buffer_float\",o=\"EXT_color_buffer_half_float\";if(this.parallelCompilationExtension=this.gl.getExtension(\"KHR_parallel_shader_compile\"),L().getNumber(\"WEBGL_VERSION\")===1){let s=\"OES_texture_float\",i=\"OES_texture_half_float\";if(this.textureFloatExtension=bd(this.gl,s),Kn(this.gl,i))this.textureHalfFloatExtension=bd(this.gl,i);else if(L().get(\"WEBGL_FORCE_F16_TEXTURES\"))throw new Error(\"GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.\");if(this.colorBufferFloatExtension=this.gl.getExtension(n),Kn(this.gl,o))this.colorBufferHalfFloatExtension=bd(this.gl,o);else if(L().get(\"WEBGL_FORCE_F16_TEXTURES\"))throw new Error(\"GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.\")}else if(n=\"EXT_color_buffer_float\",Kn(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(Kn(this.gl,o))this.colorBufferHalfFloatExtension=this.gl.getExtension(o);else throw new Error(\"GL context does not support color renderable floats\");this.vertexBuffer=p1(this.gl),this.indexBuffer=m1(this.gl),this.framebuffer=JT(this.gl),this.textureConfig=ig(this.gl,this.textureHalfFloatExtension)}get debug(){return L().getBool(\"DEBUG\")}dispose(){if(this.disposed)return;this.program!=null&&console.warn(\"Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing.\"),this.outputTexture!=null&&console.warn(\"Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.\");let t=this.gl;ht(t,()=>t.finish()),ht(t,()=>t.bindFramebuffer(t.FRAMEBUFFER,null)),ht(t,()=>t.deleteFramebuffer(this.framebuffer)),ht(t,()=>t.bindBuffer(t.ARRAY_BUFFER,null)),ht(t,()=>t.bindBuffer(t.ELEMENT_ARRAY_BUFFER,null)),ht(t,()=>t.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(t,e){return this.throwIfDisposed(),f1(this.gl,t,e,this.textureConfig)}createFloat16MatrixTexture(t,e){return this.throwIfDisposed(),d1(this.gl,t,e,this.textureConfig)}createUnsignedBytesMatrixTexture(t,e){return this.throwIfDisposed(),h1(this.gl,t,e,this.textureConfig)}uploadPixelDataToTexture(t,e){this.throwIfDisposed(),w1(this.gl,t,e)}uploadDenseMatrixToTexture(t,e,n,o){this.throwIfDisposed(),b1(this.gl,t,e,n,o,this.textureConfig)}createFloat16PackedMatrixTexture(t,e){return this.throwIfDisposed(),x1(this.gl,t,e,this.textureConfig)}createPackedMatrixTexture(t,e){return this.throwIfDisposed(),g1(this.gl,t,e,this.textureConfig)}deleteMatrixTexture(t){this.throwIfDisposed(),this.outputTexture===t&&(Bw(this.gl,this.framebuffer),this.outputTexture=null),ht(this.gl,()=>this.gl.deleteTexture(t))}downloadByteEncodedFloatMatrixFromOutputTexture(t,e,n){return this.downloadMatrixDriver(t,()=>v1(this.gl,e,n,this.textureConfig))}downloadPackedMatrixFromBuffer(t,e,n,o,s,i){return S1(this.gl,t,e,n,o,s,i,this.textureConfig)}downloadFloat32MatrixFromBuffer(t,e){return C1(this.gl,t,e)}createBufferFromTexture(t,e,n){this.bindTextureToFrameBuffer(t);let o=I1(this.gl,e,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),o}createAndWaitForFence(){let t=this.createFence(this.gl);return this.pollFence(t)}createFence(t){let e,n;if(L().getBool(\"WEBGL_FENCE_API_ENABLED\")){let o=t,s=o.fenceSync(o.SYNC_GPU_COMMANDS_COMPLETE,0);t.flush(),n=()=>{let i=o.clientWaitSync(s,0,0);return i===o.ALREADY_SIGNALED||i===o.CONDITION_SATISFIED},e=s}else L().getNumber(\"WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION\")>0?(e=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(e,L().getNumber(\"WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION\"))):n=()=>!0;return{query:e,isFencePassed:n}}downloadMatrixFromPackedTexture(t,e,n){return this.downloadMatrixDriver(t,()=>N1(this.gl,e,n))}createProgram(t){this.throwIfDisposed();let e=this.gl;this.vertexShader==null&&(this.vertexShader=c1(e));let n=qT(e);ht(e,()=>e.attachShader(n,this.vertexShader)),ht(e,()=>e.attachShader(n,t)),KT(e,n);let o=Object.assign(n,{vao:this.createVertexArray()});return this.debug&&ag(e,o),o}buildVao(t){this.setProgram(t),this.bindVertexArray(t.vao);let e=this.gl;ht(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,this.indexBuffer)),y1(e,t,this.vertexBuffer)}deleteProgram(t){this.throwIfDisposed(),t===this.program&&(this.program=null),t!=null&&(ht(this.gl,()=>this.gl.deleteProgram(t)),this.deleteVertexArray(t.vao))}setProgram(t){this.throwIfDisposed(),this.program=t,this.program!=null&&this.debug&&ag(this.gl,this.program),ht(this.gl,()=>this.gl.useProgram(t))}getUniformLocation(t,e,n=!0){return this.throwIfDisposed(),n?QT(this.gl,t,e):t1(this.gl,t,e)}getAttributeLocation(t,e){return this.throwIfDisposed(),ht(this.gl,()=>this.gl.getAttribLocation(t,e))}getUniformLocationNoThrow(t,e){return this.throwIfDisposed(),this.gl.getUniformLocation(t,e)}setInputMatrixTexture(t,e,n){this.throwIfDisposed(),this.throwIfNoProgram(),e1(this.gl,t,e,n)}setOutputMatrixTexture(t,e,n){this.setOutputMatrixTextureDriver(t,n,e)}setOutputPackedMatrixTexture(t,e,n){this.throwIfDisposed();let[o,s]=wa(e,n);this.setOutputMatrixTextureDriver(t,o,s)}setOutputMatrixWriteRegion(t,e,n,o){this.setOutputMatrixWriteRegionDriver(n,t,o,e)}setOutputPackedMatrixWriteRegion(t,e,n,o){throw new Error(\"setOutputPackedMatrixWriteRegion not implemented.\")}debugValidate(){this.program!=null&&ag(this.gl,this.program),wd(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let t=this.gl;if(this.debug){let e=this.getVertexArray();console.assert(e===this.program.vao,\"VAO changed between setProgram and executeProgram!\"),this.debugValidate()}ht(t,()=>t.drawElements(t.TRIANGLES,6,t.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),ht(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=bd(this.gl,L().getNumber(\"WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION\")===2?\"EXT_disjoint_timer_query_webgl2\":\"EXT_disjoint_timer_query\")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(L().getNumber(\"WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION\")===2){let n=this.gl,o=this.getQueryTimerExtensionWebGL2(),s=n.createQuery();return n.beginQuery(o.TIME_ELAPSED_EXT,s),s}let t=this.getQueryTimerExtensionWebGL1(),e=t.createQueryEXT();return t.beginQueryEXT(t.TIME_ELAPSED_EXT,e),e}endQuery(){if(L().getNumber(\"WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION\")===2){let e=this.gl,n=this.getQueryTimerExtensionWebGL2();e.endQuery(n.TIME_ELAPSED_EXT);return}let t=this.getQueryTimerExtensionWebGL1();t.endQueryEXT(t.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(t){return await y.repeatedTry(()=>this.disposed||this.isQueryAvailable(t,L().getNumber(\"WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION\"))),this.getQueryTime(t,L().getNumber(\"WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION\"))}getQueryTime(t,e){if(e===0)return null;if(e===2){let n=this.gl;return n.getQueryParameter(t,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(t,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(t,e){if(e===0)return!0;if(e===2){let n=this.gl,o=this.getQueryTimerExtensionWebGL2(),s=n.getQueryParameter(t,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(o.GPU_DISJOINT_EXT)),s&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),o=n.getQueryObjectEXT(t,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),o&&!this.disjoint}}pollFence(t){return new Promise(e=>{this.addItemToPoll(()=>t.isFencePassed(),()=>e())})}pollItems(){let t=Lot(this.itemsToPoll.map(e=>e.isDoneFn));for(let e=0;e<=t;++e){let{resolveFn:n}=this.itemsToPoll[e];n()}this.itemsToPoll=this.itemsToPoll.slice(t+1)}addItemToPoll(t,e){if(this.itemsToPoll.push({isDoneFn:t,resolveFn:e}),this.itemsToPoll.length>1)return;let n;\"setTimeoutCustom\"in L().platform&&(n=L().platform.setTimeoutCustom.bind(L().platform)),y.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0),()=>0,null,n)}bindTextureToFrameBuffer(t){this.throwIfDisposed(),lg(this.gl,t,this.framebuffer),this.debug&&wd(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(lg(this.gl,this.outputTexture,this.framebuffer),this.debug&&wd(this.gl)):Bw(this.gl,this.framebuffer)}downloadMatrixDriver(t,e){this.bindTextureToFrameBuffer(t);let n=e();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(t,e,n){this.throwIfDisposed();let o=this.gl;lg(o,t,this.framebuffer),this.debug&&wd(o),this.outputTexture=t,ht(o,()=>o.viewport(0,0,e,n)),ht(o,()=>o.scissor(0,0,e,n))}setOutputMatrixWriteRegionDriver(t,e,n,o){this.throwIfDisposed(),ht(this.gl,()=>this.gl.scissor(t,e,n,o))}throwIfDisposed(){if(this.disposed)throw new Error(\"Attempted to use disposed GPGPUContext.\")}throwIfNoProgram(){if(this.program==null)throw new Error(\"No GPU program is currently set.\")}};function Lot(r){let t=0;for(;t`${r}.${e}`)}function rr(r,t){return t===1?[r]:T1(r,t)}function Pz(r,t){if(r===1)return\"rc\";let e=\"\";for(let n=0;n ${this.enableShapeUniforms?\"outShape\":this.outputShape[0]}`;let e=\"\";for(let n=this.rank-2;n= ${this.enableShapeUniforms?`outShape[${n}]`:this.outputShape[n]}`,n= ${n};\n bool rEdge = rp1 >= ${o};\n `}getOutput(t){let e=this.getSourceCoordsArr(t);return this.rank===1?`getA(rc), (rc + 1 >= ${this.enableShapeUniforms?\"outShape\":this.outputShape[0]} ? 0. : getA(rc + 1)), 0, 0`:`getA(${e[0]}),\n cEdge ? 0. : getA(${e[1]}),\n rEdge ? 0. : getA(${e[2]}),\n rEdge || cEdge ? 0. : getA(${e[3]})`}};var Ad=class{constructor(t,e){this.variableNames=[\"A\"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:\"inputShape\",type:\"ivec3\"}],this.outputShape=t,this.enableShapeUniforms=he(this.outputShape.length);let n=\"\";for(let o=0;o<4;o++){let s=\"thisRC = rc;\";o%2===1&&(s+=\"thisRC.z += 1;\"),o>1&&(s+=\"thisRC.y += 1;\"),n+=`\n ${s}\n ${o>0?\"if(thisRC.y < rows && thisRC.z < cols){\":\"\"}\n int flatIndex = getFlatIndex(thisRC);\n\n ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);\n vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));\n\n result[${o}] =\n getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);\n ${o>0?\"}\":\"\"}\n `}this.userCode=`\n ${zot(e,this.enableShapeUniforms)}\n ${this.enableShapeUniforms?Sd():vd(t)}\n\n void main() {\n ivec3 rc = getOutputCoords();\n\n vec4 result = vec4(0.);\n\n ivec3 thisRC;\n int rows = ${this.enableShapeUniforms?\"outShape[1]\":t[1]};\n int cols = ${this.enableShapeUniforms?\"outShape[2]\":t[2]};\n\n ${n}\n\n setOutput(result);\n }\n `}};function zot(r,t){return`\n ivec3 inputCoordsFromReshapedOutCoords(int index) {\n ${t?PL([\"r\",\"c\",\"d\"],\"inputShape\"):Si([\"r\",\"c\",\"d\"],r)}\n return ivec3(r, c, d);\n }\n `}var oI=class{constructor(t){this.gpgpu=t,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.usedTextures={},this.logEnabled=!1}acquireTexture(t,e,n){let o=zz(e,n),s=Bz(t,o,n);s in this.freeTextures||(this.freeTextures[s]=[]),s in this.usedTextures||(this.usedTextures[s]=[]);let i=Lz(t,o,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[s].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=i,this.log();let u=this.freeTextures[s].pop();return this.usedTextures[s].push(u),u}let a;return o===Lr.PACKED_2X2_FLOAT32?a=this.gpgpu.createPackedMatrixTexture(t[0],t[1]):o===Lr.PACKED_2X2_FLOAT16?a=this.gpgpu.createFloat16PackedMatrixTexture(t[0],t[1]):o===Lr.UNPACKED_FLOAT32?a=this.gpgpu.createFloat32MatrixTexture(t[0],t[1]):o===Lr.UNPACKED_FLOAT16?a=this.gpgpu.createFloat16MatrixTexture(t[0],t[1]):o===Lr.PACKED_4X1_UNSIGNED_BYTE&&(a=this.gpgpu.createUnsignedBytesMatrixTexture(t[0],t[1])),this.usedTextures[s].push(a),this.numUsedTextures++,this._numBytesAllocated+=i,this.log(),a}releaseTexture(t,e,n,o){if(this.freeTextures==null)return;let s=zz(n,o),i=Bz(e,s,o);i in this.freeTextures||(this.freeTextures[i]=[]);let a=Lz(e,s,this.gpgpu.gl,this.gpgpu.textureConfig,o),u=L().getNumber(\"WEBGL_DELETE_TEXTURE_THRESHOLD\");u!==-1&&this._numBytesAllocated>u?(this.gpgpu.deleteMatrixTexture(t.texture),this._numBytesAllocated-=a):(this.freeTextures[i].push(t),this.numFreeTextures++,this._numBytesFree+=a),this.numUsedTextures--;let l=this.usedTextures[i],c=l&&l.indexOf(t);if(c==null||c<0)throw new Error(\"Cannot release a texture that was never provided by this texture manager\");l[c]=l[l.length-1],l.pop(),this.log()}log(){if(!this.logEnabled)return;let t=this.numFreeTextures+this.numUsedTextures;console.log(\"Free/Used\",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${t})`);let e=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*e)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let t in this.freeTextures)this.freeTextures[t].forEach(e=>{this.gpgpu.deleteMatrixTexture(e.texture)});for(let t in this.usedTextures)this.usedTextures[t].forEach(e=>{this.gpgpu.deleteMatrixTexture(e.texture)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function Bot(r,t){let e=r;if(t===e.R32F)return 4;if(t===e.R16F)return 2;if(t===e.RGBA32F)return 16;if(t===r.RGBA)return 16;if(t===e.RGBA16F)return 8;if(t===e.RGBA8)return 4;throw new Error(`Unknown internal format ${t}`)}function Lz(r,t,e,n,o){let s=Vot(t,n),i;if(o){let[u,l]=wa(r[0],r[1]);i=u*l}else{let[u,l]=lp(r[0],r[1]);i=u*l}let a=Bot(e,s);return i*a}function Vot(r,t){switch(r){case Lr.PACKED_2X2_FLOAT32:return Jw(t);case Lr.PACKED_2X2_FLOAT16:return Qw(t);case Lr.UNPACKED_FLOAT32:return Xw(t);case Lr.UNPACKED_FLOAT16:return Yw(t);case Lr.PACKED_4X1_UNSIGNED_BYTE:return Zw(t);default:throw new Error(`Unknown physical texture type ${r}`)}}function Got(r){return L().getBool(\"WEBGL_RENDER_FLOAT32_ENABLED\")?r?Lr.PACKED_2X2_FLOAT32:Lr.UNPACKED_FLOAT32:r?Lr.PACKED_2X2_FLOAT16:Lr.UNPACKED_FLOAT16}function zz(r,t){if(r===Jr.UPLOAD)return Lr.PACKED_2X2_FLOAT32;if(r===Jr.RENDER||r==null)return Got(t);if(r===Jr.DOWNLOAD||r===Jr.PIXELS)return Lr.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${r}`)}function Bz(r,t,e){return`${r[0]}_${r[1]}_${t}_${e}`}var zr=class{constructor(t,e){this.variableNames=[\"A\"],this.outputShape=t,this.enableShapeUniforms=he(this.outputShape.length),this.userCode=`\n float unaryOperation(float x) {\n ${e}\n }\n\n void main() {\n float x = getAAtOutCoords();\n float y = unaryOperation(x);\n\n setOutput(y);\n }\n `}},xr=\"if (isnan(x)) return x;\",Vz=\"return x;\",_1=\"return abs(x);\";var Gz=\"return (x >= 0.0) ? x : (exp(x) - 1.0);\",Wz=xr+`\n return (x < 0.0) ? 0.0 : x;\n`,Uz=xr+`\n return (x < 0.0) ? 0.0 : min(6.0, x);\n`,Ia=\"return x;\",Hz=\"return 1.0 / (1.0 + exp(-1.0 * x));\";var Kz=\"return x;\",jz=`\n vec4 result;\n\n result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);\n result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);\n result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);\n result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);\n\n return result;\n`,Xz=`\n vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));\n bvec4 isNaN = isnan(x);\n\n result.r = isNaN.r ? x.r : result.r;\n result.g = isNaN.g ? x.g : result.g;\n result.b = isNaN.b ? x.b : result.b;\n result.a = isNaN.a ? x.a : result.a;\n\n return result;\n`,Yz=`\n vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));\n bvec4 isNaN = isnan(x);\n\n result.r = isNaN.r ? x.r : result.r;\n result.g = isNaN.g ? x.g : result.g;\n result.b = isNaN.b ? x.b : result.b;\n result.a = isNaN.a ? x.a : result.a;\n\n return result;\n`,Zz=\"return 1.0 / (1.0 + exp(-1.0 * x));\",Dn=class{constructor(t,e){this.variableNames=[\"A\"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t,this.enableShapeUniforms=he(this.outputShape.length),this.userCode=`\n vec4 unaryOperation(vec4 x) {\n ${e}\n }\n\n void main() {\n vec4 x = getAAtOutCoords();\n vec4 y = unaryOperation(x);\n\n setOutput(y);\n }\n `}};var sI=class{constructor(t){this.variableNames=[\"A\"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=t,this.enableShapeUniforms=he(this.outputShape.length);let e=t.length,n=rr(\"rc\",e),o=zt(e),s=Pz(e,n),i=n.slice(-2),a=e<=1?\"rc\":`vec2(${i.join(\",\")})`;this.userCode=`\n void main() {\n ${o} rc = getOutputCoords();\n vec4 packedInput = getA(${s});\n\n setOutput(getChannel(packedInput, ${a}));\n }\n `}};var Uot=Xr.whereImpl,Hot=1e-7,qot=1e-4,iI={};function Kot(r){return r in iI||(iI[r]={}),iI[r]}var jot=L().getNumber(\"CPU_HANDOFF_SIZE_THRESHOLD\"),Xot=600;function Yot(){return L().global.screen==null?1024:L().global.screen.height*L().global.screen.width*window.devicePixelRatio*Xot/1024/1024}var Dd=class r extends Bo{nextDataId(){return r.nextDataId++}constructor(t){if(super(),this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!L().getBool(\"HAS_WEBGL\"))throw new Error(\"WebGL is not supported on this device\");let e;if(t!=null){if(t instanceof pp)e=t;else{let n=qn(L().getNumber(\"WEBGL_VERSION\"),t);e=new pp(n)}this.binaryCache={},this.gpgpuCreatedLocally=!1}else{let n=qn(L().getNumber(\"WEBGL_VERSION\"));e=new pp(n),this.binaryCache=Kot(L().getNumber(\"WEBGL_VERSION\")),this.gpgpuCreatedLocally=!0}this.gpgpu=e,this.canvas=this.gpgpu.gl.canvas,this.textureManager=new oI(this.gpgpu),this.numMBBeforeWarning=Yot(),this.texData=new Ta(this,Bn())}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}writeTexture(t,e,n,o,s,i){let a=this.makeTensorInfo(e,n),u=this.texData.get(a.dataId);u.isPacked=!1,u.texture={texture:t,texShape:[o,s]},u.texShape=[o,s];let l=Id(e),c=new ug(l,!1,i),p=this.runWebGLProgram(c,[a],n,[[o,s]]);return p.shape=e,u.texture=null,this.disposeIntermediateTensorInfo(a),p.dataId}write(t,e,n){if((L().getBool(\"WEBGL_CHECK_NUMERICAL_PROBLEMS\")||L().getBool(\"DEBUG\"))&&this.checkNumericalProblems(t),n===\"complex64\"&&t!=null)throw new Error(\"Cannot write to a complex64 dtype. Please use tf.complex(real, imag).\");let o={id:this.nextDataId()};return this.texData.set(o,{shape:e,dtype:n,values:t,usage:Jr.UPLOAD,refCount:1}),o}refCount(t){return this.texData.has(t)?this.texData.get(t).refCount:0}incRef(t){let e=this.texData.get(t);e.refCount++}decRef(t){if(this.texData.has(t)){let e=this.texData.get(t);e.refCount--}}move(t,e,n,o,s){if(L().getBool(\"DEBUG\")&&this.checkNumericalProblems(e),o===\"complex64\")throw new Error(\"Cannot write to a complex64 dtype. Please use tf.complex(real, imag).\");this.texData.set(t,{shape:n,dtype:o,values:e,usage:Jr.UPLOAD,refCount:s})}disposeIntermediateTensorInfo(t){this.disposeData(t.dataId)}readSync(t){let e=this.texData.get(t),{values:n,dtype:o,complexTensorInfos:s,slice:i,shape:a,isPacked:u}=e;if(i!=null){let m;u?m=new Dn(a,Ia):m=new zr(a,Ia);let f=this.runWebGLProgram(m,[{dataId:t,shape:a,dtype:o}],o),d=this.readSync(f.dataId);return this.disposeIntermediateTensorInfo(f),d}if(n!=null)return this.convertAndCacheOnCPU(t);if(o===\"string\")return n;let l=this.activeTimers!=null,c;l&&(c=y.now());let p;if(o===\"complex64\"){let m=this.readSync(s.real.dataId),f=this.readSync(s.imag.dataId);p=S.mergeRealAndImagArrays(m,f)}else p=this.getValuesFromTexture(t);return l&&(this.downloadWaitMs+=y.now()-c),this.convertAndCacheOnCPU(t,p)}async read(t){if(this.pendingRead.has(t)){let d=this.pendingRead.get(t);return new Promise(h=>d.push(h))}let e=this.texData.get(t),{values:n,shape:o,slice:s,dtype:i,complexTensorInfos:a,isPacked:u}=e;if(s!=null){let d;u?d=new Dn(o,Ia):d=new zr(o,Ia);let h=this.runWebGLProgram(d,[{dataId:t,shape:o,dtype:i}],i),g=this.read(h.dataId);return this.disposeIntermediateTensorInfo(h),g}if(n!=null)return this.convertAndCacheOnCPU(t);if(L().getBool(\"DEBUG\")&&!L().getBool(\"WEBGL_DOWNLOAD_FLOAT_ENABLED\")&&L().getNumber(\"WEBGL_VERSION\")===2)throw new Error(\"tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.\");let l=null,c;if(i!==\"complex64\"&&L().get(\"WEBGL_BUFFER_SUPPORTED\")){c=this.decode(t);let d=this.texData.get(c.dataId);l=this.gpgpu.createBufferFromTexture(d.texture.texture,...sg(o))}this.pendingRead.set(t,[]),i!==\"complex64\"&&await this.gpgpu.createAndWaitForFence();let p;if(i===\"complex64\"){let d=await Promise.all([this.read(a.real.dataId),this.read(a.imag.dataId)]),h=d[0],g=d[1];p=S.mergeRealAndImagArrays(h,g)}else if(l==null)p=this.getValuesFromTexture(t);else{let d=y.sizeFromShape(o);p=this.gpgpu.downloadFloat32MatrixFromBuffer(l,d)}if(c!=null&&this.disposeIntermediateTensorInfo(c),l!=null){let d=this.gpgpu.gl;ht(d,()=>d.deleteBuffer(l))}let m=this.convertAndCacheOnCPU(t,p),f=this.pendingRead.get(t);return this.pendingRead.delete(t),f.forEach(d=>d(m)),this.pendingDisposal.has(t)&&(this.pendingDisposal.delete(t),this.disposeData(t)&&Bn().removeDataId(t,this),this.pendingDeletes--),m}readToGPU(t,e={}){let n=this.texData.get(t),{values:o,shape:s,slice:i,dtype:a,isPacked:u,texture:l}=n;if(a===\"complex64\")throw new Error(\"Does not support reading texture for complex64 dtype.\");if(i!=null){let f;u?f=new Dn(s,Ia):f=new zr(s,Ia);let d=this.runWebGLProgram(f,[{dataId:t,shape:s,dtype:a}],a),h=this.readToGPU(d,e);return this.disposeIntermediateTensorInfo(d),h}if(l==null)throw o!=null?new Error(\"Data is not on GPU but on CPU.\"):new Error(\"There is no data on GPU or CPU.\");let c=this.decode(t,e.customTexShape),p=Bn().makeTensorFromTensorInfo(c),m=this.texData.get(c.dataId);return Object.assign({tensorRef:p},m.texture)}bufferSync(t){let e=this.readSync(t.dataId);if(t.dtype===\"string\")try{let n=e.map(o=>y.decodeString(o));return wt(t.shape,t.dtype,n)}catch(n){throw new Error(\"Failed to decode encoded string bytes into utf-8\")}return wt(t.shape,t.dtype,e)}checkNumericalProblems(t){if(t!=null)for(let e=0;e0}time(t){let e=this.activeTimers,n=[],o=!1;this.programTimersStack==null?(this.programTimersStack=n,o=!0):this.activeTimers.push(n),this.activeTimers=n,t();let s=y.flatten(this.activeTimers.map(u=>u.query)).filter(u=>u!=null),i=y.flatten(this.activeTimers.map(u=>u.name)).filter(u=>u!=null);this.activeTimers=e,o&&(this.programTimersStack=null);let a={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};return(async()=>{if(L().getNumber(\"WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE\")>0){let u=await Promise.all(s);a.kernelMs=y.sum(u),a.getExtraProfileInfo=()=>u.map((l,c)=>({name:i[c],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(\", \")}else a.kernelMs={error:\"WebGL query timers are not supported in this environment.\"};return this.uploadWaitMs=0,this.downloadWaitMs=0,a})()}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return L().getNumber(\"WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE\")>0?this.gpgpu.beginQuery():{startMs:y.now(),endMs:null}}endTimer(t){return L().getNumber(\"WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE\")>0?(this.gpgpu.endQuery(),t):(t.endMs=y.now(),t)}async getQueryTime(t){if(L().getNumber(\"WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE\")>0)return this.gpgpu.waitForQueryAndGetTime(t);let e=t;return e.endMs-e.startMs}disposeData(t,e=!1){if(this.pendingDisposal.has(t))return!1;if(!this.texData.has(t))return!0;if(e?this.texData.get(t).refCount=0:this.texData.get(t).refCount--,!e&&this.texData.get(t).refCount>0)return!1;if(this.pendingRead.has(t))return this.pendingDisposal.add(t),this.pendingDeletes++,!1;this.releaseGPUData(t);let{complexTensorInfos:n}=this.texData.get(t);return n!=null&&(this.disposeData(n.real.dataId,e),this.disposeData(n.imag.dataId,e)),this.texData.delete(t),!0}releaseGPUData(t){let{texture:e,dtype:n,texShape:o,usage:s,isPacked:i,slice:a}=this.texData.get(t),u=a&&a.origDataId||t,l=this.dataRefCount.get(u);l>1?this.dataRefCount.set(u,l-1):(this.dataRefCount.delete(u),e!=null&&(this.numBytesInGPU-=this.computeBytes(o,n),this.textureManager.releaseTexture(e,o,s,i)));let c=this.texData.get(t);c.texture=null,c.texShape=null,c.isPacked=!1,c.slice=null}getTexture(t){return this.uploadToGPU(t),this.texData.get(t).texture.texture}getDataInfo(t){return this.texData.get(t)}shouldExecuteOnCPU(t,e=jot){return L().getBool(\"WEBGL_CPU_FORWARD\")&&t.every(n=>this.texData.get(n.dataId).texture==null&&y.sizeFromShape(n.shape)0&&y.isString(n[0])){let s=n.map(i=>y.encodeString(i));o=this.write(s,t,e)}else o=this.write(n,t,e);return this.texData.get(o).usage=null,{dataId:o,shape:t,dtype:e}}makeOutput(t,e,n){return Bn().makeTensorFromTensorInfo(this.makeTensorInfo(t,e,n),this)}unpackTensor(t){let e=new sI(t.shape);return this.runWebGLProgram(e,[t],t.dtype)}packTensor(t){let e=new nI(t.shape);return this.runWebGLProgram(e,[t],t.dtype,null,!0)}packedReshape(t,e){let n=[Fl(t.shape),...Ol(t.shape)],o={dtype:t.dtype,shape:n,dataId:t.dataId},s=[Fl(e),...Ol(e)],i=new Ad(s,n),a=!0,u=[n],l=this.runWebGLProgram(i,[o],t.dtype,u,a);return{dataId:l.dataId,shape:e,dtype:l.dtype}}decode(t,e){let n=this.texData.get(t),{isPacked:o,shape:s,dtype:i}=n;if(e!=null){let m=y.sizeFromShape(s),f=e[0]*e[1]*4;y.assert(m<=f,()=>\"customTexShape is too small. Row * Column * 4 should be equal or larger than the size of the tensor data.\")}let a=Id(s),u;o?u=new Hw(a):u=new Uw(a);let l=!0,c=[e!=null?e:sg(a)],p=this.runWebGLProgram(u,[{shape:a,dtype:i,dataId:t}],i,c,l,e);return{dtype:i,shape:s,dataId:p.dataId}}runWebGLProgram(t,e,n,o,s=!1,i){let a=this.makeTensorInfo(t.outputShape,n),u=this.texData.get(a.dataId);if(t.packedOutput&&(u.isPacked=!0),t.outPackingScheme===Wu.DENSE){let x=i!=null?i:sg(t.outputShape);u.texShape=x.map(b=>b*2)}if(t.outTexUsage!=null&&(u.usage=t.outTexUsage),y.sizeFromShape(a.shape)===0)return u.values=y.getTypedArrayFromDType(a.dtype,0),a;let l=[],c=e.map(x=>{if(x.dtype===\"complex64\")throw new Error(\"GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.\");let b=this.texData.get(x.dataId);if(b.texture==null){if(!t.packedInputs&&y.sizeFromShape(x.shape)<=L().getNumber(\"WEBGL_SIZE_UPLOAD_UNIFORM\"))return{shape:x.shape,texData:null,isUniform:!0,uniformValues:b.values};t.packedInputs&&(b.isPacked=!0,b.shape=x.shape)}if(this.uploadToGPU(x.dataId),!!b.isPacked!=!!t.packedInputs)x=b.isPacked?this.unpackTensor(x):this.packTensor(x),l.push(x),b=this.texData.get(x.dataId);else if(b.isPacked&&!Uu(b.shape,x.shape)){let w=x,I=x.shape;x.shape=b.shape,x=this.packedReshape(x,I),l.push(x),b=this.texData.get(x.dataId),w.shape=I}return{shape:x.shape,texData:b,isUniform:!1}});this.uploadToGPU(a.dataId);let p={shape:a.shape,texData:u,isUniform:!1},m=HL(t,c,p),f=this.getAndSaveBinary(m,()=>WL(this.gpgpu,t,c,p)),d=this.activeTimers!=null,h;d&&(h=this.startTimer()),L().get(\"ENGINE_COMPILE_ONLY\")||UL(this.gpgpu,f,c,p,o),l.forEach(x=>this.disposeIntermediateTensorInfo(x)),d&&(h=this.endTimer(h),this.activeTimers.push({name:t.constructor.name,query:this.getQueryTime(h)}));let g=L().getNumber(\"WEBGL_FLUSH_THRESHOLD\");if(g>0){let x=y.now();x-this.lastGlFlushTime>g&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=x)}if(!L().getBool(\"WEBGL_LAZILY_UNPACK\")&&u.isPacked&&s===!1){let x=this.unpackTensor(a);return this.disposeIntermediateTensorInfo(a),x}return a}compileAndRun(t,e,n,o,s=!1){return n=n||e[0].dtype,this.runWebGLProgram(t,e,n,o,s)}getAndSaveBinary(t,e){return t in this.binaryCache||(this.binaryCache[t]=e()),this.binaryCache[t]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(L().getBool(\"IS_TEST\")||Object.keys(this.binaryCache).forEach(e=>{this.gpgpu.deleteProgram(this.binaryCache[e].webGLProgram),delete this.binaryCache[e]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!=\"undefined\"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=B(()=>{if(!L().get(\"WEBGL_RENDER_FLOAT32_ENABLED\")){let t=L().getBool(\"DEBUG\");L().set(\"DEBUG\",!1);let e=this.abs(pt(1e-8)).dataSync()[0];if(L().set(\"DEBUG\",t),e>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?Hot:qot}uploadToGPU(t){let e=this.texData.get(t),{shape:n,dtype:o,values:s,texture:i,usage:a,isPacked:u}=e;if(i!=null)return;let l=this.activeTimers!=null,c;l&&(c=y.now());let p=e.texShape;if(p==null&&(p=r1(n,u),e.texShape=p),s!=null){let m=Id(n),f,d=p[1],h=p[0],g=s instanceof Uint8Array||s instanceof Uint8ClampedArray;(u||!g)&&([d,h]=wa(p[0],p[1])),u?f=new jw(m,g):f=new ug(m,g);let x=g?[h,d]:p,b=this.makeTensorInfo(x,o),w=this.texData.get(b.dataId);g?w.usage=Jr.PIXELS:w.usage=Jr.UPLOAD,w.texShape=x,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(b.dataId),d,h,s);let I=[[h,d]],E=this.runWebGLProgram(f,[b],o,I,!0),A=this.texData.get(E.dataId);e.texShape=A.texShape,e.isPacked=A.isPacked,e.usage=A.usage,L().get(\"ENGINE_COMPILE_ONLY\")?this.disposeData(E.dataId):(e.texture=A.texture,e.values=null,this.texData.delete(E.dataId)),this.disposeIntermediateTensorInfo(b),l&&(this.uploadWaitMs+=y.now()-c)}else{let m=this.acquireTexture(p,a,o,u);e.texture=m}}convertAndCacheOnCPU(t,e){let n=this.texData.get(t),{dtype:o}=n;return e!=null&&(n.values=Zot(e,o)),n.values}acquireTexture(t,e,n,o){if(this.numBytesInGPU+=this.computeBytes(t,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let s=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${s} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(t,e,o)}computeBytes(t,e){return t[0]*t[1]*y.bytesPerElement(e)}checkCompileCompletion(){for(let[,t]of Object.entries(this.binaryCache))this.checkCompletion_(t)}async checkCompileCompletionAsync(){let t=[];if(this.gpgpu.parallelCompilationExtension){for(let[,e]of Object.entries(this.binaryCache))t.push(this.checkCompletionAsync_(e));return Promise.all(t)}else{for(let[,e]of Object.entries(this.binaryCache)){let n=new Promise(o=>{try{this.checkCompletion_(e),o(!0)}catch(s){throw s}});t.push(n)}return Promise.all(t)}}async checkCompletionAsync_(t){return this.gpgpu.gl.getProgramParameter(t.webGLProgram,this.gpgpu.parallelCompilationExtension.COMPLETION_STATUS_KHR)?this.checkCompletion_(t):(await Ch(),this.checkCompletionAsync_(t))}checkCompletion_(t){if(this.gpgpu.gl.getProgramParameter(t.webGLProgram,this.gpgpu.gl.LINK_STATUS)===!1)throw console.log(this.gpgpu.gl.getProgramInfoLog(t.webGLProgram)),this.gpgpu.gl.getShaderParameter(t.fragmentShader,this.gpgpu.gl.COMPILE_STATUS)===!1?(Lw(t.source,this.gpgpu.gl.getShaderInfoLog(t.fragmentShader)),new Error(\"Failed to compile fragment shader.\")):new Error(\"Failed to link vertex and fragment shaders.\");return!0}getUniformLocations(){for(let t of Object.values(this.binaryCache)){this.gpgpu.buildVao(t.webGLProgram);let{variablesLocations:e,customUniformLocations:n,infLoc:o,nanLoc:s,outShapeLocation:i,outShapeStridesLocation:a,outTexShapeLocation:u}=u1(this.gpgpu,t.program,t.webGLProgram);t.variablesLocations=e,t.customUniformLocations=n,t.infLoc=o,t.nanLoc=s,t.outShapeLocation=i,t.outShapeStridesLocation=a,t.outTexShapeLocation=u}}createTensorFromGPUData(t,e,n){t.channels=t.channels||\"RGBA\";let{texture:o,height:s,width:i,channels:a}=t,u=Bn().backend;if(!u.gpgpu.gl.isTexture(o))throw new Error(\"The texture is invalid. Also, please make sure the texture and the TFJS WebGL backend are using the same canvas. If you want to use your own custom canvas, you have to create and use the custom TFJS WebGL backend created from the canvas through 'new tf.MathBackendWebGL(customCanvas)'.\");let l=u.writeTexture(o,e,n,s,i,a);return Bn().makeTensorFromDataId(l,e,n,u)}};Dd.nextDataId=0;function Zot(r,t){if(t===\"float32\"||t===\"complex64\")return r;if(t===\"int32\"||t===\"bool\"){let e=t===\"int32\"?new Int32Array(r.length):new Uint8Array(r.length);for(let n=0;nnew Dd,2);var T$e={forceHalfFloat:Qz};var $d=`\n if (isnan(a)) return a;\n if (isnan(b)) return b;\n`;var $n=class{constructor(t,e,n){this.variableNames=[\"A\",\"B\"],this.outputShape=S.assertAndGetBroadcastShape(e,n),this.enableShapeUniforms=he(this.outputShape.length),this.userCode=`\n float binaryOperation(float a, float b) {\n ${t}\n }\n\n void main() {\n float a = getAAtOutCoords();\n float b = getBAtOutCoords();\n setOutput(binaryOperation(a, b));\n }\n `}};var Xn=`\n result.r = isNaN.r ? NAN : result.r;\n result.g = isNaN.g ? NAN : result.g;\n result.b = isNaN.b ? NAN : result.b;\n result.a = isNaN.a ? NAN : result.a;\n`;var jn=class{constructor(t,e,n,o=!1){this.variableNames=[\"A\",\"B\"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=S.assertAndGetBroadcastShape(e,n);let s=this.outputShape.length;this.enableShapeUniforms=he(s);let i=\"\";if(o)if(s===0||y.sizeFromShape(this.outputShape)===1)i=`\n result.y = 0.;\n result.z = 0.;\n result.w = 0.;\n `;else if(i=`\n ${zt(s)} coords = getOutputCoords();\n `,s===1)this.enableShapeUniforms?i+=`\n result.y = (coords + 1) >= outShape ? 0. : result.y;\n result.z = 0.;\n result.w = 0.;\n `:i+=`\n result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;\n result.z = 0.;\n result.w = 0.;\n `;else{let u=rr(\"coords\",s);this.enableShapeUniforms?i+=`\n bool nextRowOutOfBounds =\n (${u[s-2]} + 1) >= outShape[${s} - 2];\n bool nextColOutOfBounds =\n (${u[s-1]} + 1) >= outShape[${s} - 1];\n result.y = nextColOutOfBounds ? 0. : result.y;\n result.z = nextRowOutOfBounds ? 0. : result.z;\n result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;\n `:i+=`\n bool nextRowOutOfBounds =\n (${u[s-2]} + 1) >= ${this.outputShape[s-2]};\n bool nextColOutOfBounds =\n (${u[s-1]} + 1) >= ${this.outputShape[s-1]};\n result.y = nextColOutOfBounds ? 0. : result.y;\n result.z = nextRowOutOfBounds ? 0. : result.z;\n result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;\n `}this.userCode=`\n vec4 binaryOperation(vec4 a, vec4 b) {\n ${t}\n }\n\n void main() {\n vec4 a = getAAtOutCoords();\n vec4 b = getBAtOutCoords();\n\n vec4 result = binaryOperation(a, b);\n ${i}\n\n setOutput(result);\n }\n `}};function nr(r){let{inputs:t,backend:e}=r,{x:n}=t;return e.incRef(n.dataId),{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}var t3={kernelName:go,backendName:\"webgl\",kernelFunc:nr};function Rn(r){let{inputs:t,backend:e}=r,{real:n,imag:o}=t,s=e.makeTensorInfo(n.shape,\"complex64\"),i=e.texData.get(s.dataId),a=nr({inputs:{x:n},backend:e}),u=nr({inputs:{x:o},backend:e});return i.complexTensorInfos={real:a,imag:u},s}var e3={kernelName:Ap,backendName:\"webgl\",kernelFunc:Rn};var E1=\"return (a < 0.) ? b * a : a;\",A1=`\n vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));\n return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);\n`;function Jot(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{alpha:s}=n,i=e.makeTensorInfo([],\"float32\",y.createScalarValue(s,\"float32\")),a=L().getBool(\"WEBGL_PACK_BINARY_OPERATIONS\")?new jn(A1,o.shape,i.shape):new $n(E1,o.shape,i.shape),u=e.runWebGLProgram(a,[o,i],\"float32\");return e.disposeIntermediateTensorInfo(i),u}var r3={kernelName:bs,backendName:\"webgl\",kernelFunc:Jot};var D1=\"return (a < 0.) ? b * a : a;\",$1=`\n vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));\n return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);\n`;function Qot(r){let{inputs:t,backend:e}=r,{x:n,alpha:o}=t,s=L().getBool(\"WEBGL_PACK_BINARY_OPERATIONS\")?new jn($1,n.shape,o.shape):new $n(D1,n.shape,o.shape);return e.runWebGLProgram(s,[n,o],\"float32\")}var n3={kernelName:Os,backendName:\"webgl\",kernelFunc:Qot};var Po=\"if (isnan(x)) return x;\";function It({opSnippet:r,packedOpSnippet:t,cpuKernelImpl:e,dtype:n}){return({inputs:o,backend:s})=>{let{x:i}=o,a=s,u=n||i.dtype;if(a.shouldExecuteOnCPU([i])&&e!=null){let p=a.texData.get(i.dataId),m=e(p.values,u);return a.makeTensorInfo(i.shape,u,m)}let l=L().getBool(\"WEBGL_PACK_UNARY_OPERATIONS\")&&t!=null,c;return l?c=new Dn(i.shape,t):c=new zr(i.shape,r),a.runWebGLProgram(c,[i],u)}}function ce({opSnippet:r,packedOpSnippet:t,checkOutOfBounds:e=!1,supportsComplex:n=!1,cpuKernelImpl:o,dtype:s}){return({inputs:i,backend:a})=>{let{a:u,b:l}=i,c=a;if(n&&u.dtype===\"complex64\"){let d=c.texData.get(u.dataId),h=c.texData.get(l.dataId),[g,x]=[[d.complexTensorInfos.real,h.complexTensorInfos.real],[d.complexTensorInfos.imag,h.complexTensorInfos.imag]].map(w=>{let[I,N]=w,E={dataId:I.dataId,dtype:I.dtype,shape:u.shape},A={dataId:N.dataId,dtype:N.dtype,shape:l.shape},D=new $n(r,u.shape,l.shape);return c.runWebGLProgram(D,[E,A],ur(I.dtype,N.dtype))}),b=Rn({inputs:{real:g,imag:x},backend:c});return c.disposeIntermediateTensorInfo(g),c.disposeIntermediateTensorInfo(x),b}let p=s||ur(u.dtype,l.dtype);if((u.dtype===\"string\"||l.dtype===\"string\"||c.shouldExecuteOnCPU([u,l]))&&o!=null){let d=c.texData.get(u.dataId).values,h=c.texData.get(l.dataId).values,g=u.dtype===\"string\"?S.fromUint8ToStringArray(d):d,x=u.dtype===\"string\"?S.fromUint8ToStringArray(h):h,[b,w]=o(u.shape,l.shape,g,x,p),I=c.makeTensorInfo(w,p),N=c.texData.get(I.dataId);return N.values=b,I}let m=L().getBool(\"WEBGL_PACK_BINARY_OPERATIONS\")&&t!=null,f;return m?f=new jn(t,u.shape,l.shape,e):f=new $n(r,u.shape,l.shape),c.runWebGLProgram(f,[u,l],p)}}function Ml(r,t=!1){if(r===\"linear\")return t?Kz:Vz;if(r===\"relu\")return t?Xz:Wz;if(r===\"elu\")return t?jz:Gz;if(r===\"relu6\")return t?Yz:Uz;if(r===\"prelu\")return t?$1:D1;if(r===\"leakyrelu\")return t?A1:E1;if(r===\"sigmoid\")return t?Zz:Hz;throw new Error(`Activation ${r} has not been implemented for the WebGL backend.`)}var Rd=class{constructor(t,e,n,o=!1,s=!1,i=!1,a=null,u=!1,l=!1){this.variableNames=[\"matrixA\",\"matrixB\"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n,this.enableShapeUniforms=he(this.outputShape.length);let c=o?t[1]:t[2],p=Math.ceil(c/2),m=o?\"i * 2, rc.y\":\"rc.y, i * 2\",f=s?\"rc.z, i * 2\":\"i * 2, rc.z\",d=o?[\"a.xxyy\",\"a.zzww\"]:[\"a.xxzz\",\"a.yyww\"],h=s?[\"b.xzxz\",\"b.ywyw\"]:[\"b.xyxy\",\"b.zwzw\"],g=\"\",x=\"\";a&&(u?g=`vec4 activation(vec4 a) {\n vec4 b = getPreluActivationWeightsAtOutCoords();\n ${a}\n }`:l?g=`vec4 activation(vec4 a) {\n vec4 b = getLeakyreluAlphaAtOutCoords();\n ${a}\n }`:g=`vec4 activation(vec4 x) {\n ${a}\n }`,x=\"result = activation(result);\");let b=i?\"result += getBiasAtOutCoords();\":\"\";i&&this.variableNames.push(\"bias\"),u&&this.variableNames.push(\"preluActivationWeights\"),l&&this.variableNames.push(\"leakyreluAlpha\");let w=\"rc.x\",I=\"rc.x\";t[0]`The new shape (${u}) has ${l} elements and the old shape (${o.shape}) has ${a} elements. The new shape and old shape must have the same number of elements.`);let c=i.texData.get(o.dataId);return c.isPacked&&!Uu(o.shape,u)&&!(c.texture!==null&&Uu(c.shape,u))?i3(o,u,i):(i.incRef(o.dataId),{dataId:o.dataId,shape:u,dtype:o.dtype})}var a3={kernelName:Gi,backendName:\"webgl\",kernelFunc:rt};var fg=class{constructor(t,e){this.variableNames=[\"x\"];let{windowSize:n,batchSize:o,inSize:s,outSize:i}=t;this.outputShape=[o,i];let a=Math.floor(n/4)*4,u=n%4,l=\"sumValue += dot(values, ones);\";if(e!=null){let p=1/e;l=`sumValue += dot(values * ${y.isInt(p)?p.toPrecision(2):p}, ones);`}let c=\"\";s%n>0&&(c=`\n if (inIdx < 0 || inIdx >= ${s}) {\n return 0.0;\n }\n `),this.userCode=`\n const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);\n\n float getValue(int batch, int inIdx) {\n ${c}\n return getX(batch, inIdx);\n }\n\n void main() {\n ivec2 coords = getOutputCoords();\n int batch = coords[0];\n int outIdx = coords[1];\n int inOffset = outIdx * ${n};\n\n float sumValue = 0.0;\n\n for (int i = 0; i < ${a}; i += 4) {\n int inIdx = inOffset + i;\n vec4 values = vec4(\n getValue(batch, inIdx),\n getValue(batch, inIdx + 1),\n getValue(batch, inIdx + 2),\n getValue(batch, inIdx + 3)\n );\n\n ${l}\n }\n\n int inIdx = inOffset + ${a};\n if (${u===1}) {\n vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);\n\n ${l}\n } else if (${u===2}) {\n vec4 values = vec4(\n getValue(batch, inIdx),\n getValue(batch, inIdx + 1), 0.0, 0.0);\n\n ${l}\n } else if (${u===3}) {\n vec4 values = vec4(\n getValue(batch, inIdx),\n getValue(batch, inIdx + 1),\n getValue(batch, inIdx + 2), 0.0);\n\n ${l}\n }\n setOutput(sumValue);\n }\n `}};var aI=class{constructor(t,e){this.variableNames=[\"x\"];let{windowSize:n,batchSize:o,inSize:s,outSize:i}=t;this.outputShape=[o,i];let a=\"0.0\",u=\"\";e===\"prod\"?a=\"1.0\":e===\"min\"?(a=\"1.0 / 1e-20\",u=\"min\"):e===\"max\"&&(a=\"-1.0 / 1e-20\",u=\"max\");let l=`${e}(${e}(${e}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;e===\"sum\"?l=\"sumValue\":e===\"prod\"?l=\"prodValue\":e===\"all\"?l=\"allValue\":e===\"any\"&&(l=\"anyValue\");let c=Math.floor(n/4)*4,p=n%4,m=`\n if (${e===\"sum\"}) {\n sumValue += dot(values, ones);\n } else if (${e===\"prod\"}) {\n vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);\n prodValue *= tmp[0] * tmp[1];\n } else {\n minMaxValue = ${u}(values, minMaxValue);\n if (${e===\"min\"} || ${e===\"max\"}) {\n minMaxValue = ${u}(values, minMaxValue);\n bvec4 isNaN = isnan(values);\n if (isNaN.r || isNaN.g || isNaN.b || isNaN.a) {\n minMaxValue = vec4(NAN);\n }\n }\n }\n `,f=\"vec4\";e===\"all\"?(a=\"1.0\",m=`\n bool reducedAllValue = all(values);\n float floatedReducedAllValue = float(reducedAllValue);\n allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);\n `,f=\"bvec4\"):e===\"any\"&&(a=\"0.0\",m=`\n bool reducedAnyValue = any(values);\n float floatedReducedAnyValue = float(reducedAnyValue);\n anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);\n `,f=\"bvec4\");let d=\"\";s%n>0&&(d=`\n if (inIdx < 0 || inIdx >= ${s}) {\n return initializationValue;\n }\n `),this.userCode=`\n const float initializationValue = ${a};\n const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);\n\n float getValue(int batch, int inIdx) {\n ${d}\n return getX(batch, inIdx);\n }\n\n void main() {\n ivec2 coords = getOutputCoords();\n int batch = coords[0];\n int outIdx = coords[1];\n int inOffset = outIdx * ${n};\n\n vec4 minMaxValue = vec4(${a});\n float prodValue = 1.0;\n float sumValue = 0.0;\n float allValue = 1.0;\n float anyValue = 0.0;\n\n for (int i = 0; i < ${c}; i += 4) {\n int inIdx = inOffset + i;\n ${f} values = ${f}(\n getValue(batch, inIdx),\n getValue(batch, inIdx + 1),\n getValue(batch, inIdx + 2),\n getValue(batch, inIdx + 3)\n );\n\n ${m}\n }\n\n int inIdx = inOffset + ${c};\n if (${p===1}) {\n ${f} values = ${f}(\n getValue(batch, inIdx),\n initializationValue,\n initializationValue,\n initializationValue\n );\n\n ${m}\n } else if (${p===2}) {\n ${f} values = ${f}(\n getValue(batch, inIdx),\n getValue(batch, inIdx + 1),\n initializationValue,\n initializationValue\n );\n\n ${m}\n } else if (${p===3}) {\n ${f} values = ${f}(\n getValue(batch, inIdx),\n getValue(batch, inIdx + 1),\n getValue(batch, inIdx + 2),\n initializationValue\n );\n\n ${m}\n }\n setOutput(${l});\n }\n `}};function est(r){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let e=t.length?t[t.length-1].outSize:r[1],n=S.computeOptimalWindowSize(e);t.push({inSize:e,windowSize:n,outSize:Math.ceil(e/n)})}return t}function Yn(r,t,e,n){let o=est(r.shape),s=r;for(let i=0;i6)throw Error(`Transpose for rank ${t} is not yet supported`);let e=[\"resRC.x\",\"resRC.y\",\"resRC.z\",\"resRC.w\",\"resRC.u\",\"resRC.v\"],n=new Array(t);for(let o=0;o6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let o=zt(this.rank),s=T1(\"rc\",this.rank),i=new Array(this.rank);for(let c=0;c`Error in matMul: inner shapes (${p}) and (${m}) of Tensors with shapes ${r.shape} and ${t.shape} and transposeA=${e} and transposeB=${n} must match.`);let N=e?[x,p,f]:[x,f,p],E=n?[b,d,m]:[b,m,d],A=rt({inputs:{x:r},backend:o,attrs:{shape:N}}),D=rt({inputs:{x:t},backend:o,attrs:{shape:E}}),F=[A,D],M=Math.max(x,b),V=e?A.shape[1]:A.shape[2],G=s!=null,W=i!=null,q=u===\"leakyrelu\",H=u!=null?Ml(u,!0):null,j=G||W||q||H!=null,Y;if((f===1||d===1)&&V>F1&&j===!1){let et=A,nt=D;e&&(et=Pe({inputs:{x:A},backend:o,attrs:{perm:[0,2,1]}}),F.push(et)),n&&(nt=Pe({inputs:{x:D},backend:o,attrs:{perm:[0,2,1]}}),F.push(nt));let st=d!==1,lt=d===1,ot=et;st&&(ot=rt({inputs:{x:et},backend:o,attrs:{shape:[M,V,1]}}),F.push(ot));let it=d===1?2:1,ft=nt;lt&&(ft=rt({inputs:{x:nt},backend:o,attrs:{shape:[M,1,V]}}),F.push(ft));let gt=mg({inputs:{a:ot,b:ft},backend:o});Y=fp({inputs:{x:gt},backend:o,attrs:{axis:it,keepDims:!0}}),F.push(gt)}else{let et=ur(r.dtype,t.dtype),nt=new Rd(N,E,[M,f,d],e,n,G,H,W,q),st=[A,D];if(s!=null&&st.push(s),W&&st.push(i),q){let lt=o.makeTensorInfo([],\"float32\",y.createScalarValue(a,\"float32\"));st.push(lt),F.push(lt)}Y=o.runWebGLProgram(nt,st,et)}let Z=rt({inputs:{x:Y},backend:o,attrs:{shape:I}});F.push(Y);for(let et of F)o.disposeIntermediateTensorInfo(et);return Z}function nst(r){let{inputs:t,backend:e,attrs:n}=r,{a:o,b:s,bias:i,preluActivationWeights:a}=t,{transposeA:u,transposeB:l,activation:c,leakyreluAlpha:p}=n;return dp({a:o,b:s,transposeA:u,transposeB:l,backend:e,bias:i,preluActivationWeights:a,leakyreluAlpha:p,activation:c})}var p3={kernelName:Xi,backendName:\"webgl\",kernelFunc:nst};var m3=\"return abs(x);\";function ost(r){let{inputs:t,backend:e}=r,{x:n}=t;if(e.shouldExecuteOnCPU([n])&&n.dtype!==\"complex64\"){let s=e.texData.get(n.dataId),i=eI(s.values);return e.makeTensorInfo(n.shape,n.dtype,i)}let o;return L().getBool(\"WEBGL_PACK_UNARY_OPERATIONS\")?o=new Dn(n.shape,m3):o=new zr(n.shape,m3),e.runWebGLProgram(o,[n],n.dtype)}var f3={kernelName:Ai,backendName:\"webgl\",kernelFunc:ost};var sst=xr+`\n if (abs(x) > 1.) {\n return NAN;\n }\n return acos(x);\n`,ist=It({opSnippet:sst}),d3={kernelName:Go,backendName:\"webgl\",kernelFunc:ist};var ast=xr+`\n if (x < 1.0) return NAN;\nreturn log(x + sqrt(x * x - 1.0));`,lst=It({opSnippet:ast}),h3={kernelName:Wo,backendName:\"webgl\",kernelFunc:lst};var g3=\"return a + b;\",ust=ce({opSnippet:g3,packedOpSnippet:g3,supportsComplex:!0,cpuKernelImpl:qL}),x3={kernelName:no,backendName:\"webgl\",kernelFunc:ust};var cI=class{constructor(t,e){this.outputShape=[],this.outputShape=t,this.variableNames=e.map((s,i)=>`T${i}`);let n=[];this.variableNames.forEach(s=>{n.push(`float v${s} = get${s}AtOutCoords();`)});let o=this.variableNames.map(s=>`v${s}`).join(\" + \");this.userCode=`\n void main() {\n ${n.join(`\n `)}\n\n float result = ${o};\n setOutput(result);\n }\n `}};var pI=class{constructor(t,e){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t,this.variableNames=e.map((s,i)=>`T${i}`);let n=[];this.variableNames.forEach(s=>{n.push(`vec4 v${s} = get${s}AtOutCoords();`)});let o=this.variableNames.map(s=>`v${s}`).join(\" + \");this.userCode=`\n void main() {\n ${n.join(`\n `)}\n\n vec4 result = ${o};\n setOutput(result);\n }\n `}};function mI(r){let{inputs:t,backend:e}=r,n=t;if(n.length===1)return nr({inputs:{x:n[0]},backend:e});if(n.length>L().getNumber(\"WEBGL_MAX_TEXTURES_IN_SHADER\")){let u=Math.floor(n.length/2),l=mI({inputs:n.slice(0,u),backend:e}),c=mI({inputs:n.slice(u),backend:e});return mI({inputs:[l,c],backend:e})}let o=n.map(u=>u.dtype).reduce((u,l)=>ur(u,l)),s=n.map(u=>u.shape),a=L().getBool(\"WEBGL_PACK\")?new pI(n[0].shape,s):new cI(n[0].shape,s);return e.runWebGLProgram(a,n,o)}var y3={kernelName:Uo,backendName:\"webgl\",kernelFunc:mI};function cst(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,keepDims:i}=n,a=o.shape.length,u=y.parseAxisParam(s,o.shape),l=u,c=S.getAxesPermutation(l,a),p=o;c!=null&&(p=Pe({inputs:{x:o},backend:e,attrs:{perm:c}}),l=S.getInnerMostAxes(l.length,a)),S.assertAxesAreInnerMostDims(\"all\",l,a);let[m,f]=S.computeOutAndReduceShapes(p.shape,l),d=y.sizeFromShape(f),h=rt({inputs:{x:p},backend:e,attrs:{shape:[-1,d]}}),g=Yn(h,h.dtype,\"all\",e),x;if(i){let b=S.expandShapeToKeepDim(m,u);x=rt({inputs:{x:g},backend:e,attrs:{shape:b}})}else x=rt({inputs:{x:g},backend:e,attrs:{shape:m}});return e.disposeIntermediateTensorInfo(h),e.disposeIntermediateTensorInfo(g),c!=null&&e.disposeIntermediateTensorInfo(p),x}var b3={kernelName:Ea,backendName:\"webgl\",kernelFunc:cst};function pst(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,keepDims:i}=n,a=o.shape.length,u=y.parseAxisParam(s,o.shape),l=u,c=S.getAxesPermutation(l,a),p=o;c!=null&&(p=Pe({inputs:{x:o},backend:e,attrs:{perm:c}}),l=S.getInnerMostAxes(l.length,a)),S.assertAxesAreInnerMostDims(\"any\",l,a);let[m,f]=S.computeOutAndReduceShapes(p.shape,l),d=y.sizeFromShape(f),h=rt({inputs:{x:p},backend:e,attrs:{shape:[-1,d]}}),g=Yn(h,h.dtype,\"any\",e),x;if(i){let b=S.expandShapeToKeepDim(m,u);x=rt({inputs:{x:g},backend:e,attrs:{shape:b}})}else x=rt({inputs:{x:g},backend:e,attrs:{shape:m}});return e.disposeIntermediateTensorInfo(h),e.disposeIntermediateTensorInfo(g),c!=null&&e.disposeIntermediateTensorInfo(p),x}var w3={kernelName:Aa,backendName:\"webgl\",kernelFunc:pst};var fI=class{constructor(t,e,n){this.variableNames=[\"A\"];let{windowSize:o,batchSize:s,outSize:i}=t;n||this.variableNames.push(\"bestIndicesA\"),this.outputShape=[s,i];let a=e===\"max\"?\">\":\"<\",u=n?\"inOffset + i;\":\"round(getBestIndicesA(batch, inOffset + i));\";this.userCode=`\n void main() {\n ivec2 coords = getOutputCoords();\n int batch = coords[0];\n int outIdx = coords[1];\n int inOffset = outIdx * ${o};\n\n int bestIndex = inOffset;\n float bestValue = getA(batch, bestIndex);\n\n for (int i = 0; i < ${o}; i++) {\n int inIdx = ${u};\n float candidate = getA(batch, inIdx);\n if (candidate ${a} bestValue) {\n bestValue = candidate;\n bestIndex = inIdx;\n }\n }\n setOutput(float(bestIndex));\n }\n `}};var dI=class{constructor(t,e,n,o){this.variableNames=[\"A\"],this.packedInputs=!0,this.packedOutput=!0,y.assert(t.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let s=t[t.length-1],i=Math.ceil(s/e);this.outputShape=t.slice(0,-1),i>1&&this.outputShape.push(i),o||this.variableNames.push(\"bestIndicesA\");let a=this.outputShape,u=a.length,l=zt(u),c=rr(\"coords\",u),p,m;if(i===1){m=u+1;let D=zt(m);p=`\n ${D} sourceLocR = ${D}(${c.join()}, 0);\n ++${c[u-1]};\n ${D} sourceLocG = ${D}(${c.join()}, 0);\n ++${c[u-2]};\n ${D} sourceLocA = ${D}(${c.join()}, 0);\n --${c[u-1]};\n ${D} sourceLocB = ${D}(${c.join()}, 0);\n --${c[u-2]};`}else m=u,p=`\n ${l} sourceLocR = coords;\n ++${c[u-1]};\n ${l} sourceLocG = coords;\n ++${c[u-2]};\n ${l} sourceLocA = coords;\n --${c[u-1]};\n ${l} sourceLocB = coords;\n --${c[u-2]};`;let f=[\"x\",\"y\",\"z\",\"w\",\"u\",\"v\"].slice(0,m),d=\".\"+f[m-1],h=f.map(D=>\"int \"+D),g=rr(\"sourceLocR\",m-1).concat(\"inIdx.r\"),x=rr(\"sourceLocG\",m-1).concat(\"inIdx.g\"),b=rr(\"sourceLocB\",m-1).concat(\"inIdx.b\"),w=rr(\"sourceLocA\",m-1).concat(\"inIdx.a\"),I=n===\"max\"?\"greaterThan\":\"lessThan\",N=o?\"\":`\n inIdx = round(vec4(getBestIndicesAChannel(${g.join()}),\n getBestIndicesAChannel(${x.join()}),\n getBestIndicesAChannel(${b.join()}),\n getBestIndicesAChannel(${w.join()})));`,E=`vec4(\n getAChannel(${g.join()}),\n hasNextCol ? getAChannel(${x.join()}) : 0.,\n hasNextRow ? getAChannel(${b.join()}) : 0.,\n hasNextRow && hasNextCol ? getAChannel(${w.join()}) : 0.)`,A=o?\"\":`\n float getBestIndicesAChannel(${h.join()}) {\n return getChannel(getBestIndicesA(${f.join()}),\n vec2(${f.slice(-2).join()}));\n }`;this.userCode=`\n float getAChannel(${h.join()}) {\n return getChannel(getA(${f.join()}),\n vec2(${f.slice(-2).join()}));\n }\n ${A}\n void main() {\n ${l} coords = getOutputCoords();\n bool hasNextCol = ${c[u-1]} < ${a[u-1]-1};\n bool hasNextRow = ${c[u-2]} < ${a[u-2]-1};\n ${p}\n ivec4 srcIdx = ivec4(sourceLocR${d}, sourceLocG${d},\n sourceLocB${d}, sourceLocA${d}) * ${e};\n ivec4 inIdx = srcIdx;\n vec4 bestIndex = vec4(inIdx);\n vec4 bestValue = ${E};\n\n for (int i = 0; i < ${e}; i++) {\n inIdx = srcIdx;\n ${N}\n vec4 candidate = ${E};\n bvec4 nan = isnan(candidate);\n bvec4 replace = bvec4(\n vec4(${I}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));\n\n bestValue = vec4(replace.x ? candidate.x : bestValue.x,\n replace.y ? candidate.y : bestValue.y,\n replace.z ? candidate.z : bestValue.z,\n replace.w ? candidate.w : bestValue.w);\n bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));\n srcIdx++;\n }\n setOutput(bestIndex);\n }\n `}};function I3(r,t,e,n=null){let o=t.shape[0],s=t.shape[1];n!=null&&(o=n.shape[0],s=n.shape[1]);let i=S.computeOptimalWindowSize(s),a={windowSize:i,inSize:s,batchSize:o,outSize:Math.ceil(s/i)},u=new fI(a,e,n==null),l=[t];n!=null&&l.push(n);let c=r.runWebGLProgram(u,l,\"int32\");if(c.shape[1]===1)return c;let p=I3(r,t,e,c);return r.disposeIntermediateTensorInfo(c),p}function C3(r,t,e,n=null){let o=n!=null?n.shape:t.shape,s=o[o.length-1],i=S.computeOptimalWindowSize(s),a=new dI(o,i,e,n==null),u=n==null?[t]:[t,n],l=r.runWebGLProgram(a,u,\"int32\");if(l.shape.length===t.shape.length){let c=C3(r,t,e,l);return r.disposeIntermediateTensorInfo(l),c}return l}function hI(r,t,e,n){let o=[e];if(S.assertAxesAreInnerMostDims(\"arg\"+n.charAt(0).toUpperCase()+n.slice(1),o,t.shape.length),!L().getBool(\"WEBGL_PACK_REDUCE\")||t.shape.length<=2){let s=[],i=r.texData.get(t.dataId),a=i!==null&&i.isPacked,u=t;a&&(u=r.unpackTensor(t),s.push(u));let[l,c]=S.computeOutAndReduceShapes(u.shape,o),p=y.sizeFromShape(c),m=rt({inputs:{x:u},backend:r,attrs:{shape:[-1,p]}});s.push(m);let f=I3(r,m,n);s.push(f);let d=rt({inputs:{x:f},backend:r,attrs:{shape:l}});return s.forEach(h=>r.disposeIntermediateTensorInfo(h)),d}return C3(r,t,n)}function mst(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s}=n,i=y.parseAxisParam(s,o.shape),a=S.getAxesPermutation(i,o.shape.length),u=o,l=[];a!=null&&(u=Pe({inputs:{x:o},backend:e,attrs:{perm:a}}),l.push(u),i=S.getInnerMostAxes(i.length,u.shape.length)),S.assertAxesAreInnerMostDims(\"argMax\",[i[0]],u.shape.length);let c=hI(e,u,i[0],\"max\");return l.forEach(p=>e.disposeIntermediateTensorInfo(p)),c}var v3={kernelName:Di,backendName:\"webgl\",kernelFunc:mst};function fst(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s}=n,i=y.parseAxisParam(s,o.shape),a=S.getAxesPermutation(i,o.shape.length),u=o,l=[];a!=null&&(u=Pe({inputs:{x:o},backend:e,attrs:{perm:a}}),l.push(u),i=S.getInnerMostAxes(i.length,u.shape.length)),S.assertAxesAreInnerMostDims(\"argMin\",[i[0]],u.shape.length);let c=hI(e,u,i[0],\"min\");return l.forEach(p=>e.disposeIntermediateTensorInfo(p)),c}var S3={kernelName:$i,backendName:\"webgl\",kernelFunc:fst};var dst=xr+`\n if (abs(x) > 1.) {\n return NAN;\n }\n return asin(x);\n`,hst=It({opSnippet:dst}),N3={kernelName:Ho,backendName:\"webgl\",kernelFunc:hst};var gst=xr+\"return log(x + sqrt(x * x + 1.0));\",xst=It({opSnippet:gst}),k3={kernelName:qo,backendName:\"webgl\",kernelFunc:xst};var yst=xr+`\n return atan(x);\n`,bst=It({opSnippet:yst}),T3={kernelName:Ko,backendName:\"webgl\",kernelFunc:bst};var wst=$d+`\n return atan(a, b);\n`,Ist=`\n vec4 result = atan(a, b);\n bvec4 isNaNA = isnan(a);\n bvec4 isNaNB = isnan(b);\n bvec4 isNaN = bvec4(isNaNA.x || isNaNB.x, isNaNA.y || isNaNB.y, isNaNA.z || isNaNB.z, isNaNA.w || isNaNB.w);\n `+Xn+`\n return result;\n`,Cst=ce({opSnippet:wst,packedOpSnippet:Ist}),_3={kernelName:Xo,backendName:\"webgl\",kernelFunc:Cst};var vst=xr+`\n if ((x < -1.0) || (x > 1.0)) return NAN;\nreturn (log(1.0 + x) - log(1.0 - x)) / 2.0;`,Sst=It({opSnippet:vst}),E3={kernelName:jo,backendName:\"webgl\",kernelFunc:Sst};var Ni=class{constructor(t,e,n,o=!1,s=!1){if(this.variableNames=[\"x\"],e===\"avg\"&&n)throw new Error(\"Cannot compute positions for average pool.\");let i=t.filterWidth,a=t.strideHeight,u=t.strideWidth,l=t.dilationHeight,c=t.dilationWidth,p=t.effectiveFilterHeight,m=t.effectiveFilterWidth,f=t.padInfo.top,d=t.padInfo.left;this.outputShape=t.outShape;let h=e===\"avg\",g=`((batch * ${t.inHeight} + xR) * ${t.inWidth} + xC) * ${t.inChannels} + d`,x=`(xR * ${t.inWidth} + xC) * ${t.inChannels} + d`,b=\"0.0\";if(h||(b=\"-1.0 / 1e-20\"),n){let D=\">=\";this.userCode=`\n const ivec2 strides = ivec2(${a}, ${u});\n const ivec2 pads = ivec2(${f}, ${d});\n\n void main() {\n ivec4 coords = getOutputCoords();\n int batch = coords[0];\n int d = coords[3];\n\n ivec2 xRCCorner = coords.yz * strides - pads;\n int xRCorner = xRCCorner.x;\n int xCCorner = xRCCorner.y;\n\n // max/min x(?, ?, d) to get y(yR, yC, d).\n // ? = to be determined\n float minMaxValue = 0.0;\n float minMaxValueFound = 0.0;\n int minMaxPosition = 0;\n float avgValue = 0.0;\n\n for (int wR = 0; wR < ${p};\n wR += ${l}) {\n int xR = xRCorner + wR;\n\n if (xR < 0 || xR >= ${t.inHeight}) {\n continue;\n }\n\n for (int wC = 0; wC < ${m};\n wC += ${c}) {\n int xC = xCCorner + wC;\n\n if (xC < 0 || xC >= ${t.inWidth}) {\n continue;\n }\n\n float value = getX(batch, xR, xC, d);\n\n // If a min / max value has already been found, use it. If not,\n // use the current value.\n float currMinMaxValue = mix(\n value, minMaxValue, minMaxValueFound);\n if (value ${D} currMinMaxValue) {\n minMaxValue = value;\n minMaxValueFound = 1.0;\n minMaxPosition = ${o?s?g:x:`wR * ${m} + wC`};\n }\n }\n }\n setOutput(float(minMaxPosition));\n }\n `;return}let w=\"max\",I=`${e}(${e}(${e}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;e===\"avg\"&&(I=\"avgValue / max(count, 1.0)\");let N=Math.floor(i/4)*4,E=i%4,A=`\n if (${h}) {\n avgValue += dot(values, ones);\n } else {\n minMaxValue = ${w}(values, minMaxValue);\n }\n `;this.userCode=`\n const ivec2 strides = ivec2(${a}, ${u});\n const ivec2 pads = ivec2(${f}, ${d});\n const float initializationValue = ${b};\n const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);\n\n float count = 0.0;\n\n float getValue(int batch, int xR, int xC, int d) {\n if (xC < 0 || xC >= ${t.inWidth}) {\n return initializationValue;\n }\n count += 1.0;\n return getX(batch, xR, xC, d);\n }\n\n void main() {\n ivec4 coords = getOutputCoords();\n int batch = coords[0];\n int d = coords[3];\n\n ivec2 xRCCorner = coords.yz * strides - pads;\n int xRCorner = xRCCorner.x;\n int xCCorner = xRCCorner.y;\n\n // max/min x(?, ?, d) to get y(yR, yC, d).\n // ? = to be determined\n vec4 minMaxValue = vec4(${b});\n float avgValue = 0.0;\n count = 0.0;\n\n for (int wR = 0; wR < ${p};\n wR += ${l}) {\n int xR = xRCorner + wR;\n\n if (xR < 0 || xR >= ${t.inHeight}) {\n continue;\n }\n\n for (int wC = 0; wC < ${N}; wC += 4) {\n int xC = xCCorner + wC * ${c};\n\n vec4 values = vec4(\n getValue(batch, xR, xC, d),\n getValue(batch, xR, xC + ${c}, d),\n getValue(batch, xR, xC + 2 * ${c}, d),\n getValue(batch, xR, xC + 3 * ${c}, d)\n );\n\n ${A}\n }\n\n int xC = xCCorner + ${N};\n if (${E===1}) {\n vec4 values = vec4(\n getValue(batch, xR, xC, d),\n initializationValue,\n initializationValue,\n initializationValue\n );\n\n ${A}\n } else if (${E===2}) {\n vec4 values = vec4(\n getValue(batch, xR, xC, d),\n getValue(batch, xR, xC + ${c}, d),\n initializationValue,\n initializationValue\n );\n\n ${A}\n } else if (${E===3}) {\n vec4 values = vec4(\n getValue(batch, xR, xC, d),\n getValue(batch, xR, xC + ${c}, d),\n getValue(batch, xR, xC + 2 * ${c}, d),\n initializationValue\n );\n\n ${A}\n }\n }\n setOutput(${I});\n }\n `}},qu=class{constructor(t,e,n,o=!1,s=!1){if(this.variableNames=[\"x\"],e===\"avg\"&&n)throw new Error(\"Cannot compute positions for average pool.\");let i=t.filterWidth,a=t.strideDepth,u=t.strideHeight,l=t.strideWidth,c=t.dilationDepth,p=t.dilationHeight,m=t.dilationWidth,f=t.effectiveFilterDepth,d=t.effectiveFilterHeight,h=t.effectiveFilterWidth,g=t.padInfo.front,x=t.padInfo.top,b=t.padInfo.left;this.outputShape=t.outShape;let w=e===\"avg\",I=\"0.0\";if(w||(I=\"-1.0 / 1e-20\"),n){let M=\">=\";this.userCode=`\n const ivec3 strides =\n ivec3(${a}, ${u}, ${l});\n const ivec3 pads = ivec3(${g}, ${x}, ${b});\n\n void main() {\n ivec5 coords = getOutputCoords();\n int batch = coords.x;\n int ch = coords.u;\n\n ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;\n int xDCorner = xCorner.x;\n int xRCorner = xCorner.y;\n int xCCorner = xCorner.z;\n\n // max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).\n // ? = to be determined\n float minMaxValue = 0.0;\n float minMaxValueFound = 0.0;\n int minMaxPosition = 0;\n\n for (int wD = 0; wD < ${f};\n wD += ${c}) {\n int xD = xDCorner + wD;\n\n if (xD < 0 || xD >= ${t.inDepth}) {\n continue;\n }\n\n for (int wR = 0; wR < ${d};\n wR += ${p}) {\n int xR = xRCorner + wR;\n\n if (xR < 0 || xR >= ${t.inHeight}) {\n continue;\n }\n\n for (int wC = 0; wC < ${h};\n wC += ${m}) {\n int xC = xCCorner + wC;\n\n if (xC < 0 || xC >= ${t.inWidth}) {\n continue;\n }\n\n float value = getX(batch, xD, xR, xC, ch);\n\n // If a min / max value has already been found, use it. If not,\n // use the current value.\n float currMinMaxValue = mix(\n value, minMaxValue, minMaxValueFound);\n if (value ${M} currMinMaxValue) {\n minMaxValue = value;\n minMaxValueFound = 1.0;\n minMaxPosition = ${o?s?`(((batch * ${t.inDepth} + xD) * ${t.inHeight} + xR) * ${t.inWidth} + xC) * ${t.inChannels} + ch`:`((xD * ${t.inHeight} + xR) * ${t.inWidth} + xC) * ${t.inChannels} + ch`:`wD * ${d} * ${h} +\n wR * ${h} + wC`};\n }\n }\n }\n }\n setOutput(float(minMaxPosition));\n }\n `;return}let N=\"max\",E=`${e}(${e}(${e}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;e===\"avg\"&&(E=\"avgValue / max(count, 1.0)\");let A=Math.floor(i/4)*4,D=i%4,F=`\n if (${w}) {\n avgValue += dot(values, ones);\n } else {\n minMaxValue = ${N}(values, minMaxValue);\n }\n `;this.userCode=`\n const ivec3 strides =\n ivec3(${a}, ${u}, ${l});\n const ivec3 pads = ivec3(${g}, ${x}, ${b});\n const float initializationValue = ${I};\n const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);\n\n float count = 0.0;\n\n float getValue(int batch, int xD, int xR, int xC, int ch) {\n if (xC < 0 || xC >= ${t.inWidth}) {\n return initializationValue;\n }\n count += 1.0;\n return getX(batch, xD, xR, xC, ch);\n }\n\n void main() {\n ivec5 coords = getOutputCoords();\n int batch = coords.x;\n int ch = coords.u;\n\n ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;\n int xDCorner = xCorner.x;\n int xRCorner = xCorner.y;\n int xCCorner = xCorner.z;\n\n // max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).\n // ? = to be determined\n vec4 minMaxValue = vec4(${I});\n float avgValue = 0.0;\n count = 0.0;\n\n for (int wD = 0; wD < ${f};\n wD += ${c}) {\n int xD = xDCorner + wD;\n\n if (xD < 0 || xD >= ${t.inDepth}) {\n continue;\n }\n\n for (int wR = 0; wR < ${d};\n wR += ${p}) {\n int xR = xRCorner + wR;\n\n if (xR < 0 || xR >= ${t.inHeight}) {\n continue;\n }\n\n for (int wC = 0; wC < ${A}; wC += 4) {\n int xC = xCCorner + wC * ${m};\n\n vec4 values = vec4(\n getValue(batch, xD, xR, xC, ch),\n getValue(batch, xD, xR, xC + ${m}, ch),\n getValue(batch, xD, xR, xC + 2 * ${m}, ch),\n getValue(batch, xD, xR, xC + 3 * ${m}, ch)\n );\n\n ${F}\n }\n\n int xC = xCCorner + ${A};\n if (${D===1}) {\n vec4 values = vec4(\n getValue(batch, xD, xR, xC, ch),\n initializationValue,\n initializationValue,\n initializationValue\n );\n\n ${F}\n } else if (${D===2}) {\n vec4 values = vec4(\n getValue(batch, xD, xR, xC, ch),\n getValue(batch, xD, xR, xC + ${m}, ch),\n initializationValue,\n initializationValue\n );\n\n ${F}\n } else if (${D===3}) {\n vec4 values = vec4(\n getValue(batch, xD, xR, xC, ch),\n getValue(batch, xD, xR, xC + ${m}, ch),\n getValue(batch, xD, xR, xC + 2 * ${m}, ch),\n initializationValue\n );\n\n ${F}\n }\n }\n }\n setOutput(${E});\n }\n `}};function Nst(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t;vi(o,\"avgPool\");let{filterSize:s,strides:i,pad:a,dimRoundingMode:u}=n,l=1;y.assert(S.eitherStridesOrDilationsAreOne(i,l),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${l}'`);let c=S.computePool2DInfo(o.shape,s,i,l,a,u);if(c.filterWidth===1&&c.filterHeight===1&&y.arraysEqual(c.inShape,c.outShape))return nr({inputs:{x:o},backend:e});let p=new Ni(c,\"avg\",!1);return e.runWebGLProgram(p,[o],\"float32\")}var A3={kernelName:Yo,backendName:\"webgl\",kernelFunc:Nst};function kst(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{filterSize:s,strides:i,pad:a,dimRoundingMode:u,dataFormat:l}=n,c=[1,1,1],p=S.computePool3DInfo(o.shape,s,i,c,a,u,l),m=new qu(p,\"avg\",!1);return e.runWebGLProgram(m,[o],\"float32\")}var D3={kernelName:Ri,backendName:\"webgl\",kernelFunc:kst};var gI=class{constructor(t){this.variableNames=[\"dy\"],this.outputShape=t.inShape;let e=t.filterHeight,n=t.filterWidth,o=t.strideHeight,s=t.strideWidth,i=t.dilationHeight,a=t.dilationWidth,u=t.effectiveFilterHeight,l=t.effectiveFilterWidth,c=u-1-t.padInfo.top,p=l-1-t.padInfo.left,m=1/(e*n);this.userCode=`\n const ivec2 pads = ivec2(${c}, ${p});\n const float avgMultiplier = float(${m});\n\n void main() {\n ivec4 coords = getOutputCoords();\n int b = coords[0];\n int d = coords[3];\n\n ivec2 dyRCCorner = coords.yz - pads;\n int dyRCorner = dyRCCorner.x;\n int dyCCorner = dyRCCorner.y;\n\n // Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).\n // ? = to be determined. : = across all values in that axis.\n float dotProd = 0.0;\n for (int wR = 0; wR < ${u};\n wR += ${i}) {\n float dyR = float(dyRCorner + wR) / ${o}.0;\n\n if (dyR < 0.0 || dyR >= ${t.outHeight}.0 || fract(dyR) > 0.0) {\n continue;\n }\n int idyR = int(dyR);\n\n for (int wC = 0; wC < ${l};\n wC+= ${a}) {\n float dyC = float(dyCCorner + wC) / ${s}.0;\n\n if (dyC < 0.0 || dyC >= ${t.outWidth}.0 ||\n fract(dyC) > 0.0) {\n continue;\n }\n int idyC = int(dyC);\n\n float dyValue = getDy(b, idyR, idyC, d);\n\n dotProd += dyValue * avgMultiplier;\n }\n }\n setOutput(dotProd);\n }\n `}},xI=class{constructor(t){this.variableNames=[\"dy\"],this.outputShape=t.inShape;let e=t.filterDepth,n=t.filterHeight,o=t.filterWidth,s=t.strideDepth,i=t.strideHeight,a=t.strideWidth,u=t.dilationDepth,l=t.dilationHeight,c=t.dilationWidth,p=t.effectiveFilterDepth,m=t.effectiveFilterHeight,f=t.effectiveFilterWidth,d=p-1-t.padInfo.front,h=m-1-t.padInfo.top,g=f-1-t.padInfo.left,x=1/(e*n*o);this.userCode=`\n const ivec3 pads = ivec3(${d}, ${h}, ${g});\n const float avgMultiplier = float(${x});\n\n void main() {\n ivec5 coords = getOutputCoords();\n int batch = coords.x;\n int ch = coords.u;\n\n ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;\n int dyDCorner = dyCorner.x;\n int dyRCorner = dyCorner.y;\n int dyCCorner = dyCorner.z;\n\n // Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get\n // dx(xD, xR, xC, ch).\n // ? = to be determined. : = across all values in that axis.\n float dotProd = 0.0;\n\n for (int wD = 0; wD < ${p};\n wD += ${u}) {\n float dyD = float(dyDCorner + wD) / ${s}.0;\n\n if (dyD < 0.0 || dyD >= ${t.outDepth}.0 || fract(dyD) > 0.0) {\n continue;\n }\n int idyD = int(dyD);\n\n for (int wR = 0; wR < ${m};\n wR += ${l}) {\n float dyR = float(dyRCorner + wR) / ${i}.0;\n\n if (dyR < 0.0 || dyR >= ${t.outHeight}.0 ||\n fract(dyR) > 0.0) {\n continue;\n }\n int idyR = int(dyR);\n\n for (int wC = 0; wC < ${f};\n wC += ${c}) {\n float dyC = float(dyCCorner + wC) / ${a}.0;\n\n if (dyC < 0.0 || dyC >= ${t.outWidth}.0 ||\n fract(dyC) > 0.0) {\n continue;\n }\n int idyC = int(dyC);\n\n float dyValue = getDy(batch, idyD, idyR, idyC, ch);\n\n dotProd += dyValue * avgMultiplier;\n }\n }\n }\n setOutput(dotProd);\n }\n `}};function Tst(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,input:s}=t,i=s,{filterSize:a,strides:u,pad:l,dimRoundingMode:c}=n,p=[1,1,1],m=S.computePool3DInfo(i.shape,a,u,p,l,c),f=new xI(m);return e.runWebGLProgram(f,[o],i.dtype)}var $3={kernelName:Hl,backendName:\"webgl\",kernelFunc:Tst};function _st(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,input:s}=t,i=s;vi([o,s],\"avgPoolGrad\");let{filterSize:a,strides:u,pad:l}=n,c=S.computePool2DInfo(i.shape,a,u,1,l),p=new gI(c);return e.runWebGLProgram(p,[o],i.dtype)}var R3={kernelName:Ul,backendName:\"webgl\",kernelFunc:_st};function Est(r){let{inputs:t,backend:e,attrs:n}=r,{a:o,b:s}=t,{transposeA:i,transposeB:a}=n;return dp({a:o,b:s,transposeA:i,transposeB:a,backend:e})}var F3={kernelName:Zo,backendName:\"webgl\",kernelFunc:Est};var yI=class{constructor(t,e,n,o,s,i){this.outputShape=[],this.variableNames=[\"x\",\"mean\",\"variance\"],S.assertAndGetBroadcastShape(t,e),S.assertAndGetBroadcastShape(t,n);let a=\"0.0\";o!=null&&(S.assertAndGetBroadcastShape(t,o),this.variableNames.push(\"offset\"),a=\"getOffsetAtOutCoords()\");let u=\"1.0\";s!=null&&(S.assertAndGetBroadcastShape(t,s),this.variableNames.push(\"scale\"),u=\"getScaleAtOutCoords()\"),this.outputShape=t,this.userCode=`\n void main() {\n float x = getXAtOutCoords();\n float mean = getMeanAtOutCoords();\n float variance = getVarianceAtOutCoords();\n float offset = ${a};\n float scale = ${u};\n float inv = scale * inversesqrt(variance + float(${i}));\n setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));\n }\n `}};var bI=class{constructor(t,e,n,o,s,i){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=[\"x\",\"mean\",\"variance\"],S.assertAndGetBroadcastShape(t,e),S.assertAndGetBroadcastShape(t,n);let a=\"vec4(0.0)\";o!=null&&(S.assertAndGetBroadcastShape(t,o),this.variableNames.push(\"offset\"),a=\"getOffsetAtOutCoords()\");let u=\"vec4(1.0)\";s!=null&&(S.assertAndGetBroadcastShape(t,s),this.variableNames.push(\"scale\"),u=\"getScaleAtOutCoords()\"),this.outputShape=t,this.userCode=`\n void main() {\n vec4 offset = ${a};\n vec4 scale = ${u};\n\n vec4 x = getXAtOutCoords();\n vec4 mean = getMeanAtOutCoords();\n vec4 variance = getVarianceAtOutCoords();\n\n vec4 inv = scale * inversesqrt(variance + vec4(${i}));\n\n setOutput((x - mean) * inv + offset);\n }\n `}};var Ast=({inputs:r,backend:t,attrs:e})=>{let{x:n,mean:o,variance:s,offset:i,scale:a}=r;y.assert(o.shape.length===s.shape.length,()=>\"Batch normalization gradient requires mean and variance to have equal ranks.\"),y.assert(i==null||o.shape.length===i.shape.length,()=>\"Batch normalization gradient requires mean and offset to have equal ranks.\"),y.assert(a==null||o.shape.length===a.shape.length,()=>\"Batch normalization gradient requires mean and scale to have equal ranks.\");let{varianceEpsilon:u}=e;u==null&&(u=.001);let l=[n,o,s],c=null;i!=null&&(c=i.shape,l.push(i));let p=null;a!=null&&(p=a.shape,l.push(a));let m=L().getBool(\"WEBGL_PACK_NORMALIZATION\")?new bI(n.shape,o.shape,s.shape,c,p,u):new yI(n.shape,o.shape,s.shape,c,p,u);return t.runWebGLProgram(m,l,l[0].dtype)},O3={kernelName:ds,backendName:\"webgl\",kernelFunc:Ast};var wI=class{constructor(t){this.variableNames=[\"source\"],this.outputShape=t,this.rank=t.length;let e=zt(this.rank);this.customUniforms=[{name:\"start\",arrayIndex:this.rank,type:\"int\"}];let n=Dst(this.rank),o,s=t.map((i,a)=>`sourceLoc.${O1[a]} = start[${a}] + coords.${O1[a]};`);o=`\n ${e} sourceLoc;\n ${e} coords = getOutputCoords();\n ${s.join(`\n`)}\n `,this.userCode=`\n void main() {\n ${o}\n setOutput(getSource(${n}));\n }\n `}},O1=[\"x\",\"y\",\"z\",\"w\",\"u\",\"v\"];function Dst(r){if(r===1)return\"sourceLoc\";if(r<=6)return O1.slice(0,r).map(t=>\"sourceLoc.\"+t).join(\",\");throw Error(`Slicing for rank ${r} is not yet supported`)}var II=class{constructor(t){this.variableNames=[\"source\"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t,this.rank=t.length,this.customUniforms=[{name:\"start\",arrayIndex:this.rank,type:\"int\"}];let e=zt(this.rank),n=rr(\"coords\",this.rank),o=rr(\"sourceLoc\",this.rank),s=this.rank===1?\"sourceLoc\":`vec2(${o.slice(-2).join()})`,i=`getChannel(getSource(${o.join()}), ${s})`,a=`\n result.x = ${i};\n if (++${n[this.rank-1]} < ${t[this.rank-1]}) {\n ++${o[this.rank-1]};\n result.y = ${i};\n --${o[this.rank-1]};\n }\n `,u=this.rank===1?\"\":`\n --${n[this.rank-1]};\n if (++${n[this.rank-2]} < ${t[this.rank-2]}) {\n ++${o[this.rank-2]};\n result.z = ${i};\n if (++${n[this.rank-1]} < ${t[this.rank-1]}) {\n ++${o[this.rank-1]};\n result.w = ${i};\n }\n }\n `,l=this.rank<=4?`sourceLoc = coords +\n ${e}(${t.map((c,p)=>`start[${p}]`).join()});`:t.map((c,p)=>`${o[p]} = ${n[p]} + start[${p}];`).join(`\n`);this.userCode=`\n void main() {\n ${e} coords = getOutputCoords();\n ${e} sourceLoc;\n ${l}\n vec4 result = vec4(0.);\n ${a}\n ${u}\n setOutput(result);\n }\n `}};function $st(r,t,e,n){let o=n.texData.get(r.dataId),s=n.makeTensorInfo(e,r.dtype),i=n.texData.get(s.dataId);Object.assign(i,o),i.refCount=1,i.shape=e,i.dtype=r.dtype;let a=Be.computeFlatOffset(t,y.computeStrides(r.shape));o.slice&&(a+=o.slice.flatOffset),i.slice={flatOffset:a,origDataId:o.slice&&o.slice.origDataId||r.dataId};let u=n.dataRefCount.get(i.slice.origDataId)||1;return n.dataRefCount.set(i.slice.origDataId,u+1),s}function ki(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{begin:s,size:i}=n,[a,u]=Be.parseSliceParams(o,s,i);if(Be.assertParamsValid(o,a,u),y.sizeFromShape(u)===0)return e.makeTensorInfo(u,o.dtype,[]);if(e.shouldExecuteOnCPU([o])||o.dtype===\"string\"){let p=e.texData.get(o.dataId),m=Sz(p.values,a,u,o.shape,o.dtype);return e.makeTensorInfo(u,o.dtype,m)}let{isPacked:l}=e.texData.get(o.dataId),c=Be.isSliceContinous(o.shape,a,u);if(l||!c){let p=L().getBool(\"WEBGL_PACK_ARRAY_OPERATIONS\")?new II(u):new wI(u),m=[a];return e.runWebGLProgram(p,[o],o.dtype,m)}return e.uploadToGPU(o.dataId),$st(o,a,u,e)}var M3={kernelName:Ui,backendName:\"webgl\",kernelFunc:ki};var Rst=r=>{let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{blockShape:s,crops:i}=n;y.assert(o.shape.length<=4,()=>\"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet\");let a=s.reduce((b,w)=>b*w),u=S.getReshaped(o.shape,s,a),l=S.getPermuted(u.length,s.length),c=S.getReshapedPermuted(o.shape,s,a),p=S.getSliceBeginCoords(i,s.length),m=S.getSliceSize(c,i,s.length),f=[],d=rt({inputs:{x:o},backend:e,attrs:{shape:u}}),h=Pe({inputs:{x:d},backend:e,attrs:{perm:l}}),g=rt({inputs:{x:h},backend:e,attrs:{shape:c}}),x=ki({inputs:{x:g},backend:e,attrs:{begin:p,size:m}});return f.push(d),f.push(h),f.push(g),f.forEach(b=>e.disposeIntermediateTensorInfo(b)),x},P3={kernelName:Fi,backendName:\"webgl\",kernelFunc:Rst};function Fst(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,weights:s}=t,{size:i}=n,a=e.readSync(o.dataId),u=e.readSync(s.dataId),l=tI(a,u,s.dtype,s.shape,i);return e.makeTensorInfo([i],s.dtype,l)}var L3={kernelName:Da,backendName:\"webgl\",kernelFunc:Fst};var Ost=`\n int r = int(a.r) & int(b.r);\n int g = int(a.g) & int(b.g);\n int rb = int(a.b) & int(b.b);\n int ra = int(a.a) & int(b.a);\n return vec4(r, g, rb, ra);\n`,Mst=`\n return float(int(a.r) & int(b.r));\n`;function Pst(r){let{inputs:t,backend:e}=r,{a:n,b:o}=t,s=L().getBool(\"WEBGL_PACK_BINARY_OPERATIONS\"),i=L().getNumber(\"WEBGL_VERSION\");if(e.shouldExecuteOnCPU([n,o])||i===1){let u=e.texData.get(n.dataId).values,l=e.texData.get(o.dataId).values,[c,p]=jL(n.shape,o.shape,u,l,n.dtype),m=e.makeTensorInfo(p,n.dtype),f=e.texData.get(m.dataId);return f.values=c,m}let a;return s?a=new jn(Ost,n.shape,o.shape,!1):a=new $n(Mst,n.shape,o.shape),e.runWebGLProgram(a,[n,o],n.dtype)}var z3={kernelName:$a,backendName:\"webgl\",kernelFunc:Pst};function Lst(r){let{inputs:t,backend:e}=r,{s0:n,s1:o}=t,s=e.readSync(n.dataId),i=e.readSync(o.dataId),a=S.assertAndGetBroadcastShape(Array.from(s),Array.from(i));return e.makeTensorInfo([a.length],\"int32\",Int32Array.from(a))}var B3={kernelName:ql,backendName:\"webgl\",kernelFunc:Lst};var zst=\"return float(a != b);\",M1=ce({opSnippet:zst,cpuKernelImpl:hz,dtype:\"bool\"}),V3={kernelName:Za,backendName:\"webgl\",kernelFunc:M1};function Pl(r){let{inputs:t,backend:e}=r,{input:n}=t,o=e.texData.get(n.dataId);return nr({inputs:{x:o.complexTensorInfos.real},backend:e})}var G3={kernelName:Vp,backendName:\"webgl\",kernelFunc:Pl};var Bst=\"return float(int(x));\";function W3(r,t){let e=new zr(r.shape,Bst),n=t.runWebGLProgram(e,[r],\"int32\");return{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}function P1(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{dtype:s}=n;if(s===\"complex64\"){if(o.dtype===\"complex64\")return nr({inputs:{x:o},backend:e});let i=ke(o.shape),a=P1({inputs:{x:o},backend:e,attrs:{dtype:\"float32\"}}),u=Rn({inputs:{real:a,imag:i},backend:e});return i.dispose(),e.disposeIntermediateTensorInfo(a),u}if(o.dtype===\"complex64\"){let i=Pl({inputs:{input:o},backend:e}),a=P1({inputs:{x:i},backend:e,attrs:{dtype:s}});return e.disposeIntermediateTensorInfo(i),a}if(!y.hasEncodingLoss(o.dtype,s)){let i=nr({inputs:{x:o},backend:e});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(e.shouldExecuteOnCPU([o])){let i=e.texData.get(o.dataId).values,[a,u,l]=XL(i,o.shape,o.dtype,s);return e.makeTensorInfo(a,u,l)}if(s===\"int32\")return W3(o,e);if(s===\"bool\"){let i=e.makeTensorInfo([],\"bool\",y.getTypedArrayFromDType(\"bool\",1)),u=M1({inputs:{a:o,b:i},backend:e});return e.disposeIntermediateTensorInfo(i),u}throw new Error(`Error in Cast: failed to cast ${o.dtype} to ${s}`)}var U3={kernelName:fo,backendName:\"webgl\",kernelFunc:P1};var H3=\"return ceil(x);\",Vst=It({opSnippet:H3,packedOpSnippet:H3,cpuKernelImpl:YL}),q3={kernelName:Jo,backendName:\"webgl\",kernelFunc:Vst};var CI=class{constructor(t){this.variableNames=[\"A\"],this.customUniforms=[{name:\"minVal\",type:\"float\"},{name:\"maxVal\",type:\"float\"}],this.outputShape=t,this.userCode=`\n\n void main() {\n float value = getAAtOutCoords();\n if (isnan(value)) {\n setOutput(value);\n return;\n }\n\n setOutput(clamp(value, minVal, maxVal));\n }\n `}};var vI=class{constructor(t){this.variableNames=[\"A\"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:\"minVal\",type:\"float\"},{name:\"maxVal\",type:\"float\"}],this.outputShape=t,this.userCode=`\n void main() {\n vec4 value = getAAtOutCoords();\n\n if (any(isnan(value))) {\n setOutput(value);\n return;\n }\n\n setOutput(clamp(value, vec4(minVal), vec4(maxVal)));\n }\n `}};function Gst(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{clipValueMin:s,clipValueMax:i}=n,a;L().getBool(\"WEBGL_PACK_CLIP\")?a=new vI(o.shape):a=new CI(o.shape);let u=[[s],[i]];return e.runWebGLProgram(a,[o],o.dtype,u)}var K3={kernelName:ho,backendName:\"webgl\",kernelFunc:Gst};var SI=class{constructor(t){this.variableNames=[\"real\",\"imag\"],this.outputShape=t,this.userCode=`\n void main() {\n float re = abs(getRealAtOutCoords());\n float im = abs(getImagAtOutCoords());\n float mx = max(re, im);\n\n // sadly the length function in glsl is not underflow-safe\n // (at least not on Intel GPUs). So the safe solution is\n // to ensure underflow-safety in all cases.\n setOutput(\n mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))\n );\n }\n `}};function j3(r,t){return{dataId:t.dataId,dtype:t.dtype,shape:r.shape}}function Wst(r){let{inputs:t,backend:e}=r,{x:n}=t,o=e.texData.get(n.dataId),s=new SI(n.shape),i=[j3(n,o.complexTensorInfos.real),j3(n,o.complexTensorInfos.imag)];return e.runWebGLProgram(s,i,i[0].dtype)}var X3={kernelName:Kl,backendName:\"webgl\",kernelFunc:Wst};var NI=class{constructor(t){this.outputShape=[],this.outputShape=S.computeOutShape(t,1),this.variableNames=t.map((i,a)=>`T${a}`);let e=new Array(t.length-1);e[0]=t[0][1];for(let i=1;i`T${g}`);let u=new Array(t.length-1);u[0]=t[0][e];for(let h=1;h= ${u[h-1]}) {\n return getChannel(\n getT${h}(${kI(a,l,g)}),\n vec2(${kI(c,l,g)}));\n }`}let f=u.length,d=u[u.length-1];m+=`\n return getChannel(\n getT${f}(${kI(a,l,d)}),\n vec2(${kI(c,l,d)}));`,this.userCode=`\n float getValue(${a.map(h=>\"int \"+h)}) {\n ${m}\n }\n\n void main() {\n ${s} coords = getOutputCoords();\n vec4 result = vec4(getValue(${i}), 0., 0., 0.);\n\n ${i[o-1]} = ${i[o-1]} + 1;\n if (${i[o-1]} < ${n[o-1]}) {\n result.g = getValue(${i});\n }\n\n ${i[o-2]} = ${i[o-2]} + 1;\n if (${i[o-2]} < ${n[o-2]}) {\n result.a = getValue(${i});\n }\n\n ${i[o-1]} = ${i[o-1]} - 1;\n if (${i[o-2]} < ${n[o-2]} &&\n ${i[o-1]} < ${n[o-1]}) {\n result.b = getValue(${i});\n }\n setOutput(result);\n }\n `}};function kI(r,t,e){let n=r.indexOf(t);return r.map((s,i)=>i===n?`${s} - ${e}`:s).join()}function hp(r){let{inputs:t,backend:e}=r,{input:n}=t,o=e.texData.get(n.dataId);return nr({inputs:{x:o.complexTensorInfos.imag},backend:e})}var Y3={kernelName:Pp,backendName:\"webgl\",kernelFunc:hp};function Fd(r,t,e){let n=r[0].dtype;if(n===\"complex64\"){let f=r.map(b=>Pl({inputs:{input:b},backend:e})),d=r.map(b=>hp({inputs:{input:b},backend:e})),h=Fd(f,t,e),g=Fd(d,t,e),x=Rn({inputs:{real:h,imag:g},backend:e});return f.forEach(b=>e.disposeIntermediateTensorInfo(b)),d.forEach(b=>e.disposeIntermediateTensorInfo(b)),e.disposeIntermediateTensorInfo(h),e.disposeIntermediateTensorInfo(g),x}let o=e.shouldExecuteOnCPU(r);if(n===\"string\"&&(o=!0),o){let f=r.map(I=>{let E=[-1,y.sizeFromShape(I.shape.slice(t))];return rt({inputs:{x:I},backend:e,attrs:{shape:E}})}),d=f.map(I=>({vals:e.readSync(I.dataId),shape:I.shape})),h=S.computeOutShape(f.map(I=>I.shape),1),g=f[0].shape[0]===1,x=ZL(d,h,n,g),b=S.computeOutShape(r.map(I=>I.shape),t),w=e.makeTensorInfo(b,n,x);return f.forEach(I=>e.disposeIntermediateTensorInfo(I)),w}let s=r.filter(f=>y.sizeFromShape(f.shape)>0),i=L().getBool(\"WEBGL_PACK_ARRAY_OPERATIONS\")&&s[0].shape.length>1;if(s.length===1){let f=i?new zr(r[0].shape,Ia):new Dn(r[0].shape,Ia);return e.runWebGLProgram(f,r,n)}let a=L().getNumber(\"WEBGL_MAX_TEXTURES_IN_SHADER\");if(s.length>a){let f=[];for(let h=0;hd.shape),t);return e.runWebGLProgram(f,s,n)}let{tensors2D:u,outShape:l}=Ust(s,t,e),c=new NI(u.map(f=>f.shape)),p=e.runWebGLProgram(c,u,n);u.forEach(f=>e.disposeIntermediateTensorInfo(f));let m=rt({inputs:{x:p},attrs:{shape:l},backend:e});return e.disposeIntermediateTensorInfo(p),m}function Ust(r,t,e){let n=S.computeOutShape(r.map(s=>s.shape),t);return{tensors2D:r.map(s=>rt({inputs:{x:s},attrs:{shape:[-1,y.sizeFromShape(s.shape.slice(t))]},backend:e})),outShape:n}}function L1(r){let{inputs:t,backend:e,attrs:n}=r,{axis:o}=n,s=y.parseAxisParam(o,t[0].shape)[0],i=t.map(l=>l.shape);S.assertParamsConsistent(i,s);let a=S.computeOutShape(t.map(l=>l.shape),s);if(y.sizeFromShape(a)===0)return e.makeTensorInfo(a,t[0].dtype,[]);let u=t.filter(l=>y.sizeFromShape(l.shape)>0);return u.length===1?nr({inputs:{x:u[0]},backend:e}):Fd(u,s,e)}var Z3={kernelName:Oi,backendName:\"webgl\",kernelFunc:L1};var Od=class{constructor(t,e=!1,n=null,o=!1,s=!1){this.variableNames=[\"x\",\"W\"],this.outputShape=t.outShape;let i=t.padInfo.top,a=t.padInfo.left,u=t.strideHeight,l=t.strideWidth,c=t.dilationHeight,p=t.dilationWidth,m=t.filterHeight,f=t.filterWidth,d=Math.floor(t.inChannels/4)*4,h=t.inChannels%4,g=t.dataFormat===\"channelsLast\",x=g?1:2,b=g?2:3,w=g?3:1,I=\"\",N=\"\";n&&(o?I=`float activation(float a) {\n float b = getPreluActivationWeightsAtOutCoords();\n ${n}\n }`:s?I=`float activation(float a) {\n float b = getLeakyreluAlphaAtOutCoords();\n ${n}\n }`:I=`\n float activation(float x) {\n ${n}\n }\n `,N=\"result = activation(result);\");let E=e?\"result += getBiasAtOutCoords();\":\"\";e&&this.variableNames.push(\"bias\"),o&&this.variableNames.push(\"preluActivationWeights\"),s&&this.variableNames.push(\"leakyreluAlpha\"),this.userCode=`\n ${I}\n\n const ivec2 strides = ivec2(${u}, ${l});\n const ivec2 pads = ivec2(${i}, ${a});\n\n void main() {\n ivec4 coords = getOutputCoords();\n int batch = coords[0];\n int d2 = coords[${w}];\n\n ivec2 xRCCorner =\n ivec2(coords[${x}], coords[${b}]) * strides - pads;\n int xRCorner = xRCCorner.x;\n int xCCorner = xRCCorner.y;\n\n // Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).\n // ? = to be determined. : = across all values in that axis.\n float dotProd = 0.0;\n for (int wR = 0; wR < ${m}; wR++) {\n int xR = xRCorner + wR * ${c};\n\n if (xR < 0 || xR >= ${t.inHeight}) {\n continue;\n }\n\n for (int wC = 0; wC < ${f}; wC++) {\n int xC = xCCorner + wC * ${p};\n\n if (xC < 0 || xC >= ${t.inWidth}) {\n continue;\n }\n\n for (int d1 = 0; d1 < ${d}; d1 += 4) {\n vec4 wValues = vec4(\n getW(wR, wC, d1, d2),\n getW(wR, wC, d1 + 1, d2),\n getW(wR, wC, d1 + 2, d2),\n getW(wR, wC, d1 + 3, d2)\n );\n\n if (${g}) {\n vec4 xValues = vec4(\n getX(batch, xR, xC, d1),\n getX(batch, xR, xC, d1 + 1),\n getX(batch, xR, xC, d1 + 2),\n getX(batch, xR, xC, d1 + 3)\n );\n dotProd += dot(xValues, wValues);\n } else {\n vec4 xValues = vec4(\n getX(batch, d1, xR, xC),\n getX(batch, d1 + 1, xR, xC),\n getX(batch, d1 + 2, xR, xC),\n getX(batch, d1 + 3, xR, xC)\n );\n dotProd += dot(xValues, wValues);\n }\n }\n\n if (${h===1}) {\n\n if (${g}) {\n dotProd +=\n getX(batch, xR, xC, ${d}) *\n getW(wR, wC, ${d}, d2);\n } else {\n dotProd +=\n getX(batch, ${d}, xR, xC) *\n getW(wR, wC, ${d}, d2);\n }\n\n } else if (${h===2}) {\n vec2 wValues = vec2(\n getW(wR, wC, ${d}, d2),\n getW(wR, wC, ${d} + 1, d2)\n );\n\n if (${g}) {\n vec2 xValues = vec2(\n getX(batch, xR, xC, ${d}),\n getX(batch, xR, xC, ${d} + 1)\n );\n dotProd += dot(xValues, wValues);\n } else {\n vec2 xValues = vec2(\n getX(batch, ${d}, xR, xC),\n getX(batch, ${d} + 1, xR, xC)\n );\n dotProd += dot(xValues, wValues);\n }\n\n } else if (${h===3}) {\n vec3 wValues = vec3(\n getW(wR, wC, ${d}, d2),\n getW(wR, wC, ${d} + 1, d2),\n getW(wR, wC, ${d} + 2, d2)\n );\n\n if (${g}) {\n vec3 xValues = vec3(\n getX(batch, xR, xC, ${d}),\n getX(batch, xR, xC, ${d} + 1),\n getX(batch, xR, xC, ${d} + 2)\n );\n dotProd += dot(xValues, wValues);\n } else {\n vec3 xValues = vec3(\n getX(batch, ${d}, xR, xC),\n getX(batch, ${d} + 1, xR, xC),\n getX(batch, ${d} + 2, xR, xC)\n );\n dotProd += dot(xValues, wValues);\n }\n\n }\n }\n }\n\n float result = dotProd;\n ${E}\n ${N}\n setOutput(result);\n }\n `}},_I=class{constructor(t){this.variableNames=[\"x\",\"W\"],this.outputShape=t.outShape;let e=t.padInfo.front,n=t.padInfo.top,o=t.padInfo.left,s=t.strideDepth,i=t.strideHeight,a=t.strideWidth,u=t.dilationDepth,l=t.dilationHeight,c=t.dilationWidth,p=t.filterDepth,m=t.filterHeight,f=t.filterWidth,d=Math.floor(t.inChannels/4)*4,h=t.inChannels%4;this.userCode=`\n const ivec3 strides = ivec3(${s}, ${i}, ${a});\n const ivec3 pads = ivec3(${e}, ${n}, ${o});\n\n void main() {\n ivec5 coords = getOutputCoords();\n int batch = coords.x;\n int d2 = coords.u;\n\n ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;\n int xFCorner = xFRCCorner.x;\n int xRCorner = xFRCCorner.y;\n int xCCorner = xFRCCorner.z;\n\n // Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get\n // y(yF, yR, yC, d2). ? = to be determined. : = across all\n // values in that axis.\n float dotProd = 0.0;\n for (int wF = 0; wF < ${p}; wF++) {\n int xF = xFCorner + wF * ${u};\n\n if (xF < 0 || xF >= ${t.inDepth}) {\n continue;\n }\n\n for (int wR = 0; wR < ${m}; wR++) {\n int xR = xRCorner + wR * ${l};\n\n if (xR < 0 || xR >= ${t.inHeight}) {\n continue;\n }\n\n for (int wC = 0; wC < ${f}; wC++) {\n int xC = xCCorner + wC * ${c};\n\n if (xC < 0 || xC >= ${t.inWidth}) {\n continue;\n }\n\n for (int d1 = 0; d1 < ${d}; d1 += 4) {\n vec4 xValues = vec4(\n getX(batch, xF, xR, xC, d1),\n getX(batch, xF, xR, xC, d1 + 1),\n getX(batch, xF, xR, xC, d1 + 2),\n getX(batch, xF, xR, xC, d1 + 3)\n );\n vec4 wValues = vec4(\n getW(wF, wR, wC, d1, d2),\n getW(wF, wR, wC, d1 + 1, d2),\n getW(wF, wR, wC, d1 + 2, d2),\n getW(wF, wR, wC, d1 + 3, d2)\n );\n\n dotProd += dot(xValues, wValues);\n }\n\n if (${h===1}) {\n dotProd +=\n getX(batch, xF, xR, xC, ${d}) *\n getW(wF, wR, wC, ${d}, d2);\n } else if (${h===2}) {\n vec2 xValues = vec2(\n getX(batch, xF, xR, xC, ${d}),\n getX(batch, xF, xR, xC, ${d} + 1)\n );\n vec2 wValues = vec2(\n getW(wF, wR, wC, ${d}, d2),\n getW(wF, wR, wC, ${d} + 1, d2)\n );\n dotProd += dot(xValues, wValues);\n } else if (${h===3}) {\n vec3 xValues = vec3(\n getX(batch, xF, xR, xC, ${d}),\n getX(batch, xF, xR, xC, ${d} + 1),\n getX(batch, xF, xR, xC, ${d} + 2)\n );\n vec3 wValues = vec3(\n getW(wF, wR, wC, ${d}, d2),\n getW(wF, wR, wC, ${d} + 1, d2),\n getW(wF, wR, wC, ${d} + 2, d2)\n );\n dotProd += dot(xValues, wValues);\n }\n }\n }\n }\n setOutput(dotProd);\n }\n `}};var Md=class{constructor(t,e=!1,n=null,o=!1,s=!1){this.variableNames=[\"x\",\"W\"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:\"pads\",type:\"ivec2\"},{name:\"strides\",type:\"ivec2\"},{name:\"dilations\",type:\"ivec2\"},{name:\"inDims\",type:\"ivec2\"}],this.outputShape=t.outShape,this.enableShapeUniforms=he(this.outputShape.length);let i=t.padInfo.left,a=t.strideWidth,u=t.dilationWidth,l=t.filterHeight,c=t.filterWidth,p=c,m=`\n int xR; int xC; int xCOffset;\n vec4 wTexel; vec4 previous; vec4 final;`;for(let g=0;g=0 && xR < inDims[0]) {\n `;for(let g=0;g<(p+1)/2;g++){let x=g*2;if(m+=`\n xC = xCCorner + ${x*u};\n `,a===1){if(x= 0 && xCOffset < inDims[1] && xTexelC${x}Ready == 0) {\n xTexelC${x} = getX(batch, xR, xCOffset, d1);\n\n // Need to manually clear unused channels in case\n // we're reading from recycled texture.\n if (xCOffset + 1 >= inDims[1]) {\n xTexelC${x}.zw = vec2(0.0);\n }\n xTexelC${x}Ready = 1;\n }\n `,u===1&&x>0?m+=`\n xC${x} = vec4(xTexelC${x-2}.zw, xTexelC${x}.xy);\n `:m+=`\n xCOffset = xC + 1 - 2;\n\n if (xCOffset >= 0 && xCOffset < inDims[1]) {\n previous = getX(batch, xR, xCOffset, d1);\n\n // Need to manually clear unused channels in case\n // we're reading from recycled texture.\n if (xCOffset + 1 >= inDims[1]) {\n previous.zw = vec2(0.0);\n }\n\n xC${x} = vec4(previous.zw, xTexelC${x}.xy);\n } else {\n xC${x} = vec4(0.0, 0.0, xTexelC${x}.xy);\n }\n `):m+=`\n if (xC >= 0 && xC < inDims[1] && xTexelC${x}Ready == 0) {\n xTexelC${x} = getX(batch, xR, xC, d1);\n if (xC + 1 >= inDims[1]) {\n xTexelC${x}.zw = vec2(0.0);\n }\n xTexelC${x}Ready = 1;\n }\n\n xC${x} = xTexelC${x};\n `,x+1= 0 && xCOffset < inDims[1] && xTexelC${x+1}Ready == 0) {\n xTexelC${x+1} = getX(batch, xR, xCOffset, d1);\n\n // Need to manually clear unused channels in case\n // we're reading from recycled texture.\n if (xCOffset + 1 >= inDims[1]) {\n xTexelC${x+1}.zw = vec2(0.0);\n }\n xTexelC${x+1}Ready = 1;\n }\n `,u>1?m+=`\n xCOffset -= 2;\n if (xCOffset >= 0 && xCOffset < inDims[1]) {\n previous = getX(batch, xR, xCOffset, d1);\n xC${x+1} = vec4(previous.zw, xTexelC${x+1}.xy);\n } else {\n xC${x+1} = vec4(0.0, 0.0, xTexelC${x+1}.xy);\n }\n `:m+=`\n xC${x+1} = vec4(xTexelC${x}.zw, xTexelC${x+1}.xy);\n `):b===1?m+=`\n xC${x+1} = xTexelC${x};\n `:m+=`\n xCOffset = xC + ${b};\n\n if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${x+1}Ready == 0) {\n xTexelC${x+1} = getX(batch, xR, xCOffset, d1);\n if (xCOffset + 1 >= inDims[1]) {\n xTexelC${x+1}.zw = vec2(0.0);\n }\n xTexelC${x+1}Ready = 1;\n }\n\n xC${x+1} = xTexelC${x+1};\n `}}else x= 0 && xCOffset < inDims[1] && xTexelC${x}Ready == 0) {\n xTexelC${x} = getX(batch, xR, xCOffset, d1);\n // Need to manually clear unused channels in case\n // we're reading from recycled texture.\n if (xCOffset + 1 >= inDims[1]) {\n xTexelC${x}.zw = vec2(0.0);\n }\n xTexelC${x}Ready = 1;\n }\n\n if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${x+1}Ready == 0) {\n xTexelC${x+1} = getX(batch, xR, xC + 1, d1);\n // Need to manually clear unused channels in case\n // we're reading from recycled texture.\n if (xC + 2 >= inDims[1]) {\n xTexelC${x+1}.zw = vec2(0.0);\n }\n xTexelC${x+1}Ready = 1;\n }\n\n xC${x} = vec4(xTexelC${x}.zw, xTexelC${x+1}.zw);\n `,x+1= 0 && xCOffset < inDims[1]) {\n final = getX(batch, xR, xCOffset, d1);\n }\n xC${x+1} = vec4(xTexelC${x+1}.xy, final.xy);\n `)):(m+=`\n if(xC >= 0 && xC < inDims[1] && xTexelC${x}Ready == 0) {\n xTexelC${x} = getX(batch, xR, xC, d1);\n if (xC + 1 >= inDims[1]) {\n xTexelC${x}.zw = vec2(0.0);\n }\n xTexelC${x}Ready = 1;\n }\n\n xCOffset = xC + strides[1];\n if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${x+1}Ready == 0) {\n xTexelC${x+1} = getX(batch, xR, xCOffset, d1);\n if (xCOffset + 1 >= inDims[1]) {\n xTexelC${x+1}.zw = vec2(0.);\n }\n xTexelC${x+1}Ready = 1;\n }\n\n xC${x} = vec4(\n xTexelC${x}.xy, xTexelC${x+1}.xy);\n `,x+1= 0) {\n // Use custom imod instead mod. On Intel GPU, mod may generate\n // unexpected value.\n // https://github.com/tensorflow/tfjs/issues/5447\n offsetX = imod(blockIndex, outWidth) * stride[1] - pad[1];\n d1 = offsetX + dilation[1] * (imod(pos, itemsPerBlockRow) /\n inChannels);\n\n if(d1 < inputShape[${a}] && d1 >= 0) {\n\n ch = imod(pos, inChannels);\n\n if (${s}) {\n innerDims = vec2(d1, ch);\n result[${c*2+p}] = getChannel(\n getA(rc.x, d0, int(innerDims.x),\n int(innerDims.y)), innerDims);\n } else {\n innerDims = vec2(d0, d1);\n result[${c*2+p}] = getChannel(\n getA(rc.x, ch, int(innerDims.x),\n int(innerDims.y)), innerDims);\n }\n }\n }\n }\n `;this.userCode=`\n void main() {\n ivec3 rc = getOutputCoords();\n\n vec4 result = vec4(0);\n\n int blockIndex, pos, offsetY, d0, offsetX, d1, ch;\n vec2 innerDims;\n\n ${l}\n\n ${o.output} = result;\n }\n `}};function AI(r,t){let e=r.length;return e>=3?t?[...r.slice(0,-3),r[e-3]*r[e-2],r[e-1]]:[...r.slice(0,-3),r[e-3],r[e-2]*r[e-1]]:!t&&e===1&&r[0]>1?[r[0],1]:null}function DI({x:r,filter:t,convInfo:e,backend:n,bias:o=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:a=null}){let u=r.shape,l=n.texData.get(r.dataId),c=e.inChannels,p=u[0]*u[1]*u[2],m=e.outChannels,f=e.dataFormat===\"channelsLast\",d=!1,h=!1,g,x=[];if(s!=null){let I=AI(s.shape,f);I!=null&&(s=rt({inputs:{x:s},backend:n,attrs:{shape:I}}),x.push(s))}if(o!=null){let I=AI(o.shape,f);I!=null&&(o=rt({inputs:{x:o},backend:n,attrs:{shape:I}}),x.push(o))}if(!((p===1||m===1)&&c>F1)&&l.isPacked&&f&&l.texture!=null&&u[2]%2!==0&&y.arraysEqual(l.shape.slice(-3),u.slice(-3))){let I=u[0]*u[1]*(u[2]+1),N={dataId:r.dataId,shape:[1,I,e.inChannels],dtype:r.dtype},E=l.shape;l.shape=l.shape.slice(),l.shape[l.shape.length-2]++,y.assert(Uu(l.shape,N.shape),()=>`packed reshape ${l.shape} to ${N.shape} isn't free`);let A=rt({inputs:{x:t},backend:n,attrs:{shape:[1,e.inChannels,e.outChannels]}});x.push(A);let D=dp({a:N,b:A,backend:n,transposeA:d,transposeB:h,bias:o,activation:a,preluActivationWeights:s,leakyreluAlpha:i}),F=n.texData.get(D.dataId);y.assert(F.isPacked,()=>\"batchMatMul result is expected to be packed\"),l.shape=E,F.shape=e.outShape,g=nr({inputs:{x:D},backend:n}),g.shape=e.outShape,x.push(D)}else{let I=e.outHeight*e.outWidth,N=rt({inputs:{x:r},backend:n,attrs:{shape:f?[e.batchSize,I,e.inChannels]:[e.batchSize,e.inChannels,I]}}),E=rt({inputs:{x:t},backend:n,attrs:{shape:[1,e.inChannels,e.outChannels]}}),A=dp({a:f?N:E,b:f?E:N,transposeA:!f,transposeB:h,backend:n,bias:o,activation:a,preluActivationWeights:s,leakyreluAlpha:i});g=rt({inputs:{x:A},backend:n,attrs:{shape:e.outShape}}),x.push(N),x.push(E),x.push(A)}for(let I of x)n.disposeIntermediateTensorInfo(I);return g}function $I({x:r,filter:t,convInfo:e,backend:n,bias:o=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:a=null}){let{filterWidth:u,filterHeight:l,inChannels:c,outWidth:p,outHeight:m,dataFormat:f}=e,d=f===\"channelsLast\",h=u*l*c,g=m*p,x=[e.batchSize,h,g],b=!0,w=!1,I=[];if(s!=null){let Z=AI(s.shape,d);Z!=null&&(s=rt({inputs:{x:s},backend:n,attrs:{shape:Z}}),I.push(s))}if(o!=null){let Z=AI(o.shape,d);Z!=null&&(o=rt({inputs:{x:o},backend:n,attrs:{shape:Z}}),I.push(o))}let N=rt({inputs:{x:t},backend:n,attrs:{shape:[1,h,y.sizeFromShape(t.shape)/h]}});I.push(N);let E=new EI(x,e),A=[r.shape,[e.padInfo.top,e.padInfo.left],[e.strideHeight,e.strideWidth],[e.dilationHeight,e.dilationWidth],[e.inChannels],[e.filterWidth*e.inChannels],[e.outWidth]],D=n.runWebGLProgram(E,[r],\"float32\",A),F=rt({inputs:{x:D},backend:n,attrs:{shape:x}});I.push(D),I.push(F);let M=o!=null,V=s!=null,G=a===\"leakyrelu\",W=a?Ml(a,!0):null,q=new Rd(d?F.shape:N.shape,d?N.shape:F.shape,d?[e.batchSize,g,e.outChannels]:[e.batchSize,e.outChannels,g],b,w,M,W,V,G),H=d?[F,N]:[N,F];if(o&&H.push(o),V&&H.push(s),G){let Z=n.makeTensorInfo([],\"float32\",y.createScalarValue(i,\"float32\"));H.push(Z),I.push(Z)}let j=n.runWebGLProgram(q,H,\"float32\"),Y=rt({inputs:{x:j},backend:n,attrs:{shape:e.outShape}});I.push(j);for(let Z of I)n.disposeIntermediateTensorInfo(Z);return Y}function Hst(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s}=t,{strides:i,pad:a,dataFormat:u,dilations:l,dimRoundingMode:c}=n,p=S.convertConv2DDataFormat(u),m=S.computeConv2DInfo(o.shape,s.shape,i,l,a,c,!1,p),f;if(m.filterHeight===1&&m.filterWidth===1&&m.dilationHeight===1&&m.dilationWidth===1&&m.strideHeight===1&&m.strideWidth===1&&(m.padInfo.type===\"SAME\"||m.padInfo.type===\"VALID\"))f=DI({x:o,filter:s,convInfo:m,backend:e});else if(m.strideWidth<=2&&p===\"channelsLast\"&&L().getBool(\"WEBGL_EXP_CONV\")){let h=new Md(m),g=[[m.padInfo.top,m.padInfo.left],[m.strideHeight,m.strideWidth],[m.dilationHeight,m.dilationWidth],[m.inHeight,m.inWidth]];f=e.runWebGLProgram(h,[o,s],\"float32\",g)}else if(L().getBool(\"WEBGL_CONV_IM2COL\"))f=$I({x:o,filter:s,convInfo:m,backend:e});else{let h=new Od(m);f=e.runWebGLProgram(h,[o,s],\"float32\")}let d=rt({inputs:{x:f},backend:e,attrs:{shape:m.outShape}});return e.disposeIntermediateTensorInfo(f),d}var J3={kernelName:Qo,backendName:\"webgl\",kernelFunc:Hst};var RI=class{constructor(t){this.variableNames=[\"x\",\"dy\"],this.outputShape=t.filterShape;let e=t.strideHeight,n=t.strideWidth,o=t.padInfo.top,s=t.padInfo.left,i=t.dataFormat===\"channelsLast\";this.userCode=`\n void main() {\n ivec4 coords = getOutputCoords();\n int wR = coords.x;\n int wC = coords.y;\n int d1 = coords.z;\n int d2 = coords.w;\n\n // Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).\n // ? = to be determined. : = across all values in that axis.\n float dotProd = 0.0;\n\n for (int b = 0; b < ${t.batchSize}; b++) {\n for (int yR = 0; yR < ${t.outHeight}; yR++) {\n int xR = wR + yR * ${e} - ${o};\n\n if (xR < 0 || xR >= ${t.inHeight}) {\n continue;\n }\n\n for (int yC = 0; yC < ${t.outWidth}; yC++) {\n int xC = wC + yC * ${n} - ${s};\n\n if (xC < 0 || xC >= ${t.inWidth}) {\n continue;\n }\n\n ${i?`float dyValue = getDy(b, yR, yC, d2);\n float xValue = getX(b, xR, xC, d1);\n dotProd += (xValue * dyValue);`:`float dyValue = getDy(b, d2, yR, yC);\n float xValue = getX(b, d1, xR, xC);\n dotProd += (xValue * dyValue);`}\n }\n }\n }\n setOutput(dotProd);\n }\n `}},FI=class{constructor(t){this.variableNames=[\"dy\",\"W\"],this.outputShape=t.inShape;let e=t.filterHeight,n=t.filterWidth,o=t.strideHeight,s=t.strideWidth,i=t.dataFormat===\"channelsLast\",a=e-1-t.padInfo.top,u=n-1-t.padInfo.left,l=i?1:2,c=i?2:3,p=i?3:1;this.userCode=`\n const ivec2 pads = ivec2(${a}, ${u});\n\n void main() {\n ivec4 coords = getOutputCoords();\n int batch = coords[0];\n int d1 = coords[${p}];\n\n ivec2 dyCorner = ivec2(coords[${l}], coords[${c}]) - pads;\n int dyRCorner = dyCorner.x;\n int dyCCorner = dyCorner.y;\n\n // Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).\n // ? = to be determined. : = across all values in that axis.\n float dotProd = 0.0;\n for (int wR = 0; wR < ${e}; wR++) {\n float dyR = float(dyRCorner + wR) / ${o}.0;\n\n if (dyR < 0.0 || dyR >= ${t.outHeight}.0 || fract(dyR) > 0.0) {\n continue;\n }\n int idyR = int(dyR);\n\n int wRPerm = ${e} - 1 - wR;\n\n for (int wC = 0; wC < ${n}; wC++) {\n float dyC = float(dyCCorner + wC) / ${s}.0;\n\n if (dyC < 0.0 || dyC >= ${t.outWidth}.0 ||\n fract(dyC) > 0.0) {\n continue;\n }\n int idyC = int(dyC);\n\n int wCPerm = ${n} - 1 - wC;\n\n for (int d2 = 0; d2 < ${t.outChannels}; d2++) {\n\n if (${i}) {\n float xValue = getDy(batch, idyR, idyC, d2);\n float wValue = getW(wRPerm, wCPerm, d1, d2);\n dotProd += xValue * wValue;\n } else {\n float xValue = getDy(batch, d2, idyR, idyC);\n float wValue = getW(wRPerm, wCPerm, d1, d2);\n dotProd += xValue * wValue;\n }\n\n }\n }\n }\n setOutput(dotProd);\n }\n `}},OI=class{constructor(t){this.variableNames=[\"x\",\"dy\"],this.outputShape=t.filterShape;let e=t.strideDepth,n=t.strideHeight,o=t.strideWidth,s=t.padInfo.front,i=t.padInfo.top,a=t.padInfo.left;this.userCode=`\n void main() {\n ivec5 coords = getOutputCoords();\n int wF = coords.x;\n int wR = coords.y;\n int wC = coords.z;\n int d1 = coords.w;\n int d2 = coords.u;\n\n float dotProd = 0.0;\n\n for (int b = 0; b < ${t.batchSize}; b++) {\n for (int yF = 0; yF < ${t.outDepth}; yF++) {\n int xF = wF + yF * ${e} - ${s};\n\n if (xF < 0 || xF >= ${t.inDepth}) {\n continue;\n }\n\n for (int yR = 0; yR < ${t.outHeight}; yR++) {\n int xR = wR + yR * ${n} - ${i};\n\n if (xR < 0 || xR >= ${t.inHeight}) {\n continue;\n }\n\n for (int yC = 0; yC < ${t.outWidth}; yC++) {\n int xC = wC + yC * ${o} - ${a};\n\n if (xC < 0 || xC >= ${t.inWidth}) {\n continue;\n }\n\n float dyValue = getDy(b, yF, yR, yC, d2);\n float xValue = getX(b, xF, xR, xC, d1);\n dotProd += (xValue * dyValue);\n }\n }\n }\n }\n setOutput(dotProd);\n }\n `}},MI=class{constructor(t){this.variableNames=[\"dy\",\"W\"],this.outputShape=t.inShape;let e=t.filterDepth,n=t.filterHeight,o=t.filterWidth,s=t.strideDepth,i=t.strideHeight,a=t.strideWidth,u=e-1-t.padInfo.front,l=n-1-t.padInfo.top,c=o-1-t.padInfo.left;this.userCode=`\n const ivec3 pads = ivec3(${u}, ${l}, ${c});\n\n void main() {\n ivec5 coords = getOutputCoords();\n int batch = coords.x;\n int d1 = coords.u;\n\n\n ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;\n int dyFCorner = dyCorner.x;\n int dyRCorner = dyCorner.y;\n int dyCCorner = dyCorner.z;\n\n float dotProd = 0.0;\n for (int wF = 0; wF < ${e}; wF++) {\n float dyF = float(dyFCorner + wF) / ${s}.0;\n\n if (dyF < 0.0 || dyF >= ${t.outDepth}.0 || fract(dyF) > 0.0) {\n continue;\n }\n int idyF = int(dyF);\n\n int wFPerm = ${e} - 1 - wF;\n\n for (int wR = 0; wR < ${n}; wR++) {\n float dyR = float(dyRCorner + wR) / ${i}.0;\n\n if (dyR < 0.0 || dyR >= ${t.outHeight}.0 ||\n fract(dyR) > 0.0) {\n continue;\n }\n int idyR = int(dyR);\n\n int wRPerm = ${n} - 1 - wR;\n\n for (int wC = 0; wC < ${o}; wC++) {\n float dyC = float(dyCCorner + wC) / ${a}.0;\n\n if (dyC < 0.0 || dyC >= ${t.outWidth}.0 ||\n fract(dyC) > 0.0) {\n continue;\n }\n int idyC = int(dyC);\n\n int wCPerm = ${o} - 1 - wC;\n\n for (int d2 = 0; d2 < ${t.outChannels}; d2++) {\n float xValue = getDy(batch, idyF, idyR, idyC, d2);\n float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);\n dotProd += xValue * wValue;\n }\n }\n }\n }\n setOutput(dotProd);\n }\n `}};function qst(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,dy:s}=t,{strides:i,pad:a,dataFormat:u,dimRoundingMode:l,filterShape:c}=n,p=S.convertConv2DDataFormat(u),m=S.computeConv2DInfo(o.shape,c,i,1,a,l,!1,p),f=new RI(m);return e.runWebGLProgram(f,[o,s],\"float32\")}var Q3={kernelName:Dp,backendName:\"webgl\",kernelFunc:qst};var PI=class{constructor(t){this.variableNames=[\"dy\",\"W\"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:\"strides\",type:\"vec2\"}],this.outputShape=t.inShape,this.enableShapeUniforms=he(this.outputShape.length);let e=t.filterHeight,n=t.filterWidth,o=e-1-t.padInfo.top,s=n-1-t.padInfo.left;this.userCode=`\n const ivec2 pads = ivec2(${o}, ${s});\n\n void main() {\n ivec4 coords = getOutputCoords();\n int batch = coords[0];\n int d1 = coords[3];\n\n ivec2 dyCorner = ivec2(coords[1], coords[2]) - pads;\n int dyRCorner = dyCorner.x;\n int dyCCorner = dyCorner.y;\n\n vec4 result = vec4(0.);\n for (int wR = 0; wR < ${e}; wR++) {\n float dyR = float(dyRCorner + wR) / strides[0];\n if (dyR < 0.0 || dyR >= ${t.outHeight}.0 || fract(dyR) > 0.0) {\n continue;\n }\n int idyR = int(dyR);\n int wRPerm = ${e} - 1 - wR;\n\n for (int wC = 0; wC < ${n}; wC++) {\n int wCPerm = ${n} - 1 - wC;\n\n float dyC = float(dyCCorner + wC) / strides[1];\n bool idyCVal = (dyC >= 0.0) && (dyC < ${t.outWidth}.0)\n && (fract(dyC) == 0.0);\n int idyC = int(dyC);\n\n float dyC2 = float(dyCCorner + wC + 1) / strides[1];\n bool idyCVal2 = (dyC2 >= 0.0) && (dyC2 < ${t.outWidth}.0)\n && (fract(dyC2) == 0.0);\n int idyC2 = int(dyC2);\n\n if (idyCVal && idyCVal2) {\n for (int d2 = 0; d2 < ${t.outChannels}; d2 += 2) {\n vec4 wValue = getW(wRPerm, wCPerm, d1, d2);\n vec4 dySample = getDy(batch, idyR, idyC, d2);\n vec4 dySample2 = (idyC / 2 == idyC2 / 2) ?\n dySample : getDy(batch, idyR, idyC2, d2);\n\n vec2 dyValue = mod(float(idyC), 2.) == 0. ?\n dySample.xy : dySample.zw;\n result.xy += vec2(dot(dyValue, wValue.xy),\n dot(dyValue, wValue.zw));\n\n dyValue = mod(float(idyC2), 2.) == 0. ?\n dySample2.xy : dySample2.zw;\n result.zw += vec2(dot(dyValue, wValue.xy),\n dot(dyValue, wValue.zw));\n }\n } else if (idyCVal) {\n for (int d2 = 0; d2 < ${t.outChannels}; d2 += 2) {\n vec4 wValue = getW(wRPerm, wCPerm, d1, d2);\n vec4 dySample = getDy(batch, idyR, idyC, d2);\n vec2 dyValue = mod(float(idyC), 2.) == 0. ?\n dySample.xy : dySample.zw;\n result.xy += vec2(dot(dyValue, wValue.xy),\n dot(dyValue, wValue.zw));\n }\n } else if (idyCVal2) {\n for (int d2 = 0; d2 < ${t.outChannels}; d2 += 2) {\n vec4 wValue = getW(wRPerm, wCPerm, d1, d2);\n vec4 dySample = getDy(batch, idyR, idyC2, d2);\n vec2 dyValue = mod(float(idyC2), 2.) == 0. ?\n dySample.xy : dySample.zw;\n result.zw += vec2(dot(dyValue, wValue.xy),\n dot(dyValue, wValue.zw));\n }\n }\n }\n }\n setOutput(result);\n }\n `}};function Kst(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,filter:s}=t,{inputShape:i,strides:a,pad:u,dataFormat:l,dimRoundingMode:c}=n,p=S.convertConv2DDataFormat(l),m=S.computeConv2DInfo(i,s.shape,a,1,u,c,!1,p);if(L().getBool(\"WEBGL_PACK_CONV2DTRANSPOSE\")&&p===\"channelsLast\"){let f=[[m.strideHeight,m.strideWidth]],d=new PI(m);return e.runWebGLProgram(d,[o,s],\"float32\",f)}else{let f=new FI(m);return e.runWebGLProgram(f,[o,s],\"float32\")}}var tB={kernelName:ts,backendName:\"webgl\",kernelFunc:Kst};function jst(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s}=t,{strides:i,pad:a,dilations:u}=n,l=S.computeConv3DInfo(o.shape,s.shape,i,u,a),c=new _I(l);return e.runWebGLProgram(c,[o,s],\"float32\")}var eB={kernelName:es,backendName:\"webgl\",kernelFunc:jst};function Xst(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,dy:s}=t,{strides:i,pad:a,filterShape:u}=n,l=S.computeConv3DInfo(o.shape,u,i,1,a),c=new OI(l);return e.runWebGLProgram(c,[o,s],\"float32\")}var rB={kernelName:Ra,backendName:\"webgl\",kernelFunc:Xst};function Yst(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,filter:s}=t,{pad:i,strides:a,inputShape:u}=n,l=S.computeConv3DInfo(u,s.shape,a,1,i),c=new MI(l);return e.runWebGLProgram(c,[o,s],\"float32\")}var nB={kernelName:Fa,backendName:\"webgl\",kernelFunc:Yst};var Zst=Po+`\n return cos(x);\n`,Jst=`\n vec4 result = cos(x);\n bvec4 isNaN = isnan(x);\n ${Xn}\n return result;\n`,Qst=It({opSnippet:Zst,packedOpSnippet:Jst}),oB={kernelName:rs,backendName:\"webgl\",kernelFunc:Qst};var tit=`\n float e2x = exp(-x);\n return (e2x + 1.0 / e2x) / 2.0;\n`,eit=It({opSnippet:tit}),sB={kernelName:ns,backendName:\"webgl\",kernelFunc:eit};var LI=class{constructor(t,e,n,o,s){this.variableNames=[\"Image\",\"Boxes\",\"BoxInd\"],this.outputShape=[];let[i,a,u,l]=t,[c]=e,[p,m]=n;this.outputShape=[c,p,m,l];let f=o===\"bilinear\"?1:0,[d,h]=[`${a-1}.0`,`${u-1}.0`],[g,x,b]=p>1?[`${(a-1)/(p-1)}`,\"(y2-y1) * height_ratio\",`y1*${d} + float(y)*(height_scale)`]:[\"0.0\",\"0.0\",`0.5 * (y1+y2) * ${d}`],[w,I,N]=m>1?[`${(u-1)/(m-1)}`,\"(x2-x1) * width_ratio\",`x1*${h} + float(x)*(width_scale)`]:[\"0.0\",\"0.0\",`0.5 * (x1+x2) * ${h}`];this.userCode=`\n const float height_ratio = float(${g});\n const float width_ratio = float(${w});\n void main() {\n ivec4 coords = getOutputCoords();\n int b = coords[0];\n int y = coords[1];\n int x = coords[2];\n int d = coords[3];\n\n // get box vals\n float y1 = getBoxes(b,0);\n float x1 = getBoxes(b,1);\n float y2 = getBoxes(b,2);\n float x2 = getBoxes(b,3);\n\n // get image in batch index\n int bInd = round(getBoxInd(b));\n if(bInd < 0 || bInd >= ${i}) {\n return;\n }\n\n float height_scale = ${x};\n float width_scale = ${I};\n\n float in_y = ${b};\n if( in_y < 0.0 || in_y > ${d} ) {\n setOutput(float(${s}));\n return;\n }\n float in_x = ${N};\n if( in_x < 0.0 || in_x > ${h} ) {\n setOutput(float(${s}));\n return;\n }\n\n vec2 sourceFracIndexCR = vec2(in_x,in_y);\n if(${f} == 1) {\n // Compute the four integer indices.\n ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);\n ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));\n\n float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);\n float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);\n float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);\n float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);\n\n vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);\n\n float top = topLeft + (topRight - topLeft) * fracCR.x;\n float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;\n float newValue = top + (bottom - top) * fracCR.y;\n setOutput(newValue);\n } else {\n // Compute the coordinators of nearest neighbor point.\n ivec2 sourceNearestCR = ivec2(floor(\n sourceFracIndexCR + vec2(0.5,0.5)));\n float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);\n setOutput(newValue);\n }\n }\n `}};var rit=r=>{let{inputs:t,backend:e,attrs:n}=r,{image:o,boxes:s,boxInd:i}=t,{cropSize:a,method:u,extrapolationValue:l}=n,c=new LI(o.shape,s.shape,a,u,l);return e.runWebGLProgram(c,[o,s,i],\"float32\")},iB={kernelName:Ma,backendName:\"webgl\",kernelFunc:rit};var gp;(function(r){r.Prod=\"*\",r.Sum=\"+\"})(gp||(gp={}));var dg=class{constructor(t,e,n,o){this.op=t,this.outputShape=e,this.variableNames=[\"x\"],this.customUniforms=[{name:\"index\",type:\"float\"}];let s=this.outputShape.length,i=this.op===gp.Prod?\"1.0\":\"0.0\",a=n?i:`getX(${aB(s,\"coords\",this.op)})`,u=this.outputShape[this.outputShape.length-1],l=\"\",c=\"\";n?(l=o?`end != ${u-1}`:\"end != 0\",c=o?\"end + 1\":\"end - 1\"):(l=o?`end + pow2 < ${u}`:\"end >= pow2\",c=o?\"end + pow2\":\"end - pow2\"),this.userCode=`\n void main() {\n ${zt(s)} coords = getOutputCoords();\n int end = ${lB(s,\"coords\",this.op)};\n float val = ${a};\n int pow2 = int(pow(2.0, index));\n if (${l}) {\n int idx = ${c};\n ${lB(s,\"coords\",this.op)} = idx;\n val ${this.op}= getX(${aB(s,\"coords\",this.op)});\n }\n setOutput(val);\n }\n `}};function aB(r,t,e){if(r===1)return`${t}`;if(r===2)return`${t}.x, ${t}.y`;if(r===3)return`${t}.x, ${t}.y, ${t}.z`;if(r===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw new Error(`Cumulative ${e} for rank ${r} is not yet supported`)}function lB(r,t,e){if(r===1)return`${t}`;if(r===2)return`${t}.y`;if(r===3)return`${t}.z`;if(r===4)return`${t}.w`;throw new Error(`Cumulative ${e} for rank ${r} is not yet supported`)}function zI(r,t,e,n,o,s){let i=t.shape.length,a=S.getAxesPermutation([n],i),u=t;a!=null&&(u=Pe({inputs:{x:t},backend:e,attrs:{perm:a}}));let l=S.getInnerMostAxes(1,i)[0];if(l!==i-1)throw new Error(`WebGL cumprod shader expects an inner-most axis=${t.shape.length-1} but got axis=${n}`);let c=u.shape[l],p=nr({inputs:{x:u},backend:e});for(let m=0;m<=Math.ceil(Math.log2(c))-1;m++){let f=new dg(r,u.shape,!1,s),d=[[m]],h=p;p=e.runWebGLProgram(f,[p],p.dtype,d),e.disposeIntermediateTensorInfo(h)}if(o){let m=new dg(r,u.shape,o,s),f=p;p=e.runWebGLProgram(m,[p],p.dtype),e.disposeIntermediateTensorInfo(f)}if(a!=null){let m=S.getUndoAxesPermutation(a),f=Pe({inputs:{x:p},backend:e,attrs:{perm:m}});return e.disposeIntermediateTensorInfo(p),e.disposeIntermediateTensorInfo(u),f}return p}function nit(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,exclusive:i,reverse:a}=n;return zI(gp.Prod,o,e,s,i,a)}var uB={kernelName:Oa,backendName:\"webgl\",kernelFunc:nit};function oit(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,exclusive:i,reverse:a}=n;return zI(gp.Sum,o,e,s,i,a)}var cB={kernelName:os,backendName:\"webgl\",kernelFunc:oit};function sit(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,weights:s}=t,{size:i,binaryOutput:a}=n;if(o.shape.length===1){let u=e.readSync(o.dataId),l=e.readSync(s.dataId),c=tI(u,l,s.dtype,s.shape,i);return e.makeTensorInfo([i],s.dtype,c)}else if(o.shape.length===2){let u=e.bufferSync(o),l=e.bufferSync(s),c=KL(u,l,i,a);return e.makeTensorInfo(c.shape,s.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${o.shape.length}.`)}var pB={kernelName:jl,backendName:\"webgl\",kernelFunc:sit};var BI=class{constructor(t,e,n){this.variableNames=[\"x\"],this.outputShape=[],this.outputShape=t,this.blockSize=e,this.dataFormat=n,this.userCode=`\n void main() {\n ivec4 coords = getOutputCoords();\n int b = coords[0];\n int h = ${this.getHeightCoordString()};\n int w = ${this.getWidthCoordString()};\n int d = ${this.getDepthCoordString()};\n\n int in_h = h / ${e};\n int offset_h = imod(h, ${e});\n int in_w = w / ${e};\n int offset_w = imod(w, ${e});\n int offset_d = (offset_h * ${e} + offset_w) *\n ${this.getOutputDepthSize()};\n int in_d = d + offset_d;\n\n float result = ${this.getInputSamplingString()};\n setOutput(result);\n }\n `}getHeightCoordString(){return this.dataFormat===\"NHWC\"?\"coords[1]\":\"coords[2]\"}getWidthCoordString(){return this.dataFormat===\"NHWC\"?\"coords[2]\":\"coords[3]\"}getDepthCoordString(){return this.dataFormat===\"NHWC\"?\"coords[3]\":\"coords[1]\"}getOutputDepthSize(){return this.dataFormat===\"NHWC\"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat===\"NHWC\"?\"getX(b, in_h, in_w, in_d)\":\"getX(b, in_d, in_h, in_w)\"}};function iit(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{blockSize:s,dataFormat:i}=n,a=o.shape[0],u=i===\"NHWC\"?o.shape[1]:o.shape[2],l=i===\"NHWC\"?o.shape[2]:o.shape[3],c=i===\"NHWC\"?o.shape[3]:o.shape[1],p=u*s,m=l*s,f=c/(s*s),d=i===\"NHWC\"?[a,p,m,f]:[a,f,p,m],h=new BI(d,s,i);return e.runWebGLProgram(h,[o],o.dtype)}var mB={kernelName:Pa,backendName:\"webgl\",kernelFunc:iit};var Pd=class{constructor(t,e=!1,n=null,o=!1,s=!1){this.variableNames=[\"x\",\"W\"],this.customUniforms=[{name:\"pads\",type:\"ivec2\"},{name:\"strides\",type:\"ivec2\"},{name:\"dilations\",type:\"ivec2\"},{name:\"inDims\",type:\"ivec2\"}],this.outputShape=t.outShape,this.enableShapeUniforms=he(this.outputShape.length);let i=t.filterHeight,a=t.filterWidth,u=t.outChannels/t.inChannels,l=\"\",c=\"\";n&&(o?l=`float activation(float a) {\n float b = getPreluActivationWeightsAtOutCoords();\n ${n}\n }`:s?l=`float activation(float a) {\n float b = getLeakyreluAlphaAtOutCoords();\n ${n}\n }`:l=`\n float activation(float x) {\n ${n}\n }\n `,c=\"result = activation(result);\");let p=e?\"result += getBiasAtOutCoords();\":\"\";e&&this.variableNames.push(\"bias\"),o&&this.variableNames.push(\"preluActivationWeights\"),s&&this.variableNames.push(\"leakyreluAlpha\"),this.userCode=`\n ${l}\n\n void main() {\n ivec4 coords = getOutputCoords();\n int batch = coords.x;\n ivec2 xRCCorner = coords.yz * strides - pads;\n int d2 = coords.w;\n int d1 = d2 / ${u};\n int q = d2 - d1 * ${u};\n\n int xRCorner = xRCCorner.x;\n int xCCorner = xRCCorner.y;\n\n // Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).\n // ? = to be determined. : = across all values in that axis.\n float dotProd = 0.0;\n // TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.\n for (int wR = 0; wR < ${i}; wR++) {\n int xR = xRCorner + wR * dilations[0];\n\n if (xR < 0 || xR >= inDims[0]) {\n continue;\n }\n\n for (int wC = 0; wC < ${a}; wC++) {\n int xC = xCCorner + wC * dilations[1];\n\n if (xC < 0 || xC >= inDims[1]) {\n continue;\n }\n\n float xVal = getX(batch, xR, xC, d1);\n float wVal = getW(wR, wC, d1, q);\n dotProd += xVal * wVal;\n }\n }\n\n float result = dotProd;\n ${p}\n ${c}\n setOutput(result);\n }\n `}};var Ld=class{constructor(t,e=!1,n=null,o=!1,s=!1){this.variableNames=[\"x\",\"W\"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:\"pads\",type:\"ivec2\"},{name:\"strides\",type:\"ivec2\"},{name:\"dilations\",type:\"ivec2\"},{name:\"inDims\",type:\"ivec2\"}],this.outputShape=t.outShape,this.enableShapeUniforms=he(this.outputShape.length);let i=t.outChannels/t.inChannels,a=t.padInfo.left,u=t.strideWidth,l=t.dilationWidth,c=t.filterHeight,p=t.filterWidth,m=p,f=`\n int xR; int xC; int xCOffset;\n vec4 wTexel; vec4 previous; vec4 final;`;for(let x=0;x=0 && xR < inDims[0]) {\n `;for(let x=0;x<(m+1)/2;x++){let b=x*2;if(f+=`\n xC = xCCorner + ${b*l};\n `,u===1){if(b= 0 && xCOffset < inDims[1] && xTexelC${b}Ready == 0) {\n xTexelC${b} = getX(batch, xR, xCOffset, d1);\n\n // Need to manually clear unused channels in case\n // we're reading from recycled texture.\n if (xCOffset + 1 >= inDims[1]) {\n xTexelC${b}.zw = vec2(0.0);\n }\n xTexelC${b}Ready = 1;\n }\n `,l===1&&b>0?f+=`\n xC${b} = vec4(xTexelC${b-2}.zw, xTexelC${b}.xy);\n `:f+=`\n xCOffset = xC + 1 - 2;\n\n if (xCOffset >= 0 && xCOffset < inDims[1]) {\n previous = getX(batch, xR, xCOffset, d1);\n\n // Need to manually clear unused channels in case\n // we're reading from recycled texture.\n if (xCOffset + 1 >= inDims[1]) {\n previous.zw = vec2(0.0);\n }\n\n xC${b} = vec4(previous.zw, xTexelC${b}.xy);\n } else {\n xC${b} = vec4(0.0, 0.0, xTexelC${b}.xy);\n }\n `):f+=`\n if (xC >= 0 && xC < inDims[1] && xTexelC${b}Ready == 0) {\n xTexelC${b} = getX(batch, xR, xC, d1);\n if (xC + 1 >= inDims[1]) {\n xTexelC${b}.zw = vec2(0.0);\n }\n xTexelC${b}Ready = 1;\n }\n\n xC${b} = xTexelC${b};\n `,b+1= 0 && xCOffset < inDims[1] && xTexelC${b+1}Ready == 0) {\n xTexelC${b+1} = getX(batch, xR, xCOffset, d1);\n\n // Need to manually clear unused channels in case\n // we're reading from recycled texture.\n if (xCOffset + 1 >= inDims[1]) {\n xTexelC${b+1}.zw = vec2(0.0);\n }\n xTexelC${b+1}Ready = 1;\n }\n `,l>1?f+=`\n xCOffset -= 2;\n if (xCOffset >= 0 && xCOffset < inDims[1]) {\n previous = getX(batch, xR, xCOffset, d1);\n xC${b+1} = vec4(previous.zw, xTexelC${b+1}.xy);\n } else {\n xC${b+1} = vec4(0.0, 0.0, xTexelC${b+1}.xy);\n }\n `:f+=`\n xC${b+1} = vec4(xTexelC${b}.zw, xTexelC${b+1}.xy);\n `):w===1?f+=`\n xC${b+1} = xTexelC${b};\n `:f+=`\n xCOffset = xC + ${w};\n\n if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b+1}Ready == 0) {\n xTexelC${b+1} = getX(batch, xR, xCOffset, d1);\n if (xCOffset + 1 >= inDims[1]) {\n xTexelC${b+1}.zw = vec2(0.0);\n }\n xTexelC${b+1}Ready = 1;\n }\n\n xC${b+1} = xTexelC${b+1};\n `}}else b= 0 && xCOffset < inDims[1] && xTexelC${b}Ready == 0) {\n xTexelC${b} = getX(batch, xR, xCOffset, d1);\n // Need to manually clear unused channels in case\n // we're reading from recycled texture.\n if (xCOffset + 1 >= inDims[1]) {\n xTexelC${b}.zw = vec2(0.0);\n }\n xTexelC${b}Ready = 1;\n }\n\n if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${b+1}Ready == 0) {\n xTexelC${b+1} = getX(batch, xR, xC + 1, d1);\n // Need to manually clear unused channels in case\n // we're reading from recycled texture.\n if (xC + 2 >= inDims[1]) {\n xTexelC${b+1}.zw = vec2(0.0);\n }\n xTexelC${b+1}Ready = 1;\n }\n\n xC${b} = vec4(xTexelC${b}.zw, xTexelC${b+1}.zw);\n `,b+1= 0 && xCOffset < inDims[1]) {\n final = getX(batch, xR, xCOffset, d1);\n }\n xC${b+1} = vec4(xTexelC${b+1}.xy, final.xy);\n `)):(f+=`\n if(xC >= 0 && xC < inDims[1] && xTexelC${b}Ready == 0) {\n xTexelC${b} = getX(batch, xR, xC, d1);\n if (xC + 1 >= inDims[1]) {\n xTexelC${b}.zw = vec2(0.0);\n }\n xTexelC${b}Ready = 1;\n }\n\n xCOffset = xC + strides[1];\n if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b+1}Ready == 0) {\n xTexelC${b+1} = getX(batch, xR, xCOffset, d1);\n if (xCOffset + 1 >= inDims[1]) {\n xTexelC${b+1}.zw = vec2(0.);\n }\n xTexelC${b+1}Ready = 1;\n }\n\n xC${b} = vec4(\n xTexelC${b}.xy, xTexelC${b+1}.xy);\n `,b+1`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let p=S.computeConv2DInfo(o.shape,s.shape,i,c,a,l,!0),m;L().getBool(\"WEBGL_PACK_DEPTHWISECONV\")&&p.strideWidth<=2&&p.outChannels/p.inChannels===1?m=new Ld(p):m=new Pd(p);let f=[[p.padInfo.top,p.padInfo.left],[p.strideHeight,p.strideWidth],[p.dilationHeight,p.dilationWidth],[p.inHeight,p.inWidth]];return e.runWebGLProgram(m,[o,s],\"float32\",f)}var fB={kernelName:ss,backendName:\"webgl\",kernelFunc:ait};var VI=class{constructor(t){this.variableNames=[\"x\",\"dy\"],this.outputShape=t.filterShape;let e=t.strideHeight,n=t.strideWidth,o=t.padInfo.top,s=t.padInfo.left,i=t.outChannels/t.inChannels;this.userCode=`\n void main() {\n ivec4 coords = getOutputCoords();\n int wR = coords.x;\n int wC = coords.y;\n int d1 = coords.z;\n int dm = coords.w;\n int d2 = d1 * ${i} + dm;\n\n float dotProd = 0.0;\n\n // TO DO: Vec4 over the batch size\n for (int b = 0; b < ${t.batchSize}; b++) {\n for (int yR = 0; yR < ${t.outHeight}; yR++) {\n int xR = wR + yR * ${e} - ${o};\n\n if (xR < 0 || xR >= ${t.inHeight}) {\n continue;\n }\n\n for (int yC = 0; yC < ${t.outWidth}; yC++) {\n int xC = wC + yC * ${n} - ${s};\n\n if (xC < 0 || xC >= ${t.inWidth}) {\n continue;\n }\n\n float dyValue = getDy(b, yR, yC, d2);\n float xValue = getX(b, xR, xC, d1);\n dotProd += (xValue * dyValue);\n }\n }\n }\n setOutput(dotProd);\n }\n `}},GI=class{constructor(t){this.variableNames=[\"dy\",\"W\"],this.outputShape=t.inShape;let e=t.filterHeight,n=t.filterWidth,o=t.strideHeight,s=t.strideWidth,i=e-1-t.padInfo.top,a=n-1-t.padInfo.left,u=t.outChannels/t.inChannels;this.userCode=`\n const ivec2 pads = ivec2(${i}, ${a});\n\n void main() {\n ivec4 coords = getOutputCoords();\n int batch = coords[0];\n int d1 = coords[3];\n ivec2 dyCorner = coords.yz - pads;\n int dyRCorner = dyCorner.x;\n int dyCCorner = dyCorner.y;\n\n float dotProd = 0.0;\n\n for (int wR = 0; wR < ${e}; wR++) {\n float dyR = float(dyRCorner + wR) / ${o}.0;\n\n if (dyR < 0.0 || dyR >= ${t.outHeight}.0 || fract(dyR) > 0.0) {\n continue;\n }\n int idyR = int(dyR);\n\n int wRPerm = ${e} - 1 - wR;\n\n for (int wC = 0; wC < ${n}; wC++) {\n float dyC = float(dyCCorner + wC) / ${s}.0;\n\n if (dyC < 0.0 || dyC >= ${t.outWidth}.0 ||\n fract(dyC) > 0.0) {\n continue;\n }\n int idyC = int(dyC);\n\n int wCPerm = ${n} - 1 - wC;\n\n // TO DO: Vec4 over the channelMul\n for (int dm = 0; dm < ${u}; dm++) {\n int d2 = d1 * ${u} + dm;\n float xValue = getDy(batch, idyR, idyC, d2);\n float wValue = getW(wRPerm, wCPerm, d1, dm);\n dotProd += xValue * wValue;\n }\n }\n }\n setOutput(dotProd);\n }\n `}};function lit(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,dy:s}=t,{strides:i,dilations:a,pad:u,dimRoundingMode:l,filterShape:c}=n,p=S.computeConv2DInfo(o.shape,c,i,a,u,l,!0),m=new VI(p);return e.runWebGLProgram(m,[o,s],\"float32\")}var dB={kernelName:$p,backendName:\"webgl\",kernelFunc:lit};function uit(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,filter:s}=t,{strides:i,dilations:a,pad:u,dimRoundingMode:l,inputShape:c}=n,p=S.computeConv2DInfo(c,s.shape,i,a,u,l,!0),m=new GI(p);return e.runWebGLProgram(m,[o,s],\"float32\")}var hB={kernelName:Rp,backendName:\"webgl\",kernelFunc:uit};var WI=class{constructor(t){this.variableNames=[\"X\"],this.outputShape=[t,t],this.userCode=`\n void main() {\n ivec2 coords = getOutputCoords();\n float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;\n setOutput(val);\n }\n `}};function cit(r){let{inputs:t,backend:e}=r,{x:n}=t,o=[...n.shape,...n.shape],s=y.sizeFromShape(n.shape),i=rt({inputs:{x:n},backend:e,attrs:{shape:[s]}}),a=new WI(s),u=e.runWebGLProgram(a,[i],i.dtype),l=rt({inputs:{x:u},backend:e,attrs:{shape:o}});return e.disposeIntermediateTensorInfo(i),e.disposeIntermediateTensorInfo(u),l}var gB={kernelName:Xl,backendName:\"webgl\",kernelFunc:cit};var UI=class{constructor(t){this.variableNames=[\"x\",\"W\"],this.outputShape=t.outShape;let{inHeight:e,inWidth:n,padInfo:o,strideHeight:s,strideWidth:i,filterHeight:a,filterWidth:u,dilationHeight:l,dilationWidth:c}=t,{top:p,left:m}=o;this.userCode=`\n const ivec2 strides = ivec2(${s}, ${i});\n const ivec2 pads = ivec2(${p}, ${m});\n const float neg_infinity = -3.4e38;\n\n void main() {\n ivec4 coords = getOutputCoords();\n int batch = coords.x;\n int d1 = coords.w;\n ivec2 outTopLeftCorner =\n coords.yz * strides - pads;\n int hBeg = outTopLeftCorner.x;\n int wBeg = outTopLeftCorner.y;\n\n float curVal = neg_infinity;\n for (int h = 0; h < ${a}; h++) {\n int hIn = hBeg + h * ${l};\n\n if (hIn >= 0 && hIn < ${e}) {\n for (int w = 0; w < ${u}; w++) {\n int wIn = wBeg + w * ${c};\n\n if (wIn >= 0 && wIn < ${n}) {\n float xVal = getX(batch, hIn, wIn, d1);\n float wVal = getW(h, w, d1);\n\n float val = xVal + wVal;\n if (val > curVal) {\n curVal = val;\n }\n }\n }\n }\n }\n\n float result = curVal;\n setOutput(result);\n }\n `}};function pit(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s}=t,{strides:i,pad:a,dilations:u}=n,l=S.computeDilation2DInfo(o.shape,s.shape,i,a,\"NHWC\",u),c,p=new UI(l);c=e.runWebGLProgram(p,[o,s],\"float32\");let m=rt({inputs:{x:c},backend:e,attrs:{shape:l.outShape}});return e.disposeIntermediateTensorInfo(c),m}var xB={kernelName:is,backendName:\"webgl\",kernelFunc:pit};function mit(r){let{inputs:t,backend:e,attrs:n}=r,{equation:o}=n,s=t,{allDims:i,summedDims:a,idDims:u}=S.decodeEinsumEquation(o,s.length);S.checkEinsumDimSizes(i.length,u,s);let{path:l,steps:c}=S.getEinsumComputePath(a,u),p=c.length,m=null,f=i.length,d=[];for(let h=0;h=0&&(m=fp({inputs:{x:m},backend:e,attrs:{axis:l[h]-(i.length-f),keepDims:!1}}),d.push(m)),f--)}for(let h of d)h!==m&&e.disposeIntermediateTensorInfo(h);return m}var yB={kernelName:Fp,backendName:\"webgl\",kernelFunc:mit};var fit=\"return (x >= 0.0) ? x : (exp(x) - 1.0);\",dit=`\n vec4 result;\n\n result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);\n result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);\n result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);\n result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);\n\n return result;\n`,hit=It({opSnippet:fit,packedOpSnippet:dit}),bB={kernelName:ls,backendName:\"webgl\",kernelFunc:hit};var git=\"return (b >= 0.0) ? a : a * (b + 1.0);\",xit=`\n vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));\n return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));\n`,yit=r=>{let{inputs:t,backend:e}=r,{dy:n,y:o}=t,s=L().getBool(\"WEBGL_PACK_BINARY_OPERATIONS\")?new jn(xit,n.shape,o.shape):new $n(git,n.shape,o.shape);return e.runWebGLProgram(s,[n,o],n.dtype)},wB={kernelName:La,backendName:\"webgl\",kernelFunc:yit};var bit=`\n return vec4(equal(a, b));\n`,wit=\"return float(a == b);\",Iit=ce({opSnippet:wit,packedOpSnippet:bit,dtype:\"bool\",cpuKernelImpl:JL}),IB={kernelName:za,backendName:\"webgl\",kernelFunc:Iit};var Cit=`\n // Error function is calculated approximately with elementary function.\n // See \"Handbook of Mathematical Functions with Formulas,\n // Graphs, and Mathematical Tables\", Abramowitz and Stegun.\n float p = ${S.ERF_P};\n float a1 = ${S.ERF_A1};\n float a2 = ${S.ERF_A2};\n float a3 = ${S.ERF_A3};\n float a4 = ${S.ERF_A4};\n float a5 = ${S.ERF_A5};\n\n float sign = sign(x);\n x = abs(x);\n float t = 1.0 / (1.0 + p * x);\n return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));\n`,vit=It({opSnippet:Cit}),CB={kernelName:us,backendName:\"webgl\",kernelFunc:vit};var Sit=Po+`\n return exp(x);\n`,Nit=`\n vec4 result = exp(x);\n bvec4 isNaN = isnan(x);\n result.r = isNaN.r ? x.r : result.r;\n result.g = isNaN.g ? x.g : result.g;\n result.b = isNaN.b ? x.b : result.b;\n result.a = isNaN.a ? x.a : result.a;\n\n return result;\n`,z1=It({opSnippet:Sit,packedOpSnippet:Nit,cpuKernelImpl:QL,dtype:\"float32\"}),vB={kernelName:cs,backendName:\"webgl\",kernelFunc:z1};function HI(r){let{inputs:t,attrs:e,backend:n}=r,{dim:o}=e,{input:s}=t,i=s.shape.length,a=s.shape.slice(),u=o;return o<0&&(y.assert(-(i+1)<=o,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),u=i+o+1),a.splice(u,0,1),rt({inputs:{x:s},backend:n,attrs:{shape:a}})}var SB={kernelName:Mi,backendName:\"webgl\",kernelFunc:HI};var NB=\"return exp(x) - 1.0;\",kit=It({opSnippet:NB,packedOpSnippet:NB,cpuKernelImpl:tz}),kB={kernelName:ps,backendName:\"webgl\",kernelFunc:kit};var hg=class{constructor(t,e,n){this.variableNames=[\"real\",\"imag\"];let o=e[1];this.outputShape=e;let s=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,i=n?`${o}.0`:\"1.0\",a;if(t===\"real\")a=\"return real * expR - imag * expI;\";else if(t===\"imag\")a=\"return real * expI + imag * expR;\";else throw new Error(`FFT component must be either \"real\" or \"imag\", got ${t}.`);this.userCode=`\n const float exponentMultiplier = ${s};\n\n float unaryOpComplex(float real, float expR, float imag, float expI) {\n ${a}\n }\n\n float mulMatDFT(int batch, int index) {\n float indexRatio = float(index) / float(${o});\n float exponentMultiplierTimesIndexRatio =\n exponentMultiplier * indexRatio;\n\n float result = 0.0;\n\n for (int i = 0; i < ${o}; i++) {\n // x = (-2|2 * PI / N) * index * i;\n float x = exponentMultiplierTimesIndexRatio * float(i);\n float expR = cos(x);\n float expI = sin(x);\n float real = getReal(batch, i);\n float imag = getImag(batch, i);\n\n result +=\n unaryOpComplex(real, expR, imag, expI) / ${i};\n }\n\n return result;\n }\n\n void main() {\n ivec2 coords = getOutputCoords();\n setOutput(mulMatDFT(coords[0], coords[1]));\n }\n `}};function qI(r,t,e){let n=e.texData.get(r.dataId),o=y.sizeFromShape(r.shape),s=r.shape[r.shape.length-1],i=o/s,a=rt({inputs:{x:r},backend:e,attrs:{shape:[i,s]}}),u=a.shape,l=new hg(\"real\",u,t),c=new hg(\"imag\",u,t),p=[{dataId:n.complexTensorInfos.real.dataId,dtype:n.complexTensorInfos.real.dtype,shape:u},{dataId:n.complexTensorInfos.imag.dataId,dtype:n.complexTensorInfos.imag.dtype,shape:u}],m=e.runWebGLProgram(l,p,\"float32\"),f=e.runWebGLProgram(c,p,\"float32\"),d=Rn({inputs:{real:m,imag:f},backend:e});e.disposeIntermediateTensorInfo(m),e.disposeIntermediateTensorInfo(f);let h=rt({inputs:{x:d},backend:e,attrs:{shape:r.shape}});return e.disposeIntermediateTensorInfo(a),e.disposeIntermediateTensorInfo(d),h}function Tit(r){let{inputs:t,backend:e}=r,{input:n}=t;return qI(n,!1,e)}var TB={kernelName:Op,backendName:\"webgl\",kernelFunc:Tit};var KI=class{constructor(t,e){this.outputShape=[],this.customUniforms=[{name:\"value\",type:\"float\"}],this.variableNames=[\"x\"],this.outputShape=t,this.userCode=`\n void main() {\n // Input can be obtained from uniform value.\n setOutput(value);\n }\n `}};function Ll(r){let{backend:t,attrs:e}=r,{shape:n,value:o}=e,{dtype:s}=e;if(s=s||y.inferDtype(o),s===\"string\"){let i=y.getArrayFromDType(s,y.sizeFromShape(n));return i.fill(o),t.makeTensorInfo(n,s,i)}else{let i=new KI(n,o),a=[[o]];return t.runWebGLProgram(i,[],s,a)}}var _B={kernelName:Jl,backendName:\"webgl\",kernelFunc:Ll};var jI=class{constructor(t){this.variableNames=[\"Image\"],this.outputShape=[];let e=t[2];this.outputShape=t,this.userCode=`\n void main() {\n ivec4 coords = getOutputCoords();\n int x = coords[2];\n\n int coordX = ${e} - x - 1;\n float outputValue;\n if(coordX >= 0 && coordX < ${e}) {\n outputValue = getImage(coords[0], coords[1], coordX, coords[3]);\n } else {\n outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);\n }\n setOutput(outputValue);\n }\n `}};var EB={kernelName:Ba,backendName:\"webgl\",kernelFunc:({inputs:r,backend:t})=>{let{image:e}=r,n=t,o=new jI(e.shape);return n.runWebGLProgram(o,[e],e.dtype)}};var AB=\"return floor(x);\",_it=It({opSnippet:AB,packedOpSnippet:AB,cpuKernelImpl:ez}),DB={kernelName:ms,backendName:\"webgl\",kernelFunc:_it};var Eit=`\n float s = sign(a) * sign(b);\n int ia = round(a);\n int ib = round(b);\n if (ib != 0) {\n // Windows (D3D) wants guaranteed non-zero int division at compile-time.\n return float(idiv(ia, ib, s));\n } else {\n return NAN;\n }\n`,Ait=`\n ivec4 ia = round(a);\n ivec4 ib = round(b);\n bvec4 cond = notEqual(ib, ivec4(0));\n ivec4 result = ivec4(0);\n vec4 s = sign(a) * sign(b);\n\n // Windows (D3D) wants guaranteed non-zero int division at compile-time.\n if (cond[0]) {\n result[0] = idiv(ia[0], ib[0], s[0]);\n }\n if (cond[1]) {\n result[1] = idiv(ia[1], ib[1], s[1]);\n }\n if (cond[2]) {\n result[2] = idiv(ia[2], ib[2], s[2]);\n }\n if (cond[3]) {\n result[3] = idiv(ia[3], ib[3], s[3]);\n }\n return vec4(result);\n`,Dit=ce({opSnippet:Eit,packedOpSnippet:Ait,dtype:\"int32\"}),$B={kernelName:fs,backendName:\"webgl\",kernelFunc:Dit};var XI=class{constructor(t){this.variableNames=[\"A\"];let e=Ue(),[n,o]=t;this.outputShape=t,this.userCode=`\n void main() {\n ivec3 coords = getOutputCoords();\n int texR = coords[0];\n int texC = coords[1];\n int depth = coords[2];\n vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${o}.0, ${n}.0);\n\n vec4 values = ${e.texture2D}(A, uv);\n float value;\n if (depth == 0) {\n value = values.r;\n } else if (depth == 1) {\n value = values.g;\n } else if (depth == 2) {\n value = values.b;\n } else if (depth == 3) {\n value = values.a;\n }\n\n setOutput(floor(value * 255.0 + 0.5));\n }\n `}};var YI=class{constructor(t){this.variableNames=[\"A\"],this.packedInputs=!1,this.packedOutput=!0;let e=Ue(),[n,o]=t;this.outputShape=t,this.userCode=`\n void main() {\n ivec3 coords = getOutputCoords();\n int texR = coords[0];\n int texC = coords[1];\n int depth = coords[2];\n\n vec4 result = vec4(0.);\n\n for(int row=0; row<=1; row++) {\n for(int col=0; col<=1; col++) {\n texC = coords[1] + row;\n depth = coords[2] + col;\n\n vec2 uv = (vec2(texC, texR) + halfCR) /\n vec2(${o}.0, ${n}.0);\n vec4 values = ${e.texture2D}(A, uv);\n float value;\n if (depth == 0) {\n value = values.r;\n } else if (depth == 1) {\n value = values.g;\n } else if (depth == 2) {\n value = values.b;\n } else if (depth == 3) {\n value = values.a;\n }\n\n result[row * 2 + col] = floor(value * 255.0 + 0.5);\n }\n }\n\n ${e.output} = result;\n }\n `}};var RB={kernelName:th,backendName:\"webgl\",kernelFunc:$it},zd,B1=L().getBool(\"CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU\");function $it(r){let{inputs:t,backend:e,attrs:n}=r,{pixels:o}=t,{numChannels:s}=n,i=typeof HTMLVideoElement!=\"undefined\"&&o instanceof HTMLVideoElement,a=typeof HTMLImageElement!=\"undefined\"&&o instanceof HTMLImageElement,[u,l]=i?[o.videoWidth,o.videoHeight]:[o.width,o.height],c=[l,u],p=[l,u,s];if(a||i){let h=L().getBool(\"CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU\");(zd==null||h!==B1)&&(B1=h,zd=document.createElement(\"canvas\").getContext(\"2d\",{willReadFrequently:B1})),zd.canvas.width=u,zd.canvas.height=l,zd.drawImage(o,0,0,u,l),o=zd.canvas}let m=e.makeTensorInfo(c,\"int32\");e.texData.get(m.dataId).usage=Jr.PIXELS,e.gpgpu.uploadPixelDataToTexture(e.getTexture(m.dataId),o);let f=L().getBool(\"WEBGL_PACK\")?new YI(p):new XI(p),d=e.runWebGLProgram(f,[m],\"int32\");return e.disposeData(m.dataId),d}function Rit(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s,bias:i,preluActivationWeights:a}=t,{strides:u,pad:l,dataFormat:c,dilations:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=n,h=S.convertConv2DDataFormat(c),g=S.computeConv2DInfo(o.shape,s.shape,u,p,l,m,!1,h),x,b=[],w=i!=null,I=a!=null,N=f===\"leakyrelu\",E=()=>{let D=[o,s],F=(M,V)=>{if(V===\"NCHW\"&&M.shape.length===1&&M.shape[0]!==1){let G=rt({inputs:{x:M},backend:e,attrs:{shape:[M.shape[0],1,1]}});return b.push(G),G}return M};if(w&&D.push(F(i,c)),I&&D.push(F(a,c)),N){let M=e.makeTensorInfo([],\"float32\",y.createScalarValue(d,\"float32\"));D.push(M),b.push(M)}return D};if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type===\"SAME\"||g.padInfo.type===\"VALID\"))x=DI({x:o,filter:s,convInfo:g,backend:e,bias:i,activation:f,preluActivationWeights:a,leakyreluAlpha:d});else if(g.strideWidth<=2&&h===\"channelsLast\"&&L().getBool(\"WEBGL_EXP_CONV\")){let D=f?Ml(f,!0):null,F=new Md(g,w,D,I,N),M=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],V=E();x=e.runWebGLProgram(F,V,\"float32\",M)}else if(L().getBool(\"WEBGL_CONV_IM2COL\"))x=$I({x:o,filter:s,convInfo:g,backend:e,bias:i,activation:f,preluActivationWeights:a,leakyreluAlpha:d});else{let D=f?Ml(f,!1):null,F=new Od(g,w,D,I,N),M=E();x=e.runWebGLProgram(F,M,\"float32\")}let A=rt({inputs:{x},backend:e,attrs:{shape:g.outShape}});return b.push(x),b.forEach(D=>e.disposeIntermediateTensorInfo(D)),A}var FB={kernelName:Yi,backendName:\"webgl\",kernelFunc:Rit};function Fit(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s,bias:i,preluActivationWeights:a}=t,{strides:u,pad:l,dilations:c,dimRoundingMode:p,activation:m,leakyreluAlpha:f}=n,d=[],h=c;h==null&&(h=[1,1]),y.assert(S.eitherStridesOrDilationsAreOne(u,h),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${u} and dilations '${h}'`);let g=S.computeConv2DInfo(o.shape,s.shape,u,h,l,p,!0),x=L().getBool(\"WEBGL_PACK_DEPTHWISECONV\")&&g.strideWidth<=2&&g.outChannels/g.inChannels===1,b=m?Ml(m,x):null,w=[o,s],I=i!=null,N=a!=null,E=m===\"leakyrelu\";if(I&&w.push(i),N&&w.push(a),E){let M=e.makeTensorInfo([],\"float32\",y.createScalarValue(f,\"float32\"));w.push(M),d.push(M)}let A;x?A=new Ld(g,I,b,N,E):A=new Pd(g,I,b,N,E);let D=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],F=e.runWebGLProgram(A,w,\"float32\",D);return d.forEach(M=>e.disposeIntermediateTensorInfo(M)),F}var OB={kernelName:Zi,backendName:\"webgl\",kernelFunc:Fit};var ZI=class{constructor(t,e,n,o){this.sliceDim=t,this.strides=e,this.paramsShape=o,this.variableNames=[\"x\",\"indices\"],this.outputShape=n;let s=zt(n.length),i=`\n int index;`;for(let a=0;a= ${this.paramsShape[a]};\n flattenIndex += index * ${this.strides[a]};`;this.userCode=`\n void main() {\n ${s} coords = getOutputCoords();\n int flattenIndex = 0;\n bool out_of_bounds = false;\n\n ${i}\n\n setOutput(out_of_bounds ? 0.0 : getX(flattenIndex, coords[1]));\n }\n `}};function Oit(r){let{inputs:t,backend:e}=r,{params:n,indices:o}=t,s=o.shape,i=s[s.length-1],a=y.sizeFromShape(n.shape),[u,l,c,p]=S.prepareAndValidate(n,o),m=rt({inputs:{x:o},backend:e,attrs:{shape:[l,i]}}),f=rt({inputs:{x:n},backend:e,attrs:{shape:[y.sizeFromShape(n.shape)/c,c]}});if(e.shouldExecuteOnCPU([n,o])||n.dtype===\"string\"){let x=e.readSync(o.dataId),b=e.bufferSync(n),w=rz(x,b,n.dtype,l,i,c,p,n.shape,a);return e.makeTensorInfo(u,n.dtype,w.values)}let d=new ZI(i,p,[l,c],n.shape),h=e.runWebGLProgram(d,[f,m],f.dtype),g=rt({inputs:{x:h},backend:e,attrs:{shape:u}});return e.disposeIntermediateTensorInfo(m),e.disposeIntermediateTensorInfo(f),e.disposeIntermediateTensorInfo(h),g}var MB={kernelName:Va,backendName:\"webgl\",kernelFunc:Oit};var JI=class{constructor(t,e){this.variableNames=[\"A\",\"indices\"],this.outputShape=e,this.rank=e.length;let n=zt(this.rank),o=Mit(t,2);this.userCode=`\n void main() {\n ${n} resRC = getOutputCoords();\n int index = int(getIndices(resRC.x, resRC.z));\n float inBounds = (index >= 0) && (index < ${t[2]}) ? 1.0 : 0.0;\n setOutput(inBounds * getA(${o}));\n }\n `}};function Mit(r,t){let e=[\"resRC.x\",\"resRC.y\",\"resRC.z\",\"resRC.w\"],n=[];for(let o=0;o=0,()=>`GatherV2: the index value ${N} is not in [0, ${w-1}]`)}}let l=S.segment_util.collectGatherOpShapeInfo(o,s,u,a),c=y.sizeFromShape(s.shape),p=[],m=rt({inputs:{x:o},backend:e,attrs:{shape:[l.batchSize,l.outerSize,l.dimSize,l.sliceSize]}}),f=rt({inputs:{x:s},backend:e,attrs:{shape:[l.batchSize,c/l.batchSize]}});p.push(m),p.push(f);let d=[l.batchSize,l.outerSize,c/l.batchSize,l.sliceSize];if(e.shouldExecuteOnCPU([o,s])||o.dtype===\"string\"){let b=e.bufferSync(f),w=e.bufferSync(m),I=nz(w,b,d);return p.forEach(N=>e.disposeIntermediateTensorInfo(N)),e.makeTensorInfo(l.outputShape,I.dtype,I.values)}let h=new JI(m.shape,d),g=e.runWebGLProgram(h,[m,f],m.dtype);p.push(g);let x=rt({inputs:{x:g},backend:e,attrs:{shape:l.outputShape}});return p.forEach(b=>e.disposeIntermediateTensorInfo(b)),x}var PB={kernelName:Pi,backendName:\"webgl\",kernelFunc:V1};var Pit=\"return float(a > b);\",Lit=`\n return vec4(greaterThan(a, b));\n`,zit=ce({opSnippet:Pit,packedOpSnippet:Lit,cpuKernelImpl:oz,dtype:\"bool\"}),LB={kernelName:Ga,backendName:\"webgl\",kernelFunc:zit};var Bit=\"return float(a >= b);\",Vit=`\n return vec4(greaterThanEqual(a, b));\n`,Git=ce({opSnippet:Bit,packedOpSnippet:Vit,dtype:\"bool\",cpuKernelImpl:sz}),zB={kernelName:hs,backendName:\"webgl\",kernelFunc:Git};function Wit(r){let{inputs:t,backend:e}=r,{input:n}=t;return qI(n,!0,e)}var BB={kernelName:Mp,backendName:\"webgl\",kernelFunc:Wit};var Uit=\"return float(!isnan(x) && !isinf(x));\",Hit=It({opSnippet:Uit,dtype:\"bool\"}),VB={kernelName:gs,backendName:\"webgl\",kernelFunc:Hit};var qit=\"return float(isinf(x));\",Kit=It({opSnippet:qit,dtype:\"bool\"}),GB={kernelName:xs,backendName:\"webgl\",kernelFunc:Kit};var jit=\"return float(isnan(x));\",Xit=It({opSnippet:jit,dtype:\"bool\"}),WB={kernelName:ys,backendName:\"webgl\",kernelFunc:Xit};var Yit=\"return float(a < b);\",Zit=`\n return vec4(lessThan(a, b));\n`,Jit=ce({opSnippet:Yit,packedOpSnippet:Zit,cpuKernelImpl:iz,dtype:\"bool\"}),UB={kernelName:Wa,backendName:\"webgl\",kernelFunc:Jit};var Qit=\"return float(a <= b);\",tat=`\n return vec4(lessThanEqual(a, b));\n`,eat=ce({opSnippet:Qit,packedOpSnippet:tat,cpuKernelImpl:az,dtype:\"bool\"}),HB={kernelName:Ua,backendName:\"webgl\",kernelFunc:eat};function rat(r){let{backend:t,attrs:e}=r,{start:n,stop:o,num:s}=e,i=lz(n,o,s);return t.makeTensorInfo([i.length],\"float32\",i)}var qB={kernelName:Ha,backendName:\"webgl\",kernelFunc:rat};var nat=Po+`\n return x < 0.0 ? 0./0. : log(x);\n`,oat=`\n vec4 result = log(x);\n bvec4 isNaN = isnan(x);\n result.r = isNaN.r ? x.r : (x.r < 0.0 ? 0./0. : result.r);\n result.g = isNaN.g ? x.g : (x.g < 0.0 ? 0./0. : result.g);\n result.b = isNaN.b ? x.b : (x.b < 0.0 ? 0./0. : result.b);\n result.a = isNaN.a ? x.a : (x.a < 0.0 ? 0./0. : result.a);\n return result;\n`,sat=It({opSnippet:nat,packedOpSnippet:oat,cpuKernelImpl:uz}),KB={kernelName:ws,backendName:\"webgl\",kernelFunc:sat};var iat=Po+`\n return log(1.0 + x);\n`,aat=It({opSnippet:iat}),jB={kernelName:Is,backendName:\"webgl\",kernelFunc:aat};var lat=\"return float(a >= 1.0 && b >= 1.0);\",uat=`\n return vec4(\n vec4(greaterThanEqual(a, vec4(1.0))) *\n vec4(greaterThanEqual(b, vec4(1.0))));\n`,cat=ce({opSnippet:lat,packedOpSnippet:uat,dtype:\"bool\"}),XB={kernelName:qa,backendName:\"webgl\",kernelFunc:cat};var pat=\"return float(!(x >= 1.0));\",mat=It({opSnippet:pat}),YB={kernelName:Ka,backendName:\"webgl\",kernelFunc:mat};var fat=\"return float(a >= 1.0 || b >= 1.0);\",dat=`\n return min(\n vec4(greaterThanEqual(a, vec4(1.0))) +\n vec4(greaterThanEqual(b, vec4(1.0))),\n vec4(1.0));\n`,hat=ce({opSnippet:fat,packedOpSnippet:dat,dtype:\"bool\"}),ZB={kernelName:ja,backendName:\"webgl\",kernelFunc:hat};var QI=class{constructor(t,e,n,o,s){this.variableNames=[\"x\"],this.outputShape=[];let i=e,a=t[3]-1;this.outputShape=t;let u,l=`float(${n}) + float(${o}) * sum`;s===.5?u=`inversesqrt(${l})`:s===1?u=`1.0/(${l})`:u=`exp(log(${l}) * float(-${s}));`,this.userCode=`\n void main() {\n ivec4 coords = getOutputCoords();\n int b = coords[0];\n int r = coords[1];\n int c = coords[2];\n int d = coords[3];\n float x = getX(b, r, c, d);\n float sum = 0.0;\n for (int j = -${i}; j <= ${i}; j++) {\n int idx = d + j;\n if (idx >= 0 && idx <= ${a}) {\n float z = getX(b, r, c, idx);\n sum += z * z;\n }\n }\n float val = x * ${u};\n setOutput(val);\n }\n `}};var tC=class{constructor(t,e,n,o,s){this.variableNames=[\"x\"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let i=e,a=t[3]-1;this.outputShape=t;let u,l=`float(${n}) + float(${o}) * sum`;s===.5?u=`inversesqrt(${l})`:s===1?u=`1.0/(${l})`:u=`exp(log(${l}) * float(-${s}));`,this.userCode=`\n void main() {\n ivec4 coords = getOutputCoords();\n int b = coords.x;\n int r = coords.y;\n int c = coords.z;\n int d = coords.w;\n\n bool hasNextCol = d < ${this.outputShape[3]};\n bool hasNextRow = c < ${this.outputShape[2]};\n\n vec4 sum = vec4(0.);\n vec4 xFragAtOutputCoords = getX(b, r, c, d);\n\n vec4 xAtOutputCoords = vec4(\n getChannel(xFragAtOutputCoords, vec2(c, d)),\n hasNextCol ?\n getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,\n hasNextRow ?\n getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,\n (hasNextRow && hasNextCol) ?\n getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0\n );\n\n int firstChannel = d - ${i};\n vec2 cache = vec2(0.);\n if(firstChannel >= 0){\n vec4 firstChannelFrag = getX(b, r, c, firstChannel);\n cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));\n if(hasNextRow){\n cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));\n }\n }\n\n ivec2 depth = ivec2(d, d + 1);\n for (int j = - ${i}; j <= ${i}; j++) {\n ivec2 idx = depth + j;\n bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));\n bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${a}));\n\n bool depthInRange = aboveLowerBound.x && belowUpperBound.x;\n bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;\n\n if(depthInRange || depthPlusOneInRange){\n vec4 z = vec4(0.);\n vec4 xFragAtCurrentDepth;\n z.xz = cache.xy;\n if(depthPlusOneInRange && hasNextCol){\n xFragAtCurrentDepth = idx.y != d ?\n getX(b, r, c, idx.y) : xFragAtOutputCoords;\n z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));\n if(hasNextRow){\n z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));\n }\n }\n cache.xy = z.yw;\n sum += z * z;\n }\n }\n vec4 result = xAtOutputCoords * ${u};\n setOutput(result);\n }\n `}};var gat=r=>{let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{depthRadius:s,bias:i,alpha:a,beta:u}=n,l=L().getBool(\"WEBGL_PACK_NORMALIZATION\")?new tC(o.shape,s,i,a,u):new QI(o.shape,s,i,a,u);return e.runWebGLProgram(l,[o],o.dtype)},JB={kernelName:Cs,backendName:\"webgl\",kernelFunc:gat};var eC=class{constructor(t,e,n,o,s){this.variableNames=[\"inputImage\",\"outputImage\",\"dy\"],this.outputShape=[],this.outputShape=t,this.depth=t[3],this.depthRadius=e,this.bias=n,this.alpha=o,this.beta=s,this.userCode=`\n void main() {\n ivec4 coords = getOutputCoords();\n int b = coords[0];\n int r = coords[1];\n int c = coords[2];\n\n float result = 0.0;\n for (int d = 0; d < ${this.depth}; ++d) {\n int depthBegin = int(max(0.0, float(d - ${e})));\n int depthEnd = int(min(float(${this.depth}),\n float(d + ${e} + 1)));\n\n const int MIN_DEPTH_BEGIN = 0;\n const int MAX_DEPTH_END = ${this.depth};\n\n float norm = 0.0;\n for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {\n if (k < depthBegin){\n continue;\n }\n else if (k >= depthBegin && k < depthEnd) {\n norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);\n }\n else {\n break;\n }\n }\n\n norm = float(${o}) * norm + float(${n});\n\n for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){\n if (k < depthBegin){\n continue;\n }\n else if (k >= depthBegin && k < depthEnd){\n float dyi = -2.0 * float(${o})\n * float(${s})\n * getInputImage(b, r, c, k) * getOutputImage(b, r, c, d)\n / norm;\n if (k == d) {\n dyi += pow(norm, -1.0 * ${s});\n }\n if (k == coords[3]) {\n dyi *= getDy(b, r, c, d);\n result += dyi;\n }\n }\n else {\n break;\n }\n }\n }\n setOutput(result);\n }\n `}};var xat=r=>{let{inputs:t,backend:e,attrs:n}=r,{x:o,y:s,dy:i}=t,{depthRadius:a,bias:u,alpha:l,beta:c}=n,p=new eC(o.shape,a,u,l,c);return e.runWebGLProgram(p,[o,s,i],o.dtype)},QB={kernelName:Xa,backendName:\"webgl\",kernelFunc:xat};function tV(r,t,e,n){let o=y.sizeFromShape(t),i=y.sizeFromShape(r.shape)/o,a=rt({inputs:{x:r},attrs:{shape:[i,o]},backend:n}),u=Yn(a,r.dtype,\"max\",n),l=rt({inputs:{x:u},attrs:{shape:e},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(u),l}function G1(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{reductionIndices:s,keepDims:i}=n,a=o.shape.length,u=y.parseAxisParam(s,o.shape),l=u,c=S.getAxesPermutation(l,a),p=c!=null,m=e.shouldExecuteOnCPU([o]),f=o;if(p){if(m){let w=e.texData.get(f.dataId).values,I=new Array(a);for(let A=0;A`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${l}'`);let c=S.computePool2DInfo(o.shape,s,i,l,a,u);if(c.filterWidth===1&&c.filterHeight===1&&y.arraysEqual(c.inShape,c.outShape))return nr({inputs:{x:o},backend:e});let p=new Ni(c,\"max\",!1);return e.runWebGLProgram(p,[o],o.dtype)}var nV={kernelName:Ns,backendName:\"webgl\",kernelFunc:Iat};function Cat(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{filterSize:s,strides:i,pad:a,dataFormat:u,dimRoundingMode:l}=n,c=[1,1,1],p=S.computePool3DInfo(o.shape,s,i,c,a,l,u),m=new qu(p,\"max\",!1);return e.runWebGLProgram(m,[o],o.dtype)}var oV={kernelName:Li,backendName:\"webgl\",kernelFunc:Cat};var rC=class{constructor(t){this.variableNames=[\"dy\",\"maxPos\"],this.outputShape=t.inShape;let e=t.strideHeight,n=t.strideWidth,o=t.dilationHeight,s=t.effectiveFilterHeight,i=t.effectiveFilterWidth,a=s-1-t.padInfo.top,u=i-1-t.padInfo.left,l=s*i-1;this.userCode=`\n const ivec2 pads = ivec2(${a}, ${u});\n\n void main() {\n ivec4 coords = getOutputCoords();\n int b = coords[0];\n int d = coords[3];\n\n ivec2 dyRCCorner = coords.yz - pads;\n int dyRCorner = dyRCCorner.x;\n int dyCCorner = dyRCCorner.y;\n\n // Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).\n // ? = to be determined. : = across all values in that axis.\n float dotProd = 0.0;\n for (int wR = 0; wR < ${s};\n wR += ${o}) {\n float dyR = float(dyRCorner + wR) / ${e}.0;\n\n if (dyR < 0.0 || dyR >= ${t.outHeight}.0 || fract(dyR) > 0.0) {\n continue;\n }\n int idyR = int(dyR);\n\n for (int wC = 0; wC < ${i}; wC++) {\n float dyC = float(dyCCorner + wC) / ${n}.0;\n\n if (dyC < 0.0 || dyC >= ${t.outWidth}.0 ||\n fract(dyC) > 0.0) {\n continue;\n }\n int idyC = int(dyC);\n\n float dyValue = getDy(b, idyR, idyC, d);\n int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d));\n\n // Get the current value, check it against the value from the\n // position matrix.\n int curPosValue = wR * ${i} + wC;\n float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);\n\n dotProd += dyValue * mask;\n }\n }\n setOutput(dotProd);\n }\n `}},nC=class{constructor(t){this.variableNames=[\"dy\",\"maxPos\"],this.outputShape=t.inShape;let e=t.strideDepth,n=t.strideHeight,o=t.strideWidth,s=t.dilationDepth,i=t.dilationHeight,a=t.dilationWidth,u=t.effectiveFilterDepth,l=t.effectiveFilterHeight,c=t.effectiveFilterWidth,p=u-1-t.padInfo.front,m=l-1-t.padInfo.top,f=c-1-t.padInfo.left,d=u*l*c-1;this.userCode=`\n const ivec3 pads = ivec3(${p}, ${m}, ${f});\n\n void main() {\n ivec5 coords = getOutputCoords();\n int batch = coords.x;\n int ch = coords.u;\n\n ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;\n int dyDCorner = dyCorner.x;\n int dyRCorner = dyCorner.y;\n int dyCCorner = dyCorner.z;\n\n // Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get\n // dx(xD, xR, xC, ch).\n // ? = to be determined. : = across all values in that axis.\n float dotProd = 0.0;\n\n for (int wD = 0; wD < ${u};\n wD += ${s}) {\n float dyD = float(dyDCorner + wD) / ${e}.0;\n\n if (dyD < 0.0 || dyD >= ${t.outDepth}.0 || fract(dyD) > 0.0) {\n continue;\n }\n int idyD = int(dyD);\n\n for (int wR = 0; wR < ${l};\n wR += ${i}) {\n float dyR = float(dyRCorner + wR) / ${n}.0;\n\n if (dyR < 0.0 || dyR >= ${t.outHeight}.0 ||\n fract(dyR) > 0.0) {\n continue;\n }\n int idyR = int(dyR);\n\n for (int wC = 0; wC < ${c};\n wC += ${a}) {\n float dyC = float(dyCCorner + wC) / ${o}.0;\n\n if (dyC < 0.0 || dyC >= ${t.outWidth}.0 ||\n fract(dyC) > 0.0) {\n continue;\n }\n int idyC = int(dyC);\n\n float dyValue = getDy(batch, idyD, idyR, idyC, ch);\n int maxPosValue = ${d} -\n int(getMaxPos(batch, idyD, idyR, idyC, ch));\n\n // Get the current value, check it against the value from the\n // position matrix.\n int curPosValue =\n wD * ${l} * ${c} +\n wR * ${c} + wC;\n float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);\n\n dotProd += dyValue * mask;\n }\n }\n }\n setOutput(dotProd);\n }\n `}};function vat(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,input:s}=t,i=s,{filterSize:a,strides:u,pad:l,dimRoundingMode:c}=n,p=[1,1,1],m=S.computePool3DInfo(i.shape,a,u,p,l,c),f=new qu(m,\"max\",!0),d=e.runWebGLProgram(f,[i],i.dtype),h=new nC(m),g=e.runWebGLProgram(h,[o,d],i.dtype);return e.disposeIntermediateTensorInfo(d),g}var sV={kernelName:tu,backendName:\"webgl\",kernelFunc:vat};function Sat(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,input:s,output:i}=t,a=s;vi([s,i],\"maxPoolGrad\");let{filterSize:u,strides:l,pad:c,dimRoundingMode:p}=n,m=S.computePool2DInfo(a.shape,u,l,1,c,p),f=!0,d=new Ni(m,\"max\",f),h=e.runWebGLProgram(d,[a],a.dtype),g=new rC(m),x=e.runWebGLProgram(g,[o,h],a.dtype);return e.disposeIntermediateTensorInfo(h),x}var iV={kernelName:Ql,backendName:\"webgl\",kernelFunc:Sat};function aV(r,t,e,n){let o=new Ni(e,\"max\",!1),s=n.runWebGLProgram(o,[r],\"float32\");o=new Ni(e,\"max\",!0,!0,t);let i=n.runWebGLProgram(o,[r],\"float32\");return[s,i]}var lV={kernelName:eu,backendName:\"webgl\",kernelFunc:({inputs:r,attrs:t,backend:e})=>{let{x:n}=r,{filterSize:o,strides:s,pad:i,includeBatchInIndex:a}=t,u=e;y.assert(n.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${n.shape.length}.`);let l=[1,1];y.assert(S.eitherStridesOrDilationsAreOne(s,l),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${l}'`);let c=S.computePool2DInfo(n.shape,o,s,l,i),[p,m]=aV(n,a,c,u);return[p,m]}};function uV(r,t,e,n){let o=y.sizeFromShape(t),i=y.sizeFromShape(r.shape)/o,a=rt({inputs:{x:r},attrs:{shape:[i,o]},backend:n}),u=Yn(a,\"float32\",\"mean\",n),l=rt({inputs:{x:u},attrs:{shape:e},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(u),l}var cV={kernelName:ks,backendName:\"webgl\",kernelFunc:({inputs:r,attrs:t,backend:e})=>{let{x:n}=r,{keepDims:o,axis:s}=t,i=e,a=n.shape.length,u=y.parseAxisParam(s,n.shape),l=u,c=S.getAxesPermutation(l,a),p=c!=null,m=i.shouldExecuteOnCPU([n]),f=[],d=n;if(p){if(m){let I=i.texData.get(d.dataId).values,N=new Array(a);for(let D=0;Dc[0]+t[p]+c[1]);let o=t.length,s=zt(o),i=e.map(c=>c[0]).join(\",\"),a=e.map((c,p)=>c[0]+t[p]).join(\",\"),u=[\"coords[0]\",\"coords[1]\",\"coords[2]\",\"coords[3]\"].slice(0,o),l=n===\"reflect\"?0:1;if(o===1){this.userCode=`\n int start = ${i};\n int end = ${a};\n\n void main() {\n int outC = getOutputCoords();\n if (outC < start) {\n outC = start * 2 - outC - ${l};\n } else if(outC >= end) {\n outC = (end - 1) * 2 - outC + ${l};\n }\n setOutput(getX(outC - start));\n }\n `;return}this.userCode=`\n ${s} start = ${s}(${i});\n ${s} end = ${s}(${a});\n\n void main() {\n ${s} outC = getOutputCoords();\n for (int i = 0; i < ${o}; i++) {\n if (outC[i] < start[i]) {\n outC[i] = start[i] * 2 - outC[i] - ${l};\n } else if(outC[i] >= end[i]) {\n outC[i] = (end[i] - 1) * 2 - outC[i] + ${l};\n }\n }\n ${s} coords = outC - start;\n setOutput(getX(${u}));\n }\n `}};var sC=class{constructor(t,e,n){this.variableNames=[\"x\"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e.map((d,h)=>d[0]+t[h]+d[1]);let o=t.length,s=zt(o),i=e.map(d=>d[0]).join(\",\"),a=e.map((d,h)=>d[0]+t[h]).join(\",\"),u=rr(\"rc\",o),l=rr(\"source\",o),c=`${u[o-1]} < ${this.outputShape[o-1]}`,p=o===1?\"source\":`vec2(${l.slice(-2).join()})`,m=n===\"reflect\"?0:1,f=\"\";if(o===1){let d=`\n ${s} source = rc;\n if (source < start) {\n source = start * 2 - source - ${m};\n } else if (source >= end) {\n source = (end - 1) * 2 - source + ${m};\n }\n source -= start;\n `;f=`\n ${s} rc = outputLoc;\n ${d}\n result[0] = getChannel(getX(${l.join()}), ${p});\n ${u[o-1]} += 1;\n if(${c}) {\n ${d}\n result[1] = getChannel(getX(${l.join()}), ${p});\n }\n `}else{let d=`\n ${s} source = rc;\n ${s} lt = ${s}(lessThan(source, start));\n ${s} gte = ${s}(greaterThanEqual(source, end));\n ${s} orig = 1 - (lt + gte);\n source = orig * source +\n lt * (start * 2 - source - ${m}) +\n gte * ((end - 1) * 2 - source + ${m});\n source -= start;\n `;f=`\n ${s} rc = outputLoc;\n ${d}\n result[0] = getChannel(getX(${l.join()}), ${p});\n ${u[o-1]} += 1;\n if(${c}) {\n ${d}\n result[1] = getChannel(getX(${l.join()}), ${p});\n }\n rc = outputLoc;\n ${u[o-2]} += 1;\n if(${u[o-2]} < ${this.outputShape[o-2]}) {\n ${d}\n result[2] = getChannel(getX(${l.join()}), ${p});\n ${u[o-1]} += 1;\n if(${c}) {\n ${d}\n result[3] = getChannel(getX(${l.join()}), ${p});\n }\n }\n `}this.userCode=`\n const ${s} start = ${s}(${i});\n const ${s} end = ${s}(${a});\n\n void main() {\n ${s} outputLoc = getOutputCoords();\n vec4 result = vec4(0.);\n ${f}\n setOutput(result);\n }\n `}};var Eat=({inputs:r,backend:t,attrs:e})=>{let{x:n}=r,{paddings:o,mode:s}=e,i=L().getBool(\"WEBGL_PACK_ARRAY_OPERATIONS\")?new sC(n.shape,o,s):new oC(n.shape,o,s);return t.runWebGLProgram(i,[n],n.dtype)},fV={kernelName:Es,backendName:\"webgl\",kernelFunc:Eat};var Aat=`if (b == 0.0) return NAN;\n return mod(a, b);`,Dat=`\n vec4 result = mod(a, b);\n bvec4 isNaN = equal(b, vec4(0.0));\n `+Xn+`\n return result;\n`,$at=ce({opSnippet:Aat,packedOpSnippet:Dat}),dV={kernelName:As,backendName:\"webgl\",kernelFunc:$at};var iC=class{constructor(t,e,n){this.variableNames=[\"probs\"],this.customUniforms=[{name:\"seed\",type:\"float\"}],this.outputShape=[t,n],this.userCode=`\n void main() {\n ivec2 coords = getOutputCoords();\n int batch = coords[0];\n\n float r = random(seed);\n float cdf = 0.0;\n\n for (int i = 0; i < ${e-1}; i++) {\n cdf += getProbs(batch, i);\n\n if (r < cdf) {\n setOutput(float(i));\n return;\n }\n }\n\n // If no other event happened, last event happened.\n setOutput(float(${e-1}));\n }\n `}};var Rat=`\nif (a == b) {\n return 1.0;\n};\nreturn a / b;`,Fat=`\n // vec4 one = vec4(equal(a, b));\n // return one + (vec4(1.0) - one) * a / b;\n vec4 result = a / b;\n if(a.x == b.x) {\n result.x = 1.;\n }\n if(a.y == b.y) {\n result.y = 1.;\n }\n if(a.z == b.z) {\n result.z = 1.;\n }\n if(a.w == b.w) {\n result.w = 1.;\n }\n\n return result;\n`,W1=ce({opSnippet:Rat,packedOpSnippet:Fat,checkOutOfBounds:!0}),hV={kernelName:as,backendName:\"webgl\",kernelFunc:W1};var gV=\"return a - b;\",U1=ce({opSnippet:gV,packedOpSnippet:gV,supportsComplex:!0,cpuKernelImpl:Rz}),xV={kernelName:ei,backendName:\"webgl\",kernelFunc:U1};function H1(r){let{inputs:t,backend:e,attrs:n}=r,{logits:o}=t,{dim:s}=n,i=y.parseAxisParam([s],o.shape),a=G1({inputs:{x:o},backend:e,attrs:{reductionIndices:i,keepDims:!1}}),u=S.expandShapeToKeepDim(a.shape,i),l=rt({inputs:{x:a},backend:e,attrs:{shape:u}}),c=U1({inputs:{a:o,b:l},backend:e}),p=z1({inputs:{x:c},backend:e}),m=fp({inputs:{x:p},backend:e,attrs:{axis:i,keepDims:!1}}),f=rt({inputs:{x:m},backend:e,attrs:{shape:u}}),d=W1({inputs:{a:p,b:f},backend:e});return e.disposeIntermediateTensorInfo(a),e.disposeIntermediateTensorInfo(l),e.disposeIntermediateTensorInfo(c),e.disposeIntermediateTensorInfo(p),e.disposeIntermediateTensorInfo(m),e.disposeIntermediateTensorInfo(f),d}var yV={kernelName:Qs,backendName:\"webgl\",kernelFunc:H1};function Oat(r){let{inputs:t,backend:e,attrs:n}=r,{logits:o}=t,{numSamples:s,seed:i,normalized:a}=n,u=a?o:H1({inputs:{logits:o},backend:e,attrs:{dim:o.shape.length-1}}),l=u.shape[0],c=u.shape[1],p=new iC(l,c,s),m=[[i]],f=e.runWebGLProgram(p,[u],\"int32\",m);return a||e.disposeIntermediateTensorInfo(u),f}var bV={kernelName:Ya,backendName:\"webgl\",kernelFunc:Oat};var Mat=xr+`\n return -x;\n`,Pat=`\n vec4 result = -x;\n bvec4 isNaN = isnan(x);\n\n result.r = isNaN.r ? x.r : result.r;\n result.g = isNaN.g ? x.g : result.g;\n result.b = isNaN.b ? x.b : result.b;\n result.a = isNaN.a ? x.a : result.a;\n\n return result;\n`;function Lat(r){let{inputs:t,backend:e}=r,{x:n}=t;if(e.shouldExecuteOnCPU([n])){let s=e.texData.get(n.dataId),[i,a]=dz(s.values,n.shape,n.dtype);return e.makeTensorInfo(a,n.dtype,i)}let o;return L().getBool(\"WEBGL_PACK_UNARY_OPERATIONS\")?o=new Dn(n.shape,Pat):o=new zr(n.shape,Mat),e.runWebGLProgram(o,[n],n.dtype)}var wV={kernelName:zi,backendName:\"webgl\",kernelFunc:Lat};var zat=Xr.nonMaxSuppressionV3Impl;function Bat(r){S.warn(\"tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead\");let{inputs:t,backend:e,attrs:n}=r,{boxes:o,scores:s}=t,{maxOutputSize:i,iouThreshold:a,scoreThreshold:u}=n,l=e.readSync(o.dataId),c=e.readSync(s.dataId),{selectedIndices:p}=zat(l,c,i,a,u);return e.makeTensorInfo([p.length],\"int32\",new Int32Array(p))}var IV={kernelName:Ja,backendName:\"webgl\",kernelFunc:Bat};var Vat=Xr.nonMaxSuppressionV4Impl;function Gat(r){S.warn(\"tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead\");let{inputs:t,backend:e,attrs:n}=r,{boxes:o,scores:s}=t,{maxOutputSize:i,iouThreshold:a,scoreThreshold:u,padToMaxOutputSize:l}=n,c=e.readSync(o.dataId),p=e.readSync(s.dataId),{selectedIndices:m,validOutputs:f}=Vat(c,p,i,a,u,l);return[e.makeTensorInfo([m.length],\"int32\",new Int32Array(m)),e.makeTensorInfo([],\"int32\",new Int32Array([f]))]}var CV={kernelName:Qa,backendName:\"webgl\",kernelFunc:Gat};var Wat=Xr.nonMaxSuppressionV5Impl;function Uat(r){S.warn(\"tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead\");let{inputs:t,backend:e,attrs:n}=r,{boxes:o,scores:s}=t,{maxOutputSize:i,iouThreshold:a,scoreThreshold:u,softNmsSigma:l}=n,c=e.readSync(o.dataId),p=e.readSync(s.dataId),m=i,f=a,d=u,h=l,{selectedIndices:g,selectedScores:x}=Wat(c,p,m,f,d,h);return[e.makeTensorInfo([g.length],\"int32\",new Int32Array(g)),e.makeTensorInfo([x.length],\"float32\",new Float32Array(x))]}var vV={kernelName:tl,backendName:\"webgl\",kernelFunc:Uat};var aC=class{constructor(t,e,n,o){this.variableNames=[\"indices\"],this.outputShape=[t,e],this.userCode=`\n void main() {\n ivec2 coords = getOutputCoords();\n int index = round(getIndices(coords.x));\n setOutput(mix(float(${o}), float(${n}),\n float(index == coords.y)));\n }\n `}};var Hat=r=>{let{inputs:t,backend:e,attrs:n}=r,{indices:o}=t,{dtype:s,depth:i,onValue:a,offValue:u}=n,l=y.sizeFromShape(o.shape),c=new aC(l,i,a,u),p=rt({inputs:{x:o},backend:e,attrs:{shape:[l]}}),m=e.runWebGLProgram(c,[p],s);e.disposeIntermediateTensorInfo(p);let f=[...o.shape,i],d=rt({inputs:{x:m},backend:e,attrs:{shape:f}});return e.disposeIntermediateTensorInfo(m),d},SV={kernelName:$s,backendName:\"webgl\",kernelFunc:Hat};function gg(r){let{inputs:t,backend:e}=r,{x:n}=t;if(n.dtype===\"complex64\"){let o=Pl({inputs:{input:n},backend:e}),s=gg({inputs:{x:o},backend:e}),i=hp({inputs:{input:n},backend:e}),a=gg({inputs:{x:i},backend:e}),u=Rn({inputs:{real:s,imag:a},backend:e});return e.disposeIntermediateTensorInfo(o),e.disposeIntermediateTensorInfo(s),e.disposeIntermediateTensorInfo(i),e.disposeIntermediateTensorInfo(a),u}else return Ll({attrs:{shape:n.shape,dtype:n.dtype,value:n.dtype===\"string\"?\"\":0},backend:e})}var NV={kernelName:ji,backendName:\"webgl\",kernelFunc:gg};function kV(r){let{inputs:t,backend:e}=r,{x:n}=t;if(n.dtype===\"string\")throw new Error(\"onesLike is not supported under string dtype\");if(n.dtype===\"complex64\"){let o=Pl({inputs:{input:n},backend:e}),s=kV({inputs:{x:o},backend:e}),i=hp({inputs:{input:n},backend:e}),a=gg({inputs:{x:i},backend:e}),u=Rn({inputs:{real:s,imag:a},backend:e});return e.disposeIntermediateTensorInfo(o),e.disposeIntermediateTensorInfo(s),e.disposeIntermediateTensorInfo(i),e.disposeIntermediateTensorInfo(a),u}else return Ll({attrs:{shape:n.shape,dtype:n.dtype,value:1},backend:e})}var TV={kernelName:Bi,backendName:\"webgl\",kernelFunc:kV};function qat(r){let{inputs:t,backend:e,attrs:n}=r,{axis:o}=n;if(t.length===1)return HI({inputs:{input:t[0]},backend:e,attrs:{dim:o}});let s=t[0].shape,i=t[0].dtype;t.forEach(c=>{y.assertShapesMatch(s,c.shape,\"All tensors passed to stack must have matching shapes\"),y.assert(i===c.dtype,()=>\"All tensors passed to stack must have matching dtypes\")});let a=[],u=t.map(c=>{let p=HI({inputs:{input:c},backend:e,attrs:{dim:o}});return a.push(p),p}),l=L1({inputs:u,backend:e,attrs:{axis:o}});return a.forEach(c=>e.disposeIntermediateTensorInfo(c)),l}var _V={kernelName:Vi,backendName:\"webgl\",kernelFunc:qat};var lC=class{constructor(t,e,n){this.variableNames=[\"x\"],this.customUniforms=[{name:\"value\",type:\"float\"}],this.outputShape=e.map((l,c)=>l[0]+t[c]+l[1]);let o=t.length,s=zt(o),i=e.map(l=>l[0]).join(\",\"),a=e.map((l,c)=>l[0]+t[c]).join(\",\"),u=[\"coords[0]\",\"coords[1]\",\"coords[2]\",\"coords[3]\"].slice(0,o);if(o===1){this.userCode=`\n int start = ${i};\n int end = ${a};\n\n void main() {\n int outC = getOutputCoords();\n if (outC < start || outC >= end) {\n setOutput(value);\n } else {\n setOutput(getX(outC - start));\n }\n }\n `;return}this.userCode=`\n ${s} start = ${s}(${i});\n ${s} end = ${s}(${a});\n\n void main() {\n ${s} outC = getOutputCoords();\n if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {\n setOutput(value);\n } else {\n ${s} coords = outC - start;\n setOutput(getX(${u}));\n }\n }\n `}};var uC=class{constructor(t,e,n){this.variableNames=[\"x\"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:\"value\",type:\"float\"}],this.outputShape=e.map((h,g)=>h[0]+t[g]+h[1]);let o=t.length,s=zt(o),i=e.map(h=>h[0]).join(\",\"),a=e.map((h,g)=>h[0]+t[g]).join(\",\"),u=rr(\"rc\",o),l=rr(\"source\",o),c=`${u[o-1]} < ${this.outputShape[o-1]}`,p=o===1?\"source\":`vec2(${l.slice(-2).join()})`,m=[`${s} rc = outputLoc;`,`${u[o-1]} += 1;\n if(${c}) {\n `,o===1?\"\":`}\n rc = outputLoc;\n ${u[o-2]} += 1;\n if(${u[o-2]} < ${this.outputShape[o-2]}) {`,o===1?\"\":` ${u[o-1]} += 1;\n if(${c}) {`],f=o===1?\"rc < start || rc >= end\":\"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))\",d=\"\";for(let h=0,g=o===1?2:4;h{let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{paddings:s,constantValue:i}=n;if(y.sizeFromShape(o.shape)===0){let l=s.map((c,p)=>c[0]+o.shape[p]+c[1]);return Ll({backend:e,attrs:{shape:l,value:i,dtype:o.dtype}})}let a=L().getBool(\"WEBGL_PACK_ARRAY_OPERATIONS\")?new uC(o.shape,s,i):new lC(o.shape,s,i),u=[[i]];return e.runWebGLProgram(a,[o],o.dtype,u)},EV={kernelName:Rs,backendName:\"webgl\",kernelFunc:q1};var Kat=`\n if(a < 0.0 && floor(b) < b){\n return NAN;\n }\n if (b == 0.0) {\n return 1.0;\n }\n return (round(mod(b, 2.0)) != 1) ?\n pow(abs(a), b) : sign(a) * pow(abs(a), b);\n`,jat=`\n // isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.\n vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));\n vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);\n vec4 result = multiplier * pow(abs(a), b);\n\n // Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS\n bvec4 isExpZero = equal(b, vec4(0.0));\n result.r = isExpZero.r ? 1.0 : result.r;\n result.g = isExpZero.g ? 1.0 : result.g;\n result.b = isExpZero.b ? 1.0 : result.b;\n result.a = isExpZero.a ? 1.0 : result.a;\n\n bvec4 isNaN1 = lessThan(a, vec4(0.0));\n bvec4 isNaN2 = lessThan(floor(b), b);\n bvec4 isNaN = bvec4(isNaN1.x && isNaN2.x, isNaN1.y && isNaN2.y, isNaN1.z && isNaN2.z, isNaN1.w && isNaN2.w);\n `+Xn+`\n return result;\n`,Xat=ce({opSnippet:Kat,packedOpSnippet:jat}),AV={kernelName:Fs,backendName:\"webgl\",kernelFunc:Xat};function Yat(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,keepDims:i}=n,a=o.shape.length,u=[],l=y.parseAxisParam(s,o.shape),c=l,p=S.getAxesPermutation(c,a),m=o;p!=null&&(m=Pe({inputs:{x:o},backend:e,attrs:{perm:p}}),c=S.getInnerMostAxes(c.length,a),u.push(m)),S.assertAxesAreInnerMostDims(\"prod\",c,a);let f;if(e.shouldExecuteOnCPU([m])){let d=e.texData.get(m.dataId).values,{outVals:h,outShape:g,outDtype:x}=gz(m.shape,m.dtype,d,c);f=e.makeTensorInfo(g,x,h)}else{let[d,h]=S.computeOutAndReduceShapes(m.shape,c),g=y.sizeFromShape(h),x=rt({inputs:{x:m},backend:e,attrs:{shape:[-1,g]}}),b=lc(o.dtype),w=Yn(x,b,\"prod\",e);f=rt({inputs:{x:w},backend:e,attrs:{shape:d}}),u.push(x),u.push(w)}if(i){u.push(f);let d=S.expandShapeToKeepDim(f.shape,l);f=rt({inputs:{x:f},backend:e,attrs:{shape:d}})}return u.forEach(d=>e.disposeIntermediateTensorInfo(d)),f}var DV={kernelName:Ms,backendName:\"webgl\",kernelFunc:Yat};function Zat(r){let{inputs:t,backend:e,attrs:n}=r,{paramsNestedSplits:o,paramsDenseValues:s,indices:i}=t,{outputRaggedRank:a}=n,u=o.map(x=>e.readSync(x.dataId)),l=o.map(x=>x.shape),c=e.readSync(s.dataId),p=e.readSync(i.dataId),[m,f,d]=xz(u,l,c,s.shape,s.dtype,p,i.shape,a),h=m.map(x=>e.makeTensorInfo([x.length],\"int32\",x)),g=e.makeTensorInfo(d,s.dtype,f);return h.concat([g])}var $V={kernelName:Lp,backendName:\"webgl\",kernelFunc:Zat};function Jat(r){let{inputs:t,backend:e}=r,{starts:n,limits:o,deltas:s}=t,i=e.readSync(n.dataId),a=e.readSync(o.dataId),u=e.readSync(s.dataId),[l,c]=yz(i,n.shape,n.dtype,a,o.shape,u,s.shape),p=e.makeTensorInfo([l.length],\"int32\",l),m=e.makeTensorInfo([c.length],n.dtype,c);return[p,m]}var RV={kernelName:zp,backendName:\"webgl\",kernelFunc:Jat};function Qat(r){let{inputs:t,backend:e,attrs:n}=r,{shape:o,values:s,defaultValue:i,rowPartitionTensors:a}=t,{rowPartitionTypes:u}=n,l=e.readSync(o.dataId),c=e.readSync(s.dataId),p=e.readSync(i.dataId),m=a.map(g=>e.readSync(g.dataId)),f=a.map(g=>g.shape),[d,h]=bz(l,o.shape,c,s.shape,s.dtype,p,i.shape,m,f,u);return e.makeTensorInfo(d,s.dtype,h)}var FV={kernelName:Bp,backendName:\"webgl\",kernelFunc:Qat};var K1=r=>{let{backend:t,attrs:e}=r,{start:n,stop:o,step:s,dtype:i}=e,a=wz(n,o,s,i);return t.makeTensorInfo([a.length],i,a)},OV={kernelName:ru,backendName:\"webgl\",kernelFunc:K1};var tlt=\"return 1.0 / x;\",elt=It({opSnippet:tlt}),MV={kernelName:Ps,backendName:\"webgl\",kernelFunc:elt};var rlt=xr+`\n return (x < 0.0) ? 0.0 : x;\n`,nlt=`\n vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));\n bvec4 isNaN = isnan(x);\n\n result.r = isNaN.r ? x.r : result.r;\n result.g = isNaN.g ? x.g : result.g;\n result.b = isNaN.b ? x.b : result.b;\n result.a = isNaN.a ? x.a : result.a;\n\n return result;\n`,olt=It({opSnippet:rlt,packedOpSnippet:nlt}),PV={kernelName:Ls,backendName:\"webgl\",kernelFunc:olt};var slt=xr+`\n return (x < 0.0) ? 0.0 : min(6.0, x);\n`,ilt=`\n vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));\n bvec4 isNaN = isnan(x);\n\n result.r = isNaN.r ? x.r : result.r;\n result.g = isNaN.g ? x.g : result.g;\n result.b = isNaN.b ? x.b : result.b;\n result.a = isNaN.a ? x.a : result.a;\n\n return result;\n`,alt=It({opSnippet:slt,packedOpSnippet:ilt}),LV={kernelName:Vs,backendName:\"webgl\",kernelFunc:alt};var cC=class{constructor(t,e,n,o,s){this.variableNames=[\"A\"],this.outputShape=[];let[i,a,u,l]=t;this.outputShape=[i,e,n,l];let c=[o&&e>1?a-1:a,o&&n>1?u-1:u],p=[o&&e>1?e-1:e,o&&n>1?n-1:n],m;s?m=\"(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)\":m=\"vec2(yRC) * effectiveInputOverOutputRatioRC\",this.userCode=`\n const vec2 effectiveInputOverOutputRatioRC = vec2(\n ${c[0]/p[0]},\n ${c[1]/p[1]});\n const vec2 inputShapeRC = vec2(${a}.0, ${u}.0);\n\n void main() {\n ivec4 coords = getOutputCoords();\n int b = coords[0];\n int d = coords[3];\n ivec2 yRC = coords.yz;\n\n // Fractional source index.\n vec2 sourceFracIndexRC = ${m};\n\n // Compute the four integer indices.\n ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));\n ivec2 sourceCeilRC = ivec2(\n min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));\n\n float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);\n float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);\n float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);\n float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);\n\n vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);\n\n float top = topLeft + (topRight - topLeft) * fracRC.y;\n float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;\n float newValue = top + (bottom - top) * fracRC.x;\n\n setOutput(newValue);\n }\n `}};var pC=class{constructor(t,e,n,o,s){this.variableNames=[\"A\"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[i,a,u,l]=t;this.outputShape=[i,e,n,l];let c=[o&&e>1?a-1:a,o&&n>1?u-1:u],p=[o&&e>1?e-1:e,o&&n>1?n-1:n],m;s?m=\"(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)\":m=\"vec3(yRC) * effectiveInputOverOutputRatioRC\",this.userCode=`\n const vec3 effectiveInputOverOutputRatioRC = vec3(\n ${c[0]/p[0]},\n ${c[1]/p[1]},\n ${c[1]/p[1]});\n const vec3 inputShapeRC = vec3(${a}.0, ${u}.0,\n ${u}.0);\n\n float getAValue(int b, int r, int c, int d) {\n return getChannel(getA(b, r, c, d), vec2(c, d));\n }\n\n void main() {\n ivec4 coords = getOutputCoords();\n int b = coords[0];\n int d = coords[3];\n // Calculate values for next column in yRC.z.\n ivec3 yRC = coords.yzz + ivec3(0, 0, 1);\n\n // Fractional source index.\n vec3 sourceFracIndexRC = ${m};\n\n // Compute the four integer indices.\n ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));\n ivec3 sourceCeilRC = ivec3(\n min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));\n\n // Should we calculate next column and row elements in 2x2 packed cell.\n bool hasNextCol = d < ${l-1};\n bool hasNextRow = coords.z < ${n-1};\n\n // In parallel, construct four corners for all four components in\n // packed 2x2 cell.\n vec4 topLeft = vec4(\n getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),\n hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)\n : 0.0,\n hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)\n : 0.0,\n (hasNextRow && hasNextCol) ?\n getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);\n\n vec4 bottomLeft = vec4(\n getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),\n hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)\n : 0.0,\n hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)\n : 0.0,\n (hasNextRow && hasNextCol) ?\n getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);\n\n vec4 topRight = vec4(\n getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),\n hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)\n : 0.0,\n hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)\n : 0.0,\n (hasNextRow && hasNextCol) ?\n getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);\n\n vec4 bottomRight = vec4(\n getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),\n hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)\n : 0.0,\n hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)\n : 0.0,\n (hasNextRow && hasNextCol) ?\n getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);\n\n vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);\n\n vec4 top = mix(topLeft, topRight, fracRC.yyzz);\n vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);\n vec4 newValue = mix(top, bottom, fracRC.x);\n\n setOutput(newValue);\n }\n `}};function llt(r){let{inputs:t,backend:e,attrs:n}=r,{images:o}=t,{alignCorners:s,halfPixelCenters:i,size:a}=n,[u,l]=a,c=L().getBool(\"WEBGL_PACK_IMAGE_OPERATIONS\")?new pC(o.shape,u,l,s,i):new cC(o.shape,u,l,s,i);return e.runWebGLProgram(c,[o],\"float32\")}var zV={kernelName:Bs,backendName:\"webgl\",kernelFunc:llt};var mC=class{constructor(t,e,n){this.variableNames=[\"dy\"],this.outputShape=[],this.outputShape=e;let[,o,s]=e,[,i,a]=t,u=[n&&i>1?o-1:o,n&&a>1?s-1:s],l=[n&&i>1?i-1:i,n&&a>1?a-1:a],c=u[0]/l[0],p=u[1]/l[1],m=1/c,f=1/p,d=Math.ceil(m)*2+2,h=Math.ceil(f)*2+2;this.userCode=`\n void main() {\n ivec4 coords = getOutputCoords();\n int b = coords[0];\n int d = coords[3];\n int r = coords[1];\n int c = coords[2];\n\n float accumulator = 0.0;\n\n const float heightScale = float(${c});\n const float widthScale = float(${p});\n\n const float invHeightScale = float(${m});\n const float invWidthScale = float(${f});\n\n const int winHeight = int(${d});\n const int winWidth = int(${h});\n\n // Compute bounds for where in dy we will look\n float startRLerp = floor(float(r) * invHeightScale);\n int startDyR = int(startRLerp - float(winHeight / 2));\n\n float startCLerp = floor(float(c) * invWidthScale);\n int startDyC = int(startCLerp - float(winWidth / 2));\n\n // Loop over dy\n for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {\n int dyR = dyROffset + startDyR;\n\n // Guard against the window exceeding the bounds of dy\n if (dyR < 0 || dyR >= ${i}) {\n continue;\n }\n\n for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {\n int dyC = dyCOffset + startDyC;\n\n // Guard against the window exceeding the bounds of dy\n if (dyC < 0 || dyC >= ${a}) {\n continue;\n }\n\n float dxR = float(dyR) * heightScale;\n int topDxRIndex = int(floor(dxR));\n int bottomDxRIndex = int(min(ceil(dxR), ${o-1}.0));\n float dxRLerp = dxR - float(topDxRIndex);\n float inverseDxRLerp = 1.0 - dxRLerp;\n\n float dxC = float(dyC) * widthScale;\n int leftDxCIndex = int(floor(dxC));\n int rightDxCIndex = int(min(ceil(dxC), ${s-1}.0));\n float dxCLerp = dxC - float(leftDxCIndex);\n float inverseDxCLerp = 1.0 - dxCLerp;\n\n if (r == topDxRIndex && c == leftDxCIndex) {\n // topLeft\n accumulator +=\n getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;\n }\n\n if (r == topDxRIndex && c == rightDxCIndex) {\n // topRight\n accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;\n }\n\n if (r == bottomDxRIndex && c == leftDxCIndex) {\n // bottomLeft\n accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;\n }\n\n if (r == bottomDxRIndex && c == rightDxCIndex) {\n // bottomRight\n accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;\n }\n }\n }\n // End loop over dy\n\n setOutput(accumulator);\n }\n `}};function ult(r){let{inputs:t,backend:e,attrs:n}=r,{images:o,dy:s}=t,{alignCorners:i}=n,a=new mC(s.shape,o.shape,i);return e.runWebGLProgram(a,[s],s.dtype)}var BV={kernelName:rl,backendName:\"webgl\",kernelFunc:ult};var fC=class{constructor(t,e,n,o,s){this.variableNames=[\"A\"],this.outputShape=[];let[i,a,u,l]=t;this.outputShape=[i,e,n,l];let c=[o&&e>1?a-1:a,o&&n>1?u-1:u],p=[o&&e>1?e-1:e,o&&n>1?n-1:n],m=o?\"0.5\":\"0.0\",f;s?f=\"max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))\":f=\"vec2(yRC) * effectiveInputOverOutputRatioRC\",this.userCode=`\n const vec2 effectiveInputOverOutputRatioRC = vec2(\n ${c[0]/p[0]},\n ${c[1]/p[1]});\n const vec2 inputShapeRC = vec2(${a}.0, ${u}.0);\n\n void main() {\n ivec4 coords = getOutputCoords();\n int b = coords[0];\n int d = coords[3];\n ivec2 yRC = coords.yz;\n\n // Fractional source index.\n vec2 sourceFracIndexRC = ${f};\n\n // Compute the coordinators of nearest neighbor point.\n ivec2 sourceNearestRC = ivec2(\n min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${m})));\n float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);\n\n setOutput(newValue);\n }\n `}};var dC=class{constructor(t,e,n,o,s){this.variableNames=[\"A\"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[i,a,u,l]=t;this.outputShape=[i,e,n,l];let c=[o&&e>1?a-1:a,o&&n>1?u-1:u],p=[o&&e>1?e-1:e,o&&n>1?n-1:n],m=o?\"0.5\":\"0.0\",f;s?f=\"max((vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC, vec3(0.0))\":f=\"vec3(yRC) * effectiveInputOverOutputRatioRC\",this.userCode=`\n const vec3 effectiveInputOverOutputRatioRC = vec3(\n ${c[0]/p[0]},\n ${c[1]/p[1]},\n ${c[1]/p[1]});\n const vec3 inputShapeRC = vec3(${a}.0, ${u}.0,\n ${u}.0);\n\n float getAValue(int b, int r, int c, int d) {\n return getChannel(getA(b, r, c, d), vec2(c, d));\n }\n\n void main() {\n ivec4 coords = getOutputCoords();\n int b = coords[0];\n int d = coords[3];\n // Calculate values for next column in yRC.z.\n ivec3 yRC = coords.yzz + ivec3(0, 0, 1);\n\n // Fractional source index.\n vec3 sourceFracIndexRC = ${f};\n\n // Compute the coordinators of nearest neighbor point.\n ivec3 sourceNearestRC = ivec3(\n min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${m})));\n\n // Should we calculate next column and row elements in 2x2 packed cell.\n bool hasNextCol = d < ${l-1};\n bool hasNextRow = coords.z < ${n-1};\n\n vec4 newValue = vec4(\n getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d),\n hasNextCol ? getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d + 1)\n : 0.0,\n hasNextRow ? getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d)\n : 0.0,\n (hasNextRow && hasNextCol) ?\n getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d + 1) : 0.0);\n\n setOutput(newValue);\n }\n `}};function clt(r){let{inputs:t,backend:e,attrs:n}=r,{images:o}=t,{alignCorners:s,halfPixelCenters:i,size:a}=n,[u,l]=a,c=L().getBool(\"WEBGL_PACK_IMAGE_OPERATIONS\")?new dC(o.shape,u,l,s,i):new fC(o.shape,u,l,s,i);return e.runWebGLProgram(c,[o],o.dtype)}var VV={kernelName:zs,backendName:\"webgl\",kernelFunc:clt};var hC=class{constructor(t,e,n){this.variableNames=[\"dy\"],this.outputShape=[],this.outputShape=e;let[,o,s]=e,[,i,a]=t,u=[n&&i>1?o-1:o,n&&a>1?s-1:s],l=[n&&i>1?i-1:i,n&&a>1?a-1:a],c=u[0]/l[0],p=u[1]/l[1],m=1/c,f=1/p,d=Math.ceil(m)*2+2,h=Math.ceil(f)*2+2;this.userCode=`\n void main() {\n ivec4 coords = getOutputCoords();\n int b = coords[0];\n int d = coords[3];\n int r = coords[1];\n int c = coords[2];\n\n float accumulator = 0.0;\n\n const float heightScale = float(${c});\n const float widthScale = float(${p});\n\n const float invHeightScale = float(${m});\n const float invWidthScale = float(${f});\n\n const int winHeight = int(${d});\n const int winWidth = int(${h});\n\n // Compute bounds for where in dy we will look\n float startRLerp = floor(float(r) * invHeightScale);\n int startDyR = int(floor(startRLerp - float(winHeight / 2)));\n\n float startCLerp = floor(float(c) * invWidthScale);\n int startDyC = int(floor(startCLerp - float(winWidth / 2)));\n\n // Loop over dy\n for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {\n int dyR = dyROffset + startDyR;\n\n // Guard against the window exceeding the bounds of dy\n if (dyR < 0 || dyR >= ${i}) {\n continue;\n }\n\n for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {\n int dyC = dyCOffset + startDyC;\n\n // Guard against the window exceeding the bounds of dy\n if (dyC < 0 || dyC >= ${a}) {\n continue;\n }\n\n float sourceFracRow =\n float(${u[0]}) *\n (float(dyR) / float(${l[0]}));\n\n float sourceFracCol =\n float(${u[1]}) *\n (float(dyC) / float(${l[1]}));\n\n int sourceNearestRow = int(min(\n float(int(${o}) - 1),\n ${n} ? float(round(sourceFracRow)) :\n float(floor(sourceFracRow))));\n\n int sourceNearestCol = int(min(\n float(int(${s}) - 1),\n ${n} ? float(round(sourceFracCol)) :\n float(floor(sourceFracCol))));\n\n if (r == sourceNearestRow && c == sourceNearestCol) {\n accumulator += getDy(b, dyR, dyC, d);\n }\n }\n }\n // End loop over dy\n\n setOutput(accumulator);\n }\n `}};function plt(r){let{inputs:t,backend:e,attrs:n}=r,{images:o,dy:s}=t,{alignCorners:i}=n,a=new hC(s.shape,o.shape,i);return e.runWebGLProgram(a,[s],s.dtype)}var GV={kernelName:el,backendName:\"webgl\",kernelFunc:plt};var gC=class{constructor(t,e){this.variableNames=[\"x\"];let n=t.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=t,n===1){this.userCode=`\n void main() {\n int coord = getOutputCoords();\n setOutput(getX(${t[0]} - coord - 1));\n }\n `;return}let o=a=>e.indexOf(a)!==-1&&t[a]!==1?`${t[a]} - coords[${a}] - 1`:`coords[${a}]`,s=t.map((a,u)=>o(u)).join(\",\"),i=zt(n);this.userCode=`\n void main() {\n ${i} coords = getOutputCoords();\n setOutput(getX(${s}));\n }\n `}};var xC=class{constructor(t,e){this.variableNames=[\"x\"],this.packedInputs=!0,this.packedOutput=!0;let n=t.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=t;let o=rr(\"rc\",n),s=`${o[n-1]} + 1 < ${this.outputShape[n-1]}`,i=`${o[n-2]} + 1 < ${this.outputShape[n-2]}`,a=zt(n);n===1?this.userCode=`\n void main(){\n int rc = getOutputCoords();\n vec4 result = vec4(0.);\n result.r = getChannel(getX(${t[0]} - rc - 1),\n ${t[0]} - rc - 1);\n if(${s}){\n result.g = getChannel(getX(${t[0]} - (rc + 1) - 1),\n ${t[0]} - (rc + 1) - 1);\n }\n setOutput(result);\n }\n `:this.userCode=`\n void main() {\n ${a} rc = getOutputCoords();\n vec4 result = vec4(0.);\n result.r = ${u(o.slice())};\n if(${s}){\n result.g = ${l(o.slice())};\n }\n if(${i}) {\n result.b = ${c(o.slice())};\n if(${s}) {\n result.a = ${p(o.slice())};\n }\n }\n setOutput(result);\n }\n `;function u(d){return m(d)}function l(d){return d[n-1]=\"(\"+d[n-1]+\" + 1)\",m(d)}function c(d){return d[n-2]=\"(\"+d[n-2]+\" + 1)\",m(d)}function p(d){return d[n-1]=\"(\"+d[n-1]+\" + 1)\",d[n-2]=\"(\"+d[n-2]+\" + 1)\",m(d)}function m(d){let h=t.map((b,w)=>f(w,d)),g=h.join(\",\"),x=h.slice(-2).join(\",\");return`getChannel(getX(${g}), vec2(${x}))`}function f(d,h){return e.indexOf(d)!==-1&&t[d]!==1?`${t[d]} - ${h[d]} - 1`:`${h[d]}`}}};function mlt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{dims:s}=n,i=o.shape.length,a=y.parseAxisParam(s,o.shape);if(i===0)return nr({inputs:{x:o},backend:e});let u=L().getBool(\"WEBGL_PACK_ARRAY_OPERATIONS\")?new xC(o.shape,a):new gC(o.shape,a);return e.runWebGLProgram(u,[o],o.dtype)}var WV={kernelName:Gs,backendName:\"webgl\",kernelFunc:mlt};var yC=class{constructor(t,e){this.variableNames=[\"Image\"],this.outputShape=[],this.customUniforms=[{name:\"params\",type:\"vec4\"}];let n=t[1],o=t[2];this.outputShape=t;let s=\"\";typeof e==\"number\"?s=`float outputValue = ${e.toFixed(2)};`:s=`\n vec3 fill = vec3(${e.join(\",\")});\n float outputValue = fill[coords[3]];`,this.userCode=`\n void main() {\n ivec4 coords = getOutputCoords();\n int x = coords[2];\n int y = coords[1];\n float coordXFloat = (float(x) - params[0]) * params[3] -\n (float(y) - params[1]) * params[2];\n float coordYFloat = (float(x) - params[0]) * params[2] +\n (float(y) - params[1]) * params[3];\n int coordX = int(round(coordXFloat + params[0]));\n int coordY = int(round(coordYFloat + params[1]));\n ${s}\n if(coordX >= 0 && coordX < ${o} && coordY >= 0 && coordY < ${n}) {\n outputValue = getImage(coords[0], coordY, coordX, coords[3]);\n }\n setOutput(outputValue);\n }\n `}};var UV={kernelName:pl,backendName:\"webgl\",kernelFunc:({inputs:r,attrs:t,backend:e})=>{let{image:n}=r,{radians:o,fillValue:s,center:i}=t,a=e,u=new yC(n.shape,s),[l,c]=S.getImageCenter(i,n.shape[1],n.shape[2]),p=[[l,c,Math.sin(o),Math.cos(o)]];return a.runWebGLProgram(u,[n],n.dtype,p)}};var flt=`\n // OpenGL ES does not support round function.\n // The algorithm is based on banker's rounding.\n float base = floor(x);\n if ((x - base) < 0.5) {\n return floor(x);\n } else if ((x - base) > 0.5) {\n return ceil(x);\n } else {\n if (mod(base, 2.0) == 0.0) {\n return base;\n } else {\n return base + 1.0;\n }\n }\n`,dlt=It({opSnippet:flt}),HV={kernelName:Ws,backendName:\"webgl\",kernelFunc:dlt};var hlt=\"return inversesqrt(x);\",glt=It({opSnippet:hlt,cpuKernelImpl:Iz}),qV={kernelName:Us,backendName:\"webgl\",kernelFunc:glt};var Ku=class{constructor(t,e,n,o,s,i,a=!0,u=!1){this.variableNames=[\"updates\",\"indices\",\"defaultValue\"],this.outputShape=i;let l=zt(s.length),c=zt(i.length),p=\"\";n===1?p=\"i\":n===2&&(p=\"i, j\");let m=`getIndices(${p})`,f=\"\";o===1?f=\"i\":o===2&&(f=\"i, coords[1]\");let d=`getUpdates(${f})`,h=\"\";u&&(h=\"coords[0], coords[1]\");let g=`getDefaultValue(${h})`,x=e>1?\"strides[j]\":\"strides\";this.userCode=`\n ${l} strides = ${l}(${s});\n\n void main() {\n ${c} coords = getOutputCoords();\n float sum = 0.0;\n bool found = false;\n for (int i = 0; i < ${t}; i++) {\n int flattenedIndex = 0;\n for (int j = 0; j < ${e}; j++) {\n int index = round(${m});\n flattenedIndex += index * ${x};\n }\n if (flattenedIndex == coords[0]) {\n sum += ${d};\n found = true;\n }\n }\n setOutput(mix(${g}, sum, float(found)));\n }\n `}};var bC=class{constructor(t,e,n,o,s,i,a=!0,u=!1){this.variableNames=[\"updates\",\"indices\",\"defaultValue\"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=i;let l=zt(s.length),c=zt(i.length),p=\"\";n===1?p=\"i\":n===2&&(p=\"i, j\");let m=`getIndices(${p})`,f=\"\";o===1?f=\"i\":o===2&&(f=\"i, coords[1]\");let d=`getUpdates(${f})`,h=\"\";u&&(h=\"coords[0], coords[1]\");let g=`getDefaultValue(${h})`,x=e>1?\"strides[j]\":\"strides\",b=e>1?\"strides[j + 1]\":\"strides\";this.userCode=`\n ${l} strides = ${l}(${s});\n\n void main() {\n ${c} coords = getOutputCoords();\n vec4 sum = vec4(0.);\n vec4 found = vec4(0.);\n for (int i = 0; i < ${t}; i+=2) {\n ivec2 flattenedIndex = ivec2(0);\n for (int j = 0; j < ${e}; j+=2) {\n ivec4 index = round(${m});\n flattenedIndex += index.xz * ${x};\n if (j + 1 < ${e}) {\n flattenedIndex += index.yw * ${b};\n }\n }\n if (flattenedIndex[0] == coords[0] || flattenedIndex[1] == coords[0] ||\n flattenedIndex[0] == coords[0] + 1 || flattenedIndex[1] == coords[0] + 1) {\n vec4 updVals = ${d};\n if (flattenedIndex[0] == coords[0]) {\n sum.xy += updVals.xy;\n found.xy = vec2(1.);\n } else if (flattenedIndex[0] == coords[0] + 1) {\n sum.zw += updVals.xy;\n found.zw = vec2(1.);\n }\n if (flattenedIndex[1] == coords[0]) {\n sum.xy += updVals.zw;\n found.xy = vec2(1.);\n } else if (flattenedIndex[1] == coords[0] + 1) {\n sum.zw += updVals.zw;\n found.zw = vec2(1.);\n }\n }\n }\n setOutput(mix(${g}, sum, found));\n }\n `}};function xlt(r){let{inputs:t,backend:e,attrs:n}=r,{indices:o,updates:s}=t,{shape:i}=n,{sliceRank:a,numUpdates:u,sliceSize:l,strides:c,outputSize:p}=S.calculateShapes(s,o,i),m=[p/l,l];if(p===0)return e.makeTensorInfo(i,o.dtype);let f=rt({inputs:{x:o},backend:e,attrs:{shape:[u,a]}}),d=rt({inputs:{x:s},backend:e,attrs:{shape:[u,l]}}),h=e.makeTensorInfo([],\"float32\",new Float32Array([0])),g;L().getBool(\"WEBGL_PACK\")?g=new bC(u,a,f.shape.length,d.shape.length,c,m):g=new Ku(u,a,f.shape.length,d.shape.length,c,m);let x=e.runWebGLProgram(g,[d,f,h],d.dtype),b=rt({inputs:{x},backend:e,attrs:{shape:i}});return e.disposeIntermediateTensorInfo(f),e.disposeIntermediateTensorInfo(d),e.disposeIntermediateTensorInfo(x),e.disposeIntermediateTensorInfo(h),b}var KV={kernelName:nl,backendName:\"webgl\",kernelFunc:xlt};var wC=class{constructor(t,e,n,o){this.variableNames=[\"sortedSequence\",\"values\"],this.customUniforms=[{name:\"numInputs\",type:\"int\"}],this.outputShape=[t,n];let s=\"while (left < right) {\",i=`for (int i = 0; i < ${Math.ceil(Math.log2(e+1))}; ++i) { if (left >= right) break;`,a=L().getNumber(\"WEBGL_VERSION\")===2?s:i,u=o===\"left\"?\"<\":\"<=\";this.userCode=`\n int findBound(int batch, float value) {\n int left = 0;\n int right = numInputs;\n int mid;\n ${a}\n mid = (left + right) / 2;\n if (getSortedSequence(batch, mid) ${u} value) {\n left = mid + 1;\n } else {\n right = mid;\n }\n }\n return right;\n }\n\n void main() {\n ivec2 coords = getOutputCoords();\n int batch = coords[0];\n int valueIndex = coords[1];\n\n float value = getValues(batch, valueIndex);\n\n setOutput(float(findBound(batch, value)));\n }\n `}};function ylt(r){let{inputs:t,backend:e,attrs:n}=r,{sortedSequence:o,values:s}=t,{side:i}=n,a=new wC(o.shape[0],o.shape[1],s.shape[1],i),u=[[o.shape[1]]];return e.runWebGLProgram(a,[o,s],\"int32\",u)}var jV={kernelName:sl,backendName:\"webgl\",kernelFunc:ylt};var IC=class{constructor(t,e,n){this.variableNames=[\"c\",\"a\",\"b\"],this.outputShape=e;let o,s;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)s=\"resRC\",o=\"resRC\";else{let a=[\"resRC.x\",\"resRC.y\",\"resRC.z\",\"resRC.w\"],u=[],l=[];for(let c=0;c= 1.0) {\n setOutput(getA(${s}));\n } else {\n setOutput(getB(${s}));\n }\n }\n `}};function blt(r){let{inputs:t,backend:e}=r,{condition:n,t:o,e:s}=t,i=new IC(n.shape.length,o.shape,o.shape.length);return e.runWebGLProgram(i,[n,o,s],ur(o.dtype,s.dtype))}var XV={kernelName:Wi,backendName:\"webgl\",kernelFunc:blt};var wlt=`\n // Stable and Attracting Fixed Point (0, 1) for Normalized Weights.\n // see: https://arxiv.org/abs/1706.02515\n float scaleAlpha = ${S.SELU_SCALEALPHA};\n float scale = ${S.SELU_SCALE};\n return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);\n`,Ilt=It({opSnippet:wlt}),YV={kernelName:Hs,backendName:\"webgl\",kernelFunc:Ilt};var Clt=Po+`\n return 1.0 / (1.0 + exp(-1.0 * x));\n`,vlt=`\n vec4 result = 1.0 / (1.0 + exp(-1.0 * x));\n bvec4 isNaN = isnan(x);\n\n result.r = isNaN.r ? x.r : result.r;\n result.g = isNaN.g ? x.g : result.g;\n result.b = isNaN.b ? x.b : result.b;\n result.a = isNaN.a ? x.a : result.a;\n\n return result;\n`,Slt=It({opSnippet:Clt,packedOpSnippet:vlt,cpuKernelImpl:vz}),ZV={kernelName:Xs,backendName:\"webgl\",kernelFunc:Slt};var Nlt=`\n if (isnan(x)) { return 0.0; }\n return sign(x);\n`,klt=It({opSnippet:Nlt}),JV={kernelName:js,backendName:\"webgl\",kernelFunc:klt};var Tlt=Po+`\n return sin(x);\n`,_lt=`\n vec4 result = sin(x);\n bvec4 isNaN = isnan(x);\n ${Xn}\n return result;\n`,Elt=It({opSnippet:Tlt,packedOpSnippet:_lt}),QV={kernelName:qs,backendName:\"webgl\",kernelFunc:Elt};var Alt=`\n float e2x = exp(x);\n return (e2x - 1.0 / e2x) / 2.0;\n`,Dlt=It({opSnippet:Alt}),tG={kernelName:Ks,backendName:\"webgl\",kernelFunc:Dlt};var $lt=`\n float epsilon = 1.1920928955078125e-7;\n float threshold = log(epsilon) + 2.0;\n\n bool too_large = x > -threshold;\n bool too_small = x < threshold;\n\n float result;\n float exp_x = exp(x);\n\n if (too_large){\n result = x;\n }\n else if (too_small){\n result = exp_x;\n }\n else{\n result = log(exp_x + 1.0);\n }\n return result;\n`,Rlt=It({opSnippet:$lt}),eG={kernelName:Ys,backendName:\"webgl\",kernelFunc:Rlt};var Flt=r=>{let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{blockShape:s,paddings:i}=n;y.assert(o.shape.length<=4,()=>\"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet\");let a=s.reduce((x,b)=>x*b),u=[[0,0]];u.push(...i);for(let x=1+s.length;xe.disposeIntermediateTensorInfo(x)),g},rG={kernelName:Hi,backendName:\"webgl\",kernelFunc:Flt};function Olt(r){let{inputs:t,backend:e}=r,{indices:n,values:o,denseShape:s,defaultValue:i}=t;if(s.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:\n ${s.shape}`);if(n.shape.length!==2)throw new Error(`Indices must be a matrix, saw:\n ${n.shape}`);if(o.shape.length!==1)throw new Error(`Values must be a vector, saw:\n ${o.shape}`);if(i.shape.length!==0)throw new Error(`Default value must be a scalar, saw:\n ${i.shape}`);let a=e.readSync(n.dataId),u=e.readSync(o.dataId),l=e.readSync(s.dataId),c=e.readSync(i.dataId)[0],[p,m,f,d,h]=Nz(a,n.shape,n.dtype,u,o.dtype,l,c);return[e.makeTensorInfo(m,n.dtype,p),e.makeTensorInfo([m[0]],o.dtype,f),e.makeTensorInfo([d.length],\"bool\",new Uint8Array(d.map(g=>Number(g)))),e.makeTensorInfo([h.length],n.dtype,new Int32Array(h))]}var nG={kernelName:nu,backendName:\"webgl\",kernelFunc:Olt};function Mlt(r){let{inputs:t,backend:e}=r,{inputIndices:n,inputShape:o,newShape:s}=t;if(n.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${n.shape}`);if(o.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${o.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(e.readSync(o.dataId)),a=e.readSync(n.dataId),u=Array.from(e.readSync(s.dataId)),[l,c,p]=kz(a,n.shape,n.dtype,i,u);return[e.makeTensorInfo(c,n.dtype,l),e.makeTensorInfo([p.length],s.dtype,new Int32Array(p))]}var oG={kernelName:il,backendName:\"webgl\",kernelFunc:Mlt};function Plt(r){let{inputs:t,backend:e}=r,{data:n,indices:o,segmentIds:s}=t;if(n.shape.length<1)throw new Error(\"Data should be at least 1 dimensional but received scalar\");if(o.shape.length!==1)throw new Error(`Indices should be a vector but received shape\n ${o.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape\n ${s.shape}`);let i=e.readSync(n.dataId),a=e.readSync(o.dataId),u=e.readSync(s.dataId),[l,c]=rI(i,n.shape,n.dtype,a,u,!0);return e.makeTensorInfo(c,n.dtype,l)}var sG={kernelName:ou,backendName:\"webgl\",kernelFunc:Plt};function Llt(r){let{inputs:t,backend:e}=r,{data:n,indices:o,segmentIds:s}=t;if(n.shape.length<1)throw new Error(\"Data should be at least 1 dimensional but received scalar\");if(o.shape.length!==1)throw new Error(`Indices should be a vector but received shape\n ${o.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape\n ${s.shape}`);let i=e.readSync(n.dataId),a=e.readSync(o.dataId),u=e.readSync(s.dataId),[l,c]=rI(i,n.shape,n.dtype,a,u);return e.makeTensorInfo(c,n.dtype,l)}var iG={kernelName:su,backendName:\"webgl\",kernelFunc:Llt};function zlt(r){let{inputs:t,backend:e,attrs:n}=r,{sparseIndices:o,sparseValues:s,defaultValue:i}=t,{outputShape:a}=n,{sliceRank:u,numUpdates:l,sliceSize:c,strides:p,outputSize:m}=S.calculateShapes(s,o,a),f=!1;if(s.dtype===\"string\"){let x=e.bufferSync(o),b=e.bufferSync(s),w=y.decodeString(e.readSync(i.dataId)[0]),I=Cz(x,b,a,m,c,l,u,p,w,f);return e.makeTensorInfo(a,I.dtype,I.values)}let d=new Ku(l,u,o.shape.length,s.shape.length,p,[m,1],f),h=e.runWebGLProgram(d,[s,o,i],s.dtype),g=rt({inputs:{x:h},backend:e,attrs:{shape:a}});return e.disposeIntermediateTensorInfo(h),g}var aG={kernelName:al,backendName:\"webgl\",kernelFunc:zlt};function Blt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{numOrSizeSplits:s,axis:i}=n,a=y.parseAxisParam(i,o.shape)[0],u=S.prepareSplitSize(o,s,a),l=o.shape.length,c=new Array(l).fill(0),p=o.shape.slice();return u.map(m=>{let f=[...p];f[a]=m;let d=ki({inputs:{x:o},backend:e,attrs:{begin:c,size:f}});return c[a]+=m,d})}var lG={kernelName:qi,backendName:\"webgl\",kernelFunc:Blt};var uG=\"return sqrt(x);\",Vlt=It({opSnippet:uG,packedOpSnippet:uG,cpuKernelImpl:Tz}),cG={kernelName:Zs,backendName:\"webgl\",kernelFunc:Vlt};var Glt=\"return x * x;\",Wlt=It({opSnippet:Glt}),pG={kernelName:iu,backendName:\"webgl\",kernelFunc:Wlt};var mG=\"return (a - b) * (a - b);\",Ult=ce({opSnippet:mG,packedOpSnippet:mG}),fG={kernelName:ti,backendName:\"webgl\",kernelFunc:Ult};function Hlt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t;if(o.dtype!==\"string\")throw new Error(\"Input must be of datatype string\");let s=e.readSync(o.dataId),i=S.fromUint8ToStringArray(s),a=_z(i,\"string\",n);return e.makeTensorInfo(o.shape,\"string\",a)}var dG={kernelName:ec,backendName:\"webgl\",kernelFunc:Hlt};function qlt({inputs:r,attrs:t,backend:e}){let{x:n}=r,o=xr+`\n return x > 0.0 ? 1.0 : float(${t.alpha});\n `,s=new zr(n.shape,o);return e.runWebGLProgram(s,[n],n.dtype)}var hG={kernelName:xo,backendName:\"webgl\",kernelFunc:qlt};var CC=class{constructor(t,e,n){this.variableNames=[\"x\"],this.outputShape=n;let o=n.length,s=zt(n.length),i=zt(n.length),a=\"\";if(o===1)a=\"coords * strides + begin\";else{let u=0;a=n.map((l,c)=>(u++,n.length===1?`coords * strides[${c}] + begin[${c}]`:`coords[${u-1}] * strides[${c}] + begin[${c}]`)).join(\",\")}this.userCode=`\n ${s} begin = ${s}(${t});\n ${s} strides = ${s}(${e});\n\n void main() {\n ${i} coords = getOutputCoords();\n setOutput(getX(${a}));\n }\n `}};function Klt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{begin:s,end:i,strides:a,beginMask:u,endMask:l,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:m}=n,{finalShapeSparse:f,finalShape:d,isIdentity:h,sliceDim0:g,isSimpleSlice:x,begin:b,end:w,strides:I}=Be.sliceInfo(o.shape,s,i,a,u,l,c,p,m),N;if(h)N=rt({inputs:{x:o},backend:e,attrs:{shape:d}});else if(g||x){y.assert(o.shape.length>=1,()=>`Input must have rank at least 1, got: ${o.shape.length}`);let A=Be.computeOutShape(b,w,I),D=ki({inputs:{x:o},backend:e,attrs:{begin:b,size:A}});N=rt({inputs:{x:D},backend:e,attrs:{shape:d}}),e.disposeIntermediateTensorInfo(D)}else if(e.shouldExecuteOnCPU([o])){let D=e.readSync(o.dataId),F=wt(o.shape,o.dtype,D),M=Ez(f,F,I,b);N=e.makeTensorInfo(d,o.dtype,M.values)}else{let D=new CC(b,I,f);N=e.runWebGLProgram(D,[o],o.dtype)}let E=rt({inputs:{x:N},backend:e,attrs:{shape:d}});return e.disposeIntermediateTensorInfo(N),E}var gG={kernelName:ll,backendName:\"webgl\",kernelFunc:Klt};function jlt(r){let{inputs:t,backend:e,attrs:n}=r,{separator:o,nGramWidths:s,leftPad:i,rightPad:a,padWidth:u,preserveShortSequences:l}=n,{data:c,dataSplits:p}=t,m=e.readSync(c.dataId),f=e.readSync(p.dataId),[d,h]=Az(m,f,o,s,i,a,u,l);return[e.makeTensorInfo([d.length],\"string\",d),e.makeTensorInfo(p.shape,\"int32\",h)]}var xG={kernelName:au,backendName:\"webgl\",kernelFunc:jlt};function Xlt(r){let{inputs:t,backend:e,attrs:n}=r,{skipEmpty:o}=n,{input:s,delimiter:i}=t;if(s.dtype!==\"string\")throw new Error(\"Input must be of datatype string\");if(s.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${s.shape}`);if(i.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${i.shape}`);let a=e.readSync(s.dataId),u=e.readSync(i.dataId)[0],[l,c,p]=Dz(a,u,o),m=c.length;return[e.makeTensorInfo([m,2],\"int32\",l),e.makeTensorInfo([m],\"string\",c),e.makeTensorInfo([2],\"int32\",new Int32Array(p))]}var yG={kernelName:lu,backendName:\"webgl\",kernelFunc:Xlt};function Ylt(r){let{inputs:t,backend:e,attrs:n}=r,{numBuckets:o}=n,{input:s}=t;if(s.dtype!==\"string\")throw new Error(\"Input must be of datatype string\");if(o<=0)throw new Error(\"Number of buckets must be at least 1\");let i=e.readSync(s.dataId),a=$z(i,o);return e.makeTensorInfo(s.shape,\"int32\",a)}var bG={kernelName:uu,backendName:\"webgl\",kernelFunc:Ylt};var Zlt=\"return tan(x);\",Jlt=It({opSnippet:Zlt}),wG={kernelName:ri,backendName:\"webgl\",kernelFunc:Jlt};var Qlt=`\n float e2x = exp(-2.0 * abs(x));\n return sign(x) * (1.0 - e2x) / (1.0 + e2x);\n`,tut=It({opSnippet:Qlt}),IG={kernelName:ni,backendName:\"webgl\",kernelFunc:tut};function eut(r){let{inputs:t,backend:e,attrs:n}=r,{tensor:o,indices:s,updates:i}=t,{}=n,{sliceRank:a,numUpdates:u,sliceSize:l,strides:c,outputSize:p}=S.calculateShapes(i,s,o.shape),m=[p/l,l];if(p===0)return e.makeTensorInfo(o.shape,s.dtype);let f=rt({inputs:{x:s},backend:e,attrs:{shape:[u,a]}}),d=rt({inputs:{x:i},backend:e,attrs:{shape:[u,l]}}),h=rt({inputs:{x:o},backend:e,attrs:{shape:m}}),g=new Ku(u,a,f.shape.length,d.shape.length,c,m,!1,!0),x=e.runWebGLProgram(g,[d,f,h],h.dtype),b=rt({inputs:{x},backend:e,attrs:{shape:o.shape}});return e.disposeIntermediateTensorInfo(f),e.disposeIntermediateTensorInfo(d),e.disposeIntermediateTensorInfo(h),e.disposeIntermediateTensorInfo(x),b}var CG={kernelName:ol,backendName:\"webgl\",kernelFunc:eut};var vC=class{constructor(t,e){this.variableNames=[\"A\"];let n=new Array(t.length);for(let i=0;i5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${r[0]})`;let e=[\"resRC.x\",\"resRC.y\",\"resRC.z\",\"resRC.w\",\"resRC.u\"],n=[];for(let o=0;o5){let u=e.readSync(o.dataId),l=o.dtype===\"string\"?u.map(m=>y.decodeString(m)):u,c=wt(o.shape,o.dtype,l),p=Fz(c,s);return e.makeTensorInfo(p.shape,p.dtype,p.values)}let i=new vC(o.shape,s);return e.runWebGLProgram(i,[o],o.dtype)}var vG={kernelName:oo,backendName:\"webgl\",kernelFunc:j1};var SC=class{constructor(t){this.variableNames=[\"x\",\"indices\"],this.customUniforms=[{name:\"n\",type:\"int\"},{name:\"firstPass\",type:\"int\"},{name:\"negativeInf\",type:\"float\"},{name:\"dir\",type:\"int\"},{name:\"inc\",type:\"int\"}],this.outputShape=t,this.userCode=`\n void main() {\n ivec2 coords = getOutputCoords();\n int batch = coords[0];\n int elemIdx = coords[1];\n\n // We compare elements pair-wise within a group of size 2 * inc.\n // The comparing rule for each group alternates between ascending\n // and descending. Within each group, we compare each pair at\n // positions i and i+inc. To decide whether an element at position i\n // is x0 or x1, we mod it by 2 * inc, if the result is smaller than\n // inc, it is in the first half of the group, we denote it as x0,\n // otherwise we denote it as x1.\n // For example, as shown in the Bitonic top K paper referenced above,\n // Figure5(a) shows that element[1] is in the\n // second half of the group when group size is 2, but it is in the\n // first half of the group when group size is 4.\n\n bool isFirstInPair = imod(elemIdx, 2 * inc) < inc;\n int i = isFirstInPair ? elemIdx : elemIdx - inc;\n\n int i0 = firstPass == 1 ? i : int(getIndices(batch, i));\n int i1 = firstPass == 1 ? i + inc : int(getIndices(batch, i + inc));\n float x0 = i0 < n ? getX(batch, i0) : negativeInf;\n float x1 = i1 < n ? getX(batch, i1) : negativeInf;\n\n // Denotes which direction indices are in (ascending or descending).\n bool reverse = imod(elemIdx, 2 * dir) >= dir;\n bool isGreater = x0 > x1 || (x0 == x1 && i1 > i0);\n if (reverse == isGreater) { // Elements in opposite order of direction\n int iTemp = i0;\n i0 = i1;\n i1 = iTemp;\n }\n if (isFirstInPair) {\n setOutput(float(i0));\n } else {\n setOutput(float(i1));\n }\n }\n `}},NC=class{constructor(t){this.variableNames=[\"x\",\"indices\"],this.customUniforms=[{name:\"n\",type:\"int\"},{name:\"firstPass\",type:\"int\"},{name:\"k\",type:\"int\"}],this.outputShape=t,this.userCode=`\n void main() {\n // Takes max of indices (0, k), (1, k + 1), (2, k + 2) ...\n ivec2 coords = getOutputCoords();\n int batch = coords[0];\n int elemIdx = coords[1];\n\n // The output size is half of the previous size.\n // If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _ (k=4),\n // we only need to output the indices at positions |, the indices at\n // positions _ can be thrown away, see Figure5(b) After Phase 2\n // (Merge phase) in the Bitonic Top K paper referenced above.\n // For example, the paper shows we only need to output the orange bars.\n // The output sequence should look like this | | | | | | | |.\n // Because the sequence is halved, to map the output index back\n // to the previous sequence to find the corresponding value,\n // we need to double the index. When we double the index,\n // we basically interpolate a position, so 2i looks like\n // | _ | _ | _ | _ | _ | _ | _. We move the | to the first k position\n // of each 2k positions by - elemIdx % k. E.g. for output at\n // index 4,5,6,7, we want to get the corresponding element at\n // original index 8,9,10,11, for output at index 8,9,10,11,\n // we want to get the corresponding element at original index\n // 16,17,18,19, so on and so forth.\n\n int i = elemIdx < k ? elemIdx : (elemIdx * 2 - imod(elemIdx, k));\n int i0 = firstPass == 1 ? i : int(getIndices(batch, i));\n int i1 = firstPass == 1 ? i + k : int(getIndices(batch, i + k));\n\n float x0 = getX(batch, i0);\n float x1 = i1 < n ? getX(batch, i1) : x0;\n\n setOutput(x0 >= x1 ? float(i0) : float(i1));\n }\n `}};function xp(r,t){t!==null&&r.disposeIntermediateTensorInfo(t)}function SG(r){let t=1;for(;tu){let M=e.readSync(o.dataId),[V,G]=Oz(M,l,o.dtype,s,i);return[e.makeTensorInfo(V.shape,V.dtype,V.values),e.makeTensorInfo(G.shape,G.dtype,G.values)]}if(s===0)return l[l.length-1]=0,[e.makeTensorInfo(l,o.dtype,[]),e.makeTensorInfo(l,\"int32\",[])];if(c===1)return[o,Ll({attrs:{shape:l,dtype:\"int32\",value:0},backend:e})];let p=e.texData.get(o.dataId),m=p!==null&&p.isPacked,f=m?e.unpackTensor(o):o,h=y.sizeFromShape(l)/c,g=rt({inputs:{x:f},attrs:{shape:[h,c]},backend:e});m&&xp(e,f);let x=SG(s),b=SG(c),w=null,I=()=>w===null?[g,g]:[g,w],N=(M,V,G)=>{let W=I(),q=new SC(G),j=[[c],[w===null?1:0],[Number.NEGATIVE_INFINITY],[M],[V]],Y=w;w=e.runWebGLProgram(q,W,\"int32\",j),xp(e,Y)};for(let M=1;M=1;G/=2)N(V,G,[h,b])}for(let M=b;M>x;M/=2){let V=I(),G=new NC([h,M/2]),q=[[c],[w===null?1:0],[x]],H=w;w=e.runWebGLProgram(G,V,\"int32\",q),xp(e,H);let j=x/2,Y=j*2;for(let Z=j;Z>=1;Z/=2)N(Y,Z,w.shape)}let E=w;w=ki({inputs:{x:w},backend:e,attrs:{begin:0,size:[h,s]}}),xp(e,E);let A=V1({inputs:{x:g,indices:w},backend:e,attrs:{axis:1,batchDims:1}});xp(e,g);let D=l.slice(0,-1);D.push(s),E=w,w=rt({inputs:{x:w},attrs:{shape:D},backend:e}),xp(e,E);let F=A;return A=rt({inputs:{x:A},attrs:{shape:D},backend:e}),xp(e,F),[A,w]}var NG={kernelName:ul,backendName:\"webgl\",kernelFunc:nut};var kC=class{constructor(t,e,n,o,s,i){this.variableNames=[\"Image\",\"Transforms\"],this.outputShape=i;let a=n===\"nearest\"?1:2,u;switch(o){case\"constant\":u=1;break;case\"reflect\":u=2;break;case\"wrap\":u=3;break;case\"nearest\":u=4;break;default:u=1;break}this.userCode=`\n float mapCoord(float outCoord, float len) {\n float inCoord = outCoord;\n if(${u} == 2) {\n if (inCoord < 0.0) {\n if (len <= 1.0) {\n inCoord = 0.0;\n } else {\n float sz2 = 2.0 * len;\n if (inCoord < sz2) {\n inCoord = sz2 * float(int(float(-inCoord / sz2))) +\n inCoord;\n }\n inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;\n }\n } else if (inCoord > len - 1.0) {\n if (len <= 1.0) {\n inCoord = 0.0;\n } else {\n float sz2 = 2.0 * len;\n inCoord -= sz2 * float(int(float(inCoord / sz2)));\n if (inCoord >= len) {\n inCoord = sz2 - inCoord - 1.0;\n }\n }\n }\n return clamp(inCoord, 0.0, len - 1.0);\n } else if (${u} == 3) {\n if (inCoord < 0.0) {\n if (len <= 1.0) {\n inCoord = 0.0;\n } else {\n float sz = len - 1.0;\n inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);\n }\n } else if (inCoord > len - 1.0) {\n if (len <= 1.0) {\n inCoord = 0.0;\n } else {\n float sz = len - 1.0;\n inCoord -= len * float(int(float(inCoord / sz)));\n }\n }\n return clamp(inCoord, 0.0, len - 1.0);\n } else if (${u} == 4) {\n return clamp(outCoord, 0.0, len - 1.0);\n } else {\n return outCoord;\n }\n }\n\n float readWithFillValue(int batch, int coordY, int coordX,\n int channel) {\n float outputValue;\n if (0 <= coordY && coordY < ${t} && 0 <= coordX && coordX < ${e}) {\n outputValue = getImage(batch, coordY, coordX, channel);\n } else {\n outputValue = float(${s});\n }\n return outputValue;\n }\n\n void main() {\n ivec4 coords = getOutputCoords();\n float outputValue;\n int batch = coords[0];\n int x = coords[2];\n int y = coords[1];\n int channel = coords[3];\n float xf = float(x);\n float yf = float(y);\n float a1 = getTransforms(batch, 0);\n float a2 = getTransforms(batch, 1);\n float a3 = getTransforms(batch, 2);\n float b1 = getTransforms(batch, 3);\n float b2 = getTransforms(batch, 4);\n float b3 = getTransforms(batch, 5);\n float c1 = getTransforms(batch, 6);\n float c2 = getTransforms(batch, 7);\n float projection = c1 * xf + c2 * yf + 1.0;\n if (projection == 0.0) {\n outputValue = float(${s});\n } else {\n float inX = (a1 * xf + a2 * yf + a3) / projection;\n float inY = (b1 * xf + b2 * yf + b3) / projection;\n float mapX = mapCoord(inX, float(${e}));\n float mapY = mapCoord(inY, float(${t}));\n\n if (${a} == 1) {\n int coordY = int(round(mapY));\n int coordX = int(round(mapX));\n outputValue = readWithFillValue(batch, coordY, coordX,\n channel);\n } else {\n float yFloor = floor(mapY);\n float xFloor = floor(mapX);\n float yCeil = yFloor + 1.0;\n float xCeil = xFloor + 1.0;\n float valueYFloor = (xCeil - mapX) *\n readWithFillValue(batch, int(yFloor), int(xFloor), channel) +\n (mapX - xFloor) *\n readWithFillValue(batch, int(yFloor), int(xCeil), channel);\n float valueYCeil = (xCeil - mapX) *\n readWithFillValue(batch, int(yCeil), int(xFloor), channel) +\n (mapX - xFloor) *\n readWithFillValue(batch, int(yCeil), int(xCeil), channel);\n outputValue = (yCeil - mapY) * valueYFloor +\n (mapY - yFloor) * valueYCeil;\n }\n }\n setOutput(outputValue);\n }\n `}};function out(r){let{inputs:t,backend:e,attrs:n}=r,{image:o,transforms:s}=t,{interpolation:i,fillMode:a,fillValue:u,outputShape:l}=n,[c,p,m,f]=o.shape,[d,h]=l!=null?l:[p,m],g=[c,d,h,f],x=new kC(p,m,i,a,u,g);return e.runWebGLProgram(x,[o,s],\"float32\")}var kG={kernelName:cl,backendName:\"webgl\",kernelFunc:out};function sut(r){let{inputs:t,attrs:e,backend:n}=r,{axis:o}=e,{x:s}=t;vi(s,\"unique\"),console.warn(\"WARNING: \",\"UI might be locked temporarily as data is being downloaded\");let i=n.readSync(s.dataId),{outputValues:a,outputShape:u,indices:l}=Mz(i,o,s.shape,s.dtype);return[n.makeTensorInfo(u,s.dtype,a),n.makeTensorInfo([l.length],\"int32\",l)]}var TG={kernelName:cu,backendName:\"webgl\",kernelFunc:sut};function iut(r){let{inputs:t,backend:e,attrs:n}=r,{value:o}=t,{axis:s}=n;s<0&&(s+=o.shape.length);let i=o,a=i.shape.length,u=o.shape[s],l=new Array(a-1),c=0;for(let h=0;he.disposeIntermediateTensorInfo(h)),d}var _G={kernelName:Ki,backendName:\"webgl\",kernelFunc:iut};var TC=class{constructor(t,e){this.variableNames=[\"x\",\"segmentIds\"];let n=t.windowSize,o=t.batchSize,s=t.inSize,i=t.numSegments,a=i*Math.ceil(s/n);this.outputShape=[o,a];let u=\"0.0\",l=\"sumValue\",c=Math.floor(n/4)*4,p=n%4,m=`\n sumValue += dot(values, segFilter);\n `,f=\"\";s%n>0&&(f=`\n if (inIdx < 0 || inIdx >= ${s}) {\n return initializationValue;\n }\n `);let d=\"\";s%n>0&&(d=`\n if (inIdx < 0 || inIdx >= ${s}) {\n return -1.0;\n }\n `),this.userCode=`\n const float initializationValue = ${u};\n\n float getValue(int batch, int inIdx) {\n ${f}\n return getX(batch, inIdx);\n }\n\n float getSegmentIdAtIndex(int inIdx) {\n ${d}\n return getSegmentIds(inIdx);\n }\n\n void main() {\n ivec2 coords = getOutputCoords();\n int batch = coords[0];\n int outIdx = coords[1];\n int inOffset = int(floor(float(outIdx) / float(\n ${i})) * float(${n}));\n int currentSeg = int(mod(float(outIdx), float(${i})));\n\n float sumValue = 0.0;\n\n for (int i = 0; i < ${c}; i += 4) {\n int inIdx = inOffset + i;\n vec4 values = vec4(\n getValue(batch, inIdx),\n getValue(batch, inIdx + 1),\n getValue(batch, inIdx + 2),\n getValue(batch, inIdx + 3)\n );\n\n vec4 segFilter = vec4(\n int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,\n int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,\n int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,\n int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0\n );\n\n ${m}\n }\n\n int inIdx = inOffset + ${c};\n if (${p===1}) {\n vec4 values = vec4(\n getValue(batch, inIdx),\n initializationValue,\n initializationValue,\n initializationValue\n );\n\n int inIdxSeg = int(getSegmentIdAtIndex(inIdx));\n\n vec4 segFilter = vec4(\n int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,\n 0,\n 0,\n 0\n );\n\n ${m}\n } else if (${p===2}) {\n vec4 values = vec4(\n getValue(batch, inIdx),\n getValue(batch, inIdx + 1),\n initializationValue,\n initializationValue\n );\n\n vec4 segFilter = vec4(\n int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,\n int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,\n 0,\n 0\n );\n\n ${m}\n } else if (${p===3}) {\n vec4 values = vec4(\n getValue(batch, inIdx),\n getValue(batch, inIdx + 1),\n getValue(batch, inIdx + 2),\n initializationValue\n );\n\n vec4 segFilter = vec4(\n int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,\n int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,\n int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,\n 0\n );\n\n ${m}\n }\n setOutput(${l});\n }\n `}};function aut(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,segmentIds:s}=t,{numSegments:i}=n,a=o.shape.length,u=[],l=0,c=S.getAxesPermutation([l],a),p=o;c!=null&&(p=Pe({inputs:{x:o},backend:e,attrs:{perm:c}}),u.push(p),l=S.getInnerMostAxes(1,a)[0]);let m=S.segment_util.computeOutShape(p.shape,l,i),f=y.sizeFromShape([p.shape[l]]),d=rt({inputs:{x:p},backend:e,attrs:{shape:[-1,f]}});u.push(d);let h=lc(o.dtype),g=(I,N,E,A,D)=>{let F=I.shape[0],M=I.shape[1],V=S.segment_util.segOpComputeOptimalWindowSize(M,D),G={windowSize:V,inSize:M,batchSize:F,numSegments:D},W=new TC(G,N),q=e.compileAndRun(W,[I,E],A);if(u.push(q),q.shape[1]===D)return q;let H=K1({backend:e,attrs:{start:0,stop:D,step:1,dtype:\"float32\"}}),j=j1({inputs:{x:H},backend:e,attrs:{reps:[M/V]}});return u.push(H),u.push(j),g(q,N,j,A,D)},x=g(d,\"unsortedSegmentSum\",s,h,i),b=rt({inputs:{x},backend:e,attrs:{shape:m}}),w=b;if(c!=null){u.push(b);let I=S.getUndoAxesPermutation(c);w=Pe({inputs:{x:w},backend:e,attrs:{perm:I}})}return u.forEach(I=>e.disposeIntermediateTensorInfo(I)),w}var EG={kernelName:pu,backendName:\"webgl\",kernelFunc:aut};var lut=[p3,f3,d3,h3,x3,y3,b3,w3,v3,S3,N3,k3,T3,_3,E3,A3,D3,$3,R3,F3,O3,P3,L3,z3,B3,U3,q3,K3,e3,X3,Z3,J3,Q3,tB,eB,rB,nB,oB,sB,iB,uB,cB,pB,mB,fB,dB,hB,gB,xB,yB,bB,wB,IB,CB,vB,SB,kB,TB,_B,EB,DB,$B,RB,FB,OB,MB,PB,LB,zB,t3,BB,Y3,VB,GB,WB,r3,UB,HB,qB,KB,jB,XB,YB,ZB,JB,QB,eV,rV,nV,oV,sV,iV,lV,cV,pV,mV,fV,dV,bV,s3,wV,IV,CV,vV,V3,SV,TV,_V,EV,AV,n3,DV,$V,RV,FV,OV,G3,hV,MV,PV,LV,a3,zV,BV,VV,GV,WV,UV,HV,qV,KV,jV,XV,YV,ZV,JV,QV,tG,M3,yV,eG,rG,nG,oG,sG,iG,aG,lG,cG,pG,fG,dG,hG,gG,xG,yG,bG,xV,u3,wG,IG,CG,vG,NG,kG,c3,TG,_G,EG,NV];for(let r of lut)rc(r);var Nt;(function(r){r[r.float32=0]=\"float32\",r[r.int32=1]=\"int32\",r[r.bool=2]=\"bool\",r[r.string=3]=\"string\",r[r.complex64=4]=\"complex64\"})(Nt||(Nt={}));var ju;(function(r){r[r.linear=0]=\"linear\",r[r.relu=1]=\"relu\",r[r.relu6=2]=\"relu6\",r[r.prelu=3]=\"prelu\",r[r.leakyrelu=4]=\"leakyrelu\",r[r.sigmoid=5]=\"sigmoid\",r[r.elu=6]=\"elu\"})(ju||(ju={}));var AG;function uut(r){AG=r.wasm.cwrap(Xi,null,[\"number\",\"array\",\"number\",\"number\",\"array\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\"])}function cut(r){let{inputs:t,backend:e,attrs:n}=r,{a:o,b:s,bias:i,preluActivationWeights:a}=t;if(o.dtype!==\"float32\"||s.dtype!==\"float32\")throw new Error(\"_FusedMatMul for non non-float32 tensors not yet supported.\");let{transposeA:u,transposeB:l,activation:c,leakyreluAlpha:p}=n,m=e.dataIdMap.get(o.dataId).id,f=e.dataIdMap.get(s.dataId).id,d=0;if(i!=null){let D=e.dataIdMap.get(i.dataId);if(D.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${D.shape.length}.`);d=D.id}let h=a==null?0:e.dataIdMap.get(a.dataId).id,g=ju[c];if(g==null)throw new Error(`${c} activation not yet supported for FusedConv2D in the wasm backend.`);let x=u?o.shape[2]:o.shape[1],b=l?s.shape[1]:s.shape[2],w=Hr.assertAndGetBroadcastShape(o.shape.slice(0,-2),s.shape.slice(0,-2)),I=e.makeOutput([...w,x,b],o.dtype),N=e.dataIdMap.get(I.dataId).id,E=new Uint8Array(new Int32Array(o.shape).buffer),A=new Uint8Array(new Int32Array(s.shape).buffer);return AG(m,E,o.shape.length,f,A,s.shape.length,u,l,g,d,h,p||0,N),I}var DG={kernelName:Xi,backendName:\"wasm\",setupFunc:uut,kernelFunc:cut};function yt(r,t){let e;function n(s){e=s.wasm.cwrap(r,null,[\"number\",\"number\",\"number\"])}function o(s){let{backend:i,inputs:{x:a}}=s,u=i.dataIdMap.get(a.dataId).id,l=i.makeOutput(a.shape,t||a.dtype),c=i.dataIdMap.get(l.dataId).id;return y.sizeFromShape(l.shape)===0||e(u,Nt[a.dtype],c),l}return{kernelName:r,backendName:\"wasm\",setupFunc:n,kernelFunc:o}}var $G=yt(Ai);var RG=yt(Go);var FG=yt(Wo);function ee(r,t,e){let n;function o(i){n=i.wasm.cwrap(r,null,[\"number\",\"array\",\"number\",\"number\",\"array\",\"number\",\"number\",\"number\"])}function s(i){let{backend:a,inputs:u}=i,{a:l,b:c}=u,p=a.dataIdMap.get(l.dataId).id,m=a.dataIdMap.get(c.dataId).id,f=e!=null?e:l.dtype,d=S.assertAndGetBroadcastShape(l.shape,c.shape),h=a.makeOutput(d,f);if(y.sizeFromShape(d)===0)return h;let g=new Uint8Array(new Int32Array(l.shape).buffer),x=new Uint8Array(new Int32Array(c.shape).buffer),b=a.dataIdMap.get(h.dataId).id;return n(p,g,l.shape.length,m,x,c.shape.length,Nt[l.dtype],b),h}return{kernelName:r,backendName:\"wasm\",setupFunc:o,kernelFunc:s}}var put=!0,OG=ee(no,put);var MG;function mut(r){MG=r.wasm.cwrap(Uo,null,[\"array\",\"number\",\"number\",\"number\"])}function fut(r){let{inputs:t,backend:e}=r,n=e.makeOutput(t[0].shape,t[0].dtype);if(y.sizeFromShape(n.shape)===0)return n;let o=t.map(a=>e.dataIdMap.get(a.dataId).id),s=new Uint8Array(new Int32Array(o).buffer),i=e.dataIdMap.get(n.dataId).id;return MG(s,o.length,Nt[n.dtype],i),n}var PG={kernelName:Uo,backendName:\"wasm\",setupFunc:mut,kernelFunc:fut};function yp(r){let{inputs:{x:t},backend:e}=r;if(t.dtype===\"string\")return ir(e.readSync(t.dataId),t.shape,t.dtype);let n=e.makeOutput(t.shape,t.dtype),o=e.typedArrayFromHeap(t);return e.typedArrayFromHeap(n).set(o),n}var LG={kernelName:go,backendName:\"wasm\",kernelFunc:yp};var zG;function dut(r){zG=r.wasm.cwrap(so,null,[\"number\",\"array\",\"number\",\"number\",\"number\",\"array\",\"number\"])}function mo(r){let{inputs:t,backend:e,attrs:n}=r,[o,s]=gut(t.x.shape,n.perm),i=!0;for(let d=0;d=o&&(s===-1||n[s]>n[i])&&(s=i);n[s]=o}return[e,n]}var BG={kernelName:so,backendName:\"wasm\",kernelFunc:mo,setupFunc:dut};function Cn(r,t,e){let n=r.shape,o=r.shape.length,s=y.parseAxisParam(t,n),i=s,a=S.getAxesPermutation(i,o),u=null,l=!1;if(a!=null){let c=new Array(o);for(let f=0;f`new shape: ${i}, old shape: ${n.shape}. New shape and old shape must have the same number of elements.`),r.backend.incRef(n.dataId),{dataId:n.dataId,shape:i,dtype:n.dtype}}var iW={kernelName:Gi,backendName:\"wasm\",kernelFunc:mr};var aW;function Eut(r){aW=r.wasm.cwrap(Zo,null,[\"number\",\"array\",\"number\",\"number\",\"array\",\"number\",\"number\",\"number\",\"number\"])}function Aut(r){let{inputs:t,backend:e,attrs:n}=r,{a:o,b:s}=t,{transposeA:i,transposeB:a}=n;if(o.dtype!==\"float32\"||s.dtype!==\"float32\")throw new Error(\"BatchMatMul for non non-float32 tensors not yet supported.\");let u=o.shape.length,l=s.shape.length,c=i?o.shape[u-2]:o.shape[u-1],p=a?s.shape[l-1]:s.shape[l-2],m=i?o.shape[u-1]:o.shape[u-2],f=a?s.shape[l-2]:s.shape[l-1],d=o.shape.slice(0,-2),h=s.shape.slice(0,-2),g=y.sizeFromShape(d),x=y.sizeFromShape(h),w=Hr.assertAndGetBroadcastShape(o.shape.slice(0,-2),s.shape.slice(0,-2)).concat([m,f]);y.assert(c===p,()=>`Error in matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${o.shape} and ${s.shape} and transposeA=${i} and transposeB=${a} must match.`);let I=i?[g,c,m]:[g,m,c],N=a?[x,f,p]:[x,p,f],E=mr({inputs:{x:o},backend:e,attrs:{shape:I}}),A=mr({inputs:{x:s},backend:e,attrs:{shape:N}}),D=e.dataIdMap.get(E.dataId).id,F=e.dataIdMap.get(A.dataId).id,M=i?E.shape[2]:E.shape[1],V=a?A.shape[1]:A.shape[2],G=Math.max(g,x),W=e.makeOutput([G,M,V],E.dtype),q=e.dataIdMap.get(W.dataId).id,H=new Uint8Array(new Int32Array(E.shape).buffer),j=new Uint8Array(new Int32Array(A.shape).buffer);return aW(D,H,E.shape.length,F,j,A.shape.length,i,a,q),e.disposeData(E.dataId),e.disposeData(A.dataId),W.shape=w,W}var lW={kernelName:Zo,backendName:\"wasm\",setupFunc:Eut,kernelFunc:Aut};function Lo(r){let{inputs:{x:t},attrs:{begin:e,size:n},backend:o}=r,[s,i]=Be.parseSliceParams(t,e,n),a=Be.isSliceContinous(t.shape,s,i),u=o.readSync(t.dataId),l=o.makeOutput(i,t.dtype),c=y.computeStrides(t.shape),p=o.dataIdMap.get(l.dataId);if(a){let d=Be.computeFlatOffset(s,c);return t.dtype===\"string\"?p.stringBytes=u.slice(d,d+y.sizeFromShape(i)):o.typedArrayFromHeap(l).set(u.subarray(d,d+y.sizeFromShape(i))),l}if(t.dtype===\"string\"){let d=ep(u,s,i,t.shape,t.dtype);return p.stringBytes=d,l}let m=o.typedArrayFromHeap(l),f=t.shape.length;if(f===2)Dut(u,c[0],m,s,i);else if(f===3)$ut(u,c[0],c[1],m,s,i);else if(f===4)Rut(u,c[0],c[1],c[2],m,s,i);else{let d=ep(u,s,i,t.shape,t.dtype);m.set(d)}return l}function Dut(r,t,e,n,o){let s=0,i=n[0],a=n[1],u=i+o[0];for(let l=i;lx*b),u=S.getReshaped(o.shape,s,a),l=S.getPermuted(u.length,s.length),c=S.getReshapedPermuted(o.shape,s,a),p=S.getSliceBeginCoords(i,s.length),m=S.getSliceSize(c,i,s.length),f=mr({inputs:{x:o},backend:e,attrs:{shape:u}}),d=mo({inputs:{x:f},backend:e,attrs:{perm:l}}),h=mr({inputs:{x:d},backend:e,attrs:{shape:c}}),g=Lo({inputs:{x:h},backend:e,attrs:{begin:p,size:m}});return e.disposeData(f.dataId),e.disposeData(d.dataId),e.disposeData(h.dataId),g}var cW={kernelName:Fi,backendName:\"wasm\",kernelFunc:Fut};var pW;function Out(r){pW=r.wasm.cwrap(Da,null,[\"number\",\"number\",\"boolean\",\"number\",\"number\",\"number\"])}function Mut(r){let{backend:t,inputs:e,attrs:n}=r,{x:o,weights:s}=e,{size:i}=n,a=s.shape.reduce((p,m)=>p*m,1)!==0,u=o.shape.length===1?[i]:[o.shape[0],i],l=t.makeOutput(u,s.dtype);function c(p){return t.dataIdMap.get(p.dataId).id}return pW(c(o),i,a,c(s),Nt[s.dtype],c(l)),l}var mW={kernelName:Da,backendName:\"wasm\",setupFunc:Out,kernelFunc:Mut};var Put=!0,fW=ee($a,Put);function Lut(r){let{inputs:t,backend:e}=r,{s0:n,s1:o}=t,s=e.typedArrayFromHeap(n),i=e.typedArrayFromHeap(o),a=S.assertAndGetBroadcastShape(Array.from(s),Array.from(i));return e.makeOutput([a.length],\"int32\",void 0,new Int32Array(a))}var dW={kernelName:ql,backendName:\"wasm\",kernelFunc:Lut};function Fn(r){let{inputs:{x:t},attrs:{dtype:e},backend:n}=r,o=n.makeOutput(t.shape,e),s=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(o).set(s),o}var hW={kernelName:fo,backendName:\"wasm\",kernelFunc:Fn};var gW=yt(Jo);var xW;function zut(r){xW=r.wasm.cwrap(ho,null,[\"number\",\"number\",\"number\",\"number\"])}function But(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{clipValueMin:s,clipValueMax:i}=n,a=e.dataIdMap.get(o.dataId).id,u=e.makeOutput(o.shape,o.dtype),l=e.dataIdMap.get(u.dataId).id;return xW(a,s,i,l),u}var yW={kernelName:ho,backendName:\"wasm\",setupFunc:zut,kernelFunc:But};function X1(r){let{inputs:t,backend:e}=r,n=y.parseAxisParam(r.attrs.axis,t[0].shape)[0],o=t.map(f=>f.shape);S.assertParamsConsistent(o,n);let s=S.computeOutShape(t.map(f=>f.shape),n),i=t.filter(f=>y.sizeFromShape(f.shape)>0);if(i.length===1)return yp({inputs:{x:i[0]},backend:e});let a=e.makeOutput(s,t[0].dtype);if(y.sizeFromShape(s)===0)return a;if(i[0].dtype===\"string\"){let f=i.map(w=>{let N=[-1,y.sizeFromShape(w.shape.slice(n))];return mr({inputs:{x:w},backend:e,attrs:{shape:N}})}),d=f.map(w=>({vals:e.readSync(w.dataId),shape:w.shape}));s=S.computeOutShape(f.map(w=>w.shape),1);let h=f[0].shape[0]===1,g=Jc(d,s,t[0].dtype,h),x=S.computeOutShape(i.map(w=>w.shape),n);a.shape=x;let b=e.dataIdMap.get(a.dataId);return b.stringBytes=S.fromStringArrayToUint8(g),f.forEach(w=>e.disposeData(w.dataId)),a}let u=y.sizeFromShape(i[0].shape.slice(0,n)),l=0,c=i.map(f=>{let d=y.sizeFromShape(f.shape.slice(n));return l+=d,d}),p=i.map(f=>e.typedArrayFromHeap(f)),m=e.typedArrayFromHeap(a);for(let f=0;f`cumprod does not support ${o.dtype} tensors in the WASM backend`);let l=S.getAxesPermutation([s],u),c=o;l!==null&&(c=mo({inputs:{x:o},attrs:{perm:l},backend:e}));let p=S.getInnerMostAxes(1,u)[0];S.assertAxesAreInnerMostDims(\"cumprod\",[p],u);let m=e.makeOutput(c.shape,c.dtype),f=c.shape[p],d=e.dataIdMap.get(c.dataId).id,h=e.dataIdMap.get(m.dataId).id;FW(d,i?1:0,a?1:0,f,h,Nt[o.dtype]);let g=m;if(l!==null){let x=S.getUndoAxesPermutation(l);g=mo({inputs:{x:m},attrs:{perm:x},backend:e}),e.disposeData(c.dataId),e.disposeData(m.dataId)}return g}var OW={kernelName:Oa,backendName:\"wasm\",setupFunc:Qut,kernelFunc:tct};var MW;function ect(r){MW=r.wasm.cwrap(os,null,[\"number\",\"number\",\"number\",\"number\",\"number\",\"number\"])}function rct(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,exclusive:i,reverse:a}=n,u=o.shape.length;y.assert(o.dtype===\"float32\"||o.dtype===\"int32\",()=>`cumsum does not support ${o.dtype} tensors in the WASM backend`);let l=S.getAxesPermutation([s],u),c=o;l!==null&&(c=mo({inputs:{x:o},attrs:{perm:l},backend:e}));let p=S.getInnerMostAxes(1,u)[0];S.assertAxesAreInnerMostDims(\"cumsum\",[p],u);let m=e.makeOutput(c.shape,c.dtype),f=c.shape[p],d=e.dataIdMap.get(c.dataId).id,h=e.dataIdMap.get(m.dataId).id;MW(d,i?1:0,a?1:0,f,h,Nt[o.dtype]);let g=m;if(l!==null){let x=S.getUndoAxesPermutation(l);g=mo({inputs:{x:m},attrs:{perm:x},backend:e}),e.disposeData(c.dataId),e.disposeData(m.dataId)}return g}var PW={kernelName:os,backendName:\"wasm\",setupFunc:ect,kernelFunc:rct};var LW;function nct(r){LW=r.wasm.cwrap(\"DenseBincount\",null,[\"number\",\"array\",\"number\",\"number\",\"boolean\",\"number\",\"number\",\"boolean\",\"number\"])}function oct(r){let{backend:t,inputs:e,attrs:n}=r,{x:o,weights:s}=e,{size:i,binaryOutput:a}=n,u=s.shape.reduce((m,f)=>m*f,1)!==0,l=o.shape.length===1?[i]:[o.shape[0],i],c=t.makeOutput(l,s.dtype);function p(m){return t.dataIdMap.get(m.dataId).id}return LW(p(o),new Uint8Array(new Int32Array(o.shape).buffer),o.shape.length,i,u,p(s),Nt[s.dtype],a,p(c)),c}var zW={kernelName:jl,backendName:\"wasm\",setupFunc:nct,kernelFunc:oct};var BW;function sct(r){BW=r.wasm.cwrap(Pa,null,[\"number\",\"number\",\"number\",\"array\",\"number\",\"array\",\"array\",\"number\",\"number\"])}function ict(r){let{backend:t,inputs:e,attrs:n}=r,{x:o}=e,{blockSize:s,dataFormat:i}=n,a=o.shape[0],u=i===\"NHWC\"?o.shape[1]:o.shape[2],l=i===\"NHWC\"?o.shape[2]:o.shape[3],c=i===\"NHWC\"?o.shape[3]:o.shape[1],p=u*s,m=l*s,f=c/(s*s),d=i===\"NHWC\"?[a,p,m,f]:[a,f,p,m],h=t.makeOutput(d,\"float32\"),x=t.dataIdMap.get(o.dataId).id,b=new Uint8Array(new Int32Array(y.computeStrides(o.shape)).buffer),w=new Uint8Array(new Int32Array(d).buffer),I=new Uint8Array(new Int32Array(y.computeStrides(d)).buffer),N=t.dataIdMap.get(h.dataId).id;return BW(x,s,i===\"NHWC\"?1:0,b,o.shape.length-1,w,I,d.length,N),h}var VW={kernelName:Pa,backendName:\"wasm\",setupFunc:sct,kernelFunc:ict};var GW;function act(r){GW=r.wasm.cwrap(ss,null,[\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\"])}function lct(r){let{inputs:t,attrs:e,backend:n}=r,{x:o,filter:s}=t,i=n.dataIdMap.get(o.dataId).id,a=n.dataIdMap.get(s.dataId).id,{strides:u,dilations:l,pad:c,dimRoundingMode:p}=e,m=l==null?[1,1]:l,f=S.computeConv2DInfo(o.shape,s.shape,u,m,c,p,!0),d=f.filterHeight,h=f.filterWidth,g=f.padInfo.top,x=f.padInfo.right,b=f.padInfo.bottom,w=f.padInfo.left,I=f.dilationHeight,N=f.dilationWidth,E=f.strideHeight,A=f.strideWidth,D=f.inChannels,F=f.outChannels,M=f.padInfo.type===\"SAME\"?1:0;if(f.dataFormat!==\"channelsLast\")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${f.dataFormat}'. Please use 'channelsLast'.`);let V=n.makeOutput(f.outShape,\"float32\"),G=n.dataIdMap.get(V.dataId).id;return GW(i,o.shape[0],o.shape[1],o.shape[2],a,d,h,g,x,b,w,M,I,N,E,A,D,F,G),V}var WW={kernelName:ss,backendName:\"wasm\",setupFunc:act,kernelFunc:lct};var UW;function uct(r){UW=r.wasm.cwrap(\"Diag\",null,[\"number\",\"number\",\"number\",\"number\"])}function cct(r){let{inputs:t,backend:e}=r,{x:n}=t,o=y.sizeFromShape(n.shape),s=e.makeOutput([...n.shape,...n.shape],n.dtype);return UW(e.dataIdMap.get(n.dataId).id,Nt[n.dtype],o,e.dataIdMap.get(s.dataId).id),s}var HW={kernelName:Xl,backendName:\"wasm\",setupFunc:uct,kernelFunc:cct};var qW;function pct(r){qW=r.wasm.cwrap(is,null,[\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\"])}function mct(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s}=t,{strides:i,pad:a,dilations:u}=n;if(o.dtype!==s.dtype)throw new Error(`Dilation2D error: x must have the same dtype as filter. Got ${o.dtype} and ${s.dtype}`);let l=S.computeDilation2DInfo(o.shape,s.shape,i,a,\"NHWC\",u),c=e.makeOutput(l.outShape,o.dtype);return qW(e.dataIdMap.get(o.dataId).id,e.dataIdMap.get(s.dataId).id,e.dataIdMap.get(c.dataId).id,Nt[o.dtype],l.batchSize,l.inChannels,l.inHeight,l.inWidth,l.outHeight,l.outWidth,l.strideHeight,l.strideWidth,l.dilationHeight,l.dilationWidth,l.filterHeight,l.filterWidth,l.padInfo.top,l.padInfo.left),c}var KW={kernelName:is,backendName:\"wasm\",setupFunc:pct,kernelFunc:mct};var jW;function fct(r){jW=r.wasm.cwrap(Zl,null,[\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\"])}function dct(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s,dy:i}=t,{strides:a,pad:u,dilations:l}=n;if(o.dtype!==s.dtype||o.dtype!==i.dtype)throw new Error(`Dilation2DBackpropFilter error: x must have the same dtype as filter and dy. Got ${o.dtype}, ${s.dtype}, and ${i.dtype}`);let c=S.computeDilation2DInfo(o.shape,s.shape,a,u,\"NHWC\",l),p=e.makeOutput(s.shape,s.dtype);return jW(e.dataIdMap.get(o.dataId).id,e.dataIdMap.get(s.dataId).id,e.dataIdMap.get(i.dataId).id,e.dataIdMap.get(p.dataId).id,Nt[o.dtype],c.batchSize,c.inChannels,c.inHeight,c.inWidth,c.outHeight,c.outWidth,c.strideHeight,c.strideWidth,c.dilationHeight,c.dilationWidth,c.filterHeight,c.filterWidth,c.padInfo.top,c.padInfo.left),p}var XW={kernelName:Zl,backendName:\"wasm\",setupFunc:fct,kernelFunc:dct};var YW;function hct(r){YW=r.wasm.cwrap(Yl,null,[\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\"])}function gct(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s,dy:i}=t,{strides:a,pad:u,dilations:l}=n;if(o.dtype!==s.dtype||o.dtype!==i.dtype)throw new Error(`Dilation2DBackpropInput error: x must have the same dtype as filter and dy. Got ${o.dtype}, ${s.dtype}, and ${i.dtype}`);let c=S.computeDilation2DInfo(o.shape,s.shape,a,u,\"NHWC\",l),p=e.makeOutput(o.shape,o.dtype);return YW(e.dataIdMap.get(o.dataId).id,e.dataIdMap.get(s.dataId).id,e.dataIdMap.get(i.dataId).id,e.dataIdMap.get(p.dataId).id,Nt[o.dtype],c.batchSize,c.inChannels,c.inHeight,c.inWidth,c.outHeight,c.outWidth,c.strideHeight,c.strideWidth,c.dilationHeight,c.dilationWidth,c.filterHeight,c.filterWidth,c.padInfo.top,c.padInfo.left),p}var ZW={kernelName:Yl,backendName:\"wasm\",setupFunc:hct,kernelFunc:gct};var JW=yt(ls);var QW;function xct(r){QW=r.wasm.cwrap(La,null,[\"number\",\"number\",\"number\"])}function yct(r){let{inputs:t,backend:e}=r,{dy:n,y:o}=t,s=e.makeOutput(o.shape,\"float32\"),i=a=>e.dataIdMap.get(a.dataId).id;return QW(i(o),i(n),i(s)),s}var tU={kernelName:La,backendName:\"wasm\",setupFunc:xct,kernelFunc:yct};var bct=!1,eU=ee(za,bct,\"bool\");var rU=yt(us);var nU=yt(cs,\"float32\");function EC(r){let{inputs:t,attrs:e,backend:n}=r,{input:o}=t,{dim:s}=e,i=o.shape.length,a=o.shape.slice(),u=s;return s<0&&(y.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),u=i+s+1),a.splice(u,0,1),mr({inputs:{x:o},backend:n,attrs:{shape:a}})}var oU={kernelName:Mi,backendName:\"wasm\",kernelFunc:EC};var sU=yt(ps,\"float32\");function Z1(r){let{attrs:{shape:t,value:e},backend:n}=r,{attrs:{dtype:o}}=r;o=o||y.inferDtype(e);let s=n.makeOutput(t,o);return n.typedArrayFromHeap(s).fill(e),s}var iU={kernelName:Jl,backendName:\"wasm\",kernelFunc:Z1};var aU;function wct(r){aU=r.wasm.cwrap(Ba,null,[\"number\",\"number\",\"number\",\"number\",\"number\",\"number\"])}function Ict(r){let{inputs:t,backend:e}=r,{image:n}=t,o=e.makeOutput(n.shape,n.dtype),s=e.dataIdMap.get(n.dataId).id,i=e.dataIdMap.get(o.dataId).id,[a,u,l,c]=n.shape;return aU(s,a,u,l,c,i),o}var lU={kernelName:Ba,backendName:\"wasm\",kernelFunc:Ict,setupFunc:wct};var uU=yt(ms);var Cct=!1,cU=ee(fs,Cct);var pU;function vct(r){pU=r.wasm.cwrap(ds,null,[\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\"])}function Sct(r){let{backend:t,inputs:e,attrs:n}=r,{varianceEpsilon:o}=n,{x:s,mean:i,variance:a,offset:u,scale:l}=e,c=t.dataIdMap.get(s.dataId).id,p=t.dataIdMap.get(i.dataId).id,m=t.dataIdMap.get(a.dataId).id,f=u!=null?t.dataIdMap.get(u.dataId).id:0,d=l!=null?t.dataIdMap.get(l.dataId).id:0,h=t.makeOutput(s.shape,s.dtype);if(y.sizeFromShape(s.shape)===0)return h;let g=t.dataIdMap.get(h.dataId).id;return pU(c,p,m,f,d,o,g),h}var mU={kernelName:ds,backendName:\"wasm\",setupFunc:vct,kernelFunc:Sct};var fU;function Nct(r){fU=r.wasm.cwrap(Yi,null,[\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\"])}function kct(r){let{inputs:t,attrs:e,backend:n}=r,{x:o,filter:s,bias:i,preluActivationWeights:a}=t,{strides:u,pad:l,dilations:c,dataFormat:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=e,h=S.computeConv2DInfo(o.shape,s.shape,u,c,l,m),g=ju[f];if(g==null)throw new Error(`${f} activation not yet supported for FusedConv2D in the wasm backend.`);let x=n.dataIdMap.get(o.dataId).id,b=n.dataIdMap.get(s.dataId).id,w=h.outChannels,I=0;if(i!=null){let ot=n.dataIdMap.get(i.dataId);if(ot.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${ot.shape.length}.`);if(ot.shape[0]!==w)throw new Error(`FusedConv2D bias shape (${ot.shape}) does not match the number of output channels (${w})`);I=ot.id}let N=h.filterHeight,E=h.filterWidth,A=h.padInfo.top,D=h.padInfo.right,F=h.padInfo.bottom,M=h.padInfo.left,V=h.dilationHeight,G=h.dilationWidth,W=h.strideHeight,q=h.strideWidth,H=h.inChannels,j=h.padInfo.type===\"SAME\"?1:0,Y=h.batchSize,Z=h.inHeight,et=h.inWidth;if(p!==\"NHWC\")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let nt=n.makeOutput(h.outShape,\"float32\"),st=n.dataIdMap.get(nt.dataId).id,lt=a==null?0:n.dataIdMap.get(a.dataId).id;return fU(x,Y,Z,et,b,N,E,I,A,D,F,M,j,V,G,W,q,H,w,g,lt,d||0,st),nt}var dU={kernelName:Yi,backendName:\"wasm\",setupFunc:Nct,kernelFunc:kct};var hU;function Tct(r){hU=r.wasm.cwrap(Zi,null,[\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\"])}function _ct(r){let{inputs:t,attrs:e,backend:n}=r,{x:o,filter:s,bias:i,preluActivationWeights:a}=t,{strides:u,pad:l,dilations:c,dataFormat:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=e,h=S.computeConv2DInfo(o.shape,s.shape,u,c,l,m,!0),g=ju[f];if(g==null)throw new Error(`${f} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let x=n.dataIdMap.get(o.dataId).id,b=n.dataIdMap.get(s.dataId).id,w=h.outChannels,I=0;if(i!=null){let ot=n.dataIdMap.get(i.dataId);if(ot.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${ot.shape.length}.`);if(ot.shape[0]!==w)throw new Error(`FusedDepthwiseConv2D bias shape (${ot.shape}) does not match the number of output channels (${w})`);I=ot.id}let N=h.filterHeight,E=h.filterWidth,A=h.padInfo.top,D=h.padInfo.right,F=h.padInfo.bottom,M=h.padInfo.left,V=h.dilationHeight,G=h.dilationWidth,W=h.strideHeight,q=h.strideWidth,H=h.inChannels,j=h.padInfo.type===\"SAME\"?1:0,Y=h.batchSize,Z=h.inHeight,et=h.inWidth;if(p!==\"NHWC\")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let nt=n.makeOutput(h.outShape,\"float32\"),st=n.dataIdMap.get(nt.dataId).id,lt=a==null?0:n.dataIdMap.get(a.dataId).id;return hU(x,Y,Z,et,b,N,E,I,A,D,F,M,j,V,G,W,q,H,w,g,lt,d||0,st),nt}var gU={kernelName:Zi,backendName:\"wasm\",setupFunc:Tct,kernelFunc:_ct};var xU;function Ect(r){xU=r.wasm.cwrap(Va,null,[\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"array\",\"number\"])}function Act(r){let{backend:t,inputs:e}=r,{params:n,indices:o}=e,[s,i,a,u]=Ey.prepareAndValidate(n,o),l=t.makeOutput(s,n.dtype);if(i===0)return l;let c=o.shape,p=c[c.length-1],f=t.dataIdMap.get(n.dataId).id,h=t.dataIdMap.get(o.dataId).id,g=new Uint8Array(new Int32Array(u).buffer),x=t.dataIdMap.get(l.dataId).id;return xU(f,Nt[n.dtype],h,i,p,a,g,x),l}var yU={kernelName:Va,backendName:\"wasm\",setupFunc:Ect,kernelFunc:Act};var bU;function Dct(r){bU=r.wasm.cwrap(\"Gather\",null,[\"number\",\"number\",\"array\",\"number\",\"number\",\"number\",\"array\",\"number\"])}function $ct(r){let{backend:t,inputs:e,attrs:n}=r,{x:o,indices:s}=e,{axis:i,batchDims:a}=n,u=y.parseAxisParam(i,o.shape)[0],l=t.readSync(s.dataId),c=o.shape[u];for(let F=0;F=0,()=>`GatherV2: the index value ${M} is not in [0, ${c-1}]`)}let p=S.segment_util.collectGatherOpShapeInfo(o,s,u,a),m=mr({inputs:{x:o},attrs:{shape:[p.batchSize,p.outerSize,p.dimSize,p.sliceSize]},backend:t}),f=y.sizeFromShape(s.shape),d=mr({inputs:{x:s},attrs:{shape:[p.batchSize,f/p.batchSize]},backend:t}),h=[p.batchSize,p.outerSize,f/p.batchSize,p.sliceSize],g=t.makeOutput(h,o.dtype);if(y.sizeFromShape(o.shape)===0)return g;let x=m.shape.length-1,w=t.dataIdMap.get(m.dataId).id,N=t.dataIdMap.get(d.dataId).id,E=t.dataIdMap.get(g.dataId).id,A=new Uint8Array(new Int32Array(y.computeStrides(m.shape)).buffer),D=new Uint8Array(new Int32Array(y.computeStrides(h)).buffer);return bU(w,Nt[o.dtype],A,x,N,p.batchSize,D,E),t.disposeData(m.dataId),t.disposeData(d.dataId),g.shape=p.outputShape,g}var wU={kernelName:Pi,backendName:\"wasm\",setupFunc:Dct,kernelFunc:$ct};var Rct=!1,IU=ee(Ga,Rct,\"bool\");var Fct=!1,CU=ee(hs,Fct,\"bool\");var vU=yt(gs,\"bool\");var SU=yt(xs,\"bool\");var NU=yt(ys,\"bool\");var kU;function Oct(r){kU=r.wasm.cwrap(bs,null,[\"number\",\"number\",\"number\",\"number\"])}function Mct(r){let{inputs:{x:t},attrs:{alpha:e},backend:n}=r,o=n.dataIdMap.get(t.dataId).id,s=n.makeOutput(t.shape,\"float32\");if(y.sizeFromShape(t.shape)!==0){let i=n.dataIdMap.get(s.dataId).id;kU(o,Nt[t.dtype],e,i)}return s}var TU={kernelName:bs,backendName:\"wasm\",setupFunc:Oct,kernelFunc:Mct};var Pct=!1,_U=ee(Wa,Pct,\"bool\");var Lct=!1,EU=ee(Ua,Lct,\"bool\");var AU;function zct(r){AU=r.wasm.cwrap(Ha,null,[\"number\",\"number\",\"number\",\"number\"])}function Bct(r){let{attrs:t,backend:e}=r,{start:n,stop:o,num:s}=t,i=Math.floor(s),a=e.makeOutput([i],\"float32\");return AU(e.dataIdMap.get(a.dataId).id,n,o,i),a}var DU={kernelName:Ha,backendName:\"wasm\",setupFunc:zct,kernelFunc:Bct};var $U=yt(ws);var RU=yt(Is);var Vct=!1,FU=ee(qa,Vct,\"bool\");var OU=yt(Ka);var Gct=!1,MU=ee(ja,Gct,\"bool\");var Wct=!1,PU=ee(E_,Wct,\"bool\");var LU;function Uct(r){LU=r.wasm.cwrap(Cs,null,[\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\"])}function Hct(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{depthRadius:s,bias:i,alpha:a,beta:u}=n;if(o.dtype!==\"float32\")throw new Error(\"LRN error: x must have dtype float32\");let l=e.makeOutput(o.shape,o.dtype);return LU(e.dataIdMap.get(o.dataId).id,e.dataIdMap.get(l.dataId).id,o.shape[3],s,i,a,u),l}var zU={kernelName:Cs,backendName:\"wasm\",setupFunc:Uct,kernelFunc:Hct};var BU;function qct(r){BU=r.wasm.cwrap(Xa,null,[\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\"])}function Kct(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,y:s,dy:i}=t,{depthRadius:a,bias:u,alpha:l,beta:c}=n;if(o.dtype!==\"float32\"||s.dtype!==\"float32\"||i.dtype!==\"float32\")throw new Error(\"LRNGrad error: x, y, and dy must have dtype float32\");let p=e.makeOutput(o.shape,o.dtype);return BU(e.dataIdMap.get(o.dataId).id,e.dataIdMap.get(s.dataId).id,e.dataIdMap.get(i.dataId).id,e.dataIdMap.get(p.dataId).id,i.shape[3],a,u,l,c),p}var VU={kernelName:Xa,backendName:\"wasm\",setupFunc:qct,kernelFunc:Kct};var GU;function jct(r){GU=r.wasm.cwrap(vs,null,[\"number\",\"number\",\"number\",\"number\"])}function Xct(r){let{backend:t,inputs:e,attrs:n}=r,{reductionIndices:o,keepDims:s}=n,{x:i}=e,u=t.dataIdMap.get(i.dataId).id,l=i,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=Cn(i,o,t);if(f){let w=t.dataIdMap.get(c.dataId).id;l=c,u=w}let d=l.shape.length;S.assertAxesAreInnerMostDims(\"max\",p,d);let[h,g]=S.computeOutAndReduceShapes(l.shape,p),x=y.sizeFromShape(g),b=t.makeOutput(h,i.dtype);if(y.sizeFromShape(l.shape)!==0){let w=t.dataIdMap.get(b.dataId).id;GU(u,Nt[i.dtype],x,w)}if(f&&t.disposeData(c.dataId),s){let w=S.expandShapeToKeepDim(b.shape,m);b.shape=w}return b}var WU={kernelName:vs,backendName:\"wasm\",setupFunc:jct,kernelFunc:Xct};var Yct=!1,UU=ee(Ss,Yct);var HU;function Zct(r){HU=r.wasm.cwrap(Ns,null,[\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\"])}function Jct(r){let{inputs:t,attrs:e,backend:n}=r,o=t.x,s=n.dataIdMap.get(o.dataId).id;y.assert(o.dtype===\"float32\",()=>`Error in MaxPool: only float32 input is supported. Got ${o.dtype}.`);let{filterSize:i,strides:a,pad:u,dimRoundingMode:l}=e,c=S.computePool2DInfo(o.shape,i,a,1,u,l),p=c.filterHeight,m=c.filterWidth,f=c.padInfo.top,d=c.padInfo.right,h=c.padInfo.bottom,g=c.padInfo.left,x=c.dilationHeight,b=c.dilationWidth,w=c.strideHeight,I=c.strideWidth,N=c.inChannels,E=c.outChannels;if(c.dataFormat!==\"channelsLast\")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);let A=n.makeOutput(c.outShape,\"float32\"),D=n.dataIdMap.get(A.dataId).id;return HU(s,o.shape[0],o.shape[1],o.shape[2],p,m,f,d,h,g,x,b,w,I,N,E,D),A}var qU={kernelName:Ns,backendName:\"wasm\",setupFunc:Zct,kernelFunc:Jct};var KU;function Qct(r){KU=r.wasm.cwrap(\"MaxPool3D\",null,[\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\"])}function tpt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{filterSize:s,strides:i,pad:a,dimRoundingMode:u,dataFormat:l}=n,c=S.computePool3DInfo(o.shape,s,i,1,a,u,l),p=e.makeOutput(c.outShape,o.dtype);return KU(e.dataIdMap.get(o.dataId).id,e.dataIdMap.get(p.dataId).id,c.batchSize,c.inChannels,c.inDepth,c.inHeight,c.inWidth,c.outDepth,c.outHeight,c.outWidth,c.strideDepth,c.strideHeight,c.strideWidth,c.dilationDepth,c.dilationHeight,c.dilationWidth,c.effectiveFilterDepth,c.effectiveFilterHeight,c.effectiveFilterWidth,c.padInfo.front,c.padInfo.top,c.padInfo.left),p}var jU={kernelName:Li,backendName:\"wasm\",setupFunc:Qct,kernelFunc:tpt};var XU;function ept(r){XU=r.wasm.cwrap(\"MaxPool3DGrad\",null,[\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\"])}function rpt(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,input:s}=t,{filterSize:i,strides:a,pad:u,dimRoundingMode:l}=n,c=S.computePool3DInfo(s.shape,i,a,1,u,l),p=e.makeOutput(s.shape,s.dtype);return XU(e.dataIdMap.get(s.dataId).id,e.dataIdMap.get(o.dataId).id,e.dataIdMap.get(p.dataId).id,c.batchSize,c.inChannels,c.inDepth,c.inHeight,c.inWidth,c.outDepth,c.outHeight,c.outWidth,c.strideDepth,c.strideHeight,c.strideWidth,c.dilationDepth,c.dilationHeight,c.dilationWidth,c.effectiveFilterDepth,c.effectiveFilterHeight,c.effectiveFilterWidth,c.padInfo.front,c.padInfo.top,c.padInfo.left),p}var YU={kernelName:tu,backendName:\"wasm\",setupFunc:ept,kernelFunc:rpt};var ZU;function npt(r){ZU=r.wasm.cwrap(\"MaxPoolGrad\",null,[\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\"])}function opt(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,input:s}=t,{filterSize:i,strides:a,pad:u,dimRoundingMode:l}=n,c=S.computePool2DInfo(s.shape,i,a,1,u,l),p=e.makeOutput(s.shape,s.dtype);return ZU(e.dataIdMap.get(s.dataId).id,e.dataIdMap.get(o.dataId).id,e.dataIdMap.get(p.dataId).id,c.batchSize,c.inChannels,c.inHeight,c.inWidth,c.outHeight,c.outWidth,c.strideHeight,c.strideWidth,c.dilationHeight,c.dilationWidth,c.effectiveFilterHeight,c.effectiveFilterWidth,c.padInfo.top,c.padInfo.left),p}var JU={kernelName:Ql,backendName:\"wasm\",setupFunc:npt,kernelFunc:opt};var QU;function spt(r){QU=r.wasm.cwrap(\"MaxPoolWithArgmax\",null,[\"number\",\"number\",\"number\",\"number\",\"boolean\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\"])}function ipt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{filterSize:s,strides:i,pad:a,includeBatchInIndex:u}=n;y.assert(o.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${o.shape.length}.`);let l=[1,1];y.assert(S.eitherStridesOrDilationsAreOne(i,l),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${l}'`);let c=S.computePool2DInfo(o.shape,s,i,[1,1],a),p=e.makeOutput(c.outShape,o.dtype),m=e.makeOutput(c.outShape,\"int32\");return QU(e.dataIdMap.get(o.dataId).id,e.dataIdMap.get(p.dataId).id,e.dataIdMap.get(m.dataId).id,Nt[o.dtype],u,c.batchSize,c.inChannels,c.inHeight,c.inWidth,c.outHeight,c.outWidth,c.strideHeight,c.strideWidth,c.dilationHeight,c.dilationWidth,c.effectiveFilterHeight,c.effectiveFilterWidth,c.padInfo.top,c.padInfo.left),[p,m]}var t4={kernelName:eu,backendName:\"wasm\",setupFunc:spt,kernelFunc:ipt};var e4;function apt(r){e4=r.wasm.cwrap(ks,null,[\"number, number, number\"])}function lpt(r){let{backend:t,inputs:e,attrs:n}=r,{axis:o,keepDims:s}=n,{x:i}=e,a=t.dataIdMap.get(i.dataId).id,u=a,l=i,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=Cn(i,o,t),d=p;if(f){let I=t.dataIdMap.get(c.dataId).id;I!==a&&(l=c,u=I,d=S.getInnerMostAxes(d.length,l.shape.length))}S.assertAxesAreInnerMostDims(\"mean\",d,l.shape.length);let[h,g]=S.computeOutAndReduceShapes(l.shape,d),x=y.sizeFromShape(g),b=l;l.dtype!==\"float32\"&&(b=Fn({backend:t,inputs:{x:l},attrs:{dtype:\"float32\"}}),u=t.dataIdMap.get(b.dataId).id);let w=t.makeOutput(h,\"float32\");if(y.sizeFromShape(l.shape)!==0){let I=t.dataIdMap.get(w.dataId).id;e4(u,x,I)}if(f&&t.disposeData(c.dataId),s){let I=S.expandShapeToKeepDim(w.shape,m);w.shape=I}return l.dtype!==\"float32\"&&t.disposeData(b.dataId),w}var r4={kernelName:ks,backendName:\"wasm\",setupFunc:apt,kernelFunc:lpt};var n4;function upt(r){n4=r.wasm.cwrap(Ts,null,[\"number\",\"number\",\"number\",\"number\"])}function cpt(r){let{backend:t,inputs:e,attrs:n}=r,{axis:o,keepDims:s}=n,{x:i}=e,a=t.dataIdMap.get(i.dataId).id,u=a,l=i,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=Cn(i,o,t);if(f){let w=t.dataIdMap.get(c.dataId).id;w!==a&&(l=c,u=w)}let d=l.shape.length;S.assertAxesAreInnerMostDims(\"min\",p,d);let[h,g]=S.computeOutAndReduceShapes(l.shape,p),x=y.sizeFromShape(g),b=t.makeOutput(h,l.dtype);if(y.sizeFromShape(l.shape)!==0){let w=t.dataIdMap.get(b.dataId).id;n4(u,Nt[i.dtype],x,w)}if(f&&t.disposeData(c.dataId),s){let w=S.expandShapeToKeepDim(b.shape,m);b.shape=w}return b}var o4={kernelName:Ts,backendName:\"wasm\",setupFunc:upt,kernelFunc:cpt};var ppt=!1,s4=ee(_s,ppt);var J1;(function(r){r[r.reflect=0]=\"reflect\",r[r.symmetric=1]=\"symmetric\"})(J1||(J1={}));var i4;function mpt(r){i4=r.wasm.cwrap(Es,null,[\"number\",\"array\",\"number\",\"number\",\"array\",\"array\",\"number\",\"number\"])}function fpt(r){let{inputs:{x:t},backend:e,attrs:{paddings:n,mode:o}}=r,s=n.map((d,h)=>d[0]+t.shape[h]+d[1]),i=e.dataIdMap.get(t.dataId).id,a=e.makeOutput(s,t.dtype),u=e.dataIdMap.get(a.dataId).id,l=new Uint8Array(new Int32Array(t.shape).buffer),c=n.map(d=>d[0]),p=n.map(d=>d[1]),m=new Uint8Array(new Int32Array(c).buffer),f=new Uint8Array(new Int32Array(p).buffer);return i4(i,l,t.shape.length,Nt[t.dtype],m,f,J1[o],u),a}var a4={kernelName:Es,backendName:\"wasm\",kernelFunc:fpt,setupFunc:mpt};var l4;function dpt(r){l4=r.wasm.cwrap(Qs,null,[\"number\",\"number\",\"number\",\"number\"])}function Q1(r){let{backend:t,inputs:{logits:e},attrs:{dim:n}}=r,o=t.dataIdMap.get(e.dataId).id,s=t.makeOutput(e.shape,e.dtype),i=t.dataIdMap.get(s.dataId).id,a=e.shape[n],u=y.sizeFromShape(e.shape)/a;return y.sizeFromShape(s.shape)===0||l4(o,i,a,u),s}var u4={kernelName:Qs,backendName:\"wasm\",setupFunc:dpt,kernelFunc:Q1};var c4;function hpt(r){c4=r.wasm.cwrap(Ya,null,[\"number\",\"number\",\"number\",\"number\",\"number\",\"number\"])}function gpt(r){let{inputs:t,backend:e,attrs:n}=r,{logits:o}=t,{numSamples:s,seed:i,normalized:a}=n;if(o.dtype!==\"float32\")throw new Error(`Tensor logits must have dtype float32, got ${o.dtype}`);let u=a?o:Q1({inputs:{logits:o},backend:e,attrs:{dim:o.shape.length-1}}),[l,c]=u.shape,p=e.makeOutput([l,s],\"int32\");return c4(e.dataIdMap.get(u.dataId).id,l,c,s,i,e.dataIdMap.get(p.dataId).id),a||e.disposeData(u.dataId),p}var p4={kernelName:Ya,backendName:\"wasm\",setupFunc:hpt,kernelFunc:gpt};var m4=ee(As,!0);var xpt=!0,f4=ee(Ds,xpt);var d4=yt(zi);function Bd(r,t){let e=new Int32Array(r.wasm.HEAPU8.buffer,t,4),n=e[0],o=e[1],s=e[2],i=e[3];return r.wasm._free(t),{pSelectedIndices:n,selectedSize:o,pSelectedScores:s,pValidOutputs:i}}var h4;function ypt(r){h4=r.wasm.cwrap(Ja,\"number\",[\"number\",\"number\",\"number\",\"number\",\"number\"])}function bpt(r){let{backend:t,inputs:e,attrs:n}=r,{iouThreshold:o,maxOutputSize:s,scoreThreshold:i}=n,{boxes:a,scores:u}=e,l=t.dataIdMap.get(a.dataId).id,c=t.dataIdMap.get(u.dataId).id,p=h4(l,c,s,o,i),{pSelectedIndices:m,selectedSize:f,pSelectedScores:d,pValidOutputs:h}=Bd(t,p);return t.wasm._free(d),t.wasm._free(h),t.makeOutput([f],\"int32\",m)}var g4={kernelName:Ja,backendName:\"wasm\",setupFunc:ypt,kernelFunc:bpt};var x4;function wpt(r){x4=r.wasm.cwrap(Qa,\"number\",[\"number\",\"number\",\"number\",\"number\",\"number\",\"bool\"])}function Ipt(r){let{backend:t,inputs:e,attrs:n}=r,{iouThreshold:o,maxOutputSize:s,scoreThreshold:i,padToMaxOutputSize:a}=n,{boxes:u,scores:l}=e,c=t.dataIdMap.get(u.dataId).id,p=t.dataIdMap.get(l.dataId).id,m=x4(c,p,s,o,i,a),{pSelectedIndices:f,selectedSize:d,pSelectedScores:h,pValidOutputs:g}=Bd(t,m);t.wasm._free(h);let x=t.makeOutput([d],\"int32\",f),b=t.makeOutput([],\"int32\",g);return[x,b]}var y4={kernelName:Qa,backendName:\"wasm\",setupFunc:wpt,kernelFunc:Ipt};var b4;function Cpt(r){b4=r.wasm.cwrap(tl,\"number\",[\"number\",\"number\",\"number\",\"number\",\"number\",\"number\"])}function vpt(r){let{backend:t,inputs:e,attrs:n}=r,{iouThreshold:o,maxOutputSize:s,scoreThreshold:i,softNmsSigma:a}=n,{boxes:u,scores:l}=e,c=t.dataIdMap.get(u.dataId).id,p=t.dataIdMap.get(l.dataId).id,m=b4(c,p,s,o,i,a),{pSelectedIndices:f,selectedSize:d,pSelectedScores:h,pValidOutputs:g}=Bd(t,m);t.wasm._free(g);let x=t.makeOutput([d],\"int32\",f),b=t.makeOutput([d],\"float32\",h);return[x,b]}var w4={kernelName:tl,backendName:\"wasm\",setupFunc:Cpt,kernelFunc:vpt};var Spt=!1,I4=ee(Za,Spt,\"bool\");var C4;function Npt(r){C4=r.wasm.cwrap($s,null,[\"number\",\"number\",\"number\",\"number\",\"number\"])}function kpt(r){let{inputs:t,backend:e,attrs:n}=r,{indices:o}=t,{dtype:s,depth:i,onValue:a,offValue:u}=n,l=e.makeOutput([...o.shape,i],s),c=e.dataIdMap.get(l.dataId).id,m=e.dataIdMap.get(o.dataId).id;return C4(m,i,a,u,c),l}var v4={kernelName:$s,backendName:\"wasm\",setupFunc:Npt,kernelFunc:kpt};function Tpt(r){let{inputs:{x:t},backend:e}=r,n=e.makeOutput(t.shape,t.dtype);return e.typedArrayFromHeap(n).fill(1),n}var S4={kernelName:Bi,backendName:\"wasm\",kernelFunc:Tpt};function _pt(r){let{inputs:t,backend:e,attrs:n}=r,{axis:o}=n;if(t.length===1)return EC({inputs:{input:t[0]},backend:e,attrs:{dim:o}});let s=t[0].shape,i=t[0].dtype;t.forEach(c=>{y.assertShapesMatch(s,c.shape,\"All tensors passed to stack must have matching shapes\"),y.assert(i===c.dtype,()=>\"All tensors passed to stack must have matching dtypes\")});let a=[],u=t.map(c=>{let p=EC({inputs:{input:c},backend:e,attrs:{dim:o}});return a.push(p),p}),l=X1({inputs:u,backend:e,attrs:{axis:o}});return a.forEach(c=>e.disposeData(c.dataId)),l}var N4={kernelName:Vi,backendName:\"wasm\",kernelFunc:_pt};var k4;function Ept(r){k4=r.wasm.cwrap(Rs,null,[\"number\",\"array\",\"number\",\"number\",\"array\",\"array\",\"number\",\"number\"])}function Apt(r){let{inputs:{x:t},backend:e,attrs:{paddings:n,constantValue:o}}=r,s=n.map((h,g)=>h[0]+t.shape[g]+h[1]);if(y.sizeFromShape(t.shape)===0)return Z1({backend:e,attrs:{shape:s,value:o,dtype:t.dtype}});let i=e.dataIdMap.get(t.dataId).id,a=e.makeOutput(s,t.dtype),l=e.dataIdMap.get(a.dataId).id,c=new Uint8Array(new Int32Array(t.shape).buffer),p=n.map(h=>h[0]),m=n.map(h=>h[1]),f=new Uint8Array(new Int32Array(p).buffer),d=new Uint8Array(new Int32Array(m).buffer);return k4(i,c,t.shape.length,Nt[t.dtype],f,d,o,l),a}var AC={kernelName:Rs,backendName:\"wasm\",kernelFunc:Apt,setupFunc:Ept};var Dpt=!1,T4=ee(Fs,Dpt);var _4;function $pt(r){_4=r.wasm.cwrap(Os,null,[\"number\",\"number\",\"number\"])}function Rpt(r){let{inputs:t,backend:e}=r,{x:n,alpha:o}=t,s=e.dataIdMap.get(n.dataId).id,i=e.dataIdMap.get(o.dataId).id,a=s,u=n,l=u;u.dtype!==\"float32\"&&(l=Fn({backend:e,inputs:{x:n},attrs:{dtype:\"float32\"}}),a=e.dataIdMap.get(l.dataId).id);let c=e.makeOutput(n.shape,\"float32\"),p=e.dataIdMap.get(c.dataId).id;return _4(a,i,p),u.dtype!==\"float32\"&&e.disposeData(l.dataId),c}var E4={kernelName:Os,backendName:\"wasm\",setupFunc:$pt,kernelFunc:Rpt};var A4;function Fpt(r){A4=r.wasm.cwrap(Ms,null,[\"number\",\"number\",\"number\",\"number\"])}function Opt(r){let{backend:t,inputs:e,attrs:n}=r,{axis:o,keepDims:s}=n,{x:i}=e,a=t.dataIdMap.get(i.dataId).id,u=a,l=i,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=Cn(i,o,t),d=p;if(f){let w=t.dataIdMap.get(c.dataId).id;w!==a&&(l=c,u=w,d=S.getInnerMostAxes(d.length,l.shape.length))}S.assertAxesAreInnerMostDims(\"prod\",d,l.shape.length);let[h,g]=S.computeOutAndReduceShapes(l.shape,d),x=y.sizeFromShape(g),b=t.makeOutput(h,l.dtype);if(y.sizeFromShape(l.shape)!==0){let w=t.dataIdMap.get(b.dataId).id;A4(u,x,Nt[b.dtype],w)}if(f&&t.disposeData(c.dataId),s){let w=S.expandShapeToKeepDim(b.shape,m);b.shape=w}return b}var D4={kernelName:Ms,backendName:\"wasm\",setupFunc:Fpt,kernelFunc:Opt};var Mpt=r=>{let{backend:t,attrs:e}=r,{start:n,stop:o,step:s,dtype:i}=e,a=tp(n,o,s,i),u=t.makeOutput([a.length],i);return t.typedArrayFromHeap(u).set(a),u},$4={kernelName:ru,backendName:\"wasm\",kernelFunc:Mpt};var Ppt=!0,R4=ee(as,Ppt);var F4=yt(Ps);var O4=yt(Ls);var M4=yt(Vs);var P4;function Lpt(r){P4=r.wasm.cwrap(Bs,null,[\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\"])}function zpt(r){let{backend:t,inputs:e,attrs:n}=r,{images:o}=e,{alignCorners:s,halfPixelCenters:i,size:a}=n,[u,l]=a,[c,p,m,f]=o.shape,d=[c,u,l,f],h=t.dataIdMap.get(o.dataId),g;h.dtype!==\"float32\"&&(g=Fn({backend:t,inputs:{x:o},attrs:{dtype:\"float32\"}}),h=t.dataIdMap.get(g.dataId));let x=h.id,b=t.makeOutput(d,\"float32\");if(y.sizeFromShape(o.shape)===0)return b;let w=t.dataIdMap.get(b.dataId).id;return P4(x,c,p,m,f,u,l,s?1:0,i?1:0,w),g!=null&&t.disposeData(g.dataId),b}var L4={kernelName:Bs,backendName:\"wasm\",setupFunc:Lpt,kernelFunc:zpt};var z4;function Bpt(r){z4=r.wasm.cwrap(rl,null,[\"number\",\"number\",\"number\",\"array\",\"array\",\"boolean\"])}function Vpt(r){let{inputs:t,backend:e,attrs:n}=r,{images:o,dy:s}=t,{alignCorners:i}=n,a=e.makeOutput(o.shape,\"float32\"),u=e.dataIdMap.get(o.dataId),l;return u.dtype!==\"float32\"&&(l=Fn({backend:e,inputs:{x:o},attrs:{dtype:\"float32\"}}),u=e.dataIdMap.get(l.dataId)),z4(e.dataIdMap.get(o.dataId).id,e.dataIdMap.get(s.dataId).id,e.dataIdMap.get(a.dataId).id,new Uint8Array(new Int32Array(o.shape).buffer),new Uint8Array(new Int32Array(s.shape).buffer),i),l!=null&&e.disposeData(l.dataId),a}var B4={kernelName:rl,backendName:\"wasm\",setupFunc:Bpt,kernelFunc:Vpt};var V4;function Gpt(r){V4=r.wasm.cwrap(zs,null,[\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\"])}function Wpt(r){let{backend:t,inputs:e,attrs:n}=r,{images:o}=e,{alignCorners:s,halfPixelCenters:i,size:a}=n,[u,l]=a,[c,p,m,f]=o.shape,d=[c,u,l,f],h=t.makeOutput(d,\"float32\");if(y.sizeFromShape(o.shape)===0)return h;let g=t.dataIdMap.get(o.dataId),x;g.dtype!==\"float32\"&&(x=Fn({backend:t,inputs:{x:o},attrs:{dtype:\"float32\"}}),g=t.dataIdMap.get(x.dataId));let b=g.id,w=t.dataIdMap.get(h.dataId).id;return V4(b,c,p,m,f,u,l,s?1:0,i?1:0,w),x!=null&&t.disposeData(x.dataId),h}var G4={kernelName:zs,backendName:\"wasm\",setupFunc:Gpt,kernelFunc:Wpt};var W4;function Upt(r){W4=r.wasm.cwrap(el,null,[\"number\",\"number\",\"number\",\"array\",\"array\",\"boolean\"])}function Hpt(r){let{inputs:t,backend:e,attrs:n}=r,{images:o,dy:s}=t,{alignCorners:i}=n,a=e.makeOutput(o.shape,\"float32\"),u=e.dataIdMap.get(o.dataId),l;return u.dtype!==\"float32\"&&(l=Fn({backend:e,inputs:{x:o},attrs:{dtype:\"float32\"}}),u=e.dataIdMap.get(l.dataId)),W4(e.dataIdMap.get(o.dataId).id,e.dataIdMap.get(s.dataId).id,e.dataIdMap.get(a.dataId).id,new Uint8Array(new Int32Array(o.shape).buffer),new Uint8Array(new Int32Array(s.shape).buffer),i),l!=null&&e.disposeData(l.dataId),a}var U4={kernelName:el,backendName:\"wasm\",setupFunc:Upt,kernelFunc:Hpt};var H4;function qpt(r){H4=r.wasm.cwrap(Gs,null,[\"number\",\"array\",\"number\",\"array\",\"number\",\"number\"])}function Kpt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{dims:s}=n,i=y.parseAxisParam(s,o.shape);if(o.shape.length===0)return yp({inputs:{x:o},backend:e});let a=e.makeOutput(o.shape,o.dtype),u=e.dataIdMap.get(o.dataId).id,l=e.dataIdMap.get(a.dataId).id,c=new Uint8Array(new Int32Array(i).buffer),p=new Uint8Array(new Int32Array(o.shape).buffer);H4(u,c,i.length,p,o.shape.length,l);let m=mr({inputs:{x:a},attrs:{shape:o.shape},backend:e});return e.disposeData(a.dataId),m}var q4={kernelName:Gs,backendName:\"wasm\",kernelFunc:Kpt,setupFunc:qpt};var K4;function jpt(r){K4=r.wasm.cwrap(pl,null,[\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"array\",\"number\",\"number\"])}function Xpt(r){let{inputs:t,backend:e,attrs:n}=r,{image:o}=t,{radians:s,fillValue:i,center:a}=n,u=e.makeOutput(o.shape,o.dtype),l=e.dataIdMap.get(o.dataId).id,c=e.dataIdMap.get(u.dataId).id,[p,m,f,d]=o.shape,[h,g]=S.getImageCenter(a,m,f),x=i===0,b=255,w=typeof i==\"number\"?[i,i,i,x?0:b]:[...i,b],I=new Uint8Array(new Int32Array(w).buffer);return K4(l,p,m,f,d,s,h,g,I,w.length,c),u}var j4={kernelName:pl,backendName:\"wasm\",kernelFunc:Xpt,setupFunc:jpt};var X4=yt(Ws);var Y4=yt(Us);var Z4;function Ypt(r){Z4=r.wasm.cwrap(nl,null,[\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"array\",\"number\",\"number\"])}function Zpt(r){let{backend:t,inputs:e,attrs:n}=r,{indices:o,updates:s}=e,{shape:i}=n,a=t.makeOutput(i,s.dtype);if(y.sizeFromShape(i)===0)return a;let{sliceRank:u,numUpdates:l,sliceSize:c,strides:p,outputSize:m}=$u.calculateShapes(s,o,i),d=t.dataIdMap.get(o.dataId).id,g=t.dataIdMap.get(s.dataId).id,x=new Uint8Array(new Int32Array(p).buffer),b=t.dataIdMap.get(a.dataId).id;return Z4(d,g,Nt[s.dtype],u,l,c,x,m,b),a}var J4={kernelName:nl,backendName:\"wasm\",setupFunc:Ypt,kernelFunc:Zpt};var Q4;function Jpt(r){Q4=r.wasm.cwrap(sl,null,[\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"bool\",\"number\"])}function Qpt(r){let{inputs:t,backend:e,attrs:n}=r,{sortedSequence:o,values:s}=t,{side:i}=n;if(o.dtype!==s.dtype)throw new Error(`SearchSorted error: sorted_sequence must have the same dtype as values. Got ${o.dtype} and ${s.dtype}`);let a=e.makeOutput(s.shape,\"int32\");function u(l){return e.dataIdMap.get(l.dataId).id}return Q4(u(o),u(s),o.shape[0],o.shape[1],s.shape[1],Nt[o.dtype],i===\"left\",u(a)),a}var tH={kernelName:sl,backendName:\"wasm\",setupFunc:Jpt,kernelFunc:Qpt};var eH;function tmt(r){eH=r.wasm.cwrap(\"SelectV2\",null,[\"number\",\"number\",\"number\",\"number\",\"number\"])}function emt(r){let{inputs:t,backend:e}=r,{condition:n,t:o,e:s}=t,i=e.dataIdMap.get(n.dataId).id,a=e.dataIdMap.get(o.dataId).id,u=e.dataIdMap.get(s.dataId).id,l=e.makeOutput(o.shape,o.dtype),c=e.dataIdMap.get(l.dataId).id,p=n.shape.length,m=o.shape.length,f=p===0||p>1||m===1?1:y.sizeFromShape(o.shape.slice(1));return eH(i,a,u,f,c),l}var rH={kernelName:Wi,backendName:\"wasm\",kernelFunc:emt,setupFunc:tmt};var nH=yt(Hs);var oH;function rmt(r){oH=r.wasm.cwrap(Xs,null,[\"number\",\"number\"])}function nmt(r){let{backend:t,inputs:{x:e}}=r,n=t.dataIdMap.get(e.dataId).id,o=t.makeOutput(e.shape,e.dtype),s=t.dataIdMap.get(o.dataId).id;return y.sizeFromShape(o.shape)===0||oH(n,s),o}var sH={kernelName:\"Sigmoid\",backendName:\"wasm\",setupFunc:rmt,kernelFunc:nmt};var iH=yt(js);var aH=yt(qs);var lH=yt(Ks);var uH=yt(Ys);function omt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{blockShape:s,paddings:i}=n,a=y.sizeFromShape(s),u=[[0,0]];u.push(...i);for(let E=1+s.length;E0?u+1:0;if(c<0)throw new Error(S.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let p=o.shape.slice();p[0]=c;let m=e.dataIdMap.get(o.dataId).id,f=e.dataIdMap.get(s.dataId).id,d=e.dataIdMap.get(i.dataId).id,h=e.makeOutput(p,o.dtype),g=e.dataIdMap.get(h.dataId).id,x=e.makeOutput([4],\"int32\"),b=e.dataIdMap.get(x.dataId).id;hH(m,Nt[o.dtype],o.shape[0],f,d,g,b,t,0);let w=e.readSync(x.dataId),I;switch(w[0]){case 0:{I=S.getSparseSegmentReductionNegativeSegmentIdsErrorMessage();break}case 1:{I=S.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage();break}case 2:I=S.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(w[1],w[2]);break;case 3:I=S.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(w[1],w[2],w[3]);break;default:I=\"\"}if(e.disposeData(x.dataId),I)throw e.disposeData(h.dataId),new Error(I);return h}function umt(r){return $C(r,!0)}var gH={kernelName:ou,backendName:\"wasm\",setupFunc:DC,kernelFunc:umt};function cmt(r){return $C(r,!1)}var xH={kernelName:su,backendName:\"wasm\",setupFunc:DC,kernelFunc:cmt};var yH;function pmt(r){yH=r.wasm.cwrap(al,null,[\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"array\",\"number\",\"number\"])}function mmt(r){let{backend:t,inputs:e,attrs:n}=r,{sparseIndices:o,sparseValues:s,defaultValue:i}=e,{outputShape:a}=n,u=t.makeOutput(a,i.dtype);if(y.sizeFromShape(a)===0)return u;let{sliceRank:l,numUpdates:c,sliceSize:p,strides:m,outputSize:f}=S.calculateShapes(s,o,a),d=t.dataIdMap.get(o.dataId).id,h=t.dataIdMap.get(s.dataId).id,g=t.dataIdMap.get(i.dataId).id,x=new Uint8Array(new Int32Array(m).buffer),b=t.dataIdMap.get(u.dataId).id;return yH(d,h,s.shape.length,g,Nt[i.dtype],l,c,p,x,f,b),u}var bH={kernelName:al,backendName:\"wasm\",setupFunc:pmt,kernelFunc:mmt};function fmt(r){let{inputs:t,attrs:e,backend:n}=r,{x:o}=t,{numOrSizeSplits:s,axis:i}=e,a=y.parseAxisParam(i,o.shape)[0],u=S.prepareSplitSize(o,s,a),l=new Array(o.shape.length).fill(0),c=o.shape.slice();return u.map(p=>{let m=[...c];m[a]=p;let f=Lo({inputs:{x:o},attrs:{begin:l,size:m},backend:n});return l[a]+=p,f})}var wH={kernelName:qi,backendName:\"wasm\",kernelFunc:fmt};var IH=yt(Zs);var CH=yt(iu);var dmt=!0,vH=ee(ti,dmt);var SH;function hmt(r){SH=r.wasm.cwrap(xo,null,[\"number\",\"number\",\"number\",\"number\"])}function gmt(r){let{backend:t,inputs:e,attrs:n}=r,{alpha:o}=n,{x:s}=e,i=t.dataIdMap.get(s.dataId).id,a=t.makeOutput(s.shape,s.dtype),u=t.dataIdMap.get(a.dataId).id;return SH(i,o,Nt[s.dtype],u),a}var NH={kernelName:xo,backendName:\"wasm\",setupFunc:hmt,kernelFunc:gmt};var kH;function xmt(r){kH=r.wasm.cwrap(ll,null,[\"number\",\"array\",\"number\",\"array\",\"array\",\"array\",\"array\",\"array\",\"number\",\"number\"])}function ymt(r){let{backend:t,inputs:e,attrs:n}=r,{x:o}=e,{begin:s,end:i,strides:a,beginMask:u,endMask:l,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:m}=n,{finalShapeSparse:f,finalShape:d,isIdentity:h,sliceDim0:g,isSimpleSlice:x,begin:b,end:w,strides:I}=Be.sliceInfo(o.shape,s,i,a,u,l,c,p,m),N;if(h)N=mr({inputs:{x:o},backend:t,attrs:{shape:d}});else if(g||x){y.assert(o.shape.length>=1,()=>`Input must have rank at least 1, got: ${o.shape.length}`);let E=Be.computeOutShape(b,w,I),A=Lo({inputs:{x:o},backend:t,attrs:{begin:b,size:E}});N=mr({inputs:{x:A},backend:t,attrs:{shape:d}}),t.disposeData(A.dataId)}else{let E=t.makeOutput(f,\"float32\"),A=t.dataIdMap.get(o.dataId).id,D=new Uint8Array(new Int32Array(y.computeStrides(o.shape)).buffer),F=new Uint8Array(new Int32Array(b).buffer),M=new Uint8Array(new Int32Array(w).buffer),V=new Uint8Array(new Int32Array(I).buffer),G=new Uint8Array(new Int32Array(f).buffer),W=new Uint8Array(new Int32Array(y.computeStrides(f)).buffer),q=t.dataIdMap.get(E.dataId).id;kH(A,D,o.shape.length,F,M,V,G,W,f.length,q),N=mr({inputs:{x:E},backend:t,attrs:{shape:d}}),t.disposeData(E.dataId)}return N}var TH={kernelName:ll,backendName:\"wasm\",setupFunc:xmt,kernelFunc:ymt};function bmt(r){let{backend:t,inputs:e,attrs:n}=r,{data:o,dataSplits:s}=e,{separator:i,nGramWidths:a,leftPad:u,rightPad:l,padWidth:c,preserveShortSequences:p}=n,m=t.readSync(o.dataId),f=t.readSync(s.dataId),[d,h]=rp(m,f,i,a,u,l,c,p),g=t.makeOutput([d.length],\"string\"),x=t.dataIdMap.get(g.dataId);x.stringBytes=d;let b=t.makeOutput(s.shape,\"int32\");return t.typedArrayFromHeap(b).set(h),[g,b]}var _H={kernelName:au,backendName:\"wasm\",kernelFunc:bmt};function wmt(r){let{backend:t,inputs:e,attrs:n}=r,{input:o,delimiter:s}=e,{skipEmpty:i}=n,a=t.readSync(o.dataId),u=t.readSync(s.dataId),[l,c,p]=np(a,u[0],i),m=c.length,f=t.makeOutput([m,2],\"int32\");t.typedArrayFromHeap(f).set(l);let h=t.makeOutput([m],\"string\"),g=t.dataIdMap.get(h.dataId);g.stringBytes=c;let x=t.makeOutput([2],\"int32\");return t.typedArrayFromHeap(x).set(p),[f,h,x]}var EH={kernelName:lu,backendName:\"wasm\",kernelFunc:wmt};function Imt(r){let{backend:t,inputs:e,attrs:n}=r,{input:o}=e,{numBuckets:s}=n,i=t.readSync(o.dataId),a=op(i,s),u=t.makeOutput(o.shape,\"int32\");return t.typedArrayFromHeap(u).set(a),u}var AH={kernelName:uu,backendName:\"wasm\",kernelFunc:Imt};var Cmt=!0,DH=ee(ei,Cmt);var $H;function vmt(r){$H=r.wasm.cwrap(Js,null,[\"number\",\"number\",\"number\",\"number\"])}function Smt(r){let{backend:t,inputs:e,attrs:n}=r,{axis:o,keepDims:s}=n,{x:i}=e,a=t.dataIdMap.get(i.dataId).id,u=a,l=i,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=Cn(i,o,t),d=p;if(f){let w=t.dataIdMap.get(c.dataId).id;w!==a&&(l=c,u=w,d=S.getInnerMostAxes(d.length,l.shape.length))}S.assertAxesAreInnerMostDims(\"sum\",d,l.shape.length);let[h,g]=S.computeOutAndReduceShapes(l.shape,d),x=y.sizeFromShape(g),b=t.makeOutput(h,l.dtype);if(y.sizeFromShape(l.shape)!==0){let w=t.dataIdMap.get(b.dataId).id;$H(u,x,Nt[b.dtype],w)}if(f&&t.disposeData(c.dataId),s){let w=S.expandShapeToKeepDim(b.shape,m);b.shape=w}return b}var RH={kernelName:Js,backendName:\"wasm\",setupFunc:vmt,kernelFunc:Smt};var FH=yt(ri);var OH=yt(ni);var MH;function Nmt(r){MH=r.wasm.cwrap(ol,null,[\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"array\",\"number\",\"number\",\"number\"])}function kmt(r){let{backend:t,inputs:e,attrs:n}=r,{tensor:o,indices:s,updates:i}=e,{}=n,a=t.makeOutput(o.shape,o.dtype);if(y.sizeFromShape(o.shape)===0)return a;let{sliceRank:u,numUpdates:l,sliceSize:c,strides:p,outputSize:m}=$u.calculateShapes(i,s,o.shape),d=t.dataIdMap.get(s.dataId).id,g=t.dataIdMap.get(i.dataId).id,b=t.dataIdMap.get(o.dataId).id,w=new Uint8Array(new Int32Array(p).buffer),I=t.dataIdMap.get(a.dataId).id;return MH(d,g,Nt[i.dtype],u,l,c,w,m,I,b),a}var PH={kernelName:ol,backendName:\"wasm\",setupFunc:Nmt,kernelFunc:kmt};var LH;function Tmt(r){LH=r.wasm.cwrap(oo,null,[\"number\",\"array\",\"number\",\"array\",\"number\",\"number\"])}function _mt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,s=e.dataIdMap.get(o.dataId).id,{reps:i}=n,a=new Array(o.shape.length);for(let m=0;m{let{x:n}=r,{k:o,sorted:s}=e,i=t.dataIdMap.get(n.dataId).id,a=new Uint8Array(new Int32Array(n.shape).buffer),u=n.shape.slice();u[u.length-1]=o;let l=t.makeOutput(u,n.dtype),c=t.dataIdMap.get(l.dataId).id,p=t.makeOutput(u,\"int32\"),m=t.dataIdMap.get(p.dataId).id;return BH(i,a,n.shape.length,Nt[n.dtype],o,s,c,m),[l,p]},VH={kernelName:ul,backendName:\"wasm\",setupFunc:Emt,kernelFunc:Amt};var GH;function Dmt(r){GH=r.wasm.cwrap(cl,null,[\"number\",\"number\",\"bool\",\"number\",\"number\",\"number\",\"number\",\"number\",\"number\",\"array\",\"number\",\"array\",\"number\",\"number\",\"number\",\"number\",\"number\"])}function $mt(r){let{backend:t,inputs:e,attrs:n}=r,{image:o,transforms:s}=e,{interpolation:i,fillMode:a,fillValue:u,outputShape:l}=n,[c,p,m,f]=o.shape,[d,h]=l!=null?l:[p,m],g=[c,d,h,f],x=new Uint8Array(new Int32Array(y.computeStrides(o.shape)).buffer),b=new Uint8Array(new Int32Array(y.computeStrides(g)).buffer),w=t.makeOutput(g,o.dtype),I=t.dataIdMap.get(w.dataId).id,E=t.dataIdMap.get(o.dataId).id,D=t.dataIdMap.get(s.dataId).id,F=i===\"nearest\"?1:2,M;switch(a){case\"constant\":M=1;break;case\"reflect\":M=2;break;case\"wrap\":M=3;break;case\"nearest\":M=4;break;default:M=1;break}return GH(E,D,s.shape[0]>1,c,d,h,f,m,p,x,o.shape.length-1,b,g.length-1,F,M,u,I),w}var WH={kernelName:cl,backendName:\"wasm\",setupFunc:Dmt,kernelFunc:$mt};function Rmt(r){let{inputs:t,attrs:e,backend:n}=r,{axis:o}=e,{x:s}=t,{outputValues:i,outputShape:a,indices:u}=sp(n.readSync(s.dataId),o,s.shape,s.dtype);return[n.makeOutput(a,s.dtype,void 0,i),n.makeOutput([u.length],\"int32\",void 0,u)]}var UH={kernelName:cu,backendName:\"wasm\",kernelFunc:Rmt};function Fmt(r){let{inputs:t,backend:e,attrs:n}=r,{value:o}=t,{axis:s}=n;s<0&&(s+=o.shape.length);let i=o.shape[s],a=o.shape.length,u=new Array(a-1),l=0;for(let f=0;f({dataId:f,dtype:d,shape:u}))}var HH={kernelName:Ki,backendName:\"wasm\",kernelFunc:Fmt};function Omt(r){let{inputs:{x:t},backend:e}=r,n=e.makeOutput(t.shape,t.dtype);return e.typedArrayFromHeap(n).fill(0),n}var qH={kernelName:ji,backendName:\"wasm\",kernelFunc:Omt};var Mmt=[DG,$G,RG,FG,OG,PG,GG,UG,HG,qG,KG,jG,XG,YG,ZG,QG,sW,eW,nW,lW,cW,mW,fW,dW,hW,gW,yW,bW,IW,vW,NW,TW,EW,AW,DW,RW,OW,PW,zW,VW,WW,HW,KW,XW,ZW,JW,tU,eU,rU,nU,oU,sU,iU,lU,uU,cU,mU,dU,gU,yU,wU,IU,CU,LG,vU,SU,NU,TU,_U,EU,DU,RU,$U,FU,OU,MU,PU,zU,VU,WU,UU,qU,jU,YU,JU,t4,r4,o4,s4,a4,p4,m4,f4,d4,g4,y4,w4,I4,v4,S4,N4,AC,T4,E4,D4,$4,R4,F4,O4,M4,iW,L4,B4,G4,U4,q4,j4,X4,Y4,J4,tH,rH,nH,sH,iH,aH,lH,uW,u4,uH,cH,mH,dH,gH,xH,bH,wH,IH,CH,vH,NH,TH,_H,EH,AH,DH,RH,FH,OH,PH,zH,VH,WH,BG,UH,HH,qH];for(let r of Mmt)rc(r);var t_=L();t_.registerFlag(\"WASM_HAS_SIMD_SUPPORT\",async()=>{try{return WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11]))}catch(r){return!1}});t_.registerFlag(\"WASM_HAS_MULTITHREAD_SUPPORT\",async()=>{if(t_.get(\"IS_NODE\"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(r){return!1}});var a_=Gl(YH()),rq=Gl(JH()),l_=Gl(QH());var tq=a_.default||a_,Pmt=l_.default||l_,wg=class extends Bo{constructor(t){super(),this.wasm=t,this.dataIdNextNumber=1,this.wasm.tfjs.initWithThreadsCount(oq),i_=this.wasm.tfjs.getThreadsCount(),this.dataIdMap=new Ta(this,Bn())}write(t,e,n){let o={id:this.dataIdNextNumber++};return this.move(o,t,e,n,1),o}numDataIds(){return this.dataIdMap.numDataIds()}async time(t){let e=y.now();return t(),{kernelMs:y.now()-e}}move(t,e,n,o,s){let i=this.dataIdNextNumber++;if(o===\"string\"){let c=e;this.dataIdMap.set(t,{id:i,stringBytes:c,shape:n,dtype:o,memoryOffset:null,refCount:s});return}let a=y.sizeFromShape(n),u=a*y.bytesPerElement(o),l=this.wasm._malloc(u)>>>0;this.dataIdMap.set(t,{id:i,memoryOffset:l,shape:n,dtype:o,refCount:s}),this.wasm.tfjs.registerTensor(i,a,l),e!=null&&this.wasm.HEAPU8.set(new Uint8Array(e.buffer,e.byteOffset,u),l)}async read(t){return this.readSync(t)}readSync(t,e,n){let{memoryOffset:o,dtype:s,shape:i,stringBytes:a}=this.dataIdMap.get(t);if(s===\"string\")return(e==null||e===0)&&(n==null||n>=a.length)?a:a.slice(e,n);e=e||0,n=n||y.sizeFromShape(i);let u=y.bytesPerElement(s),l=this.wasm.HEAPU8.slice(o+e*u,o+n*u);return zmt(l.buffer,s)}disposeData(t,e=!1){if(this.dataIdMap.has(t)){let n=this.dataIdMap.get(t);if(n.refCount--,!e&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(t)}return!0}refCount(t){return this.dataIdMap.has(t)?this.dataIdMap.get(t).refCount:0}incRef(t){let e=this.dataIdMap.get(t);e!=null&&e.refCount++}floatPrecision(){return 32}getMemoryOffset(t){return this.dataIdMap.get(t).memoryOffset}dispose(){this.wasm.tfjs.dispose(),\"PThread\"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(t,e,n,o){let s;if(n==null)s=this.write(o!=null?o:null,t,e);else{let i=this.dataIdNextNumber++;s={id:i},this.dataIdMap.set(s,{id:i,memoryOffset:n,shape:t,dtype:e,refCount:1});let a=y.sizeFromShape(t);this.wasm.tfjs.registerTensor(i,a,n)}return{dataId:s,shape:t,dtype:e}}typedArrayFromHeap({shape:t,dtype:e,dataId:n}){let o=this.wasm.HEAPU8.buffer,{memoryOffset:s}=this.dataIdMap.get(n),i=y.sizeFromShape(t);switch(e){case\"float32\":return new Float32Array(o,s,i);case\"int32\":return new Int32Array(o,s,i);case\"bool\":return new Uint8Array(o,s,i);default:throw new Error(`Unknown dtype ${e}`)}}};function Lmt(r){return(t,e)=>(y.fetch(r,{credentials:\"same-origin\"}).then(n=>{n.ok||t.env.a(`failed to load wasm binary file at '${r}'`),n.arrayBuffer().then(o=>{WebAssembly.instantiate(o,t).then(s=>{e(s.instance,s.module)})})}),{})}function eq(r,t,e){if(OC!=null)return OC;let n=\"tfjs-backend-wasm.wasm\";return r&&t?n=\"tfjs-backend-wasm-threaded-simd.wasm\":r&&(n=\"tfjs-backend-wasm-simd.wasm\"),yg!=null&&yg[n]!=null?yg[n]:e+n}async function nq(){let[r,t]=await Promise.all([L().getAsync(\"WASM_HAS_SIMD_SUPPORT\"),L().getAsync(\"WASM_HAS_MULTITHREAD_SUPPORT\")]);return new Promise((e,n)=>{let o={};o.locateFile=(a,u)=>{if(a.endsWith(\".worker.js\")){let l=rq.wasmWorkerContents.replace(/\\n/g,\"\\\\n\"),c=new Blob([l],{type:\"application/javascript\"});return URL.createObjectURL(c)}return a.endsWith(\".wasm\")?eq(r,t,xg!=null?xg:u):u+a},u_&&(o.instantiateWasm=Lmt(eq(r,t,xg!=null?xg:\"\")));let s=!1;o.onAbort=()=>{if(s||bg)return;bg=!0,n({message:\"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers\"})};let i;t&&r&&OC==null?(o.mainScriptUrlOrBlob=new Blob([\"var WasmBackendModuleThreadedSimd = \"+tq.toString()],{type:\"text/javascript\"}),i=tq(o)):i=Pmt(o),i.then(a=>{s=!0,bg=!1;let u=null;a.tfjs={init:a.cwrap(\"init\",null,[]),initWithThreadsCount:a.cwrap(\"init_with_threads_count\",null,[\"number\"]),getThreadsCount:a.cwrap(\"get_threads_count\",\"number\",[]),registerTensor:a.cwrap(\"register_tensor\",null,[\"number\",\"number\",\"number\"]),disposeData:a.cwrap(\"dispose_data\",u,[\"number\"]),dispose:a.cwrap(\"dispose\",u,[])},e({wasm:a})}).catch(n)})}function zmt(r,t){switch(t){case\"float32\":return new Float32Array(r);case\"int32\":return new Int32Array(r);case\"bool\":return new Uint8Array(r);default:throw new Error(`Unknown dtype ${t}`)}}var Bmt=[\"tfjs-backend-wasm.wasm\",\"tfjs-backend-wasm-simd.wasm\",\"tfjs-backend-wasm-threaded-simd.wasm\"],OC=null,xg=null,yg={},bg=!1,u_=!1;function Vmt(r,t=!1){if(G0(\"setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release.\"),bg)throw new Error(\"The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`\");OC=r,u_=t}function Gmt(r,t=!1){if(bg)throw new Error(\"The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`\");if(typeof r==\"string\")xg=r;else{yg=r;let e=Bmt.filter(n=>yg[n]==null);if(e.length>0)throw new Error(`There were no entries found for the following binaries: ${e.join(\",\")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}u_=t}var oq=-1,i_=-1;function Wmt(r){oq=r}function Umt(){if(i_===-1)throw new Error(\"WASM backend not initialized.\");return i_}var Hmt=\"4.22.0\";var qmt=2;Xp(\"wasm\",async()=>{let{wasm:r}=await nq();return new wg(r)},qmt);var sq=\"4.22.0\",Kmt=\"4.22.0\",jmt=\"4.22.0\",Xmt=\"4.22.0\",Ymt=\"4.22.0\",Zmt={tfjs:sq,\"tfjs-core\":sq,\"tfjs-converter\":Kmt,\"tfjs-backend-cpu\":jmt,\"tfjs-backend-webgl\":Xmt,\"tfjs-backend-wasm\":Ymt};export{Ai as Abs,Go as Acos,Wo as Acosh,vc as AdadeltaOptimizer,Sc as AdagradOptimizer,Nc as AdamOptimizer,kc as AdamaxOptimizer,no as Add,Uo as AddN,Ea as All,Aa as Any,Di as ArgMax,$i as ArgMin,Ho as Asin,qo as Asinh,Ko as Atan,Xo as Atan2,jo as Atanh,Yo as AvgPool,Ri as AvgPool3D,Hl as AvgPool3DGrad,Ul as AvgPoolGrad,wg as BackendWasm,Zo as BatchMatMul,Fi as BatchToSpaceND,Da as Bincount,$a as BitwiseAnd,ql as BroadcastArgs,__ as BroadcastTo,zb as Callback,Xy as CallbackList,fo as Cast,Jo as Ceil,ho as ClipByValue,Ap as Complex,Kl as ComplexAbs,Oi as Concat,Qo as Conv2D,Dp as Conv2DBackpropFilter,ts as Conv2DBackpropInput,es as Conv3D,Ra as Conv3DBackpropFilterV2,Fa as Conv3DBackpropInputV2,rs as Cos,ns as Cosh,Ma as CropAndResize,Oa as Cumprod,os as Cumsum,Zy as CustomCallback,Ta as DataStorage,jl as DenseBincount,Pa as DepthToSpace,ss as DepthwiseConv2dNative,$p as DepthwiseConv2dNativeBackpropFilter,Rp as DepthwiseConv2dNativeBackpropInput,Xl as Diag,is as Dilation2D,Zl as Dilation2DBackpropFilter,Yl as Dilation2DBackpropInput,Qd as Draw,w0 as ENV,Bb as EarlyStopping,Fp as Einsum,ls as Elu,La as EluGrad,Zd as Environment,za as Equal,us as Erf,cs as Exp,Mi as ExpandDims,ps as Expm1,Op as FFT,Jl as Fill,Ba as FlipLeftRight,ms as Floor,fs as FloorDiv,th as FromPixels,ds as FusedBatchNorm,Yi as FusedConv2D,Zi as FusedDepthwiseConv2D,pp as GPGPUContext,Va as GatherNd,Pi as GatherV2,qh as GraphModel,Ga as Greater,hs as GreaterEqual,Yy as History,Mp as IFFT,go as Identity,Pp as Imag,Ce as InputSpec,gs as IsFinite,xs as IsInf,ys as IsNan,Bo as KernelBackend,Cs as LRN,Xa as LRNGrad,Th as LayerVariable,Un as LayersModel,bs as LeakyRelu,Wa as Less,Ua as LessEqual,Ha as LinSpace,ws as Log,Is as Log1p,A_ as LogSoftmax,qa as LogicalAnd,Ka as LogicalNot,ja as LogicalOr,E_ as LogicalXor,nft as LowerBound,pd as MathBackendCPU,Dd as MathBackendWebGL,oft as MatrixBandPart,vs as Max,Ns as MaxPool,Li as MaxPool3D,tu as MaxPool3DGrad,Ql as MaxPoolGrad,eu as MaxPoolWithArgmax,Ss as Maximum,ks as Mean,Ts as Min,_s as Minimum,Es as MirrorPad,As as Mod,Tc as MomentumOptimizer,Ya as Multinomial,Ds as Multiply,zi as Neg,Ja as NonMaxSuppressionV3,Qa as NonMaxSuppressionV4,tl as NonMaxSuppressionV5,Za as NotEqual,V0 as OP_SCOPE_SUFFIX,$s as OneHot,Bi as OnesLike,jr as Optimizer,Ih as OptimizerConstructors,Vi as Pack,Rs as PadV2,sft as Pool,Fs as Pow,Os as Prelu,Ms as Prod,_c as RMSPropOptimizer,po as RNN,Lp as RaggedGather,zp as RaggedRange,Bp as RaggedTensorToTensor,ru as Range,D0 as Rank,Vp as Real,as as RealDiv,Ps as Reciprocal,Je as Reduction,Ls as Relu,Vs as Relu6,Gi as Reshape,Bs as ResizeBilinear,rl as ResizeBilinearGrad,zs as ResizeNearestNeighbor,el as ResizeNearestNeighborGrad,Gs as Reverse,pl as RotateWithOffset,Ws as Round,Us as Rsqrt,Il as SGDOptimizer,nl as ScatterNd,sl as SearchSorted,Wi as Select,Hs as Selu,Wc as Sequential,Xs as Sigmoid,js as Sign,qs as Sin,Ks as Sinh,Ui as Slice,Qs as Softmax,Ys as Softplus,Hi as SpaceToBatchND,nu as SparseFillEmptyRows,il as SparseReshape,ou as SparseSegmentMean,su as SparseSegmentSum,al as SparseToDense,qi as SplitV,Zs as Sqrt,iu as Square,ti as SquaredDifference,ec as StaticRegexReplace,xo as Step,ll as StridedSlice,au as StringNGrams,lu as StringSplit,uu as StringToHashBucketFast,ei as Sub,Js as Sum,nn as SymbolicTensor,ri as Tan,ni as Tanh,Lt as Tensor,le as TensorBuffer,ol as TensorScatterUpdate,oo as Tile,ul as TopK,cl as Transform,so as Transpose,cu as Unique,Ki as Unpack,pu as UnsortedSegmentSum,ift as UpperBound,ml as Variable,ji as ZerosLike,Xi as _FusedMatMul,_e as abs,fx as acos,dx as acosh,K as add,EE as addN,tm as all,cc as any,ra as argMax,hx as argMin,gx as asin,xx as asinh,yx as atan,bx as atan2,wx as atanh,xu as avgPool,Ix as avgPool3d,sx as backend,S as backend_util,$E as basicLSTMCell,oa as batchNorm,Cx as batchNorm2d,vx as batchNorm3d,Sx as batchNorm4d,yu as batchToSpaceND,Nx as bincount,FE as bitwiseAnd,q5 as booleanMaskAsync,OE as broadcastArgs,sa as broadcastTo,Hr as broadcast_util,_y as browser,wt as buffer,xQ as callbacks,J as cast,kx as ceil,vr as clipByValue,un as clone,Sn as complex,ie as concat,Tx as concat1d,_x as concat2d,Ex as concat3d,Ax as concat4d,CR as constraints,rm as conv1d,Nn as conv2d,om as conv2dTranspose,Dx as conv3d,Rx as conv3dTranspose,fft as copyRegisteredKernels,bu as cos,sm as cosh,xh as cosineWindow,mc as cumprod,im as cumsum,pn as customGrad,aO as data,mh as denseBincount,G0 as deprecationWarn,Fx as depthToSpace,ia as depthwiseConv2d,IQ as deregisterOp,du as device_util,ME as diag,Ox as dilation2d,Sdt as disableDeprecationWarnings,Tt as dispose,Ndt as disposeVariables,ut as div,Mx as divNoNan,Px as dot,dN as dropout,wu as einsum,aa as elu,vdt as enableDebugMode,Cdt as enableProdMode,hN as enclosingPowerOfTwo,Bn as engine,LE as ensureShape,L as env,$r as equal,am as erf,Lx as euclideanNorm,Ke as exp,je as expandDims,zx as expm1,fc as eye,Au as fft,Co as fill,Adt as findBackend,Ddt as findBackendFactory,la as floor,Qp as floorDiv,Qz as forceHalfFloat,Ru as fused,ua as gather,r8 as gatherND,Ey as gather_util,oE as getBackend,v0 as getGradient,Wp as getKernel,Yg as getKernelsForBackend,Umt as getThreadsCount,k1 as gpgpu_util,X6 as grad,Y6 as grads,Re as greater,cn as greaterEqual,wl as ifft,Iu as imag,fn as image,s8 as inTopKAsync,vR as initializers,JN as input,Mr as io,bm as irfft,Bx as isFinite,Vx as isInf,Gx as isNaN,De as keep,Xr as kernel_impls,oF as layers,Cu as leakyRelu,yl as less,Vn as lessEqual,xN as linalg,VE as linspace,xtt as loadGraphModel,ytt as loadGraphModelSync,UR as loadLayersModel,Wx as localResponseNormalization,Nr as log,vu as log1p,qx as logSigmoid,lm as logSoftmax,Su as logSumExp,Fr as logicalAnd,Nu as logicalNot,um as logicalOr,Kx as logicalXor,aY as losses,GE as lowerBound,Bt as matMul,O2 as math,Sr as max,ku as maxPool,Xx as maxPool3d,WE as maxPoolWithArgmax,kn as maximum,Ne as mean,lh as memory,UE as meshgrid,sF as metrics,gl as min,lo as minimum,Yx as mirrorPad,Zx as mod,gJ as model,iF as models,dc as moments,X5 as movingAverage,$ as mul,HE as multiRNNCell,qE as multinomial,Ut as neg,Ch as nextFrame,xl as norm,ci as notEqual,ca as oneHot,ar as ones,wr as onesLike,k as op,KE as outerProduct,mn as pad,jE as pad1d,XE as pad2d,YE as pad3d,ZE as pad4d,Jx as pool,qr as pow,_u as prelu,mx as print,Qx as prod,kdt as profile,JE as raggedGather,QE as raggedRange,tA as raggedTensorToTensor,eA as rand,CA as randomGamma,xc as randomNormal,vA as randomStandardNormal,Gn as randomUniform,SA as randomUniformInt,pa as range,_dt as ready,bl as real,sy as reciprocal,Xp as registerBackend,yJ as registerCallbackConstructor,$_ as registerGradient,rc as registerKernel,wQ as registerOp,aF as regularizers,Or as relu,cm as relu6,Edt as removeBackend,R as reshape,dr as reverse,NA as reverse1d,kA as reverse2d,TA as reverse3d,_A as reverse4d,Du as rfft,pm as round,mm as rsqrt,pt as scalar,Z5 as scatterND,$u as scatter_util,dh as searchSorted,fm as selu,dm as separableConv2d,xJ as sequential,Q as serialization,OK as setBackend,$dt as setPlatform,Wmt as setThreadsCount,Vmt as setWasmPath,Gmt as setWasmPaths,BT as setWebGLContext,EA as setdiff1dAsync,Ew as shared,en as sigmoid,iy as sign,iY as signal,hm as sin,gm as sinh,Ot as slice,xm as slice1d,gh as slice2d,ym as slice3d,yc as slice4d,Be as slice_util,Eu as softmax,ui as softplus,Tu as spaceToBatchND,lY as sparse,t8 as sparseToDense,sY as spectral,hr as split,ge as sqrt,Wt as square,wm as squaredDifference,Wn as squeeze,Fe as stack,So as step,ay as stridedSlice,uY as string,at as sub,mt as sum,lc as sumOutType,ly as tan,li as tanh,ir as tensor,Oe as tensor1d,pi as tensor2d,uy as tensor3d,AA as tensor4d,DA as tensor5d,$A as tensor6d,FA as tensorScatterUpdate,Io as tensor_util,IA as test_util,B as tidy,Rr as tile,Tdt as time,cy as topk,Ac as train,Vt as transpose,Cm as truncatedNormal,py as unique,mft as unregisterGradient,pft as unregisterKernel,vm as unsortedSegmentSum,gr as unstack,ur as upcastType,OA as upperBound,y as util,Z6 as valueAndGrad,J6 as valueAndGrads,my as variable,Ux as variableGrads,Zmt as version,VF as version_converter,X2 as version_core,KO as version_cpu,jm as version_layers,Hmt as version_wasm,Jz as version_webgl,T$e as webgl,Cd as webgl_util,Ie as where,dy as whereAsync,ke as zeros,vt as zerosLike};\n", "export * from './drawContour';\nexport * from './drawDetections';\nexport * from './drawFaceExpressions';\nexport * from './DrawBox';\nexport * from './DrawFaceLandmarks';\nexport * from './DrawTextField';\n", "import { Point } from '../classes/index';\n\nexport function drawContour(\n ctx: CanvasRenderingContext2D,\n points: Point[],\n isClosed = false,\n) {\n ctx.beginPath();\n\n points.slice(1).forEach(({ x, y }, prevIdx) => {\n const from = points[prevIdx];\n ctx.moveTo(from.x, from.y);\n ctx.lineTo(x, y);\n });\n\n if (isClosed) {\n const from = points[points.length - 1];\n const to = points[0];\n if (!from || !to) {\n return;\n }\n\n ctx.moveTo(from.x, from.y);\n ctx.lineTo(to.x, to.y);\n }\n\n ctx.stroke();\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { Point } from '../classes/index';\nimport { Dimensions, IDimensions } from '../classes/Dimensions';\n\nexport function isTensor(tensor: any, dim: number) {\n return tensor instanceof tf.Tensor && tensor.shape.length === dim;\n}\n\nexport function isTensor1D(tensor: any): tensor is tf.Tensor1D {\n return isTensor(tensor, 1);\n}\n\nexport function isTensor2D(tensor: any): tensor is tf.Tensor2D {\n return isTensor(tensor, 2);\n}\n\nexport function isTensor3D(tensor: any): tensor is tf.Tensor3D {\n return isTensor(tensor, 3);\n}\n\nexport function isTensor4D(tensor: any): tensor is tf.Tensor4D {\n return isTensor(tensor, 4);\n}\n\nexport function isFloat(num: number) {\n return num % 1 !== 0;\n}\n\nexport function isEven(num: number) {\n return num % 2 === 0;\n}\n\nexport function round(num: number, prec = 2) {\n const f = 10 ** prec;\n return Math.floor(num * f) / f;\n}\n\nexport function isDimensions(obj: any): boolean {\n return obj && obj.width && obj.height;\n}\n\nexport function computeReshapedDimensions({ width, height }: IDimensions, inputSize: number) {\n const scale = inputSize / Math.max(height, width);\n return new Dimensions(Math.round(width * scale), Math.round(height * scale));\n}\n\nexport function getCenterPoint(pts: Point[]): Point {\n return pts.reduce((sum, pt) => sum.add(pt), new Point(0, 0))\n .div(new Point(pts.length, pts.length));\n}\n\nexport function range(num: number, start: number, step: number): number[] {\n return Array(num).fill(0).map((_, i) => start + (i * step));\n}\n\nexport function isValidNumber(num: any) {\n return !!num && (num !== Infinity) && (num !== -Infinity) && !Number.isNaN(num) || num === 0;\n}\n\nexport function isValidProbablitiy(num: any) {\n return isValidNumber(num) && num >= 0 && num <= 1.0;\n}\n", "import { isValidNumber } from '../utils/index';\n\nexport interface IDimensions {\n width: number\n height: number\n}\n\nexport class Dimensions implements IDimensions {\n private _width: number;\n\n private _height: number;\n\n constructor(width: number, height: number) {\n if (!isValidNumber(width) || !isValidNumber(height)) {\n throw new Error(`Dimensions.constructor - expected width and height to be valid numbers, instead have ${JSON.stringify({ width, height })}`);\n }\n\n this._width = width;\n this._height = height;\n }\n\n public get width(): number { return this._width; }\n\n public get height(): number { return this._height; }\n\n public reverse(): Dimensions {\n return new Dimensions(1 / this.width, 1 / this.height);\n }\n}\n", "export interface IPoint {\n x: number\n y: number\n}\n\nexport class Point implements IPoint {\n private _x: number;\n\n private _y: number;\n\n constructor(x: number, y: number) {\n this._x = x;\n this._y = y;\n }\n\n get x(): number { return this._x; }\n\n get y(): number { return this._y; }\n\n public add(pt: IPoint): Point {\n return new Point(this.x + pt.x, this.y + pt.y);\n }\n\n public sub(pt: IPoint): Point {\n return new Point(this.x - pt.x, this.y - pt.y);\n }\n\n public mul(pt: IPoint): Point {\n return new Point(this.x * pt.x, this.y * pt.y);\n }\n\n public div(pt: IPoint): Point {\n return new Point(this.x / pt.x, this.y / pt.y);\n }\n\n public abs(): Point {\n return new Point(Math.abs(this.x), Math.abs(this.y));\n }\n\n public magnitude(): number {\n return Math.sqrt((this.x ** 2) + (this.y ** 2));\n }\n\n public floor(): Point {\n return new Point(Math.floor(this.x), Math.floor(this.y));\n }\n}\n", "import { isDimensions, isValidNumber } from '../utils/index';\nimport { IBoundingBox } from './BoundingBox';\nimport { IDimensions } from './Dimensions';\nimport { Point } from './Point';\nimport { IRect } from './Rect';\n\nexport class Box implements IBoundingBox, IRect {\n public static isRect(rect: any): boolean {\n return !!rect && [rect.x, rect.y, rect.width, rect.height].every(isValidNumber);\n }\n\n public static assertIsValidBox(box: any, callee: string, allowNegativeDimensions = false) {\n if (!Box.isRect(box)) {\n throw new Error(`${callee} - invalid box: ${JSON.stringify(box)}, expected object with properties x, y, width, height`);\n }\n\n if (!allowNegativeDimensions && (box.width < 0 || box.height < 0)) {\n throw new Error(`${callee} - width (${box.width}) and height (${box.height}) must be positive numbers`);\n }\n }\n\n private _x: number;\n\n private _y: number;\n\n private _width: number;\n\n private _height: number;\n\n constructor(_box: IBoundingBox | IRect, allowNegativeDimensions = true) {\n const box = (_box || {}) as any;\n\n const isBbox = [box.left, box.top, box.right, box.bottom].every(isValidNumber);\n const isRect = [box.x, box.y, box.width, box.height].every(isValidNumber);\n\n if (!isRect && !isBbox) {\n throw new Error(`Box.constructor - expected box to be IBoundingBox | IRect, instead have ${JSON.stringify(box)}`);\n }\n\n const [x, y, width, height] = isRect\n ? [box.x, box.y, box.width, box.height]\n : [box.left, box.top, box.right - box.left, box.bottom - box.top];\n\n Box.assertIsValidBox({\n x, y, width, height,\n }, 'Box.constructor', allowNegativeDimensions);\n\n this._x = x;\n this._y = y;\n this._width = width;\n this._height = height;\n }\n\n public get x(): number { return this._x; }\n\n public get y(): number { return this._y; }\n\n public get width(): number { return this._width; }\n\n public get height(): number { return this._height; }\n\n public get left(): number { return this.x; }\n\n public get top(): number { return this.y; }\n\n public get right(): number { return this.x + this.width; }\n\n public get bottom(): number { return this.y + this.height; }\n\n public get area(): number { return this.width * this.height; }\n\n public get topLeft(): Point { return new Point(this.left, this.top); }\n\n public get topRight(): Point { return new Point(this.right, this.top); }\n\n public get bottomLeft(): Point { return new Point(this.left, this.bottom); }\n\n public get bottomRight(): Point { return new Point(this.right, this.bottom); }\n\n public round(): Box {\n const [x, y, width, height] = [this.x, this.y, this.width, this.height]\n .map((val) => Math.round(val));\n return new Box({\n x, y, width, height,\n });\n }\n\n public floor(): Box {\n const [x, y, width, height] = [this.x, this.y, this.width, this.height]\n .map((val) => Math.floor(val));\n return new Box({\n x, y, width, height,\n });\n }\n\n public toSquare(): Box {\n let {\n x, y, width, height,\n } = this;\n const diff = Math.abs(width - height);\n if (width < height) {\n x -= (diff / 2);\n width += diff;\n }\n if (height < width) {\n y -= (diff / 2);\n height += diff;\n }\n\n return new Box({ x, y, width, height });\n }\n\n public rescale(s: IDimensions | number): Box {\n const scaleX = isDimensions(s) ? (s as IDimensions).width : s as number;\n const scaleY = isDimensions(s) ? (s as IDimensions).height : s as number;\n return new Box({\n x: this.x * scaleX,\n y: this.y * scaleY,\n width: this.width * scaleX,\n height: this.height * scaleY,\n });\n }\n\n public pad(padX: number, padY: number): Box {\n const [x, y, width, height] = [\n this.x - (padX / 2),\n this.y - (padY / 2),\n this.width + padX,\n this.height + padY,\n ];\n return new Box({ x, y, width, height });\n }\n\n public clipAtImageBorders(imgWidth: number, imgHeight: number): Box {\n const { x, y, right, bottom } = this;\n const clippedX = Math.max(x, 0);\n const clippedY = Math.max(y, 0);\n\n const newWidth = right - clippedX;\n const newHeight = bottom - clippedY;\n const clippedWidth = Math.min(newWidth, imgWidth - clippedX);\n const clippedHeight = Math.min(newHeight, imgHeight - clippedY);\n\n return (new Box({ x: clippedX, y: clippedY, width: clippedWidth, height: clippedHeight })).floor();\n }\n\n public shift(sx: number, sy: number): Box {\n const { width, height } = this;\n const x = this.x + sx;\n const y = this.y + sy;\n\n return new Box({ x, y, width, height });\n }\n\n public padAtBorders(imageHeight: number, imageWidth: number) {\n const w = this.width + 1;\n const h = this.height + 1;\n\n const dx = 1;\n const dy = 1;\n let edx = w;\n let edy = h;\n\n let x = this.left;\n let y = this.top;\n let ex = this.right;\n let ey = this.bottom;\n\n if (ex > imageWidth) {\n edx = -ex + imageWidth + w;\n ex = imageWidth;\n }\n if (ey > imageHeight) {\n edy = -ey + imageHeight + h;\n ey = imageHeight;\n }\n if (x < 1) {\n edy = 2 - x;\n x = 1;\n }\n if (y < 1) {\n edy = 2 - y;\n y = 1;\n }\n\n return { dy, edy, dx, edx, y, ey, x, ex, w, h };\n }\n\n public calibrate(region: Box) {\n return new Box({\n left: this.left + (region.left * this.width),\n top: this.top + (region.top * this.height),\n right: this.right + (region.right * this.width),\n bottom: this.bottom + (region.bottom * this.height),\n }).toSquare().round();\n }\n}\n", "import { Box } from './Box';\n\nexport interface IBoundingBox {\n left: number\n top: number\n right: number\n bottom: number\n}\n\nexport class BoundingBox extends Box implements IBoundingBox {\n constructor(left: number, top: number, right: number, bottom: number, allowNegativeDimensions = false) {\n super({ left, top, right, bottom }, allowNegativeDimensions);\n }\n}\n", "import { Box } from './Box';\nimport { Dimensions, IDimensions } from './Dimensions';\nimport { IRect, Rect } from './Rect';\n\nexport class ObjectDetection {\n private _score: number;\n\n private _classScore: number;\n\n private _className: string;\n\n private _box: Rect;\n\n private _imageDims: Dimensions;\n\n constructor(\n score: number,\n classScore: number,\n className: string,\n relativeBox: IRect,\n imageDims: IDimensions,\n ) {\n this._imageDims = new Dimensions(imageDims.width, imageDims.height);\n this._score = score;\n this._classScore = classScore;\n this._className = className;\n this._box = new Box(relativeBox).rescale(this._imageDims);\n }\n\n public get score(): number { return this._score; }\n\n public get classScore(): number { return this._classScore; }\n\n public get className(): string { return this._className; }\n\n public get box(): Box { return this._box; }\n\n public get imageDims(): Dimensions { return this._imageDims; }\n\n public get imageWidth(): number { return this.imageDims.width; }\n\n public get imageHeight(): number { return this.imageDims.height; }\n\n public get relativeBox(): Box { return new Box(this._box).rescale(this.imageDims.reverse()); }\n\n public forSize(width: number, height: number): ObjectDetection {\n return new ObjectDetection(\n this.score,\n this.classScore,\n this.className,\n this.relativeBox,\n { width, height },\n );\n }\n}\n", "import { Box } from './Box';\nimport { IDimensions } from './Dimensions';\nimport { ObjectDetection } from './ObjectDetection';\nimport { Rect } from './Rect';\n\nexport interface IFaceDetecion {\n score: number\n box: Box\n}\n\nexport class FaceDetection extends ObjectDetection implements IFaceDetecion {\n constructor(\n score: number,\n relativeBox: Rect,\n imageDims: IDimensions,\n ) {\n super(score, score, '', relativeBox, imageDims);\n }\n\n public override forSize(width: number, height: number): FaceDetection {\n const { score, relativeBox, imageDims } = super.forSize(width, height);\n return new FaceDetection(score, relativeBox, imageDims);\n }\n}\n", "import { Box } from '../classes/Box';\n\nexport function iou(box1: Box, box2: Box, isIOU = true) {\n const width = Math.max(0.0, Math.min(box1.right, box2.right) - Math.max(box1.left, box2.left));\n const height = Math.max(0.0, Math.min(box1.bottom, box2.bottom) - Math.max(box1.top, box2.top));\n const interSection = width * height;\n\n return isIOU\n ? interSection / (box1.area + box2.area - interSection)\n : interSection / Math.min(box1.area, box2.area);\n}\n", "import { BoundingBox, IPoint } from '../classes/index';\n\nexport function minBbox(pts: IPoint[]): BoundingBox {\n const xs = pts.map((pt) => pt.x);\n const ys = pts.map((pt) => pt.y);\n const minX = xs.reduce((min, x) => (x < min ? x : min), Infinity);\n const minY = ys.reduce((min, y) => (y < min ? y : min), Infinity);\n const maxX = xs.reduce((max, x) => (max < x ? x : max), 0);\n const maxY = ys.reduce((max, y) => (max < y ? y : max), 0);\n\n return new BoundingBox(minX, minY, maxX, maxY);\n}\n", "import { Box } from '../classes/Box';\nimport { iou } from './iou';\n\nexport function nonMaxSuppression(\n boxes: Box[],\n scores: number[],\n iouThreshold: number,\n isIOU = true,\n): number[] {\n let indicesSortedByScore = scores\n .map((score, boxIndex) => ({ score, boxIndex }))\n .sort((c1, c2) => c1.score - c2.score)\n .map((c) => c.boxIndex);\n\n const pick: number[] = [];\n\n while (indicesSortedByScore.length > 0) {\n const curr = indicesSortedByScore.pop() as number;\n pick.push(curr);\n\n const indices = indicesSortedByScore;\n\n const outputs: number[] = [];\n for (let i = 0; i < indices.length; i++) {\n const idx = indices[i];\n\n const currBox = boxes[curr];\n const idxBox = boxes[idx];\n\n outputs.push(iou(currBox, idxBox, isIOU));\n }\n\n indicesSortedByScore = indicesSortedByScore.filter(\n (_, j) => outputs[j] <= iouThreshold,\n );\n }\n\n return pick;\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nexport function normalize(x: tf.Tensor4D, meanRgb: number[]): tf.Tensor4D {\n return tf.tidy(() => {\n const [r, g, b] = meanRgb;\n const avg_r = tf.fill([...x.shape.slice(0, 3), 1], r, 'float32');\n const avg_g = tf.fill([...x.shape.slice(0, 3), 1], g, 'float32');\n const avg_b = tf.fill([...x.shape.slice(0, 3), 1], b, 'float32');\n const avg_rgb = tf.concat([avg_r, avg_g, avg_b], 3);\n\n return tf.sub(x, avg_rgb);\n });\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\n/**\n * Pads the smaller dimension of an image tensor with zeros, such that width === height.\n *\n * @param imgTensor The image tensor.\n * @param isCenterImage (optional, default: false) If true, add an equal amount of padding on\n * both sides of the minor dimension oof the image.\n * @returns The padded tensor with width === height.\n */\nexport function padToSquare(imgTensor: tf.Tensor4D, isCenterImage = false): tf.Tensor4D {\n return tf.tidy(() => {\n const [height, width] = imgTensor.shape.slice(1);\n if (height === width) return imgTensor;\n const dimDiff = Math.abs(height - width);\n const paddingAmount = Math.round(dimDiff * (isCenterImage ? 0.5 : 1));\n const paddingAxis = height > width ? 2 : 1;\n const createPaddingTensor = (paddingAmountLocal: number): tf.Tensor => {\n const paddingTensorShape = imgTensor.shape.slice();\n paddingTensorShape[paddingAxis] = paddingAmountLocal;\n return tf.fill(paddingTensorShape, 0, 'float32');\n };\n const paddingTensorAppend = createPaddingTensor(paddingAmount);\n const remainingPaddingAmount = dimDiff - (paddingTensorAppend.shape[paddingAxis] as number);\n const paddingTensorPrepend = isCenterImage && remainingPaddingAmount ? createPaddingTensor(remainingPaddingAmount) : null;\n const tensorsToStack = [paddingTensorPrepend, imgTensor, paddingTensorAppend]\n .filter((t) => !!t)\n .map((t) => tf.cast(t as tf.Tensor4D, 'float32')) as tf.Tensor4D[];\n return tf.concat(tensorsToStack, paddingAxis);\n });\n}\n", "export function shuffleArray(inputArray: any[]) {\n const array = inputArray.slice();\n for (let i = array.length - 1; i > 0; i--) {\n const j = Math.floor(Math.random() * (i + 1));\n const x = array[i];\n array[i] = array[j];\n array[j] = x;\n }\n return array;\n}\n", "export * from './iou';\nexport * from './minBbox';\nexport * from './nonMaxSuppression';\nexport * from './normalize';\nexport * from './padToSquare';\nexport * from './shuffleArray';\n\nexport function sigmoid(x: number) {\n return 1 / (1 + Math.exp(-x));\n}\n\nexport function inverseSigmoid(x: number) {\n return Math.log(x / (1 - x));\n}\n", "import { Box } from './Box';\n\nexport interface IRect {\n x: number\n y: number\n width: number\n height: number\n}\n\nexport class Rect extends Box implements IRect {\n constructor(x: number, y: number, width: number, height: number, allowNegativeDimensions = false) {\n super({ x, y, width, height }, allowNegativeDimensions);\n }\n}\n", "import { minBbox } from '../ops/index';\nimport { getCenterPoint } from '../utils/index';\nimport { IBoundingBox } from './BoundingBox';\nimport { Box } from './Box';\nimport { Dimensions, IDimensions } from './Dimensions';\nimport { FaceDetection } from './FaceDetection';\nimport { Point } from './Point';\nimport { IRect, Rect } from './Rect';\n\n// face alignment constants\nconst relX = 0.5;\nconst relY = 0.43;\nconst relScale = 0.45;\n\nexport interface IFaceLandmarks {\n positions: Point[]\n shift: Point\n}\n\nexport class FaceLandmarks implements IFaceLandmarks {\n protected _shift: Point;\n\n protected _positions: Point[];\n\n protected _imgDims: Dimensions;\n\n constructor(\n relativeFaceLandmarkPositions: Point[],\n imgDims: IDimensions,\n shift: Point = new Point(0, 0),\n ) {\n const { width, height } = imgDims;\n this._imgDims = new Dimensions(width, height);\n this._shift = shift;\n this._positions = relativeFaceLandmarkPositions.map(\n (pt) => pt.mul(new Point(width, height)).add(shift),\n );\n }\n\n public get shift(): Point { return new Point(this._shift.x, this._shift.y); }\n\n public get imageWidth(): number { return this._imgDims.width; }\n\n public get imageHeight(): number { return this._imgDims.height; }\n\n public get positions(): Point[] { return this._positions; }\n\n public get relativePositions(): Point[] {\n return this._positions.map(\n (pt) => pt.sub(this._shift).div(new Point(this.imageWidth, this.imageHeight)),\n );\n }\n\n public forSize(width: number, height: number): T {\n return new (this.constructor as any)(\n this.relativePositions,\n { width, height },\n );\n }\n\n public shiftBy(x: number, y: number): T {\n return new (this.constructor as any)(\n this.relativePositions,\n this._imgDims,\n new Point(x, y),\n );\n }\n\n public shiftByPoint(pt: Point): T {\n return this.shiftBy(pt.x, pt.y);\n }\n\n /**\n * Aligns the face landmarks after face detection from the relative positions of the faces\n * bounding box, or it's current shift. This function should be used to align the face images\n * after face detection has been performed, before they are passed to the face recognition net.\n * This will make the computed face descriptor more accurate.\n *\n * @param detection (optional) The bounding box of the face or the face detection result. If\n * no argument was passed the position of the face landmarks are assumed to be relative to\n * it's current shift.\n * @returns The bounding box of the aligned face.\n */\n public align(\n detection?: FaceDetection | IRect | IBoundingBox | null,\n options: { useDlibAlignment?: boolean, minBoxPadding?: number } = { },\n ): Box {\n if (detection) {\n const box = detection instanceof FaceDetection\n ? detection.box.floor()\n : new Box(detection);\n\n return this.shiftBy(box.x, box.y).align(null, options);\n }\n\n const { useDlibAlignment, minBoxPadding } = { useDlibAlignment: false, minBoxPadding: 0.2, ...options };\n\n if (useDlibAlignment) {\n return this.alignDlib();\n }\n\n return this.alignMinBbox(minBoxPadding);\n }\n\n private alignDlib(): Box {\n const centers = this.getRefPointsForAlignment();\n\n const [leftEyeCenter, rightEyeCenter, mouthCenter] = centers;\n const distToMouth = (pt: Point) => mouthCenter.sub(pt).magnitude();\n const eyeToMouthDist = (distToMouth(leftEyeCenter) + distToMouth(rightEyeCenter)) / 2;\n\n const size = Math.floor(eyeToMouthDist / relScale);\n\n const refPoint = getCenterPoint(centers);\n // TODO: pad in case rectangle is out of image bounds\n const x = Math.floor(Math.max(0, refPoint.x - (relX * size)));\n const y = Math.floor(Math.max(0, refPoint.y - (relY * size)));\n\n return new Rect(x, y, Math.min(size, this.imageWidth + x), Math.min(size, this.imageHeight + y));\n }\n\n private alignMinBbox(padding: number): Box {\n const box = minBbox(this.positions);\n return box.pad(box.width * padding, box.height * padding);\n }\n\n protected getRefPointsForAlignment(): Point[] {\n throw new Error('getRefPointsForAlignment not implemented by base class');\n }\n}\n", "import { getCenterPoint } from '../utils/index';\nimport { FaceLandmarks } from './FaceLandmarks';\nimport { Point } from './Point';\n\nexport class FaceLandmarks5 extends FaceLandmarks {\n protected override getRefPointsForAlignment(): Point[] {\n const pts = this.positions;\n return [\n pts[0],\n pts[1],\n getCenterPoint([pts[3], pts[4]]),\n ];\n }\n}\n", "import { getCenterPoint } from '../utils/index';\nimport { FaceLandmarks } from './FaceLandmarks';\nimport { Point } from './Point';\n\nexport class FaceLandmarks68 extends FaceLandmarks {\n public getJawOutline(): Point[] {\n return this.positions.slice(0, 17);\n }\n\n public getLeftEyeBrow(): Point[] {\n return this.positions.slice(17, 22);\n }\n\n public getRightEyeBrow(): Point[] {\n return this.positions.slice(22, 27);\n }\n\n public getNose(): Point[] {\n return this.positions.slice(27, 36);\n }\n\n public getLeftEye(): Point[] {\n return this.positions.slice(36, 42);\n }\n\n public getRightEye(): Point[] {\n return this.positions.slice(42, 48);\n }\n\n public getMouth(): Point[] {\n return this.positions.slice(48, 68);\n }\n\n protected override getRefPointsForAlignment(): Point[] {\n return [\n this.getLeftEye(),\n this.getRightEye(),\n this.getMouth(),\n ].map(getCenterPoint);\n }\n}\n", "import { round } from '../utils/index';\n\nexport interface IFaceMatch {\n label: string\n distance: number\n}\n\nexport class FaceMatch implements IFaceMatch {\n private _label: string;\n private _distance: number;\n\n constructor(label: string, distance: number) {\n this._label = label;\n this._distance = distance;\n }\n\n public get label(): string { return this._label; }\n\n public get distance(): number { return this._distance; }\n\n public toString(withDistance = true): string {\n return `${this.label}${withDistance ? ` (${round(this.distance)})` : ''}`;\n }\n}\n", "import { isValidNumber } from '../utils/index';\nimport { IBoundingBox } from './BoundingBox';\nimport { Box } from './Box';\nimport { IRect } from './Rect';\n\nexport class LabeledBox extends Box {\n public static assertIsValidLabeledBox(box: any, callee: string) {\n Box.assertIsValidBox(box, callee);\n if (!isValidNumber(box.label)) {\n throw new Error(`${callee} - expected property label (${box.label}) to be a number`);\n }\n }\n\n private _label: number;\n\n constructor(box: IBoundingBox | IRect | any, label: number) {\n super(box);\n this._label = label;\n }\n\n public get label(): number { return this._label; }\n}\n", "export class LabeledFaceDescriptors {\n private _label: string;\n\n private _descriptors: Float32Array[];\n\n constructor(label: string, descriptors: Float32Array[]) {\n if (!(typeof label === 'string')) {\n throw new Error('LabeledFaceDescriptors - constructor expected label to be a string');\n }\n\n if (!Array.isArray(descriptors) || descriptors.some((desc) => !(desc instanceof Float32Array))) {\n throw new Error('LabeledFaceDescriptors - constructor expected descriptors to be an array of Float32Array');\n }\n\n this._label = label;\n this._descriptors = descriptors;\n }\n\n public get label(): string { return this._label; }\n\n public get descriptors(): Float32Array[] { return this._descriptors; }\n\n public toJSON(): any {\n return {\n label: this.label,\n descriptors: this.descriptors.map((d) => Array.from(d)),\n };\n }\n\n public static fromJSON(json: any): LabeledFaceDescriptors {\n const descriptors = json.descriptors.map((d: any) => new Float32Array(d));\n return new LabeledFaceDescriptors(json.label, descriptors);\n }\n}\n", "import { isValidProbablitiy } from '../utils/index';\nimport { IBoundingBox } from './BoundingBox';\nimport { LabeledBox } from './LabeledBox';\nimport { IRect } from './Rect';\n\nexport class PredictedBox extends LabeledBox {\n public static assertIsValidPredictedBox(box: any, callee: string) {\n LabeledBox.assertIsValidLabeledBox(box, callee);\n\n if (\n !isValidProbablitiy(box.score)\n || !isValidProbablitiy(box.classScore)\n ) {\n throw new Error(`${callee} - expected properties score (${box.score}) and (${box.classScore}) to be a number between [0, 1]`);\n }\n }\n\n private _score: number;\n\n private _classScore: number;\n\n constructor(box: IBoundingBox | IRect | any, label: number, score: number, classScore: number) {\n super(box, label);\n this._score = score;\n this._classScore = classScore;\n }\n\n public get score(): number { return this._score; }\n\n public get classScore(): number { return this._classScore; }\n}\n", "import { FaceDetection } from '../classes/FaceDetection';\n\nexport type WithFaceDetection = TSource & {\n detection: FaceDetection\n}\n\nexport function isWithFaceDetection(obj: any): obj is WithFaceDetection<{}> {\n return obj.detection instanceof FaceDetection;\n}\n\nexport function extendWithFaceDetection(sourceObj: TSource, detection: FaceDetection): WithFaceDetection {\n const extension = { detection };\n return { ...sourceObj, ...extension };\n}\n", "import { Environment } from './types';\n\nexport function createBrowserEnv(): Environment {\n const fetch = window.fetch;\n if (!fetch) throw new Error('fetch - missing fetch implementation for browser environment');\n\n const readFile = () => {\n throw new Error('readFile - filesystem not available for browser environment');\n };\n\n return {\n Canvas: HTMLCanvasElement,\n CanvasRenderingContext2D,\n Image: HTMLImageElement,\n ImageData,\n Video: HTMLVideoElement,\n createCanvasElement: () => document.createElement('canvas'),\n createImageElement: () => document.createElement('img'),\n createVideoElement: () => document.createElement('video'),\n fetch,\n readFile,\n };\n}\n", "export function isNodejs(): boolean {\n return typeof global === 'object'\n && typeof process !== 'undefined'\n && process.versions != null\n && process.versions.node != null;\n}\n", "import { FileSystem } from './types';\nimport { isNodejs } from './isNodejs';\n\nexport function createFileSystem(fs?: any): FileSystem {\n let requireFsError = '';\n if (!fs && isNodejs()) {\n try {\n // eslint-disable-next-line global-require, @typescript-eslint/no-require-imports\n fs = require('fs');\n } catch (err) {\n requireFsError = (err as any).toString();\n }\n }\n\n const readFile = fs\n // eslint-disable-next-line no-undef\n ? (filePath: string) => new Promise((resolve, reject) => { fs.readFile(filePath, (err: NodeJS.ErrnoException | null, buffer: string | Buffer) => (err ? reject(err) : resolve(buffer))); })\n : () => { throw new Error(`readFile - failed to require fs in nodejs environment with error: ${requireFsError}`); };\n return { readFile };\n}\n", "/* eslint-disable max-classes-per-file */\nimport { createFileSystem } from './createFileSystem';\nimport { Environment } from './types';\n\nexport function createNodejsEnv(): Environment {\n const Canvas: (new () => HTMLCanvasElement) = (global as any)['Canvas'] || global.HTMLCanvasElement;\n const Image = global.Image || global.HTMLImageElement;\n const Video: (new () => HTMLVideoElement) = (global as any)['Video'] || global.HTMLVideoElement;\n\n const createCanvasElement = () => {\n if (Canvas) return new Canvas();\n throw new Error('createCanvasElement - missing Canvas implementation for nodejs environment');\n };\n\n const createImageElement = () => {\n if (Image) return new Image();\n throw new Error('createImageElement - missing Image implementation for nodejs environment');\n };\n\n const createVideoElement = () => {\n if (Video) return new Video();\n throw new Error('createVideoElement - missing Video implementation for nodejs environment');\n };\n\n const fetch = global.fetch;\n // if (!fetch) throw new Error('fetch - missing fetch implementation for nodejs environment');\n\n const fileSystem = createFileSystem();\n\n return {\n Canvas: Canvas || class {},\n CanvasRenderingContext2D: global.CanvasRenderingContext2D || class {},\n Image: Image || class {},\n ImageData: global.ImageData || class {},\n Video: global.HTMLVideoElement || class {},\n createCanvasElement,\n createImageElement,\n createVideoElement,\n fetch,\n ...fileSystem,\n };\n}\n", "export function isBrowser(): boolean {\n return typeof window === 'object'\n && typeof document !== 'undefined'\n && typeof HTMLImageElement !== 'undefined'\n && typeof HTMLCanvasElement !== 'undefined'\n && typeof HTMLVideoElement !== 'undefined'\n && typeof ImageData !== 'undefined'\n && typeof CanvasRenderingContext2D !== 'undefined';\n}\n", "import { createBrowserEnv } from './createBrowserEnv';\nimport { createFileSystem } from './createFileSystem';\nimport { createNodejsEnv } from './createNodejsEnv';\nimport { isBrowser } from './isBrowser';\nimport { isNodejs } from './isNodejs';\nimport { Environment } from './types';\n\nlet environment: Environment | null;\n\nfunction getEnv(): Environment {\n if (!environment) {\n throw new Error('getEnv - environment is not defined, check isNodejs() and isBrowser()');\n }\n return environment;\n}\n\nfunction setEnv(env: Environment) {\n environment = env;\n}\n\nfunction initialize() {\n // check for isBrowser() first to prevent electron renderer process\n // to be initialized with wrong environment due to isNodejs() returning true\n if (isBrowser()) return setEnv(createBrowserEnv());\n if (isNodejs()) return setEnv(createNodejsEnv());\n return null;\n}\n\nfunction monkeyPatch(env: Partial) {\n if (!environment) {\n initialize();\n }\n\n if (!environment) {\n throw new Error('monkeyPatch - environment is not defined, check isNodejs() and isBrowser()');\n }\n\n const { Canvas = environment.Canvas, Image = environment.Image } = env;\n environment.Canvas = Canvas;\n environment.Image = Image;\n environment.createCanvasElement = env.createCanvasElement || (() => new Canvas());\n environment.createImageElement = env.createImageElement || (() => new Image());\n\n environment.ImageData = env.ImageData || environment.ImageData;\n environment.Video = env.Video || environment.Video;\n environment.fetch = env.fetch || environment.fetch;\n environment.readFile = env.readFile || environment.readFile;\n}\n\nexport const env = {\n getEnv,\n setEnv,\n initialize,\n createBrowserEnv,\n createFileSystem,\n createNodejsEnv,\n monkeyPatch,\n isBrowser,\n isNodejs,\n};\n\ninitialize();\n\nexport * from './types';\n", "import { env } from '../env/index';\n\nexport function resolveInput(arg: string | any) {\n if (!env.isNodejs() && typeof arg === 'string') {\n return document.getElementById(arg);\n }\n return arg;\n}\n", "import { env } from '../env/index';\nimport { resolveInput } from './resolveInput';\n\nexport function getContext2dOrThrow(canvasArg: string | HTMLCanvasElement | CanvasRenderingContext2D): CanvasRenderingContext2D {\n const { Canvas, CanvasRenderingContext2D } = env.getEnv();\n if (canvasArg instanceof CanvasRenderingContext2D) return canvasArg;\n const canvas = resolveInput(canvasArg);\n if (!(canvas instanceof Canvas)) throw new Error('resolveContext2d - expected canvas to be of instance of Canvas');\n const ctx = canvas.getContext('2d', { willReadFrequently: true });\n if (!ctx) throw new Error('resolveContext2d - canvas 2d context is null');\n return ctx;\n}\n", "/* eslint-disable max-classes-per-file */\nimport { IDimensions, IPoint } from '../classes/index';\nimport { getContext2dOrThrow } from '../dom/getContext2dOrThrow';\nimport { resolveInput } from '../dom/resolveInput';\n\n// eslint-disable-next-line no-shadow\nexport enum AnchorPosition {\n // eslint-disable-next-line no-unused-vars\n TOP_LEFT = 'TOP_LEFT',\n // eslint-disable-next-line no-unused-vars\n TOP_RIGHT = 'TOP_RIGHT',\n // eslint-disable-next-line no-unused-vars\n BOTTOM_LEFT = 'BOTTOM_LEFT',\n // eslint-disable-next-line no-unused-vars\n BOTTOM_RIGHT = 'BOTTOM_RIGHT'\n}\n\nexport interface IDrawTextFieldOptions {\n anchorPosition?: AnchorPosition\n backgroundColor?: string\n fontColor?: string\n fontSize?: number\n fontStyle?: string\n padding?: number\n}\n\nexport class DrawTextFieldOptions implements IDrawTextFieldOptions {\n public anchorPosition: AnchorPosition;\n\n public backgroundColor: string;\n\n public fontColor: string;\n\n public fontSize: number;\n\n public fontStyle: string;\n\n public padding: number;\n\n constructor(options: IDrawTextFieldOptions = {}) {\n const {\n anchorPosition, backgroundColor, fontColor, fontSize, fontStyle, padding,\n } = options;\n this.anchorPosition = anchorPosition || AnchorPosition.TOP_LEFT;\n this.backgroundColor = backgroundColor || 'rgba(0, 0, 0, 0.5)';\n this.fontColor = fontColor || 'rgba(255, 255, 255, 1)';\n this.fontSize = fontSize || 14;\n this.fontStyle = fontStyle || 'Georgia';\n this.padding = padding || 4;\n }\n}\n\nexport class DrawTextField {\n public text: string[];\n\n public anchor : IPoint;\n\n public options: DrawTextFieldOptions;\n\n constructor(\n text: string | string[] | DrawTextField,\n anchor: IPoint,\n options: IDrawTextFieldOptions = {},\n ) {\n // eslint-disable-next-line no-nested-ternary\n this.text = typeof text === 'string'\n ? [text]\n : (text instanceof DrawTextField ? text.text : text);\n this.anchor = anchor;\n this.options = new DrawTextFieldOptions(options);\n }\n\n measureWidth(ctx: CanvasRenderingContext2D): number {\n const { padding } = this.options;\n return this.text.map((l) => ctx.measureText(l).width).reduce((w0, w1) => (w0 < w1 ? w1 : w0), 0) + (2 * padding);\n }\n\n measureHeight(): number {\n const { fontSize, padding } = this.options;\n return this.text.length * fontSize + (2 * padding);\n }\n\n getUpperLeft(ctx: CanvasRenderingContext2D, canvasDims?: IDimensions): IPoint {\n const { anchorPosition } = this.options;\n const isShiftLeft = anchorPosition === AnchorPosition.BOTTOM_RIGHT || anchorPosition === AnchorPosition.TOP_RIGHT;\n const isShiftTop = anchorPosition === AnchorPosition.BOTTOM_LEFT || anchorPosition === AnchorPosition.BOTTOM_RIGHT;\n\n const textFieldWidth = this.measureWidth(ctx);\n const textFieldHeight = this.measureHeight();\n const x = (isShiftLeft ? this.anchor.x - textFieldWidth : this.anchor.x);\n const y = isShiftTop ? this.anchor.y - textFieldHeight : this.anchor.y;\n\n // adjust anchor if text box exceeds canvas borders\n if (canvasDims) {\n const { width, height } = canvasDims;\n const newX = Math.max(Math.min(x, width - textFieldWidth), 0);\n const newY = Math.max(Math.min(y, height - textFieldHeight), 0);\n return { x: newX, y: newY };\n }\n return { x, y };\n }\n\n draw(canvasArg: string | HTMLCanvasElement | CanvasRenderingContext2D) {\n const canvas = resolveInput(canvasArg);\n const ctx = getContext2dOrThrow(canvas);\n\n const {\n backgroundColor, fontColor, fontSize, fontStyle, padding,\n } = this.options;\n\n ctx.font = `${fontSize}px ${fontStyle}`;\n const maxTextWidth = this.measureWidth(ctx);\n const textHeight = this.measureHeight();\n\n ctx.fillStyle = backgroundColor;\n const upperLeft = this.getUpperLeft(ctx, canvas);\n ctx.fillRect(upperLeft.x, upperLeft.y, maxTextWidth, textHeight);\n\n ctx.fillStyle = fontColor;\n this.text.forEach((textLine, i) => {\n const x = padding + upperLeft.x;\n const y = padding + upperLeft.y + ((i + 1) * fontSize);\n ctx.fillText(textLine, x, y);\n });\n }\n}\n", "/* eslint-disable max-classes-per-file */\nimport { Box, IBoundingBox, IRect } from '../classes/index';\nimport { getContext2dOrThrow } from '../dom/getContext2dOrThrow';\nimport { AnchorPosition, DrawTextField, DrawTextFieldOptions, IDrawTextFieldOptions } from './DrawTextField';\n\nexport interface IDrawBoxOptions {\n boxColor?: string\n lineWidth?: number\n drawLabelOptions?: IDrawTextFieldOptions\n label?: string\n}\n\nexport class DrawBoxOptions {\n public boxColor: string;\n\n public lineWidth: number;\n\n public drawLabelOptions: DrawTextFieldOptions;\n\n public label?: string;\n\n constructor(options: IDrawBoxOptions = {}) {\n const {\n boxColor, lineWidth, label, drawLabelOptions,\n } = options;\n this.boxColor = boxColor || 'rgba(0, 0, 255, 1)';\n this.lineWidth = lineWidth || 2;\n this.label = label;\n\n const defaultDrawLabelOptions = {\n anchorPosition: AnchorPosition.BOTTOM_LEFT,\n backgroundColor: this.boxColor,\n };\n this.drawLabelOptions = new DrawTextFieldOptions({ ...defaultDrawLabelOptions, ...drawLabelOptions });\n }\n}\n\nexport class DrawBox {\n public box: Box;\n\n public options: DrawBoxOptions;\n\n constructor(\n box: IBoundingBox | IRect,\n options: IDrawBoxOptions = {},\n ) {\n this.box = new Box(box);\n this.options = new DrawBoxOptions(options);\n }\n\n draw(canvasArg: string | HTMLCanvasElement | CanvasRenderingContext2D) {\n const ctx = getContext2dOrThrow(canvasArg);\n\n const { boxColor, lineWidth } = this.options;\n\n const {\n x, y, width, height,\n } = this.box;\n ctx.strokeStyle = boxColor;\n ctx.lineWidth = lineWidth;\n ctx.strokeRect(x, y, width, height);\n\n const { label } = this.options;\n if (label) {\n new DrawTextField([label], { x: x - (lineWidth / 2), y }, this.options.drawLabelOptions).draw(canvasArg);\n }\n }\n}\n", "import { Box, IBoundingBox, IRect } from '../classes/index';\nimport { FaceDetection } from '../classes/FaceDetection';\nimport { isWithFaceDetection, WithFaceDetection } from '../factories/WithFaceDetection';\nimport { round } from '../utils/index';\nimport { DrawBox } from './DrawBox';\n\nexport type TDrawDetectionsInput = IRect | IBoundingBox | FaceDetection | WithFaceDetection<{}>\n\nexport function drawDetections(\n canvasArg: string | HTMLCanvasElement,\n detections: TDrawDetectionsInput | Array,\n) {\n const detectionsArray = Array.isArray(detections) ? detections : [detections];\n\n detectionsArray.forEach((det) => {\n // eslint-disable-next-line no-nested-ternary\n const score = det instanceof FaceDetection\n ? det.score\n : (isWithFaceDetection(det) ? det.detection.score : undefined);\n\n // eslint-disable-next-line no-nested-ternary\n const box = det instanceof FaceDetection\n ? det.box\n : (isWithFaceDetection(det) ? det.detection.box : new Box(det));\n\n const label = score ? `${round(score)}` : undefined;\n new DrawBox(box, { label }).draw(canvasArg);\n });\n}\n", "import { env } from '../env/index';\n\nexport function isMediaLoaded(media: HTMLImageElement | HTMLVideoElement) : boolean {\n const { Image, Video } = env.getEnv();\n\n return (media instanceof Image && media.complete)\n || (media instanceof Video && media.readyState >= 3);\n}\n", "import { env } from '../env/index';\nimport { isMediaLoaded } from './isMediaLoaded';\n\nexport function awaitMediaLoaded(media: HTMLImageElement | HTMLVideoElement | HTMLCanvasElement) {\n // eslint-disable-next-line consistent-return\n return new Promise((resolve, reject) => {\n if (media instanceof env.getEnv().Canvas || isMediaLoaded(media)) {\n resolve(null);\n return;\n }\n\n function onError(e: Event) {\n if (!e.currentTarget) return;\n // eslint-disable-next-line no-use-before-define\n e.currentTarget.removeEventListener('load', onLoad);\n e.currentTarget.removeEventListener('error', onError);\n reject(e);\n }\n\n function onLoad(e: Event) {\n if (!e.currentTarget) return;\n e.currentTarget.removeEventListener('load', onLoad);\n e.currentTarget.removeEventListener('error', onError);\n resolve(e);\n }\n\n media.addEventListener('load', onLoad);\n media.addEventListener('error', onError);\n });\n}\n", "import { env } from '../env/index';\n\nexport function bufferToImage(buf: Blob): Promise {\n return new Promise((resolve, reject) => {\n if (!(buf instanceof Blob)) reject(new Error('bufferToImage - expected buf to be of type: Blob'));\n const reader = new FileReader();\n reader.onload = () => {\n if (typeof reader.result !== 'string') reject(new Error('bufferToImage - expected reader.result to be a string, in onload'));\n const img = env.getEnv().createImageElement();\n img.onload = () => resolve(img);\n img.onerror = reject;\n img.src = reader.result as string;\n };\n reader.onerror = reject;\n reader.readAsDataURL(buf);\n });\n}\n", "import { Dimensions, IDimensions } from '../classes/Dimensions';\nimport { env } from '../env/index';\n\nexport function getMediaDimensions(input: HTMLImageElement | HTMLCanvasElement | HTMLVideoElement | IDimensions): Dimensions {\n const { Image, Video } = env.getEnv();\n\n if (input instanceof Image) {\n return new Dimensions(input.naturalWidth, input.naturalHeight);\n }\n if (input instanceof Video) {\n return new Dimensions(input.videoWidth, input.videoHeight);\n }\n return new Dimensions(input.width, input.height);\n}\n", "import { IDimensions } from '../classes/Dimensions';\nimport { env } from '../env/index';\nimport { getContext2dOrThrow } from './getContext2dOrThrow';\nimport { getMediaDimensions } from './getMediaDimensions';\nimport { isMediaLoaded } from './isMediaLoaded';\n\nexport function createCanvas({ width, height }: IDimensions): HTMLCanvasElement {\n const { createCanvasElement } = env.getEnv();\n const canvas = createCanvasElement();\n canvas.width = width;\n canvas.height = height;\n return canvas;\n}\n\nexport function createCanvasFromMedia(media: HTMLImageElement | HTMLVideoElement | ImageData, dims?: IDimensions): HTMLCanvasElement {\n const { ImageData } = env.getEnv();\n\n if (!(media instanceof ImageData) && !isMediaLoaded(media)) {\n throw new Error('createCanvasFromMedia - media has not finished loading yet');\n }\n\n const { width, height } = dims || getMediaDimensions(media);\n const canvas = createCanvas({ width, height });\n\n if (media instanceof ImageData) {\n getContext2dOrThrow(canvas).putImageData(media, 0, 0);\n } else {\n getContext2dOrThrow(canvas).drawImage(media, 0, 0, width, height);\n }\n return canvas;\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { env } from '../env/index';\nimport { isTensor4D } from '../utils/index';\n\nexport async function imageTensorToCanvas(\n imgTensor: tf.Tensor,\n canvas?: HTMLCanvasElement,\n): Promise {\n const targetCanvas = canvas || env.getEnv().createCanvasElement();\n\n const [height, width, numChannels] = imgTensor.shape.slice(isTensor4D(imgTensor) ? 1 : 0);\n const imgTensor3D = tf.tidy(() => imgTensor.as3D(height, width, numChannels).toInt());\n await tf['browser'].toPixels(imgTensor3D, targetCanvas);\n\n imgTensor3D.dispose();\n\n return targetCanvas;\n}\n", "import { env } from '../env/index';\n\nexport function isMediaElement(input: any) {\n const { Image, Canvas, Video } = env.getEnv();\n\n return input instanceof Image\n || input instanceof Canvas\n || input instanceof Video;\n}\n", "import { env } from '../env/index';\nimport { createCanvas, createCanvasFromMedia } from './createCanvas';\nimport { getContext2dOrThrow } from './getContext2dOrThrow';\nimport { getMediaDimensions } from './getMediaDimensions';\n\nexport function imageToSquare(input: HTMLImageElement | HTMLCanvasElement, inputSize: number, centerImage = false) {\n const { Image, Canvas } = env.getEnv();\n\n if (!(input instanceof Image || input instanceof Canvas)) {\n throw new Error('imageToSquare - expected arg0 to be HTMLImageElement | HTMLCanvasElement');\n }\n\n if (inputSize <= 0) return createCanvas({ width: 1, height: 1 });\n const dims = getMediaDimensions(input);\n const scale = inputSize / Math.max(dims.height, dims.width);\n const width = scale * dims.width;\n const height = scale * dims.height;\n\n const targetCanvas = createCanvas({ width: inputSize, height: inputSize });\n const inputCanvas = input instanceof Canvas ? input : createCanvasFromMedia(input);\n\n const offset = Math.abs(width - height) / 2;\n const dx = centerImage && width < height ? offset : 0;\n const dy = centerImage && height < width ? offset : 0;\n if (inputCanvas.width > 0 && inputCanvas.height > 0) getContext2dOrThrow(targetCanvas).drawImage(inputCanvas, dx, dy, width, height);\n\n return targetCanvas;\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { Dimensions } from '../classes/Dimensions';\nimport { env } from '../env/index';\nimport { padToSquare } from '../ops/padToSquare';\nimport { computeReshapedDimensions, isTensor3D, isTensor4D, range } from '../utils/index';\nimport { createCanvasFromMedia } from './createCanvas';\nimport { imageToSquare } from './imageToSquare';\nimport { TResolvedNetInput } from './types';\n\nexport class NetInput {\n private _imageTensors: Array = [];\n\n private _canvases: HTMLCanvasElement[] = [];\n\n private _batchSize: number;\n\n private _treatAsBatchInput = false;\n\n private _inputDimensions: number[][] = [];\n\n private _inputSize = 0;\n\n constructor(inputs: Array, treatAsBatchInput = false) {\n if (!Array.isArray(inputs)) {\n throw new Error(`NetInput.constructor - expected inputs to be an Array of TResolvedNetInput or to be instanceof tf.Tensor4D, instead have ${inputs}`);\n }\n\n this._treatAsBatchInput = treatAsBatchInput;\n this._batchSize = inputs.length;\n\n inputs.forEach((input, idx) => {\n if (isTensor3D(input)) {\n this._imageTensors[idx] = input;\n this._inputDimensions[idx] = input.shape;\n return;\n }\n\n if (isTensor4D(input)) {\n const batchSize = (input as any).shape[0];\n if (batchSize !== 1) {\n throw new Error(`NetInput - tf.Tensor4D with batchSize ${batchSize} passed, but not supported in input array`);\n }\n\n this._imageTensors[idx] = input;\n this._inputDimensions[idx] = (input as any).shape.slice(1);\n return;\n }\n\n // @ts-ignore\n const canvas = (input as any) instanceof env.getEnv().Canvas ? input : createCanvasFromMedia(input);\n this._canvases[idx] = canvas as HTMLCanvasElement;\n this._inputDimensions[idx] = [canvas.height, canvas.width, 3];\n });\n }\n\n public get imageTensors(): Array {\n return this._imageTensors;\n }\n\n public get canvases(): HTMLCanvasElement[] {\n return this._canvases;\n }\n\n public get isBatchInput(): boolean {\n return this.batchSize > 1 || this._treatAsBatchInput;\n }\n\n public get batchSize(): number {\n return this._batchSize;\n }\n\n public get inputDimensions(): number[][] {\n return this._inputDimensions;\n }\n\n public get inputSize(): number | undefined {\n return this._inputSize;\n }\n\n public get reshapedInputDimensions(): Dimensions[] {\n return range(this.batchSize, 0, 1).map(\n (_, batchIdx) => this.getReshapedInputDimensions(batchIdx),\n );\n }\n\n public getInput(batchIdx: number): tf.Tensor3D | tf.Tensor4D | HTMLCanvasElement {\n return this.canvases[batchIdx] || this.imageTensors[batchIdx];\n }\n\n public getInputDimensions(batchIdx: number): number[] {\n return this._inputDimensions[batchIdx];\n }\n\n public getInputHeight(batchIdx: number): number {\n return this._inputDimensions[batchIdx][0];\n }\n\n public getInputWidth(batchIdx: number): number {\n return this._inputDimensions[batchIdx][1];\n }\n\n public getReshapedInputDimensions(batchIdx: number): Dimensions {\n if (typeof this.inputSize !== 'number') {\n throw new Error('getReshapedInputDimensions - inputSize not set, toBatchTensor has not been called yet');\n }\n\n const width = this.getInputWidth(batchIdx);\n const height = this.getInputHeight(batchIdx);\n return computeReshapedDimensions({ width, height }, this.inputSize);\n }\n\n /**\n * Create a batch tensor from all input canvases and tensors\n * with size [batchSize, inputSize, inputSize, 3].\n *\n * @param inputSize Height and width of the tensor.\n * @param isCenterImage (optional, default: false) If true, add an equal amount of padding on\n * both sides of the minor dimension oof the image.\n * @returns The batch tensor.\n */\n public toBatchTensor(inputSize: number, isCenterInputs = true): tf.Tensor4D {\n this._inputSize = inputSize;\n\n return tf.tidy(() => {\n const inputTensors = range(this.batchSize, 0, 1).map((batchIdx) => {\n const input = this.getInput(batchIdx);\n\n if (input instanceof tf.Tensor) {\n let imgTensor = isTensor4D(input) ? input : tf.expandDims(input);\n imgTensor = padToSquare(imgTensor as tf.Tensor4D, isCenterInputs);\n\n if (imgTensor.shape[1] !== inputSize || imgTensor.shape[2] !== inputSize) {\n imgTensor = tf['image'].resizeBilinear(imgTensor as tf.Tensor4D, [inputSize, inputSize], false, false);\n }\n\n return imgTensor.as3D(inputSize, inputSize, 3);\n }\n\n if (input instanceof env.getEnv().Canvas) {\n return tf['browser'].fromPixels(imageToSquare(input, inputSize, isCenterInputs));\n }\n\n throw new Error(`toBatchTensor - at batchIdx ${batchIdx}, expected input to be instanceof tf.Tensor or instanceof HTMLCanvasElement, instead have ${input}`);\n });\n\n const batchTensor = tf.stack(inputTensors.map((t) => tf.cast(t, 'float32'))).as4D(this.batchSize, inputSize, inputSize, 3);\n // const batchTensor = tf.stack(inputTensors.map((t) => tf.cast(t, 'float32'))) as tf.Tensor4D;\n\n return batchTensor;\n });\n }\n}\n", "import { isTensor3D, isTensor4D } from '../utils/index';\nimport { awaitMediaLoaded } from './awaitMediaLoaded';\nimport { isMediaElement } from './isMediaElement';\nimport { NetInput } from './NetInput';\nimport { resolveInput } from './resolveInput';\nimport { TNetInput } from './types';\n\n/**\n * Validates the input to make sure, they are valid net inputs and awaits all media elements\n * to be finished loading.\n *\n * @param input The input, which can be a media element or an array of different media elements.\n * @returns A NetInput instance, which can be passed into one of the neural networks.\n */\nexport async function toNetInput(inputs: TNetInput): Promise {\n if (inputs instanceof NetInput) return inputs;\n const inputArgArray = Array.isArray(inputs) ? inputs : [inputs];\n if (!inputArgArray.length) throw new Error('toNetInput - empty array passed as input');\n const getIdxHint = (idx: number) => (Array.isArray(inputs) ? ` at input index ${idx}:` : '');\n const inputArray = inputArgArray.map(resolveInput);\n inputArray.forEach((input, i) => {\n if (!isMediaElement(input) && !isTensor3D(input) && !isTensor4D(input)) {\n if (typeof inputArgArray[i] === 'string') throw new Error(`toNetInput -${getIdxHint(i)} string passed, but could not resolve HTMLElement for element id ${inputArgArray[i]}`);\n throw new Error(`toNetInput -${getIdxHint(i)} expected media to be of type HTMLImageElement | HTMLVideoElement | HTMLCanvasElement | tf.Tensor3D, or to be an element id`);\n }\n if (isTensor4D(input)) {\n // if tf.Tensor4D is passed in the input array, the batch size has to be 1\n const batchSize = input.shape[0];\n if (batchSize !== 1) throw new Error(`toNetInput -${getIdxHint(i)} tf.Tensor4D with batchSize ${batchSize} passed, but not supported in input array`);\n }\n });\n // wait for all media elements being loaded\n await Promise.all(inputArray.map((input) => isMediaElement(input) && awaitMediaLoaded(input)));\n return new NetInput(inputArray, Array.isArray(inputs));\n}\n", "import { FaceDetection } from '../classes/FaceDetection';\nimport { Rect } from '../classes/Rect';\nimport { env } from '../env/index';\nimport { createCanvas } from './createCanvas';\nimport { getContext2dOrThrow } from './getContext2dOrThrow';\nimport { imageTensorToCanvas } from './imageTensorToCanvas';\nimport { toNetInput } from './toNetInput';\nimport { TNetInput } from './types';\n\n/**\n * Extracts the image regions containing the detected faces.\n *\n * @param input The image that face detection has been performed on.\n * @param detections The face detection results or face bounding boxes for that image.\n * @returns The Canvases of the corresponding image region for each detected face.\n */\nexport async function extractFaces(input: TNetInput, detections: Array): Promise {\n const { Canvas } = env.getEnv();\n let canvas = input as HTMLCanvasElement;\n if (!(input instanceof Canvas)) {\n const netInput = await toNetInput(input);\n if (netInput.batchSize > 1) throw new Error('extractFaces - batchSize > 1 not supported');\n const tensorOrCanvas = netInput.getInput(0);\n canvas = tensorOrCanvas instanceof Canvas ? tensorOrCanvas : await imageTensorToCanvas(tensorOrCanvas);\n }\n const ctx = getContext2dOrThrow(canvas);\n const boxes = detections\n .map((det) => (det instanceof FaceDetection ? det.forSize(canvas.width, canvas.height).box.floor() : det))\n .map((box) => box.clipAtImageBorders(canvas.width, canvas.height));\n return boxes.map(({ x, y, width, height }) => {\n const faceImg = createCanvas({ width, height });\n if (width > 0 && height > 0) getContext2dOrThrow(faceImg).putImageData(ctx.getImageData(x, y, width, height), 0, 0);\n return faceImg;\n });\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { Rect } from '../classes/index';\nimport { FaceDetection } from '../classes/FaceDetection';\nimport { isTensor3D, isTensor4D } from '../utils/index';\n\n/**\n * Extracts the tensors of the image regions containing the detected faces.\n * Useful if you want to compute the face descriptors for the face images.\n * Using this method is faster then extracting a canvas for each face and\n * converting them to tensors individually.\n *\n * @param imageTensor The image tensor that face detection has been performed on.\n * @param detections The face detection results or face bounding boxes for that image.\n * @returns Tensors of the corresponding image region for each detected face.\n */\nexport async function extractFaceTensors(imageTensor: tf.Tensor3D | tf.Tensor4D, detections: Array): Promise {\n if (!isTensor3D(imageTensor) && !isTensor4D(imageTensor)) {\n throw new Error('extractFaceTensors - expected image tensor to be 3D or 4D');\n }\n\n if (isTensor4D(imageTensor) && imageTensor.shape[0] > 1) {\n throw new Error('extractFaceTensors - batchSize > 1 not supported');\n }\n\n return tf.tidy(() => {\n const [imgHeight, imgWidth, numChannels] = imageTensor.shape.slice(isTensor4D(imageTensor) ? 1 : 0);\n const boxes = detections.map((det) => (det instanceof FaceDetection ? det.forSize(imgWidth, imgHeight).box : det))\n .map((box) => box.clipAtImageBorders(imgWidth, imgHeight));\n const faceTensors = boxes\n .filter((box) => box.width > 0 && box.height > 0)\n .map(({ x, y, width, height }) => tf.slice3d(imageTensor.as3D(imgHeight, imgWidth, numChannels), [y, x, 0], [height, width, numChannels]));\n return faceTensors;\n });\n}\n", "import { env } from '../env/index';\n\nexport async function fetchOrThrow(\n url: string,\n // eslint-disable-next-line no-undef\n init?: RequestInit,\n): Promise {\n const { fetch } = env.getEnv();\n const res = await fetch(url, init);\n if (!(res.status < 400)) {\n throw new Error(`failed to fetch: (${res.status}) ${res.statusText}, from url: ${res.url}`);\n }\n return res;\n}\n", "import { bufferToImage } from './bufferToImage';\nimport { fetchOrThrow } from './fetchOrThrow';\n\nexport async function fetchImage(uri: string): Promise {\n const res = await fetchOrThrow(uri);\n const blob = await (res).blob();\n\n if (!blob.type.startsWith('image/')) {\n throw new Error(`fetchImage - expected blob type to be of type image/*, instead have: ${blob.type}, for url: ${res.url}`);\n }\n return bufferToImage(blob);\n}\n", "import { fetchOrThrow } from './fetchOrThrow';\n\nexport async function fetchJson(uri: string): Promise {\n return (await fetchOrThrow(uri)).json();\n}\n", "import { fetchOrThrow } from './fetchOrThrow';\n\nexport async function fetchNetWeights(uri: string): Promise {\n return new Float32Array(await (await fetchOrThrow(uri)).arrayBuffer());\n}\n", "import { env } from '../env/index';\n\nexport function bufferToVideo(buf: Blob): Promise {\n return new Promise((resolve, reject) => {\n if (!(buf instanceof Blob)) reject(new Error('bufferToVideo - expected buf to be of type: Blob'));\n\n const video = env.getEnv().createVideoElement();\n video.oncanplay = () => resolve(video);\n video.onerror = reject;\n video.playsInline = true;\n video.muted = true;\n video.src = URL.createObjectURL(buf);\n video.play();\n });\n}\n", "import { bufferToVideo } from './bufferToVideo';\nimport { fetchOrThrow } from './fetchOrThrow';\n\nexport async function fetchVideo(uri: string): Promise {\n const res = await fetchOrThrow(uri);\n const blob = await (res).blob();\n\n if (!blob.type.startsWith('video/')) {\n throw new Error(`fetchVideo - expected blob type to be of type video/*, instead have: ${blob.type}, for url: ${res.url}`);\n }\n return bufferToVideo(blob);\n}\n", "export function getModelUris(uri: string | undefined, defaultModelName: string) {\n const defaultManifestFilename = `${defaultModelName}-weights_manifest.json`;\n\n if (!uri) {\n return {\n modelBaseUri: '',\n manifestUri: defaultManifestFilename,\n };\n }\n\n if (uri === '/') {\n return {\n modelBaseUri: '/',\n manifestUri: `/${defaultManifestFilename}`,\n };\n }\n // eslint-disable-next-line no-nested-ternary\n const protocol = uri.startsWith('http://') ? 'http://' : uri.startsWith('https://') ? 'https://' : '';\n uri = uri.replace(protocol, '');\n\n const parts = uri.split('/').filter((s) => s);\n\n const manifestFile = uri.endsWith('.json')\n ? parts[parts.length - 1]\n : defaultManifestFilename;\n\n let modelBaseUri = protocol + (uri.endsWith('.json') ? parts.slice(0, parts.length - 1) : parts).join('/');\n modelBaseUri = uri.startsWith('/') ? `/${modelBaseUri}` : modelBaseUri;\n\n return {\n modelBaseUri,\n manifestUri: modelBaseUri === '/' ? `/${manifestFile}` : `${modelBaseUri}/${manifestFile}`,\n };\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { getModelUris } from '../common/getModelUris';\nimport { fetchJson } from './fetchJson';\n\nexport async function loadWeightMap(\n uri: string | undefined,\n defaultModelName: string,\n): Promise {\n const { manifestUri, modelBaseUri } = getModelUris(uri, defaultModelName);\n // @ts-ignore\n const manifest = await fetchJson(manifestUri);\n // if (manifest['weightsManifest']) manifest = manifest['weightsManifest'];\n return tf['io'].loadWeights(manifest, modelBaseUri);\n}\n", "import { IDimensions } from '../classes/index';\nimport { getMediaDimensions } from './getMediaDimensions';\n\nexport function matchDimensions(input: IDimensions, reference: IDimensions, useMediaDimensions = false) {\n const { width, height } = useMediaDimensions\n ? getMediaDimensions(reference)\n : reference;\n input.width = width;\n input.height = height;\n return { width, height };\n}\n", "import * as tf from '../dist/tfjs.esm';\n\nimport { ParamMapping } from './common/index';\nimport { getModelUris } from './common/getModelUris';\nimport { loadWeightMap } from './dom/index';\nimport { env } from './env/index';\n\nexport abstract class NeuralNetwork {\n constructor(name: string) {\n this._name = name;\n }\n\n protected _params: TNetParams | undefined = undefined;\n\n protected _paramMappings: ParamMapping[] = [];\n\n public _name: any;\n\n public get params(): TNetParams | undefined { return this._params; }\n\n public get paramMappings(): ParamMapping[] { return this._paramMappings; }\n\n public get isLoaded(): boolean { return !!this.params; }\n\n public getParamFromPath(paramPath: string): tf.Tensor {\n const { obj, objProp } = this.traversePropertyPath(paramPath);\n return obj[objProp];\n }\n\n public reassignParamFromPath(paramPath: string, tensor: tf.Tensor) {\n const { obj, objProp } = this.traversePropertyPath(paramPath);\n obj[objProp].dispose();\n obj[objProp] = tensor;\n }\n\n public getParamList() {\n return this._paramMappings.map(({ paramPath }) => ({\n path: paramPath,\n tensor: this.getParamFromPath(paramPath),\n }));\n }\n\n public getTrainableParams() {\n return this.getParamList().filter((param) => param.tensor instanceof tf.Variable);\n }\n\n public getFrozenParams() {\n return this.getParamList().filter((param) => !(param.tensor instanceof tf.Variable));\n }\n\n public variable() {\n this.getFrozenParams().forEach(({ path, tensor }) => {\n this.reassignParamFromPath(path, tensor.variable());\n });\n }\n\n public freeze() {\n this.getTrainableParams().forEach(({ path, tensor: variable }) => {\n const tensor = tf.tensor(variable.dataSync());\n variable.dispose();\n this.reassignParamFromPath(path, tensor);\n });\n }\n\n public dispose(throwOnRedispose = true) {\n this.getParamList().forEach((param) => {\n if (throwOnRedispose && param.tensor.isDisposed) {\n throw new Error(`param tensor has already been disposed for path ${param.path}`);\n }\n param.tensor.dispose();\n });\n this._params = undefined;\n }\n\n public serializeParams(): Float32Array {\n return new Float32Array(\n this.getParamList()\n .map(({ tensor }) => Array.from(tensor.dataSync()) as number[])\n .reduce((flat, arr) => flat.concat(arr)),\n );\n }\n\n public async load(weightsOrUrl: Float32Array | string | undefined): Promise {\n if (weightsOrUrl instanceof Float32Array) {\n this.extractWeights(weightsOrUrl);\n return;\n }\n await this.loadFromUri(weightsOrUrl);\n }\n\n public async loadFromUri(uri: string | undefined) {\n if (uri && typeof uri !== 'string') {\n throw new Error(`${this._name}.loadFromUri - expected model uri`);\n }\n const weightMap = await loadWeightMap(uri, this.getDefaultModelName());\n this.loadFromWeightMap(weightMap);\n }\n\n public async loadFromDisk(filePath: string | undefined) {\n if (filePath && typeof filePath !== 'string') {\n throw new Error(`${this._name}.loadFromDisk - expected model file path`);\n }\n const { readFile } = env.getEnv();\n const { manifestUri, modelBaseUri } = getModelUris(filePath, this.getDefaultModelName());\n const fetchWeightsFromDisk = (filePaths: string[]) => Promise.all(filePaths.map((fp) => readFile(fp).then((buf) => (typeof buf === 'string' ? Buffer.from(buf) : buf.buffer))));\n // @ts-ignore async-vs-sync mismatch\n const loadWeights = tf['io'].weightsLoaderFactory(fetchWeightsFromDisk);\n const manifest = JSON.parse((await readFile(manifestUri)).toString());\n const weightMap = await loadWeights(manifest, modelBaseUri);\n this.loadFromWeightMap(weightMap);\n }\n\n public loadFromWeightMap(weightMap: tf.NamedTensorMap) {\n const { paramMappings, params } = this.extractParamsFromWeightMap(weightMap);\n this._paramMappings = paramMappings;\n this._params = params;\n }\n\n public extractWeights(weights: Float32Array) {\n const { paramMappings, params } = this.extractParams(weights);\n this._paramMappings = paramMappings;\n this._params = params;\n }\n\n private traversePropertyPath(paramPath: string) {\n if (!this.params) {\n throw new Error('traversePropertyPath - model has no loaded params');\n }\n\n const result = paramPath.split('/').reduce((res: { nextObj: any, obj?: any, objProp?: string }, objProp) => {\n // eslint-disable-next-line no-prototype-builtins\n if (!res.nextObj.hasOwnProperty(objProp)) {\n throw new Error(`traversePropertyPath - object does not have property ${objProp}, for path ${paramPath}`);\n }\n return { obj: res.nextObj, objProp, nextObj: res.nextObj[objProp] };\n }, { nextObj: this.params });\n\n const { obj, objProp } = result;\n if (!obj || !objProp || !(obj[objProp] instanceof tf.Tensor)) {\n throw new Error(`traversePropertyPath - parameter is not a tensor, for path ${paramPath}`);\n }\n\n return { obj, objProp };\n }\n\n protected abstract getDefaultModelName(): string\n\n // eslint-disable-next-line no-unused-vars\n protected abstract extractParamsFromWeightMap(weightMap: tf.NamedTensorMap): { params: TNetParams, paramMappings: ParamMapping[] }\n\n // eslint-disable-next-line no-unused-vars\n protected abstract extractParams(weights: Float32Array): { params: TNetParams, paramMappings: ParamMapping[] }\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { SeparableConvParams } from './types';\n\nexport function depthwiseSeparableConv(\n x: tf.Tensor4D,\n params: SeparableConvParams,\n stride: [number, number],\n): tf.Tensor4D {\n return tf.tidy(() => {\n let out = tf.separableConv2d(x, params.depthwise_filter, params.pointwise_filter, stride, 'same');\n out = tf.add(out, params.bias);\n return out;\n });\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { ConvParams, SeparableConvParams } from '../common/index';\nimport { depthwiseSeparableConv } from '../common/depthwiseSeparableConv';\nimport { DenseBlock3Params, DenseBlock4Params } from './types';\n\nexport function denseBlock3(\n x: tf.Tensor4D,\n denseBlockParams: DenseBlock3Params,\n isFirstLayer = false,\n): tf.Tensor4D {\n return tf.tidy(() => {\n const out1 = tf.relu(\n isFirstLayer\n ? tf.add(\n tf.conv2d(x, (denseBlockParams.conv0 as ConvParams).filters, [2, 2], 'same'),\n denseBlockParams.conv0.bias,\n )\n : depthwiseSeparableConv(x, denseBlockParams.conv0 as SeparableConvParams, [2, 2]),\n ) as tf.Tensor4D;\n const out2 = depthwiseSeparableConv(out1, denseBlockParams.conv1, [1, 1]);\n\n const in3 = tf.relu(tf.add(out1, out2)) as tf.Tensor4D;\n const out3 = depthwiseSeparableConv(in3, denseBlockParams.conv2, [1, 1]);\n\n return tf.relu(tf.add(out1, tf.add(out2, out3))) as tf.Tensor4D;\n });\n}\n\nexport function denseBlock4(\n x: tf.Tensor4D,\n denseBlockParams: DenseBlock4Params,\n isFirstLayer = false,\n isScaleDown = true,\n): tf.Tensor4D {\n return tf.tidy(() => {\n const out1 = tf.relu(\n isFirstLayer\n ? tf.add(\n tf.conv2d(x, (denseBlockParams.conv0 as ConvParams).filters, isScaleDown ? [2, 2] : [1, 1], 'same'),\n denseBlockParams.conv0.bias,\n )\n : depthwiseSeparableConv(x, denseBlockParams.conv0 as SeparableConvParams, isScaleDown ? [2, 2] : [1, 1]),\n ) as tf.Tensor4D;\n const out2 = depthwiseSeparableConv(out1, denseBlockParams.conv1, [1, 1]);\n\n const in3 = tf.relu(tf.add(out1, out2)) as tf.Tensor4D;\n const out3 = depthwiseSeparableConv(in3, denseBlockParams.conv2, [1, 1]);\n\n const in4 = tf.relu(tf.add(out1, tf.add(out2, out3))) as tf.Tensor4D;\n const out4 = depthwiseSeparableConv(in4, denseBlockParams.conv3, [1, 1]);\n\n return tf.relu(tf.add(out1, tf.add(out2, tf.add(out3, out4)))) as tf.Tensor4D;\n });\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { ConvParams } from './types';\n\nexport function convLayer(\n x: tf.Tensor4D,\n params: ConvParams,\n padding: 'valid' | 'same' = 'same',\n withRelu = false,\n): tf.Tensor4D {\n return tf.tidy(() => {\n const out = tf.add(\n tf.conv2d(x, params.filters, [1, 1], padding),\n params.bias,\n ) as tf.Tensor4D;\n\n return withRelu ? tf.relu(out) : out;\n });\n}\n", "import { ParamMapping } from './types';\n\nexport function disposeUnusedWeightTensors(weightMap: any, paramMappings: ParamMapping[]) {\n Object.keys(weightMap).forEach((path) => {\n if (!paramMappings.some((pm) => pm.originalPath === path)) {\n weightMap[path].dispose();\n }\n });\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { ConvParams, ExtractWeightsFunction, ParamMapping } from './types';\n\nexport function extractConvParamsFactory(\n extractWeights: ExtractWeightsFunction,\n paramMappings: ParamMapping[],\n) {\n return (\n channelsIn: number,\n channelsOut: number,\n filterSize: number,\n mappedPrefix: string,\n ): ConvParams => {\n const filters = tf.tensor4d(\n extractWeights(channelsIn * channelsOut * filterSize * filterSize),\n [filterSize, filterSize, channelsIn, channelsOut],\n );\n const bias = tf.tensor1d(extractWeights(channelsOut));\n\n paramMappings.push(\n { paramPath: `${mappedPrefix}/filters` },\n { paramPath: `${mappedPrefix}/bias` },\n );\n\n return { filters, bias };\n };\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { ExtractWeightsFunction, FCParams, ParamMapping } from './types';\n\nexport function extractFCParamsFactory(\n extractWeights: ExtractWeightsFunction,\n paramMappings: ParamMapping[],\n) {\n return (\n channelsIn: number,\n channelsOut: number,\n mappedPrefix: string,\n ): FCParams => {\n const fc_weights = tf.tensor2d(extractWeights(channelsIn * channelsOut), [channelsIn, channelsOut]);\n const fc_bias = tf.tensor1d(extractWeights(channelsOut));\n\n paramMappings.push(\n { paramPath: `${mappedPrefix}/weights` },\n { paramPath: `${mappedPrefix}/bias` },\n );\n\n return {\n weights: fc_weights,\n bias: fc_bias,\n };\n };\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\n// eslint-disable-next-line no-unused-vars\nexport type ExtractWeightsFunction = (numWeights: number) => Float32Array\n\nexport type ParamMapping = {\n originalPath?: string\n paramPath: string\n}\n\nexport type ConvParams = {\n filters: tf.Tensor4D\n bias: tf.Tensor1D\n}\n\nexport type FCParams = {\n weights: tf.Tensor2D\n bias: tf.Tensor1D\n}\n\nexport class SeparableConvParams {\n // eslint-disable-next-line no-useless-constructor\n constructor(\n // eslint-disable-next-line no-unused-vars\n public depthwise_filter: tf.Tensor4D,\n // eslint-disable-next-line no-unused-vars\n public pointwise_filter: tf.Tensor4D,\n // eslint-disable-next-line no-unused-vars\n public bias: tf.Tensor1D,\n // eslint-disable-next-line no-empty-function\n ) {}\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { ExtractWeightsFunction, ParamMapping, SeparableConvParams } from './types';\n\nexport function extractSeparableConvParamsFactory(\n extractWeights: ExtractWeightsFunction,\n paramMappings: ParamMapping[],\n) {\n return (channelsIn: number, channelsOut: number, mappedPrefix: string): SeparableConvParams => {\n const depthwise_filter = tf.tensor4d(extractWeights(3 * 3 * channelsIn), [3, 3, channelsIn, 1]);\n const pointwise_filter = tf.tensor4d(extractWeights(channelsIn * channelsOut), [1, 1, channelsIn, channelsOut]);\n const bias = tf.tensor1d(extractWeights(channelsOut));\n\n paramMappings.push(\n { paramPath: `${mappedPrefix}/depthwise_filter` },\n { paramPath: `${mappedPrefix}/pointwise_filter` },\n { paramPath: `${mappedPrefix}/bias` },\n );\n\n return new SeparableConvParams(\n depthwise_filter,\n pointwise_filter,\n bias,\n );\n };\n}\n\nexport function loadSeparableConvParamsFactory(\n // eslint-disable-next-line no-unused-vars\n extractWeightEntry: (originalPath: string, paramRank: number) => T,\n) {\n return (prefix: string): SeparableConvParams => {\n const depthwise_filter = extractWeightEntry(`${prefix}/depthwise_filter`, 4);\n const pointwise_filter = extractWeightEntry(`${prefix}/pointwise_filter`, 4);\n const bias = extractWeightEntry(`${prefix}/bias`, 1);\n\n return new SeparableConvParams(\n depthwise_filter,\n pointwise_filter,\n bias,\n );\n };\n}\n", "import { isTensor } from '../utils/index';\nimport { ParamMapping } from './types';\n\nexport function extractWeightEntryFactory(weightMap: any, paramMappings: ParamMapping[]) {\n return (originalPath: string, paramRank: number, mappedPath?: string) => {\n const tensor = weightMap[originalPath];\n\n if (!isTensor(tensor, paramRank)) {\n throw new Error(`expected weightMap[${originalPath}] to be a Tensor${paramRank}D, instead have ${tensor}`);\n }\n\n paramMappings.push(\n { originalPath, paramPath: mappedPath || originalPath },\n );\n\n return tensor;\n };\n}\n", "export function extractWeightsFactory(weights: Float32Array) {\n let remainingWeights = weights;\n\n function extractWeights(numWeights: number): Float32Array {\n const ret = remainingWeights.slice(0, numWeights);\n remainingWeights = remainingWeights.slice(numWeights);\n return ret;\n }\n\n function getRemainingWeights(): Float32Array {\n return remainingWeights;\n }\n\n return {\n extractWeights,\n getRemainingWeights,\n };\n}\n", "import { extractConvParamsFactory, extractSeparableConvParamsFactory, ExtractWeightsFunction, ParamMapping } from '../common/index';\nimport { DenseBlock3Params, DenseBlock4Params } from './types';\n\nexport function extractorsFactory(extractWeights: ExtractWeightsFunction, paramMappings: ParamMapping[]) {\n const extractConvParams = extractConvParamsFactory(extractWeights, paramMappings);\n const extractSeparableConvParams = extractSeparableConvParamsFactory(extractWeights, paramMappings);\n\n function extractDenseBlock3Params(channelsIn: number, channelsOut: number, mappedPrefix: string, isFirstLayer = false): DenseBlock3Params {\n const conv0 = isFirstLayer\n ? extractConvParams(channelsIn, channelsOut, 3, `${mappedPrefix}/conv0`)\n : extractSeparableConvParams(channelsIn, channelsOut, `${mappedPrefix}/conv0`);\n const conv1 = extractSeparableConvParams(channelsOut, channelsOut, `${mappedPrefix}/conv1`);\n const conv2 = extractSeparableConvParams(channelsOut, channelsOut, `${mappedPrefix}/conv2`);\n\n return { conv0, conv1, conv2 };\n }\n\n function extractDenseBlock4Params(channelsIn: number, channelsOut: number, mappedPrefix: string, isFirstLayer = false): DenseBlock4Params {\n const { conv0, conv1, conv2 } = extractDenseBlock3Params(channelsIn, channelsOut, mappedPrefix, isFirstLayer);\n const conv3 = extractSeparableConvParams(channelsOut, channelsOut, `${mappedPrefix}/conv3`);\n\n return {\n conv0, conv1, conv2, conv3,\n };\n }\n\n return {\n extractDenseBlock3Params,\n extractDenseBlock4Params,\n };\n}\n", "import { extractWeightsFactory, ParamMapping } from '../common/index';\nimport { extractorsFactory } from './extractorsFactory';\nimport { FaceFeatureExtractorParams } from './types';\n\nexport function extractParams(weights: Float32Array): { params: FaceFeatureExtractorParams, paramMappings: ParamMapping[] } {\n const paramMappings: ParamMapping[] = [];\n\n const {\n extractWeights,\n getRemainingWeights,\n } = extractWeightsFactory(weights);\n\n const {\n extractDenseBlock4Params,\n } = extractorsFactory(extractWeights, paramMappings);\n\n const dense0 = extractDenseBlock4Params(3, 32, 'dense0', true);\n const dense1 = extractDenseBlock4Params(32, 64, 'dense1');\n const dense2 = extractDenseBlock4Params(64, 128, 'dense2');\n const dense3 = extractDenseBlock4Params(128, 256, 'dense3');\n\n if (getRemainingWeights().length !== 0) {\n throw new Error(`weights remaing after extract: ${getRemainingWeights().length}`);\n }\n\n return {\n paramMappings,\n params: {\n dense0, dense1, dense2, dense3,\n },\n };\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { ConvParams } from './types';\n\n// eslint-disable-next-line no-unused-vars\nexport function loadConvParamsFactory(extractWeightEntry: (originalPath: string, paramRank: number) => T) {\n return (prefix: string): ConvParams => {\n const filters = extractWeightEntry(`${prefix}/filters`, 4);\n const bias = extractWeightEntry(`${prefix}/bias`, 1);\n\n return { filters, bias };\n };\n}\n", "import { extractWeightEntryFactory, loadSeparableConvParamsFactory, ParamMapping } from '../common/index';\nimport { loadConvParamsFactory } from '../common/loadConvParamsFactory';\nimport { DenseBlock3Params, DenseBlock4Params } from './types';\n\nexport function loadParamsFactory(weightMap: any, paramMappings: ParamMapping[]) {\n const extractWeightEntry = extractWeightEntryFactory(weightMap, paramMappings);\n\n const extractConvParams = loadConvParamsFactory(extractWeightEntry);\n const extractSeparableConvParams = loadSeparableConvParamsFactory(extractWeightEntry);\n\n function extractDenseBlock3Params(prefix: string, isFirstLayer = false): DenseBlock3Params {\n const conv0 = isFirstLayer\n ? extractConvParams(`${prefix}/conv0`)\n : extractSeparableConvParams(`${prefix}/conv0`);\n const conv1 = extractSeparableConvParams(`${prefix}/conv1`);\n const conv2 = extractSeparableConvParams(`${prefix}/conv2`);\n\n return { conv0, conv1, conv2 };\n }\n\n function extractDenseBlock4Params(prefix: string, isFirstLayer = false): DenseBlock4Params {\n const conv0 = isFirstLayer\n ? extractConvParams(`${prefix}/conv0`)\n : extractSeparableConvParams(`${prefix}/conv0`);\n const conv1 = extractSeparableConvParams(`${prefix}/conv1`);\n const conv2 = extractSeparableConvParams(`${prefix}/conv2`);\n const conv3 = extractSeparableConvParams(`${prefix}/conv3`);\n\n return {\n conv0, conv1, conv2, conv3,\n };\n }\n\n return {\n extractDenseBlock3Params,\n extractDenseBlock4Params,\n };\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { disposeUnusedWeightTensors, ParamMapping } from '../common/index';\nimport { loadParamsFactory } from './loadParamsFactory';\nimport { FaceFeatureExtractorParams } from './types';\n\nexport function extractParamsFromWeightMap(\n weightMap: tf.NamedTensorMap,\n): { params: FaceFeatureExtractorParams, paramMappings: ParamMapping[] } {\n const paramMappings: ParamMapping[] = [];\n\n const {\n extractDenseBlock4Params,\n } = loadParamsFactory(weightMap, paramMappings);\n\n const params = {\n dense0: extractDenseBlock4Params('dense0', true),\n dense1: extractDenseBlock4Params('dense1'),\n dense2: extractDenseBlock4Params('dense2'),\n dense3: extractDenseBlock4Params('dense3'),\n };\n\n disposeUnusedWeightTensors(weightMap, paramMappings);\n\n return { params, paramMappings };\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { NetInput, TNetInput, toNetInput } from '../dom/index';\nimport { NeuralNetwork } from '../NeuralNetwork';\nimport { normalize } from '../ops/index';\nimport { denseBlock4 } from './denseBlock';\nimport { extractParams } from './extractParams';\nimport { extractParamsFromWeightMap } from './extractParamsFromWeightMap';\nimport { FaceFeatureExtractorParams, IFaceFeatureExtractor } from './types';\n\nexport class FaceFeatureExtractor extends NeuralNetwork implements IFaceFeatureExtractor {\n constructor() {\n super('FaceFeatureExtractor');\n }\n\n public forwardInput(input: NetInput): tf.Tensor4D {\n const { params } = this;\n\n if (!params) {\n throw new Error('FaceFeatureExtractor - load model before inference');\n }\n\n return tf.tidy(() => {\n const batchTensor = tf.cast(input.toBatchTensor(112, true), 'float32');\n const meanRgb = [122.782, 117.001, 104.298];\n const normalized = normalize(batchTensor, meanRgb).div(255) as tf.Tensor4D;\n\n let out = denseBlock4(normalized, params.dense0, true);\n out = denseBlock4(out, params.dense1);\n out = denseBlock4(out, params.dense2);\n out = denseBlock4(out, params.dense3);\n out = tf.avgPool(out, [7, 7], [2, 2], 'valid');\n\n return out;\n });\n }\n\n public async forward(input: TNetInput): Promise {\n return this.forwardInput(await toNetInput(input));\n }\n\n protected getDefaultModelName(): string {\n return 'face_feature_extractor_model';\n }\n\n protected extractParamsFromWeightMap(weightMap: tf.NamedTensorMap) {\n return extractParamsFromWeightMap(weightMap);\n }\n\n protected extractParams(weights: Float32Array) {\n return extractParams(weights);\n }\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { FCParams } from './types';\n\nexport function fullyConnectedLayer(\n x: tf.Tensor2D,\n params: FCParams,\n): tf.Tensor2D {\n return tf.tidy(() => tf.add(\n tf.matMul(x, params.weights),\n params.bias,\n ));\n}\n", "import { extractFCParamsFactory, extractWeightsFactory, ParamMapping } from '../common/index';\nimport { NetParams } from './types';\n\nexport function extractParams(weights: Float32Array, channelsIn: number, channelsOut: number): { params: NetParams, paramMappings: ParamMapping[] } {\n const paramMappings: ParamMapping[] = [];\n\n const {\n extractWeights,\n getRemainingWeights,\n } = extractWeightsFactory(weights);\n\n const extractFCParams = extractFCParamsFactory(extractWeights, paramMappings);\n\n const fc = extractFCParams(channelsIn, channelsOut, 'fc');\n\n if (getRemainingWeights().length !== 0) {\n throw new Error(`weights remaing after extract: ${getRemainingWeights().length}`);\n }\n\n return {\n paramMappings,\n params: { fc },\n };\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { disposeUnusedWeightTensors, extractWeightEntryFactory, FCParams, ParamMapping } from '../common/index';\nimport { NetParams } from './types';\n\nexport function extractParamsFromWeightMap(\n weightMap: tf.NamedTensorMap,\n): { params: NetParams, paramMappings: ParamMapping[] } {\n const paramMappings: ParamMapping[] = [];\n\n const extractWeightEntry = extractWeightEntryFactory(weightMap, paramMappings);\n\n function extractFcParams(prefix: string): FCParams {\n const weights = extractWeightEntry(`${prefix}/weights`, 2);\n const bias = extractWeightEntry(`${prefix}/bias`, 1);\n return { weights, bias };\n }\n\n const params = {\n fc: extractFcParams('fc'),\n };\n\n disposeUnusedWeightTensors(weightMap, paramMappings);\n\n return { params, paramMappings };\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nexport function seperateWeightMaps(weightMap: tf.NamedTensorMap) {\n const featureExtractorMap: tf.NamedTensorMap = {};\n const classifierMap: tf.NamedTensorMap = {};\n\n Object.keys(weightMap).forEach((key) => {\n const map = key.startsWith('fc') ? classifierMap : featureExtractorMap;\n map[key] = weightMap[key];\n });\n\n return { featureExtractorMap, classifierMap };\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { fullyConnectedLayer } from '../common/fullyConnectedLayer';\nimport { NetInput } from '../dom/index';\nimport { FaceFeatureExtractorParams, IFaceFeatureExtractor, TinyFaceFeatureExtractorParams } from '../faceFeatureExtractor/types';\nimport { NeuralNetwork } from '../NeuralNetwork';\nimport { extractParams } from './extractParams';\nimport { extractParamsFromWeightMap } from './extractParamsFromWeightMap';\nimport { NetParams } from './types';\nimport { seperateWeightMaps } from './util';\n\nexport abstract class FaceProcessor<\n TExtractorParams extends FaceFeatureExtractorParams | TinyFaceFeatureExtractorParams\n>\n extends NeuralNetwork {\n protected _faceFeatureExtractor: IFaceFeatureExtractor;\n\n constructor(_name: string, faceFeatureExtractor: IFaceFeatureExtractor) {\n super(_name);\n this._faceFeatureExtractor = faceFeatureExtractor;\n }\n\n public get faceFeatureExtractor(): IFaceFeatureExtractor {\n return this._faceFeatureExtractor;\n }\n\n protected abstract override getDefaultModelName(): string\n\n protected abstract getClassifierChannelsIn(): number\n\n protected abstract getClassifierChannelsOut(): number\n\n public runNet(input: NetInput | tf.Tensor4D): tf.Tensor2D {\n const { params } = this;\n\n if (!params) {\n throw new Error(`${this._name} - load model before inference`);\n }\n\n return tf.tidy(() => {\n const bottleneckFeatures = input instanceof NetInput\n ? this.faceFeatureExtractor.forwardInput(input)\n : input;\n return fullyConnectedLayer(bottleneckFeatures.as2D(bottleneckFeatures.shape[0], -1), params.fc);\n });\n }\n\n public override dispose(throwOnRedispose = true) {\n this.faceFeatureExtractor.dispose(throwOnRedispose);\n super.dispose(throwOnRedispose);\n }\n\n public loadClassifierParams(weights: Float32Array) {\n const { params, paramMappings } = this.extractClassifierParams(weights);\n this._params = params;\n this._paramMappings = paramMappings;\n }\n\n public extractClassifierParams(weights: Float32Array) {\n return extractParams(weights, this.getClassifierChannelsIn(), this.getClassifierChannelsOut());\n }\n\n protected extractParamsFromWeightMap(weightMap: tf.NamedTensorMap) {\n const { featureExtractorMap, classifierMap } = seperateWeightMaps(weightMap);\n\n this.faceFeatureExtractor.loadFromWeightMap(featureExtractorMap);\n\n return extractParamsFromWeightMap(classifierMap);\n }\n\n protected extractParams(weights: Float32Array) {\n const cIn = this.getClassifierChannelsIn();\n const cOut = this.getClassifierChannelsOut();\n const classifierWeightSize = (cOut * cIn) + cOut;\n\n const featureExtractorWeights = weights.slice(0, weights.length - classifierWeightSize);\n const classifierWeights = weights.slice(weights.length - classifierWeightSize);\n\n this.faceFeatureExtractor.extractWeights(featureExtractorWeights);\n return this.extractClassifierParams(classifierWeights);\n }\n}\n", "export const FACE_EXPRESSION_LABELS = ['neutral', 'happy', 'sad', 'angry', 'fearful', 'disgusted', 'surprised'] as const;\n\nexport class FaceExpressions {\n public neutral = 0;\n public happy = 0;\n public sad = 0;\n public angry = 0;\n public fearful = 0;\n public disgusted = 0;\n public surprised = 0;\n\n constructor(probabilities: number[] | Float32Array) {\n if (probabilities.length !== 7) {\n throw new Error(`FaceExpressions.constructor - expected probabilities.length to be 7, have: ${probabilities.length}`);\n }\n\n FACE_EXPRESSION_LABELS.forEach((expression, idx) => {\n this[expression] = probabilities[idx];\n });\n }\n\n asSortedArray() {\n return FACE_EXPRESSION_LABELS\n .map((expression) => ({ expression, probability: this[expression] as number }))\n .sort((e0, e1) => e1.probability - e0.probability);\n }\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { NetInput, TNetInput, toNetInput } from '../dom/index';\nimport { FaceFeatureExtractor } from '../faceFeatureExtractor/FaceFeatureExtractor';\nimport { FaceFeatureExtractorParams } from '../faceFeatureExtractor/types';\nimport { FaceProcessor } from '../faceProcessor/FaceProcessor';\nimport { FaceExpressions } from './FaceExpressions';\n\nexport class FaceExpressionNet extends FaceProcessor {\n constructor(faceFeatureExtractor: FaceFeatureExtractor = new FaceFeatureExtractor()) {\n super('FaceExpressionNet', faceFeatureExtractor);\n }\n\n public forwardInput(input: NetInput | tf.Tensor4D): tf.Tensor2D {\n return tf.tidy(() => tf.softmax(this.runNet(input)));\n }\n\n public async forward(input: TNetInput): Promise {\n return this.forwardInput(await toNetInput(input));\n }\n\n public async predictExpressions(input: TNetInput) {\n const netInput = await toNetInput(input);\n const out = await this.forwardInput(netInput);\n const probabilitesByBatch = await Promise.all(tf.unstack(out).map(async (t) => {\n const data = t.dataSync();\n t.dispose();\n return data;\n }));\n out.dispose();\n\n const predictionsByBatch = probabilitesByBatch\n .map((probabilites) => new FaceExpressions(probabilites as Float32Array));\n\n return netInput.isBatchInput\n ? predictionsByBatch\n : predictionsByBatch[0];\n }\n\n protected getDefaultModelName(): string {\n return 'face_expression_model';\n }\n\n protected getClassifierChannelsIn(): number {\n return 256;\n }\n\n protected getClassifierChannelsOut(): number {\n return 7;\n }\n}\n", "import { FaceExpressions } from '../faceExpressionNet/FaceExpressions';\n\nexport type WithFaceExpressions = TSource & { expressions: FaceExpressions }\n\nexport function isWithFaceExpressions(obj: any): obj is WithFaceExpressions<{}> {\n return obj.expressions instanceof FaceExpressions;\n}\n\nexport function extendWithFaceExpressions(sourceObj: TSource, expressions: FaceExpressions): WithFaceExpressions {\n const extension = { expressions };\n return { ...sourceObj, ...extension };\n}\n", "import { IPoint, Point } from '../classes/index';\nimport { FaceExpressions } from '../faceExpressionNet/index';\nimport { isWithFaceDetection } from '../factories/WithFaceDetection';\nimport { isWithFaceExpressions, WithFaceExpressions } from '../factories/WithFaceExpressions';\nimport { round } from '../utils/index';\nimport { DrawTextField } from './DrawTextField';\n\nexport type DrawFaceExpressionsInput = FaceExpressions | WithFaceExpressions<{}>\n\nexport function drawFaceExpressions(canvasArg: string | HTMLCanvasElement, faceExpressions: DrawFaceExpressionsInput | Array, minConfidence = 0.1, textFieldAnchor?: IPoint) {\n const faceExpressionsArray = Array.isArray(faceExpressions) ? faceExpressions : [faceExpressions];\n\n faceExpressionsArray.forEach((e) => {\n // eslint-disable-next-line no-nested-ternary\n const expr = e instanceof FaceExpressions\n ? e\n : (isWithFaceExpressions(e) ? e.expressions : undefined);\n if (!expr) {\n throw new Error('drawFaceExpressions - expected faceExpressions to be FaceExpressions | WithFaceExpressions<{}> or array thereof');\n }\n\n const sorted = expr.asSortedArray();\n const resultsToDisplay = sorted.filter((exprLocal) => exprLocal.probability > minConfidence);\n\n const anchor = isWithFaceDetection(e)\n ? e.detection.box.bottomLeft\n : (textFieldAnchor || new Point(0, 0));\n\n const drawTextField = new DrawTextField(\n resultsToDisplay.map((exprLocal) => `${exprLocal.expression} (${round(exprLocal.probability)})`),\n anchor,\n );\n drawTextField.draw(canvasArg);\n });\n}\n", "import { Point } from '../classes';\nimport { FaceDetection } from '../classes/FaceDetection';\nimport { FaceLandmarks } from '../classes/FaceLandmarks';\nimport { FaceLandmarks68 } from '../classes/FaceLandmarks68';\nimport { isWithFaceDetection, WithFaceDetection } from './WithFaceDetection';\n\nexport type WithFaceLandmarks<\n TSource extends WithFaceDetection<{}>,\n TFaceLandmarks extends FaceLandmarks = FaceLandmarks68\n> = TSource & {\n landmarks: TFaceLandmarks;\n unshiftedLandmarks: TFaceLandmarks;\n alignedRect: FaceDetection;\n angle: {\n roll: number | undefined;\n pitch: number | undefined;\n yaw: number | undefined;\n };\n};\n\nexport function isWithFaceLandmarks(\n obj: any,\n): obj is WithFaceLandmarks, FaceLandmarks> {\n return (\n isWithFaceDetection(obj)\n && (obj as any)['landmarks'] instanceof FaceLandmarks\n && (obj as any)['unshiftedLandmarks'] instanceof FaceLandmarks\n && (obj as any)['alignedRect'] instanceof FaceDetection\n );\n}\n\nfunction calculateFaceAngle(mesh: FaceLandmarks) {\n // Helper to convert radians to degrees\n // eslint-disable-next-line no-unused-vars, @typescript-eslint/no-unused-vars\n const degrees = (radians: number) => (radians * 180) / Math.PI;\n const calcLengthBetweenTwoPoints = (a: Point, b: Point) => Math.sqrt((a.x - b.x) ** 2 + (a.y - b.y) ** 2);\n\n const angle = {\n roll: undefined,\n pitch: undefined,\n yaw: undefined,\n };\n\n const calcYaw = (leftPoint: Point, midPoint: Point, rightPoint: Point) => {\n // Calc x-distance from left side of the face (\"ear\") to facial midpoint (\"nose\")\n const leftToMidpoint = Math.floor(leftPoint.x - midPoint.x);\n // Calc x-distance from facial midpoint (\"nose\") to the right side of the face (\"ear\")\n const rightToMidpoint = Math.floor(midPoint.x - rightPoint.x);\n // Difference in distances coincidentally approximates to angles\n return leftToMidpoint - rightToMidpoint;\n };\n\n const calcRoll = (lever: Point, pivot: Point) => {\n // When rolling, the head seems to pivot from the nose/lips/chin area.\n // So, we'll choose any two points from the facial midline, where the first point should be the pivot, and the other \"lever\"\n // Plan/Execution: get the hypotenuse & opposite sides of a 90deg triangle ==> Calculate angle in radians\n const hypotenuse = Math.hypot(pivot.x - lever.x, pivot.y - lever.y);\n const opposite = pivot.y - lever.y;\n const angleInRadians = Math.asin(opposite / hypotenuse);\n const angleInDegrees = degrees(angleInRadians);\n const normalizeAngle = Math.floor(90 - angleInDegrees);\n // If lever more to the left of the pivot, then we're tilting left\n // \"-\" is negative direction. \"+\", or absence of a sign is positive direction\n const tiltDirection = pivot.x - lever.x < 0 ? -1 : 1;\n const result = normalizeAngle * tiltDirection;\n return result;\n };\n\n const calcPitch = (leftPoint: Point, midPoint: Point, rightPoint: Point) => {\n // Theory: While pitching, the nose is the most salient point --> That's what we'll use to make a trianle.\n // The \"base\" is between point that don't move when we pitch our head (i.e. an imaginary line running ear to ear through the nose).\n // Executuin: Get the opposite & adjacent lengths of the triangle from the ear's perspective. Use it to get angle.\n\n const base = calcLengthBetweenTwoPoints(leftPoint, rightPoint);\n // adjecent is base/2 technically.\n const baseCoords = new Point((leftPoint.x + rightPoint.x) / 2, (leftPoint.y + rightPoint.y) / 2);\n const midToBaseLength = calcLengthBetweenTwoPoints(midPoint, baseCoords);\n const angleInRadians = Math.atan(midToBaseLength / base);\n const angleInDegrees = Math.floor(degrees(angleInRadians));\n // Account for directionality.\n // pitch forwards (_i.e. tilting your head forwards) is positive (or no sign); backward is negative.\n const direction = baseCoords.y - midPoint.y < 0 ? -1 : 1;\n const result = angleInDegrees * direction;\n return result;\n };\n\n if (!mesh || !mesh.positions || mesh.positions.length !== 68) return angle;\n const pt = mesh.positions;\n angle.roll = calcRoll(pt[27], pt[66]);\n angle.pitch = calcPitch(pt[14], pt[30], pt[2]);\n angle.yaw = calcYaw(pt[14], pt[33], pt[2]);\n return angle;\n}\n\nexport function extendWithFaceLandmarks, TFaceLandmarks extends FaceLandmarks = FaceLandmarks68>(\n sourceObj: TSource,\n unshiftedLandmarks: TFaceLandmarks,\n): WithFaceLandmarks {\n const { box: shift } = sourceObj.detection;\n const landmarks = unshiftedLandmarks.shiftBy(shift.x, shift.y);\n const rect = landmarks.align();\n const { imageDims } = sourceObj.detection;\n const alignedRect = new FaceDetection(\n sourceObj.detection.score,\n rect.rescale(imageDims.reverse()),\n imageDims,\n );\n const angle = calculateFaceAngle(unshiftedLandmarks);\n const extension = { landmarks, unshiftedLandmarks, alignedRect, angle };\n return { ...sourceObj, ...extension };\n}\n", "/* eslint-disable max-classes-per-file */\nimport { IPoint } from '../classes/index';\nimport { FaceLandmarks } from '../classes/FaceLandmarks';\nimport { FaceLandmarks68 } from '../classes/FaceLandmarks68';\nimport { getContext2dOrThrow } from '../dom/getContext2dOrThrow';\nimport { WithFaceDetection } from '../factories/WithFaceDetection';\nimport { isWithFaceLandmarks, WithFaceLandmarks } from '../factories/WithFaceLandmarks';\nimport { drawContour } from './drawContour';\n\nexport interface IDrawFaceLandmarksOptions {\n drawLines?: boolean\n drawPoints?: boolean\n lineWidth?: number\n pointSize?: number\n lineColor?: string\n pointColor?: string\n}\n\nexport class DrawFaceLandmarksOptions {\n public drawLines: boolean;\n\n public drawPoints: boolean;\n\n public lineWidth: number;\n\n public pointSize: number;\n\n public lineColor: string;\n\n public pointColor: string;\n\n constructor(options: IDrawFaceLandmarksOptions = {}) {\n const {\n drawLines = true, drawPoints = true, lineWidth, lineColor, pointSize, pointColor,\n } = options;\n this.drawLines = drawLines;\n this.drawPoints = drawPoints;\n this.lineWidth = lineWidth || 1;\n this.pointSize = pointSize || 2;\n this.lineColor = lineColor || 'rgba(0, 255, 255, 1)';\n this.pointColor = pointColor || 'rgba(255, 0, 255, 1)';\n }\n}\n\nexport class DrawFaceLandmarks {\n public faceLandmarks: FaceLandmarks;\n\n public options: DrawFaceLandmarksOptions;\n\n constructor(\n faceLandmarks: FaceLandmarks,\n options: IDrawFaceLandmarksOptions = {},\n ) {\n this.faceLandmarks = faceLandmarks;\n this.options = new DrawFaceLandmarksOptions(options);\n }\n\n draw(canvasArg: string | HTMLCanvasElement | CanvasRenderingContext2D) {\n const ctx = getContext2dOrThrow(canvasArg);\n\n const {\n drawLines, drawPoints, lineWidth, lineColor, pointSize, pointColor,\n } = this.options;\n\n if (drawLines && this.faceLandmarks instanceof FaceLandmarks68) {\n ctx.strokeStyle = lineColor;\n ctx.lineWidth = lineWidth;\n drawContour(ctx, this.faceLandmarks.getJawOutline());\n drawContour(ctx, this.faceLandmarks.getLeftEyeBrow());\n drawContour(ctx, this.faceLandmarks.getRightEyeBrow());\n drawContour(ctx, this.faceLandmarks.getNose());\n drawContour(ctx, this.faceLandmarks.getLeftEye(), true);\n drawContour(ctx, this.faceLandmarks.getRightEye(), true);\n drawContour(ctx, this.faceLandmarks.getMouth(), true);\n }\n\n if (drawPoints) {\n ctx.strokeStyle = pointColor;\n ctx.fillStyle = pointColor;\n\n const drawPoint = (pt: IPoint) => {\n ctx.beginPath();\n ctx.arc(pt.x, pt.y, pointSize, 0, 2 * Math.PI);\n ctx.fill();\n };\n this.faceLandmarks.positions.forEach(drawPoint);\n }\n }\n}\n\nexport type DrawFaceLandmarksInput = FaceLandmarks | WithFaceLandmarks>\n\nexport function drawFaceLandmarks(\n canvasArg: string | HTMLCanvasElement,\n faceLandmarks: DrawFaceLandmarksInput | Array,\n) {\n const faceLandmarksArray = Array.isArray(faceLandmarks) ? faceLandmarks : [faceLandmarks];\n faceLandmarksArray.forEach((f) => {\n // eslint-disable-next-line no-nested-ternary\n const landmarks = f instanceof FaceLandmarks\n ? f\n : (isWithFaceLandmarks(f) ? f.landmarks : undefined);\n if (!landmarks) {\n throw new Error('drawFaceLandmarks - expected faceExpressions to be FaceLandmarks | WithFaceLandmarks> or array thereof');\n }\n\n new DrawFaceLandmarks(landmarks).draw(canvasArg);\n });\n}\n", "{\n \"name\": \"@vladmandic/face-api\",\n \"version\": \"1.7.15\",\n \"description\": \"FaceAPI: AI-powered Face Detection & Rotation Tracking, Face Description & Recognition, Age & Gender & Emotion Prediction for Browser and NodeJS using TensorFlow/JS\",\n \"sideEffects\": false,\n \"main\": \"dist/face-api.node.js\",\n \"module\": \"dist/face-api.esm.js\",\n \"browser\": \"dist/face-api.esm.js\",\n \"types\": \"types/face-api.d.ts\",\n \"author\": \"Vladimir Mandic \",\n \"bugs\": {\n \"url\": \"https://github.com/vladmandic/face-api/issues\"\n },\n \"homepage\": \"https://vladmandic.github.io/face-api/demo/webcam.html\",\n \"license\": \"MIT\",\n \"engines\": {\n \"node\": \">=14.0.0\"\n },\n \"repository\": {\n \"type\": \"git\",\n \"url\": \"git+https://github.com/vladmandic/face-api.git\"\n },\n \"scripts\": {\n \"start\": \"node --no-warnings demo/node.js\",\n \"build\": \"node build.js\",\n \"dev\": \"build --profile development\",\n \"lint\": \"eslint src/ demo/\",\n \"test\": \"node --trace-warnings test/test-node.js\",\n \"scan\": \"npx auditjs@latest ossi --dev --quiet\"\n },\n \"keywords\": [\n \"face-api\",\n \"faceapi\",\n \"face-detection\",\n \"age-gender\",\n \"emotion-detection\",\n \"face-recognition\",\n \"face\",\n \"face-description\",\n \"tensorflow\",\n \"tensorflowjs\",\n \"tfjs\"\n ],\n \"devDependencies\": {\n \"@canvas/image\": \"^2.0.0\",\n \"@microsoft/api-extractor\": \"^7.49.2\",\n \"@tensorflow/tfjs\": \"^4.22.0\",\n \"@tensorflow/tfjs-backend-cpu\": \"^4.22.0\",\n \"@tensorflow/tfjs-backend-wasm\": \"^4.22.0\",\n \"@tensorflow/tfjs-backend-webgl\": \"^4.22.0\",\n \"@tensorflow/tfjs-backend-webgpu\": \"4.22.0\",\n \"@tensorflow/tfjs-converter\": \"^4.22.0\",\n \"@tensorflow/tfjs-core\": \"^4.22.0\",\n \"@tensorflow/tfjs-data\": \"^4.22.0\",\n \"@tensorflow/tfjs-layers\": \"^4.22.0\",\n \"@tensorflow/tfjs-node\": \"^4.22.0\",\n \"@tensorflow/tfjs-node-gpu\": \"^4.22.0\",\n \"@types/node\": \"^22.13.1\",\n \"@types/offscreencanvas\": \"^2019.7.3\",\n \"@typescript-eslint/eslint-plugin\": \"^8.5.0\",\n \"@typescript-eslint/parser\": \"^8.5.0\",\n \"@vladmandic/build\": \"^0.10.2\",\n \"@vladmandic/pilogger\": \"^0.5.1\",\n \"ajv\": \"^8.17.1\",\n \"esbuild\": \"^0.24.2\",\n \"eslint\": \"8.57.0\",\n \"eslint-config-airbnb-base\": \"^15.0.0\",\n \"eslint-plugin-import\": \"^2.30.0\",\n \"eslint-plugin-json\": \"^4.0.1\",\n \"eslint-plugin-node\": \"^11.1.0\",\n \"eslint-plugin-promise\": \"^7.1.0\",\n \"node-fetch\": \"^3.3.2\",\n \"rimraf\": \"^6.0.1\",\n \"seedrandom\": \"^3.0.5\",\n \"tslib\": \"^2.8.1\",\n \"typedoc\": \"^0.27.6\",\n \"typescript\": \"5.7.3\"\n }\n}\n", "import { extractConvParamsFactory, extractSeparableConvParamsFactory, extractWeightsFactory } from '../common/index';\nimport { ExtractWeightsFunction, ParamMapping } from '../common/types';\nimport { range } from '../utils/index';\nimport { MainBlockParams, ReductionBlockParams, TinyXceptionParams } from './types';\n\nfunction extractorsFactory(extractWeights: ExtractWeightsFunction, paramMappings: ParamMapping[]) {\n const extractConvParams = extractConvParamsFactory(extractWeights, paramMappings);\n const extractSeparableConvParams = extractSeparableConvParamsFactory(extractWeights, paramMappings);\n\n function extractReductionBlockParams(channelsIn: number, channelsOut: number, mappedPrefix: string): ReductionBlockParams {\n const separable_conv0 = extractSeparableConvParams(channelsIn, channelsOut, `${mappedPrefix}/separable_conv0`);\n const separable_conv1 = extractSeparableConvParams(channelsOut, channelsOut, `${mappedPrefix}/separable_conv1`);\n const expansion_conv = extractConvParams(channelsIn, channelsOut, 1, `${mappedPrefix}/expansion_conv`);\n\n return { separable_conv0, separable_conv1, expansion_conv };\n }\n\n function extractMainBlockParams(channels: number, mappedPrefix: string): MainBlockParams {\n const separable_conv0 = extractSeparableConvParams(channels, channels, `${mappedPrefix}/separable_conv0`);\n const separable_conv1 = extractSeparableConvParams(channels, channels, `${mappedPrefix}/separable_conv1`);\n const separable_conv2 = extractSeparableConvParams(channels, channels, `${mappedPrefix}/separable_conv2`);\n\n return { separable_conv0, separable_conv1, separable_conv2 };\n }\n\n return {\n extractConvParams,\n extractSeparableConvParams,\n extractReductionBlockParams,\n extractMainBlockParams,\n };\n}\n\nexport function extractParams(weights: Float32Array, numMainBlocks: number): { params: TinyXceptionParams, paramMappings: ParamMapping[] } {\n const paramMappings: ParamMapping[] = [];\n\n const {\n extractWeights,\n getRemainingWeights,\n } = extractWeightsFactory(weights);\n\n const {\n extractConvParams,\n extractSeparableConvParams,\n extractReductionBlockParams,\n extractMainBlockParams,\n } = extractorsFactory(extractWeights, paramMappings);\n\n const entry_flow_conv_in = extractConvParams(3, 32, 3, 'entry_flow/conv_in');\n const entry_flow_reduction_block_0 = extractReductionBlockParams(32, 64, 'entry_flow/reduction_block_0');\n const entry_flow_reduction_block_1 = extractReductionBlockParams(64, 128, 'entry_flow/reduction_block_1');\n\n const entry_flow = {\n conv_in: entry_flow_conv_in,\n reduction_block_0: entry_flow_reduction_block_0,\n reduction_block_1: entry_flow_reduction_block_1,\n };\n\n const middle_flow: Record<`main_block_${number}`, MainBlockParams> = {};\n range(numMainBlocks, 0, 1).forEach((idx) => {\n middle_flow[`main_block_${idx}`] = extractMainBlockParams(128, `middle_flow/main_block_${idx}`);\n });\n\n const exit_flow_reduction_block = extractReductionBlockParams(128, 256, 'exit_flow/reduction_block');\n const exit_flow_separable_conv = extractSeparableConvParams(256, 512, 'exit_flow/separable_conv');\n\n const exit_flow = {\n reduction_block: exit_flow_reduction_block,\n separable_conv: exit_flow_separable_conv,\n };\n\n if (getRemainingWeights().length !== 0) {\n throw new Error(`weights remaing after extract: ${getRemainingWeights().length}`);\n }\n\n return {\n paramMappings,\n params: { entry_flow, middle_flow, exit_flow },\n };\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { disposeUnusedWeightTensors, extractWeightEntryFactory, loadSeparableConvParamsFactory, ParamMapping } from '../common/index';\nimport { loadConvParamsFactory } from '../common/loadConvParamsFactory';\nimport { range } from '../utils/index';\nimport { MainBlockParams, ReductionBlockParams, TinyXceptionParams } from './types';\n\nfunction loadParamsFactory(weightMap: any, paramMappings: ParamMapping[]) {\n const extractWeightEntry = extractWeightEntryFactory(weightMap, paramMappings);\n\n const extractConvParams = loadConvParamsFactory(extractWeightEntry);\n const extractSeparableConvParams = loadSeparableConvParamsFactory(extractWeightEntry);\n\n function extractReductionBlockParams(mappedPrefix: string): ReductionBlockParams {\n const separable_conv0 = extractSeparableConvParams(`${mappedPrefix}/separable_conv0`);\n const separable_conv1 = extractSeparableConvParams(`${mappedPrefix}/separable_conv1`);\n const expansion_conv = extractConvParams(`${mappedPrefix}/expansion_conv`);\n\n return { separable_conv0, separable_conv1, expansion_conv };\n }\n\n function extractMainBlockParams(mappedPrefix: string): MainBlockParams {\n const separable_conv0 = extractSeparableConvParams(`${mappedPrefix}/separable_conv0`);\n const separable_conv1 = extractSeparableConvParams(`${mappedPrefix}/separable_conv1`);\n const separable_conv2 = extractSeparableConvParams(`${mappedPrefix}/separable_conv2`);\n\n return { separable_conv0, separable_conv1, separable_conv2 };\n }\n\n return {\n extractConvParams,\n extractSeparableConvParams,\n extractReductionBlockParams,\n extractMainBlockParams,\n };\n}\n\nexport function extractParamsFromWeightMap(\n weightMap: tf.NamedTensorMap,\n numMainBlocks: number,\n): { params: TinyXceptionParams, paramMappings: ParamMapping[] } {\n const paramMappings: ParamMapping[] = [];\n\n const {\n extractConvParams,\n extractSeparableConvParams,\n extractReductionBlockParams,\n extractMainBlockParams,\n } = loadParamsFactory(weightMap, paramMappings);\n\n const entry_flow_conv_in = extractConvParams('entry_flow/conv_in');\n const entry_flow_reduction_block_0 = extractReductionBlockParams('entry_flow/reduction_block_0');\n const entry_flow_reduction_block_1 = extractReductionBlockParams('entry_flow/reduction_block_1');\n\n const entry_flow = {\n conv_in: entry_flow_conv_in,\n reduction_block_0: entry_flow_reduction_block_0,\n reduction_block_1: entry_flow_reduction_block_1,\n };\n\n const middle_flow: Record<`main_block_${number}`, MainBlockParams> = {};\n range(numMainBlocks, 0, 1).forEach((idx) => {\n middle_flow[`main_block_${idx}`] = extractMainBlockParams(`middle_flow/main_block_${idx}`);\n });\n\n const exit_flow_reduction_block = extractReductionBlockParams('exit_flow/reduction_block');\n const exit_flow_separable_conv = extractSeparableConvParams('exit_flow/separable_conv');\n\n const exit_flow = {\n reduction_block: exit_flow_reduction_block,\n separable_conv: exit_flow_separable_conv,\n };\n\n disposeUnusedWeightTensors(weightMap, paramMappings);\n\n return { params: { entry_flow, middle_flow, exit_flow }, paramMappings };\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { ConvParams, depthwiseSeparableConv } from '../common/index';\nimport { NetInput, TNetInput, toNetInput } from '../dom/index';\nimport { NeuralNetwork } from '../NeuralNetwork';\nimport { normalize } from '../ops/index';\nimport { range } from '../utils/index';\nimport { extractParams } from './extractParams';\nimport { extractParamsFromWeightMap } from './extractParamsFromWeightMap';\nimport { MainBlockParams, ReductionBlockParams, TinyXceptionParams } from './types';\n\nfunction conv(x: tf.Tensor4D, params: ConvParams, stride: [number, number]): tf.Tensor4D {\n return tf.add(tf.conv2d(x, params.filters, stride, 'same'), params.bias);\n}\n\nfunction reductionBlock(x: tf.Tensor4D, params: ReductionBlockParams, isActivateInput = true): tf.Tensor4D {\n let out = isActivateInput ? tf.relu(x) : x;\n out = depthwiseSeparableConv(out, params.separable_conv0, [1, 1]);\n out = depthwiseSeparableConv(tf.relu(out), params.separable_conv1, [1, 1]);\n out = tf.maxPool(out, [3, 3], [2, 2], 'same');\n out = tf.add(out, conv(x, params.expansion_conv, [2, 2]));\n return out;\n}\n\nfunction mainBlock(x: tf.Tensor4D, params: MainBlockParams): tf.Tensor4D {\n let out = depthwiseSeparableConv(tf.relu(x), params.separable_conv0, [1, 1]);\n out = depthwiseSeparableConv(tf.relu(out), params.separable_conv1, [1, 1]);\n out = depthwiseSeparableConv(tf.relu(out), params.separable_conv2, [1, 1]);\n out = tf.add(out, x);\n return out;\n}\n\nexport class TinyXception extends NeuralNetwork {\n private _numMainBlocks: number;\n\n constructor(numMainBlocks: number) {\n super('TinyXception');\n this._numMainBlocks = numMainBlocks;\n }\n\n public forwardInput(input: NetInput): tf.Tensor4D {\n const { params } = this;\n if (!params) {\n throw new Error('TinyXception - load model before inference');\n }\n return tf.tidy(() => {\n const batchTensor = tf.cast(input.toBatchTensor(112, true), 'float32');\n const meanRgb = [122.782, 117.001, 104.298];\n const normalized = normalize(batchTensor, meanRgb).div(255) as tf.Tensor4D;\n let out = tf.relu(conv(normalized, params.entry_flow.conv_in, [2, 2]));\n out = reductionBlock(out, params.entry_flow.reduction_block_0, false);\n out = reductionBlock(out, params.entry_flow.reduction_block_1);\n range(this._numMainBlocks, 0, 1).forEach((idx) => {\n out = mainBlock(out, params.middle_flow[`main_block_${idx}`]);\n });\n out = reductionBlock(out, params.exit_flow.reduction_block);\n out = tf.relu(depthwiseSeparableConv(out, params.exit_flow.separable_conv, [1, 1]));\n return out;\n });\n }\n\n public async forward(input: TNetInput): Promise {\n return this.forwardInput(await toNetInput(input));\n }\n\n protected getDefaultModelName(): string {\n return 'tiny_xception_model';\n }\n\n protected extractParamsFromWeightMap(weightMap: tf.NamedTensorMap) {\n return extractParamsFromWeightMap(weightMap, this._numMainBlocks);\n }\n\n protected extractParams(weights: Float32Array) {\n return extractParams(weights, this._numMainBlocks);\n }\n}\n", "import { extractFCParamsFactory, extractWeightsFactory, ParamMapping } from '../common/index';\nimport { NetParams } from './types';\n\nexport function extractParams(weights: Float32Array): { params: NetParams, paramMappings: ParamMapping[] } {\n const paramMappings: ParamMapping[] = [];\n\n const {\n extractWeights,\n getRemainingWeights,\n } = extractWeightsFactory(weights);\n\n const extractFCParams = extractFCParamsFactory(extractWeights, paramMappings);\n\n const age = extractFCParams(512, 1, 'fc/age');\n const gender = extractFCParams(512, 2, 'fc/gender');\n\n if (getRemainingWeights().length !== 0) {\n throw new Error(`weights remaing after extract: ${getRemainingWeights().length}`);\n }\n\n return {\n paramMappings,\n params: { fc: { age, gender } },\n };\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { disposeUnusedWeightTensors, extractWeightEntryFactory, FCParams, ParamMapping } from '../common/index';\nimport { NetParams } from './types';\n\nexport function extractParamsFromWeightMap(\n weightMap: tf.NamedTensorMap,\n): { params: NetParams, paramMappings: ParamMapping[] } {\n const paramMappings: ParamMapping[] = [];\n\n const extractWeightEntry = extractWeightEntryFactory(weightMap, paramMappings);\n\n function extractFcParams(prefix: string): FCParams {\n const weights = extractWeightEntry(`${prefix}/weights`, 2);\n const bias = extractWeightEntry(`${prefix}/bias`, 1);\n return { weights, bias };\n }\n\n const params = {\n fc: {\n age: extractFcParams('fc/age'),\n gender: extractFcParams('fc/gender'),\n },\n };\n\n disposeUnusedWeightTensors(weightMap, paramMappings);\n\n return { params, paramMappings };\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { FCParams } from '../common/index';\n\n// eslint-disable-next-line no-shadow\nexport enum Gender {\n // eslint-disable-next-line no-unused-vars\n FEMALE = 'female',\n // eslint-disable-next-line no-unused-vars\n MALE = 'male'\n}\n\nexport type AgeAndGenderPrediction = {\n age: number\n gender: Gender\n genderProbability: number\n}\n\nexport type NetOutput = { age: tf.Tensor1D, gender: tf.Tensor2D }\n\nexport type NetParams = {\n fc: {\n age: FCParams\n gender: FCParams\n }\n}\n", "import * as tf from '../../dist/tfjs.esm.js';\nimport { fullyConnectedLayer } from '../common/fullyConnectedLayer';\nimport { seperateWeightMaps } from '../faceProcessor/util';\nimport { TinyXception } from '../xception/TinyXception';\nimport { extractParams } from './extractParams';\nimport { extractParamsFromWeightMap } from './extractParamsFromWeightMap';\nimport { AgeAndGenderPrediction, Gender, NetOutput, NetParams } from './types';\nimport { NeuralNetwork } from '../NeuralNetwork';\nimport { NetInput, TNetInput, toNetInput } from '../dom/index';\n\nexport class AgeGenderNet extends NeuralNetwork {\n private _faceFeatureExtractor: TinyXception;\n\n constructor(faceFeatureExtractor: TinyXception = new TinyXception(2)) {\n super('AgeGenderNet');\n this._faceFeatureExtractor = faceFeatureExtractor;\n }\n\n public get faceFeatureExtractor(): TinyXception {\n return this._faceFeatureExtractor;\n }\n\n public runNet(input: NetInput | tf.Tensor4D): NetOutput {\n const { params } = this;\n\n if (!params) {\n throw new Error(`${this._name} - load model before inference`);\n }\n\n return tf.tidy(() => {\n const bottleneckFeatures = input instanceof NetInput\n ? this.faceFeatureExtractor.forwardInput(input)\n : input;\n\n const pooled = tf.avgPool(bottleneckFeatures, [7, 7], [2, 2], 'valid').as2D(bottleneckFeatures.shape[0], -1);\n const age = fullyConnectedLayer(pooled, params.fc.age).as1D();\n const gender = fullyConnectedLayer(pooled, params.fc.gender);\n return { age, gender };\n });\n }\n\n public forwardInput(input: NetInput | tf.Tensor4D): NetOutput {\n return tf.tidy(() => {\n const { age, gender } = this.runNet(input);\n return { age, gender: tf.softmax(gender) };\n });\n }\n\n public async forward(input: TNetInput): Promise {\n return this.forwardInput(await toNetInput(input));\n }\n\n public async predictAgeAndGender(input: TNetInput): Promise {\n const netInput = await toNetInput(input);\n const out = await this.forwardInput(netInput);\n\n const ages = tf.unstack(out.age);\n const genders = tf.unstack(out.gender);\n const ageAndGenderTensors = ages.map((ageTensor, i) => ({\n ageTensor,\n genderTensor: genders[i],\n }));\n\n const predictionsByBatch = await Promise.all(\n ageAndGenderTensors.map(async ({ ageTensor, genderTensor }) => {\n const age = (ageTensor.dataSync())[0];\n const probMale = (genderTensor.dataSync())[0];\n const isMale = probMale > 0.5;\n const gender = isMale ? Gender.MALE : Gender.FEMALE;\n const genderProbability = isMale ? probMale : (1 - probMale);\n\n ageTensor.dispose();\n genderTensor.dispose();\n return { age, gender, genderProbability };\n }),\n );\n out.age.dispose();\n out.gender.dispose();\n\n return netInput.isBatchInput ? predictionsByBatch as AgeAndGenderPrediction[] : predictionsByBatch[0] as AgeAndGenderPrediction;\n }\n\n protected getDefaultModelName(): string {\n return 'age_gender_model';\n }\n\n public override dispose(throwOnRedispose = true) {\n this.faceFeatureExtractor.dispose(throwOnRedispose);\n super.dispose(throwOnRedispose);\n }\n\n public loadClassifierParams(weights: Float32Array) {\n const { params, paramMappings } = this.extractClassifierParams(weights);\n this._params = params;\n this._paramMappings = paramMappings;\n }\n\n public extractClassifierParams(weights: Float32Array) {\n return extractParams(weights);\n }\n\n protected extractParamsFromWeightMap(weightMap: tf.NamedTensorMap) {\n const { featureExtractorMap, classifierMap } = seperateWeightMaps(weightMap);\n\n this.faceFeatureExtractor.loadFromWeightMap(featureExtractorMap);\n\n return extractParamsFromWeightMap(classifierMap);\n }\n\n protected extractParams(weights: Float32Array) {\n const classifierWeightSize = (512 * 1 + 1) + (512 * 2 + 2);\n\n const featureExtractorWeights = weights.slice(0, weights.length - classifierWeightSize);\n const classifierWeights = weights.slice(weights.length - classifierWeightSize);\n\n this.faceFeatureExtractor.extractWeights(featureExtractorWeights);\n return this.extractClassifierParams(classifierWeights);\n }\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { IDimensions, Point } from '../classes/index';\nimport { FaceLandmarks68 } from '../classes/FaceLandmarks68';\nimport { NetInput, TNetInput, toNetInput } from '../dom/index';\nimport { FaceFeatureExtractorParams, TinyFaceFeatureExtractorParams } from '../faceFeatureExtractor/types';\nimport { FaceProcessor } from '../faceProcessor/FaceProcessor';\nimport { isEven } from '../utils/index';\n\nexport abstract class FaceLandmark68NetBase<\n TExtractorParams extends FaceFeatureExtractorParams | TinyFaceFeatureExtractorParams\n>\n extends FaceProcessor {\n public postProcess(output: tf.Tensor2D, inputSize: number, originalDimensions: IDimensions[]): tf.Tensor2D {\n const inputDimensions = originalDimensions.map(({ width, height }) => {\n const scale = inputSize / Math.max(height, width);\n return {\n width: width * scale,\n height: height * scale,\n };\n });\n\n const batchSize = inputDimensions.length;\n\n return tf.tidy(() => {\n const createInterleavedTensor = (fillX: number, fillY: number) => tf.stack([tf.fill([68], fillX, 'float32'), tf.fill([68], fillY, 'float32')], 1).as2D(1, 136).as1D();\n\n // eslint-disable-next-line no-unused-vars\n const getPadding = (batchIdx: number, cond: (w: number, h: number) => boolean): number => {\n const { width, height } = inputDimensions[batchIdx];\n return cond(width, height) ? Math.abs(width - height) / 2 : 0;\n };\n\n const getPaddingX = (batchIdx: number) => getPadding(batchIdx, (w, h) => w < h);\n const getPaddingY = (batchIdx: number) => getPadding(batchIdx, (w, h) => h < w);\n\n const landmarkTensors = output\n .mul(tf.fill([batchSize, 136], inputSize, 'float32'))\n .sub(tf.stack(Array.from(Array(batchSize), (_, batchIdx) => createInterleavedTensor(\n getPaddingX(batchIdx),\n getPaddingY(batchIdx),\n ))))\n .div(tf.stack(Array.from(Array(batchSize), (_, batchIdx) => createInterleavedTensor(\n inputDimensions[batchIdx].width,\n inputDimensions[batchIdx].height,\n ))));\n\n return landmarkTensors as tf.Tensor2D;\n });\n }\n\n public forwardInput(input: NetInput): tf.Tensor2D {\n return tf.tidy(() => {\n const out = this.runNet(input);\n return this.postProcess(\n out,\n input.inputSize as number,\n input.inputDimensions.map(([height, width]) => ({ height, width })),\n );\n });\n }\n\n public async forward(input: TNetInput): Promise {\n return this.forwardInput(await toNetInput(input));\n }\n\n public async detectLandmarks(input: TNetInput): Promise {\n const netInput = await toNetInput(input);\n const landmarkTensors = tf.tidy(\n () => tf.unstack(this.forwardInput(netInput)),\n );\n\n const landmarksForBatch = await Promise.all(landmarkTensors.map(\n async (landmarkTensor, batchIdx) => {\n const landmarksArray = Array.from(landmarkTensor.dataSync());\n const xCoords = landmarksArray.filter((_, i) => isEven(i));\n const yCoords = landmarksArray.filter((_, i) => !isEven(i));\n\n return new FaceLandmarks68(\n Array(68).fill(0).map((_, i) => new Point(xCoords[i] as number, yCoords[i] as number)),\n {\n height: netInput.getInputHeight(batchIdx),\n width: netInput.getInputWidth(batchIdx),\n },\n );\n },\n ));\n\n landmarkTensors.forEach((t) => t.dispose());\n\n return netInput.isBatchInput ? landmarksForBatch as FaceLandmarks68[] : landmarksForBatch[0] as FaceLandmarks68;\n }\n\n protected getClassifierChannelsOut(): number {\n return 136;\n }\n}\n", "import { FaceFeatureExtractor } from '../faceFeatureExtractor/FaceFeatureExtractor';\nimport { FaceFeatureExtractorParams } from '../faceFeatureExtractor/types';\nimport { FaceLandmark68NetBase } from './FaceLandmark68NetBase';\n\nexport class FaceLandmark68Net extends FaceLandmark68NetBase {\n constructor(faceFeatureExtractor: FaceFeatureExtractor = new FaceFeatureExtractor()) {\n super('FaceLandmark68Net', faceFeatureExtractor);\n }\n\n protected getDefaultModelName(): string {\n return 'face_landmark_68_model';\n }\n\n protected getClassifierChannelsIn(): number {\n return 256;\n }\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { disposeUnusedWeightTensors, ParamMapping } from '../common/index';\nimport { loadParamsFactory } from './loadParamsFactory';\nimport { TinyFaceFeatureExtractorParams } from './types';\n\nexport function extractParamsFromWeightMapTiny(\n weightMap: tf.NamedTensorMap,\n): { params: TinyFaceFeatureExtractorParams, paramMappings: ParamMapping[] } {\n const paramMappings: ParamMapping[] = [];\n\n const {\n extractDenseBlock3Params,\n } = loadParamsFactory(weightMap, paramMappings);\n\n const params = {\n dense0: extractDenseBlock3Params('dense0', true),\n dense1: extractDenseBlock3Params('dense1'),\n dense2: extractDenseBlock3Params('dense2'),\n };\n\n disposeUnusedWeightTensors(weightMap, paramMappings);\n\n return { params, paramMappings };\n}\n", "import { extractWeightsFactory, ParamMapping } from '../common/index';\nimport { extractorsFactory } from './extractorsFactory';\nimport { TinyFaceFeatureExtractorParams } from './types';\n\nexport function extractParamsTiny(weights: Float32Array): { params: TinyFaceFeatureExtractorParams, paramMappings: ParamMapping[] } {\n const paramMappings: ParamMapping[] = [];\n\n const {\n extractWeights,\n getRemainingWeights,\n } = extractWeightsFactory(weights);\n\n const {\n extractDenseBlock3Params,\n } = extractorsFactory(extractWeights, paramMappings);\n\n const dense0 = extractDenseBlock3Params(3, 32, 'dense0', true);\n const dense1 = extractDenseBlock3Params(32, 64, 'dense1');\n const dense2 = extractDenseBlock3Params(64, 128, 'dense2');\n\n if (getRemainingWeights().length !== 0) {\n throw new Error(`weights remaing after extract: ${getRemainingWeights().length}`);\n }\n\n return {\n paramMappings,\n params: { dense0, dense1, dense2 },\n };\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { NetInput, TNetInput, toNetInput } from '../dom/index';\nimport { NeuralNetwork } from '../NeuralNetwork';\nimport { normalize } from '../ops/index';\nimport { denseBlock3 } from './denseBlock';\nimport { extractParamsFromWeightMapTiny } from './extractParamsFromWeightMapTiny';\nimport { extractParamsTiny } from './extractParamsTiny';\nimport { IFaceFeatureExtractor, TinyFaceFeatureExtractorParams } from './types';\n\nexport class TinyFaceFeatureExtractor extends NeuralNetwork implements IFaceFeatureExtractor {\n constructor() {\n super('TinyFaceFeatureExtractor');\n }\n\n public forwardInput(input: NetInput): tf.Tensor4D {\n const { params } = this;\n\n if (!params) {\n throw new Error('TinyFaceFeatureExtractor - load model before inference');\n }\n\n return tf.tidy(() => {\n const batchTensor = tf.cast(input.toBatchTensor(112, true), 'float32');\n const meanRgb = [122.782, 117.001, 104.298];\n const normalized = normalize(batchTensor, meanRgb).div(255) as tf.Tensor4D;\n\n let out = denseBlock3(normalized, params.dense0, true);\n out = denseBlock3(out, params.dense1);\n out = denseBlock3(out, params.dense2);\n out = tf.avgPool(out, [14, 14], [2, 2], 'valid');\n\n return out;\n });\n }\n\n public async forward(input: TNetInput): Promise {\n return this.forwardInput(await toNetInput(input));\n }\n\n protected getDefaultModelName(): string {\n return 'face_feature_extractor_tiny_model';\n }\n\n protected extractParamsFromWeightMap(weightMap: tf.NamedTensorMap) {\n return extractParamsFromWeightMapTiny(weightMap);\n }\n\n protected extractParams(weights: Float32Array) {\n return extractParamsTiny(weights);\n }\n}\n", "import { TinyFaceFeatureExtractor } from '../faceFeatureExtractor/TinyFaceFeatureExtractor';\nimport { TinyFaceFeatureExtractorParams } from '../faceFeatureExtractor/types';\nimport { FaceLandmark68NetBase } from './FaceLandmark68NetBase';\n\nexport class FaceLandmark68TinyNet extends FaceLandmark68NetBase {\n constructor(faceFeatureExtractor: TinyFaceFeatureExtractor = new TinyFaceFeatureExtractor()) {\n super('FaceLandmark68TinyNet', faceFeatureExtractor);\n }\n\n protected getDefaultModelName(): string {\n return 'face_landmark_68_tiny_model';\n }\n\n protected getClassifierChannelsIn(): number {\n return 128;\n }\n}\n", "import { FaceLandmark68Net } from './FaceLandmark68Net';\n\nexport * from './FaceLandmark68Net';\nexport * from './FaceLandmark68TinyNet';\nexport class FaceLandmarkNet extends FaceLandmark68Net {}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { ScaleLayerParams } from './types';\n\nexport function scale(x: tf.Tensor4D, params: ScaleLayerParams): tf.Tensor4D {\n return tf.add(tf.mul(x, params.weights), params.biases);\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { scale } from './scaleLayer';\nimport { ConvLayerParams } from './types';\n\nfunction convLayer(\n x: tf.Tensor4D,\n params: ConvLayerParams,\n strides: [number, number],\n withRelu: boolean,\n padding: 'valid' | 'same' = 'same',\n): tf.Tensor4D {\n const { filters, bias } = params.conv;\n\n let out = tf.conv2d(x, filters, strides, padding);\n out = tf.add(out, bias);\n out = scale(out, params.scale);\n return withRelu ? tf.relu(out) : out;\n}\n\nexport function conv(x: tf.Tensor4D, params: ConvLayerParams) {\n return convLayer(x, params, [1, 1], true);\n}\n\nexport function convNoRelu(x: tf.Tensor4D, params: ConvLayerParams) {\n return convLayer(x, params, [1, 1], false);\n}\n\nexport function convDown(x: tf.Tensor4D, params: ConvLayerParams) {\n return convLayer(x, params, [2, 2], true, 'valid');\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { ConvParams, extractWeightsFactory, ExtractWeightsFunction, ParamMapping } from '../common/index';\nimport { isFloat } from '../utils/index';\nimport { ConvLayerParams, NetParams, ResidualLayerParams, ScaleLayerParams } from './types';\n\nfunction extractorsFactory(extractWeights: ExtractWeightsFunction, paramMappings: ParamMapping[]) {\n function extractFilterValues(numFilterValues: number, numFilters: number, filterSize: number): tf.Tensor4D {\n const weights = extractWeights(numFilterValues);\n const depth = weights.length / (numFilters * filterSize * filterSize);\n\n if (isFloat(depth)) {\n throw new Error(`depth has to be an integer: ${depth}, weights.length: ${weights.length}, numFilters: ${numFilters}, filterSize: ${filterSize}`);\n }\n\n return tf.tidy(\n () => tf.transpose(\n tf.tensor4d(weights, [numFilters, depth, filterSize, filterSize]),\n [2, 3, 1, 0],\n ),\n );\n }\n\n function extractConvParams(\n numFilterValues: number,\n numFilters: number,\n filterSize: number,\n mappedPrefix: string,\n ): ConvParams {\n const filters = extractFilterValues(numFilterValues, numFilters, filterSize);\n const bias = tf.tensor1d(extractWeights(numFilters));\n\n paramMappings.push(\n { paramPath: `${mappedPrefix}/filters` },\n { paramPath: `${mappedPrefix}/bias` },\n );\n\n return { filters, bias };\n }\n\n function extractScaleLayerParams(numWeights: number, mappedPrefix: string): ScaleLayerParams {\n const weights = tf.tensor1d(extractWeights(numWeights));\n const biases = tf.tensor1d(extractWeights(numWeights));\n\n paramMappings.push(\n { paramPath: `${mappedPrefix}/weights` },\n { paramPath: `${mappedPrefix}/biases` },\n );\n\n return {\n weights,\n biases,\n };\n }\n\n function extractConvLayerParams(\n numFilterValues: number,\n numFilters: number,\n filterSize: number,\n mappedPrefix: string,\n ): ConvLayerParams {\n const conv = extractConvParams(numFilterValues, numFilters, filterSize, `${mappedPrefix}/conv`);\n const scale = extractScaleLayerParams(numFilters, `${mappedPrefix}/scale`);\n\n return { conv, scale };\n }\n\n function extractResidualLayerParams(\n numFilterValues: number,\n numFilters: number,\n filterSize: number,\n mappedPrefix: string,\n isDown = false,\n ): ResidualLayerParams {\n const conv1 = extractConvLayerParams((isDown ? 0.5 : 1) * numFilterValues, numFilters, filterSize, `${mappedPrefix}/conv1`);\n const conv2 = extractConvLayerParams(numFilterValues, numFilters, filterSize, `${mappedPrefix}/conv2`);\n\n return { conv1, conv2 };\n }\n\n return {\n extractConvLayerParams,\n extractResidualLayerParams,\n };\n}\n\nexport function extractParams(weights: Float32Array): { params: NetParams, paramMappings: ParamMapping[] } {\n const {\n extractWeights,\n getRemainingWeights,\n } = extractWeightsFactory(weights);\n\n const paramMappings: ParamMapping[] = [];\n\n const {\n extractConvLayerParams,\n extractResidualLayerParams,\n } = extractorsFactory(extractWeights, paramMappings);\n\n const conv32_down = extractConvLayerParams(4704, 32, 7, 'conv32_down');\n const conv32_1 = extractResidualLayerParams(9216, 32, 3, 'conv32_1');\n const conv32_2 = extractResidualLayerParams(9216, 32, 3, 'conv32_2');\n const conv32_3 = extractResidualLayerParams(9216, 32, 3, 'conv32_3');\n\n const conv64_down = extractResidualLayerParams(36864, 64, 3, 'conv64_down', true);\n const conv64_1 = extractResidualLayerParams(36864, 64, 3, 'conv64_1');\n const conv64_2 = extractResidualLayerParams(36864, 64, 3, 'conv64_2');\n const conv64_3 = extractResidualLayerParams(36864, 64, 3, 'conv64_3');\n\n const conv128_down = extractResidualLayerParams(147456, 128, 3, 'conv128_down', true);\n const conv128_1 = extractResidualLayerParams(147456, 128, 3, 'conv128_1');\n const conv128_2 = extractResidualLayerParams(147456, 128, 3, 'conv128_2');\n\n const conv256_down = extractResidualLayerParams(589824, 256, 3, 'conv256_down', true);\n const conv256_1 = extractResidualLayerParams(589824, 256, 3, 'conv256_1');\n const conv256_2 = extractResidualLayerParams(589824, 256, 3, 'conv256_2');\n const conv256_down_out = extractResidualLayerParams(589824, 256, 3, 'conv256_down_out');\n\n const fc = tf.tidy(\n () => tf.transpose(tf.tensor2d(extractWeights(256 * 128), [128, 256]), [1, 0]),\n );\n paramMappings.push({ paramPath: 'fc' });\n\n if (getRemainingWeights().length !== 0) {\n throw new Error(`weights remaing after extract: ${getRemainingWeights().length}`);\n }\n\n const params = {\n conv32_down,\n conv32_1,\n conv32_2,\n conv32_3,\n conv64_down,\n conv64_1,\n conv64_2,\n conv64_3,\n conv128_down,\n conv128_1,\n conv128_2,\n conv256_down,\n conv256_1,\n conv256_2,\n conv256_down_out,\n fc,\n };\n\n return { params, paramMappings };\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { disposeUnusedWeightTensors, extractWeightEntryFactory, ParamMapping } from '../common/index';\nimport { isTensor2D } from '../utils/index';\nimport { ConvLayerParams, NetParams, ResidualLayerParams, ScaleLayerParams } from './types';\n\nfunction extractorsFactory(weightMap: any, paramMappings: ParamMapping[]) {\n const extractWeightEntry = extractWeightEntryFactory(weightMap, paramMappings);\n\n function extractScaleLayerParams(prefix: string): ScaleLayerParams {\n const weights = extractWeightEntry(`${prefix}/scale/weights`, 1);\n const biases = extractWeightEntry(`${prefix}/scale/biases`, 1);\n\n return { weights, biases };\n }\n\n function extractConvLayerParams(prefix: string): ConvLayerParams {\n const filters = extractWeightEntry(`${prefix}/conv/filters`, 4);\n const bias = extractWeightEntry(`${prefix}/conv/bias`, 1);\n const scale = extractScaleLayerParams(prefix);\n\n return { conv: { filters, bias }, scale };\n }\n\n function extractResidualLayerParams(prefix: string): ResidualLayerParams {\n return {\n conv1: extractConvLayerParams(`${prefix}/conv1`),\n conv2: extractConvLayerParams(`${prefix}/conv2`),\n };\n }\n\n return {\n extractConvLayerParams,\n extractResidualLayerParams,\n };\n}\n\nexport function extractParamsFromWeightMap(\n weightMap: tf.NamedTensorMap,\n): { params: NetParams, paramMappings: ParamMapping[] } {\n const paramMappings: ParamMapping[] = [];\n\n const {\n extractConvLayerParams,\n extractResidualLayerParams,\n } = extractorsFactory(weightMap, paramMappings);\n\n const conv32_down = extractConvLayerParams('conv32_down');\n const conv32_1 = extractResidualLayerParams('conv32_1');\n const conv32_2 = extractResidualLayerParams('conv32_2');\n const conv32_3 = extractResidualLayerParams('conv32_3');\n\n const conv64_down = extractResidualLayerParams('conv64_down');\n const conv64_1 = extractResidualLayerParams('conv64_1');\n const conv64_2 = extractResidualLayerParams('conv64_2');\n const conv64_3 = extractResidualLayerParams('conv64_3');\n\n const conv128_down = extractResidualLayerParams('conv128_down');\n const conv128_1 = extractResidualLayerParams('conv128_1');\n const conv128_2 = extractResidualLayerParams('conv128_2');\n\n const conv256_down = extractResidualLayerParams('conv256_down');\n const conv256_1 = extractResidualLayerParams('conv256_1');\n const conv256_2 = extractResidualLayerParams('conv256_2');\n const conv256_down_out = extractResidualLayerParams('conv256_down_out');\n\n const { fc } = weightMap;\n paramMappings.push({ originalPath: 'fc', paramPath: 'fc' });\n\n if (!isTensor2D(fc)) {\n throw new Error(`expected weightMap[fc] to be a Tensor2D, instead have ${fc}`);\n }\n\n const params = {\n conv32_down,\n conv32_1,\n conv32_2,\n conv32_3,\n conv64_down,\n conv64_1,\n conv64_2,\n conv64_3,\n conv128_down,\n conv128_1,\n conv128_2,\n conv256_down,\n conv256_1,\n conv256_2,\n conv256_down_out,\n fc,\n };\n\n disposeUnusedWeightTensors(weightMap, paramMappings);\n\n return { params, paramMappings };\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { conv, convDown, convNoRelu } from './convLayer';\nimport { ResidualLayerParams } from './types';\n\nexport function residual(x: tf.Tensor4D, params: ResidualLayerParams): tf.Tensor4D {\n let out = conv(x, params.conv1);\n out = convNoRelu(out, params.conv2);\n out = tf.add(out, x);\n out = tf.relu(out);\n return out;\n}\n\nexport function residualDown(x: tf.Tensor4D, params: ResidualLayerParams): tf.Tensor4D {\n let out = convDown(x, params.conv1);\n out = convNoRelu(out, params.conv2);\n\n let pooled = tf.avgPool(x, 2, 2, 'valid') as tf.Tensor4D;\n const zeros = tf.zeros(pooled.shape);\n const isPad = pooled.shape[3] !== out.shape[3];\n const isAdjustShape = pooled.shape[1] !== out.shape[1] || pooled.shape[2] !== out.shape[2];\n\n if (isAdjustShape) {\n const padShapeX = [...out.shape] as [number, number, number, number];\n padShapeX[1] = 1;\n const zerosW = tf.zeros(padShapeX);\n out = tf.concat([out, zerosW], 1);\n\n const padShapeY = [...out.shape] as [number, number, number, number];\n padShapeY[2] = 1;\n const zerosH = tf.zeros(padShapeY);\n out = tf.concat([out, zerosH], 2);\n }\n\n pooled = isPad ? tf.concat([pooled, zeros], 3) : pooled;\n out = tf.add(pooled, out) as tf.Tensor4D;\n\n out = tf.relu(out);\n return out;\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { NetInput, TNetInput, toNetInput } from '../dom/index';\nimport { NeuralNetwork } from '../NeuralNetwork';\nimport { normalize } from '../ops/index';\nimport { convDown } from './convLayer';\nimport { extractParams } from './extractParams';\nimport { extractParamsFromWeightMap } from './extractParamsFromWeightMap';\nimport { residual, residualDown } from './residualLayer';\nimport { NetParams } from './types';\n\nexport class FaceRecognitionNet extends NeuralNetwork {\n constructor() {\n super('FaceRecognitionNet');\n }\n\n public forwardInput(input: NetInput): tf.Tensor2D {\n const { params } = this;\n\n if (!params) {\n throw new Error('FaceRecognitionNet - load model before inference');\n }\n\n return tf.tidy(() => {\n const batchTensor = tf.cast(input.toBatchTensor(150, true), 'float32');\n\n const meanRgb = [122.782, 117.001, 104.298];\n const normalized = normalize(batchTensor, meanRgb).div(255) as tf.Tensor4D;\n\n let out = convDown(normalized, params.conv32_down);\n out = tf.maxPool(out, 3, 2, 'valid');\n\n out = residual(out, params.conv32_1);\n out = residual(out, params.conv32_2);\n out = residual(out, params.conv32_3);\n\n out = residualDown(out, params.conv64_down);\n out = residual(out, params.conv64_1);\n out = residual(out, params.conv64_2);\n out = residual(out, params.conv64_3);\n\n out = residualDown(out, params.conv128_down);\n out = residual(out, params.conv128_1);\n out = residual(out, params.conv128_2);\n\n out = residualDown(out, params.conv256_down);\n out = residual(out, params.conv256_1);\n out = residual(out, params.conv256_2);\n out = residualDown(out, params.conv256_down_out);\n\n const globalAvg = out.mean([1, 2]) as tf.Tensor2D;\n const fullyConnected = tf.matMul(globalAvg, params.fc);\n\n return fullyConnected as tf.Tensor2D;\n });\n }\n\n public async forward(input: TNetInput): Promise {\n return this.forwardInput(await toNetInput(input));\n }\n\n public async computeFaceDescriptor(input: TNetInput): Promise {\n // @ts-ignore\n if (input?.shape?.some((dim) => dim <= 0)) return new Float32Array(128);\n const netInput = await toNetInput(input);\n const faceDescriptorTensors = tf.tidy(() => tf.unstack(this.forwardInput(netInput)));\n const faceDescriptorsForBatch = await Promise.all(faceDescriptorTensors.map((t) => t.data())) as Float32Array[];\n faceDescriptorTensors.forEach((t) => t.dispose());\n return netInput.isBatchInput ? faceDescriptorsForBatch : faceDescriptorsForBatch[0];\n }\n\n protected getDefaultModelName(): string {\n return 'face_recognition_model';\n }\n\n protected extractParamsFromWeightMap(weightMap: tf.NamedTensorMap) {\n return extractParamsFromWeightMap(weightMap);\n }\n\n protected extractParams(weights: Float32Array) {\n return extractParams(weights);\n }\n}\n", "import { FaceRecognitionNet } from './FaceRecognitionNet';\n\nexport * from './FaceRecognitionNet';\n\nexport function createFaceRecognitionNet(weights: Float32Array) {\n const net = new FaceRecognitionNet();\n net.extractWeights(weights);\n return net;\n}\n", "export type WithFaceDescriptor = TSource & {\n descriptor: Float32Array\n}\n\nexport function extendWithFaceDescriptor<\n TSource\n>(\n sourceObj: TSource,\n descriptor: Float32Array,\n): WithFaceDescriptor {\n const extension = { descriptor };\n return { ...sourceObj, ...extension };\n}\n", "export type WithAge = TSource & {\n age: number\n}\n\nexport function isWithAge(obj: any): obj is WithAge<{}> {\n return typeof obj.age === 'number';\n}\n\nexport function extendWithAge<\n TSource\n>(\n sourceObj: TSource,\n age: number,\n): WithAge {\n const extension = { age };\n return { ...sourceObj, ...extension };\n}\n", "import { Gender } from '../ageGenderNet/types';\nimport { isValidProbablitiy } from '../utils/index';\n\nexport type WithGender = TSource & {\n gender: Gender\n genderProbability: number\n}\n\nexport function isWithGender(obj: any): obj is WithGender<{}> {\n return (obj.gender === Gender.MALE || obj.gender === Gender.FEMALE)\n && isValidProbablitiy(obj.genderProbability);\n}\n\nexport function extendWithGender<\n TSource\n>(\n sourceObj: TSource,\n gender: Gender,\n genderProbability: number,\n): WithGender {\n const extension = { gender, genderProbability };\n return { ...sourceObj, ...extension };\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { ExtractWeightsFunction, ParamMapping, ConvParams, extractWeightsFactory } from '../common/index';\nimport { MobileNetV1, NetParams, PointwiseConvParams, PredictionLayerParams } from './types';\n\nfunction extractorsFactory(extractWeights: ExtractWeightsFunction, paramMappings: ParamMapping[]) {\n function extractDepthwiseConvParams(numChannels: number, mappedPrefix: string): MobileNetV1.DepthwiseConvParams {\n const filters = tf.tensor4d(extractWeights(3 * 3 * numChannels), [3, 3, numChannels, 1]);\n const batch_norm_scale = tf.tensor1d(extractWeights(numChannels));\n const batch_norm_offset = tf.tensor1d(extractWeights(numChannels));\n const batch_norm_mean = tf.tensor1d(extractWeights(numChannels));\n const batch_norm_variance = tf.tensor1d(extractWeights(numChannels));\n\n paramMappings.push(\n { paramPath: `${mappedPrefix}/filters` },\n { paramPath: `${mappedPrefix}/batch_norm_scale` },\n { paramPath: `${mappedPrefix}/batch_norm_offset` },\n { paramPath: `${mappedPrefix}/batch_norm_mean` },\n { paramPath: `${mappedPrefix}/batch_norm_variance` },\n );\n\n return {\n filters,\n batch_norm_scale,\n batch_norm_offset,\n batch_norm_mean,\n batch_norm_variance,\n };\n }\n\n function extractConvParams(\n channelsIn: number,\n channelsOut: number,\n filterSize: number,\n mappedPrefix: string,\n isPointwiseConv?: boolean,\n ): ConvParams {\n const filters = tf.tensor4d(\n extractWeights(channelsIn * channelsOut * filterSize * filterSize),\n [filterSize, filterSize, channelsIn, channelsOut],\n );\n const bias = tf.tensor1d(extractWeights(channelsOut));\n\n paramMappings.push(\n { paramPath: `${mappedPrefix}/filters` },\n { paramPath: `${mappedPrefix}/${isPointwiseConv ? 'batch_norm_offset' : 'bias'}` },\n );\n\n return { filters, bias };\n }\n\n function extractPointwiseConvParams(\n channelsIn: number,\n channelsOut: number,\n filterSize: number,\n mappedPrefix: string,\n ): PointwiseConvParams {\n const {\n filters,\n bias,\n } = extractConvParams(channelsIn, channelsOut, filterSize, mappedPrefix, true);\n\n return {\n filters,\n batch_norm_offset: bias,\n };\n }\n\n function extractConvPairParams(\n channelsIn: number,\n channelsOut: number,\n mappedPrefix: string,\n ): MobileNetV1.ConvPairParams {\n const depthwise_conv = extractDepthwiseConvParams(channelsIn, `${mappedPrefix}/depthwise_conv`);\n const pointwise_conv = extractPointwiseConvParams(channelsIn, channelsOut, 1, `${mappedPrefix}/pointwise_conv`);\n\n return { depthwise_conv, pointwise_conv };\n }\n\n function extractMobilenetV1Params(): MobileNetV1.Params {\n const conv_0 = extractPointwiseConvParams(3, 32, 3, 'mobilenetv1/conv_0');\n const conv_1 = extractConvPairParams(32, 64, 'mobilenetv1/conv_1');\n const conv_2 = extractConvPairParams(64, 128, 'mobilenetv1/conv_2');\n const conv_3 = extractConvPairParams(128, 128, 'mobilenetv1/conv_3');\n const conv_4 = extractConvPairParams(128, 256, 'mobilenetv1/conv_4');\n const conv_5 = extractConvPairParams(256, 256, 'mobilenetv1/conv_5');\n const conv_6 = extractConvPairParams(256, 512, 'mobilenetv1/conv_6');\n const conv_7 = extractConvPairParams(512, 512, 'mobilenetv1/conv_7');\n const conv_8 = extractConvPairParams(512, 512, 'mobilenetv1/conv_8');\n const conv_9 = extractConvPairParams(512, 512, 'mobilenetv1/conv_9');\n const conv_10 = extractConvPairParams(512, 512, 'mobilenetv1/conv_10');\n const conv_11 = extractConvPairParams(512, 512, 'mobilenetv1/conv_11');\n const conv_12 = extractConvPairParams(512, 1024, 'mobilenetv1/conv_12');\n const conv_13 = extractConvPairParams(1024, 1024, 'mobilenetv1/conv_13');\n return {\n conv_0,\n conv_1,\n conv_2,\n conv_3,\n conv_4,\n conv_5,\n conv_6,\n conv_7,\n conv_8,\n conv_9,\n conv_10,\n conv_11,\n conv_12,\n conv_13,\n };\n }\n\n function extractPredictionLayerParams(): PredictionLayerParams {\n const conv_0 = extractPointwiseConvParams(1024, 256, 1, 'prediction_layer/conv_0');\n const conv_1 = extractPointwiseConvParams(256, 512, 3, 'prediction_layer/conv_1');\n const conv_2 = extractPointwiseConvParams(512, 128, 1, 'prediction_layer/conv_2');\n const conv_3 = extractPointwiseConvParams(128, 256, 3, 'prediction_layer/conv_3');\n const conv_4 = extractPointwiseConvParams(256, 128, 1, 'prediction_layer/conv_4');\n const conv_5 = extractPointwiseConvParams(128, 256, 3, 'prediction_layer/conv_5');\n const conv_6 = extractPointwiseConvParams(256, 64, 1, 'prediction_layer/conv_6');\n const conv_7 = extractPointwiseConvParams(64, 128, 3, 'prediction_layer/conv_7');\n const box_encoding_0_predictor = extractConvParams(512, 12, 1, 'prediction_layer/box_predictor_0/box_encoding_predictor');\n const class_predictor_0 = extractConvParams(512, 9, 1, 'prediction_layer/box_predictor_0/class_predictor');\n const box_encoding_1_predictor = extractConvParams(1024, 24, 1, 'prediction_layer/box_predictor_1/box_encoding_predictor');\n const class_predictor_1 = extractConvParams(1024, 18, 1, 'prediction_layer/box_predictor_1/class_predictor');\n const box_encoding_2_predictor = extractConvParams(512, 24, 1, 'prediction_layer/box_predictor_2/box_encoding_predictor');\n const class_predictor_2 = extractConvParams(512, 18, 1, 'prediction_layer/box_predictor_2/class_predictor');\n const box_encoding_3_predictor = extractConvParams(256, 24, 1, 'prediction_layer/box_predictor_3/box_encoding_predictor');\n const class_predictor_3 = extractConvParams(256, 18, 1, 'prediction_layer/box_predictor_3/class_predictor');\n const box_encoding_4_predictor = extractConvParams(256, 24, 1, 'prediction_layer/box_predictor_4/box_encoding_predictor');\n const class_predictor_4 = extractConvParams(256, 18, 1, 'prediction_layer/box_predictor_4/class_predictor');\n const box_encoding_5_predictor = extractConvParams(128, 24, 1, 'prediction_layer/box_predictor_5/box_encoding_predictor');\n const class_predictor_5 = extractConvParams(128, 18, 1, 'prediction_layer/box_predictor_5/class_predictor');\n\n const box_predictor_0 = {\n box_encoding_predictor: box_encoding_0_predictor,\n class_predictor: class_predictor_0,\n };\n const box_predictor_1 = {\n box_encoding_predictor: box_encoding_1_predictor,\n class_predictor: class_predictor_1,\n };\n const box_predictor_2 = {\n box_encoding_predictor: box_encoding_2_predictor,\n class_predictor: class_predictor_2,\n };\n const box_predictor_3 = {\n box_encoding_predictor: box_encoding_3_predictor,\n class_predictor: class_predictor_3,\n };\n const box_predictor_4 = {\n box_encoding_predictor: box_encoding_4_predictor,\n class_predictor: class_predictor_4,\n };\n const box_predictor_5 = {\n box_encoding_predictor: box_encoding_5_predictor,\n class_predictor: class_predictor_5,\n };\n return {\n conv_0,\n conv_1,\n conv_2,\n conv_3,\n conv_4,\n conv_5,\n conv_6,\n conv_7,\n box_predictor_0,\n box_predictor_1,\n box_predictor_2,\n box_predictor_3,\n box_predictor_4,\n box_predictor_5,\n };\n }\n\n return {\n extractMobilenetV1Params,\n extractPredictionLayerParams,\n };\n}\n\nexport function extractParams(weights: Float32Array): { params: NetParams, paramMappings: ParamMapping[] } {\n const paramMappings: ParamMapping[] = [];\n const {\n extractWeights,\n getRemainingWeights,\n } = extractWeightsFactory(weights);\n const {\n extractMobilenetV1Params,\n extractPredictionLayerParams,\n } = extractorsFactory(extractWeights, paramMappings);\n const mobilenetv1 = extractMobilenetV1Params();\n const prediction_layer = extractPredictionLayerParams();\n const extra_dim = tf.tensor3d(\n extractWeights(5118 * 4),\n [1, 5118, 4],\n );\n const output_layer = {\n extra_dim,\n };\n paramMappings.push({ paramPath: 'output_layer/extra_dim' });\n if (getRemainingWeights().length !== 0) {\n throw new Error(`weights remaing after extract: ${getRemainingWeights().length}`);\n }\n\n return {\n params: {\n mobilenetv1,\n prediction_layer,\n output_layer,\n },\n paramMappings,\n };\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { ConvParams, disposeUnusedWeightTensors, extractWeightEntryFactory, ParamMapping } from '../common/index';\nimport { isTensor3D } from '../utils/index';\nimport { BoxPredictionParams, MobileNetV1, NetParams, PointwiseConvParams, PredictionLayerParams } from './types';\n\nfunction extractorsFactory(weightMap: any, paramMappings: ParamMapping[]) {\n const extractWeightEntry = extractWeightEntryFactory(weightMap, paramMappings);\n\n function extractPointwiseConvParams(prefix: string, idx: number, mappedPrefix: string): PointwiseConvParams {\n const filters = extractWeightEntry(`${prefix}/Conv2d_${idx}_pointwise/weights`, 4, `${mappedPrefix}/filters`);\n const batch_norm_offset = extractWeightEntry(`${prefix}/Conv2d_${idx}_pointwise/convolution_bn_offset`, 1, `${mappedPrefix}/batch_norm_offset`);\n return { filters, batch_norm_offset };\n }\n\n function extractConvPairParams(idx: number): MobileNetV1.ConvPairParams {\n const mappedPrefix = `mobilenetv1/conv_${idx}`;\n const prefixDepthwiseConv = `MobilenetV1/Conv2d_${idx}_depthwise`;\n const mappedPrefixDepthwiseConv = `${mappedPrefix}/depthwise_conv`;\n const mappedPrefixPointwiseConv = `${mappedPrefix}/pointwise_conv`;\n\n const filters = extractWeightEntry(`${prefixDepthwiseConv}/depthwise_weights`, 4, `${mappedPrefixDepthwiseConv}/filters`);\n const batch_norm_scale = extractWeightEntry(`${prefixDepthwiseConv}/BatchNorm/gamma`, 1, `${mappedPrefixDepthwiseConv}/batch_norm_scale`);\n const batch_norm_offset = extractWeightEntry(`${prefixDepthwiseConv}/BatchNorm/beta`, 1, `${mappedPrefixDepthwiseConv}/batch_norm_offset`);\n const batch_norm_mean = extractWeightEntry(`${prefixDepthwiseConv}/BatchNorm/moving_mean`, 1, `${mappedPrefixDepthwiseConv}/batch_norm_mean`);\n const batch_norm_variance = extractWeightEntry(`${prefixDepthwiseConv}/BatchNorm/moving_variance`, 1, `${mappedPrefixDepthwiseConv}/batch_norm_variance`);\n\n return {\n depthwise_conv: {\n filters,\n batch_norm_scale,\n batch_norm_offset,\n batch_norm_mean,\n batch_norm_variance,\n },\n pointwise_conv: extractPointwiseConvParams('MobilenetV1', idx, mappedPrefixPointwiseConv),\n };\n }\n\n function extractMobilenetV1Params(): MobileNetV1.Params {\n return {\n conv_0: extractPointwiseConvParams('MobilenetV1', 0, 'mobilenetv1/conv_0'),\n conv_1: extractConvPairParams(1),\n conv_2: extractConvPairParams(2),\n conv_3: extractConvPairParams(3),\n conv_4: extractConvPairParams(4),\n conv_5: extractConvPairParams(5),\n conv_6: extractConvPairParams(6),\n conv_7: extractConvPairParams(7),\n conv_8: extractConvPairParams(8),\n conv_9: extractConvPairParams(9),\n conv_10: extractConvPairParams(10),\n conv_11: extractConvPairParams(11),\n conv_12: extractConvPairParams(12),\n conv_13: extractConvPairParams(13),\n };\n }\n\n function extractConvParams(prefix: string, mappedPrefix: string): ConvParams {\n const filters = extractWeightEntry(`${prefix}/weights`, 4, `${mappedPrefix}/filters`);\n const bias = extractWeightEntry(`${prefix}/biases`, 1, `${mappedPrefix}/bias`);\n return { filters, bias };\n }\n\n function extractBoxPredictorParams(idx: number): BoxPredictionParams {\n const box_encoding_predictor = extractConvParams(\n `Prediction/BoxPredictor_${idx}/BoxEncodingPredictor`,\n `prediction_layer/box_predictor_${idx}/box_encoding_predictor`,\n );\n const class_predictor = extractConvParams(\n `Prediction/BoxPredictor_${idx}/ClassPredictor`,\n `prediction_layer/box_predictor_${idx}/class_predictor`,\n );\n return { box_encoding_predictor, class_predictor };\n }\n\n function extractPredictionLayerParams(): PredictionLayerParams {\n return {\n conv_0: extractPointwiseConvParams('Prediction', 0, 'prediction_layer/conv_0'),\n conv_1: extractPointwiseConvParams('Prediction', 1, 'prediction_layer/conv_1'),\n conv_2: extractPointwiseConvParams('Prediction', 2, 'prediction_layer/conv_2'),\n conv_3: extractPointwiseConvParams('Prediction', 3, 'prediction_layer/conv_3'),\n conv_4: extractPointwiseConvParams('Prediction', 4, 'prediction_layer/conv_4'),\n conv_5: extractPointwiseConvParams('Prediction', 5, 'prediction_layer/conv_5'),\n conv_6: extractPointwiseConvParams('Prediction', 6, 'prediction_layer/conv_6'),\n conv_7: extractPointwiseConvParams('Prediction', 7, 'prediction_layer/conv_7'),\n box_predictor_0: extractBoxPredictorParams(0),\n box_predictor_1: extractBoxPredictorParams(1),\n box_predictor_2: extractBoxPredictorParams(2),\n box_predictor_3: extractBoxPredictorParams(3),\n box_predictor_4: extractBoxPredictorParams(4),\n box_predictor_5: extractBoxPredictorParams(5),\n };\n }\n\n return {\n extractMobilenetV1Params,\n extractPredictionLayerParams,\n };\n}\n\nexport function extractParamsFromWeightMap(\n weightMap: tf.NamedTensorMap,\n): { params: NetParams, paramMappings: ParamMapping[] } {\n const paramMappings: ParamMapping[] = [];\n const {\n extractMobilenetV1Params,\n extractPredictionLayerParams,\n } = extractorsFactory(weightMap, paramMappings);\n const extra_dim = weightMap['Output/extra_dim'];\n paramMappings.push({ originalPath: 'Output/extra_dim', paramPath: 'output_layer/extra_dim' });\n if (!isTensor3D(extra_dim)) {\n throw new Error(`expected weightMap['Output/extra_dim'] to be a Tensor3D, instead have ${extra_dim}`);\n }\n\n const params = {\n mobilenetv1: extractMobilenetV1Params(),\n prediction_layer: extractPredictionLayerParams(),\n output_layer: {\n extra_dim,\n },\n };\n\n disposeUnusedWeightTensors(weightMap, paramMappings);\n return { params, paramMappings };\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { PointwiseConvParams } from './types';\n\nexport function pointwiseConvLayer(x: tf.Tensor4D, params: PointwiseConvParams, strides: [number, number]) {\n return tf.tidy(() => {\n let out = tf.conv2d(x, params.filters, strides, 'same');\n out = tf.add(out, params.batch_norm_offset);\n return tf.clipByValue(out, 0, 6);\n });\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { pointwiseConvLayer } from './pointwiseConvLayer';\nimport { MobileNetV1 } from './types';\n\nconst epsilon = 0.0010000000474974513;\n\nfunction depthwiseConvLayer(x: tf.Tensor4D, params: MobileNetV1.DepthwiseConvParams, strides: [number, number]) {\n return tf.tidy(() => {\n let out = tf.depthwiseConv2d(x, params.filters, strides, 'same');\n out = tf.batchNorm(\n out,\n params.batch_norm_mean,\n params.batch_norm_variance,\n params.batch_norm_offset,\n params.batch_norm_scale,\n epsilon,\n );\n return tf.clipByValue(out, 0, 6);\n });\n}\n\nfunction getStridesForLayerIdx(layerIdx: number): [number, number] {\n return [2, 4, 6, 12].some((idx) => idx === layerIdx) ? [2, 2] : [1, 1];\n}\n\nexport function mobileNetV1(x: tf.Tensor4D, params: MobileNetV1.Params) {\n return tf.tidy(() => {\n let conv11;\n let out = pointwiseConvLayer(x, params.conv_0, [2, 2]);\n\n const convPairParams = [\n params.conv_1,\n params.conv_2,\n params.conv_3,\n params.conv_4,\n params.conv_5,\n params.conv_6,\n params.conv_7,\n params.conv_8,\n params.conv_9,\n params.conv_10,\n params.conv_11,\n params.conv_12,\n params.conv_13,\n ];\n\n convPairParams.forEach((param, i) => {\n const layerIdx = i + 1;\n const depthwiseConvStrides = getStridesForLayerIdx(layerIdx);\n out = depthwiseConvLayer(out, param.depthwise_conv, depthwiseConvStrides);\n out = pointwiseConvLayer(out, param.pointwise_conv, [1, 1]);\n if (layerIdx === 11) conv11 = out;\n });\n\n if (conv11 === null) {\n throw new Error('mobileNetV1 - output of conv layer 11 is null');\n }\n\n return {\n out,\n conv11: conv11 as any,\n };\n });\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nfunction IOU(boxes: tf.Tensor2D, i: number, j: number) {\n const boxesData = boxes.arraySync();\n const yminI = Math.min(boxesData[i][0], boxesData[i][2]);\n const xminI = Math.min(boxesData[i][1], boxesData[i][3]);\n const ymaxI = Math.max(boxesData[i][0], boxesData[i][2]);\n const xmaxI = Math.max(boxesData[i][1], boxesData[i][3]);\n const yminJ = Math.min(boxesData[j][0], boxesData[j][2]);\n const xminJ = Math.min(boxesData[j][1], boxesData[j][3]);\n const ymaxJ = Math.max(boxesData[j][0], boxesData[j][2]);\n const xmaxJ = Math.max(boxesData[j][1], boxesData[j][3]);\n const areaI = (ymaxI - yminI) * (xmaxI - xminI);\n const areaJ = (ymaxJ - yminJ) * (xmaxJ - xminJ);\n if (areaI <= 0 || areaJ <= 0) return 0.0;\n const intersectionYmin = Math.max(yminI, yminJ);\n const intersectionXmin = Math.max(xminI, xminJ);\n const intersectionYmax = Math.min(ymaxI, ymaxJ);\n const intersectionXmax = Math.min(xmaxI, xmaxJ);\n const intersectionArea = Math.max(intersectionYmax - intersectionYmin, 0.0) * Math.max(intersectionXmax - intersectionXmin, 0.0);\n return intersectionArea / (areaI + areaJ - intersectionArea);\n}\n\nexport function nonMaxSuppression(\n boxes: tf.Tensor2D,\n scores: number[],\n maxOutputSize: number,\n iouThreshold: number,\n scoreThreshold: number,\n): number[] {\n const numBoxes = boxes.shape[0];\n const outputSize = Math.min(maxOutputSize, numBoxes);\n\n const candidates = scores\n .map((score, boxIndex) => ({ score, boxIndex }))\n .filter((c) => c.score > scoreThreshold)\n .sort((c1, c2) => c2.score - c1.score);\n\n const suppressFunc = (x: number) => (x <= iouThreshold ? 1 : 0);\n const selected: number[] = [];\n\n candidates.forEach((c) => {\n if (selected.length >= outputSize) return;\n const originalScore = c.score;\n for (let j = selected.length - 1; j >= 0; --j) {\n const iou = IOU(boxes, c.boxIndex, selected[j]);\n if (iou === 0.0) continue;\n c.score *= suppressFunc(iou);\n if (c.score <= scoreThreshold) break;\n }\n if (originalScore === c.score) {\n selected.push(c.boxIndex);\n }\n });\n return selected;\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { OutputLayerParams } from './types';\n\nfunction getCenterCoordinatesAndSizesLayer(x: tf.Tensor2D) {\n const vec = tf.unstack(tf.transpose(x, [1, 0]));\n\n const sizes = [\n tf.sub(vec[2], vec[0]),\n tf.sub(vec[3], vec[1]),\n ];\n const centers = [\n tf.add(vec[0], tf.div(sizes[0], 2)),\n tf.add(vec[1], tf.div(sizes[1], 2)),\n ];\n return { sizes, centers };\n}\n\nfunction decodeBoxesLayer(x0: tf.Tensor2D, x1: tf.Tensor2D) {\n const { sizes, centers } = getCenterCoordinatesAndSizesLayer(x0);\n\n const vec = tf.unstack(tf.transpose(x1, [1, 0]));\n const div0_out = tf.div(tf.mul(tf.exp(tf.div(vec[2], 5)), sizes[0]), 2);\n const add0_out = tf.add(tf.mul(tf.div(vec[0], 10), sizes[0]), centers[0]);\n const div1_out = tf.div(tf.mul(tf.exp(tf.div(vec[3], 5)), sizes[1]), 2);\n const add1_out = tf.add(tf.mul(tf.div(vec[1], 10), sizes[1]), centers[1]);\n\n return tf.transpose(\n tf.stack([\n tf.sub(add0_out, div0_out),\n tf.sub(add1_out, div1_out),\n tf.add(add0_out, div0_out),\n tf.add(add1_out, div1_out),\n ]),\n [1, 0],\n );\n}\n\nexport function outputLayer(boxPredictions: tf.Tensor4D, classPredictions: tf.Tensor4D, params: OutputLayerParams) {\n return tf.tidy(() => {\n const batchSize = boxPredictions.shape[0];\n\n let boxes = decodeBoxesLayer(\n tf.reshape(tf.tile(params.extra_dim, [batchSize, 1, 1]), [-1, 4]) as tf.Tensor2D,\n tf.reshape(boxPredictions, [-1, 4]) as tf.Tensor2D,\n );\n boxes = tf.reshape(boxes, [batchSize, (boxes.shape[0] / batchSize), 4]);\n\n const scoresAndClasses = tf.sigmoid(tf.slice(classPredictions, [0, 0, 1], [-1, -1, -1]));\n let scores = tf.slice(scoresAndClasses, [0, 0, 0], [-1, -1, 1]) as tf.Tensor;\n\n scores = tf.reshape(scores, [batchSize, scores.shape[1] as number]);\n\n const boxesByBatch = tf.unstack(boxes) as tf.Tensor2D[];\n const scoresByBatch = tf.unstack(scores) as tf.Tensor1D[];\n\n return { boxes: boxesByBatch, scores: scoresByBatch };\n });\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { convLayer } from '../common/index';\nimport { BoxPredictionParams } from './types';\n\nexport function boxPredictionLayer(\n x: tf.Tensor4D,\n params: BoxPredictionParams,\n) {\n return tf.tidy(() => {\n const batchSize = x.shape[0];\n const boxPredictionEncoding = tf.reshape(\n convLayer(x, params.box_encoding_predictor),\n [batchSize, -1, 1, 4],\n );\n const classPrediction = tf.reshape(\n convLayer(x, params.class_predictor),\n [batchSize, -1, 3],\n );\n return { boxPredictionEncoding, classPrediction };\n });\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { boxPredictionLayer } from './boxPredictionLayer';\nimport { pointwiseConvLayer } from './pointwiseConvLayer';\nimport { PredictionLayerParams } from './types';\n\nexport function predictionLayer(\n x: tf.Tensor4D,\n conv11: tf.Tensor4D,\n params: PredictionLayerParams,\n) {\n return tf.tidy(() => {\n const conv0 = pointwiseConvLayer(x, params.conv_0, [1, 1]);\n const conv1 = pointwiseConvLayer(conv0, params.conv_1, [2, 2]);\n const conv2 = pointwiseConvLayer(conv1, params.conv_2, [1, 1]);\n const conv3 = pointwiseConvLayer(conv2, params.conv_3, [2, 2]);\n const conv4 = pointwiseConvLayer(conv3, params.conv_4, [1, 1]);\n const conv5 = pointwiseConvLayer(conv4, params.conv_5, [2, 2]);\n const conv6 = pointwiseConvLayer(conv5, params.conv_6, [1, 1]);\n const conv7 = pointwiseConvLayer(conv6, params.conv_7, [2, 2]);\n\n const boxPrediction0 = boxPredictionLayer(conv11, params.box_predictor_0);\n const boxPrediction1 = boxPredictionLayer(x, params.box_predictor_1);\n const boxPrediction2 = boxPredictionLayer(conv1, params.box_predictor_2);\n const boxPrediction3 = boxPredictionLayer(conv3, params.box_predictor_3);\n const boxPrediction4 = boxPredictionLayer(conv5, params.box_predictor_4);\n const boxPrediction5 = boxPredictionLayer(conv7, params.box_predictor_5);\n\n const boxPredictions = tf.concat([\n boxPrediction0.boxPredictionEncoding,\n boxPrediction1.boxPredictionEncoding,\n boxPrediction2.boxPredictionEncoding,\n boxPrediction3.boxPredictionEncoding,\n boxPrediction4.boxPredictionEncoding,\n boxPrediction5.boxPredictionEncoding,\n ], 1) as tf.Tensor4D;\n\n const classPredictions = tf.concat([\n boxPrediction0.classPrediction,\n boxPrediction1.classPrediction,\n boxPrediction2.classPrediction,\n boxPrediction3.classPrediction,\n boxPrediction4.classPrediction,\n boxPrediction5.classPrediction,\n ], 1) as tf.Tensor4D;\n\n return {\n boxPredictions,\n classPredictions,\n };\n });\n}\n", "export interface ISsdMobilenetv1Options {\n minConfidence?: number\n maxResults?: number\n}\n\nexport class SsdMobilenetv1Options {\n protected _name = 'SsdMobilenetv1Options';\n\n private _minConfidence: number;\n\n private _maxResults: number;\n\n constructor({ minConfidence, maxResults }: ISsdMobilenetv1Options = {}) {\n this._minConfidence = minConfidence || 0.5;\n this._maxResults = maxResults || 100;\n\n if (typeof this._minConfidence !== 'number' || this._minConfidence <= 0 || this._minConfidence >= 1) {\n throw new Error(`${this._name} - expected minConfidence to be a number between 0 and 1`);\n }\n\n if (typeof this._maxResults !== 'number') {\n throw new Error(`${this._name} - expected maxResults to be a number`);\n }\n }\n\n get minConfidence(): number { return this._minConfidence; }\n\n get maxResults(): number { return this._maxResults; }\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { Rect } from '../classes/index';\nimport { FaceDetection } from '../classes/FaceDetection';\nimport { NetInput, TNetInput, toNetInput } from '../dom/index';\nimport { NeuralNetwork } from '../NeuralNetwork';\nimport { extractParams } from './extractParams';\nimport { extractParamsFromWeightMap } from './extractParamsFromWeightMap';\nimport { mobileNetV1 } from './mobileNetV1';\nimport { nonMaxSuppression } from './nonMaxSuppression';\nimport { outputLayer } from './outputLayer';\nimport { predictionLayer } from './predictionLayer';\nimport { ISsdMobilenetv1Options, SsdMobilenetv1Options } from './SsdMobilenetv1Options';\nimport { NetParams } from './types';\n\nexport class SsdMobilenetv1 extends NeuralNetwork {\n constructor() {\n super('SsdMobilenetv1');\n }\n\n public forwardInput(input: NetInput) {\n const { params } = this;\n if (!params) throw new Error('SsdMobilenetv1 - load model before inference');\n return tf.tidy(() => {\n const batchTensor = tf.cast(input.toBatchTensor(512, false), 'float32');\n const x = tf.sub(tf.div(batchTensor, 127.5), 1) as tf.Tensor4D; // input is normalized -1..1\n const features = mobileNetV1(x, params.mobilenetv1);\n const { boxPredictions, classPredictions } = predictionLayer(features.out, features.conv11, params.prediction_layer);\n return outputLayer(boxPredictions, classPredictions, params.output_layer);\n });\n }\n\n public async forward(input: TNetInput) {\n return this.forwardInput(await toNetInput(input));\n }\n\n public async locateFaces(input: TNetInput, options: ISsdMobilenetv1Options = {}): Promise {\n const { maxResults, minConfidence } = new SsdMobilenetv1Options(options);\n const netInput = await toNetInput(input);\n const { boxes: _boxes, scores: _scores } = this.forwardInput(netInput);\n const boxes = _boxes[0];\n const scores = _scores[0];\n for (let i = 1; i < _boxes.length; i++) {\n _boxes[i].dispose();\n _scores[i].dispose();\n }\n const scoresData = Array.from(scores.dataSync());\n const iouThreshold = 0.5;\n const indices = nonMaxSuppression(boxes, scoresData as number[], maxResults, iouThreshold, minConfidence);\n const reshapedDims = netInput.getReshapedInputDimensions(0);\n const inputSize = netInput.inputSize as number;\n const padX = inputSize / reshapedDims.width;\n const padY = inputSize / reshapedDims.height;\n const boxesData = boxes.arraySync();\n const results = indices\n .map((idx) => {\n const [top, bottom] = [\n Math.max(0, boxesData[idx][0]),\n Math.min(1.0, boxesData[idx][2]),\n ].map((val) => val * padY);\n const [left, right] = [\n Math.max(0, boxesData[idx][1]),\n Math.min(1.0, boxesData[idx][3]),\n ].map((val) => val * padX);\n return new FaceDetection(\n scoresData[idx] as number,\n new Rect(left, top, right - left, bottom - top),\n { height: netInput.getInputHeight(0), width: netInput.getInputWidth(0) },\n );\n });\n boxes.dispose();\n scores.dispose();\n return results;\n }\n\n protected getDefaultModelName(): string {\n return 'ssd_mobilenetv1_model';\n }\n\n protected extractParamsFromWeightMap(weightMap: tf.NamedTensorMap) {\n return extractParamsFromWeightMap(weightMap);\n }\n\n protected extractParams(weights: Float32Array) {\n return extractParams(weights);\n }\n}\n", "import { SsdMobilenetv1 } from './SsdMobilenetv1';\n\nexport * from './SsdMobilenetv1';\nexport * from './SsdMobilenetv1Options';\n\nexport function createSsdMobilenetv1(weights: Float32Array) {\n const net = new SsdMobilenetv1();\n net.extractWeights(weights);\n return net;\n}\n\nexport function createFaceDetectionNet(weights: Float32Array) {\n return createSsdMobilenetv1(weights);\n}\n\n// alias for backward compatibily\nexport class FaceDetectionNet extends SsdMobilenetv1 {}\n", "import { Point } from '../classes/index';\n\nexport const IOU_THRESHOLD = 0.4;\n\nexport const BOX_ANCHORS = [\n new Point(0.738768, 0.874946),\n new Point(2.42204, 2.65704),\n new Point(4.30971, 7.04493),\n new Point(10.246, 4.59428),\n new Point(12.6868, 11.8741),\n];\n\nexport const BOX_ANCHORS_SEPARABLE = [\n new Point(1.603231, 2.094468),\n new Point(6.041143, 7.080126),\n new Point(2.882459, 3.518061),\n new Point(4.266906, 5.178857),\n new Point(9.041765, 10.66308),\n];\n\nexport const MEAN_RGB_SEPARABLE: [number, number, number] = [117.001, 114.697, 97.404];\n\nexport const DEFAULT_MODEL_NAME = 'tiny_yolov2_model';\nexport const DEFAULT_MODEL_NAME_SEPARABLE_CONV = 'tiny_yolov2_separable_conv_model';\n", "import { Point } from '../classes/Point';\n\nexport type TinyYolov2Config = {\n withSeparableConvs: boolean\n iouThreshold: number\n anchors: Point[]\n classes: string[]\n meanRgb?: [number, number, number]\n withClassScores?: boolean,\n filterSizes?: number[]\n isFirstLayerConv2d?: boolean\n}\n\nconst isNumber = (arg: any) => typeof arg === 'number';\n\nexport function validateConfig(config: any) {\n if (!config) {\n throw new Error(`invalid config: ${config}`);\n }\n\n if (typeof config.withSeparableConvs !== 'boolean') {\n throw new Error(`config.withSeparableConvs has to be a boolean, have: ${config.withSeparableConvs}`);\n }\n\n if (!isNumber(config.iouThreshold) || config.iouThreshold < 0 || config.iouThreshold > 1.0) {\n throw new Error(`config.iouThreshold has to be a number between [0, 1], have: ${config.iouThreshold}`);\n }\n\n if (\n !Array.isArray(config.classes)\n || !config.classes.length\n || !config.classes.every((c: any) => typeof c === 'string')\n ) {\n throw new Error(`config.classes has to be an array class names: string[], have: ${JSON.stringify(config.classes)}`);\n }\n\n if (\n !Array.isArray(config.anchors)\n || !config.anchors.length\n || !config.anchors.map((a: any) => a || {}).every((a: any) => isNumber(a.x) && isNumber(a.y))\n ) {\n throw new Error(`config.anchors has to be an array of { x: number, y: number }, have: ${JSON.stringify(config.anchors)}`);\n }\n\n if (config.meanRgb && (\n !Array.isArray(config.meanRgb)\n || config.meanRgb.length !== 3\n || !config.meanRgb.every(isNumber)\n )) {\n throw new Error(`config.meanRgb has to be an array of shape [number, number, number], have: ${JSON.stringify(config.meanRgb)}`);\n }\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nexport function leaky(x: tf.Tensor4D): tf.Tensor4D {\n return tf.tidy(() => {\n const min = tf.mul(x, tf.scalar(0.10000000149011612));\n return tf.add(tf.relu(tf.sub(x, min)), min);\n });\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { leaky } from './leaky';\nimport { ConvWithBatchNorm } from './types';\n\nexport function convWithBatchNorm(x: tf.Tensor4D, params: ConvWithBatchNorm): tf.Tensor4D {\n return tf.tidy(() => {\n let out = tf.pad(x, [[0, 0], [1, 1], [1, 1], [0, 0]]) as tf.Tensor4D;\n out = tf.conv2d(out, params.conv.filters, [1, 1], 'valid');\n out = tf.sub(out, params.bn.sub);\n out = tf.mul(out, params.bn.truediv);\n out = tf.add(out, params.conv.bias);\n return leaky(out);\n });\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { SeparableConvParams } from '../common/types';\nimport { leaky } from './leaky';\n\nexport function depthwiseSeparableConv(x: tf.Tensor4D, params: SeparableConvParams): tf.Tensor4D {\n return tf.tidy(() => {\n let out = tf.pad(x, [[0, 0], [1, 1], [1, 1], [0, 0]]) as tf.Tensor4D;\n out = tf.separableConv2d(out, params.depthwise_filter, params.pointwise_filter, [1, 1], 'valid');\n out = tf.add(out, params.bias);\n return leaky(out);\n });\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { extractConvParamsFactory } from '../common/index';\nimport { extractSeparableConvParamsFactory } from '../common/extractSeparableConvParamsFactory';\nimport { extractWeightsFactory } from '../common/extractWeightsFactory';\nimport { ExtractWeightsFunction, ParamMapping } from '../common/types';\nimport { TinyYolov2Config } from './config';\nimport { BatchNorm, ConvWithBatchNorm, TinyYolov2NetParams } from './types';\n\nfunction extractorsFactory(extractWeights: ExtractWeightsFunction, paramMappings: ParamMapping[]) {\n const extractConvParams = extractConvParamsFactory(extractWeights, paramMappings);\n\n function extractBatchNormParams(size: number, mappedPrefix: string): BatchNorm {\n const sub = tf.tensor1d(extractWeights(size));\n const truediv = tf.tensor1d(extractWeights(size));\n\n paramMappings.push(\n { paramPath: `${mappedPrefix}/sub` },\n { paramPath: `${mappedPrefix}/truediv` },\n );\n return { sub, truediv };\n }\n\n function extractConvWithBatchNormParams(channelsIn: number, channelsOut: number, mappedPrefix: string): ConvWithBatchNorm {\n const conv = extractConvParams(channelsIn, channelsOut, 3, `${mappedPrefix}/conv`);\n const bn = extractBatchNormParams(channelsOut, `${mappedPrefix}/bn`);\n return { conv, bn };\n }\n const extractSeparableConvParams = extractSeparableConvParamsFactory(extractWeights, paramMappings);\n\n return {\n extractConvParams,\n extractConvWithBatchNormParams,\n extractSeparableConvParams,\n };\n}\n\nexport function extractParams(\n weights: Float32Array,\n config: TinyYolov2Config,\n boxEncodingSize: number,\n filterSizes: number[],\n): { params: TinyYolov2NetParams, paramMappings: ParamMapping[] } {\n const {\n extractWeights,\n getRemainingWeights,\n } = extractWeightsFactory(weights);\n\n const paramMappings: ParamMapping[] = [];\n const {\n extractConvParams,\n extractConvWithBatchNormParams,\n extractSeparableConvParams,\n } = extractorsFactory(extractWeights, paramMappings);\n let params: TinyYolov2NetParams;\n\n if (config.withSeparableConvs) {\n const [s0, s1, s2, s3, s4, s5, s6, s7, s8] = filterSizes;\n const conv0 = config.isFirstLayerConv2d\n ? extractConvParams(s0, s1, 3, 'conv0')\n : extractSeparableConvParams(s0, s1, 'conv0');\n const conv1 = extractSeparableConvParams(s1, s2, 'conv1');\n const conv2 = extractSeparableConvParams(s2, s3, 'conv2');\n const conv3 = extractSeparableConvParams(s3, s4, 'conv3');\n const conv4 = extractSeparableConvParams(s4, s5, 'conv4');\n const conv5 = extractSeparableConvParams(s5, s6, 'conv5');\n const conv6 = s7 ? extractSeparableConvParams(s6, s7, 'conv6') : undefined;\n const conv7 = s8 ? extractSeparableConvParams(s7, s8, 'conv7') : undefined;\n const conv8 = extractConvParams(s8 || s7 || s6, 5 * boxEncodingSize, 1, 'conv8');\n params = {\n conv0, conv1, conv2, conv3, conv4, conv5, conv6, conv7, conv8,\n };\n } else {\n const [s0, s1, s2, s3, s4, s5, s6, s7, s8] = filterSizes;\n const conv0 = extractConvWithBatchNormParams(s0, s1, 'conv0');\n const conv1 = extractConvWithBatchNormParams(s1, s2, 'conv1');\n const conv2 = extractConvWithBatchNormParams(s2, s3, 'conv2');\n const conv3 = extractConvWithBatchNormParams(s3, s4, 'conv3');\n const conv4 = extractConvWithBatchNormParams(s4, s5, 'conv4');\n const conv5 = extractConvWithBatchNormParams(s5, s6, 'conv5');\n const conv6 = extractConvWithBatchNormParams(s6, s7, 'conv6');\n const conv7 = extractConvWithBatchNormParams(s7, s8, 'conv7');\n const conv8 = extractConvParams(s8, 5 * boxEncodingSize, 1, 'conv8');\n params = {\n conv0, conv1, conv2, conv3, conv4, conv5, conv6, conv7, conv8,\n };\n }\n if (getRemainingWeights().length !== 0) {\n throw new Error(`weights remaing after extract: ${getRemainingWeights().length}`);\n }\n return { params, paramMappings };\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { ConvParams } from '../common/index';\nimport { disposeUnusedWeightTensors } from '../common/disposeUnusedWeightTensors';\nimport { loadSeparableConvParamsFactory } from '../common/extractSeparableConvParamsFactory';\nimport { extractWeightEntryFactory } from '../common/extractWeightEntryFactory';\nimport { ParamMapping } from '../common/types';\nimport { TinyYolov2Config } from './config';\nimport { BatchNorm, ConvWithBatchNorm, TinyYolov2NetParams } from './types';\n\nfunction extractorsFactory(weightMap: any, paramMappings: ParamMapping[]) {\n const extractWeightEntry = extractWeightEntryFactory(weightMap, paramMappings);\n\n function extractBatchNormParams(prefix: string): BatchNorm {\n const sub = extractWeightEntry(`${prefix}/sub`, 1);\n const truediv = extractWeightEntry(`${prefix}/truediv`, 1);\n return { sub, truediv };\n }\n\n function extractConvParams(prefix: string): ConvParams {\n const filters = extractWeightEntry(`${prefix}/filters`, 4);\n const bias = extractWeightEntry(`${prefix}/bias`, 1);\n return { filters, bias };\n }\n\n function extractConvWithBatchNormParams(prefix: string): ConvWithBatchNorm {\n const conv = extractConvParams(`${prefix}/conv`);\n const bn = extractBatchNormParams(`${prefix}/bn`);\n return { conv, bn };\n }\n\n const extractSeparableConvParams = loadSeparableConvParamsFactory(extractWeightEntry);\n return {\n extractConvParams,\n extractConvWithBatchNormParams,\n extractSeparableConvParams,\n };\n}\n\nexport function extractParamsFromWeightMap(\n weightMap: tf.NamedTensorMap,\n config: TinyYolov2Config,\n): { params: TinyYolov2NetParams, paramMappings: ParamMapping[] } {\n const paramMappings: ParamMapping[] = [];\n\n const {\n extractConvParams,\n extractConvWithBatchNormParams,\n extractSeparableConvParams,\n } = extractorsFactory(weightMap, paramMappings);\n\n let params: TinyYolov2NetParams;\n\n if (config.withSeparableConvs) {\n // eslint-disable-next-line no-mixed-operators\n const numFilters = (config.filterSizes && config.filterSizes.length || 9);\n params = {\n conv0: config.isFirstLayerConv2d ? extractConvParams('conv0') : extractSeparableConvParams('conv0'),\n conv1: extractSeparableConvParams('conv1'),\n conv2: extractSeparableConvParams('conv2'),\n conv3: extractSeparableConvParams('conv3'),\n conv4: extractSeparableConvParams('conv4'),\n conv5: extractSeparableConvParams('conv5'),\n conv6: numFilters > 7 ? extractSeparableConvParams('conv6') : undefined,\n conv7: numFilters > 8 ? extractSeparableConvParams('conv7') : undefined,\n conv8: extractConvParams('conv8'),\n };\n } else {\n params = {\n conv0: extractConvWithBatchNormParams('conv0'),\n conv1: extractConvWithBatchNormParams('conv1'),\n conv2: extractConvWithBatchNormParams('conv2'),\n conv3: extractConvWithBatchNormParams('conv3'),\n conv4: extractConvWithBatchNormParams('conv4'),\n conv5: extractConvWithBatchNormParams('conv5'),\n conv6: extractConvWithBatchNormParams('conv6'),\n conv7: extractConvWithBatchNormParams('conv7'),\n conv8: extractConvParams('conv8'),\n };\n }\n\n disposeUnusedWeightTensors(weightMap, paramMappings);\n return { params, paramMappings };\n}\n", "export interface ITinyYolov2Options {\n inputSize?: number\n scoreThreshold?: number\n}\n\nexport class TinyYolov2Options {\n protected _name = 'TinyYolov2Options';\n\n private _inputSize: number;\n\n private _scoreThreshold: number;\n\n constructor({ inputSize, scoreThreshold }: ITinyYolov2Options = {}) {\n this._inputSize = inputSize || 416;\n this._scoreThreshold = scoreThreshold || 0.5;\n\n if (typeof this._inputSize !== 'number' || this._inputSize % 32 !== 0) {\n throw new Error(`${this._name} - expected inputSize to be a number divisible by 32`);\n }\n\n if (typeof this._scoreThreshold !== 'number' || this._scoreThreshold <= 0 || this._scoreThreshold >= 1) {\n throw new Error(`${this._name} - expected scoreThreshold to be a number between 0 and 1`);\n }\n }\n\n get inputSize(): number { return this._inputSize; }\n\n get scoreThreshold(): number { return this._scoreThreshold; }\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { BoundingBox } from '../classes/BoundingBox';\nimport { Dimensions } from '../classes/Dimensions';\nimport { ObjectDetection } from '../classes/ObjectDetection';\nimport { convLayer } from '../common/index';\nimport { ConvParams, SeparableConvParams } from '../common/types';\nimport { toNetInput } from '../dom/index';\nimport { NetInput } from '../dom/NetInput';\nimport { TNetInput } from '../dom/types';\nimport { NeuralNetwork } from '../NeuralNetwork';\nimport { sigmoid } from '../ops/index';\nimport { nonMaxSuppression } from '../ops/nonMaxSuppression';\nimport { normalize } from '../ops/normalize';\nimport { TinyYolov2Config, validateConfig } from './config';\nimport { convWithBatchNorm } from './convWithBatchNorm';\nimport { depthwiseSeparableConv } from './depthwiseSeparableConv';\nimport { extractParams } from './extractParams';\nimport { extractParamsFromWeightMap } from './extractParamsFromWeightMap';\nimport { leaky } from './leaky';\nimport { ITinyYolov2Options, TinyYolov2Options } from './TinyYolov2Options';\nimport { DefaultTinyYolov2NetParams, MobilenetParams, TinyYolov2ExtractBoxesResult, TinyYolov2NetParams } from './types';\n\nexport class TinyYolov2Base extends NeuralNetwork {\n public static DEFAULT_FILTER_SIZES = [3, 16, 32, 64, 128, 256, 512, 1024, 1024];\n\n private _config: TinyYolov2Config;\n\n constructor(config: TinyYolov2Config) {\n super('TinyYolov2');\n validateConfig(config);\n this._config = config;\n }\n\n public get config(): TinyYolov2Config {\n return this._config;\n }\n\n public get withClassScores(): boolean {\n return this.config.withClassScores || this.config.classes.length > 1;\n }\n\n public get boxEncodingSize(): number {\n return 5 + (this.withClassScores ? this.config.classes.length : 0);\n }\n\n public runTinyYolov2(x: tf.Tensor4D, params: DefaultTinyYolov2NetParams): tf.Tensor4D {\n let out = convWithBatchNorm(x, params.conv0);\n out = tf.maxPool(out, [2, 2], [2, 2], 'same');\n out = convWithBatchNorm(out, params.conv1);\n out = tf.maxPool(out, [2, 2], [2, 2], 'same');\n out = convWithBatchNorm(out, params.conv2);\n out = tf.maxPool(out, [2, 2], [2, 2], 'same');\n out = convWithBatchNorm(out, params.conv3);\n out = tf.maxPool(out, [2, 2], [2, 2], 'same');\n out = convWithBatchNorm(out, params.conv4);\n out = tf.maxPool(out, [2, 2], [2, 2], 'same');\n out = convWithBatchNorm(out, params.conv5);\n out = tf.maxPool(out, [2, 2], [1, 1], 'same');\n out = convWithBatchNorm(out, params.conv6);\n out = convWithBatchNorm(out, params.conv7);\n return convLayer(out, params.conv8, 'valid', false);\n }\n\n public runMobilenet(x: tf.Tensor4D, params: MobilenetParams): tf.Tensor4D {\n let out = this.config.isFirstLayerConv2d\n ? leaky(convLayer(x, params.conv0 as ConvParams, 'valid', false))\n : depthwiseSeparableConv(x, params.conv0 as SeparableConvParams);\n out = tf.maxPool(out, [2, 2], [2, 2], 'same');\n out = depthwiseSeparableConv(out, params.conv1);\n out = tf.maxPool(out, [2, 2], [2, 2], 'same');\n out = depthwiseSeparableConv(out, params.conv2);\n out = tf.maxPool(out, [2, 2], [2, 2], 'same');\n out = depthwiseSeparableConv(out, params.conv3);\n out = tf.maxPool(out, [2, 2], [2, 2], 'same');\n out = depthwiseSeparableConv(out, params.conv4);\n out = tf.maxPool(out, [2, 2], [2, 2], 'same');\n out = depthwiseSeparableConv(out, params.conv5);\n out = tf.maxPool(out, [2, 2], [1, 1], 'same');\n out = params.conv6 ? depthwiseSeparableConv(out, params.conv6) : out;\n out = params.conv7 ? depthwiseSeparableConv(out, params.conv7) : out;\n return convLayer(out, params.conv8, 'valid', false);\n }\n\n public forwardInput(input: NetInput, inputSize: number): tf.Tensor4D {\n const { params } = this;\n\n if (!params) {\n throw new Error('TinyYolov2 - load model before inference');\n }\n\n return tf.tidy(() => {\n let batchTensor = tf.cast(input.toBatchTensor(inputSize, false), 'float32');\n batchTensor = this.config.meanRgb\n ? normalize(batchTensor, this.config.meanRgb)\n : batchTensor;\n batchTensor = batchTensor.div(255) as tf.Tensor4D;\n return this.config.withSeparableConvs\n ? this.runMobilenet(batchTensor, params as MobilenetParams)\n : this.runTinyYolov2(batchTensor, params as DefaultTinyYolov2NetParams);\n });\n }\n\n public async forward(input: TNetInput, inputSize: number): Promise {\n return this.forwardInput(await toNetInput(input), inputSize);\n }\n\n public async detect(input: TNetInput, forwardParams: ITinyYolov2Options = {}): Promise {\n const { inputSize, scoreThreshold } = new TinyYolov2Options(forwardParams);\n const netInput = await toNetInput(input);\n const out = await this.forwardInput(netInput, inputSize);\n const out0 = tf.tidy(() => tf.unstack(out)[0].expandDims()) as tf.Tensor4D;\n const inputDimensions = {\n width: netInput.getInputWidth(0),\n height: netInput.getInputHeight(0),\n };\n\n const results = await this.extractBoxes(out0, netInput.getReshapedInputDimensions(0), scoreThreshold);\n out.dispose();\n out0.dispose();\n\n const boxes = results.map((res) => res.box);\n const scores = results.map((res) => res.score);\n const classScores = results.map((res) => res.classScore);\n const classNames = results.map((res) => this.config.classes[res.label]);\n\n const indices = nonMaxSuppression(\n boxes.map((box) => box.rescale(inputSize)),\n scores,\n this.config.iouThreshold,\n true,\n );\n\n const detections = indices.map((idx) => new ObjectDetection(\n scores[idx],\n classScores[idx],\n classNames[idx],\n boxes[idx],\n inputDimensions,\n ));\n return detections;\n }\n\n protected getDefaultModelName(): string {\n return '';\n }\n\n protected extractParamsFromWeightMap(weightMap: tf.NamedTensorMap) {\n return extractParamsFromWeightMap(weightMap, this.config);\n }\n\n protected extractParams(weights: Float32Array) {\n const filterSizes = this.config.filterSizes || TinyYolov2Base.DEFAULT_FILTER_SIZES;\n\n const numFilters = filterSizes ? filterSizes.length : undefined;\n if (numFilters !== 7 && numFilters !== 8 && numFilters !== 9) {\n throw new Error(`TinyYolov2 - expected 7 | 8 | 9 convolutional filters, but found ${numFilters} filterSizes in config`);\n }\n return extractParams(weights, this.config, this.boxEncodingSize, filterSizes);\n }\n\n protected async extractBoxes(\n outputTensor: tf.Tensor4D,\n inputBlobDimensions: Dimensions,\n scoreThreshold?: number,\n ) {\n const { width, height } = inputBlobDimensions;\n const inputSize = Math.max(width, height);\n const correctionFactorX = inputSize / width;\n const correctionFactorY = inputSize / height;\n\n const numCells = outputTensor.shape[1];\n const numBoxes = this.config.anchors.length;\n\n const [boxesTensor, scoresTensor, classScoresTensor] = tf.tidy(() => {\n const reshaped = outputTensor.reshape([numCells, numCells, numBoxes, this.boxEncodingSize]);\n\n const boxes = reshaped.slice([0, 0, 0, 0], [numCells, numCells, numBoxes, 4]);\n const scores = reshaped.slice([0, 0, 0, 4], [numCells, numCells, numBoxes, 1]);\n const classScores = this.withClassScores\n ? tf.softmax(reshaped.slice([0, 0, 0, 5], [numCells, numCells, numBoxes, this.config.classes.length]), 3)\n : tf.scalar(0);\n return [boxes, scores, classScores];\n });\n\n const results: TinyYolov2ExtractBoxesResult[] = [];\n const scoresData = await scoresTensor.array() as number[][][][];\n const boxesData = await boxesTensor.array() as number[][][][];\n for (let row = 0; row < numCells; row++) {\n for (let col = 0; col < numCells; col++) {\n for (let anchor = 0; anchor < numBoxes; anchor++) {\n const score = sigmoid(scoresData[row][col][anchor][0]);\n if (!scoreThreshold || score > scoreThreshold) {\n const ctX = ((col + sigmoid(boxesData[row][col][anchor][0])) / numCells) * correctionFactorX;\n const ctY = ((row + sigmoid(boxesData[row][col][anchor][1])) / numCells) * correctionFactorY;\n const widthLocal = ((Math.exp(boxesData[row][col][anchor][2]) * this.config.anchors[anchor].x) / numCells) * correctionFactorX;\n const heightLocal = ((Math.exp(boxesData[row][col][anchor][3]) * this.config.anchors[anchor].y) / numCells) * correctionFactorY;\n const x = (ctX - (widthLocal / 2));\n const y = (ctY - (heightLocal / 2));\n const pos = { row, col, anchor };\n const { classScore, label } = this.withClassScores\n ? await this.extractPredictedClass(classScoresTensor as tf.Tensor4D, pos)\n : { classScore: 1, label: 0 };\n results.push({\n box: new BoundingBox(x, y, x + widthLocal, y + heightLocal),\n score,\n classScore: score * classScore,\n label,\n ...pos,\n });\n }\n }\n }\n }\n\n boxesTensor.dispose();\n scoresTensor.dispose();\n classScoresTensor.dispose();\n return results;\n }\n\n private async extractPredictedClass(classesTensor: tf.Tensor4D, pos: { row: number, col: number, anchor: number }) {\n const { row, col, anchor } = pos;\n const classesData = await classesTensor.array();\n return Array(this.config.classes.length).fill(0)\n .map((_, i) => classesData[row][col][anchor][i])\n .map((classScore, label) => ({\n classScore,\n label,\n }))\n .reduce((max, curr) => (max.classScore > curr.classScore ? max : curr));\n }\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { FaceDetection, Point } from '../classes/index';\nimport { ParamMapping } from '../common/types';\nimport { TNetInput } from '../dom/types';\nimport {\n BOX_ANCHORS,\n BOX_ANCHORS_SEPARABLE,\n DEFAULT_MODEL_NAME,\n DEFAULT_MODEL_NAME_SEPARABLE_CONV,\n IOU_THRESHOLD,\n MEAN_RGB_SEPARABLE,\n} from './const';\nimport { TinyYolov2Base } from './TinyYolov2Base';\nimport { ITinyYolov2Options } from './TinyYolov2Options';\nimport { TinyYolov2NetParams } from './types';\n\nexport class TinyYolov2 extends TinyYolov2Base {\n constructor(withSeparableConvs = true) {\n const config = {\n withSeparableConvs,\n iouThreshold: IOU_THRESHOLD,\n classes: ['face'],\n ...(withSeparableConvs\n ? {\n anchors: BOX_ANCHORS_SEPARABLE,\n meanRgb: MEAN_RGB_SEPARABLE,\n }\n : {\n anchors: BOX_ANCHORS,\n withClassScores: true,\n }),\n };\n\n super(config);\n }\n\n public get withSeparableConvs(): boolean {\n return this.config.withSeparableConvs;\n }\n\n public get anchors(): Point[] {\n return this.config.anchors;\n }\n\n public async locateFaces(input: TNetInput, forwardParams: ITinyYolov2Options): Promise {\n const objectDetections = await this.detect(input, forwardParams);\n return objectDetections.map((det) => new FaceDetection(det.score, det.relativeBox, { width: det.imageWidth, height: det.imageHeight }));\n }\n\n protected override getDefaultModelName(): string {\n return this.withSeparableConvs ? DEFAULT_MODEL_NAME_SEPARABLE_CONV : DEFAULT_MODEL_NAME;\n }\n\n protected override extractParamsFromWeightMap(weightMap: tf.NamedTensorMap): { params: TinyYolov2NetParams, paramMappings: ParamMapping[] } {\n return super.extractParamsFromWeightMap(weightMap);\n }\n}\n", "import { TinyYolov2 } from './TinyYolov2';\n\nexport * from './TinyYolov2Options';\nexport * from './config';\nexport * from './types';\nexport { TinyYolov2 };\n\nexport function createTinyYolov2(weights: Float32Array, withSeparableConvs = true) {\n const net = new TinyYolov2(withSeparableConvs);\n net.extractWeights(weights);\n return net;\n}\n", "import { ITinyYolov2Options, TinyYolov2Options } from '../tinyYolov2/index';\n\nexport type ITinyFaceDetectorOptions = ITinyYolov2Options\n\nexport class TinyFaceDetectorOptions extends TinyYolov2Options {\n protected override _name = 'TinyFaceDetectorOptions';\n}\n", "export class ComposableTask {\n // eslint-disable-next-line no-unused-vars\n public async then(onfulfilled: (value: T) => T | PromiseLike): Promise {\n return onfulfilled(await this.run());\n }\n\n public async run(): Promise {\n throw new Error('ComposableTask - run is not implemented');\n }\n}\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { FaceDetection } from '../classes/FaceDetection';\nimport { extractFaces, extractFaceTensors, TNetInput } from '../dom/index';\nimport { WithFaceDetection } from '../factories/WithFaceDetection';\nimport { isWithFaceLandmarks, WithFaceLandmarks } from '../factories/WithFaceLandmarks';\n\nexport async function extractAllFacesAndComputeResults, TResult>(\n parentResults: TSource[],\n input: TNetInput,\n // eslint-disable-next-line no-unused-vars\n computeResults: (faces: Array) => Promise,\n extractedFaces?: Array | null,\n // eslint-disable-next-line no-unused-vars\n getRectForAlignment: (parentResult: WithFaceLandmarks) => FaceDetection = ({ alignedRect }) => alignedRect,\n) {\n const faceBoxes = parentResults.map((parentResult) => (isWithFaceLandmarks(parentResult)\n ? getRectForAlignment(parentResult)\n : parentResult.detection));\n const faces: Array = extractedFaces || (\n input instanceof tf.Tensor\n ? await extractFaceTensors(input, faceBoxes)\n : await extractFaces(input, faceBoxes)\n );\n const results = await computeResults(faces);\n faces.forEach((f) => f instanceof tf.Tensor && f.dispose());\n return results;\n}\n\nexport async function extractSingleFaceAndComputeResult, TResult>(\n parentResult: TSource,\n input: TNetInput,\n // eslint-disable-next-line no-unused-vars\n computeResult: (face: HTMLCanvasElement | tf.Tensor3D) => Promise,\n extractedFaces?: Array | null,\n // eslint-disable-next-line no-unused-vars\n getRectForAlignment?: (parentResultLocal: WithFaceLandmarks) => FaceDetection,\n) {\n return extractAllFacesAndComputeResults(\n [parentResult],\n input,\n async (faces) => computeResult(faces[0]),\n extractedFaces,\n getRectForAlignment,\n );\n}\n", "import { Point } from '../classes/index';\n\nexport const IOU_THRESHOLD = 0.4;\n\nexport const BOX_ANCHORS = [\n new Point(1.603231, 2.094468),\n new Point(6.041143, 7.080126),\n new Point(2.882459, 3.518061),\n new Point(4.266906, 5.178857),\n new Point(9.041765, 10.66308),\n];\n\nexport const MEAN_RGB: [number, number, number] = [117.001, 114.697, 97.404];\n", "import * as tf from '../../dist/tfjs.esm';\n\nimport { FaceDetection, Point } from '../classes/index';\nimport { ParamMapping } from '../common/index';\nimport { TNetInput } from '../dom/index';\nimport { ITinyYolov2Options } from '../tinyYolov2/index';\nimport { TinyYolov2Base } from '../tinyYolov2/TinyYolov2Base';\nimport { TinyYolov2NetParams } from '../tinyYolov2/types';\nimport { BOX_ANCHORS, IOU_THRESHOLD, MEAN_RGB } from './const';\n\nexport class TinyFaceDetector extends TinyYolov2Base {\n constructor() {\n const config = {\n withSeparableConvs: true,\n iouThreshold: IOU_THRESHOLD,\n classes: ['face'],\n anchors: BOX_ANCHORS,\n meanRgb: MEAN_RGB,\n isFirstLayerConv2d: true,\n filterSizes: [3, 16, 32, 64, 128, 256, 512],\n };\n\n super(config);\n }\n\n public get anchors(): Point[] {\n return this.config.anchors;\n }\n\n public async locateFaces(input: TNetInput, forwardParams: ITinyYolov2Options): Promise {\n const objectDetections = await this.detect(input, forwardParams);\n return objectDetections.map((det) => new FaceDetection(det.score, det.relativeBox, { width: det.imageWidth, height: det.imageHeight }));\n }\n\n protected override getDefaultModelName(): string {\n return 'tiny_face_detector_model';\n }\n\n protected override extractParamsFromWeightMap(weightMap: tf.NamedTensorMap): { params: TinyYolov2NetParams, paramMappings: ParamMapping[] } {\n return super.extractParamsFromWeightMap(weightMap);\n }\n}\n", "import { AgeGenderNet } from '../ageGenderNet/AgeGenderNet';\nimport { AgeAndGenderPrediction } from '../ageGenderNet/types';\nimport { FaceDetection } from '../classes/FaceDetection';\nimport { FaceLandmarks68 } from '../classes/FaceLandmarks68';\nimport { TNetInput } from '../dom/index';\nimport { FaceExpressionNet } from '../faceExpressionNet/FaceExpressionNet';\nimport { FaceExpressions } from '../faceExpressionNet/FaceExpressions';\nimport { FaceLandmark68Net } from '../faceLandmarkNet/FaceLandmark68Net';\nimport { FaceLandmark68TinyNet } from '../faceLandmarkNet/FaceLandmark68TinyNet';\nimport { FaceRecognitionNet } from '../faceRecognitionNet/FaceRecognitionNet';\nimport { SsdMobilenetv1 } from '../ssdMobilenetv1/SsdMobilenetv1';\nimport { SsdMobilenetv1Options } from '../ssdMobilenetv1/SsdMobilenetv1Options';\nimport { TinyFaceDetector } from '../tinyFaceDetector/TinyFaceDetector';\nimport { TinyFaceDetectorOptions } from '../tinyFaceDetector/TinyFaceDetectorOptions';\nimport { ITinyYolov2Options, TinyYolov2 } from '../tinyYolov2/index';\n\nexport const nets = {\n ssdMobilenetv1: new SsdMobilenetv1(),\n tinyFaceDetector: new TinyFaceDetector(),\n tinyYolov2: new TinyYolov2(),\n faceLandmark68Net: new FaceLandmark68Net(),\n faceLandmark68TinyNet: new FaceLandmark68TinyNet(),\n faceRecognitionNet: new FaceRecognitionNet(),\n faceExpressionNet: new FaceExpressionNet(),\n ageGenderNet: new AgeGenderNet(),\n};\n\n/**\n * Attempts to detect all faces in an image using SSD Mobilenetv1 Network.\n *\n * @param input The input image.\n * @param options (optional, default: see SsdMobilenetv1Options constructor for default parameters).\n * @returns Bounding box of each face with score.\n */\nexport const ssdMobilenetv1 = (input: TNetInput, options: SsdMobilenetv1Options): Promise => nets.ssdMobilenetv1.locateFaces(input, options);\n\n/**\n * Attempts to detect all faces in an image using the Tiny Face Detector.\n *\n * @param input The input image.\n * @param options (optional, default: see TinyFaceDetectorOptions constructor for default parameters).\n * @returns Bounding box of each face with score.\n */\nexport const tinyFaceDetector = (input: TNetInput, options: TinyFaceDetectorOptions): Promise => nets.tinyFaceDetector.locateFaces(input, options);\n\n/**\n * Attempts to detect all faces in an image using the Tiny Yolov2 Network.\n *\n * @param input The input image.\n * @param options (optional, default: see TinyYolov2Options constructor for default parameters).\n * @returns Bounding box of each face with score.\n */\nexport const tinyYolov2 = (input: TNetInput, options: ITinyYolov2Options): Promise => nets.tinyYolov2.locateFaces(input, options);\n\n/**\n * Detects the 68 point face landmark positions of the face shown in an image.\n *\n * @param inputs The face image extracted from the bounding box of a face. Can\n * also be an array of input images, which will be batch processed.\n * @returns 68 point face landmarks or array thereof in case of batch input.\n */\nexport const detectFaceLandmarks = (input: TNetInput): Promise => nets.faceLandmark68Net.detectLandmarks(input);\n\n/**\n * Detects the 68 point face landmark positions of the face shown in an image\n * using a tinier version of the 68 point face landmark model, which is slightly\n * faster at inference, but also slightly less accurate.\n *\n * @param inputs The face image extracted from the bounding box of a face. Can\n * also be an array of input images, which will be batch processed.\n * @returns 68 point face landmarks or array thereof in case of batch input.\n */\nexport const detectFaceLandmarksTiny = (input: TNetInput): Promise => nets.faceLandmark68TinyNet.detectLandmarks(input);\n\n/**\n * Computes a 128 entry vector (face descriptor / face embeddings) from the face shown in an image,\n * which uniquely represents the features of that persons face. The computed face descriptor can\n * be used to measure the similarity between faces, by computing the euclidean distance of two\n * face descriptors.\n *\n * @param inputs The face image extracted from the aligned bounding box of a face. Can\n * also be an array of input images, which will be batch processed.\n * @returns Face descriptor with 128 entries or array thereof in case of batch input.\n */\nexport const computeFaceDescriptor = (input: TNetInput): Promise => nets.faceRecognitionNet.computeFaceDescriptor(input);\n\n/**\n * Recognizes the facial expressions from a face image.\n *\n * @param inputs The face image extracted from the bounding box of a face. Can\n * also be an array of input images, which will be batch processed.\n * @returns Facial expressions with corresponding probabilities or array thereof in case of batch input.\n */\nexport const recognizeFaceExpressions = (input: TNetInput): Promise => nets.faceExpressionNet.predictExpressions(input);\n\n/**\n * Predicts age and gender from a face image.\n *\n * @param inputs The face image extracted from the bounding box of a face. Can\n * also be an array of input images, which will be batch processed.\n * @returns Predictions with age, gender and gender probability or array thereof in case of batch input.\n */\nexport const predictAgeAndGender = (input: TNetInput): Promise => nets.ageGenderNet.predictAgeAndGender(input);\n\nexport const loadSsdMobilenetv1Model = (url: string) => nets.ssdMobilenetv1.load(url);\nexport const loadTinyFaceDetectorModel = (url: string) => nets.tinyFaceDetector.load(url);\nexport const loadTinyYolov2Model = (url: string) => nets.tinyYolov2.load(url);\nexport const loadFaceLandmarkModel = (url: string) => nets.faceLandmark68Net.load(url);\nexport const loadFaceLandmarkTinyModel = (url: string) => nets.faceLandmark68TinyNet.load(url);\nexport const loadFaceRecognitionModel = (url: string) => nets.faceRecognitionNet.load(url);\nexport const loadFaceExpressionModel = (url: string) => nets.faceExpressionNet.load(url);\nexport const loadAgeGenderModel = (url: string) => nets.ageGenderNet.load(url);\n\n// backward compatibility\nexport const loadFaceDetectionModel = loadSsdMobilenetv1Model;\nexport const locateFaces = ssdMobilenetv1;\nexport const detectLandmarks = detectFaceLandmarks;\n", "/* eslint-disable max-classes-per-file */\nimport * as tf from '../../dist/tfjs.esm';\n\nimport { TNetInput } from '../dom/index';\nimport { FaceExpressions } from '../faceExpressionNet/FaceExpressions';\nimport { WithFaceDetection } from '../factories/WithFaceDetection';\nimport { extendWithFaceExpressions, WithFaceExpressions } from '../factories/WithFaceExpressions';\nimport { WithFaceLandmarks } from '../factories/WithFaceLandmarks';\nimport { ComposableTask } from './ComposableTask';\nimport { ComputeAllFaceDescriptorsTask, ComputeSingleFaceDescriptorTask } from './ComputeFaceDescriptorsTasks';\nimport { extractAllFacesAndComputeResults, extractSingleFaceAndComputeResult } from './extractFacesAndComputeResults';\nimport { nets } from './nets';\nimport { PredictAllAgeAndGenderTask, PredictAllAgeAndGenderWithFaceAlignmentTask, PredictSingleAgeAndGenderTask, PredictSingleAgeAndGenderWithFaceAlignmentTask } from './PredictAgeAndGenderTask';\n\nexport class PredictFaceExpressionsTaskBase extends ComposableTask {\n constructor(\n // eslint-disable-next-line no-unused-vars\n protected parentTask: ComposableTask | Promise,\n // eslint-disable-next-line no-unused-vars\n protected input: TNetInput,\n // eslint-disable-next-line no-unused-vars\n protected extractedFaces?: Array,\n ) {\n super();\n }\n}\n\nexport class PredictAllFaceExpressionsTask> extends PredictFaceExpressionsTaskBase[], TSource[]> {\n public override async run(): Promise[]> {\n const parentResults = await this.parentTask;\n\n const faceExpressionsByFace = await extractAllFacesAndComputeResults(\n parentResults,\n this.input,\n async (faces) => Promise.all(\n faces.map((face) => nets.faceExpressionNet.predictExpressions(face) as Promise),\n ),\n this.extractedFaces,\n );\n\n return parentResults.map(\n (parentResult, i) => extendWithFaceExpressions(parentResult, faceExpressionsByFace[i]),\n );\n }\n\n withAgeAndGender() {\n return new PredictAllAgeAndGenderTask(this, this.input);\n }\n}\n\nexport class PredictSingleFaceExpressionsTask> extends PredictFaceExpressionsTaskBase | undefined, TSource | undefined> {\n public override async run(): Promise | undefined> {\n const parentResult = await this.parentTask;\n if (!parentResult) {\n return undefined;\n }\n\n const faceExpressions = await extractSingleFaceAndComputeResult(\n parentResult,\n this.input,\n (face) => nets.faceExpressionNet.predictExpressions(face) as Promise,\n this.extractedFaces,\n );\n\n return extendWithFaceExpressions(parentResult, faceExpressions);\n }\n\n withAgeAndGender() {\n return new PredictSingleAgeAndGenderTask(this, this.input);\n }\n}\n\nexport class PredictAllFaceExpressionsWithFaceAlignmentTask>> extends PredictAllFaceExpressionsTask {\n override withAgeAndGender() {\n return new PredictAllAgeAndGenderWithFaceAlignmentTask(this, this.input);\n }\n\n withFaceDescriptors() {\n return new ComputeAllFaceDescriptorsTask(this, this.input);\n }\n}\n\nexport class PredictSingleFaceExpressionsWithFaceAlignmentTask>> extends PredictSingleFaceExpressionsTask {\n override withAgeAndGender() {\n return new PredictSingleAgeAndGenderWithFaceAlignmentTask(this, this.input);\n }\n\n withFaceDescriptor() {\n return new ComputeSingleFaceDescriptorTask(this, this.input);\n }\n}\n", "/* eslint-disable max-classes-per-file */\nimport * as tf from '../../dist/tfjs.esm';\n\nimport { AgeAndGenderPrediction } from '../ageGenderNet/types';\nimport { TNetInput } from '../dom/index';\nimport { extendWithAge, WithAge } from '../factories/WithAge';\nimport { WithFaceDetection } from '../factories/WithFaceDetection';\nimport { WithFaceLandmarks } from '../factories/WithFaceLandmarks';\nimport { extendWithGender, WithGender } from '../factories/WithGender';\nimport { ComposableTask } from './ComposableTask';\nimport { ComputeAllFaceDescriptorsTask, ComputeSingleFaceDescriptorTask } from './ComputeFaceDescriptorsTasks';\nimport { extractAllFacesAndComputeResults, extractSingleFaceAndComputeResult } from './extractFacesAndComputeResults';\nimport { nets } from './nets';\nimport { PredictAllFaceExpressionsTask, PredictAllFaceExpressionsWithFaceAlignmentTask, PredictSingleFaceExpressionsTask, PredictSingleFaceExpressionsWithFaceAlignmentTask } from './PredictFaceExpressionsTask';\n\nexport class PredictAgeAndGenderTaskBase extends ComposableTask {\n constructor(\n // eslint-disable-next-line no-unused-vars\n protected parentTask: ComposableTask | Promise,\n // eslint-disable-next-line no-unused-vars\n protected input: TNetInput,\n // eslint-disable-next-line no-unused-vars\n protected extractedFaces?: Array,\n ) {\n super();\n }\n}\n\nexport class PredictAllAgeAndGenderTask> extends PredictAgeAndGenderTaskBase>[], TSource[]> {\n public override async run(): Promise>[]> {\n const parentResults = await this.parentTask;\n const ageAndGenderByFace = await extractAllFacesAndComputeResults(\n parentResults,\n this.input,\n async (faces) => Promise.all(faces.map((face) => nets.ageGenderNet.predictAgeAndGender(face) as Promise)),\n this.extractedFaces,\n );\n return parentResults.map((parentResult, i) => {\n const { age, gender, genderProbability } = ageAndGenderByFace[i];\n return extendWithAge(extendWithGender(parentResult, gender, genderProbability), age);\n });\n }\n\n withFaceExpressions() {\n return new PredictAllFaceExpressionsTask(this, this.input);\n }\n}\n\nexport class PredictSingleAgeAndGenderTask> extends PredictAgeAndGenderTaskBase> | undefined, TSource | undefined> {\n public override async run(): Promise> | undefined> {\n const parentResult = await this.parentTask;\n if (!parentResult) return undefined;\n const { age, gender, genderProbability } = await extractSingleFaceAndComputeResult(\n parentResult,\n this.input,\n (face) => nets.ageGenderNet.predictAgeAndGender(face) as Promise,\n this.extractedFaces,\n );\n return extendWithAge(extendWithGender(parentResult, gender, genderProbability), age);\n }\n\n withFaceExpressions() {\n return new PredictSingleFaceExpressionsTask(this, this.input);\n }\n}\n\nexport class PredictAllAgeAndGenderWithFaceAlignmentTask>> extends PredictAllAgeAndGenderTask {\n override withFaceExpressions() {\n return new PredictAllFaceExpressionsWithFaceAlignmentTask(this, this.input);\n }\n\n withFaceDescriptors() {\n return new ComputeAllFaceDescriptorsTask(this, this.input);\n }\n}\n\nexport class PredictSingleAgeAndGenderWithFaceAlignmentTask>> extends PredictSingleAgeAndGenderTask {\n override withFaceExpressions() {\n return new PredictSingleFaceExpressionsWithFaceAlignmentTask(this, this.input);\n }\n\n withFaceDescriptor() {\n return new ComputeSingleFaceDescriptorTask(this, this.input);\n }\n}\n", "/* eslint-disable max-classes-per-file */\nimport { TNetInput } from '../dom/index';\nimport { extendWithFaceDescriptor, WithFaceDescriptor } from '../factories/WithFaceDescriptor';\nimport { WithFaceDetection } from '../factories/WithFaceDetection';\nimport { WithFaceLandmarks } from '../factories/WithFaceLandmarks';\nimport { ComposableTask } from './ComposableTask';\nimport { extractAllFacesAndComputeResults, extractSingleFaceAndComputeResult } from './extractFacesAndComputeResults';\nimport { nets } from './nets';\nimport { PredictAllAgeAndGenderWithFaceAlignmentTask, PredictSingleAgeAndGenderWithFaceAlignmentTask } from './PredictAgeAndGenderTask';\nimport { PredictAllFaceExpressionsWithFaceAlignmentTask, PredictSingleFaceExpressionsWithFaceAlignmentTask } from './PredictFaceExpressionsTask';\n\nexport class ComputeFaceDescriptorsTaskBase extends ComposableTask {\n constructor(\n // eslint-disable-next-line no-unused-vars\n protected parentTask: ComposableTask | Promise,\n // eslint-disable-next-line no-unused-vars\n protected input: TNetInput,\n ) {\n super();\n }\n}\n\nexport class ComputeAllFaceDescriptorsTask>> extends ComputeFaceDescriptorsTaskBase[], TSource[]> {\n public override async run(): Promise[]> {\n const parentResults = await this.parentTask;\n const descriptors = await extractAllFacesAndComputeResults(\n parentResults,\n this.input,\n (faces) => Promise.all(faces.map((face) => nets.faceRecognitionNet.computeFaceDescriptor(face) as Promise)),\n null,\n (parentResult) => parentResult.landmarks.align(null, { useDlibAlignment: true }),\n );\n return descriptors.map((descriptor, i) => extendWithFaceDescriptor(parentResults[i], descriptor));\n }\n\n withFaceExpressions() {\n return new PredictAllFaceExpressionsWithFaceAlignmentTask(this, this.input);\n }\n\n withAgeAndGender() {\n return new PredictAllAgeAndGenderWithFaceAlignmentTask(this, this.input);\n }\n}\n\nexport class ComputeSingleFaceDescriptorTask>> extends ComputeFaceDescriptorsTaskBase | undefined, TSource | undefined> {\n public override async run(): Promise | undefined> {\n const parentResult = await this.parentTask;\n if (!parentResult) return undefined;\n const descriptor = await extractSingleFaceAndComputeResult(\n parentResult,\n this.input,\n (face) => nets.faceRecognitionNet.computeFaceDescriptor(face) as Promise,\n null,\n // eslint-disable-next-line no-shadow, @typescript-eslint/no-shadow\n (parentResult) => parentResult.landmarks.align(null, { useDlibAlignment: true }),\n );\n return extendWithFaceDescriptor(parentResult, descriptor);\n }\n\n withFaceExpressions() {\n return new PredictSingleFaceExpressionsWithFaceAlignmentTask(this, this.input);\n }\n\n withAgeAndGender() {\n return new PredictSingleAgeAndGenderWithFaceAlignmentTask(this, this.input);\n }\n}\n", "/* eslint-disable max-classes-per-file */\nimport * as tf from '../../dist/tfjs.esm';\n\nimport { FaceLandmarks68 } from '../classes/FaceLandmarks68';\nimport { extractFaces, extractFaceTensors, TNetInput } from '../dom/index';\nimport { FaceLandmark68Net } from '../faceLandmarkNet/FaceLandmark68Net';\nimport { FaceLandmark68TinyNet } from '../faceLandmarkNet/FaceLandmark68TinyNet';\nimport { WithFaceDetection } from '../factories/WithFaceDetection';\nimport { extendWithFaceLandmarks, WithFaceLandmarks } from '../factories/WithFaceLandmarks';\nimport { ComposableTask } from './ComposableTask';\nimport { ComputeAllFaceDescriptorsTask, ComputeSingleFaceDescriptorTask } from './ComputeFaceDescriptorsTasks';\nimport { nets } from './nets';\nimport { PredictAllAgeAndGenderWithFaceAlignmentTask, PredictSingleAgeAndGenderWithFaceAlignmentTask } from './PredictAgeAndGenderTask';\nimport { PredictAllFaceExpressionsWithFaceAlignmentTask, PredictSingleFaceExpressionsWithFaceAlignmentTask } from './PredictFaceExpressionsTask';\n\nexport class DetectFaceLandmarksTaskBase extends ComposableTask {\n constructor(\n // eslint-disable-next-line no-unused-vars\n protected parentTask: ComposableTask | Promise,\n // eslint-disable-next-line no-unused-vars\n protected input: TNetInput,\n // eslint-disable-next-line no-unused-vars\n protected useTinyLandmarkNet: boolean,\n ) {\n super();\n }\n\n protected get landmarkNet(): FaceLandmark68Net | FaceLandmark68TinyNet {\n return this.useTinyLandmarkNet\n ? nets.faceLandmark68TinyNet\n : nets.faceLandmark68Net;\n }\n}\n\nexport class DetectAllFaceLandmarksTask> extends DetectFaceLandmarksTaskBase[], TSource[]> {\n public override async run(): Promise[]> {\n const parentResults = await this.parentTask;\n const detections = parentResults.map((res) => res.detection);\n const faces: Array = this.input instanceof tf.Tensor\n ? await extractFaceTensors(this.input, detections)\n : await extractFaces(this.input, detections);\n const faceLandmarksByFace = await Promise.all(faces.map((face) => this.landmarkNet.detectLandmarks(face))) as FaceLandmarks68[];\n faces.forEach((f) => f instanceof tf.Tensor && f.dispose());\n const result = parentResults\n .filter((_parentResult, i) => faceLandmarksByFace[i])\n .map((parentResult, i) => extendWithFaceLandmarks(parentResult, faceLandmarksByFace[i]));\n return result;\n }\n\n withFaceExpressions() {\n return new PredictAllFaceExpressionsWithFaceAlignmentTask(this, this.input);\n }\n\n withAgeAndGender() {\n return new PredictAllAgeAndGenderWithFaceAlignmentTask(this, this.input);\n }\n\n withFaceDescriptors() {\n return new ComputeAllFaceDescriptorsTask(this, this.input);\n }\n}\n\nexport class DetectSingleFaceLandmarksTask> extends DetectFaceLandmarksTaskBase | undefined, TSource | undefined> {\n public override async run(): Promise | undefined> {\n const parentResult = await this.parentTask;\n if (!parentResult) {\n return undefined;\n }\n const { detection } = parentResult;\n const faces: Array = this.input instanceof tf.Tensor\n ? await extractFaceTensors(this.input, [detection])\n : await extractFaces(this.input, [detection]);\n const landmarks = await this.landmarkNet.detectLandmarks(faces[0]) as FaceLandmarks68;\n faces.forEach((f) => f instanceof tf.Tensor && f.dispose());\n return extendWithFaceLandmarks(parentResult, landmarks);\n }\n\n withFaceExpressions() {\n return new PredictSingleFaceExpressionsWithFaceAlignmentTask(this, this.input);\n }\n\n withAgeAndGender() {\n return new PredictSingleAgeAndGenderWithFaceAlignmentTask(this, this.input);\n }\n\n withFaceDescriptor() {\n return new ComputeSingleFaceDescriptorTask(this, this.input);\n }\n}\n", "/* eslint-disable max-classes-per-file */\nimport { FaceDetection } from '../classes/FaceDetection';\nimport { TNetInput } from '../dom/index';\nimport { extendWithFaceDetection, WithFaceDetection } from '../factories/WithFaceDetection';\nimport { SsdMobilenetv1Options } from '../ssdMobilenetv1/SsdMobilenetv1Options';\nimport { TinyFaceDetectorOptions } from '../tinyFaceDetector/TinyFaceDetectorOptions';\nimport { TinyYolov2Options } from '../tinyYolov2/index';\nimport { ComposableTask } from './ComposableTask';\nimport { DetectAllFaceLandmarksTask, DetectSingleFaceLandmarksTask } from './DetectFaceLandmarksTasks';\nimport { nets } from './nets';\nimport { PredictAllAgeAndGenderTask, PredictSingleAgeAndGenderTask } from './PredictAgeAndGenderTask';\nimport { PredictAllFaceExpressionsTask, PredictSingleFaceExpressionsTask } from './PredictFaceExpressionsTask';\nimport { FaceDetectionOptions } from './types';\n\nexport class DetectFacesTaskBase extends ComposableTask {\n // eslint-disable-next-line no-unused-vars\n constructor(protected input: TNetInput, protected options: FaceDetectionOptions = new SsdMobilenetv1Options()) {\n super();\n }\n}\n\nexport class DetectAllFacesTask extends DetectFacesTaskBase {\n public override async run(): Promise {\n const { input, options } = this;\n let result;\n if (options instanceof TinyFaceDetectorOptions) result = nets.tinyFaceDetector.locateFaces(input, options);\n else if (options instanceof SsdMobilenetv1Options) result = nets.ssdMobilenetv1.locateFaces(input, options);\n else if (options instanceof TinyYolov2Options) result = nets.tinyYolov2.locateFaces(input, options);\n else throw new Error('detectFaces - expected options to be instance of TinyFaceDetectorOptions | SsdMobilenetv1Options | TinyYolov2Options');\n return result;\n }\n\n private runAndExtendWithFaceDetections(): Promise[]> {\n return new Promise[]>((resolve, reject) => {\n this.run()\n .then((detections) => resolve(detections.map((detection) => extendWithFaceDetection({}, detection))))\n .catch((err) => reject(err));\n });\n }\n\n withFaceLandmarks(useTinyLandmarkNet = false) {\n return new DetectAllFaceLandmarksTask(\n this.runAndExtendWithFaceDetections(),\n this.input,\n useTinyLandmarkNet,\n );\n }\n\n withFaceExpressions() {\n return new PredictAllFaceExpressionsTask(\n this.runAndExtendWithFaceDetections(),\n this.input,\n );\n }\n\n withAgeAndGender() {\n return new PredictAllAgeAndGenderTask(\n this.runAndExtendWithFaceDetections(),\n this.input,\n );\n }\n}\n\nexport class DetectSingleFaceTask extends DetectFacesTaskBase {\n public override async run(): Promise {\n const faceDetections = await new DetectAllFacesTask(this.input, this.options);\n let faceDetectionWithHighestScore = faceDetections[0];\n faceDetections.forEach((faceDetection) => {\n if (faceDetection.score > faceDetectionWithHighestScore.score) faceDetectionWithHighestScore = faceDetection;\n });\n return faceDetectionWithHighestScore;\n }\n\n private runAndExtendWithFaceDetection(): Promise | undefined> {\n // eslint-disable-next-line no-async-promise-executor\n return new Promise | undefined>(async (resolve) => {\n const detection = await this.run();\n resolve(detection ? extendWithFaceDetection<{}>({}, detection) : undefined);\n });\n }\n\n withFaceLandmarks(useTinyLandmarkNet = false) {\n return new DetectSingleFaceLandmarksTask(\n this.runAndExtendWithFaceDetection(),\n this.input,\n useTinyLandmarkNet,\n );\n }\n\n withFaceExpressions() {\n return new PredictSingleFaceExpressionsTask(\n this.runAndExtendWithFaceDetection(),\n this.input,\n );\n }\n\n withAgeAndGender() {\n return new PredictSingleAgeAndGenderTask(\n this.runAndExtendWithFaceDetection(),\n this.input,\n );\n }\n}\n", "import { TNetInput } from '../dom/index';\nimport { SsdMobilenetv1Options } from '../ssdMobilenetv1/SsdMobilenetv1Options';\nimport { DetectAllFacesTask, DetectSingleFaceTask } from './DetectFacesTasks';\nimport { FaceDetectionOptions } from './types';\n\nexport function detectSingleFace(input: TNetInput, options: FaceDetectionOptions = new SsdMobilenetv1Options()): DetectSingleFaceTask {\n return new DetectSingleFaceTask(input, options);\n}\n\nexport function detectAllFaces(input: TNetInput, options: FaceDetectionOptions = new SsdMobilenetv1Options()): DetectAllFacesTask {\n return new DetectAllFacesTask(input, options);\n}\n", "import { TNetInput } from '../dom/index';\nimport { WithFaceDescriptor, WithFaceDetection, WithFaceLandmarks } from '../factories/index';\nimport { SsdMobilenetv1Options } from '../ssdMobilenetv1/index';\nimport { ITinyYolov2Options, TinyYolov2Options } from '../tinyYolov2/index';\nimport { detectAllFaces } from './detectFaces';\n\nexport async function allFacesSsdMobilenetv1(input: TNetInput, minConfidence?: number): Promise>>[]> {\n return detectAllFaces(input, new SsdMobilenetv1Options(minConfidence ? { minConfidence } : {}))\n .withFaceLandmarks()\n .withFaceDescriptors();\n}\n\nexport async function allFacesTinyYolov2(input: TNetInput, forwardParams: ITinyYolov2Options = {}): Promise>>[]> {\n return detectAllFaces(input, new TinyYolov2Options(forwardParams))\n .withFaceLandmarks()\n .withFaceDescriptors();\n}\n\nexport const allFaces = allFacesSsdMobilenetv1;\n", "export function euclideanDistance(arr1: number[] | Float32Array, arr2: number[] | Float32Array) {\n if (arr1.length !== arr2.length) throw new Error('euclideanDistance: arr1.length !== arr2.length');\n const desc1 = Array.from(arr1);\n const desc2 = Array.from(arr2);\n return Math.sqrt(\n desc1\n .map((val, i) => val - desc2[i])\n .reduce((res, diff) => res + (diff * diff), 0),\n );\n}\n", "import { FaceMatch } from '../classes/FaceMatch';\nimport { LabeledFaceDescriptors } from '../classes/LabeledFaceDescriptors';\nimport { euclideanDistance } from '../euclideanDistance';\nimport { WithFaceDescriptor } from '../factories/index';\n\nexport class FaceMatcher {\n private _labeledDescriptors: LabeledFaceDescriptors[];\n private _distanceThreshold: number;\n\n constructor(inputs: LabeledFaceDescriptors | WithFaceDescriptor | Float32Array | Array | Float32Array>, distanceThreshold = 0.6) {\n this._distanceThreshold = distanceThreshold;\n const inputArray = Array.isArray(inputs) ? inputs : [inputs];\n if (!inputArray.length) throw new Error('FaceRecognizer.constructor - expected atleast one input');\n let count = 1;\n const createUniqueLabel = () => `person ${count++}`;\n this._labeledDescriptors = inputArray.map((desc) => {\n if (desc instanceof LabeledFaceDescriptors) return desc;\n if (desc instanceof Float32Array) return new LabeledFaceDescriptors(createUniqueLabel(), [desc]);\n if (desc.descriptor && desc.descriptor instanceof Float32Array) return new LabeledFaceDescriptors(createUniqueLabel(), [desc.descriptor]);\n throw new Error('FaceRecognizer.constructor - expected inputs to be of type LabeledFaceDescriptors | WithFaceDescriptor | Float32Array | Array | Float32Array>');\n });\n }\n\n public get labeledDescriptors(): LabeledFaceDescriptors[] { return this._labeledDescriptors; }\n\n public get distanceThreshold(): number { return this._distanceThreshold; }\n\n public computeMeanDistance(queryDescriptor: Float32Array, descriptors: Float32Array[]): number {\n return descriptors\n .map((d) => euclideanDistance(d, queryDescriptor))\n .reduce((d1, d2) => d1 + d2, 0) / (descriptors.length || 1);\n }\n\n public matchDescriptor(queryDescriptor: Float32Array): FaceMatch {\n return this.labeledDescriptors\n .map(({ descriptors, label }) => new FaceMatch(label, this.computeMeanDistance(queryDescriptor, descriptors)))\n .reduce((best, curr) => (best.distance < curr.distance ? best : curr));\n }\n\n public findBestMatch(queryDescriptor: Float32Array): FaceMatch {\n const bestMatch = this.matchDescriptor(queryDescriptor);\n return (bestMatch.distance < this._distanceThreshold) ? bestMatch : new FaceMatch('unknown', bestMatch.distance);\n }\n\n public toJSON(): any {\n return {\n distanceThreshold: this._distanceThreshold,\n labeledDescriptors: this._labeledDescriptors.map((ld) => ld.toJSON()),\n };\n }\n\n public static fromJSON(json: any): FaceMatcher {\n const labeledDescriptors = json.labeledDescriptors.map((ld: any) => LabeledFaceDescriptors.fromJSON(ld));\n return new FaceMatcher(labeledDescriptors, json.distanceThreshold);\n }\n}\n", "import { TinyFaceDetector } from './TinyFaceDetector';\n\nexport * from './TinyFaceDetector';\nexport * from './TinyFaceDetectorOptions';\n\nexport function createTinyFaceDetector(weights: Float32Array) {\n const net = new TinyFaceDetector();\n net.extractWeights(weights);\n return net;\n}\n", "import { Dimensions, IDimensions } from './classes/index';\nimport { FaceDetection } from './classes/FaceDetection';\nimport { FaceLandmarks } from './classes/FaceLandmarks';\nimport { extendWithFaceDetection, isWithFaceDetection } from './factories/WithFaceDetection';\nimport { extendWithFaceLandmarks, isWithFaceLandmarks } from './factories/WithFaceLandmarks';\n\nexport function resizeResults(results: T, dimensions: IDimensions): T {\n const { width, height } = new Dimensions(dimensions.width, dimensions.height);\n\n if (width <= 0 || height <= 0) {\n throw new Error(`resizeResults - invalid dimensions: ${JSON.stringify({ width, height })}`);\n }\n\n if (Array.isArray(results)) {\n // return results.map(obj => resizeResults(obj, { width, height })) as any as T\n return (results as Array).map((obj) => resizeResults(obj, { width, height } as IDimensions)) as any as T;\n }\n\n if (isWithFaceLandmarks(results)) {\n const resizedDetection = results.detection.forSize(width, height);\n const resizedLandmarks = results.unshiftedLandmarks.forSize(resizedDetection.box.width, resizedDetection.box.height);\n return extendWithFaceLandmarks(extendWithFaceDetection(results, resizedDetection), resizedLandmarks);\n }\n\n if (isWithFaceDetection(results)) {\n return extendWithFaceDetection(results, results.detection.forSize(width, height));\n }\n\n if (results instanceof FaceLandmarks || results instanceof FaceDetection) {\n return (results as any).forSize(width, height);\n }\n\n return results;\n}\n", "import * as tf from '../dist/tfjs.esm';\nimport * as draw from './draw/index';\nimport * as utils from './utils/index';\nimport * as pkg from '../package.json';\n\nexport { tf, draw, utils };\n\nexport * from './ageGenderNet/index';\nexport * from './classes/index';\nexport * from './dom/index';\nexport * from './env/index';\nexport * from './faceExpressionNet/index';\nexport * from './faceLandmarkNet/index';\nexport * from './faceRecognitionNet/index';\nexport * from './factories/index';\nexport * from './globalApi/index';\nexport * from './ops/index';\nexport * from './ssdMobilenetv1/index';\nexport * from './tinyFaceDetector/index';\nexport * from './tinyYolov2/index';\nexport * from './euclideanDistance';\nexport * from './NeuralNetwork';\nexport * from './resizeResults';\n\nexport const version = pkg.version as string;\n\n// set webgl defaults\n// if (browser) tf.ENV.set('WEBGL_USE_SHAPES_UNIFORMS', true);\n"], "mappings": ";;;;;;2XAAA,IAAAA,GAAA,GAAAC,GAAAD,GAAA,SAAAE,GAAA,SAAAC,GAAA,UAAAC,GAAA,sBAAAC,GAAA,qBAAAC,GAAA,kBAAAC,GAAA,oBAAAC,GAAA,QAAAC,GAAA,SAAAC,GAAA,QAAAC,GAAA,QAAAC,GAAA,WAAAC,GAAA,WAAAC,GAAA,SAAAC,GAAA,UAAAC,GAAA,SAAAC,GAAA,UAAAC,GAAA,UAAAC,GAAA,YAAAC,GAAA,cAAAC,GAAA,kBAAAC,GAAA,gBAAAC,GAAA,gBAAAC,GAAA,gBAAAC,GAAA,mBAAAC,GAAA,aAAAC,GAAA,eAAAC,GAAA,kBAAAC,GAAA,gBAAAC,GAAA,aAAAC,GAAA,iBAAAC,GAAA,SAAAC,GAAA,SAAAC,GAAA,gBAAAC,GAAA,YAAAC,GAAA,eAAAC,GAAA,WAAAC,GAAA,WAAAC,GAAA,yBAAAC,GAAA,wBAAAC,GAAA,WAAAC,GAAA,2BAAAC,GAAA,0BAAAC,GAAA,QAAAC,GAAA,SAAAC,GAAA,kBAAAC,GAAA,YAAAC,GAAA,WAAAC,GAAA,mBAAAC,GAAA,gBAAAC,GAAA,kBAAAC,GAAA,iBAAAC,GAAA,0BAAAC,GAAA,wCAAAC,GAAA,uCAAAC,GAAA,SAAAC,GAAA,eAAAC,GAAA,6BAAAC,GAAA,4BAAAC,GAAA,SAAAC,GAAA,QAAAC,GAAA,kBAAAC,GAAA,WAAAC,GAAA,QAAAC,GAAA,YAAAC,GAAA,gBAAAC,GAAA,UAAAC,GAAA,QAAAC,GAAA,QAAAC,GAAA,eAAAC,GAAA,UAAAC,GAAA,QAAAC,GAAA,SAAAC,GAAA,kBAAAC,GAAA,UAAAC,GAAA,aAAAC,GAAA,eAAAC,GAAA,mBAAAC,GAAA,gBAAAC,GAAA,yBAAAC,GAAA,iBAAAC,GAAA,aAAAC,GAAA,aAAAC,GAAA,eAAAC,GAAA,YAAAC,GAAA,iBAAAC,GAAA,YAAAC,GAAA,SAAAC,GAAA,aAAAC,GAAA,SAAAC,GAAA,cAAAC,GAAA,aAAAC,GAAA,UAAAC,GAAA,UAAAC,GAAA,kBAAAC,GAAA,QAAAC,GAAA,YAAAC,GAAA,kBAAAC,GAAA,gBAAAC,GAAA,cAAAC,GAAA,SAAAC,GAAA,cAAAC,GAAA,aAAAC,GAAA,QAAAC,GAAA,UAAAC,GAAA,eAAAC,GAAA,eAAAC,GAAA,eAAAC,GAAA,cAAAC,GAAA,eAAAC,GAAA,eAAAC,GAAA,mBAAAC,GAAA,qBAAAC,GAAA,mBAAAC,GAAA,QAAAC,GAAA,YAAAC,GAAA,cAAAC,GAAA,kBAAAC,GAAA,gBAAAC,GAAA,sBAAAC,GAAA,YAAAC,GAAA,SAAAC,GAAA,QAAAC,GAAA,YAAAC,GAAA,cAAAC,GAAA,QAAAC,GAAA,sBAAAC,GAAA,gBAAAC,GAAA,aAAAC,GAAA,QAAAC,GAAA,wBAAAC,GAAA,wBAAAC,GAAA,wBAAAC,GAAA,aAAAC,GAAA,oBAAAC,GAAA,WAAAC,GAAA,aAAAC,GAAA,cAAAC,GAAA,0BAAAC,GAAA,SAAAC,GAAA,UAAAC,GAAA,SAAAC,GAAA,QAAAC,GAAA,UAAAC,GAAA,SAAAC,GAAA,qBAAAC,GAAA,QAAAC,GAAA,iBAAAC,GAAA,gBAAAC,GAAA,yBAAAC,GAAA,UAAAC,GAAA,SAAAC,GAAA,SAAAC,GAAA,YAAAC,GAAA,eAAAC,GAAA,cAAAC,GAAA,SAAAC,GAAA,UAAAC,GAAA,YAAAC,GAAA,mBAAAC,GAAA,uBAAAC,GAAA,0BAAAC,GAAA,8BAAAC,GAAA,YAAAC,GAAA,qBAAAC,GAAA,UAAAC,GAAA,UAAAC,GAAA,iBAAAC,GAAA,cAAAC,GAAA,iBAAAC,GAAA,WAAAC,GAAA,SAAAC,GAAA,eAAAC,GAAA,YAAAC,GAAA,SAAAC,GAAA,QAAAC,GAAA,SAAAC,GAAA,UAAAC,GAAA,YAAAC,GAAA,aAAAC,GAAA,mBAAAC,GAAA,wBAAAC,GAAA,kBAAAC,GAAA,sBAAAC,GAAA,qBAAAC,GAAA,kBAAAC,GAAA,WAAAC,GAAA,SAAAC,GAAA,WAAAC,GAAA,sBAAAC,GAAA,uBAAAC,GAAA,SAAAC,GAAA,iBAAAC,GAAA,iBAAAC,GAAA,gBAAAC,GAAA,2BAAAC,GAAA,QAAAC,GAAA,QAAAC,GAAA,mBAAAC,GAAA,QAAAC,GAAA,SAAAC,GAAA,WAAAC,GAAA,iBAAAC,GAAA,wBAAAC,GAAA,SAAAC,GAAA,SAAAC,GAAA,cAAAC,GAAA,cAAAC,GAAA,WAAAC,GAAA,WAAAC,GAAA,uBAAAC,GAAA,eAAAC,GAAA,aAAAC,GAAA,cAAAC,GAAA,iBAAAC,GAAA,QAAAC,GAAA,SAAAC,GAAA,UAAAC,GAAA,QAAAC,EAAA,SAAAC,GAAA,QAAAC,GAAA,QAAAC,GAAA,WAAAC,GAAA,WAAAC,GAAA,SAAAC,GAAA,UAAAC,GAAA,SAAAC,GAAA,UAAAC,GAAA,UAAAC,GAAA,YAAAC,GAAA,cAAAC,GAAA,YAAAC,GAAA,iBAAAC,EAAA,kBAAAC,GAAA,cAAAC,GAAA,gBAAAC,GAAA,gBAAAC,GAAA,gBAAAC,GAAA,mBAAAC,GAAA,aAAAC,GAAA,eAAAC,GAAA,qBAAAC,GAAA,kBAAAC,GAAA,gBAAAC,GAAA,mBAAAC,GAAA,YAAAC,GAAA,WAAAC,GAAA,cAAAC,GAAA,SAAAC,GAAA,SAAAC,GAAA,gBAAAC,GAAA,UAAAC,GAAA,YAAAC,GAAA,WAAAC,GAAA,aAAAC,GAAA,aAAAC,GAAA,aAAAC,GAAA,aAAAC,GAAA,gBAAAC,GAAA,WAAAC,GAAA,WAAAC,GAAA,oBAAAC,GAAA,WAAAC,GAAA,oBAAAC,GAAA,0BAAAC,GAAA,QAAAC,GAAA,SAAAC,GAAA,iBAAAC,GAAA,YAAAC,GAAA,WAAAC,GAAA,eAAAC,GAAA,SAAAC,GAAA,kBAAAC,GAAA,oBAAAC,GAAA,iBAAAC,GAAA,oBAAAC,GAAA,iBAAAC,GAAA,gBAAAC,GAAA,SAAAC,GAAA,eAAAC,GAAA,+BAAAC,GAAA,YAAAC,GAAA,qBAAAC,GAAA,QAAAC,GAAA,aAAAC,GAAA,QAAAC,GAAA,YAAAC,GAAA,WAAAC,GAAA,QAAAC,GAAA,oBAAAC,GAAA,mBAAAC,GAAA,wBAAAC,GAAA,WAAAC,GAAA,gBAAAC,GAAA,QAAAC,EAAA,UAAAC,GAAA,QAAAC,GAAA,kBAAAC,GAAA,QAAAC,GAAA,eAAAC,GAAA,UAAAC,GAAA,QAAAC,GAAA,QAAAC,GAAA,SAAAC,GAAA,gBAAAC,GAAA,uBAAAC,GAAA,UAAAC,GAAA,aAAAC,GAAA,mBAAAC,GAAA,UAAAC,GAAA,WAAAC,GAAA,aAAAC,GAAA,gBAAAC,GAAA,eAAAC,GAAA,gBAAAC,GAAA,cAAAC,GAAA,yBAAAC,GAAA,oBAAAC,IAAA,eAAAC,GAAA,SAAAC,GAAA,UAAAC,GAAA,YAAAC,GAAA,iBAAAC,GAAA,SAAAC,GAAA,SAAAC,GAAA,UAAAC,GAAA,gBAAAC,GAAA,iBAAAC,GAAA,UAAAC,GAAA,OAAAC,GAAA,UAAAC,GAAA,aAAAC,GAAA,UAAAC,GAAA,UAAAC,GAAA,SAAAC,GAAA,iBAAAC,GAAA,WAAAC,GAAA,cAAAC,GAAA,SAAAC,GAAA,cAAAC,GAAA,WAAAC,GAAA,aAAAC,GAAA,mBAAAC,GAAA,uBAAAC,GAAA,oBAAAC,GAAA,+BAAAC,GAAA,QAAAC,GAAA,UAAAC,GAAA,eAAAC,GAAA,eAAAC,GAAA,cAAAC,GAAA,eAAAC,GAAA,eAAAC,GAAA,cAAAC,GAAA,eAAAC,GAAA,WAAAC,GAAA,eAAAC,GAAA,WAAAC,GAAA,SAAAC,GAAA,QAAAC,GAAA,YAAAC,GAAA,cAAAC,GAAA,sBAAAC,GAAA,YAAAC,GAAA,SAAAC,GAAA,WAAAC,GAAA,aAAAC,GAAA,YAAAC,GAAA,QAAAC,GAAA,YAAAC,GAAA,cAAAC,GAAA,QAAAC,GAAA,UAAAC,GAAA,WAAAC,GAAA,YAAAC,GAAA,kBAAAC,GAAA,QAAAC,EAAA,iBAAAC,GAAA,gBAAAC,GAAA,QAAAC,GAAA,cAAAC,GAAA,SAAAC,GAAA,aAAAC,GAAA,WAAAC,GAAA,SAAAC,GAAA,aAAAC,GAAA,OAAAC,EAAA,iBAAAC,GAAA,QAAAC,GAAA,UAAAC,GAAA,UAAAC,GAAA,UAAAC,GAAA,UAAAC,GAAA,SAAAC,GAAA,QAAAC,GAAA,UAAAC,GAAA,UAAAC,GAAA,SAAAC,GAAA,YAAAC,GAAA,iBAAAC,GAAA,gBAAAC,GAAA,yBAAAC,GAAA,SAAAC,GAAA,gBAAAC,GAAA,iBAAAC,GAAA,yBAAAC,GAAA,kBAAAC,GAAA,qBAAAC,GAAA,UAAAC,GAAA,UAAAC,GAAA,SAAAC,GAAA,eAAAC,GAAA,oBAAAC,GAAA,gCAAAC,GAAA,qBAAAC,GAAA,mBAAAC,GAAA,eAAAC,GAAA,iBAAAC,GAAA,SAAAC,GAAA,UAAAC,GAAA,kBAAAC,GAAA,YAAAC,EAAA,YAAAC,GAAA,cAAAC,GAAA,cAAAC,GAAA,cAAAC,GAAA,cAAAC,GAAA,SAAAC,GAAA,UAAAC,GAAA,UAAAC,GAAA,WAAAC,GAAA,cAAAC,GAAA,iBAAAC,GAAA,iBAAAC,GAAA,SAAAC,GAAA,oBAAAC,GAAA,eAAAC,GAAA,kBAAAC,GAAA,eAAAC,GAAA,gBAAAC,GAAA,oBAAAC,IAAA,gBAAAC,IAAA,iBAAAC,IAAA,oBAAAC,GAAA,mBAAAC,GAAA,WAAAC,GAAA,YAAAC,GAAA,SAAAC,GAAA,WAAAC,GAAA,QAAAC,GAAA,SAAAC,GAAA,UAAAC,GAAA,YAAAC,GAAA,YAAAC,GAAA,YAAAC,GAAA,YAAAC,GAAA,eAAAC,GAAA,YAAAC,GAAA,aAAAC,GAAA,mBAAAC,GAAA,WAAAC,GAAA,kBAAAC,GAAA,aAAAC,GAAA,UAAAC,GAAA,SAAAC,GAAA,WAAAC,GAAA,sBAAAC,GAAA,YAAAC,GAAA,UAAAC,GAAA,SAAAC,GAAA,iBAAAC,GAAA,WAAAC,GAAA,QAAAC,GAAA,QAAAC,GAAA,eAAAC,GAAA,QAAAC,GAAA,SAAAC,GAAA,WAAAC,GAAA,aAAAC,GAAA,aAAAC,GAAA,aAAAC,GAAA,aAAAC,GAAA,aAAAC,GAAA,aAAAC,GAAA,wBAAAC,GAAA,gBAAAC,GAAA,cAAAC,GAAA,SAAAC,EAAA,SAAAC,GAAA,SAAAC,GAAA,SAAAC,GAAA,UAAAC,GAAA,cAAAC,GAAA,oBAAAC,GAAA,WAAAC,GAAA,uBAAAC,GAAA,qBAAAC,GAAA,uBAAAC,GAAA,YAAAC,GAAA,eAAAC,GAAA,eAAAC,GAAA,SAAAC,EAAA,iBAAAC,GAAA,kBAAAC,GAAA,aAAAC,GAAA,kBAAAC,GAAA,YAAAC,IAAA,sBAAAC,GAAA,iBAAAC,GAAA,gBAAAC,GAAA,mBAAAC,GAAA,iBAAAC,IAAA,kBAAAC,IAAA,UAAAC,IAAA,eAAAC,GAAA,UAAAC,GAAA,eAAAC,GAAA,UAAAC,GAAA,cAAAC,KAMA,IAAIC,GAAG,OAAO,OAAWC,GAAG,OAAO,eAAmBC,GAAG,OAAO,yBAA6BC,GAAG,OAAO,oBAAwBC,GAAG,OAAO,eAAeC,GAAG,OAAO,UAAU,eAAmBC,GAAG,CAACC,EAAE,IAAI,KAAK,GAAGA,GAAG,EAAE,CAAC,QAAQ,CAAC,CAAC,GAAG,QAAQ,CAAC,EAAE,EAAE,SAASC,GAAG,CAACD,EAAE,IAAI,CAAC,QAAQE,KAAK,EAAER,GAAGM,EAAEE,EAAE,CAAC,IAAI,EAAEA,CAAC,EAAE,WAAW,EAAE,CAAC,CAAC,EAAEC,GAAG,CAACH,EAAE,EAAEE,EAAEE,IAAI,CAAC,GAAG,GAAG,OAAO,GAAG,UAAU,OAAO,GAAG,WAAW,QAAQC,KAAKT,GAAG,CAAC,EAAE,CAACE,GAAG,KAAKE,EAAEK,CAAC,GAAGA,IAAIH,GAAGR,GAAGM,EAAEK,EAAE,CAAC,IAAI,IAAI,EAAEA,CAAC,EAAE,WAAW,EAAED,EAAET,GAAG,EAAEU,CAAC,IAAID,EAAE,UAAU,CAAC,EAAE,OAAOJ,CAAC,EAAMM,GAAG,CAACN,EAAE,EAAEE,KAAKA,EAAEF,GAAG,KAAKP,GAAGI,GAAGG,CAAC,CAAC,EAAE,CAAC,EAAEG,GAAG,GAAG,CAACH,GAAG,CAACA,EAAE,WAAWN,GAAGQ,EAAE,UAAU,CAAC,MAAMF,EAAE,WAAW,EAAE,CAAC,EAAEE,EAAEF,CAAC,GAAOO,GAAGR,GAAG,CAACS,EAAIC,IAAK,CAACA,EAAG,QAAQC,EAAG,IAAIC,EAAG,KAAK,GAAG,CAACA,EAAG,IAAI,YAAY,SAAS,IAAI,YAAY,OAAO,IAAI,WAAW,CAAC,EAAE,GAAG,IAAI,IAAI,EAAE,EAAE,EAAE,EAAE,EAAE,GAAG,EAAE,GAAG,EAAE,EAAE,IAAI,GAAG,EAAE,IAAI,IAAI,IAAI,IAAI,EAAE,IAAI,EAAE,EAAE,EAAE,EAAE,EAAE,EAAE,EAAE,EAAE,EAAE,EAAE,EAAE,EAAE,IAAI,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,EAAE,IAAI,IAAI,IAAI,EAAE,EAAE,EAAE,IAAI,IAAI,IAAI,GAAG,IAAI,EAAE,EAAE,EAAE,IAAI,IAAI,IAAI,GAAG,IAAI,EAAE,EAAE,EAAE,IAAI,IAAI,IAAI,GAAG,IAAI,EAAE,EAAE,EAAE,IAAI,IAAI,IAAI,GAAG,IAAI,EAAE,EAAE,EAAE,IAAI,IAAI,IAAI,GAAG,IAAI,IAAI,IAAI,IAAI,EAAE,EAAE,GAAG,IAAI,EAAE,EAAE,EAAE,EAAE,GAAG,EAAE,GAAG,GAAG,EAAE,EAAE,IAAI,GAAG,EAAE,IAAI,GAAG,EAAE,IAAI,GAAG,GAAG,IAAI,IAAI,GAAG,EAAE,IAAI,GAAG,EAAE,IAAI,GAAG,GAAG,IAAI,IAAI,IAAI,GAAG,EAAE,GAAG,GAAG,IAAI,IAAI,GAAG,EAAE,GAAG,EAAE,IAAI,GAAG,GAAG,EAAE,EAAE,IAAI,GAAG,EAAE,IAAI,GAAG,EAAE,IAAI,GAAG,GAAG,IAAI,IAAI,GAAG,EAAE,IAAI,GAAG,EAAE,IAAI,GAAG,GAAG,IAAI,IAAI,IAAI,GAAG,EAAE,GAAG,GAAG,IAAI,IAAI,GAAG,EAAE,GAAG,EAAE,IAAI,GAAG,GAAG,EAAE,EAAE,IAAI,GAAG,EAAE,IAAI,GAAG,EAAE,IAAI,GAAG,GAAG,IAAI,IAAI,GAAG,EAAE,IAAI,GAAG,EAAE,IAAI,GAAG,GAAG,IAAI,IAAI,IAAI,GAAG,EAAE,GAAG,GAAG,IAAI,IAAI,GAAG,EAAE,GAAG,EAAE,IAAI,GAAG,GAAG,EAAE,EAAE,IAAI,GAAG,EAAE,IAAI,GAAG,EAAE,IAAI,GAAG,GAAG,IAAI,IAAI,GAAG,EAAE,IAAI,GAAG,EAAE,IAAI,GAAG,GAAG,IAAI,IAAI,IAAI,GAAG,EAAE,GAAG,GAAG,IAAI,IAAI,GAAG,EAAE,GAAG,EAAE,IAAI,GAAG,GAAG,EAAE,EAAE,IAAI,GAAG,EAAE,IAAI,GAAG,EAAE,IAAI,GAAG,GAAG,IAAI,IAAI,GAAG,EAAE,IAAI,GAAG,EAAE,IAAI,GAAG,GAAG,IAAI,IAAI,IAAI,GAAG,EAAE,GAAG,GAAG,IAAI,IAAI,GAAG,EAAE,GAAG,EAAE,IAAI,EAAE,CAAC,CAAC,EAAE,CAAC,CAAC,EAAE,OAAO,OAAOX,EAAE,CAAC,CAAC,SAASU,EAAGV,EAAEY,EAAEV,EAAE,CAAC,KAAK,IAAIF,EAAE,EAAE,KAAK,KAAKY,EAAE,EAAE,KAAK,SAAS,CAAC,CAACV,CAAC,CAACQ,EAAG,UAAU,WAAW,OAAO,eAAeA,EAAG,UAAU,aAAa,CAAC,MAAM,EAAE,CAAC,EAAE,SAASG,EAAGb,EAAE,CAAC,OAAOA,GAAGA,EAAE,cAAc,EAAE,CAACU,EAAG,OAAOG,EAAG,IAAIC,EAAG,CAAC,EAAEC,EAAG,CAAC,EAAE,SAASC,EAAGhB,EAAEY,EAAE,CAAC,IAAIV,EAAEE,EAAEC,EAAE,OAAOO,GAAGZ,KAAK,GAAGK,EAAE,GAAGL,GAAGA,EAAE,OAAOI,EAAEW,EAAGf,CAAC,EAAEI,GAAGA,GAAGF,EAAEe,EAAGjB,GAAGA,EAAE,GAAG,EAAE,GAAG,EAAE,EAAE,EAAEK,IAAIU,EAAGf,CAAC,EAAEE,GAAGA,KAAKF,GAAG,GAAGK,EAAE,MAAML,GAAGA,EAAE,OAAOI,EAAEU,EAAGd,CAAC,EAAEI,GAAGA,GAAGF,EAAEe,EAAGjB,EAAEA,EAAE,EAAE,GAAG,EAAE,EAAE,EAAEK,IAAIS,EAAGd,CAAC,EAAEE,GAAGA,GAAG,CAACQ,EAAG,QAAQM,EAAG,SAASE,EAAGlB,EAAEY,EAAE,CAAC,GAAG,MAAMZ,CAAC,EAAE,OAAOY,EAAEO,EAAGC,EAAG,GAAGR,EAAE,CAAC,GAAGZ,EAAE,EAAE,OAAOmB,EAAG,GAAGnB,GAAGqB,EAAG,OAAOC,CAAE,KAAK,CAAC,GAAGtB,GAAG,CAACuB,EAAG,OAAOC,EAAG,GAAGxB,EAAE,GAAGuB,EAAG,OAAOE,CAAE,CAAC,OAAOzB,EAAE,EAAEkB,EAAG,CAAClB,EAAEY,CAAC,EAAE,IAAI,EAAEK,EAAGjB,EAAE0B,EAAG,EAAE1B,EAAE0B,EAAG,EAAEd,CAAC,CAAC,CAACF,EAAG,WAAWQ,EAAG,SAASD,EAAGjB,EAAEY,EAAEV,EAAE,CAAC,OAAO,IAAIQ,EAAGV,EAAEY,EAAEV,CAAC,CAAC,CAACQ,EAAG,SAASO,EAAG,IAAIU,EAAG,KAAK,IAAI,SAASC,EAAG5B,EAAEY,EAAEV,EAAE,CAAC,GAAGF,EAAE,SAAS,EAAE,MAAM,MAAM,cAAc,EAAE,GAAGA,IAAI,OAAOA,IAAI,YAAYA,IAAI,aAAaA,IAAI,YAAY,OAAOoB,EAAG,GAAG,OAAOR,GAAG,UAAUV,EAAEU,EAAEA,EAAE,IAAIA,EAAE,CAAC,CAACA,EAAEV,EAAEA,GAAG,GAAGA,EAAE,GAAG,GAAGA,EAAE,MAAM,WAAW,OAAO,EAAE,IAAIE,EAAE,IAAIA,EAAEJ,EAAE,QAAQ,GAAG,GAAG,EAAE,MAAM,MAAM,iBAAiB,EAAE,GAAGI,IAAI,EAAE,OAAOwB,EAAG5B,EAAE,UAAU,CAAC,EAAEY,EAAEV,CAAC,EAAE,IAAI,EAAE,QAAQG,EAAEa,EAAGS,EAAGzB,EAAE,CAAC,CAAC,EAAE2B,EAAET,EAAGU,EAAE,EAAEA,EAAE9B,EAAE,OAAO8B,GAAG,EAAE,CAAC,IAAIC,EAAE,KAAK,IAAI,EAAE/B,EAAE,OAAO8B,CAAC,EAAEE,EAAE,SAAShC,EAAE,UAAU8B,EAAEA,EAAEC,CAAC,EAAE7B,CAAC,EAAE,GAAG6B,EAAE,EAAE,CAAC,IAAIE,GAAEf,EAAGS,EAAGzB,EAAE6B,CAAC,CAAC,EAAEF,EAAEA,EAAE,IAAII,EAAC,EAAE,IAAIf,EAAGc,CAAC,CAAC,CAAC,MAAMH,EAAEA,EAAE,IAAIxB,CAAC,EAAEwB,EAAEA,EAAE,IAAIX,EAAGc,CAAC,CAAC,CAAC,CAAC,OAAOH,EAAE,SAASjB,EAAEiB,CAAC,CAACnB,EAAG,WAAWkB,EAAG,SAASM,EAAGlC,EAAEY,EAAE,CAAC,OAAO,OAAOZ,GAAG,SAASkB,EAAGlB,EAAEY,CAAC,EAAE,OAAOZ,GAAG,SAAS4B,EAAG5B,EAAEY,CAAC,EAAEK,EAAGjB,EAAE,IAAIA,EAAE,KAAK,OAAOY,GAAG,UAAUA,EAAEZ,EAAE,QAAQ,CAAC,CAACU,EAAG,UAAUwB,EAAG,IAAIC,EAAG,MAAMC,EAAG,GAAG,GAAGV,EAAGS,EAAGA,EAAGd,EAAGK,EAAGA,EAAGH,EAAGF,EAAG,EAAEgB,EAAGrB,EAAGoB,CAAE,EAAEhB,EAAGJ,EAAG,CAAC,EAAEN,EAAG,KAAKU,EAAG,IAAID,EAAGH,EAAG,EAAE,EAAE,EAAEN,EAAG,MAAMS,EAAG,IAAImB,EAAGtB,EAAG,CAAC,EAAEN,EAAG,IAAI4B,EAAG,IAAIC,EAAGvB,EAAG,EAAE,EAAE,EAAEN,EAAG,KAAK6B,EAAG,IAAIC,EAAGxB,EAAG,EAAE,EAAEN,EAAG,QAAQ8B,EAAG,IAAIf,EAAGR,EAAG,GAAG,WAAW,EAAE,EAAEP,EAAG,UAAUe,EAAG,IAAIH,EAAGL,EAAG,GAAG,GAAG,EAAE,EAAEP,EAAG,mBAAmBY,EAAG,IAAIE,EAAGP,EAAG,EAAE,YAAY,EAAE,EAAEP,EAAG,UAAUc,EAAG,IAAIiB,EAAG/B,EAAG,UAAU+B,EAAG,MAAM,UAAU,CAAC,OAAO,KAAK,SAAS,KAAK,MAAM,EAAE,KAAK,GAAG,EAAEA,EAAG,SAAS,UAAU,CAAC,OAAO,KAAK,UAAU,KAAK,OAAO,GAAGf,GAAI,KAAK,MAAM,GAAG,KAAK,KAAKA,GAAI,KAAK,MAAM,EAAE,EAAEe,EAAG,SAAS,SAAS7B,EAAE,CAAC,GAAGA,EAAEA,GAAG,GAAGA,EAAE,GAAG,GAAGA,EAAE,MAAM,WAAW,OAAO,EAAE,GAAG,KAAK,OAAO,EAAE,MAAM,IAAI,GAAG,KAAK,WAAW,EAAE,GAAG,KAAK,GAAGY,CAAE,EAAE,CAAC,IAAItB,EAAEgB,EAAGN,CAAC,EAAER,EAAE,KAAK,IAAIF,CAAC,EAAEG,EAAED,EAAE,IAAIF,CAAC,EAAE,IAAI,IAAI,EAAE,OAAOE,EAAE,SAASQ,CAAC,EAAEP,EAAE,MAAM,EAAE,SAASO,CAAC,CAAC,KAAM,OAAM,IAAI,KAAK,IAAI,EAAE,SAASA,CAAC,EAAE,QAAQiB,EAAEX,EAAGS,EAAGf,EAAE,CAAC,EAAE,KAAK,QAAQ,EAAEkB,EAAE,KAAKC,EAAE,KAAK,CAAC,IAAIC,EAAEF,EAAE,IAAID,CAAC,EAAEI,EAAEH,EAAE,IAAIE,EAAE,IAAIH,CAAC,CAAC,EAAE,MAAM,IAAI,EAAEa,GAAET,EAAE,SAASrB,CAAC,EAAE,GAAGkB,EAAEE,EAAEF,EAAE,OAAO,EAAE,OAAOY,GAAEX,EAAE,KAAKW,GAAE,OAAO,GAAGA,GAAE,IAAIA,GAAEX,EAAE,GAAGW,GAAEX,CAAC,CAAC,EAAEU,EAAG,YAAY,UAAU,CAAC,OAAO,KAAK,IAAI,EAAEA,EAAG,oBAAoB,UAAU,CAAC,OAAO,KAAK,OAAO,CAAC,EAAEA,EAAG,WAAW,UAAU,CAAC,OAAO,KAAK,GAAG,EAAEA,EAAG,mBAAmB,UAAU,CAAC,OAAO,KAAK,MAAM,CAAC,EAAEA,EAAG,cAAc,UAAU,CAAC,GAAG,KAAK,WAAW,EAAE,OAAO,KAAK,GAAGjB,CAAE,EAAE,GAAG,KAAK,IAAI,EAAE,cAAc,EAAE,QAAQZ,EAAE,KAAK,MAAM,EAAE,KAAK,KAAK,KAAK,IAAIV,EAAE,GAAGA,EAAE,GAAG,EAAEU,EAAE,GAAGV,GAAGA,IAAI,CAAC,OAAO,KAAK,MAAM,EAAEA,EAAE,GAAGA,EAAE,CAAC,EAAEuC,EAAG,OAAO,UAAU,CAAC,OAAO,KAAK,OAAO,GAAG,KAAK,MAAM,CAAC,EAAEA,EAAG,IAAIA,EAAG,OAAOA,EAAG,WAAW,UAAU,CAAC,MAAM,CAAC,KAAK,UAAU,KAAK,KAAK,CAAC,EAAEA,EAAG,WAAW,UAAU,CAAC,OAAO,KAAK,UAAU,KAAK,MAAM,CAAC,EAAEA,EAAG,MAAM,UAAU,CAAC,OAAO,KAAK,IAAI,KAAK,CAAC,EAAEA,EAAG,OAAO,UAAU,CAAC,OAAO,KAAK,IAAI,KAAK,CAAC,EAAEA,EAAG,OAAO,SAAS7B,EAAE,CAAC,OAAOC,EAAGD,CAAC,IAAIA,EAAEsB,EAAGtB,CAAC,GAAG,KAAK,WAAWA,EAAE,UAAU,KAAK,OAAO,KAAK,GAAGA,EAAE,OAAO,KAAK,EAAE,GAAG,KAAK,OAAOA,EAAE,MAAM,KAAK,MAAMA,EAAE,GAAG,EAAE6B,EAAG,GAAGA,EAAG,OAAOA,EAAG,UAAU,SAAS7B,EAAE,CAAC,MAAM,CAAC,KAAK,GAAGA,CAAC,CAAC,EAAE6B,EAAG,IAAIA,EAAG,UAAUA,EAAG,GAAGA,EAAG,UAAUA,EAAG,SAAS,SAAS7B,EAAE,CAAC,OAAO,KAAK,KAAKA,CAAC,EAAE,CAAC,EAAE6B,EAAG,GAAGA,EAAG,SAASA,EAAG,gBAAgB,SAAS7B,EAAE,CAAC,OAAO,KAAK,KAAKA,CAAC,GAAG,CAAC,EAAE6B,EAAG,IAAIA,EAAG,gBAAgBA,EAAG,GAAGA,EAAG,gBAAgBA,EAAG,YAAY,SAAS7B,EAAE,CAAC,OAAO,KAAK,KAAKA,CAAC,EAAE,CAAC,EAAE6B,EAAG,GAAGA,EAAG,YAAYA,EAAG,mBAAmB,SAAS7B,EAAE,CAAC,OAAO,KAAK,KAAKA,CAAC,GAAG,CAAC,EAAE6B,EAAG,IAAIA,EAAG,mBAAmBA,EAAG,GAAGA,EAAG,mBAAmBA,EAAG,QAAQ,SAAS7B,EAAE,CAAC,GAAGC,EAAGD,CAAC,IAAIA,EAAEsB,EAAGtB,CAAC,GAAG,KAAK,GAAGA,CAAC,EAAE,MAAO,GAAE,IAAIV,EAAE,KAAK,WAAW,EAAEE,EAAEQ,EAAE,WAAW,EAAE,OAAOV,GAAG,CAACE,EAAE,GAAG,CAACF,GAAGE,EAAE,EAAE,KAAK,SAASQ,EAAE,OAAO,EAAE,KAAK,OAAO,GAAGA,EAAE,OAAO,KAAK,MAAMA,EAAE,MAAM,EAAE,KAAK,MAAM,EAAE,GAAG,EAAE,KAAK,IAAIA,CAAC,EAAE,WAAW,EAAE,GAAG,CAAC,EAAE6B,EAAG,KAAKA,EAAG,QAAQA,EAAG,OAAO,UAAU,CAAC,MAAM,CAAC,KAAK,UAAU,KAAK,GAAGjB,CAAE,EAAEA,EAAG,KAAK,IAAI,EAAE,IAAIc,CAAE,CAAC,EAAEG,EAAG,IAAIA,EAAG,OAAOA,EAAG,IAAI,SAAS7B,EAAE,CAACC,EAAGD,CAAC,IAAIA,EAAEsB,EAAGtB,CAAC,GAAG,IAAIV,EAAE,KAAK,OAAO,GAAGE,EAAE,KAAK,KAAK,MAAMC,EAAE,KAAK,MAAM,GAAGwB,EAAE,KAAK,IAAI,MAAMC,EAAElB,EAAE,OAAO,GAAGmB,EAAEnB,EAAE,KAAK,MAAMoB,EAAEpB,EAAE,MAAM,GAAGqB,EAAErB,EAAE,IAAI,MAAM8B,GAAE,EAAEC,GAAE,EAAEC,GAAE,EAAEC,GAAE,EAAE,OAAOA,IAAGhB,EAAEI,EAAEW,IAAGC,KAAI,GAAGA,IAAG,MAAMD,IAAGvC,EAAE2B,EAAEW,IAAGC,KAAI,GAAGA,IAAG,MAAMD,IAAGvC,EAAE2B,EAAEW,IAAGC,KAAI,GAAGA,IAAG,MAAMD,IAAGxC,EAAE4B,EAAEY,IAAG,MAAMzB,EAAG2B,IAAG,GAAGC,GAAEH,IAAG,GAAGC,GAAE,KAAK,QAAQ,CAAC,EAAEF,EAAG,SAAS,SAAS7B,EAAE,CAAC,OAAOC,EAAGD,CAAC,IAAIA,EAAEsB,EAAGtB,CAAC,GAAG,KAAK,IAAIA,EAAE,IAAI,CAAC,CAAC,EAAE6B,EAAG,IAAIA,EAAG,SAASA,EAAG,SAAS,SAAS7B,EAAE,CAAC,GAAG,KAAK,OAAO,EAAE,OAAOQ,EAAG,GAAGP,EAAGD,CAAC,IAAIA,EAAEsB,EAAGtB,CAAC,GAAGD,EAAG,CAAC,IAAIT,EAAES,EAAG,IAAI,KAAK,IAAI,KAAK,KAAKC,EAAE,IAAIA,EAAE,IAAI,EAAE,OAAOK,EAAGf,EAAES,EAAG,SAAS,EAAE,KAAK,QAAQ,CAAC,CAAC,GAAGC,EAAE,OAAO,EAAE,OAAOQ,EAAG,GAAG,KAAK,GAAGI,CAAE,EAAE,OAAOZ,EAAE,MAAM,EAAEY,EAAGJ,EAAG,GAAGR,EAAE,GAAGY,CAAE,EAAE,OAAO,KAAK,MAAM,EAAEA,EAAGJ,EAAG,GAAG,KAAK,WAAW,EAAE,OAAOR,EAAE,WAAW,EAAE,KAAK,IAAI,EAAE,IAAIA,EAAE,IAAI,CAAC,EAAE,KAAK,IAAI,EAAE,IAAIA,CAAC,EAAE,IAAI,EAAE,GAAGA,EAAE,WAAW,EAAE,OAAO,KAAK,IAAIA,EAAE,IAAI,CAAC,EAAE,IAAI,EAAE,GAAG,KAAK,GAAGyB,CAAE,GAAGzB,EAAE,GAAGyB,CAAE,EAAE,OAAOnB,EAAG,KAAK,SAAS,EAAEN,EAAE,SAAS,EAAE,KAAK,QAAQ,EAAE,IAAIR,EAAE,KAAK,OAAO,GAAGC,EAAE,KAAK,KAAK,MAAMwB,EAAE,KAAK,MAAM,GAAGC,EAAE,KAAK,IAAI,MAAMC,EAAEnB,EAAE,OAAO,GAAGoB,EAAEpB,EAAE,KAAK,MAAMqB,EAAErB,EAAE,MAAM,GAAG8B,GAAE9B,EAAE,IAAI,MAAM+B,GAAE,EAAEC,GAAE,EAAEC,GAAE,EAAEC,GAAE,EAAE,OAAOA,IAAGhB,EAAEY,GAAEG,IAAGC,KAAI,GAAGA,IAAG,MAAMD,IAAGhB,EAAEa,GAAEE,IAAGC,KAAI,GAAGA,IAAG,MAAMA,IAAGf,EAAEG,EAAEW,IAAGC,KAAI,GAAGA,IAAG,MAAMD,IAAGvC,EAAEqC,GAAEC,IAAGC,KAAI,GAAGA,IAAG,MAAMA,IAAGf,EAAEI,EAAEU,IAAGC,KAAI,GAAGA,IAAG,MAAMA,IAAGd,EAAEE,EAAEW,IAAGC,KAAI,GAAGA,IAAG,MAAMD,IAAGvC,EAAEsC,GAAErC,EAAE4B,EAAEJ,EAAEG,EAAEF,EAAEC,EAAEY,IAAG,MAAM1B,EAAG4B,IAAG,GAAGC,GAAEH,IAAG,GAAGC,GAAE,KAAK,QAAQ,CAAC,EAAEH,EAAG,IAAIA,EAAG,SAASA,EAAG,OAAO,SAAS7B,EAAE,CAAC,GAAGC,EAAGD,CAAC,IAAIA,EAAEsB,EAAGtB,CAAC,GAAGA,EAAE,OAAO,EAAE,MAAM,MAAM,kBAAkB,EAAE,GAAGD,EAAG,CAAC,GAAG,CAAC,KAAK,UAAU,KAAK,OAAO,aAAaC,EAAE,MAAM,IAAIA,EAAE,OAAO,GAAG,OAAO,KAAK,IAAIV,GAAG,KAAK,SAASS,EAAG,MAAMA,EAAG,OAAO,KAAK,IAAI,KAAK,KAAKC,EAAE,IAAIA,EAAE,IAAI,EAAE,OAAOK,EAAGf,EAAES,EAAG,SAAS,EAAE,KAAK,QAAQ,CAAC,CAAC,GAAG,KAAK,OAAO,EAAE,OAAO,KAAK,SAASQ,EAAGC,EAAG,IAAIhB,EAAEC,EAAEwB,EAAE,GAAG,KAAK,SAAS,CAAC,GAAGjB,EAAE,WAAWA,EAAEA,EAAE,WAAW,GAAGA,EAAE,GAAG,IAAI,EAAE,OAAOO,EAAG,GAAGP,EAAE,GAAG,KAAK,KAAK,CAAC,CAAC,EAAE,OAAO2B,EAAGV,EAAEV,CAAE,KAAK,CAAC,GAAG,KAAK,GAAGK,CAAE,EAAE,CAAC,GAAGZ,EAAE,GAAG0B,CAAE,GAAG1B,EAAE,GAAG4B,CAAE,EAAE,OAAOhB,EAAG,GAAGZ,EAAE,GAAGY,CAAE,EAAE,OAAOc,EAAG,IAAIR,EAAE,KAAK,IAAI,CAAC,EAAE,OAAO1B,EAAE0B,EAAE,IAAIlB,CAAC,EAAE,IAAI,CAAC,EAAER,EAAE,GAAGgB,CAAE,EAAER,EAAE,WAAW,EAAE0B,EAAGE,GAAInC,EAAE,KAAK,IAAIO,EAAE,IAAIR,CAAC,CAAC,EAAEyB,EAAEzB,EAAE,IAAIC,EAAE,IAAIO,CAAC,CAAC,EAAEiB,EAAE,SAASjB,EAAE,GAAGY,CAAE,EAAE,OAAO,KAAK,SAASL,EAAGC,EAAG,GAAG,KAAK,WAAW,EAAE,OAAOR,EAAE,WAAW,EAAE,KAAK,IAAI,EAAE,IAAIA,EAAE,IAAI,CAAC,EAAE,KAAK,IAAI,EAAE,IAAIA,CAAC,EAAE,IAAI,EAAE,GAAGA,EAAE,WAAW,EAAE,OAAO,KAAK,IAAIA,EAAE,IAAI,CAAC,EAAE,IAAI,EAAEiB,EAAET,CAAE,CAAC,IAAIf,EAAE,KAAKA,EAAE,IAAIO,CAAC,GAAG,CAACR,EAAE,KAAK,IAAI,EAAE,KAAK,MAAMC,EAAE,SAAS,EAAEO,EAAE,SAAS,CAAC,CAAC,EAAE,QAAQmB,EAAE,KAAK,KAAK,KAAK,IAAI3B,CAAC,EAAE,KAAK,GAAG,EAAE4B,EAAED,GAAG,GAAG,EAAEJ,EAAG,EAAEI,EAAE,EAAE,EAAEE,EAAEf,EAAGd,CAAC,EAAEsC,GAAET,EAAE,IAAIrB,CAAC,EAAE8B,GAAE,WAAW,GAAGA,GAAE,GAAGrC,CAAC,GAAGD,GAAG4B,EAAEC,EAAEf,EAAGd,EAAE,KAAK,QAAQ,EAAEsC,GAAET,EAAE,IAAIrB,CAAC,EAAEqB,EAAE,OAAO,IAAIA,EAAEK,GAAIT,EAAEA,EAAE,IAAII,CAAC,EAAE5B,EAAEA,EAAE,IAAIqC,EAAC,CAAC,CAAC,OAAOb,CAAC,EAAEY,EAAG,IAAIA,EAAG,OAAOA,EAAG,OAAO,SAAS7B,EAAE,CAAC,GAAGC,EAAGD,CAAC,IAAIA,EAAEsB,EAAGtB,CAAC,GAAGD,EAAG,CAAC,IAAIT,GAAG,KAAK,SAASS,EAAG,MAAMA,EAAG,OAAO,KAAK,IAAI,KAAK,KAAKC,EAAE,IAAIA,EAAE,IAAI,EAAE,OAAOK,EAAGf,EAAES,EAAG,SAAS,EAAE,KAAK,QAAQ,CAAC,CAAC,OAAO,KAAK,IAAI,KAAK,IAAIC,CAAC,EAAE,IAAIA,CAAC,CAAC,CAAC,EAAE6B,EAAG,IAAIA,EAAG,OAAOA,EAAG,IAAIA,EAAG,OAAOA,EAAG,IAAI,UAAU,CAAC,OAAOxB,EAAG,CAAC,KAAK,IAAI,CAAC,KAAK,KAAK,KAAK,QAAQ,CAAC,EAAEwB,EAAG,IAAI,SAAS7B,EAAE,CAAC,OAAOC,EAAGD,CAAC,IAAIA,EAAEsB,EAAGtB,CAAC,GAAGK,EAAG,KAAK,IAAIL,EAAE,IAAI,KAAK,KAAKA,EAAE,KAAK,KAAK,QAAQ,CAAC,EAAE6B,EAAG,GAAG,SAAS7B,EAAE,CAAC,OAAOC,EAAGD,CAAC,IAAIA,EAAEsB,EAAGtB,CAAC,GAAGK,EAAG,KAAK,IAAIL,EAAE,IAAI,KAAK,KAAKA,EAAE,KAAK,KAAK,QAAQ,CAAC,EAAE6B,EAAG,IAAI,SAAS7B,EAAE,CAAC,OAAOC,EAAGD,CAAC,IAAIA,EAAEsB,EAAGtB,CAAC,GAAGK,EAAG,KAAK,IAAIL,EAAE,IAAI,KAAK,KAAKA,EAAE,KAAK,KAAK,QAAQ,CAAC,EAAE6B,EAAG,UAAU,SAAS7B,EAAE,CAAC,OAAOC,EAAGD,CAAC,IAAIA,EAAEA,EAAE,MAAM,IAAIA,GAAG,MAAM,EAAE,KAAKA,EAAE,GAAGK,EAAG,KAAK,KAAKL,EAAE,KAAK,MAAMA,EAAE,KAAK,MAAM,GAAGA,EAAE,KAAK,QAAQ,EAAEK,EAAG,EAAE,KAAK,KAAKL,EAAE,GAAG,KAAK,QAAQ,CAAC,EAAE6B,EAAG,IAAIA,EAAG,UAAUA,EAAG,WAAW,SAAS7B,EAAE,CAAC,OAAOC,EAAGD,CAAC,IAAIA,EAAEA,EAAE,MAAM,IAAIA,GAAG,MAAM,EAAE,KAAKA,EAAE,GAAGK,EAAG,KAAK,MAAML,EAAE,KAAK,MAAM,GAAGA,EAAE,KAAK,MAAMA,EAAE,KAAK,QAAQ,EAAEK,EAAG,KAAK,MAAML,EAAE,GAAG,KAAK,MAAM,EAAE,EAAE,GAAG,KAAK,QAAQ,CAAC,EAAE6B,EAAG,IAAIA,EAAG,WAAWA,EAAG,mBAAmB,SAAS7B,EAAE,CAAC,GAAGC,EAAGD,CAAC,IAAIA,EAAEA,EAAE,MAAM,GAAGA,GAAG,GAAGA,IAAI,EAAE,OAAO,KAAK,IAAIV,EAAE,KAAK,KAAK,GAAGU,EAAE,GAAG,CAAC,IAAIR,EAAE,KAAK,IAAI,OAAOa,EAAGb,IAAIQ,EAAEV,GAAG,GAAGU,EAAEV,IAAIU,EAAE,KAAK,QAAQ,CAAC,KAAM,QAAOA,IAAI,GAAGK,EAAGf,EAAE,EAAE,KAAK,QAAQ,EAAEe,EAAGf,IAAIU,EAAE,GAAG,EAAE,KAAK,QAAQ,CAAC,EAAE6B,EAAG,KAAKA,EAAG,mBAAmBA,EAAG,MAAMA,EAAG,mBAAmBA,EAAG,SAAS,UAAU,CAAC,OAAO,KAAK,SAASxB,EAAG,KAAK,IAAI,KAAK,KAAK,EAAE,EAAE,IAAI,EAAEwB,EAAG,WAAW,UAAU,CAAC,OAAO,KAAK,SAAS,KAAKxB,EAAG,KAAK,IAAI,KAAK,KAAK,EAAE,CAAC,EAAEwB,EAAG,QAAQ,SAAS7B,EAAE,CAAC,OAAOA,EAAE,KAAK,UAAU,EAAE,KAAK,UAAU,CAAC,EAAE6B,EAAG,UAAU,UAAU,CAAC,IAAI7B,EAAE,KAAK,KAAKV,EAAE,KAAK,IAAI,MAAM,CAACA,EAAE,IAAIA,IAAI,EAAE,IAAIA,IAAI,GAAG,IAAIA,IAAI,GAAGU,EAAE,IAAIA,IAAI,EAAE,IAAIA,IAAI,GAAG,IAAIA,IAAI,EAAE,CAAC,EAAE6B,EAAG,UAAU,UAAU,CAAC,IAAI7B,EAAE,KAAK,KAAKV,EAAE,KAAK,IAAI,MAAM,CAACU,IAAI,GAAGA,IAAI,GAAG,IAAIA,IAAI,EAAE,IAAIA,EAAE,IAAIV,IAAI,GAAGA,IAAI,GAAG,IAAIA,IAAI,EAAE,IAAIA,EAAE,GAAG,CAAC,EAAEQ,EAAG,UAAU,SAASE,EAAEV,EAAEE,EAAE,CAAC,OAAOA,EAAEM,EAAG,YAAYE,EAAEV,CAAC,EAAEQ,EAAG,YAAYE,EAAEV,CAAC,CAAC,EAAEQ,EAAG,YAAY,SAASE,EAAEV,EAAE,CAAC,OAAO,IAAIQ,EAAGE,EAAE,CAAC,EAAEA,EAAE,CAAC,GAAG,EAAEA,EAAE,CAAC,GAAG,GAAGA,EAAE,CAAC,GAAG,GAAGA,EAAE,CAAC,EAAEA,EAAE,CAAC,GAAG,EAAEA,EAAE,CAAC,GAAG,GAAGA,EAAE,CAAC,GAAG,GAAGV,CAAC,CAAC,EAAEQ,EAAG,YAAY,SAASE,EAAEV,EAAE,CAAC,OAAO,IAAIQ,EAAGE,EAAE,CAAC,GAAG,GAAGA,EAAE,CAAC,GAAG,GAAGA,EAAE,CAAC,GAAG,EAAEA,EAAE,CAAC,EAAEA,EAAE,CAAC,GAAG,GAAGA,EAAE,CAAC,GAAG,GAAGA,EAAE,CAAC,GAAG,EAAEA,EAAE,CAAC,EAAEV,CAAC,CAAC,CAAC,CAAC,EAAM6C,GAAGhD,GAAG,IAAI,CAAC,CAAC,EAAMiD,GAAGjD,GAAG,IAAI,CAAC,CAAC,EAAMkD,GAAGlD,GAAG,CAACmD,EAAGC,IAAK,EAAE,SAASnD,EAAEY,EAAEV,EAAE,CAAC,SAASE,EAAE2B,EAAE,CAAC,IAAIC,EAAE,KAAKC,EAAEH,EAAE,EAAEE,EAAE,KAAK,UAAU,CAAC,IAAI,EAAE,QAAQA,EAAE,GAAGA,EAAE,EAAE,sBAAsB,OAAOA,EAAE,GAAGA,EAAE,GAAGA,EAAE,GAAGA,EAAE,GAAGA,EAAE,GAAG,GAAGA,EAAE,EAAE,EAAE,EAAE,EAAEA,EAAE,EAAE,EAAEA,EAAE,GAAGC,EAAE,GAAG,EAAED,EAAE,GAAGC,EAAE,GAAG,EAAED,EAAE,GAAGC,EAAE,GAAG,EAAED,EAAE,IAAIC,EAAEF,CAAC,EAAEC,EAAE,GAAG,IAAIA,EAAE,IAAI,GAAGA,EAAE,IAAIC,EAAEF,CAAC,EAAEC,EAAE,GAAG,IAAIA,EAAE,IAAI,GAAGA,EAAE,IAAIC,EAAEF,CAAC,EAAEC,EAAE,GAAG,IAAIA,EAAE,IAAI,GAAGC,EAAE,IAAI,CAAC,SAAS5B,EAAE0B,EAAEC,EAAE,CAAC,OAAOA,EAAE,EAAED,EAAE,EAAEC,EAAE,GAAGD,EAAE,GAAGC,EAAE,GAAGD,EAAE,GAAGC,EAAE,GAAGD,EAAE,GAAGC,CAAC,CAAC,SAASH,EAAEE,EAAEC,EAAE,CAAC,IAAIC,EAAE,IAAI7B,EAAE2B,CAAC,EAAE,EAAEC,GAAGA,EAAE,MAAMW,EAAEV,EAAE,KAAK,OAAOU,EAAE,MAAM,UAAU,CAAC,OAAOV,EAAE,KAAK,EAAE,WAAW,CAAC,EAAEU,EAAE,OAAO,UAAU,CAAC,OAAOA,EAAE,GAAGA,EAAE,EAAE,QAAQ,GAAG,qBAAqB,EAAEA,EAAE,MAAMA,EAAE,IAAI,OAAO,GAAG,UAAUtC,EAAE,EAAE4B,CAAC,EAAEU,EAAE,MAAM,UAAU,CAAC,OAAOtC,EAAE4B,EAAE,CAAC,CAAC,CAAC,GAAGU,CAAC,CAAC,SAASb,GAAG,CAAC,IAAIC,EAAE,WAAWC,EAAE,SAASC,EAAE,CAACA,EAAE,OAAOA,CAAC,EAAE,QAAQ,EAAE,EAAE,EAAEA,EAAE,OAAO,IAAI,CAACF,GAAGE,EAAE,WAAW,CAAC,EAAE,IAAIU,EAAE,mBAAmBZ,EAAEA,EAAEY,IAAI,EAAEA,GAAGZ,EAAEY,GAAGZ,EAAEA,EAAEY,IAAI,EAAEA,GAAGZ,EAAEA,GAAGY,EAAE,UAAU,CAAC,OAAOZ,IAAI,GAAG,qBAAqB,EAAE,OAAOC,CAAC,CAACpB,GAAGA,EAAE,QAAQA,EAAE,QAAQiB,EAAE3B,GAAGA,EAAE,IAAIA,EAAE,UAAU,CAAC,OAAO2B,CAAC,CAAC,EAAE,KAAK,KAAKA,CAAC,GAAGqB,EAAG,OAAOC,GAAI,UAAUA,EAAG,OAAO,QAAQ,YAAY,MAAM,CAAC,CAAC,EAAMC,GAAGrD,GAAG,CAACsD,EAAGC,IAAK,EAAE,SAAStD,EAAEY,EAAEV,EAAE,CAAC,SAASE,EAAE0B,EAAE,CAAC,IAAIC,EAAE,KAAKC,EAAE,GAAGD,EAAE,EAAE,EAAEA,EAAE,EAAE,EAAEA,EAAE,EAAE,EAAEA,EAAE,EAAE,EAAEA,EAAE,KAAK,UAAU,CAAC,IAAI,EAAEA,EAAE,EAAEA,EAAE,GAAG,GAAG,OAAOA,EAAE,EAAEA,EAAE,EAAEA,EAAE,EAAEA,EAAE,EAAEA,EAAE,EAAEA,EAAE,EAAEA,EAAE,GAAGA,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC,EAAED,KAAKA,EAAE,GAAGC,EAAE,EAAED,EAAEE,GAAGF,EAAE,QAAQG,EAAE,EAAEA,EAAED,EAAE,OAAO,GAAGC,IAAIF,EAAE,GAAGC,EAAE,WAAWC,CAAC,EAAE,EAAEF,EAAE,KAAK,CAAC,CAAC,SAAS1B,EAAEyB,EAAEC,EAAE,CAAC,OAAOA,EAAE,EAAED,EAAE,EAAEC,EAAE,EAAED,EAAE,EAAEC,EAAE,EAAED,EAAE,EAAEC,EAAE,EAAED,EAAE,EAAEC,CAAC,CAAC,SAASF,EAAEC,EAAEC,EAAE,CAAC,IAAIC,EAAE,IAAI5B,EAAE0B,CAAC,EAAEG,EAAEF,GAAGA,EAAE,MAAM,EAAE,UAAU,CAAC,OAAOC,EAAE,KAAK,IAAI,GAAG,UAAU,EAAE,OAAO,EAAE,OAAO,UAAU,CAAC,EAAG,KAAIW,EAAEX,EAAE,KAAK,IAAI,GAAG,GAAGA,EAAE,KAAK,IAAI,GAAG,WAAW,GAAGW,EAAE,IAAI,GAAG,UAAU,IAAI,GAAG,OAAO,CAAC,EAAE,EAAE,MAAMX,EAAE,KAAK,EAAE,MAAM,EAAEC,IAAI,OAAOA,GAAG,UAAU5B,EAAE4B,EAAED,CAAC,EAAE,EAAE,MAAM,UAAU,CAAC,OAAO3B,EAAE2B,EAAE,CAAC,CAAC,CAAC,GAAG,CAAC,CAACpB,GAAGA,EAAE,QAAQA,EAAE,QAAQiB,EAAE3B,GAAGA,EAAE,IAAIA,EAAE,UAAU,CAAC,OAAO2B,CAAC,CAAC,EAAE,KAAK,OAAOA,CAAC,GAAGwB,EAAG,OAAOC,GAAI,UAAUA,EAAG,OAAO,QAAQ,YAAY,MAAM,CAAC,CAAC,EAAMC,GAAGxD,GAAG,CAACyD,EAAGC,IAAK,EAAE,SAASzD,EAAEY,EAAEV,EAAE,CAAC,SAASE,EAAE0B,EAAE,CAAC,IAAIC,EAAE,KAAKC,EAAE,GAAGD,EAAE,KAAK,UAAU,CAAC,IAAI,EAAEA,EAAE,EAAEA,EAAE,IAAI,EAAE,OAAOA,EAAE,EAAEA,EAAE,EAAEA,EAAE,EAAEA,EAAE,EAAEA,EAAE,EAAEA,EAAE,EAAEA,EAAE,EAAEA,EAAE,GAAGA,EAAE,EAAEA,EAAE,EAAE,OAAO,IAAIA,EAAE,EAAEA,EAAE,EAAEA,EAAE,GAAG,GAAG,EAAE,GAAG,IAAI,CAAC,EAAEA,EAAE,EAAE,EAAEA,EAAE,EAAE,EAAEA,EAAE,EAAE,EAAEA,EAAE,EAAE,EAAEA,EAAE,EAAE,EAAED,KAAKA,EAAE,GAAGC,EAAE,EAAED,EAAEE,GAAGF,EAAE,QAAQG,EAAE,EAAEA,EAAED,EAAE,OAAO,GAAGC,IAAIF,EAAE,GAAGC,EAAE,WAAWC,CAAC,EAAE,EAAEA,GAAGD,EAAE,SAASD,EAAE,EAAEA,EAAE,GAAG,GAAGA,EAAE,IAAI,GAAGA,EAAE,KAAK,CAAC,CAAC,SAAS1B,EAAEyB,EAAEC,EAAE,CAAC,OAAOA,EAAE,EAAED,EAAE,EAAEC,EAAE,EAAED,EAAE,EAAEC,EAAE,EAAED,EAAE,EAAEC,EAAE,EAAED,EAAE,EAAEC,EAAE,EAAED,EAAE,EAAEC,EAAE,EAAED,EAAE,EAAEC,CAAC,CAAC,SAASF,EAAEC,EAAEC,EAAE,CAAC,IAAIC,EAAE,IAAI5B,EAAE0B,CAAC,EAAEG,EAAEF,GAAGA,EAAE,MAAM,EAAE,UAAU,CAAC,OAAOC,EAAE,KAAK,IAAI,GAAG,UAAU,EAAE,OAAO,EAAE,OAAO,UAAU,CAAC,EAAG,KAAIW,EAAEX,EAAE,KAAK,IAAI,GAAG,GAAGA,EAAE,KAAK,IAAI,GAAG,WAAW,GAAGW,EAAE,IAAI,GAAG,UAAU,IAAI,GAAG,OAAO,CAAC,EAAE,EAAE,MAAMX,EAAE,KAAK,EAAE,MAAM,EAAEC,IAAI,OAAOA,GAAG,UAAU5B,EAAE4B,EAAED,CAAC,EAAE,EAAE,MAAM,UAAU,CAAC,OAAO3B,EAAE2B,EAAE,CAAC,CAAC,CAAC,GAAG,CAAC,CAACpB,GAAGA,EAAE,QAAQA,EAAE,QAAQiB,EAAE3B,GAAGA,EAAE,IAAIA,EAAE,UAAU,CAAC,OAAO2B,CAAC,CAAC,EAAE,KAAK,OAAOA,CAAC,GAAG2B,EAAG,OAAOC,GAAI,UAAUA,EAAG,OAAO,QAAQ,YAAY,MAAM,CAAC,CAAC,EAAMC,GAAG3D,GAAG,CAAC4D,EAAGC,IAAK,EAAE,SAAS5D,EAAEY,EAAEV,EAAE,CAAC,SAASE,EAAE0B,EAAE,CAAC,IAAIC,EAAE,KAAKA,EAAE,KAAK,UAAU,CAAC,IAAIE,EAAEF,EAAE,EAAE,EAAEA,EAAE,EAAEY,EAAE,EAAE,EAAE,OAAOA,EAAEV,EAAE,CAAC,EAAEU,GAAGA,IAAI,EAAE,EAAEA,EAAEA,GAAG,GAAGA,EAAEV,EAAE,EAAE,EAAE,CAAC,EAAE,GAAGU,EAAEA,IAAI,GAAGA,EAAEV,EAAE,EAAE,EAAE,CAAC,EAAE,GAAGU,EAAEA,IAAI,EAAEA,EAAEV,EAAE,EAAE,EAAE,CAAC,EAAE,GAAGU,EAAEA,GAAG,EAAEA,EAAEV,EAAE,EAAE,EAAE,CAAC,EAAEU,EAAEA,EAAEA,GAAG,GAAG,GAAGA,EAAEA,GAAG,EAAEV,EAAE,CAAC,EAAE,EAAEF,EAAE,EAAE,EAAE,EAAE,EAAE,CAAC,EAAE,SAASC,EAAEC,EAAE,EAAE,CAAC,IAAIU,EAAE,EAAE,EAAE,CAAC,EAAE,GAAG,KAAK,EAAE,GAAG,EAAE,EAAE,CAAC,EAAE,MAAO,KAAI,EAAE,GAAG,EAAEA,EAAE,EAAEA,EAAE,EAAE,OAAO,EAAEA,EAAE,EAAEA,EAAE,CAAC,EAAE,EAAEA,EAAE,CAAC,GAAG,GAAG,EAAE,WAAWA,CAAC,EAAE,EAAEA,EAAE,EAAE,CAAC,GAAG,GAAG,KAAK,EAAE,OAAO,GAAG,EAAE,KAAK,CAAC,EAAE,IAAIA,EAAE,EAAEA,EAAE,GAAG,EAAEA,CAAC,IAAI,EAAE,EAAEA,EAAE,CAAC,IAAIA,GAAG,EAAE,EAAE,EAAE,CAAC,EAAE,GAAG,EAAE,EAAEA,CAAC,EAAEV,EAAE,EAAE,EAAEA,EAAE,EAAE,EAAEU,EAAE,IAAIA,EAAE,EAAE,EAAEA,EAAEV,EAAE,KAAK,CAAC,CAACD,EAAED,EAAED,CAAC,CAAC,CAAC,SAASzB,EAAEyB,EAAEC,EAAE,CAAC,OAAOA,EAAE,EAAED,EAAE,EAAE,MAAM,EAAEC,EAAE,EAAED,EAAE,EAAEC,CAAC,CAAC,SAASF,EAAEC,EAAEC,EAAE,CAACD,GAAG,OAAOA,EAAE,CAAC,IAAI,MAAM,IAAIE,EAAE,IAAI5B,EAAE0B,CAAC,EAAEG,EAAEF,GAAGA,EAAE,MAAM,EAAE,UAAU,CAAC,OAAOC,EAAE,KAAK,IAAI,GAAG,UAAU,EAAE,OAAO,EAAE,OAAO,UAAU,CAAC,EAAG,KAAIW,EAAEX,EAAE,KAAK,IAAI,GAAG,GAAGA,EAAE,KAAK,IAAI,GAAG,WAAW,GAAGW,EAAE,IAAI,GAAG,UAAU,IAAI,GAAG,OAAO,CAAC,EAAE,EAAE,MAAMX,EAAE,KAAK,EAAE,MAAM,EAAEC,IAAIA,EAAE,GAAG5B,EAAE4B,EAAED,CAAC,EAAE,EAAE,MAAM,UAAU,CAAC,OAAO3B,EAAE2B,EAAE,CAAC,CAAC,CAAC,GAAG,CAAC,CAACpB,GAAGA,EAAE,QAAQA,EAAE,QAAQiB,EAAE3B,GAAGA,EAAE,IAAIA,EAAE,UAAU,CAAC,OAAO2B,CAAC,CAAC,EAAE,KAAK,UAAUA,CAAC,GAAG8B,EAAG,OAAOC,GAAI,UAAUA,EAAG,OAAO,QAAQ,YAAY,MAAM,CAAC,CAAC,EAAMC,GAAG9D,GAAG,CAAC+D,EAAGC,IAAK,EAAE,SAAS/D,EAAEY,EAAEV,EAAE,CAAC,SAASE,EAAE0B,EAAE,CAAC,IAAIC,EAAE,KAAKA,EAAE,KAAK,UAAU,CAAC,IAAIE,EAAEF,EAAE,EAAE,EAAEA,EAAE,EAAEY,EAAEZ,EAAE,EAAE,EAAE,EAAE,OAAOA,EAAE,EAAEE,EAAEA,EAAE,WAAW,EAAE,EAAE,EAAEU,EAAE,GAAG,GAAG,EAAE,EAAE,EAAEA,EAAEA,EAAE,EAAE,GAAG,EAAE,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,IAAI,GAAG,GAAG,IAAI,GAAG,EAAE,EAAEA,CAAC,EAAE,EAAE,EAAEZ,EAAE,EAAEY,EAAE,GAAGV,EAAEA,IAAI,IAAI,CAAC,EAAE,SAASD,EAAEC,EAAE,EAAE,CAAC,IAAIU,EAAE,EAAE,EAAEG,EAAEkB,EAAEC,EAAE,CAAC,EAAE,EAAE,IAAI,IAAI,KAAK,EAAE,IAAI,EAAE,EAAE,EAAE,OAAO,EAAE,EAAE,KAAK,EAAE,EAAE,EAAE,KAAK,IAAI,EAAE,EAAE,MAAM,GAAG,EAAE,EAAEnB,EAAE,IAAIA,EAAE,EAAE,EAAEA,EAAE,IAAI,GAAG,EAAE,YAAYA,EAAE,IAAI,EAAE,MAAM,GAAGA,IAAI,IAAIkB,EAAE,GAAG,GAAG,GAAG,GAAG,GAAG,IAAI,GAAG,GAAG,GAAG,EAAE,GAAG,IAAI,GAAGlB,GAAG,IAAIkB,EAAEA,EAAE,WAAW,EAAErB,EAAEsB,EAAEnB,EAAE,GAAG,GAAG,EAAEkB,EAAE,EAAErB,GAAG,EAAE,EAAE,EAAE,GAAG,IAAI,GAAG,MAAMsB,GAAG,GAAG,EAAE,QAAQ,GAAG,GAAG,EAAE,IAAI,EAAE,IAAInB,EAAE,EAAE,IAAIA,EAAE,EAAE,EAAEA,EAAE,EAAEmB,EAAE,EAAE,GAAG,GAAG,EAAEtB,EAAEsB,EAAE,EAAE,EAAE,EAAE,GAAG,EAAE,GAAG,GAAG,GAAGtB,GAAGA,GAAG,GAAG,GAAG,IAAI,GAAGA,GAAGA,IAAI,GAAGsB,EAAE,CAAC,EAAE,EAAEtB,EAAEV,EAAE,EAAE+B,EAAE/B,EAAE,EAAEgC,EAAEhC,EAAE,EAAE,CAAC,CAACD,EAAED,EAAED,CAAC,CAAC,CAAC,SAASzB,EAAEyB,EAAEC,EAAE,CAAC,OAAOA,EAAE,EAAED,EAAE,EAAEC,EAAE,EAAED,EAAE,EAAEC,EAAE,EAAED,EAAE,EAAE,MAAM,EAAEC,CAAC,CAAC,SAASF,EAAEC,EAAEC,EAAE,CAACD,GAAG,OAAOA,EAAE,CAAC,IAAI,MAAM,IAAIE,EAAE,IAAI5B,EAAE0B,CAAC,EAAEG,EAAEF,GAAGA,EAAE,MAAM,EAAE,UAAU,CAAC,OAAOC,EAAE,KAAK,IAAI,GAAG,UAAU,EAAE,OAAO,EAAE,OAAO,UAAU,CAAC,EAAG,KAAIW,EAAEX,EAAE,KAAK,IAAI,GAAG,GAAGA,EAAE,KAAK,IAAI,GAAG,WAAW,GAAGW,EAAE,IAAI,GAAG,UAAU,IAAI,GAAG,OAAO,CAAC,EAAE,EAAE,MAAMX,EAAE,KAAK,EAAE,MAAM,EAAEC,IAAIA,EAAE,GAAG5B,EAAE4B,EAAED,CAAC,EAAE,EAAE,MAAM,UAAU,CAAC,OAAO3B,EAAE2B,EAAE,CAAC,CAAC,CAAC,GAAG,CAAC,CAACpB,GAAGA,EAAE,QAAQA,EAAE,QAAQiB,EAAE3B,GAAGA,EAAE,IAAIA,EAAE,UAAU,CAAC,OAAO2B,CAAC,CAAC,EAAE,KAAK,QAAQA,CAAC,GAAGiC,EAAG,OAAOC,GAAI,UAAUA,EAAG,OAAO,QAAQ,YAAY,MAAM,CAAC,CAAC,EAAMG,GAAGnE,GAAG,CAACoE,EAAGC,IAAK,EAAE,SAASpE,EAAEY,EAAEV,EAAE,CAAC,SAASE,EAAE0B,EAAE,CAAC,IAAIC,EAAE,KAAKC,EAAE,GAAGD,EAAE,KAAK,UAAU,CAAC,IAAI,EAAEA,EAAE,EAAEY,EAAEZ,EAAE,EAAE,EAAEA,EAAE,EAAE,EAAEA,EAAE,EAAE,OAAO,EAAE,GAAG,GAAG,IAAI,EAAEY,EAAEA,EAAEA,EAAE,EAAE,EAAE,EAAE,GAAG,GAAG,IAAI,EAAE,EAAE,EAAE,EAAE,EAAE,EAAEZ,EAAE,EAAE,EAAE,GAAG,GAAG,IAAI,GAAGY,EAAEZ,EAAE,EAAEY,EAAEA,EAAE,EAAE,EAAEZ,EAAE,EAAE,GAAG,GAAGY,IAAI,GAAG,EAAEZ,EAAE,EAAE,EAAE,EAAE,CAAC,EAAEA,EAAE,EAAE,EAAEA,EAAE,EAAE,EAAEA,EAAE,EAAE,YAAYA,EAAE,EAAE,WAAWD,IAAI,KAAK,MAAMA,CAAC,GAAGC,EAAE,EAAED,EAAE,WAAW,EAAEC,EAAE,EAAED,EAAE,GAAGE,GAAGF,EAAE,QAAQG,EAAE,EAAEA,EAAED,EAAE,OAAO,GAAGC,IAAIF,EAAE,GAAGC,EAAE,WAAWC,CAAC,EAAE,EAAEF,EAAE,KAAK,CAAC,CAAC,SAAS1B,EAAEyB,EAAEC,EAAE,CAAC,OAAOA,EAAE,EAAED,EAAE,EAAEC,EAAE,EAAED,EAAE,EAAEC,EAAE,EAAED,EAAE,EAAEC,EAAE,EAAED,EAAE,EAAEC,CAAC,CAAC,SAASF,EAAEC,EAAEC,EAAE,CAAC,IAAIC,EAAE,IAAI5B,EAAE0B,CAAC,EAAEG,EAAEF,GAAGA,EAAE,MAAM,EAAE,UAAU,CAAC,OAAOC,EAAE,KAAK,IAAI,GAAG,UAAU,EAAE,OAAO,EAAE,OAAO,UAAU,CAAC,EAAG,KAAIW,EAAEX,EAAE,KAAK,IAAI,GAAG,GAAGA,EAAE,KAAK,IAAI,GAAG,WAAW,GAAGW,EAAE,IAAI,GAAG,UAAU,IAAI,GAAG,OAAO,CAAC,EAAE,EAAE,MAAMX,EAAE,KAAK,EAAE,MAAM,EAAEC,IAAI,OAAOA,GAAG,UAAU5B,EAAE4B,EAAED,CAAC,EAAE,EAAE,MAAM,UAAU,CAAC,OAAO3B,EAAE2B,EAAE,CAAC,CAAC,CAAC,GAAG,CAAC,CAACpB,GAAGA,EAAE,QAAQA,EAAE,QAAQiB,EAAE3B,GAAGA,EAAE,IAAIA,EAAE,UAAU,CAAC,OAAO2B,CAAC,CAAC,EAAE,KAAK,OAAOA,CAAC,GAAGsC,EAAG,OAAOC,GAAI,UAAUA,EAAG,OAAO,QAAQ,YAAY,MAAM,CAAC,CAAC,EAAMC,GAAGtE,GAAG,IAAI,CAAC,CAAC,EAAMuE,GAAGvE,GAAG,CAACwE,EAAGC,IAAK,EAAE,SAASxE,EAAEY,EAAEV,EAAE,CAAC,IAAIE,EAAE,IAAIC,EAAE,EAAEwB,EAAE,GAAGC,EAAE,SAASC,EAAE7B,EAAE,IAAIE,EAAEC,CAAC,EAAE2B,EAAE9B,EAAE,IAAI,EAAE2B,CAAC,EAAEI,EAAED,EAAE,EAAE,EAAE5B,EAAE,EAAEuC,EAAE,SAAS,EAAE8B,EAAEC,EAAEC,EAAE,CAAC,IAAIC,EAAE,CAAC,EAAEF,EAAEA,GAAG,GAAG,CAAC,QAAQ,EAAE,EAAEA,GAAG,CAAC,EAAE,IAAIG,EAAEZ,EAAED,EAAEU,EAAE,QAAQ,CAACD,EAAEK,EAAElE,CAAC,CAAC,EAAE6D,GAAG,KAAK,EAAE,EAAEA,EAAE,CAAC,EAAEG,CAAC,EAAE,EAAE,IAAI,EAAEA,CAAC,EAAEG,EAAE,UAAU,CAAC,QAAQC,EAAE,EAAE,EAAE3E,CAAC,EAAE4E,EAAElD,EAAEmD,EAAE,EAAEF,EAAEhD,GAAGgD,GAAGA,EAAEE,GAAG9E,EAAE6E,GAAG7E,EAAE8E,EAAE,EAAE,EAAE,CAAC,EAAE,KAAKF,GAAG/C,GAAG+C,GAAG,EAAEC,GAAG,EAAEC,KAAK,EAAE,OAAOF,EAAEE,GAAGD,CAAC,EAAE,OAAOF,EAAE,MAAM,UAAU,CAAC,OAAO,EAAE,EAAE,CAAC,EAAE,CAAC,EAAEA,EAAE,MAAM,UAAU,CAAC,OAAO,EAAE,EAAE,CAAC,EAAE,UAAU,EAAEA,EAAE,OAAOA,EAAEd,EAAEa,EAAE,EAAE,CAAC,EAAElE,CAAC,GAAG8D,EAAE,MAAMC,GAAG,SAASK,EAAEC,EAAEC,EAAEC,EAAE,CAAC,OAAOA,IAAIA,EAAE,GAAGrC,EAAEqC,EAAE,CAAC,EAAEH,EAAE,MAAM,UAAU,CAAC,OAAOlC,EAAE,EAAE,CAAC,CAAC,CAAC,GAAGoC,GAAGhF,EAAE4B,CAAC,EAAEkD,EAAEC,GAAGD,CAAC,GAAGD,EAAEF,EAAE,WAAWH,EAAEA,EAAE,OAAO,MAAMxE,EAAEwE,EAAE,KAAK,CAAC,CAAC,SAAS,EAAED,EAAE,CAAC,IAAIC,EAAEC,EAAEF,EAAE,OAAOG,EAAE,KAAKC,EAAE,EAAE,EAAED,EAAE,EAAEA,EAAE,EAAE,EAAEG,EAAEH,EAAE,EAAE,CAAC,EAAE,IAAID,IAAIF,EAAE,CAACE,GAAG,GAAGE,EAAEzE,GAAG2E,EAAEF,CAAC,EAAEA,IAAI,IAAIA,EAAE,EAAEA,EAAEzE,EAAEyE,IAAIE,EAAEF,CAAC,EAAEE,EAAE,EAAE,EAAE,EAAEN,EAAEI,EAAEF,CAAC,GAAGD,EAAEK,EAAEF,CAAC,EAAE,EAAEE,EAAE,CAAC,EAAEL,GAAGE,EAAE,EAAE,SAASI,EAAE,CAAC,QAAQC,EAAEC,EAAE,EAAEC,EAAEP,EAAE,EAAEQ,EAAER,EAAE,EAAES,EAAET,EAAE,EAAEI,KAAKC,EAAEI,EAAEF,EAAE,EAAEA,EAAE,CAAC,EAAED,EAAEA,EAAE9E,EAAEiF,EAAE,GAAGA,EAAEF,CAAC,EAAEE,EAAED,EAAE,EAAEA,EAAEH,CAAC,IAAII,EAAED,CAAC,EAAEH,EAAE,EAAE,OAAOL,EAAE,EAAEO,EAAEP,EAAE,EAAEQ,EAAEF,CAAC,GAAG9E,CAAC,CAAC,CAAC,SAAS0C,EAAE2B,EAAEC,EAAE,CAAC,OAAOA,EAAE,EAAED,EAAE,EAAEC,EAAE,EAAED,EAAE,EAAEC,EAAE,EAAED,EAAE,EAAE,MAAM,EAAEC,CAAC,CAAC,SAASV,EAAES,EAAEC,EAAE,CAAC,IAAIC,EAAE,CAAC,EAAEC,EAAE,OAAOH,EAAEI,EAAE,GAAGH,GAAGE,GAAG,SAAS,IAAIC,KAAKJ,EAAE,GAAG,CAACE,EAAE,KAAKX,EAAES,EAAEI,CAAC,EAAEH,EAAE,CAAC,CAAC,CAAC,OAAO,EAAE,CAAC,CAAC,OAAOC,EAAE,OAAOA,EAAEC,GAAG,SAASH,EAAEA,EAAE,IAAI,CAAC,SAASR,EAAEQ,EAAEC,EAAE,CAAC,QAAQC,EAAEF,EAAE,GAAGG,EAAEC,EAAE,EAAEA,EAAEF,EAAE,QAAQD,EAAE,EAAEG,CAAC,EAAE,GAAGD,GAAGF,EAAE,EAAEG,CAAC,EAAE,IAAIF,EAAE,WAAWE,GAAG,EAAE,OAAOC,EAAEJ,CAAC,CAAC,CAAC,SAAS,GAAG,CAAC,GAAG,CAAC,IAAID,EAAE,OAAO9B,IAAI8B,EAAE9B,EAAE,aAAa8B,EAAEA,EAAErE,CAAC,GAAGqE,EAAE,IAAI,WAAWrE,CAAC,GAAGJ,EAAE,QAAQA,EAAE,UAAU,gBAAgByE,CAAC,GAAGK,EAAEL,CAAC,CAAC,OAAOG,EAAE,CAAC,IAAIF,EAAE1E,EAAE,UAAU2E,EAAED,GAAGA,EAAE,QAAQ,MAAM,CAAC,CAAC,IAAI,KAAK1E,EAAE2E,EAAE3E,EAAE,OAAO8E,EAAElE,CAAC,CAAC,CAAC,CAAC,CAAC,SAASkE,EAAEL,EAAE,CAAC,OAAO,OAAO,aAAa,MAAM,EAAEA,CAAC,CAAC,CAAC,GAAGR,EAAE/D,EAAE,OAAO,EAAEU,CAAC,EAAE,OAAO4D,GAAI,UAAUA,EAAG,QAAQ,CAACA,EAAG,QAAQ,EAAE,GAAG,CAAC7B,EAAE0B,GAAG,CAAC,OAAOI,EAAE,CAAC,CAAC,MAAM,OAAO,QAAQ,YAAY,OAAO,IAAI,OAAO,UAAU,CAAC,OAAO,CAAC,CAAC,EAAEvE,EAAE,OAAO4B,CAAC,EAAE,CAAC,GAAG,OAAO,MAAM,YAAY,KAAKyC,EAAG,CAAC,EAAE,IAAI,CAAC,CAAC,EAAMe,GAAGvF,GAAG,CAACwF,EAAIC,IAAK,CAAC,IAAIC,EAAGxC,GAAG,EAAEyC,EAAGtC,GAAG,EAAEuC,EAAGpC,GAAG,EAAEqC,EAAGlC,GAAG,EAAEmC,EAAGhC,GAAG,EAAEiC,EAAG5B,GAAG,EAAE6B,EAAGzB,GAAG,EAAEyB,EAAG,KAAKN,EAAGM,EAAG,OAAOL,EAAGK,EAAG,OAAOJ,EAAGI,EAAG,UAAUH,EAAGG,EAAG,QAAQF,EAAGE,EAAG,OAAOD,EAAGN,EAAG,QAAQO,CAAE,CAAC,EAAMC,GAAGjG,GAAG,IAAI,CAAC,CAAC,EAAMkG,GAAGlG,GAAG,IAAI,CAAC,CAAC,EAAMmG,GAAGnG,GAAG,IAAI,CAAC,CAAC,EAAMoG,GAAGpG,GAAG,IAAI,CAAC,CAAC,EAAMqG,GAAGrG,GAAG,IAAI,CAAC,CAAC,EAAMsG,GAAGtG,GAAG,IAAI,CAAC,CAAC,EAAMuG,GAAGvG,GAAG,CAACwG,EAAGC,IAAK,CAAC,IAAIC,GAAI,IAAI,CAAC,IAAIzG,EAAE,OAAO,UAAU,aAAa,SAAS,cAAc,SAAS,cAAc,IAAI,OAAO,OAAO,OAAO,YAAY,cAAcA,EAAEA,GAAG,YAAY,SAASY,EAAE,CAACA,EAAEA,GAAG,CAAC,EAAE,SAASV,GAAG,CAAC,OAAOwG,GAAG,QAAQC,IAAIC,GAAGF,GAAG,MAAM,EAAEG,EAAE,CAAC,SAASzG,GAAG,CAAC,OAAOsG,GAAG,QAAQC,IAAIC,GAAGF,GAAG,MAAM,EAAEI,EAAE,CAAC,SAAS,GAAG,CAAC,OAAOJ,GAAG,QAAQC,IAAIC,GAAGF,GAAG,MAAM,EAAEK,EAAE,CAAC,SAASlF,GAAG,CAAC,OAAO6E,GAAG,QAAQC,IAAIC,GAAGF,GAAG,MAAM,EAAEM,EAAE,CAAC,SAASlF,GAAG,CAAC,OAAO4E,GAAG,QAAQC,IAAIC,GAAGF,GAAG,MAAM,EAAEO,EAAE,CAAC,SAASlF,GAAG,CAAC,OAAO2E,GAAG,QAAQC,IAAIC,GAAGF,GAAG,MAAM,EAAEQ,EAAE,CAAC,SAASlF,GAAG,CAAC,OAAO0E,GAAG,QAAQC,IAAIC,GAAGF,GAAG,MAAM,EAAES,EAAE,CAAC,IAAIlF,EAAE,OAAOrB,GAAG,YAAYA,EAAE,CAAC,EAAE8B,EAAEC,EAAEV,EAAE,MAAM,IAAI,QAAQ,SAASmF,EAAEC,EAAE,CAAC3E,EAAE0E,EAAEzE,EAAE0E,CAAC,CAAC,EAAE,IAAIzE,EAAE,OAAO,SAAS,aAAa,QAAQ,YAAYA,EAAE,CAAC,kBAAkB,QAAQ,UAAU,mBAAmB,EAAE,mBAAmB,QAAQ,UAAU,oBAAoB,CAAC,GAAG,IAAIC,EAAE,OAAO,OAAO,CAAC,EAAEZ,CAAC,EAAEa,EAAE,CAAC,EAAEkB,EAAE,iBAAiBC,EAAE,CAACmD,EAAEC,IAAI,CAAC,MAAMA,CAAC,EAAEC,EAAE,OAAO,QAAQ,SAASxC,EAAE,OAAO,eAAe,WAAWL,EAAE,OAAO,SAAS,UAAU,OAAO,QAAQ,UAAU,UAAU,OAAO,QAAQ,SAAS,MAAM,SAASC,EAAEzC,EAAE,wBAAwB,GAAG0C,EAAE,GAAG,SAASC,EAAEwC,EAAE,CAAC,OAAOnF,EAAE,WAAWA,EAAE,WAAWmF,EAAEzC,CAAC,EAAEA,EAAEyC,CAAC,CAAC,IAAIvC,EAAE0C,EAAExC,EAAE,EAAE,SAASE,EAAEmC,EAAE,CAAIA,aAAaI,IAAUC,EAAE,6BAA6BL,CAAC,CAAC,CAAC,GAAG3C,EAAE,CAAC,IAAIS,EAAEe,GAAG,EAAEd,EAAEe,GAAG,EAAEpB,EAAEH,EAAEQ,EAAE,QAAQR,CAAC,EAAE,IAAIA,EAAE,UAAU,IAAIE,EAAE,CAACwC,EAAEK,MAAML,EAAEM,GAAGN,CAAC,EAAE,IAAI,IAAIA,CAAC,EAAElC,EAAE,UAAUkC,CAAC,EAAEnC,EAAE,aAAamC,EAAEK,GAAG,OAAO,MAAM,GAAG3C,EAAEsC,GAAG,CAAC,IAAIK,GAAG7C,EAAEwC,EAAE,EAAE,EAAE,OAAOK,GAAG,SAASA,GAAG,IAAI,WAAWA,EAAE,GAAGA,EAAE,EAAEH,EAAE,CAACF,EAAEK,GAAGE,KAAK,CAACP,EAAEM,GAAGN,CAAC,EAAE,IAAI,IAAIA,CAAC,EAAElC,EAAE,UAAUkC,CAAC,EAAEnC,EAAE,SAASmC,EAAE,SAASQ,GAAGC,GAAG,CAACD,GAAGD,GAAGC,EAAE,EAAEH,GAAGI,GAAG,MAAM,CAAC,CAAC,CAAC,EAAE,QAAQ,KAAK,OAAO,IAAI9D,EAAE,QAAQ,KAAK,CAAC,EAAE,QAAQ,MAAM,GAAG,GAAGlB,EAAE,QAAQ,KAAK,MAAM,CAAC,EAAE,QAAQ,GAAG,oBAAoB,SAASuE,EAAE,CAAC,GAAG,EAAEA,aAAaG,IAAI,MAAMH,CAAC,CAAC,EAAE,QAAQ,GAAG,qBAAqB,SAASA,EAAE,CAAC,MAAMA,CAAC,CAAC,EAAEpD,EAAE,CAACoD,EAAEK,KAAK,CAAC,GAAGK,GAAG,EAAE,MAAM,QAAQ,SAASV,EAAEK,GAAGzC,EAAEyC,EAAE,EAAE,QAAQ,KAAKL,CAAC,CAAC,EAAEpF,EAAE,QAAQ,UAAU,CAAC,MAAM,4BAA4B,EAAE,IAAImF,EAAE,GAAG,CAACA,EAAEjB,GAAG,CAAC,OAAOkB,EAAE,CAAC,MAAM,QAAQ,MAAM,yGAAyG,EAAEA,CAAC,CAAC,OAAO,OAAOD,EAAE,MAAM,MAAME,GAAGxC,KAAKA,EAAEH,EAAE,KAAK,SAAS,KAAK,OAAO,UAAU,aAAa,SAAS,gBAAgBA,EAAE,SAAS,cAAc,KAAK,OAAO3E,GAAG,aAAaA,IAAI2E,EAAE3E,GAAG2E,EAAE,QAAQ,OAAO,IAAI,EAAEA,EAAEA,EAAE,OAAO,EAAEA,EAAE,QAAQ,SAAS,EAAE,EAAE,YAAY,GAAG,EAAE,CAAC,EAAEA,EAAE,GAAGF,IAAII,EAAEuC,GAAG,CAAC,IAAIC,EAAE,IAAI,eAAe,OAAOA,EAAE,KAAK,MAAMD,EAAE,EAAE,EAAEC,EAAE,KAAK,IAAI,EAAEA,EAAE,YAAY,EAAEvC,IAAIC,EAAEqC,GAAG,CAAC,IAAIC,EAAE,IAAI,eAAe,OAAOA,EAAE,KAAK,MAAMD,EAAE,EAAE,EAAEC,EAAE,aAAa,cAAcA,EAAE,KAAK,IAAI,EAAE,IAAI,WAAWA,EAAE,QAAQ,CAAC,GAAGE,EAAE,CAACH,EAAEC,EAAEK,KAAK,CAAC,IAAIE,GAAG,IAAI,eAAeA,GAAG,KAAK,MAAMR,EAAE,EAAE,EAAEQ,GAAG,aAAa,cAAcA,GAAG,OAAO,IAAI,CAAC,GAAGA,GAAG,QAAQ,KAAKA,GAAG,QAAQ,GAAGA,GAAG,SAAS,CAACP,EAAEO,GAAG,QAAQ,EAAE,MAAM,CAACF,GAAG,CAAC,EAAEE,GAAG,QAAQF,GAAGE,GAAG,KAAK,IAAI,CAAC,GAAG,EAAER,GAAG,SAAS,MAAMA,GAAG3C,GAAG,OAAO,aAAa,cAAc,OAAO,YAAY2B,GAAG,EAAE,aAAa,IAAI,EAAE,QAAQ,IAAI,KAAK,OAAO,EAAEf,EAAE,QAAQ,KAAK,KAAK,OAAO,EAAEZ,IAAI,EAAE2C,GAAGlC,EAAE,UAAU,EAAEkC,EAAE;AAAA,CAC5moB,EAAE/B,EAAE+B,GAAGlC,EAAE,UAAU,EAAEkC,EAAE;AAAA,CACvB,GAAG,IAAIY,EAAE/F,EAAE,OAAO,EAAEwF,EAAExF,EAAE,UAAUoD,EAAE,OAAO,OAAOpD,EAAEY,CAAC,EAAEA,EAAE,KAAKZ,EAAE,YAAYa,EAAEb,EAAE,WAAWA,EAAE,cAAc+B,EAAE/B,EAAE,aAAaA,EAAE,OAAOgC,EAAEhC,EAAE,MAAM,IAAIgG,GAAE,EAAEC,GAAG,QAAQ,KAAKC,GAAG,QAAQ,MAAMC,GAAG,QAAQ,gBAAgBC,GAAGpG,EAAE,aAAaoG,GAAGpG,EAAE,YAAY,IAAIqG,GAAGrG,EAAE,eAAe,GAAG,OAAO,aAAa,UAAUsG,GAAG,iCAAiC,EAAE,IAAI7B,GAAG8B,GAAGC,GAAG,GAAGC,GAAG,SAASC,GAAGvB,EAAEC,EAAE,CAACD,GAAGmB,GAAGlB,CAAC,CAAC,CAAC,IAAIuB,GAAG,OAAO,aAAa,YAAY,IAAI,YAAY,MAAM,EAAE,OAAO,SAASC,GAAGzB,EAAEC,EAAEK,GAAG,CAACL,KAAK,EAAE,QAAQO,GAAGP,EAAEK,GAAGG,GAAGR,EAAED,EAAES,EAAE,GAAG,EAAEA,IAAID,KAAK,EAAEC,GAAG,GAAGA,GAAGR,EAAE,IAAID,EAAE,QAAQwB,GAAG,OAAOA,GAAG,OAAOxB,EAAE,kBAAkB,kBAAkBA,EAAE,MAAMC,EAAEQ,EAAE,EAAET,EAAE,SAASC,EAAEQ,EAAE,CAAC,EAAE,QAAQC,GAAG,GAAGT,EAAEQ,IAAI,CAAC,IAAIiB,GAAG1B,EAAEC,GAAG,EAAE,GAAG,EAAEyB,GAAG,KAAK,CAAChB,IAAI,OAAO,aAAagB,EAAE,EAAE,QAAQ,CAAC,IAAIC,GAAG3B,EAAEC,GAAG,EAAE,GAAG,IAAIyB,GAAG,MAAM,IAAI,CAAChB,IAAI,OAAO,cAAcgB,GAAG,KAAK,EAAEC,EAAE,EAAE,QAAQ,CAAC,IAAIC,GAAG5B,EAAEC,GAAG,EAAE,GAAG,IAAIyB,GAAG,MAAM,IAAIA,IAAIA,GAAG,KAAK,GAAGC,IAAI,EAAEC,GAAGF,IAAIA,GAAG,IAAI,GAAGC,IAAI,GAAGC,IAAI,EAAE5B,EAAEC,GAAG,EAAE,GAAGyB,GAAG,MAAMhB,IAAI,OAAO,aAAagB,EAAE,MAAM,CAAC,IAAIG,GAAGH,GAAG,MAAMhB,IAAI,OAAO,aAAa,MAAMmB,IAAI,GAAG,MAAMA,GAAG,IAAI,CAAC,CAAC,CAAC,OAAOnB,EAAE,CAAC,SAASoB,GAAG9B,EAAEC,EAAE,CAAC,OAAOD,KAAK,EAAEA,EAAEyB,GAAGzI,EAAE,EAAEgH,EAAEC,CAAC,EAAE,EAAE,CAAC,SAAS8B,GAAG/B,EAAEC,EAAEK,GAAGE,GAAG,CAAC,GAAGF,MAAM,EAAE,EAAEE,GAAG,GAAG,MAAO,GAAE,QAAQC,GAAGH,GAAGI,GAAGJ,GAAGE,GAAG,EAAEkB,GAAG,EAAEA,GAAG1B,EAAE,OAAO,EAAE0B,GAAG,CAAC,IAAIC,GAAG3B,EAAE,WAAW0B,EAAE,EAAE,GAAGC,IAAI,OAAOA,IAAI,MAAM,CAAC,IAAIC,GAAG5B,EAAE,WAAW,EAAE0B,EAAE,EAAEC,GAAG,QAAQA,GAAG,OAAO,IAAIC,GAAG,IAAI,CAAC,GAAGD,IAAI,IAAI,CAAC,GAAGrB,IAAII,GAAG,MAAMT,EAAEK,OAAO,CAAC,EAAEqB,EAAE,SAASA,IAAI,KAAK,CAAC,GAAGrB,GAAG,GAAGI,GAAG,MAAMT,EAAEK,OAAO,CAAC,EAAE,IAAIqB,IAAI,EAAE1B,EAAEK,OAAO,CAAC,EAAE,IAAIqB,GAAG,EAAE,SAASA,IAAI,MAAM,CAAC,GAAGrB,GAAG,GAAGI,GAAG,MAAMT,EAAEK,OAAO,CAAC,EAAE,IAAIqB,IAAI,GAAG1B,EAAEK,OAAO,CAAC,EAAE,IAAIqB,IAAI,EAAE,GAAG1B,EAAEK,OAAO,CAAC,EAAE,IAAIqB,GAAG,EAAE,KAAK,CAAC,GAAGrB,GAAG,GAAGI,GAAG,MAAMT,EAAEK,OAAO,CAAC,EAAE,IAAIqB,IAAI,GAAG1B,EAAEK,OAAO,CAAC,EAAE,IAAIqB,IAAI,GAAG,GAAG1B,EAAEK,OAAO,CAAC,EAAE,IAAIqB,IAAI,EAAE,GAAG1B,EAAEK,OAAO,CAAC,EAAE,IAAIqB,GAAG,EAAE,CAAC,CAAC,OAAO1B,EAAEK,KAAK,CAAC,EAAE,EAAEA,GAAGG,EAAE,CAAC,SAASuB,GAAGhC,EAAEC,EAAEK,GAAG,CAAC,OAAOyB,GAAG/B,EAAEhH,EAAE,EAAEiH,EAAEK,EAAE,CAAC,CAAC,IAAIf,GAAGE,GAAGC,GAAGC,GAAGsC,GAAGrC,GAAGC,GAAGC,GAAGC,GAAGzC,IAAIiC,GAAG1E,EAAE,QAAQ,SAAS2E,GAAGQ,EAAE,CAACT,GAAGS,EAAEnF,EAAE,MAAM4E,GAAG,IAAI,UAAUO,CAAC,EAAEnF,EAAE,OAAO8E,GAAG,IAAI,WAAWK,CAAC,EAAEnF,EAAE,OAAO+E,GAAG,IAAI,WAAWI,CAAC,EAAEnF,EAAE,OAAO6E,GAAG,IAAI,WAAWM,CAAC,EAAEnF,EAAE,QAAQoH,GAAG,IAAI,YAAYjC,CAAC,EAAEnF,EAAE,QAAQgF,GAAG,IAAI,YAAYG,CAAC,EAAEnF,EAAE,QAAQiF,GAAG,IAAI,aAAaE,CAAC,EAAEnF,EAAE,QAAQkF,GAAG,IAAI,aAAaC,CAAC,CAAC,CAAC,IAAIkC,GAAGrH,EAAE,gBAAgB,SAAS,GAAGyC,EAAEgC,GAAGzE,EAAE,WAAW0E,GAAG1E,EAAE,eAAeA,EAAE,WAAWyE,GAAGzE,EAAE,mBAAmByE,GAAG,IAAI,YAAY,OAAO,CAAC,QAAQ4C,GAAG,MAAM,QAAQ,MAAM,OAAO,EAAE,CAAC,EAAE,EAAE5C,GAAG,kBAAkB,mBAAmB,MAAMe,EAAE,6NAA6N,EAAEhD,GAAGgD,EAAE,2GAA2G,EAAE,MAAM,YAAY,EAAEf,KAAKC,GAAGD,GAAG,QAAQ4C,GAAG3C,GAAG,WAAWC,GAAGD,EAAE,EAAE,IAAI4C,GAAGC,GAAG,CAAC,EAAEC,GAAG,CAAC,EAAEC,GAAG,CAAC,EAAEC,GAAG,GAAG,SAAS5B,IAAI,CAAC,OAAOO,EAAE,CAAC,SAASsB,IAAI,CAAC,GAAG3H,EAAE,OAAO,IAAI,OAAOA,EAAE,QAAQ,aAAaA,EAAE,OAAO,CAACA,EAAE,MAAM,GAAGA,EAAE,OAAO,QAAQ4H,GAAG5H,EAAE,OAAO,MAAM,CAAC,EAAE6H,GAAGN,EAAE,CAAC,CAAC,SAASO,IAAI,CAACJ,GAAG,GAAG,CAACjF,GAAGoF,GAAGL,EAAE,CAAC,CAAC,SAASO,IAAI,CAAC,GAAG,CAACtF,EAAE,CAAC,GAAGzC,EAAE,QAAQ,IAAI,OAAOA,EAAE,SAAS,aAAaA,EAAE,QAAQ,CAACA,EAAE,OAAO,GAAGA,EAAE,QAAQ,QAAQgI,GAAGhI,EAAE,QAAQ,MAAM,CAAC,EAAE6H,GAAGJ,EAAE,CAAC,CAAC,CAAC,SAASG,GAAGzC,EAAE,CAACoC,GAAG,QAAQpC,CAAC,CAAC,CAAC,SAAS8C,GAAG9C,EAAE,CAACqC,GAAG,QAAQrC,CAAC,CAAC,CAAC,SAAS6C,GAAG7C,EAAE,CAACsC,GAAG,QAAQtC,CAAC,CAAC,CAAC,IAAI+C,GAAG,EAAEC,GAAG,KAAKC,GAAG,KAAK,SAASC,GAAGlD,EAAE,CAAC+C,KAAKlI,EAAE,wBAAwBA,EAAE,uBAAuBkI,EAAE,CAAC,CAAC,SAASI,GAAGnD,EAAE,CAAC,GAAG+C,KAAKlI,EAAE,wBAAwBA,EAAE,uBAAuBkI,EAAE,EAAEA,IAAI,IAAIC,KAAK,OAAO,cAAcA,EAAE,EAAEA,GAAG,MAAMC,IAAI,CAAC,IAAIhD,EAAEgD,GAAGA,GAAG,KAAKhD,EAAE,CAAC,CAAC,CAAC,SAASkB,GAAGnB,EAAE,CAACnF,EAAE,SAASA,EAAE,QAAQmF,CAAC,EAAEA,EAAE,WAAWA,EAAE,IAAIK,EAAEL,CAAC,EAAEqB,GAAG,GAAGC,GAAG,EAAEtB,GAAG,2CAA2C,IAAIC,EAAE,IAAI,YAAY,aAAaD,CAAC,EAAE,MAAMzE,EAAE0E,CAAC,EAAEA,CAAC,CAAC,IAAImD,GAAG,wCAAwC,SAASC,GAAGrD,EAAE,CAAC,OAAOA,EAAE,WAAWoD,EAAE,CAAC,CAAC,SAAS7C,GAAGP,EAAE,CAAC,OAAOA,EAAE,WAAW,SAAS,CAAC,CAAC,IAAIsD,GAAGA,GAAG,uCAAuCD,GAAGC,EAAE,IAAIA,GAAG9F,EAAE8F,EAAE,GAAG,SAASC,GAAGvD,EAAE,CAAC,GAAG,CAAC,GAAGA,GAAGsD,IAAIrC,GAAG,OAAO,IAAI,WAAWA,EAAE,EAAE,GAAGtD,EAAE,OAAOA,EAAEqC,CAAC,EAAE,KAAK,iDAAiD,OAAOC,EAAE,CAACkB,GAAGlB,CAAC,CAAC,CAAC,CAAC,SAASuD,IAAI,CAAC,GAAG,CAACvC,KAAKf,GAAGxC,GAAG,CAAC,GAAG,OAAO,OAAO,YAAY,CAAC6C,GAAG+C,EAAE,EAAE,OAAO,MAAMA,GAAG,CAAC,YAAY,aAAa,CAAC,EAAE,KAAK,SAAStD,EAAE,CAAC,GAAG,CAACA,EAAE,GAAG,KAAK,uCAAuCsD,GAAG,IAAI,OAAOtD,EAAE,YAAY,CAAC,CAAC,EAAE,MAAM,UAAU,CAAC,OAAOuD,GAAGD,EAAE,CAAC,CAAC,EAAE,GAAGnD,EAAE,OAAO,IAAI,QAAQ,SAASH,EAAEC,EAAE,CAACE,EAAEmD,GAAG,SAAShD,GAAG,CAACN,EAAE,IAAI,WAAWM,EAAE,CAAC,CAAC,EAAEL,CAAC,CAAC,CAAC,CAAC,CAAC,OAAO,QAAQ,QAAQ,EAAE,KAAK,UAAU,CAAC,OAAOsD,GAAGD,EAAE,CAAC,CAAC,CAAC,CAAC,SAASG,IAAI,CAAC,IAAIzD,EAAE,CAAC,IAAI0D,GAAG,uBAAuBA,EAAE,EAAE,SAASzD,EAAEyB,GAAGC,GAAG,CAAC,IAAIC,GAAGF,GAAG,QAAQ,GAAG7G,EAAE,IAAI+G,GAAG+B,GAAG9I,EAAE,IAAI,oBAAoB,EAAEsH,GAAGtH,EAAE,IAAI,0BAA0BiI,GAAGjI,EAAE,IAAI,iBAAiB,EAAEuG,GAAGO,GAAG,CAACrE,EAAE,CAAC,IAAIuE,GAAG+B,GAAG,cAAc,OAAOA,GAAG,cAAc,QAAQ,SAASC,GAAG,CAACD,GAAG,uBAAuBC,GAAG,UAAU,CAAC,EAAEhC,IAAIsB,GAAG,kBAAkB,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC7F,GAAG4F,GAAG,kBAAkB,EAAE,SAAS5C,GAAGoB,GAAG,CAACzB,EAAEyB,GAAG,SAASA,GAAG,MAAM,CAAC,CAAC,SAASlB,GAAGkB,GAAG,CAAC,OAAO8B,GAAG,EAAE,KAAK,SAAS7B,GAAG,CAAC,OAAO,YAAY,YAAYA,GAAG3B,CAAC,CAAC,CAAC,EAAE,KAAK,SAAS2B,GAAG,CAAC,OAAOA,EAAE,CAAC,EAAE,KAAKD,GAAG,SAASC,GAAG,CAACtB,EAAE,0CAA0CsB,EAAE,EAAER,GAAGQ,EAAE,CAAC,CAAC,CAAC,CAAC,SAASlB,IAAI,CAAC,MAAM,CAACQ,IAAI,OAAO,YAAY,sBAAsB,YAAY,CAACoC,GAAGC,EAAE,GAAG,CAAC/C,GAAG+C,EAAE,GAAG,CAACjG,GAAG,OAAO,OAAO,WAAW,MAAMiG,GAAG,CAAC,YAAY,aAAa,CAAC,EAAE,KAAK,SAAS5B,GAAG,CAAC,IAAIC,GAAG,YAAY,qBAAqBD,GAAG1B,CAAC,EAAE,OAAO2B,GAAG,KAAKrB,GAAG,SAASsB,GAAG,CAAC,OAAOvB,EAAE,kCAAkCuB,EAAE,EAAEvB,EAAE,2CAA2C,EAAEG,GAAGF,EAAE,CAAC,CAAC,CAAC,CAAC,EAAEE,GAAGF,EAAE,CAAC,CAAC,GAAGzF,EAAE,gBAAgB,GAAG,CAAC,IAAI6F,GAAG7F,EAAE,gBAAgBmF,EAAEC,CAAC,EAAE,OAAOS,EAAE,OAAOgB,GAAG,CAACrB,EAAE,sDAAsDqB,EAAE,EAAEnG,EAAEmG,EAAE,CAAC,CAAC,OAAOjB,GAAG,EAAE,MAAMlF,CAAC,EAAE,CAAC,CAAC,CAAC,IAAIuI,GAAGC,GAAGC,GAAG,CAAC,EAAE,SAAS5D,GAAGJ,EAAE,CAAC,KAAK,KAAK,aAAa,KAAK,QAAQ,gCAAgCA,EAAE,IAAI,KAAK,OAAOA,CAAC,CAAC,SAASiE,GAAGjE,EAAE,CAAC,IAAIC,EAAE2D,GAAG,SAAS5D,CAAC,EAAE,OAAO4D,GAAG,SAAS5D,CAAC,EAAEC,EAAE,UAAU,EAAEiE,GAAGlE,CAAC,EAAE4D,GAAG,eAAe,OAAOA,GAAG,eAAe,QAAQ3D,CAAC,EAAE,CAAC,EAAEA,EAAE,YAAY,CAAC,CAAC,SAASkE,GAAGnE,EAAE,CAAC,IAAIC,EAAE2D,GAAG,SAAS5D,CAAC,EAAEC,EAAE,YAAY,CAAC,IAAI,QAAQ,CAAC,CAAC,CAAC,SAASmE,GAAGpE,EAAE,CAAC,IAAIC,EAAE2D,GAAG,SAAS5D,CAAC,EAAEuB,GAAGtB,CAAC,EAAE2D,GAAG,mBAAmB3D,CAAC,CAAC,CAAC,SAASoE,GAAGrE,EAAE,CAAC,IAAIC,EAAE2D,GAAG,aAAa,EAAE,GAAG,CAAC3D,EAAE,MAAO,GAAE2D,GAAG,eAAe,KAAK3D,CAAC,EAAE2D,GAAG,SAAS5D,EAAE,WAAW,EAAEC,EAAEA,EAAE,YAAYD,EAAE,YAAY,IAAIM,GAAG,CAAC,IAAI,MAAM,cAAcN,EAAE,aAAa,IAAIA,EAAE,IAAI,YAAYA,EAAE,WAAW,EAAE,OAAOC,EAAE,WAAW,IAAI,CAAC5C,GAAG4C,EAAE,IAAI,EAAEA,EAAE,YAAYK,GAAGN,EAAE,YAAY,EAAE,OAAOC,EAAE,UAAU,EAAEA,EAAE,QAAQA,EAAE,WAAW,EAAE,CAAC,CAAC,IAAIqE,GAAG,CAAC,QAAQ,OAAO,IAAI,UAAU,CAACA,GAAG,SAAS,EAAE,IAAItE,EAAEvF,EAAE,EAAE6J,GAAG,QAAQ,IAAI,CAAC,EAAE,OAAOtE,CAAC,EAAE,OAAO,SAASA,EAAE,CAAC,IAAIC,EAAE6B,GAAG9B,CAAC,EAAE,OAAOC,CAAC,CAAC,EAAE,SAASsE,GAAGvE,EAAE,CAAC,GAAG1C,EAAE,OAAOkH,GAAG,EAAE,EAAExE,CAAC,EAAEsB,GAAGtB,EAAEW,GAAG,IAAIiD,GAAG,oBAAoB,EAAE/I,EAAE,QAAQA,EAAE,OAAOmF,CAAC,EAAEqB,GAAG,IAAIxE,EAAEmD,EAAE,IAAII,GAAGJ,CAAC,CAAC,CAAC,CAAC,SAASyE,GAAGzE,EAAEC,EAAE,CAAC,GAAGqB,GAAGtB,EAAE,CAACC,GAAG3C,EAAE,MAAMoH,GAAG1E,CAAC,EAAE,SAASuE,GAAGvE,CAAC,CAAC,CAAC,IAAI2E,GAAGF,GAAG,SAASG,GAAG5E,EAAE,CAAC,GAAGA,aAAaI,IAAIJ,GAAG,SAAS,OAAOsB,GAAGzE,EAAE,EAAEmD,CAAC,CAAC,CAAC,IAAI4D,GAAG,CAAC,cAAc,CAAC,EAAE,eAAe,CAAC,EAAE,iBAAiB,CAAC,EAAE,SAAS,CAAC,EAAE,KAAK,UAAU,CAACtG,EAAEsG,GAAG,WAAW,EAAEA,GAAG,eAAe,CAAC,EAAE,eAAe,UAAU,CAAC,QAAQ5D,EAAE,EAAEA,KAAK4D,GAAG,qBAAqB,CAAC,EAAE,WAAW,UAAU,CAAC1C,GAAG,EAAE,EAAE,cAAc,SAASlB,EAAE,CAACsB,GAAGtB,CAAC,EAAE,oBAAoB,UAAU,CAAC,QAAQA,KAAK,OAAO,OAAO4D,GAAG,QAAQ,EAAEA,GAAG,mBAAmB5D,CAAC,EAAE,QAAQA,KAAK4D,GAAG,cAAc5D,EAAE,UAAU,EAAE4D,GAAG,cAAc,CAAC,CAAC,EAAE,mBAAmB,SAAS5D,EAAE,CAAC,IAAIC,EAAED,EAAE,YAAY,OAAO4D,GAAG,SAAS3D,CAAC,EAAE2D,GAAG,cAAc,KAAK5D,CAAC,EAAE4D,GAAG,eAAe,OAAOA,GAAG,eAAe,QAAQ5D,CAAC,EAAE,CAAC,EAAEA,EAAE,YAAY,EAAE3C,GAAG2C,EAAE,MAAM,EAAEkE,GAAGjE,CAAC,CAAC,EAAE,sBAAsB,SAASD,EAAE,CAAC,EAAE,cAAc,UAAU,CAAC4D,GAAG,iBAAiB,QAAQ5D,GAAGA,EAAE,CAAC,CAAC,EAAE,uBAAuB,SAASA,EAAEC,EAAE,CAACD,EAAE,UAAUU,IAAI,CAAC,IAAIgB,GAAGhB,GAAG,KAAKiB,GAAGD,GAAG,IAAI,GAAG1B,EAAE,cAAc4D,GAAG,oCAAoC5D,EAAE,aAAa0B,GAAG,cAAcA,GAAG,cAAcmD,GAAG,EAAE,CAAC,IAAIjD,GAAGgC,GAAG,SAASlC,GAAG,YAAY,EAAEE,GAAGA,GAAG,YAAYF,GAAGA,GAAG,YAAY,EAAErB,EAAE,0CAA0CsB,GAAG,uBAAuBD,GAAG,aAAa,qCAAqC,EAAEkC,GAAG,oCAAoC,OAAO,MAAM,CAACjC,KAAK,uBAAuBmD,GAAGpD,GAAG,KAAK,EAAEC,KAAK,cAAc0C,GAAG3C,EAAE,EAAEC,KAAK,gBAAgByC,GAAG1C,GAAG,MAAM,EAAEC,KAAK,aAAasC,GAAGvC,GAAG,MAAM,EAAEC,KAAK,eAAewC,GAAGzC,GAAG,MAAM,EAAEC,KAAK,UAAU3B,EAAE,OAAO,GAAG3C,GAAG2C,EAAE,MAAM,EAAEC,GAAGA,EAAED,CAAC,EAAEA,EAAE,YAAYA,EAAE,WAAW,GAAG2B,KAAK,QAAQf,EAAE,UAAUc,GAAG,SAAS,KAAKA,GAAG,IAAI,EAAEC,KAAK,WAAWtB,EAAE,UAAUqB,GAAG,SAAS,KAAKA,GAAG,IAAI,EAAEC,KAAK,QAAQ,MAAM,UAAUD,GAAG,SAAS,KAAKA,GAAG,IAAI,EAAEA,GAAG,SAAS,eAAe1B,EAAE,YAAY0B,EAAE,EAAEC,KAAK,cAAc9G,EAAE6G,GAAG,OAAO,EAAE,GAAGA,GAAG,IAAI,EAAEC,IAAItB,EAAE,kCAAkCsB,EAAE,EAAEiC,GAAG,oCAAoC,MAAM,EAAE5D,EAAE,QAAQU,IAAI,CAAC,IAAIgB,GAAG,wBAAwB,MAAMrB,EAAEqB,GAAG,IAAIhB,GAAG,SAAS,IAAIA,GAAG,OAAO,KAAKA,GAAG,OAAO,EAAEA,EAAE,EAAErD,IAAI2C,EAAE,GAAG,UAAU,SAASU,GAAG,CAACV,EAAE,UAAU,CAAC,KAAKU,EAAE,CAAC,CAAC,CAAC,EAAEV,EAAE,GAAG,QAAQ,SAASU,GAAG,CAACV,EAAE,QAAQU,EAAE,CAAC,CAAC,EAAEV,EAAE,GAAG,eAAe,UAAU,CAAC,CAAC,GAAG,IAAIM,GAAG,CAAC,EAAEE,GAAG,CAAC,SAAS,UAAU,QAAQ,UAAU,EAAE,QAAQC,MAAMD,GAAG3F,EAAE,eAAe4F,EAAE,GAAGH,GAAG,KAAKG,EAAE,EAAET,EAAE,YAAY,CAAC,IAAI,OAAO,SAASM,GAAG,UAAUzF,EAAE,qBAAqBjC,EAAE,WAAW0G,GAAG,WAAW8B,EAAE,CAAC,CAAC,EAAE,qBAAqB,UAAU,CAAC,IAAIpB,EAAEC,EAAEzC,EAAE,2CAA2C,EAAEwC,EAAE,IAAI,OAAOC,CAAC,EAAE2D,GAAG,cAAc,KAAK5D,CAAC,CAAC,EAAE,aAAa,UAAU,CAAC,OAAO4D,GAAG,cAAc,QAAQ,IAAIA,GAAG,qBAAqB,EAAEA,GAAG,uBAAuBA,GAAG,cAAc,CAAC,CAAC,GAAGA,GAAG,cAAc,IAAI,CAAC,CAAC,EAAE/I,EAAE,QAAQ+I,GAAG,SAASlB,GAAG1C,EAAE,CAAC,KAAKA,EAAE,OAAO,GAAGA,EAAE,MAAM,EAAEnF,CAAC,CAAC,CAAC,SAASkK,IAAI,CAAC,IAAI/E,EAAE6E,GAAG,EAAE5E,EAAExF,EAAE,EAAEuF,EAAE,KAAK,CAAC,EAAEM,GAAG7F,EAAE,EAAEuF,EAAE,KAAK,CAAC,EAAEQ,GAAGP,EAAEK,GAAG0E,GAAG/E,EAAEO,EAAE,EAAEyE,GAAGhF,CAAC,CAAC,CAACpF,EAAE,oBAAoBkK,GAAG,SAASL,GAAG1E,EAAE,CAAC,GAAG1C,EAAE,OAAOkH,GAAG,EAAE,EAAExE,CAAC,EAAE,GAAG,CAAC2E,GAAG3E,CAAC,CAAC,OAAOC,EAAE,CAAC2E,GAAG3E,CAAC,CAAC,CAAC,CAAC,IAAIiF,GAAG,CAAC,EAAE,SAASC,GAAGnF,EAAE,CAAC,IAAIC,EAAEiF,GAAGlF,CAAC,EAAE,OAAOC,IAAID,GAAGkF,GAAG,SAASA,GAAG,OAAOlF,EAAE,GAAGkF,GAAGlF,CAAC,EAAEC,EAAEkC,GAAG,IAAInC,CAAC,GAAGC,CAAC,CAAC,SAASmF,GAAGpF,EAAEC,EAAE,CAAC,IAAIK,GAAG6E,GAAGnF,CAAC,EAAEC,CAAC,EAAEU,GAAG,EAAEiD,GAAG,cAActD,EAAE,EAAE+E,GAAG/E,EAAE,CAAC,CAACzF,EAAE,iBAAiBuK,GAAG,SAASzB,GAAG3D,EAAE,CAAC4D,GAAG,iBAAiB,KAAK5D,CAAC,CAAC,CAAC,SAASsF,GAAGtF,EAAE,CAACuF,GAAGvF,EAAE,CAACtC,EAAE,EAAE,CAACwC,CAAC,EAAE0D,GAAG,cAAc,CAAC,CAAC,SAAS4B,GAAGxF,EAAE,CAAC1C,EAAE,YAAY,CAAC,IAAI,gBAAgB,OAAO0C,CAAC,CAAC,EAAEoE,GAAGpE,CAAC,CAAC,CAAC,SAASyF,GAAGzF,EAAEC,EAAEK,GAAGE,GAAG,CAAC,OAAOlD,EAAEkH,GAAG,EAAE,EAAExE,EAAEC,EAAEK,GAAGE,EAAE,EAAEkF,GAAG1F,EAAEC,EAAEK,GAAGE,EAAE,CAAC,CAAC,SAASkF,GAAG1F,EAAEC,EAAEK,GAAGE,GAAG,CAAC,GAAG,OAAO,mBAAmB,YAAY,OAAOH,EAAE,qFAAqF,EAAE,EAAE,IAAII,GAAG,CAAC,EAAEC,GAAG,EAAE,GAAGpD,IAAImD,GAAG,SAAS,GAAGC,IAAI,OAAO+E,GAAGzF,EAAEC,EAAEK,GAAGE,EAAE,EAAE,GAAGE,GAAG,OAAOA,GAAG,IAAIgB,GAAG,CAAC,aAAapB,GAAG,YAAYN,EAAE,IAAIQ,GAAG,aAAaC,EAAE,EAAE,OAAOnD,GAAGoE,GAAG,IAAI,cAAc,YAAYA,GAAGjB,EAAE,EAAE,GAAG4D,GAAG3C,EAAE,CAAC,CAAC,SAASiE,IAAI,CAAC,MAAO,MAAK,CAAC,IAAIC,GAAG,GAAG,SAASC,IAAI,CAAC,OAAOD,EAAE,CAAC,SAASd,GAAG9E,EAAE,CAAC,QAAQ,MAAMvF,EAAE,EAAEuF,GAAG,EAAE,CAAC,EAAE6E,GAAG,GAAGiB,GAAG9F,CAAC,EAAE,QAAQ,gBAAgBvF,EAAE,EAAEuF,GAAG,EAAE,EAAE,CAAC,CAAC,CAACnF,EAAE,6BAA6BiK,GAAG,SAASiB,GAAG/F,EAAEC,EAAEK,GAAGE,GAAG,CAAC,GAAGR,GAAGC,EAAE,WAAW,IAAI6E,GAAGtE,EAAE,CAAC,UAAUlD,EAAE,YAAY,CAAC,aAAa0C,EAAE,IAAI,uBAAuB,MAAMQ,EAAE,CAAC,MAAM,CAAC,IAAIC,GAAGmD,GAAG,SAAS5D,CAAC,EAAE,GAAG,CAACS,GAAG,OAAOA,GAAG,YAAY,CAAC,IAAI,uBAAuB,MAAMD,EAAE,CAAC,CAAC,CAAC,MAAO,EAAC,CAAC,SAASwF,GAAGhG,EAAEC,EAAEK,GAAG,CAAC,MAAM,EAAE,CAAC,SAAS2F,IAAI,CAAC9E,GAAG,EAAE,CAAC,CAAC,SAAS+E,GAAGlG,EAAE,CAACkG,GAAG,QAAQA,GAAG,MAAM,CAAC,GAAGA,GAAG,MAAMlG,CAAC,IAAIkG,GAAG,MAAMlG,CAAC,EAAE,EAAE3C,IAAI2C,EAAE,YAAYA,GAAGK,EAAEL,CAAC,EAAE,CAAC,SAASmG,IAAI,CAAC9I,GAAGK,GAAGwI,GAAG,0IAA0I,CAAC,CAAC,SAASE,IAAI,CAAC,OAAO,KAAK,IAAI,CAAC,CAAC,SAASC,IAAI,CAAC,MAAO,WAAU,CAAC,SAASC,IAAI,CAAC,OAAOD,GAAG,CAAC,CAAC,IAAIE,GAAGlJ,EAAEkJ,GAAG,IAAI,CAAC,IAAIvG,EAAE,QAAQ,OAAO,EAAE,OAAOA,EAAE,CAAC,EAAE,IAAIA,EAAE,CAAC,EAAE,GAAG,EAAEuG,GAAG,IAAI,YAAY,WAAW,YAAY,IAAI,EAAE,SAASC,GAAGxG,EAAEC,EAAEK,GAAG,CAACtH,EAAE,EAAE,WAAWgH,IAAI,EAAEC,IAAI,EAAEA,EAAEK,KAAK,CAAC,CAAC,CAAC,SAASmG,IAAI,CAAC,OAAOpJ,EAAE4B,GAAG,EAAE,KAAK,EAAE,OAAO,UAAU,mBAAmB,CAAC,SAASyH,GAAG1G,EAAE,CAAC,IAAIC,EAAE0G,GAAG,EAAErG,GAAGN,EAAE,EAAE,OAAOiF,GAAGhF,CAAC,EAAEK,EAAE,CAAC,SAASkE,GAAGxE,EAAEC,EAAE,CAAC,IAAIK,GAAG,UAAU,OAAO,EAAEE,GAAG,UAAU,OAAOkG,GAAG,IAAI,CAAC,QAAQjG,GAAGH,GAAGI,GAAGkG,GAAGnG,GAAG,CAAC,EAAEiB,GAAGhB,IAAI,EAAEiB,GAAG,EAAEA,GAAGrB,GAAGqB,KAAK,CAAC,IAAIC,GAAGpB,GAAG,EAAEmB,EAAE,EAAE/G,EAAE,EAAE8G,GAAGC,KAAK,CAAC,EAAEC,EAAE,CAAC,OAAOiF,GAAG7G,EAAES,GAAGC,GAAGT,CAAC,CAAC,CAAC,CAAC,CAAC,IAAI6G,GAAG,CAAC,EAAE,SAASC,GAAG/G,EAAEC,EAAEK,GAAG,CAACwG,GAAG,OAAO7G,EAAE,QAAQO,GAAGF,IAAI,EAAEG,GAAG,EAAEA,GAAGR,EAAEQ,KAAKqG,GAAGrG,EAAE,EAAE7F,EAAE,EAAE4F,GAAGC,KAAK,CAAC,EAAE,IAAIC,GAAGV,EAAE,EAAE0B,GAAGhB,GAAGsD,GAAG,CAAChE,EAAE,CAAC,EAAEgH,GAAGhH,CAAC,EAAE,OAAO0B,GAAG,MAAM,KAAKoF,EAAE,CAAC,CAAC,SAASG,GAAGjH,EAAE,CAAC,GAAG,CAAC,OAAOV,GAAG,KAAKU,EAAET,GAAG,WAAW,QAAQ,EAAE,EAAEC,GAAGF,GAAG,MAAM,EAAE,CAAC,OAAOW,EAAE,CAAC,CAAC,CAAC,SAASiH,GAAGlH,EAAE,CAAC,IAAIC,EAAEjH,EAAE,EAAE,OAAO,GAAGgH,EAAEA,IAAI,EAAEA,GAAGC,EAAE,MAAM,GAAG,IAAIK,GAAG+F,GAAG,EAAE,GAAGrG,EAAEM,GAAG,MAAM,GAAG,IAAIE,GAAG,CAACoB,GAAGC,KAAKD,IAAIC,GAAGD,GAAGC,IAAIA,GAAG,QAAQpB,GAAG,EAAEA,IAAI,EAAEA,IAAI,EAAE,CAAC,IAAIC,GAAGT,GAAG,EAAE,GAAGQ,IAAIC,GAAG,KAAK,IAAIA,GAAGV,EAAE,SAAS,EAAE,IAAI0B,GAAG,KAAK,IAAIpB,GAAGE,GAAG,KAAK,IAAIR,EAAEU,EAAE,EAAE,KAAK,CAAC,EAAEiB,GAAGsF,GAAGvF,EAAE,EAAE,GAAGC,GAAG,MAAM,EAAE,CAAC,MAAM,EAAE,CAAC,SAASwF,IAAI,CAAC,KAAK,QAAQ,CAAC,SAASC,GAAGpH,EAAE,CAAC,OAAO1C,EAAEkH,GAAG,EAAE,EAAExE,CAAC,EAAE,EAAE,CAAC,SAASqH,GAAGrH,EAAEC,EAAEK,GAAGE,GAAGC,GAAG,CAAC,OAAOnD,EAAEkH,GAAG,EAAE,EAAExE,EAAEC,EAAEK,GAAGE,GAAGC,EAAE,EAAE,EAAE,CAAC,IAAI6G,GAAG,CAAC,KAAK,CAAC,EAAE,CAAC,CAAC,EAAE,SAASC,GAAGvH,EAAEC,EAAE,CAAC,IAAIK,GAAGgH,GAAGtH,CAAC,EAAEC,IAAI,GAAGA,IAAI,KAAKD,IAAI,EAAEY,EAAEP,GAAGoB,GAAGnB,GAAG,CAAC,CAAC,EAAEA,GAAG,OAAO,GAAGA,GAAG,KAAKL,CAAC,CAAC,CAAC,SAASuH,GAAGxH,EAAEC,EAAEK,GAAGE,GAAG,CAAC,GAAGlD,EAAE,OAAOkH,GAAG,EAAE,EAAExE,EAAEC,EAAEK,GAAGE,EAAE,EAAE,QAAQC,GAAG,EAAEC,GAAG,EAAEA,GAAGJ,GAAGI,KAAK,CAAC,IAAIgB,GAAGhH,EAAE,EAAEuF,IAAI,CAAC,EAAE0B,GAAGjH,EAAE,EAAEuF,EAAE,IAAI,CAAC,EAAEA,GAAG,EAAE,QAAQ2B,GAAG,EAAEA,GAAGD,GAAGC,KAAK2F,GAAGvH,EAAEhH,EAAE,EAAE0I,GAAGE,KAAK,CAAC,CAAC,EAAEnB,IAAIkB,EAAE,CAAC,OAAOjH,EAAE,EAAE8F,KAAK,CAAC,EAAEC,GAAG,CAAC,CAAC,SAASgH,GAAGzH,EAAE,CAAC,IAAIC,EAAEpF,EAAE,IAAImF,CAAC,EAAE,OAAOC,CAAC,CAAC,SAASyH,GAAG1H,EAAEC,EAAE,CAACnH,EAAE,EAAE,IAAIkH,EAAEC,IAAI,CAAC,CAAC,CAAC,SAAS0H,GAAG3H,EAAEC,EAAEK,GAAGE,GAAGC,GAAG,CAAC,IAAIC,GAAG,CAAC,OAAOkH,IAAI,CAAC,IAAIC,GAAG,EAAE,GAAGD,IAAI,MAAMA,KAAK,EAAE,CAAC,IAAIE,IAAIF,GAAG,QAAQ,GAAG,EAAEC,GAAGjB,GAAGkB,EAAE,EAAE9F,GAAG4F,GAAGC,GAAGC,EAAE,CAAC,CAAC,OAAOD,EAAE,EAAE,MAAMD,IAAI,CAAC,IAAIC,GAAGjB,GAAGgB,GAAG,MAAM,EAAE,OAAOF,GAAGE,GAAGC,EAAE,EAAEA,EAAE,CAAC,EAAE,SAASnG,GAAGkG,GAAG,CAAC,OAAO3H,IAAI,SAAS6B,GAAG8F,EAAE,EAAE3H,IAAI,UAAU,CAAC,CAAC2H,GAAGA,EAAE,CAAC,IAAIjG,GAAG8F,GAAGzH,CAAC,EAAE4B,GAAG,CAAC,EAAEC,GAAG,EAAE,GAAGrB,GAAG,QAAQqD,GAAG,EAAEA,GAAGrD,GAAG,OAAOqD,KAAK,CAAC,IAAIkE,GAAGrH,GAAGJ,GAAGuD,EAAE,CAAC,EAAEkE,IAAIlG,KAAK,IAAIA,GAAG8E,GAAG,GAAG/E,GAAGiC,EAAE,EAAEkE,GAAGvH,GAAGqD,EAAE,CAAC,GAAGjC,GAAGiC,EAAE,EAAErD,GAAGqD,EAAE,CAAC,CAAC,IAAImE,GAAGrG,GAAG,MAAM,KAAKC,EAAE,EAAE,SAASqG,GAAGL,GAAG,CAAC,OAAO/F,KAAK,GAAGoD,GAAGpD,EAAE,EAAEH,GAAGkG,EAAE,CAAC,CAAC,OAAOI,GAAGC,GAAGD,EAAE,EAAEA,EAAE,CAAC,SAASE,GAAGlI,EAAEC,EAAEK,GAAGE,GAAG,CAACF,GAAGA,IAAI,CAAC,EAAE,IAAIG,GAAGH,GAAG,MAAMoB,IAAIA,KAAK,UAAUA,KAAK,SAAS,EAAEhB,GAAGT,IAAI,SAAS,OAAOS,IAAID,IAAI,CAACD,GAAGiH,GAAGzH,CAAC,EAAE,UAAU,CAAC,OAAO2H,GAAG3H,EAAEC,EAAEK,GAAG,UAAUE,EAAE,CAAC,CAAC,CAACoD,GAAG,KAAK,EAAE,IAAIoD,GAAG,CAAC,KAAKzC,GAAGG,GAAGe,GAAG2B,GAAGC,GAAGG,EAAE,EAAE9D,GAAG,CAAC,iCAAiC4B,GAAG,4BAA4BE,GAAG,oBAAoBE,GAAG,uCAAuCC,GAAG,iCAAiCE,GAAG,8BAA8BE,GAAG,qCAAqCC,GAAG,MAAMC,GAAG,kCAAkCE,GAAG,oBAAoBC,GAAG,wBAAwBE,GAAG,mBAAmBC,GAAG,sBAAsBC,GAAG,6BAA6BC,GAAG,qCAAqCM,GAAG,uBAAuBG,GAAG,mCAAmCC,GAAG,KAAKxC,GAAG,SAASyC,GAAG,QAAQC,GAAG,SAASG,GAAG,OAAOlI,IAAIzE,EAAE,UAAU,EAAEsN,GAAG1E,GAAG,EAAE2E,GAAGvN,EAAE,mBAAmB,UAAU,CAAC,OAAOuN,GAAGvN,EAAE,mBAAmBA,EAAE,IAAI,mBAAmB,MAAM,KAAK,SAAS,CAAC,EAAEwN,GAAGxN,EAAE,MAAM,UAAU,CAAC,OAAOwN,GAAGxN,EAAE,MAAMA,EAAE,IAAI,MAAM,MAAM,KAAK,SAAS,CAAC,EAAEyN,GAAGzN,EAAE,yBAAyB,UAAU,CAAC,OAAOyN,GAAGzN,EAAE,yBAAyBA,EAAE,IAAI,yBAAyB,MAAM,KAAK,SAAS,CAAC,EAAE0N,GAAG1N,EAAE,mBAAmB,UAAU,CAAC,OAAO0N,GAAG1N,EAAE,mBAAmBA,EAAE,IAAI,mBAAmB,MAAM,KAAK,SAAS,CAAC,EAAE2N,GAAG3N,EAAE,iBAAiB,UAAU,CAAC,OAAO2N,GAAG3N,EAAE,iBAAiBA,EAAE,IAAI,iBAAiB,MAAM,KAAK,SAAS,CAAC,EAAE4N,GAAG5N,EAAE,cAAc,UAAU,CAAC,OAAO4N,GAAG5N,EAAE,cAAcA,EAAE,IAAI,cAAc,MAAM,KAAK,SAAS,CAAC,EAAE6N,GAAG7N,EAAE,SAAS,UAAU,CAAC,OAAO6N,GAAG7N,EAAE,SAASA,EAAE,IAAI,SAAS,MAAM,KAAK,SAAS,CAAC,EAAE8N,GAAG9N,EAAE,KAAK,UAAU,CAAC,OAAO8N,GAAG9N,EAAE,KAAKA,EAAE,IAAI,KAAK,MAAM,KAAK,SAAS,CAAC,EAAE+N,GAAG/N,EAAE,MAAM,UAAU,CAAC,OAAO+N,GAAG/N,EAAE,MAAMA,EAAE,IAAI,MAAM,MAAM,KAAK,SAAS,CAAC,EAAEgO,GAAGhO,EAAE,OAAO,UAAU,CAAC,OAAOgO,GAAGhO,EAAE,OAAOA,EAAE,IAAI,OAAO,MAAM,KAAK,SAAS,CAAC,EAAEiO,GAAGjO,EAAE,KAAK,UAAU,CAAC,OAAOiO,GAAGjO,EAAE,KAAKA,EAAE,IAAI,KAAK,MAAM,KAAK,SAAS,CAAC,EAAEkO,GAAGlO,EAAE,MAAM,UAAU,CAAC,OAAOkO,GAAGlO,EAAE,MAAMA,EAAE,IAAI,MAAM,MAAM,KAAK,SAAS,CAAC,EAAEmO,GAAGnO,EAAE,KAAK,UAAU,CAAC,OAAOmO,GAAGnO,EAAE,KAAKA,EAAE,IAAI,KAAK,MAAM,KAAK,SAAS,CAAC,EAAEoO,GAAGpO,EAAE,KAAK,UAAU,CAAC,OAAOoO,GAAGpO,EAAE,KAAKA,EAAE,IAAI,KAAK,MAAM,KAAK,SAAS,CAAC,EAAEqO,GAAGrO,EAAE,QAAQ,UAAU,CAAC,OAAOqO,GAAGrO,EAAE,QAAQA,EAAE,IAAI,QAAQ,MAAM,KAAK,SAAS,CAAC,EAAEsO,GAAGtO,EAAE,QAAQ,UAAU,CAAC,OAAOsO,GAAGtO,EAAE,QAAQA,EAAE,IAAI,QAAQ,MAAM,KAAK,SAAS,CAAC,EAAEuO,GAAGvO,EAAE,MAAM,UAAU,CAAC,OAAOuO,GAAGvO,EAAE,MAAMA,EAAE,IAAI,MAAM,MAAM,KAAK,SAAS,CAAC,EAAEwO,GAAGxO,EAAE,OAAO,UAAU,CAAC,OAAOwO,GAAGxO,EAAE,OAAOA,EAAE,IAAI,OAAO,MAAM,KAAK,SAAS,CAAC,EAAEyO,GAAGzO,EAAE,MAAM,UAAU,CAAC,OAAOyO,GAAGzO,EAAE,MAAMA,EAAE,IAAI,MAAM,MAAM,KAAK,SAAS,CAAC,EAAE0O,GAAG1O,EAAE,OAAO,UAAU,CAAC,OAAO0O,GAAG1O,EAAE,OAAOA,EAAE,IAAI,OAAO,MAAM,KAAK,SAAS,CAAC,EAAE2O,GAAG3O,EAAE,OAAO,UAAU,CAAC,OAAO2O,GAAG3O,EAAE,OAAOA,EAAE,IAAI,OAAO,MAAM,KAAK,SAAS,CAAC,EAAE4O,GAAG5O,EAAE,SAAS,UAAU,CAAC,OAAO4O,GAAG5O,EAAE,SAASA,EAAE,IAAI,SAAS,MAAM,KAAK,SAAS,CAAC,EAAE6O,GAAG7O,EAAE,WAAW,UAAU,CAAC,OAAO6O,GAAG7O,EAAE,WAAWA,EAAE,IAAI,WAAW,MAAM,KAAK,SAAS,CAAC,EAAE8O,GAAG9O,EAAE,eAAe,UAAU,CAAC,OAAO8O,GAAG9O,EAAE,eAAeA,EAAE,IAAI,eAAe,MAAM,KAAK,SAAS,CAAC,EAAE+O,GAAG/O,EAAE,aAAa,UAAU,CAAC,OAAO+O,GAAG/O,EAAE,aAAaA,EAAE,IAAI,aAAa,MAAM,KAAK,SAAS,CAAC,EAAEgP,GAAGhP,EAAE,aAAa,UAAU,CAAC,OAAOgP,GAAGhP,EAAE,aAAaA,EAAE,IAAI,aAAa,MAAM,KAAK,SAAS,CAAC,EAAEiP,GAAGjP,EAAE,UAAU,UAAU,CAAC,OAAOiP,GAAGjP,EAAE,UAAUA,EAAE,IAAI,UAAU,MAAM,KAAK,SAAS,CAAC,EAAEkP,GAAGlP,EAAE,YAAY,UAAU,CAAC,OAAOkP,GAAGlP,EAAE,YAAYA,EAAE,IAAI,YAAY,MAAM,KAAK,SAAS,CAAC,EAAEmP,GAAGnP,EAAE,MAAM,UAAU,CAAC,OAAOmP,GAAGnP,EAAE,MAAMA,EAAE,IAAI,MAAM,MAAM,KAAK,SAAS,CAAC,EAAEoP,GAAGpP,EAAE,aAAa,UAAU,CAAC,OAAOoP,GAAGpP,EAAE,aAAaA,EAAE,IAAI,aAAa,MAAM,KAAK,SAAS,CAAC,EAAEqP,GAAGrP,EAAE,QAAQ,UAAU,CAAC,OAAOqP,GAAGrP,EAAE,QAAQA,EAAE,IAAI,QAAQ,MAAM,KAAK,SAAS,CAAC,EAAEsP,GAAGtP,EAAE,qBAAqB,UAAU,CAAC,OAAOsP,GAAGtP,EAAE,qBAAqBA,EAAE,IAAI,qBAAqB,MAAM,KAAK,SAAS,CAAC,EAAEuP,GAAGvP,EAAE,QAAQ,UAAU,CAAC,OAAOuP,GAAGvP,EAAE,QAAQA,EAAE,IAAI,QAAQ,MAAM,KAAK,SAAS,CAAC,EAAEwP,GAAGxP,EAAE,wBAAwB,UAAU,CAAC,OAAOwP,GAAGxP,EAAE,wBAAwBA,EAAE,IAAI,wBAAwB,MAAM,KAAK,SAAS,CAAC,EAAEyP,GAAGzP,EAAE,uBAAuB,UAAU,CAAC,OAAOyP,GAAGzP,EAAE,uBAAuBA,EAAE,IAAI,uBAAuB,MAAM,KAAK,SAAS,CAAC,EAAE0P,GAAG1P,EAAE,KAAK,UAAU,CAAC,OAAO0P,GAAG1P,EAAE,KAAKA,EAAE,IAAI,KAAK,MAAM,KAAK,SAAS,CAAC,EAAE2P,GAAG3P,EAAE,MAAM,UAAU,CAAC,OAAO2P,GAAG3P,EAAE,MAAMA,EAAE,IAAI,MAAM,MAAM,KAAK,SAAS,CAAC,EAAE4P,GAAG5P,EAAE,eAAe,UAAU,CAAC,OAAO4P,GAAG5P,EAAE,eAAeA,EAAE,IAAI,eAAe,MAAM,KAAK,SAAS,CAAC,EAAE6P,GAAG7P,EAAE,SAAS,UAAU,CAAC,OAAO6P,GAAG7P,EAAE,SAASA,EAAE,IAAI,SAAS,MAAM,KAAK,SAAS,CAAC,EAAE8P,GAAG9P,EAAE,QAAQ,UAAU,CAAC,OAAO8P,GAAG9P,EAAE,QAAQA,EAAE,IAAI,QAAQ,MAAM,KAAK,SAAS,CAAC,EAAE+P,GAAG/P,EAAE,eAAe,UAAU,CAAC,OAAO+P,GAAG/P,EAAE,eAAeA,EAAE,IAAI,eAAe,MAAM,KAAK,SAAS,CAAC,EAAEgQ,GAAGhQ,EAAE,cAAc,UAAU,CAAC,OAAOgQ,GAAGhQ,EAAE,cAAcA,EAAE,IAAI,cAAc,MAAM,KAAK,SAAS,CAAC,EAAEiQ,GAAGjQ,EAAE,uBAAuB,UAAU,CAAC,OAAOiQ,GAAGjQ,EAAE,uBAAuBA,EAAE,IAAI,uBAAuB,MAAM,KAAK,SAAS,CAAC,EAAEkQ,GAAGlQ,EAAE,MAAM,UAAU,CAAC,OAAOkQ,GAAGlQ,EAAE,MAAMA,EAAE,IAAI,MAAM,MAAM,KAAK,SAAS,CAAC,EAAEmQ,GAAGnQ,EAAE,YAAY,UAAU,CAAC,OAAOmQ,GAAGnQ,EAAE,YAAYA,EAAE,IAAI,YAAY,MAAM,KAAK,SAAS,CAAC,EAAEoQ,GAAGpQ,EAAE,0BAA0B,UAAU,CAAC,OAAOoQ,GAAGpQ,EAAE,0BAA0BA,EAAE,IAAI,0BAA0B,MAAM,KAAK,SAAS,CAAC,EAAEqQ,GAAGrQ,EAAE,yBAAyB,UAAU,CAAC,OAAOqQ,GAAGrQ,EAAE,yBAAyBA,EAAE,IAAI,yBAAyB,MAAM,KAAK,SAAS,CAAC,EAAEsQ,GAAGtQ,EAAE,KAAK,UAAU,CAAC,OAAOsQ,GAAGtQ,EAAE,KAAKA,EAAE,IAAI,KAAK,MAAM,KAAK,SAAS,CAAC,EAAEuQ,GAAGvQ,EAAE,SAAS,UAAU,CAAC,OAAOuQ,GAAGvQ,EAAE,SAASA,EAAE,IAAI,SAAS,MAAM,KAAK,SAAS,CAAC,EAAEwQ,GAAGxQ,EAAE,OAAO,UAAU,CAAC,OAAOwQ,GAAGxQ,EAAE,OAAOA,EAAE,IAAI,OAAO,MAAM,KAAK,SAAS,CAAC,EAAEyQ,GAAGzQ,EAAE,KAAK,UAAU,CAAC,OAAOyQ,GAAGzQ,EAAE,KAAKA,EAAE,IAAI,KAAK,MAAM,KAAK,SAAS,CAAC,EAAE0Q,GAAG1Q,EAAE,KAAK,UAAU,CAAC,OAAO0Q,GAAG1Q,EAAE,KAAKA,EAAE,IAAI,KAAK,MAAM,KAAK,SAAS,CAAC,EAAE2Q,GAAG3Q,EAAE,OAAO,UAAU,CAAC,OAAO2Q,GAAG3Q,EAAE,OAAOA,EAAE,IAAI,OAAO,MAAM,KAAK,SAAS,CAAC,EAAE4Q,GAAG5Q,EAAE,eAAe,UAAU,CAAC,OAAO4Q,GAAG5Q,EAAE,eAAeA,EAAE,IAAI,eAAe,MAAM,KAAK,SAAS,CAAC,EAAE6Q,GAAG7Q,EAAE,OAAO,UAAU,CAAC,OAAO6Q,GAAG7Q,EAAE,OAAOA,EAAE,IAAI,OAAO,MAAM,KAAK,SAAS,CAAC,EAAE8Q,GAAG9Q,EAAE,UAAU,UAAU,CAAC,OAAO8Q,GAAG9Q,EAAE,UAAUA,EAAE,IAAI,UAAU,MAAM,KAAK,SAAS,CAAC,EAAE+Q,GAAG/Q,EAAE,gBAAgB,UAAU,CAAC,OAAO+Q,GAAG/Q,EAAE,gBAAgBA,EAAE,IAAI,gBAAgB,MAAM,KAAK,SAAS,CAAC,EAAEgR,GAAGhR,EAAE,aAAa,UAAU,CAAC,OAAOgR,GAAGhR,EAAE,aAAaA,EAAE,IAAI,aAAa,MAAM,KAAK,SAAS,CAAC,EAAEiR,GAAGjR,EAAE,sBAAsB,UAAU,CAAC,OAAOiR,GAAGjR,EAAE,sBAAsBA,EAAE,IAAI,sBAAsB,MAAM,KAAK,SAAS,CAAC,EAAEkR,GAAGlR,EAAE,QAAQ,UAAU,CAAC,OAAOkR,GAAGlR,EAAE,QAAQA,EAAE,IAAI,QAAQ,MAAM,KAAK,SAAS,CAAC,EAAEmR,GAAGnR,EAAE,UAAU,UAAU,CAAC,OAAOmR,GAAGnR,EAAE,UAAUA,EAAE,IAAI,UAAU,MAAM,KAAK,SAAS,CAAC,EAAEoR,GAAGpR,EAAE,SAAS,UAAU,CAAC,OAAOoR,GAAGpR,EAAE,SAASA,EAAE,IAAI,SAAS,MAAM,KAAK,SAAS,CAAC,EAAEqR,GAAGrR,EAAE,cAAc,UAAU,CAAC,OAAOqR,GAAGrR,EAAE,cAAcA,EAAE,IAAI,cAAc,MAAM,KAAK,SAAS,CAAC,EAAEsR,GAAGtR,EAAE,UAAU,UAAU,CAAC,OAAOsR,GAAGtR,EAAE,UAAUA,EAAE,IAAI,UAAU,MAAM,KAAK,SAAS,CAAC,EAAEuR,GAAGvR,EAAE,OAAO,UAAU,CAAC,OAAOuR,GAAGvR,EAAE,OAAOA,EAAE,IAAI,OAAO,MAAM,KAAK,SAAS,CAAC,EAAEwR,GAAGxR,EAAE,OAAO,UAAU,CAAC,OAAOwR,GAAGxR,EAAE,OAAOA,EAAE,IAAI,OAAO,MAAM,KAAK,SAAS,CAAC,EAAEyR,GAAGzR,EAAE,KAAK,UAAU,CAAC,OAAOyR,GAAGzR,EAAE,KAAKA,EAAE,IAAI,KAAK,MAAM,KAAK,SAAS,CAAC,EAAE0R,GAAG1R,EAAE,SAAS,UAAU,CAAC,OAAO0R,GAAG1R,EAAE,SAASA,EAAE,IAAI,SAAS,MAAM,KAAK,SAAS,CAAC,EAAE2R,GAAG3R,EAAE,WAAW,UAAU,CAAC,OAAO2R,GAAG3R,EAAE,WAAWA,EAAE,IAAI,WAAW,MAAM,KAAK,SAAS,CAAC,EAAE4R,GAAG5R,EAAE,MAAM,UAAU,CAAC,OAAO4R,GAAG5R,EAAE,MAAMA,EAAE,IAAI,MAAM,MAAM,KAAK,SAAS,CAAC,EAAE6R,GAAG7R,EAAE,WAAW,UAAU,CAAC,OAAO6R,GAAG7R,EAAE,WAAWA,EAAE,IAAI,WAAW,MAAM,KAAK,SAAS,CAAC,EAAE8R,GAAG9R,EAAE,UAAU,UAAU,CAAC,OAAO8R,GAAG9R,EAAE,UAAUA,EAAE,IAAI,UAAU,MAAM,KAAK,SAAS,CAAC,EAAE+R,GAAG/R,EAAE,KAAK,UAAU,CAAC,OAAO+R,GAAG/R,EAAE,KAAKA,EAAE,IAAI,KAAK,MAAM,KAAK,SAAS,CAAC,EAAEgS,GAAGhS,EAAE,OAAO,UAAU,CAAC,OAAOgS,GAAGhS,EAAE,OAAOA,EAAE,IAAI,OAAO,MAAM,KAAK,SAAS,CAAC,EAAEiS,GAAGjS,EAAE,YAAY,UAAU,CAAC,OAAOiS,GAAGjS,EAAE,YAAYA,EAAE,IAAI,YAAY,MAAM,KAAK,SAAS,CAAC,EAAEkS,GAAGlS,EAAE,YAAY,UAAU,CAAC,OAAOkS,GAAGlS,EAAE,YAAYA,EAAE,IAAI,YAAY,MAAM,KAAK,SAAS,CAAC,EAAEmS,GAAGnS,EAAE,WAAW,UAAU,CAAC,OAAOmS,GAAGnS,EAAE,WAAWA,EAAE,IAAI,WAAW,MAAM,KAAK,SAAS,CAAC,EAAEoS,GAAGpS,EAAE,YAAY,UAAU,CAAC,OAAOoS,GAAGpS,EAAE,YAAYA,EAAE,IAAI,YAAY,MAAM,KAAK,SAAS,CAAC,EAAEqS,GAAGrS,EAAE,KAAK,UAAU,CAAC,OAAOqS,GAAGrS,EAAE,KAAKA,EAAE,IAAI,KAAK,MAAM,KAAK,SAAS,CAAC,EAAEsS,GAAGtS,EAAE,SAAS,UAAU,CAAC,OAAOsS,GAAGtS,EAAE,SAASA,EAAE,IAAI,SAAS,MAAM,KAAK,SAAS,CAAC,EAAEuS,GAAGvS,EAAE,WAAW,UAAU,CAAC,OAAOuS,GAAGvS,EAAE,WAAWA,EAAE,IAAI,WAAW,MAAM,KAAK,SAAS,CAAC,EAAEwS,GAAGxS,EAAE,eAAe,UAAU,CAAC,OAAOwS,GAAGxS,EAAE,eAAeA,EAAE,IAAI,eAAe,MAAM,KAAK,SAAS,CAAC,EAAEyS,GAAGzS,EAAE,aAAa,UAAU,CAAC,OAAOyS,GAAGzS,EAAE,aAAaA,EAAE,IAAI,aAAa,MAAM,KAAK,SAAS,CAAC,EAAE0S,GAAG1S,EAAE,mBAAmB,UAAU,CAAC,OAAO0S,GAAG1S,EAAE,mBAAmBA,EAAE,IAAI,mBAAmB,MAAM,KAAK,SAAS,CAAC,EAAE2S,GAAG3S,EAAE,SAAS,UAAU,CAAC,OAAO2S,GAAG3S,EAAE,SAASA,EAAE,IAAI,SAAS,MAAM,KAAK,SAAS,CAAC,EAAE4S,GAAG5S,EAAE,MAAM,UAAU,CAAC,OAAO4S,GAAG5S,EAAE,MAAMA,EAAE,IAAI,MAAM,MAAM,KAAK,SAAS,CAAC,EAAE6S,GAAG7S,EAAE,KAAK,UAAU,CAAC,OAAO6S,GAAG7S,EAAE,KAAKA,EAAE,IAAI,KAAK,MAAM,KAAK,SAAS,CAAC,EAAE8S,GAAG9S,EAAE,SAAS,UAAU,CAAC,OAAO8S,GAAG9S,EAAE,SAASA,EAAE,IAAI,SAAS,MAAM,KAAK,SAAS,CAAC,EAAE+S,GAAG/S,EAAE,WAAW,UAAU,CAAC,OAAO+S,GAAG/S,EAAE,WAAWA,EAAE,IAAI,WAAW,MAAM,KAAK,SAAS,CAAC,EAAEgT,GAAGhT,EAAE,KAAK,UAAU,CAAC,OAAOgT,GAAGhT,EAAE,KAAKA,EAAE,IAAI,KAAK,MAAM,KAAK,SAAS,CAAC,EAAEiT,GAAGjT,EAAE,aAAa,UAAU,CAAC,OAAOiT,GAAGjT,EAAE,aAAaA,EAAE,IAAI,aAAa,MAAM,KAAK,SAAS,CAAC,EAAEkT,GAAGlT,EAAE,UAAU,UAAU,CAAC,OAAOkT,GAAGlT,EAAE,UAAUA,EAAE,IAAI,UAAU,MAAM,KAAK,SAAS,CAAC,EAAEmT,GAAGnT,EAAE,KAAK,UAAU,CAAC,OAAOmT,GAAGnT,EAAE,KAAKA,EAAE,IAAI,KAAK,MAAM,KAAK,SAAS,CAAC,EAAEoT,GAAGpT,EAAE,qBAAqB,UAAU,CAAC,OAAOoT,GAAGpT,EAAE,qBAAqBA,EAAE,IAAI,qBAAqB,MAAM,KAAK,SAAS,CAAC,EAAEqT,GAAGrT,EAAE,qBAAqB,UAAU,CAAC,OAAOqT,GAAGrT,EAAE,qBAAqBA,EAAE,IAAI,qBAAqB,MAAM,KAAK,SAAS,CAAC,EAAEsT,GAAGtT,EAAE,qBAAqB,UAAU,CAAC,OAAOsT,GAAGtT,EAAE,qBAAqBA,EAAE,IAAI,qBAAqB,MAAM,KAAK,SAAS,CAAC,EAAEuT,GAAGvT,EAAE,UAAU,UAAU,CAAC,OAAOuT,GAAGvT,EAAE,UAAUA,EAAE,IAAI,UAAU,MAAM,KAAK,SAAS,CAAC,EAAEwT,GAAGxT,EAAE,QAAQ,UAAU,CAAC,OAAOwT,GAAGxT,EAAE,QAAQA,EAAE,IAAI,QAAQ,MAAM,KAAK,SAAS,CAAC,EAAEyT,GAAGzT,EAAE,OAAO,UAAU,CAAC,OAAOyT,GAAGzT,EAAE,OAAOA,EAAE,IAAI,OAAO,MAAM,KAAK,SAAS,CAAC,EAAE0T,GAAG1T,EAAE,KAAK,UAAU,CAAC,OAAO0T,GAAG1T,EAAE,KAAKA,EAAE,IAAI,KAAK,MAAM,KAAK,SAAS,CAAC,EAAE2T,GAAG3T,EAAE,OAAO,UAAU,CAAC,OAAO2T,GAAG3T,EAAE,OAAOA,EAAE,IAAI,OAAO,MAAM,KAAK,SAAS,CAAC,EAAE4T,GAAG5T,EAAE,MAAM,UAAU,CAAC,OAAO4T,GAAG5T,EAAE,MAAMA,EAAE,IAAI,MAAM,MAAM,KAAK,SAAS,CAAC,EAAE6T,GAAG7T,EAAE,SAAS,UAAU,CAAC,OAAO6T,GAAG7T,EAAE,SAASA,EAAE,IAAI,SAAS,MAAM,KAAK,SAAS,CAAC,EAAE8T,GAAG9T,EAAE,YAAY,UAAU,CAAC,OAAO8T,GAAG9T,EAAE,YAAYA,EAAE,IAAI,YAAY,MAAM,KAAK,SAAS,CAAC,EAAE+T,GAAG/T,EAAE,MAAM,UAAU,CAAC,OAAO+T,GAAG/T,EAAE,MAAMA,EAAE,IAAI,MAAM,MAAM,KAAK,SAAS,CAAC,EAAEgU,EAAEhU,EAAE,OAAO,UAAU,CAAC,OAAOgU,EAAEhU,EAAE,OAAOA,EAAE,IAAI,OAAO,MAAM,KAAK,SAAS,CAAC,EAAEiU,GAAGjU,EAAE,gBAAgB,UAAU,CAAC,OAAOiU,GAAGjU,EAAE,gBAAgBA,EAAE,IAAI,gBAAgB,MAAM,KAAK,SAAS,CAAC,EAAEkU,GAAGlU,EAAE,oBAAoB,UAAU,CAAC,OAAOkU,GAAGlU,EAAE,oBAAoBA,EAAE,IAAI,oBAAoB,MAAM,KAAK,SAAS,CAAC,EAAEmU,GAAGnU,EAAE,uBAAuB,UAAU,CAAC,OAAOmU,GAAGnU,EAAE,uBAAuBA,EAAE,IAAI,uBAAuB,MAAM,KAAK,SAAS,CAAC,EAAEoU,GAAGpU,EAAE,2BAA2B,UAAU,CAAC,OAAOoU,GAAGpU,EAAE,2BAA2BA,EAAE,IAAI,2BAA2B,MAAM,KAAK,SAAS,CAAC,EAAEqU,GAAGrU,EAAE,SAAS,UAAU,CAAC,OAAOqU,GAAGrU,EAAE,SAASA,EAAE,IAAI,SAAS,MAAM,KAAK,SAAS,CAAC,EAAEsU,GAAGtU,EAAE,kBAAkB,UAAU,CAAC,OAAOsU,GAAGtU,EAAE,kBAAkBA,EAAE,IAAI,kBAAkB,MAAM,KAAK,SAAS,CAAC,EAAEuU,GAAGvU,EAAE,OAAO,UAAU,CAAC,OAAOuU,GAAGvU,EAAE,OAAOA,EAAE,IAAI,OAAO,MAAM,KAAK,SAAS,CAAC,EAAEwU,GAAGxU,EAAE,OAAO,UAAU,CAAC,OAAOwU,GAAGxU,EAAE,OAAOA,EAAE,IAAI,OAAO,MAAM,KAAK,SAAS,CAAC,EAAEyU,GAAGzU,EAAE,WAAW,UAAU,CAAC,OAAOyU,GAAGzU,EAAE,WAAWA,EAAE,IAAI,WAAW,MAAM,KAAK,SAAS,CAAC,EAAE0U,GAAG1U,EAAE,cAAc,UAAU,CAAC,OAAO0U,GAAG1U,EAAE,cAAcA,EAAE,IAAI,cAAc,MAAM,KAAK,SAAS,CAAC,EAAE2U,GAAG3U,EAAE,UAAU,UAAU,CAAC,OAAO2U,GAAG3U,EAAE,UAAUA,EAAE,IAAI,UAAU,MAAM,KAAK,SAAS,CAAC,EAAE4U,GAAG5U,EAAE,MAAM,UAAU,CAAC,OAAO4U,GAAG5U,EAAE,MAAMA,EAAE,IAAI,MAAM,MAAM,KAAK,SAAS,CAAC,EAAE6U,GAAG7U,EAAE,SAAS,UAAU,CAAC,OAAO6U,GAAG7U,EAAE,SAASA,EAAE,IAAI,SAAS,MAAM,KAAK,SAAS,CAAC,EAAE8U,GAAG9U,EAAE,MAAM,UAAU,CAAC,OAAO8U,GAAG9U,EAAE,MAAMA,EAAE,IAAI,MAAM,MAAM,KAAK,SAAS,CAAC,EAAE+U,GAAG/U,EAAE,KAAK,UAAU,CAAC,OAAO+U,GAAG/U,EAAE,KAAKA,EAAE,IAAI,KAAK,MAAM,KAAK,SAAS,CAAC,EAAEgV,GAAGhV,EAAE,MAAM,UAAU,CAAC,OAAOgV,GAAGhV,EAAE,MAAMA,EAAE,IAAI,MAAM,MAAM,KAAK,SAAS,CAAC,EAAEiV,GAAGjV,EAAE,SAAS,UAAU,CAAC,OAAOiV,GAAGjV,EAAE,SAASA,EAAE,IAAI,SAAS,MAAM,KAAK,SAAS,CAAC,EAAEkV,GAAGlV,EAAE,UAAU,UAAU,CAAC,OAAOkV,GAAGlV,EAAE,UAAUA,EAAE,IAAI,UAAU,MAAM,KAAK,SAAS,CAAC,EAAEmV,GAAGnV,EAAE,qBAAqB,UAAU,CAAC,OAAOmV,GAAGnV,EAAE,qBAAqBA,EAAE,IAAI,qBAAqB,MAAM,KAAK,SAAS,CAAC,EAAEoV,GAAGpV,EAAE,eAAe,UAAU,CAAC,OAAOoV,GAAGpV,EAAE,eAAeA,EAAE,IAAI,eAAe,MAAM,KAAK,SAAS,CAAC,EAAEqV,GAAGrV,EAAE,wBAAwB,UAAU,CAAC,OAAOqV,GAAGrV,EAAE,wBAAwBA,EAAE,IAAI,wBAAwB,MAAM,KAAK,SAAS,CAAC,EAAEsV,GAAGtV,EAAE,eAAe,UAAU,CAAC,OAAOsV,GAAGtV,EAAE,eAAeA,EAAE,IAAI,eAAe,MAAM,KAAK,SAAS,CAAC,EAAEuV,GAAGvV,EAAE,MAAM,UAAU,CAAC,OAAOuV,GAAGvV,EAAE,MAAMA,EAAE,IAAI,MAAM,MAAM,KAAK,SAAS,CAAC,EAAEwV,GAAGxV,EAAE,QAAQ,UAAU,CAAC,OAAOwV,GAAGxV,EAAE,QAAQA,EAAE,IAAI,QAAQ,MAAM,KAAK,SAAS,CAAC,EAAEyV,GAAGzV,EAAE,mBAAmB,UAAU,CAAC,OAAOyV,GAAGzV,EAAE,mBAAmBA,EAAE,IAAI,mBAAmB,MAAM,KAAK,SAAS,CAAC,EAAE0V,GAAG1V,EAAE,MAAM,UAAU,CAAC,OAAO0V,GAAG1V,EAAE,MAAMA,EAAE,IAAI,MAAM,MAAM,KAAK,SAAS,CAAC,EAAE2V,GAAG3V,EAAE,cAAc,UAAU,CAAC,OAAO2V,GAAG3V,EAAE,cAAcA,EAAE,IAAI,cAAc,MAAM,KAAK,SAAS,CAAC,EAAE4V,GAAG5V,EAAE,KAAK,UAAU,CAAC,OAAO4V,GAAG5V,EAAE,KAAKA,EAAE,IAAI,KAAK,MAAM,KAAK,SAAS,CAAC,EAAE6V,GAAG7V,EAAE,KAAK,UAAU,CAAC,OAAO6V,GAAG7V,EAAE,KAAKA,EAAE,IAAI,KAAK,MAAM,KAAK,SAAS,CAAC,EAAE8V,GAAG9V,EAAE,KAAK,UAAU,CAAC,OAAO8V,GAAG9V,EAAE,KAAKA,EAAE,IAAI,KAAK,MAAM,KAAK,SAAS,CAAC,EAAE+V,GAAG/V,EAAE,MAAM,UAAU,CAAC,OAAO+V,GAAG/V,EAAE,MAAMA,EAAE,IAAI,MAAM,MAAM,KAAK,SAAS,CAAC,EAAEgW,GAAGhW,EAAE,qBAAqB,UAAU,CAAC,OAAOgW,GAAGhW,EAAE,qBAAqBA,EAAE,IAAI,qBAAqB,MAAM,KAAK,SAAS,CAAC,EAAEiW,GAAGjW,EAAE,MAAM,UAAU,CAAC,OAAOiW,GAAGjW,EAAE,MAAMA,EAAE,IAAI,MAAM,MAAM,KAAK,SAAS,CAAC,EAAEkW,GAAGlW,EAAE,MAAM,UAAU,CAAC,OAAOkW,GAAGlW,EAAE,MAAMA,EAAE,IAAI,MAAM,MAAM,KAAK,SAAS,CAAC,EAAEmW,GAAGnW,EAAE,WAAW,UAAU,CAAC,OAAOmW,GAAGnW,EAAE,WAAWA,EAAE,IAAI,WAAW,MAAM,KAAK,SAAS,CAAC,EAAEoW,GAAGpW,EAAE,WAAW,UAAU,CAAC,OAAOoW,GAAGpW,EAAE,WAAWA,EAAE,IAAI,WAAW,MAAM,KAAK,SAAS,CAAC,EAAEqW,GAAGrW,EAAE,cAAc,UAAU,CAAC,OAAOqW,GAAGrW,EAAE,cAAcA,EAAE,IAAI,cAAc,MAAM,KAAK,SAAS,CAAC,EAAEsW,GAAGtW,EAAE,QAAQ,UAAU,CAAC,OAAOsW,GAAGtW,EAAE,QAAQA,EAAE,IAAI,QAAQ,MAAM,KAAK,SAAS,CAAC,EAAEuW,GAAGvW,EAAE,MAAM,UAAU,CAAC,OAAOuW,GAAGvW,EAAE,MAAMA,EAAE,IAAI,MAAM,MAAM,KAAK,SAAS,CAAC,EAAEwW,GAAGxW,EAAE,sBAAsB,UAAU,CAAC,OAAOwW,GAAGxW,EAAE,sBAAsBA,EAAE,IAAI,sBAAsB,MAAM,KAAK,SAAS,CAAC,EAAEgK,GAAGhK,EAAE,cAAc,UAAU,CAAC,OAAOgK,GAAGhK,EAAE,cAAcA,EAAE,IAAI,cAAc,MAAM,KAAK,SAAS,CAAC,EAAEyW,GAAGzW,EAAE,kBAAkB,UAAU,CAAC,OAAOyW,GAAGzW,EAAE,kBAAkBA,EAAE,IAAI,kBAAkB,MAAM,KAAK,SAAS,CAAC,EAAE0K,GAAG1K,EAAE,yBAAyB,UAAU,CAAC,OAAO0K,GAAG1K,EAAE,yBAAyBA,EAAE,IAAI,yBAAyB,MAAM,KAAK,SAAS,CAAC,EAAE0W,GAAG1W,EAAE,4BAA4B,UAAU,CAAC,OAAO0W,GAAG1W,EAAE,4BAA4BA,EAAE,IAAI,4BAA4B,MAAM,KAAK,SAAS,CAAC,EAAE2W,GAAG3W,EAAE,6CAA6C,UAAU,CAAC,OAAO2W,GAAG3W,EAAE,6CAA6CA,EAAE,IAAI,6CAA6C,MAAM,KAAK,SAAS,CAAC,EAAE4W,GAAG5W,EAAE,mCAAmC,UAAU,CAAC,OAAO4W,GAAG5W,EAAE,mCAAmCA,EAAE,IAAI,mCAAmC,MAAM,KAAK,SAAS,CAAC,EAAEgM,GAAGhM,EAAE,0CAA0C,UAAU,CAAC,OAAOgM,GAAGhM,EAAE,0CAA0CA,EAAE,IAAI,0CAA0C,MAAM,KAAK,SAAS,CAAC,EAAE6W,GAAG7W,EAAE,gCAAgC,UAAU,CAAC,OAAO6W,GAAG7W,EAAE,gCAAgCA,EAAE,IAAI,gCAAgC,MAAM,KAAK,SAAS,CAAC,EAAEiL,GAAGjL,EAAE,sCAAsC,UAAU,CAAC,OAAOiL,GAAGjL,EAAE,sCAAsCA,EAAE,IAAI,sCAAsC,MAAM,KAAK,SAAS,CAAC,EAAEqJ,GAAGrJ,EAAE,8BAA8B,UAAU,CAAC,OAAOqJ,GAAGrJ,EAAE,8BAA8BA,EAAE,IAAI,8BAA8B,MAAM,KAAK,SAAS,CAAC,EAAEwK,GAAGxK,EAAE,yBAAyB,UAAU,CAAC,OAAOwK,GAAGxK,EAAE,yBAAyBA,EAAE,IAAI,yBAAyB,MAAM,KAAK,SAAS,CAAC,EAAEmK,GAAGnK,EAAE,6BAA6B,UAAU,CAAC,OAAOmK,GAAGnK,EAAE,6BAA6BA,EAAE,IAAI,6BAA6B,MAAM,KAAK,SAAS,CAAC,EAAE8L,GAAG9L,EAAE,UAAU,UAAU,CAAC,OAAO8L,GAAG9L,EAAE,UAAUA,EAAE,IAAI,WAAW,MAAM,KAAK,SAAS,CAAC,EAAEoK,GAAGpK,EAAE,aAAa,UAAU,CAAC,OAAOoK,GAAGpK,EAAE,aAAaA,EAAE,IAAI,cAAc,MAAM,KAAK,SAAS,CAAC,EAAE+L,GAAG/L,EAAE,WAAW,UAAU,CAAC,OAAO+L,GAAG/L,EAAE,WAAWA,EAAE,IAAI,YAAY,MAAM,KAAK,SAAS,CAAC,EAAE8W,GAAG9W,EAAE,iBAAiB,UAAU,CAAC,OAAO8W,GAAG9W,EAAE,iBAAiBA,EAAE,IAAI,kBAAkB,MAAM,KAAK,SAAS,CAAC,EAAE+W,GAAG/W,EAAE,aAAa,UAAU,CAAC,OAAO+W,GAAG/W,EAAE,aAAaA,EAAE,IAAI,cAAc,MAAM,KAAK,SAAS,CAAC,EAAEA,EAAE,iBAAiB8F,GAAG9F,EAAE,WAAWyE,GAAGzE,EAAE,MAAMqN,GAAGrN,EAAE,WAAWuF,GAAGvF,EAAE,QAAQ+I,GAAG,IAAIiO,GAAG5O,GAAG,SAASjD,GAAG,CAAC6R,IAAIC,GAAG,EAAED,KAAK5O,GAAGjD,EAAE,EAAE,SAAS8R,GAAG9R,EAAE,CAAC,GAAGA,EAAEA,GAAGtE,EAAEqH,GAAG,EAAE,OAAO,GAAGzF,EAAE,CAAChC,EAAET,CAAC,EAAE8H,GAAG,EAAE,YAAY9H,CAAC,EAAE,MAAM,CAAC,GAAG2H,GAAG,EAAEO,GAAG,EAAE,OAAO,SAAS9C,GAAG,CAAC4R,KAAKA,GAAG,GAAGhX,EAAE,UAAU,GAAG,CAACwG,KAAKsB,GAAG,EAAErH,EAAET,CAAC,EAAEA,EAAE,sBAAsBA,EAAE,qBAAqB,EAAE+H,GAAG,GAAG,CAAC/H,EAAE,WAAWA,EAAE,UAAU,YAAY,EAAE,WAAW,UAAU,CAAC,WAAW,UAAU,CAACA,EAAE,UAAU,EAAE,CAAC,EAAE,CAAC,EAAEoF,EAAE,CAAC,EAAE,CAAC,GAAGA,EAAE,CAAC,CAAC,GAAGpF,EAAE,QAAQ,IAAI,OAAOA,EAAE,SAAS,aAAaA,EAAE,QAAQ,CAACA,EAAE,OAAO,GAAGA,EAAE,QAAQ,OAAO,GAAGA,EAAE,QAAQ,IAAI,EAAE,EAAEiX,GAAG,EAAE,IAAIC,GAAGvW,IAAIuW,GAAG,CAAC,kBAAkB,QAAQ,UAAU,mBAAmB,EAAE,OAAO,SAAS/R,EAAE,CAAC,MAAM,CAACxE,EAAE,kBAAkB,QAAQwE,CAAC,EAAE,EAAE,CAAC,EAAE,mBAAmB,QAAQ,UAAU,oBAAoB,EAAE,OAAO,SAASA,EAAE,CAAC,MAAM,CAACxE,EAAE,mBAAmB,QAAQwE,CAAC,EAAE,EAAE,CAAC,CAAC,GAAG,IAAIgS,GAAG,GAAG,OAAO,mBAAmB,YAAYA,GAAG,0BAA0B,OAAOxY,GAAG,YAAYwY,GAAGxY,MAAO,OAAM,IAAI,MAAM,uCAAuC,EAAE,GAAGuY,GAAG,CAAC,IAAIE,GAAGD,GAAG,SAASA,GAAG,SAAS,UAAU,CAACC,GAAG,EAAEF,GAAG,kBAAkB,QAAQ,SAAS/R,EAAE,CAAC,QAAQ,eAAe,oBAAoBA,CAAC,CAAC,CAAC,EAAE+R,GAAG,mBAAmB,QAAQ,SAAS/R,EAAE,CAAC,QAAQ,eAAe,qBAAqBA,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,OAAOxG,EAAE,KAAK,CAAC,GAAG,EAAE,OAAO2F,GAAI,UAAU,OAAOC,GAAI,SAASA,EAAG,QAAQC,EAAG,OAAO,QAAQ,YAAY,OAAO,IAAI,OAAO,CAAC,EAAE,UAAU,CAAC,OAAOA,CAAE,CAAC,EAAE,OAAOF,GAAI,WAAWA,EAAG,8BAA8BE,EAAG,CAAC,EAAM6S,GAAGvZ,GAAG,CAACwZ,EAAIC,IAAK,CAACA,EAAG,QAAQ,mBAAmB;AAAA,sqEACzi3B,CAAC,EAAMC,GAAG1Z,GAAG,CAAC2Z,EAAGC,IAAK,CAAC,IAAIC,GAAI,IAAI,CAAC,IAAI5Z,EAAE,OAAO,UAAU,aAAa,SAAS,cAAc,SAAS,cAAc,IAAI,OAAO,OAAO,OAAO,YAAY,cAAcA,EAAEA,GAAG,YAAY,SAASY,EAAE,CAACA,EAAEA,GAAG,CAAC,EAAE,IAAIV,EAAE,OAAOU,GAAG,YAAYA,EAAE,CAAC,EAAER,EAAE,EAAEF,EAAE,MAAM,IAAI,QAAQ,SAAS+V,EAAEC,GAAG,CAAC9V,EAAE6V,EAAE,EAAEC,EAAE,CAAC,EAAE,IAAIrU,EAAE,OAAO,SAAS,aAAa,QAAQ,YAAYA,EAAE,CAAC,kBAAkB,QAAQ,UAAU,mBAAmB,EAAE,mBAAmB,QAAQ,UAAU,oBAAoB,CAAC,GAAG,IAAIC,EAAE,OAAO,OAAO,CAAC,EAAE5B,CAAC,EAAE6B,EAAE,CAAC,EAAEC,EAAE,iBAAiBC,EAAE,CAACgU,EAAEC,KAAK,CAAC,MAAMA,EAAE,EAAExT,EAAE,OAAO,QAAQ,SAASC,EAAE,OAAO,eAAe,WAAWC,EAAE,OAAO,SAAS,UAAU,OAAO,QAAQ,UAAU,UAAU,OAAO,QAAQ,SAAS,MAAM,SAASC,EAAE,GAAG,SAASC,EAAEmT,EAAE,CAAC,OAAO/V,EAAE,WAAWA,EAAE,WAAW+V,EAAEpT,CAAC,EAAEA,EAAEoT,CAAC,CAAC,IAAIjS,EAAEC,EAAEqD,EAAExC,EAAE,SAASL,EAAEwR,EAAE,CAAIA,aAAa7L,IAAUvF,EAAE,6BAA6BoR,CAAC,CAAC,CAAC,GAAGrT,EAAE,CAAC,IAAI8B,EAAEuB,GAAG,EAAEtB,EAAEuB,GAAG,EAAEvD,EAAEE,EAAE8B,EAAE,QAAQ9B,CAAC,EAAE,IAAIA,EAAE,UAAU,IAAImB,EAAE,CAACiS,EAAEC,MAAMD,EAAErM,GAAGqM,CAAC,EAAE,IAAI,IAAIA,CAAC,EAAEtR,EAAE,UAAUsR,CAAC,EAAEvR,EAAE,aAAauR,EAAEC,GAAG,OAAO,MAAM,GAAG5O,EAAE2O,GAAG,CAAC,IAAIC,GAAGlS,EAAEiS,EAAE,EAAE,EAAE,OAAOC,GAAG,SAASA,GAAG,IAAI,WAAWA,EAAE,GAAGA,EAAE,EAAEjS,EAAE,CAACgS,EAAEC,GAAGC,KAAK,CAACF,EAAErM,GAAGqM,CAAC,EAAE,IAAI,IAAIA,CAAC,EAAEtR,EAAE,UAAUsR,CAAC,EAAEvR,EAAE,SAASuR,EAAE,SAASG,GAAGC,GAAG,CAACD,GAAGD,GAAGC,EAAE,EAAEF,GAAGG,GAAG,MAAM,CAAC,CAAC,CAAC,EAAE,QAAQ,KAAK,OAAO,IAAIrU,EAAE,QAAQ,KAAK,CAAC,EAAE,QAAQ,MAAM,GAAG,GAAGD,EAAE,QAAQ,KAAK,MAAM,CAAC,EAAE,QAAQ,GAAG,oBAAoB,SAASkU,EAAE,CAAC,GAAG,EAAEA,aAAa7L,IAAI,MAAM6L,CAAC,CAAC,EAAE,QAAQ,GAAG,qBAAqB,SAASA,EAAE,CAAC,MAAMA,CAAC,CAAC,EAAEhU,EAAE,CAACgU,EAAEC,KAAK,CAAC,GAAGpP,GAAG,EAAE,MAAM,QAAQ,SAASmP,EAAEC,GAAGzR,EAAEyR,EAAE,EAAE,QAAQ,KAAKD,CAAC,CAAC,EAAE/V,EAAE,QAAQ,UAAU,CAAC,MAAM,4BAA4B,CAAC,MAAMwC,GAAGC,KAAKA,EAAEE,EAAE,KAAK,SAAS,KAAK,OAAO,UAAU,aAAa,SAAS,gBAAgBA,EAAE,SAAS,cAAc,KAAK7C,IAAI6C,EAAE7C,GAAG6C,EAAE,QAAQ,OAAO,IAAI,EAAEA,EAAEA,EAAE,OAAO,EAAEA,EAAE,QAAQ,SAAS,EAAE,EAAE,YAAY,GAAG,EAAE,CAAC,EAAEA,EAAE,GAAGmB,EAAEiS,GAAG,CAAC,IAAIC,GAAG,IAAI,eAAe,OAAOA,GAAG,KAAK,MAAMD,EAAE,EAAE,EAAEC,GAAG,KAAK,IAAI,EAAEA,GAAG,YAAY,EAAEvT,IAAI2E,EAAE2O,GAAG,CAAC,IAAIC,GAAG,IAAI,eAAe,OAAOA,GAAG,KAAK,MAAMD,EAAE,EAAE,EAAEC,GAAG,aAAa,cAAcA,GAAG,KAAK,IAAI,EAAE,IAAI,WAAWA,GAAG,QAAQ,CAAC,GAAGjS,EAAE,CAACgS,EAAEC,GAAGC,KAAK,CAAC,IAAIC,GAAG,IAAI,eAAeA,GAAG,KAAK,MAAMH,EAAE,EAAE,EAAEG,GAAG,aAAa,cAAcA,GAAG,OAAO,IAAI,CAAC,GAAGA,GAAG,QAAQ,KAAKA,GAAG,QAAQ,GAAGA,GAAG,SAAS,CAACF,GAAGE,GAAG,QAAQ,EAAE,MAAM,CAACD,GAAG,CAAC,EAAEC,GAAG,QAAQD,GAAGC,GAAG,KAAK,IAAI,CAAC,EAAEtR,EAAEmR,GAAG,SAAS,MAAMA,GAAG,IAAIrR,EAAE1E,EAAE,OAAO,QAAQ,IAAI,KAAK,OAAO,EAAE2E,EAAE3E,EAAE,UAAU,QAAQ,KAAK,KAAK,OAAO,EAAE,OAAO,OAAOA,EAAE4B,CAAC,EAAEA,EAAE,KAAK5B,EAAE,YAAY6B,EAAE7B,EAAE,WAAWA,EAAE,cAAc8B,EAAE9B,EAAE,aAAaA,EAAE,OAAO+B,EAAE/B,EAAE,MAAM,IAAIqH,EAAE,EAAExC,EAAE7E,EAAE,aAAa6E,EAAE7E,EAAE,YAAY,IAAI,EAAEA,EAAE,eAAe,GAAG,OAAO,aAAa,UAAUwJ,GAAG,iCAAiC,EAAE,IAAIzE,EAAEC,EAAE,GAAGC,EAAE,SAAS,EAAE8Q,EAAEC,GAAG,CAACD,GAAGvM,GAAGwM,EAAE,CAAC,CAAC,IAAI7Q,EAAE,OAAO,aAAa,YAAY,IAAI,YAAY,MAAM,EAAE,OAAO,SAAS2C,EAAEiO,EAAEC,GAAGC,GAAG,CAACD,MAAM,EAAE,QAAQE,GAAGF,GAAGC,GAAGE,GAAGH,GAAGD,EAAEI,EAAE,GAAG,EAAEA,IAAID,KAAK,EAAEC,GAAG,GAAGA,GAAGH,GAAG,IAAID,EAAE,QAAQ5Q,EAAE,OAAOA,EAAE,OAAO4Q,EAAE,SAASC,GAAGG,EAAE,CAAC,EAAE,QAAQC,GAAG,GAAGJ,GAAGG,IAAI,CAAC,IAAIE,GAAGN,EAAEC,IAAI,EAAE,GAAG,EAAEK,GAAG,KAAK,CAACD,IAAI,OAAO,aAAaC,EAAE,EAAE,QAAQ,CAAC,IAAIC,GAAGP,EAAEC,IAAI,EAAE,GAAG,IAAIK,GAAG,MAAM,IAAI,CAACD,IAAI,OAAO,cAAcC,GAAG,KAAK,EAAEC,EAAE,EAAE,QAAQ,CAAC,IAAIC,GAAGR,EAAEC,IAAI,EAAE,GAAG,IAAIK,GAAG,MAAM,IAAIA,IAAIA,GAAG,KAAK,GAAGC,IAAI,EAAEC,GAAGF,IAAIA,GAAG,IAAI,GAAGC,IAAI,GAAGC,IAAI,EAAER,EAAEC,IAAI,EAAE,GAAGK,GAAG,MAAMD,IAAI,OAAO,aAAaC,EAAE,MAAM,CAAC,IAAIG,GAAGH,GAAG,MAAMD,IAAI,OAAO,aAAa,MAAMI,IAAI,GAAG,MAAMA,GAAG,IAAI,CAAC,CAAC,CAAC,OAAOJ,EAAE,CAAC,SAAS7O,EAAEwO,EAAEC,GAAG,CAAC,OAAOD,KAAK,EAAEA,EAAEjO,EAAEK,GAAG4N,EAAEC,EAAE,EAAE,EAAE,CAAC,SAASjO,GAAEgO,EAAEC,GAAGC,GAAGC,GAAG,CAAC,GAAGD,MAAM,EAAE,EAAEC,GAAG,GAAG,MAAO,GAAE,QAAQC,GAAGF,GAAGG,GAAGH,GAAGC,GAAG,EAAEG,GAAG,EAAEA,GAAGN,EAAE,OAAO,EAAEM,GAAG,CAAC,IAAIC,GAAGP,EAAE,WAAWM,EAAE,EAAE,GAAGC,IAAI,OAAOA,IAAI,MAAM,CAAC,IAAIC,GAAGR,EAAE,WAAW,EAAEM,EAAE,EAAEC,GAAG,QAAQA,GAAG,OAAO,IAAIC,GAAG,IAAI,CAAC,GAAGD,IAAI,IAAI,CAAC,GAAGL,IAAIG,GAAG,MAAMJ,GAAGC,OAAO,CAAC,EAAEK,EAAE,SAASA,IAAI,KAAK,CAAC,GAAGL,GAAG,GAAGG,GAAG,MAAMJ,GAAGC,OAAO,CAAC,EAAE,IAAIK,IAAI,EAAEN,GAAGC,OAAO,CAAC,EAAE,IAAIK,GAAG,EAAE,SAASA,IAAI,MAAM,CAAC,GAAGL,GAAG,GAAGG,GAAG,MAAMJ,GAAGC,OAAO,CAAC,EAAE,IAAIK,IAAI,GAAGN,GAAGC,OAAO,CAAC,EAAE,IAAIK,IAAI,EAAE,GAAGN,GAAGC,OAAO,CAAC,EAAE,IAAIK,GAAG,EAAE,KAAK,CAAC,GAAGL,GAAG,GAAGG,GAAG,MAAMJ,GAAGC,OAAO,CAAC,EAAE,IAAIK,IAAI,GAAGN,GAAGC,OAAO,CAAC,EAAE,IAAIK,IAAI,GAAG,GAAGN,GAAGC,OAAO,CAAC,EAAE,IAAIK,IAAI,EAAE,GAAGN,GAAGC,OAAO,CAAC,EAAE,IAAIK,GAAG,EAAE,CAAC,CAAC,OAAON,GAAGC,KAAK,CAAC,EAAE,EAAEA,GAAGE,EAAE,CAAC,SAASnO,GAAG+N,EAAEC,GAAGC,GAAG,CAAC,OAAOlO,GAAEgO,EAAE5N,GAAG6N,GAAGC,EAAE,CAAC,CAAC,IAAIhO,GAAGC,GAAGC,GAAGC,GAAG5B,GAAG8B,GAAGC,GAAGC,GAAGC,GAAG,SAASC,GAAGqN,EAAE,CAAC9N,GAAG8N,EAAE/V,EAAE,MAAMkI,GAAG,IAAI,UAAU6N,CAAC,EAAE/V,EAAE,OAAOoI,GAAG,IAAI,WAAW2N,CAAC,EAAE/V,EAAE,OAAOsI,GAAG,IAAI,WAAWyN,CAAC,EAAE/V,EAAE,OAAOmI,GAAG,IAAI,WAAW4N,CAAC,EAAE/V,EAAE,QAAQwG,GAAG,IAAI,YAAYuP,CAAC,EAAE/V,EAAE,QAAQuI,GAAG,IAAI,YAAYwN,CAAC,EAAE/V,EAAE,QAAQwI,GAAG,IAAI,aAAauN,CAAC,EAAE/V,EAAE,QAAQyI,GAAG,IAAI,aAAasN,CAAC,CAAC,CAAC,IAAIpN,GAAG3I,EAAE,gBAAgB,SAASgJ,GAAGC,GAAG,CAAC,EAAEC,GAAG,CAAC,EAAEzC,GAAG,CAAC,EAAEE,GAAG,GAAG,SAASC,IAAI,CAAC,OAAO,CAAC,CAAC,SAASC,IAAI,CAAC,GAAG7G,EAAE,OAAO,IAAI,OAAOA,EAAE,QAAQ,aAAaA,EAAE,OAAO,CAACA,EAAE,MAAM,GAAGA,EAAE,OAAO,QAAQ+G,GAAG/G,EAAE,OAAO,MAAM,CAAC,EAAEmK,GAAGlB,EAAE,CAAC,CAAC,SAASE,IAAI,CAACxC,GAAG,GAAGwD,GAAGjB,EAAE,CAAC,CAAC,SAASpC,IAAI,CAAC,GAAG9G,EAAE,QAAQ,IAAI,OAAOA,EAAE,SAAS,aAAaA,EAAE,QAAQ,CAACA,EAAE,OAAO,GAAGA,EAAE,QAAQ,QAAQiH,GAAGjH,EAAE,QAAQ,MAAM,CAAC,EAAEmK,GAAG1D,EAAE,CAAC,CAAC,SAASM,GAAGgP,EAAE,CAAC9M,GAAG,QAAQ8M,CAAC,CAAC,CAAC,SAAS/O,GAAG+O,EAAE,CAAC7M,GAAG,QAAQ6M,CAAC,CAAC,CAAC,SAAS9O,GAAG8O,EAAE,CAACtP,GAAG,QAAQsP,CAAC,CAAC,CAAC,IAAIrP,GAAG,EAAE0C,GAAG,KAAKC,GAAG,KAAK,SAASC,GAAGyM,EAAE,CAACrP,KAAK1G,EAAE,wBAAwBA,EAAE,uBAAuB0G,EAAE,CAAC,CAAC,SAAS6C,GAAGwM,EAAE,CAAC,GAAGrP,KAAK1G,EAAE,wBAAwBA,EAAE,uBAAuB0G,EAAE,EAAEA,IAAI,IAAI0C,KAAK,OAAO,cAAcA,EAAE,EAAEA,GAAG,MAAMC,IAAI,CAAC,IAAI2M,GAAG3M,GAAGA,GAAG,KAAK2M,GAAG,CAAC,CAAC,CAAC,SAASxM,GAAGuM,EAAE,CAAC/V,EAAE,SAASA,EAAE,QAAQ+V,CAAC,EAAEA,EAAE,WAAWA,EAAE,IAAIpR,EAAEoR,CAAC,EAAE/Q,EAAE,GAAGC,EAAE,EAAE8Q,GAAG,2CAA2C,IAAIC,GAAG,IAAI,YAAY,aAAaD,CAAC,EAAE,MAAM,EAAEC,EAAE,EAAEA,EAAE,CAAC,IAAIvM,GAAG,wCAAwC,SAAS5B,GAAGkO,EAAE,CAAC,OAAOA,EAAE,WAAWtM,EAAE,CAAC,CAAC,SAASC,GAAGqM,EAAE,CAAC,OAAOA,EAAE,WAAW,SAAS,CAAC,CAAC,IAAIlM,GAAGA,GAAG,yBAAyBhC,GAAGgC,EAAE,IAAIA,GAAGjH,EAAEiH,EAAE,GAAG,SAASC,GAAGiM,EAAE,CAAC,GAAG,CAAC,GAAGA,GAAGlM,IAAIhF,EAAE,OAAO,IAAI,WAAWA,CAAC,EAAE,GAAGuC,EAAE,OAAOA,EAAE2O,CAAC,EAAE,KAAK,iDAAiD,OAAOC,GAAG,CAACxM,GAAGwM,EAAE,CAAC,CAAC,CAAC,SAASrM,IAAI,CAAC,GAAG,CAAC9E,IAAIrC,GAAGC,GAAG,CAAC,GAAG,OAAO,OAAO,YAAY,CAACiH,GAAGG,EAAE,EAAE,OAAO,MAAMA,GAAG,CAAC,YAAY,aAAa,CAAC,EAAE,KAAK,SAASkM,EAAE,CAAC,GAAG,CAACA,EAAE,GAAG,KAAK,uCAAuClM,GAAG,IAAI,OAAOkM,EAAE,YAAY,CAAC,CAAC,EAAE,MAAM,UAAU,CAAC,OAAOjM,GAAGD,EAAE,CAAC,CAAC,EAAE,GAAG9F,EAAE,OAAO,IAAI,QAAQ,SAASgS,EAAEC,GAAG,CAACjS,EAAE8F,GAAG,SAASoM,GAAG,CAACF,EAAE,IAAI,WAAWE,EAAE,CAAC,CAAC,EAAED,EAAE,CAAC,CAAC,CAAC,CAAC,OAAO,QAAQ,QAAQ,EAAE,KAAK,UAAU,CAAC,OAAOlM,GAAGD,EAAE,CAAC,CAAC,CAAC,CAAC,SAASG,IAAI,CAAC,IAAI+L,EAAE,CAAC,IAAIzK,GAAG,uBAAuBA,EAAE,EAAE,SAAS0K,GAAGK,GAAGC,GAAG,CAAC,IAAIC,GAAGF,GAAG,QAAQrW,EAAE,IAAIuW,GAAGxR,EAAE/E,EAAE,IAAI,OAAO0I,GAAG3D,EAAE,MAAM,EAAEiE,GAAGhJ,EAAE,IAAI,0BAA0BgH,GAAGhH,EAAE,IAAI,iBAAiB,EAAEuJ,GAAG,kBAAkB,CAAC,CAACD,GAAG,kBAAkB,EAAE,SAAS2M,GAAGI,GAAG,CAACL,GAAGK,GAAG,QAAQ,CAAC,CAAC,SAASH,GAAGG,GAAG,CAAC,OAAO1M,GAAG,EAAE,KAAK,SAAS2M,GAAG,CAAC,OAAO,YAAY,YAAYA,GAAGP,CAAC,CAAC,CAAC,EAAE,KAAK,SAASO,GAAG,CAAC,OAAOA,EAAE,CAAC,EAAE,KAAKD,GAAG,SAASC,GAAG,CAAC3R,EAAE,0CAA0C2R,EAAE,EAAE9M,GAAG8M,EAAE,CAAC,CAAC,CAAC,CAAC,SAASH,IAAI,CAAC,MAAM,CAACtR,GAAG,OAAO,YAAY,sBAAsB,YAAY,CAACgD,GAAGgC,EAAE,GAAG,CAACH,GAAGG,EAAE,GAAG,CAACnH,GAAG,OAAO,OAAO,WAAW,MAAMmH,GAAG,CAAC,YAAY,aAAa,CAAC,EAAE,KAAK,SAASwM,GAAG,CAAC,IAAIC,GAAG,YAAY,qBAAqBD,GAAGN,CAAC,EAAE,OAAOO,GAAG,KAAKL,GAAG,SAASM,GAAG,CAAC,OAAO5R,EAAE,kCAAkC4R,EAAE,EAAE5R,EAAE,2CAA2C,EAAEuR,GAAGD,EAAE,CAAC,CAAC,CAAC,CAAC,EAAEC,GAAGD,EAAE,CAAC,CAAC,GAAGjW,EAAE,gBAAgB,GAAG,CAAC,IAAIoW,GAAGpW,EAAE,gBAAgB+V,EAAEC,EAAE,EAAE,OAAOI,EAAE,OAAOC,GAAG,CAAC1R,EAAE,sDAAsD0R,EAAE,EAAE,EAAEA,EAAE,CAAC,CAAC,OAAOF,GAAG,EAAE,MAAM,CAAC,EAAE,CAAC,CAAC,CAAC,IAAIpM,GAAGE,GAAG,SAASC,GAAG6L,EAAE,CAAC,KAAK,KAAK,aAAa,KAAK,QAAQ,gCAAgCA,EAAE,IAAI,KAAK,OAAOA,CAAC,CAAC,SAAS5L,GAAG4L,EAAE,CAAC,KAAKA,EAAE,OAAO,GAAGA,EAAE,MAAM,EAAE/V,CAAC,CAAC,CAAC,SAASoK,IAAI,CAACZ,GAAG,EAAE,CAAC,CAAC,SAASa,IAAI,CAAC,MAAO,WAAU,CAAC,SAAShC,IAAI,CAAC,OAAOgC,GAAG,CAAC,CAAC,SAASC,GAAGyL,EAAEC,GAAGC,GAAG,CAAC9N,GAAG,WAAW4N,IAAI,EAAEC,KAAK,EAAEA,GAAGC,KAAK,CAAC,CAAC,CAAC,SAAS1L,GAAGwL,EAAE,CAAC,GAAG,CAAC,OAAOhR,EAAE,KAAKgR,EAAE9N,GAAG,WAAW,QAAQ,EAAE,EAAES,GAAG3D,EAAE,MAAM,EAAE,CAAC,OAAOiR,GAAG,CAAC,CAAC,CAAC,SAASvO,GAAGsO,EAAE,CAAC,IAAIC,GAAG7N,GAAG,OAAO4N,EAAEA,IAAI,EAAE,IAAIE,GAAG5L,GAAG,EAAE,GAAG0L,EAAEE,GAAG,MAAM,GAAG,IAAIC,GAAG,CAACK,GAAGC,KAAKD,IAAIC,GAAGD,GAAGC,IAAIA,GAAG,QAAQL,GAAG,EAAEA,IAAI,EAAEA,IAAI,EAAE,CAAC,IAAIC,GAAGJ,IAAI,EAAE,GAAGG,IAAIC,GAAG,KAAK,IAAIA,GAAGL,EAAE,SAAS,EAAE,IAAIM,GAAG,KAAK,IAAIJ,GAAGC,GAAG,KAAK,IAAIH,EAAEK,EAAE,EAAE,KAAK,CAAC,EAAEE,GAAG/L,GAAG8L,EAAE,EAAE,GAAGC,GAAG,MAAM,EAAE,CAAC,MAAM,EAAE,CAAC,IAAI9L,GAAG,CAAC,QAAQ,OAAO,IAAI,UAAU,CAACA,GAAG,SAAS,EAAE,IAAIuL,EAAEzN,GAAGkC,GAAG,QAAQ,IAAI,CAAC,EAAE,OAAOuL,CAAC,EAAE,OAAO,SAASA,EAAE,CAAC,IAAIC,GAAGzO,EAAEwO,CAAC,EAAE,OAAOC,EAAE,CAAC,EAAE,SAASvL,GAAGsL,EAAE,CAAC,MAAO,GAAE,CAAC,SAASrL,GAAGqL,EAAEC,GAAGC,GAAGC,GAAGC,GAAG,CAAC,MAAO,GAAE,CAAC,IAAIxL,GAAG,CAAC,KAAK,CAAC,EAAE,CAAC,CAAC,EAAE,SAASK,GAAG+K,EAAEC,GAAG,CAAC,IAAIC,GAAGtL,GAAGoL,CAAC,EAAEC,KAAK,GAAGA,KAAK,KAAKD,IAAI,EAAErR,EAAEC,GAAGmD,EAAEmO,GAAG,CAAC,CAAC,EAAEA,GAAG,OAAO,GAAGA,GAAG,KAAKD,EAAE,CAAC,CAAC,SAAS/K,GAAG8K,EAAEC,GAAGC,GAAGC,GAAG,CAAC,QAAQC,GAAG,EAAEC,GAAG,EAAEA,GAAGH,GAAGG,KAAK,CAAC,IAAIC,GAAG9N,GAAGyN,KAAK,CAAC,EAAEM,GAAG/N,GAAGyN,GAAG,IAAI,CAAC,EAAEA,IAAI,EAAE,QAAQO,GAAG,EAAEA,GAAGD,GAAGC,KAAKvL,GAAG+K,EAAE5N,GAAGkO,GAAGE,KAAK,CAAC,CAAC,EAAEJ,IAAIG,EAAE,CAAC,OAAO/N,GAAG2N,KAAK,CAAC,EAAEC,GAAG,CAAC,CAAC,SAASjL,GAAG6K,EAAE,CAAC,IAAIC,GAAGhW,EAAE,IAAI+V,CAAC,EAAE,OAAOC,EAAE,CAAC,SAAS1O,GAAGyO,EAAEC,GAAG,CAAC9N,GAAG,IAAI6N,EAAEC,KAAK,CAAC,CAAC,CAAC,SAAS7K,GAAG4K,EAAEC,GAAGC,GAAGC,GAAGC,GAAG,CAAC,IAAIC,GAAG,CAAC,OAAOS,IAAI,CAAC,IAAIC,GAAG,EAAE,GAAGD,IAAI,MAAMA,KAAK,EAAE,CAAC,IAAIE,IAAIF,GAAG,QAAQ,GAAG,EAAEC,GAAGvB,GAAGwB,EAAE,EAAE/O,GAAG6O,GAAGC,GAAGC,EAAE,CAAC,CAAC,OAAOD,EAAE,EAAE,MAAMD,IAAI,CAAC,IAAIC,GAAGvB,GAAGsB,GAAG,MAAM,EAAE,OAAOvP,GAAGuP,GAAGC,EAAE,EAAEA,EAAE,CAAC,EAAE,SAAST,GAAGQ,GAAG,CAAC,OAAOb,KAAK,SAASzO,EAAEsP,EAAE,EAAEb,KAAK,UAAU,CAAC,CAACa,GAAGA,EAAE,CAAC,IAAIP,GAAGpL,GAAG6K,CAAC,EAAEQ,GAAG,CAAC,EAAEC,GAAG,EAAE,GAAGN,GAAG,QAAQO,GAAG,EAAEA,GAAGP,GAAG,OAAOO,KAAK,CAAC,IAAIC,GAAGN,GAAGH,GAAGQ,EAAE,CAAC,EAAEC,IAAIF,KAAK,IAAIA,GAAGnB,GAAG,GAAGkB,GAAGE,EAAE,EAAEC,GAAGR,GAAGO,EAAE,CAAC,GAAGF,GAAGE,EAAE,EAAEP,GAAGO,EAAE,CAAC,CAAC,IAAIE,GAAGL,GAAG,MAAM,KAAKC,EAAE,EAAE,SAASK,GAAGC,GAAG,CAAC,OAAOL,KAAK,GAAGlB,GAAGkB,EAAE,EAAEH,GAAGQ,EAAE,CAAC,CAAC,OAAOF,GAAGC,GAAGD,EAAE,EAAEA,EAAE,CAAC,SAAStL,GAAG0K,EAAEC,GAAGC,GAAGC,GAAG,CAACD,GAAGA,IAAI,CAAC,EAAE,IAAIE,GAAGF,GAAG,MAAMI,IAAIA,KAAK,UAAUA,KAAK,SAAS,EAAED,GAAGJ,KAAK,SAAS,OAAOI,IAAID,IAAI,CAACD,GAAGhL,GAAG6K,CAAC,EAAE,UAAU,CAAC,OAAO5K,GAAG4K,EAAEC,GAAGC,GAAG,UAAUC,EAAE,CAAC,CAAC,CAAC,IAAI5K,GAAG,CAAC,MAAMlB,GAAG,wBAAwB/B,GAAG,sBAAsBiC,GAAG,uBAAuB7C,GAAG,SAASgD,GAAG,QAAQC,GAAG,SAASO,EAAE,EAAEM,GAAGvB,GAAG,EAAEwB,GAAGxL,EAAE,mBAAmB,UAAU,CAAC,OAAOwL,GAAGxL,EAAE,mBAAmBA,EAAE,IAAI,mBAAmB,MAAM,KAAK,SAAS,CAAC,EAAEyL,GAAGzL,EAAE,MAAM,UAAU,CAAC,OAAOyL,GAAGzL,EAAE,MAAMA,EAAE,IAAI,MAAM,MAAM,KAAK,SAAS,CAAC,EAAE2L,GAAG3L,EAAE,yBAAyB,UAAU,CAAC,OAAO2L,GAAG3L,EAAE,yBAAyBA,EAAE,IAAI,yBAAyB,MAAM,KAAK,SAAS,CAAC,EAAE6L,GAAG7L,EAAE,mBAAmB,UAAU,CAAC,OAAO6L,GAAG7L,EAAE,mBAAmBA,EAAE,IAAI,mBAAmB,MAAM,KAAK,SAAS,CAAC,EAAE8L,GAAG9L,EAAE,iBAAiB,UAAU,CAAC,OAAO8L,GAAG9L,EAAE,iBAAiBA,EAAE,IAAI,iBAAiB,MAAM,KAAK,SAAS,CAAC,EAAE8K,GAAG9K,EAAE,cAAc,UAAU,CAAC,OAAO8K,GAAG9K,EAAE,cAAcA,EAAE,IAAI,cAAc,MAAM,KAAK,SAAS,CAAC,EAAE4J,GAAG5J,EAAE,SAAS,UAAU,CAAC,OAAO4J,GAAG5J,EAAE,SAASA,EAAE,IAAI,SAAS,MAAM,KAAK,SAAS,CAAC,EAAEiM,GAAGjM,EAAE,KAAK,UAAU,CAAC,OAAOiM,GAAGjM,EAAE,KAAKA,EAAE,IAAI,KAAK,MAAM,KAAK,SAAS,CAAC,EAAE4L,GAAG5L,EAAE,MAAM,UAAU,CAAC,OAAO4L,GAAG5L,EAAE,MAAMA,EAAE,IAAI,MAAM,MAAM,KAAK,SAAS,CAAC,EAAEoM,GAAGpM,EAAE,OAAO,UAAU,CAAC,OAAOoM,GAAGpM,EAAE,OAAOA,EAAE,IAAI,OAAO,MAAM,KAAK,SAAS,CAAC,EAAEqM,GAAGrM,EAAE,KAAK,UAAU,CAAC,OAAOqM,GAAGrM,EAAE,KAAKA,EAAE,IAAI,KAAK,MAAM,KAAK,SAAS,CAAC,EAAEsM,GAAGtM,EAAE,MAAM,UAAU,CAAC,OAAOsM,GAAGtM,EAAE,MAAMA,EAAE,IAAI,MAAM,MAAM,KAAK,SAAS,CAAC,EAAE6K,GAAG7K,EAAE,KAAK,UAAU,CAAC,OAAO6K,GAAG7K,EAAE,KAAKA,EAAE,IAAI,KAAK,MAAM,KAAK,SAAS,CAAC,EAAEwM,GAAGxM,EAAE,KAAK,UAAU,CAAC,OAAOwM,GAAGxM,EAAE,KAAKA,EAAE,IAAI,KAAK,MAAM,KAAK,SAAS,CAAC,EAAE0M,GAAG1M,EAAE,QAAQ,UAAU,CAAC,OAAO0M,GAAG1M,EAAE,QAAQA,EAAE,IAAI,QAAQ,MAAM,KAAK,SAAS,CAAC,EAAE2M,GAAG3M,EAAE,QAAQ,UAAU,CAAC,OAAO2M,GAAG3M,EAAE,QAAQA,EAAE,IAAI,QAAQ,MAAM,KAAK,SAAS,CAAC,EAAE4M,GAAG5M,EAAE,MAAM,UAAU,CAAC,OAAO4M,GAAG5M,EAAE,MAAMA,EAAE,IAAI,MAAM,MAAM,KAAK,SAAS,CAAC,EAAE6M,GAAG7M,EAAE,OAAO,UAAU,CAAC,OAAO6M,GAAG7M,EAAE,OAAOA,EAAE,IAAI,OAAO,MAAM,KAAK,SAAS,CAAC,EAAE8M,GAAG9M,EAAE,MAAM,UAAU,CAAC,OAAO8M,GAAG9M,EAAE,MAAMA,EAAE,IAAI,MAAM,MAAM,KAAK,SAAS,CAAC,EAAE+M,GAAG/M,EAAE,OAAO,UAAU,CAAC,OAAO+M,GAAG/M,EAAE,OAAOA,EAAE,IAAI,OAAO,MAAM,KAAK,SAAS,CAAC,EAAEgM,GAAGhM,EAAE,OAAO,UAAU,CAAC,OAAOgM,GAAGhM,EAAE,OAAOA,EAAE,IAAI,OAAO,MAAM,KAAK,SAAS,CAAC,EAAEiN,GAAGjN,EAAE,SAAS,UAAU,CAAC,OAAOiN,GAAGjN,EAAE,SAASA,EAAE,IAAI,SAAS,MAAM,KAAK,SAAS,CAAC,EAAEkN,GAAGlN,EAAE,WAAW,UAAU,CAAC,OAAOkN,GAAGlN,EAAE,WAAWA,EAAE,IAAI,WAAW,MAAM,KAAK,SAAS,CAAC,EAAEmN,GAAGnN,EAAE,eAAe,UAAU,CAAC,OAAOmN,GAAGnN,EAAE,eAAeA,EAAE,IAAI,eAAe,MAAM,KAAK,SAAS,CAAC,EAAEoN,GAAGpN,EAAE,aAAa,UAAU,CAAC,OAAOoN,GAAGpN,EAAE,aAAaA,EAAE,IAAI,aAAa,MAAM,KAAK,SAAS,CAAC,EAAEqN,GAAGrN,EAAE,aAAa,UAAU,CAAC,OAAOqN,GAAGrN,EAAE,aAAaA,EAAE,IAAI,aAAa,MAAM,KAAK,SAAS,CAAC,EAAEsN,GAAGtN,EAAE,UAAU,UAAU,CAAC,OAAOsN,GAAGtN,EAAE,UAAUA,EAAE,IAAI,UAAU,MAAM,KAAK,SAAS,CAAC,EAAEuN,GAAGvN,EAAE,YAAY,UAAU,CAAC,OAAOuN,GAAGvN,EAAE,YAAYA,EAAE,IAAI,YAAY,MAAM,KAAK,SAAS,CAAC,EAAEwN,GAAGxN,EAAE,MAAM,UAAU,CAAC,OAAOwN,GAAGxN,EAAE,MAAMA,EAAE,IAAI,MAAM,MAAM,KAAK,SAAS,CAAC,EAAEyN,GAAGzN,EAAE,aAAa,UAAU,CAAC,OAAOyN,GAAGzN,EAAE,aAAaA,EAAE,IAAI,aAAa,MAAM,KAAK,SAAS,CAAC,EAAE0N,GAAG1N,EAAE,QAAQ,UAAU,CAAC,OAAO0N,GAAG1N,EAAE,QAAQA,EAAE,IAAI,QAAQ,MAAM,KAAK,SAAS,CAAC,EAAE2N,GAAG3N,EAAE,qBAAqB,UAAU,CAAC,OAAO2N,GAAG3N,EAAE,qBAAqBA,EAAE,IAAI,qBAAqB,MAAM,KAAK,SAAS,CAAC,EAAE4N,GAAG5N,EAAE,QAAQ,UAAU,CAAC,OAAO4N,GAAG5N,EAAE,QAAQA,EAAE,IAAI,QAAQ,MAAM,KAAK,SAAS,CAAC,EAAE0L,GAAG1L,EAAE,wBAAwB,UAAU,CAAC,OAAO0L,GAAG1L,EAAE,wBAAwBA,EAAE,IAAI,wBAAwB,MAAM,KAAK,SAAS,CAAC,EAAEgO,GAAGhO,EAAE,uBAAuB,UAAU,CAAC,OAAOgO,GAAGhO,EAAE,uBAAuBA,EAAE,IAAI,uBAAuB,MAAM,KAAK,SAAS,CAAC,EAAEiO,GAAGjO,EAAE,KAAK,UAAU,CAAC,OAAOiO,GAAGjO,EAAE,KAAKA,EAAE,IAAI,KAAK,MAAM,KAAK,SAAS,CAAC,EAAEmO,GAAGnO,EAAE,MAAM,UAAU,CAAC,OAAOmO,GAAGnO,EAAE,MAAMA,EAAE,IAAI,MAAM,MAAM,KAAK,SAAS,CAAC,EAAEoO,GAAGpO,EAAE,eAAe,UAAU,CAAC,OAAOoO,GAAGpO,EAAE,eAAeA,EAAE,IAAI,eAAe,MAAM,KAAK,SAAS,CAAC,EAAEqO,GAAGrO,EAAE,SAAS,UAAU,CAAC,OAAOqO,GAAGrO,EAAE,SAASA,EAAE,IAAI,SAAS,MAAM,KAAK,SAAS,CAAC,EAAEsO,GAAGtO,EAAE,QAAQ,UAAU,CAAC,OAAOsO,GAAGtO,EAAE,QAAQA,EAAE,IAAI,QAAQ,MAAM,KAAK,SAAS,CAAC,EAAEuO,GAAGvO,EAAE,eAAe,UAAU,CAAC,OAAOuO,GAAGvO,EAAE,eAAeA,EAAE,IAAI,eAAe,MAAM,KAAK,SAAS,CAAC,EAAEwO,GAAGxO,EAAE,cAAc,UAAU,CAAC,OAAOwO,GAAGxO,EAAE,cAAcA,EAAE,IAAI,cAAc,MAAM,KAAK,SAAS,CAAC,EAAEyO,GAAGzO,EAAE,uBAAuB,UAAU,CAAC,OAAOyO,GAAGzO,EAAE,uBAAuBA,EAAE,IAAI,uBAAuB,MAAM,KAAK,SAAS,CAAC,EAAE0O,GAAG1O,EAAE,MAAM,UAAU,CAAC,OAAO0O,GAAG1O,EAAE,MAAMA,EAAE,IAAI,MAAM,MAAM,KAAK,SAAS,CAAC,EAAE2O,GAAG3O,EAAE,YAAY,UAAU,CAAC,OAAO2O,GAAG3O,EAAE,YAAYA,EAAE,IAAI,YAAY,MAAM,KAAK,SAAS,CAAC,EAAE4O,GAAG5O,EAAE,0BAA0B,UAAU,CAAC,OAAO4O,GAAG5O,EAAE,0BAA0BA,EAAE,IAAI,0BAA0B,MAAM,KAAK,SAAS,CAAC,EAAE6O,GAAG7O,EAAE,yBAAyB,UAAU,CAAC,OAAO6O,GAAG7O,EAAE,yBAAyBA,EAAE,IAAI,yBAAyB,MAAM,KAAK,SAAS,CAAC,EAAEoP,GAAGpP,EAAE,KAAK,UAAU,CAAC,OAAOoP,GAAGpP,EAAE,KAAKA,EAAE,IAAI,KAAK,MAAM,KAAK,SAAS,CAAC,EAAEkO,GAAGlO,EAAE,SAAS,UAAU,CAAC,OAAOkO,GAAGlO,EAAE,SAASA,EAAE,IAAI,SAAS,MAAM,KAAK,SAAS,CAAC,EAAE4K,GAAG5K,EAAE,OAAO,UAAU,CAAC,OAAO4K,GAAG5K,EAAE,OAAOA,EAAE,IAAI,OAAO,MAAM,KAAK,SAAS,CAAC,EAAEqP,GAAGrP,EAAE,KAAK,UAAU,CAAC,OAAOqP,GAAGrP,EAAE,KAAKA,EAAE,IAAI,KAAK,MAAM,KAAK,SAAS,CAAC,EAAEsP,GAAGtP,EAAE,KAAK,UAAU,CAAC,OAAOsP,GAAGtP,EAAE,KAAKA,EAAE,IAAI,KAAK,MAAM,KAAK,SAAS,CAAC,EAAEuP,GAAGvP,EAAE,OAAO,UAAU,CAAC,OAAOuP,GAAGvP,EAAE,OAAOA,EAAE,IAAI,OAAO,MAAM,KAAK,SAAS,CAAC,EAAEwP,GAAGxP,EAAE,eAAe,UAAU,CAAC,OAAOwP,GAAGxP,EAAE,eAAeA,EAAE,IAAI,eAAe,MAAM,KAAK,SAAS,CAAC,EAAEyP,GAAGzP,EAAE,OAAO,UAAU,CAAC,OAAOyP,GAAGzP,EAAE,OAAOA,EAAE,IAAI,OAAO,MAAM,KAAK,SAAS,CAAC,EAAE0P,GAAG1P,EAAE,UAAU,UAAU,CAAC,OAAO0P,GAAG1P,EAAE,UAAUA,EAAE,IAAI,UAAU,MAAM,KAAK,SAAS,CAAC,EAAE2P,GAAG3P,EAAE,gBAAgB,UAAU,CAAC,OAAO2P,GAAG3P,EAAE,gBAAgBA,EAAE,IAAI,gBAAgB,MAAM,KAAK,SAAS,CAAC,EAAE4P,GAAG5P,EAAE,aAAa,UAAU,CAAC,OAAO4P,GAAG5P,EAAE,aAAaA,EAAE,IAAI,aAAa,MAAM,KAAK,SAAS,CAAC,EAAE6P,GAAG7P,EAAE,sBAAsB,UAAU,CAAC,OAAO6P,GAAG7P,EAAE,sBAAsBA,EAAE,IAAI,sBAAsB,MAAM,KAAK,SAAS,CAAC,EAAE8P,GAAG9P,EAAE,QAAQ,UAAU,CAAC,OAAO8P,GAAG9P,EAAE,QAAQA,EAAE,IAAI,QAAQ,MAAM,KAAK,SAAS,CAAC,EAAE+P,GAAG/P,EAAE,UAAU,UAAU,CAAC,OAAO+P,GAAG/P,EAAE,UAAUA,EAAE,IAAI,UAAU,MAAM,KAAK,SAAS,CAAC,EAAEgQ,GAAGhQ,EAAE,SAAS,UAAU,CAAC,OAAOgQ,GAAGhQ,EAAE,SAASA,EAAE,IAAI,SAAS,MAAM,KAAK,SAAS,CAAC,EAAEiQ,GAAGjQ,EAAE,cAAc,UAAU,CAAC,OAAOiQ,GAAGjQ,EAAE,cAAcA,EAAE,IAAI,cAAc,MAAM,KAAK,SAAS,CAAC,EAAEkQ,GAAGlQ,EAAE,UAAU,UAAU,CAAC,OAAOkQ,GAAGlQ,EAAE,UAAUA,EAAE,IAAI,UAAU,MAAM,KAAK,SAAS,CAAC,EAAEmQ,GAAGnQ,EAAE,OAAO,UAAU,CAAC,OAAOmQ,GAAGnQ,EAAE,OAAOA,EAAE,IAAI,OAAO,MAAM,KAAK,SAAS,CAAC,EAAEoQ,GAAGpQ,EAAE,OAAO,UAAU,CAAC,OAAOoQ,GAAGpQ,EAAE,OAAOA,EAAE,IAAI,OAAO,MAAM,KAAK,SAAS,CAAC,EAAEqQ,GAAGrQ,EAAE,KAAK,UAAU,CAAC,OAAOqQ,GAAGrQ,EAAE,KAAKA,EAAE,IAAI,KAAK,MAAM,KAAK,SAAS,CAAC,EAAEsQ,GAAGtQ,EAAE,SAAS,UAAU,CAAC,OAAOsQ,GAAGtQ,EAAE,SAASA,EAAE,IAAI,SAAS,MAAM,KAAK,SAAS,CAAC,EAAEuQ,GAAGvQ,EAAE,WAAW,UAAU,CAAC,OAAOuQ,GAAGvQ,EAAE,WAAWA,EAAE,IAAI,WAAW,MAAM,KAAK,SAAS,CAAC,EAAEwQ,GAAGxQ,EAAE,MAAM,UAAU,CAAC,OAAOwQ,GAAGxQ,EAAE,MAAMA,EAAE,IAAI,MAAM,MAAM,KAAK,SAAS,CAAC,EAAEyQ,GAAGzQ,EAAE,WAAW,UAAU,CAAC,OAAOyQ,GAAGzQ,EAAE,WAAWA,EAAE,IAAI,WAAW,MAAM,KAAK,SAAS,CAAC,EAAE0Q,GAAG1Q,EAAE,UAAU,UAAU,CAAC,OAAO0Q,GAAG1Q,EAAE,UAAUA,EAAE,IAAI,UAAU,MAAM,KAAK,SAAS,CAAC,EAAE2Q,GAAG3Q,EAAE,KAAK,UAAU,CAAC,OAAO2Q,GAAG3Q,EAAE,KAAKA,EAAE,IAAI,KAAK,MAAM,KAAK,SAAS,CAAC,EAAE4Q,GAAG5Q,EAAE,OAAO,UAAU,CAAC,OAAO4Q,GAAG5Q,EAAE,OAAOA,EAAE,IAAI,OAAO,MAAM,KAAK,SAAS,CAAC,EAAE6Q,GAAG7Q,EAAE,YAAY,UAAU,CAAC,OAAO6Q,GAAG7Q,EAAE,YAAYA,EAAE,IAAI,YAAY,MAAM,KAAK,SAAS,CAAC,EAAE8Q,GAAG9Q,EAAE,YAAY,UAAU,CAAC,OAAO8Q,GAAG9Q,EAAE,YAAYA,EAAE,IAAI,YAAY,MAAM,KAAK,SAAS,CAAC,EAAE+Q,GAAG/Q,EAAE,WAAW,UAAU,CAAC,OAAO+Q,GAAG/Q,EAAE,WAAWA,EAAE,IAAI,WAAW,MAAM,KAAK,SAAS,CAAC,EAAEgR,GAAGhR,EAAE,YAAY,UAAU,CAAC,OAAOgR,GAAGhR,EAAE,YAAYA,EAAE,IAAI,YAAY,MAAM,KAAK,SAAS,CAAC,EAAEiR,GAAGjR,EAAE,KAAK,UAAU,CAAC,OAAOiR,GAAGjR,EAAE,KAAKA,EAAE,IAAI,KAAK,MAAM,KAAK,SAAS,CAAC,EAAEkR,GAAGlR,EAAE,SAAS,UAAU,CAAC,OAAOkR,GAAGlR,EAAE,SAASA,EAAE,IAAI,SAAS,MAAM,KAAK,SAAS,CAAC,EAAEmR,GAAGnR,EAAE,WAAW,UAAU,CAAC,OAAOmR,GAAGnR,EAAE,WAAWA,EAAE,IAAI,WAAW,MAAM,KAAK,SAAS,CAAC,EAAEoR,GAAGpR,EAAE,eAAe,UAAU,CAAC,OAAOoR,GAAGpR,EAAE,eAAeA,EAAE,IAAI,eAAe,MAAM,KAAK,SAAS,CAAC,EAAEqR,GAAGrR,EAAE,aAAa,UAAU,CAAC,OAAOqR,GAAGrR,EAAE,aAAaA,EAAE,IAAI,aAAa,MAAM,KAAK,SAAS,CAAC,EAAEsR,GAAGtR,EAAE,mBAAmB,UAAU,CAAC,OAAOsR,GAAGtR,EAAE,mBAAmBA,EAAE,IAAI,mBAAmB,MAAM,KAAK,SAAS,CAAC,EAAEuR,GAAGvR,EAAE,SAAS,UAAU,CAAC,OAAOuR,GAAGvR,EAAE,SAASA,EAAE,IAAI,SAAS,MAAM,KAAK,SAAS,CAAC,EAAEwR,GAAGxR,EAAE,MAAM,UAAU,CAAC,OAAOwR,GAAGxR,EAAE,MAAMA,EAAE,IAAI,MAAM,MAAM,KAAK,SAAS,CAAC,EAAEyR,GAAGzR,EAAE,KAAK,UAAU,CAAC,OAAOyR,GAAGzR,EAAE,KAAKA,EAAE,IAAI,KAAK,MAAM,KAAK,SAAS,CAAC,EAAE0R,GAAG1R,EAAE,SAAS,UAAU,CAAC,OAAO0R,GAAG1R,EAAE,SAASA,EAAE,IAAI,SAAS,MAAM,KAAK,SAAS,CAAC,EAAE2R,GAAG3R,EAAE,WAAW,UAAU,CAAC,OAAO2R,GAAG3R,EAAE,WAAWA,EAAE,IAAI,WAAW,MAAM,KAAK,SAAS,CAAC,EAAE4R,GAAG5R,EAAE,KAAK,UAAU,CAAC,OAAO4R,GAAG5R,EAAE,KAAKA,EAAE,IAAI,KAAK,MAAM,KAAK,SAAS,CAAC,EAAE6R,GAAG7R,EAAE,aAAa,UAAU,CAAC,OAAO6R,GAAG7R,EAAE,aAAaA,EAAE,IAAI,aAAa,MAAM,KAAK,SAAS,CAAC,EAAE8R,GAAG9R,EAAE,UAAU,UAAU,CAAC,OAAO8R,GAAG9R,EAAE,UAAUA,EAAE,IAAI,UAAU,MAAM,KAAK,SAAS,CAAC,EAAE+R,GAAG/R,EAAE,KAAK,UAAU,CAAC,OAAO+R,GAAG/R,EAAE,KAAKA,EAAE,IAAI,KAAK,MAAM,KAAK,SAAS,CAAC,EAAEgS,GAAGhS,EAAE,qBAAqB,UAAU,CAAC,OAAOgS,GAAGhS,EAAE,qBAAqBA,EAAE,IAAI,qBAAqB,MAAM,KAAK,SAAS,CAAC,EAAEiS,GAAGjS,EAAE,qBAAqB,UAAU,CAAC,OAAOiS,GAAGjS,EAAE,qBAAqBA,EAAE,IAAI,qBAAqB,MAAM,KAAK,SAAS,CAAC,EAAEkS,GAAGlS,EAAE,qBAAqB,UAAU,CAAC,OAAOkS,GAAGlS,EAAE,qBAAqBA,EAAE,IAAI,qBAAqB,MAAM,KAAK,SAAS,CAAC,EAAEmS,GAAGnS,EAAE,UAAU,UAAU,CAAC,OAAOmS,GAAGnS,EAAE,UAAUA,EAAE,IAAI,UAAU,MAAM,KAAK,SAAS,CAAC,EAAEoS,GAAGpS,EAAE,QAAQ,UAAU,CAAC,OAAOoS,GAAGpS,EAAE,QAAQA,EAAE,IAAI,QAAQ,MAAM,KAAK,SAAS,CAAC,EAAEqS,GAAGrS,EAAE,OAAO,UAAU,CAAC,OAAOqS,GAAGrS,EAAE,OAAOA,EAAE,IAAI,OAAO,MAAM,KAAK,SAAS,CAAC,EAAEsS,GAAGtS,EAAE,KAAK,UAAU,CAAC,OAAOsS,GAAGtS,EAAE,KAAKA,EAAE,IAAI,KAAK,MAAM,KAAK,SAAS,CAAC,EAAEuS,GAAGvS,EAAE,OAAO,UAAU,CAAC,OAAOuS,GAAGvS,EAAE,OAAOA,EAAE,IAAI,OAAO,MAAM,KAAK,SAAS,CAAC,EAAEwS,GAAGxS,EAAE,MAAM,UAAU,CAAC,OAAOwS,GAAGxS,EAAE,MAAMA,EAAE,IAAI,MAAM,MAAM,KAAK,SAAS,CAAC,EAAEyS,GAAGzS,EAAE,SAAS,UAAU,CAAC,OAAOyS,GAAGzS,EAAE,SAASA,EAAE,IAAI,SAAS,MAAM,KAAK,SAAS,CAAC,EAAE0S,GAAG1S,EAAE,YAAY,UAAU,CAAC,OAAO0S,GAAG1S,EAAE,YAAYA,EAAE,IAAI,YAAY,MAAM,KAAK,SAAS,CAAC,EAAE2S,GAAG3S,EAAE,MAAM,UAAU,CAAC,OAAO2S,GAAG3S,EAAE,MAAMA,EAAE,IAAI,MAAM,MAAM,KAAK,SAAS,CAAC,EAAE4S,GAAG5S,EAAE,OAAO,UAAU,CAAC,OAAO4S,GAAG5S,EAAE,OAAOA,EAAE,IAAI,OAAO,MAAM,KAAK,SAAS,CAAC,EAAE6S,GAAG7S,EAAE,gBAAgB,UAAU,CAAC,OAAO6S,GAAG7S,EAAE,gBAAgBA,EAAE,IAAI,gBAAgB,MAAM,KAAK,SAAS,CAAC,EAAE8S,GAAG9S,EAAE,oBAAoB,UAAU,CAAC,OAAO8S,GAAG9S,EAAE,oBAAoBA,EAAE,IAAI,oBAAoB,MAAM,KAAK,SAAS,CAAC,EAAE+S,GAAG/S,EAAE,uBAAuB,UAAU,CAAC,OAAO+S,GAAG/S,EAAE,uBAAuBA,EAAE,IAAI,uBAAuB,MAAM,KAAK,SAAS,CAAC,EAAEgT,GAAGhT,EAAE,2BAA2B,UAAU,CAAC,OAAOgT,GAAGhT,EAAE,2BAA2BA,EAAE,IAAI,2BAA2B,MAAM,KAAK,SAAS,CAAC,EAAEiT,GAAGjT,EAAE,SAAS,UAAU,CAAC,OAAOiT,GAAGjT,EAAE,SAASA,EAAE,IAAI,SAAS,MAAM,KAAK,SAAS,CAAC,EAAEkT,GAAGlT,EAAE,kBAAkB,UAAU,CAAC,OAAOkT,GAAGlT,EAAE,kBAAkBA,EAAE,IAAI,kBAAkB,MAAM,KAAK,SAAS,CAAC,EAAEmT,GAAGnT,EAAE,OAAO,UAAU,CAAC,OAAOmT,GAAGnT,EAAE,OAAOA,EAAE,IAAI,OAAO,MAAM,KAAK,SAAS,CAAC,EAAEoT,GAAGpT,EAAE,OAAO,UAAU,CAAC,OAAOoT,GAAGpT,EAAE,OAAOA,EAAE,IAAI,OAAO,MAAM,KAAK,SAAS,CAAC,EAAEqT,GAAGrT,EAAE,WAAW,UAAU,CAAC,OAAOqT,GAAGrT,EAAE,WAAWA,EAAE,IAAI,WAAW,MAAM,KAAK,SAAS,CAAC,EAAEsT,GAAGtT,EAAE,cAAc,UAAU,CAAC,OAAOsT,GAAGtT,EAAE,cAAcA,EAAE,IAAI,cAAc,MAAM,KAAK,SAAS,CAAC,EAAEuT,GAAGvT,EAAE,UAAU,UAAU,CAAC,OAAOuT,GAAGvT,EAAE,UAAUA,EAAE,IAAI,UAAU,MAAM,KAAK,SAAS,CAAC,EAAEwT,GAAGxT,EAAE,MAAM,UAAU,CAAC,OAAOwT,GAAGxT,EAAE,MAAMA,EAAE,IAAI,MAAM,MAAM,KAAK,SAAS,CAAC,EAAEyT,GAAGzT,EAAE,SAAS,UAAU,CAAC,OAAOyT,GAAGzT,EAAE,SAASA,EAAE,IAAI,SAAS,MAAM,KAAK,SAAS,CAAC,EAAE0T,GAAG1T,EAAE,MAAM,UAAU,CAAC,OAAO0T,GAAG1T,EAAE,MAAMA,EAAE,IAAI,MAAM,MAAM,KAAK,SAAS,CAAC,EAAE2T,GAAG3T,EAAE,KAAK,UAAU,CAAC,OAAO2T,GAAG3T,EAAE,KAAKA,EAAE,IAAI,KAAK,MAAM,KAAK,SAAS,CAAC,EAAE4T,GAAG5T,EAAE,MAAM,UAAU,CAAC,OAAO4T,GAAG5T,EAAE,MAAMA,EAAE,IAAI,MAAM,MAAM,KAAK,SAAS,CAAC,EAAE6T,GAAG7T,EAAE,SAAS,UAAU,CAAC,OAAO6T,GAAG7T,EAAE,SAASA,EAAE,IAAI,SAAS,MAAM,KAAK,SAAS,CAAC,EAAE8T,GAAG9T,EAAE,UAAU,UAAU,CAAC,OAAO8T,GAAG9T,EAAE,UAAUA,EAAE,IAAI,UAAU,MAAM,KAAK,SAAS,CAAC,EAAE+T,GAAG/T,EAAE,qBAAqB,UAAU,CAAC,OAAO+T,GAAG/T,EAAE,qBAAqBA,EAAE,IAAI,qBAAqB,MAAM,KAAK,SAAS,CAAC,EAAEgU,GAAGhU,EAAE,eAAe,UAAU,CAAC,OAAOgU,GAAGhU,EAAE,eAAeA,EAAE,IAAI,eAAe,MAAM,KAAK,SAAS,CAAC,EAAEiU,GAAGjU,EAAE,wBAAwB,UAAU,CAAC,OAAOiU,GAAGjU,EAAE,wBAAwBA,EAAE,IAAI,wBAAwB,MAAM,KAAK,SAAS,CAAC,EAAEkU,GAAGlU,EAAE,eAAe,UAAU,CAAC,OAAOkU,GAAGlU,EAAE,eAAeA,EAAE,IAAI,eAAe,MAAM,KAAK,SAAS,CAAC,EAAEmU,GAAGnU,EAAE,MAAM,UAAU,CAAC,OAAOmU,GAAGnU,EAAE,MAAMA,EAAE,IAAI,MAAM,MAAM,KAAK,SAAS,CAAC,EAAEoU,GAAGpU,EAAE,QAAQ,UAAU,CAAC,OAAOoU,GAAGpU,EAAE,QAAQA,EAAE,IAAI,QAAQ,MAAM,KAAK,SAAS,CAAC,EAAEqU,GAAGrU,EAAE,mBAAmB,UAAU,CAAC,OAAOqU,GAAGrU,EAAE,mBAAmBA,EAAE,IAAI,mBAAmB,MAAM,KAAK,SAAS,CAAC,EAAEsU,GAAGtU,EAAE,MAAM,UAAU,CAAC,OAAOsU,GAAGtU,EAAE,MAAMA,EAAE,IAAI,MAAM,MAAM,KAAK,SAAS,CAAC,EAAEuU,GAAGvU,EAAE,cAAc,UAAU,CAAC,OAAOuU,GAAGvU,EAAE,cAAcA,EAAE,IAAI,cAAc,MAAM,KAAK,SAAS,CAAC,EAAEwU,GAAGxU,EAAE,KAAK,UAAU,CAAC,OAAOwU,GAAGxU,EAAE,KAAKA,EAAE,IAAI,KAAK,MAAM,KAAK,SAAS,CAAC,EAAEyU,GAAGzU,EAAE,KAAK,UAAU,CAAC,OAAOyU,GAAGzU,EAAE,KAAKA,EAAE,IAAI,KAAK,MAAM,KAAK,SAAS,CAAC,EAAE0U,GAAG1U,EAAE,KAAK,UAAU,CAAC,OAAO0U,GAAG1U,EAAE,KAAKA,EAAE,IAAI,KAAK,MAAM,KAAK,SAAS,CAAC,EAAE2U,GAAG3U,EAAE,MAAM,UAAU,CAAC,OAAO2U,GAAG3U,EAAE,MAAMA,EAAE,IAAI,MAAM,MAAM,KAAK,SAAS,CAAC,EAAE4U,GAAG5U,EAAE,qBAAqB,UAAU,CAAC,OAAO4U,GAAG5U,EAAE,qBAAqBA,EAAE,IAAI,qBAAqB,MAAM,KAAK,SAAS,CAAC,EAAE6U,GAAG7U,EAAE,MAAM,UAAU,CAAC,OAAO6U,GAAG7U,EAAE,MAAMA,EAAE,IAAI,MAAM,MAAM,KAAK,SAAS,CAAC,EAAE8U,GAAG9U,EAAE,MAAM,UAAU,CAAC,OAAO8U,GAAG9U,EAAE,MAAMA,EAAE,IAAI,MAAM,MAAM,KAAK,SAAS,CAAC,EAAE+U,GAAG/U,EAAE,WAAW,UAAU,CAAC,OAAO+U,GAAG/U,EAAE,WAAWA,EAAE,IAAI,WAAW,MAAM,KAAK,SAAS,CAAC,EAAEgV,GAAGhV,EAAE,WAAW,UAAU,CAAC,OAAOgV,GAAGhV,EAAE,WAAWA,EAAE,IAAI,WAAW,MAAM,KAAK,SAAS,CAAC,EAAEiV,GAAGjV,EAAE,cAAc,UAAU,CAAC,OAAOiV,GAAGjV,EAAE,cAAcA,EAAE,IAAI,cAAc,MAAM,KAAK,SAAS,CAAC,EAAEkV,GAAGlV,EAAE,QAAQ,UAAU,CAAC,OAAOkV,GAAGlV,EAAE,QAAQA,EAAE,IAAI,QAAQ,MAAM,KAAK,SAAS,CAAC,EAAEmV,GAAGnV,EAAE,MAAM,UAAU,CAAC,OAAOmV,GAAGnV,EAAE,MAAMA,EAAE,IAAI,MAAM,MAAM,KAAK,SAAS,CAAC,EAAEoV,GAAGpV,EAAE,kBAAkB,UAAU,CAAC,OAAOoV,GAAGpV,EAAE,kBAAkBA,EAAE,IAAI,kBAAkB,MAAM,KAAK,SAAS,CAAC,EAAEqV,GAAGrV,EAAE,UAAU,UAAU,CAAC,OAAOqV,GAAGrV,EAAE,UAAUA,EAAE,IAAI,WAAW,MAAM,KAAK,SAAS,CAAC,EAAEsV,GAAGtV,EAAE,aAAa,UAAU,CAAC,OAAOsV,GAAGtV,EAAE,aAAaA,EAAE,IAAI,cAAc,MAAM,KAAK,SAAS,CAAC,EAAEuV,GAAGvV,EAAE,WAAW,UAAU,CAAC,OAAOuV,GAAGvV,EAAE,WAAWA,EAAE,IAAI,YAAY,MAAM,KAAK,SAAS,CAAC,EAAEwV,GAAGxV,EAAE,iBAAiB,UAAU,CAAC,OAAOwV,GAAGxV,EAAE,iBAAiBA,EAAE,IAAI,kBAAkB,MAAM,KAAK,SAAS,CAAC,EAAEyV,GAAGzV,EAAE,aAAa,UAAU,CAAC,OAAOyV,GAAGzV,EAAE,aAAaA,EAAE,IAAI,cAAc,MAAM,KAAK,SAAS,CAAC,EAAEA,EAAE,MAAMqL,GAAG,IAAIqK,GAAGrM,GAAG,SAAS0M,GAAG,CAACL,IAAIC,GAAG,EAAED,KAAKrM,GAAG0M,EAAE,EAAE,SAASJ,GAAGI,EAAE,CAAC,GAAGA,EAAEA,GAAGlU,EAAE6E,GAAG,IAAIG,GAAG,EAAEH,GAAG,GAAG,OAAO,SAASsP,IAAI,CAACN,KAAKA,GAAG,GAAG1V,EAAE,UAAU,GAAG,CAACgF,IAAImE,GAAG,EAAEjJ,EAAEF,CAAC,EAAEA,EAAE,sBAAsBA,EAAE,qBAAqB,EAAE8G,GAAG,GAAG,CAAC9G,EAAE,WAAWA,EAAE,UAAU,YAAY,EAAE,WAAW,UAAU,CAAC,WAAW,UAAU,CAACA,EAAE,UAAU,EAAE,CAAC,EAAE,CAAC,EAAEgW,GAAG,CAAC,EAAE,CAAC,GAAGA,GAAG,CAAC,CAAC,GAAGhW,EAAE,QAAQ,IAAI,OAAOA,EAAE,SAAS,aAAaA,EAAE,QAAQ,CAACA,EAAE,OAAO,GAAGA,EAAE,QAAQ,OAAO,GAAGA,EAAE,QAAQ,IAAI,EAAE,EAAE2V,GAAG,EAAE,IAAIC,GAAGjU,IAAIiU,GAAG,CAAC,kBAAkB,QAAQ,UAAU,mBAAmB,EAAE,OAAO,SAASG,EAAE,CAAC,MAAM,CAACpU,EAAE,kBAAkB,QAAQoU,CAAC,EAAE,EAAE,CAAC,EAAE,mBAAmB,QAAQ,UAAU,oBAAoB,EAAE,OAAO,SAASA,EAAE,CAAC,MAAM,CAACpU,EAAE,mBAAmB,QAAQoU,CAAC,EAAE,EAAE,CAAC,CAAC,GAAG,IAAIF,GAAG,GAAG,OAAOnV,GAAG,YAAYmV,GAAGnV,UAAU,OAAO,+BAA+B,YAAYmV,GAAG,kCAAmC,OAAM,IAAI,MAAM,uCAAuC,EAAE,GAAGD,GAAG,CAAC,IAAIE,GAAGD,GAAG,SAASA,GAAG,SAAS,UAAU,CAACC,GAAG,EAAEF,GAAG,kBAAkB,QAAQ,SAASG,EAAE,CAAC,QAAQ,eAAe,oBAAoBA,CAAC,CAAC,CAAC,EAAEH,GAAG,mBAAmB,QAAQ,SAASG,EAAE,CAAC,QAAQ,eAAe,qBAAqBA,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,OAAOrV,EAAE,KAAK,CAAC,GAAG,EAAE,OAAO8Y,GAAI,UAAU,OAAOC,GAAI,SAASA,EAAG,QAAQC,EAAG,OAAO,QAAQ,YAAY,OAAO,IAAI,OAAO,CAAC,EAAE,UAAU,CAAC,OAAOA,CAAE,CAAC,EAAE,OAAOF,GAAI,WAAWA,EAAG,kBAAkBE,EAAG,CAAC,EAAMz3B,GAAG,KAAK,CAAC,YAAYye,EAAEV,EAAE,CAAC,KAAK,QAAQU,EAAE,KAAK,UAAUV,EAAE,KAAK,KAAK,IAAI,QAAQ,KAAK,aAAa,CAAC,CAAC,IAAIU,EAAE,CAAC,OAAO,KAAK,KAAK,IAAIA,CAAC,GAAG,KAAK,UAAU,SAAS,KAAK,QAAQA,CAAC,EAAE,KAAK,KAAK,IAAIA,CAAC,CAAC,CAAC,IAAIA,EAAEV,EAAE,CAAC,KAAK,eAAe,KAAK,KAAK,IAAIU,EAAEV,CAAC,CAAC,CAAC,IAAIU,EAAE,CAAC,OAAO,KAAK,KAAK,IAAIA,CAAC,CAAC,CAAC,OAAOA,EAAE,CAAC,OAAO,KAAK,eAAe,KAAK,KAAK,OAAOA,CAAC,CAAC,CAAC,YAAY,CAAC,OAAO,KAAK,YAAY,CAAC,EAAE5b,GAAG,KAAK,CAAC,SAAS4b,EAAE,CAAC,OAAOiZ,GAAG,UAAU,CAAC,CAAC,OAAOjZ,EAAE,CAAC,OAAOiZ,GAAG,QAAQ,CAAC,CAAC,gBAAgB,CAAC,MAAM,EAAE,CAAC,KAAKjZ,EAAE,CAAC,OAAOiZ,GAAG,MAAM,CAAC,CAAC,KAAKjZ,EAAE,CAAC,OAAOiZ,GAAG,MAAM,CAAC,CAAC,SAASjZ,EAAE,CAAC,OAAOiZ,GAAG,UAAU,CAAC,CAAC,UAAUjZ,EAAEV,EAAE,CAAC,OAAO2Z,GAAG,WAAW,CAAC,CAAC,YAAY,CAAC,OAAOA,GAAG,YAAY,CAAC,CAAC,YAAYjZ,EAAEV,EAAE,CAAC,OAAO2Z,GAAG,aAAa,CAAC,CAAC,MAAMjZ,EAAEV,EAAE,EAAE,CAAC,OAAO2Z,GAAG,OAAO,CAAC,CAAC,KAAKjZ,EAAEV,EAAE,EAAEG,EAAEwB,EAAE,CAAC,OAAOgY,GAAG,MAAM,CAAC,CAAC,wBAAwBjZ,EAAEV,EAAE,EAAE,CAAC,OAAO2Z,GAAG,yBAAyB,CAAC,CAAC,QAAQ,CAAC,OAAOA,GAAG,QAAQ,CAAC,CAAC,gBAAgB,CAAC,OAAOA,GAAG,gBAAgB,CAAC,CAAC,SAAS,CAAC,OAAO,KAAK,eAAe,IAAI,GAAG,KAAK,IAAI,CAAC,SAAS,CAAC,OAAOA,GAAG,SAAS,CAAC,CAAC,EAAE,SAASA,GAAG7Z,EAAE,CAAC,MAAM,IAAI,MAAM,IAAIA,CAAC,0HAA0H,CAAC,CAAC,SAAS8Z,GAAG9Z,EAAE,CAAC,IAAI,EAAEA,EAAE,OAAOE,EAAE,EAAE,KAAK,EAAE,GAAGA,EAAE,KAAK,OAAO,EAAE,EAAE,EAAE,IAAI6Z,GAAG/Z,EAAE,EAAEE,CAAC,CAAC,CAAC,SAAS8Z,GAAGha,EAAE,EAAE,CAAC,GAAGA,EAAE,SAAS,EAAE,OAAO,MAAM,IAAI,MAAM,yEAAyEA,EAAE,MAAM,2BAA2B,EAAE,MAAM,EAAE,EAAE,IAAIE,EAAEF,EAAE,OAAOI,EAAE,EAAE,KAAKF,EAAE,GAAGE,EAAE,KAAK,OAAO,EAAEF,EAAE,EAAEA,IAAI6Z,GAAG/Z,EAAEE,EAAEE,CAAC,EAAE2Z,GAAG,EAAE7Z,EAAEE,CAAC,CAAC,CAAC,SAAS6Z,GAAGja,EAAE,EAAEE,EAAE,CAAC,OAAO,KAAK,IAAIF,EAAE,KAAK,IAAI,EAAEE,CAAC,CAAC,CAAC,CAAC,SAASga,GAAGla,EAAE,CAAC,OAAOA,EAAE,IAAI,EAAEA,EAAEA,EAAE,CAAC,CAAC,SAAS+Z,GAAG/Z,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAEJ,EAAE,CAAC,EAAEA,EAAE,CAAC,EAAEA,EAAEE,CAAC,EAAEF,EAAEE,CAAC,EAAEE,CAAC,CAAC,SAAS+Z,GAAGna,EAAE,CAAC,IAAI,EAAE,EAAE,QAAQE,EAAE,EAAEA,EAAEF,EAAE,OAAOE,IAAI,GAAGF,EAAEE,CAAC,EAAE,OAAO,CAAC,CAAC,SAASka,GAAGpa,EAAE,EAAE,CAAC,IAAIE,EAAE,KAAK,OAAO,EAAE,OAAO,EAAEA,GAAG,EAAEA,GAAGF,CAAC,CAAC,SAASqa,GAAGra,EAAE,EAAE,CAAC,IAAIE,EAAE,EAAE,QAAQE,EAAE,EAAEA,EAAEJ,EAAE,OAAOI,IAAI,CAAC,IAAIC,EAAE,OAAOL,EAAEI,CAAC,CAAC,EAAE,OAAO,EAAEA,CAAC,CAAC,EAAEF,GAAGG,EAAEA,CAAC,CAAC,OAAOH,CAAC,CAAC,SAASoa,EAAEta,EAAE,EAAE,CAAC,GAAG,CAACA,EAAE,MAAM,IAAI,MAAM,OAAO,GAAG,SAAS,EAAE,EAAE,CAAC,CAAC,CAAC,SAASua,GAAGva,EAAE,EAAEE,EAAE,GAAG,CAACoa,EAAEE,GAAGxa,EAAE,CAAC,EAAE,IAAIE,EAAE,WAAWF,CAAC,QAAQ,CAAC,aAAa,CAAC,CAAC,SAASya,GAAGza,EAAE,CAACsa,EAAEta,GAAG,KAAK,IAAI,+DAA+D,CAAC,CAAC,SAAS0a,GAAG1a,EAAE,CAAC,GAAGA,EAAE,SAAS,EAAE,MAAO,GAAE,IAAI,EAAEA,EAAE,CAAC,EAAE,QAAQE,EAAE,EAAEA,EAAEF,EAAE,OAAOE,IAAI,GAAGF,EAAEE,CAAC,EAAE,OAAO,CAAC,CAAC,SAASya,GAAG3a,EAAE,CAAC,OAAOA,EAAE,SAAS,CAAC,CAAC,SAAS4a,GAAG5a,EAAE,EAAE,CAAC,GAAGA,IAAI,EAAE,MAAM,GAAG,GAAGA,GAAG,MAAM,GAAG,MAAMA,EAAE,SAAS,EAAE,OAAO,MAAM,GAAG,QAAQE,EAAE,EAAEA,EAAEF,EAAE,OAAOE,IAAI,GAAGF,EAAEE,CAAC,IAAI,MAAM,EAAEA,CAAC,IAAI,MAAMF,EAAEE,CAAC,IAAI,EAAEA,CAAC,EAAE,MAAM,GAAG,MAAM,EAAE,CAAC,SAASsa,GAAGxa,EAAE,EAAE,CAAC,GAAGA,IAAI,EAAE,MAAM,GAAG,GAAGA,GAAG,MAAM,GAAG,MAAMA,EAAE,SAAS,EAAE,OAAO,MAAM,GAAG,QAAQE,EAAE,EAAEA,EAAEF,EAAE,OAAOE,IAAI,GAAGF,EAAEE,CAAC,IAAI,EAAEA,CAAC,EAAE,MAAM,GAAG,MAAM,EAAE,CAAC,SAAS2a,GAAG7a,EAAE,CAAC,OAAOA,EAAE,IAAI,CAAC,CAAC,SAAS8a,GAAG9a,EAAE,CAAC,GAAG,KAAK,MAAM,KAAK,OAAO,KAAK,KAAKA,CAAC,EAAE,GAAGA,IAAI,IAAI,MAAO,GAAE,GAAGA,IAAI,KAAK,MAAM,GAAG,CAAC,IAAI,EAAE,KAAK,IAAI,EAAEA,CAAC,EAAE,OAAO,EAAE,IAAI,EAAE,EAAE,CAAC,CAAC,SAAS+a,GAAG/a,EAAE,CAAC,IAAI,EAAE,KAAK,KAAK,KAAK,KAAKA,CAAC,CAAC,EAAE,MAAM,CAAC,EAAE,KAAK,KAAKA,EAAE,CAAC,CAAC,CAAC,CAAC,SAASgb,GAAGhb,EAAE,CAAC,IAAI,EAAE,IAAI,YAAYA,CAAC,EAAE,QAAQE,EAAE,EAAEA,EAAEF,EAAE,EAAEE,EAAE,EAAEA,CAAC,EAAEA,EAAE,OAAO4Z,GAAG,CAAC,EAAE,CAAC,CAAC,SAASmB,GAAGjb,EAAE,EAAE,CAAC,OAAO,GAAGA,EAAE,OAAOA,EAAEA,EAAE,IAAI,OAAO,EAAEA,EAAE,MAAM,CAAC,CAAC,SAASkb,GAAGlb,EAAE,EAAEK,GAAG,EAAEH,EAAEE,EAAE,CAAC,OAAO,IAAI,QAAQ,CAACC,EAAE,IAAI,CAAC,IAAI,EAAE,EAAE0B,EAAE,IAAI,CAAC,GAAG/B,EAAE,EAAE,CAACK,EAAE,EAAE,MAAM,CAAC,IAAI,IAAI2B,EAAE,EAAE,CAAC,EAAE,GAAG9B,GAAG,MAAM,GAAGA,EAAE,CAAC,EAAE,EAAE,MAAM,CAACE,GAAG,KAAKA,EAAE2B,EAAEC,CAAC,EAAE,WAAWD,EAAEC,CAAC,CAAC,EAAED,EAAE,CAAC,CAAC,CAAC,CAAC,SAASoZ,GAAGnb,EAAE,EAAE,CAAC,IAAIE,EAAE,EAAEE,EAAE,GAAG,QAAQ,EAAE,EAAE,EAAEJ,EAAE,OAAO,EAAE,EAAE,GAAGA,EAAE,CAAC,GAAG,EAAEE,GAAGF,EAAE,CAAC,UAAUA,EAAE,CAAC,IAAI,GAAG,CAAC,GAAGI,IAAI,GAAG,MAAM,MAAM,yDAAyDA,CAAC,YAAY,CAAC,EAAE,EAAEA,EAAE,CAAC,SAASJ,EAAE,CAAC,EAAE,EAAE,MAAM,MAAM,gCAAgCA,EAAE,CAAC,CAAC,WAAW,CAAC,EAAE,EAAE,GAAGI,IAAI,GAAG,CAAC,GAAG,EAAE,GAAG,IAAIF,EAAE,MAAM,MAAM,QAAQ,CAAC,qCAAqCF,CAAC,EAAE,EAAE,OAAOA,CAAC,CAAC,GAAGE,IAAI,EAAE,MAAM,MAAM,qCAAqCF,CAAC,6BAA6B,EAAE,GAAG,EAAEE,IAAI,EAAE,MAAM,MAAM,wDAAwD,CAAC,MAAMA,CAAC,EAAE,EAAE,IAAIG,EAAEL,EAAE,MAAM,EAAE,OAAOK,EAAED,CAAC,EAAE,EAAEF,EAAEG,CAAC,CAAC,SAAS+a,GAAGpb,EAAE,EAAE,CAAC,IAAIE,EAAE,EAAE,OAAO,OAAOF,EAAEA,GAAG,KAAK,EAAE,IAAI,CAACI,EAAEC,IAAIA,CAAC,EAAE,CAAC,EAAE,OAAOL,CAAC,EAAEsa,EAAEta,EAAE,MAAMI,GAAGA,GAAG,CAACF,GAAGE,EAAEF,CAAC,EAAE,IAAI,+CAA+CA,CAAC,KAAKA,CAAC,kBAAkBF,CAAC,EAAE,EAAEsa,EAAEta,EAAE,MAAMI,GAAGya,GAAGza,CAAC,CAAC,EAAE,IAAI,0DAA0DJ,CAAC,EAAE,EAAEA,EAAE,IAAII,GAAGA,EAAE,EAAEF,EAAEE,EAAEA,CAAC,CAAC,CAAC,SAASib,GAAGrb,EAAE,EAAE,CAAC,IAAIE,EAAE,CAAC,EAAEE,EAAE,CAAC,EAAEC,EAAE,GAAG,MAAM,MAAM,QAAQ,CAAC,GAAG,EAAE,SAAS,EAAE,EAAE,GAAG,MAAMA,EAAE,KAAK+a,GAAG,EAAEpb,CAAC,EAAE,KAAK,EAAE,EAAE,EAAE,QAAQ+B,EAAE,EAAEA,EAAE/B,EAAE,OAAO,EAAE+B,EAAE,CAAC,GAAG,GAAG,KAAK,CAAC,GAAG,EAAE,CAAC,IAAIA,GAAG/B,EAAE+B,CAAC,IAAI,EAAE,MAAM,IAAI,MAAM,sBAAsBA,CAAC,mBAAmB/B,EAAE+B,CAAC,CAAC,YAAY,GAAG,EAAE,CAAC,GAAG,MAAM,EAAE,CAAC,EAAEA,IAAI/B,EAAE+B,CAAC,IAAI,IAAI7B,EAAE,KAAKF,EAAE+B,CAAC,CAAC,EAAE3B,EAAE,KAAK2B,CAAC,GAAG,EAAE,CAAC,GAAGA,GAAG,GAAG,CAAC/B,EAAE+B,CAAC,IAAI,IAAI7B,EAAE,KAAKF,EAAE+B,CAAC,CAAC,EAAE3B,EAAE,KAAK2B,CAAC,EAAE,CAAC,MAAM,CAAC,SAAS7B,EAAE,SAASE,CAAC,CAAC,CAAC,SAASkb,GAAGtb,EAAE,EAAE,CAAC,OAAOub,GAAGvb,EAAE,CAAC,CAAC,CAAC,SAASub,GAAGvb,EAAE,EAAE,CAAC,IAAIE,EAAE,KAAK,GAAGF,GAAG,MAAMA,IAAI,UAAUE,EAAE,IAAI,aAAa,CAAC,UAAUF,IAAI,QAAQE,EAAE,IAAI,WAAW,CAAC,UAAUF,IAAI,OAAOE,EAAE,IAAI,WAAW,CAAC,UAAUF,IAAI,SAASE,EAAE,IAAI,MAAM,CAAC,MAAO,OAAM,IAAI,MAAM,qBAAqBF,CAAC,EAAE,EAAE,OAAOE,CAAC,CAAC,SAASsb,GAAGxb,EAAE,EAAE,CAAC,QAAQE,EAAE,EAAEA,EAAEF,EAAE,OAAOE,IAAI,CAAC,IAAIE,EAAEJ,EAAEE,CAAC,EAAE,GAAG,MAAME,CAAC,GAAG,CAAC,SAASA,CAAC,EAAE,MAAM,MAAM,oBAAoB,CAAC,4BAA4BA,CAAC,GAAG,CAAC,CAAC,CAAC,SAASqb,GAAGzb,EAAE,CAAC,OAAOA,IAAI,QAAQA,IAAI,aAAaA,IAAI,WAAWA,IAAI,SAASA,IAAI,QAAQ,CAAC,SAAS0b,GAAG1b,EAAE,EAAE,CAAC,MAAM,EAAE,IAAI,aAAa,IAAI,WAAWA,IAAI,aAAa,IAAI,SAASA,IAAI,WAAWA,IAAI,aAAa,IAAI,QAAQA,IAAI,OAAO,CAAC,SAAS2b,GAAG3b,EAAE,CAAC,GAAGA,IAAI,WAAWA,IAAI,QAAQ,MAAO,GAAE,GAAGA,IAAI,YAAY,MAAO,GAAE,GAAGA,IAAI,OAAO,MAAO,GAAE,MAAM,IAAI,MAAM,iBAAiBA,CAAC,EAAE,CAAC,CAAC,SAAS4b,GAAG5b,EAAE,CAAC,GAAGA,GAAG,KAAK,MAAO,GAAE,IAAI,EAAE,EAAE,OAAOA,EAAE,QAAQE,GAAG,GAAGA,EAAE,MAAM,EAAE,CAAC,CAAC,SAAS2b,GAAG7b,EAAE,CAAC,OAAO,OAAOA,GAAG,UAAUA,aAAa,MAAM,CAAC,SAAS8b,GAAG9b,EAAE,CAAC,OAAO,OAAOA,GAAG,SAAS,CAAC,SAAS+b,GAAG/b,EAAE,CAAC,OAAO,OAAOA,GAAG,QAAQ,CAAC,SAASgc,GAAGhc,EAAE,CAAC,OAAO,MAAM,QAAQA,CAAC,EAAEgc,GAAGhc,EAAE,CAAC,CAAC,EAAEA,aAAa,aAAa,UAAUA,aAAa,YAAYA,aAAa,YAAYA,aAAa,kBAAkB,QAAQ+b,GAAG/b,CAAC,EAAE,UAAU6b,GAAG7b,CAAC,EAAE,SAAS8b,GAAG9b,CAAC,EAAE,OAAO,SAAS,CAAC,SAASic,GAAGjc,EAAE,CAAC,MAAM,CAAC,EAAEA,GAAGA,EAAE,aAAaA,EAAE,MAAMA,EAAE,MAAM,CAAC,SAASkc,GAAGlc,EAAE,EAAE,CAAC,QAAQE,EAAE,EAAEA,EAAEF,EAAE,EAAEE,EAAE,GAAGF,EAAEE,IAAI,EAAE,OAAOA,EAAE,OAAOF,CAAC,CAAC,SAASmc,GAAGnc,EAAE,CAAC,IAAI,EAAEA,EAAE,OAAO,GAAG,EAAE,EAAE,MAAM,CAAC,EAAE,IAAIE,EAAE,IAAI,MAAM,EAAE,CAAC,EAAEA,EAAE,EAAE,CAAC,EAAEF,EAAE,EAAE,CAAC,EAAE,QAAQI,EAAE,EAAE,EAAEA,GAAG,EAAE,EAAEA,EAAEF,EAAEE,CAAC,EAAEF,EAAEE,EAAE,CAAC,EAAEJ,EAAEI,EAAE,CAAC,EAAE,OAAOF,CAAC,CAAC,SAASkc,GAAGpc,EAAE,EAAEE,EAAEE,EAAE,GAAG,CAAC,IAAIC,EAAE,IAAI,MAAM,GAAG,EAAE,SAAS,EAAE,CAAC,IAAI,EAAE,EAAE,CAAC,GAAGD,EAAE,EAAE,GAAG,QAAQ,EAAE,EAAE,EAAE,EAAE,IAAIC,EAAE,CAAC,EAAEH,EAAEF,EAAE,CAAC,CAAC,KAAK,CAAC,IAAI,EAAE,EAAE,CAAC,EAAE,EAAE,EAAE,MAAM,CAAC,EAAE+B,EAAE,EAAE,OAAO,CAACC,EAAEC,IAAID,EAAEC,CAAC,GAAG7B,EAAE,EAAE,GAAG,QAAQ4B,EAAE,EAAEA,EAAE,EAAEA,IAAI3B,EAAE2B,CAAC,EAAEoa,GAAGpc,EAAEgC,EAAED,EAAE,EAAE7B,EAAEE,CAAC,CAAC,CAAC,OAAOC,CAAC,CAAC,SAASgc,GAAGrc,EAAE,EAAEE,EAAE,GAAG,CAAC,GAAGF,EAAE,SAAS,EAAE,OAAO,EAAE,CAAC,EAAE,IAAII,EAAEJ,EAAE,OAAO,CAACK,EAAE,IAAIA,EAAE,CAAC,GAAGH,EAAE,EAAE,GAAG,GAAGE,IAAI,EAAE,MAAM,CAAC,EAAE,GAAGA,IAAI,EAAE,OAAO,MAAM,IAAI,MAAM,IAAIJ,CAAC,mCAAmC,EAAE,MAAM,GAAGE,EAAE,wBAAwB,EAAE,GAAG,EAAE,OAAOkc,GAAG,EAAEpc,EAAE,EAAEE,CAAC,CAAC,CAAC,SAASoc,GAAGtc,EAAE,EAAE,CAAC,GAAG,MAAM,QAAQA,CAAC,EAAE,OAAOA,EAAE,GAAG,IAAI,UAAU,OAAOA,aAAa,aAAaA,EAAE,IAAI,aAAaA,CAAC,EAAE,GAAG,IAAI,QAAQ,OAAOA,aAAa,WAAWA,EAAE,IAAI,WAAWA,CAAC,EAAE,GAAG,IAAI,QAAQ,IAAI,SAAS,OAAO,WAAW,KAAK,IAAI,WAAWA,CAAC,CAAC,EAAE,MAAM,IAAI,MAAM,iBAAiB,CAAC,EAAE,CAAC,CAAC,SAASuc,GAAGvc,EAAE,EAAE,CAAC,IAAIE,EAAEsc,GAAGxc,EAAE,CAAC,EAAE,QAAQI,EAAE,EAAEA,EAAEF,EAAE,OAAOE,IAAIF,EAAEE,CAAC,EAAE,EAAE,OAAOF,CAAC,CAAC,SAASsc,GAAGxc,EAAE,EAAE,CAAC,GAAG,GAAG,MAAM,IAAI,WAAW,IAAI,YAAY,OAAO,IAAI,aAAaA,CAAC,EAAE,GAAG,IAAI,QAAQ,OAAO,IAAI,WAAWA,CAAC,EAAE,GAAG,IAAI,OAAO,OAAO,IAAI,WAAWA,CAAC,EAAE,MAAM,IAAI,MAAM,qBAAqB,CAAC,EAAE,CAAC,CAAC,SAASyc,GAAGzc,EAAE,EAAE,CAAC,IAAIE,EAAEF,EAAE,OAAO,CAACI,EAAEC,IAAID,EAAEC,EAAE,CAAC,EAAE,GAAG,GAAG,MAAM,IAAI,UAAU,OAAOgc,GAAGrc,EAAE,IAAI,aAAaE,CAAC,CAAC,EAAE,GAAG,IAAI,QAAQ,OAAOmc,GAAGrc,EAAE,IAAI,WAAWE,CAAC,CAAC,EAAE,GAAG,IAAI,OAAO,OAAOmc,GAAGrc,EAAE,IAAI,WAAWE,CAAC,CAAC,EAAE,MAAM,IAAI,MAAM,qBAAqB,CAAC,EAAE,CAAC,CAAC,SAASwc,GAAG1c,EAAE,CAACA,EAAE,QAAQ,GAAG,CAACsa,EAAE,OAAO,UAAU,CAAC,GAAG,GAAG,EAAE,IAAI,0EAA0Eta,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,SAAS2c,GAAG3c,EAAE,EAAEE,EAAE,CAAC,GAAG,IAAI,EAAE,MAAO,GAAE,GAAG,IAAI,EAAE,OAAOF,EAAE,CAAC,EAAE,IAAII,EAAEJ,EAAEA,EAAE,OAAO,CAAC,EAAE,QAAQK,EAAE,EAAEA,EAAEL,EAAE,OAAO,EAAE,EAAEK,EAAED,GAAGF,EAAEG,CAAC,EAAEL,EAAEK,CAAC,EAAE,OAAOD,CAAC,CAAC,SAASwc,GAAG5c,EAAE,EAAEE,EAAE,CAAC,GAAG,IAAI,EAAE,MAAM,CAAC,EAAE,GAAG,IAAI,EAAE,MAAM,CAACF,CAAC,EAAE,IAAII,EAAE,IAAI,MAAM,CAAC,EAAE,QAAQC,EAAE,EAAEA,EAAED,EAAE,OAAO,EAAE,EAAEC,EAAED,EAAEC,CAAC,EAAE,KAAK,MAAML,EAAEE,EAAEG,CAAC,CAAC,EAAEL,GAAGI,EAAEC,CAAC,EAAEH,EAAEG,CAAC,EAAE,OAAOD,EAAEA,EAAE,OAAO,CAAC,EAAEJ,EAAEI,CAAC,CAAC,SAASyc,GAAG7c,EAAE,CAAC,OAAOA,GAAGA,EAAE,MAAM,OAAOA,EAAE,MAAM,UAAU,CAAC,IAAI8c,GAAG,YAAY35B,GAAG,KAAK,CAAC,YAAYyd,EAAE,CAAC,KAAK,OAAOA,EAAE,KAAK,MAAM,CAAC,EAAE,KAAK,aAAa,CAAC,EAAE,KAAK,SAAS,CAAC,EAAE,KAAK,eAAemc,GAAG,KAAK,iBAAiB,CAAC,CAAC,YAAYnc,EAAEV,EAAE,CAAC,KAAK,UAAU,OAAO1O,EAAE,EAAE,QAAQ,SAAS,GAAGA,EAAE,EAAE,QAAQ,MAAM,GAAG,QAAQ,KAAK,YAAY,KAAK,YAAY,wDAAwDoP,CAAC,GAAG,GAAG,KAAK,aAAaA,EAAE,KAAK,SAASV,CAAC,CAAC,aAAaU,EAAEV,EAAE,EAAE,CAAC,GAAG,KAAK,aAAaU,CAAC,EAAE,CAAC,aAAaV,EAAE,QAAQ,CAAC,EAAE,KAAK,SAASU,CAAC,GAAG,KAAK,CAAC,IAAIP,EAAE,KAAK,SAASO,CAAC,EAAEpP,EAAE,EAAE,QAAQ,SAAS,GAAGA,EAAE,EAAE,QAAQ,MAAM,GAAG,QAAQ,KAAK,qCAAqCoP,CAAC,KAAKP,CAAC,GAAG,EAAE,KAAK,IAAIO,EAAEP,CAAC,CAAC,CAAC,CAAC,MAAM,SAASO,EAAE,CAAC,OAAOA,KAAK,KAAK,MAAM,KAAK,MAAMA,CAAC,GAAG,KAAK,MAAMA,CAAC,EAAE,MAAM,KAAK,aAAaA,CAAC,EAAE,KAAK,MAAMA,CAAC,EAAE,CAAC,IAAIA,EAAE,CAAC,GAAGA,KAAK,KAAK,MAAM,OAAO,KAAK,MAAMA,CAAC,EAAE,IAAIV,EAAE,KAAK,aAAaU,CAAC,EAAE,GAAGic,GAAG3c,CAAC,EAAE,MAAM,IAAI,MAAM,QAAQU,CAAC,oEAAoE,EAAE,OAAO,KAAK,MAAMA,CAAC,EAAEV,EAAE,KAAK,MAAMU,CAAC,CAAC,CAAC,UAAUA,EAAE,CAAC,OAAO,KAAK,IAAIA,CAAC,CAAC,CAAC,QAAQA,EAAE,CAAC,OAAO,KAAK,IAAIA,CAAC,CAAC,CAAC,UAAUA,EAAE,CAAC,OAAO,KAAK,IAAIA,CAAC,CAAC,CAAC,UAAU,CAAC,OAAO,KAAK,KAAK,CAAC,IAAI,UAAU,CAAC,OAAO,KAAK,KAAK,CAAC,IAAIA,EAAEV,EAAE,CAAC,GAAG,KAAK,aAAaU,CAAC,GAAG,KAAK,MAAM,IAAI,MAAM,mBAAmBA,CAAC,iCAAiC,EAAE,KAAK,MAAMA,CAAC,EAAEV,EAAE,KAAK,aAAaU,CAAC,EAAE,SAAS,MAAM,KAAK,aAAaA,CAAC,EAAE,QAAQV,CAAC,CAAC,CAAC,aAAaU,EAAE,CAAC,GAAG,KAAK,aAAaA,CAAC,GAAG,KAAK,MAAM,IAAI,MAAM,yBAAyBA,CAAC,kCAAkC,EAAE,OAAO,KAAK,aAAaA,CAAC,EAAE,aAAa,CAAC,CAAC,SAASA,EAAE,CAAC,KAAK,MAAM,OAAO,OAAO,CAAC,EAAEA,CAAC,CAAC,CAAC,OAAO,CAAC,KAAK,MAAM,CAAC,EAAE,KAAK,SAAS,CAAC,EAAE,KAAK,iBAAiB,CAAC,CAAC,kBAAkB,CAAC,GAAG,OAAO,KAAK,QAAQ,aAAa,OAAO,KAAK,OAAO,UAAU,aAAa,OAAO,KAAK,OAAO,SAAS,QAAQ,YAAY,OAAO,IAAIA,EAAE,KAAK,eAAe,KAAK,OAAO,SAAS,MAAM,EAAEkc,MAAMlc,GAAGA,EAAEkc,EAAE,EAAE,MAAM,GAAG,EAAE,QAAQ1c,GAAG,CAAC,GAAG,CAACC,EAAEwB,CAAC,EAAEzB,EAAE,MAAM,GAAG,EAAE,KAAK,SAASC,CAAC,EAAE2c,GAAG3c,EAAEwB,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,SAASkb,GAAG/c,EAAE,CAAC,IAAI,EAAE,CAAC,EAAE,OAAOA,EAAE,QAAQ,8BAA8B,CAACE,KAAKE,KAAK6c,GAAG,EAAE7c,EAAE,CAAC,EAAEA,EAAE,CAAC,CAAC,EAAEA,EAAE,KAAK,GAAG,EAAE,EAAE,CAAC,CAAC,SAAS6c,GAAGjd,EAAE,EAAEE,EAAE,CAACF,EAAE,mBAAmB,CAAC,CAAC,EAAE,mBAAmBE,GAAG,EAAE,CAAC,CAAC,SAAS8c,GAAGhd,EAAE,EAAE,CAAC,IAAIE,EAAE,EAAE,YAAY,EAAE,OAAOA,IAAI,QAAQA,IAAI,QAAQA,IAAI,OAAO,GAAG,CAACA,CAAC,KAAKA,EAAE,CAACA,EAAE,CAAC,CAAC,SAAS1O,GAAG,CAAC,OAAO1O,EAAE,CAAC,IAAIA,GAAG,KAAK,SAASo6B,GAAGld,EAAE,CAACld,GAAGkd,CAAC,CAAC,IAAImd,GAAG,SAASC,IAAI,CAAC,GAAGD,IAAI,KAAK,CAAC,IAAInd,EAAE,GAAG,OAAO,QAAQ,YAAYA,EAAE,eAAe,OAAO,QAAQ,YAAYA,EAAE,eAAe,OAAO,SAAS,YAAYA,EAAE,gBAAgB,OAAO,MAAM,YAAYA,EAAE,SAAU,OAAM,IAAI,MAAM,gCAAgC,EAAEmd,GAAGnd,CAAC,CAAC,OAAOmd,EAAE,CAAC,SAASE,IAAI,CAAC,IAAIrd,EAAEod,GAAG,EAAE,OAAOpd,EAAE,YAAY,OAAOA,EAAE,WAAW,IAAI,KAAKA,EAAE,UAAU,CAAC,SAASsd,GAAGtd,EAAE,EAAE,CAAC,IAAIE,EAAEmd,GAAG,EAAE,GAAGnd,EAAE,IAAIF,CAAC,EAAE,OAAOE,EAAE,IAAIF,CAAC,EAAE,CAAC,IAAII,EAAE,EAAE,EAAE,OAAOF,EAAE,IAAIF,EAAEI,CAAC,EAAEF,EAAE,IAAIF,CAAC,CAAC,CAAC,CAAC,IAAI9gB,GAAG,MAAMC,GAAG,OAAOC,GAAG,QAAQK,GAAG,MAAMC,GAAG,OAAOC,GAAG,MAAMC,GAAG,MAAMC,GAAG,SAASC,GAAG,SAASC,GAAG,OAAOC,GAAG,QAAQC,GAAG,OAAOE,GAAG,QAAQD,GAAG,QAAQE,GAAG,UAAUG,GAAG,cAAcF,GAAG,YAAYC,GAAG,gBAAgBG,GAAG,cAAcC,GAAG,iBAAiBC,GAAG,WAAWC,GAAG,aAAaE,GAAG,cAAcD,GAAG,gBAAgBI,GAAG,OAAOC,GAAG,OAAOC,GAAG,cAAcC,GAAG,UAAUC,GAAG,aAAaC,GAAG,SAASC,GAAG,SAASC,GAAG,uBAAuBC,GAAG,sBAAsBC,GAAG,SAASC,GAAG,yBAAyBC,GAAG,wBAAwBC,GAAG,MAAMC,GAAG,OAAOE,GAAG,UAAUC,GAAG,SAASF,GAAG,gBAAgBK,GAAG,gBAAgBC,GAAG,eAAeC,GAAG,wBAAwBC,GAAG,sCAAsCC,GAAG,qCAAqCC,GAAG,OAAOC,GAAG,aAAaE,GAAG,0BAA0BD,GAAG,2BAA2BE,GAAG,OAAO8F,GAAG,UAAU3F,GAAG,SAASC,GAAG,MAAMC,GAAG,UAAUG,GAAG,MAAMD,GAAG,QAAQE,GAAG,MAAMC,GAAG,aAAaC,GAAG,QAAQC,GAAG,MAAMC,GAAG,OAAOC,GAAG,gBAAgBC,GAAG,QAAQC,GAAG,WAAWE,GAAG,iBAAiBK,GAAG,WAAWD,GAAG,WAAWG,GAAG,UAAUC,GAAG,eAAeG,GAAG,WAAWD,GAAG,OAAOE,GAAG,OAAOE,GAAG,WAAWC,GAAG,QAAQC,GAAG,QAAQM,GAAG,YAAYC,GAAG,OAAOC,GAAG,YAAYC,GAAG,WAAWC,GAAG,MAAMC,GAAG,QAAQE,GAAG,aAAaC,GAAG,aAAaC,GAAG,YAAYC,GAAG,aAAaJ,GAAG,aAAaK,GAAI,aAAaf,GAAG,MAAMC,GAAG,UAAUiB,GAAI,iBAAiBC,GAAG,MAAMM,GAAG,UAAUL,GAAG,UAAUG,GAAG,cAAcF,GAAG,YAAYC,GAAG,gBAAgBE,GAAG,oBAAoBE,GAAG,OAAOC,GAAG,MAAMC,GAAG,UAAUC,GAAG,YAAYC,GAAG,MAAME,GAAG,cAAcC,GAAG,WAAWC,GAAG,MAAMI,GAAG,WAAWH,GAAG,sBAAsBC,GAAG,sBAAsBC,GAAG,sBAAsBI,GAAG,WAAWD,GAAG,SAASI,GAAG,OAAOC,GAAG,QAAQC,GAAI,OAAOC,GAAG,MAAMC,GAAG,QAAQC,GAAG,OAAOG,GAAG,eAAeC,GAAG,cAAcC,GAAG,uBAAuBC,GAAG,QAAQE,GAAG,OAAOE,GAAG,aAAaE,GAAG,OAAOE,GAAG,UAAUG,GAAG,wBAAwBC,GAAG,4BAA4BH,GAAG,iBAAiBC,GAAG,qBAAqBH,GAAG,QAAQM,GAAG,UAAUE,GAAG,QAAQC,GAAG,QAAQE,GAAG,YAAYmC,GAAG,sBAAsBlC,GAAG,eAAeC,GAAG,SAASC,GAAG,OAAOM,GAAG,QAAQF,GAAG,MAAMC,GAAG,OAAOF,GAAG,OAAOD,GAAG,UAAUM,GAAG,WAAWQ,GAAG,OAAOU,GAAG,MAAMjB,GAAG,iBAAiBM,GAAG,SAASR,GAAG,UAAUG,GAAG,sBAAsBC,GAAG,gBAAgBC,GAAG,oBAAoBC,GAAG,mBAAmBC,GAAG,gBAAgBI,GAAG,oBAAoBD,GAAG,SAASE,GAAG,qBAAqBE,GAAG,eAAeC,GAAG,eAAeC,GAAG,cAAcC,GAAG,yBAAyBC,GAAG,MAAMG,GAAG,MAAMC,GAAG,OAAOI,GAAG,OAAOC,GAAG,OAAOC,GAAG,YAAYC,GAAG,YAAYC,GAAG,SAASC,GAAG,SAASC,GAAG,qBAAqBC,GAAI,aAAaE,GAAG,YAAYtB,GAAG,OAAOnH,GAAG,aAAawF,GAAG,mBAAmBkD,GAAG,eAAexI,GAAG,cAAcC,GAAG,uBAAuB,SAASs5B,MAAMvd,EAAE,CAACxO,EAAE,EAAE,QAAQ,SAAS,GAAGA,EAAE,EAAE,QAAQ,MAAM,GAAG,QAAQ,KAAK,GAAGwO,CAAC,CAAC,CAAC,SAASwd,MAAMxd,EAAE,CAACxO,EAAE,EAAE,QAAQ,SAAS,GAAGA,EAAE,EAAE,QAAQ,MAAM,GAAG,QAAQ,IAAI,GAAGwO,CAAC,CAAC,CAAC,IAAIyd,GAAGH,GAAG,iBAAiB,IAAI,IAAI,GAAG,EAAEI,GAAGJ,GAAG,eAAe,IAAI,IAAI,GAAG,EAAE,SAASzqB,GAAGmN,EAAE,EAAE,CAAC,IAAIE,EAAEyd,GAAG3d,EAAE,CAAC,EAAE,OAAOyd,GAAG,IAAIvd,CAAC,CAAC,CAAC,SAAStN,GAAGoN,EAAE,CAAC,OAAO0d,GAAG,IAAI1d,CAAC,CAAC,CAAC,SAASlN,GAAGkN,EAAE,CAAC,IAAI,EAAEyd,GAAG,QAAQ,EAAEvd,EAAE,CAAC,EAAE,OAAO,CAAC,GAAG,CAAC,KAAKE,EAAE,MAAMC,CAAC,EAAE,EAAE,KAAK,EAAE,GAAGD,EAAE,MAAM,GAAG,CAAC,EAAE,CAAC,EAAEC,EAAE,CAAC0B,CAAC,EAAE,EAAE,MAAM,GAAG,EAAEA,IAAI/B,GAAGE,EAAE,KAAK,CAAC,CAAC,CAAC,OAAOA,CAAC,CAAC,SAASjH,GAAG+G,EAAE,CAAC,GAAG,CAAC,WAAW,EAAE,YAAYE,CAAC,EAAEF,EAAEI,EAAEud,GAAG,EAAEzd,CAAC,EAAEud,GAAG,IAAIrd,CAAC,GAAGmd,GAAG,eAAe,CAAC,kBAAkBrd,CAAC,yBAAyB,EAAEud,GAAG,IAAIrd,EAAEJ,CAAC,CAAC,CAAC,SAAShH,GAAGgH,EAAE,CAAC,GAAG,CAAC,WAAW,CAAC,EAAEA,EAAE0d,GAAG,IAAI,CAAC,GAAGlsB,EAAE,EAAE,QAAQ,OAAO,GAAG+rB,GAAG,gCAAgC,CAAC,GAAG,EAAEG,GAAG,IAAI,EAAE1d,CAAC,CAAC,CAAC,SAAS9B,GAAI8B,EAAE,EAAE,CAAC,IAAIE,EAAEyd,GAAG3d,EAAE,CAAC,EAAE,GAAG,CAACyd,GAAG,IAAIvd,CAAC,EAAE,MAAM,IAAI,MAAM,eAAeF,CAAC,kBAAkB,CAAC,qBAAqB,EAAEyd,GAAG,OAAOvd,CAAC,CAAC,CAAC,SAASjC,GAAI+B,EAAE,CAAC,GAAG,CAAC0d,GAAG,IAAI1d,CAAC,EAAE,MAAM,IAAI,MAAM,iBAAiBA,CAAC,iCAAiC,EAAE0d,GAAG,OAAO1d,CAAC,CAAC,CAAC,SAAStQ,GAAIsQ,EAAE,EAAE,CAAClN,GAAGkN,CAAC,EAAE,QAAQ,GAAG,CAAC,IAAIK,EAAE,OAAO,OAAO,CAAC,EAAE,EAAE,CAAC,YAAY,CAAC,CAAC,EAAEpH,GAAGoH,CAAC,CAAC,CAAC,CAAC,CAAC,SAASsd,GAAG3d,EAAE,EAAE,CAAC,MAAM,GAAG,CAAC,IAAIA,CAAC,EAAE,CAAC,IAAIzB,EAAE,CAAC,EAAE0B,GAAG1B,EAAE,CAAC,YAAY,IAAIic,GAAG,oBAAoB,IAAII,GAAG,OAAO,IAAIN,EAAE,mCAAmC,IAAIoC,GAAG,cAAc,IAAIjC,GAAG,kBAAkB,IAAIF,GAAG,qBAAqB,IAAIqB,GAAG,gBAAgB,IAAID,GAAG,yBAAyB,IAAIH,GAAG,MAAM,IAAIvB,GAAG,eAAe,IAAIkC,GAAG,mCAAmC,IAAIG,GAAG,kBAAkB,IAAIsB,GAAG,sBAAsB,IAAI5C,GAAG,aAAa,IAAI6C,GAAG,YAAY,IAAIxD,GAAG,aAAa,IAAIyD,GAAG,MAAM,IAAIC,GAAG,cAAc,IAAIC,GAAG,QAAQ,IAAIC,GAAG,kBAAkB,IAAI1C,GAAG,uBAAuB,IAAID,GAAG,gBAAgB,IAAII,GAAG,UAAU,IAAIwC,GAAG,WAAW,IAAItB,GAAG,WAAW,IAAIZ,GAAG,uBAAuB,IAAIb,GAAG,UAAU,IAAIW,GAAG,WAAW,IAAIG,GAAG,MAAM,IAAIpB,GAAG,SAAS,IAAIkB,GAAG,UAAU,IAAIc,GAAG,cAAc,IAAIlC,GAAG,SAAS,IAAIkB,GAAG,aAAa,IAAIsC,GAAG,aAAa,IAAI1C,GAAG,WAAW,IAAIkB,GAAG,mBAAmB,IAAIJ,GAAG,0BAA0B,IAAIE,GAAG,oBAAoB,IAAID,GAAG,eAAe,IAAIN,GAAG,kBAAkB,IAAIhC,GAAG,IAAI,IAAIkE,GAAG,eAAe,IAAIhD,GAAG,YAAY,IAAIhB,GAAG,YAAY,IAAIc,GAAG,SAAS,IAAID,GAAG,QAAQ,IAAInB,GAAG,aAAa,IAAIE,GAAG,cAAc,IAAIU,GAAG,oBAAoB,IAAIK,GAAG,aAAa,IAAIM,GAAG,IAAI,IAAIlB,GAAG,KAAK,IAAIJ,GAAG,KAAK,IAAIe,GAAG,cAAc,IAAIuB,GAAG,aAAa,IAAIgC,EAAE,CAAC,EAAE,SAASC,GAAGte,EAAE,CAAC,OAAOA,aAAa,cAAcA,aAAa,YAAYA,aAAa,YAAYA,aAAa,iBAAiB,CAAC,IAAIue,GAAGje,GAAGC,GAAG,CAAC,EAAMie,GAAGD,GAAG,SAASA,GAAG,SAASL,GAAGle,EAAE,CAAC,OAAOwe,GAAG,WAAWxe,EAAE,GAAG,EAAE,CAAC,CAAC,IAAIye,GAAGP,GAAG,kBAAkB,EAAEQ,GAAGR,GAAG,kBAAkB,EAAES,GAAGT,GAAG,kBAAkB,EAAE,SAASU,GAAG5e,EAAE,CAAC,OAAOA,EAAE,IAAIA,EAAE,KAAK,EAAE,CAAC,CAAC,CAAC,SAAS6e,GAAG7e,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAEJ,EAAE,MAAM,EAAE,EAAEE,CAAC,EAAE,OAAOse,GAAG,UAAU,MAAM,KAAKpe,CAAC,EAAE,GAAG,EAAE,CAAC,CAAC,SAAS0e,GAAG9e,EAAE,EAAE,CAAC,OAAO6e,GAAG7e,EAAE,EAAE,CAAC,CAAC,CAAC,SAAS+e,GAAG/e,EAAE,EAAE,CAAC,OAAO6e,GAAG7e,EAAE,EAAE,CAAC,CAAC,CAAC,SAASgf,GAAGhf,EAAE,EAAE,CAAC,OAAO,IAAI,EAAEA,EAAEA,EAAE,KAAK,CAAC,EAAE,GAAGA,EAAE,IAAI,GAAG,CAAC,CAAC,CAAC,CAAC,SAASif,GAAGjf,EAAE,EAAEE,EAAEge,GAAG,kBAAkB,EAAE,CAAC,IAAI9d,EAAEJ,EAAE,IAAI,CAAC,EAAE,IAAIE,CAAC,EAAEE,EAAEA,EAAE,IAAIA,EAAE,KAAK,EAAE,CAAC,EAAE,IAAIC,EAAE,EAAE,IAAID,CAAC,EAAE,IAAIF,CAAC,EAAE,OAAOG,EAAEA,EAAE,IAAIA,EAAE,KAAK,EAAE,CAAC,EAAEA,EAAEA,EAAE,IAAIH,CAAC,EAAEG,CAAC,CAAC,SAAS6e,GAAGlf,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,CAACA,EAAEA,EAAE,IAAIL,CAAC,EAAE,EAAEgf,GAAG,EAAE,IAAI3e,CAAC,EAAE,IAAID,CAAC,EAAE,EAAE,EAAE,IAAI,EAAEC,EAAE,OAAOA,EAAEA,EAAE,IAAI,CAAC,EAAEA,EAAEA,EAAE,IAAIH,CAAC,EAAE,EAAE,EAAE,IAAI8e,GAAG3e,EAAE,EAAE,CAAC,EAAE,CAACA,EAAE,IAAID,CAAC,EAAE,EAAE,IAAI,CAAC,CAAC,CAAC,CAAC,SAAS+e,GAAGnf,EAAE,EAAEE,EAAEE,EAAE,CAAC,OAAO8e,GAAGJ,GAAG9e,EAAE,CAAC,EAAE8e,GAAG9e,EAAE,EAAE,CAAC,EAAE8e,GAAG9e,EAAE,EAAE,EAAE,EAAE8e,GAAG9e,EAAE,EAAE,EAAE,EAAEE,EAAEE,CAAC,CAAC,CAAC,SAASgf,GAAGpf,EAAE,EAAEA,EAAE,OAAO,CAAC,GAAG,GAAG,EAAE,CAAC,IAAIE,EAAEye,GAAG,IAAI,EAAE,CAAC,EAAEve,EAAE0e,GAAG9e,EAAE,CAAC,EAAE,IAAI2e,EAAE,EAAEte,EAAEye,GAAG9e,EAAE,EAAE,CAAC,EAAE,EAAEgf,GAAG3e,EAAE,EAAE,EAAE,IAAIH,CAAC,EAAE,IAAIE,CAAC,EAAE,EAAE4e,GAAG5e,EAAE,EAAE,EAAE,IAAIC,CAAC,EAAE,IAAIH,CAAC,EAAE,OAAO+e,GAAG,EAAE,EAAE/e,CAAC,CAAC,CAAC,GAAG,GAAG,EAAE,CAAC,IAAIA,EAAEye,GAAG,IAAI,EAAE,CAAC,EAAEve,EAAE2e,GAAG/e,EAAE,CAAC,EAAE,OAAOif,GAAG7e,EAAE,IAAI,CAAC,EAAE,IAAI,CAAC,EAAE2e,GAAG/e,EAAE,EAAE,CAAC,EAAEE,CAAC,CAAC,CAAC,GAAG,EAAE,EAAE,CAAC,IAAIA,EAAEF,EAAE,CAAC,EAAEI,EAAEJ,EAAE,GAAG,CAAC,EAAEK,EAAEL,EAAE,EAAE,CAAC,EAAE,EAAEE,GAAGE,GAAG,GAAG,EAAE,GAAGC,GAAG,GAAG,OAAOue,GAAGD,GAAG,IAAI,CAAC,EAAE,IAAIF,GAAG,IAAI,CAAC,CAAC,CAAC,EAAE,IAAIE,EAAE,CAAC,CAAC,OAAOA,EAAE,CAAC,SAASU,GAAGrf,EAAE,EAAEA,EAAE,OAAO,CAAC,IAAIE,EAAEye,GAAG,IAAI,EAAE,CAAC,EAAEve,EAAE0e,GAAG9e,EAAE,CAAC,EAAE,IAAI0e,EAAE,EAAEre,EAAEye,GAAG9e,EAAE,CAAC,EAAE,EAAE8e,GAAG9e,EAAE,EAAE,CAAC,EAAE,IAAIE,CAAC,EAAE,EAAE4e,GAAG9e,EAAE,EAAE,EAAE,EAAE,IAAI2e,EAAE,EAAE,OAAOM,GAAGD,GAAG5e,EAAE,IAAIC,CAAC,EAAE,EAAE,EAAE,IAAI2e,GAAG,EAAE,EAAE,CAAC,EAAE,IAAI,CAAC,EAAE5e,EAAE,IAAI4e,GAAG3e,EAAE,IAAIse,EAAE,EAAE,EAAE,CAAC,EAAE,IAAI,CAAC,EAAEze,CAAC,CAAC,CAAC,SAASof,GAAGtf,EAAE,EAAEA,EAAE,OAAO,CAAC,IAAIE,EAAEye,GAAG,IAAI,EAAE,CAAC,EAAEve,EAAE0e,GAAG9e,EAAE,CAAC,EAAE,IAAI2e,EAAE,EAAEte,EAAEye,GAAG9e,EAAE,CAAC,EAAE,EAAE8e,GAAG9e,EAAE,EAAE,CAAC,EAAE,IAAIE,CAAC,EAAE,EAAE4e,GAAG9e,EAAE,EAAE,EAAE,EAAE,IAAI2e,EAAE,EAAE5c,EAAEid,GAAG5e,EAAE,IAAIC,CAAC,EAAE,EAAE,EAAE,IAAI2e,GAAG,EAAE,EAAE,CAAC,EAAE,IAAI,CAAC,EAAEhd,EAAEid,GAAGld,EAAE3B,EAAE,IAAI4e,GAAG3e,EAAE,IAAIse,EAAE,EAAE,EAAE,CAAC,EAAE,IAAI,CAAC,EAAEze,CAAC,EAAE+B,EAAE6c,GAAG9e,EAAE,EAAE,EAAE,IAAIE,CAAC,EAAEwC,EAAEoc,GAAG9e,EAAE,EAAE,EAAE2C,EAAEZ,EAAE,IAAI+c,GAAG9e,EAAE,EAAE,EAAE,CAAC,EAAE,IAAIE,CAAC,EAAE0C,EAAEZ,EAAE,IAAI8c,GAAG9e,EAAE,EAAE,EAAE,CAAC,EAAE,IAAIE,CAAC,EAAE,OAAO+e,GAAGD,GAAG/c,EAAE,IAAIS,CAAC,EAAE,EAAE,EAAE,IAAIsc,GAAGrc,EAAE,EAAE,CAAC,EAAE,IAAIC,CAAC,EAAEX,EAAE,IAAI+c,GAAGtc,EAAE,IAAItC,CAAC,EAAE,EAAE,CAAC,EAAE,IAAIuC,CAAC,EAAEzC,CAAC,CAAC,CAAC,SAAS8d,GAAGhe,EAAE,EAAEA,EAAE,OAAO,CAAC,IAAIE,EAAEse,GAAG,WAAW,GAAG,EAAE,EAAE,GAAG,GAAG,GAAG,OAAO,GAAG,GAAGY,GAAGpf,EAAE,CAAC,EAAEqf,GAAGrf,EAAE,CAAC,EAAE,GAAG,GAAG,GAAG,OAAOsf,GAAGtf,EAAE,CAAC,EAAE,IAAII,EAAEF,EAAEG,EAAEH,EAAE,IAAIwe,EAAE,EAAE,IAAI,GAAG,EAAE,EAAEE,GAAGve,EAAE,IAAIse,EAAE,EAAE,IAAI,GAAG,CAAC,EAAE,IAAIA,EAAE,EAAE,EAAE,CAACH,GAAG,MAAMA,GAAG,KAAK,EAAEzc,EAAE,CAACyc,GAAG,MAAMA,GAAG,KAAK,EAAEpe,EAAEA,EAAE,IAAIue,EAAE,EAAE,IAAIG,GAAG9e,EAAE,CAAC,CAAC,EAAE,IAAIgC,EAAE,EAAEC,GAAG,EAAE,GAAG,GAAG,GAAGS,EAAET,GAAG,EAAE,EAAE,IAAI,GAAG,GAAG7B,EAAE4e,GAAG5e,EAAE,IAAIC,CAAC,EAAE,IAAI,EAAE,CAAC,CAAC,EAAE,IAAIye,GAAG9e,EAAEgC,EAAE,CAAC,CAAC,EAAE,EAAE,EAAE,IAAI0c,EAAE,EAAEre,EAAE2e,GAAG3e,EAAE,IAAI,EAAE,CAAC,CAAC,EAAE,IAAIye,GAAG9e,EAAEgC,EAAE,EAAE,CAAC,EAAE,EAAE,EAAE,IAAI0c,EAAE,EAAEte,EAAEA,EAAE,IAAI2B,EAAE,CAAC,CAAC,EAAE1B,EAAEA,EAAE,IAAI,EAAE,CAAC,CAAC,EAAE,IAAIye,GAAG9e,EAAEgC,EAAE,EAAE,CAAC,EAAE,EAAEgd,GAAG,EAAE,IAAIjd,EAAE,CAAC,CAAC,EAAE,EAAE,EAAE,IAAI2c,EAAE,EAAE,EAAES,GAAGnf,EAAEgC,EAAE,EAAE,CAAC,EAAE,IAAI0c,EAAE,EAAEte,EAAE,IAAI2B,EAAE,CAAC,CAAC,CAAC,EAAEA,EAAEod,GAAGnf,EAAEgC,EAAE,GAAG,EAAE,IAAID,EAAE,CAAC,CAAC,EAAE1B,EAAE,IAAIye,GAAG9e,EAAEgC,EAAE,EAAE,CAAC,CAAC,EAAE,CAAC,EAAE5B,CAAC,EAAE,CAACA,EAAE,CAAC,EAAE4B,GAAG,SAASA,IAAIC,GAAG,IAAIU,EAAE+b,GAAG,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC,CAAC,EAAE,OAAO1c,EAAEU,EAAEX,EAAE,CAAC,EAAEA,EAAE,CAAC,EAAE,IAAI,EAAE,EAAE,EAAE,EAAE,EAAE,CAAC,EAAE,EAAE,CAAC,EAAE,IAAIA,EAAE,CAAC,CAAC,EAAEA,EAAE,CAAC,EAAEA,EAAE,CAAC,EAAE,IAAI,EAAE,CAAC,CAAC,EAAE3B,EAAE4e,GAAG5e,EAAE,IAAIC,CAAC,EAAE,IAAI,EAAE,CAAC,CAAC,EAAE,IAAIye,GAAG9e,EAAEgC,EAAE,CAAC,CAAC,EAAE,EAAE,EAAE,IAAIW,CAAC,EAAEtC,EAAE2e,GAAG3e,EAAE,IAAI,EAAE,CAAC,CAAC,EAAE,IAAIye,GAAG9e,EAAEgC,EAAE,EAAE,CAAC,EAAE,EAAE,EAAE,IAAIW,CAAC,EAAEvC,EAAEA,EAAE,IAAI2B,EAAE,CAAC,EAAE,IAAI,CAAC,CAAC,EAAE1B,EAAEA,EAAE,IAAI,EAAE,CAAC,EAAE,IAAI,CAAC,EAAE,IAAIye,GAAG9e,EAAEgC,EAAE,EAAE,CAAC,CAAC,EAAE,EAAEgd,GAAG,EAAE,IAAIjd,EAAE,CAAC,CAAC,EAAE,EAAE,EAAE,IAAIY,CAAC,EAAE,EAAEwc,GAAGnf,EAAEgC,EAAE,EAAE,CAAC,EAAE,IAAIW,CAAC,EAAEvC,EAAE,IAAI2B,EAAE,CAAC,CAAC,CAAC,EAAEA,EAAEod,GAAGnf,EAAEgC,EAAE,GAAG,EAAE,IAAID,EAAE,CAAC,CAAC,EAAE1B,EAAE,IAAIye,GAAG9e,EAAEgC,EAAE,EAAE,CAAC,CAAC,EAAE,CAAC,EAAE5B,CAAC,EAAE,CAACA,EAAE,CAAC,EAAE6e,GAAGA,GAAG,EAAE,CAAC,EAAEld,EAAE,CAAC,EAAEY,CAAC,EAAE,IAAIic,GAAGve,CAAC,EAAE,IAAIoe,EAAE,CAAC,EAAE,IAAI,CAAC,EAAEQ,GAAG,EAAE,CAAC,EAAEld,EAAE,CAAC,EAAEY,CAAC,EAAE,IAAIvC,CAAC,EAAEuC,CAAC,CAAC,CAAC,SAASib,GAAG5d,EAAE,EAAE,CAAC,OAAO,IAAI,SAAS8d,GAAG9d,CAAC,EAAEqe,GAAG,CAACre,CAAC,EAAE,CAAC,CAAC,CAAC,SAASuf,GAAGvf,EAAE,EAAE,CAAC,OAAOA,aAAa,cAAc,IAAI,WAAWA,aAAa,YAAY,IAAI,SAASA,aAAa,YAAY,IAAI,MAAM,CAAC,SAASqe,GAAGre,EAAE,EAAE,CAAC,GAAG,IAAI,SAAS,MAAM,IAAI,MAAM,2CAA2C,EAAE,GAAG,MAAM,QAAQA,CAAC,IAAIA,EAAEie,GAAGje,CAAC,GAAGxO,EAAE,EAAE,QAAQ,OAAO,GAAGgqB,GAAGxb,EAAE,CAAC,EAAEuf,GAAGvf,EAAE,CAAC,EAAE,OAAOA,EAAE,GAAG,GAAG,MAAM,IAAI,WAAW,IAAI,YAAY,OAAO,IAAI,aAAaA,CAAC,EAAE,GAAG,IAAI,QAAQ,OAAO,IAAI,WAAWA,CAAC,EAAE,GAAG,IAAI,OAAO,CAAC,IAAIE,EAAE,IAAI,WAAWF,EAAE,MAAM,EAAE,QAAQI,EAAE,EAAEA,EAAEF,EAAE,OAAO,EAAEE,EAAE,KAAK,MAAMJ,EAAEI,CAAC,CAAC,IAAI,IAAIF,EAAEE,CAAC,EAAE,GAAG,OAAOF,CAAC,KAAM,OAAM,IAAI,MAAM,qBAAqB,CAAC,EAAE,CAAC,CAAC,SAASke,IAAI,CAAC,OAAO5sB,EAAE,EAAE,SAAS,IAAI,CAAC,CAAC,SAASusB,GAAG/d,EAAE,EAAE,CAAC,OAAOxO,EAAE,EAAE,SAAS,MAAMwO,EAAE,CAAC,CAAC,CAAC,SAAS8d,GAAG9d,EAAE,EAAE,QAAQ,CAAC,OAAO,EAAE,GAAG,QAAQxO,EAAE,EAAE,SAAS,OAAOwO,EAAE,CAAC,CAAC,CAAC,SAAS6d,GAAG7d,EAAE,EAAE,QAAQ,CAAC,OAAO,EAAE,GAAG,QAAQxO,EAAE,EAAE,SAAS,OAAOwO,EAAE,CAAC,CAAC,CAAC,SAASme,GAAGne,EAAE,CAAC,OAAOxO,EAAE,EAAE,SAAS,cAAc,KAAKA,EAAE,EAAE,SAAS,aAAawO,CAAC,EAAEse,GAAGte,CAAC,CAAC,CAAC,SAASie,GAAGje,EAAE,EAAE,CAAC,EAAEE,EAAE,GAAG,CAAC,GAAG,GAAG,OAAO,EAAE,CAAC,GAAG,OAAOF,GAAG,WAAW,OAAOA,GAAG,UAAU,OAAOA,GAAG,UAAU6c,GAAG7c,CAAC,GAAGA,GAAG,MAAMme,GAAGne,CAAC,GAAGE,EAAE,EAAE,KAAKF,CAAC,UAAU,MAAM,QAAQA,CAAC,GAAGme,GAAGne,CAAC,EAAE,QAAQI,EAAE,EAAEA,EAAEJ,EAAE,OAAO,EAAEI,EAAE6d,GAAGje,EAAEI,CAAC,EAAE,EAAEF,CAAC,MAAM,CAAC,IAAIE,EAAE,GAAG,QAAQC,KAAK,OAAO,KAAKL,CAAC,EAAE,qBAAqB,KAAKK,CAAC,IAAID,EAAE,KAAK,IAAIA,EAAE,OAAOC,CAAC,CAAC,GAAG,QAAQA,EAAE,EAAEA,GAAGD,EAAEC,IAAI4d,GAAGje,EAAEK,CAAC,EAAE,EAAEH,CAAC,CAAC,CAAC,OAAO,CAAC,CAAC,IAAIsf,GAAG,KAAK,CAAC,YAAY5e,EAAEV,EAAE,CAAC,KAAK,aAAaU,EAAE,KAAK,OAAOV,EAAEA,GAAG,OAAO,KAAK,OAAO,IAAIuf,GAAG,CAAC,cAAc7e,EAAEV,EAAE,EAAE,CAAC,IAAIG,EAAEwB,EAAE,IAAI,CAACxB,EAAE,EAAE,CAAC,EAAEyB,EAAEC,EAAEqc,GAAG,EAAE,GAAG,KAAK,aAAa,eAAe,EAAEtc,EAAE,KAAK,aAAa,KAAKD,CAAC,MAAM,CAACA,EAAE,EAAE,QAAQI,KAAK5B,EAAE4B,EAAE,SAAS,EAAEH,EAAE,QAAQ,QAAQ,CAAC,SAASsc,GAAG,EAAErc,CAAC,CAAC,CAAC,CAAC,GAAGvQ,EAAE,EAAE,QAAQ,8BAA8B,EAAE,QAAQyQ,EAAE,EAAEA,EAAE5B,EAAE,OAAO4B,IAAI,CAAC,IAAIS,EAAErC,EAAE4B,CAAC,EAAES,EAAE,KAAK,EAAE,KAAKC,GAAG,CAAC+c,GAAG/c,EAAED,EAAE,MAAM9B,CAAC,CAAC,CAAC,CAAC,CAAC,MAAM,CAAC,WAAWA,EAAE,QAAQP,EAAE,OAAOH,EAAE,OAAO4B,EAAE,KAAKG,GAAGA,EAAE,QAAQ,EAAE,UAAUH,EAAE,KAAKG,GAAGA,EAAE,qBAAqB,KAAKA,EAAE,oBAAoB,EAAE,EAAE,CAAC,CAAC,CAAC,iBAAiBrB,EAAE,CAAC,GAAG,CAAC,WAAWV,EAAE,QAAQ,EAAE,OAAOG,EAAE,OAAOwB,EAAE,UAAUC,CAAC,EAAElB,EAAE,EAAE,QAAQmB,GAAG,CAAC,QAAQ,IAAI,CAACA,EAAE,KAAK,EAAE1B,EAAEyB,CAAC,CAAC,EAAE,KAAKE,GAAG,CAAC,KAAK,OAAO,iBAAiB9B,EAAE6B,EAAEC,EAAE,CAAC,EAAEA,EAAE,CAAC,EAAEH,EAAEG,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,SAAS0d,GAAG1f,EAAE,EAAEE,EAAE,CAAC,GAAG,IAAI,UAAU,MAAM,GAAG,QAAQE,EAAE,EAAEA,EAAEJ,EAAE,OAAOI,IAAI,CAAC,IAAIC,EAAEL,EAAEI,CAAC,EAAE,GAAG,MAAMC,CAAC,GAAG,CAAC,SAASA,CAAC,EAAE,OAAO,QAAQ,KAAK,SAASA,CAAC,sBAAsBH,CAAC,GAAG,EAAE,EAAE,CAAC,MAAM,EAAE,CAAC,IAAIuf,GAAG,KAAK,CAAC,iBAAiB7e,EAAEV,EAAE,EAAEG,EAAEwB,EAAEC,EAAE,CAAC,IAAIC,EAAE,OAAO1B,GAAG,SAAS4a,GAAG,GAAG5a,CAAC,KAAK,CAAC,EAAEA,EAAE,MAAM2B,EAAEiZ,GAAGra,EAAE,EAAE,EAAE,EAAEV,EAAE,KAAKwC,EAAExC,EAAE,KAAK,EAAE+a,GAAG/a,EAAE,MAAM,SAAS,EAAE,EAAE,EAAE0C,EAAE,GAAG,QAAQC,KAAKhB,EAAE,CAAC,IAAIiB,EAAEjB,EAAEgB,CAAC,EAAE,GAAGC,GAAG,KAAK,CAAC,IAAIkB,EAAElB,EAAE,OAAO5C,EAAE,MAAM+D,EAAED,EAAE,OAAOpB,GAAG,GAAGC,CAAC,KAAKoB,CAAC,KAAKA,EAAE,EAAED,EAAE,EAAE,GAAG,CAAC,CAAC,QAAQ,IAAI,KAAKhC,CAAC,MAAMD,CAAC,MAAM,CAAC,KAAK,CAAC,MAAMW,CAAC,MAAME,CAAC,MAAMd,CAAC,GAAG,mBAAmB,YAAY,aAAa,gBAAgB,eAAe,kBAAkB,CAAC,CAAC,EAAE,SAAS6d,GAAG3f,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAE,CAAC,EAAEC,EAAE,CAAC,EAAE,QAAQ2B,EAAE,EAAEA,EAAE,EAAE,OAAOA,IAAI5B,EAAE,EAAE4B,CAAC,EAAE,EAAE,EAAE,GAAG,QAAQA,EAAE,EAAEA,EAAEhC,EAAE,OAAOgC,IAAI,CAAC,IAAIC,EAAEjC,EAAEgC,CAAC,EAAEU,EAAET,EAAE,OAAO,QAAQU,KAAKD,EAAE,CAAC,IAAIE,EAAEF,EAAEC,CAAC,EAAEE,EAAE,GAAG,QAAQC,EAAE,EAAEA,EAAE,EAAE,OAAOA,IAAI,GAAG1C,EAAEwC,EAAE,EAAE,EAAE,CAACX,EAAE,QAAQ,QAAQ+B,GAAG5D,EAAE4D,EAAE,EAAE,EAAE,EAAE,EAAEnB,EAAE,GAAGxC,EAAE4B,EAAE,EAAE,EAAE,GAAG,KAAK,CAAC,GAAGY,EAAE,KAAK,CAAC,CAAC,IAAI,EAAE,CAAC,EAAE,EAAE3C,EAAE,EAAE,EAAE,GAAG,IAAI,EAAE,CAAC,EAAE,QAAQ8B,EAAEhC,EAAE,OAAO,EAAEgC,GAAG,EAAEA,IAAI,CAAC,IAAIC,EAAEjC,EAAEgC,CAAC,EAAEU,EAAET,EAAE,OAAO,QAAQU,EAAE,EAAEA,EAAEV,EAAE,QAAQ,OAAOU,IAAI,GAAG,EAAEV,EAAE,QAAQU,CAAC,EAAE,EAAE,EAAE,CAAC,QAAQC,KAAKF,EAAE,EAAEA,EAAEE,CAAC,EAAE,EAAE,EAAE,GAAG,EAAEX,EAAE,EAAE,EAAE,GAAG,KAAK,CAAC,CAAC,IAAIF,EAAE,CAAC,EAAE,QAAQC,EAAE,EAAEA,EAAEhC,EAAE,OAAOgC,IAAI,CAAC,IAAIC,EAAEjC,EAAEgC,CAAC,EAAE,GAAG3B,EAAE4B,EAAE,EAAE,GAAG,EAAEA,EAAE,EAAE,EAAE,CAAC,IAAIS,EAAE,CAAC,EAAE,QAAQE,KAAKX,EAAE,OAAO,CAAC,IAAIY,EAAEZ,EAAE,OAAOW,CAAC,EAAExC,EAAEyC,EAAE,EAAE,IAAIH,EAAEE,CAAC,EAAEC,EAAE,CAAC,IAAIF,EAAE,OAAO,OAAO,CAAC,EAAEV,CAAC,EAAEU,EAAE,OAAOD,EAAEC,EAAE,QAAQV,EAAE,QAAQF,EAAE,KAAKY,CAAC,CAAC,CAAC,CAAC,OAAOZ,CAAC,CAAC,SAAS6d,GAAG5f,EAAE,EAAEE,EAAEE,EAAE,CAAC,QAAQC,EAAE,EAAE,OAAO,EAAEA,GAAG,EAAEA,IAAI,CAAC,IAAI,EAAE,EAAEA,CAAC,EAAE,EAAE,CAAC,EAAE,GAAG,EAAE,QAAQ,QAAQ2B,GAAG,CAAC,IAAIC,EAAEjC,EAAEgC,EAAE,EAAE,EAAEC,GAAG,KAAK,EAAE,KAAKA,CAAC,EAAE,EAAE,KAAK,IAAI,CAAC,CAAC,EAAE,EAAE,UAAU,KAAK,MAAM,IAAI,MAAM,4DAA4D,EAAE,UAAU,GAAG,EAAE,IAAIF,EAAE,EAAE,SAAS,CAAC,EAAE,QAAQC,KAAK,EAAE,OAAO,CAAC,GAAG,EAAEA,KAAKD,GAAG,MAAM,IAAI,MAAM,iCAAiCC,CAAC,gCAAgC,OAAO,KAAKD,CAAC,CAAC,GAAG,EAAE,IAAIE,EAAE/B,EAAE,IAAI6B,EAAEC,CAAC,EAAE,CAAC,EAAE,GAAGC,EAAE,QAAQ,UAAU,MAAM,IAAI,MAAM,4BAA4B,EAAE,UAAU,2BAA2BD,CAAC,wCAAwCC,EAAE,KAAK,GAAG,EAAE,IAAIS,EAAE,EAAE,OAAOV,CAAC,EAAE,GAAG,CAACwY,GAAGvY,EAAE,MAAMS,EAAE,KAAK,EAAE,MAAM,IAAI,MAAM,4BAA4B,EAAE,UAAU,4BAA4BV,CAAC,gBAAgBC,EAAE,KAAK,mDAAmDS,EAAE,KAAK,GAAG,EAAE,GAAG1C,EAAE0C,EAAE,EAAE,GAAG,KAAK1C,EAAE0C,EAAE,EAAE,EAAET,MAAM,CAAC,IAAIU,EAAE3C,EAAE0C,EAAE,EAAE,EAAE1C,EAAE0C,EAAE,EAAE,EAAEtC,EAAEuC,EAAEV,CAAC,EAAEU,EAAE,QAAQ,CAAC,CAAC,CAAC,CAAC,CAAC,IAAIkd,GAAG,GAAGC,GAAG,EAAEC,GAAG,EAAE,SAASC,GAAGhgB,EAAE,EAAEE,EAAEE,EAAE,CAAC,IAAIC,EAAE8b,GAAG,CAAC,EAAE,EAAE8D,GAAGjgB,EAAE,EAAEE,EAAEG,CAAC,EAAE,EAAE,EAAE,OAAO0B,EAAEme,GAAGlgB,EAAE,EAAEE,EAAEG,EAAE,CAAC,EAAE2B,EAAE,CAAC,QAAQ,EAAE,OAAO5B,IAAI4B,EAAE,KAAK,YAAY9B,CAAC,EAAE,EAAE8B,EAAE,KAAK,WAAW,CAAC,EAAE,EAAEA,EAAE,KAAK,aAAa,CAAC,GAAG,EAAEA,EAAE,KAAK,WAAW,GAAGA,EAAE,KAAKD,EAAE,IAAIE,GAAG,OAAOA,CAAC,EAAE,KAAK;AAAA,CACns+C,CAAC,EAAED,EAAE,KAAK;AAAA,CACV,CAAC,CAAC,SAASie,GAAGjgB,EAAE,EAAEE,EAAEE,EAAE,CAAC,IAAIC,EAAEqa,GAAG,CAAC,EAAE,EAAEta,EAAEA,EAAE,OAAO,CAAC,EAAE,EAAE,IAAI,MAAM,CAAC,EAAE,KAAK,CAAC,EAAE2B,EAAE,EAAE,OAAOC,EAAE9B,IAAI,YAAYigB,GAAGngB,CAAC,EAAEA,EAAE,GAAG+B,EAAE,EAAE,QAAQE,EAAE,EAAEA,EAAE5B,EAAE,EAAE4B,IAAI,CAAC,IAAIS,EAAET,EAAE,EAAE,QAAQU,EAAE,EAAEA,EAAE,EAAEA,IAAI,EAAEA,CAAC,EAAE,KAAK,IAAI,EAAEA,CAAC,EAAEyd,GAAGpe,EAAEU,EAAEC,CAAC,EAAE,EAAEzC,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,CAAC,CAAC,SAASkgB,GAAGpgB,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAE,OAAO,MAAM,QAAQJ,CAAC,EAAEI,EAAE,GAAG,WAAWJ,EAAE,CAAC,EAAE,QAAQ+f,EAAE,CAAC,CAAC,MAAM,WAAW/f,EAAE,CAAC,EAAE,QAAQ+f,EAAE,CAAC,CAAC,IAAIlE,GAAG7b,CAAC,EAAEI,EAAE,IAAIJ,CAAC,IAAIE,IAAI,OAAOE,EAAEigB,GAAGrgB,CAAC,EAAEI,EAAE,WAAWJ,EAAE,QAAQ+f,EAAE,CAAC,EAAE,SAAS,EAAE9E,GAAG7a,EAAE,CAAC,CAAC,CAAC,SAASigB,GAAGrgB,EAAE,CAAC,OAAOA,IAAI,EAAE,QAAQ,MAAM,CAAC,SAASkgB,GAAGlgB,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,GAAG,CAAC,IAAI,EAAEH,IAAI,YAAY,EAAE,EAAE6B,EAAE,EAAE,CAAC,EAAEC,EAAE,EAAE,OAAO,GAAGA,IAAI,EAAE,CAAC,GAAG9B,IAAI,YAAY,CAAC,IAAI8D,EAAEmc,GAAGngB,CAAC,EAAE,MAAM,CAACogB,GAAGpc,EAAE,CAAC,EAAE,EAAE9D,CAAC,CAAC,CAAC,CAAC,OAAOA,IAAI,OAAO,CAACmgB,GAAGrgB,EAAE,CAAC,CAAC,CAAC,EAAE,CAACA,EAAE,CAAC,EAAE,SAAS,CAAC,CAAC,CAAC,GAAGgC,IAAI,EAAE,CAAC,GAAGD,EAAE8d,GAAG,CAAC,IAAI5b,EAAE6b,GAAG,EAAExY,EAAE,MAAM,KAAKtH,EAAE,MAAM,EAAEiE,CAAC,CAAC,EAAE,EAAE,MAAM,KAAKjE,EAAE,OAAO+B,EAAE+d,IAAI,EAAE/d,EAAE,CAAC,CAAC,EAAE,OAAO7B,IAAI,cAAcoH,EAAE6Y,GAAG7Y,CAAC,EAAE,EAAE6Y,GAAG,CAAC,GAAG,CAAC,IAAI7Y,EAAE,IAAI,CAAC7C,EAAEC,IAAI0b,GAAG3b,EAAEpE,EAAEqE,CAAC,EAAExE,CAAC,CAAC,EAAE,KAAK,IAAI,EAAE,UAAU,EAAE,IAAI,CAACuE,EAAEC,IAAI0b,GAAG3b,EAAEpE,EAAE0B,EAAE+d,GAAGpb,CAAC,EAAExE,CAAC,CAAC,EAAE,KAAK,IAAI,EAAE,GAAG,CAAC,CAAC,MAAM,CAAC,KAAKA,IAAI,YAAYigB,GAAGngB,CAAC,EAAE,MAAM,KAAKA,CAAC,GAAG,IAAI,CAACiE,EAAEqD,IAAI8Y,GAAGnc,EAAE5D,EAAEiH,CAAC,EAAEpH,CAAC,CAAC,EAAE,KAAK,IAAI,EAAE,GAAG,CAAC,CAAC,IAAI+B,EAAE,EAAE,MAAM,CAAC,EAAES,EAAEtC,EAAE,MAAM,CAAC,EAAEuC,EAAEvC,EAAE,CAAC,EAAE,EAAEwC,EAAE,CAAC,EAAE,GAAGb,EAAE8d,GAAG,CAAC,QAAQ7b,EAAE,EAAEA,EAAE8b,GAAG9b,IAAI,CAAC,IAAI,EAAEA,EAAErB,EAAE2E,EAAE,EAAE3E,EAAEC,EAAE,KAAK,GAAGsd,GAAGlgB,EAAE,MAAM,EAAEsH,CAAC,EAAErF,EAAE/B,EAAEwC,EAAErC,EAAE,EAAE,CAAC,CAAC,CAACuC,EAAE,KAAK,KAAK,EAAE,QAAQoB,EAAEjC,EAAE+d,GAAG9b,EAAEjC,EAAEiC,IAAI,CAAC,IAAI,EAAEA,EAAErB,EAAE2E,EAAE,EAAE3E,EAAEC,EAAE,KAAK,GAAGsd,GAAGlgB,EAAE,MAAM,EAAEsH,CAAC,EAAErF,EAAE/B,EAAEwC,EAAErC,EAAE2D,IAAIjC,EAAE,CAAC,CAAC,CAAC,CAAC,KAAM,SAAQiC,EAAE,EAAEA,EAAEjC,EAAEiC,IAAI,CAAC,IAAI,EAAEA,EAAErB,EAAE2E,EAAE,EAAE3E,EAAEC,EAAE,KAAK,GAAGsd,GAAGlgB,EAAE,MAAM,EAAEsH,CAAC,EAAErF,EAAE/B,EAAEwC,EAAErC,EAAE2D,IAAIjC,EAAE,CAAC,CAAC,CAAC,CAAC,IAAIc,EAAEb,IAAI,EAAE,IAAI,GAAGY,EAAE,CAAC,EAAE,KAAKb,EAAE,EAAEa,EAAE,CAAC,EAAEC,EAAE,IAAI,QAAQmB,EAAE,EAAEA,EAAEpB,EAAE,OAAO,EAAEoB,IAAIpB,EAAEoB,CAAC,EAAE,IAAIpB,EAAEoB,CAAC,EAAEnB,EAAE,IAAIC,EAAE;AAAA,EACz2C,QAAQkB,EAAE,EAAEA,EAAEhC,EAAEgC,IAAIlB,GAAG;AAAA,EACvB,OAAOF,EAAEA,EAAE,OAAO,CAAC,EAAE,IAAIA,EAAEA,EAAE,OAAO,CAAC,EAAE,KAAK,EAAE,GAAGE,GAAGF,CAAC,CAAC,SAASud,GAAGngB,EAAE,CAAC,IAAI,EAAE,CAAC,EAAE,QAAQE,EAAE,EAAEA,EAAEF,EAAE,OAAOE,GAAG,EAAE,EAAE,KAAK,CAACF,EAAEE,CAAC,EAAEF,EAAEE,EAAE,CAAC,CAAC,CAAC,EAAE,OAAO,CAAC,CAAC,IAAItU,GAAG,KAAK,CAAC,YAAYgV,EAAEV,EAAE,EAAE,CAAC,GAAG,KAAK,MAAMA,EAAE,KAAK,MAAMU,EAAE,MAAM,EAAE,KAAK,KAAK8Z,GAAG9Z,CAAC,EAAE,GAAG,KAAK,CAAC,IAAIP,EAAE,EAAE,OAAOia,EAAEja,IAAI,KAAK,KAAK,IAAI,qBAAqBA,CAAC,oDAAoD,KAAK,IAAI,IAAI,CAAC,CAAC,GAAGH,IAAI,YAAY,MAAM,IAAI,MAAM,4JAA4J,EAAE,KAAK,OAAO,GAAGqb,GAAGrb,EAAE,KAAK,IAAI,EAAE,KAAK,QAAQic,GAAGvb,CAAC,CAAC,CAAC,IAAIA,KAAKV,EAAE,CAACA,EAAE,SAAS,IAAIA,EAAE,CAAC,CAAC,GAAGoa,EAAEpa,EAAE,SAAS,KAAK,KAAK,IAAI,uCAAuCA,EAAE,MAAM,0BAA0B,KAAK,IAAI,GAAG,EAAE,IAAI,EAAE,KAAK,WAAWA,CAAC,EAAE,KAAK,OAAO,CAAC,EAAEU,CAAC,CAAC,OAAOA,EAAE,CAACA,EAAE,SAAS,IAAIA,EAAE,CAAC,CAAC,GAAG,IAAIV,EAAE,EAAE,QAAQG,KAAKO,EAAE,CAAC,GAAGP,EAAE,GAAGA,GAAG,KAAK,MAAMH,CAAC,EAAE,CAAC,IAAI2B,EAAE,qCAAqCjB,CAAC,oBAAoB,KAAK,KAAK,GAAG,MAAM,IAAI,MAAMiB,CAAC,CAAC,CAAC3B,GAAG,CAAC,IAAI,EAAEU,EAAEA,EAAE,OAAO,CAAC,EAAE,QAAQP,EAAE,EAAEA,EAAEO,EAAE,OAAO,EAAE,EAAEP,EAAE,GAAG,KAAK,QAAQA,CAAC,EAAEO,EAAEP,CAAC,EAAE,OAAO,KAAK,OAAO,CAAC,CAAC,CAAC,WAAWO,EAAE,CAAC,GAAG,KAAK,OAAO,EAAE,MAAO,GAAE,GAAG,KAAK,OAAO,EAAE,OAAOA,EAAE,CAAC,EAAE,IAAIV,EAAEU,EAAEA,EAAE,OAAO,CAAC,EAAE,QAAQ,EAAE,EAAE,EAAEA,EAAE,OAAO,EAAE,EAAE,EAAEV,GAAG,KAAK,QAAQ,CAAC,EAAEU,EAAE,CAAC,EAAE,OAAOV,CAAC,CAAC,WAAWU,EAAE,CAAC,GAAG,KAAK,OAAO,EAAE,MAAM,CAAC,EAAE,GAAG,KAAK,OAAO,EAAE,MAAM,CAACA,CAAC,EAAE,IAAIV,EAAE,IAAI,MAAM,KAAK,MAAM,MAAM,EAAE,QAAQ,EAAE,EAAE,EAAEA,EAAE,OAAO,EAAE,EAAE,EAAEA,EAAE,CAAC,EAAE,KAAK,MAAMU,EAAE,KAAK,QAAQ,CAAC,CAAC,EAAEA,GAAGV,EAAE,CAAC,EAAE,KAAK,QAAQ,CAAC,EAAE,OAAOA,EAAEA,EAAE,OAAO,CAAC,EAAEU,EAAEV,CAAC,CAAC,IAAI,MAAM,CAAC,OAAO,KAAK,MAAM,MAAM,CAAC,UAAU,CAAC,OAAOogB,GAAG,EAAE,WAAW,KAAK,OAAO,KAAK,MAAM,KAAK,KAAK,CAAC,CAAC,EAAEA,GAAG,KAAKC,GAAG,KAAKC,GAAG,KAAK,SAASC,GAAGzgB,EAAE,CAACsgB,GAAGtgB,CAAC,CAAC,SAAS0gB,GAAG1gB,EAAE,CAACugB,GAAGvgB,CAAC,CAAC,SAAS2gB,GAAG3gB,EAAE,CAACwgB,GAAGxgB,CAAC,CAAC,IAAIrU,GAAG,KAAK,CAAC,YAAYiV,EAAEV,EAAE,EAAEG,EAAE,CAAC,KAAK,KAAK,GAAG,KAAK,mBAAmB,GAAG,KAAK,MAAMO,EAAE,MAAM,EAAE,KAAK,MAAMV,GAAG,UAAU,KAAK,KAAKwa,GAAG9Z,CAAC,EAAE,KAAK,QAAQub,GAAGvb,CAAC,EAAE,KAAK,OAAO,EAAE,KAAK,GAAGP,EAAE,KAAK,SAAS,KAAK,KAAK,EAAE,KAAK,KAAK,SAAS,EAAE,QAAQ,CAAC,IAAI,MAAM,CAAC,OAAO,KAAK,MAAM,MAAM,CAAC,MAAM,QAAQ,CAAC,IAAIO,EAAE,MAAM,KAAK,KAAK,EAAE,OAAO2f,GAAG,OAAO,KAAK,MAAM,KAAK,MAAM3f,CAAC,CAAC,CAAC,YAAY,CAAC,OAAO2f,GAAG,OAAO,KAAK,MAAM,KAAK,MAAM,KAAK,SAAS,CAAC,CAAC,CAAC,MAAM,OAAO,CAAC,IAAI3f,EAAE,MAAM,KAAK,KAAK,EAAE,OAAOyb,GAAG,KAAK,MAAMzb,EAAE,KAAK,QAAQ,WAAW,CAAC,CAAC,WAAW,CAAC,OAAOyb,GAAG,KAAK,MAAM,KAAK,SAAS,EAAE,KAAK,QAAQ,WAAW,CAAC,CAAC,MAAM,MAAM,CAAC,KAAK,gBAAgB,EAAE,IAAIzb,EAAE0f,GAAG,EAAE,KAAK,KAAK,MAAM,EAAE,GAAG,KAAK,QAAQ,SAAS,CAAC,IAAIpgB,EAAE,MAAMU,EAAE,GAAG,CAAC,OAAOV,EAAE,IAAI,GAAG2d,GAAG,CAAC,CAAC,CAAC,OAAO,EAAE,CAAC,MAAM,IAAI,MAAM,+FAA+F,CAAC,CAAC,CAAC,OAAOjd,CAAC,CAAC,UAAUA,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAE0f,GAAG,EAAE,UAAU,KAAK,OAAO1f,CAAC,CAAC,CAAC,UAAU,CAAC,KAAK,gBAAgB,EAAE,IAAIA,EAAE0f,GAAG,EAAE,SAAS,KAAK,MAAM,EAAE,GAAG,KAAK,QAAQ,SAAS,GAAG,CAAC,OAAO1f,EAAE,IAAIV,GAAG2d,GAAG3d,CAAC,CAAC,CAAC,OAAOA,EAAE,CAAC,MAAM,IAAI,MAAM,+FAA+F,CAAC,CAAC,OAAOU,CAAC,CAAC,MAAM,OAAO,CAAC,KAAK,gBAAgB,EAAE,IAAIA,EAAE,MAAM0f,GAAG,EAAE,KAAK,KAAK,MAAM,EAAE,OAAO,KAAK,QAAQ,SAAS1f,EAAE,IAAI,WAAWA,EAAE,MAAM,CAAC,CAAC,SAAS,CAAC,KAAK,aAAa,KAAK,WAAW,KAAK,UAAU,QAAQ,EAAE0f,GAAG,EAAE,cAAc,IAAI,EAAE,KAAK,mBAAmB,GAAG,CAAC,IAAI,YAAY,CAAC,OAAO,KAAK,kBAAkB,CAAC,iBAAiB,CAAC,GAAG,KAAK,WAAW,MAAM,IAAI,MAAM,qBAAqB,CAAC,CAAC,MAAM1f,EAAE,GAAG,CAAC,OAAO2f,GAAG,MAAM,KAAK3f,CAAC,CAAC,CAAC,OAAO,CAAC,OAAO,KAAK,gBAAgB,EAAE2f,GAAG,MAAM,IAAI,CAAC,CAAC,SAAS3f,EAAE,GAAG,CAAC,IAAIV,EAAE,KAAK,SAAS,EAAE,OAAO8f,GAAG9f,EAAE,KAAK,MAAM,KAAK,MAAMU,CAAC,CAAC,CAAC,KAAKA,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAE2f,GAAG,KAAK,KAAK3f,CAAC,CAAC,CAAC,SAASA,EAAE,GAAGV,EAAE,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAEogB,GAAG,EAAE,aAAa,KAAK1f,EAAEV,EAAE,CAAC,CAAC,CAAC,EAAE,OAAO,eAAevU,GAAG,OAAO,YAAY,CAAC,MAAMqU,GAAG,CAAC,CAACA,GAAGA,EAAE,MAAM,MAAMA,EAAE,UAAU,MAAMA,EAAE,iBAAiB,IAAI,CAAC,EAAE,SAAS4gB,GAAG,CAAC,OAAOtD,GAAG,SAAS,IAAI3xB,EAAE,CAAC,CAACi1B,EAAE,EAAE,IAAIt0B,GAAG,cAAcX,EAAE,CAAC,YAAYiV,EAAEV,EAAE,EAAEG,EAAE,CAAC,MAAMO,EAAE,MAAMA,EAAE,MAAMA,EAAE,OAAOP,CAAC,EAAE,KAAK,UAAUH,EAAE,KAAK,KAAK,CAAC,CAAC,OAAOU,EAAE,CAAC,GAAGA,EAAE,QAAQ,KAAK,MAAM,MAAM,IAAI,MAAM,2BAA2BA,EAAE,KAAK,yBAAyB,KAAK,KAAK,cAAc,EAAE,GAAG,CAAC4Z,GAAG5Z,EAAE,MAAM,KAAK,KAAK,EAAE,MAAM,IAAI,MAAM,2BAA2BA,EAAE,KAAK,yBAAyB,KAAK,KAAK,cAAc,EAAE0f,GAAG,EAAE,cAAc,IAAI,EAAE,KAAK,OAAO1f,EAAE,OAAO0f,GAAG,EAAE,OAAO,KAAK,IAAI,CAAC,CAAC,SAAS,CAACA,GAAG,EAAE,gBAAgB,IAAI,EAAE,KAAK,mBAAmB,EAAE,CAAC,EAAE,OAAO,eAAeh0B,GAAG,OAAO,YAAY,CAAC,MAAM0T,GAAGA,aAAarU,IAAIqU,EAAE,QAAQ,MAAMA,EAAE,kBAAkB,QAAQ,CAAC,EAAE,IAAIzC,GAAG,CAAC,EAAE0C,GAAG1C,GAAG,CAAC,iBAAiB,IAAIsjB,GAAG,sBAAsB,IAAIC,GAAG,eAAe,IAAIC,GAAG,eAAe,IAAIC,EAAE,CAAC,EAAE,IAAIv4B,IAAI,SAASuX,EAAE,CAACA,EAAE,GAAG,KAAKA,EAAE,GAAG,KAAKA,EAAE,GAAG,KAAKA,EAAE,GAAG,KAAKA,EAAE,GAAG,KAAKA,EAAE,GAAG,KAAKA,EAAE,GAAG,IAAI,GAAGvX,KAAKA,GAAG,CAAC,EAAE,EAAE,IAAIw4B,IAAI,SAASjhB,EAAE,CAACA,EAAE,QAAQ,UAAUA,EAAE,MAAM,QAAQA,EAAE,KAAK,QAAQA,EAAE,UAAU,WAAW,GAAGihB,KAAKA,GAAG,CAAC,EAAE,EAAE,IAAIC,IAAI,SAASlhB,EAAE,CAACA,EAAE,QAAQ,UAAUA,EAAE,MAAM,QAAQA,EAAE,KAAK,OAAOA,EAAE,UAAU,WAAW,GAAGkhB,KAAKA,GAAG,CAAC,EAAE,EAAE,IAAIC,IAAI,SAASnhB,EAAE,CAACA,EAAE,QAAQ,UAAUA,EAAE,MAAM,UAAUA,EAAE,KAAK,UAAUA,EAAE,UAAU,WAAW,GAAGmhB,KAAKA,GAAG,CAAC,EAAE,EAAE,IAAIC,IAAI,SAASphB,EAAE,CAACA,EAAE,QAAQ,YAAYA,EAAE,MAAM,YAAYA,EAAE,KAAK,YAAYA,EAAE,UAAU,WAAW,GAAGohB,KAAKA,GAAG,CAAC,EAAE,EAAE,IAAIC,GAAG,CAAC,QAAQF,GAAG,MAAMF,GAAG,KAAKC,GAAG,UAAUE,EAAE,EAAE,SAAS/iB,GAAG2B,EAAE,EAAE,CAAC,GAAGA,IAAI,UAAU,IAAI,SAAS,CAAC,GAAGA,IAAI,UAAU,IAAI,SAAS,MAAM,SAAS,MAAM,IAAI,MAAM,kBAAkBA,CAAC,SAAS,CAAC,EAAE,CAAC,CAAC,OAAOqhB,GAAGrhB,CAAC,EAAE,CAAC,CAAC,CAAC,SAASpD,GAAGoD,EAAE,CAAC,OAAO3B,GAAG2B,EAAE,OAAO,CAAC,CAAC,SAASshB,GAAGthB,EAAE,CAAC,OAAOA,GAAG,MAAM,OAAOA,GAAG,UAAU,YAAYA,GAAGA,EAAE,mBAAmB,YAAY,CAAC,SAASuhB,GAAGvhB,EAAE,CAAC,OAAO,OAAO,WAAW,aAAaA,GAAG,MAAM,OAAOA,GAAG,UAAU,WAAWA,GAAGA,EAAE,kBAAkB,SAAS,CAAC,SAASghB,GAAGhhB,EAAE,EAAE,CAAC,GAAGA,EAAE,QAAQ,EAAE,MAAM,MAAM,CAACA,EAAE,CAAC,EAAE,IAAIE,EAAE7B,GAAG2B,EAAE,MAAM,EAAE,KAAK,EAAE,MAAM,CAACA,EAAE,KAAKE,CAAC,EAAE,EAAE,KAAKA,CAAC,CAAC,CAAC,CAAC,SAAS2gB,GAAG7gB,EAAE,EAAE,CAACsa,EAAEta,EAAE,QAAQ,EAAE,MAAM,IAAI,2BAA2BA,EAAE,KAAK,gBAAgB,EAAE,KAAK,oBAAoB,CAAC,CAAC,SAAS+gB,GAAG/gB,EAAE,EAAE,CAAC,OAAO,EAAE,KAAKE,GAAGA,EAAE,KAAKF,EAAE,EAAE,CAAC,CAAC,SAAS8gB,GAAG9gB,EAAE,CAAC,IAAI,EAAE,CAAC,EAAE,OAAOwhB,GAAGxhB,EAAE,EAAE,IAAI,GAAG,EAAE,CAAC,CAAC,SAASwhB,GAAGxhB,EAAE,EAAEE,EAAE,CAAC,GAAGF,GAAG,KAAK,OAAO,GAAGA,aAAarU,GAAG,CAAC,EAAE,KAAKqU,CAAC,EAAE,MAAM,CAAC,GAAG,CAACyhB,GAAGzhB,CAAC,EAAE,OAAO,IAAII,EAAEJ,EAAE,QAAQK,KAAKD,EAAE,CAAC,IAAI,EAAEA,EAAEC,CAAC,EAAEH,EAAE,IAAI,CAAC,IAAIA,EAAE,IAAI,CAAC,EAAEshB,GAAG,EAAE,EAAEthB,CAAC,EAAE,CAAC,CAAC,SAASuhB,GAAGzhB,EAAE,CAAC,OAAO,MAAM,QAAQA,CAAC,GAAG,OAAOA,GAAG,QAAQ,CAAC,SAAS0hB,GAAG1hB,EAAE,CAAC,OAAOA,EAAE,YAAY,IAAI,CAAC,IAAI2hB,GAAG,KAAK,CAAC,aAAa,CAAC,KAAK,oBAAoB,CAAC,EAAE,KAAK,eAAe,EAAE,KAAK,SAAS,EAAE,KAAK,WAAW,EAAE,KAAK,iBAAiB,EAAE,KAAK,eAAe,EAAE,KAAK,cAAc,EAAE,KAAK,YAAY,EAAE,KAAK,WAAW,CAAC,EAAE,KAAK,kBAAkB,CAAC,EAAE,KAAK,YAAY,EAAE,KAAK,WAAW,IAAI,QAAQ,KAAK,UAAU,GAAG,KAAK,cAAc,CAAC,SAAS,EAAE,WAAW,EAAE,UAAU,EAAE,QAAQ,CAAC,EAAE,OAAO,KAAK,IAAI,aAAa,CAAC,OAAO,MAAM,KAAK,IAAI,IAAI,KAAK,QAAQ,IAAI/gB,GAAGA,EAAE,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,SAAS,CAAC,QAAQA,KAAK,KAAK,oBAAoB,KAAK,oBAAoBA,CAAC,EAAE,QAAQ,CAAC,CAAC,EAAEghB,GAAG,MAAM5hB,EAAC,CAAC,YAAY,EAAE,CAAC,KAAK,IAAI,EAAE,KAAK,SAAS,CAAC,EAAE,KAAK,gBAAgB,CAAC,EAAE,KAAK,qBAAqB,EAAE,KAAK,MAAM,IAAI2hB,EAAE,CAAC,MAAM,OAAO,CAAC,GAAG,KAAK,oBAAoB,KAAK,OAAO,KAAK,mBAAmB,KAAK,IAAI,CAAC,CAAC,EAAE,GAAG,KAAK,iBAAiB,KAAK,OAAO,IAAI,EAAE,KAAK,kBAAkB,EAAE,QAAQzhB,EAAE,EAAEA,EAAE,EAAE,OAAOA,IAAI,CAAC,IAAIE,EAAE,EAAEF,CAAC,EAAE,GAAG,MAAM,KAAK,kBAAkBE,CAAC,EAAE,QAAQ,CAAC,MAAM,KAAK,WAAWA,CAAC,EAAE,MAAM,CAAC,CAAC,MAAM,IAAI,MAAM,wEAAwE,CAAC,CAAC,IAAI,SAAS,CAAC,GAAG,KAAK,oBAAoB,KAAK,MAAM,IAAI,MAAM,YAAY,KAAK,WAAW,qHAAqH,EAAE,GAAG,KAAK,iBAAiB,KAAK,CAAC,GAAG,CAAC,KAAK,EAAE,UAAUF,CAAC,EAAE,KAAK,gCAAgC,EAAE,GAAGA,EAAE,MAAM,IAAI,MAAM,iCAAiC,CAAC,qHAAqH,EAAE,KAAK,WAAW,CAAC,CAAC,CAAC,OAAO,KAAK,eAAe,CAAC,cAAc,CAAC,OAAO,OAAO,KAAK,KAAK,eAAe,CAAC,CAAC,YAAY,EAAE,CAAC,GAAG,EAAE,KAAK,KAAK,UAAU,GAAG,KAAK,KAAK,gBAAgB,CAAC,GAAG,CAAC,UAAUA,CAAC,EAAE,KAAK,kBAAkB,CAAC,EAAE,GAAGA,EAAE,OAAO,IAAI,KAAM,QAAO,KAAK,OAAO,KAAK,SAAS,CAAC,CAAC,CAAC,mBAAmB,EAAE,CAAC,OAAO,KAAK,KAAK,gBAAgB,KAAK,gBAAgB,CAAC,EAAE,QAAQ,IAAI,CAAC,gBAAgB,EAAEA,EAAEE,EAAE,EAAE,CAAC,OAAO,KAAK,KAAK,iBAAiBmd,GAAG,GAAG,CAAC,oEAAoE,EAAE,KAAK,KAAK,gBAAgB,CAAC,EAAE,CAAC,QAAQrd,EAAE,SAASE,CAAC,EAAE,GAAG,CAAC,MAAM,WAAW,EAAE,CAAC,GAAG,KAAK,gBAAgB,CAAC,GAAG,KAAK,MAAM,IAAI,MAAM,iBAAiB,CAAC,yBAAyB,EAAE,GAAG,KAAK,YAAY,EAAE,KAAK,SAAS,CAAC,GAAG,KAAK,CAAC,KAAK,gBAAgB,KAAK,GAAG,CAAC,QAAQF,EAAE,UAAUE,CAAC,EAAE,KAAK,kBAAkB,CAAC,EAAE,GAAG,EAAEA,EAAE,MAAMF,EAAEA,GAAG,MAAM,EAAE,CAAC,OAAO,KAAK,gBAAgB,KAAK,SAAS,CAAC,EAAE,KAAK,uBAAuB,EAAE,KAAK,SAAS,IAAIsf,GAAG,KAAK,eAAe,EAAE,EAAE,CAAC,wBAAwB,CAAC1sB,GAAG,KAAK,WAAW,EAAE,QAAQoN,GAAG,CAACA,EAAE,WAAW,MAAMA,EAAE,UAAU,KAAK,eAAe,CAAC,CAAC,CAAC,CAAC,yBAAyB,EAAE,CAACpN,GAAG,CAAC,EAAE,QAAQ,GAAG,CAAC,EAAE,aAAa,MAAM,EAAE,YAAY,KAAK,SAAS,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,kBAAkB,EAAE,CAAC,IAAIoN,EAAE,KAAK,gBAAgB,CAAC,EAAE,GAAGA,GAAG,KAAK,MAAM,IAAI,MAAM,6BAA6B,CAAC,0BAA0B,EAAE,GAAG,CAAC,IAAIE,EAAEF,EAAE,QAAQ,EAAE,GAAGE,GAAG,EAAEA,aAAapb,KAAK,OAAOob,EAAE,MAAM,WAAW,CAAC,IAAIC,EAAE,EAAE,KAAK,qBAAqB,EAAED,EAAE,KAAK,GAAGC,EAAE,KAAK,qBAAqB,IAAI,KAAK,SAAS,CAAC,EAAE,EAAE,KAAK,mBAAmB,KAAK,GAAG,EAAE,MAAM,IAAIA,EAAE,KAAK,uBAAuB,KAAK,mBAAmB,KAAKkd,GAAG,6BAA6B,CAAC,SAAS,EAAEA,GAAG,EAAE,OAAO,EAAE,OAAO,GAAG,GAAG,EAAE,OAAO,KAAK,mBAAmB,EAAE,CAAC,QAAQ,EAAE,UAAU,EAAE,CAAC,KAAM,QAAO,KAAK,SAAS,CAAC,EAAEnd,EAAE,CAAC,QAAQ,GAAG,UAAU,EAAE,CAAC,OAAOA,EAAE,CAAC,OAAOmd,GAAG,6BAA6B,CAAC,SAAS,EAAEA,GAAGnd,EAAE,OAAOA,EAAE,OAAO,EAAE,CAAC,QAAQ,GAAG,UAAU,EAAE,CAAC,CAAC,CAAC,cAAc,EAAE,CAAC,GAAG,EAAE,KAAK,KAAK,iBAAiB,MAAM,IAAI,MAAM,GAAG,CAAC,gCAAgC,EAAE,KAAK,cAAc,GAAG,KAAK,oBAAoB,MAAM,KAAK,uBAAuB,KAAK,KAAK,WAAW,KAAK,yBAAyB,CAAC,EAAE,KAAK,SAAS,CAAC,EAAE,QAAQ,EAAE,OAAO,KAAK,SAAS,CAAC,GAAG,OAAO,KAAK,gBAAgB,CAAC,EAAE,KAAK,cAAc,IAAI,KAAK,mBAAmB,KAAK,KAAK,YAAY,KAAK,KAAK,gBAAgB,KAAK,CAAC,mBAAmB,CAAC,GAAG,OAAO,KAAK,KAAK,eAAe,EAAE,SAAS,EAAE,MAAM,IAAI,MAAM,+BAA+B,EAAE,OAAO,OAAO,KAAK,KAAK,eAAe,EAAE,KAAK,CAAC,EAAEF,IAAI,KAAK,gBAAgBA,CAAC,EAAE,SAAS,KAAK,gBAAgB,CAAC,EAAE,QAAQ,CAAC,CAAC,iCAAiC,CAAC,IAAI,EAAE,KAAK,kBAAkB,EAAE,QAAQA,EAAE,EAAEA,EAAE,EAAE,OAAOA,IAAI,CAAC,IAAIE,EAAE,EAAEF,CAAC,EAAE,CAAC,QAAQG,EAAE,UAAU,CAAC,EAAE,KAAK,kBAAkBD,CAAC,EAAE,GAAG,GAAGC,EAAE,MAAM,CAAC,KAAKD,EAAE,UAAU,CAAC,CAAC,CAAC,MAAM,IAAI,MAAM,wEAAwE,CAAC,CAAC,SAAS,EAAEF,EAAE,CAAC,IAAIE,EAAE,KAAK,MAAM,WAAW,IAAIF,CAAC,EAAEG,EAAED,EAAE,QAAQ,EAAE,KAAK,SAASF,CAAC,EAAE,EAAEG,EAAE,SAASH,CAAC,EAAEG,EAAE,YAAYH,EAAE,EAAE,EAAEE,EAAE,QAAQ,EAAE,EAAE,KAAKF,EAAE,EAAEE,EAAE,MAAMA,EAAE,MAAM,CAAC,EAAE,KAAK,uBAAuB,GAAG,KAAK,MAAM,kBAAkB,KAAK,MAAM,kBAAkB,OAAO,CAAC,GAAG,CAAC,KAAK,EAAEF,EAAE,CAAC,IAAIE,EAAE,KAAK,GAAGF,GAAG,KAAK,CAAC,GAAG,OAAO,GAAG,WAAW,MAAM,IAAI,MAAM,qCAAqC,EAAEA,EAAE,CAAC,KAAK,CAAC,GAAG,OAAO,GAAG,UAAU,EAAE,aAAa,QAAQ,MAAM,IAAI,MAAM,gFAAgF,EAAE,GAAG,OAAOA,GAAG,WAAW,MAAM,IAAI,MAAM,gFAAgF,EAAEE,EAAE,CAAC,CAAC,IAAIC,EAAE,OAAO,KAAK,UAAU,IAAI,KAAK,WAAWD,CAAC,EAAE,IAAI,KAAK,SAASC,CAAC,EAAE,KAAKA,EAAEH,EAAE,EAAEG,aAAa,SAAS,QAAQ,MAAM,yCAAyC,EAAEA,EAAE,CAAC,CAAC,UAAU,EAAEH,EAAEE,EAAE,CAAC,EAAE,EAAE,GAAG,CAAC,IAAIC,EAAED,EAAE,EAAE,OAAOF,EAAE,EAAEG,CAAC,OAAOA,EAAE,CAAC,MAAMH,EAAE,EAAEG,CAAC,CAAC,CAAC,cAAc,CAAC,OAAOL,GAAE,cAAc,CAAC,gBAAgB,CAAC,OAAOA,GAAE,gBAAgB,CAAC,MAAM,EAAE,CAAC,IAAIE,EAAE2hB,EAAE,UAAUn9B,GAAG,CAAC,EAAE,CAAC,CAAC,EAAE0b,EAAE,CAAC,EAAE,CAAC,EAAEC,EAAE,IAAI,CAAC,EAAE,IAAI,CAAC,IAAI0B,EAAE,UAAUC,EAAE,CAAC,EAAE,CAAC,EAAEC,EAAE,CAAC,MAAMF,CAAC,EAAE,OAAO8f,EAAE,UAAU5gC,GAAG+gB,EAAEC,CAAC,CAAC,CAAC,GAAG,EAAE,CAAC,EAAE,OAAO,KAAK,YAAY,KAAK,MAAM,YAAY,KAAK7B,EAAE,CAACF,CAAC,EAAEG,EAAE,EAAE,CAAC,CAAC,EAAEH,CAAC,CAAC,UAAU,EAAEA,EAAEE,EAAE,CAAC,GAAG,KAAK,aAAa,MAAM,KAAK,QAAUvN,GAAG,EAAE,KAAK,WAAW,GAAG,KAAM,MAAM,IAAI,MAAM,WAAW,CAAC,iCAAiC,KAAK,WAAW,GAAG,EAAE,OAAO,KAAK,cAAc,CAAC,WAAW,EAAE,OAAOqN,EAAE,MAAME,CAAC,CAAC,CAAC,CAAC,wBAAwB,CAAC,OAAO,KAAK,IAAI,QAAQ,SAAS,CAAC,CAAC,sBAAsB,EAAEF,EAAEE,EAAE,CAAC,IAAIC,EAAE,KAAK,QAAQ,WAAW,EAAE,EAAE,EAAED,EAAE,QAAQ4B,GAAG,CAAC,GAAGA,EAAE,QAAQ,YAAY,EAAE,CAAC,CAAC,EAAE,IAAI,EAAE,KAAK,MAAM,kBAAkB,KAAK,MAAM,kBAAkB,OAAO,CAAC,EAAED,EAAE1B,EAAEH,EAAE,EAAE,EAAE,GAAG6B,EAAE,EAAE,MAAM,IAAI,MAAM,YAAY,KAAK,WAAW,kCAAkCA,CAAC,6BAA6B,CAAC,GAAG,CAAC,CAAC,cAAc,EAAE,CAAC,IAAI7B,EAAEE,EAAE,CAAC,EAAEC,EAAE,KAAK,SAAS,EAAE,EAAE,KAAK,MAAM,SAAS,EAAE,KAAK,MAAM,WAAW,KAAK,uBAAuB,GAAG,KAAK,MAAM,kBAAkB,KAAK,CAAC,EAAE,IAAI0B,EAAE,KAAK,aAAa,MAAM,KAAK,QAAQ,IAAIC,EAAEC,EAAEyf,GAAG,CAAC,EAAE,EAAE,WAAW,KAAK,MAAM,aAAa,KAAK,KAAK,MAAM,YAAY,KAAK,GAAG,GAAGA,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,WAAW5e,EAAE,OAAOkB,EAAE,MAAM,CAAC,EAAE,EAAE,KAAK,aAAa,MAAM,KAAK,QAAQ,IAAIsD,EAAEzU,GAAGiQ,EAAE,KAAK,WAAW,EAAEwX,EAAEhT,GAAG,KAAK,IAAI,kCAAkCxE,CAAC,kBAAkB,KAAK,WAAW,GAAG,EAAEf,EAAE,IAAI,CAAC,IAAI+C,EAAE,KAAK,QAAQ,WAAW,EAAE9C,EAAEsF,EAAE,WAAW,CAAC,OAAOtD,EAAE,MAAM,EAAE,QAAQ,KAAK,OAAO,CAAC,EAAE,IAAIS,EAAE,MAAM,QAAQzC,CAAC,EAAEA,EAAE,CAACA,CAAC,EAAE,KAAK,uBAAuB,GAAG,KAAK,sBAAsBc,EAAEgC,EAAEL,CAAC,EAAE,IAAIC,EAAED,EAAE,IAAIE,GAAGA,EAAE,MAAM,KAAKA,EAAE,KAAK,yBAAyBA,CAAC,CAAC,EAAE,GAAGtE,EAAE,CAAC,IAAIsE,EAAE,KAAK,sBAAsB7B,EAAEkB,EAAEU,CAAC,EAAEtE,EAAE,KAAK,2BAA2BuE,CAAC,CAAC,CAAC,OAAOD,CAAC,CAAC,KAAK,CAAC,GAAG,CAAC,YAAY5B,CAAC,EAAE,EAAEkB,EAAE,GAAG,CAAC3D,IAAID,EAAE,EAAE,IAAIkH,GAAG,KAAK,KAAK,KAAK,MAAMA,CAAC,CAAC,CAAC,EAAE,EAAEvF,EAAE,IAAI,CAAC,IAAI,EAAE,KAAK,QAAQ,WAAW,EAAEC,EAAE,KAAK,KAAK,IAAIc,EAAE,KAAK,QAAQkB,CAAC,CAAC,EAAE,IAAIsD,EAAE,MAAM,QAAQtF,CAAC,EAAEA,EAAE,CAACA,CAAC,EAAE,OAAO,KAAK,uBAAuB,GAAG,KAAK,sBAAsBC,EAAE,EAAEqF,CAAC,EAAEA,CAAC,CAAC,CAAC,GAAG,CAAC,OAAO5E,EAAE,MAAMC,CAAC,EAAE,EAAEC,EAAE8e,GAAG,CAAC,EAAE,KAAK,EAAE,cAAc7e,EAAE,OAAO,KAAK,UAAU,IAAI,KAAK,MAAM,cAAc,IAAI,KAAK,MAAM,cAAc,IAAI,CAAC,CAAC,KAAK,IAAI,QAAQ,OAAO,GAAG,CAAC,KAAK,MAAM,UAAU3C,EAAE6B,EAAE,GAAGc,EAAE,KAAK,SAAS,cAAcZ,EAAES,EAAE,IAAIX,EAAE,CAAC,EAAE,KAAK,IAAI,QAAQ,OAAO,GAAG,KAAK,SAAS,iBAAiBc,CAAC,EAAE3C,EAAE2C,EAAE,QAAQ,CAAC,EAAExC,GAAG,KAAK,YAAY4B,EAAES,EAAExC,EAAE0C,EAAExC,EAAEuC,CAAC,EAAE,KAAK,MAAM,WAAW,KAAK,MAAM,cAAc,QAAQ,KAAK,CAAC,KAAKV,EAAE,WAAW,KAAK,MAAM,SAAS,EAAE,mBAAmB,KAAK,MAAM,SAAS,aAAa,KAAK,MAAM,WAAW,EAAE,qBAAqB,KAAK,MAAM,WAAW,YAAY,OAAO,KAAKS,CAAC,EAAE,IAAII,GAAGJ,EAAEI,CAAC,GAAG,KAAKJ,EAAEI,CAAC,EAAE,MAAM,IAAI,EAAE,aAAa5C,EAAE,IAAI4C,GAAGA,EAAE,KAAK,EAAE,aAAaD,EAAE,OAAO,UAAUA,EAAE,SAAS,CAAC,EAAE,MAAM,QAAQb,CAAC,EAAE9B,EAAEA,EAAE,CAAC,CAAC,CAAC,2BAA2B,EAAE,CAAC,OAAO,EAAE,IAAI,GAAG,KAAK,KAAK,KAAK,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,sBAAsB,EAAEA,EAAEE,EAAE,CAAC,IAAIC,EAAEzN,GAAG,CAAC,EAAE,GAAGyN,GAAG,KAAK,CAAC,IAAI,EAAEA,EAAE,cAAc,CAAC,EAAE,EAAEA,EAAE,eAAe,CAAC,EAAE0B,EAAE1B,EAAE,eAAeia,EAAE,MAAM,QAAQpa,CAAC,EAAE,IAAI,wDAAwD,EAAE6B,EAAE,OAAO,KAAK7B,CAAC,EAAE,IAAI+B,GAAG/B,EAAE+B,CAAC,CAAC,GAAGF,EAAE,EAAE,IAAIE,GAAG/B,EAAE+B,CAAC,CAAC,EAAE,IAAID,EAAE5B,EAAE,OAAO,CAAC6B,EAAES,IAAI,EAAEA,CAAC,CAAC,EAAE,OAAOX,EAAE,OAAOC,CAAC,CAAC,CAAC,MAAM,CAAC,CAAC,CAAC,WAAW,EAAE9B,EAAEE,EAAEC,EAAE,CAAC,GAAG,GAAG,KAAK,MAAM,IAAI,MAAM,+CAA+C,EAAED,EAAEA,GAAG,UAAUC,EAAEA,GAAG,KAAK,QAAQ,IAAI,EAAE,EAAED,IAAI,UAAUyb,GAAG,EAAE,CAAC,CAAC,IAAI,EAAE,EAAE,IAAI7Z,GAAG8b,GAAG9b,CAAC,CAAC,GAAG,IAAI,EAAE3B,EAAE,MAAM,EAAEH,EAAEE,CAAC,EAAE2B,EAAE,IAAIpW,GAAGuU,EAAEE,EAAE,EAAE,KAAK,aAAa,CAAC,EAAE,GAAG,KAAK,YAAY2B,EAAE1B,CAAC,EAAED,IAAI,SAAS,CAAC,IAAI4B,EAAE,KAAK,MAAM,WAAW,IAAI,CAAC,EAAEC,EAAE2Z,GAAG,CAAC,EAAE,KAAK,MAAM,UAAU3Z,EAAED,EAAE,MAAMA,EAAE,MAAMC,CAAC,CAAC,OAAOF,CAAC,CAAC,qBAAqB,EAAE7B,EAAEE,EAAEC,EAAE,CAACD,EAAEA,GAAG,UAAU,IAAI,EAAE,CAAC,OAAO,EAAE,MAAMF,EAAE,MAAME,CAAC,EAAE,OAAO,KAAK,yBAAyB,EAAEC,CAAC,CAAC,CAAC,yBAAyB,EAAEH,EAAE,CAAC,GAAG,CAAC,OAAOE,EAAE,MAAMC,EAAE,MAAM,CAAC,EAAE,EAAE,EAAE,IAAI1U,GAAG0U,EAAE,EAAED,EAAE,KAAK,aAAa,CAAC,EAAE,OAAO,KAAK,YAAY,EAAEF,CAAC,EAAE,CAAC,CAAC,aAAa,EAAEA,EAAE,GAAGE,EAAEC,EAAE,CAACD,EAAEA,GAAG,KAAK,eAAe,EAAE,SAAS,EAAEC,GAAG,MAAMA,IAAI,EAAE,QAAQ,EAAE,EAAE,KAAKA,CAAC,GAAG,IAAI,EAAE,IAAI/T,GAAG,EAAE4T,EAAEE,EAAE,KAAK,aAAa,CAAC,EAAE,GAAG,KAAK,MAAM,oBAAoB,EAAE,IAAI,GAAG,KAAK,MAAM,IAAI,MAAM,sBAAsB,EAAE,IAAI,yBAAyB,EAAE,OAAO,KAAK,MAAM,oBAAoB,EAAE,IAAI,EAAE,EAAE,KAAK,OAAO,EAAE,KAAK,OAAO,EAAE,CAAC,CAAC,YAAY,EAAEF,EAAE,CAAC,KAAK,MAAM,aAAa,EAAE,QAAQ,UAAU,KAAK,MAAM,mBAAmB,IAAIE,EAAE,EAAE,EAAE,QAAQ,aAAa,EAAE,QAAQ,WAAWA,EAAE,EAAE,KAAKub,GAAG,EAAE,KAAK,GAAG,KAAK,MAAM,UAAUvb,EAAE,KAAK,MAAM,WAAW,IAAI,EAAE,MAAM,IAAI,KAAK,MAAM,iBAAiB,KAAK,MAAM,WAAW,IAAI,EAAE,OAAO,CAAC,QAAQF,GAAG,KAAK,QAAQ,MAAM,EAAE,MAAM,MAAM,EAAE,MAAM,MAAME,CAAC,CAAC,GAAG,aAAa9T,IAAI,KAAK,MAAM,CAAC,CAAC,CAAC,OAAO,EAAE4T,EAAE,CAAC,KAAK,YAAY,EAAEA,CAAC,EAAE,KAAK,QAAQ,OAAO,EAAE,MAAM,CAAC,CAAC,aAAa,EAAEA,EAAE,CAAC,KAAK,MAAM,WAAW,IAAI,CAAC,GAAG,KAAK,MAAM,WAAW,IAAI,CAAC,EAAE,UAAUA,IAAI,KAAK,MAAM,WAAW,OAAO,CAAC,EAAE,KAAK,MAAM,iBAAiB,CAAC,cAAc,EAAE,CAAC,GAAG,CAAC,KAAK,MAAM,WAAW,IAAI,EAAE,MAAM,EAAE,OAAO,IAAIA,EAAE,KAAK,MAAM,WAAW,IAAI,EAAE,MAAM,EAAE,GAAG,KAAK,MAAM,aAAa,EAAE,QAAQ,WAAW,KAAK,MAAM,mBAAmB,KAAK,MAAM,UAAUA,EAAE,OAAO,EAAE,QAAQ,aAAa,EAAE,QAAQ,SAAS,CAAC,IAAIE,EAAE,EAAE,KAAKub,GAAG,EAAE,KAAK,EAAE,KAAK,MAAM,UAAUvb,CAAC,CAACF,EAAE,QAAQ,YAAY,EAAE,MAAM,GAAG,KAAK,aAAa,EAAE,OAAOA,EAAE,OAAO,CAAC,CAAC,kBAAkB,CAAC,QAAQ,KAAK,KAAK,MAAM,oBAAoB,CAAC,IAAIA,EAAE,KAAK,MAAM,oBAAoB,CAAC,EAAE,KAAK,gBAAgBA,CAAC,CAAC,CAAC,CAAC,gBAAgB,EAAE,CAAC,KAAK,cAAc,CAAC,EAAE,KAAK,MAAM,oBAAoB,EAAE,IAAI,GAAG,MAAM,OAAO,KAAK,MAAM,oBAAoB,EAAE,IAAI,CAAC,CAAC,QAAQ,CAAC,IAAI,EAAE,KAAK,QAAQ,OAAO,EAAE,OAAO,EAAE,WAAW,KAAK,MAAM,WAAW,EAAE,eAAe,KAAK,MAAM,eAAe,EAAE,SAAS,KAAK,MAAM,SAAS,KAAK,MAAM,iBAAiB,IAAI,EAAE,WAAW,GAAG,EAAE,SAAS,OAAO,EAAE,QAAQ,CAAC,GAAG,EAAE,QAAQ,KAAK,uEAAuE,GAAG,CAAC,CAAC,MAAM,QAAQ,EAAE,CAAC,KAAK,MAAM,UAAU,GAAG,IAAIA,EAAE,KAAK,MAAM,SAASE,EAAE,KAAK,MAAM,WAAW,KAAK,MAAM,cAAc,QAAQ,CAAC,EAAE,KAAK,MAAM,cAAc,OAAO,MAAM,EAAE,EAAE,KAAK,MAAM,UAAU,GAAG,KAAK,MAAM,cAAc,UAAU,KAAK,IAAI,GAAG,KAAK,MAAM,cAAc,QAAQ,IAAIC,GAAGA,EAAE,kBAAkB,CAAC,EAAE,KAAK,MAAM,cAAc,SAAS,KAAK,MAAM,SAASH,EAAE,KAAK,MAAM,cAAc,WAAW,KAAK,MAAM,WAAWE,EAAE,QAAQC,KAAK,KAAK,MAAM,cAAc,QAAQA,EAAE,aAAa,MAAMA,EAAE,aAAaA,EAAE,UAAU,MAAMA,EAAE,UAAU,OAAO,KAAK,MAAM,aAAa,CAAC,UAAU,CAAC,OAAO,KAAK,MAAM,cAAc,GAAG,KAAK,MAAM,cAAc,CAAC,CAAC,YAAY,EAAEH,EAAEE,EAAEC,EAAE,EAAE,EAAE,CAAC,IAAI0B,EAAE,CAAC,GAAG,KAAK,MAAM,iBAAiB,WAAW,EAAE,OAAO7B,EAAE,QAAQE,EAAE,MAAM,CAAC,EAAE4B,EAAEpP,GAAG,CAAC,EAAEoP,GAAG,OAAO3B,EAAE2B,EAAE,UAAU3B,GAAG,OAAO0B,EAAE,SAASE,IAAIA,EAAEA,EAAE,IAAI,CAACS,EAAEC,IAAI,CAAC,GAAGD,GAAG,KAAK,CAAC,IAAIE,EAAExC,EAAEuC,CAAC,EAAEE,EAAE2Z,GAAG5Z,EAAE,KAAKA,EAAE,KAAK,EAAE,OAAO,KAAK,WAAWC,EAAED,EAAE,MAAMA,EAAE,KAAK,CAAC,CAAC,OAAOF,CAAC,CAAC,EAAErC,EAAE4B,EAAE,OAAO,EAAEA,EAAEA,EAAE,CAAC,EAAE,EAAE,CAAC,IAAI,KAAK,MAAM,WAAW,KAAKF,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC,OAAO,EAAE,KAAK,GAAG,CAAC,CAAC,WAAW,CAAC,KAAK,MAAM,gBAAgB,IAAI,KAAK,MAAM,WAAW,CAAC,GAAG,KAAK,MAAM,eAAe,CAAC,SAAS,CAAC,KAAK,MAAM,eAAe,CAAC,WAAW,EAAE,CAAC,IAAI7B,EAAE,CAAC,MAAM,CAAC,EAAE,KAAK,gBAAgB,GAAG,KAAK,MAAM,aAAa,EAAE,IAAIA,EAAE,KAAK,GAAG,KAAK,MAAM,WAAW,KAAKA,CAAC,EAAE,KAAK,MAAM,YAAYA,CAAC,CAAC,SAAS,EAAE,CAAC,IAAIA,EAAE4gB,GAAG,CAAC,EAAE1gB,EAAE,IAAI,IAAIF,EAAE,IAAI,GAAG,EAAE,EAAE,CAAC,EAAE,QAAQ,EAAE,EAAE,EAAE,KAAK,MAAM,YAAY,MAAM,OAAO,IAAI,CAAC,IAAI,EAAE,KAAK,MAAM,YAAY,MAAM,CAAC,EAAE,CAAC,EAAE,MAAM,CAACE,EAAE,IAAI,EAAE,EAAE,GAAG,EAAE,QAAQ,CAAC,CAAC,IAAIC,EAAE,KAAK,MAAM,WAAW,IAAI,EAAE,KAAK,MAAM,YAAY,KAAK,MAAM,WAAW,SAAS,EAAE,KAAK,KAAK,MAAM,WAAW,KAAK,MAAM,WAAW,OAAO,CAAC,EAAEH,EAAE,QAAQ,GAAG,CAAC,CAAC,EAAE,MAAM,EAAE,UAAUG,EAAE,IAAI,KAAK,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,UAAU,EAAEH,EAAEE,EAAEC,EAAE,GAAG,CAAC,GAAGia,EAAEpa,EAAE,OAAO,EAAE,IAAI,2CAA2C,EAAEE,GAAG,MAAMA,EAAE,QAAQ,UAAU,MAAM,IAAI,MAAM,0CAA0CA,EAAE,KAAK,GAAG,EAAE,IAAI,EAAE,KAAK,UAAU,IAAI,KAAK,UAAU,EAAE,IAAI,KAAK,QAAQ,EAAE,IAAI,KAAK,KAAK,UAAU,CAAC,CAAC,EAAEka,EAAE,aAAa3uB,GAAG,IAAI,gDAAgD,EAAE,IAAI,EAAEg0B,GAAG,KAAK,MAAM,WAAWzf,EAAE,CAAC,EAAE,GAAG,CAACG,GAAG,EAAE,SAAS,GAAGH,EAAE,OAAO,EAAE,MAAM,IAAI,MAAM,qIAAqI,EAAE,OAAO,KAAK,KAAK,WAAW,IAAI,CAAC,IAAI6B,EAAE,CAAC,EAAEA,EAAE,EAAE,EAAE,EAAE3B,GAAG,KAAK0hB,GAAG,EAAE,KAAK,EAAE1hB,EAAEwf,GAAG7d,EAAE,EAAEE,GAAG,KAAK,KAAKA,CAAC,EAAE8f,EAAE,EAAE,IAAI/f,EAAE9B,EAAE,IAAI+B,GAAGF,EAAEE,EAAE,EAAE,CAAC,EAAE,OAAO,KAAK,MAAM,gBAAgB,IAAI,KAAK,MAAM,WAAW,QAAQA,GAAG,CAAC,QAAQS,KAAKT,EAAE,MAAMS,EAAE,QAAQ,CAAC,CAAC,EAAE,KAAK,MAAM,WAAW,MAAM,CAAC,MAAM,EAAE,MAAMV,CAAC,CAAC,CAAC,CAAC,CAAC,WAAW,EAAE,CAAC,OAAOsY,EAAE2B,GAAG,CAAC,EAAE,IAAI,mDAAmD,EAAE,IAAI/b,IAAI,CAACoa,EAAEpa,EAAE,MAAM6B,GAAGA,aAAapW,EAAE,EAAE,IAAI,kEAAkE,EAAE,IAAIyU,EAAEC,EAAE,CAAC,EAAEH,EAAE,QAAQ,CAAC6B,EAAEC,IAAI,CAAC3B,EAAE2B,CAAC,EAAED,CAAC,CAAC,EAAE,IAAI,EAAE,CAACA,EAAEC,KAAK5B,EAAE,EAAE,GAAGF,EAAE8B,CAAC,EAAEsY,EAAEla,EAAE,iBAAiBzU,GAAG,IAAI,4FAA4F,EAAE2uB,EAAE2B,GAAG7b,EAAE,QAAQ,EAAE,IAAI,kGAAkG,EAAEA,EAAE,OAAO,EAAE,CAAC2B,EAAEC,IAAI,CAAC,IAAIC,EAAE7B,EAAE,SAAS2B,EAAEC,CAAC,EAAEU,EAAE,MAAM,QAAQT,CAAC,EAAEA,EAAE,CAACA,CAAC,EAAEqY,EAAE5X,EAAE,SAASxC,EAAE,OAAO,IAAI,qKAAqK,EAAEoa,EAAE5X,EAAE,MAAME,GAAGA,aAAajX,EAAE,EAAE,IAAI,sIAAsI,EAAE,IAAIgX,EAAE,CAAC,EAAE,OAAOD,EAAE,QAAQ,CAACE,EAAEC,IAAI,CAACF,EAAEE,CAAC,EAAE,IAAID,CAAC,CAAC,EAAED,CAAC,EAAE,OAAO,KAAK,cAAc,CAAC,YAAY,EAAE,cAAc,EAAE,OAAOtC,CAAC,CAAC,CAAC,CAAC,CAAC,SAAS,EAAE,CAAC,OAAO,KAAK,MAAM,WAAW,IAAI,CAAC,EAAE,QAAQ,SAAS,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC,OAAO,KAAK,MAAM,WAAW,IAAI,CAAC,EAAE,QAAQ,KAAK,CAAC,CAAC,CAAC,UAAU,EAAEH,EAAE,CAAC,OAAO,KAAK,MAAM,WAAW,IAAI,CAAC,EAAE,QAAQ,UAAU,EAAEA,CAAC,CAAC,CAAC,MAAM,KAAK,EAAE,CAAC,IAAIA,EAAEke,GAAG,EAAEhe,EAAE,MAAM,KAAK,QAAQ,KAAK,CAAC,EAAE,OAAOA,EAAE,OAAOge,GAAG,EAAEle,EAAEE,CAAC,CAAC,MAAM,EAAE,CAAC,OAAO,KAAK,MAAM,aAAa,OAAO,EAAE,QAAQ,KAAK,MAAM,YAAY,GAAG,KAAK,MAAM,YAAY,MAAM,KAAK,CAAC,GAAG,CAAC,CAAC,IAAI,qBAAqB,CAAC,OAAO,KAAK,MAAM,mBAAmB,CAAC,OAAO,CAAC,KAAK,uBAAuB,KAAK,MAAM,QAAQ,EAAE,KAAK,IAAI,MAAM,EAAE,KAAK,MAAM,IAAIuhB,GAAG,QAAQ,KAAK,KAAK,SAAS,KAAK,yBAAyB,CAAC,EAAE,KAAK,SAAS,CAAC,EAAE,QAAQ,EAAE,OAAO,KAAK,SAAS,CAAC,EAAE,KAAK,YAAY,KAAK,KAAK,gBAAgB,KAAK,KAAK,mBAAmB,IAAI,CAAC,EAAEC,GAAG,aAAa,EAAEA,GAAG,eAAe,EAAE,SAASE,GAAG9hB,EAAE,CAAC,IAAI,EAAEuc,GAAG7B,GAAG1a,CAAC,EAAE,SAAS,EAAE,OAAO6hB,EAAE,WAAW,EAAE7hB,EAAE,SAAS,CAAC,CAAC,SAASgiB,IAAI,CAAC,IAAIhiB,EAAEod,GAAG,EAAE,GAAGpd,EAAE,WAAW,KAAK,CAAC,IAAI,EAAE,IAAI7c,GAAG6c,CAAC,EAAEA,EAAE,UAAU,IAAI4hB,GAAG,CAAC,CAAC,CAAC,OAAO1E,GAAGld,EAAE,UAAU,GAAG,EAAEygB,GAAG,IAAIzgB,EAAE,SAAS,EAAEA,EAAE,SAAS,CAAC,IAAI6hB,EAAEG,GAAG,EAAE,SAASD,GAAG/hB,EAAE,EAAE,CAAC,IAAIE,EAAE,CAAC,EAAEF,EAAE,EAAE,CAAC,EAAE,OAAO6hB,EAAE,UAAUpiC,GAAGygB,CAAC,CAAC,CAAC,IAAI3P,GAAG,CAAC,EAAE0P,GAAG1P,GAAG,CAAC,UAAU,IAAI0xB,GAAG,SAAS,IAAIC,GAAG,aAAa,IAAIC,EAAE,CAAC,EAAE,SAASC,IAAI,CAAC,OAAO,OAAO,WAAW,aAAa,WAAW,IAAI,CAAC,IAAIC,GAAG,SAASF,GAAGniB,EAAE,CAACqiB,GAAGriB,CAAC,CAAC,SAASkiB,GAAGliB,EAAE,CAAC,GAAGqiB,KAAK,OAAO,OAAOA,GAAG,GAAGriB,GAAGoiB,GAAG,EAAE,CAAC,GAAGpiB,IAAIA,EAAE,WAAWA,EAAE,UAAU,cAAc,MAAM,GAAG,IAAI,EAAEA,EAAE,WAAWA,EAAE,SAAS,OAAO,QAAQ,YAAY,OAAO,MAAM,IAAI,GAAG,CAAC,EAAE,CAAC,IAAIE,EAAEF,EAAE,OAAOE,EAAE,eAAeA,EAAE,cAAc,MAAM,CAAC,MAAM,2TAA2T,KAAK,CAAC,GAAG,0kDAA0kD,KAAK,EAAE,OAAO,EAAE,CAAC,CAAC,CAAC,CAAC,MAAM,EAAE,CAAC,SAAS+hB,IAAI,CAAC,OAAO,OAAO,QAAQ,aAAa,OAAO,UAAU,MAAM,OAAO,mBAAmB,WAAW,CAAC,IAAIK,GAAG9wB,EAAE,EAAE8wB,GAAG,aAAa,QAAQ,IAAI,GAAGtiB,GAAG,CAACA,GAAG,QAAQ,KAAK,6IAA6I,CAAC,CAAC,EAAEsiB,GAAG,aAAa,aAAa,IAAIL,GAAG,CAAC,EAAEK,GAAG,aAAa,UAAU,IAAI,OAAO,SAAS,aAAa,OAAO,QAAQ,UAAU,aAAa,OAAO,QAAQ,SAAS,MAAM,WAAW,EAAEA,GAAG,aAAa,YAAY,IAAI,OAAO,WAAW,aAAa,WAAW,MAAM,UAAU,WAAW,MAAM,SAAS,KAAK,UAAU,SAAS,GAAG,aAAa,KAAK,UAAU,MAAM,CAAC,EAAEA,GAAG,aAAa,YAAY,IAAI,OAAO,WAAW,aAAa,WAAW,MAAM,UAAU,WAAW,MAAM,SAAS,KAAK,UAAU,SAAS,GAAG,QAAQ,KAAK,UAAU,MAAM,CAAC,EAAEA,GAAG,aAAa,OAAO,IAAI,EAAE,EAAEA,GAAG,aAAa,qCAAqC,IAAIA,GAAG,QAAQ,OAAO,CAAC,EAAEA,GAAG,aAAa,+BAA+B,IAAI,EAAE,EAAEA,GAAG,aAAa,UAAU,IAAI,EAAE,EAAEA,GAAG,aAAa,+BAA+B,IAAIA,GAAG,QAAQ,OAAO,CAAC,EAAEA,GAAG,aAAa,sBAAsB,IAAI,EAAE,EAAEA,GAAG,aAAa,wCAAwC,IAAI,EAAE,EAAEA,GAAG,aAAa,uBAAuB,IAAI,EAAE,EAAE,SAASC,GAAGviB,EAAE,EAAE,CAAC,IAAIE,EAAEF,EAAE,GAAGme,GAAGne,CAAC,EAAE,OAAO,IAAI,SAAS,CAAC,EAAE,CAACA,EAAE,MAAM,EAAE,GAAGshB,GAAGthB,CAAC,EAAE,CAAC,IAAIK,EAAEL,EAAE,UAAU,OAAO,MAAM,CAACA,EAAE,OAAOA,EAAE,MAAMK,EAAE,MAAM,CAAC,SAASkhB,GAAGvhB,CAAC,EAAE,MAAM,CAACA,EAAE,OAAO,MAAM,GAAG,KAAK,EAAE2b,GAAG,CAAC,EAAE,EAAE,GAAG,CAAC,MAAM,QAAQ3b,CAAC,EAAE,MAAM,CAAC,EAAE,IAAII,EAAE,CAAC,EAAE,KAAK,MAAM,QAAQF,CAAC,GAAGie,GAAGje,CAAC,GAAG,IAAI,UAAUE,EAAE,KAAKF,EAAE,MAAM,EAAEA,EAAEA,EAAE,CAAC,EAAE,OAAO,MAAM,QAAQF,CAAC,GAAGxO,EAAE,EAAE,QAAQ,oCAAoC,GAAGgxB,GAAGxiB,EAAEI,EAAE,CAAC,CAAC,EAAEA,CAAC,CAAC,SAASoiB,GAAGxiB,EAAE,EAAEE,EAAE,CAAC,GAAGA,EAAEA,GAAG,CAAC,EAAE,CAAC,MAAM,QAAQF,CAAC,GAAG,CAACme,GAAGne,CAAC,EAAE,CAACsa,EAAE,EAAE,SAAS,EAAE,IAAI,eAAepa,EAAE,KAAK,IAAI,CAAC,0DAA0D,EAAE,CAAC,CAAC,WAAW,EAAE,MAAM,CAACoa,EAAE,EAAE,OAAO,EAAE,IAAI,eAAepa,EAAE,KAAK,IAAI,CAAC,+CAA+CF,EAAE,MAAM,WAAW,EAAEsa,EAAEta,EAAE,SAAS,EAAE,CAAC,EAAE,IAAI,eAAeE,EAAE,KAAK,IAAI,CAAC,iBAAiB,EAAE,CAAC,CAAC,sBAAsBF,EAAE,MAAM,WAAW,EAAE,IAAII,EAAE,EAAE,MAAM,CAAC,EAAE,QAAQC,EAAE,EAAEA,EAAEL,EAAE,OAAO,EAAEK,EAAEmiB,GAAGxiB,EAAEK,CAAC,EAAED,EAAEF,EAAE,OAAOG,CAAC,CAAC,CAAC,CAAC,SAASoiB,GAAGziB,EAAE,EAAEE,EAAEE,EAAE,CAAC,GAAGJ,IAAI,oBAAoB,CAAC,GAAGA,GAAG,KAAK,MAAM,IAAI,MAAM,gCAAgC,EAAE,GAAGA,IAAI,WAAWA,IAAI,GAAGA,IAAI,WAAW,IAAI,SAAS,MAAM,IAAI,MAAM,aAAaE,CAAC,gBAAgBE,CAAC,aAAaJ,CAAC,oBAAoB,CAAC,SAAS,CAAC,CAAC,CAAC,SAAS0iB,EAAE1iB,EAAE,EAAEE,EAAEE,EAAE,UAAU,CAAC,GAAGJ,aAAa4gB,EAAE,EAAE,OAAO6B,GAAGriB,EAAEJ,EAAE,MAAM,EAAEE,CAAC,EAAEF,EAAE,IAAIK,EAAE2b,GAAGhc,CAAC,EAAE,GAAGK,IAAI,UAAU,CAAC,OAAO,QAAQ,SAAS,EAAE,QAAQD,CAAC,GAAG,IAAIC,EAAED,GAAGqiB,GAAGriB,EAAEC,EAAE,EAAEH,CAAC,EAAEF,GAAG,MAAM,CAACme,GAAGne,CAAC,GAAG,CAAC,MAAM,QAAQA,CAAC,GAAG,OAAOA,GAAG,UAAU,OAAOA,GAAG,WAAW,OAAOA,GAAG,SAAS,CAAC,IAAIgC,EAAEhC,GAAG,KAAK,OAAOA,EAAE,YAAY,KAAK,MAAM,IAAI,MAAM,aAAa,CAAC,gBAAgBE,CAAC,8CAA8C8B,CAAC,GAAG,CAAC,CAAC,IAAI,EAAEugB,GAAGviB,EAAEK,CAAC,EAAE,CAAC8d,GAAGne,CAAC,GAAG,CAAC,MAAM,QAAQA,CAAC,IAAIA,EAAE,CAACA,CAAC,GAAG,IAAI+B,EAAE1B,IAAI,SAASge,GAAGre,EAAEK,CAAC,EAAE4d,GAAGje,EAAE,CAAC,EAAE,EAAE,EAAE,OAAO6hB,EAAE,WAAW9f,EAAE,EAAE1B,CAAC,CAAC,CAAC,SAASsiB,GAAG3iB,EAAE,EAAEE,EAAEE,EAAE,UAAU,CAAC,GAAG,CAAC,MAAM,QAAQJ,CAAC,EAAE,MAAM,IAAI,MAAM,YAAY,CAAC,cAAcE,CAAC,6CAA6C,EAAE,OAAOF,EAAE,IAAI,CAAC6B,EAAEC,IAAI4gB,EAAE7gB,EAAE,GAAG,CAAC,IAAIC,CAAC,IAAI5B,EAAEE,CAAC,CAAC,CAAC,CAAC,IAAI5Y,GAAG,OAAO,SAAS4P,EAAE4I,EAAE,CAAC,IAAI,EAAE,OAAO,KAAKA,CAAC,EAAE,GAAG,EAAE,SAAS,EAAE,MAAM,IAAI,MAAM,yGAAyG,EAAE,MAAM,QAAQ,EAAE,IAAIE,EAAE,EAAE,CAAC,EAAEE,EAAEJ,EAAEE,CAAC,EAAEA,EAAE,SAAS,GAAG,IAAIA,EAAEA,EAAE,UAAU,EAAEA,EAAE,OAAO,CAAC,GAAGA,EAAEA,EAAE1Y,GAAG,IAAI6Y,EAAE,IAAI,IAAI,CAACwhB,EAAE,WAAW3hB,CAAC,EAAE,GAAG,CAAC,IAAI,EAAEE,EAAE,GAAG,CAAC,EAAE,OAAOyc,GAAG,CAAC,GAAG,QAAQ,MAAM,yCAAyC,EAAEgF,EAAE,SAAS,CAAC,EAAE,CAAC,OAAO,EAAE,CAAC,MAAMA,EAAE,SAAS,IAAI,EAAE,CAAC,CAAC,EAAE,OAAO,OAAO,eAAexhB,EAAE,OAAO,CAAC,MAAMH,EAAE,aAAa,EAAE,CAAC,EAAEG,CAAC,CAAC,SAASuiB,GAAG5iB,EAAE,EAAE,CAAC,IAAIE,EAAEwiB,EAAE1iB,EAAE,OAAO,SAAS,EAAEI,EAAEsiB,EAAE,EAAE,OAAO,SAAS,EAAEnI,GAAGra,EAAE,MAAME,EAAE,MAAM,yBAAyBF,EAAE,KAAK,QAAQE,EAAE,KAAK,uCAAuC,EAAE,IAAIC,EAAE,CAAC,KAAKH,EAAE,KAAKE,CAAC,EAAE,OAAOyhB,EAAE,UAAUzgC,GAAGif,CAAC,CAAC,CAAC,IAAIvR,GAAGsI,EAAE,CAAC,SAASwrB,EAAE,CAAC,EAAE,SAASC,GAAG7iB,EAAE,EAAEE,EAAEE,EAAE,CAAC,GAAGA,GAAG,KAAKA,EAAE4b,GAAGhc,CAAC,UAAUI,IAAI,YAAY,MAAM,IAAI,MAAM,kFAAkF,EAAE,GAAGmhB,GAAGvhB,CAAC,GAAGshB,GAAGthB,CAAC,EAAE,CAAC,GAAGI,IAAI,WAAWA,IAAI,QAAQ,MAAM,IAAI,MAAM,2FAA2FA,CAAC,GAAG,EAAE,OAAOyhB,EAAE,QAAQ,wBAAwB7hB,EAAE,GAAGE,EAAEE,CAAC,CAAC,CAAC,GAAG,CAAC+d,GAAGne,CAAC,GAAG,CAAC,MAAM,QAAQA,CAAC,GAAG,OAAOA,GAAG,UAAU,OAAOA,GAAG,WAAW,OAAOA,GAAG,SAAS,MAAM,IAAI,MAAM,0HAA0H,EAAE,GAAG,GAAG,KAAK,CAAC0c,GAAG,CAAC,EAAE,IAAIrc,EAAEqa,GAAG,CAAC,EAAE,EAAEA,GAAGxa,CAAC,EAAEoa,EAAEja,IAAI,EAAE,IAAI,iCAAiC,CAAC,6BAA6BA,CAAC,mBAAmB,CAAC,EAAE,EAAE,QAAQ,EAAE,EAAE,EAAEH,EAAE,OAAO,EAAE,EAAE,CAAC,IAAI6B,EAAE7B,EAAE,CAAC,EAAE8B,EAAE,IAAI9B,EAAE,OAAO,EAAE6B,IAAI2Y,GAAG,EAAE,MAAM,CAAC,CAAC,EAAE,GAAGJ,EAAEpa,EAAE,CAAC,IAAI,EAAE,CAAC,GAAG,CAAC8B,EAAE,IAAI,gDAAgD9B,CAAC,wCAAwC,CAAC,KAAK,CAAC,CAAC,CAAC,MAAM,CAACie,GAAGne,CAAC,GAAG,CAAC,MAAM,QAAQA,CAAC,IAAIA,EAAE,CAACA,CAAC,GAAG,EAAE,GAAGE,EAAEF,EAAEI,IAAI,SAASie,GAAGre,EAAEI,CAAC,EAAE6d,GAAGje,EAAE,CAAC,EAAE,EAAE,EAAE6hB,EAAE,WAAW7hB,EAAE,EAAEI,CAAC,CAAC,CAAC,SAASrD,GAAGiD,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAEmiB,GAAGviB,EAAEE,CAAC,EAAE,OAAO2iB,GAAG7iB,EAAE,EAAEI,EAAEF,CAAC,CAAC,CAAC,IAAI4iB,GAAG,CAAC,QAAQ,EAAE,QAAQ,EAAE,MAAM,EAAE,OAAO,EAAE,MAAM,EAAE,KAAK,EAAE,UAAU,CAAC,EAAMC,GAAG,MAAM/iB,EAAC,CAAC,OAAO,KAAK,EAAE,CAAC,OAAO,IAAIA,GAAE,CAAC,EAAE,MAAM,CAAC,CAAC,YAAY,EAAE,CAAC,GAAG,KAAK,OAAO,CAAC,EAAE,KAAK,mBAAmB,EAAE,GAAG,OAAO,aAAa,QAAQ,EAAE,CAAC,CAAC,GAAG,EAAE,EAAE,IAAII,GAAG+d,GAAG/d,CAAC,EAAEA,EAAE,OAAOA,CAAC,EAAE,EAAE,SAAS,GAAG,OAAO,KAAK,kBAAkB,EAAE,CAAC,EAAE,WAAW,IAAIF,EAAE,EAAE,QAAQE,EAAE,EAAEA,EAAE,EAAE,OAAOA,IAAI,CAAC,IAAIC,EAAE,EAAED,CAAC,EAAEA,IAAI,EAAE,OAAO,GAAGC,EAAE,aAAa,KAAK,oBAAoB,KAAK,kBAAkB,QAAQ,IAAI,EAAEH,EAAEG,EAAE,WAAW,KAAK,OAAO,KAAK,CAAC,OAAOA,EAAE,MAAMH,EAAE,IAAI,CAAC,CAAC,EAAEA,EAAE,CAAC,CAAC,KAAK,OAAO,SAAS,IAAI,KAAK,WAAW,GAAG,KAAK,WAAW,KAAK,OAAO,KAAK,OAAO,OAAO,CAAC,EAAE,GAAG,CAAC,MAAM,EAAE,EAAEA,EAAE,KAAK,WAAW,CAAC,GAAG,KAAK,OAAO,SAAS,EAAE,OAAO,IAAI,YAAY,CAAC,EAAE,GAAG,EAAE,MAAM,OAAO,CAAC,CAAC,EAAE,EAAE,EAAEA,EAAE,MAAM,OAAOA,CAAC,CAAC,EAAE,EAAEA,EAAE,EAAE,KAAK,IAAI,EAAE,CAAC,EAAEA,EAAE,KAAK,IAAI,KAAK,WAAWA,CAAC,EAAEA,GAAG,EAAE,OAAO,IAAI,YAAY,CAAC,EAAE,IAAIE,EAAE,KAAK,iBAAiB,CAAC,EAAE,GAAGA,IAAI,GAAG,MAAM,IAAI,MAAM,uCAAuC,CAAC,EAAE,EAAE,IAAIC,EAAEH,EAAE,EAAE,EAAE,IAAI,YAAYG,CAAC,EAAE,EAAE,IAAI,WAAW,CAAC,EAAE0B,EAAE,EAAE,QAAQC,EAAE5B,EAAE4B,EAAE,KAAK,OAAO,OAAOA,IAAI,CAAC,IAAIC,EAAE,KAAK,OAAOD,CAAC,EAAE,EAAE,EAAED,EAAEE,EAAE,MAAMW,EAAEb,EAAEe,EAAE,KAAK,IAAI5C,EAAE+B,EAAE,GAAG,EAAEA,EAAE,MAAM,EAAE,IAAI,WAAWA,EAAE,OAAO,EAAEa,EAAE,CAAC,EAAE,GAAG,EAAE,IAAI,EAAEF,CAAC,EAAEb,GAAG,EAAE,OAAO7B,EAAE+B,EAAE,IAAI,KAAK,CAAC,OAAO,CAAC,CAAC,iBAAiB,EAAE,CAAC,GAAG,KAAK,OAAO,SAAS,GAAG,EAAE,GAAG,GAAG,KAAK,WAAW,MAAM,GAAG,GAAG,KAAK,mBAAmB,KAAK,OAAO,KAAK,mBAAmB,KAAK,MAAM,EAAE,KAAK,iBAAiB,EAAE,KAAK,mBAAmB,SAAS/B,EAAEG,EAAE,CAAC,OAAO,EAAEA,EAAE,MAAM,GAAG,GAAGA,EAAE,IAAI,EAAE,CAAC,CAAC,GAAGH,EAAE,KAAK,OAAO,KAAK,kBAAkB,CAAC,IAAI,EAAE,OAAO,KAAK,mBAAmB,IAAIE,EAAE4iB,GAAG,KAAK,OAAO9iB,CAAC,EAAE,OAAOE,IAAI,GAAG,IAAI,KAAK,mBAAmBA,EAAE,KAAK,mBAAmB,CAAC,EAAE,SAAS4iB,GAAGhjB,EAAE,EAAE,CAAC,IAAIE,EAAE,EAAEE,EAAEJ,EAAE,OAAO,KAAKE,GAAGE,GAAG,CAAC,IAAIC,EAAE,KAAK,OAAOD,EAAEF,GAAG,CAAC,EAAEA,EAAE,EAAE,EAAEF,EAAEK,CAAC,CAAC,EAAE,GAAG,IAAI,EAAE,OAAOA,EAAE,EAAE,EAAED,EAAEC,EAAEH,EAAEG,EAAE,CAAC,CAAC,MAAM,EAAE,CAAC,SAASjP,IAAK,CAACI,EAAE,EAAE,IAAI,OAAO,EAAE,CAAC,CAAC,SAASL,IAAK,CAACK,EAAE,EAAE,IAAI,QAAQ,EAAE,CAAC,CAAC,SAASd,IAAK,CAACc,EAAE,EAAE,IAAI,+BAA+B,EAAE,EAAE,QAAQ,KAAK,wDAAwD,CAAC,CAAC,SAASrB,GAAG6P,EAAE,CAACxO,EAAE,EAAE,QAAQ,8BAA8B,GAAG,QAAQ,KAAKwO,EAAE,6EAA6E,CAAC,CAAC2gB,GAAGxwB,EAAE,EAAE,SAASS,IAAK,CAACixB,EAAE,iBAAiB,CAAC,CAAC,SAASvwB,IAAI,CAAC,OAAOuwB,CAAC,CAAC,SAAS9rB,IAAI,CAAC,OAAO8rB,EAAE,OAAO,CAAC,CAAC,SAAS7pB,GAAIgI,EAAE,CAAC,OAAO6hB,EAAE,QAAQ7hB,CAAC,CAAC,CAAC,SAASvC,EAAEuC,EAAE,EAAE,CAAC,OAAO6hB,EAAE,KAAK7hB,EAAE,CAAC,CAAC,CAAC,SAASrP,GAAGqP,EAAE,CAAC8gB,GAAG9gB,CAAC,EAAE,QAAQE,GAAGA,EAAE,QAAQ,CAAC,CAAC,CAAC,SAASlM,GAAGgM,EAAE,CAAC,OAAO6hB,EAAE,KAAK7hB,CAAC,CAAC,CAAC,SAASrC,GAAIqC,EAAE,CAAC,OAAO6hB,EAAE,KAAK7hB,CAAC,CAAC,CAAC,SAASxF,GAAGwF,EAAE,CAAC,OAAO6hB,EAAE,WAAW7hB,CAAC,CAAC,CAAC,SAASrH,IAAK,CAAC,OAAOkpB,EAAE,MAAM,CAAC,CAAC,SAASlvB,IAAI,CAAC,OAAOkvB,EAAE,WAAW,CAAC,SAASvoB,GAAI0G,EAAE,CAAC6hB,EAAE,cAAc7hB,CAAC,CAAC,CAAC,SAAS9N,GAAI8N,EAAE,CAAC,OAAO6hB,EAAE,YAAY7hB,CAAC,CAAC,CAAC,SAAS7N,GAAI6N,EAAE,CAAC,OAAO6hB,EAAE,mBAAmB7hB,CAAC,CAAC,CAAC,SAASlH,GAAGkH,EAAE,EAAEE,EAAE,EAAE,CAAC,OAAO2hB,EAAE,gBAAgB7hB,EAAE,EAAEE,CAAC,CAAC,CAAC,SAASzS,IAAI,CAAC,OAAOo0B,EAAE,OAAO,CAAC,SAASpnB,GAAIuF,EAAE,EAAE,CAACxO,EAAE,EAAE,YAAYwO,EAAE,CAAC,CAAC,CAAC,IAAIijB,GAAG,EAAE,eAAeC,GAAGljB,EAAE,EAAE,CAAC,IAAIE,EAAE,CAAC,EAAEE,EAAE,CAAC,EAAEC,EAAE,MAAM,QAAQL,CAAC,EAAEA,EAAE,IAAI,GAAG,EAAE,IAAI,EAAE,OAAO,KAAKA,CAAC,EAAE,QAAQ,EAAE,EAAE,EAAEK,EAAE,OAAO,EAAE,EAAE,CAAC,IAAI0B,EAAE1B,EAAE,CAAC,EAAE2B,EAAE,MAAM,QAAQhC,CAAC,EAAEA,EAAE,CAAC,EAAE,OAAOA,EAAE+B,CAAC,EAAE,GAAGC,EAAE,QAAQ,WAAWA,EAAE,QAAQ,SAASA,EAAE,QAAQ,QAAQA,EAAE,QAAQ,UAAUA,EAAE,QAAQ,YAAY,MAAM,IAAI,MAAM,gCAAgCD,CAAC,MAAMC,EAAE,KAAK,EAAE,EAAE,IAAIC,EAAE,CAAC,KAAKF,EAAE,MAAMC,EAAE,MAAM,MAAMA,EAAE,KAAK,EAAE,GAAGA,EAAE,QAAQ,SAAS,CAAC,IAAIU,EAAE,IAAI,QAAQ,MAAMC,GAAG,CAAC,IAAIC,EAAE,MAAMZ,EAAE,MAAM,EAAEa,EAAED,EAAE,OAAO,CAAC,EAAE0E,IAAI,EAAEA,EAAE,OAAO,CAAC,EAAE2b,GAAGrgB,EAAE,OAAOE,EAAE,IAAI,WAAWD,CAAC,EAAEmB,EAAE,EAAE,QAAQ,EAAE,EAAE,EAAEpB,EAAE,OAAO,IAAI,CAAC,IAAI0E,EAAE1E,EAAE,CAAC,EAAEkC,EAAE,IAAI,WAAW,IAAI,YAAY,CAACwC,EAAE,MAAM,CAAC,EAAE,MAAM,EAAExE,EAAE,IAAIgC,EAAEd,CAAC,EAAEA,GAAGif,GAAGngB,EAAE,IAAIwE,EAAEtD,CAAC,EAAEA,GAAGsD,EAAE,MAAM,CAAC3E,EAAEG,CAAC,CAAC,CAAC,EAAE1C,EAAE,KAAKsC,CAAC,CAAC,MAAMtC,EAAE,KAAK4B,EAAE,KAAK,CAAC,EAAE,GAAG,OAAOC,EAAE,MAAM,GAAG/B,EAAE,KAAK+B,CAAC,CAAC,CAAC,IAAI,EAAE,MAAM,QAAQ,IAAI7B,CAAC,EAAE,MAAM,CAAC,KAAK+iB,GAAG,CAAC,EAAE,MAAMjjB,CAAC,CAAC,CAAC,SAASkjB,GAAGpjB,EAAE,EAAE,CAAC,IAAIE,EAAE,IAAI6iB,GAAG/iB,CAAC,EAAEI,EAAE,CAAC,EAAEC,EAAE,EAAE,QAAQ,KAAK,EAAE,CAAC,IAAI,EAAEgjB,GAAG,EAAE,CAACthB,EAAEC,IAAI9B,EAAE,MAAMG,EAAE0B,EAAE1B,EAAE2B,CAAC,CAAC,EAAE5B,EAAE,EAAE,IAAI,EAAEkjB,GAAG,EAAEpjB,EAAE,MAAMG,EAAEA,EAAE,CAAC,CAAC,EAAEA,GAAG,CAAC,CAAC,OAAOD,CAAC,CAAC,SAASijB,GAAGrjB,EAAE,EAAE,CAAC,IAAIE,EAAEwa,GAAG1a,EAAE,KAAK,EAAEI,EAAE,GAAG,iBAAiBJ,EAAE,CAAC,IAAIK,EAAEL,EAAE,aAAaI,EAAE0iB,GAAGziB,EAAE,KAAK,CAAC,SAASL,EAAE,QAAQ,SAAS,CAAC,IAAIK,EAAE,EAAE,QAAQ,EAAE,EAAE,EAAEH,EAAE,IAAIG,GAAG4iB,GAAG,IAAI,YAAY,EAAE5iB,EAAEA,EAAE4iB,EAAE,CAAC,EAAE,CAAC,EAAE,OAAO5iB,CAAC,MAAMD,EAAE0iB,GAAG9iB,EAAE,KAAK,EAAE,OAAOE,EAAEE,CAAC,CAAC,eAAemjB,GAAGvjB,EAAE,EAAE,CAAC,IAAIE,EAAEwa,GAAG1a,EAAE,KAAK,EAAEI,EAAE,GAAG,iBAAiBJ,EAAE,CAAC,IAAIK,EAAEL,EAAE,aAAaI,EAAE0iB,GAAGziB,EAAE,KAAK,CAAC,SAASL,EAAE,QAAQ,SAAS,CAAC,IAAIK,EAAE,EAAE,QAAQ,EAAE,EAAE,EAAEH,EAAE,IAAIG,GAAG4iB,GAAG,IAAI,YAAY,MAAM,EAAE5iB,EAAEA,EAAE4iB,EAAE,CAAC,EAAE,CAAC,EAAE,OAAO5iB,CAAC,MAAMD,EAAE0iB,GAAG9iB,EAAE,KAAK,EAAE,OAAOE,EAAEE,CAAC,CAAC,SAASkjB,GAAGtjB,EAAE,EAAE,CAAC,IAAIE,EAAEF,EAAE,KAAKI,EAAEJ,EAAE,MAAMK,EAAEL,EAAE,MAAM,EAAE0a,GAAGra,CAAC,EAAE,EAAE0B,EAAE,EAAE,GAAG,iBAAiB/B,EAAE,CAAC,IAAIgC,EAAEhC,EAAE,aAAa,GAAGgC,EAAE,QAAQ,SAASA,EAAE,QAAQ,UAAU,GAAG,EAAE,QAAQA,GAAG,UAAUA,GAAG,MAAM,IAAI,MAAM,UAAUhC,EAAE,IAAI,sBAAsBgC,EAAE,KAAK,qDAAqD,UAAUA,EAAE,QAAQ,WAAW,GAAG5B,IAAI,UAAU,MAAM,IAAI,MAAM,UAAUJ,EAAE,IAAI,sBAAsBgC,EAAE,KAAK,oDAAoD5B,CAAC,GAAG,MAAO,OAAM,IAAI,MAAM,UAAUJ,EAAE,IAAI,mCAAmCgC,EAAE,KAAK,wEAAwE,EAAE,IAAIC,EAAE6gB,GAAG9gB,EAAE,KAAK,EAAEU,EAAEV,EAAE,QAAQ,QAAQ,IAAI,WAAW,CAAC,EAAE,IAAI,YAAY,CAAC,EAAE,GAAG5B,IAAI,UAAU,GAAG4B,EAAE,QAAQ,SAASA,EAAE,QAAQ,SAAS,CAAC,EAAE,IAAI,aAAaU,EAAE,MAAM,EAAE,QAAQC,EAAE,EAAEA,EAAED,EAAE,OAAOC,IAAI,CAAC,IAAIC,EAAEF,EAAEC,CAAC,EAAE,EAAEA,CAAC,EAAEC,EAAEZ,EAAE,MAAMA,EAAE,GAAG,CAAC,SAASA,EAAE,QAAQ,UAAU,EAAEwhB,GAAG,EAAE9gB,CAAC,MAAO,OAAM,IAAI,MAAM,iCAAiCV,EAAE,KAAK,2BAA2B,UAAU5B,IAAI,QAAQ,CAAC,GAAG4B,EAAE,QAAQ,SAASA,EAAE,QAAQ,SAAS,MAAM,IAAI,MAAM,iCAAiCA,EAAE,KAAK,yBAAyB,EAAE,EAAE,IAAI,WAAWU,EAAE,MAAM,EAAE,QAAQC,EAAE,EAAEA,EAAED,EAAE,OAAOC,IAAI,CAAC,IAAIC,EAAEF,EAAEC,CAAC,EAAE,EAAEA,CAAC,EAAE,KAAK,MAAMC,EAAEZ,EAAE,MAAMA,EAAE,GAAG,CAAC,CAAC,KAAM,OAAM,IAAI,MAAM,gCAAgC9B,CAAC,MAAME,CAAC,EAAE,EAAE2B,GAAG,EAAEE,CAAC,SAAS7B,IAAI,SAAS,CAAC,IAAI4B,EAAE0Y,GAAG1a,EAAE,KAAK,EAAE,EAAE,CAAC,EAAE,QAAQiC,EAAE,EAAEA,EAAED,EAAEC,IAAI,CAAC,IAAIS,EAAE,IAAI,YAAY,EAAE,MAAMX,EAAEA,EAAEkhB,EAAE,CAAC,EAAE,CAAC,EAAElhB,GAAGkhB,GAAG,IAAItgB,EAAE,IAAI,WAAW,EAAE,MAAMZ,EAAEA,EAAEW,CAAC,CAAC,EAAE,EAAE,KAAKC,CAAC,EAAEZ,GAAGW,CAAC,CAAC,KAAK,CAAC,IAAIV,EAAE8gB,GAAG1iB,CAAC,EAAE,GAAGA,IAAI,UAAU,EAAE,IAAI,aAAa,CAAC,UAAUA,IAAI,QAAQ,EAAE,IAAI,WAAW,CAAC,UAAUA,IAAI,OAAO,EAAE,IAAI,WAAW,CAAC,UAAUA,IAAI,YAAY,CAAC,EAAE,IAAI,aAAa,CAAC,EAAE,IAAI6B,EAAE,IAAI,aAAa,EAAE,OAAO,CAAC,EAAES,EAAE,IAAI,aAAa,EAAE,OAAO,CAAC,EAAE,QAAQI,EAAE,EAAEA,EAAEb,EAAE,OAAOa,IAAIb,EAAEa,CAAC,EAAE,EAAEA,EAAE,CAAC,EAAEJ,EAAEI,CAAC,EAAE,EAAEA,EAAE,EAAE,CAAC,EAAE,IAAIH,EAAE5F,GAAGkF,EAAE5B,EAAE,SAAS,EAAEuC,EAAE7F,GAAG2F,EAAErC,EAAE,SAAS,EAAEwC,EAAE/T,GAAG6T,EAAEC,CAAC,EAAE,OAAOD,EAAE,QAAQ,EAAEC,EAAE,QAAQ,EAAEC,CAAC,KAAM,OAAM,IAAI,MAAM,gCAAgC3C,CAAC,MAAME,CAAC,EAAE,EAAE2B,GAAG,EAAEC,CAAC,CAAC,OAAOjF,GAAG,EAAEsD,EAAED,CAAC,CAAC,CAAC,eAAeqjB,GAAGzjB,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAE,IAAI,WAAW,CAAC,EAAE,KAAKA,EAAE,WAAWF,GAAG,CAAC,GAAG,CAAC,KAAKG,EAAE,MAAM,CAAC,EAAE,MAAML,EAAE,KAAK,EAAE,GAAGK,GAAG,GAAG,KAAK,CAAC,IAAI0B,EAAE7B,EAAEE,EAAE,WAAW,MAAM,IAAI,MAAM,sBAAsB2B,CAAC,2BAA2B,CAAC,CAAC,IAAI,EAAE,IAAI,WAAW3B,EAAE,OAAO,EAAE,UAAU,EAAE,EAAE,IAAIA,EAAE,CAAC,EAAE,EAAE,IAAI,IAAI,WAAW,CAAC,EAAEA,EAAE,MAAM,EAAEA,EAAE,CAAC,CAAC,OAAOA,EAAE,MAAM,CAAC,eAAesjB,GAAG1jB,EAAE,EAAE,CAAC,IAAIE,EAAE,CAAC,EAAEE,EAAEJ,EAAE,UAAU,EAAEK,EAAE,IAAI,YAAY,CAAC,EAAE,QAAQ,KAAK,EAAE,CAAC,IAAI,EAAE,MAAMkjB,GAAG,EAAE,MAAMthB,EAAES,KAAKrC,EAAE,MAAMojB,GAAGrjB,EAAEC,EAAEqC,CAAC,EAAErC,EAAE,MAAM4B,EAAES,CAAC,EAAE,EAAErC,EAAE,MAAMojB,GAAGrjB,EAAEC,EAAE,CAAC,EAAE,IAAI0B,EAAE1B,EAAE,MAAM,EAAE,CAAC,EAAEA,EAAEA,EAAE,MAAM,CAAC,EAAE,IAAI2B,EAAEshB,GAAG,EAAEvhB,CAAC,EAAE,GAAG7B,EAAE,EAAE,IAAI,EAAE8B,EAAErP,GAAG,IAAI,SAAS,CAAC,IAAIsP,EAAExU,GAAG,EAAE,gBAAgBwU,GAAGyY,GAAG1Y,EAAE,KAAK,GAAGxQ,EAAE,EAAE,IAAI,mCAAmC,GAAGyQ,EAAE,YAAYD,EAAE,MAAM,CAAC,CAAC,CAAC,OAAO9B,CAAC,CAAC,SAASijB,GAAGnjB,EAAE,CAAC,GAAGA,IAAI,KAAK,MAAM,IAAI,MAAM,wBAAwB,KAAK,UAAUA,CAAC,CAAC,EAAE,EAAE,IAAI,EAAE,EAAEE,EAAE,CAAC,EAAEF,EAAE,QAAQ,GAAG,CAAC,GAAG,GAAG,EAAE,WAAWE,EAAE,KAAK,EAAE,aAAa,EAAE,OAAO,WAAW,EAAE,IAAI,EAAE,YAAY,CAAC,CAAC,EAAE,EAAE,aAAa,cAAc,aAAa,YAAY,aAAa,YAAY,MAAM,IAAI,MAAM,mCAAmC,EAAE,YAAY,IAAI,EAAE,CAAC,CAAC,EAAE,IAAIE,EAAE,IAAI,WAAW,CAAC,EAAEC,EAAE,EAAE,OAAOH,EAAE,QAAQ,GAAG,CAACE,EAAE,IAAI,IAAI,WAAW,EAAE,MAAM,EAAEC,CAAC,EAAEA,GAAG,EAAE,UAAU,CAAC,EAAED,EAAE,MAAM,CAAC,IAAIujB,GAAG,OAAO,QAAQ,cAAc,OAAO,MAAM,aAAa,OAAO,MAAM,aAAa,OAAO,MAAM,aAAa,SAASC,GAAG5jB,EAAE,CAAC,OAAO2jB,GAAG,OAAO,WAAW3jB,EAAE,MAAM,EAAE,IAAI,KAAK,CAACA,CAAC,CAAC,EAAE,IAAI,CAAC,SAAS6jB,GAAG7jB,EAAE,CAAC,GAAG2jB,GAAG,OAAO,OAAO,KAAK3jB,CAAC,EAAE,SAAS,QAAQ,EAAE,IAAI,EAAE,IAAI,WAAWA,CAAC,EAAEE,EAAE,GAAG,QAAQE,EAAE,EAAEC,EAAE,EAAE,OAAOD,EAAEC,EAAED,IAAIF,GAAG,OAAO,aAAa,EAAEE,CAAC,CAAC,EAAE,OAAO,KAAKF,CAAC,CAAC,CAAC,SAAS4jB,GAAG9jB,EAAE,CAAC,GAAG2jB,GAAG,CAAC,IAAIvjB,EAAE,OAAO,KAAKJ,EAAE,QAAQ,EAAE,OAAOI,EAAE,OAAO,MAAMA,EAAE,WAAWA,EAAE,WAAWA,EAAE,UAAU,CAAC,CAAC,IAAI,EAAE,KAAKJ,CAAC,EAAEE,EAAE,IAAI,WAAW,EAAE,MAAM,EAAE,QAAQE,EAAE,EAAEA,EAAE,EAAE,OAAO,EAAEA,EAAEF,EAAE,IAAI,CAAC,EAAE,WAAWE,CAAC,CAAC,EAAEA,CAAC,EAAE,OAAOF,EAAE,MAAM,CAAC,SAAS6jB,GAAG/jB,EAAE,CAAC,OAAO+iB,GAAG,KAAK/iB,CAAC,CAAC,CAAC,SAASgkB,GAAGhkB,EAAE,CAAC,IAAI,EAAE,IAAI,IAAIA,EAAEA,EAAE,KAAK,EAAEA,EAAE,SAAS,CAAC,GAAGA,EAAEA,EAAE,MAAM,EAAEA,EAAE,OAAO,CAAC,EAAE,IAAIE,EAAEF,EAAE,MAAM,CAAC,EAAE,OAAOE,EAAEA,EAAE,OAAO,CAAC,CAAC,CAAC,SAAS+jB,GAAGjkB,EAAE,EAAE,CAAC,IAAIE,EAAE,CAAC,cAAcF,EAAE,cAAc,OAAOA,EAAE,OAAO,YAAYA,EAAE,YAAY,YAAYA,EAAE,YAAY,gBAAgB,CAAC,EAAE,OAAOA,EAAE,WAAW,OAAOE,EAAE,UAAUF,EAAE,WAAWA,EAAE,qBAAqB,OAAOE,EAAE,oBAAoBF,EAAE,qBAAqBA,EAAE,kBAAkB,OAAOE,EAAE,iBAAiBF,EAAE,kBAAkBA,EAAE,sBAAsB,OAAOE,EAAE,qBAAqBF,EAAE,sBAAsBA,EAAE,gBAAgB,OAAOE,EAAE,eAAeF,EAAE,gBAAgBE,CAAC,CAAC,SAASgkB,GAAGlkB,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAE,CAAC,cAAcJ,EAAE,cAAc,OAAOA,EAAE,OAAO,YAAYA,EAAE,YAAY,YAAYA,EAAE,WAAW,EAAE,GAAGA,EAAE,gBAAgB,OAAOI,EAAE,eAAeJ,EAAE,gBAAgBA,EAAE,iBAAiB,KAAK,CAAC,GAAG,CAAC,EAAE,MAAM,IAAI,MAAM,uDAAuD,EAAE,GAAG,CAACE,EAAE,MAAM,IAAI,MAAM,sDAAsD,EAAEE,EAAE,YAAY,EAAEA,EAAE,WAAWF,CAAC,CAAC,OAAOF,EAAE,WAAW,OAAOI,EAAE,UAAUJ,EAAE,WAAWA,EAAE,qBAAqB,OAAOI,EAAE,oBAAoBJ,EAAE,qBAAqBA,EAAE,kBAAkB,OAAOI,EAAE,iBAAiBJ,EAAE,kBAAkBA,EAAE,sBAAsB,OAAOI,EAAE,qBAAqBJ,EAAE,sBAAsBI,CAAC,CAAC,eAAe+jB,GAAGnkB,EAAE,EAAE,CAAC,IAAIE,EAAEE,EAAE,OAAOJ,EAAE,iBAAiB,OAAO,CAACE,EAAEE,CAAC,EAAE,MAAM,EAAEJ,EAAE,eAAe,GAAGkkB,GAAGlkB,EAAEE,EAAEE,CAAC,CAAC,CAAC,SAASgkB,GAAGpkB,EAAE,CAAC,GAAGA,EAAE,yBAAyB,YAAY,MAAM,IAAI,MAAM,qDAAqD,EAAE,MAAM,CAAC,UAAU,IAAI,KAAK,kBAAkB,OAAO,mBAAmBA,EAAE,eAAe,KAAK,EAAE4jB,GAAG,KAAK,UAAU5jB,EAAE,aAAa,CAAC,EAAE,iBAAiBA,EAAE,aAAa,KAAK,EAAE4jB,GAAG,KAAK,UAAU5jB,EAAE,WAAW,CAAC,EAAE,gBAAgBA,EAAE,YAAY,KAAK,EAAE,IAAI+iB,GAAG/iB,EAAE,UAAU,EAAE,UAAU,CAAC,CAAC,SAASqkB,GAAGrkB,EAAE,CAAC,IAAI,EAAE,CAAC,EAAE,QAAQE,KAAKF,EAAE,EAAE,KAAK,GAAGE,EAAE,OAAO,EAAE,OAAO,CAAC,CAAC,SAASokB,IAAI,CAAC,IAAItkB,EAAEE,GAAG,CAAC,IAAIE,EAAEF,GAAG,GAAGG,EAAE,EAAE,KAAK,EAAED,EAAE,UAAUC,GAAG,QAAQD,IAAI,EAAE,OAAOA,GAAG,SAASC,GAAG,UAAUD,EAAEC,CAAC,EAAE,EAAE,IAAI,YAAY,IAAI,EAAE,EAAE,CAAC,EAAE,EAAE,QAAQH,EAAE,EAAEA,EAAE,KAAKA,IAAI,EAAEA,CAAC,EAAEF,EAAEE,CAAC,EAAE,QAAQA,EAAE,KAAKA,EAAE,KAAKA,IAAI,EAAEA,CAAC,EAAE,WAAWA,EAAE,MAAM,IAAI,OAAO,CAAC,CAAC,SAASqkB,IAAI,CAAC,IAAIvkB,EAAE,IAAI,YAAY,EAAE,EAAEA,EAAE,CAAC,EAAE,EAAEA,EAAE,EAAE,EAAE,WAAWA,EAAE,EAAE,EAAE,WAAWA,EAAE,EAAE,EAAE,WAAW,QAAQ,EAAE,EAAE,EAAE,GAAG,IAAIA,EAAE,CAAC,EAAE,GAAG,GAAG,QAAQ,EAAE,GAAG,EAAE,GAAG,IAAIA,EAAE,CAAC,EAAE,YAAY,EAAE,IAAI,IAAI,OAAOA,CAAC,CAAC,SAASwkB,IAAI,CAAC,IAAIxkB,EAAE,IAAI,YAAY,EAAE,EAAE,QAAQ,EAAE,EAAE,EAAE,GAAG,IAAIA,EAAE,CAAC,EAAE,KAAK,OAAOA,EAAE,CAAC,EAAEA,EAAE,EAAE,EAAE,EAAEA,CAAC,CAAC,SAASwjB,IAAI,CAAC,IAAIxjB,EAAEskB,GAAG,EAAE,EAAEC,GAAG,EAAErkB,EAAEskB,GAAG,EAAE,OAAOpkB,GAAG,CAAC,IAAIC,EAAE,IAAI,YAAY,EAAED,EAAE,MAAM,EAAE,EAAE,IAAI,YAAYC,CAAC,EAAE,QAAQ,EAAE,EAAE,EAAED,EAAE,OAAO,IAAI,CAAC,IAAI2B,EAAE3B,EAAE,CAAC,EAAE4B,EAAEhC,EAAEE,EAAE6B,GAAG,EAAE,GAAGA,EAAE,KAAK,EAAE,EAAEA,GAAG,EAAE,EAAE,EAAE,CAAC,EAAEC,CAAC,CAAC,OAAO,IAAI,aAAa3B,CAAC,CAAC,CAAC,CAAC,IAAIokB,GAAG,MAAMzkB,EAAC,CAAC,aAAa,CAAC,KAAK,YAAY,CAAC,EAAE,KAAK,YAAY,CAAC,CAAC,CAAC,OAAO,aAAa,CAAC,OAAOA,GAAE,UAAU,OAAOA,GAAE,SAAS,IAAIA,IAAGA,GAAE,QAAQ,CAAC,OAAO,mBAAmB,EAAE,CAACA,GAAE,YAAY,EAAE,YAAY,KAAK,CAAC,CAAC,CAAC,OAAO,mBAAmB,EAAE,CAACA,GAAE,YAAY,EAAE,YAAY,KAAK,CAAC,CAAC,CAAC,OAAO,gBAAgB,EAAE,CAAC,OAAOA,GAAE,YAAY,EAAE,MAAM,CAAC,CAAC,OAAO,gBAAgB,EAAEE,EAAE,CAAC,OAAOF,GAAE,YAAY,EAAE,OAAOE,CAAC,CAAC,CAAC,OAAO,YAAY,EAAEA,EAAEE,EAAE,CAAC,IAAIC,EAAE,CAAC,EAAE,OAAOH,IAAI,OAAOF,GAAE,YAAY,EAAE,YAAYA,GAAE,YAAY,EAAE,aAAa,QAAQ8B,GAAG,CAAC,IAAIC,EAAED,EAAE,EAAE1B,CAAC,EAAE2B,IAAI,MAAM1B,EAAE,KAAK0B,CAAC,CAAC,CAAC,EAAE1B,CAAC,CAAC,EAAEqkB,GAAG1kB,GAAGykB,GAAG,mBAAmBzkB,CAAC,EAAE2kB,GAAG3kB,GAAGykB,GAAG,mBAAmBzkB,CAAC,EAAE4kB,GAAG5kB,GAAGykB,GAAG,gBAAgBzkB,CAAC,EAAE6kB,GAAG,CAAC7kB,EAAE,IAAIykB,GAAG,gBAAgBzkB,EAAE,CAAC,EAAM8kB,GAAG,eAAeC,GAAG,EAAEC,GAAG,eAAeC,GAAG,mBAAmB,SAASC,IAAI,CAAC,GAAG,CAAC1zB,EAAE,EAAE,QAAQ,YAAY,EAAE,MAAM,IAAI,MAAM,yFAAyF,EAAE,IAAIwO,EAAE,OAAO,QAAQ,YAAY,KAAK,OAAO,EAAEA,EAAE,WAAWA,EAAE,cAAcA,EAAE,iBAAiBA,EAAE,aAAaA,EAAE,cAAc,GAAG,GAAG,KAAK,MAAM,IAAI,MAAM,2DAA2D,EAAE,OAAO,CAAC,CAAC,SAASmlB,GAAGnlB,EAAE,CAAC,IAAI,EAAEA,EAAE,OAAO,EAAE,kBAAkBglB,GAAG,CAAC,QAAQ,WAAW,CAAC,EAAE,EAAE,kBAAkBC,GAAG,CAAC,QAAQ,WAAW,CAAC,CAAC,CAAC,IAAIG,GAAG,KAAK,CAAC,YAAYxkB,EAAE,CAAC,GAAG,KAAK,UAAUskB,GAAG,EAAEtkB,GAAG,MAAM,CAACA,EAAE,MAAM,IAAI,MAAM,gEAAgE,EAAE,KAAK,UAAUA,CAAC,CAAC,MAAM,KAAKA,EAAE,CAAC,GAAGA,EAAE,yBAAyB,YAAY,MAAM,IAAI,MAAM,0FAA0F,EAAE,OAAO,KAAK,eAAe,KAAK,UAAUA,CAAC,CAAC,CAAC,MAAM,MAAM,CAAC,OAAO,KAAK,eAAe,KAAK,SAAS,CAAC,CAAC,eAAeA,EAAEV,EAAE,CAAC,OAAO,IAAI,QAAQ,CAAC,EAAEG,IAAI,CAAC,IAAIwB,EAAE,KAAK,UAAU,KAAKijB,GAAGC,EAAE,EAAEljB,EAAE,gBAAgB,IAAIsjB,GAAGtjB,CAAC,EAAEA,EAAE,UAAU,IAAI,CAAC,IAAIC,EAAED,EAAE,OAAO,GAAG3B,GAAG,KAAK,CAAC,IAAI6B,EAAED,EAAE,YAAYkjB,GAAG,UAAU,EAAE/iB,EAAEF,EAAE,YAAYijB,EAAE,EAAE,IAAI,KAAK,SAAS,EAAE/iB,EAAE,UAAU,IAAI,CAAC,GAAGA,EAAE,QAAQ,KAAK,OAAOH,EAAE,MAAM,EAAEzB,EAAE,IAAI,MAAM,gCAAgC,KAAK,SAAS,iBAAiB,CAAC,EAAE,EAAE4B,EAAE,OAAO,cAAc,CAAC,EAAEA,EAAE,QAAQS,IAAIZ,EAAE,MAAM,EAAEzB,EAAE4B,EAAE,KAAK,GAAGF,EAAE,WAAW,IAAID,EAAE,MAAM,CAAC,KAAK,CAAC5B,EAAE,WAAW6iB,GAAG,KAAK7iB,EAAE,UAAU,EAAE,IAAI6B,EAAEqiB,GAAGlkB,CAAC,EAAE8B,EAAEF,EAAE,YAAYmjB,GAAG,WAAW,EAAE,EAAEjjB,EAAE,YAAYijB,EAAE,EAAEviB,EAAE,GAAG,CAACA,EAAE,EAAE,IAAI,CAAC,UAAU,KAAK,UAAU,mBAAmBX,CAAC,CAAC,CAAC,OAAOa,EAAE,CAAC,OAAOvC,EAAEuC,CAAC,CAAC,CAAC,IAAI,EAAEF,EAAE,UAAU,IAAI,CAAC,EAAEZ,EAAE,YAAYkjB,GAAG,WAAW,EAAE,IAAIpiB,EAAE,EAAE,YAAYoiB,EAAE,EAAEniB,EAAE,GAAG,CAACA,EAAED,EAAE,IAAI,CAAC,UAAU,KAAK,UAAU,eAAe1C,EAAE,mBAAmB6B,CAAC,CAAC,CAAC,OAAOe,EAAE,CAAC,OAAOzC,EAAEyC,CAAC,CAAC,CAACD,EAAE,UAAU,IAAI,EAAE,CAAC,mBAAmBd,CAAC,CAAC,EAAEc,EAAE,QAAQC,GAAG,CAAC,EAAEd,EAAE,YAAYijB,EAAE,EAAE,IAAIjhB,EAAE,EAAE,OAAO,KAAK,SAAS,EAAEA,EAAE,UAAU,KAAKlC,EAAE,MAAM,EAAEzB,EAAEwC,EAAE,KAAK,GAAGmB,EAAE,QAAQC,IAAInC,EAAE,MAAM,EAAEzB,EAAEwC,EAAE,KAAK,EAAE,CAAC,EAAEH,EAAE,QAAQE,IAAId,EAAE,MAAM,EAAEzB,EAAEqC,EAAE,KAAK,GAAGV,EAAE,WAAW,IAAI,CAAC,GAAG,KAAKF,EAAE,MAAM,EAAE,EAAE,WAAW,IAAIA,EAAE,MAAM,CAAC,CAAC,CAAC,EAAED,EAAE,QAAQC,GAAGzB,EAAEwB,EAAE,KAAK,CAAC,CAAC,CAAC,CAAC,EAAEujB,GAAG,WAAW,eAAe,IAAIC,GAAGrlB,GAAGxO,EAAE,EAAE,QAAQ,YAAY,GAAG,CAAC,MAAM,QAAQwO,CAAC,GAAGA,EAAE,WAAWolB,GAAG,UAAU,EAAEE,GAAGtlB,EAAE,MAAMolB,GAAG,WAAW,MAAM,CAAC,EAAE,KAAKX,GAAG,mBAAmBY,EAAE,EAAEZ,GAAG,mBAAmBY,EAAE,EAAE,SAASC,GAAGtlB,EAAE,CAAC,OAAO,IAAIolB,GAAGplB,CAAC,CAAC,CAAC,SAASulB,GAAGvlB,EAAE,CAAC,OAAOA,EAAE,WAAWolB,GAAG,UAAU,EAAEplB,EAAE,MAAMolB,GAAG,WAAW,MAAM,EAAEplB,CAAC,CAAC,IAAIwlB,GAAG,KAAK,CAAC,aAAa,CAAC,KAAK,UAAUN,GAAG,CAAC,CAAC,MAAM,YAAY,CAAC,OAAO,IAAI,QAAQ,CAACtkB,EAAEV,IAAI,CAAC,IAAI,EAAE,KAAK,UAAU,KAAK4kB,GAAGC,EAAE,EAAE,EAAE,gBAAgB,IAAII,GAAG,CAAC,EAAE,EAAE,UAAU,IAAI,CAAC,IAAI9kB,EAAE,EAAE,OAAOwB,EAAExB,EAAE,YAAY4kB,GAAG,UAAU,EAAEljB,EAAEF,EAAE,YAAYojB,EAAE,EAAE,OAAO,EAAEljB,EAAE,UAAU,IAAI,CAAC,IAAIC,EAAE,CAAC,EAAE,QAAQC,KAAKF,EAAE,OAAOC,EAAEC,EAAE,SAAS,EAAEA,EAAE,mBAAmBrB,EAAEoB,CAAC,CAAC,EAAED,EAAE,QAAQC,IAAI3B,EAAE,MAAM,EAAEH,EAAE6B,EAAE,KAAK,GAAGF,EAAE,WAAW,IAAIxB,EAAE,MAAM,CAAC,EAAE,EAAE,QAAQA,GAAGH,EAAE,EAAE,KAAK,CAAC,CAAC,CAAC,CAAC,MAAM,YAAYU,EAAE,CAAC,OAAOA,EAAE2kB,GAAG3kB,CAAC,EAAE,IAAI,QAAQ,CAACV,EAAE,IAAI,CAAC,IAAIG,EAAE,KAAK,UAAU,KAAKykB,GAAGC,EAAE,EAAE1kB,EAAE,gBAAgB,IAAI8kB,GAAG9kB,CAAC,EAAEA,EAAE,UAAU,IAAI,CAAC,IAAIwB,EAAExB,EAAE,OAAOyB,EAAED,EAAE,YAAYojB,GAAG,WAAW,EAAEljB,EAAED,EAAE,YAAYmjB,EAAE,EAAEjjB,EAAED,EAAE,IAAInB,CAAC,EAAE,EAAEoB,EAAE,UAAU,IAAI,CAAC,GAAGA,EAAE,QAAQ,KAAK,OAAOH,EAAE,MAAM,EAAE,EAAE,IAAI,MAAM,gCAAgCjB,CAAC,iBAAiB,CAAC,EAAE,CAAC,IAAI8B,EAAEX,EAAE,OAAOnB,CAAC,EAAE,EAAE,IAAI,CAAC,EAAEiB,EAAE,YAAYmjB,GAAG,WAAW,EAAE,IAAIniB,EAAE,EAAE,YAAYmiB,EAAE,EAAE,OAAOpkB,CAAC,EAAEiC,EAAE,UAAU,IAAI3C,EAAE8B,EAAE,OAAO,kBAAkB,EAAEa,EAAE,QAAQC,GAAG,EAAEd,EAAE,KAAK,CAAC,EAAEU,EAAE,UAAU,EAAEA,EAAE,QAAQE,IAAI,EAAE,EAAEf,EAAE,MAAM,EAAE,EAAEG,EAAE,KAAK,EAAE,CAAC,EAAEA,EAAE,QAAQU,IAAIb,EAAE,MAAM,EAAE,EAAEG,EAAE,KAAK,GAAGF,EAAE,WAAW,IAAI,CAAC,GAAG,KAAKD,EAAE,MAAM,EAAE,EAAE,WAAW,IAAIA,EAAE,MAAM,CAAC,CAAC,EAAExB,EAAE,QAAQwB,GAAG,EAAExB,EAAE,KAAK,CAAC,CAAC,CAAC,CAAC,EAAMolB,GAAG,IAAIC,GAAG,sBAAsBC,GAAG,OAAOC,GAAG,iBAAiBC,GAAG,eAAeC,GAAG,cAAcC,GAAG,iBAAiB,SAASC,GAAGhmB,EAAE,CAAC,MAAM,CAAC,KAAK,CAAC0lB,GAAG1lB,EAAE2lB,EAAE,EAAE,KAAKF,EAAE,EAAE,SAAS,CAACC,GAAG1lB,EAAE4lB,EAAE,EAAE,KAAKH,EAAE,EAAE,YAAY,CAACC,GAAG1lB,EAAE6lB,EAAE,EAAE,KAAKJ,EAAE,EAAE,WAAW,CAACC,GAAG1lB,EAAE8lB,EAAE,EAAE,KAAKL,EAAE,EAAE,cAAc,CAACC,GAAG1lB,EAAE+lB,EAAE,EAAE,KAAKN,EAAE,CAAC,CAAC,CAAC,SAASQ,GAAGjmB,EAAE,CAAC,QAAQ,KAAK,OAAO,OAAOA,CAAC,EAAE,OAAO,aAAa,WAAW,CAAC,CAAC,CAAC,SAASkmB,GAAGlmB,EAAE,CAAC,IAAI,EAAEA,EAAE,MAAMylB,EAAE,EAAE,GAAG,EAAE,OAAO,EAAE,MAAM,IAAI,MAAM,uBAAuBzlB,CAAC,EAAE,EAAE,OAAO,EAAE,MAAM,EAAE,EAAE,OAAO,CAAC,EAAE,KAAKylB,EAAE,CAAC,CAAC,SAASU,GAAGnmB,EAAE,CAAC,OAAOA,EAAE,WAAWomB,GAAG,UAAU,EAAEpmB,EAAE,MAAMomB,GAAG,WAAW,MAAM,EAAEpmB,CAAC,CAAC,IAAIomB,GAAG,KAAK,CAAC,YAAYxlB,EAAE,CAAC,GAAG,CAACpP,EAAE,EAAE,QAAQ,YAAY,GAAG,OAAO,QAAQ,aAAa,OAAO,OAAO,cAAc,YAAY,MAAM,IAAI,MAAM,yDAAyD,EAAE,GAAG,KAAK,GAAG,OAAO,aAAaoP,GAAG,MAAM,CAACA,EAAE,MAAM,IAAI,MAAM,oEAAoE,EAAE,KAAK,UAAUA,EAAE,KAAK,KAAKolB,GAAG,KAAK,SAAS,CAAC,CAAC,MAAM,KAAKplB,EAAE,CAAC,GAAGA,EAAE,yBAAyB,YAAY,MAAM,IAAI,MAAM,0FAA0F,EAAE,CAAC,IAAIV,EAAE,KAAK,UAAUU,EAAE,aAAa,EAAE,EAAE,KAAK,UAAUA,EAAE,WAAW,EAAEP,EAAE+jB,GAAGxjB,CAAC,EAAEiB,EAAEkhB,GAAG,KAAKniB,EAAE,UAAU,EAAE,GAAG,CAAC,KAAK,GAAG,QAAQ,KAAK,KAAK,KAAK,KAAK,UAAUP,CAAC,CAAC,EAAE,KAAK,GAAG,QAAQ,KAAK,KAAK,SAASH,CAAC,EAAE,KAAK,GAAG,QAAQ,KAAK,KAAK,YAAY,CAAC,EAAE,KAAK,GAAG,QAAQ,KAAK,KAAK,WAAW2jB,GAAGhiB,CAAC,CAAC,EAAE,IAAIC,EAAE,CAAC,OAAOlB,EAAE,OAAO,YAAYA,EAAE,YAAY,YAAYA,EAAE,YAAY,UAAUA,EAAE,WAAW,KAAKA,EAAE,UAAU,OAAO,oBAAoBA,EAAE,qBAAqB,KAAKA,EAAE,oBAAoB,OAAO,iBAAiBA,EAAE,kBAAkB,KAAKA,EAAE,iBAAiB,OAAO,qBAAqBA,EAAE,sBAAsB,KAAKA,EAAE,qBAAqB,OAAO,eAAeA,EAAE,gBAAgB,KAAKA,EAAE,eAAe,MAAM,EAAE,OAAO,KAAK,GAAG,QAAQ,KAAK,KAAK,cAAc,KAAK,UAAUkB,CAAC,CAAC,EAAE,CAAC,mBAAmBzB,CAAC,CAAC,OAAOyB,EAAE,CAAC,MAAMmkB,GAAG,KAAK,IAAI,EAAE,IAAI,MAAM,yBAAyB,KAAK,SAAS,yGAAyG5lB,EAAE,kBAAkB,sBAAsBA,EAAE,gBAAgB,qBAAqBA,EAAE,eAAe,GAAG,CAAC,CAAC,CAAC,CAAC,MAAM,MAAM,CAAC,IAAIO,EAAE,KAAK,MAAM,KAAK,GAAG,QAAQ,KAAK,KAAK,IAAI,CAAC,EAAE,GAAGA,GAAG,KAAK,MAAM,IAAI,MAAM,kDAAkD,KAAK,SAAS,GAAG,EAAE,GAAGA,EAAE,oBAAoB,OAAO,MAAM,IAAI,MAAM,2EAA2E,EAAE,IAAIV,EAAE,CAAC,EAAE,EAAE,KAAK,MAAM,KAAK,GAAG,QAAQ,KAAK,KAAK,QAAQ,CAAC,EAAE,GAAG,GAAG,KAAK,MAAM,IAAI,MAAM,4CAA4C,KAAK,SAAS,eAAe,EAAEA,EAAE,cAAc,EAAE,IAAIG,EAAE,KAAK,MAAM,KAAK,GAAG,QAAQ,KAAK,KAAK,WAAW,CAAC,EAAE,GAAGA,GAAG,KAAK,MAAM,IAAI,MAAM,gDAAgD,KAAK,SAAS,gBAAgB,EAAEH,EAAE,YAAYG,EAAE,IAAIwB,EAAE,KAAK,GAAG,QAAQ,KAAK,KAAK,aAAa,EAAE,GAAGA,GAAG,KAAK,CAAC,IAAIE,EAAE,KAAK,MAAMF,CAAC,EAAE3B,EAAE,OAAO6B,EAAE,OAAO7B,EAAE,YAAY6B,EAAE,YAAY7B,EAAE,YAAY6B,EAAE,YAAYA,EAAE,WAAW,OAAO7B,EAAE,UAAU6B,EAAE,WAAWA,EAAE,qBAAqB,OAAO7B,EAAE,oBAAoB6B,EAAE,qBAAqBA,EAAE,kBAAkB,OAAO7B,EAAE,iBAAiB6B,EAAE,kBAAkBA,EAAE,sBAAsB,OAAO7B,EAAE,qBAAqB6B,EAAE,sBAAsBA,EAAE,gBAAgB,OAAO7B,EAAE,eAAe6B,EAAE,eAAe,CAAC,IAAID,EAAE,KAAK,GAAG,QAAQ,KAAK,KAAK,UAAU,EAAE,GAAGA,GAAG,KAAK,MAAM,IAAI,MAAM,wDAAwD,KAAK,SAAS,gBAAgB,EAAE,OAAO5B,EAAE,WAAW4jB,GAAGhiB,CAAC,EAAE5B,CAAC,CAAC,EAAEkmB,GAAG,WAAW,kBAAkB,IAAIC,GAAGrmB,GAAGxO,EAAE,EAAE,QAAQ,YAAY,GAAG,CAAC,MAAM,QAAQwO,CAAC,GAAGA,EAAE,WAAWomB,GAAG,UAAU,EAAEE,GAAGtmB,EAAE,MAAMomB,GAAG,WAAW,MAAM,CAAC,EAAE,KAAK3B,GAAG,mBAAmB4B,EAAE,EAAE5B,GAAG,mBAAmB4B,EAAE,EAAE,SAASC,GAAGtmB,EAAE,CAAC,OAAO,IAAIomB,GAAGpmB,CAAC,CAAC,CAAC,IAAIumB,GAAG,KAAK,CAAC,aAAa,CAACjM,EAAE9oB,EAAE,EAAE,QAAQ,YAAY,EAAE,IAAI,0CAA0C,EAAE8oB,EAAE,OAAO,QAAQ,aAAa,OAAO,OAAO,cAAc,YAAY,IAAI,yDAAyD,EAAE,KAAK,GAAG,OAAO,YAAY,CAAC,MAAM,YAAY,CAAC,IAAI1Z,EAAE,CAAC,EAAEV,EAAEwlB,GAAGD,GAAG,EAAEA,GAAGE,GAAG,QAAQtlB,EAAE,EAAEA,EAAE,KAAK,GAAG,OAAO,EAAEA,EAAE,CAAC,IAAIwB,EAAE,KAAK,GAAG,IAAIxB,CAAC,EAAE,GAAGwB,EAAE,WAAW3B,CAAC,GAAG2B,EAAE,SAAS,CAAC,EAAE,CAAC,IAAIC,EAAEokB,GAAGrkB,CAAC,EAAEjB,EAAEkB,CAAC,EAAE,KAAK,MAAM,KAAK,GAAG,QAAQD,CAAC,CAAC,CAAC,CAAC,CAAC,OAAOjB,CAAC,CAAC,MAAM,YAAYA,EAAE,CAACA,EAAEulB,GAAGvlB,CAAC,EAAE,IAAIV,EAAE8lB,GAAGplB,CAAC,EAAE,GAAG,KAAK,GAAG,QAAQV,EAAE,IAAI,GAAG,KAAK,MAAM,IAAI,MAAM,8BAA8BU,CAAC,GAAG,EAAE,IAAI,EAAE,KAAK,MAAM,KAAK,GAAG,QAAQV,EAAE,IAAI,CAAC,EAAE,OAAO+lB,GAAG/lB,CAAC,EAAE,CAAC,CAAC,EAAMsmB,GAAG,MAAMC,GAAG,MAAMzmB,EAAC,CAAC,aAAa,CAAC,KAAK,SAAS,CAAC,CAAC,CAAC,OAAO,aAAa,CAAC,OAAOA,GAAE,UAAU,OAAOA,GAAE,SAAS,IAAIA,IAAGA,GAAE,QAAQ,CAAC,OAAO,gBAAgB,EAAEE,EAAE,CAACoa,EAAE,GAAG,KAAK,IAAI,uCAAuC,EAAE,EAAE,SAASkM,EAAE,IAAI,EAAE,EAAE,MAAM,EAAE,EAAE,QAAQA,EAAE,CAAC,GAAGlM,EAAE,EAAE,OAAO,EAAE,IAAI,qCAAqC,EAAE,IAAIla,EAAEJ,GAAE,YAAY,EAAEsa,EAAEla,EAAE,SAAS,CAAC,GAAG,KAAK,IAAI,2DAA2D,CAAC,IAAI,EAAEA,EAAE,SAAS,CAAC,EAAEF,CAAC,CAAC,OAAO,WAAW,EAAE,CAAC,IAAIA,EAAEF,GAAE,YAAY,EAAE,SAAS,CAAC,EAAE,GAAGE,GAAG,KAAK,MAAM,IAAI,MAAM,yCAAyC,CAAC,GAAG,EAAE,OAAOA,CAAC,CAAC,OAAO,YAAY,CAAC,OAAO,OAAO,KAAKF,GAAE,YAAY,EAAE,QAAQ,CAAC,CAAC,EAAE,SAAS0mB,GAAG1mB,EAAE,CAAC,GAAGA,EAAE,QAAQwmB,EAAE,IAAI,GAAG,MAAM,IAAI,MAAM,6EAA6EC,GAAG,WAAW,EAAE,KAAK,GAAG,CAAC,EAAE,EAAE,MAAM,CAAC,OAAOzmB,EAAE,MAAMwmB,EAAE,EAAE,CAAC,EAAE,KAAKxmB,EAAE,MAAMwmB,EAAE,EAAE,CAAC,CAAC,CAAC,CAAC,eAAeG,GAAG3mB,EAAE,EAAEE,EAAE,GAAG,CAACoa,EAAEta,IAAI,EAAE,IAAI,wCAAwCA,CAAC,GAAG,EAAE,IAAII,EAAEqkB,GAAG,gBAAgBzkB,CAAC,EAAEsa,EAAEla,EAAE,OAAO,EAAE,IAAI,kEAAkEJ,CAAC,GAAG,EAAEsa,EAAEla,EAAE,OAAO,EAAE,IAAI,yCAAyCA,EAAE,MAAM,kCAAkCJ,CAAC,GAAG,EAAE,IAAIK,EAAED,EAAE,CAAC,EAAE,EAAEqkB,GAAG,gBAAgB,CAAC,EAAEnK,EAAE,EAAE,OAAO,EAAE,IAAI,uEAAuE,CAAC,GAAG,EAAEA,EAAE,EAAE,OAAO,EAAE,IAAI,yCAAyCla,EAAE,MAAM,uCAAuC,CAAC,GAAG,EAAE,IAAI,EAAE,EAAE,CAAC,EAAE2B,EAAE2kB,GAAG1mB,CAAC,EAAE,OAAOgC,EAAE0kB,GAAG1mB,CAAC,EAAE,KAAKiC,EAAEF,IAAI2kB,GAAG1mB,CAAC,EAAE,OAAO0C,EAAE,MAAMrC,EAAE,KAAK,EAAEH,GAAG+B,GAAG,MAAMwkB,GAAG,WAAW1kB,CAAC,EAAE,YAAYC,CAAC,EAAE,IAAIW,EAAE,MAAM,EAAE,KAAKD,CAAC,EAAE,OAAOxC,GAAG,CAAC+B,GAAG,MAAMwkB,GAAG,WAAW1kB,CAAC,EAAE,YAAYC,CAAC,EAAEW,EAAE,kBAAkB,CAAC,eAAeikB,IAAI,CAAC,IAAI5mB,EAAEymB,GAAG,WAAW,EAAE,EAAE,CAAC,EAAE,QAAQvmB,KAAKF,EAAE,CAAC,IAAII,EAAE,MAAMqmB,GAAG,WAAWvmB,CAAC,EAAE,WAAW,EAAE,QAAQG,KAAKD,EAAE,CAAC,IAAI,EAAEF,EAAEsmB,GAAGnmB,EAAE,EAAE,CAAC,EAAED,EAAEC,CAAC,CAAC,CAAC,CAAC,OAAO,CAAC,CAAC,eAAewmB,GAAG7mB,EAAE,CAAC,IAAI,EAAE0mB,GAAG1mB,CAAC,EAAE,OAAOymB,GAAG,WAAW,EAAE,MAAM,EAAE,YAAY,EAAE,IAAI,CAAC,CAAC,eAAeK,GAAG9mB,EAAE,EAAE,CAAC,OAAO2mB,GAAG3mB,EAAE,EAAE,EAAE,CAAC,CAAC,eAAe+mB,GAAG/mB,EAAE,EAAE,CAAC,OAAO2mB,GAAG3mB,EAAE,EAAE,EAAE,CAAC,CAAC,IAAIgnB,GAAG,KAAK,CAAC,aAAa,CAAC,KAAK,YAAY,mBAAmB,KAAK,aAAa,CAAC,EAAE,KAAK,oBAAoB,EAAE,KAAK,iBAAiB,EAAE,CAAC,MAAMpmB,EAAEV,EAAE,CAAC,OAAO,MAAMU,EAAEV,CAAC,CAAC,CAAC,KAAK,CAAC,OAAO,YAAY,IAAI,CAAC,CAAC,OAAOU,EAAEV,EAAE,CAAC,GAAGA,IAAI,SAASA,IAAI,OAAO,MAAM,IAAI,MAAM,kDAAkDA,CAAC,EAAE,EAAE,OAAO,KAAK,aAAa,OAAO,KAAK,YAAY,IAAI,aAAa,KAAK,YAAY,OAAOU,CAAC,CAAC,CAAC,OAAOA,EAAEV,EAAE,CAAC,OAAO,IAAI,YAAYA,CAAC,EAAE,OAAOU,CAAC,CAAC,CAAC,iBAAiBA,EAAEV,EAAE,CAAC,GAAG,OAAO,QAAQ,aAAa,CAAC1O,EAAE,EAAE,QAAQ,sBAAsB,EAAE,CAAC,WAAWoP,EAAEV,CAAC,EAAE,MAAM,CAAC,KAAK,aAAa,KAAKU,CAAC,EAAE,WAAW,IAAI,CAAC,OAAO,YAAY,CAAC,KAAK,KAAK,YAAY,MAAM,KAAK,aAAa,OAAO,CAAC,EAAE,GAAG,CAAC,EAAEV,CAAC,EAAE,KAAK,mBAAmB,KAAK,iBAAiB,GAAG,OAAO,iBAAiB,UAAU,GAAG,CAAC,GAAG,EAAE,SAAS,QAAQ,EAAE,KAAK,OAAO,KAAK,YAAY,CAAC,EAAE,gBAAgB,EAAE,IAAIG,EAAE,KAAK,aAAa,EAAE,KAAK,KAAK,EAAEA,EAAE,EAAE,KAAK,sBAAsB,KAAK,sBAAsB,KAAK,aAAa,SAAS,KAAK,aAAa,CAAC,EAAE,KAAK,oBAAoB,EAAE,CAAC,EAAE,EAAE,EAAE,CAAC,aAAaO,EAAE,CAAC,OAAO0d,GAAG1d,CAAC,CAAC,CAAC,EAAE,GAAGpP,EAAE,EAAE,IAAI,YAAY,EAAE,CAACA,EAAE,EAAE,YAAY,UAAU,IAAIw1B,EAAE,EAAE,GAAG,CAACP,GAAG,gBAAgBL,GAAG,WAAW,IAAIG,EAAE,CAAC,OAAOvmB,EAAE,CAAC,CAAC,GAAG,CAACymB,GAAG,gBAAgBrB,GAAG,WAAW,IAAII,EAAE,CAAC,OAAOxlB,EAAE,CAAC,CAAC,CAAC,IAAIinB,GAAG,CAAC,YAAY,IAAIlkB,GAAG,CAAC,EAAEmkB,GAAOC,GAAG,KAAK,CAAC,aAAa,CAAC,KAAK,KAAKnkB,GAAG,EAAE,KAAK,YAAY,IAAI,KAAK,KAAK,WAAW,CAAC,MAAMpC,EAAEV,EAAE,CAAC,OAAO1O,EAAE,EAAE,OAAO,OAAO,KAAKA,EAAE,EAAE,OAAO,MAAMoP,EAAEV,CAAC,GAAGgnB,IAAI,OAAOA,GAAGD,GAAG,YAAY,GAAGC,GAAGtmB,EAAEV,CAAC,EAAE,CAAC,KAAK,CAAC,IAAIU,EAAE,QAAQ,OAAO,EAAE,OAAOA,EAAE,CAAC,EAAE,IAAIA,EAAE,CAAC,EAAE,GAAG,CAAC,OAAOA,EAAEV,EAAE,CAAC,GAAGA,IAAI,SAASA,IAAI,OAAO,MAAM,IAAI,MAAM,sDAAsDA,CAAC,EAAE,EAAE,OAAO,KAAK,YAAY,OAAOU,CAAC,CAAC,CAAC,OAAOA,EAAEV,EAAE,CAAC,OAAOU,EAAE,SAAS,EAAE,GAAG,IAAI,KAAK,KAAK,YAAYV,CAAC,EAAE,OAAOU,CAAC,CAAC,CAAC,aAAaA,EAAE,CAAC,OAAO,KAAK,KAAK,MAAM,eAAeA,CAAC,GAAG,KAAK,KAAK,MAAM,aAAaA,CAAC,GAAG,KAAK,KAAK,MAAM,aAAaA,CAAC,GAAG,KAAK,KAAK,MAAM,oBAAoBA,CAAC,CAAC,CAAC,EAAEpP,EAAE,EAAE,IAAI,SAAS,GAAG,CAACA,EAAE,EAAE,IAAI,YAAY,GAAGA,EAAE,EAAE,YAAY,OAAO,IAAI21B,EAAE,EAAE,SAAS34B,GAAGwR,EAAE,EAAE,UAAUE,EAAE,CAAC,OAAO,EAAE,GAAG,UAAUwc,GAAG1c,CAAC,EAAE,IAAIpU,GAAGoU,EAAE,EAAEE,CAAC,CAAC,CAAC,SAASknB,GAAGpnB,EAAE,EAAE,CAAC,IAAIE,EAAEwiB,EAAE1iB,EAAE,IAAI,MAAM,EAAE,GAAG,CAACyb,GAAG,CAAC,EAAE,MAAM,IAAI,MAAM,mCAAmC,CAAC,EAAE,EAAE,GAAG,IAAI,UAAUvb,EAAE,QAAQ,UAAU,IAAI,UAAUA,EAAE,QAAQ,SAAS,MAAM,IAAI,MAAM,uCAAuC,EAAE,IAAIE,EAAE,CAAC,EAAEF,CAAC,EAAEG,EAAE,CAAC,MAAM,CAAC,EAAE,OAAOwhB,EAAE,UAAU5gC,GAAGmf,EAAEC,CAAC,CAAC,CAAC,IAAI3R,GAAE0I,EAAE,CAAC,MAAMgwB,EAAE,CAAC,EAAE,SAASC,GAAGrnB,EAAE,CAAC,IAAIE,EAAE,CAAC,EAAEwiB,EAAE1iB,EAAE,IAAI,QAAQ,mBAAmB,CAAC,EAAE,OAAO6hB,EAAE,UAAUn9B,GAAGwb,CAAC,CAAC,CAAC,IAAIrR,GAAGuI,EAAE,CAAC,OAAOiwB,EAAE,CAAC,EAAE,SAASvvB,GAAGkI,EAAE,EAAE,GAAG,CAAC,QAAQ,IAAIA,EAAE,SAAS,CAAC,CAAC,CAAC,CAACgiB,GAAG,EAAE,IAAIsF,GAAG,CAAC,OAAO94B,GAAG,KAAKE,GAAE,MAAMG,GAAG,MAAMiJ,EAAE,EAAE4oB,GAAG4G,EAAE,EAAE,SAASC,GAAGvnB,EAAE,EAAE,CAAC,IAAIE,EAAEwiB,EAAE1iB,EAAE,IAAI,KAAK,EAAEI,EAAEsiB,EAAE,EAAE,IAAI,KAAK,EAAE,CAACxiB,EAAEE,CAAC,EAAE4gB,GAAG9gB,EAAEE,CAAC,EAAE,IAAIC,EAAE,CAAC,EAAEH,EAAE,EAAEE,CAAC,EAAE,OAAOyhB,EAAE,UAAUpiC,GAAG4gB,CAAC,CAAC,CAAC,IAAIzT,EAAEwK,EAAE,CAAC,KAAKmwB,EAAE,CAAC,EAAE,SAASC,GAAGxnB,EAAE,EAAE,CAAC,IAAIE,EAAEwiB,EAAE1iB,EAAE,IAAI,UAAU,EAAEI,EAAEsiB,EAAE,EAAE,IAAI,UAAU,EAAE,CAACxiB,EAAEE,CAAC,EAAE4gB,GAAG9gB,EAAEE,CAAC,EAAE,IAAIC,EAAE,CAAC,EAAEH,EAAE,EAAEE,CAAC,EAAE,OAAOyhB,EAAE,UAAUh+B,GAAGwc,CAAC,CAAC,CAAC,IAAIhO,GAAG+E,EAAE,CAAC,UAAUowB,EAAE,CAAC,EAAE,SAASC,GAAGznB,EAAE,EAAE,CAAC,IAAIE,EAAEwiB,EAAE1iB,EAAE,IAAI,KAAK,EAAEI,EAAEsiB,EAAE,EAAE,IAAI,KAAK,EAAE,GAAG,CAACxiB,EAAEE,CAAC,EAAE4gB,GAAG9gB,EAAEE,CAAC,EAAEF,EAAE,QAAQ,SAASE,EAAE,QAAQ,QAAQ,OAAO/N,GAAG6N,EAAEE,CAAC,EAAE,IAAIC,EAAE,CAAC,EAAEH,EAAE,EAAEE,CAAC,EAAE,EAAE,CAAC,EAAE,OAAOyhB,EAAE,UAAUl5B,GAAG0X,EAAE,CAAC,CAAC,CAAC,IAAIxP,GAAGuG,EAAE,CAAC,KAAKqwB,EAAE,CAAC,EAAE,SAASC,GAAG1nB,EAAE,EAAE,CAAC,IAAIE,EAAEwiB,EAAE1iB,EAAE,IAAI,KAAK,EAAEI,EAAEsiB,EAAE,EAAE,IAAI,KAAK,EAAE,CAACxiB,EAAEE,CAAC,EAAE4gB,GAAG9gB,EAAEE,CAAC,EAAE,IAAIC,EAAE,CAAC,EAAEH,EAAE,EAAEE,CAAC,EAAE,OAAOyhB,EAAE,UAAU36B,GAAGmZ,CAAC,CAAC,CAAC,IAAI3J,EAAEU,EAAE,CAAC,KAAKswB,EAAE,CAAC,EAAE,SAASC,GAAG3nB,EAAE,CAAC,IAAI,EAAE0iB,EAAE1iB,EAAE,IAAI,KAAK,EAAE,GAAG,EAAE,QAAQ,YAAY,CAAC,IAAIE,EAAE,CAAC,EAAE,CAAC,EAAE,OAAO2hB,EAAE,UAAUxgC,GAAG6e,CAAC,CAAC,KAAK,CAAC,IAAIA,EAAE,CAAC,EAAE,CAAC,EAAE,OAAO2hB,EAAE,UAAU3iC,GAAGghB,CAAC,CAAC,CAAC,CAAC,IAAIzT,GAAG2K,EAAE,CAAC,KAAKuwB,EAAE,CAAC,EAAE,SAASC,GAAG5nB,EAAE,CAAC,IAAIE,EAAE,CAAC,EAAEwiB,EAAE1iB,EAAE,IAAI,MAAM,CAAC,EAAE,OAAO6hB,EAAE,UAAU1iC,GAAG+gB,CAAC,CAAC,CAAC,IAAIxT,GAAG0K,EAAE,CAAC,MAAMwwB,EAAE,CAAC,EAAE,SAASC,GAAG7nB,EAAE,CAAC,IAAIE,EAAE,CAAC,EAAEwiB,EAAE1iB,EAAE,IAAI,OAAO,CAAC,EAAE,OAAO6hB,EAAE,UAAUziC,GAAG8gB,CAAC,CAAC,CAAC,IAAIvT,GAAGyK,EAAE,CAAC,OAAOywB,EAAE,CAAC,EAAE,SAASC,GAAG9nB,EAAE,CAACsa,EAAE,MAAM,QAAQta,CAAC,EAAE,IAAI,4DAA4D,EAAEsa,EAAEta,EAAE,QAAQ,EAAE,IAAI,uDAAuDA,EAAE,MAAM,EAAE,EAAE,IAAI,EAAEA,EAAE,IAAI,CAACK,EAAE,IAAIqiB,EAAEriB,EAAE,UAAU,CAAC,GAAG,MAAM,CAAC,EAAEH,EAAE,EAAE,CAAC,EAAE,EAAE,QAAQG,GAAG,CAAC,GAAGA,EAAE,QAAQH,EAAE,MAAM,MAAM,IAAI,MAAM,0DAA0D,CAAC,CAAC,EAAE,EAAE,QAAQG,GAAG,CAAC,GAAG,CAACma,GAAGna,EAAE,MAAMH,EAAE,KAAK,EAAE,MAAM,IAAI,MAAM,0DAA0D,CAAC,CAAC,EAAE,IAAIE,EAAE,EAAE,OAAOyhB,EAAE,UAAUniC,GAAG0gB,CAAC,CAAC,CAAC,IAAIvT,GAAGuK,EAAE,CAAC,MAAM0wB,EAAE,CAAC,EAAE,SAASC,GAAG/nB,EAAE,EAAE,KAAKE,EAAE,GAAG,CAAC,IAAIG,EAAE,CAAC,EAAEqiB,EAAE1iB,EAAE,IAAI,MAAM,MAAM,CAAC,EAAE6B,EAAE,CAAC,KAAK,EAAE,SAAS3B,CAAC,EAAE,OAAO2hB,EAAE,UAAUliC,GAAG0gB,EAAEwB,CAAC,CAAC,CAAC,IAAI/U,GAAGsK,EAAE,CAAC,KAAK2wB,EAAE,CAAC,EAAE,SAASC,GAAGhoB,EAAE,EAAE,KAAKE,EAAE,GAAG,CAAC,IAAIG,EAAE,CAAC,EAAEqiB,EAAE1iB,EAAE,IAAI,MAAM,MAAM,CAAC,EAAE6B,EAAE,CAAC,KAAK,EAAE,SAAS3B,CAAC,EAAE,OAAO2hB,EAAE,UAAUjiC,GAAGygB,EAAEwB,CAAC,CAAC,CAAC,IAAI9U,GAAGqK,EAAE,CAAC,KAAK4wB,EAAE,CAAC,EAAE,SAASC,GAAGjoB,EAAE,EAAE,EAAE,CAAC,IAAI,EAAE,CAAC,EAAE0iB,EAAE1iB,EAAE,IAAI,QAAQ,CAAC,EAAEK,EAAE,CAAC,KAAK,CAAC,EAAE,OAAOwhB,EAAE,UAAUhiC,GAAG,EAAEwgB,CAAC,CAAC,CAAC,IAAIrT,GAAGoK,EAAE,CAAC,QAAQ6wB,EAAE,CAAC,EAAE,SAASC,GAAGloB,EAAE,EAAE,EAAE,CAAC,IAAI,EAAE,CAAC,EAAE0iB,EAAE1iB,EAAE,IAAI,QAAQ,CAAC,EAAEK,EAAE,CAAC,KAAK,CAAC,EAAE,OAAOwhB,EAAE,UAAU/hC,GAAG,EAAEugB,CAAC,CAAC,CAAC,IAAIpT,GAAGmK,EAAE,CAAC,QAAQ8wB,EAAE,CAAC,EAAE,SAASC,GAAGnoB,EAAE,CAAC,IAAIE,EAAE,CAAC,EAAEwiB,EAAE1iB,EAAE,IAAI,MAAM,CAAC,EAAE,OAAO6hB,EAAE,UAAU9hC,GAAGmgB,CAAC,CAAC,CAAC,IAAIhT,GAAGkK,EAAE,CAAC,MAAM+wB,EAAE,CAAC,EAAE,SAASC,GAAGpoB,EAAE,CAAC,IAAIE,EAAE,CAAC,EAAEwiB,EAAE1iB,EAAE,IAAI,OAAO,CAAC,EAAE,OAAO6hB,EAAE,UAAU7hC,GAAGkgB,CAAC,CAAC,CAAC,IAAI/S,GAAGiK,EAAE,CAAC,OAAOgxB,EAAE,CAAC,EAAE,SAASC,GAAGroB,EAAE,CAAC,IAAIE,EAAE,CAAC,EAAEwiB,EAAE1iB,EAAE,IAAI,MAAM,CAAC,EAAE,OAAO6hB,EAAE,UAAU5hC,GAAGigB,CAAC,CAAC,CAAC,IAAI9S,GAAGgK,EAAE,CAAC,MAAMixB,EAAE,CAAC,EAAE,SAASC,GAAGtoB,EAAE,EAAE,CAAC,IAAIE,EAAEwiB,EAAE1iB,EAAE,IAAI,OAAO,EAAEI,EAAEsiB,EAAE,EAAE,IAAI,OAAO,EAAE,CAACxiB,EAAEE,CAAC,EAAE4gB,GAAG9gB,EAAEE,CAAC,EAAE,IAAIC,EAAE,CAAC,EAAEH,EAAE,EAAEE,CAAC,EAAE,OAAOyhB,EAAE,UAAU3hC,GAAGmgB,CAAC,CAAC,CAAC,IAAIhT,GAAG+J,EAAE,CAAC,OAAOkxB,EAAE,CAAC,EAAE,SAASC,GAAGvoB,EAAE,CAAC,IAAIE,EAAE,CAAC,EAAEwiB,EAAE1iB,EAAE,IAAI,OAAO,CAAC,EAAE,OAAO6hB,EAAE,UAAU1hC,GAAG+f,CAAC,CAAC,CAAC,IAAI5S,GAAG8J,EAAE,CAAC,OAAOmxB,EAAE,CAAC,EAAE,SAASC,GAAGxoB,EAAE,EAAEE,EAAEE,EAAEC,EAAE,OAAO,EAAE,CAAC,IAAI,EAAEL,EAAE,CAAC,EAAE+B,EAAE,CAAC,GAAG,EAAE,CAAC,EAAEC,EAAEymB,GAAGpoB,CAAC,EAAE,OAAOqoB,GAAG1oB,EAAE+B,EAAE7B,EAAE,EAAEE,EAAE,KAAK,KAAK4B,CAAC,CAAC,CAAC,SAAS2mB,GAAG3oB,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,EAAE,eAAe,CAAC,GAAG,CAAC0B,EAAEC,CAAC,EAAE4mB,GAAG,CAAC,EAAE3mB,EAAE,GAAG,IAAI,eAAeA,EAAE,CAACF,EAAEC,EAAEhC,EAAE,CAAC,EAAEA,EAAE,CAAC,CAAC,UAAU,IAAI,gBAAgBiC,EAAE,CAACF,EAAEC,EAAEhC,EAAE,CAAC,EAAEA,EAAE,CAAC,CAAC,MAAO,OAAM,IAAI,MAAM,sBAAsB,CAAC,EAAE,EAAE,OAAO0oB,GAAG1oB,EAAEiC,EAAE/B,EAAEE,EAAEC,EAAE,EAAE,GAAG,CAAC,CAAC,CAAC,SAASwoB,GAAG7oB,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,EAAE,QAAQ,CAAC,GAAG,CAAC0B,EAAEC,EAAEC,CAAC,EAAE6mB,GAAG,CAAC,EAAEpmB,EAAEC,EAAE,GAAG,IAAI,QAAQA,EAAE,eAAeD,EAAE,CAACX,EAAEC,EAAEC,EAAEjC,EAAE,CAAC,EAAEA,EAAE,CAAC,CAAC,UAAU,IAAI,QAAQ2C,EAAE,gBAAgBD,EAAE,CAACX,EAAEC,EAAEC,EAAEjC,EAAE,CAAC,EAAEA,EAAE,CAAC,CAAC,MAAO,OAAM,IAAI,MAAM,sBAAsB,CAAC,EAAE,EAAE,OAAO+oB,GAAG/oB,EAAE0C,EAAExC,EAAEE,EAAEC,EAAE,GAAGsC,EAAE,CAAC,CAAC,CAAC,SAAS+lB,GAAG1oB,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,EAAE,GAAG0B,EAAE,eAAe,CAAC,GAAG,CAACC,EAAEC,EAAES,EAAEC,CAAC,EAAE,CAAC,GAAG,GAAG,GAAG,EAAE,EAAE,GAAGZ,IAAI,eAAe,CAACC,EAAEC,EAAES,EAAEC,CAAC,EAAE3C,UAAU+B,IAAI,gBAAgB,CAACC,EAAEW,EAAEV,EAAES,CAAC,EAAE1C,MAAO,OAAM,IAAI,MAAM,sBAAsB+B,CAAC,EAAE,EAAE,GAAG,CAACa,EAAEC,EAAE,CAACC,CAAC,EAAE,EAAE,CAACkB,EAAE,CAAC,EAAE4kB,GAAG1oB,CAAC,EAAE,CAACoH,EAAExC,CAAC,EAAE8jB,GAAGxoB,CAAC,EAAEqE,EAAEukB,GAAGpmB,EAAE0E,CAAC,EAAE5C,EAAEskB,GAAGnmB,EAAEiC,CAAC,EAAE,CAAC,QAAQH,EAAE,UAAUC,EAAE,SAASC,CAAC,EAAEokB,GAAG5oB,EAAE4B,EAAES,EAAEsB,EAAE,EAAES,EAAEC,EAAE,EAAE3C,CAAC,EAAEwF,EAAE,EAAEzE,EAAEH,EAAEG,EAAE,EAAE,OAAOf,IAAI,gBAAgB,EAAE,CAACC,EAAEuF,EAAE3C,EAAEC,CAAC,EAAE9C,IAAI,iBAAiB,EAAE,CAACC,EAAE4C,EAAEC,EAAE0C,CAAC,GAAG,CAAC,UAAUvF,EAAE,WAAWD,EAAE,SAASE,EAAE,QAAQS,EAAE,WAAWC,EAAE,UAAUiC,EAAE,SAASC,EAAE,YAAY0C,EAAE,QAAQ5C,EAAE,aAAaX,EAAE,YAAY,EAAE,aAAapB,EAAE,YAAYC,EAAE,sBAAsB4B,EAAE,qBAAqBC,EAAE,eAAe4C,EAAE,cAAcxC,EAAE,QAAQ9E,EAAE,SAAS,EAAE,YAAY,CAAC,CAAC,CAAC,SAAS+oB,GAAG/oB,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,GAAG,EAAE,eAAe0B,EAAE,CAAC,GAAG,CAACC,EAAEC,EAAES,EAAEC,EAAEC,CAAC,EAAE,CAAC,GAAG,GAAG,GAAG,GAAG,EAAE,EAAE,GAAG,IAAI,eAAe,CAACZ,EAAEC,EAAES,EAAEC,EAAEC,CAAC,EAAE5C,UAAU,IAAI,gBAAgB,CAACgC,EAAEY,EAAEX,EAAES,EAAEC,CAAC,EAAE3C,MAAO,OAAM,IAAI,MAAM,sBAAsB,CAAC,EAAE,EAAE,GAAG,CAAC6C,EAAEC,EAAEkB,EAAE,CAAC,CAAC,EAAE,EAAE,CAACsD,EAAExC,EAAEL,CAAC,EAAEqkB,GAAG5oB,CAAC,EAAE,CAACwE,EAAEC,EAAEC,CAAC,EAAEkkB,GAAG1oB,CAAC,EAAEyE,EAAEmkB,GAAGnmB,EAAE6B,CAAC,EAAE6C,EAAEyhB,GAAGlmB,EAAE6B,CAAC,EAAE,EAAEqkB,GAAGhlB,EAAEY,CAAC,EAAE,CAAC,QAAQI,EAAE,SAASC,EAAE,UAAUC,EAAE,SAASC,CAAC,EAAE+jB,GAAG7oB,EAAE4B,EAAES,EAAEC,EAAE2E,EAAExC,EAAEL,EAAEI,EAAE0C,EAAE,EAAExF,CAAC,EAAEqD,EAAE,EAAE,EAAExC,EAAE,EAAEyC,EAAE,OAAO,IAAI,gBAAgBA,EAAE,CAACrD,EAAEoD,EAAEH,EAAEC,EAAEC,CAAC,EAAE,IAAI,iBAAiBE,EAAE,CAACrD,EAAEiD,EAAEC,EAAEC,EAAEC,CAAC,GAAG,CAAC,UAAUpD,EAAE,WAAW,EAAE,QAAQC,EAAE,SAASS,EAAE,QAAQC,EAAE,WAAWC,EAAE,SAASqC,EAAE,UAAUC,EAAE,SAASC,EAAE,YAAYC,EAAE,QAAQJ,EAAE,YAAYsC,EAAE,aAAaxC,EAAE,YAAYL,EAAE,YAAY5B,EAAE,aAAaC,EAAE,YAAYkB,EAAE,qBAAqBa,EAAE,sBAAsB0C,EAAE,qBAAqB,EAAE,cAAc7C,EAAE,eAAeC,EAAE,cAAcC,EAAE,QAAQ5E,EAAE,SAASqF,EAAE,YAAY,CAAC,CAAC,CAAC,SAAS8jB,GAAGnpB,EAAE,EAAEE,EAAEE,EAAEC,EAAE,CAACD,GAAG,OAAOA,EAAEgpB,GAAGppB,EAAE,EAAEE,CAAC,GAAG,IAAI,EAAEF,EAAE,CAAC,EAAE,EAAEA,EAAE,CAAC,EAAE+B,EAAEsnB,IAAI,EAAE,EAAE,EAAEjpB,GAAGF,EAAE,EAAEG,CAAC,EAAE2B,EAAEqnB,IAAI,EAAE,EAAE,EAAEjpB,GAAGF,EAAE,EAAEG,CAAC,EAAE,MAAM,CAAC0B,EAAEC,CAAC,CAAC,CAAC,SAASsnB,GAAGtpB,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,CAACA,GAAG,OAAOA,EAAE+oB,GAAGppB,EAAE,EAAE,CAAC,EAAEI,EAAE,CAAC,CAAC,GAAG,IAAI,EAAE,CAAC,EAAE,EAAE,EAAEF,CAAC,EAAE,QAAQ6B,EAAE,EAAEA,EAAE,EAAEA,IAAI/B,EAAE+B,CAAC,EAAE,EAAE1B,GAAG,EAAE0B,CAAC,IAAI,EAAEA,CAAC,EAAEsnB,IAAIrpB,EAAE+B,CAAC,EAAE,EAAEA,CAAC,EAAE,EAAE1B,GAAGD,EAAE2B,CAAC,EAAE,EAAE,CAAC,GAAG,OAAO,CAAC,CAAC,SAASqnB,GAAGppB,EAAE,EAAEE,EAAEE,EAAE,EAAE,CAAC,IAAIC,EAAE2oB,GAAG,EAAE5oB,CAAC,EAAE,OAAO,KAAK,OAAOJ,EAAE,CAAC,GAAGE,EAAE,GAAGA,EAAEG,GAAG,CAAC,CAAC,CAAC,SAASuoB,GAAG5oB,EAAE,CAAC,OAAO,OAAOA,GAAG,SAAS,CAACA,EAAEA,EAAEA,CAAC,EAAEA,EAAE,SAAS,EAAE,CAACA,EAAE,CAAC,EAAEA,EAAE,CAAC,EAAE,CAAC,EAAEA,CAAC,CAAC,SAAS8oB,GAAG9oB,EAAE,CAAC,OAAO,OAAOA,GAAG,SAAS,CAACA,EAAEA,EAAEA,CAAC,EAAEA,CAAC,CAAC,SAASgpB,GAAGhpB,EAAE,EAAE,CAAC,OAAO,GAAG,EAAEA,EAAEA,GAAGA,EAAE,IAAI,EAAE,EAAE,CAAC,SAASipB,GAAGjpB,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,EAAE0B,EAAEC,EAAE,CAAC,IAAIC,EAAES,EAAEC,EAAE,GAAG,OAAO3C,GAAG,SAAS,CAACiC,EAAE,CAAC,IAAIjC,EAAE,OAAOA,EAAE,KAAKA,EAAE,MAAMA,EAAE,KAAKA,IAAI,EAAE,QAAQ,QAAQ,EAAE,IAAI6C,EAAEsmB,GAAG,CAAC,EAAEjpB,CAAC,EAAE,EAAEE,EAAEJ,EAAE+B,CAAC,EAAEW,EAAEG,EAAE,CAAC,EAAEF,EAAEE,EAAE,CAAC,CAAC,SAAS7C,IAAI,OAAO,CAAC0C,EAAE,KAAK,KAAK,EAAEtC,CAAC,EAAEuC,EAAE,KAAK,KAAKzC,EAAEG,CAAC,EAAE,IAAIuC,EAAE,KAAK,IAAI,GAAGF,EAAE,GAAGtC,EAAE,EAAE,CAAC,EAAEyC,EAAE,KAAK,IAAI,GAAGF,EAAE,GAAGtC,EAAE,EAAEH,CAAC,EAAE4C,EAAE,KAAK,MAAMF,EAAE,CAAC,EAAEoB,EAAEpB,EAAEE,EAAE,EAAE,KAAK,MAAMD,EAAE,CAAC,EAAEyE,EAAEzE,EAAE,EAAEZ,EAAE,CAAC,IAAIa,EAAE,OAAOkB,EAAE,KAAK,EAAE,MAAMsD,EAAE,KAAK,MAAM,CAAC,SAAStH,IAAI,QAAQiC,EAAE,CAAC,IAAI,EAAE,OAAO,EAAE,KAAK,EAAE,MAAM,EAAE,KAAK,OAAO,EAAES,EAAE,KAAK,MAAM,EAAE,EAAE,GAAGtC,CAAC,EAAEuC,EAAE,KAAK,MAAMzC,EAAE,EAAE,GAAGG,CAAC,UAAU,OAAOL,GAAG,SAAS,CAAC,IAAI4C,EAAEZ,IAAI,eAAehC,EAAE,CAAC,EAAE,CAAC,EAAEA,EAAE,CAAC,EAAE,CAAC,EAAE6C,EAAEb,IAAI,eAAehC,EAAE,CAAC,EAAE,CAAC,EAAEA,EAAE,CAAC,EAAE,CAAC,EAAE8C,EAAEd,IAAI,eAAehC,EAAE,CAAC,EAAE,CAAC,EAAEA,EAAE,CAAC,EAAE,CAAC,EAAEgE,EAAEhC,IAAI,eAAehC,EAAE,CAAC,EAAE,CAAC,EAAEA,EAAE,CAAC,EAAE,CAAC,EAAEiC,EAAE,CAAC,IAAIW,EAAE,OAAOC,EAAE,KAAKC,EAAE,MAAMkB,EAAE,KAAKpB,IAAI,GAAGC,IAAI,GAAGC,IAAI,GAAGkB,IAAI,EAAE,QAAQ,UAAU,EAAEtB,EAAE2mB,IAAI,EAAE,EAAEzmB,EAAEC,GAAGzC,EAAE,EAAE2B,CAAC,EAAEY,EAAE0mB,IAAInpB,EAAE,EAAE4C,EAAEkB,GAAG3D,EAAE,EAAE0B,CAAC,CAAC,KAAM,OAAM,MAAM,8BAA8B/B,CAAC,EAAE,EAAE,MAAM,CAAC,QAAQiC,EAAE,UAAUS,EAAE,SAASC,CAAC,CAAC,CAAC,SAASumB,GAAGlpB,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,EAAE0B,EAAEC,EAAEC,EAAES,EAAE,CAAC,IAAIC,EAAEC,EAAEC,EAAEC,EAAE,GAAG9C,IAAI,UAAUA,EAAE,GAAG,OAAOA,GAAG,SAAS,CAAC2C,EAAE,CAAC,IAAI3C,EAAE,OAAOA,EAAE,KAAKA,EAAE,MAAMA,EAAE,MAAMA,EAAE,KAAKA,EAAE,KAAKA,IAAI,EAAE,QAAQ,QAAQ,EAAE,IAAIiE,EAAEqlB,GAAG,CAAC,EAAEppB,EAAEE,EAAE,CAAC,EAAE,CAAC2B,EAAEC,EAAEC,CAAC,EAAE,EAAE,CAAC5B,EAAE,EAAE,CAAC,EAAEL,EAAE0C,CAAC,EAAEE,EAAEqB,EAAE,CAAC,EAAEpB,EAAEoB,EAAE,CAAC,EAAEnB,EAAEmB,EAAE,CAAC,CAAC,SAASjE,IAAI,OAAO,CAAC4C,EAAE,KAAK,KAAK,EAAEvC,CAAC,EAAEwC,EAAE,KAAK,KAAK3C,EAAE,CAAC,EAAE4C,EAAE,KAAK,KAAK1C,EAAE,CAAC,EAAE,IAAI4D,GAAGpB,EAAE,GAAGvC,EAAE0B,EAAE,EAAE,GAAGc,EAAE,GAAG,EAAEb,EAAE9B,EAAEoH,GAAGxE,EAAE,GAAG,EAAEb,EAAE7B,EAAE0E,EAAE,KAAK,MAAMd,EAAE,CAAC,EAAES,EAAET,EAAEc,EAAEJ,EAAE,KAAK,MAAM,EAAE,CAAC,EAAEC,EAAE,EAAED,EAAEE,EAAE,KAAK,MAAM0C,EAAE,CAAC,EAAEzC,EAAEyC,EAAE1C,EAAEjC,EAAE,CAAC,IAAI+B,EAAE,OAAOC,EAAE,KAAKC,EAAE,MAAMC,EAAE,MAAMC,EAAE,KAAKL,EAAE,KAAK,MAAM,CAAC,KAAM,OAAM,MAAM,8BAA8BzE,CAAC,EAAE,EAAE,MAAM,CAAC,QAAQ2C,EAAE,SAASC,EAAE,UAAUC,EAAE,SAASC,CAAC,CAAC,CAAC,SAASumB,GAAGrpB,EAAE,EAAE,CAAC,GAAG,CAAC,EAAE,OAAO,KAAK,MAAMA,CAAC,EAAE,OAAO,EAAE,CAAC,IAAI,QAAQ,OAAO,KAAK,MAAMA,CAAC,EAAE,IAAI,OAAO,OAAO,KAAK,KAAKA,CAAC,EAAE,IAAI,QAAQ,OAAO,KAAK,MAAMA,CAAC,EAAE,QAAQ,MAAM,IAAI,MAAM,wBAAwB,CAAC,EAAE,CAAC,CAAC,CAAC,SAASupB,GAAGvpB,EAAE,CAAC,GAAG,CAAC,EAAEE,EAAEE,CAAC,EAAEwoB,GAAG5oB,CAAC,EAAE,OAAO,IAAI,GAAGE,IAAI,GAAGE,IAAI,CAAC,CAAC,SAASopB,GAAGxpB,EAAE,EAAE,CAAC,OAAOupB,GAAGvpB,CAAC,GAAGupB,GAAG,CAAC,CAAC,CAAC,SAASE,GAAGzpB,EAAE,CAAC,OAAO4oB,GAAG5oB,CAAC,EAAE,MAAM,GAAG,EAAE,CAAC,CAAC,CAAC,SAASyoB,GAAGzoB,EAAE,CAAC,GAAGA,IAAI,OAAO,MAAM,eAAe,GAAGA,IAAI,OAAO,MAAM,gBAAgB,MAAM,IAAI,MAAM,sBAAsBA,CAAC,EAAE,CAAC,CAAC,SAAS0pB,GAAG1pB,EAAE,EAAEE,EAAE,CAAC,GAAGA,GAAG,KAAK,CAAC,GAAG,OAAO,GAAG,SAAS,MAAM,MAAM,YAAYF,CAAC,uDAAuDE,CAAC,gBAAgB,CAAC,GAAG,EAAE,GAAG,OAAO,GAAG,SAASoa,EAAEO,GAAG,CAAC,EAAE,IAAI,YAAY7a,CAAC,uDAAuDE,CAAC,gBAAgB,CAAC,GAAG,UAAU,OAAO,GAAG,SAAS,EAAE,QAAQE,GAAG,CAACA,EAAE,QAAQC,GAAG,CAACia,EAAEO,GAAGxa,CAAC,EAAE,IAAI,YAAYL,CAAC,uDAAuDE,CAAC,gBAAgBG,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,MAAO,OAAM,MAAM,YAAYL,CAAC,gCAAgC,CAAC,EAAE,CAAC,CAAC,CAAC,SAAS2pB,GAAG3pB,EAAE,EAAE,CAAC,IAAI,EAAE,CAAC,EAAE0iB,EAAE1iB,EAAE,IAAI,UAAU,mBAAmB,CAAC,EAAEK,EAAE,CAAC,MAAM,CAAC,EAAE,OAAOwhB,EAAE,UAAU74B,GAAG,EAAEqX,CAAC,CAAC,CAAC,IAAI9G,EAAEnC,EAAE,CAAC,SAASuyB,EAAE,CAAC,EAAE,SAASC,GAAG5pB,EAAE,EAAEE,EAAEE,EAAEC,EAAE,CAAC,IAAI,EAAEqiB,EAAE1iB,EAAE,IAAI,UAAU,SAAS,EAAE,EAAE,EAAEsa,EAAEkP,GAAGtpB,EAAE,CAAC,EAAE,IAAI,wEAAwEA,CAAC,mBAAmB,CAAC,GAAG,EAAE,IAAI6B,EAAE,EAAEC,EAAE,GAAG,EAAE,OAAO,IAAIA,EAAE,GAAGD,EAAExI,EAAE,EAAE,CAAC,EAAE,EAAE,MAAM,CAAC,EAAE,EAAE,MAAM,CAAC,EAAE,EAAE,MAAM,CAAC,CAAC,CAAC,GAAG+gB,EAAEvY,EAAE,OAAO,EAAE,IAAI,mDAAmDA,EAAE,IAAI,GAAG,EAAE2nB,GAAG,UAAUtpB,EAAEC,CAAC,EAAE,IAAI4B,EAAE,CAAC,EAAEF,CAAC,EAAEW,EAAE,CAAC,WAAW,EAAE,QAAQxC,EAAE,IAAIE,EAAE,gBAAgBC,CAAC,EAAEsC,EAAEkf,EAAE,UAAUzhC,GAAG6hB,EAAES,CAAC,EAAE,OAAOC,EAAEjU,GAAEiU,EAAE,EAAE,KAAK,EAAEX,EAAEzI,EAAEoJ,EAAE,CAACA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,CAAC,CAAC,EAAEA,CAAC,CAAC,IAAIpV,GAAG6J,EAAE,CAAC,SAASwyB,EAAE,CAAC,EAAE,SAASC,GAAG7pB,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,QAAQ,CAAC,IAAI,EAAEqiB,EAAE1iB,EAAE,IAAI,YAAY,SAAS,EAAE+B,EAAE,EAAEC,EAAE,GAAG,EAAE,OAAO,IAAIA,EAAE,GAAGD,EAAExI,EAAE,EAAE,CAAC,EAAE,EAAE,MAAM,CAAC,EAAE,EAAE,MAAM,CAAC,EAAE,EAAE,MAAM,CAAC,EAAE,EAAE,MAAM,CAAC,CAAC,CAAC,GAAG+gB,EAAEvY,EAAE,OAAO,EAAE,IAAI,qDAAqDA,EAAE,IAAI,GAAG,EAAEuY,EAAE,IAAI,QAAQ,IAAI,gFAAgF,CAAC,EAAE,EAAEA,EAAE,OAAOpa,GAAG,UAAUA,EAAE,GAAG,MAAM,QAAQA,CAAC,GAAGA,EAAE,CAAC,EAAE,GAAGA,EAAE,CAAC,EAAE,GAAGA,EAAE,CAAC,EAAE,EAAE,IAAI,oDAAoDA,CAAC,GAAG,EAAEwpB,GAAG,YAAYtpB,EAAEC,CAAC,EAAE,IAAI4B,EAAE,CAAC,EAAEF,CAAC,EAAEW,EAAE,CAAC,WAAW,EAAE,QAAQxC,EAAE,IAAIE,EAAE,gBAAgBC,EAAE,WAAW,CAAC,EAAEsC,EAAEkf,EAAE,UAAUxhC,GAAG4hB,EAAES,CAAC,EAAE,OAAOC,EAAEjU,GAAEiU,EAAEZ,EAAE,KAAK,EAAEC,EAAEzI,EAAEoJ,EAAE,CAACA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,CAAC,CAAC,EAAEA,CAAC,CAAC,IAAInV,GAAG4J,EAAE,CAAC,WAAWyyB,EAAE,CAAC,EAAE,SAASC,GAAG9pB,EAAE,EAAE,EAAE,CAACsa,EAAEta,EAAE,QAAQ,EAAE,IAAI,oCAAoC,EAAE,IAAIE,EAAEyiB,GAAG3iB,EAAE,UAAU,SAAS,mBAAmB,EAAE,GAAGE,EAAE,CAAC,EAAE,QAAQ,aAAaA,EAAE,QAAQ,GAAG,CAAC,GAAG,EAAE,QAAQ,YAAY,MAAM,IAAI,MAAM;AAAA,uBACrt3D,EAAE,KAAK,IAAI,CAAC,CAAC,EAAEA,EAAE,SAAS,EAAE,OAAOrR,GAAGqR,EAAE,CAAC,CAAC,EAAE,IAAIE,EAAEF,EAAEG,EAAE,CAAC,KAAK,CAAC,EAAE,OAAOwhB,EAAE,UAAUvgC,GAAG8e,EAAEC,CAAC,CAAC,CAAC,IAAItR,GAAGqI,EAAE,CAAC,QAAQ0yB,EAAE,CAAC,EAAE,SAASC,GAAG/pB,EAAE,EAAEE,EAAE,GAAGE,EAAE,GAAG,CAAC,IAAIC,EAAEqiB,EAAE1iB,EAAE,IAAI,QAAQ,EAAE,EAAE0iB,EAAE,EAAE,IAAI,QAAQ,EAAE,CAACriB,EAAE,CAAC,EAAE2gB,GAAG3gB,EAAE,CAAC,EAAE,IAAI,EAAE,CAAC,EAAEA,EAAE,EAAE,CAAC,EAAE0B,EAAE,CAAC,WAAW7B,EAAE,WAAWE,CAAC,EAAE,OAAOyhB,EAAE,UAAUphC,GAAG,EAAEshB,CAAC,CAAC,CAAC,IAAIxM,GAAG6B,EAAE,CAAC,QAAQ2yB,EAAE,CAAC,EAAE,SAASC,GAAGhqB,EAAE,CAAC,IAAIE,EAAE,CAAC,EAAEwiB,EAAE1iB,EAAE,IAAI,UAAU,SAAS,CAAC,EAAE,OAAO6hB,EAAE,UAAU93B,GAAGmW,CAAC,CAAC,CAAC,IAAIlF,GAAG5D,EAAE,CAAC,SAAS4yB,EAAE,CAAC,EAAE,SAASC,GAAGjqB,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAEsiB,EAAE1iB,EAAE,IAAI,QAAQ,mBAAmB,EAAE,GAAGI,EAAE,OAAO,EAAE,MAAM,IAAI,MAAM,gCAAgC,EAAE,IAAIC,EAAE,CAAC,EAAED,CAAC,EAAE,EAAE,CAAC,MAAM,EAAE,KAAKF,CAAC,EAAE,OAAO2hB,EAAE,UAAU13B,GAAGkW,EAAE,CAAC,CAAC,CAAC,IAAIhF,GAAGjE,EAAE,CAAC,OAAO6yB,EAAE,CAAC,EAAE,SAASC,GAAGlqB,EAAE,CAAC,IAAIE,EAAE,CAAC,EAAEwiB,EAAE1iB,EAAE,IAAI,OAAO,SAAS,CAAC,EAAE,OAAO6hB,EAAE,UAAUn2B,GAAGwU,CAAC,CAAC,CAAC,IAAIpD,GAAG1F,EAAE,CAAC,MAAM8yB,EAAE,CAAC,EAAE,SAASC,GAAGnqB,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,CAAC,IAAI,EAAEqiB,EAAE1iB,EAAE,aAAa,eAAe,EAAE+B,EAAE2gB,EAAE,EAAE,aAAa,eAAe,EAAE1gB,EAAE0gB,EAAExiB,EAAE,WAAW,eAAe,EAAE+B,EAAEygB,EAAEtiB,EAAE,OAAO,eAAe,EAAEsC,EAAEggB,EAAEriB,EAAE,IAAI,eAAe,EAAEsC,EAAE+f,EAAE,EAAE,IAAI,eAAe,EAAE9f,EAAE7T,GAAG,CAACkT,EAAEU,CAAC,EAAE,CAAC,EAAEE,EAAEtN,GAAGqN,EAAEb,CAAC,EAAEe,EAAElW,EAAEiW,EAAEb,CAAC,EAAEgC,EAAElB,EAAE,MAAM,CAAC,EAAE,EAAEA,EAAE,MAAM,CAAC,EAAE,EAAEwE,EAAE,CAACtD,EAAE,CAAC,EAAEc,EAAEzJ,GAAGyH,EAAE,CAAC,EAAE,CAAC,EAAEwE,CAAC,EAAE7C,EAAEpJ,GAAGyH,EAAE,CAAC,EAAE,CAAC,EAAEwE,CAAC,EAAE5C,EAAErJ,GAAGyH,EAAE,CAAC,EAAE,EAAE,CAAC,EAAEwE,CAAC,EAAE3C,EAAEtJ,GAAGyH,EAAE,CAAC,EAAE,EAAE,CAAC,EAAEwE,CAAC,EAAE1C,EAAEhY,EAAE8J,EAAEsE,GAAG8J,CAAC,EAAEhI,GAAG2H,CAAC,CAAC,EAAE/N,EAAEgM,EAAE1H,GAAGpO,EAAE,EAAE8X,CAAC,CAAC,CAAC,CAAC,EAAEG,EAAEnO,EAAEoG,GAAG8H,CAAC,EAAE5J,GAAG2J,CAAC,CAAC,EAAE,MAAM,CAACC,EAAEC,CAAC,CAAC,CAAC,IAAIlX,GAAGyJ,EAAE,CAAC,eAAe+yB,EAAE,CAAC,EAAE,SAASC,GAAGpqB,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAEsiB,EAAE1iB,EAAE,IAAI,gBAAgB,EAAEK,EAAE,EAAE,OAAO,CAAC0B,EAAEC,IAAID,EAAEC,CAAC,EAAEsY,EAAEla,EAAE,MAAM,EAAE,EAAE,OAAO,IAAI,iBAAiBA,EAAE,IAAI,2CAA2C,EAAE,MAAM,EAAE,EAAEka,EAAEpa,EAAE,SAAS,EAAE,OAAO,IAAI,mBAAmBA,EAAE,MAAM,8CAA8C,EAAE,MAAM,EAAE,EAAEoa,EAAEla,EAAE,MAAM,CAAC,EAAEC,IAAI,EAAE,IAAI,yBAAyBD,EAAE,MAAM,CAAC,CAAC,sEAAsE,EAAE,KAAK,KAAK,CAAC,QAAQC,CAAC,EAAE,EAAE,IAAI,EAAE,CAAC,EAAED,CAAC,EAAE,EAAE,CAAC,WAAW,EAAE,MAAMF,CAAC,EAAE,OAAO2hB,EAAE,UAAUnhC,GAAG,EAAE,CAAC,CAAC,CAAC,IAAIsN,GAAGoJ,EAAE,CAAC,gBAAgBgzB,EAAE,CAAC,EAAE,SAASC,GAAGrqB,EAAE,CAAC,IAAI,EAAE,OAAOA,EAAE,OAAO,GAAGA,EAAE,OAAO,EAAE,EAAEzG,EAAEyG,EAAE,CAAC,EAAE,EAAE,EAAEA,EAAE,IAAI,CAAC,EAAEA,EAAE,OAAO,EAAE,EAAEzG,EAAEyG,EAAE,CAAC,EAAE,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,CAAC,CAAC,EAAEA,EAAE,OAAO,EAAE,EAAEzG,EAAEyG,EAAE,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,CAAC,CAAC,EAAE,EAAEA,EAAE,CAAC,CAAC,SAASsqB,GAAGtqB,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,CAAC,GAAG,OAAO,EAAE,MAAM,IAAI,EAAEqiB,EAAE1iB,EAAE,IAAI,WAAW,EAAE+B,EAAE2gB,EAAE,EAAE,OAAO,WAAW,EAAE1gB,EAAE0gB,EAAExiB,EAAE,WAAW,WAAW,EAAE+B,EAAE5B,GAAG,OAAO4B,EAAEygB,EAAEriB,EAAE,QAAQ,WAAW,GAAG,IAAIqC,EAAEtC,GAAG,OAAOsC,EAAEggB,EAAEtiB,EAAE,SAAS,WAAW,GAAGka,EAAEvY,EAAE,OAAOC,EAAE,KAAK,IAAI,8EAA8E,EAAEsY,EAAE5X,GAAG,MAAMX,EAAE,OAAOW,EAAE,KAAK,IAAI,4EAA4E,EAAE4X,EAAErY,GAAG,MAAMF,EAAE,OAAOE,EAAE,KAAK,IAAI,2EAA2E,EAAE,IAAIW,EAAE,CAAC,EAAEynB,GAAG,CAAC,EAAE,MAAMpoB,EAAE,OAAOS,EAAE,KAAKX,EAAE,SAASC,CAAC,EAAEa,EAAE,CAAC,gBAAgB,CAAC,EAAEC,EAAE+e,EAAE,UAAU99B,GAAG6e,EAAEC,CAAC,EAAE,OAAOtJ,EAAEuJ,EAAE,EAAE,KAAK,CAAC,CAAC,IAAIlV,GAAGwJ,EAAE,CAAC,WAAWkzB,EAAE,CAAC,EAAE,SAASC,GAAGvqB,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,CAAC,IAAI,EAAEqiB,EAAE1iB,EAAE,IAAI,WAAW,EAAE+B,EAAE2gB,EAAE,EAAE,OAAO,WAAW,EAAE1gB,EAAE0gB,EAAExiB,EAAE,WAAW,WAAW,EAAE+B,EAAE5B,GAAG,OAAO4B,EAAEygB,EAAEriB,EAAE,QAAQ,WAAW,GAAG,IAAIqC,EAAE,OAAOtC,GAAG,OAAOsC,EAAEggB,EAAEtiB,EAAE,SAAS,WAAW,GAAGka,EAAE,EAAE,OAAO,EAAE,IAAI,uDAAuD,EAAE,IAAI,GAAG,EAAEA,EAAEvY,EAAE,OAAO,GAAGA,EAAE,OAAO,EAAE,IAAI,oEAAoEA,EAAE,IAAI,GAAG,EAAEuY,EAAEtY,EAAE,OAAO,GAAGA,EAAE,OAAO,EAAE,IAAI,wEAAwEA,EAAE,IAAI,GAAG,EAAEC,GAAG,MAAMqY,EAAErY,EAAE,OAAO,GAAGA,EAAE,OAAO,EAAE,IAAI,qEAAqEA,EAAE,IAAI,GAAG,EAAES,GAAG,MAAM4X,EAAE5X,EAAE,OAAO,GAAGA,EAAE,OAAO,EAAE,IAAI,sEAAsEA,EAAE,IAAI,GAAG,EAAE9U,GAAG,EAAEmU,EAAEC,EAAEU,EAAET,EAAE,CAAC,CAAC,CAAC,IAAIpU,GAAGuJ,EAAE,CAAC,aAAamzB,EAAE,CAAC,EAAE,SAASC,GAAGxqB,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,CAAC,IAAI,EAAEqiB,EAAE1iB,EAAE,IAAI,WAAW,EAAE+B,EAAE2gB,EAAE,EAAE,OAAO,WAAW,EAAE1gB,EAAE0gB,EAAExiB,EAAE,WAAW,WAAW,EAAE+B,EAAE5B,GAAG,OAAO4B,EAAEygB,EAAEriB,EAAE,QAAQ,WAAW,GAAG,IAAIqC,EAAE,OAAOtC,GAAG,OAAOsC,EAAEggB,EAAEtiB,EAAE,SAAS,WAAW,GAAGka,EAAE,EAAE,OAAO,EAAE,IAAI,uDAAuD,EAAE,IAAI,GAAG,EAAEA,EAAEvY,EAAE,OAAO,GAAGA,EAAE,OAAO,EAAE,IAAI,oEAAoEA,EAAE,IAAI,GAAG,EAAEuY,EAAEtY,EAAE,OAAO,GAAGA,EAAE,OAAO,EAAE,IAAI,wEAAwEA,EAAE,IAAI,GAAG,EAAEC,GAAG,MAAMqY,EAAErY,EAAE,OAAO,GAAGA,EAAE,OAAO,EAAE,IAAI,qEAAqEA,EAAE,IAAI,GAAG,EAAES,GAAG,MAAM4X,EAAE5X,EAAE,OAAO,GAAGA,EAAE,OAAO,EAAE,IAAI,sEAAsEA,EAAE,IAAI,GAAG,EAAE9U,GAAG,EAAEmU,EAAEC,EAAEU,EAAET,EAAE,CAAC,CAAC,CAAC,IAAInU,GAAGsJ,EAAE,CAAC,aAAaozB,EAAE,CAAC,EAAE,SAASC,GAAGzqB,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,CAAC,IAAI,EAAEqiB,EAAE1iB,EAAE,IAAI,WAAW,EAAE+B,EAAE2gB,EAAE,EAAE,OAAO,WAAW,EAAE1gB,EAAE0gB,EAAExiB,EAAE,WAAW,WAAW,EAAE+B,EAAE5B,GAAG,OAAO4B,EAAEygB,EAAEriB,EAAE,QAAQ,WAAW,GAAG,IAAIqC,EAAE,OAAOtC,GAAG,OAAOsC,EAAEggB,EAAEtiB,EAAE,SAAS,WAAW,GAAGka,EAAE,EAAE,OAAO,EAAE,IAAI,uDAAuD,EAAE,IAAI,GAAG,EAAEA,EAAEvY,EAAE,OAAO,GAAGA,EAAE,OAAO,EAAE,IAAI,oEAAoEA,EAAE,IAAI,GAAG,EAAEuY,EAAEtY,EAAE,OAAO,GAAGA,EAAE,OAAO,EAAE,IAAI,wEAAwEA,EAAE,IAAI,GAAG,EAAEC,GAAG,MAAMqY,EAAErY,EAAE,OAAO,GAAGA,EAAE,OAAO,EAAE,IAAI,qEAAqEA,EAAE,IAAI,GAAG,EAAES,GAAG,MAAM4X,EAAE5X,EAAE,OAAO,GAAGA,EAAE,OAAO,EAAE,IAAI,sEAAsEA,EAAE,IAAI,GAAG,EAAE9U,GAAG,EAAEmU,EAAEC,EAAEU,EAAET,EAAE,CAAC,CAAC,CAAC,IAAIlU,GAAGqJ,EAAE,CAAC,aAAaqzB,EAAE,CAAC,EAAE,SAASC,GAAG1qB,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAEsiB,EAAE1iB,EAAE,IAAI,UAAU,EAAEK,EAAEqiB,EAAE,EAAE,UAAU,UAAU,EAAEpI,EAAEla,EAAE,QAAQ,QAAQ,IAAI,yDAAyDA,EAAE,KAAK,EAAE,EAAEka,EAAEpa,GAAG,EAAE,IAAI,sCAAsCA,CAAC,GAAG,EAAEoa,EAAEja,EAAE,OAAOD,EAAE,MAAMC,EAAE,OAAO,EAAE,IAAI,gGAAgGD,EAAE,KAAK,oBAAoBC,EAAE,KAAK,GAAG,EAAE,IAAI,EAAE,CAAC,EAAED,EAAE,QAAQC,CAAC,EAAE,EAAE,CAAC,KAAKH,CAAC,EAAE,OAAO2hB,EAAE,UAAUlhC,GAAG,EAAE,CAAC,CAAC,CAAC,IAAIsN,GAAGmJ,EAAE,CAAC,UAAUszB,EAAE,CAAC,EAAE,SAASC,GAAG3qB,EAAE,EAAE,CAAC,IAAIE,EAAEwiB,EAAE1iB,EAAE,IAAI,YAAY,EAAEI,EAAEsiB,EAAE,EAAE,IAAI,YAAY,EAAE,GAAG,CAAClI,GAAGta,EAAE,MAAME,EAAE,KAAK,EAAE,MAAM,IAAI,MAAM,oDAAoDF,EAAE,KAAK,QAAQE,EAAE,KAAK,EAAE,EAAE,GAAGF,EAAE,QAAQ,SAASE,EAAE,QAAQ,QAAQ,MAAM,IAAI,MAAM,wEAAwEF,EAAE,KAAK,mBAAmBE,EAAE,KAAK,EAAE,EAAE,IAAIC,EAAE,CAAC,EAAEH,EAAE,EAAEE,CAAC,EAAE,OAAOyhB,EAAE,UAAUjhC,GAAGyf,CAAC,CAAC,CAAC,IAAInS,GAAGkJ,EAAE,CAAC,YAAYuzB,EAAE,CAAC,EAAE,SAASC,GAAG5qB,EAAE,EAAE,CAAC,IAAIE,EAAEwiB,EAAE1iB,EAAE,KAAK,gBAAgB,OAAO,EAAEI,EAAEsiB,EAAE,EAAE,KAAK,gBAAgB,OAAO,EAAE,GAAGxiB,EAAE,OAAO,EAAE,MAAM,IAAI,MAAM,oEAAoEA,EAAE,IAAI,EAAE,EAAE,GAAGE,EAAE,OAAO,EAAE,MAAM,IAAI,MAAM,qEAAqEA,EAAE,IAAI,EAAE,EAAE,IAAIC,EAAE,CAAC,GAAGH,EAAE,GAAGE,CAAC,EAAE,OAAOyhB,EAAE,UAAUhhC,GAAGwf,CAAC,CAAC,CAAC,IAAIjS,GAAGgJ,EAAE,CAAC,eAAewzB,EAAE,CAAC,EAAE,SAASC,GAAG7qB,EAAE,EAAE,CAAC,IAAIE,EAAEwiB,EAAE1iB,EAAE,cAAc,GAAG,EAAEI,EAAEF,EAAE,MAAM,GAAGwc,GAAG,CAAC,EAAE,EAAE,OAAOxc,EAAE,KAAK,MAAM,IAAI,MAAM,+BAA+B,EAAE,MAAM,iBAAiBA,EAAE,IAAI,GAAG,EAAE,GAAG,EAAE,OAAOA,EAAE,KAAK,CAAC,IAAI,EAAEA,EAAE,MAAM,MAAM,EAAE,KAAK,EAAE,OAAO,EAAE,QAAQ,EAAE,QAAQ,CAAC,EAAEA,EAAE3G,EAAE2G,EAAE,CAAC,CAAC,CAAC,IAAIG,EAAEH,EAAE,MAAM,EAAE,MAAM,KAAK,CAAC,EAAE,QAAQ,EAAE,EAAE,OAAO,EAAE,GAAG,EAAE,IAAI,GAAGG,EAAE,CAAC,IAAI,EAAE,CAAC,EAAE,EAAE,CAAC,EAAE,UAAUH,EAAE,MAAM,CAAC,IAAI,EAAE,MAAM,IAAI,MAAM,mBAAmBE,CAAC,6BAA6B,CAAC,IAAI,EAAE,GAAG,EAAE,IAAI,CAAC,EAAEsC,IAAI,EAAE,EAAEA,EAAE,EAAE,EAAE,OAAO,GAAG,GAAG,CAAC,EAAE,SAAS,EAAE,OAAO7T,GAAGqR,CAAC,EAAE,IAAI6B,EAAE,CAAC,EAAE7B,CAAC,EAAE8B,EAAE,CAAC,KAAK,CAAC,EAAE,OAAO6f,EAAE,UAAU/1B,GAAGiW,EAAEC,CAAC,CAAC,CAAC,IAAI3T,GAAG+I,EAAE,CAAC,aAAayzB,EAAE,CAAC,EAAE,SAASC,GAAG9qB,EAAE,CAAC,IAAIE,EAAE,CAAC,EAAEwiB,EAAE1iB,EAAE,IAAI,OAAO,SAAS,CAAC,EAAE,OAAO6hB,EAAE,UAAU3gC,GAAGgf,CAAC,CAAC,CAAC,IAAIvR,GAAGyI,EAAE,CAAC,MAAM0zB,EAAE,CAAC,EAAE,SAAS74B,GAAG+N,EAAE,EAAEE,EAAE,CAACwc,GAAG1c,CAAC,EAAEE,EAAEA,GAAG8b,GAAG,CAAC,EAAE,IAAI5b,EAAE,CAAC,MAAMJ,EAAE,MAAM,EAAE,MAAME,CAAC,EAAE,OAAO2hB,EAAE,UAAUn+B,GAAG,CAAC,EAAE0c,CAAC,CAAC,CAAC,SAAS2qB,GAAG/qB,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAEsiB,EAAE1iB,EAAE,IAAI,aAAa,EAAE,GAAGsa,EAAE,GAAGpa,EAAE,IAAI,uBAAuB,CAAC,wCAAwCA,CAAC,IAAI,EAAE,IAAIA,EAAE,OAAOjO,GAAGmO,EAAE,MAAM,EAAEA,EAAE,KAAK,EAAE,IAAIC,EAAE,CAAC,EAAED,CAAC,EAAE,EAAE,CAAC,aAAa,EAAE,aAAaF,CAAC,EAAE,OAAO2hB,EAAE,UAAU1gC,GAAGkf,EAAE,CAAC,CAAC,CAAC,IAAIzR,GAAGwI,EAAE,CAAC,aAAa2zB,EAAE,CAAC,EAAE,SAASC,GAAGhrB,EAAE,CAAC,OAAOjR,GAAGiR,EAAE,CAAC,CAAC,CAAC,IAAIhR,GAAGoI,EAAE,CAAC,UAAU4zB,EAAE,CAAC,EAAE,SAASC,GAAGjrB,EAAE,EAAE,CAAC,OAAOjR,GAAGiR,EAAE,CAAC,CAAC,CAAC,IAAI/Q,GAAGmI,EAAE,CAAC,UAAU6zB,EAAE,CAAC,EAAE,SAASC,GAAGlrB,EAAE,EAAE,CAAC,OAAOjR,GAAGiR,EAAE,CAAC,CAAC,CAAC,IAAI9Q,GAAGkI,EAAE,CAAC,UAAU8zB,EAAE,CAAC,EAAE,SAASC,GAAGnrB,EAAE,EAAE,CAAC,OAAOjR,GAAGiR,EAAE,CAAC,CAAC,CAAC,IAAI7Q,GAAGiI,EAAE,CAAC,UAAU+zB,EAAE,CAAC,EAAE,SAASC,GAAGprB,EAAE,EAAEE,EAAEE,EAAEC,EAAE,OAAO,EAAE,CAAC,EAAE,CAAC,EAAE,EAAE,CAAC,IAAI0B,EAAE2gB,EAAE1iB,EAAE,IAAI,SAAS,SAAS,EAAEgC,EAAE0gB,EAAE,EAAE,SAAS,SAAS,SAAS,EAAEzgB,EAAEF,EAAEW,EAAE,GAAGX,EAAE,OAAO,IAAIW,EAAE,GAAGT,EAAE1I,EAAEwI,EAAE,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,CAAC,CAAC,GAAGuY,EAAErY,EAAE,OAAO,EAAE,IAAI,uDAAuDA,EAAE,IAAI,GAAG,EAAEqY,EAAEtY,EAAE,OAAO,EAAE,IAAI,wDAAwDA,EAAE,IAAI,GAAG,EAAE0nB,GAAG,SAAStpB,EAAE,CAAC,EAAE,IAAIuC,EAAEtC,IAAI,OAAO4B,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEqY,EAAE3X,IAAIX,EAAE,MAAM,CAAC,EAAE,IAAI,oCAAoCW,CAAC,uCAAuCX,EAAE,MAAM,CAAC,CAAC,GAAG,EAAEsY,EAAEkP,GAAGtpB,EAAE,CAAC,EAAE,IAAI,uEAAuEA,CAAC,mBAAmB,CAAC,GAAG,EAAEoa,EAAEmP,GAAG,CAAC,EAAE,IAAI,yDAAyD,EAAEnP,EAAEmP,GAAGvpB,CAAC,EAAE,IAAI,mDAAmD,EAAE,IAAI0C,EAAE,CAAC,EAAEX,EAAE,OAAOD,CAAC,EAAEa,EAAE,CAAC,QAAQ3C,EAAE,IAAIE,EAAE,WAAWC,EAAE,UAAU,EAAE,gBAAgB,CAAC,EAAEyC,EAAE+e,EAAE,UAAUtgC,GAAGqhB,EAAEC,CAAC,EAAE,OAAOH,EAAEnJ,EAAEuJ,EAAE,CAACA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,CAAC,CAAC,EAAEA,CAAC,CAAC,IAAIxT,GAAG8H,EAAE,CAAC,QAAQg0B,EAAE,CAAC,EAAE,SAASC,GAAGrrB,EAAE,EAAEE,EAAEE,EAAEC,EAAE,MAAM,EAAE,EAAE,EAAE,CAAC,IAAI0B,EAAE2gB,EAAE1iB,EAAE,IAAI,QAAQ,EAAEgC,EAAE0gB,EAAE,EAAE,SAAS,QAAQ,EAAEzgB,EAAEF,EAAEW,EAAE,GAAGX,EAAE,OAAO,IAAIW,EAAE,GAAGT,EAAE1I,EAAEwI,EAAE,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,CAAC,CAAC,GAAGuY,EAAErY,EAAE,OAAO,EAAE,IAAI,uDAAuDA,EAAE,IAAI,GAAG,EAAEqY,EAAEtY,EAAE,OAAO,EAAE,IAAI,wDAAwDA,EAAE,IAAI,GAAG,EAAE0nB,GAAG,SAAStpB,EAAE,CAAC,EAAEka,EAAErY,EAAE,MAAM,CAAC,IAAID,EAAE,MAAM,CAAC,EAAE,IAAI,oCAAoCC,EAAE,MAAM,CAAC,CAAC,uCAAuCD,EAAE,MAAM,CAAC,CAAC,GAAG,EAAEsY,EAAEkP,GAAGtpB,EAAE,CAAC,EAAE,IAAI,oEAAoEA,CAAC,kBAAkB,CAAC,GAAG,EAAEoa,EAAEmP,GAAG,CAAC,EAAE,IAAI,yDAAyD,EAAEnP,EAAEmP,GAAGvpB,CAAC,EAAE,IAAI,kDAAkD,EAAEoa,EAAEja,IAAI,MAAM,IAAI,sCAAsCA,CAAC,uCAAuC,EAAE,IAAIsC,EAAEpJ,EAAEyI,EAAE,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,CAAC,CAAC,EAAEY,EAAErJ,EAAE0I,EAAE,CAACA,EAAE,MAAM,CAAC,EAAE,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,CAAC,CAAC,EAAEgC,EAAE3U,GAAGsT,EAAED,EAAE,CAAC,EAAEzC,CAAC,EAAEE,EAAE,OAAO,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,OAAOsC,EAAEnJ,EAAE0K,EAAE,CAACA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,CAAC,CAAC,EAAE1K,EAAE0K,EAAE,CAACA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,IAAI5U,GAAG+H,EAAE,CAAC,QAAQi0B,EAAE,CAAC,EAAE,SAASC,GAAGtrB,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,OAAO,EAAE,CAACia,EAAEta,EAAE,SAAS,EAAE,KAAK,IAAI,sBAAsBA,EAAE,MAAM,qBAAqB,EAAE,IAAI,cAAc,EAAE,IAAI+B,EAAE/B,EAAEgC,EAAE,EAAEC,EAAE,GAAG,EAAE,OAAO,IAAIA,EAAE,GAAGD,EAAEzI,EAAE,EAAE,CAAC,EAAE,EAAE,MAAM,CAAC,EAAE,EAAE,MAAM,CAAC,EAAE,EAAE,MAAM,CAAC,CAAC,CAAC,EAAEwI,EAAE,CAAC,EAAE/B,EAAE,CAAC,EAAEA,EAAE,CAAC,EAAEA,EAAE,CAAC,CAAC,GAAGsa,EAAEvY,EAAE,SAAS,EAAE,IAAI,qEAAqEA,EAAE,MAAM,GAAG,EAAEuY,EAAEtY,EAAE,OAAO,EAAE,IAAI,4DAA4DA,EAAE,IAAI,EAAE,EAAEsY,EAAEpa,EAAE,OAAO,EAAE,IAAI,gEAAgEA,EAAE,IAAI,EAAE,EAAE,IAAIwC,EAAE,IAAI,OAAOX,EAAE,CAAC,EAAEA,EAAE,CAAC,EAAEY,EAAE,IAAI,OAAOX,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEsY,EAAE5X,IAAIxC,EAAE,MAAM,CAAC,EAAE,IAAI,4CAA4CwC,CAAC,uCAAuCxC,EAAE,MAAM,CAAC,CAAC,GAAG,EAAEoa,EAAE3X,IAAIzC,EAAE,MAAM,CAAC,EAAE,IAAI,6CAA6CyC,CAAC,wCAAwCzC,EAAE,MAAM,CAAC,CAAC,GAAG,EAAEwpB,GAAG,iBAAiBrpB,EAAE,CAAC,EAAE,IAAIuC,EAAE,CAAC,GAAGZ,EAAE,OAAO9B,CAAC,EAAE2C,EAAE,CAAC,QAAQzC,EAAE,IAAIC,EAAE,WAAW,EAAE,gBAAgB,EAAE,WAAW0B,CAAC,EAAEe,EAAE+e,EAAE,UAAUpgC,GAAGmhB,EAAEC,CAAC,EAAE,OAAOZ,EAAE1I,EAAEuJ,EAAE,CAACA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,CAAC,CAAC,EAAEA,CAAC,CAAC,IAAIyoB,GAAGn0B,EAAE,CAAC,qBAAqBk0B,EAAE,CAAC,EAAE,SAASE,GAAGxrB,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,CAAC,IAAI,EAAEqiB,EAAE1iB,EAAE,IAAI,iBAAiB,EAAE+B,EAAE2gB,EAAE,EAAE,SAAS,iBAAiB,EAAE,OAAO6I,GAAGrrB,EAAE,EAAE6B,EAAE3B,EAAEC,EAAE,OAAO,CAAC,CAAC,CAAC,IAAI9Q,GAAG6H,EAAE,CAAC,iBAAiBo0B,EAAE,CAAC,EAAE,SAASC,GAAGzrB,EAAE,EAAEE,EAAEE,EAAEC,EAAE,QAAQ,EAAE,CAAC,EAAE,EAAE,CAAC,EAAE,CAAC,IAAI,EAAEqiB,EAAE1iB,EAAE,IAAI,QAAQ,EAAE+B,EAAE2gB,EAAE,EAAE,SAAS,QAAQ,EAAE1gB,EAAE,EAAEC,EAAE,GAAG,EAAE,OAAO,IAAIA,EAAE,GAAGD,EAAEzI,EAAE,EAAE,CAAC,EAAE,EAAE,MAAM,CAAC,EAAE,EAAE,MAAM,CAAC,EAAE,EAAE,MAAM,CAAC,EAAE,EAAE,MAAM,CAAC,CAAC,CAAC,GAAG+gB,EAAEtY,EAAE,OAAO,EAAE,IAAI,uDAAuDA,EAAE,IAAI,GAAG,EAAEsY,EAAEvY,EAAE,OAAO,EAAE,IAAI,wDAAwDA,EAAE,IAAI,GAAG,EAAEuY,EAAEtY,EAAE,MAAM,CAAC,IAAID,EAAE,MAAM,CAAC,EAAE,IAAI,oCAAoCC,EAAE,MAAM,CAAC,CAAC,uCAAuCD,EAAE,MAAM,CAAC,CAAC,GAAG,EAAEuY,EAAEkP,GAAGtpB,EAAE,CAAC,EAAE,IAAI,uEAAuEA,CAAC,mBAAmB,CAAC,GAAG,EAAEoa,EAAEja,IAAI,QAAQ,IAAI,sCAAsCA,CAAC,yCAAyC,EAAEia,EAAEmP,GAAG,CAAC,EAAE,IAAI,yDAAyD,EAAEnP,EAAEmP,GAAGvpB,CAAC,EAAE,IAAI,mDAAmD,EAAE,IAAIwC,EAAE,CAAC,EAAEV,EAAE,OAAOD,CAAC,EAAEY,EAAE,CAAC,QAAQzC,EAAE,IAAIE,EAAE,WAAWC,EAAE,UAAU,CAAC,EAAEuC,EAAEif,EAAE,UAAUngC,GAAGghB,EAAEC,CAAC,EAAE,OAAOV,EAAE1I,EAAEqJ,EAAE,CAACA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,CAAC,CAAC,EAAEA,CAAC,CAAC,IAAIpT,GAAG4H,EAAE,CAAC,QAAQq0B,EAAE,CAAC,EAAE,SAASC,GAAG1rB,EAAE,EAAEE,EAAEE,EAAEC,EAAE,CAACia,EAAEta,EAAE,SAAS,EAAE,KAAK,IAAI,sBAAsBA,EAAE,MAAM,qBAAqB,EAAE,IAAI,cAAc,EAAE,IAAI,EAAEA,EAAE,EAAE,EAAE+B,EAAE,GAAG,EAAE,OAAO,IAAIA,EAAE,GAAG,EAAExI,EAAE,EAAE,CAAC,EAAE,EAAE,MAAM,CAAC,EAAE,EAAE,MAAM,CAAC,EAAE,EAAE,MAAM,CAAC,EAAE,EAAE,MAAM,CAAC,CAAC,CAAC,EAAE,EAAE,CAAC,EAAEyG,EAAE,CAAC,EAAEA,EAAE,CAAC,EAAEA,EAAE,CAAC,EAAEA,EAAE,CAAC,CAAC,GAAG,IAAIgC,EAAE,EAAE,CAAC,EAAEC,EAAE,EAAE,MAAM,CAAC,EAAEqY,EAAE,EAAE,SAAS,EAAE,IAAI,qEAAqE,EAAE,MAAM,GAAG,EAAEA,EAAE,EAAE,OAAO,EAAE,IAAI,4DAA4D,EAAE,IAAI,EAAE,EAAEA,EAAEpa,EAAE,OAAO,EAAE,IAAI,gEAAgEA,EAAE,IAAI,EAAE,EAAEoa,EAAEtY,IAAI9B,EAAE,MAAM,CAAC,EAAE,IAAI,4CAA4C8B,CAAC,uCAAuC9B,EAAE,MAAM,CAAC,CAAC,GAAG,EAAEoa,EAAErY,IAAI/B,EAAE,MAAM,CAAC,EAAE,IAAI,6CAA6C+B,CAAC,wCAAwC/B,EAAE,MAAM,CAAC,CAAC,GAAG,EAAE,IAAIwC,EAAE,CAAC,GAAG,EAAE,OAAOxC,CAAC,EAAEyC,EAAE,CAAC,IAAItC,EAAE,QAAQD,EAAE,WAAW,CAAC,EAAEwC,EAAEif,EAAE,UAAUjgC,GAAG8gB,EAAEC,CAAC,EAAE,OAAOZ,EAAExI,EAAEqJ,EAAE,CAACA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,CAAC,CAAC,EAAEA,CAAC,CAAC,IAAI+oB,GAAGv0B,EAAE,CAAC,qBAAqBs0B,EAAE,CAAC,EAAE,SAASE,GAAG5rB,EAAE,EAAEE,EAAEE,EAAEC,EAAE,CAAC,IAAI,EAAEqiB,EAAE1iB,EAAE,IAAI,iBAAiB,EAAE,EAAE0iB,EAAE,EAAE,SAAS,iBAAiB,EAAE,OAAOiJ,GAAGzrB,EAAE,EAAE,EAAEE,EAAEC,CAAC,CAAC,CAAC,IAAI5Q,GAAG2H,EAAE,CAAC,iBAAiBw0B,EAAE,CAAC,EAAE,SAASC,GAAG7rB,EAAE,CAAC,IAAIE,EAAE,CAAC,EAAEwiB,EAAE1iB,EAAE,IAAI,MAAM,SAAS,CAAC,EAAE,OAAO6hB,EAAE,UAAUhgC,GAAGqe,CAAC,CAAC,CAAC,IAAIvQ,GAAGyH,EAAE,CAAC,KAAKy0B,EAAE,CAAC,EAAE,SAASC,GAAG9rB,EAAE,CAAC,IAAIE,EAAE,CAAC,EAAEwiB,EAAE1iB,EAAE,IAAI,OAAO,SAAS,CAAC,EAAE,OAAO6hB,EAAE,UAAU//B,GAAGoe,CAAC,CAAC,CAAC,IAAItQ,GAAGwH,EAAE,CAAC,MAAM00B,EAAE,CAAC,EAAE,SAASC,GAAG/rB,EAAE,EAAE,EAAEE,EAAE,GAAGE,EAAE,GAAG,CAAC,IAAIyB,EAAE,CAAC,EAAE6gB,EAAE1iB,EAAE,IAAI,SAAS,CAAC,EAAE8B,EAAE,CAAC,KAAK,EAAE,UAAU5B,EAAE,QAAQE,CAAC,EAAE,OAAOyhB,EAAE,UAAU7/B,GAAG6f,EAAEC,CAAC,CAAC,CAAC,IAAIhS,GAAGsH,EAAE,CAAC,SAAS20B,EAAE,CAAC,EAAE,SAASC,GAAGhsB,EAAE,EAAE,EAAEE,EAAE,GAAGE,EAAE,GAAG,CAAC,IAAIyB,EAAE,CAAC,EAAE6gB,EAAE1iB,EAAE,IAAI,QAAQ,CAAC,EAAE8B,EAAE,CAAC,KAAK,EAAE,UAAU5B,EAAE,QAAQE,CAAC,EAAE,OAAOyhB,EAAE,UAAU5/B,GAAG4f,EAAEC,CAAC,CAAC,CAAC,IAAI/R,GAAGqH,EAAE,CAAC,QAAQ40B,EAAE,CAAC,EAAE,SAASC,GAAGjsB,EAAE,EAAEE,EAAEE,EAAE,GAAG,CAAC,IAAIC,EAAEqiB,EAAE1iB,EAAE,IAAI,eAAe,EAAE,EAAE0iB,EAAE,EAAE,UAAU,eAAe,EAAEpI,EAAEja,EAAE,QAAQ,QAAQ,IAAI,8DAA8DA,EAAE,KAAK,EAAE,EAAEia,EAAEja,EAAE,MAAM,EAAE,IAAI,sEAAsEA,EAAE,IAAI,GAAG,EAAEia,EAAEpa,GAAG,EAAE,IAAI,sCAAsCA,CAAC,GAAG,EAAEoa,EAAE,EAAE,OAAOja,EAAE,MAAM,EAAE,OAAO,EAAE,IAAI,+FAA+FA,EAAE,KAAK,oBAAoB,EAAE,KAAK,GAAG,EAAE,IAAI,EAAE,CAAC,EAAEA,EAAE,QAAQ,CAAC,EAAE0B,EAAE,CAAC,KAAK7B,EAAE,aAAaE,CAAC,EAAE,OAAOyhB,EAAE,UAAUz/B,GAAG,EAAE2f,CAAC,CAAC,CAAC,IAAI7R,GAAGkH,EAAE,CAAC,eAAe60B,EAAE,CAAC,EAAE,SAASC,GAAGlsB,EAAE,EAAEE,EAAE,OAAO,CAAC,IAAIE,EAAEsiB,EAAE1iB,EAAE,IAAI,eAAe,SAAS,EAAEK,EAAEH,IAAI,OAAOE,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAE,EAAEF,IAAI,OAAOE,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAE,EAAEF,IAAI,OAAOE,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEka,EAAE,EAAE,EAAE,IAAI,sDAAsD,CAAC,EAAE,EAAEA,EAAEja,EAAE,GAAG,EAAE,IAAI;AAAA,MAC5sbA,CAAC,QAAQ,CAAC;AAAA,MACVD,EAAE,KAAK,EAAE,EAAEka,EAAE,EAAE,GAAG,EAAE,IAAI;AAAA,MACxB,CAAC,QAAQ,CAAC;AAAA,UACNla,EAAE,KAAK,EAAE,EAAEka,EAAE,GAAG,EAAE,KAAK,EAAE,IAAI,8CAA8C,EAAE,CAAC,WAAW,CAAC,sCAAsCla,EAAE,KAAK,EAAE,EAAE,IAAI2B,EAAE,CAAC,EAAE3B,CAAC,EAAE4B,EAAE,CAAC,UAAU,EAAE,WAAW9B,CAAC,EAAE,OAAO2hB,EAAE,UAAUx/B,GAAG0f,EAAEC,CAAC,CAAC,CAAC,IAAI5R,GAAGgH,EAAE,CAAC,cAAc80B,EAAE,CAAC,EAAE,SAASC,GAAGnsB,EAAE,EAAEE,EAAEE,EAAEC,EAAE,OAAO,EAAE,CAAC,EAAE,CAAC,EAAE,EAAE,CAAC,IAAI0B,EAAE2gB,EAAE1iB,EAAE,IAAI,kBAAkB,SAAS,EAAEgC,EAAE0gB,EAAE,EAAE,SAAS,kBAAkB,SAAS,EAAEzgB,EAAEF,EAAEW,EAAE,GAAGX,EAAE,OAAO,IAAIW,EAAE,GAAGT,EAAE1I,EAAEwI,EAAE,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,CAAC,CAAC,GAAGuY,EAAErY,EAAE,OAAO,EAAE,IAAI,gEAAgEA,EAAE,IAAI,GAAG,EAAEqY,EAAEtY,EAAE,OAAO,EAAE,IAAI,iEAAiEA,EAAE,IAAI,GAAG,EAAE,IAAIW,EAAEtC,IAAI,OAAO4B,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEqY,EAAE3X,IAAIX,EAAE,MAAM,CAAC,EAAE,IAAI,uDAAuDW,CAAC,mDAAmDX,EAAE,MAAM,CAAC,CAAC,GAAG,EAAE0nB,GAAG,kBAAkBtpB,EAAE,CAAC,EAAE,IAAIwC,EAAE,CAAC,EAAEX,EAAE,OAAOD,CAAC,EAAEa,EAAE,CAAC,QAAQ3C,EAAE,IAAIE,EAAE,WAAWC,EAAE,UAAU,EAAE,gBAAgB,CAAC,EAAEyC,EAAE+e,EAAE,UAAUv/B,GAAGsgB,EAAEC,CAAC,EAAE,OAAOH,EAAEnJ,EAAEuJ,EAAE,CAACA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,CAAC,CAAC,EAAEA,CAAC,CAAC,IAAIzS,GAAG+G,EAAE,CAAC,iBAAiB+0B,EAAE,CAAC,EAAE,SAASC,GAAGpsB,EAAE,CAAC,IAAIE,EAAE,CAAC,EAAEwiB,EAAE1iB,EAAE,IAAI,MAAM,CAAC,EAAE,OAAO6hB,EAAE,UAAUp/B,GAAGyd,CAAC,CAAC,CAAC,IAAI1P,GAAG4G,EAAE,CAAC,MAAMg1B,EAAE,CAAC,EAAE,SAASC,GAAGrsB,EAAE,EAAEE,EAAEE,EAAEC,EAAE,CAAC,EAAE,CAAC,EAAE,EAAE,OAAO,CAAC,IAAI,EAAEqiB,EAAE1iB,EAAE,IAAI,YAAY,EAAE+B,EAAE2gB,EAAE,EAAE,SAAS,YAAY,EAAEpI,EAAE,EAAE,OAAO,GAAG,EAAE,OAAO,EAAE,IAAI,gEAAgE,EAAE,IAAI,GAAG,EAAEA,EAAEvY,EAAE,OAAO,EAAE,IAAI,4DAA4DA,EAAE,IAAI,GAAG,EAAEuY,EAAE,IAAI,OAAO,IAAI,gFAAgF,CAAC,EAAE,EAAE,IAAItY,EAAE,EAAEC,EAAE,GAAG,EAAE,OAAO,IAAID,EAAEzI,EAAE,EAAE,CAAC,EAAE,EAAE,MAAM,CAAC,EAAE,EAAE,MAAM,CAAC,EAAE,EAAE,MAAM,CAAC,CAAC,CAAC,EAAE0I,EAAE,IAAIqY,EAAEtY,EAAE,MAAM,CAAC,IAAID,EAAE,MAAM,CAAC,EAAE,IAAI,oEAAoEC,EAAE,MAAM,CAAC,CAAC,OAAOD,EAAE,MAAM,CAAC,CAAC,EAAE,EAAE,IAAIW,EAAE,CAAC,EAAEV,EAAE,OAAOD,CAAC,EAAEY,EAAE,CAAC,QAAQzC,EAAE,IAAIE,EAAE,UAAUC,CAAC,EAAEuC,EAAEif,EAAE,UAAUn/B,GAAGggB,EAAEC,CAAC,EAAE,OAAOV,EAAE1I,EAAEqJ,EAAE,CAACA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,CAAC,CAAC,EAAEA,CAAC,CAAC,IAAInS,GAAG2G,EAAE,CAAC,YAAYi1B,EAAE,CAAC,EAAM/9B,GAAG,CAAC,EAAE2R,GAAG3R,GAAG,CAAC,2BAA2B,IAAIg+B,GAAG,iBAAiB,IAAIC,GAAG,iBAAiB,IAAIC,EAAE,CAAC,EAAE,SAASD,GAAGvsB,EAAE,EAAE,CAAC,IAAIE,EAAEF,EAAE,OAAOI,EAAE,CAAC,EAAE,QAAQC,EAAE,EAAEA,EAAEH,EAAEG,IAAI,CAAC,IAAI,EAAEH,EAAE,EAAEG,EAAE,EAAEL,EAAE,CAAC,GAAG,GAAG,EAAE,EAAE,OAAO,EAAEK,CAAC,GAAG,GAAG,GAAG,IAAI,GAAGD,EAAE,QAAQ,CAAC,CAAC,CAAC,OAAOA,CAAC,CAAC,SAASosB,GAAGxsB,EAAE,EAAE,CAAC,IAAIE,EAAE,CAAC,EAAE,QAAQE,EAAE,EAAEA,EAAE,EAAE,OAAOA,IAAI,CAAC,IAAIC,EAAEL,EAAEA,EAAE,OAAOI,EAAE,CAAC,EAAE,EAAE,EAAE,OAAOA,EAAE,EAAE,EAAE,EAAE,CAAC,GAAGC,GAAG,MAAMA,IAAI,GAAG,EAAE,IAAIH,EAAE,QAAQ,CAAC,CAAC,CAAC,OAAOA,CAAC,CAAC,SAASosB,GAAGtsB,EAAE,EAAE,CAAC,IAAIE,EAAE,KAAK,IAAIF,EAAE,OAAO,EAAE,MAAM,EAAEI,EAAE,IAAI,MAAMF,CAAC,EAAE,QAAQG,EAAE,EAAEA,EAAEH,EAAEG,IAAI,CAAC,IAAI,EAAEL,EAAEA,EAAE,OAAOK,EAAE,CAAC,EAAE,GAAG,OAAO,EAAE,GAAG,IAAI,EAAE,EAAE,EAAE,OAAOA,EAAE,CAAC,EAAE,GAAG,GAAG,OAAO,EAAE,GAAG,IAAI,EAAED,EAAEF,EAAEG,EAAE,CAAC,EAAE,UAAU,IAAI,EAAED,EAAEF,EAAEG,EAAE,CAAC,EAAE,UAAU,IAAI,EAAE,CAAC,IAAI0B,EAAE,wDAAwD/B,CAAC,QAAQ,CAAC,IAAI,MAAM,MAAM+B,CAAC,CAAC,MAAM3B,EAAEF,EAAEG,EAAE,CAAC,EAAE,CAAC,CAAC,OAAOD,CAAC,CAAC,SAASqsB,GAAGzsB,EAAE,EAAE,CAAC,IAAIE,EAAEwiB,EAAE1iB,EAAE,IAAI,QAAQ,mBAAmB,EAAEI,EAAEsiB,EAAE,EAAE,IAAI,QAAQ,mBAAmB,EAAE,CAACxiB,EAAEE,CAAC,EAAE4gB,GAAG9gB,EAAEE,CAAC,EAAEksB,GAAGpsB,EAAE,MAAME,EAAE,KAAK,EAAE,IAAIC,EAAE,CAAC,EAAEH,EAAE,EAAEE,CAAC,EAAE,OAAOyhB,EAAE,UAAUz+B,GAAGid,CAAC,CAAC,CAAC,IAAI5O,GAAG2F,EAAE,CAAC,OAAOq1B,EAAE,CAAC,EAAE,SAASC,GAAG1sB,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAEsiB,EAAE,EAAE,IAAI,OAAO,EAAEriB,EAAEqiB,EAAExiB,EAAE,IAAI,OAAO,EAAE,EAAEwiB,EAAE1iB,EAAE,YAAY,QAAQ,MAAM,EAAE,EAAEssB,GAAGA,GAAG,EAAE,MAAMlsB,EAAE,KAAK,EAAEC,EAAE,KAAK,EAAE0B,EAAE1T,GAAG,EAAE,CAAC,EAAE2T,EAAE3T,GAAG+R,EAAE,CAAC,EAAE6B,EAAE5T,GAAGgS,EAAE,CAAC,EAAEqC,EAAE,CAAC,UAAUX,EAAE,EAAEC,EAAE,EAAEC,CAAC,EAAE,OAAO4f,EAAE,UAAUj4B,GAAG8Y,CAAC,CAAC,CAAC,IAAIrD,GAAGjI,EAAE,CAAC,OAAOs1B,EAAE,CAAC,EAAE,SAASC,GAAG3sB,EAAE,CAAC,IAAIE,EAAE,CAAC,EAAEwiB,EAAE1iB,EAAE,IAAI,WAAW,CAAC,EAAE,OAAO6hB,EAAE,UAAUt1B,GAAG2T,CAAC,CAAC,CAAC,IAAIV,GAAGpI,EAAE,CAAC,WAAWu1B,EAAE,CAAC,EAAE,SAASC,GAAG5sB,EAAE,EAAE,CAAC,IAAIE,EAAEwiB,EAAE1iB,EAAE,IAAI,KAAK,EAAEI,EAAEsiB,EAAE,EAAE,IAAI,KAAK,EAAE,CAACxiB,EAAEE,CAAC,EAAE4gB,GAAG9gB,EAAEE,CAAC,EAAE,IAAIC,EAAExP,GAAGqP,EAAEE,CAAC,EAAE,EAAEZ,GAAGa,CAAC,EAAE,EAAE5O,GAAG2O,EAAE,CAAC,EAAE,OAAOf,GAAG,EAAE,EAAEgB,CAAC,CAAC,CAAC,IAAIvP,GAAGsG,EAAE,CAAC,UAAUw1B,EAAE,CAAC,EAAE,SAASC,GAAG7sB,EAAE,EAAE,CAAC,IAAIE,EAAEwiB,EAAE1iB,EAAE,KAAK,KAAK,EAAEI,EAAEsiB,EAAE,EAAE,KAAK,KAAK,EAAEpI,GAAGpa,EAAE,OAAO,GAAGA,EAAE,OAAO,KAAKE,EAAE,OAAO,GAAGA,EAAE,OAAO,GAAG,IAAI,+DAA+DF,EAAE,IAAI,QAAQE,EAAE,IAAI,GAAG,EAAE,IAAIC,EAAEH,EAAE,OAAO,EAAEA,EAAE,KAAKA,EAAE,MAAM,CAAC,EAAE,EAAEE,EAAE,OAAO,EAAEA,EAAE,KAAKA,EAAE,MAAM,CAAC,EAAE,GAAGka,EAAEja,IAAI,EAAE,IAAI,gEAAgEA,CAAC,QAAQ,CAAC,GAAG,EAAEH,EAAE,OAAO,GAAGE,EAAE,OAAO,EAAE,CAAC,IAAI,EAAE7G,EAAE2G,EAAE,CAAC,EAAE,EAAE,CAAC,EAAE6B,EAAExI,EAAE6G,EAAE,CAAC,GAAG,CAAC,CAAC,EAAE4B,EAAEzM,GAAG,EAAEwM,CAAC,EAAE,OAAOxI,EAAEyI,EAAE,CAAC,CAAC,CAAC,SAAS9B,EAAE,OAAO,GAAGE,EAAE,OAAO,EAAE,CAAC,IAAI,EAAE7G,EAAE2G,EAAE,CAAC,EAAE,EAAE,CAAC,EAAE6B,EAAExI,EAAE6G,EAAE,CAACA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,CAAC,CAAC,EAAE4B,EAAEzM,GAAG,EAAEwM,CAAC,EAAE,OAAOxI,EAAEyI,EAAE,CAACA,EAAE,IAAI,CAAC,CAAC,SAAS9B,EAAE,OAAO,GAAGE,EAAE,OAAO,EAAE,CAAC,IAAI,EAAE7G,EAAE6G,EAAE,CAAC,GAAG,CAAC,CAAC,EAAE2B,EAAExM,GAAG2K,EAAE,CAAC,EAAE,OAAO3G,EAAEwI,EAAE,CAACA,EAAE,IAAI,CAAC,CAAC,KAAK,CAAC,IAAI,EAAExI,EAAE6G,EAAE,CAACA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,CAAC,CAAC,EAAE,OAAO7K,GAAG2K,EAAE,CAAC,CAAC,CAAC,CAAC,IAAInP,GAAGqG,EAAE,CAAC,KAAKy1B,EAAE,CAAC,EAAE,SAASC,GAAG9sB,KAAK,EAAE,CAAC,IAAIE,EAAE,EAAE,IAAI,CAACG,EAAE,IAAIqiB,EAAEriB,EAAE,UAAU,CAAC,GAAG,QAAQ,CAAC,EAAED,EAAE,CAAC,SAASJ,CAAC,EAAE,OAAO6hB,EAAE,UAAU7+B,GAAGkd,EAAEE,CAAC,CAAC,CAAC,IAAInP,GAAGmG,EAAE,CAAC,QAAQ01B,EAAE,CAAC,EAAE,SAASC,GAAG/sB,EAAE,CAAC,IAAIE,EAAE,CAAC,EAAEwiB,EAAE1iB,EAAE,IAAI,MAAM,SAAS,CAAC,EAAE,OAAO6hB,EAAE,UAAU5+B,GAAGid,CAAC,CAAC,CAAC,IAAIhP,GAAGkG,EAAE,CAAC,KAAK21B,EAAE,CAAC,EAAE,SAASC,GAAGhtB,EAAE,EAAE,CAAC,IAAIE,EAAEwiB,EAAE1iB,EAAE,IAAI,cAAc,mBAAmB,EAAE,GAAG,CAAC4a,GAAG1a,EAAE,MAAM,CAAC,EAAE,MAAM,IAAI,MAAM,gCAAgCA,EAAE,KAAK,0CAA0C,CAAC,EAAE,EAAE,OAAOF,CAAC,CAAC,IAAIzO,GAAG6F,EAAE,CAAC,aAAa41B,EAAE,CAAC,EAAE,SAASC,GAAGjtB,EAAE,CAAC,IAAI,EAAE0iB,EAAE1iB,EAAE,IAAI,KAAK,EAAEsa,EAAE,EAAE,QAAQ,SAAS,EAAE,QAAQ,UAAU,IAAI,2CAA2C,EAAE,EAAE,QAAQ,UAAU,EAAE5rB,GAAE,EAAE,SAAS,GAAG,IAAIwR,EAAE,CAAC,EAAE,CAAC,EAAE,OAAO2hB,EAAE,UAAUx+B,GAAG6c,CAAC,CAAC,CAAC,IAAIxO,GAAG0F,EAAE,CAAC,KAAK61B,EAAE,CAAC,EAAE,SAASC,GAAGltB,EAAE,EAAE,CAAC,QAAQE,EAAE,EAAEA,EAAEF,EAAE,OAAO,EAAEE,EAAE,GAAGF,EAAEA,EAAE,OAAOE,EAAE,CAAC,IAAI,EAAE,EAAEA,EAAE,MAAM,GAAG,MAAM,EAAE,CAAC,SAASitB,GAAGntB,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAEJ,EAAE,OAAO,EAAE,OAAOK,EAAE,CAAC,EAAE,EAAE,EAAE,EAAE,EAAE,QAAQ0B,EAAE,EAAEA,EAAE3B,EAAE2B,IAAI7B,EAAE,QAAQ6B,CAAC,IAAI,GAAG1B,EAAE,KAAKL,EAAE,GAAG,CAAC,EAAEK,EAAE,KAAK,EAAE,GAAG,CAAC,EAAE,OAAOA,CAAC,CAAC,SAAS+sB,GAAGptB,EAAE,EAAE,CAAC,IAAIE,EAAE,CAAC,EAAEE,EAAEJ,EAAE,OAAO,QAAQ,EAAE,EAAE,EAAEI,EAAE,IAAI,EAAE,QAAQ,CAAC,IAAI,IAAIF,EAAE,KAAKF,EAAE,CAAC,CAAC,EAAE,IAAIK,EAAE,EAAE,IAAI,GAAGL,EAAE,CAAC,CAAC,EAAE,MAAM,CAACE,EAAEG,CAAC,CAAC,CAAC,SAASgtB,GAAGrtB,EAAE,EAAE,CAAC,IAAIE,EAAE,EAAE,IAAIE,GAAG,CAAC,EAAE,OAAO+sB,GAAGntB,EAAEE,EAAE,CAAC,CAAC,CAAC,SAASotB,GAAGttB,EAAE,EAAEE,EAAE,CAACoa,EAAE4S,GAAG,EAAEhtB,CAAC,EAAE,IAAI,GAAGF,CAAC,oDAAoD,CAAC,aAAaE,CAAC,SAAS,CAAC,CAAC,SAASqtB,GAAGvtB,EAAE,EAAE,CAAC,GAAGktB,GAAGltB,EAAE,CAAC,EAAE,OAAO,KAAK,IAAIE,EAAE,CAAC,EAAE,QAAQE,EAAE,EAAEA,EAAE,EAAE,EAAEA,EAAEJ,EAAE,QAAQI,CAAC,IAAI,IAAIF,EAAE,KAAKE,CAAC,EAAE,OAAOJ,EAAE,QAAQI,GAAGF,EAAE,KAAKE,CAAC,CAAC,EAAEF,CAAC,CAAC,SAASstB,GAAGxtB,EAAE,CAAC,OAAOA,EAAE,IAAI,CAAC,EAAEE,IAAI,CAACA,EAAE,CAAC,CAAC,EAAE,KAAK,CAAC,EAAEA,IAAI,EAAE,CAAC,EAAEA,EAAE,CAAC,CAAC,EAAE,IAAI,GAAG,EAAE,CAAC,CAAC,CAAC,CAAC,SAASutB,GAAGztB,EAAE,EAAE,CAAC,IAAIE,EAAE,CAAC,EAAE,QAAQE,EAAE,EAAEJ,EAAEI,EAAE,EAAE,EAAEA,EAAEF,EAAE,KAAKE,CAAC,EAAE,OAAOF,CAAC,CAAC,SAASwtB,GAAG1tB,EAAE,EAAE,KAAKE,EAAE,GAAG,CAAC,IAAIG,EAAE,CAAC,EAAEqiB,EAAE1iB,EAAE,IAAI,KAAK,CAAC,EAAE6B,EAAE,CAAC,iBAAiB,EAAE,SAAS3B,CAAC,EAAE,OAAO2hB,EAAE,UAAUz7B,GAAGia,EAAEwB,CAAC,CAAC,CAAC,IAAIpM,GAAG2B,EAAE,CAAC,KAAKs2B,EAAE,CAAC,EAAE,SAASC,GAAG3tB,EAAE,EAAE,KAAKE,EAAE,GAAG,CAAC,IAAIG,EAAE,CAAC,EAAEqiB,EAAE1iB,EAAE,IAAI,KAAK,CAAC,EAAE6B,EAAE,CAAC,KAAK,EAAE,SAAS3B,CAAC,EAAE,OAAO2hB,EAAE,UAAUj7B,GAAGyZ,EAAEwB,CAAC,CAAC,CAAC,IAAI3L,GAAGkB,EAAE,CAAC,KAAKu2B,EAAE,CAAC,EAAE,SAASC,GAAG5tB,EAAE,EAAE,CAAC,IAAIE,EAAEwiB,EAAE1iB,EAAE,OAAO,KAAK,EAAEI,EAAEsiB,EAAE,EAAE,MAAM,KAAK,EAAE,CAACxiB,EAAEE,CAAC,EAAE4gB,GAAG9gB,EAAEE,CAAC,EAAE,IAAIC,EAAE,CAAC,EAAEH,EAAE,EAAEE,CAAC,EAAE,OAAOyhB,EAAE,UAAU75B,GAAGqY,CAAC,CAAC,CAAC,IAAIzI,GAAGR,EAAE,CAAC,KAAKw2B,EAAE,CAAC,EAAE,SAAS5zB,GAAGgG,EAAE,EAAE,CAAC,IAAIme,GAAGne,CAAC,GAAG,IAAI,UAAU,MAAM,QAAQA,CAAC,IAAI,IAAI,YAAY,MAAM,IAAI,MAAM,gFAAgF,EAAE,GAAG,IAAI,UAAUme,GAAGne,CAAC,GAAG,EAAEA,aAAa,YAAY,MAAM,IAAI,MAAM,2EAA2E,EAAE,OAAO6iB,GAAG7iB,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,CAAC,SAAS6tB,GAAG7tB,EAAE,CAAC,IAAIE,EAAE,CAAC,EAAEwiB,EAAE1iB,EAAE,IAAI,OAAO,SAAS,CAAC,EAAE,OAAO6hB,EAAE,UAAUh3B,GAAGqV,CAAC,CAAC,CAAC,IAAIhE,GAAG9E,EAAE,CAAC,MAAMy2B,EAAE,CAAC,EAAE,SAASC,GAAG9tB,EAAE,CAAC,IAAI,EAAE0iB,EAAE1iB,EAAE,IAAI,QAAQ,EAAEE,EAAE,CAAC,EAAE,OAAO2hB,EAAE,UAAU,SAAS,CAAC,EAAE,CAAC,EAAE3hB,CAAC,CAAC,CAAC,IAAI/D,GAAG/E,EAAE,CAAC,QAAQ02B,EAAE,CAAC,EAAE,SAASC,GAAG/tB,EAAE,EAAE,KAAKE,EAAE,GAAG,CAAC,IAAIE,EAAEsiB,EAAE1iB,EAAE,IAAI,KAAK,EAAEI,EAAE,QAAQ,SAASA,EAAE1R,GAAE0R,EAAE,OAAO,GAAG,IAAIC,EAAE,CAAC,EAAED,CAAC,EAAE,EAAE,CAAC,KAAK,EAAE,SAASF,CAAC,EAAE,OAAO2hB,EAAE,UAAUt2B,GAAG8U,EAAE,CAAC,CAAC,CAAC,IAAI1D,GAAGvF,EAAE,CAAC,KAAK22B,EAAE,CAAC,EAAE,SAASC,GAAGhuB,EAAE,EAAE,YAAYE,EAAE,KAAKE,EAAE,GAAG,CAACJ,EAAE0iB,EAAE1iB,EAAE,IAAI,MAAM,EAAE,IAAIK,EAAE4tB,GAAGjuB,EAAE,EAAEE,CAAC,EAAE,EAAEG,EAAE,MAAM,GAAGD,EAAE,CAAC,IAAI,EAAEgb,GAAGlb,EAAEF,EAAE,KAAK,EAAE,EAAEqtB,GAAGhtB,EAAE,MAAM,CAAC,CAAC,CAAC,OAAO9G,EAAE8G,EAAE,CAAC,CAAC,CAAC,SAAS4tB,GAAGjuB,EAAE,EAAEE,EAAE,KAAK,CAAC,GAAGF,EAAE,OAAO,EAAE,OAAOvT,GAAGuT,CAAC,EAAE,GAAGA,EAAE,OAAO,GAAGE,IAAI,KAAK,OAAO+tB,GAAG10B,EAAEyG,EAAE,CAAC,EAAE,CAAC,EAAE,EAAEE,CAAC,EAAE,GAAGF,EAAE,OAAO,GAAG,OAAOE,GAAG,UAAU,MAAM,QAAQA,CAAC,GAAGA,EAAE,SAAS,EAAE,CAAC,GAAG,IAAI,EAAE,OAAOvD,GAAGlQ,GAAGuT,CAAC,EAAEE,CAAC,EAAE,GAAG,IAAI,IAAI,OAAOzK,GAAGhJ,GAAGuT,CAAC,EAAEE,CAAC,EAAE,GAAG,IAAI,KAAK,OAAOhK,GAAGzJ,GAAGuT,CAAC,EAAEE,CAAC,EAAE,GAAG,IAAI,aAAa,IAAI,EAAE,OAAOhE,GAAGS,GAAG/E,GAAGnL,GAAGuT,CAAC,EAAEhG,GAAG,EAAE,OAAO,CAAC,EAAEkG,CAAC,CAAC,EAAE,MAAM,IAAI,MAAM,qCAAqC,CAAC,EAAE,CAAC,CAAC,GAAG,MAAM,QAAQA,CAAC,GAAGA,EAAE,SAAS,EAAE,CAAC,GAAG,IAAI,EAAE,OAAOzK,GAAGkH,GAAGlQ,GAAGuT,CAAC,EAAEE,EAAE,CAAC,CAAC,EAAEA,EAAE,CAAC,EAAE,CAAC,EAAE,GAAG,IAAI,IAAI,OAAOzK,GAAGkH,GAAGlQ,GAAGuT,CAAC,EAAEE,EAAE,CAAC,CAAC,EAAEA,EAAE,CAAC,CAAC,EAAE,GAAG,IAAI,KAAK,OAAOhK,GAAGyG,GAAGlQ,GAAGuT,CAAC,EAAEE,EAAE,CAAC,CAAC,EAAEA,EAAE,CAAC,CAAC,EAAE,GAAG,IAAI,OAAO,IAAI,YAAY,OAAOhE,GAAGS,GAAGR,GAAG6D,CAAC,EAAEE,CAAC,CAAC,EAAE,MAAM,IAAI,MAAM,qCAAqC,CAAC,EAAE,CAAC,CAAC,MAAM,IAAI,MAAM,gCAAgCA,CAAC,EAAE,CAAC,CAAC,IAAInJ,GAAGK,EAAE,CAAC,MAAM42B,EAAE,CAAC,EAAE,SAASE,GAAGluB,EAAE,EAAE,KAAKE,EAAE,GAAG,CAAC,OAAOnJ,GAAGiJ,EAAE,YAAY,EAAEE,CAAC,CAAC,CAAC,IAAIvO,GAAGyF,EAAE,CAAC,eAAe82B,EAAE,CAAC,EAAE,SAASC,GAAGnuB,EAAE,CAAC,IAAIE,EAAE,CAAC,EAAEwiB,EAAE1iB,EAAE,IAAI,KAAK,CAAC,EAAE,OAAO6hB,EAAE,UAAUv+B,GAAG4c,CAAC,CAAC,CAAC,IAAItO,GAAGwF,EAAE,CAAC,KAAK+2B,EAAE,CAAC,EAAE,SAASC,GAAGpuB,EAAE,EAAE,EAAE,CAAC,IAAIE,EAAEwiB,EAAE1iB,EAAE,IAAI,aAAa,mBAAmB,EAAEsa,EAAE,GAAGpa,EAAE,KAAK,IAAI,oCAAoC,EAAE,IAAIE,EAAE,CAAC,MAAMF,CAAC,EAAEG,EAAE,CAAC,IAAI,CAAC,EAAE,OAAOwhB,EAAE,UAAUt+B,GAAG6c,EAAEC,CAAC,CAAC,CAAC,IAAIxO,GAAGuF,EAAE,CAAC,YAAYg3B,EAAE,CAAC,EAAE,SAASC,GAAGruB,EAAE,CAAC,IAAIE,EAAE,CAAC,EAAEwiB,EAAE1iB,EAAE,IAAI,OAAO,CAAC,EAAE,OAAO6hB,EAAE,UAAUr+B,GAAG0c,CAAC,CAAC,CAAC,IAAIpO,GAAGsF,EAAE,CAAC,OAAOi3B,EAAE,CAAC,EAAE,SAASC,GAAGtuB,EAAE,EAAE,CAAC,IAAIE,EAAEwiB,EAAE1iB,EAAE,IAAI,OAAO,mBAAmB,EAAEsa,EAAEpa,EAAE,OAAO,EAAE,OAAO,IAAI,qCAAqCA,EAAE,IAAI,8BAA8B,CAAC,GAAG,EAAE,IAAIE,EAAE,CAAC,EAAEF,CAAC,EAAEG,EAAE,CAAC,KAAK,CAAC,EAAE,OAAOwhB,EAAE,UAAU/1B,GAAGsU,EAAEC,CAAC,CAAC,CAAC,IAAI3C,GAAGtG,EAAE,CAAC,MAAMk3B,EAAE,CAAC,EAAE,SAASC,GAAGvuB,EAAE,EAAEE,EAAEE,EAAE,UAAU,CAAC,GAAG,OAAO,EAAEJ,GAAG,IAAIK,EAAE7R,GAAG,CAACwR,EAAE,CAAC,EAAEI,CAAC,EAAE,EAAEJ,GAAG,EAAEA,EAAE,EAAE,QAAQ+B,EAAE,EAAEA,EAAE,EAAE,EAAEA,EAAE1B,EAAE,IAAI,EAAE0B,EAAEA,CAAC,EAAE,IAAI,EAAExI,EAAE8G,EAAE,SAAS,EAAE,CAACL,EAAE,CAAC,CAAC,EAAE,GAAGE,GAAG,KAAK,OAAO,EAAE,GAAGA,EAAE,SAAS,EAAE,OAAOxC,GAAG7L,GAAG,EAAE,CAAC,EAAE,CAACqO,EAAE,CAAC,EAAE,EAAE,CAAC,CAAC,EAAE,GAAGA,EAAE,SAAS,EAAE,OAAOxC,GAAG7L,GAAGA,GAAG,EAAE,CAAC,EAAE,CAAC,EAAE,CAACqO,EAAE,CAAC,EAAEA,EAAE,CAAC,EAAE,EAAE,CAAC,CAAC,EAAE,GAAGA,EAAE,SAAS,EAAE,OAAOxC,GAAG7L,GAAGA,GAAGA,GAAG,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAACqO,EAAE,CAAC,EAAEA,EAAE,CAAC,EAAEA,EAAE,CAAC,EAAE,EAAE,CAAC,CAAC,EAAE,MAAM,IAAI,MAAM,qEAAqEA,EAAE,MAAM,IAAI,CAAC,CAAC,IAAInO,GAAGqF,EAAE,CAAC,KAAKm3B,EAAE,CAAC,EAAE,SAASC,GAAGxuB,EAAE,CAAC,IAAIE,EAAE,CAAC,EAAEwiB,EAAE1iB,EAAE,IAAI,QAAQ,SAAS,CAAC,EAAE,OAAO6hB,EAAE,UAAUj+B,GAAGsc,CAAC,CAAC,CAAC,IAAI9N,GAAGgF,EAAE,CAAC,OAAOo3B,EAAE,CAAC,EAAE,SAASC,GAAGzuB,EAAE,EAAEE,EAAE,EAAEE,EAAE,EAAE,CAAC,IAAIC,EAAEqiB,EAAE1iB,EAAE,IAAI,QAAQ,EAAE,EAAE0iB,EAAE,EAAE,UAAU,SAAS,OAAO,EAAE,EAAE,CAAC,EAAEriB,EAAE,QAAQ,CAAC,EAAE0B,EAAE,CAAC,KAAK7B,EAAE,UAAUE,CAAC,EAAE,OAAOyhB,EAAE,UAAUz9B,GAAG,EAAE2d,CAAC,CAAC,CAAC,IAAIvP,GAAG4E,EAAE,CAAC,QAAQq3B,EAAE,CAAC,EAAE,SAASC,GAAG1uB,EAAE,EAAE,CAAC,IAAIE,EAAEwiB,EAAE1iB,EAAE,IAAI,UAAU,mBAAmB,EAAEI,EAAEsiB,EAAE,EAAE,IAAI,UAAU,mBAAmB,EAAE,CAACxiB,EAAEE,CAAC,EAAE4gB,GAAG9gB,EAAEE,CAAC,EAAEksB,GAAGpsB,EAAE,MAAME,EAAE,KAAK,EAAE,IAAIC,EAAE,CAAC,EAAEH,EAAE,EAAEE,CAAC,EAAE,OAAOyhB,EAAE,UAAUv9B,GAAG+b,CAAC,CAAC,CAAC,IAAIlN,GAAGiE,EAAE,CAAC,SAASs3B,EAAE,CAAC,EAAE,SAASC,GAAG3uB,EAAE,EAAE,CAAC,IAAIE,EAAEwiB,EAAE1iB,EAAE,IAAI,eAAe,mBAAmB,EAAEI,EAAEsiB,EAAE,EAAE,IAAI,eAAe,mBAAmB,EAAE,CAACxiB,EAAEE,CAAC,EAAE4gB,GAAG9gB,EAAEE,CAAC,EAAEksB,GAAGpsB,EAAE,MAAME,EAAE,KAAK,EAAE,IAAIC,EAAE,CAAC,EAAEH,EAAE,EAAEE,CAAC,EAAE,OAAOyhB,EAAE,UAAUt9B,GAAG8b,CAAC,CAAC,CAAC,IAAIjN,GAAGgE,EAAE,CAAC,cAAcu3B,EAAE,CAAC,EAAE,SAASC,GAAG5uB,EAAE,CAAC,IAAIE,EAAE,CAAC,MAAMwiB,EAAE1iB,EAAE,QAAQ,MAAM,CAAC,EAAE,OAAO6hB,EAAE,UAAUl9B,GAAGub,CAAC,CAAC,CAAC,IAAI5M,GAAG8D,EAAE,CAAC,MAAMw3B,EAAE,CAAC,EAAE,SAASC,GAAG7uB,EAAE,CAAC,IAAIE,EAAE,CAAC,EAAEwiB,EAAE1iB,EAAE,IAAI,UAAU,CAAC,EAAE,OAAO6hB,EAAE,UAAUh9B,GAAGqb,CAAC,CAAC,CAAC,IAAIrM,GAAGuD,EAAE,CAAC,UAAUy3B,EAAE,CAAC,EAAE,SAASC,GAAG9uB,EAAE,CAAC,IAAIE,EAAE,CAAC,EAAEwiB,EAAE1iB,EAAE,IAAI,OAAO,CAAC,EAAE,OAAO6hB,EAAE,UAAU/8B,GAAGob,CAAC,CAAC,CAAC,IAAIpM,GAAGsD,EAAE,CAAC,OAAO03B,EAAE,CAAC,EAAE,SAASC,GAAG/uB,EAAE,CAAC,IAAIE,EAAE,CAAC,EAAEwiB,EAAE1iB,EAAE,IAAI,OAAO,CAAC,EAAE,OAAO6hB,EAAE,UAAU98B,GAAGmb,CAAC,CAAC,CAAC,IAAInM,GAAGqD,EAAE,CAAC,OAAO23B,EAAE,CAAC,EAAE,SAASC,GAAGhvB,EAAE,EAAE,GAAG,CAAC,IAAI,EAAE,CAAC,EAAE0iB,EAAE1iB,EAAE,IAAI,WAAW,CAAC,EAAEK,EAAE,CAAC,MAAM,CAAC,EAAE,OAAOwhB,EAAE,UAAUx8B,GAAG,EAAEgb,CAAC,CAAC,CAAC,IAAIlM,GAAGiD,EAAE,CAAC,WAAW43B,EAAE,CAAC,EAAE,SAASC,GAAGjvB,EAAE,EAAE,CAAC,IAAIE,EAAEwiB,EAAE1iB,EAAE,IAAI,OAAO,mBAAmB,EAAEI,EAAEsiB,EAAE,EAAE,IAAI,OAAO,mBAAmB,EAAE,CAACxiB,EAAEE,CAAC,EAAE4gB,GAAG9gB,EAAEE,CAAC,EAAEksB,GAAGpsB,EAAE,MAAME,EAAE,KAAK,EAAE,IAAIC,EAAE,CAAC,EAAEH,EAAE,EAAEE,CAAC,EAAE,OAAOyhB,EAAE,UAAUv8B,GAAG+a,CAAC,CAAC,CAAC,IAAIjM,GAAGgD,EAAE,CAAC,MAAM63B,EAAE,CAAC,EAAE,SAASC,GAAGlvB,EAAE,EAAE,CAAC,IAAIE,EAAEwiB,EAAE1iB,EAAE,IAAI,YAAY,mBAAmB,EAAEI,EAAEsiB,EAAE,EAAE,IAAI,YAAY,mBAAmB,EAAE,CAACxiB,EAAEE,CAAC,EAAE4gB,GAAG9gB,EAAEE,CAAC,EAAEksB,GAAGpsB,EAAE,MAAME,EAAE,KAAK,EAAE,IAAIC,EAAE,CAAC,EAAEH,EAAE,EAAEE,CAAC,EAAE,OAAOyhB,EAAE,UAAUt8B,GAAG8a,CAAC,CAAC,CAAC,IAAIhM,GAAG+C,EAAE,CAAC,WAAW83B,EAAE,CAAC,EAAE,SAAS36B,GAAGyL,EAAE,EAAEE,EAAE,CAAC,GAAGA,GAAG,EAAE,MAAM,IAAI,MAAM,0CAA0C,EAAE,IAAIE,EAAE,CAAC,MAAMJ,EAAE,KAAK,EAAE,IAAIE,CAAC,EAAE,OAAO2hB,EAAE,UAAUr8B,GAAG,CAAC,EAAE4a,CAAC,CAAC,CAAC,SAAS+uB,GAAGnvB,EAAE,EAAE,EAAEE,EAAE,EAAEE,EAAE,EAAEC,EAAE,GAAG,CAAC,IAAI,EAAEqiB,EAAE1iB,EAAE,IAAI,4BAA4B,EAAEsa,EAAE,EAAE,OAAO,GAAG,EAAE,OAAO,EAAE,IAAI;AAAA,sBAC/kU,EAAE,IAAI,GAAG,EAAEA,EAAEO,GAAG,CAAC,EAAE,IAAI,2FAA2F,CAAC,GAAG,EAAE,IAAI,EAAE,EAAE9Y,EAAE,GAAG,EAAE,OAAO,IAAIA,EAAE,GAAG,EAAExI,EAAE,EAAE,CAAC,EAAE,EAAE,MAAM,CAAC,EAAE,EAAE,MAAM,CAAC,EAAE,EAAE,MAAM,CAAC,CAAC,CAAC,GAAG,IAAIyI,EAAE,CAAC,EAAE,CAAC,EAAEC,EAAE,CAAC,YAAY,EAAE,KAAK/B,EAAE,MAAME,EAAE,KAAKC,CAAC,EAAEqC,EAAEmf,EAAE,UAAU58B,GAAG+c,EAAEC,CAAC,EAAE,OAAOF,EAAExI,EAAEmJ,EAAE,CAACA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,CAAC,CAAC,EAAEA,CAAC,CAAC,IAAI/N,GAAGyC,EAAE,CAAC,4BAA4B+3B,EAAE,CAAC,EAAE,SAASC,GAAGpvB,EAAE,CAAC,IAAIE,EAAE,CAAC,EAAEwiB,EAAE1iB,EAAE,IAAI,MAAM,SAAS,CAAC,EAAE,OAAO6hB,EAAE,UAAUp8B,GAAGya,CAAC,CAAC,CAAC,IAAItL,GAAGwC,EAAE,CAAC,KAAKg4B,EAAE,CAAC,EAAE,SAASC,GAAGrvB,EAAE,CAAC,IAAIE,EAAE,CAAC,EAAEwiB,EAAE1iB,EAAE,IAAI,OAAO,CAAC,EAAE,OAAO6hB,EAAE,UAAUn8B,GAAGwa,CAAC,CAAC,CAAC,IAAIrL,GAAGuC,EAAE,CAAC,OAAOi4B,EAAE,CAAC,EAAE,SAASp8B,GAAG+M,EAAE,CAAC,OAAOsa,EAAE2B,GAAGjc,CAAC,EAAE,IAAI,4CAA4C,EAAE,CAAC,EAAEE,IAAI,CAAC,IAAIE,EAAEsiB,EAAE,EAAE,IAAI,UAAU,mBAAmB,EAAEriB,EAAEH,GAAG,KAAKwiB,EAAExiB,EAAE,KAAK,SAAS,EAAE,KAAK,OAAO2hB,EAAE,KAAK,IAAI,CAAC,GAAG,CAAC,MAAM,EAAE,MAAM,CAAC,EAAEA,EAAE,UAAU,IAAI7hB,EAAEI,CAAC,EAAE,CAACA,CAAC,EAAEC,CAAC,EAAE,OAAOA,GAAG,MAAMka,GAAG,EAAE,MAAMla,EAAE,MAAM,gFAAgF,EAAEivB,GAAG,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,SAASp8B,GAAG8M,EAAE,CAAC,OAAOsa,EAAE2B,GAAGjc,CAAC,EAAE,IAAI,6CAA6C,EAAE,CAAC,EAAEE,IAAI,CAACoa,EAAE,MAAM,QAAQ,CAAC,EAAE,IAAI,kFAAkF,EAAE,IAAIla,EAAEuiB,GAAG,EAAE,OAAO,WAAW,mBAAmB,EAAEtiB,EAAEH,GAAG,KAAKwiB,EAAExiB,EAAE,KAAK,UAAU,EAAE,KAAK,OAAO2hB,EAAE,KAAK,IAAI,CAAC,GAAG,CAAC,MAAM,EAAE,MAAM,CAAC,EAAEA,EAAE,UAAU,IAAI7hB,EAAE,GAAGI,CAAC,EAAEA,EAAEC,CAAC,EAAE,OAAOA,GAAG,MAAMka,GAAG,EAAE,MAAMla,EAAE,MAAM,+FAA+F,EAAEivB,GAAG,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,SAAS9wB,GAAGwB,EAAE,CAAC,OAAOsa,EAAE2B,GAAGjc,CAAC,EAAE,IAAI,oDAAoD,EAAE,CAAC,EAAEE,IAAI,CAACoa,EAAE,aAAa3uB,GAAG,IAAI,qDAAqD,EAAE2uB,EAAEpa,GAAG,MAAMA,aAAavU,GAAG,IAAI,0DAA0D,EAAE,GAAG,CAAC,MAAMyU,EAAE,MAAMC,CAAC,EAAEwhB,EAAE,UAAU,IAAI7hB,EAAE,CAAC,EAAE,CAAC,CAAC,EAAEE,CAAC,EAAE,OAAOovB,GAAGlvB,CAAC,EAAE,CAAC,KAAKA,EAAE,CAAC,EAAE,MAAMC,CAAC,CAAC,CAAC,CAAC,SAAS5B,GAAGuB,EAAE,CAAC,OAAOsa,EAAE2B,GAAGjc,CAAC,EAAE,IAAI,qDAAqD,EAAE,CAAC,EAAEE,IAAI,CAACoa,EAAE,MAAM,QAAQ,CAAC,GAAG,EAAE,MAAMja,GAAGA,aAAa1U,EAAE,EAAE,IAAI,oEAAoE,EAAE2uB,EAAEpa,GAAG,MAAMA,aAAavU,GAAG,IAAI,8DAA8D,EAAE,IAAIyU,EAAEyhB,EAAE,UAAU,IAAI7hB,EAAE,GAAG,CAAC,EAAE,EAAEE,CAAC,EAAE,OAAOA,GAAG,MAAMqa,GAAGna,EAAE,MAAM,MAAMF,EAAE,MAAM,uGAAuG,EAAEovB,GAAGlvB,EAAE,KAAK,EAAEA,CAAC,CAAC,CAAC,SAASzB,GAAGqB,EAAE,EAAE,CAACsa,EAAE2B,GAAGjc,CAAC,EAAE,IAAI,qDAAqD,EAAEsa,EAAE,GAAG,MAAM,MAAM,QAAQ,CAAC,GAAG,EAAE,MAAMrY,GAAGA,aAAa3V,EAAE,EAAE,IAAI,+EAA+E,EAAE,IAAI4T,EAAE,GAAG,KAAK,GAAG,CAACA,EAAE,CAAC,EAAE,CAAC,EAAE,QAAQ+B,KAAK4f,EAAE,oBAAoB,EAAE,KAAKA,EAAE,oBAAoB5f,CAAC,CAAC,CAAC,CAAC,IAAI7B,EAAEF,EAAE,EAAE,OAAO+B,GAAG,CAACA,EAAE,SAAS,EAAE,KAAK5B,EAAE,EAAE,OAAO,EAAE,EAAE,OAAO4B,GAAGA,EAAE,SAAS,EAAEqY,EAAE,EAAE,OAAO,EAAE,IAAI,gGAAgGja,CAAC,0BAA0B,EAAE,IAAI,EAAE,GAAG,CAAC,MAAM,EAAE,MAAM0B,CAAC,EAAE8f,EAAE,UAAU7hB,EAAE,EAAE,KAAK,CAAC,EAAEsa,EAAEvY,EAAE,KAAKE,GAAGA,GAAG,IAAI,EAAE,IAAI,8LAA8L,EAAEqY,EAAE,EAAE,OAAO,EAAE,IAAI,iFAAiF,EAAE,IAAI,SAAS,EAAE,IAAItY,EAAE,CAAC,EAAE,OAAO,EAAE,QAAQ,CAACC,EAAES,IAAI,CAACX,EAAEW,CAAC,GAAG,OAAOV,EAAEC,EAAE,IAAI,EAAEF,EAAEW,CAAC,EAAE,CAAC,EAAEtC,GAAG,MAAMA,EAAE,QAAQ6B,GAAGD,EAAEC,EAAE,IAAI,EAAE,IAAI,EAAE,CAAC,MAAM,EAAE,MAAMD,CAAC,CAAC,CAAC,SAAShS,GAAGgQ,EAAE,CAAC,OAAO6hB,EAAE,WAAW7hB,CAAC,CAAC,CAAC,SAASsvB,GAAGtvB,EAAE,CAAC,GAAGA,EAAE,OAAOE,GAAGA,GAAG,IAAI,EAAE,OAAO,EAAE,MAAM,IAAI,MAAM;AAAA,oEACryG,CAAC,CAAC,SAASqvB,GAAGvvB,EAAE,CAAC,IAAIE,EAAE,CAAC,EAAEwiB,EAAE1iB,EAAE,IAAI,KAAK,CAAC,EAAE,OAAO6hB,EAAE,UAAU16B,GAAG+Y,CAAC,CAAC,CAAC,IAAIrJ,GAAGO,EAAE,CAAC,KAAKm4B,EAAE,CAAC,EAAE,SAASC,GAAGxvB,EAAE,CAAC,IAAIE,EAAE,CAAC,EAAEwiB,EAAE1iB,EAAE,IAAI,UAAU,CAAC,EAAE,OAAO6hB,EAAE,UAAUx3B,GAAG6V,CAAC,CAAC,CAAC,IAAItE,GAAGxE,EAAE,CAAC,UAAUo4B,EAAE,CAAC,EAAE,SAASC,GAAGzvB,EAAE,CAAC,IAAI,EAAE0iB,EAAE1iB,EAAE,IAAI,YAAY,EAAE,OAAOhQ,GAAG,IAAI,CAAC,MAAM6G,GAAG+E,GAAG/E,GAAG,CAAC,CAAC,CAAC,EAAE,SAASiL,GAAGpL,EAAEoL,EAAE9G,GAAGnE,GAAG,CAAC,CAAC,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC,IAAI/B,GAAGsC,EAAE,CAAC,YAAYq4B,EAAE,CAAC,EAAE,SAASC,GAAG1vB,EAAE,EAAE,CAAC,IAAIE,EAAEwiB,EAAE1iB,EAAE,IAAI,KAAK,EAAEI,EAAEsiB,EAAE,EAAE,IAAI,KAAK,EAAE,CAACxiB,EAAEE,CAAC,EAAE4gB,GAAG9gB,EAAEE,CAAC,EAAE,IAAIC,EAAE,CAAC,EAAEH,EAAE,EAAEE,CAAC,EAAE,OAAOyhB,EAAE,UAAUv2B,GAAG+U,CAAC,CAAC,CAAC,IAAI3D,GAAGtF,EAAE,CAAC,KAAKs4B,EAAE,CAAC,EAAE,SAASC,GAAG3vB,EAAE,EAAE,GAAG,CAAC,IAAIE,EAAEwiB,EAAE1iB,EAAE,SAAS,YAAY,EAAE,GAAG,IAAI,KAAK,EAAEE,EAAE,KAAK,GAAG,IAAIA,EAAE,KAAK,EAAE,MAAM,MAAM,gFAAgFA,EAAE,IAAI,iBAAiB,CAAC,EAAE,EAAE,OAAOlQ,GAAG,CAACqQ,EAAEwB,IAAI,CAAC,IAAIE,EAAEtM,GAAG4K,EAAE,EAAE,EAAE,EAAE2B,EAAEtF,GAAG2D,EAAE0B,CAAC,EAAEE,EAAEvF,GAAGhO,GAAEsT,EAAE,SAAS,EAAEpN,GAAG+H,GAAG/K,GAAGoQ,CAAC,EAAE,EAAE,EAAE,CAAC,CAAC,EAAE,OAAOH,EAAE,CAACI,CAAC,CAAC,EAAE,CAAC,MAAMA,EAAE,SAAS,CAACU,EAAEC,IAAI,CAAC,GAAG,CAACC,CAAC,EAAED,EAAE,EAAE,GAAGoB,EAAEpS,GAAGiR,CAAC,EAAE,OAAOnG,GAAGiG,EAAEjM,EAAEiG,GAAGgG,EAAE,EAAE,CAAC,EAAEqB,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE9D,CAAC,CAAC,CAAC,IAAInL,GAAGqC,EAAE,CAAC,YAAYu4B,EAAE,CAAC,EAAE,SAASC,GAAG5vB,EAAE,EAAE,KAAKE,EAAE,GAAG,CAAC,IAAIE,EAAEsiB,EAAE1iB,EAAE,IAAI,WAAW,EAAEK,EAAE+a,GAAG,EAAEhb,EAAE,KAAK,EAAE,EAAE3K,GAAG2K,EAAEC,EAAE,EAAE,EAAE,EAAE3D,GAAG0D,EAAE,CAAC,EAAE2B,EAAEnQ,GAAG,CAAC,EAAEoQ,EAAErF,GAAGoF,EAAE1B,CAAC,EAAE4B,EAAErN,GAAGoN,CAAC,EAAEU,EAAE9V,EAAE2M,EAAE,EAAE0I,EAAE,KAAK,EAAEA,CAAC,EAAE,GAAG/B,EAAE,CAAC,IAAIyC,EAAE0qB,GAAG3qB,EAAE,MAAMrC,CAAC,EAAE,OAAO9G,EAAEmJ,EAAEC,CAAC,CAAC,CAAC,OAAOD,CAAC,CAAC,IAAI1N,GAAGoC,EAAE,CAAC,WAAWw4B,EAAE,CAAC,EAAE,SAASC,GAAG7vB,EAAE,EAAE,CAAC,IAAIE,EAAEwiB,EAAE1iB,EAAE,IAAI,aAAa,MAAM,EAAEI,EAAEsiB,EAAE,EAAE,IAAI,aAAa,MAAM,EAAE4J,GAAGpsB,EAAE,MAAME,EAAE,KAAK,EAAE,IAAIC,EAAE,CAAC,EAAEH,EAAE,EAAEE,CAAC,EAAE,OAAOyhB,EAAE,UAAUj8B,GAAGya,CAAC,CAAC,CAAC,IAAIpL,GAAGmC,EAAE,CAAC,YAAYy4B,EAAE,CAAC,EAAE,SAASC,GAAG9vB,EAAE,CAAC,IAAIE,EAAE,CAAC,EAAEwiB,EAAE1iB,EAAE,IAAI,aAAa,MAAM,CAAC,EAAE,OAAO6hB,EAAE,UAAUh8B,GAAGqa,CAAC,CAAC,CAAC,IAAIhL,GAAGkC,EAAE,CAAC,YAAY04B,EAAE,CAAC,EAAE,SAASC,GAAG/vB,EAAE,EAAE,CAAC,IAAIE,EAAEwiB,EAAE1iB,EAAE,IAAI,YAAY,MAAM,EAAEI,EAAEsiB,EAAE,EAAE,IAAI,YAAY,MAAM,EAAE4J,GAAGpsB,EAAE,MAAME,EAAE,KAAK,EAAE,IAAIC,EAAE,CAAC,EAAEH,EAAE,EAAEE,CAAC,EAAE,OAAOyhB,EAAE,UAAU/7B,GAAGua,CAAC,CAAC,CAAC,IAAIlL,GAAGiC,EAAE,CAAC,WAAW24B,EAAE,CAAC,EAAE,SAASC,GAAGhwB,EAAE,EAAE,CAAC,IAAIE,EAAEwiB,EAAE1iB,EAAE,IAAI,aAAa,MAAM,EAAEI,EAAEsiB,EAAE,EAAE,IAAI,aAAa,MAAM,EAAE,OAAO4J,GAAGpsB,EAAE,MAAME,EAAE,KAAK,EAAEnL,GAAGE,GAAG6K,EAAE,CAAC,EAAE9K,GAAGD,GAAG+K,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,IAAI5K,GAAGgC,EAAE,CAAC,YAAY44B,EAAE,CAAC,EAAMC,GAAG,WAAW,SAASC,GAAGlwB,EAAE,EAAEE,EAAE,OAAO,CAAC,IAAIE,EAAEsiB,EAAE1iB,EAAE,iBAAiB,cAAc,EAAEK,EAAEqiB,EAAE,EAAE,SAAS,cAAc,EAAE,EAAEtiB,EAAE,MAAMA,EAAE,MAAM,OAAO,CAAC,EAAE,EAAEC,EAAE,MAAMA,EAAE,MAAM,OAAO,CAAC,EAAE0B,EAAExI,EAAE6G,EAAE,CAAC,GAAG,CAAC,CAAC,EAAE4B,EAAEzI,EAAE8G,EAAE,CAAC,GAAG,CAAC,CAAC,EAAE,GAAG0B,EAAE,KAAK,EAAE,MAAM,IAAI,MAAM,sDAAsD,EAAE,GAAGA,EAAE,MAAM,CAAC,IAAIC,EAAE,MAAM,CAAC,EAAE,MAAM,IAAI,MAAM,gEAAgE,EAAE,GAAG0Y,GAAG1Y,EAAE,KAAK,GAAGiuB,GAAG,MAAM,IAAI,MAAM,qCAAqCA,EAAE,EAAE,EAAE,GAAGluB,EAAE,MAAM,CAAC,GAAGkuB,GAAG,MAAM,IAAI,MAAM,oCAAoCA,EAAE,+BAA+BluB,EAAE,MAAM,CAAC,CAAC,EAAE,EAAE,IAAIE,EAAE,CAAC,eAAeF,EAAE,OAAOC,CAAC,EAAEU,EAAE,CAAC,KAAKxC,CAAC,EAAE,OAAO2hB,EAAE,UAAUl4B,GAAGsY,EAAES,CAAC,CAAC,CAAC,IAAIvI,GAAG/C,EAAE,CAAC,cAAc84B,EAAE,CAAC,EAAE,SAAS56B,GAAG0K,EAAE,EAAE,CAAC,OAAO7F,GAAG6F,EAAE,EAAE,MAAM,CAAC,CAAC,SAASmwB,GAAGnwB,EAAE,EAAEE,EAAEE,EAAEC,EAAE,CAAC,IAAI,EAAEqiB,EAAE1iB,EAAE,IAAI,SAAS,EAAE,EAAE,EAAE+B,EAAE,EAAEC,EAAE,GAAG,EAAE,OAAO,IAAIA,EAAE,GAAGD,EAAExI,EAAE,EAAE,CAAC,EAAE,EAAE,MAAM,CAAC,EAAE,EAAE,MAAM,CAAC,EAAE,EAAE,MAAM,CAAC,CAAC,CAAC,GAAG+gB,EAAEvY,EAAE,OAAO,EAAE,IAAI,uDAAuDA,EAAE,IAAI,GAAG,EAAEuY,EAAEkP,GAAGtpB,EAAE,CAAC,EAAE,IAAI,wEAAwEA,CAAC,mBAAmB,CAAC,GAAG,EAAEwpB,GAAG,UAAUtpB,EAAEC,CAAC,EAAE,IAAI4B,EAAE,CAAC,EAAEF,CAAC,EAAEW,EAAE,CAAC,WAAW,EAAE,QAAQxC,EAAE,IAAIE,EAAE,gBAAgBC,CAAC,EAAEsC,EAAEkf,EAAE,UAAUx7B,GAAG4b,EAAES,CAAC,EAAE,OAAOV,EAAEzI,EAAEoJ,EAAE,CAACA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,CAAC,CAAC,EAAEA,CAAC,CAAC,IAAIjN,GAAG0B,EAAE,CAAC,SAAS+4B,EAAE,CAAC,EAAE,SAASC,GAAGpwB,EAAE,EAAE,CAAC,EAAE,EAAE,CAAC,EAAEE,EAAEE,EAAEC,EAAE,EAAE,QAAQ,CAAC,IAAI,EAAEqiB,EAAE1iB,EAAE,IAAI,WAAW,EAAE+B,EAAE,EAAEC,EAAE,GAAG,EAAE,OAAO,IAAIA,EAAE,GAAGD,EAAExI,EAAE,EAAE,CAAC,EAAE,EAAE,MAAM,CAAC,EAAE,EAAE,MAAM,CAAC,EAAE,EAAE,MAAM,CAAC,EAAE,EAAE,MAAM,CAAC,CAAC,CAAC,GAAG+gB,EAAEvY,EAAE,OAAO,EAAE,IAAI,qDAAqDA,EAAE,IAAI,GAAG,EAAEuY,EAAE,IAAI,QAAQ,IAAI,gFAAgF,CAAC,EAAE,EAAEoP,GAAG,YAAYtpB,EAAEC,CAAC,EAAE,IAAI4B,EAAE,CAAC,EAAEF,CAAC,EAAEW,EAAE,CAAC,WAAW,EAAE,QAAQxC,EAAE,IAAIE,EAAE,gBAAgBC,EAAE,WAAW,CAAC,EAAEsC,EAAEkf,EAAE,UAAUv7B,GAAG2b,EAAES,CAAC,EAAE,OAAOV,EAAEzI,EAAEoJ,EAAE,CAACA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,CAAC,CAAC,EAAEA,CAAC,CAAC,IAAIhN,GAAGyB,EAAE,CAAC,WAAWg5B,EAAE,CAAC,EAAE,SAASC,GAAGrwB,EAAE,EAAEE,EAAEE,EAAEC,EAAE,GAAG,CAAC,IAAIyB,EAAE,CAAC,EAAE4gB,EAAE1iB,EAAE,IAAI,mBAAmB,CAAC,EAAE+B,EAAE,CAAC,WAAW,EAAE,QAAQ7B,EAAE,IAAIE,EAAE,oBAAoBC,CAAC,EAAE2B,EAAE6f,EAAE,UAAUp7B,GAAGqb,EAAEC,CAAC,EAAE,MAAM,CAAC,OAAOC,EAAE,CAAC,EAAE,QAAQA,EAAE,CAAC,CAAC,CAAC,CAAC,IAAIpM,GAAGwB,EAAE,CAAC,mBAAmBi5B,EAAE,CAAC,EAAE,SAASC,GAAGtwB,EAAE,EAAE,CAAC,IAAIE,EAAEwiB,EAAE1iB,EAAE,IAAI,SAAS,EAAEI,EAAEsiB,EAAE,EAAE,IAAI,SAAS,EAAE,CAACxiB,EAAEE,CAAC,EAAE4gB,GAAG9gB,EAAEE,CAAC,EAAEF,EAAE,QAAQ,SAASA,EAAExR,GAAEwR,EAAE,OAAO,EAAEE,EAAE1R,GAAE0R,EAAE,OAAO,GAAGksB,GAAGpsB,EAAE,MAAME,EAAE,KAAK,EAAE,IAAIC,EAAE,CAAC,EAAEH,EAAE,EAAEE,CAAC,EAAE,OAAOyhB,EAAE,UAAUn7B,GAAG2Z,CAAC,CAAC,CAAC,IAAIxK,GAAGuB,EAAE,CAAC,SAASk5B,EAAE,CAAC,EAAE,SAASC,GAAGvwB,EAAE,EAAE,KAAKE,EAAE,GAAG,CAAC,IAAIG,EAAE,CAAC,EAAEqiB,EAAE1iB,EAAE,IAAI,MAAM,CAAC,EAAE6B,EAAE,CAAC,KAAK,EAAE,SAAS3B,CAAC,EAAE,OAAO2hB,EAAE,UAAUl7B,GAAG0Z,EAAEwB,CAAC,CAAC,CAAC,IAAI/L,GAAGsB,EAAE,CAAC,MAAMm5B,EAAE,CAAC,EAAE,SAAShxB,GAAGS,EAAE,EAAE,UAAU,CAAC,GAAG0c,GAAG1c,CAAC,EAAE,IAAI,YAAY,CAAC,IAAII,EAAEb,GAAGS,EAAE,SAAS,EAAEK,EAAEd,GAAGS,EAAE,SAAS,EAAE,OAAOlR,GAAGsR,EAAEC,CAAC,CAAC,CAAC,IAAIH,EAAEsc,GAAG9B,GAAG1a,CAAC,EAAE,CAAC,EAAE,OAAO6hB,EAAE,WAAW3hB,EAAEF,EAAE,CAAC,CAAC,CAAC,SAAS9I,GAAG8I,EAAE,EAAE,UAAU,CAAC,GAAG0c,GAAG1c,CAAC,EAAE,IAAI,YAAY,CAAC,IAAII,EAAElJ,GAAG8I,EAAE,SAAS,EAAEK,EAAEd,GAAGS,EAAE,SAAS,EAAE,OAAOlR,GAAGsR,EAAEC,CAAC,CAAC,CAAC,IAAIH,EAAEqc,GAAG7B,GAAG1a,CAAC,EAAE,CAAC,EAAE,OAAO6hB,EAAE,WAAW3hB,EAAEF,EAAE,CAAC,CAAC,CAAC,SAAShK,GAAGgK,EAAE,EAAE,CAAC,SAASE,EAAE,IAAI,EAAE,CAAC,EAAE,CAAC,GAAGA,IAAI,MAAMA,IAAI,KAAK,MAAM,IAAI,UAAU,GAAGA,CAAC,4CAA4C,EAAE,GAAGF,IAAI,OAAO,MAAM,CAAC,EAAE,IAAII,EAAEsiB,EAAE1iB,EAAE,IAAI,WAAWA,aAAarU,GAAGqU,EAAE,MAAM,SAAS,EAAE,GAAG,IAAI,OAAO,MAAM,CAACI,CAAC,EAAE,IAAIC,EAAEqiB,EAAE,EAAE,IAAI,WAAW,aAAa/2B,GAAG,EAAE,MAAM,SAAS,EAAE,EAAE+uB,GAAGta,EAAE,KAAK,EAAE,EAAEsa,GAAGra,EAAE,KAAK,EAAE,OAAOH,IAAI,MAAME,EAAE7G,EAAE6G,EAAE,CAAC,EAAE,EAAE,CAAC,EAAEC,EAAE9G,EAAE8G,EAAE,CAAC,GAAG,CAAC,CAAC,EAAE,CAAC9K,GAAG2B,GAAG,CAAC,EAAE,CAAC,EAAEkJ,EAAE,KAAK,EAAEA,CAAC,EAAE7K,GAAG8K,EAAEnJ,GAAG,CAAC,EAAE,CAAC,EAAEmJ,EAAE,KAAK,CAAC,CAAC,IAAID,EAAE7G,EAAE6G,EAAE,CAAC,GAAG,CAAC,CAAC,EAAEC,EAAE9G,EAAE8G,EAAE,CAAC,EAAE,EAAE,CAAC,EAAE,CAAC9K,GAAG6K,EAAElJ,GAAG,CAAC,EAAE,CAAC,EAAEkJ,EAAE,KAAK,CAAC,EAAE7K,GAAG2B,GAAG,CAAC,EAAE,CAAC,EAAEmJ,EAAE,KAAK,EAAEA,CAAC,CAAC,EAAE,CAAC,SAASmwB,GAAGxwB,EAAE,EAAE,CAAC,IAAIE,EAAEwiB,EAAE1iB,EAAE,IAAI,SAAS,EAAEI,EAAEsiB,EAAE,EAAE,IAAI,SAAS,EAAE,CAACxiB,EAAEE,CAAC,EAAE4gB,GAAG9gB,EAAEE,CAAC,EAAEF,EAAE,QAAQ,SAASA,EAAExR,GAAEwR,EAAE,OAAO,EAAEE,EAAE1R,GAAE0R,EAAE,OAAO,GAAGksB,GAAGpsB,EAAE,MAAME,EAAE,KAAK,EAAE,IAAIC,EAAE,CAAC,EAAEH,EAAE,EAAEE,CAAC,EAAE,OAAOyhB,EAAE,UAAUh7B,GAAGwZ,CAAC,CAAC,CAAC,IAAIlK,GAAGiB,EAAE,CAAC,SAASo5B,EAAE,CAAC,EAAE,SAASC,GAAGzwB,EAAE,EAAEE,EAAE,CAACoa,EAAEpa,IAAI,WAAWA,IAAI,YAAY,IAAI,+DAA+DA,CAAC,GAAG,EAAE,IAAIE,EAAEsiB,EAAE1iB,EAAE,IAAI,WAAW,EAAE,GAAGI,EAAE,OAAO,EAAE,MAAM,IAAI,MAAM,gEAAgE,EAAEka,EAAE,EAAE,SAASla,EAAE,KAAK,IAAI,wCAAwCA,EAAE,IAAI,SAAS,EAAE,MAAM,GAAG,EAAE,IAAIC,EAAEH,IAAI,UAAU,EAAE,EAAE,QAAQ6B,EAAE,EAAEA,EAAE3B,EAAE,KAAK2B,IAAIuY,EAAE,EAAEvY,CAAC,EAAE,SAAS,EAAE,IAAI,uDAAuD,EAAEuY,EAAE,EAAEvY,CAAC,EAAE,CAAC,GAAG,GAAG,EAAEA,CAAC,EAAE,CAAC,GAAG3B,EAAE,MAAM2B,CAAC,EAAE1B,GAAG,EAAE0B,CAAC,EAAE,CAAC,GAAG,GAAG,EAAEA,CAAC,EAAE,CAAC,GAAG3B,EAAE,MAAM2B,CAAC,EAAE1B,EAAE,IAAI,wBAAwB0B,CAAC,uCAAuC3B,EAAE,MAAM2B,CAAC,EAAE1B,CAAC,sCAAsCD,EAAE,KAAK,EAAE,EAAE,IAAI,EAAE,CAAC,SAAS,EAAE,KAAKF,CAAC,EAAE,EAAE,CAAC,EAAEE,CAAC,EAAE,OAAOyhB,EAAE,UAAU/6B,GAAG,EAAE,CAAC,CAAC,CAAC,IAAIsP,GAAGgB,EAAE,CAAC,WAAWq5B,EAAE,CAAC,EAAE,SAASC,GAAG1wB,EAAE,EAAE,CAAC,IAAIE,EAAEwiB,EAAE1iB,EAAE,IAAI,KAAK,EAAEI,EAAEsiB,EAAE,EAAE,IAAI,KAAK,EAAE,CAACxiB,EAAEE,CAAC,EAAE4gB,GAAG9gB,EAAEE,CAAC,EAAE,IAAIC,EAAE,CAAC,EAAEH,EAAE,EAAEE,CAAC,EAAE,OAAOyhB,EAAE,UAAU96B,GAAGsZ,CAAC,CAAC,CAAC,IAAIhK,GAAGe,EAAE,CAAC,KAAKs5B,EAAE,CAAC,EAAE,SAASC,GAAG3wB,EAAE,EAAE,KAAKE,EAAE,GAAG,CAACF,EAAE0iB,EAAE1iB,EAAE,IAAI,SAAS,EAAE,IAAII,EAAEgb,GAAG,EAAEpb,EAAE,KAAK,EAAEK,EAAEvK,GAAGkK,EAAEI,EAAEF,CAAC,EAAE,EAAEG,EAAE,MAAMH,IAAI,EAAEmtB,GAAGhtB,EAAE,MAAMD,CAAC,GAAG,IAAI,EAAEjE,GAAGO,GAAGhO,GAAEsR,EAAE,SAAS,EAAEzG,EAAE8G,EAAE,CAAC,CAAC,CAAC,EAAE0B,EAAEjM,GAAG,EAAEsK,EAAEF,CAAC,EAAE,MAAM,CAAC,KAAKG,EAAE,SAAS0B,CAAC,CAAC,CAAC,IAAIvL,GAAGY,EAAE,CAAC,SAASu5B,EAAE,CAAC,EAAE,SAASC,GAAG5wB,EAAE,EAAEE,EAAEE,EAAE,CAAC,IAAIC,EAAEqiB,EAAE,EAAE,OAAO,cAAc,EAAE,EAAEC,GAAGziB,EAAE,IAAI,cAAc,EAAE,EAAEyiB,GAAGviB,EAAE,IAAI,cAAc,EAAE2B,EAAE1B,EAAE2B,EAAE,CAAC,EAAE,QAAQW,EAAE,EAAEA,EAAE3C,EAAE,OAAO2C,IAAI,CAAC,IAAIC,EAAE5C,EAAE2C,CAAC,EAAEZ,EAAE,EAAEY,CAAC,EAAE,EAAEA,CAAC,CAAC,EAAEX,EAAE,KAAKY,EAAE,CAAC,CAAC,EAAEZ,EAAE,KAAKY,EAAE,CAAC,CAAC,EAAEb,EAAEa,EAAE,CAAC,CAAC,CAAC,IAAIX,EAAE,CAAC,EAAES,EAAE,CAAC,EAAE,QAAQC,EAAE,EAAEA,EAAEX,EAAE,OAAOW,GAAG,EAAEV,EAAE,KAAKD,EAAEW,CAAC,CAAC,EAAED,EAAE,KAAKV,EAAEW,EAAE,CAAC,CAAC,EAAE,MAAM,CAACV,EAAES,CAAC,CAAC,CAAC,IAAI/L,GAAGS,EAAE,CAAC,cAAcw5B,EAAE,CAAC,EAAE,SAASC,GAAG7wB,EAAE,EAAEE,EAAEE,EAAE,GAAG,CAAC,IAAIC,EAAEqiB,EAAE1iB,EAAE,SAAS,aAAa,EAAE,EAAEK,EAAE,KAAK,EAAEA,EAAE,KAAK,GAAG,EAAE,EAAE,MAAM,IAAI,MAAM,+DAA+D,CAAC,GAAG,EAAE,GAAG,EAAE,EAAE,MAAM,IAAI,MAAM,gDAAgD,CAAC,EAAE,EAAEH,EAAEA,GAAG,KAAK,OAAO,EAAE,IAAI8B,EAAE,CAAC,OAAO,IAAI,EAAEzI,EAAE8G,EAAE,CAAC,EAAE,EAAE,CAAC,EAAEA,CAAC,EAAE,EAAE,CAAC,WAAW,EAAE,KAAKH,EAAE,WAAWE,CAAC,EAAEsC,EAAEmf,EAAE,UAAU56B,GAAG+a,EAAE,CAAC,EAAE,OAAO,IAAI,EAAEzI,EAAEmJ,EAAE,CAACA,EAAE,IAAI,CAAC,EAAEA,CAAC,CAAC,IAAI9L,GAAGQ,EAAE,CAAC,aAAay5B,EAAE,CAAC,EAAE,SAASC,GAAG9wB,EAAE,EAAE,CAAC,IAAIE,EAAEwiB,EAAE1iB,EAAE,IAAI,WAAW,mBAAmB,EAAEI,EAAEsiB,EAAE,EAAE,IAAI,WAAW,mBAAmB,EAAE,CAACxiB,EAAEE,CAAC,EAAE4gB,GAAG9gB,EAAEE,CAAC,EAAEksB,GAAGpsB,EAAE,MAAME,EAAE,KAAK,EAAE,IAAIC,EAAE,CAAC,EAAEH,EAAE,EAAEE,CAAC,EAAE,OAAOyhB,EAAE,UAAUt6B,GAAG8Y,CAAC,CAAC,CAAC,IAAIrJ,GAAGI,EAAE,CAAC,UAAU05B,EAAE,CAAC,EAAE,SAASC,GAAG/wB,EAAE,EAAEE,EAAE,EAAEE,EAAE,EAAEC,EAAE,QAAQ,CAAC,GAAG,EAAE,EAAE,MAAM,IAAI,MAAM,iDAAiD,CAAC,EAAE,EAAE,IAAIyB,EAAE,CAAC,QAAQ4gB,EAAE1iB,EAAE,UAAU,SAAS,OAAO,CAAC,EAAE+B,EAAE,CAAC,MAAM1B,EAAE,MAAM,EAAE,QAAQH,EAAE,SAASE,CAAC,EAAE,OAAOyhB,EAAE,UAAUp6B,GAAGqa,EAAEC,CAAC,CAAC,CAAC,IAAI9K,GAAGG,EAAE,CAAC,QAAQ25B,EAAE,CAAC,EAAE,SAASC,GAAGhxB,EAAE,CAAC,IAAIE,EAAE,CAAC,EAAEwiB,EAAE1iB,EAAE,IAAI,UAAU,CAAC,EAAE,OAAO6hB,EAAE,UAAUn6B,GAAGwY,CAAC,CAAC,CAAC,IAAI/I,GAAGC,EAAE,CAAC,UAAU45B,EAAE,CAAC,EAAE,SAASC,GAAGjxB,EAAE,EAAE,CAAC,IAAIE,EAAEwiB,EAAE1iB,EAAE,KAAK,cAAc,EAAEI,EAAEsiB,EAAE,EAAE,KAAK,cAAc,EAAEpI,EAAEpa,EAAE,OAAO,GAAGE,EAAE,OAAO,EAAE,IAAI,+DAA+DF,EAAE,IAAI,QAAQE,EAAE,IAAI,GAAG,EAAE,IAAIC,EAAE9G,EAAE2G,EAAE,CAAC,GAAG,CAAC,CAAC,EAAE,EAAE3G,EAAE6G,EAAE,CAAC,EAAE,EAAE,CAAC,EAAE,OAAO7K,GAAG8K,EAAE,CAAC,CAAC,CAAC,IAAIhJ,GAAGD,EAAE,CAAC,cAAc65B,EAAE,CAAC,EAAE,SAASC,GAAGlxB,EAAE,EAAEE,EAAE,EAAE,CAAC,IAAIE,EAAEsiB,EAAE1iB,EAAE,IAAI,KAAK,EAAE,GAAGI,EAAE,OAAO,EAAE,MAAM,IAAI,MAAM,oDAAoD,EAAE,IAAIC,EAAE,CAAC,SAAS,EAAE,cAAcH,CAAC,EAAE,EAAE,CAAC,EAAEE,CAAC,EAAE,OAAOyhB,EAAE,UAAU/5B,GAAG,EAAEuY,CAAC,CAAC,CAAC,IAAI/I,GAAGF,EAAE,CAAC,KAAK85B,EAAE,CAAC,EAAE,SAASC,GAAGnxB,EAAE,EAAEE,EAAE,EAAE,CAAC,OAAOoa,EAAE,EAAE,SAAS,EAAE,IAAI,kDAAkD,EAAEhjB,GAAG0I,EAAE,CAAC,CAAC,EAAEE,CAAC,CAAC,CAAC,IAAI3I,GAAGH,EAAE,CAAC,OAAO+5B,EAAE,CAAC,EAAE,SAASC,GAAGpxB,EAAE,EAAEE,EAAE,EAAE,CAAC,OAAOoa,EAAE,EAAE,SAAS,GAAG,EAAE,CAAC,EAAE,SAAS,GAAG,EAAE,CAAC,EAAE,SAAS,EAAE,IAAI,uDAAuD,EAAEhjB,GAAG0I,EAAE,EAAEE,CAAC,CAAC,CAAC,IAAI1I,GAAGJ,EAAE,CAAC,OAAOg6B,EAAE,CAAC,EAAE,SAASC,GAAGrxB,EAAE,EAAEE,EAAE,EAAE,CAAC,OAAOoa,EAAE,EAAE,SAAS,GAAG,EAAE,CAAC,EAAE,SAAS,GAAG,EAAE,CAAC,EAAE,SAAS,GAAG,EAAE,CAAC,EAAE,SAAS,EAAE,IAAI,uDAAuD,EAAEhjB,GAAG0I,EAAE,EAAEE,CAAC,CAAC,CAAC,IAAIzI,GAAGL,EAAE,CAAC,OAAOi6B,EAAE,CAAC,EAAE,SAASC,GAAGtxB,EAAE,EAAEE,EAAE,EAAE,CAAC,OAAOoa,EAAE,EAAE,SAAS,GAAG,EAAE,CAAC,EAAE,SAAS,GAAG,EAAE,CAAC,EAAE,SAAS,GAAG,EAAE,CAAC,EAAE,SAAS,GAAG,EAAE,CAAC,EAAE,SAAS,EAAE,IAAI,uDAAuD,EAAEhjB,GAAG0I,EAAE,EAAEE,CAAC,CAAC,CAAC,IAAIxI,GAAGN,EAAE,CAAC,OAAOk6B,EAAE,CAAC,EAAE,SAASC,GAAGvxB,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAEsiB,EAAE1iB,EAAE,IAAI,gBAAgB,EAAEsa,EAAEla,EAAE,MAAM,EAAE,EAAE,OAAO,IAAI,cAAcA,EAAE,IAAI,kCAAkC,EAAE,MAAM,EAAE,EAAEka,EAAEpa,EAAE,SAAS,EAAE,OAAO,IAAI,qBAAqBA,EAAE,MAAM,kCAAkC,EAAE,MAAM,EAAE,EAAEoa,EAAEla,EAAE,MAAM,OAAO,CAAC,EAAE2B,EAAEC,IAAIA,EAAE,GAAGA,GAAG,EAAE,OAAO,IAAID,EAAE7B,EAAE8B,EAAE,CAAC,EAAE,CAAC,EAAE9B,EAAE8B,EAAE,CAAC,EAAE,CAAC,GAAG,EAAEA,EAAE,CAAC,IAAI,EAAE,EAAE,EAAE,EAAE,IAAI,4BAA4B5B,EAAE,MAAM,MAAM,CAAC,CAAC,kBAAkBF,EAAE,SAAS,CAAC,qCAAqC,EAAE,SAAS,CAAC,EAAE,EAAE,IAAIG,EAAE,CAAC,EAAED,CAAC,EAAE,EAAE,CAAC,WAAW,EAAE,SAASF,CAAC,EAAE,OAAO2hB,EAAE,UAAUv3B,GAAG+V,EAAE,CAAC,CAAC,CAAC,IAAIxE,GAAGzE,EAAE,CAAC,gBAAgBm6B,EAAE,CAAC,EAAE,SAASC,GAAGxxB,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,EAAE,CAACA,GAAG,OAAOA,EAAE,CAAC,EAAE,CAAC,GAAG,GAAG,OAAO,EAAE,GAAGD,IAAI,IAAIA,EAAE,SAAS,IAAI2B,EAAE2gB,EAAE1iB,EAAE,IAAI,SAAS,EAAEgC,EAAED,EAAEE,EAAE,GAAGF,EAAE,OAAO,IAAIE,EAAE,GAAGD,EAAEzI,EAAEwI,EAAE,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,CAAC,CAAC,GAAGuY,EAAEkP,GAAG,EAAEnpB,CAAC,EAAE,IAAI,qEAAqE,CAAC,mBAAmBA,CAAC,GAAG,EAAE,IAAIqC,EAAEimB,GAAG3mB,EAAE,MAAM,EAAE,EAAE3B,EAAED,CAAC,EAAEuC,EAAE,CAACD,EAAE,eAAeA,EAAE,aAAa,EAAEE,EAAExC,IAAI,OAAOwC,EAAE6uB,GAAG,CAAC/uB,EAAE,aAAaA,EAAE,WAAW,EAAEC,CAAC,EAAEC,EAAE,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,EAAE,IAAIC,EAAEF,EAAE,CAAC,IAAI,GAAGA,EAAE,CAAC,IAAI,EAAE,CAACG,EAAEkB,CAAC,EAAE0tB,GAAG,CAAChvB,EAAE,SAASA,EAAE,OAAO,EAAEC,EAAEC,CAAC,EAAE,EAAEC,EAAEzC,EAAE,QAAQkH,EAAEzE,EAAEb,EAAEnG,GAAGmG,EAAEW,EAAEG,CAAC,EAAE2B,GAAGvE,IAAI,MAAM,IAAI3S,GAAG+Z,EAAE,EAAE,EAAE,EAAE,CAAC,EAAE,IAAI5R,GAAG4R,EAAE,EAAE,EAAE,EAAE,CAAC,GAAG,EAAE5C,EAAE7B,EAAE4B,EAAEzW,GAAGyW,EAAE9B,EAAEqB,CAAC,EAAE,OAAO/B,EAAE1I,EAAEmL,EAAE,CAACA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,CAAC,CAAC,EAAEA,CAAC,CAAC,SAASgtB,GAAG1xB,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAEF,EAAE,IAAIwC,GAAGA,EAAE,CAAC,CAAC,EAAErC,EAAEH,EAAE,IAAIwC,GAAGA,EAAE,CAAC,CAAC,EAAE,EAAE1C,EAAE,OAAOI,EAAEC,CAAC,EAAE,EAAE,EAAE,IAAI,CAACqC,EAAEC,KAAKD,EAAE,EAAEC,CAAC,EAAED,GAAGA,CAAC,EAAEX,EAAE1B,EAAE,IAAI,CAACqC,EAAEC,IAAID,EAAE,EAAEC,CAAC,CAAC,EAAEX,EAAE,EAAE,IAAI,CAACU,EAAEC,IAAI,CAACvC,EAAEuC,CAAC,EAAEZ,EAAEY,CAAC,CAAC,CAAC,EAAEV,EAAE,EAAE,IAAI,CAACS,EAAEC,IAAI,CAAC,EAAE,EAAEA,CAAC,CAAC,CAAC,EAAE,MAAM,CAACX,EAAEC,CAAC,CAAC,CAAC,SAASwvB,GAAGzxB,EAAE,EAAE,CAAC,IAAI,EAAEA,EAAE,IAAI,CAAC8B,EAAEC,IAAID,GAAGA,EAAE,IAAI,EAAEC,CAAC,EAAE,EAAE,EAAE,IAAID,GAAGA,EAAE,CAAC,EAAEzB,EAAE,EAAE,IAAIyB,GAAG,KAAK,MAAMA,EAAE,CAAC,CAAC,EAAED,EAAE,EAAE,IAAI,CAACC,EAAEC,IAAID,EAAEzB,EAAE0B,CAAC,CAAC,EAAE,OAAO,EAAE,IAAI,CAACD,EAAEC,IAAI,CAAC1B,EAAE0B,CAAC,EAAEF,EAAEE,CAAC,CAAC,CAAC,CAAC,CAAC,IAAIpK,GAAGP,EAAE,CAAC,MAAMo6B,EAAE,CAAC,EAAE,SAASG,GAAG3xB,EAAE,EAAE,CAAC,IAAIE,EAAEwiB,EAAE1iB,EAAE,IAAI,OAAO,EAAEI,EAAEsiB,EAAE,EAAE,QAAQ,OAAO,EAAEriB,EAAE,CAAC,EAAEH,EAAE,MAAME,CAAC,EAAE,OAAOyhB,EAAE,UAAU55B,GAAGoY,CAAC,CAAC,CAAC,IAAIxI,GAAGT,EAAE,CAAC,OAAOu6B,EAAE,CAAC,EAAE,SAASC,GAAG5xB,EAAE,EAAE,KAAKE,EAAE,GAAG,CAAC,IAAIE,EAAEsiB,EAAE1iB,EAAE,IAAI,MAAM,EAAEI,EAAE,QAAQ,SAASA,EAAE1R,GAAE0R,EAAE,OAAO,GAAG,IAAIC,EAAE,CAAC,EAAED,CAAC,EAAE,EAAE,CAAC,KAAK,EAAE,SAASF,CAAC,EAAE,OAAO2hB,EAAE,UAAU35B,GAAGmY,EAAE,CAAC,CAAC,CAAC,IAAItI,GAAGX,EAAE,CAAC,MAAMw6B,EAAE,CAAC,EAAE,SAASC,GAAG7xB,EAAE,EAAEE,EAAEE,EAAE,CAAC,IAAIC,EAAEL,EAAE,IAAI,CAAC0C,EAAEC,IAAI+f,EAAEhgB,EAAE,UAAUC,CAAC,GAAG,eAAe,OAAO,CAAC,EAAE,EAAE+f,EAAE,EAAE,oBAAoB,cAAc,EAAE,EAAEA,EAAExiB,EAAE,UAAU,eAAe,OAAO,EAAE6B,EAAE,CAAC,mBAAmB1B,EAAE,kBAAkB,EAAE,QAAQ,CAAC,EAAE2B,EAAE,CAAC,iBAAiB5B,CAAC,EAAE6B,EAAE4f,EAAE,UAAUx5B,GAAG0Z,EAAEC,CAAC,EAAE,MAAM,CAAC,mBAAmBC,EAAE,MAAM,EAAEA,EAAE,OAAO,CAAC,EAAE,kBAAkBA,EAAEA,EAAE,OAAO,CAAC,CAAC,CAAC,CAAC,IAAIhK,GAAGb,EAAE,CAAC,cAAcy6B,EAAE,CAAC,EAAE,SAASC,GAAG9xB,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAEsiB,EAAE1iB,EAAE,SAAS,aAAa,EAAEK,EAAEqiB,EAAE,EAAE,SAAS,cAActiB,EAAE,KAAK,EAAE,EAAEsiB,EAAExiB,EAAE,SAAS,cAAcE,EAAE,KAAK,EAAE,EAAE,CAAC,OAAOA,EAAE,OAAOC,EAAE,OAAO,CAAC,EAAE0B,EAAE8f,EAAE,UAAUv5B,GAAG,CAAC,EAAE,MAAM,CAAC,eAAeyZ,EAAE,CAAC,EAAE,cAAcA,EAAE,CAAC,CAAC,CAAC,CAAC,IAAI7J,GAAGd,EAAE,CAAC,aAAa06B,EAAE,CAAC,EAAE,SAASC,GAAG/xB,EAAE,EAAEE,EAAEE,EAAEC,EAAE,CAAC,IAAI,EAAEqiB,EAAE1iB,EAAE,QAAQ,uBAAuB,OAAO,EAAE,EAAE0iB,EAAE,EAAE,SAAS,sBAAsB,EAAE3gB,EAAE2gB,EAAExiB,EAAE,eAAe,uBAAuB,EAAE,KAAK,EAAE8B,EAAE5B,EAAE,IAAI,CAACuC,EAAEC,IAAI8f,EAAE/f,EAAE,UAAUC,CAAC,GAAG,uBAAuB,OAAO,CAAC,EAAEX,EAAE,CAAC,MAAM,EAAE,OAAO,EAAE,aAAaF,EAAE,oBAAoBC,CAAC,EAAEU,EAAE,CAAC,kBAAkBrC,CAAC,EAAE,OAAOwhB,EAAE,UAAUt5B,GAAG0Z,EAAES,CAAC,CAAC,CAAC,IAAIvK,GAAGf,EAAE,CAAC,sBAAsB26B,EAAE,CAAC,EAAE,SAASC,GAAGhyB,EAAE,EAAEE,EAAE,CAACwc,GAAG1c,CAAC,EAAE,IAAII,EAAEsa,GAAG1a,CAAC,EAAEK,EAAE,KAAK,GAAGH,GAAG,MAAMA,IAAI,UAAUG,EAAE,IAAI,aAAaD,CAAC,UAAUF,IAAI,QAAQG,EAAE,IAAI,WAAWD,CAAC,UAAUF,IAAI,OAAOG,EAAE,IAAI,WAAWD,CAAC,MAAO,OAAM,IAAI,MAAM,qBAAqBF,CAAC,EAAE,EAAE,QAAQ,EAAE,EAAE,EAAEE,EAAE,IAAIC,EAAE,CAAC,EAAE,EAAE,EAAE,OAAOwhB,EAAE,WAAWxhB,EAAEL,EAAEE,CAAC,CAAC,CAAC,IAAI9H,GAAGhB,EAAE,CAAC,MAAM46B,EAAE,CAAC,EAAMC,GAAG3xB,GAAGgF,GAAG,CAAC,EAAM9H,GAAG,CAAC,EAAEyC,GAAGzC,GAAG,CAAC,qBAAqB,IAAI00B,GAAG,mBAAmB,IAAIC,GAAG,cAAc,IAAIC,GAAG,wBAAwB,IAAIC,GAAG,kBAAkB,IAAIC,GAAG,kBAAkB,IAAIC,GAAG,mBAAmB,IAAIC,GAAG,oBAAoB,IAAIC,GAAG,oBAAoB,IAAIC,GAAG,KAAK,IAAIC,GAAG,YAAY,IAAIC,EAAE,CAAC,EAAE,IAAIC,GAAG,KAAKX,GAAG,GAAG,SAASI,GAAGtyB,EAAE,EAAEE,EAAE,CAAC,OAAOA,GAAG,OAAOA,EAAE0yB,GAAG,GAAGE,GAAG9yB,EAAE,EAAE,CAACI,EAAEC,IAAI0yB,GAAG3yB,EAAEC,EAAEH,CAAC,CAAC,CAAC,CAAC,SAAS0yB,IAAI,CAAC,OAAO/Q,EAAE,QAAQ,eAAe,IAAI,GAAGgR,GAAGX,EAAE,CAAC,SAASY,GAAG9yB,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAE,GAAG,IAAI+d,GAAGne,CAAC,GAAGme,GAAG,CAAC,KAAK/d,EAAE,IAAI+d,GAAGne,CAAC,GAAGme,GAAG,CAAC,IAAI/d,EAAE,IAAIA,EAAE,CAAC,IAAI,EAAEJ,EAAE,YAAY,KAAK+B,EAAE,EAAE,YAAY,KAAK,GAAG,IAAIA,EAAE,MAAM,IAAI,MAAM,yCAAyC,CAAC,eAAeA,CAAC,EAAE,CAAC,CAAC,GAAG,MAAM,QAAQ/B,CAAC,GAAG,MAAM,QAAQ,CAAC,EAAE,CAAC,IAAI,EAAEuiB,GAAGviB,CAAC,EAAE+B,EAAEwgB,GAAG,CAAC,EAAE,GAAG,CAAC/H,GAAG,EAAEzY,CAAC,EAAE,MAAM,IAAI,MAAM,0CAA0C,CAAC,iBAAiBA,CAAC,GAAG,CAAC,CAAC,IAAI1B,EAAE8d,GAAGne,CAAC,EAAEA,EAAEie,GAAGje,CAAC,EAAE,EAAEme,GAAG,CAAC,EAAE,EAAEF,GAAG,CAAC,EAAE,GAAG5d,EAAE,SAAS,EAAE,OAAO,MAAM,IAAI,MAAM,yCAAyCA,EAAE,MAAM,iBAAiB,EAAE,MAAM;AAAA,YACz7YA,CAAC;AAAA,YACD,CAAC,GAAG,EAAE,QAAQ,EAAE,EAAE,EAAE,EAAE,OAAO,EAAE,EAAE,CAAC,IAAI0B,EAAE1B,EAAE,CAAC,EAAE2B,EAAE,EAAE,CAAC,EAAE,GAAG,CAAC9B,EAAE6B,EAAEC,CAAC,EAAE,MAAM,IAAI,MAAM,yBAAyB,CAAC,OAAOD,CAAC,cAAc,CAAC,OAAOC,CAAC;AAAA,YACxI3B,CAAC;AAAA,YACD,CAAC,GAAG,CAAC,CAAC,OAAO,QAAQ,aAAa,OAAO,EAAE,QAAQ,CAAC,CAAC,SAASoyB,GAAGzyB,EAAE,EAAE,CAACA,EAAE,EAAE,KAAK,IAAI,EAAE,KAAK,EAAE,IAAI,EAAE,CAAC,EAAE,OAAO,QAAQ,aAAa,OAAO,EAAE,QAAQ,CAAC,CAAC,SAASuyB,GAAGvyB,EAAE,EAAE,CAAC,IAAIE,EAAE,OAAO,GAAG,UAAU,OAAO,GAAG,UAAU,OAAO,GAAG,UAAU,CAAC,CAAC,EAAE,EAAE,OAAO2b,GAAG7b,CAAC,GAAG6b,GAAG7b,EAAE,CAAC,CAAC,GAAG6b,GAAG,CAAC,GAAGA,GAAG,EAAE,CAAC,CAAC,EAAEiX,GAAG9yB,EAAEE,EAAE,CAACE,EAAEC,IAAID,GAAGC,CAAC,EAAEyyB,GAAG9yB,EAAE,EAAE,CAACI,EAAEC,IAAI0yB,GAAG3yB,EAAEC,EAAE,CAAC,CAAC,CAAC,CAAC,SAASmyB,GAAGxyB,EAAE,EAAEE,EAAE,CAAC,GAAGA,GAAG,OAAOA,EAAE0yB,GAAG,GAAG,CAACG,GAAG/yB,EAAE,EAAEE,CAAC,EAAE,MAAM,IAAI,MAAM,8BAA8BF,CAAC,kBAAkB,CAAC,EAAE,EAAE,OAAO,QAAQ,aAAa,OAAO,EAAE,QAAQ,CAAC,CAAC,SAAS+yB,GAAG/yB,EAAE,EAAEE,EAAE,CAAC,MAAM,CAAC,SAASF,CAAC,GAAG,CAAC,SAAS,CAAC,EAAE,GAAG,EAAE,MAAMA,CAAC,GAAG,MAAM,CAAC,GAAG,KAAK,IAAIA,EAAE,CAAC,EAAEE,EAAE,CAAC,SAASwyB,GAAG1yB,EAAE,EAAEE,EAAE,CAAC,QAAQE,EAAE,EAAEA,EAAEJ,EAAE,OAAOI,IAAI,GAAGJ,EAAEI,CAAC,EAAE,GAAGJ,EAAEI,CAAC,EAAEF,EAAE,MAAM,IAAI,MAAM,sBAAsBF,EAAEI,CAAC,CAAC,SAAS,CAAC,WAAWF,CAAC,EAAE,CAAC,CAAC,SAASmyB,GAAGryB,EAAE,EAAE,CAAC,IAAIE,EAAE,IAAI,aAAaF,CAAC,EAAEI,EAAE,IAAI,aAAa,CAAC,EAAE,GAAGF,EAAE,SAASE,EAAE,OAAO,MAAM,IAAI,MAAM,wCAAwCA,EAAE,MAAM,gBAAgBF,EAAE,MAAM,EAAE,EAAE,QAAQG,EAAE,EAAEA,EAAED,EAAE,OAAOC,IAAI,GAAGH,EAAEG,CAAC,IAAID,EAAEC,CAAC,EAAE,MAAM,IAAI,MAAM,iCAAiCA,CAAC,UAAUD,EAAEC,CAAC,CAAC,YAAYH,EAAEG,CAAC,CAAC,UAAU,CAAC,CAAC,SAAS+xB,GAAGpyB,EAAE,CAAC,QAAQ,EAAE,EAAE,EAAEA,EAAE,OAAO,IAAI,CAAC,IAAIE,EAAEF,EAAE,CAAC,EAAE,MAAM,QAAQE,CAAC,EAAEkyB,GAAGlyB,CAAC,EAAEF,EAAE,CAAC,EAAE8d,GAAG5d,CAAC,CAAC,CAAC,OAAOF,CAAC,CAAC,SAASmyB,GAAGnyB,EAAE,CAAC,IAAI,EAAE,SAAS,cAAc,OAAO,EAAE,MAAM,gBAAgB,IAAI,EAAE,YAAY,IAAI,EAAE,MAAM,GAAG,EAAE,KAAK,GAAG,EAAE,MAAM,SAAS,QAAQ,EAAE,MAAM,KAAK,MAAM,EAAE,MAAM,IAAI,MAAM,EAAE,QAAQ,OAAO,EAAE,YAAYA,CAAC,EAAE,IAAI,QAAQE,GAAG,CAAC,EAAE,iBAAiB,aAAaE,GAAGF,EAAE,CAAC,CAAC,EAAE,EAAE,KAAK,CAAC,CAAC,CAAC,CAAC,eAAeyyB,GAAG3yB,EAAE,CAAC,MAAMA,EAAE,KAAK,EAAE,8BAA8BA,GAAG,MAAM,IAAI,QAAQ,GAAG,CAACA,EAAE,0BAA0B,CAAC,CAAC,CAAC,CAAC,CAAC,IAAIgzB,GAAG,KAAK,CAAC,YAAYpyB,EAAEV,EAAE,EAAEG,EAAEwB,EAAE,CAAC,KAAK,KAAKjB,EAAE,KAAK,OAAOV,EAAE,KAAK,MAAM,EAAE,KAAK,QAAQ,IAAI,KAAK,UAAUG,EAAE,KAAK,YAAY,KAAK,MAAM,KAAK,KAAK,KAAK,OAAO,EAAE,KAAK,MAAM,KAAK,KAAK,KAAK,OAAO,GAAG,IAAIyB,EAAED,GAAG,KAAK,OAAO,EAAE,KAAK,OAAOowB,GAAG,KAAKnwB,EAAE,SAAS,CAAC,CAAC,CAAC,WAAW,CAAC,GAAG,CAAC,MAAM,KAAK,OAAO,EAAE,CAAC,IAAIzB,EAAE,KAAK,QAAQ,OAAO,KAAK,QAAQ,IAAIA,CAAC,CAAC,IAAIO,EAAEV,EAAE,EAAE,GAAG,KAAK,CAAC,GAAG,CAAC,IAAIG,EAAEwB,EAAEC,EAAE,GAAGzB,EAAE,EAAE,KAAK,OAAO,EAAE,EAAEwB,EAAE,EAAE,KAAK,OAAO,EAAE,EAAEC,EAAEzB,EAAEA,EAAEwB,EAAEA,QAAQC,GAAG,GAAGA,IAAI,GAAG,IAAIC,EAAE,KAAK,KAAK,GAAG,KAAK,IAAID,CAAC,EAAEA,CAAC,EAAElB,EAAE,KAAK,KAAK,KAAK,OAAOP,EAAE0B,EAAE7B,EAAE,KAAK,KAAK,KAAK,OAAO2B,EAAEE,GAAG,CAAC,KAAK,WAAW,KAAK,iBAAiBnB,CAAC,KAAK,EAAE,GAAG,CAAC,OAAO,CAAC,KAAK,WAAW,KAAK,iBAAiBV,CAAC,KAAK,KAAK,QAAQ,KAAK,aAAaA,CAAC,GAAG,KAAK,aAAaU,CAAC,CAAC,CAAC,aAAaA,EAAE,CAAC,OAAO,KAAK,OAAO,MAAM,KAAK,QAAQ,UAAUA,EAAE,KAAK,MAAMA,CAAC,CAAC,CAAC,iBAAiBA,EAAE,CAAC,OAAOA,GAAG,KAAK,OAAOA,GAAG,KAAK,KAAK,CAAC,EAAEqyB,GAAG,KAAK,CAAC,YAAYryB,EAAEV,EAAE,EAAEG,EAAE,CAAC,KAAK,MAAMO,EAAE,KAAK,KAAK,EAAEV,EAAE,KAAK,MAAM,EAAE,IAAI2B,EAAExB,GAAG,KAAK,OAAO,EAAE,KAAK,MAAM4xB,GAAG,KAAKpwB,EAAE,SAAS,CAAC,EAAE,KAAK,MAAM,IAAImxB,GAAG,EAAE,EAAE,EAAE,GAAG,KAAK,MAAM,CAAC,EAAEpyB,EAAE,EAAE,KAAK,EAAEA,EAAE,EAAE,EAAE,KAAK,EAAEA,EAAE,EAAE,EAAE,KAAK,EAAE,EAAE,KAAK,KAAK,EAAE,KAAK,CAAC,CAAC,CAAC,WAAW,CAAC,IAAIA,EAAEV,EAAE,EAAEG,EAAEwB,EAAEC,EAAE,OAAO,CAAC,GAAGzB,EAAE,KAAK,MAAM,UAAU,EAAEyB,EAAE,EAAE,KAAK,EAAEzB,QAAQyB,GAAG,GAAG,GAAGA,GAAGA,EAAEA,EAAElB,EAAEP,EAAEA,EAAEH,EAAE,EAAE,KAAKU,EAAEA,EAAE,EAAE,GAAGA,EAAE,KAAK,GAAG,EAAEkB,EAAE,KAAK,IAAIA,CAAC,GAAGD,EAAE,KAAK,MAAM,EAAEA,EAAE3B,GAAG,KAAK,IAAI2B,CAAC,EAAE,EAAE,KAAK,CAAC,OAAOC,EAAE,EAAE,KAAK,KAAK,KAAK,EAAEA,EAAE,KAAK,MAAM,IAAIA,GAAG,KAAK,IAAI,KAAK,MAAM,EAAE,EAAE,KAAK,KAAK,GAAG,KAAK,aAAaA,CAAC,CAAC,CAAC,aAAalB,EAAE,CAAC,OAAO,KAAK,QAAQ,UAAUA,EAAE,KAAK,MAAMA,CAAC,CAAC,CAAC,EAAEsyB,GAAG,KAAK,CAAC,YAAYtyB,EAAE,EAAEV,EAAE,EAAE,EAAEG,EAAE,CAAC,GAAG,KAAK,eAAe,IAAI,KAAK,OAAO,MAAM,KAAK,QAAQ,UAAU,KAAK,IAAIO,EAAE,KAAK,MAAMV,EAAEU,EAAE,KAAK,MAAM,EAAEP,GAAG,OAAOA,EAAE,KAAK,OAAO,GAAG,OAAOA,GAAG,WAAWA,EAAEA,EAAE,SAAS,GAAG,CAAC,KAAK,eAAe,GAAG,KAAK,OAAO,EAAE,MAAM,IAAI,MAAM,0BAA0BO,CAAC,MAAMV,CAAC,8BAA8B,EAAE,KAAK,OAAO+xB,GAAG,KAAK5xB,CAAC,CAAC,CAAC,aAAaO,EAAE,CAAC,OAAO,KAAK,eAAe,EAAEA,EAAE,KAAK,MAAMA,CAAC,CAAC,CAAC,WAAW,CAAC,OAAO,KAAK,aAAa,KAAK,IAAI,KAAK,MAAM,KAAK,OAAO,CAAC,CAAC,CAAC,EAAE,SAASuyB,GAAGnzB,EAAE,EAAEE,EAAE,EAAEE,EAAE,UAAUC,EAAE,CAAC,GAAGqc,GAAG1c,CAAC,EAAEE,GAAG,OAAOA,EAAE,GAAGE,GAAG,OAAOA,EAAE,WAAWA,IAAI,WAAWA,IAAI,QAAQ,MAAM,IAAI,MAAM,yBAAyBA,CAAC,EAAE,EAAE,IAAI,EAAE,IAAI6yB,GAAG,EAAE/yB,EAAEE,EAAEC,CAAC,EAAE,EAAE7R,GAAGwR,EAAEI,CAAC,EAAE,QAAQ2B,EAAE,EAAEA,EAAE,EAAE,OAAO,OAAOA,IAAI,EAAE,OAAOA,CAAC,EAAE,EAAE,UAAU,EAAE,OAAO,EAAE,SAAS,CAAC,CAAC,IAAI1J,GAAGjB,EAAE,CAAC,aAAa+7B,EAAE,CAAC,EAAE,SAASC,GAAGpzB,EAAE,EAAE,EAAEE,EAAE,EAAEE,EAAEC,EAAE,CAAC,GAAGqc,GAAG1c,CAAC,EAAEI,GAAG,MAAMA,IAAI,OAAO,MAAM,IAAI,MAAM,yBAAyBA,CAAC,EAAE,EAAE,IAAI,EAAE,IAAI4yB,GAAG,EAAE9yB,EAAEE,EAAE,GAAGC,CAAC,EAAE,EAAE7R,GAAGwR,EAAEI,CAAC,EAAE,QAAQ2B,EAAE,EAAEA,EAAE,EAAE,OAAO,OAAOA,IAAI,EAAE,OAAOA,CAAC,EAAE,EAAE,UAAU,EAAE,OAAO,EAAE,SAAS,CAAC,CAAC,IAAIzJ,GAAGlB,EAAE,CAAC,cAAcg8B,EAAE,CAAC,EAAE,SAASC,GAAGrzB,EAAE,EAAEE,EAAE,CAAC,GAAG,GAAG,MAAM,IAAI,OAAO,MAAM,IAAI,MAAM,yBAAyB,CAAC,EAAE,EAAE,OAAO5H,GAAG0H,EAAE,EAAE,EAAE,EAAEE,CAAC,CAAC,CAAC,IAAI3H,GAAGnB,EAAE,CAAC,sBAAsBi8B,EAAE,CAAC,EAAE,SAASC,GAAGtzB,EAAE,EAAE,EAAEE,EAAE,EAAEE,EAAE,UAAUC,EAAE,CAACqc,GAAG1c,CAAC,EAAE,IAAI,EAAExR,GAAGwR,EAAEI,CAAC,EAAE,EAAE,IAAI8yB,GAAG,EAAEhzB,EAAE,KAAKG,CAAC,EAAE,QAAQ0B,EAAE,EAAEA,EAAE,EAAE,OAAO,OAAOA,IAAI,EAAE,OAAOA,CAAC,EAAE,EAAE,UAAU,EAAE,OAAO,EAAE,SAAS,CAAC,CAAC,IAAIvJ,GAAGpB,EAAE,CAAC,eAAek8B,EAAE,CAAC,EAAE,SAASC,GAAGvzB,EAAE,EAAEE,EAAEE,EAAE,CAAC,OAAO5H,GAAGwH,EAAE,EAAEE,EAAE,QAAQE,CAAC,CAAC,CAAC,IAAI3H,GAAGrB,EAAE,CAAC,kBAAkBm8B,EAAE,CAAC,EAAE,SAAS76B,GAAGsH,EAAE,EAAEE,EAAE,EAAEE,EAAE,UAAU,CAAC,GAAGF,IAAI,EAAE,MAAM,IAAI,MAAM,4BAA4B,EAAE,IAAIG,EAAE,CAAC,MAAML,EAAE,KAAK,EAAE,KAAKE,EAAE,MAAME,CAAC,EAAE,OAAOyhB,EAAE,UAAUr5B,GAAG,CAAC,EAAE6X,CAAC,CAAC,CAAC,SAASmzB,GAAGxzB,EAAE,CAAC,IAAIE,EAAE,CAAC,MAAMwiB,EAAE1iB,EAAE,QAAQ,MAAM,CAAC,EAAE,OAAO6hB,EAAE,UAAUn5B,GAAGwX,CAAC,CAAC,CAAC,IAAItH,GAAGxB,EAAE,CAAC,MAAMo8B,EAAE,CAAC,EAAE,SAASC,GAAGzzB,EAAE,CAAC,IAAIE,EAAE,CAAC,EAAEwiB,EAAE1iB,EAAE,IAAI,YAAY,CAAC,EAAE,OAAO6hB,EAAE,UAAUj5B,GAAGsX,CAAC,CAAC,CAAC,IAAIrH,GAAGzB,EAAE,CAAC,YAAYq8B,EAAE,CAAC,EAAE,SAASC,GAAG1zB,EAAE,CAAC,IAAIE,EAAE,CAAC,EAAEwiB,EAAE1iB,EAAE,IAAI,MAAM,CAAC,EAAE,OAAO6hB,EAAE,UAAU/4B,GAAGoX,CAAC,CAAC,CAAC,IAAI9G,GAAGhC,EAAE,CAAC,MAAMs8B,EAAE,CAAC,EAAE,SAASC,GAAG3zB,EAAE,CAAC,IAAIE,EAAE,CAAC,EAAEwiB,EAAE1iB,EAAE,IAAI,OAAO,CAAC,EAAE,OAAO6hB,EAAE,UAAU94B,GAAGmX,CAAC,CAAC,CAAC,IAAI7G,GAAGjC,EAAE,CAAC,OAAOu8B,EAAE,CAAC,EAAE,SAASC,GAAG5zB,EAAE,EAAE,CAAC,IAAI,EAAE,CAAC,EAAE0iB,EAAE1iB,EAAE,IAAI,SAAS,CAAC,EAAEK,EAAE,CAAC,KAAK,CAAC,EAAE,OAAOwhB,EAAE,UAAUx4B,GAAG,EAAEgX,CAAC,CAAC,CAAC,IAAI7G,GAAGpC,EAAE,CAAC,SAASw8B,EAAE,CAAC,EAAE,SAASC,GAAG7zB,EAAE,CAAC,IAAI,EAAE0iB,EAAE1iB,EAAE,IAAI,SAAS,EAAE,OAAOsa,EAAE,EAAE,OAAO,EAAE,IAAI,qDAAqD,EAAE,IAAI,GAAG,EAAE9gB,GAAG,EAAE,CAAC,CAAC,CAAC,IAAIC,GAAGrC,EAAE,CAAC,WAAWy8B,EAAE,CAAC,EAAE,SAASC,GAAG9zB,EAAE,EAAE,CAAC,IAAIE,EAAEwiB,EAAE1iB,EAAE,IAAI,SAAS,EAAE,OAAOsa,EAAEpa,EAAE,OAAO,EAAE,IAAI,qDAAqDA,EAAE,IAAI,GAAG,EAAE1G,GAAG0G,EAAE,CAAC,CAAC,CAAC,IAAIxG,GAAGtC,EAAE,CAAC,WAAW08B,EAAE,CAAC,EAAE,SAASC,GAAG/zB,EAAE,EAAE,CAAC,IAAIE,EAAEwiB,EAAE1iB,EAAE,IAAI,SAAS,EAAE,OAAOsa,EAAEpa,EAAE,OAAO,EAAE,IAAI,qDAAqDA,EAAE,IAAI,GAAG,EAAE1G,GAAG0G,EAAE,CAAC,CAAC,CAAC,IAAIvG,GAAGvC,EAAE,CAAC,WAAW28B,EAAE,CAAC,EAAE,SAASC,GAAGh0B,EAAE,EAAE,CAAC,IAAIE,EAAEwiB,EAAE1iB,EAAE,IAAI,SAAS,EAAE,OAAOsa,EAAEpa,EAAE,OAAO,EAAE,IAAI,qDAAqDA,EAAE,IAAI,GAAG,EAAE1G,GAAG0G,EAAE,CAAC,CAAC,CAAC,IAAItG,GAAGxC,EAAE,CAAC,WAAW48B,EAAE,CAAC,EAAE,SAASC,GAAGj0B,EAAE,CAAC,IAAIE,EAAE,CAAC,EAAEwiB,EAAE1iB,EAAE,IAAI,OAAO,CAAC,EAAE,OAAO6hB,EAAE,UAAUt4B,GAAG2W,CAAC,CAAC,CAAC,IAAIpG,GAAG1C,EAAE,CAAC,OAAO68B,EAAE,CAAC,EAAE,SAASC,GAAGl0B,EAAE,CAAC,IAAIE,EAAE,CAAC,EAAEwiB,EAAE1iB,EAAE,IAAI,QAAQ,SAAS,CAAC,EAAE,OAAO6hB,EAAE,UAAUr4B,GAAG0W,CAAC,CAAC,CAAC,IAAInG,GAAG3C,EAAE,CAAC,OAAO88B,EAAE,CAAC,EAAE,SAASC,GAAGn0B,EAAE,CAAC,IAAIE,EAAE,CAAC,EAAEwiB,EAAE1iB,EAAE,IAAI,MAAM,CAAC,EAAE,OAAO6hB,EAAE,UAAUh4B,GAAGqW,CAAC,CAAC,CAAC,IAAI9F,GAAGhD,EAAE,CAAC,MAAM+8B,EAAE,CAAC,EAAE,SAASC,GAAGp0B,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,CAAC,EAAE,CAAC,EAAE,EAAE,OAAO,CAAC,IAAI0B,EAAE2gB,EAAE1iB,EAAE,IAAI,iBAAiB,EAAEgC,EAAE0gB,EAAE,EAAE,kBAAkB,iBAAiB,EAAEzgB,EAAEygB,EAAExiB,EAAE,kBAAkB,iBAAiB,EAAEwC,EAAEX,EAAEY,EAAE,GAAG,GAAGZ,EAAE,OAAO,IAAIY,EAAE,GAAGD,EAAEnJ,EAAEwI,EAAE,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,CAAC,CAAC,GAAG,IAAI,OAAO,MAAM,IAAI,MAAM,oFAAoF,EAAEuY,EAAE5X,EAAE,OAAO,EAAE,IAAI,gEAAgEA,EAAE,IAAI,GAAG,EAAE4X,EAAEtY,EAAE,OAAO,EAAE,IAAI,2EAA2EA,EAAE,IAAI,GAAG,EAAEsY,EAAErY,EAAE,OAAO,EAAE,IAAI,2EAA2ED,EAAE,IAAI,GAAG,EAAEsY,EAAErY,EAAE,MAAM,CAAC,IAAI,EAAE,IAAI,yFAAyFA,EAAE,MAAM,CAAC,CAAC,GAAG,EAAEqY,EAAErY,EAAE,MAAM,CAAC,IAAI,EAAE,IAAI,yFAAyFA,EAAE,MAAM,CAAC,CAAC,GAAG,EAAE,IAAIW,EAAEZ,EAAE,MAAM,CAAC,EAAEa,EAAEb,EAAE,MAAM,CAAC,EAAEsY,EAAErY,EAAE,MAAM,CAAC,IAAIW,EAAEC,EAAE,IAAI,6EAA6ED,EAAEC,CAAC,aAAaZ,EAAE,MAAM,CAAC,CAAC,GAAG,EAAE,IAAIa,EAAEzS,GAAGqS,EAAEV,EAAE5B,EAAEC,EAAE,EAAE,CAAC,EAAE4D,EAAE3U,GAAGwT,EAAEb,EAAE,EAAE,QAAQ,CAAC,EAAE,OAAOU,EAAEpJ,EAAE0K,EAAE,CAACA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,CAAC,CAAC,EAAEA,CAAC,CAAC,IAAI5J,GAAGjD,EAAE,CAAC,iBAAiBg9B,EAAE,CAAC,EAAE,eAAeC,GAAGr0B,EAAE,EAAE,CAAC,IAAIE,EAAEwiB,EAAE1iB,EAAE,IAAI,WAAW,EAAEI,EAAEsiB,EAAE,EAAE,IAAI,WAAW,EAAEpI,EAAEpa,EAAE,QAAQE,EAAE,MAAM,IAAI,kDAAkDF,EAAE,KAAK,YAAYE,EAAE,KAAK,IAAI,EAAEka,EAAEpa,EAAE,OAAO,EAAE,IAAI,qCAAqCA,EAAE,KAAK,IAAI,EAAEoa,EAAEla,EAAE,OAAO,EAAE,IAAI,qCAAqCA,EAAE,KAAK,IAAI,EAAE,IAAIC,EAAE,MAAMH,EAAE,KAAK,EAAE,EAAE,MAAME,EAAE,KAAK,EAAE,EAAE,IAAI,IAAI,CAAC,EAAE2B,EAAE,EAAE,QAAQW,EAAE,EAAEA,EAAErC,EAAE,OAAOqC,IAAI,EAAE,IAAIrC,EAAEqC,CAAC,CAAC,GAAGX,IAAI,IAAIC,EAAE,IAAIpW,GAAG,CAACmW,CAAC,EAAE7B,EAAE,KAAK,EAAE+B,EAAE,IAAIrW,GAAG,CAACmW,CAAC,EAAE,OAAO,EAAE,QAAQW,EAAE,EAAEC,EAAE,EAAED,EAAErC,EAAE,OAAOqC,IAAI,EAAE,IAAIrC,EAAEqC,CAAC,CAAC,IAAIV,EAAE,OAAOW,CAAC,EAAEtC,EAAEqC,CAAC,EAAET,EAAE,OAAOU,CAAC,EAAED,EAAEC,KAAK,MAAM,CAACX,EAAE,SAAS,EAAEC,EAAE,SAAS,CAAC,CAAC,CAAC,IAAInH,GAAGu5B,GAAG,SAASC,GAAGt0B,EAAE,CAAC,IAAIE,EAAE,CAAC,EAAEwiB,EAAE1iB,EAAE,IAAI,MAAM,CAAC,EAAE,OAAO6hB,EAAE,UAAU73B,GAAGkW,CAAC,CAAC,CAAC,IAAIjF,GAAG7D,EAAE,CAAC,MAAMk9B,EAAE,CAAC,EAAE,SAASC,GAAGv0B,EAAE,CAAC,IAAIE,EAAE,CAAC,EAAEwiB,EAAE1iB,EAAE,IAAI,MAAM,SAAS,CAAC,EAAE,OAAO6hB,EAAE,UAAU53B,GAAGiW,CAAC,CAAC,CAAC,IAAI/E,GAAG/D,EAAE,CAAC,KAAKm9B,EAAE,CAAC,EAAE,SAASC,GAAGx0B,EAAE,CAAC,IAAIE,EAAE,CAAC,EAAEwiB,EAAE1iB,EAAE,IAAI,MAAM,CAAC,EAAE,OAAO6hB,EAAE,UAAU33B,GAAGgW,CAAC,CAAC,CAAC,IAAI9E,GAAGhE,EAAE,CAAC,MAAMo9B,EAAE,CAAC,EAAE,SAASC,GAAGz0B,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAEsiB,EAAE1iB,EAAE,IAAI,SAAS,EAAE,OAAOsa,EAAEla,EAAE,OAAO,EAAE,IAAI,mDAAmDA,EAAE,IAAI,SAAS,EAAE/E,GAAG+E,EAAE,CAAC,CAAC,EAAE,CAACF,CAAC,CAAC,CAAC,CAAC,IAAI5E,GAAGlE,EAAE,CAAC,SAASq9B,EAAE,CAAC,EAAE,SAASC,GAAG10B,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAEsiB,EAAE1iB,EAAE,IAAI,SAAS,EAAE,OAAOsa,EAAEla,EAAE,OAAO,EAAE,IAAI,mDAAmDA,EAAE,IAAI,SAAS,EAAE/E,GAAG+E,EAAE,EAAEF,CAAC,CAAC,CAAC,IAAI3E,GAAGnE,EAAE,CAAC,SAASs9B,EAAE,CAAC,EAAE,SAASC,GAAG30B,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAEsiB,EAAE1iB,EAAE,IAAI,SAAS,EAAE,OAAOsa,EAAEla,EAAE,OAAO,EAAE,IAAI,mDAAmDA,EAAE,IAAI,SAAS,EAAE/E,GAAG+E,EAAE,EAAEF,CAAC,CAAC,CAAC,IAAI1E,GAAGpE,EAAE,CAAC,SAASu9B,EAAE,CAAC,EAAE,SAASC,GAAG50B,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAEsiB,EAAE1iB,EAAE,IAAI,SAAS,EAAE,OAAOsa,EAAEla,EAAE,OAAO,EAAE,IAAI,mDAAmDA,EAAE,IAAI,SAAS,EAAE/E,GAAG+E,EAAE,EAAEF,CAAC,CAAC,CAAC,IAAIzE,GAAGrE,EAAE,CAAC,SAASw9B,EAAE,CAAC,EAAE,SAASC,GAAG70B,EAAE,EAAE,GAAG,CAAC,IAAIE,EAAEwiB,EAAE1iB,EAAE,SAAS,UAAU,SAAS,EAAE,GAAG,IAAI,KAAK,EAAEE,EAAE,KAAK,GAAG,IAAIA,EAAE,KAAK,EAAE,MAAM,MAAM,4EAA4EA,EAAE,IAAI,gBAAgB,CAAC,EAAE,EAAE,IAAIE,EAAE,CAAC,OAAOF,CAAC,EAAEG,EAAE,CAAC,IAAI,CAAC,EAAE,OAAOwhB,EAAE,UAAUz3B,GAAGgW,EAAEC,CAAC,CAAC,CAAC,IAAI1E,GAAGvE,EAAE,CAAC,SAASy9B,EAAE,CAAC,EAAE,SAASC,GAAG90B,EAAE,CAACsa,EAAEta,EAAE,QAAQ,YAAY,IAAI,6DAA6DA,EAAE,KAAK,GAAG,EAAE,IAAI,EAAE,CAAC,MAAMA,CAAC,EAAE,OAAO6hB,EAAE,UAAUp+B,GAAG,CAAC,CAAC,CAAC,IAAIuO,GAAGoF,EAAE,CAAC,KAAK09B,EAAE,CAAC,EAAE,SAASC,GAAG/0B,EAAE,CAACsa,EAAEta,EAAE,QAAQ,YAAY,IAAI,8DAA8DA,EAAE,KAAK,GAAG,EAAE,IAAI,EAAE,CAAC,MAAMA,CAAC,EAAE,OAAO6hB,EAAE,UAAUp9B,GAAG,CAAC,CAAC,CAAC,IAAI4O,GAAG+D,EAAE,CAAC,MAAM29B,EAAE,CAAC,EAAE,SAASC,GAAGh1B,EAAE,CAAC,IAAI,EAAEA,EAAE,MAAMA,EAAE,MAAM,OAAO,CAAC,EAAEE,EAAEF,EAAE,KAAK,EAAEI,EAAE,GAAG,GAAG,EAAE,CAAC,IAAIC,EAAE9G,EAAEyG,EAAE,CAACE,EAAE,CAAC,CAAC,EAAEE,EAAE/M,GAAGgN,CAAC,CAAC,KAAK,CAAC,IAAIA,EAAE,CAACH,EAAE,GAAG,EAAE,EAAE,EAAE,EAAE3G,EAAEX,GAAGoH,CAAC,EAAE,CAACE,EAAE,CAAC,CAAC,EAAE,EAAE3G,EAAEjG,GAAG0M,CAAC,EAAE,CAACE,EAAE,CAAC,CAAC,EAAE6B,EAAEvI,GAAG6B,GAAG,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC6E,EAAE,EAAE,CAAC,CAAC,EAAE,CAAC,EAAE8B,EAAEtL,EAAE8C,GAAG6B,GAAG,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC6E,EAAE,EAAE,CAAC,CAAC,EAAE,CAAC,EAAElG,GAAG,EAAE,CAAC,EAAEiI,EAAElT,GAAG,CAAC,EAAEgT,CAAC,EAAE,CAAC,EAAEW,EAAE3T,GAAG,CAAC,EAAEiT,CAAC,EAAE,CAAC,EAAEW,EAAEpJ,EAAEzK,GAAGmT,EAAES,CAAC,EAAE,CAACrC,EAAE,CAAC,EAAEA,EAAE,CAAC,CAAC,CAAC,EAAED,EAAE/M,GAAGsP,CAAC,CAAC,CAAC,GAAGvC,EAAExH,GAAGwH,CAAC,EAAEJ,EAAE,OAAO,GAAGA,EAAE,MAAM,CAAC,IAAI,EAAE,CAAC,IAAIK,EAAED,EAAE,EAAEJ,EAAE,MAAM,CAAC,EAAEI,EAAE7G,EAAE6G,EAAE,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAE,EAAEA,EAAE,MAAM,CAAC,CAAC,CAAC,EAAEC,EAAE,QAAQ,CAAC,CAAC,OAAOD,CAAC,CAAC,IAAIxM,GAAGwD,EAAE,CAAC,OAAO49B,EAAE,CAAC,EAAE,SAASC,GAAGj1B,EAAE,EAAEE,EAAE,EAAE,CAAC,IAAIG,EAAE,CAAC,EAAEqiB,EAAE1iB,EAAE,IAAI,OAAO,CAAC,EAAE6B,EAAE,CAAC,gBAAgB,EAAE,KAAK3B,CAAC,EAAE,OAAO2hB,EAAE,UAAUj3B,GAAGyV,EAAEwB,CAAC,CAAC,CAAC,IAAI5F,GAAG7E,EAAE,CAAC,OAAO69B,EAAE,CAAC,EAAE,SAASC,GAAGl1B,EAAE,EAAE,CAACsa,EAAEta,EAAE,QAAQ,UAAU,IAAI,mDAAmDA,EAAE,KAAK,EAAE,EAAE,IAAIE,EAAEF,EAAE,MAAMA,EAAE,MAAM,OAAO,CAAC,EAAEI,EAAEJ,EAAE,KAAKE,EAAEG,EAAE,GAAG,GAAG,MAAM,EAAEH,EAAE,CAAC,IAAI4C,EAAE9C,EAAE,MAAM,IAAI,GAAG,CAAC,EAAEgE,EAAEhE,EAAE,MAAM,IAAI,GAAG,CAAC,EAAEgE,EAAEhE,EAAE,MAAM,OAAO,CAAC,EAAE,EAAEK,EAAEhF,GAAG2E,EAAE8C,EAAEkB,CAAC,EAAE9D,EAAE,CAAC,SAAS,GAAG,MAAM,EAAEA,EAAE,CAAC,IAAI4C,EAAE9C,EAAE,MAAM,IAAIgE,GAAGA,CAAC,EAAElB,EAAE9C,EAAE,MAAM,OAAO,CAAC,EAAE,EAAEE,EAAEG,EAAEtR,GAAG,CAACiR,EAAET,GAAGuD,CAAC,CAAC,EAAE9C,EAAE,MAAM,OAAO,CAAC,EAAEE,EAAE,CAAC,MAAMG,EAAEL,EAAE,IAAI,EAAER,GAAGa,CAAC,EAAE,EAAE9G,EAAEzK,GAAGuR,EAAE,CAAC,EAAE,CAACD,EAAEF,CAAC,CAAC,EAAE6B,EAAE/P,GAAG,CAAC,EAAEgQ,EAAE,KAAK,MAAM9B,EAAE,CAAC,EAAE,EAAE+B,EAAErJ,GAAGmJ,CAAC,EAAEW,EAAEpP,GAAGyO,CAAC,EAAEY,EAAE1G,GAAGgG,EAAE,CAACD,EAAE9B,EAAE8B,CAAC,EAAEC,EAAE,MAAM,OAAO,CAAC,EAAEW,EAAE3G,GAAGyG,EAAE,CAACV,EAAE9B,EAAE8B,CAAC,EAAEU,EAAE,MAAM,OAAO,CAAC,EAAEG,EAAExC,EAAE,MAAM,MAAM,EAAE,OAAOwC,EAAExC,EAAE,MAAM,OAAO,CAAC,EAAE2B,EAAEzI,EAAEzK,GAAG6T,EAAE,CAAC,EAAEC,EAAE,CAAC,CAAC,EAAEC,CAAC,CAAC,CAAC,IAAIhJ,GAAGzC,EAAE,CAAC,MAAM89B,EAAE,CAAC,EAAE,SAASC,GAAGn1B,EAAE,EAAE,CAAC,IAAIE,EAAEwiB,EAAE1iB,EAAE,IAAI,mBAAmB,EAAEI,EAAEsiB,EAAE,EAAE,IAAI,mBAAmB,EAAE,CAACxiB,EAAEE,CAAC,EAAE4gB,GAAG9gB,EAAEE,CAAC,EAAEksB,GAAGpsB,EAAE,MAAME,EAAE,KAAK,EAAE,IAAIC,EAAE,CAAC,EAAEH,EAAE,EAAEE,CAAC,EAAE,EAAE,CAAC,EAAE,OAAOyhB,EAAE,UAAU92B,GAAGsV,EAAE,CAAC,CAAC,CAAC,IAAIjE,GAAGhF,EAAE,CAAC,mBAAmB+9B,EAAE,CAAC,EAAE,SAASC,GAAGp1B,EAAE,EAAE,CAAC,IAAIE,EAAEwiB,EAAE1iB,EAAE,IAAI,UAAU,mBAAmB,EAAE,OAAOzG,EAAE2G,EAAEmb,GAAGnb,EAAE,MAAM,CAAC,EAAE,QAAQ,CAAC,CAAC,IAAI7D,GAAGjF,EAAE,CAAC,SAASg+B,EAAE,CAAC,EAAE,SAASC,GAAGr1B,EAAE,EAAE,EAAE,CAAC,IAAIE,EAAEyiB,GAAG3iB,EAAE,UAAU,QAAQ,mBAAmB,EAAEsa,EAAEpa,EAAE,QAAQ,EAAE,IAAI,sCAAsC,EAAEA,EAAE,OAAO,GAAGoa,EAAE,GAAGpa,EAAE,CAAC,EAAE,KAAK,IAAI,oCAAoC,EAAE,IAAIE,EAAEF,EAAEG,EAAE,CAAC,KAAK,CAAC,EAAE,OAAOwhB,EAAE,UAAUh6B,GAAGuY,EAAEC,CAAC,CAAC,CAAC,IAAI/D,GAAGlF,EAAE,CAAC,OAAOi+B,EAAE,CAAC,EAAE,SAASC,GAAGt1B,EAAE,EAAE,EAAE,CAAC,IAAI,EAAE,CAAC,EAAE0iB,EAAE1iB,EAAE,IAAI,MAAM,CAAC,EAAEK,EAAE,CAAC,MAAM,CAAC,EAAE,OAAOwhB,EAAE,UAAU52B,GAAG,EAAEoV,CAAC,CAAC,CAAC,IAAI9D,GAAGnF,EAAE,CAAC,MAAMk+B,EAAE,CAAC,EAAE,SAASC,GAAGv1B,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,EAAE,EAAE,EAAE,EAAE0B,EAAE,EAAEC,EAAE,EAAE,CAAC,IAAIU,EAAE,CAAC,EAAEggB,EAAE1iB,EAAE,IAAI,eAAe,mBAAmB,CAAC,EAAE,EAAE,CAAC,MAAM,EAAE,IAAIE,EAAE,QAAQE,EAAE,UAAUC,EAAE,QAAQ,EAAE,aAAa,EAAE,YAAY0B,EAAE,eAAeC,CAAC,EAAE,OAAO6f,EAAE,UAAU32B,GAAGwX,EAAE,CAAC,CAAC,CAAC,IAAIlG,GAAGpF,EAAE,CAAC,cAAcm+B,EAAE,CAAC,EAAE,SAASC,GAAGx1B,EAAE,CAAC,IAAIE,EAAE,CAAC,EAAEwiB,EAAE1iB,EAAE,IAAI,MAAM,SAAS,CAAC,EAAE,OAAO6hB,EAAE,UAAUp2B,GAAGyU,CAAC,CAAC,CAAC,IAAIrD,GAAGzF,EAAE,CAAC,KAAKo+B,EAAE,CAAC,EAAE,SAASx4B,GAAGgD,EAAE,EAAE,CAACya,GAAGza,CAAC,EAAE,IAAIE,EAAEqiB,GAAGviB,EAAE,CAAC,EAAE,GAAGE,EAAE,SAAS,EAAE,MAAM,IAAI,MAAM,oDAAoD,EAAE,OAAO2iB,GAAG7iB,EAAE,KAAKE,EAAE,CAAC,CAAC,CAAC,SAASjD,GAAG+C,EAAE,EAAEE,EAAE,CAAC,GAAGua,GAAGza,CAAC,EAAE,GAAG,MAAM,EAAE,SAAS,EAAE,MAAM,IAAI,MAAM,+CAA+C,EAAE,IAAII,EAAEmiB,GAAGviB,EAAEE,CAAC,EAAE,GAAGE,EAAE,SAAS,GAAGA,EAAE,SAAS,EAAE,MAAM,IAAI,MAAM,gEAAgE,EAAE,GAAGA,EAAE,SAAS,GAAG,GAAG,KAAK,MAAM,IAAI,MAAM,8EAA8E,EAAE,OAAOyiB,GAAG7iB,EAAE,EAAEI,EAAEF,CAAC,CAAC,CAAC,SAAShD,GAAG8C,EAAE,EAAEE,EAAE,CAAC,GAAGua,GAAGza,CAAC,EAAE,GAAG,MAAM,EAAE,SAAS,EAAE,MAAM,IAAI,MAAM,iDAAiD,EAAE,IAAII,EAAEmiB,GAAGviB,EAAEE,CAAC,EAAE,GAAGE,EAAE,SAAS,GAAGA,EAAE,SAAS,EAAE,MAAM,IAAI,MAAM,kEAAkE,EAAE,GAAGA,EAAE,SAAS,GAAG,GAAG,KAAK,MAAM,IAAI,MAAM,yEAAyE,EAAE,OAAOyiB,GAAG7iB,EAAE,EAAEI,EAAEF,CAAC,CAAC,CAAC,SAAS/C,GAAG6C,EAAE,EAAEE,EAAE,CAAC,GAAGua,GAAGza,CAAC,EAAE,GAAG,MAAM,EAAE,SAAS,EAAE,MAAM,IAAI,MAAM,gDAAgD,EAAE,IAAII,EAAEmiB,GAAGviB,EAAEE,CAAC,EAAE,GAAGE,EAAE,SAAS,GAAGA,EAAE,SAAS,EAAE,MAAM,IAAI,MAAM,oEAAoE,EAAE,GAAGA,EAAE,SAAS,GAAG,GAAG,KAAK,MAAM,IAAI,MAAM,yEAAyE,EAAE,OAAOyiB,GAAG7iB,EAAE,EAAEI,EAAEF,CAAC,CAAC,CAAC,SAAS9C,GAAG4C,EAAE,EAAEE,EAAE,CAAC,GAAGua,GAAGza,CAAC,EAAE,GAAG,MAAM,EAAE,SAAS,EAAE,MAAM,IAAI,MAAM,gDAAgD,EAAE,IAAII,EAAEmiB,GAAGviB,EAAEE,CAAC,EAAE,GAAGE,EAAE,SAAS,GAAGA,EAAE,SAAS,EAAE,MAAM,IAAI,MAAM,sEAAsE,EAAE,GAAGA,EAAE,SAAS,GAAG,GAAG,KAAK,MAAM,IAAI,MAAM,yEAAyE,EAAE,OAAOyiB,GAAG7iB,EAAE,EAAEI,EAAEF,CAAC,CAAC,CAAC,SAAS7C,GAAG2C,EAAE,EAAEE,EAAE,CAAC,GAAGua,GAAGza,CAAC,EAAE,GAAG,MAAM,EAAE,SAAS,EAAE,MAAM,IAAI,MAAM,+CAA+C,EAAE,IAAII,EAAEmiB,GAAGviB,EAAEE,CAAC,EAAE,GAAGE,EAAE,SAAS,GAAGA,EAAE,SAAS,EAAE,MAAM,IAAI,MAAM,wEAAwE,EAAE,GAAGA,EAAE,SAAS,GAAG,GAAG,KAAK,MAAM,IAAI,MAAM,yEAAyE,EAAE,OAAO,EAAE,GAAGA,EAAEyiB,GAAG7iB,EAAE,EAAEI,EAAEF,CAAC,CAAC,CAAC,IAAIhG,GAAG,CAAC,EAAE+F,GAAG/F,GAAG,CAAC,gBAAgB,IAAIu7B,GAAG,cAAc,IAAIC,GAAG,oBAAoB,IAAIC,EAAE,CAAC,EAAE,SAASA,GAAG31B,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAE,EAAE,KAAK,EAAE,EAAE,MAAM,EAAE,KAAK,CAAC,EAAE,EAAEC,EAAE,EAAE,KAAK,EAAE,EAAE,KAAK,EAAE,EAAE,EAAE,6FAA6FH,EAAE,KAAK,oBAAoB,EAAE,KAAK,YAAYF,CAAC,eAAeI,CAAC,mBAAmBC,CAAC,IAAI,GAAGH,EAAE,KAAKG,EAAE,MAAM,IAAI,MAAM,EAAE,kBAAkBA,CAAC,IAAI,EAAE,GAAGL,EAAE,OAAOI,GAAGF,EAAE,KAAKG,GAAG,MAAM,IAAI,MAAM,EAAE,0BAA0BD,GAAGF,EAAE,KAAKG,EAAE,EAAE,EAAE,GAAGH,EAAE,OAAOG,EAAEL,EAAE,OAAOI,EAAE,MAAM,IAAI,MAAM,EAAE,mBAAmBC,EAAEL,EAAE,OAAOI,CAAC,EAAE,EAAE,QAAQ,EAAE,EAAE,EAAEC,EAAE,EAAE,EAAE,GAAGH,EAAE,MAAM,CAAC,IAAI,EAAE,MAAM,CAAC,EAAE,MAAM,IAAI,MAAM,EAAE,kBAAkB,CAAC,MAAMA,EAAE,MAAM,CAAC,CAAC,sBAAsB,CAAC,MAAM,EAAE,MAAM,CAAC,CAAC,IAAI,EAAE,QAAQ,EAAE,EAAE,EAAEA,EAAE,KAAKG,EAAE,EAAE,EAAE,GAAGH,EAAE,MAAM,EAAEG,CAAC,IAAIL,EAAE,EAAEI,CAAC,EAAE,MAAM,IAAI,MAAM,EAAE,kBAAkB,EAAEC,CAAC,MAAMH,EAAE,MAAM,EAAEG,CAAC,CAAC,cAAc,EAAEA,CAAC,MAAML,EAAE,EAAEK,CAAC,CAAC,GAAG,CAAC,CAAC,SAASq1B,GAAG11B,EAAE,EAAEE,EAAE,CAAC,GAAG,EAAE,KAAK,EAAE,MAAM,IAAI,MAAM,+EAA+E,EAAE,IAAI,GAAG,EAAE,GAAGF,EAAE,KAAK,EAAE,MAAM,IAAI,MAAM,+EAA+EA,EAAE,IAAI,GAAG,EAAE,GAAG,EAAE,QAAQ,QAAQ,MAAM,IAAI,MAAM,0DAA0D,EAAE,KAAK,EAAE,EAAE,GAAGE,EAAE,OAAO,EAAE,MAAM,IAAI,MAAM,6DAA6DA,CAAC,EAAE,EAAE,GAAGA,EAAE,SAAS,EAAE,CAAC,GAAG,EAAE,OAAO,EAAE,MAAM,IAAI,MAAM,sDAAsD,EAAE,KAAK,EAAE,EAAE,GAAGF,EAAE,OAAO,EAAE,MAAM,IAAI,MAAM,sDAAsDA,EAAE,KAAK,EAAE,CAAC,CAAC21B,GAAGz1B,EAAE,EAAEF,CAAC,CAAC,CAAC,SAASy1B,GAAGz1B,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAE,EAAE,MAAM,OAAOC,EAAED,EAAE,EAAE,EAAE,MAAMA,EAAE,CAAC,EAAE,EAAE,EAAEF,EAAE,OAAO,EAAE,EAAE,QAAQyC,EAAEtC,EAAEsC,EAAE,EAAE,EAAEA,EAAE,GAAGzC,EAAEyC,CAAC,EAAE,IAAIZ,EAAE1B,EAAE,EAAE,EAAEA,EAAE2B,EAAE0Y,GAAG,EAAE,KAAK,EAAE3Y,EAAEE,EAAE,CAAC,GAAGka,GAAGjc,EAAE,MAAM,EAAEG,CAAC,CAAC,EAAE,CAAC,EAAEqC,EAAEgY,GAAGxa,CAAC,EAAE,MAAM,CAAC,UAAUG,EAAE,WAAW2B,EAAE,UAAU,EAAE,QAAQC,EAAE,WAAWS,CAAC,CAAC,CAAC,SAASkzB,GAAG51B,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAEsiB,EAAE1iB,EAAE,SAAS,qBAAqB,EAAEK,EAAEqiB,EAAE,EAAE,UAAU,sBAAsB,OAAO,EAAE,EAAEA,EAAExiB,EAAE,UAAU,qBAAqB,EAAE,GAAGw1B,GAAG,EAAEr1B,EAAED,EAAE,KAAK,EAAEA,EAAE,QAAQ,EAAE,MAAM,MAAM,IAAI,MAAM,iEAAiEA,EAAE,KAAK,QAAQ,EAAE,KAAK,GAAG,EAAE,IAAI,EAAE,CAAC,OAAOA,EAAE,QAAQC,EAAE,QAAQ,CAAC,EAAE0B,EAAE,CAAC,EAAE,OAAO8f,EAAE,UAAUh2B,GAAG,EAAEkW,CAAC,CAAC,CAAC,IAAIzE,GAAGlG,EAAE,CAAC,qBAAqBw+B,EAAE,CAAC,EAAE,SAASC,GAAG71B,EAAE,EAAE,EAAEE,EAAE,GAAG,CAAC,IAAIE,EAAEsiB,EAAE1iB,EAAE,IAAI,MAAM,EAAE,GAAGI,EAAE,OAAO,EAAE,MAAM,IAAI,MAAM,oDAAoD,EAAE,IAAIC,EAAED,EAAE,MAAMA,EAAE,MAAM,OAAO,CAAC,EAAE,GAAG,EAAE,EAAE,MAAM,IAAI,MAAM,6CAA6C,CAAC,EAAE,EAAE,GAAG,EAAEC,EAAE,MAAM,IAAI,MAAM,uDAAuDA,CAAC,aAAa,CAAC,EAAE,EAAE,IAAI,EAAE,CAAC,EAAED,CAAC,EAAE,EAAE,CAAC,EAAE,EAAE,OAAOF,CAAC,EAAE,CAAC6B,EAAEC,CAAC,EAAE6f,EAAE,UAAU91B,GAAG,EAAE,CAAC,EAAE,MAAM,CAAC,OAAOgW,EAAE,QAAQC,CAAC,CAAC,CAAC,IAAIpE,GAAGxG,EAAE,CAAC,MAAMy+B,EAAE,CAAC,EAAE,SAASC,GAAG91B,EAAE,EAAE,EAAEE,EAAE,EAAEE,EAAEC,EAAE,CAAC,GAAGqc,GAAG1c,CAAC,EAAEI,GAAG,MAAMA,IAAI,OAAO,MAAM,IAAI,MAAM,mCAAmC,EAAE,IAAI,EAAE,IAAI4yB,GAAG,EAAE9yB,EAAEE,EAAE,GAAGC,CAAC,EAAE,EAAE7R,GAAGwR,EAAEI,CAAC,EAAE,QAAQ2B,EAAE,EAAEA,EAAE,EAAE,OAAO,OAAOA,IAAI,EAAE,OAAOA,CAAC,EAAE,EAAE,UAAU,EAAE,OAAO,EAAE,SAAS,CAAC,CAAC,IAAIhE,GAAG3G,EAAE,CAAC,iBAAiB0+B,EAAE,CAAC,EAAE,SAASC,GAAG/1B,EAAE,EAAE,EAAE,CAAC,IAAIE,EAAEwiB,EAAE1iB,EAAE,IAAI,SAAS,mBAAmB,EAAEsa,EAAEpa,EAAE,KAAK,EAAE,IAAI,sCAAsC,EAAE,IAAIE,EAAE,CAAC,EAAEF,CAAC,EAAEG,EAAE,CAAC,KAAK,CAAC,EAAE,CAAC,EAAE,CAAC,EAAEwhB,EAAE,UAAU31B,GAAGkU,EAAEC,CAAC,EAAE,MAAM,CAAC,OAAO,EAAE,QAAQ,CAAC,CAAC,CAAC,IAAIrC,GAAG5G,EAAE,CAAC,QAAQ2+B,EAAE,CAAC,EAAE,SAASC,GAAGh2B,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAEsiB,EAAE1iB,EAAE,IAAI,oBAAoB,EAAEK,EAAEqiB,EAAE,EAAE,aAAa,qBAAqB,OAAO,EAAEpI,EAAEO,GAAG3a,CAAC,EAAE,IAAI,kCAAkC,EAAE,IAAI,EAAE,CAAC,EAAEE,EAAE,WAAWC,CAAC,EAAE,EAAE,CAAC,YAAYH,CAAC,EAAE,OAAO2hB,EAAE,UAAUz1B,GAAG,EAAE,CAAC,CAAC,CAAC,IAAI+R,GAAG/G,EAAE,CAAC,oBAAoB4+B,EAAE,CAAC,EAAE,SAASC,GAAGj2B,EAAE,EAAE,EAAE,CAAC,IAAIE,EAAEwiB,EAAE1iB,EAAE,IAAI,UAAU,mBAAmB,EAAEsa,EAAE,GAAG,CAACpa,EAAE,MAAM,QAAQ,EAAEA,EAAE,MAAM,OAAO,IAAI,UAAU,CAAC,gBAAgBA,EAAE,MAAM,MAAM,KAAKA,EAAE,MAAM,MAAM,GAAG,EAAE,IAAIE,EAAE,CAAC,MAAMF,CAAC,EAAEG,EAAE,CAAC,KAAK,CAAC,EAAE,OAAOwhB,EAAE,UAAU11B,GAAGiU,EAAEC,CAAC,CAAC,CAAC,IAAIjC,GAAGhH,EAAE,CAAC,SAAS6+B,EAAE,CAAC,EAAE,SAAS33B,GAAG0B,EAAE,EAAE,CAAC,OAAO7F,GAAG6F,EAAE,EAAE,OAAO,CAAC,CAAC,SAAStB,GAAGsB,EAAE,EAAE,GAAGE,EAAEE,EAAE,CAAC,OAAOyhB,EAAE,aAAa7hB,EAAE,EAAEE,EAAEE,CAAC,CAAC,CAAC,SAAS81B,GAAGl2B,EAAE,EAAE,CAAC,IAAIE,EAAE,CAAC,EAAE,QAAQ,EAAE,EAAE,EAAE,EAAE,OAAO,IAAI,EAAE,CAAC,GAAGA,EAAE,KAAK,CAAC,EAAE,IAAIE,EAAE5R,GAAGwR,EAAE,OAAO,EAAEK,EAAE7R,GAAG,CAAC0R,EAAE,OAAOF,EAAE,MAAM,EAAE,OAAO,EAAE,QAAQ,EAAE,EAAE,EAAEE,EAAE,OAAO,IAAI,CAAC,IAAI,EAAEE,EAAE,WAAWF,EAAE,CAAC,CAAC,EAAE6B,EAAE,EAAE/B,EAAE,OAAOK,EAAE,OAAO,IAAI,EAAE0B,CAAC,CAAC,CAAC,OAAO1B,EAAE,SAAS,CAAC,CAAC,eAAe81B,GAAGn2B,EAAE,CAAC,IAAI,EAAE0iB,EAAE1iB,EAAE,YAAY,aAAa,MAAM,EAAEE,EAAE,MAAM,EAAE,KAAK,EAAEE,EAAE81B,GAAG,EAAE,MAAMh2B,CAAC,EAAE,OAAOF,IAAI,GAAG,EAAE,QAAQ,EAAEI,CAAC,CAAC,IAAId,GAAG62B,GAAG,eAAeC,GAAGp2B,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAEsiB,EAAE1iB,EAAE,SAAS,UAAU,EAAEK,EAAEqiB,EAAE,EAAE,OAAO,WAAW,MAAM,EAAE,EAAExiB,GAAG,KAAK,EAAEA,EAAE,EAAEG,EAAE,KAAK0B,EAAE3B,EAAE,MAAMka,EAAE,EAAE,EAAE,IAAI,uBAAuB,EAAEC,GAAGxY,EAAE,MAAM,EAAE,EAAE,CAAC,EAAE1B,EAAE,MAAM,mEAAmE,EAAE,IAAI2B,EAAE,EAAE,QAAQgC,EAAE,EAAEA,EAAE,EAAE,EAAEA,IAAIhC,GAAGD,EAAEiC,CAAC,EAAE,IAAI/B,EAAEF,EAAE,MAAM,EAAE,CAAC,EAAE,OAAO,CAACC,CAAC,EAAED,EAAE,MAAM,EAAE,CAAC,CAAC,EAAEW,EAAEnJ,EAAE6G,EAAE6B,CAAC,EAAEU,EAAEpJ,EAAE8G,EAAE,CAAC,EAAE,CAAC,EAAEuC,EAAE,MAAMtD,GAAGqD,CAAC,EAAEE,EAAExG,GAAGuG,EAAE,CAAC,CAAC,CAAC,EAAEE,EAAEtQ,GAAGkQ,EAAEG,EAAE,CAAC,EAAE,OAAO7C,IAAII,GAAGA,EAAE,QAAQ,EAAE,IAAIC,GAAGA,EAAE,QAAQ,EAAEwC,EAAE,QAAQ,EAAEH,EAAE,QAAQ,EAAEC,EAAE,QAAQ,EAAEC,EAAE,QAAQ,EAAEE,CAAC,CAAC,IAAI3U,GAAGioC,GAAG,SAASC,GAAGr2B,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAEsiB,EAAE1iB,EAAE,IAAI,WAAW,EAAE,GAAG,GAAG,OAAO,EAAEI,EAAE,MAAM,IAAI,CAAC,EAAE2B,IAAIA,CAAC,EAAE,QAAQ,GAAGuY,EAAEla,EAAE,OAAO,EAAE,OAAO,IAAI,qCAAqCA,EAAE,IAAI,8BAA8B,CAAC,GAAG,EAAE,EAAE,QAAQ,GAAG,CAACka,EAAE,GAAG,GAAG,EAAEla,EAAE,KAAK,IAAI,+CAA+CA,EAAE,KAAK,CAAC,YAAY,CAAC,EAAE,CAAC,CAAC,EAAEA,EAAE,MAAM,EAAE,OAAOA,EAAE,MAAM,EAAE,IAAIC,EAAE,CAAC,EAAED,CAAC,EAAE,EAAE,CAAC,KAAK,CAAC,EAAE,OAAOA,EAAE,QAAQ,YAAY3C,EAAE,IAAI,CAAC,IAAI,EAAE7E,GAAGwH,CAAC,EAAE2B,EAAEzO,GAAG8M,CAAC,EAAE,OAAO,EAAEyhB,EAAE,UAAU51B,GAAG,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE8V,EAAE8f,EAAE,UAAU51B,GAAG,CAAC,EAAE8V,CAAC,EAAE,CAAC,EAAE7B,IAAI6B,EAAElL,GAAGkL,CAAC,GAAGjT,GAAG,EAAEiT,CAAC,CAAC,CAAC,EAAE8f,EAAE,UAAU51B,GAAGoU,EAAE,CAAC,CAAC,CAAC,IAAIvC,GAAG1G,EAAE,CAAC,WAAWi/B,EAAE,CAAC,EAAE,SAASC,GAAGt2B,EAAE,EAAEE,EAAEE,EAAEC,EAAE,GAAG,CAAC,IAAI,EAAEqiB,EAAE1iB,EAAE,IAAI,eAAe,EAAE,EAAE0iB,EAAE,EAAE,IAAI,eAAe,EAAE3gB,EAAE2gB,EAAExiB,EAAE,QAAQ,eAAe,EAAE2gB,GAAG,EAAE,CAAC,EAAEvG,EAAEE,GAAG,EAAE,MAAM,EAAE,KAAK,EAAE,IAAI,2BAA2B,EAAE,IAAIxY,EAAEhI,GAAG,CAAC,EAAEiI,EAAEvF,GAAGsF,EAAED,CAAC,EAAEW,EAAEhM,EAAEgG,GAAG,EAAE,CAAC,EAAEuF,CAAC,EAAE,GAAG5B,EAAE,CAACia,EAAEla,GAAG,KAAK,IAAI,gDAAgD,EAAE,IAAIuC,EAAE+f,EAAEtiB,EAAE,OAAO,eAAe,EAAEsC,EAAE7R,GAAG6R,EAAEhG,GAAGsF,EAAEpK,GAAGmK,EAAEY,CAAC,CAAC,CAAC,CAAC,CAAC,OAAO/V,EAAE,EAAE8V,CAAC,CAAC,CAAC,IAAIjM,GAAGW,EAAE,CAAC,eAAek/B,EAAE,CAAC,EAAE,SAASC,GAAGv2B,EAAE,EAAEE,EAAE,CAACwc,GAAGxc,CAAC,EAAE,IAAIE,EAAEsiB,EAAE1iB,EAAE,UAAU,YAAY,OAAO,EAAEK,EAAEqiB,EAAE,EAAE,UAAU,WAAW,EAAEgT,GAAGr1B,EAAED,EAAEF,CAAC,EAAE,IAAI,EAAE,CAAC,QAAQE,EAAE,QAAQC,CAAC,EAAE,EAAE,CAAC,MAAMH,CAAC,EAAE,OAAO2hB,EAAE,UAAUn4B,GAAG,EAAE,CAAC,CAAC,CAAC,IAAIuQ,GAAG7C,EAAE,CAAC,WAAWm/B,EAAE,CAAC,EAAE,SAASC,GAAGx2B,EAAE,EAAEE,EAAEE,EAAE,CAAC,GAAGJ,EAAE,QAAQ,QAAQ,MAAM,IAAI,MAAM,8EAA8EA,EAAE,KAAK,GAAG,EAAE,GAAGA,EAAE,KAAK,EAAE,MAAM,IAAI,MAAM,sEAAsEA,EAAE,KAAK,GAAG,EAAE,IAAIK,EAAEL,EAAE,KAAK,EAAEA,EAAE,MAAM,CAAC,EAAE,EAAE,EAAEA,EAAE,KAAK,EAAEA,EAAE,MAAM,CAAC,EAAE,EAAE,GAAGE,EAAE,SAAS,EAAE,MAAM,IAAI,MAAM,kDAAkDA,EAAE,MAAM,gBAAgB,CAAC,GAAG,EAAE,IAAI,EAAE,EAAE,KAAK,GAAG,EAAE,EAAE,OAAO,GAAG,EAAE,OAAO,GAAG,IAAIG,GAAG,MAAM,IAAI,MAAM,oCAAoC,EAAE,KAAK,sBAAsBA,CAAC,GAAG,EAAE,GAAG,EAAE,QAAQD,EAAE,MAAM,MAAM,IAAI,MAAM,mDAAmD,CAAC,CAAC,SAASq2B,GAAGz2B,EAAE,EAAEE,EAAEE,EAAE,EAAE,CAACsc,GAAGxc,CAAC,EAAE,IAAIG,EAAEqiB,EAAE1iB,EAAE,gBAAgB,gBAAgB,OAAO,EAAE,EAAE0iB,EAAE,EAAE,eAAe,gBAAgB,mBAAmB,EAAE,EAAEA,EAAEtiB,EAAE,eAAe,gBAAgB,EAAE,KAAK,EAAEo2B,GAAGn2B,EAAE,EAAEH,EAAE,CAAC,EAAE,IAAI6B,EAAE,CAAC,cAAc1B,EAAE,aAAa,EAAE,aAAa,CAAC,EAAE2B,EAAE,CAAC,YAAY9B,CAAC,EAAE,OAAO2hB,EAAE,UAAUl3B,GAAGoX,EAAEC,CAAC,CAAC,CAAC,IAAIjG,GAAG3E,EAAE,CAAC,eAAeq/B,EAAE,CAAC,EAAE,SAASC,GAAG12B,EAAE,EAAE,CAAC,IAAIE,EAAEwiB,EAAE,EAAE,UAAU,WAAW,OAAO,EAAEriB,EAAE,CAAC,OAAOqiB,EAAE1iB,EAAE,IAAI,WAAW,mBAAmB,EAAE,QAAQE,CAAC,EAAE,OAAO2hB,EAAE,UAAU19B,GAAGkc,CAAC,CAAC,CAAC,IAAI5N,GAAG2E,EAAE,CAAC,UAAUs/B,EAAE,CAAC,EAAE,SAASC,GAAG32B,EAAE,EAAE,CAAC,GAAG,GAAG,KAAK,OAAOA,EAAE,MAAM,MAAM,EAAE,GAAGwa,GAAGxa,EAAE,MAAM,CAAC,EAAE,OAAO,EAAE,GAAGA,EAAE,MAAM,SAAS,EAAE,OAAO,CAAC,IAAIE,EAAE,CAAC,EAAE,QAAQE,EAAE,EAAEA,EAAEJ,EAAE,MAAM,OAAOI,IAAI,EAAEA,CAAC,GAAG,MAAMJ,EAAE,MAAMI,CAAC,GAAG,KAAKF,EAAE,KAAKF,EAAE,MAAMI,CAAC,CAAC,EAAEF,EAAE,KAAK,EAAEE,CAAC,CAAC,EAAE,OAAOF,CAAC,CAAC,OAAO,CAAC,CAAC,SAAS02B,GAAG52B,EAAE,EAAEE,EAAEE,EAAE,CAAC,IAAIC,EAAEqiB,EAAE1iB,EAAE,IAAI,SAAS,EAAE,GAAGsa,EAAEja,EAAE,QAAQ,UAAU,IAAI,gFAAgFA,EAAE,KAAK,kBAAkB,EAAEia,EAAE,GAAG,GAAG,EAAE,EAAE,IAAI,qDAAqD,CAAC,GAAG,EAAE,IAAI,EAAE,OAAOta,aAAarU,GAAG0U,EAAE,MAAM,EAAEA,EAAE,IAAI,EAAEs2B,GAAGt2B,EAAEH,CAAC,EAAE,EAAE,EAAE,EAAE6B,EAAElR,GAAGuB,GAAGxF,EAAE4L,GAAG,EAAE,EAAE,EAAE,UAAU4H,CAAC,EAAE,CAAC,CAAC,EAAE,CAAC,EAAE,OAAO1J,EAAE2J,EAAE0B,CAAC,CAAC,CAAC,IAAI/Q,GAAGoG,EAAE,CAAC,SAASw/B,EAAE,CAAC,EAAE,SAASvlC,GAAG2O,EAAE,CAAC,OAAO,KAAK,MAAM,KAAK,IAAI,EAAE,KAAK,KAAK,KAAK,IAAIA,CAAC,EAAE,KAAK,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,SAASnQ,GAAGmQ,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAE,EAAEJ,EAAE,EAAEK,EAAE,IAAI,aAAaL,CAAC,EAAE,QAAQ,EAAE,EAAE,EAAEA,EAAE,EAAE,EAAE,CAAC,IAAI,EAAE,EAAE,KAAK,GAAG,GAAGA,EAAEI,EAAE,GAAGC,EAAE,CAAC,EAAE,EAAEH,EAAE,KAAK,IAAI,CAAC,CAAC,CAAC,OAAOlD,GAAGqD,EAAE,SAAS,CAAC,CAAC,eAAew2B,GAAG72B,EAAE,EAAEE,EAAE,EAAE,CAAC,IAAIE,EAAEsiB,EAAE1iB,EAAE,cAAc,QAAQ,EAAEK,EAAEqiB,EAAE,EAAE,UAAU,QAAQ,EAAEpI,EAAEla,EAAE,KAAK,EAAE,IAAI,uEAAuEA,EAAE,IAAI,EAAE,EAAEka,EAAEla,EAAE,KAAK,IAAIC,EAAE,KAAK,IAAI,mFAAmFD,EAAE,IAAI,qBAAqBC,EAAE,IAAI,EAAE,EAAEka,GAAGna,EAAE,MAAM,MAAM,EAAEA,EAAE,MAAM,OAAO,CAAC,EAAEC,EAAE,MAAM,yFAAyF,EAAE,IAAI,EAAED,EAAE,MAAMA,EAAE,MAAM,OAAO,CAAC,EAAEka,EAAEpa,EAAE,GAAGA,GAAG,EAAE,IAAI,4EAA4E,CAAC,cAAcA,CAAC,EAAE,EAAE,IAAI,EAAE,MAAME,EAAE,KAAK,EAAE2B,EAAE,MAAM1B,EAAE,KAAK,EAAE,CAAC2B,EAAEC,CAAC,EAAE,CAAC,EAAE,OAAO,EAAE,CAAC,EAAES,EAAE4Y,GAAG,OAAOtZ,CAAC,EAAE,QAAQW,EAAE,EAAEA,EAAEX,EAAEW,IAAI,CAAC,IAAIC,EAAED,EAAEV,EAAEY,EAAE,EAAE,SAASD,EAAEA,EAAEX,CAAC,EAAEa,EAAE,CAAC,EAAE,QAAQkB,EAAE,EAAEA,EAAEnB,EAAE,OAAOmB,IAAIlB,EAAE,KAAK,CAAC,MAAMD,EAAEmB,CAAC,EAAE,MAAMA,CAAC,CAAC,EAAElB,EAAE,KAAK,CAACkB,EAAE,IAAI,EAAE,MAAMA,EAAE,KAAK,EAAEtB,EAAEC,CAAC,EAAE,EAAE,QAAQqB,EAAE,EAAEA,EAAE9D,EAAE8D,IAAI,GAAGlB,EAAEkB,CAAC,EAAE,QAAQjC,EAAEY,CAAC,EAAE,CAACD,EAAEC,CAAC,EAAE,EAAE,KAAK,CAAC,CAAC,OAAO3C,IAAII,GAAGA,EAAE,QAAQ,EAAE,IAAIC,GAAGA,EAAE,QAAQ,EAAEtD,GAAG2F,EAAErC,EAAE,MAAM,MAAM,CAAC,CAAC,IAAI7M,GAAGqjC,GAAOtkC,GAAG,CAAC,EAAE0N,GAAG1N,GAAG,CAAC,OAAO,IAAIukC,GAAG,gBAAgB,IAAIC,GAAG,OAAO,IAAIC,EAAE,CAAC,EAAE,SAASC,GAAGj3B,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,OAAO,EAAE,CAAC,IAAI0B,EAAE/B,EAAEA,EAAE,OAAO,IAAI+B,EAAExI,EAAEyG,EAAE,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,CAAC,CAAC,GAAG,IAAIgC,EAAE,EAAEA,EAAE,OAAO,IAAIA,EAAEzI,EAAE,EAAE,CAAC,EAAE,EAAE,MAAM,CAAC,EAAE,EAAE,MAAM,CAAC,EAAE,EAAE,MAAM,CAAC,CAAC,CAAC,GAAG+gB,EAAEvY,EAAE,OAAO,EAAE,IAAI,iEAAiEA,EAAE,KAAK,GAAG,EAAEuY,EAAEtY,EAAE,OAAO,EAAE,IAAI,8DAA8DA,EAAE,KAAK,GAAG,EAAEsY,EAAEpa,EAAE,SAAS,EAAE,IAAI,mEAAmEA,CAAC,GAAG,EAAE,IAAI+B,EAAE,IAAI,OAAOF,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEW,EAAE,IAAI,OAAOV,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEsY,EAAErY,IAAI/B,EAAE,CAAC,EAAE,IAAI,4CAA4C+B,CAAC,uCAAuC/B,EAAE,CAAC,CAAC,GAAG,EAAEoa,EAAE5X,IAAIxC,EAAE,CAAC,EAAE,IAAI,0CAA0CwC,CAAC,yCAAyCxC,EAAE,CAAC,CAAC,IAAI,EAAEwpB,GAAG,kBAAkBrpB,EAAE,CAAC,EAAE,IAAIsC,EAAE,CAAC,EAAEZ,EAAE,GAAGC,CAAC,EAAEY,EAAE,CAAC,QAAQxC,EAAE,IAAIC,EAAE,WAAW,EAAE,gBAAgB,EAAE,YAAYH,CAAC,EAAE,OAAO2hB,EAAE,UAAUrgC,GAAGmhB,EAAEC,CAAC,CAAC,CAAC,IAAIs0B,GAAG9/B,EAAE,CAAC,sBAAsB6/B,EAAE,CAAC,EAAE,SAASE,GAAGn3B,EAAE,EAAEE,EAAE,CAAC,GAAGA,GAAG,MAAMA,IAAI,SAAS,OAAOF,EAAE,GAAGE,IAAI,OAAO,OAAOxJ,EAAEsJ,EAAEzD,GAAG,CAAC,CAAC,EAAE,MAAM,IAAI,MAAM,gDAAgD2D,CAAC,GAAG,CAAC,CAAC,SAASk3B,GAAGp3B,EAAE,EAAE,CAAC,IAAIE,EAAE,EAAEE,EAAEosB,GAAGxsB,EAAE,MAAM,EAAE,KAAK,EAAE,OAAOI,EAAE,OAAO,IAAIF,EAAEvD,GAAGuD,EAAEE,CAAC,GAAG7G,EAAE2G,EAAEF,EAAE,KAAK,CAAC,CAAC,SAASq3B,GAAGr3B,EAAE,EAAEE,EAAEE,EAAE,CAAC,GAAG,IAAI,SAAS,OAAOJ,EAAE,GAAG,IAAI,OAAO,OAAO5G,GAAG4G,CAAC,EAAE,GAAG,IAAI,MAAM,OAAO9O,GAAG8O,CAAC,EAAE,GAAG,IAAI,QAAQ,OAAO3G,GAAG2G,CAAC,EAAE,GAAG,IAAI,QAAQ,OAAOnI,GAAGmI,EAAEE,CAAC,EAAE,GAAG,IAAI,YAAY,OAAO/L,GAAG6L,EAAEI,CAAC,EAAE,GAAG,IAAI,UAAU,OAAOpF,GAAGgF,CAAC,EAAE,MAAM,IAAI,MAAM,4BAA4B,CAAC,GAAG,CAAC,CAAC,IAAIs3B,GAAG,CAACt3B,EAAE,IAAI,EAAEA,EAAE,IAAI,IAAI,SAAS,SAASu3B,GAAG,CAAC,EAAEv3B,EAAE,OAAO,EAAE,QAAQE,EAAE,IAAIE,EAAE,WAAWC,EAAE,OAAO,UAAU,EAAE,CAAC,EAAE,CAAC,EAAE,gBAAgB,EAAE,KAAK0B,EAAE,WAAWC,EAAE,SAAS,uBAAuBC,EAAE,eAAeS,CAAC,EAAE,CAAC,GAAGV,EAAEA,GAAG,SAASs1B,GAAGzV,EAAE,MAAM,cAAc7f,CAAC,IAAI,GAAG,CAACsY,EAAEja,IAAI,OAAO,IAAI,4CAA4CA,CAAC,6GAA6G,EAAE,IAAIuE,EAAEtV,GAAG0Q,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,CAAC,EAAE,OAAO0B,GAAG,OAAO6C,EAAEhY,EAAEgY,EAAE7C,CAAC,GAAGs1B,GAAGzyB,EAAE5C,EAAEC,EAAES,CAAC,CAAC,CAAC,IAAIC,EAAE+f,EAAE1iB,EAAE,IAAI,SAAS,SAAS,EAAE4C,EAAE8f,EAAE,EAAE,SAAS,SAAS,SAAS,EAAE7f,EAAEF,EAAEG,EAAE,GAAGH,EAAE,OAAO,IAAIG,EAAE,GAAGD,EAAEtJ,EAAEoJ,EAAE,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,CAAC,CAAC,GAAG2X,EAAEzX,EAAE,OAAO,EAAE,IAAI,6DAA6DA,EAAE,IAAI,GAAG,EAAEyX,EAAE1X,EAAE,OAAO,EAAE,IAAI,8DAA8DA,EAAE,IAAI,GAAG,EAAE8mB,GAAG,eAAetpB,EAAE,CAAC,EAAE,IAAI4D,EAAE3D,IAAI,OAAOwC,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEyX,EAAE1X,EAAE,MAAM,CAAC,IAAIoB,EAAE,IAAI,oCAAoCA,CAAC,uCAAuCpB,EAAE,MAAM,CAAC,CAAC,GAAG,EAAE0X,EAAEkP,GAAGtpB,EAAE,CAAC,EAAE,IAAI,uEAAuEA,CAAC,mBAAmB,CAAC,GAAG,EAAE,IAAI,EAAEwoB,GAAG7lB,EAAE,MAAMD,EAAE,MAAM1C,EAAE,EAAEE,EAAE,CAAC,EAAEkH,EAAEvF,GAAG,OAAOuF,EAAEob,EAAE3gB,EAAE,OAAO,cAAc,EAAE,CAACuF,CAAC,EAAE0Z,GAAG1Z,EAAE3E,CAAC,EAAEtC,IAAI,OAAOisB,GAAG,EAAE,SAAShlB,EAAE,KAAK,GAAGgT,EAAEhT,EAAE,MAAM,QAAQ,EAAE,IAAI,2GAA2GA,EAAE,MAAM,MAAM,GAAG,EAAEgT,EAAEhT,EAAE,MAAM,SAAS,GAAGA,EAAE,MAAM,CAAC,IAAI,EAAE,aAAaA,EAAE,MAAM,CAAC,IAAI,EAAE,IAAI,sCAAsCA,EAAE,KAAK,2DAA2D,EAAE,WAAW,GAAG,IAAI,IAAIxC,EAAE,GAAG7C,GAAG,KAAK,CAAC,IAAI2C,EAAE3C,EAAE,MAAM,GAAGqY,EAAE1V,EAAE,QAAQ,GAAGA,EAAE,SAAS,EAAE,IAAI,2HAA2HA,EAAE,MAAM,GAAG,EAAEA,EAAE,SAAS,EAAE0V,EAAE1V,EAAE,CAAC,IAAI,GAAGA,EAAE,CAAC,IAAI,EAAE,YAAY,IAAI,oDAAoDA,CAAC,2DAA2D,EAAE,WAAW,IAAI,UAAUA,EAAE,SAAS,EAAE,GAAG,CAAC0nB,GAAG1nB,EAAE,EAAE,QAAQ,CAAC,OAAOC,EAAE,CAAC,IAAI0C,EAAE,oDAAoD3C,CAAC,4DAA4D,EAAE,QAAQ,KAAK,MAAM,MAAM2C,CAAC,CAAC,CAACzC,EAAE4d,EAAEzgB,EAAE,gBAAgB,cAAc,CAAC,CAAC,IAAIwC,EAAE,CAACG,EAAEC,IAAI,CAACyV,EAAEja,IAAI,OAAO,IAAI,wDAAwDA,CAAC,wCAAwC,EAAE,GAAG,CAACkH,EAAE,EAAEvC,EAAEC,CAAC,EAAEJ,EAAEK,EAAEiyB,GAAGvyB,EAAEI,EAAEhD,CAAC,EAAEsY,EAAEiP,GAAG,CAAC,EAAE,IAAI,uHAAuH,CAAC,GAAG,EAAE,IAAIpkB,EAAEomB,GAAG,EAAE,MAAMrmB,EAAEqC,EAAErH,EAAEE,CAAC,EAAEgF,EAAE8xB,GAAG,EAAEhyB,EAAEqC,EAAE,MAAMrH,EAAEE,CAAC,EAAEiF,EAAE,CAACF,EAAEC,CAAC,EAAE,GAAGH,GAAG,KAAK,CAAC,IAAI+C,EAAEovB,GAAGnyB,EAAEC,CAAC,EAAEG,EAAE,KAAK2C,CAAC,CAAC,CAAC,OAAO3C,CAAC,EAAEX,EAAE,CAAC,EAAE7B,EAAE,OAAOD,EAAE,KAAK0E,EAAE,uBAAuBxC,CAAC,EAAEH,EAAE,CAAC,QAAQzE,EAAE,IAAIE,EAAE,WAAWC,EAAE,UAAU,EAAE,gBAAgB,EAAE,WAAW2B,EAAE,eAAeU,CAAC,EAAE,OAAOX,GAAG,KAAK/R,GAAG,CAAC6U,EAAE0C,EAAExC,IAAI,CAAC,IAAIC,EAAE6c,EAAE,UAAU79B,GAAG0gB,EAAEC,CAAC,EAAE,OAAOI,EAAE,CAACwC,EAAE1C,EAAEG,CAAC,CAAC,EAAElC,IAAIkC,EAAEzL,EAAEyL,EAAE,CAACA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,MAAMA,EAAE,SAASP,CAAC,CAAC,CAAC,EAAE5B,EAAED,CAAC,EAAE5S,GAAG,CAAC6U,EAAE0C,EAAExC,EAAEC,IAAI,CAAC,IAAIC,EAAE4c,EAAE,UAAU79B,GAAG0gB,EAAEC,CAAC,EAAE,OAAOK,EAAE,CAACuC,EAAE1C,EAAEI,EAAEF,CAAC,CAAC,EAAEjC,IAAImC,EAAE1L,EAAE0L,EAAE,CAACA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,MAAMA,EAAE,SAASR,CAAC,CAAC,CAAC,EAAE5B,EAAED,EAAE0E,CAAC,CAAC,CAAC,IAAIwvB,GAAG1/B,EAAE,CAAC,aAAamgC,EAAE,CAAC,EAAE,SAASC,GAAGx3B,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,CAAC,EAAE,CAAC,EAAE,EAAE,CAAC,IAAI0B,EAAE/B,EAAEA,EAAE,OAAO,IAAI+B,EAAExI,EAAEyG,EAAE,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,CAAC,CAAC,GAAG,IAAIgC,EAAE,EAAEA,EAAE,OAAO,IAAIA,EAAEzI,EAAE,EAAE,CAAC,EAAE,EAAE,MAAM,CAAC,EAAE,EAAE,MAAM,CAAC,EAAE,EAAE,MAAM,CAAC,CAAC,CAAC,GAAG,IAAI0I,EAAE,CAAC,EAAEF,EAAE,GAAGC,CAAC,EAAEU,EAAE,CAAC,QAAQtC,EAAE,IAAIC,EAAE,gBAAgB,EAAE,UAAU,EAAE,YAAYH,CAAC,EAAE,OAAO2hB,EAAE,UAAUt/B,GAAG0f,EAAES,CAAC,CAAC,CAAC,IAAI+0B,GAAGrgC,EAAE,CAAC,qCAAqCogC,EAAE,CAAC,EAAE,SAASE,GAAG13B,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,CAAC,EAAE,CAAC,EAAE,EAAE,CAAC,IAAI0B,EAAE,EAAEC,EAAE,GAAG,EAAE,OAAO,IAAIA,EAAE,GAAGD,EAAExI,EAAE,EAAE,CAAC,EAAE,EAAE,MAAM,CAAC,EAAE,EAAE,MAAM,CAAC,EAAE,EAAE,MAAM,CAAC,CAAC,CAAC,GAAG,IAAI0I,EAAE,CAAC,GAAGF,EAAE,OAAO7B,CAAC,EAAEwC,EAAE,CAAC,QAAQtC,EAAE,IAAIC,EAAE,gBAAgB,EAAE,UAAU,EAAE,WAAWL,CAAC,EAAE2C,EAAEkf,EAAE,UAAUr/B,GAAGyf,EAAES,CAAC,EAAE,OAAOV,EAAEzI,EAAEoJ,EAAE,CAACA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,CAAC,CAAC,EAAEA,CAAC,CAAC,IAAIg1B,GAAGvgC,EAAE,CAAC,oCAAoCsgC,EAAE,CAAC,EAAE,SAASE,GAAG,CAAC,EAAE53B,EAAE,OAAO,EAAE,QAAQE,EAAE,IAAIE,EAAE,WAAWC,EAAE,OAAO,UAAU,EAAE,CAAC,EAAE,CAAC,EAAE,gBAAgB,EAAE,KAAK0B,EAAE,WAAWC,EAAE,SAAS,uBAAuBC,EAAE,eAAeS,CAAC,EAAE,CAAC,GAAG40B,GAAGzV,EAAE,MAAM,cAAc7f,CAAC,IAAI,GAAG,CAAC,IAAI2C,EAAEtU,GAAG2P,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,CAAC,EAAE,OAAO0B,GAAG,OAAO4C,EAAE/X,EAAE+X,EAAE5C,CAAC,GAAGs1B,GAAG1yB,EAAE3C,EAAEC,EAAES,CAAC,CAAC,CAAC,IAAIC,EAAE+f,EAAE1iB,EAAE,IAAI,kBAAkB,SAAS,EAAE4C,EAAE8f,EAAE,EAAE,SAAS,kBAAkB,SAAS,EAAE7f,EAAEF,EAAEG,EAAE,GAAGH,EAAE,OAAO,IAAIG,EAAE,GAAGD,EAAEtJ,EAAEoJ,EAAE,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,CAAC,CAAC,GAAG2X,EAAEzX,EAAE,OAAO,EAAE,IAAI,sEAAsEA,EAAE,IAAI,GAAG,EAAEyX,EAAE1X,EAAE,OAAO,EAAE,IAAI,uEAAuEA,EAAE,IAAI,GAAG,EAAE0X,EAAEzX,EAAE,MAAM,CAAC,IAAID,EAAE,MAAM,CAAC,EAAE,IAAI,6DAA6DC,EAAE,MAAM,CAAC,CAAC,mDAAmDD,EAAE,MAAM,CAAC,CAAC,GAAG,EAAE,GAAG,OAAO,EAAE,CAAC,EAAE,CAAC,GAAG0X,EAAEkP,GAAGtpB,EAAE,CAAC,EAAE,IAAI,sFAAsFA,CAAC,mBAAmB,CAAC,GAAG,EAAEwpB,GAAG,wBAAwBtpB,EAAE,CAAC,EAAE,IAAI4D,EAAE0kB,GAAG7lB,EAAE,MAAMD,EAAE,MAAM1C,EAAE,EAAEE,EAAE,EAAE,EAAE,EAAE,EAAE2B,GAAG,OAAO,EAAE2gB,EAAE3gB,EAAE,OAAO,cAAc,EAAE,CAAC,CAAC,EAAEif,GAAG,EAAEre,CAAC,EAAE2pB,GAAGtoB,EAAE,SAAS,EAAE,KAAK,GAAG,IAAIsD,EAAErF,GAAG,OAAOqF,EAAEob,EAAEzgB,EAAE,gBAAgB,uBAAuB,GAAG,IAAI6C,EAAE,CAACH,EAAEC,IAAI,CAAC0V,EAAEiP,GAAG,CAAC,EAAE,IAAI,mHAAmH,CAAC,GAAG,EAAE,GAAG,CAAC1kB,EAAE0C,EAAE,EAAEvC,CAAC,EAAEJ,EAAEK,EAAEkyB,GAAGxyB,EAAE,EAAE3C,CAAC,EAAEkD,EAAEyyB,GAAGpwB,EAAE,MAAMtC,EAAEJ,EAAE3E,EAAEE,EAAE,EAAE,CAAC,EAAE+E,EAAEsyB,GAAGlwB,EAAEtC,EAAEJ,EAAE,MAAM3E,EAAEE,EAAE,EAAE,CAAC,EAAE,GAAG4E,GAAG,KAAK,CAAC,IAAII,EAAEgyB,GAAG,EAAEnyB,CAAC,EAAE,MAAM,CAACC,EAAEC,EAAEC,CAAC,CAAC,CAAC,MAAM,CAACF,EAAEC,CAAC,CAAC,EAAEV,EAAE,CAAC,EAAE5B,EAAE,OAAOD,EAAE,KAAK,EAAE,uBAAuB0E,CAAC,EAAE5C,EAAE,CAAC,QAAQxE,EAAE,IAAIE,EAAE,WAAWC,EAAE,UAAU,EAAE,gBAAgB,EAAE,WAAW2B,EAAE,eAAeU,CAAC,EAAE,OAAOX,GAAG,KAAK/R,GAAG,CAAC4U,EAAEC,EAAE0C,IAAI,CAAC,IAAIxC,EAAE8c,EAAE,UAAU59B,GAAGwgB,EAAEC,CAAC,EAAE,OAAO6C,EAAE,CAAC1C,EAAED,EAAEG,CAAC,CAAC,EAAEjC,IAAIiC,EAAExL,EAAEwL,EAAE,CAACA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,MAAMA,EAAE,SAASD,CAAC,CAAC,CAAC,EAAEjC,EAAED,CAAC,EAAE5S,GAAG,CAAC4U,EAAEC,EAAE0C,EAAExC,IAAI,CAAC,IAAIC,EAAE6c,EAAE,UAAU59B,GAAGwgB,EAAEC,CAAC,EAAE,OAAOK,EAAE,CAACF,EAAED,EAAEI,EAAEuC,CAAC,CAAC,EAAEzE,IAAIkC,EAAEzL,EAAEyL,EAAE,CAACA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,MAAMA,EAAE,SAASF,CAAC,CAAC,CAAC,EAAEjC,EAAED,EAAE,CAAC,CAAC,CAAC,IAAIm0B,GAAG3/B,EAAE,CAAC,sBAAsBwgC,EAAE,CAAC,EAAE,SAASC,GAAG,CAAC,EAAE73B,EAAE,EAAE,EAAE,WAAWE,EAAE,GAAG,WAAWE,EAAE,GAAG,KAAKC,EAAE,WAAW,EAAE,SAAS,uBAAuB,EAAE,eAAe0B,EAAE,EAAE,EAAE,CAAC,GAAGu1B,GAAGzV,EAAE,MAAM,cAAc,CAAC,IAAI,GAAG,CAAC,IAAI5c,EAAE1P,GAAGyK,EAAE,EAAEE,EAAEE,CAAC,EAAE,OAAOC,GAAG,OAAO4E,EAAErY,EAAEqY,EAAE5E,CAAC,GAAGg3B,GAAGpyB,EAAE,EAAE,EAAElD,CAAC,CAAC,CAAC,IAAIC,EAAE0gB,EAAE1iB,EAAE,IAAI,cAAc,EAAEiC,EAAEygB,EAAE,EAAE,IAAI,cAAc,EAAE,CAAC1gB,EAAEC,CAAC,EAAE+e,GAAGhf,EAAEC,CAAC,EAAE,IAAIS,EAAExC,EAAE8B,EAAE,MAAMA,EAAE,KAAK,CAAC,EAAEA,EAAE,MAAMA,EAAE,KAAK,CAAC,EAAEW,EAAEvC,EAAE6B,EAAE,MAAMA,EAAE,KAAK,CAAC,EAAEA,EAAE,MAAMA,EAAE,KAAK,CAAC,EAAEW,EAAE1C,EAAE8B,EAAE,MAAMA,EAAE,KAAK,CAAC,EAAEA,EAAE,MAAMA,EAAE,KAAK,CAAC,EAAEa,EAAEzC,EAAE6B,EAAE,MAAMA,EAAE,KAAK,CAAC,EAAEA,EAAE,MAAMA,EAAE,KAAK,CAAC,EAAEa,EAAEd,EAAE,MAAM,MAAM,EAAE,EAAE,EAAEgC,EAAE/B,EAAE,MAAM,MAAM,EAAE,EAAE,EAAE,EAAEyY,GAAG5X,CAAC,EAAEwE,EAAEoT,GAAG1W,CAAC,EAAEsW,EAAE5X,IAAIC,EAAE,IAAI,wCAAwCD,CAAC,UAAUC,CAAC,4BAA4BX,EAAE,KAAK,QAAQC,EAAE,KAAK,mBAAmB/B,CAAC,mBAAmBE,CAAC,cAAc,EAAE,IAAIqE,EAAE6nB,GAAGtqB,EAAE,MAAM,MAAM,EAAE,EAAE,EAAEC,EAAE,MAAM,MAAM,EAAE,EAAE,CAAC,EAAE,OAAO,CAACW,EAAEC,CAAC,CAAC,EAAE6B,EAAExE,EAAE3G,EAAEyI,EAAE,CAAC,EAAEU,EAAEE,CAAC,CAAC,EAAErJ,EAAEyI,EAAE,CAAC,EAAEY,EAAEF,CAAC,CAAC,EAAEiC,EAAEvE,EAAE7G,EAAE0I,EAAE,CAACqF,EAAEzE,EAAEF,CAAC,CAAC,EAAEpJ,EAAE0I,EAAE,CAACqF,EAAE3E,EAAEE,CAAC,CAAC,EAAE+B,EAAEvE,GAAG,OAAOuE,EAAE8d,EAAEriB,EAAE,OAAO,cAAc,EAAE,CAACuE,CAAC,EAAEoc,GAAGpc,EAAE5C,CAAC,EAAEsqB,GAAG7nB,EAAEG,EAAE,KAAK,GAAG,IAAIC,EAAE,GAAG,OAAOA,EAAE6d,EAAE,EAAE,gBAAgB,cAAc,GAAG,IAAInb,EAAE,CAACtC,EAAEC,IAAI,CAAC,GAAG,CAACC,EAAEC,EAAEC,EAAE2C,CAAC,EAAE9C,EAAEuC,EAAE0vB,GAAG59B,EAAE0L,EAAEI,EAAE,KAAK,EAAEA,EAAE,CAAC,EAAE4C,EAAEC,EAAG,GAAG,CAAChI,GAAG,CAACE,GAAG6H,EAAE1S,GAAGkS,EAAErC,EAAE,GAAG,EAAE,EAAE8C,EAAG3S,GAAG4P,EAAEsC,EAAE,GAAG,EAAE,GAAG,CAACvH,GAAGE,GAAG6H,EAAE1S,GAAGkS,EAAErC,EAAE,GAAG,EAAE,EAAE8C,EAAG3S,GAAGkS,EAAEtC,EAAE,GAAG,EAAE,GAAGjF,GAAG,CAACE,GAAG6H,EAAE1S,GAAG6P,EAAEqC,EAAE,GAAG,EAAE,EAAES,EAAG3S,GAAG4P,EAAEsC,EAAE,GAAG,EAAE,IAAIQ,EAAE1S,GAAG6P,EAAEqC,EAAE,GAAG,EAAE,EAAES,EAAG3S,GAAGkS,EAAEtC,EAAE,GAAG,EAAE,GAAG9E,GAAG,KAAK,CAAC,IAAI8H,EAAGivB,GAAGpvB,EAAEP,CAAC,EAAE,MAAM,CAACQ,EAAEC,EAAGC,CAAE,CAAC,KAAM,OAAM,CAACF,EAAEC,CAAE,CAAC,EAAEnD,EAAE,CAAC,EAAEL,EAAE,EAAEC,EAAE,KAAKC,EAAE,uBAAuBC,CAAC,EAAEG,EAAE,CAAC,WAAW9E,EAAE,WAAWE,EAAE,WAAW,EAAE,eAAe2B,CAAC,EAAE,OAAO1B,GAAG,KAAKrQ,GAAG,CAACkV,EAAEC,EAAEC,IAAI,CAAC,IAAIC,EAAEwc,EAAE,UAAUr1B,GAAGuY,EAAEC,CAAC,EAAE,OAAOI,EAAE,CAACF,EAAEC,EAAEE,CAAC,CAAC,EAAE,CAAC,MAAM9L,EAAE8L,EAAEZ,CAAC,EAAE,SAAS8C,CAAC,CAAC,CAAC,EAAE7C,EAAEC,CAAC,EAAE3U,GAAG,CAACkV,EAAEC,EAAEC,EAAEC,IAAI,CAAC,IAAI2C,EAAE6Z,EAAE,UAAUr1B,GAAGuY,EAAEC,CAAC,EAAE,OAAOK,EAAE,CAACH,EAAEC,EAAE6C,EAAE5C,CAAC,CAAC,EAAE,CAAC,MAAM7L,EAAEyO,EAAEvD,CAAC,EAAE,SAAS8C,CAAC,CAAC,CAAC,EAAE7C,EAAEC,EAAEC,CAAC,CAAC,CAAC,IAAIoyB,GAAG5/B,EAAE,CAAC,aAAaygC,EAAE,CAAC,EAAE,SAASC,GAAG93B,EAAE,CAAC,OAAOnQ,GAAGmQ,EAAE,IAAI,GAAG,CAAC,CAAC,IAAI+3B,GAAG3gC,EAAE,CAAC,eAAe0gC,EAAE,CAAC,EAAE,SAASE,GAAGh4B,EAAE,CAAC,OAAOnQ,GAAGmQ,EAAE,GAAG,EAAE,CAAC,CAAC,IAAIi4B,GAAG7gC,EAAE,CAAC,YAAY4gC,EAAE,CAAC,EAAE,SAASE,GAAGl4B,EAAE,EAAEE,EAAEE,EAAE,GAAGC,EAAE,EAAE,CAAC,IAAI,EAAE,EAAE,EAAE,CAAC,EAAE,KAAK,EAAE,GAAGL,EAAE,MAAM,EAAE,KAAK3E,GAAG2E,EAAE,EAAE,CAAC,CAAC,EAAE,GAAGE,EAAE,GAAGE,EAAE,KAAK,EAAEJ,EAAE,MAAM,CAAC,IAAI+B,EAAE,EAAE,EAAE/B,EAAE,KAAKgC,EAAEjT,GAAG,CAACsM,GAAG2E,EAAE,EAAE,EAAE+B,CAAC,EAAE9P,GAAG,CAAC8P,CAAC,EAAE1B,CAAC,CAAC,CAAC,EAAE,EAAE,KAAK2B,CAAC,EAAE,GAAG9B,CAAC,CAAC,OAAO,EAAE,SAAS,EAAEjD,GAAG,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,EAAE1D,EAAExK,GAAG,CAAC,EAAE,CAAC,EAAE,OAAO,CAAC,CAAC,CAAC,CAAC,IAAIopC,GAAG/gC,EAAE,CAAC,OAAO8gC,EAAE,CAAC,EAAE,SAASE,GAAGp4B,EAAE,EAAEE,EAAEE,EAAEC,EAAE43B,GAAG,CAAC73B,GAAG,OAAOA,EAAE/O,GAAG,CAAC,GAAG,IAAI,EAAE8mC,GAAGn4B,EAAE,EAAEE,CAAC,EAAE,EAAExJ,EAAE,EAAE2J,EAAE,CAAC,CAAC,EAAE,OAAOxG,GAAG,EAAEuG,CAAC,CAAC,CAAC,IAAIi4B,GAAGjhC,EAAE,CAAC,MAAMghC,EAAE,CAAC,EAAE,SAASE,GAAGt4B,EAAE,EAAEE,EAAEE,EAAEC,EAAE,WAAW,EAAE,EAAE,CAAC,IAAI,EAAEqiB,EAAE1iB,EAAE,QAAQ,eAAe,EAAE+B,EAAE2gB,EAAE,EAAE,QAAQ,gBAAgB,SAAS,EAAE1gB,EAAE0gB,EAAExiB,EAAE,SAAS,gBAAgB,OAAO,EAAE+B,EAAEF,EAAE,MAAM,CAAC,EAAEuY,EAAE,EAAE,OAAO,EAAE,IAAI,6DAA6D,EAAE,IAAI,GAAG,EAAEA,EAAEvY,EAAE,OAAO,GAAGA,EAAE,MAAM,CAAC,IAAI,EAAE,IAAI,oDAAoDE,CAAC,qBAAqBF,EAAE,KAAK,GAAG,EAAEuY,EAAEtY,EAAE,OAAO,GAAGA,EAAE,MAAM,CAAC,IAAIC,EAAE,IAAI,qDAAqDA,CAAC,mBAAmBF,EAAE,KAAK,GAAG,EAAEuY,EAAEla,EAAE,SAAS,EAAE,IAAI,wEAAwEA,EAAE,MAAM,GAAG,EAAEka,EAAEla,EAAE,CAAC,GAAG,GAAGA,EAAE,CAAC,GAAG,EAAE,IAAI,2CAA2CA,CAAC,EAAE,EAAEka,EAAEja,IAAI,YAAYA,IAAI,UAAU,IAAI,+CAA+CA,CAAC,EAAE,EAAE,IAAIqC,EAAE,CAAC,MAAM,EAAE,MAAMX,EAAE,OAAOC,CAAC,EAAEW,EAAE,CAAC,OAAOtC,EAAE,mBAAmB,EAAE,SAASD,CAAC,EAAE,OAAOyhB,EAAE,UAAU9/B,GAAG2gB,EAAEC,CAAC,CAAC,CAAC,IAAI41B,GAAGnhC,EAAE,CAAC,eAAekhC,EAAE,CAAC,EAAE,SAASE,GAAGx4B,EAAE,CAAC,IAAI,EAAE0iB,EAAE1iB,EAAE,QAAQ,gBAAgB,SAAS,EAAEsa,EAAE,EAAE,OAAO,EAAE,IAAI,6DAA6D,EAAE,IAAI,GAAG,EAAE,IAAIpa,EAAE,CAAC,MAAM,CAAC,EAAE,OAAO2hB,EAAE,UAAUl+B,GAAGuc,EAAE,CAAC,CAAC,CAAC,CAAC,IAAIu4B,GAAGrhC,EAAE,CAAC,eAAeohC,EAAE,CAAC,EAAE,SAASE,GAAG14B,EAAE,CAAC,IAAI,EAAE0iB,EAAE1iB,EAAE,QAAQ,gBAAgB,EAAEE,EAAE,EAAE,KAAK,EAAEE,EAAE,EAAE,MAAMF,CAAC,EAAEoa,EAAE,EAAE,MAAM,EAAE,IAAI,yEAAyE,EAAE,IAAI,GAAG,EAAEA,EAAEla,IAAI,EAAE,IAAI,+FAA+FA,CAAC,GAAG,EAAE,IAAIC,EAAE,IAAI,MAAM,EAAE,IAAI,EAAE,OAAOA,EAAE,KAAK,EAAE,EAAEH,CAAC,EAAEG,EAAEH,CAAC,EAAE,EAAExC,GAAG,EAAE2C,CAAC,CAAC,CAAC,IAAIs4B,GAAGvhC,EAAE,CAAC,gBAAgBshC,EAAE,CAAC,EAAE,SAASE,GAAG54B,EAAE,CAAC,IAAI,EAAE0iB,EAAE1iB,EAAE,QAAQ,gBAAgB,EAAEE,EAAE,EAAE,KAAK,EAAEE,EAAE,EAAE,MAAMF,CAAC,EAAEoa,EAAE,EAAE,MAAM,EAAE,IAAI,yEAAyE,EAAE,IAAI,GAAG,EAAEA,EAAEla,IAAI,EAAE,IAAI,0FAA0FA,CAAC,GAAG,EAAE,IAAIC,EAAE,EAAE,MAAM,EAAE3R,GAAE,EAAE,SAAS,EAAE,EAAEsO,GAAG,CAAC,MAAM,KAAK,IAAI,CAAC,EAAE+E,EAAE,OAAO,EAAE,KAAK,CAAC,IAAK,GAAEA,EAAE9Q,GAAG,UAAU,EAAE,CAAC,EAAE,MAAM,IAAK,GAAE8Q,EAAE9Q,GAAG,YAAY,EAAE,CAAC,EAAE,MAAM,IAAK,GAAE8Q,EAAE9Q,GAAG,cAAc,EAAE,CAAC,EAAE,MAAM,IAAK,GAAE8Q,EAAE9Q,GAAG,gBAAgB,EAAE,CAAC,EAAE,MAAM,IAAK,GAAE8Q,EAAE9Q,GAAG,kBAAkB,EAAE,CAAC,EAAE,MAAM,QAAQ,MAAM,IAAI,MAAM,0BAA0B,CAAC,CAAC,OAAO8Q,EAAElQ,GAAGkQ,EAAE,EAAE,EAAErT,GAAEqT,EAAE1B,CAAC,CAAC,CAAC,IAAIw4B,GAAGzhC,EAAE,CAAC,gBAAgBwhC,EAAE,CAAC,EAAE,SAASE,GAAG94B,EAAE,EAAEE,EAAE,EAAEE,EAAE,GAAG,CAAC,IAAIC,EAAEqiB,EAAE1iB,EAAE,QAAQ,mBAAmB,SAAS,EAAEsa,EAAEja,EAAE,OAAO,EAAE,IAAI,gEAAgEA,EAAE,IAAI,GAAG,EAAE,IAAI,EAAE,CAAC,MAAMA,CAAC,EAAE,EAAE,CAAC,QAAQ,EAAE,UAAUH,EAAE,OAAOE,CAAC,EAAE,OAAOyhB,EAAE,UAAUv4B,GAAG,EAAE,CAAC,CAAC,CAAC,IAAIyvC,GAAG3hC,EAAE,CAAC,kBAAkB0hC,EAAE,CAAC,EAAE,SAASE,GAAGh5B,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,CAACD,GAAG,OAAOA,EAAE,IAAIC,GAAG,OAAOA,EAAE,OAAO,mBAAmB,GAAG,OAAO,EAAE,GAAG,IAAI,EAAEL,EAAE,MAAM,CAAC,EAAE,OAAOE,EAAE,KAAK,IAAIA,EAAE,CAAC,EAAEoa,EAAE,GAAGla,GAAGA,GAAG,EAAE,IAAI,4CAA4CA,CAAC,GAAG,EAAEka,EAAEta,EAAE,OAAO,EAAE,IAAI,+CAA+CA,EAAE,IAAI,GAAG,EAAEsa,EAAEta,EAAE,MAAM,CAAC,IAAI,EAAE,IAAI,oDAAoDA,EAAE,MAAM,CAAC,CAAC,EAAE,EAAEsa,EAAE,EAAE,OAAO,EAAE,IAAI,4BAA4B,EAAEA,EAAE,EAAE,MAAM,CAAC,IAAI,EAAE,IAAI,sDAAsD,CAAC,aAAa,EAAE,MAAM,CAAC,CAAC,EAAE,EAAEA,EAAE,GAAG,GAAG,GAAG,EAAE,IAAI,4CAA4C,CAAC,GAAG,EAAE,CAAC,cAAcpa,EAAE,aAAaE,EAAE,eAAeC,EAAE,aAAa,CAAC,CAAC,CAAC,SAAS44B,GAAGj5B,EAAE,EAAEE,EAAEE,EAAE,GAAGC,EAAE,OAAO,kBAAkB,CAAC,IAAI,EAAEqiB,EAAE1iB,EAAE,QAAQ,oBAAoB,SAAS,EAAE,EAAE0iB,EAAE,EAAE,SAAS,oBAAoB,SAAS,EAAE3gB,EAAEi3B,GAAG,EAAE,EAAE94B,EAAEE,EAAEC,CAAC,EAAEH,EAAE6B,EAAE,cAAc3B,EAAE2B,EAAE,aAAa1B,EAAE0B,EAAE,eAAe,IAAIC,EAAE,CAAC,cAAc9B,EAAE,aAAaE,EAAE,eAAeC,CAAC,EAAE,OAAOwhB,EAAE,UAAUz6B,GAAG,CAAC,MAAM,EAAE,OAAO,CAAC,EAAE4a,CAAC,CAAC,CAAC,IAAIk3B,GAAG9hC,EAAE,CAAC,mBAAmB6hC,EAAE,CAAC,EAAE,SAASE,GAAGn5B,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAEg5B,GAAGp5B,EAAE,EAAEE,CAAC,EAAEG,EAAED,EAAE,EAAE,EAAEA,EAAE,GAAGA,EAAEJ,EAAE,OAAOK,EAAE,EAAE,CAAC,CAAC,CAAC,SAAS+4B,GAAGp5B,EAAE,EAAEE,EAAE,CAAC,OAAOm5B,GAAGr5B,EAAE,EAAEE,GAAGo5B,EAAE,CAAC,CAAC,SAASA,GAAGt5B,EAAE,EAAE,CAAC,OAAOA,EAAE,EAAE,EAAEA,EAAE,EAAE,GAAG,CAAC,CAAC,SAASq5B,GAAGr5B,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAE,EAAEC,EAAEL,EAAE,OAAO,EAAE,EAAE,EAAE,GAAG,KAAKI,EAAEC,GAAG,CAAC,EAAED,GAAGC,EAAED,IAAI,GAAG,IAAI2B,EAAE7B,EAAE,EAAEF,EAAE,CAAC,CAAC,EAAE+B,EAAE,EAAE3B,EAAE,EAAE,GAAGC,EAAE,EAAE,EAAE,CAAC0B,EAAE,CAAC,OAAO,EAAE3B,EAAE,CAACA,EAAE,CAAC,CAAC,SAASm5B,GAAGv5B,EAAE,EAAEE,EAAEE,EAAEC,EAAE,CAAC,OAAOm5B,GAAGx5B,EAAE,EAAEE,EAAEE,EAAEC,EAAE,CAAC,CAAC,CAAC,SAASo5B,GAAGz5B,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,CAAC,OAAOm5B,GAAGx5B,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,GAAG,EAAE,EAAE,CAAC,CAAC,SAASq5B,GAAG15B,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,CAAC,OAAOm5B,GAAGx5B,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,EAAE,CAAC,CAAC,SAASm5B,GAAGx5B,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,EAAE,GAAG0B,EAAE,GAAGC,EAAE,GAAG,CAAC,IAAIC,EAAE,CAAC,EAAE,QAAQ,EAAE,EAAE,EAAE,EAAE,OAAO,IAAI,EAAE,CAAC,EAAE5B,GAAG4B,EAAE,KAAK,CAAC,MAAM,EAAE,CAAC,EAAE,SAAS,EAAE,mBAAmB,CAAC,CAAC,EAAEA,EAAE,KAAK03B,EAAE,EAAE,IAAIj3B,EAAE,EAAE,EAAE,IAAI,EAAE,EAAEC,EAAE,CAAC,EAAEC,EAAE,CAAC,EAAE,KAAKD,EAAE,OAAOzC,GAAG+B,EAAE,OAAO,GAAG,CAAC,IAAI,EAAEA,EAAE,IAAI,EAAE,CAAC,MAAMqF,EAAE,SAASxC,EAAE,mBAAmBL,CAAC,EAAE,EAAE,GAAG6C,EAAEjH,EAAE,MAAM,IAAIqE,EAAE,GAAG,QAAQC,EAAEhC,EAAE,OAAO,EAAEgC,GAAGF,EAAE,EAAEE,EAAE,CAAC,IAAIC,EAAEg1B,GAAG55B,EAAE8E,EAAEnC,EAAEgC,CAAC,CAAC,EAAE,GAAGC,GAAGxE,EAAE,CAACsE,EAAE,GAAG,KAAK,CAAC,GAAG,EAAE,MAAM,EAAE,MAAMm1B,GAAGz5B,EAAEsC,EAAEkC,CAAC,EAAE,EAAE,OAAOvE,EAAE,KAAK,CAAC,EAAE,mBAAmBsC,EAAE,OAAO+B,IAAI,EAAE,QAAQ4C,GAAG3E,EAAE,KAAKmC,CAAC,EAAElC,EAAE,KAAK,EAAE,KAAK,GAAG,EAAE,MAAMvC,GAAG84B,GAAGl3B,EAAE,EAAE03B,EAAE,EAAE,CAAC,IAAI92B,EAAEF,EAAE,OAAOG,EAAE5C,EAAE2C,EAAEd,GAAGe,EAAE,IAAIH,EAAE,KAAK,GAAG,IAAI,MAAMG,CAAC,EAAE,KAAK,CAAC,CAAC,EAAEF,EAAE,KAAK,GAAG,IAAI,MAAME,CAAC,EAAE,KAAK,CAAC,CAAC,GAAG,IAAIkB,EAAE,CAAC,gBAAgBrB,CAAC,EAAE,OAAO,IAAIqB,EAAE,eAAepB,GAAGZ,IAAIgC,EAAE,aAAanB,GAAGmB,CAAC,CAAC,SAAS41B,GAAG55B,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAEJ,EAAE,SAAS,EAAE,EAAE,EAAE,EAAE,CAAC,EAAEK,EAAEL,EAAE,SAASE,EAAE,EAAEA,EAAE,EAAE,CAAC,EAAE,EAAE,KAAK,IAAIE,EAAE,CAAC,EAAEA,EAAE,CAAC,CAAC,EAAE,EAAE,KAAK,IAAIA,EAAE,CAAC,EAAEA,EAAE,CAAC,CAAC,EAAE2B,EAAE,KAAK,IAAI3B,EAAE,CAAC,EAAEA,EAAE,CAAC,CAAC,EAAE4B,EAAE,KAAK,IAAI5B,EAAE,CAAC,EAAEA,EAAE,CAAC,CAAC,EAAE6B,EAAE,KAAK,IAAI5B,EAAE,CAAC,EAAEA,EAAE,CAAC,CAAC,EAAEqC,EAAE,KAAK,IAAIrC,EAAE,CAAC,EAAEA,EAAE,CAAC,CAAC,EAAEsC,EAAE,KAAK,IAAItC,EAAE,CAAC,EAAEA,EAAE,CAAC,CAAC,EAAEuC,EAAE,KAAK,IAAIvC,EAAE,CAAC,EAAEA,EAAE,CAAC,CAAC,EAAEwC,GAAGd,EAAE,IAAIC,EAAE,GAAGc,GAAGH,EAAEV,IAAIW,EAAEF,GAAG,GAAGG,GAAG,GAAGC,GAAG,EAAE,MAAO,GAAE,IAAIkB,EAAE,KAAK,IAAI,EAAE/B,CAAC,EAAE,EAAE,KAAK,IAAI,EAAES,CAAC,EAAE4E,EAAE,KAAK,IAAIvF,EAAEY,CAAC,EAAEmC,EAAE,KAAK,IAAI9C,EAAEY,CAAC,EAAE6B,EAAE,KAAK,IAAI6C,EAAEtD,EAAE,CAAC,EAAE,KAAK,IAAIc,EAAE,EAAE,CAAC,EAAE,OAAOL,GAAG5B,EAAEC,EAAE2B,EAAE,CAAC,SAASo1B,GAAG75B,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAE,KAAK,IAAI,EAAEF,EAAEA,CAAC,EAAE,OAAOA,GAAGF,EAAEI,EAAE,CAAC,CAAC,SAASu5B,GAAG35B,EAAE,EAAE,CAAC,OAAOA,EAAE,MAAM,EAAE,OAAOA,EAAE,QAAQ,EAAE,OAAO,EAAE,SAASA,EAAE,QAAQ,CAAC,eAAe85B,GAAG95B,EAAE,EAAEE,EAAEE,EAAE,GAAGC,EAAE,OAAO,kBAAkB,CAAC,IAAI,EAAEqiB,EAAE1iB,EAAE,QAAQ,wBAAwB,EAAE,EAAE0iB,EAAE,EAAE,SAAS,wBAAwB,EAAE3gB,EAAEi3B,GAAG,EAAE,EAAE94B,EAAEE,EAAEC,CAAC,EAAEH,EAAE6B,EAAE,cAAc3B,EAAE2B,EAAE,aAAa1B,EAAE0B,EAAE,eAAe,IAAIC,EAAE,MAAM,QAAQ,IAAI,CAAC,EAAE,KAAK,EAAE,EAAE,KAAK,CAAC,CAAC,EAAEC,EAAED,EAAE,CAAC,EAAEU,EAAEV,EAAE,CAAC,EAAE,CAAC,gBAAgBW,CAAC,EAAE42B,GAAGt3B,EAAES,EAAExC,EAAEE,EAAEC,CAAC,EAAE,OAAO,IAAIL,GAAG,EAAE,QAAQ,EAAE,IAAI,GAAG,EAAE,QAAQ,EAAEhD,GAAG2F,EAAE,OAAO,CAAC,CAAC,IAAIo3B,GAAGD,GAAG,SAASE,GAAGh6B,EAAE,EAAEE,EAAEE,EAAE,GAAGC,EAAE,OAAO,kBAAkB,EAAE,EAAE,CAAC,IAAI,EAAEqiB,EAAE1iB,EAAE,QAAQ,mBAAmB,EAAE+B,EAAE2gB,EAAE,EAAE,SAAS,mBAAmB,EAAE1gB,EAAEg3B,GAAG,EAAEj3B,EAAE7B,EAAEE,EAAEC,EAAE,CAAC,EAAEH,EAAE8B,EAAE,cAAc5B,EAAE4B,EAAE,aAAa3B,EAAE2B,EAAE,eAAe,EAAEA,EAAE,aAAa,IAAIC,EAAE,CAAC,MAAM,EAAE,OAAOF,CAAC,EAAEW,EAAE,CAAC,cAAcxC,EAAE,aAAaE,EAAE,eAAeC,EAAE,aAAa,CAAC,EAAEsC,EAAEkf,EAAE,UAAUv6B,GAAG2a,EAAES,CAAC,EAAE,MAAM,CAAC,gBAAgBC,EAAE,CAAC,EAAE,eAAeA,EAAE,CAAC,CAAC,CAAC,CAAC,IAAIs3B,GAAG7iC,EAAE,CAAC,4BAA4B4iC,EAAE,CAAC,EAAE,eAAeE,GAAGl6B,EAAE,EAAEE,EAAEE,EAAE,GAAGC,EAAE,OAAO,kBAAkB,EAAE,EAAE,CAAC,IAAI,EAAEqiB,EAAE1iB,EAAE,QAAQ,wBAAwB,EAAE+B,EAAE2gB,EAAE,EAAE,SAAS,wBAAwB,EAAE1gB,EAAEg3B,GAAG,EAAEj3B,EAAE7B,EAAEE,EAAEC,EAAE,CAAC,EAAEH,EAAE8B,EAAE,cAAc5B,EAAE4B,EAAE,aAAa3B,EAAE2B,EAAE,eAAe,EAAEA,EAAE,aAAa,IAAIC,EAAE,MAAM,QAAQ,IAAI,CAAC,EAAE,KAAK,EAAEF,EAAE,KAAK,CAAC,CAAC,EAAEW,EAAET,EAAE,CAAC,EAAEU,EAAEV,EAAE,CAAC,EAAE,CAAC,gBAAgBW,EAAE,eAAeC,CAAC,EAAE62B,GAAGh3B,EAAEC,EAAEzC,EAAEE,EAAEC,EAAE,CAAC,EAAE,OAAO,IAAIL,GAAG,EAAE,QAAQ,EAAE+B,IAAI,GAAGA,EAAE,QAAQ,EAAE,CAAC,gBAAgB/E,GAAG4F,EAAE,OAAO,EAAE,eAAe5F,GAAG6F,CAAC,CAAC,CAAC,CAAC,IAAIs3B,GAAGD,GAAG,SAASE,GAAGp6B,EAAE,EAAEE,EAAEE,EAAE,GAAGC,EAAE,OAAO,kBAAkB,EAAE,GAAG,CAAC,IAAI,EAAEqiB,EAAE1iB,EAAE,QAAQ,mBAAmB,EAAE+B,EAAE2gB,EAAE,EAAE,SAAS,mBAAmB,EAAE1gB,EAAEg3B,GAAG,EAAEj3B,EAAE7B,EAAEE,EAAEC,EAAE,IAAI,EAAE4B,EAAED,EAAE,cAAcU,EAAEV,EAAE,aAAaW,EAAEX,EAAE,eAAeY,EAAE,CAAC,MAAM,EAAE,OAAOb,CAAC,EAAEc,EAAE,CAAC,cAAcZ,EAAE,aAAaS,EAAE,eAAeC,EAAE,mBAAmB,CAAC,EAAEG,EAAE+e,EAAE,UAAUx6B,GAAGub,EAAEC,CAAC,EAAE,MAAM,CAAC,gBAAgBC,EAAE,CAAC,EAAE,aAAaA,EAAE,CAAC,CAAC,CAAC,CAAC,IAAIu3B,GAAGjjC,EAAE,CAAC,yBAAyBgjC,EAAE,CAAC,EAAE,eAAeE,GAAGt6B,EAAE,EAAEE,EAAEE,EAAE,GAAGC,EAAE,OAAO,kBAAkB,EAAE,GAAG,CAAC,IAAI,EAAEqiB,EAAE1iB,EAAE,QAAQ,wBAAwB,EAAE+B,EAAE2gB,EAAE,EAAE,SAAS,wBAAwB,EAAE1gB,EAAEg3B,GAAG,EAAEj3B,EAAE7B,EAAEE,EAAEC,EAAE,IAAI,EAAE4B,EAAED,EAAE,cAAcU,EAAEV,EAAE,aAAaW,EAAEX,EAAE,eAAe,CAACY,EAAEC,CAAC,EAAE,MAAM,QAAQ,IAAI,CAAC,EAAE,KAAK,EAAEd,EAAE,KAAK,CAAC,CAAC,EAAE,CAAC,gBAAgBe,EAAE,aAAakB,CAAC,EAAEy1B,GAAG72B,EAAEC,EAAEZ,EAAES,EAAEC,EAAE,CAAC,EAAE,OAAO,IAAI3C,GAAG,EAAE,QAAQ,EAAE+B,IAAI,GAAGA,EAAE,QAAQ,EAAE,CAAC,gBAAgB/E,GAAG8F,EAAE,OAAO,EAAE,aAAa9I,GAAGgK,EAAE,OAAO,CAAC,CAAC,CAAC,IAAIu2B,GAAGD,GAAG,SAASE,GAAGx6B,EAAE,EAAEE,EAAE,GAAGE,EAAE,GAAG,CAAC,IAAIC,EAAEqiB,EAAE1iB,EAAE,SAAS,gBAAgB,EAAEsa,EAAEja,EAAE,OAAO,GAAGA,EAAE,OAAO,EAAE,IAAI,gEAAgEA,EAAE,IAAI,GAAG,EAAEia,EAAE,EAAE,SAAS,EAAE,IAAI,6DAA6D,CAAC,GAAG,EAAEA,EAAEla,IAAI,IAAIF,IAAI,GAAG,IAAI,mFAAmF,EAAE,IAAI,EAAEG,EAAE,EAAE,GAAGA,EAAE,OAAO,IAAI,EAAE,GAAG,EAAE9G,EAAE8G,EAAE,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,CAAC,CAAC,GAAG,GAAG,CAAC,EAAE,EAAE0B,EAAE,CAAC,OAAO,CAAC,EAAEC,EAAE,CAAC,aAAa9B,EAAE,iBAAiBE,EAAE,KAAK,CAAC,EAAE6B,EAAE4f,EAAE,UAAU54B,GAAG8Y,EAAEC,CAAC,EAAE,OAAO,EAAEzI,EAAE0I,EAAE,CAACA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,CAAC,CAAC,EAAEA,CAAC,CAAC,IAAIw4B,GAAGrjC,EAAE,CAAC,gBAAgBojC,EAAE,CAAC,EAAE,SAASE,GAAG16B,EAAE,EAAEE,EAAE,GAAGE,EAAE,GAAG,CAAC,IAAIC,EAAEqiB,EAAE1iB,EAAE,SAAS,uBAAuB,EAAEsa,EAAEja,EAAE,OAAO,GAAGA,EAAE,OAAO,EAAE,IAAI,uEAAuEA,EAAE,IAAI,GAAG,EAAEia,EAAE,EAAE,SAAS,EAAE,IAAI,oEAAoE,CAAC,GAAG,EAAEA,EAAEja,EAAE,QAAQ,WAAWA,EAAE,QAAQ,QAAQ,IAAI,kDAAkD,EAAEia,EAAEla,IAAI,IAAIF,IAAI,GAAG,IAAI,0FAA0F,EAAE,IAAI,EAAEG,EAAE,EAAE,GAAGA,EAAE,OAAO,IAAI,EAAE,GAAG,EAAE9G,EAAE8G,EAAE,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,CAAC,CAAC,GAAG,GAAG,CAAC,EAAE,EAAE0B,EAAE,CAAC,OAAO,CAAC,EAAEC,EAAE,CAAC,aAAa9B,EAAE,iBAAiBE,EAAE,KAAK,CAAC,EAAE6B,EAAE4f,EAAE,UAAU14B,GAAG4Y,EAAEC,CAAC,EAAE,OAAO,EAAEzI,EAAE0I,EAAE,CAACA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,CAAC,CAAC,EAAEA,CAAC,CAAC,IAAI04B,GAAGvjC,EAAE,CAAC,uBAAuBsjC,EAAE,CAAC,EAAE,SAASE,GAAG56B,EAAE,EAAE,SAASE,EAAE,GAAGE,EAAE,GAAG,CAAC,IAAIC,EAAEqiB,EAAE1iB,EAAE,QAAQ,WAAW,EAAE,EAAE,MAAM,EAAE,KAAK+B,EAAE,KAAKC,EAAE3B,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAE4B,EAAEvL,EAAEsG,GAAG,CAACoD,CAAC,CAAC,EAAE,GAAG,EAAEsC,EAAEC,EAAEC,EAAEC,EAAE,GAAGyX,EAAEja,EAAE,OAAO,EAAE,IAAI,yDAAyDA,EAAE,IAAI,GAAG,EAAEia,EAAEja,EAAE,MAAM,CAAC,IAAI,GAAGA,EAAE,MAAM,CAAC,IAAI,EAAE,IAAI,0EAA0EA,EAAE,MAAM,CAAC,CAAC,GAAG,EAAEia,EAAEja,EAAE,QAAQ,SAASA,EAAE,QAAQ,UAAU,IAAI,sEAAsEA,EAAE,KAAK,GAAG,EAAEia,EAAE,IAAI,QAAQ,IAAI,SAAS,IAAI,0CAA0C,CAAC,EAAE,EAAEja,EAAE,MAAM,CAAC,IAAI,EAAE,CAAC,CAACqC,EAAEC,EAAEC,CAAC,EAAE3G,GAAGoE,EAAE,CAAC,EAAE,EAAE,CAAC,EAAE,EAAE,EAAE,IAAI4D,EAAEvN,EAAEgM,EAAE,CAAC,EAAE4E,EAAE5Q,EAAEiM,EAAE,CAAC,EAAE,EAAEjM,EAAEkM,EAAEb,CAAC,EAAEc,EAAEjW,EAAEA,EAAEqX,EAAEqD,CAAC,EAAE,CAAC,CAAC,MAAMzE,EAAE7C,EAAE,GAAG,IAAI,OAAO,CAAC,IAAIiE,EAAEhW,GAAGS,GAAEoL,GAAG+I,CAAC,EAAE,OAAO,EAAE9F,GAAG,CAAC,CAAC,EAAE,GAAG,EAAEkF,EAAE44B,GAAG52B,EAAEjC,CAAC,CAAC,CAAC,IAAIc,EAAE5C,EAAE7L,GAAGwO,EAAEZ,CAAC,EAAE9O,GAAG0P,EAAEZ,CAAC,EAAE,OAAOvT,GAAEgI,EAAEoM,EAAE,GAAG,EAAE,OAAO,CAAC,CAAC,SAAS+3B,GAAG76B,EAAE,EAAE,CAAC,IAAIE,EAAElD,GAAG,CAAC,EAAE,CAAC,EAAEoD,EAAEpD,GAAG,CAAC,CAAC,CAAC,EAAEqD,EAAErD,GAAG,CAAC,CAAC,CAAC,EAAE,EAAE,EAAE+E,EAAEC,EAAEC,EAAES,EAAE,QAAQC,EAAE,EAAEA,EAAE3C,EAAE,KAAK,EAAE2C,IAAI,CAAC,EAAEtH,GAAG2E,EAAE,EAAE2C,EAAE,CAAC,EAAE,EAAEtH,GAAG2E,EAAE2C,EAAE,CAAC,EAAEV,EAAEpR,GAAG8L,GAAG,CAAC,EAAE,CAAC,EAAE+F,EAAE7R,GAAG8L,GAAG,CAAC,EAAE,CAAC,EAAE,IAAIiG,EAAEjG,GAAGjG,EAAE,EAAEgC,GAAG,EAAE,EAAE,IAAI,CAAC,CAAC,EAAEqJ,EAAElR,GAAG+R,EAAEjG,GAAG,CAAC,CAAC,EAAE,IAAIkG,EAAE5Q,GAAG,EAAE,MAAM,EAAE,IAAI,EAAE6Q,EAAElW,EAAE8L,GAAG,EAAE,EAAE,IAAI,EAAEmK,CAAC,EAAEmB,EAAEtN,EAAE,EAAEoM,CAAC,EAAEd,EAAEnR,GAAG8L,GAAGqH,CAAC,EAAErH,GAAG,CAAC,CAAC,EAAE,IAAI,EAAED,GAAGqF,EAAEC,CAAC,EAAEsF,EAAE5K,GAAGqF,EAAEC,CAAC,EAAE8C,EAAEpO,EAAEuL,EAAES,CAAC,EAAErC,EAAE3J,EAAEA,EAAEoO,EAAE,CAAC,EAAEwC,CAAC,EAAE,IAAI7C,EAAEtR,GAAGkN,EAAED,CAAC,EAAEA,EAAEf,GAAGoF,EAAEpE,EAAED,CAAC,EAAEF,EAAEb,GAAGoF,EAAEzH,GAAG,CAAC2F,CAAC,CAAC,EAAEzC,CAAC,CAAC,CAAC,OAAOA,CAAC,CAAC,IAAI46B,GAAG1jC,EAAE,CAAC,WAAWwjC,EAAE,CAAC,EAAE,SAASG,GAAG/6B,EAAE,EAAEE,EAAE,UAAUE,EAAE,WAAWC,EAAE,EAAE,EAAE,CAAC,IAAI,EAAEqiB,EAAE1iB,EAAE,QAAQ,YAAY,SAAS,EAAE+B,EAAE2gB,EAAE,EAAE,aAAa,YAAY,SAAS,EAAEpI,EAAE,EAAE,OAAO,EAAE,IAAI,yDAAyD,EAAE,IAAI,GAAG,EAAEA,EAAEvY,EAAE,OAAO,IAAIA,EAAE,MAAM,CAAC,IAAI,EAAE,MAAM,CAAC,GAAGA,EAAE,MAAM,CAAC,IAAI,IAAIA,EAAE,MAAM,CAAC,IAAI,EAAE,IAAI,kEAAkE,EAAEuY,EAAE,GAAG,MAAM,EAAE,SAAS,EAAE,IAAI,4EAA4E,CAAC,GAAG,EAAE,IAAItY,EAAE,CAAC,MAAM,EAAE,WAAWD,CAAC,EAAEE,EAAE,CAAC,cAAc/B,EAAE,SAASE,EAAE,UAAUC,EAAE,YAAY,CAAC,EAAE,OAAOwhB,EAAE,UAAU71B,GAAGgW,EAAEC,CAAC,CAAC,CAAC,IAAI+4B,GAAG5jC,EAAE,CAAC,WAAW2jC,EAAE,CAAC,EAAE,SAASE,GAAGj7B,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAEsiB,EAAE1iB,EAAE,IAAI,UAAU,EAAEsa,EAAEla,EAAE,MAAM,EAAE,IAAI,4CAA4CA,EAAE,IAAI,GAAG,EAAE,IAAIC,EAAED,EAAE,MAAM,CAAC,EAAE,CAAC,EAAEA,EAAE,MAAM,MAAM,EAAE,EAAE2B,EAAEC,EAAE,OAAO,GAAG,UAAUsY,EAAE,EAAE,IAAI,EAAE,IAAI,gDAAgD,CAAC,GAAG,EAAEA,EAAE,GAAG,EAAE,IAAI,yBAAyB,CAAC,kDAAkD,CAAC,IAAI,EAAEvY,EAAE2gB,EAAE,EAAE,EAAE,EAAE,EAAE,WAAW,UAAU,IAAIpI,EAAE,EAAE,QAAQ,QAAQ,IAAI,gDAAgD,EAAEvY,EAAE1C,GAAGjL,GAAG,EAAE,CAAC,EAAE,EAAE+B,GAAG,EAAE,CAAC,CAAC,GAAG,OAAO+J,GAAG,UAAUoa,EAAEpa,EAAE,IAAI,EAAE,IAAI,gDAAgDA,CAAC,GAAG,EAAEoa,EAAEpa,GAAG,EAAE,IAAI,yBAAyBA,CAAC,qDAAqD,CAAC,IAAI,EAAE8B,EAAE0gB,EAAExiB,EAAE,EAAE,EAAEA,EAAE,WAAW,UAAU,IAAIoa,EAAEpa,EAAE,QAAQ,QAAQ,IAAI,gDAAgD,EAAE8B,EAAE3C,GAAGjL,GAAG8L,EAAE,CAAC,EAAE,EAAE/J,GAAG+J,EAAE,CAAC,CAAC,GAAG,IAAI+B,EAAE1I,EAAEb,GAAG,EAAE,EAAE,EAAE,OAAO,EAAE,CAAC,GAAG,CAAC,CAAC,EAAEgK,EAAEhK,GAAG,EAAE,EAAE,EAAE,OAAO,EAAEiK,EAAEjG,GAAGuF,EAAES,CAAC,EAAEE,EAAE3N,GAAGZ,GAAGsO,EAAEZ,CAAC,EAAE3O,GAAGuP,EAAE9L,GAAGmL,CAAC,CAAC,CAAC,EAAEa,EAAEtD,GAAG,CAAC,EAAE,CAAC,EAAEa,EAAE,KAAK,EAAE,OAAO7G,EAAE+C,GAAG8B,GAAG7E,EAAE6G,EAAE,CAAC,GAAG,EAAE,CAAC,CAAC,CAAC,EAAE,IAAI0C,GAAGzD,GAAGuD,EAAEE,EAAED,CAAC,CAAC,CAAC,EAAExC,CAAC,CAAC,CAAC,IAAI66B,GAAG9jC,EAAE,CAAC,UAAU6jC,EAAE,CAAC,EAAE,SAASE,GAAGn7B,EAAE,CAAC,IAAI,EAAE,GAAG,MAAM,QAAQA,CAAC,EAAE,CAAC,EAAE,GAAGsa,EAAEta,GAAG,MAAMA,EAAE,OAAO,EAAE,IAAI,mEAAmE,EAAE,IAAIK,EAAEL,EAAE,CAAC,EAAE,MAAM,CAAC,EAAE,QAAQ,EAAE,EAAE,EAAEA,EAAE,OAAO,EAAE,EAAEsa,EAAEta,EAAE,CAAC,EAAE,MAAM,CAAC,IAAIK,EAAE,IAAI,iEAAiEL,EAAE,CAAC,EAAE,MAAM,CAAC,CAAC,QAAQK,CAAC,GAAG,CAAC,MAAM,EAAE,GAAGL,EAAE/D,GAAG+D,EAAEA,EAAE,MAAM,CAAC,EAAE,CAAC,EAAE,IAAIK,GAAGhE,GAAGgE,EAAE,CAAC,CAAC,CAAC,CAAC,EAAEia,EAAEta,EAAE,QAAQA,EAAE,CAAC,EAAE,MAAM,CAAC,EAAE,IAAI,oCAAoCA,EAAE,MAAM,mCAAmCA,EAAE,CAAC,EAAE,MAAM,CAAC,CAAC,IAAI,EAAE,IAAIE,EAAE,CAAC,EAAEE,EAAEJ,EAAE,QAAQK,EAAE,EAAEA,EAAEL,EAAE,OAAO,EAAEK,EAAEH,EAAE,KAAK2hB,EAAE,KAAK,IAAI,CAAC,IAAI,EAAEzhB,EAAEC,CAAC,EAAE,GAAGA,EAAE,EAAE,QAAQ,EAAE,EAAE,EAAEA,EAAE,EAAE,EAAE,CAAC,IAAI0B,EAAErL,EAAEiG,GAAGjG,EAAEwJ,EAAE,CAAC,EAAE,CAAC,CAAC,EAAEA,EAAE,CAAC,CAAC,EAAE,EAAExD,GAAG,EAAEqF,CAAC,CAAC,CAAC,OAAOlR,GAAG,EAAEkG,GAAG,EAAE,WAAW,CAAC,CAAC,CAAC,CAAC,EAAE,OAAO,EAAEuF,GAAG4D,EAAE,CAAC,EAAEA,CAAC,CAAC,IAAIk7B,GAAGhkC,EAAE,CAAC,aAAa+jC,EAAE,CAAC,EAAE,SAASE,GAAGr7B,EAAE,EAAE,GAAG,CAAC,GAAGsa,EAAEta,EAAE,MAAM,EAAE,IAAI,gEAAgEA,EAAE,IAAI,EAAE,EAAEA,EAAE,OAAO,EAAE,OAAOs7B,GAAGt7B,EAAE,CAAC,EAAE,CAAC,IAAIE,EAAEF,EAAE,MAAM,MAAM,EAAEA,EAAE,MAAM,OAAO,CAAC,EAAE,OAAO,CAACgC,EAAEC,IAAID,EAAEC,CAAC,EAAE7B,EAAEhC,GAAG7E,EAAEyG,EAAE,CAACE,EAAEF,EAAE,MAAMA,EAAE,MAAM,OAAO,CAAC,EAAEA,EAAE,MAAMA,EAAE,MAAM,OAAO,CAAC,CAAC,CAAC,EAAE,CAAC,EAAEK,EAAE,CAAC,EAAE,EAAE,CAAC,EAAED,EAAE,QAAQ4B,GAAG,CAAC,GAAG,CAACC,EAAES,CAAC,EAAE44B,GAAGt5B,EAAE,CAAC,EAAE3B,EAAE,KAAK4B,CAAC,EAAE,EAAE,KAAKS,CAAC,CAAC,CAAC,EAAE,IAAI,EAAEnJ,EAAE+C,GAAG+D,EAAE,CAAC,EAAEL,EAAE,KAAK,EAAE+B,EAAExI,EAAE+C,GAAG,EAAE,CAAC,EAAE0D,EAAE,KAAK,EAAE,MAAM,CAAC,EAAE+B,CAAC,CAAC,CAAC,CAAC,SAASu5B,GAAGt7B,EAAE,EAAE,GAAG,CAAC,OAAO6hB,EAAE,KAAK,IAAI,CAACvH,EAAEta,EAAE,MAAM,SAAS,EAAE,IAAI,0CAA0CA,EAAE,MAAM,MAAM,WAAW,EAAE,IAAIE,EAAEF,EAAE,MAAM,CAAC,EAAEI,EAAEJ,EAAE,MAAM,CAAC,EAAEK,EAAEtO,GAAGmO,CAAC,EAAE,EAAErR,GAAGmR,CAAC,EAAE,EAAE/C,GAAG,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,EAAE8E,EAAElT,GAAG,CAAC,EAAEmT,EAAE9B,GAAGE,EAAEA,EAAEF,EAAE,QAAQ+B,EAAE,EAAEA,EAAED,EAAE,EAAEC,EAAE,CAAC,IAAIS,EAAE,EAAEC,EAAEZ,EAAEa,EAAEvC,EAAE,CAAC0B,EAAE,EAAE1B,CAAC,EAAEwhB,EAAE,KAAK,IAAI,CAAC,IAAIhf,EAAExH,GAAG,EAAE,CAAC4G,EAAEA,CAAC,EAAE,CAAC/B,EAAE+B,EAAE,CAAC,CAAC,EAAEa,EAAE/L,GAAG8L,CAAC,EAAEmB,EAAE3I,GAAG,EAAE,CAAC4G,EAAEA,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,EAAE,EAAE5C,GAAGlM,GAAG6Q,EAAE,CAAC,EAAE/G,GAAG,CAAC,CAAC,EAAE,CAAC,CAAC,EAAEA,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAEqK,EAAE5K,GAAGsH,EAAEtN,EAAE,EAAEoM,CAAC,CAAC,EAAEgC,EAAEjU,GAAGgS,EAAEyE,CAAC,EAAExC,EAAE,MAAM,CAAC,IAAI,EAAE/C,EAAElT,GAAG,CAAC,EAAEkT,EAAEhT,GAAG,CAAC,EAAEsM,GAAGyJ,EAAE,CAAC,EAAE,CAAC,EAAE,CAACA,EAAE,MAAM,CAAC,EAAE,EAAEA,EAAE,MAAM,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,IAAIL,EAAE5N,GAAGhG,GAAG0E,GAAG,EAAE+R,CAAC,EAAExE,CAAC,CAAC,EAAE4B,EAAErJ,GAAG,EAAE,CAAC4G,EAAE,CAAC,EAAE,CAAC/B,EAAE+B,EAAE7B,CAAC,CAAC,EAAEuE,EAAEjO,EAAE+N,EAAE1C,CAAC,EAAE6C,EAAE9G,GAAGiE,CAAC,EAAE,GAAGE,IAAI,EAAE,EAAEvF,GAAGgI,EAAEnP,GAAGoP,EAAEpP,GAAGqP,EAAEF,CAAC,CAAC,CAAC,MAAM,CAAC,IAAI,EAAEhI,GAAGgI,EAAEnP,GAAGoP,EAAEpP,GAAGqP,EAAEF,CAAC,CAAC,CAAC,EAAE,EAAE3V,GAAG,CAACsM,GAAG,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC4G,EAAE7B,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,CAAC,IAAIyE,EAAE/G,GAAG6G,CAAC,EAAE4C,EAAElM,GAAGgF,EAAE,CAAC,EAAE4B,CAAC,EAAE,CAAC/B,EAAEG,EAAE,MAAM,CAAC,EAAE4B,CAAC,CAAC,EAAE,GAAGA,IAAI,EAAE5B,EAAE3D,GAAG6K,EAAEhS,GAAGA,GAAGgS,EAAExF,CAAC,EAAE8C,CAAC,CAAC,MAAM,CAAC,IAAI,EAAEnI,GAAG6K,EAAEhS,GAAGA,GAAGgS,EAAExF,CAAC,EAAE8C,CAAC,CAAC,EAAExE,EAAEtR,GAAG,CAACsM,GAAGgF,EAAE,CAAC,EAAE,CAAC,EAAE,CAACH,EAAE+B,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,CAAC,MAAM,CAACF,EAAE,EAAE1B,CAAC,CAAC,CAAC,EAAE1P,GAAG,CAAC+R,EAAEC,EAAEC,CAAC,CAAC,CAAC,CAAC,MAAM,CAAC,GAAG1C,EAAEE,IAAIC,EAAEhF,GAAGgF,EAAE,CAAC,EAAE,CAAC,EAAE,CAACH,EAAEE,CAAC,CAAC,EAAE,EAAE/E,GAAG,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC+E,EAAEA,CAAC,CAAC,GAAG,CAACC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,IAAIk7B,GAAGnkC,EAAE,CAAC,IAAIikC,EAAE,CAAC,EAAMxyC,IAAI,SAASmX,EAAE,CAACA,EAAEA,EAAE,KAAK,CAAC,EAAE,OAAOA,EAAEA,EAAE,KAAK,CAAC,EAAE,OAAOA,EAAEA,EAAE,IAAI,CAAC,EAAE,MAAMA,EAAEA,EAAE,uBAAuB,CAAC,EAAE,wBAAwB,GAAGnX,KAAKA,GAAG,CAAC,EAAE,EAAE,SAAS2yC,GAAGx7B,EAAE,EAAEE,EAAErX,GAAG,uBAAuB,CAAC,IAAIuX,EAAEsiB,EAAE1iB,EAAE,SAAS,qBAAqB,EAAEK,EAAE,KAAK,GAAG,OAAOA,EAAEqiB,EAAE,EAAE,UAAU,qBAAqB,GAAG,IAAI,EAAEriB,GAAG,KAAKD,EAAE1J,EAAE0J,EAAEC,CAAC,EAAE,GAAGH,IAAIrX,GAAG,KAAK,OAAO,EAAE,GAAGqX,IAAIrX,GAAG,IAAI,OAAO8T,GAAG,CAAC,EAAE,GAAGuD,IAAIrX,GAAG,KAAK,CAAC,GAAGwX,GAAG,KAAK,OAAOvK,GAAG,CAAC,EAAE,CAAC,IAAI,EAAEsK,EAAE,KAAKC,EAAE,KAAK0B,EAAElR,GAAG8L,GAAG,CAAC,EAAEA,GAAG0D,CAAC,CAAC,EAAE,OAAO,EAAE,EAAExP,GAAGkR,EAAE/H,GAAG,CAAC,CAAC,EAAE+H,CAAC,CAAC,CAAC,GAAG7B,IAAIrX,GAAG,uBAAuB,CAAC,GAAGwX,GAAG,KAAK,OAAOxP,GAAG8L,GAAG,CAAC,EAAE3C,GAAGoG,EAAE,IAAI,CAAC,EAAE,CAAC,IAAI,EAAE1J,EAAE2J,EAAEnJ,GAAGkJ,EAAE,KAAK,CAAC,EAAE2B,EAAErT,GAAEiO,GAAG3F,GAAG,EAAEgD,GAAG,CAAC,CAAC,CAAC,EAAE,SAAS,EAAE,OAAOnJ,GAAG8L,GAAG,CAAC,EAAEoF,CAAC,CAAC,CAAC,CAAC,MAAM,MAAM,sBAAsB7B,CAAC,EAAE,CAAC,CAAC,IAAIu7B,GAAGrkC,EAAE,CAAC,qBAAqBokC,EAAE,CAAC,EAAE,SAASE,GAAG17B,EAAE,EAAEE,EAAEE,EAAEvX,GAAG,uBAAuB,CAAC,IAAIwX,EAAEqiB,EAAE1iB,EAAE,SAAS,oBAAoB,EAAE,EAAE0iB,EAAE,EAAE,cAAc,oBAAoB,EAAE,EAAE,KAAKxiB,GAAG,OAAO,EAAEwiB,EAAExiB,EAAE,UAAU,oBAAoB,GAAGqa,GAAGla,EAAE,MAAM,EAAE,MAAM,+BAA+B,EAAE,IAAI0B,EAAEtV,GAAGiQ,GAAG2D,EAAE,CAAC,CAAC,EAAE,OAAOo7B,GAAG15B,EAAE,EAAE3B,CAAC,CAAC,CAAC,IAAIu7B,GAAGvkC,EAAE,CAAC,oBAAoBskC,EAAE,CAAC,EAAE,SAASE,GAAG57B,EAAE,EAAEE,EAAEE,EAAEC,EAAExX,GAAG,uBAAuB,CAAC,IAAI,EAAE65B,EAAE1iB,EAAE,SAAS,gBAAgB,EAAE,EAAE0iB,EAAE,EAAE,cAAc,gBAAgB,EAAE3gB,EAAE,KAAK3B,GAAG,OAAO2B,EAAE2gB,EAAEtiB,EAAE,UAAU,gBAAgB,GAAGma,GAAG,EAAE,MAAM,EAAE,MAAM,2BAA2B,EAAE,IAAIvY,EAAEhI,GAAG,CAAC,EAAEiI,EAAEvF,GAAGsF,EAAErF,GAAGjG,EAAE,EAAE,CAAC,EAAEwJ,EAAE,EAAE,CAAC,EAAE,OAAOu7B,GAAGx5B,EAAEF,EAAE1B,CAAC,CAAC,CAAC,IAAIw7B,GAAGzkC,EAAE,CAAC,gBAAgBwkC,EAAE,CAAC,EAAE,SAASE,GAAG97B,EAAE,EAAEE,EAAEE,EAAEvX,GAAG,uBAAuB,CAAC,IAAIwX,EAAEqiB,EAAE1iB,EAAE,SAAS,WAAW,EAAE,EAAE0iB,EAAE,EAAE,cAAc,WAAW,EAAE,EAAE,KAAKxiB,GAAG,OAAO,EAAEwiB,EAAExiB,EAAE,UAAU,WAAW,GAAGqa,GAAGla,EAAE,MAAM,EAAE,MAAM,sBAAsB,EAAE,IAAI0B,EAAE/H,GAAG,CAAC,EAAEqG,EAAE3D,GAAGhG,EAAEsD,GAAG,CAAC,EAAEqG,CAAC,EAAE0B,CAAC,EAAE,IAAIC,EAAE5I,GAAGsD,GAAGqF,EAAErL,EAAE2J,EAAE,CAAC,CAAC,CAAC,EAAE,OAAOo7B,GAAGz5B,EAAE,EAAE5B,CAAC,CAAC,CAAC,IAAI27B,GAAG3kC,EAAE,CAAC,WAAW0kC,EAAE,CAAC,EAAE,SAASE,GAAGh8B,EAAE,EAAEE,EAAEE,EAAE,EAAEC,EAAExX,GAAG,uBAAuB,CAAC,IAAI,EAAE65B,EAAE1iB,EAAE,SAAS,WAAW,EAAE,EAAE0iB,EAAE,EAAE,cAAc,WAAW,EAAE3gB,EAAE,KAAK7B,GAAG,OAAO6B,EAAE2gB,EAAExiB,EAAE,UAAU,WAAW,GAAGqa,GAAG,EAAE,MAAM,EAAE,MAAM,sBAAsB,EAAE,IAAIvY,EAAEhI,GAAGoG,CAAC,EAAE6B,EAAExV,GAAGiQ,GAAG,EAAE,CAAC,CAAC,EAAEgG,EAAEvM,GAAG8L,EAAED,CAAC,EAAEW,EAAEjG,GAAGuF,EAAES,CAAC,EAAEE,EAAEhW,EAAE8J,EAAEsD,GAAG,EAAE,EAAEmC,GAAGuG,CAAC,CAAC,EAAEhM,EAAEsL,EAAEW,CAAC,CAAC,EAAE,OAAO84B,GAAG74B,EAAEb,EAAE1B,CAAC,CAAC,CAAC,IAAI47B,GAAG7kC,EAAE,CAAC,WAAW4kC,EAAE,CAAC,EAAE,SAASE,GAAGl8B,EAAE,EAAEE,EAAEE,EAAE,KAAKC,EAAExX,GAAG,uBAAuB,CAAC,IAAI,EAAE65B,EAAE1iB,EAAE,SAAS,SAAS,EAAE,EAAE0iB,EAAE,EAAE,cAAc,SAAS,EAAE3gB,EAAE,KAAK7B,GAAG,OAAO6B,EAAE2gB,EAAExiB,EAAE,UAAU,SAAS,GAAGqa,GAAG,EAAE,MAAM,EAAE,MAAM,oBAAoB,EAAE,IAAIvY,EAAEhI,GAAG,CAAC,EAAEiI,EAAEjI,GAAGoG,CAAC,EAAEsC,EAAE7L,GAAGH,EAAE,EAAE9B,GAAGhI,EAAE,EAAEqV,CAAC,CAAC,CAAC,CAAC,EAAEU,EAAEjM,EAAEgG,GAAGsF,EAAE,CAAC,EAAEpN,GAAGhI,EAAE8P,GAAGsF,EAAE,CAAC,EAAEC,CAAC,CAAC,CAAC,EAAEW,EAAElG,GAAGgG,EAAEC,CAAC,EAAE,OAAO84B,GAAG74B,EAAEb,EAAE1B,CAAC,CAAC,CAAC,IAAI87B,GAAG/kC,EAAE,CAAC,SAAS8kC,EAAE,CAAC,EAAE,SAASE,GAAGp8B,EAAE,EAAEE,EAAEE,EAAEvX,GAAG,uBAAuB,CAAC,IAAIwX,EAAEqiB,EAAE1iB,EAAE,SAAS,kBAAkB,EAAE,EAAE0iB,EAAE,EAAE,cAAc,kBAAkB,EAAE,EAAE,KAAKxiB,GAAG,OAAO,EAAEwiB,EAAExiB,EAAE,UAAU,kBAAkB,GAAGqa,GAAGla,EAAE,MAAM,EAAE,MAAM,6BAA6B,EAAE,IAAI0B,EAAE3F,GAAGiE,EAAE,CAAC,EAAE,OAAOo7B,GAAG15B,EAAE,EAAE3B,CAAC,CAAC,CAAC,IAAIi8B,GAAGjlC,EAAE,CAAC,kBAAkBglC,EAAE,CAAC,EAAE,SAASE,GAAGt8B,EAAE,EAAE,CAAC,IAAIE,EAAEwiB,EAAE1iB,EAAE,SAAS,+BAA+B,EAAEI,EAAEsiB,EAAE,EAAE,SAAS,+BAA+B,EAAEnI,GAAGra,EAAE,MAAME,EAAE,MAAM,0CAA0C,EAAE,IAAIC,EAAEjH,GAAGgH,CAAC,EAAE,EAAE1J,EAAE0J,EAAEF,CAAC,EAAE,EAAErL,GAAGjD,GAAGiF,GAAGpK,GAAG2T,CAAC,CAAC,CAAC,CAAC,EAAE,OAAOxT,EAAE8P,GAAG2D,EAAE,CAAC,EAAE,CAAC,CAAC,CAAC,SAASk8B,GAAGv8B,EAAE,EAAEE,EAAEE,EAAE,EAAEC,EAAExX,GAAG,uBAAuB,CAAC,IAAI,EAAE65B,EAAE1iB,EAAE,mBAAmB,qBAAqB,EAAE,EAAE0iB,EAAE,EAAE,SAAS,qBAAqB,EAAE3gB,EAAE,KAAK,GAAG7B,GAAG,OAAO6B,EAAE2gB,EAAExiB,EAAE,UAAU,qBAAqB,GAAGqa,GAAG,EAAE,MAAM,EAAE,MAAM,gCAAgC,EAAEna,EAAE,EAAE,CAAC,IAAI6B,EAAEjI,GAAGoG,CAAC,EAAEsC,EAAE1I,GAAG,CAAC,EAAE2I,EAAE3I,GAAG,EAAE,EAAE,EAAEpN,EAAE8J,EAAE,EAAEgG,GAAGgG,EAAET,CAAC,CAAC,EAAEvL,EAAEiM,EAAEV,CAAC,CAAC,CAAC,CAAC,IAAID,EAAEs6B,GAAG,EAAE,CAAC,EAAE,OAAOb,GAAGz5B,EAAED,EAAE1B,CAAC,CAAC,CAAC,IAAIm8B,GAAGplC,EAAE,CAAC,qBAAqBmlC,EAAE,CAAC,EAAE,SAASE,GAAGz8B,EAAE,EAAEE,EAAE,GAAG,CAAC,GAAGA,IAAI,KAAKA,EAAE,EAAE,KAAK,GAAGA,IAAI,EAAE,KAAK,EAAE,MAAM,MAAM,mGAAmG,EAAE,IAAI,gBAAgBA,CAAC,EAAE,EAAE,OAAOlQ,GAAG,CAACqQ,EAAEwB,EAAEC,IAAI,CAAC,IAAIE,EAAEhN,GAAG6M,EAAE,CAAC3B,CAAC,EAAE,EAAE,EAAE+B,EAAEvF,GAAGhO,GAAEmT,EAAE,SAAS,EAAEG,CAAC,EAAEF,EAAE,CAACzB,EAAE4B,CAAC,CAAC,EAAE,IAAIS,EAAE7L,GAAGH,EAAEuL,EAAE5B,CAAC,CAAC,EAAE,MAAM,CAAC,MAAM1D,GAAG+F,EAAE,CAACxC,CAAC,CAAC,EAAE,SAAS,CAAC2C,EAAEC,IAAI,CAAC,GAAG,CAACkB,EAAEC,CAAC,EAAEnB,EAAEwE,EAAE+lB,GAAGxqB,EAAE,MAAM,CAAC3C,CAAC,CAAC,EAAE,MAAM,CAACxJ,EAAE6C,EAAEsJ,EAAEyE,CAAC,EAAE5K,GAAGhO,GAAEsV,EAAE,SAAS,EAAEpS,GAAGqS,CAAC,CAAC,CAAC,EAAEvN,EAAE6C,EAAEsJ,EAAEyE,CAAC,EAAE5K,GAAG9K,GAAGqS,CAAC,EAAEvV,GAAEsV,EAAE,SAAS,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAEhE,EAAE,CAAC,CAAC,CAAC,SAAS08B,GAAG18B,EAAE,EAAEE,EAAEE,EAAE,EAAEC,EAAExX,GAAG,uBAAuB,CAAC,IAAI,EAAE65B,EAAE1iB,EAAE,eAAe,qBAAqB,EAAE,EAAE0iB,EAAE,EAAE,SAAS,qBAAqB,EAAE3gB,EAAE,KAAK,GAAG7B,GAAG,OAAO6B,EAAE2gB,EAAExiB,EAAE,UAAU,qBAAqB,GAAGqa,GAAG,EAAE,MAAM,EAAE,MAAM,gCAAgC,EAAEna,EAAE,EAAE,CAAC,IAAI6B,EAAEjI,GAAGoG,CAAC,EAAEsC,EAAE1I,GAAG,CAAC,EAAE2I,EAAE3I,GAAG,EAAE,MAAM,CAAC,CAAC,EAAE,EAAEpN,EAAE8J,EAAE,EAAEgG,GAAGgG,EAAET,CAAC,CAAC,EAAEpR,GAAGoR,EAAEU,CAAC,CAAC,CAAC,CAAC,IAAIX,EAAEy6B,GAAG,EAAE,CAAC,EAAE,OAAOhB,GAAGz5B,EAAED,EAAE1B,CAAC,CAAC,CAAC,IAAIs8B,GAAGvlC,EAAE,CAAC,qBAAqBslC,EAAE,CAAC,EAAE,SAASE,GAAG58B,EAAE,EAAEE,EAAEE,EAAE,CAAC,IAAIC,EAAEqiB,EAAE1iB,EAAE,UAAU,sBAAsB,OAAO,EAAE,EAAE0iB,EAAE,EAAE,SAAS,qBAAqB,EAAE,EAAEA,EAAExiB,EAAE,aAAa,sBAAsB,OAAO,EAAE6B,EAAE2gB,EAAEtiB,EAAE,eAAe,sBAAsB,EAAE,KAAK,EAAE,GAAGC,EAAE,OAAO,EAAE,MAAM,IAAI,MAAM;AAAA,UACli/CA,EAAE,KAAK,EAAE,EAAE,GAAG,EAAE,OAAO,EAAE,MAAM,IAAI,MAAM,gDAAgD,EAAE,KAAK,EAAE,EAAE,GAAG,EAAE,OAAO,EAAE,MAAM,IAAI,MAAM,qDAAqD,EAAE,KAAK,EAAE,EAAE,GAAG0B,EAAE,OAAO,EAAE,MAAM,IAAI,MAAM,uDAAuDA,EAAE,KAAK,EAAE,EAAE,IAAIC,EAAE,CAAC,QAAQ3B,EAAE,OAAO,EAAE,WAAW,EAAE,aAAa0B,CAAC,EAAEE,EAAE4f,EAAE,UAAUt3B,GAAGyX,CAAC,EAAE,MAAM,CAAC,cAAcC,EAAE,CAAC,EAAE,aAAaA,EAAE,CAAC,EAAE,kBAAkBA,EAAE,CAAC,EAAE,gBAAgBA,EAAE,CAAC,CAAC,CAAC,CAAC,IAAI46B,GAAGzlC,EAAE,CAAC,qBAAqBwlC,EAAE,CAAC,EAAE,SAASE,GAAG98B,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAEsiB,EAAE1iB,EAAE,eAAe,gBAAgB,OAAO,EAAEK,EAAEqiB,EAAE,EAAE,aAAa,gBAAgB,OAAO,EAAE,EAAEA,EAAExiB,EAAE,WAAW,gBAAgB,OAAO,EAAE,GAAGE,EAAE,OAAO,EAAE,MAAM,IAAI,MAAM;AAAA,UACnqBA,EAAE,KAAK,EAAE,EAAE,GAAGC,EAAE,OAAO,EAAE,MAAM,IAAI,MAAM,qDAAqDA,EAAE,KAAK,EAAE,EAAE,GAAG,EAAE,OAAO,EAAE,MAAM,IAAI,MAAM,mDAAmD,EAAE,KAAK,EAAE,EAAE,IAAI,EAAE,CAAC,aAAaD,EAAE,WAAWC,EAAE,SAAS,CAAC,EAAE0B,EAAE8f,EAAE,UAAUr3B,GAAG,CAAC,EAAE,MAAM,CAAC,cAAcuX,EAAE,CAAC,EAAE,YAAYA,EAAE,CAAC,CAAC,CAAC,CAAC,IAAIg7B,GAAG3lC,EAAE,CAAC,eAAe0lC,EAAE,CAAC,EAAE,SAASE,GAAGh9B,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAEsiB,EAAE1iB,EAAE,OAAO,mBAAmB,EAAEK,EAAEqiB,EAAE,EAAE,UAAU,oBAAoB,OAAO,EAAE,EAAEA,EAAExiB,EAAE,aAAa,oBAAoB,OAAO,EAAE,GAAGE,EAAE,KAAK,EAAE,MAAM,IAAI,MAAM,2DAA2D,EAAE,GAAGC,EAAE,OAAO,EAAE,MAAM,IAAI,MAAM;AAAA,YAC7lBA,EAAE,KAAK,EAAE,EAAE,GAAG,EAAE,OAAO,EAAE,MAAM,IAAI,MAAM;AAAA,YACzC,EAAE,KAAK,EAAE,EAAE,IAAI,EAAE,CAAC,KAAKD,EAAE,QAAQC,EAAE,WAAW,CAAC,EAAE,OAAOwhB,EAAE,UAAUp3B,GAAG,CAAC,CAAC,CAAC,IAAIwyC,GAAG7lC,EAAE,CAAC,mBAAmB4lC,EAAE,CAAC,EAAE,SAASE,GAAGl9B,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAEsiB,EAAE1iB,EAAE,OAAO,kBAAkB,EAAEK,EAAEqiB,EAAE,EAAE,UAAU,mBAAmB,OAAO,EAAE,EAAEA,EAAExiB,EAAE,aAAa,mBAAmB,OAAO,EAAE,GAAGE,EAAE,KAAK,EAAE,MAAM,IAAI,MAAM,2DAA2D,EAAE,GAAGC,EAAE,OAAO,EAAE,MAAM,IAAI,MAAM;AAAA,WACvXA,EAAE,KAAK,EAAE,EAAE,GAAG,EAAE,OAAO,EAAE,MAAM,IAAI,MAAM;AAAA,WACzC,EAAE,KAAK,EAAE,EAAE,IAAI,EAAE,CAAC,KAAKD,EAAE,QAAQC,EAAE,WAAW,CAAC,EAAE,OAAOwhB,EAAE,UAAUn3B,GAAG,CAAC,CAAC,CAAC,IAAIyyC,GAAG/lC,EAAE,CAAC,kBAAkB8lC,EAAE,CAAC,EAAE,SAASE,GAAGp9B,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,EAAE0B,EAAE,CAAC,IAAIC,EAAE0gB,EAAE1iB,EAAE,OAAO,eAAe,QAAQ,EAAE,GAAGgC,EAAE,QAAQ,SAAS,MAAM,IAAI,MAAM,iCAAiC,EAAE,GAAGA,EAAE,MAAM,SAAS,EAAE,MAAM,IAAI,MAAM,+BAA+BA,EAAE,KAAK,EAAE,EAAE,IAAIC,EAAEygB,EAAE,EAAE,aAAa,cAAc,EAAE,GAAGzgB,EAAE,QAAQ,QAAQ,MAAM,IAAI,MAAM,uCAAuC,EAAE,IAAIS,EAAE,CAAC,UAAUxC,EAAE,YAAYE,EAAE,QAAQC,EAAE,SAAS,EAAE,SAAS,EAAE,uBAAuB0B,CAAC,EAAEY,EAAE,CAAC,KAAKX,EAAE,WAAWC,CAAC,EAAEW,EAAEif,EAAE,UAAU12B,GAAGwX,EAAED,CAAC,EAAE,MAAM,CAAC,OAAOE,EAAE,CAAC,EAAE,aAAaA,EAAE,CAAC,CAAC,CAAC,CAAC,IAAIy6B,GAAGjmC,EAAE,CAAC,cAAcgmC,EAAE,CAAC,EAAE,SAASE,GAAGt9B,EAAE,EAAEE,EAAE,GAAG,CAAC,IAAIE,EAAEsiB,EAAE1iB,EAAE,QAAQ,cAAc,QAAQ,EAAEK,EAAEqiB,EAAE,EAAE,YAAY,cAAc,QAAQ,EAAE,GAAGtiB,EAAE,OAAO,EAAE,MAAM,IAAI,MAAM,+CAA+CA,EAAE,KAAK,EAAE,EAAE,GAAGC,EAAE,OAAO,EAAE,MAAM,IAAI,MAAM,mDAAmDA,EAAE,KAAK,EAAE,EAAE,IAAI,EAAE,CAAC,UAAUH,CAAC,EAAE,EAAE,CAAC,MAAME,EAAE,UAAUC,CAAC,EAAE0B,EAAE8f,EAAE,UAAUz2B,GAAG,EAAE,CAAC,EAAE,MAAM,CAAC,QAAQ2W,EAAE,CAAC,EAAE,OAAOA,EAAE,CAAC,EAAE,MAAMA,EAAE,CAAC,CAAC,CAAC,CAAC,IAAIw7B,GAAGnmC,EAAE,CAAC,aAAakmC,EAAE,CAAC,EAAE,SAASE,GAAGx9B,EAAE,EAAE,CAAC,IAAIE,EAAEwiB,EAAE1iB,EAAE,QAAQ,yBAAyB,QAAQ,EAAEI,EAAE,CAAC,WAAW,CAAC,EAAE,GAAG,GAAG,EAAE,MAAM,IAAI,MAAM,sCAAsC,EAAE,IAAIC,EAAE,CAAC,MAAMH,CAAC,EAAE,OAAO2hB,EAAE,UAAUx2B,GAAGgV,EAAED,CAAC,CAAC,CAAC,IAAIq9B,GAAGrmC,EAAE,CAAC,wBAAwBomC,EAAE,CAAC,EAAE,SAASE,GAAG19B,EAAE,EAAEE,EAAEE,EAAE,GAAG,CAAC,IAAIC,EAAEqiB,EAAE1iB,EAAE,QAAQ,qBAAqB,QAAQ,EAAE,EAAE,CAAC,QAAQ,EAAE,QAAQE,EAAE,cAAcE,CAAC,EAAE,OAAOyhB,EAAE,UAAU72B,GAAG,CAAC,EAAEqV,CAAC,EAAE,CAAC,CAAC,CAAC,IAAIs9B,GAAGvmC,EAAE,CAAC,oBAAoBsmC,EAAE,CAAC,EAAM1hC,GAAG,CAAC,IAAIhK,GAAG,KAAKqB,GAAG,KAAKwG,GAAG,MAAMjG,EAAE,EAAEsH,GAAG,CAAC,cAAc68B,GAAG,WAAWE,GAAG,MAAME,GAAG,KAAKE,EAAE,EAAE9kC,GAAG,CAAC,cAAcklC,GAAG,eAAeE,GAAG,sBAAsBgC,GAAG,eAAeF,GAAG,eAAe5B,GAAG,iBAAiBE,GAAG,cAAcR,GAAG,kBAAkBW,GAAG,uBAAuBa,GAAG,2BAA2BE,GAAG,gCAAgCE,GAAG,wBAAwBE,GAAG,6BAA6BE,GAAG,UAAUO,GAAG,UAAUE,EAAE,EAAE1mC,GAAG,CAAC,SAAS4mC,GAAG,YAAYE,GAAG,GAAGG,EAAE,EAAElmC,GAAG,CAAC,mBAAmBsmC,GAAG,oBAAoBF,GAAG,eAAeI,GAAG,UAAUE,GAAG,UAAUE,GAAG,QAAQE,GAAG,iBAAiBE,GAAG,oBAAoBG,GAAG,oBAAoBG,EAAE,EAAE7gC,GAAG,CAAC,oBAAoB+gC,GAAG,cAAcE,GAAG,kBAAkBE,GAAG,iBAAiBE,EAAE,EAAE1gC,GAAG,CAAC,aAAa4gC,GAAG,YAAYE,GAAG,uBAAuBE,GAAG,mBAAmBE,EAAE,EAAMpjC,GAAE,CAAC,EAAE0F,GAAG1F,GAAE,CAAC,aAAa,IAAIqjC,GAAG,iBAAiB,IAAIC,GAAG,kBAAkB,IAAIC,GAAG,cAAc,IAAIC,EAAE,CAAC,EAAE,IAAIC,GAAG,IAAI,IAAIC,GAAG,IAAI,IAAIL,GAAG,KAAK,CAAC,cAAc,CAAC,OAAO,KAAK,YAAY,SAAS,CAAC,OAAO,WAAWh9B,EAAEV,EAAE,CAAC,OAAO,IAAIU,EAAEV,CAAC,CAAC,CAAC,EAAE29B,GAAG,MAAM79B,EAAC,CAAC,aAAa,CAAC,KAAK,aAAa,CAAC,CAAC,CAAC,OAAO,QAAQ,CAAC,OAAOA,GAAE,UAAU,OAAOA,GAAE,SAAS,IAAIA,IAAGA,GAAE,QAAQ,CAAC,OAAO,SAAS,EAAE,CAACA,GAAE,OAAO,EAAE,aAAa,EAAE,SAAS,EAAE,CAAC,EAAE,EAAE,UAAU,CAAC,CAAC,EAAE,SAAS+9B,GAAG/9B,EAAE,EAAEE,EAAE,CAACoa,EAAEta,EAAE,WAAW,KAAK,IAAI,6EAA6E,EAAEsa,EAAE,OAAOta,EAAE,WAAW,SAAS,IAAI,sDAAsD,OAAOA,EAAE,SAAS,EAAEsa,EAAEta,EAAE,UAAU,OAAO,EAAE,IAAI,mFAAmF,EAAE,OAAO,GAAG,cAAc,EAAE,UAAU,OAAOE,GAAG,cAAcA,EAAEF,EAAE,WAAW,IAAII,EAAEF,EAAEG,EAAE,EAAE,IAAID,EAAE,OAAOy9B,GAAG,SAAS79B,CAAC,EAAEg+B,GAAG,IAAI39B,EAAEL,CAAC,EAAEi+B,GAAG,IAAIj+B,EAAEK,CAAC,EAAEL,CAAC,CAAC,SAAS89B,GAAG99B,EAAE,CAAC,OAAOi+B,GAAG,IAAIj+B,CAAC,EAAEi+B,GAAG,IAAIj+B,CAAC,EAAEA,EAAE,SAAS,CAAC,IAAIrY,GAAG,cAAci2C,EAAE,CAAC,SAASh9B,EAAEV,EAAE,GAAG,EAAE,CAAC,GAAG,CAAC,MAAMG,EAAE,MAAMwB,CAAC,EAAE,KAAK,iBAAiBjB,EAAE,CAAC,EAAE,GAAG,GAAG,KAAK,CAAC,IAAIkB,EAAE,EAAE,IAAIC,IAAI,CAAC,KAAKA,EAAE,KAAK,OAAOF,EAAEE,EAAE,IAAI,CAAC,EAAE,EAAE,KAAK,eAAeD,CAAC,CAAC,MAAM,KAAK,eAAeD,CAAC,EAAE,OAAOlR,GAAGkR,CAAC,EAAE3B,EAAEG,GAAGA,EAAE,QAAQ,EAAE,KAAK,CAAC,IAAI,YAAY,CAAC,OAAO,KAAK,aAAa,OAAO,KAAK,YAAY,GAAG,KAAK,WAAW,CAAC,qBAAqB,CAAC,KAAK,YAAY,KAAK,WAAW,CAAC,CAAC,iBAAiBO,EAAEV,EAAE,CAAC,OAAOvB,GAAGiC,EAAEV,CAAC,CAAC,CAAC,SAAS,CAAC,KAAK,aAAa,MAAMvP,GAAG,KAAK,WAAW,CAAC,CAAC,MAAM,gBAAgB,CAAC,OAAO,KAAK,aAAa,OAAO,KAAK,YAAY,GAAG,CAAC,KAAK,OAAO,OAAOqJ,GAAG,KAAK,YAAY,OAAO,CAAC,CAAC,CAAC,MAAM,YAAY,CAAC,MAAM,IAAI,MAAM,yDAAyD,CAAC,CAAC,MAAM,WAAW4G,EAAE,CAAC,MAAM,IAAI,MAAM,4DAA4D,KAAK,aAAa,CAAC,EAAE,CAAC,CAAC,MAAM,kBAAkBA,EAAE,CAAC,OAAO,KAAK,aAAa,MAAMA,EAAE,CAAC,EAAE,OAAO,KAAK,GAAG,CAAC,EAAEA,EAAE,MAAM,CAAC,CAAC,CAAC,EAAE,OAAO,eAAejZ,GAAG,OAAO,YAAY,CAAC,MAAMqY,GAAGA,EAAE,UAAU,MAAMA,EAAE,kBAAkB,MAAMA,EAAE,gBAAgB,IAAI,CAAC,EAAE,IAAI3gB,GAAG,cAAcsI,EAAE,CAAC,WAAW,WAAW,CAAC,MAAM,UAAU,CAAC,YAAYiZ,EAAEV,EAAE,EAAE,KAAK,CAAC,MAAM,EAAE,KAAK,aAAaU,EAAE,KAAK,IAAIV,EAAE,KAAK,QAAQ,EAAE,KAAK,iBAAiB,CAAC,EAAE,KAAK,mBAAmB,CAAC,EAAE,GAAG,OAAO,KAAK,QAAQ2hB,EAAE,QAAQ,QAAQ,EAAE,CAAC,eAAejhB,EAAE,EAAE,MAAM,QAAQA,CAAC,EAAEA,EAAE,IAAIR,GAAGA,EAAE,IAAI,EAAE,OAAO,KAAKQ,CAAC,GAAG,QAAQ,CAACR,EAAEC,IAAI,CAAC,IAAIwB,EAAEggB,EAAE,oBAAoBzhB,CAAC,EAAE0B,EAAE,GAAG,KAAK,iBAAiBzB,CAAC,GAAG,OAAO,KAAK,iBAAiBA,CAAC,EAAE,CAAC,aAAa,GAAGD,CAAC,cAAc,SAAS3C,EAAE,IAAI+B,GAAGqC,CAAC,EAAE,SAASC,CAAC,CAAC,CAAC,GAAG,KAAK,mBAAmBzB,CAAC,GAAG,OAAO,KAAK,mBAAmBA,CAAC,EAAE,CAAC,aAAa,GAAGD,CAAC,aAAa,SAAS3C,EAAE,IAAI+B,GAAGqC,CAAC,EAAE,SAASC,CAAC,CAAC,CAAC,GAAG,IAAIC,EAAE,MAAM,QAAQnB,CAAC,EAAEA,EAAEP,CAAC,EAAE,OAAOO,EAAER,CAAC,EAAE,GAAG2B,GAAG,KAAK,OAAO,IAAIC,EAAE,KAAK,iBAAiB3B,CAAC,EAAE,SAAS4B,EAAE,KAAK,mBAAmB5B,CAAC,EAAE,SAAS5C,EAAE,IAAI,CAAC,IAAIiF,EAAE9V,EAAE8J,EAAEsL,EAAE,KAAK,GAAG,EAAEtL,EAAEyF,GAAG4F,CAAC,EAAE,EAAE,KAAK,GAAG,CAAC,EAAEY,EAAEjM,EAAE7F,GAAGqL,GAAGtP,EAAEqV,EAAE,KAAK,OAAO,CAAC,EAAE/F,GAAGtP,EAAEoV,EAAE,KAAK,OAAO,CAAC,CAAC,EAAED,CAAC,EAAEa,EAAEhW,EAAE8J,EAAEuL,EAAE,KAAK,GAAG,EAAEvL,EAAEyF,GAAGwG,CAAC,EAAE,EAAE,KAAK,GAAG,CAAC,EAAEX,EAAE,OAAOU,CAAC,EAAET,EAAE,OAAOW,CAAC,EAAE,IAAIC,EAAEjW,EAAE8J,EAAEiM,EAAE,CAAC,KAAK,YAAY,EAAEd,CAAC,EAAEA,EAAE,OAAOgB,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,KAAK,oBAAoB,CAAC,CAAC,SAAS,CAAC,KAAK,oBAAoB,OAAOlS,GAAG,KAAK,iBAAiB,IAAIiQ,GAAGA,EAAE,QAAQ,CAAC,EAAEjQ,GAAG,KAAK,mBAAmB,IAAIiQ,GAAGA,EAAE,QAAQ,CAAC,EAAE,CAAC,MAAM,YAAY,CAAC,IAAIA,EAAE,CAAC,GAAG,KAAK,iBAAiB,GAAG,KAAK,kBAAkB,EAAE,MAAM,CAAC,MAAM,KAAK,eAAe,CAAC,EAAE,OAAOA,EAAE,IAAIV,IAAI,CAAC,KAAKA,EAAE,aAAa,OAAOA,EAAE,QAAQ,EAAE,CAAC,CAAC,CAAC,MAAM,WAAWU,EAAE,CAACA,EAAE,MAAM,KAAK,kBAAkBA,CAAC,EAAE,IAAIV,EAAEU,EAAE,OAAO,EAAE,EAAE,GAAG,KAAK,iBAAiBA,EAAE,MAAM,EAAEV,CAAC,EAAE,IAAIG,IAAI,CAAC,aAAaA,EAAE,KAAK,SAASA,EAAE,OAAO,SAAS,CAAC,CAAC,EAAE,EAAE,KAAK,mBAAmBO,EAAE,MAAMV,EAAEA,EAAE,CAAC,EAAE,IAAIG,IAAI,CAAC,aAAaA,EAAE,KAAK,SAASA,EAAE,OAAO,SAAS,CAAC,CAAC,EAAE,CAAC,CAAC,WAAW,CAAC,MAAM,CAAC,aAAa,KAAK,aAAa,IAAI,KAAK,IAAI,QAAQ,KAAK,OAAO,CAAC,CAAC,OAAO,WAAWO,EAAEV,EAAE,CAAC,OAAO,IAAIU,EAAEV,EAAE,aAAaA,EAAE,IAAIA,EAAE,OAAO,CAAC,CAAC,EAAM5gB,GAAG,cAAcqI,EAAE,CAAC,WAAW,WAAW,CAAC,MAAM,SAAS,CAAC,YAAYiZ,EAAEV,EAAE,GAAG,CAAC,MAAM,EAAE,KAAK,aAAaU,EAAE,KAAK,wBAAwBV,EAAE,KAAK,iBAAiB,CAAC,CAAC,CAAC,eAAeU,EAAE,EAAE,MAAM,QAAQA,CAAC,EAAEA,EAAE,IAAIR,GAAGA,EAAE,IAAI,EAAE,OAAO,KAAKQ,CAAC,GAAG,QAAQ,CAACR,EAAEC,IAAI,CAAC,IAAIwB,EAAEggB,EAAE,oBAAoBzhB,CAAC,EAAE,KAAK,iBAAiBC,CAAC,GAAG,OAAO,KAAK,iBAAiBA,CAAC,EAAE,CAAC,aAAa,GAAGD,CAAC,eAAe,SAAS3C,EAAE,IAAIxL,GAAG4P,EAAE,MAAM,KAAK,uBAAuB,EAAE,SAAS,EAAE,CAAC,CAAC,GAAG,IAAIC,EAAE,MAAM,QAAQlB,CAAC,EAAEA,EAAEP,CAAC,EAAE,OAAOO,EAAER,CAAC,EAAE,GAAG0B,GAAG,KAAK,OAAO,IAAIC,EAAE,KAAK,iBAAiB1B,CAAC,EAAE,SAAS5C,EAAE,IAAI,CAAC,IAAIuE,EAAEpV,EAAEmV,EAAE5F,GAAG2F,CAAC,CAAC,EAAEC,EAAE,OAAOC,CAAC,EAAE,IAAIC,EAAErV,EAAE8J,EAAE7F,GAAGiR,EAAE5F,GAAGtP,EAAEoV,EAAE6f,EAAE,QAAQ,QAAQ,CAAC,CAAC,CAAC,EAAE,CAAC,KAAK,YAAY,EAAEhgB,CAAC,EAAEA,EAAE,OAAOI,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,KAAK,oBAAoB,CAAC,CAAC,SAAS,CAAC,KAAK,kBAAkB,MAAMtR,GAAG,KAAK,iBAAiB,IAAIiQ,GAAGA,EAAE,QAAQ,CAAC,CAAC,CAAC,MAAM,YAAY,CAAC,MAAM,CAAC,MAAM,KAAK,eAAe,CAAC,EAAE,OAAO,KAAK,iBAAiB,IAAIA,IAAI,CAAC,KAAKA,EAAE,aAAa,OAAOA,EAAE,QAAQ,EAAE,CAAC,CAAC,CAAC,MAAM,WAAWA,EAAE,CAACA,EAAE,MAAM,KAAK,kBAAkBA,CAAC,EAAE,IAAIV,EAAE,GAAG,KAAK,iBAAiBU,EAAE,IAAI,IAAI,CAAC,aAAa,EAAE,KAAK,SAAS,EAAE,OAAO,SAASV,CAAC,CAAC,EAAE,CAAC,CAAC,WAAW,CAAC,MAAM,CAAC,aAAa,KAAK,aAAa,wBAAwB,KAAK,uBAAuB,CAAC,CAAC,OAAO,WAAWU,EAAEV,EAAE,CAAC,OAAO,IAAIU,EAAEV,EAAE,aAAaA,EAAE,uBAAuB,CAAC,CAAC,EAAM3gB,GAAG,cAAcoI,EAAE,CAAC,WAAW,WAAW,CAAC,MAAM,MAAM,CAAC,YAAYiZ,EAAEV,EAAE,EAAEG,EAAE,KAAK,CAAC,MAAM,EAAE,KAAK,aAAaO,EAAE,KAAK,MAAMV,EAAE,KAAK,MAAM,EAAE,KAAK,QAAQG,EAAE,KAAK,uBAAuB,CAAC,EAAE,KAAK,wBAAwB,CAAC,EAAE5C,EAAE,IAAI,CAAC,KAAK,SAASzD,GAAGkG,CAAC,EAAE,SAAS,EAAE,KAAK,SAASlG,GAAG,CAAC,EAAE,SAAS,CAAC,CAAC,EAAEqG,GAAG,OAAO,KAAK,QAAQwhB,EAAE,QAAQ,QAAQ,EAAE,CAAC,eAAejhB,EAAE,CAAC,IAAIV,EAAE,MAAM,QAAQU,CAAC,EAAEA,EAAE,IAAI,GAAG,EAAE,IAAI,EAAE,OAAO,KAAKA,CAAC,EAAEnD,EAAE,IAAI,CAAC,IAAI,EAAEf,GAAG,EAAE,KAAK,QAAQ,EAAE2D,EAAE3D,GAAG,EAAE,KAAK,QAAQ,EAAEwD,EAAE,QAAQ,CAAC2B,EAAEC,IAAI,CAAC,IAAIC,EAAE8f,EAAE,oBAAoBhgB,CAAC,EAAEG,EAAE,GAAG,KAAK,uBAAuBF,CAAC,GAAG,OAAO,KAAK,uBAAuBA,CAAC,EAAE,CAAC,aAAa,GAAGD,CAAC,KAAK,SAASpE,EAAE,IAAI+B,GAAGuC,CAAC,EAAE,SAASC,CAAC,CAAC,CAAC,GAAG,KAAK,wBAAwBF,CAAC,GAAG,OAAO,KAAK,wBAAwBA,CAAC,EAAE,CAAC,aAAa,GAAGD,CAAC,KAAK,SAASpE,EAAE,IAAI+B,GAAGuC,CAAC,EAAE,SAASC,CAAC,CAAC,CAAC,GAAG,IAAI,EAAE,MAAM,QAAQpB,CAAC,EAAEA,EAAEkB,CAAC,EAAE,OAAOlB,EAAEiB,CAAC,EAAE,GAAG,GAAG,KAAK,OAAO,IAAIa,EAAE,KAAK,uBAAuBZ,CAAC,EAAE,SAAS,EAAE,KAAK,wBAAwBA,CAAC,EAAE,SAASc,EAAEhW,EAAE8J,EAAEgM,EAAE,KAAK,KAAK,EAAEhM,EAAE,EAAE,EAAE,KAAK,KAAK,CAAC,EAAEmM,EAAEjW,EAAE8J,EAAE,EAAE,KAAK,KAAK,EAAEA,EAAEyF,GAAG,CAAC,EAAE,EAAE,KAAK,KAAK,CAAC,EAAE2G,EAAEjS,GAAG+R,EAAE,CAAC,EAAEoB,EAAEnT,GAAGgS,EAAExC,CAAC,EAAEqC,EAAE,OAAOE,CAAC,EAAE,EAAE,OAAOC,CAAC,EAAE,IAAIoB,EAAErX,EAAE8J,EAAE7F,GAAGiS,EAAElW,EAAEsP,GAAG8H,CAAC,EAAE,KAAK,OAAO,CAAC,EAAE,CAAC,KAAK,YAAY,EAAEjC,CAAC,EAAEA,EAAE,OAAOkC,CAAC,CAAC,CAAC,EAAE,KAAK,SAAS,OAAOvN,EAAE,KAAK,SAAS,KAAK,KAAK,CAAC,EAAE,KAAK,SAAS,OAAOA,EAAE,KAAK,SAAS,KAAK,KAAK,CAAC,CAAC,CAAC,EAAE,KAAK,oBAAoB,CAAC,CAAC,SAAS,CAAC,KAAK,SAAS,QAAQ,EAAE,KAAK,SAAS,QAAQ,EAAE,KAAK,wBAAwB,MAAM/F,GAAG,KAAK,uBAAuB,IAAIiQ,GAAGA,EAAE,QAAQ,CAAC,EAAE,KAAK,yBAAyB,MAAMjQ,GAAG,KAAK,wBAAwB,IAAIiQ,GAAGA,EAAE,QAAQ,CAAC,CAAC,CAAC,MAAM,YAAY,CAAC,IAAIA,EAAE,CAAC,GAAG,KAAK,uBAAuB,GAAG,KAAK,uBAAuB,EAAE,MAAM,CAAC,MAAM,KAAK,eAAe,CAAC,EAAE,OAAOA,EAAE,IAAIV,IAAI,CAAC,KAAKA,EAAE,aAAa,OAAOA,EAAE,QAAQ,EAAE,CAAC,CAAC,CAAC,MAAM,WAAWU,EAAE,CAACA,EAAE,MAAM,KAAK,kBAAkBA,CAAC,EAAEnD,EAAE,IAAI,CAAC,KAAK,SAAS,OAAO7F,GAAG,KAAK,MAAM,KAAK,YAAY,CAAC,CAAC,EAAE,KAAK,SAAS,OAAOA,GAAG,KAAK,MAAM,KAAK,YAAY,CAAC,CAAC,CAAC,CAAC,EAAE,IAAIsI,EAAEU,EAAE,OAAO,EAAE,EAAE,GAAG,KAAK,uBAAuBA,EAAE,MAAM,EAAEV,CAAC,EAAE,IAAIG,IAAI,CAAC,aAAaA,EAAE,KAAK,SAASA,EAAE,OAAO,SAAS,CAAC,CAAC,EAAE,EAAE,KAAK,wBAAwBO,EAAE,MAAMV,EAAEA,EAAE,CAAC,EAAE,IAAIG,IAAI,CAAC,aAAaA,EAAE,KAAK,SAASA,EAAE,OAAO,SAAS,CAAC,CAAC,EAAE,CAAC,CAAC,WAAW,CAAC,MAAM,CAAC,aAAa,KAAK,aAAa,MAAM,KAAK,MAAM,MAAM,KAAK,MAAM,QAAQ,KAAK,OAAO,CAAC,CAAC,OAAO,WAAWO,EAAEV,EAAE,CAAC,OAAO,IAAIU,EAAEV,EAAE,aAAaA,EAAE,MAAMA,EAAE,MAAMA,EAAE,OAAO,CAAC,CAAC,EAAM1gB,GAAG,cAAcmI,EAAE,CAAC,WAAW,WAAW,CAAC,MAAM,QAAQ,CAAC,YAAYiZ,EAAEV,EAAE,EAAEG,EAAE,KAAKwB,EAAE,EAAE,CAAC,MAAM,EAAE,KAAK,aAAajB,EAAE,KAAK,MAAMV,EAAE,KAAK,MAAM,EAAE,KAAK,QAAQG,EAAE,KAAK,MAAMwB,EAAE,KAAK,uBAAuB,CAAC,EAAE,KAAK,2BAA2B,CAAC,EAAEpE,EAAE,IAAI,CAAC,KAAK,UAAUzD,GAAG,CAAC,EAAE,SAAS,EAAE,KAAK,SAASA,GAAGkG,CAAC,EAAE,SAAS,CAAC,CAAC,EAAEG,GAAG,OAAO,KAAK,QAAQwhB,EAAE,QAAQ,QAAQ,EAAE,CAAC,eAAejhB,EAAE,CAAC,IAAIV,EAAE,MAAM,QAAQU,CAAC,EAAEA,EAAE,IAAI,GAAG,EAAE,IAAI,EAAE,OAAO,KAAKA,CAAC,EAAEnD,EAAE,IAAI,CAAC,IAAI,EAAEf,GAAG,EAAE,KAAK,QAAQ,EAAE2D,EAAExP,GAAG,CAAC,KAAK,aAAajE,EAAE8J,EAAE,KAAK,UAAU,KAAK,KAAK,EAAE,CAAC,CAAC,EAAEwJ,EAAE,QAAQ,CAAC2B,EAAEC,IAAI,CAAC,IAAIC,EAAE8f,EAAE,oBAAoBhgB,CAAC,EAAEG,EAAE,GAAG,KAAK,uBAAuBF,CAAC,GAAG,OAAO,KAAK,uBAAuBA,CAAC,EAAE,CAAC,aAAa,GAAGD,CAAC,KAAK,SAASrC,GAAGuC,CAAC,EAAE,SAASC,CAAC,CAAC,GAAG,KAAK,2BAA2BF,CAAC,GAAG,OAAO,KAAK,2BAA2BA,CAAC,EAAE,CAAC,aAAa,GAAGD,CAAC,KAAK,SAASrC,GAAGuC,CAAC,EAAE,SAASC,CAAC,CAAC,GAAG,IAAI,EAAE,MAAM,QAAQpB,CAAC,EAAEA,EAAEkB,CAAC,EAAE,OAAOlB,EAAEiB,CAAC,EAAE,GAAG,GAAG,KAAK,OAAO,IAAIa,EAAE,KAAK,uBAAuBZ,CAAC,EAAE,SAAS,EAAE,KAAK,2BAA2BA,CAAC,EAAE,SAASc,EAAEhW,EAAE8J,EAAEgM,EAAE,KAAK,KAAK,EAAEhM,EAAE,EAAE,EAAE,KAAK,KAAK,CAAC,EAAEmM,EAAEnM,EAAE,EAAE,KAAK,KAAK,EAAEoM,EAAErW,GAAG,CAAC,EAAEuX,EAAEnO,GAAGgN,EAAEC,CAAC,EAAEJ,EAAE,OAAOE,CAAC,EAAE,EAAE,OAAOoB,CAAC,EAAE,IAAIC,EAAErX,EAAE8J,EAAE7F,GAAGwP,EAAE,CAAC,EAAExP,GAAG+R,EAAEhW,EAAEoX,EAAE,KAAK,OAAO,CAAC,CAAC,EAAEjC,CAAC,EAAEA,EAAE,OAAOkC,CAAC,CAAC,CAAC,EAAE,KAAK,UAAU,OAAOrX,EAAE,KAAK,UAAU,CAAC,CAAC,EAAE,KAAK,SAAS,OAAO8J,EAAE,KAAK,SAAS,KAAK,KAAK,CAAC,CAAC,CAAC,EAAE,KAAK,oBAAoB,CAAC,CAAC,SAAS,CAAC,KAAK,SAAS,QAAQ,EAAE,KAAK,UAAU,QAAQ,EAAE,KAAK,wBAAwB,MAAM/F,GAAG,KAAK,uBAAuB,IAAIiQ,GAAGA,EAAE,QAAQ,CAAC,EAAE,KAAK,4BAA4B,MAAMjQ,GAAG,KAAK,2BAA2B,IAAIiQ,GAAGA,EAAE,QAAQ,CAAC,CAAC,CAAC,MAAM,YAAY,CAAC,MAAM,IAAI,MAAM,iDAAiD,CAAC,CAAC,MAAM,WAAWA,EAAE,CAAC,MAAM,IAAI,MAAM,iDAAiD,CAAC,CAAC,WAAW,CAAC,MAAM,CAAC,aAAa,KAAK,aAAa,MAAM,KAAK,MAAM,MAAM,KAAK,MAAM,QAAQ,KAAK,QAAQ,MAAM,KAAK,KAAK,CAAC,CAAC,OAAO,WAAWA,EAAEV,EAAE,CAAC,OAAO,IAAIU,EAAEV,EAAE,aAAaA,EAAE,MAAMA,EAAE,MAAMA,EAAE,QAAQA,EAAE,KAAK,CAAC,CAAC,EAAMzW,GAAG,cAAc9B,EAAE,CAAC,WAAW,WAAW,CAAC,MAAM,KAAK,CAAC,YAAYiZ,EAAE,CAAC,MAAM,EAAE,KAAK,aAAaA,EAAE,KAAK,gBAAgBA,CAAC,CAAC,CAAC,eAAeA,EAAE,EAAE,MAAM,QAAQA,CAAC,EAAEA,EAAE,IAAIR,GAAGA,EAAE,IAAI,EAAE,OAAO,KAAKQ,CAAC,GAAG,QAAQ,CAACR,EAAEC,IAAI,CAAC,IAAIwB,EAAE,MAAM,QAAQjB,CAAC,EAAEA,EAAEP,CAAC,EAAE,OAAOO,EAAER,CAAC,EAAE,GAAGyB,GAAG,KAAK,OAAO,IAAIC,EAAE+f,EAAE,oBAAoBzhB,CAAC,EAAE3C,EAAE,IAAI,CAAC,IAAIsE,EAAEnV,EAAE8J,EAAE,KAAK,EAAEmL,CAAC,EAAEC,CAAC,EAAEA,EAAE,OAAOC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,KAAK,oBAAoB,CAAC,CAAC,gBAAgBnB,EAAE,CAAC,KAAK,aAAaA,EAAE,KAAK,GAAG,MAAM,KAAK,EAAE,QAAQ,EAAE,KAAK,EAAE5M,GAAGgG,GAAG,CAAC4G,CAAC,CAAC,CAAC,CAAC,SAAS,CAAC,KAAK,EAAE,QAAQ,CAAC,CAAC,MAAM,YAAY,CAAC,MAAM,CAAC,MAAM,KAAK,eAAe,CAAC,CAAC,CAAC,MAAM,WAAWA,EAAE,CAAC,GAAGA,EAAE,MAAM,KAAK,kBAAkBA,CAAC,EAAEA,EAAE,SAAS,EAAE,MAAM,IAAI,MAAM,+CAA+C,CAAC,CAAC,WAAW,CAAC,MAAM,CAAC,aAAa,KAAK,YAAY,CAAC,CAAC,OAAO,WAAWA,EAAEV,EAAE,CAAC,OAAO,IAAIU,EAAEV,EAAE,YAAY,CAAC,CAAC,EAAMlZ,GAAG,cAAcyC,EAAE,CAAC,WAAW,WAAW,CAAC,MAAM,UAAU,CAAC,YAAYmX,EAAEV,EAAE,EAAE,GAAG,CAAC,MAAMU,CAAC,EAAE,KAAK,aAAaA,EAAE,KAAK,SAASV,EAAE,KAAK,YAAY,EAAE,KAAK,cAAc,CAAC,EAAE,KAAK,EAAElG,GAAG,KAAK,QAAQ,CAAC,CAAC,eAAe4G,EAAE,EAAE,MAAM,QAAQA,CAAC,EAAEA,EAAE,IAAIR,GAAGA,EAAE,IAAI,EAAE,OAAO,KAAKQ,CAAC,GAAG,QAAQ,CAACR,EAAEC,IAAI,CAAC,IAAIwB,EAAEggB,EAAE,oBAAoBzhB,CAAC,EAAE,KAAK,cAAcC,CAAC,GAAG,OAAO,KAAK,cAAcA,CAAC,EAAE,CAAC,aAAa,GAAGD,CAAC,YAAY,SAAS3C,EAAE,IAAI+B,GAAGqC,CAAC,EAAE,SAAS,EAAE,CAAC,CAAC,GAAG,IAAIC,EAAE,KAAK,cAAczB,CAAC,EAAE,SAAS0B,EAAE,MAAM,QAAQnB,CAAC,EAAEA,EAAEP,CAAC,EAAE,OAAOO,EAAER,CAAC,EAAE2B,GAAG,MAAMtE,EAAE,IAAI,CAAC,IAAIuE,EAAEC,EAAErV,EAAE8J,EAAE,KAAK,EAAEoL,CAAC,EAAEC,CAAC,EAAE,KAAK,YAAYC,EAAEpV,EAAE8J,EAAE,KAAK,EAAE9J,EAAEmV,EAAErL,EAAEuL,EAAE,KAAK,CAAC,CAAC,CAAC,EAAEJ,CAAC,EAAEG,EAAEpV,EAAE8J,EAAE,KAAK,EAAEuL,CAAC,EAAEJ,CAAC,EAAEC,EAAE,OAAOG,CAAC,EAAEJ,EAAE,OAAOG,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,KAAK,oBAAoB,CAAC,CAAC,SAAS,CAAC,KAAK,EAAE,QAAQ,EAAE,KAAK,eAAe,MAAMrR,GAAG,KAAK,cAAc,IAAIiQ,GAAGA,EAAE,QAAQ,CAAC,CAAC,CAAC,YAAYA,EAAE,CAAC,KAAK,SAASA,CAAC,CAAC,MAAM,YAAY,CAAC,MAAM,CAAC,MAAM,KAAK,eAAe,CAAC,EAAE,OAAO,KAAK,cAAc,IAAIA,IAAI,CAAC,KAAKA,EAAE,aAAa,OAAOA,EAAE,QAAQ,EAAE,CAAC,CAAC,CAAC,MAAM,WAAWA,EAAE,CAACA,EAAE,MAAM,KAAK,kBAAkBA,CAAC,EAAE,IAAIV,EAAE,GAAG,KAAK,cAAcU,EAAE,IAAI,IAAI,CAAC,aAAa,EAAE,KAAK,SAAS,EAAE,OAAO,SAASV,CAAC,CAAC,EAAE,CAAC,CAAC,WAAW,CAAC,MAAM,CAAC,aAAa,KAAK,aAAa,SAAS,KAAK,SAAS,YAAY,KAAK,WAAW,CAAC,CAAC,OAAO,WAAWU,EAAEV,EAAE,CAAC,OAAO,IAAIU,EAAEV,EAAE,aAAaA,EAAE,SAASA,EAAE,WAAW,CAAC,CAAC,EAAM/X,GAAG,cAAcR,EAAE,CAAC,WAAW,WAAW,CAAC,MAAM,SAAS,CAAC,YAAYiZ,EAAEV,EAAE,GAAG,EAAE,EAAEG,EAAE,KAAKwB,EAAE,GAAG,CAAC,GAAG,MAAM,EAAE,KAAK,aAAajB,EAAE,KAAK,MAAMV,EAAE,KAAK,SAAS,EAAE,KAAK,QAAQG,EAAE,KAAK,uBAAuB,CAAC,EAAE,KAAK,mBAAmB,CAAC,EAAE,KAAK,qBAAqB,CAAC,EAAE,KAAK,SAASwB,EAAExB,GAAG,OAAO,KAAK,QAAQwhB,EAAE,QAAQ,QAAQ,GAAGjhB,GAAG,KAAK,MAAM,IAAI,MAAM,oDAAoD,CAAC,CAAC,eAAeA,EAAE,EAAE,MAAM,QAAQA,CAAC,EAAEA,EAAE,IAAIR,GAAGA,EAAE,IAAI,EAAE,OAAO,KAAKQ,CAAC,GAAG,QAAQ,CAACR,EAAEC,IAAI,CAAC,IAAIwB,EAAEggB,EAAE,oBAAoBzhB,CAAC,EAAE0B,EAAE,GAAG,KAAK,uBAAuBzB,CAAC,GAAG,OAAO,KAAK,uBAAuBA,CAAC,EAAE,CAAC,aAAa,GAAGD,CAAC,OAAO,SAAS3C,EAAE,IAAI+B,GAAGqC,CAAC,EAAE,SAASC,CAAC,CAAC,CAAC,GAAG,KAAK,mBAAmBzB,CAAC,GAAG,OAAO,KAAK,mBAAmBA,CAAC,EAAE,CAAC,aAAa,GAAGD,CAAC,YAAY,SAAS3C,EAAE,IAAI+B,GAAGqC,CAAC,EAAE,SAASC,CAAC,CAAC,CAAC,GAAG,KAAK,qBAAqBzB,CAAC,GAAG,MAAM,KAAK,WAAW,KAAK,qBAAqBA,CAAC,EAAE,CAAC,aAAa,GAAGD,CAAC,MAAM,SAAS3C,EAAE,IAAI+B,GAAGqC,CAAC,EAAE,SAASC,CAAC,CAAC,CAAC,GAAG,IAAIC,EAAE,MAAM,QAAQnB,CAAC,EAAEA,EAAEP,CAAC,EAAE,OAAOO,EAAER,CAAC,EAAE,GAAG2B,GAAG,KAAK,OAAO,IAAIC,EAAE,KAAK,uBAAuB3B,CAAC,EAAE,SAAS4B,EAAE,KAAK,mBAAmB5B,CAAC,EAAE,SAAS5C,EAAE,IAAI,CAAC,IAAIiF,EAAE9V,EAAE8J,EAAEsL,EAAE,KAAK,KAAK,EAAEtL,EAAEyF,GAAG4F,CAAC,EAAE,EAAE,KAAK,KAAK,CAAC,EAAE,GAAG,KAAK,SAAS,CAAC,IAAIY,EAAE,KAAK,qBAAqBtC,CAAC,EAAE,SAASuC,EAAEhW,EAAE8J,EAAEiM,EAAE,KAAK,KAAK,EAAEjM,EAAEqL,EAAE,EAAE,KAAK,KAAK,CAAC,EAAEc,EAAEhS,GAAG6F,EAAEqL,EAAE,KAAK,YAAY,EAAE7F,GAAGQ,GAAGgG,EAAE9V,EAAEuP,GAAGyG,CAAC,EAAE,KAAK,OAAO,CAAC,CAAC,CAAC,EAAEE,EAAElW,EAAE8J,EAAEuL,EAAE,KAAK,QAAQ,EAAEY,CAAC,EAAEb,EAAE,OAAOU,CAAC,EAAEC,EAAE,OAAOC,CAAC,EAAEX,EAAE,OAAOa,CAAC,EAAE,IAAI,EAAEpG,GAAGmF,EAAEiB,CAAC,EAAEjB,EAAE,OAAO,CAAC,CAAC,KAAK,CAAC,IAAIc,EAAE/V,EAAE8J,EAAEsL,EAAE,KAAK,KAAK,EAAEtL,EAAEyF,GAAG4F,CAAC,EAAE,EAAE,KAAK,KAAK,CAAC,EAAEa,EAAEhW,EAAE8J,EAAEuL,EAAE,KAAK,QAAQ,EAAEpR,GAAG6F,EAAEqL,EAAE,KAAK,YAAY,EAAE7F,GAAGtP,EAAE+V,EAAE,KAAK,OAAO,CAAC,CAAC,CAAC,EAAEX,EAAE,OAAOW,CAAC,EAAEV,EAAE,OAAOW,CAAC,EAAE,IAAIC,EAAEnG,GAAGmF,EAAEe,CAAC,EAAEf,EAAE,OAAOgB,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,KAAK,oBAAoB,CAAC,CAAC,SAAS,CAAC,KAAK,wBAAwB,MAAMlS,GAAG,KAAK,uBAAuB,IAAIiQ,GAAGA,EAAE,QAAQ,CAAC,EAAE,KAAK,sBAAsB,MAAM,KAAK,UAAUjQ,GAAG,KAAK,qBAAqB,IAAIiQ,GAAGA,EAAE,QAAQ,CAAC,EAAE,KAAK,oBAAoB,MAAMjQ,GAAG,KAAK,mBAAmB,IAAIiQ,GAAGA,EAAE,QAAQ,CAAC,CAAC,CAAC,MAAM,YAAY,CAAC,IAAIA,EAAE,CAAC,GAAG,KAAK,uBAAuB,GAAG,KAAK,kBAAkB,EAAE,OAAO,KAAK,UAAUA,EAAE,KAAK,GAAG,KAAK,oBAAoB,EAAE,CAAC,MAAM,KAAK,eAAe,CAAC,EAAE,OAAOA,EAAE,IAAIV,IAAI,CAAC,KAAKA,EAAE,aAAa,OAAOA,EAAE,QAAQ,EAAE,CAAC,CAAC,CAAC,MAAM,WAAWU,EAAE,CAACA,EAAE,MAAM,KAAK,kBAAkBA,CAAC,EAAE,IAAIV,EAAE,KAAK,SAASU,EAAE,OAAO,EAAEA,EAAE,OAAO,EAAE,EAAE,GAAG,KAAK,uBAAuBA,EAAE,MAAM,EAAEV,CAAC,EAAE,IAAIG,IAAI,CAAC,aAAaA,EAAE,KAAK,SAASA,EAAE,OAAO,SAAS,CAAC,CAAC,EAAE,EAAE,KAAK,mBAAmBO,EAAE,MAAMV,EAAEA,EAAE,CAAC,EAAE,IAAIG,IAAI,CAAC,aAAaA,EAAE,KAAK,SAASA,EAAE,OAAO,SAAS,CAAC,CAAC,EAAE,EAAE,KAAK,WAAW,KAAK,qBAAqBO,EAAE,MAAMV,EAAE,EAAEA,EAAE,CAAC,EAAE,IAAIG,IAAI,CAAC,aAAaA,EAAE,KAAK,SAASA,EAAE,OAAO,SAAS,CAAC,CAAC,EAAE,EAAE,CAAC,WAAW,CAAC,MAAM,CAAC,aAAa,KAAK,aAAa,MAAM,KAAK,MAAM,SAAS,KAAK,SAAS,QAAQ,KAAK,QAAQ,SAAS,KAAK,QAAQ,CAAC,CAAC,OAAO,WAAWO,EAAEV,EAAE,CAAC,OAAO,IAAIU,EAAEV,EAAE,aAAaA,EAAE,MAAMA,EAAE,SAASA,EAAE,QAAQA,EAAE,QAAQ,CAAC,CAAC,EAAMg+B,GAAG,CAAC7+C,GAAGC,GAAGC,GAAGC,GAAGwH,GAAGmB,GAAGsB,EAAE,EAAE,SAAS00C,IAAI,CAAC,QAAQn+B,KAAKk+B,GAAGH,GAAG/9B,CAAC,CAAC,CAAC,IAAIrM,GAAG,CAAC,EAAEsM,GAAGtM,GAAG,CAAC,qBAAqB,IAAIovB,GAAG,aAAa,IAAIqb,GAAG,mBAAmB,IAAIC,GAAG,wBAAwB,IAAIta,GAAG,UAAU,IAAI+C,GAAG,cAAc,IAAI1D,GAAG,oBAAoB,IAAIM,GAAG,cAAc,IAAIR,GAAG,WAAW,IAAIob,GAAG,eAAe,IAAIC,GAAG,gBAAgB,IAAI1Z,GAAG,yBAAyB,IAAIV,GAAG,6BAA6B,IAAID,GAAG,6BAA6B,IAAIE,GAAG,gBAAgB,IAAIQ,GAAG,eAAe,IAAIP,GAAG,KAAK,IAAIma,GAAG,aAAa,IAAIC,GAAG,WAAW,IAAI7X,GAAG,YAAY,IAAI8X,GAAG,UAAU,IAAI3X,GAAG,mBAAmB,IAAIpC,GAAG,mBAAmB,IAAID,GAAG,YAAY,IAAImC,GAAG,qBAAqB,IAAI8X,GAAG,gBAAgB,IAAIC,GAAG,oBAAoB,IAAIC,EAAE,CAAC,EAAE,IAAIC,GAAG,QAAQC,GAAG,QAAQC,GAAG,eAAe,SAASC,GAAGj/B,EAAE,CAAC,OAAO,IAAI,QAAQ,GAAG,WAAW,CAAC,CAAC,EAAE,KAAKA,CAAC,CAAC,CAAC,IAAIk/B,GAAG,MAAMl/B,EAAC,CAAC,YAAY,EAAE,CAAC,GAAG,CAACxO,EAAE,EAAE,QAAQ,YAAY,EAAE,MAAM,IAAI,MAAM,qFAAqF,EAAE,EAAE,WAAWwO,GAAE,UAAU,IAAI,EAAE,EAAE,MAAMA,GAAE,WAAW,MAAM,IAAI,GAAG,MAAM,EAAE,SAAS,KAAK,EAAE8+B,IAAI,KAAK,kBAAkB,EAAEC,GAAG,KAAK,mBAAmB,EAAEC,EAAE,CAAC,MAAM,KAAK,EAAE,CAAC,GAAG,OAAO,UAAU,YAAY,MAAM,IAAI,MAAM,yFAAyF,EAAE,IAAI9+B,EAAE6iB,GAAG,KAAK,EAAE,UAAU,EAAE3iB,EAAE,OAAO,IAAI,gBAAgB,IAAI,KAAK,CAACF,CAAC,EAAE,CAAC,KAAK,0BAA0B,CAAC,CAAC,EAAE,GAAG,EAAE,yBAAyB,YAAY,MAAM,IAAI,MAAM,uFAAuF,EAAE,CAAC,IAAIG,EAAE,CAAC,CAAC,MAAM,CAAC,KAAK,KAAK,kBAAkB,EAAE,QAAQ,EAAE,WAAW,CAAC,EAAE,EAAE4jB,GAAG,EAAE5jB,CAAC,EAAE,EAAE,OAAO,IAAI,gBAAgB,IAAI,KAAK,CAAC,KAAK,UAAU,CAAC,CAAC,EAAE,CAAC,KAAK,kBAAkB,CAAC,CAAC,EAAE0B,EAAE,KAAK,iBAAiB,KAAK,SAAS,cAAc,GAAG,EAAE,KAAK,gBAAgB,GAAGA,EAAE,SAAS,KAAK,kBAAkBA,EAAE,KAAK,EAAE,MAAMk9B,GAAG,IAAIl9B,EAAE,cAAc,IAAI,WAAW,OAAO,CAAC,CAAC,EAAE,EAAE,YAAY,KAAK,CAAC,IAAIC,EAAE,KAAK,kBAAkB,KAAK,SAAS,cAAc,GAAG,EAAE,KAAK,iBAAiBA,EAAE,SAAS,KAAK,mBAAmBA,EAAE,KAAK5B,EAAE,MAAM6+B,GAAG,IAAIj9B,EAAE,cAAc,IAAI,WAAW,OAAO,CAAC,CAAC,CAAC,CAAC,MAAM,CAAC,mBAAmBoiB,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE8a,GAAG,WAAW,eAAe,IAAIC,GAAG,KAAK,CAAC,YAAYv+B,EAAE,CAAC,GAAGA,GAAG,MAAMA,EAAE,OAAO,EAAE,MAAM,IAAI,MAAM,wEAAwEA,CAAC,EAAE,EAAE,KAAK,SAASA,EAAE,CAAC,EAAE,KAAK,aAAaA,EAAE,MAAM,CAAC,CAAC,CAAC,MAAM,MAAM,CAAC,OAAO,IAAI,QAAQ,CAACA,EAAEV,IAAI,CAAC,IAAI,EAAE,IAAI,WAAW,EAAE,OAAOG,GAAG,CAAC,IAAIwB,EAAE,KAAK,MAAMxB,EAAE,OAAO,MAAM,EAAEyB,EAAED,EAAE,cAAc,GAAGC,GAAG,KAAK,CAAC5B,EAAE,IAAI,MAAM,4CAA4C,KAAK,SAAS,IAAI,EAAE,CAAC,EAAE,MAAM,CAAC,GAAG2B,EAAE,iBAAiB,KAAK,CAAC3B,EAAE,IAAI,MAAM,6CAA6C,KAAK,SAAS,IAAI,EAAE,CAAC,EAAE,MAAM,CAAC,GAAG,KAAK,aAAa,SAAS,EAAE,CAACU,EAAE,CAAC,cAAckB,CAAC,CAAC,EAAE,MAAM,CAAC,IAAIE,EAAEmiB,GAAGtiB,EAAEI,GAAG,KAAK,YAAYA,CAAC,CAAC,EAAErB,EAAEoB,CAAC,CAAC,EAAE,EAAE,QAAQ3B,GAAGH,EAAE,sEAAsE,KAAK,SAAS,IAAI,uEAAuE,EAAE,EAAE,WAAW,KAAK,QAAQ,CAAC,CAAC,CAAC,CAAC,YAAYU,EAAE,CAAC,IAAIV,EAAE,CAAC,EAAE,EAAE,CAAC,EAAE,QAAQ4B,KAAKlB,EAAEV,EAAE,KAAK,GAAG4B,EAAE,OAAO,EAAE,EAAE,KAAK,GAAGA,EAAE,KAAK,EAAE,IAAIzB,EAAE,KAAK,4BAA4BO,CAAC,EAAEiB,EAAE,EAAE,IAAIC,GAAG,KAAK,gBAAgBA,EAAEzB,EAAEyB,CAAC,CAAC,CAAC,EAAE,OAAO,QAAQ,IAAID,CAAC,EAAE,KAAKC,GAAG,CAAC5B,EAAE4B,CAAC,CAAC,CAAC,CAAC,gBAAgBlB,EAAEV,EAAE,CAAC,OAAO,IAAI,QAAQ,CAAC,EAAEG,IAAI,CAAC,IAAIwB,EAAE,IAAI,WAAWA,EAAE,OAAOC,GAAG,CAAC,IAAIC,EAAED,EAAE,OAAO,OAAO,EAAEC,CAAC,CAAC,EAAEF,EAAE,QAAQC,GAAGzB,EAAE,6CAA6CO,CAAC,IAAI,EAAEiB,EAAE,kBAAkB3B,CAAC,CAAC,CAAC,CAAC,CAAC,4BAA4BU,EAAE,CAAC,IAAIV,EAAE,CAAC,EAAE,EAAE,KAAK,aAAa,IAAI2B,GAAGmiB,GAAGniB,EAAE,IAAI,CAAC,EAAExB,EAAE,CAAC,EAAE,QAAQwB,KAAKjB,EAAEiB,EAAE,MAAM,QAAQC,GAAG,CAAC,IAAIC,EAAEiiB,GAAGliB,CAAC,EAAE,GAAG5B,EAAE,QAAQ6B,CAAC,IAAI,GAAG,MAAM,IAAI,MAAM,uDAAuDA,CAAC,GAAG,EAAE,GAAG7B,EAAE,KAAK6B,CAAC,EAAE,EAAE,QAAQA,CAAC,IAAI,GAAG,MAAM,IAAI,MAAM,8BAA8BA,CAAC,oBAAoB,EAAE1B,EAAEyB,CAAC,EAAE,KAAK,aAAa,EAAE,QAAQC,CAAC,CAAC,CAAC,CAAC,EAAE,GAAG7B,EAAE,SAAS,KAAK,aAAa,OAAO,MAAM,IAAI,MAAM,wDAAwDA,EAAE,MAAM,8CAA8C,KAAK,aAAa,MAAM,IAAI,EAAE,OAAOG,CAAC,CAAC,EAAE++B,GAAGp/B,GAAGxO,EAAE,EAAE,QAAQ,YAAY,GAAG,CAAC,MAAM,QAAQwO,CAAC,GAAGA,EAAE,WAAWk/B,GAAG,UAAU,EAAEG,GAAGr/B,EAAE,MAAMk/B,GAAG,WAAW,MAAM,CAAC,EAAE,KAAKza,GAAG,mBAAmB2a,EAAE,EAAE,SAASC,GAAGr/B,EAAE,QAAQ,CAAC,OAAO,IAAIk/B,GAAGl/B,CAAC,CAAC,CAAC,SAASo+B,GAAGp+B,EAAE,CAAC,OAAO,IAAIm/B,GAAGn/B,CAAC,CAAC,CAAC,SAASs/B,GAAGt/B,EAAE,EAAEE,EAAEE,EAAE,CAAC,EAAEJ,CAAC,EAAEE,EAAEA,GAAG,KAAK,EAAEA,EAAEE,EAAEA,GAAG,KAAK,EAAEA,EAAE2B,EAAE7B,EAAEE,CAAC,EAAE,IAAIC,EAAE,EAAE,EAAE2B,IAAIA,EAAE,KAAKC,GAAG,CAAC,IAAIS,EAAExC,GAAG,EAAEG,EAAEL,EAAE,QAAQI,EAAEF,GAAG,OAAO,EAAEwC,CAAC,EAAET,CAAC,CAAC,EAAED,GAAG,SAAS,EAAEA,EAAE,CAACsY,EAAEtY,GAAG,MAAM,MAAM,QAAQA,CAAC,GAAGA,EAAE,OAAO,EAAE,IAAI,qCAAqC,CAAC,CAAC,SAASD,EAAEC,EAAEC,EAAE,CAACqY,EAAEtY,GAAG,GAAGA,GAAG,EAAE,IAAI,oEAAoEA,CAAC,EAAE,EAAEsY,EAAErY,GAAG,GAAGA,GAAG,EAAE,IAAI,kEAAkEA,CAAC,EAAE,EAAEqY,EAAErY,GAAGD,EAAE,IAAI,yEAAyEA,CAAC,oBAAoBC,CAAC,EAAE,CAAC,CAAC,OAAO,QAAQ,IAAIjC,EAAE,IAAI,CAAC,CAAC,CAAC,CAAC,eAAeu/B,GAAGv/B,EAAE,EAAE,CAAC,GAAG,OAAO,EAAE,CAAC,GAAG,IAAIE,EAAE,EAAE,WAAW,KAAK1O,EAAE,EAAE,SAAS,MAAM,EAAE,UAAU4O,EAAEJ,EAAE,IAAI2C,GAAGzC,EAAEyC,EAAE,EAAE,YAAY,CAAC,SAAS,EAAE,CAAC,CAAC,EAAEZ,GAAG,EAAE,YAAY,KAAK,MAAM,QAAQ,IAAI3B,CAAC,EAAE,MAAMk/B,GAAGl/B,EAAE,EAAE,WAAW,EAAE,EAAE,GAAG,IAAIuC,GAAGA,EAAE,YAAY,CAAC,EAAE,OAAO,EAAE,YAAY,KAAK,MAAM,QAAQ,IAAIZ,CAAC,EAAE,MAAMu9B,GAAGv9B,EAAE,EAAE,WAAW,GAAG,CAAC,CAAC,CAAC,SAASy9B,GAAGx/B,EAAE,EAAE,CAAC,IAAIE,EAAE,IAAIE,EAAE,EAAE,WAAW,KAAK5O,EAAE,EAAE,SAAS,MAAM,EAAE,UAAU6O,EAAE,EAAE,EAAE,OAAOH,EAAE,EAAE,cAAc,MAAMA,IAAI,QAAQA,EAAE,KAAK,EAAE,CAAC,EAAE,IAAI,eAAe,CAAC,KAAK,MAAM,GAAG,CAAC,QAAQ6B,EAAE1B,EAAEL,EAAE,QAAQ,CAAC,IAAI,GAAG,MAAMI,EAAEJ,EAAEK,CAAC,EAAE,EAAE,YAAY,CAAC,SAAS,EAAE,CAAC,GAAG,KAAK,UAAU,GAAG,GAAG,CAAC,KAAK2B,EAAE,MAAMC,CAAC,EAAE,MAAM,EAAE,KAAK,EAAE,GAAGD,EAAE,CAAC3B,IAAI,EAAE,QAAQ0B,EAAE,EAAE,cAAc,MAAMA,IAAI,QAAQA,EAAE,KAAK,EAAE1B,EAAEL,EAAE,MAAM,EAAE,QAAQ,CAAC,EAAE,QAAQiC,CAAC,EAAE,MAAM,CAAC,EAAE,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,eAAey8B,GAAG1+B,EAAE,EAAE,GAAGE,EAAEE,EAAE,CAAC,OAAOu+B,GAAG78B,GAAGy9B,GAAGz9B,EAAE,CAAC,YAAY1B,CAAC,CAAC,CAAC,EAAEJ,EAAE,EAAEE,CAAC,CAAC,CAAC,SAASy+B,GAAG3+B,EAAE,CAAC,MAAO,OAAM,EAAEE,EAAE,GAAGE,IAAI,CAAC,IAAIC,EAAE,EAAE,IAAI,IAAI,EAAE,EAAE,EAAE,CAAC,EAAE,EAAED,GAAG,KAAKA,EAAE,IAAI,IAAI,EAAE,EAAE,CAAC,EAAE2B,EAAE,CAAC,EAAE,GAAG,EAAE,QAAQ,CAACc,EAAEC,IAAI,CAAC,IAAIkB,EAAE,EAAEnB,EAAE,QAAQ,QAAQ,GAAG,CAAC,IAAIyE,EAAE,iBAAiB,EAAE,EAAE,aAAa,MAAM,EAAE,MAAMxC,EAAEge,GAAGxb,CAAC,EAAEoT,GAAG,EAAE,KAAK,EAAEjW,EAAE,IAAI,CAACpE,EAAEyC,CAAC,EAAE,GAAG,EAAEA,CAAC,GAAG,OAAO,EAAEA,CAAC,EAAE,CAAC,GAAG,EAAEA,CAAC,EAAE,KAAK,CAAC,cAAc,EAAE,YAAYkB,EAAE,UAAUc,CAAC,CAAC,CAAC,EAAE1E,GAAG,KAAKA,EAAE,QAAQ,CAACsE,EAAEC,IAAI,CAACD,IAAI,EAAE,OAAOD,EAAE,EAAE,EAAEE,CAAC,EAAE,GAAG,CAAC,EAAEF,EAAE,EAAE1C,EAAE,KAAK,EAAE,IAAI,EAAEiC,GAAGc,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,MAAMjC,GAAGA,CAAC,EAAE,CAAC,IAAIA,EAAEzC,EAAE,OAAO,CAAC0C,EAAEkB,IAAI,CAAC,EAAEA,CAAC,CAAC,EAAE,MAAM,IAAI,MAAM,kDAAkDnB,EAAE,KAAK,IAAI,CAAC;AAAA,wCAC7trBd,EAAE,KAAK,IAAI,CAAC,GAAG,CAAC,CAAC,IAAIC,EAAE3B,EAAE,OAAO,CAACwC,EAAEC,EAAEkB,KAAKlB,GAAGD,EAAE,KAAKmB,CAAC,EAAEnB,GAAG,CAAC,CAAC,EAAEZ,EAAE,CAAC,EAAED,EAAE,QAAQa,GAAG,CAAC,EAAEA,CAAC,EAAE,MAAM,QAAQC,GAAG,CAAC,IAAIkB,EAAE9D,GAAGA,EAAE,SAAS,GAAG,EAAE,GAAG,KAAK4C,EAAEb,EAAE,KAAK+B,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,IAAItB,EAAE,MAAM1C,EAAEiC,CAAC,EAAEU,EAAE,CAAC,EAAEC,EAAE,EAAE,OAAOZ,EAAE,QAAQa,GAAG,CAAC,IAAIC,EAAE,EAAED,CAAC,EAAE,MAAM,OAAOmB,EAAE,IAAI+e,GAAGrgB,EAAE,MAAME,EAAEA,EAAEE,CAAC,CAAC,EAAE,EAAED,CAAC,EAAE,QAAQyE,GAAG,CAAC,IAAI,EAAEtD,EAAE,MAAMsD,EAAE,YAAYA,EAAE,YAAYA,EAAE,SAAS,EAAE7C,EAAE2e,GAAG,EAAE,CAAC9b,EAAE,aAAa,CAAC,EAAE,QAAQ5C,KAAKD,EAAE9B,EAAE+B,CAAC,EAAED,EAAEC,CAAC,CAAC,CAAC,EAAE9B,GAAGE,CAAC,CAAC,EAAEH,CAAC,CAAC,CAAC,IAAI88B,GAAG,2BAA2BC,GAAG,mBAAmBC,GAAG,KAAK,CAAC,YAAY/+B,EAAEV,EAAE,CAAC,GAAG,KAAK,eAAe,OAAOA,GAAG,OAAOA,EAAE,CAAC,GAAG,KAAK,iBAAiBA,EAAE,iBAAiB,KAAK,mBAAmBA,EAAE,mBAAmBA,EAAE,WAAW,MAAMoa,EAAE,OAAOpa,EAAE,WAAW,WAAW,IAAI,6HAA6H,EAAE,KAAK,MAAMA,EAAE,WAAW,KAAK,MAAM1O,EAAE,EAAE,SAAS,MAAM8oB,EAAE1Z,GAAG,MAAMA,EAAE,OAAO,EAAE,IAAI,yDAAyD,EAAE,MAAM,QAAQA,CAAC,GAAG0Z,EAAE1Z,EAAE,SAAS,EAAE,IAAI,iEAAiEA,EAAE,MAAM,IAAI,EAAE,KAAK,KAAKA,EAAEV,EAAE,aAAa,MAAMA,EAAE,YAAY,MAAM,KAAK,MAAM,IAAI,MAAM,oEAAoE,EAAE,KAAK,YAAYA,EAAE,aAAa,CAAC,EAAE,KAAK,YAAYA,CAAC,CAAC,MAAM,KAAKU,EAAE,CAAC,GAAGA,EAAE,yBAAyB,YAAY,MAAM,IAAI,MAAM,yFAAyF,EAAE,IAAIV,EAAE,OAAO,OAAO,CAAC,OAAO,KAAK,cAAc,EAAE,KAAK,WAAW,EAAEA,EAAE,KAAK,IAAI,SAAS,IAAI,EAAE,CAAC,CAAC,MAAM,CAAC,qBAAqB,EAAE,QAAQU,EAAE,WAAW,CAAC,EAAEP,EAAE4jB,GAAGrjB,EAAE,CAAC,EAAE,GAAGV,EAAE,KAAK,OAAO,aAAa,IAAI,KAAK,CAAC,KAAK,UAAUG,CAAC,CAAC,EAAE,CAAC,KAAKq/B,EAAE,CAAC,EAAE,YAAY,EAAE9+B,EAAE,YAAY,KAAK,CAAC,IAAIkB,EAAEihB,GAAG,KAAKniB,EAAE,UAAU,EAAEV,EAAE,KAAK,OAAO,oBAAoB,IAAI,KAAK,CAAC4B,CAAC,EAAE,CAAC,KAAK29B,EAAE,CAAC,EAAE,mBAAmB,CAAC,CAAC,IAAI59B,EAAE,MAAM,KAAK,MAAM,KAAK,KAAK3B,CAAC,EAAE,GAAG2B,EAAE,GAAG,MAAM,CAAC,mBAAmBuiB,GAAGxjB,CAAC,EAAE,UAAU,CAACiB,CAAC,CAAC,EAAE,MAAM,IAAI,MAAM,gEAAgEA,EAAE,MAAM,GAAG,CAAC,CAAC,MAAM,eAAe,CAAC,IAAIjB,EAAE,MAAM,KAAK,MAAM,KAAK,KAAK,KAAK,WAAW,EAAE,GAAG,CAACA,EAAE,GAAG,MAAM,IAAI,MAAM,cAAc,KAAK,IAAI,4BAA4BA,EAAE,MAAM,yEAAyE,EAAE,IAAIV,EAAE,GAAG,CAACA,EAAE,MAAMU,EAAE,KAAK,CAAC,OAAOiB,EAAE,CAAC,IAAIC,EAAE,+CAA+C,KAAK,IAAI,IAAI,MAAM,KAAK,KAAK,SAAS,KAAK,EAAEA,GAAG,+UAA+UA,GAAG,uEAAuE,IAAI,MAAMA,CAAC,CAAC,CAAC,IAAI,EAAE5B,EAAE,cAAcG,EAAEH,EAAE,gBAAgB,GAAG,GAAG,MAAMG,GAAG,KAAK,MAAM,IAAI,MAAM,2BAA2B,KAAK,IAAI,2DAA2D,EAAE,OAAOH,CAAC,CAAC,MAAM,MAAM,CAAC,GAAG,KAAK,YAAY,cAAc,OAAO,KAAK,WAAW,EAAE,IAAIU,EAAE,MAAM,KAAK,cAAc,EAAE,OAAOujB,GAAGvjB,EAAEV,GAAG,KAAK,YAAYA,CAAC,CAAC,CAAC,CAAC,MAAM,YAAY,CAAC,IAAIU,EAAE,MAAM,KAAK,cAAc,EAAEV,EAAE,MAAM,KAAK,cAAcU,EAAE,eAAe,EAAE,EAAEyjB,GAAGzjB,EAAE,eAAe,EAAEP,EAAE,IAAIm/B,GAAGt/B,EAAE,KAAK,WAAW,EAAE,OAAO,OAAO,OAAO,OAAO,OAAO,CAAC,EAAEU,CAAC,EAAE,CAAC,YAAY,EAAE,gBAAgBP,CAAC,CAAC,CAAC,CAAC,MAAM,cAAcO,EAAE,CAAC,IAAIV,EAAE,MAAM,QAAQ,KAAK,IAAI,EAAE,KAAK,KAAK,CAAC,EAAE,KAAK,KAAK,CAAC,EAAEG,CAAC,EAAEu/B,GAAG1/B,CAAC,EAAE2B,EAAE,KAAK,kBAAkB,EAAEC,EAAE,CAAC,EAAEC,EAAE,CAAC,EAAE,QAAQC,KAAKpB,EAAE,QAAQ,KAAKoB,EAAE,MAAM,KAAK,oBAAoB,KAAKD,EAAE,KAAK,KAAK,mBAAmB,CAAC,CAAC,EAAED,EAAE,KAAKD,EAAE,EAAExB,CAAC,EAAE,OAAO,KAAK,oBAAoByB,EAAE,KAAK,GAAG,MAAM,QAAQ,IAAIC,CAAC,CAAC,EAAED,CAAC,CAAC,MAAM,YAAYlB,EAAE,CAAC,IAAIV,EAAE,MAAM,KAAK,cAAcU,CAAC,EAAE,EAAEyjB,GAAGzjB,CAAC,EAAEP,EAAE,MAAMk/B,GAAGr/B,EAAE,KAAK,WAAW,EAAE,MAAM,CAAC,EAAEG,CAAC,CAAC,CAAC,EAAEs/B,GAAG,iBAAiB,eAAe,SAASC,GAAG5/B,EAAE,CAAC,IAAI,EAAEA,EAAE,YAAY,GAAG,EAAEE,EAAEF,EAAE,YAAY,GAAG,EAAEI,EAAEJ,EAAE,UAAU,EAAE,CAAC,EAAEK,EAAEH,EAAE,EAAEF,EAAE,UAAUE,CAAC,EAAE,GAAG,MAAM,CAACE,EAAE,IAAIC,CAAC,CAAC,CAAC,SAASo+B,GAAGz+B,EAAE,CAAC,OAAOA,EAAE,MAAM2/B,GAAG,gBAAgB,GAAG,IAAI,CAAC,IAAIE,GAAG,CAAC7/B,EAAE,IAAI,CAAC,GAAG,OAAO,OAAO,cAAc,GAAG,MAAM,EAAE,WAAW,MAAM,OAAO,KAAK,CAAC,IAAIE,EAAE,GAAG,GAAG,MAAM,QAAQF,CAAC,EAAEE,EAAEF,EAAE,MAAMI,GAAGq+B,GAAGr+B,CAAC,CAAC,EAAEF,EAAEu+B,GAAGz+B,CAAC,EAAEE,EAAE,OAAOs+B,GAAGx+B,EAAE,CAAC,CAAC,CAAC,OAAO,IAAI,EAAEykB,GAAG,mBAAmBob,EAAE,EAAEpb,GAAG,mBAAmBob,EAAE,EAAE,SAASrB,GAAGx+B,EAAE,EAAE,CAAC,OAAO,IAAI2/B,GAAG3/B,EAAE,CAAC,CAAC,CAAC,SAASq+B,GAAGr+B,EAAE,EAAE,CAAC,OAAOw+B,GAAGx+B,EAAE,CAAC,CAAC,CAAC,IAAI8/B,GAAG,KAAK,CAAC,YAAYl/B,EAAE,CAAC,KAAK,eAAeA,CAAC,CAAC,MAAM,CAAC,OAAO,KAAK,cAAc,CAAC,EAAEm/B,GAAG,KAAK,CAAC,YAAYn/B,EAAE,CAAC,KAAK,YAAYA,CAAC,CAAC,KAAKA,EAAE,CAAC,OAAO,KAAK,YAAYA,CAAC,CAAC,CAAC,EAAEo/B,GAAG,KAAK,CAAC,YAAYp/B,EAAE,CAACA,EAAE,OAAO,KAAK,KAAK,IAAI,QAAQ,QAAQA,EAAE,KAAK,CAAC,GAAGA,EAAE,OAAO,KAAK,KAAKV,GAAG,QAAQ,QAAQU,EAAE,KAAKV,CAAC,CAAC,EAAE,CAAC,EAAE,SAASo+B,GAAGt+B,EAAE,EAAEE,EAAEE,EAAE,CAAC,IAAIC,EAAE,UAAU,OAAO,IAAI2/B,GAAGzB,GAAG,GAAGl+B,CAAC,CAAC,CAAC,CAAC,SAASk+B,GAAGv+B,EAAE,EAAEE,EAAEE,EAAE,CAAC,OAAO,UAAU,SAAS,EAAEJ,EAAE,eAAe,MAAMA,EAAE,aAAa,KAAK,IAAI8/B,GAAG9/B,CAAC,GAAG,QAAQ,KAAK,uNAAuN,EAAE,IAAI8/B,GAAG,CAAC,cAAc9/B,CAAC,CAAC,IAAI,QAAQ,KAAK,uNAAuN,EAAE,IAAI8/B,GAAG,CAAC,cAAc9/B,EAAE,YAAY,EAAE,WAAWE,EAAE,eAAeE,CAAC,CAAC,EAAE,CAAC,SAASw+B,GAAG5+B,EAAE,CAAC,OAAO,IAAI+/B,GAAG//B,CAAC,CAAC,CAAC,SAAS6+B,GAAG7+B,EAAE,CAAC,OAAO,IAAI+/B,GAAG//B,CAAC,CAAC,CAAC,IAAIxK,GAAG,CAAC,EAAEyK,GAAGzK,GAAG,CAAC,gBAAgB,IAAIyqC,EAAE,CAAC,EAAE,SAASC,GAAGlgC,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAEsiB,EAAE1iB,EAAE,SAAS,iBAAiB,EAAEK,EAAEqiB,EAAE,EAAE,cAAc,iBAAiB,EAAEpI,EAAEpa,GAAG,MAAMA,EAAE,GAAG,OAAO,UAAUA,CAAC,EAAE,IAAI,+DAA+DA,CAAC,EAAE,EAAEoa,EAAEla,EAAE,OAAO,EAAE,IAAI,gDAAgDA,EAAE,IAAI,EAAE,EAAEka,EAAEja,EAAE,OAAO,EAAE,IAAI,qDAAqDA,EAAE,IAAI,EAAE,EAAEia,EAAEla,EAAE,MAAM,CAAC,IAAIC,EAAE,MAAM,CAAC,EAAE,IAAI,uCAAuCD,EAAE,MAAM,CAAC,CAAC,QAAQC,EAAE,MAAM,CAAC,CAAC,mEAAmE,EAAEia,EAAEpa,EAAE,GAAG,OAAO,UAAUA,CAAC,EAAE,IAAI,4DAA4DA,CAAC,EAAE,EAAE,IAAI,EAAEjJ,GAAGvI,GAAE0R,EAAE,OAAO,EAAEF,CAAC,EAAE,EAAEjJ,GAAGvI,GAAE2R,EAAE,OAAO,EAAEH,CAAC,EAAE6B,EAAEjE,GAAG,CAAC,EAAEkE,EAAEzM,GAAGwM,EAAE,CAAC,EAAE,OAAOrT,GAAEsT,EAAE,OAAO,CAAC,CAAC,IAAIi+B,GAAG7oC,EAAE,CAAC,iBAAiB8oC,EAAE,CAAC,EAAM3xC,GAAG,CAAC,EAAE0R,GAAG1R,GAAG,CAAC,KAAK,IAAI4xC,GAAG,WAAW,IAAIC,GAAG,gBAAgB,IAAIC,GAAG,SAAS,IAAIC,EAAE,CAAC,EAAE,IAAIC,GAAGC,GAAG,GAAG,SAASC,GAAGzgC,EAAE,EAAE,EAAE,CAAC,GAAG,EAAE,EAAE,MAAM,IAAI,MAAM,gEAAgE,EAAE,GAAGA,GAAG,KAAK,MAAM,IAAI,MAAM,0DAA0D,EAAE,IAAIE,EAAE,GAAGE,EAAE,GAAGC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG0B,EAAE,GAAG,GAAG/B,EAAE,gBAAgB,WAAWE,EAAE,WAAW,OAAO,WAAW,aAAaF,aAAa,UAAUI,EAAE,WAAW,OAAO,kBAAkB,aAAaJ,aAAa,iBAAiBK,EAAE,WAAW,OAAO,kBAAkB,aAAaL,aAAa,iBAAiB,EAAE,WAAWA,EAAE,YAAY,KAAK,EAAE,WAAW,OAAO,aAAa,aAAaA,aAAa,YAAY+B,EAAE,OAAQ,OAAM,IAAI,MAAM,qPAAqP/B,EAAE,YAAY,IAAI,EAAE,EAAE,GAAGnN,GAAG/O,GAAG+9B,EAAE,WAAW,GAAG,KAAK,CAAC,IAAI/e,EAAE,CAAC,OAAO9C,CAAC,EAAE,EAAE,CAAC,YAAY,CAAC,EAAE,OAAO6hB,EAAE,UAAU/9B,GAAGgf,EAAE,CAAC,CAAC,CAAC,GAAG,CAAC,EAAEJ,CAAC,EAAErC,EAAE,CAACL,EAAE,WAAWA,EAAE,WAAW,EAAE,CAACA,EAAE,MAAMA,EAAE,MAAM,EAAE,EAAE,GAAG,EAAE,EAAEA,EAAE,WAAW,IAAI,EAAE,aAAa,EAAE,EAAE,EAAE0C,CAAC,EAAE,aAAatC,GAAGF,EAAE,EAAEF,EAAE,aAAa,GAAGK,GAAG0B,EAAE,CAAC,GAAGw+B,IAAI,KAAK,GAAG,OAAO,UAAU,YAAY,GAAG,OAAO,iBAAiB,aAAa,OAAO,mCAAmC,YAAYA,GAAG,IAAI,gBAAgB,EAAE,CAAC,EAAE,WAAW,IAAI,MAAO,OAAM,IAAI,MAAM,sGAAsG,OAAOA,GAAG,SAAS,cAAc,QAAQ,EAAE,WAAW,KAAK,CAAC,mBAAmB,EAAE,CAAC,EAAEA,GAAG,OAAO,MAAM,EAAEA,GAAG,OAAO,OAAO79B,EAAE69B,GAAG,UAAUvgC,EAAE,EAAE,EAAE,EAAE0C,CAAC,EAAE,EAAE69B,GAAG,aAAa,EAAE,EAAE,EAAE79B,CAAC,EAAE,IAAI,CAAC,IAAIE,EAAE,GAAG,IAAI,EAAEA,EAAE,IAAI,WAAW,CAAC,MAAM,CAAC,IAAIE,EAAE,EAAEJ,EAAEE,EAAE,IAAI,WAAWE,EAAE,CAAC,EAAE,QAAQ,EAAE,EAAE,EAAEA,EAAE,IAAI,QAAQmB,EAAE,EAAEA,EAAE,EAAE,EAAEA,EAAErB,EAAE,EAAE,EAAEqB,CAAC,EAAE,EAAE,EAAE,EAAEA,CAAC,CAAC,CAAC,OAAO/G,GAAG0F,EAAE,CAACF,EAAE,EAAE,CAAC,EAAE,OAAO,CAAC,CAAC,SAASg+B,GAAG1gC,EAAE,CAAC,OAAOA,GAAG,MAAMA,EAAE,gBAAgB,UAAU,CAAC,SAAS2gC,IAAI,CAAC,OAAO,OAAO,QAAQ,aAAa,OAAO,aAAa,aAAa,OAAO,eAAe,mBAAmB,CAAC,CAAC,SAASC,GAAG5gC,EAAE,CAAC,OAAOA,GAAG,MAAMA,EAAE,QAAQ,GAAGA,EAAE,SAAS,CAAC,CAAC,SAAS6gC,GAAG7gC,EAAE,CAAC,OAAO2gC,GAAG,GAAG,EAAE3gC,aAAa,cAAc4gC,GAAG5gC,CAAC,GAAG,CAAC0gC,GAAG1gC,CAAC,CAAC,CAAC,eAAeqgC,GAAGrgC,EAAE,EAAE,EAAE,CAAC,IAAIE,EAAE,KAAK,GAAG1O,EAAE,EAAE,QAAQ,qBAAqB,GAAGqvC,GAAG7gC,CAAC,EAAE,CAAC,IAAII,EAAE,GAAG,CAACA,EAAE,MAAM,kBAAkBJ,EAAE,CAAC,iBAAiB,MAAM,CAAC,CAAC,OAAOK,EAAE,CAACD,EAAE,IAAI,CAACA,GAAG,MAAMA,EAAE,QAAQJ,EAAE,OAAOI,EAAE,SAASJ,EAAE,OAAOE,EAAEE,EAAEF,EAAEF,CAAC,MAAME,EAAEF,EAAE,OAAOygC,GAAGvgC,EAAE,CAAC,CAAC,CAAC,SAAS4gC,GAAG9gC,EAAE,CAAC,GAAGA,EAAE,OAAO,GAAGA,EAAE,OAAO,EAAE,MAAM,IAAI,MAAM,wDAAwDA,EAAE,IAAI,GAAG,EAAE,IAAI,EAAEA,EAAE,OAAO,EAAE,EAAEA,EAAE,MAAM,CAAC,EAAE,GAAG,EAAE,GAAG,IAAI,EAAE,MAAM,IAAI,MAAM,0DAA0D,CAAC,EAAE,EAAE,GAAGA,EAAE,QAAQ,WAAWA,EAAE,QAAQ,QAAQ,MAAM,IAAI,MAAM,kCAAkCA,EAAE,KAAK,wCAAwC,CAAC,CAAC,SAAS+gC,GAAG/gC,EAAE,CAAC,IAAI,GAAGA,GAAG,KAAK,OAAOA,EAAE,QAAQ,EAAE,GAAG,EAAE,GAAG,EAAE,EAAE,MAAM,IAAI,MAAM,eAAe,CAAC,qCAAqC,CAAC,CAAC,eAAesgC,GAAGtgC,EAAE,EAAE,CAAC,IAAIE,EAAEwiB,EAAE1iB,EAAE,MAAM,UAAU,EAAE,GAAG,EAAEA,aAAarU,IAAI,CAAC,IAAIsW,EAAE/B,EAAEA,EAAExR,GAAEuT,EAAE,OAAO,EAAEA,EAAE,QAAQ,CAAC,CAAC6+B,GAAG5gC,CAAC,EAAE,GAAG,CAACE,EAAEC,CAAC,EAAEH,EAAE,MAAM,MAAM,EAAE,CAAC,EAAE,EAAEA,EAAE,OAAO,EAAE,EAAEA,EAAE,MAAM,CAAC,EAAE,EAAE,MAAMA,EAAE,KAAK,EAAE6B,EAAE7B,EAAE,QAAQ,UAAU,IAAI,EAAE8B,EAAE,IAAI,kBAAkB3B,EAAED,EAAE,CAAC,EAAE,QAAQ6B,EAAE,EAAEA,EAAE7B,EAAEC,EAAE,EAAE4B,EAAE,CAAC,IAAIS,EAAE,CAAC,EAAE,EAAE,EAAE,GAAG,EAAE,QAAQE,EAAE,EAAEA,EAAE,EAAEA,IAAI,CAAC,IAAIC,EAAE,EAAEZ,EAAE,EAAEW,CAAC,EAAE,GAAG1C,EAAE,QAAQ,WAAW,GAAG2C,EAAE,GAAGA,EAAE,EAAE,MAAM,IAAI,MAAM,mFAAmFA,CAAC,GAAG,UAAU3C,EAAE,QAAQ,UAAU2C,EAAE,GAAGA,EAAE,KAAK,MAAM,IAAI,MAAM,mFAAmFA,CAAC,GAAG,EAAE,IAAI,GAAGH,EAAE,CAAC,EAAEG,EAAEd,EAAEW,EAAE,CAAC,EAAEG,EAAEd,EAAEW,EAAE,CAAC,EAAEG,EAAEd,GAAGW,EAAEE,CAAC,EAAEC,EAAEd,CAAC,CAAC,IAAIY,EAAEV,EAAE,EAAED,EAAEW,EAAE,CAAC,EAAE,KAAK,MAAMD,EAAE,CAAC,CAAC,EAAEV,EAAEW,EAAE,CAAC,EAAE,KAAK,MAAMD,EAAE,CAAC,CAAC,EAAEV,EAAEW,EAAE,CAAC,EAAE,KAAK,MAAMD,EAAE,CAAC,CAAC,EAAEV,EAAEW,EAAE,CAAC,EAAE,KAAK,MAAMD,EAAE,CAAC,CAAC,CAAC,CAAC,GAAG,GAAG,KAAK,CAAC89B,IAAI3tC,GAAGhQ,GAAGg/B,EAAE,WAAW,GAAG,OAAO,QAAQ,KAAK,oGAAoG,EAAE2e,GAAG,IAAI,EAAE,MAAMngC,EAAE,EAAE,OAAOD,EAAE,IAAI6B,EAAE,EAAE,WAAW,IAAI,EAAES,EAAE,IAAI,UAAUV,EAAE3B,EAAED,CAAC,EAAE6B,EAAE,aAAaS,EAAE,EAAE,CAAC,CAAC,CAAC,OAAOxC,IAAIF,GAAGE,EAAE,QAAQ,EAAE8B,CAAC,CAAC,SAASm+B,GAAGngC,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAEsiB,EAAE1iB,EAAE,MAAM,MAAM,EAAE,GAAG,EAAEA,aAAarU,IAAI,CAAC,IAAI,EAAEyU,EAAEA,EAAE1R,GAAE,EAAE,OAAO,EAAE,EAAE,QAAQ,CAAC,CAACoyC,GAAG1gC,CAAC,EAAE2gC,GAAG7gC,GAAG,KAAK,OAAOA,EAAE,YAAY,EAAE,IAAIG,EAAE,CAAC,MAAMD,CAAC,EAAE,EAAE,CAAC,OAAO,EAAE,QAAQF,CAAC,EAAE2hB,EAAE,UAAUh/B,GAAGwd,EAAE,CAAC,CAAC,CAAC,IAAI+/B,GAAGhpC,EAAE,CAAC,YAAYqpC,EAAE,CAAC,EAAM/tC,GAAG,CAAC,EAAEuN,GAAGvN,GAAG,CAAC,mBAAmB,IAAIsuC,EAAE,CAAC,EAAE,SAASA,GAAGhhC,EAAE,EAAE,CAAC,IAAIE,EAAEF,EAAE,MAAM,OAAOI,EAAE,EAAE,MAAM,OAAO,GAAGF,EAAE,EAAE,MAAM,IAAI,MAAM,4EAA4EA,CAAC,GAAG,EAAE,GAAGE,EAAE,EAAE,MAAM,IAAI,MAAM,8EAA8EA,CAAC,GAAG,EAAE,GAAG,EAAE,QAAQ,QAAQ,MAAM,IAAI,MAAM,yEAAyE,EAAE,KAAK,GAAG,EAAE,GAAG,EAAE,MAAMA,EAAE,CAAC,EAAEF,EAAE,MAAM,IAAI,MAAM,iEAAiE,EAAE,MAAME,EAAE,CAAC,CAAC,QAAQF,CAAC,EAAE,EAAE,GAAGwa,GAAG1a,EAAE,KAAK,IAAI,EAAE,MAAM,IAAI,MAAM,mEAAmEA,EAAE,KAAK,GAAG,EAAE,IAAIK,EAAE,EAAE,MAAM,EAAEA,EAAEA,EAAE,OAAO,CAAC,EAAE,EAAE,EAAE,QAAQsC,EAAE,EAAEA,EAAEtC,EAAE,OAAO,EAAE,EAAEsC,EAAE,GAAGtC,EAAEsC,CAAC,EAAE,IAAIZ,EAAE/B,EAAE,MAAMgC,EAAE3B,EAAE,MAAM,EAAE2B,EAAE,IAAI,EAAE,IAAIC,EAAE,EAAE,QAAQU,EAAE,EAAEA,EAAEzC,EAAE,EAAEyC,EAAEV,GAAGF,EAAEY,CAAC,EAAEX,EAAE,KAAKD,EAAEY,CAAC,CAAC,EAAE,IAAID,EAAE,CAAC,GAAGyZ,GAAGnc,EAAE,KAAK,EAAE,IAAI2C,GAAGA,EAAEV,CAAC,EAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,CAACD,EAAE,EAAEC,EAAES,CAAC,CAAC,CAAC,IAAIhH,GAAG,CAAC,EAAEuE,GAAGvE,GAAG,CAAC,kBAAkB,IAAIulC,GAAG,kBAAkB,IAAIC,GAAG,gBAAgB,IAAIC,GAAG,kBAAkB,IAAIC,GAAG,iBAAiB,IAAIC,GAAG,WAAW,IAAIC,GAAG,iBAAiB,IAAIC,GAAG,UAAU,IAAIC,GAAG,aAAa,IAAIC,GAAG,2BAA2B,IAAIC,GAAG,YAAY,IAAIC,GAAG,0BAA0B,IAAIC,GAAG,eAAe,IAAIC,GAAG,sBAAsB,IAAIC,EAAE,CAAC,EAAE,IAAIC,GAAG,GAAGC,GAAG,GAAG,SAASf,GAAGjhC,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAEJ,EAAE,MAAM,OAAOsa,EAAEla,IAAI,EAAE,OAAO,IAAI,iBAAiBA,CAAC,sBAAsB,CAAC,sCAAsCA,CAAC,IAAI,EAAEka,EAAEla,IAAIF,EAAE,OAAO,IAAI,iBAAiBE,CAAC,qBAAqBF,CAAC,sCAAsCE,CAAC,IAAI,EAAE,QAAQC,EAAE,EAAEA,EAAED,EAAE,EAAEC,EAAEia,EAAE,EAAEja,CAAC,EAAEH,EAAEG,CAAC,GAAGL,EAAE,MAAMK,CAAC,EAAE,IAAI,iBAAiBD,CAAC,YAAYC,CAAC,YAAYA,CAAC,MAAM,EAAEA,CAAC,EAAEH,EAAEG,CAAC,CAAC,gCAAgCA,CAAC,MAAML,EAAE,MAAMK,CAAC,CAAC,GAAG,CAAC,CAAC,SAASihC,GAAGthC,EAAE,CAAC,IAAI,EAAE,CAAC,EAAEE,EAAE,EAAE,KAAKF,EAAE,GAAGA,EAAE,GAAG,EAAE,KAAKE,CAAC,EAAEF,GAAG,EAAEE,IAAI,OAAO,CAAC,CAAC,SAASihC,GAAGnhC,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAE,CAAC,EAAE,QAAQC,EAAE,EAAEA,EAAEL,EAAE,OAAOK,IAAID,EAAEC,CAAC,EAAE,KAAK,MAAM,EAAEA,CAAC,EAAEL,EAAEK,CAAC,GAAGH,EAAEG,CAAC,CAAC,EAAE,OAAOD,CAAC,CAAC,SAAS0hC,GAAG9hC,EAAE,EAAEE,EAAEE,EAAE,CAAC,IAAIC,EAAE,CAAC,GAAGL,CAAC,EAAE,QAAQ,EAAEK,EAAE,OAAO,EAAED,EAAE,OAAO,IAAIC,EAAE,KAAK,CAAC,EAAE,QAAQ,EAAE,EAAE,EAAEH,EAAE,IAAI,IAAI,EAAEG,EAAE,CAAC,EAAE,GAAGA,EAAE,OAAO,EAAE,EAAE,CAAC,EAAEA,EAAE,IAAI,GAAG,OAAOA,CAAC,CAAC,SAAS4hC,GAAGjiC,EAAE,EAAEE,EAAE,CAAC,OAAOA,GAAGF,EAAEE,EAAEA,GAAG,EAAE,EAAE,CAAC,SAASgiC,GAAGliC,EAAE,EAAE,CAAC,IAAIE,EAAE,CAAC,EAAE,QAAQE,EAAE,EAAEA,EAAEJ,EAAEI,IAAIF,EAAE,KAAK,EAAEE,CAAC,EAAE,OAAOF,CAAC,CAAC,SAASkhC,GAAGphC,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,EAAE0B,EAAEC,EAAE,CAAC,IAAIC,EAAEjC,EAAE,OAAO0C,EAAE,IAAI,MAAMT,CAAC,EAAEU,EAAE,IAAI,MAAMV,CAAC,EAAEW,EAAE,IAAI,MAAMX,CAAC,EAAE,GAAG,EAAE,QAAQ/B,EAAE,EAAE,CAAC,IAAI2C,EAAE,EAAE,CAAC,EAAEC,EAAE5C,EAAE,EAAEwC,EAAEg/B,GAAG,EAAE7+B,EAAEC,EAAE1C,EAAEJ,CAAC,EAAE2C,EAAEi/B,GAAG7/B,EAAEc,EAAEC,EAAEzC,EAAEL,CAAC,EAAE4C,EAAEk/B,GAAG,EAAEj/B,EAAEC,EAAE9C,CAAC,CAAC,KAAM,SAAQ6C,EAAE,EAAEA,EAAEZ,EAAEY,IAAIH,EAAEG,CAAC,EAAE4+B,GAAG,EAAErhC,EAAE,EAAEJ,EAAE6C,EAAEb,CAAC,EAAEW,EAAEE,CAAC,EAAE8+B,GAAG5/B,EAAE1B,EAAE,EAAEL,EAAE6C,EAAEb,CAAC,EAAEY,EAAEC,CAAC,EAAEg/B,GAAG,EAAEh/B,EAAEb,CAAC,EAAE,MAAM,CAAC,MAAMU,EAAE,IAAIC,EAAE,QAAQC,CAAC,CAAC,CAAC,SAAS8+B,GAAG1hC,EAAE,EAAEE,EAAEE,EAAEC,EAAE,CAAC,IAAI,EAAE,CAAC,GAAGA,CAAC,EAAE,EAAE6hC,GAAGhiC,EAAE,CAAC,EAAE,QAAQ6B,EAAE,EAAEA,EAAE,EAAE,OAAOA,IAAI,GAAG,EAAE,QAAQA,CAAC,EAAE,GAAG,EAAEA,CAAC,EAAE,MAAM,CAAC,IAAIC,EAAEigC,GAAG,EAAE/hC,EAAE6B,CAAC,EAAEE,EAAE7B,EAAE4B,CAAC,EAAEhC,EAAE,GAAGgC,IAAIC,EAAE,GAAG,EAAEF,CAAC,EAAEE,CAAC,CAAC,OAAO,CAAC,CAAC,SAAS2/B,GAAG5hC,EAAE,EAAEE,EAAEE,EAAEC,EAAE,CAAC,IAAI,EAAE,CAAC,GAAGA,CAAC,EAAE,EAAE6hC,GAAGhiC,EAAE,CAAC,EAAE,QAAQ6B,EAAE,EAAEA,EAAE,EAAE,OAAOA,IAAI,GAAG,EAAE,QAAQA,CAAC,EAAE,GAAG,EAAEA,CAAC,EAAE,OAAO,qBAAqB,CAAC,IAAIC,EAAEigC,GAAG,EAAE/hC,EAAE6B,CAAC,EAAEE,EAAE7B,EAAE4B,CAAC,EAAEhC,EAAE,GAAGgC,IAAIC,EAAE,OAAO,kBAAkB,EAAEF,CAAC,EAAEE,CAAC,CAAC,QAAQF,EAAE,EAAEA,EAAE,EAAE,OAAOA,IAAI,CAAC,IAAIC,EAAE3B,EAAE0B,CAAC,EAAE,EAAEA,CAAC,EAAE,IAAI,EAAEA,CAAC,GAAGC,GAAG,EAAED,CAAC,EAAEkY,GAAG,EAAE,EAAElY,CAAC,EAAE1B,EAAE0B,CAAC,CAAC,CAAC,CAAC,OAAO,CAAC,CAAC,SAAS8/B,GAAG7hC,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAEJ,EAAE,CAAC,EAAE,OAAOE,EAAE,GAAG,GAAGE,GAAG,QAAQA,EAAE,GAAGA,CAAC,CAAC,SAASqhC,GAAGzhC,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,CAAC,IAAI,EAAE,EAAEA,CAAC,EAAE0B,EAAE7B,EAAEG,CAAC,GAAG,GAAGL,EAAE,GAAGK,GAAG,EAAE,GAAGA,GAAG,GAAG,QAAQ0B,EAAE,EAAE,EAAE,OAAO,iBAAiB,EAAE,OAAO,kBAAkB,IAAIC,EAAE5B,EAAEC,CAAC,EAAE,OAAO,EAAE,IAAI,GAAG2B,GAAG,EAAEiY,GAAG,EAAE,EAAEjY,EAAE,CAAC,EAAE,CAAC,CAAC,SAAS2/B,GAAG3hC,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,CAAC,IAAI,EAAE,EAAEA,CAAC,EAAE0B,EAAE7B,EAAEG,CAAC,GAAG,GAAGL,EAAE,GAAGK,GAAG,EAAE,GAAGA,GAAG,GAAG,QAAQ0B,EAAE,EAAE,EAAE,OAAO,iBAAiB,EAAE,OAAO,kBAAkB,IAAIC,EAAE5B,EAAEC,CAAC,EAAE,OAAO,EAAE,IAAI,GAAG2B,GAAGD,EAAE,EAAE,EAAEkY,GAAG,EAAE,EAAEjY,CAAC,EAAE,EAAEiY,GAAG,GAAG,EAAEjY,EAAE,CAAC,EAAE,CAAC,CAAC,SAASq/B,GAAGrhC,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAEF,EAAE,OAAO,QAAQG,EAAE,EAAEA,EAAEH,EAAE,OAAOG,IAAI,GAAGH,EAAEG,CAAC,EAAE,EAAE,CAACD,EAAEC,EAAE,KAAK,CAAC,QAAQA,EAAED,EAAE,EAAEC,EAAEH,EAAE,OAAOG,IAAI,GAAG,EAAEA,CAAC,EAAE,GAAGH,EAAEG,CAAC,IAAIL,EAAEK,CAAC,EAAE,MAAM,GAAG,MAAM,EAAE,CAAC,SAAS6gC,GAAGlhC,EAAE,EAAE,CAAC,IAAIE,EAAEF,EAAE,OAAO,EAAEA,EAAEA,EAAE,OAAO,CAAC,EAAE,EAAE,QAAQI,EAAE,EAAEA,EAAEJ,EAAE,OAAO,EAAEI,IAAIF,GAAGF,EAAEI,CAAC,EAAE,EAAEA,CAAC,EAAE,OAAOF,CAAC,CAAC,SAASqhC,GAAGvhC,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAEC,EAAEL,EAAE,MAAM,OAAO,OAAO,GAAG,SAASI,EAAE,CAAC,EAAE,GAAG,IAAI,MAAMC,EAAE,CAAC,EAAE,KAAK,CAAC,CAAC,EAAE,EAAE,OAAOA,EAAED,EAAE,EAAE,OAAO,IAAI,MAAMC,EAAE,EAAE,MAAM,EAAE,KAAK,CAAC,CAAC,EAAED,EAAE,EAAE,MAAM,EAAEA,EAAE,QAAQ,GAAG,CAACka,EAAE,IAAI,GAAG,IAAI,mDAAmD,CAAC,CAAC,EAAE,IAAI,EAAE,OAAOpa,GAAG,KAAK,EAAE,IAAI,MAAMG,CAAC,EAAE,KAAK,EAAE,EAAE,OAAOH,GAAG,SAAS,EAAE,CAACA,EAAE,GAAG,IAAI,MAAMG,EAAE,CAAC,EAAE,KAAK,EAAE,CAAC,EAAEH,EAAE,OAAOG,EAAE,EAAEH,EAAE,OAAO,IAAI,MAAMG,EAAEH,EAAE,MAAM,EAAE,KAAK,EAAE,CAAC,EAAE,EAAEA,EAAE,EAAE,EAAE,IAAI,CAAC,EAAE6B,IAAI,GAAG,EAAE,GAAGuY,EAAE,IAAI,GAAG,IAAI,qDAAqD,CAAC,kCAAkCvY,CAAC,GAAG,EAAE/B,EAAE,MAAM+B,CAAC,EAAE3B,EAAE2B,CAAC,EAAE,EAAE,CAAC3B,EAAE,CAAC,CAAC,CAAC,SAASohC,GAAGxhC,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,EAAE0B,EAAEC,EAAE,CAAC,IAAIC,EAAE,GAAG7B,GAAG,MAAM6B,EAAE,IAAI,MAAM,EAAE,MAAM,EAAEA,EAAE,KAAK,CAAC,GAAGA,EAAE7B,EAAE,GAAG,MAAM,EAAE,EAAE,EAAE,MAAM,IAAI,MAAM,4CAA4C,EAAE,IAAIsC,EAAE,GAAGC,EAAE,CAAC,KAAKV,EAAE,OAAO,wBAAwB,EAAE,MAAM,EAAE,MAAM,EAAE,IAAI/B,EAAE,MAAM,EAAE,QAAQ+B,EAAE,MAAM,EAAE,UAAU5B,EAAE,QAAQ,EAAE,aAAa,EAAE,YAAY0B,EAAE,eAAeC,CAAC,EAAE,QAAQyC,EAAE,EAAEA,EAAE9B,EAAE,KAAK8B,IAAI/B,GAAG,GAAG+B,EAAE1C,GAAGY,EAAE,0BAA0B,GAAG8B,EAAE,IAAI/B,EAAE,IAAIA,IAAIC,EAAE,cAAc,GAAGA,EAAE,KAAKA,EAAE,QAAQ,IAAIC,EAAE,CAAC,KAAK5C,EAAE,OAAO,UAAU,EAAE,QAAQ,EAAE,WAAW,GAAG,SAAS,EAAE,EAAEmiC,GAAGx/B,EAAEC,CAAC,EAAE,IAAIC,EAAE,GAAGC,EAAE,GAAGkB,EAAE,GAAG,EAAE,CAAC,EAAEsD,EAAE,CAAC,EAAE,QAAQ7C,EAAE,EAAEA,EAAEzE,EAAE,OAAO,EAAEyE,EAAE,CAAC,GAAG7B,EAAE,QAAQ6B,CAAC,IAAI,EAAE,MAAM,MAAM,WAAWA,CAAC,oBAAoB,EAAE,IAAIC,EAAE,CAAC,EAAE9B,EAAE,eAAe,GAAG6B,GAAGE,EAAE3E,EAAEyE,CAAC,EAAE,GAAGE,IAAI,GAAG,CAAC,EAAE,KAAKD,EAAE,EAAE,EAAE,EAAE,QAAQ,CAAC,IAAIE,EAAE,CAAChC,EAAE,UAAU,GAAG6B,EAAE7B,EAAE,QAAQ,GAAG6B,CAAC,EAAEI,EAAE,CAACjC,EAAE,QAAQ6B,CAAC,EAAE,EAAE,EAAE,GAAG7B,EAAE,QAAQ6B,CAAC,EAAE,EAAEE,EAAEA,EAAE,CAAC,EAAE,GAAGD,GAAG9B,EAAE,QAAQ6B,CAAC,GAAG,EAAE,MAAM,MAAM,8CAA8C,EAAET,EAAEA,GAAGpB,EAAE,QAAQ6B,CAAC,IAAI,EAAE,IAAI8C,EAAE,CAAC,EAAE3E,EAAE,UAAU,GAAG6B,GAAG7B,EAAE,QAAQ,GAAG6B,GAAG,GAAG7B,EAAE,YAAYA,EAAE,SAAS,CAAC,GAAG8B,EAAE,CAAC,IAAIQ,EAAEtC,EAAE,MAAM6B,CAAC,EAAE,EAAEE,EAAE/B,EAAE,MAAM6B,CAAC,EAAE7B,EAAE,MAAM6B,CAAC,EAAE,GAAG7B,EAAE,MAAM6B,CAAC,EAAES,EAAEtC,EAAE,IAAI6B,CAAC,EAAE7B,EAAE,MAAM6B,CAAC,EAAE,EAAES,EAAE,GAAGA,GAAGP,EAAE,MAAM,MAAM,eAAe/B,EAAE,MAAM6B,CAAC,CAAC,iBAAiBA,CAAC,iBAAiB,CAAC,MAAM7B,EAAE,MAAM6B,CAAC,EAAE29B,GAAGx/B,EAAE,MAAM6B,CAAC,EAAE,EAAE7B,EAAE,QAAQ6B,CAAC,EAAEE,EAAEC,EAAEC,CAAC,EAAEjC,EAAE,IAAI6B,CAAC,EAAE29B,GAAGx/B,EAAE,IAAI6B,CAAC,EAAE,EAAE7B,EAAE,QAAQ6B,CAAC,EAAEE,EAAEC,EAAEC,CAAC,EAAE,IAAII,EAAErC,EAAE,QAAQ6B,CAAC,IAAI,GAAG7B,EAAE,MAAM6B,CAAC,IAAI,GAAG7B,EAAE,IAAI6B,CAAC,IAAIE,EAAE9B,EAAEA,GAAGoC,EAAEnC,EAAEA,IAAI2B,IAAI,GAAG7B,EAAE,QAAQ6B,CAAC,IAAI,GAAGQ,EAAE,MAAMpC,EAAEA,GAAGD,EAAE,QAAQ6B,CAAC,IAAI,GAAG8C,EAAEzE,EAAEA,IAAI2B,IAAI,GAAG7B,EAAE,QAAQ6B,CAAC,IAAI,GAAG8C,GAAG,IAAIxC,EAAEC,EAAE,GAAG,GAAGpC,EAAE,YAAYA,EAAE,UAAUmC,EAAEnC,EAAE,IAAI6B,CAAC,EAAE7B,EAAE,MAAM6B,CAAC,EAAEO,EAAE,IAAIN,GAAGK,EAAE,EAAEC,EAAE,IAAIuC,GAAG5C,GAAG,IAAI/B,EAAE,QAAQ6B,CAAC,EAAE,EAAEM,EAAE,CAACJ,EAAEI,EAAEJ,EAAEK,EAAE,IAAIA,EAAE,CAAC,IAAIC,EAAEF,IAAI,GAAGA,EAAE,GAAGnC,EAAE,QAAQ6B,CAAC,EAAE,EAAEQ,EAAE,EAAEA,EAAE,KAAK,MAAMF,EAAEnC,EAAE,QAAQ6B,CAAC,CAAC,GAAGM,EAAEnC,EAAE,QAAQ6B,CAAC,IAAI,EAAE,EAAE,GAAG,EAAE,KAAKQ,CAAC,CAAC,MAAM,EAAE,KAAK,EAAE,CAAC,CAAC,QAAQR,EAAE,EAAEA,EAAE7B,EAAE,wBAAwB,OAAO,EAAE6B,EAAE,CAAC,IAAIC,EAAE9B,EAAE,wBAAwB6B,CAAC,EAAEC,GAAG,EAAE4C,EAAE,KAAK,EAAE5C,CAAC,CAAC,EAAEA,IAAIq9B,IAAIz6B,EAAE,KAAK,CAAC,CAAC,CAAC,MAAM,CAAC,iBAAiBA,EAAE,OAAO,CAAC7C,EAAEC,IAAI9B,EAAE,wBAAwB8B,CAAC,IAAIq9B,EAAE,EAAE,WAAWz6B,EAAE,WAAWzE,EAAE,UAAUC,EAAE,cAAckB,EAAE,MAAMpB,EAAE,MAAM,IAAIA,EAAE,IAAI,QAAQA,EAAE,OAAO,CAAC,CAAC,SAASu/B,GAAGniC,EAAE,EAAE,CAAC,EAAE,UAAU,EAAE,EAAE,QAAQ,EAAE,EAAE,eAAe,EAAE,IAAIE,EAAE,EAAE,EAAE,WAAWF,EAAE,OAAO,KAAK,EAAE,SAASA,EAAE,KAAK,KAAK,EAAE,MAAM,IAAI,MAAM,EAAE,IAAI,EAAE,EAAE,IAAI,IAAI,MAAM,EAAE,IAAI,EAAE,EAAE,QAAQ,IAAI,MAAM,EAAE,IAAI,EAAE,EAAE,wBAAwB,CAAC,EAAE,EAAE,8BAA8B,CAAC,EAAE,EAAE,8BAA8B,IAAI,MAAM,EAAE,IAAI,EAAE,QAAQI,EAAE,EAAEA,EAAEJ,EAAE,KAAKI,IAAI,GAAG,GAAGA,EAAEJ,EAAE,aAAa,CAAC,IAAIK,EAAE,KAAK,IAAI,EAAE,MAAML,EAAE,KAAKI,GAAG,EAAEJ,EAAE,wBAAwB,EAAE,IAAI,EAAE,KAAKE,EAAEG,EAAEH,IAAI,EAAE,MAAMA,CAAC,EAAE,EAAE,EAAE,IAAIA,CAAC,EAAE,EAAE,EAAE,QAAQA,CAAC,EAAE,EAAE,EAAE,WAAW,GAAGA,EAAE,EAAE,SAAS,GAAGA,EAAE,EAAE,wBAAwB,KAAKA,CAAC,EAAE,EAAE,8BAA8B,KAAK,EAAE,EAAE,EAAE,8BAA8BA,CAAC,EAAEE,CAAC,SAAS,GAAGA,EAAEJ,EAAE,YAAY,EAAE,wBAAwB,KAAK+hC,EAAE,EAAE,EAAE,8BAA8B,KAAK,EAAE,MAAM,CAAC,GAAG7hC,IAAI,EAAE,MAAM,OAAO,MAAM,MAAM,sCAAsCA,CAAC,oBAAoB,EAAE,IAAI,UAAU,EAAE,MAAM,MAAM,GAAG,EAAEF,EAAE,OAAO,OAAO,EAAE,MAAME,CAAC,EAAEF,EAAE,MAAMI,CAAC,GAAGJ,EAAE,KAAK,OAAO,EAAE,IAAIE,CAAC,EAAEF,EAAE,IAAII,CAAC,GAAG,EAAE,QAAQF,CAAC,EAAEF,EAAE,QAAQI,CAAC,EAAEJ,EAAE,UAAU,GAAGI,IAAI,EAAE,WAAW,GAAGF,GAAGF,EAAE,QAAQ,GAAGI,IAAI,EAAE,SAAS,GAAGF,GAAGF,EAAE,eAAe,GAAGI,GAAG,EAAE,wBAAwB,KAAK4hC,EAAE,EAAE,EAAE,8BAA8B,KAAK,EAAE,EAAE,EAAE,gBAAgB,GAAG9hC,IAAI,EAAE,wBAAwB,KAAKA,CAAC,EAAE,EAAE,8BAA8B,KAAKE,CAAC,GAAG,EAAE,8BAA8BF,CAAC,EAAEE,EAAEF,GAAG,CAAC,CAAC,SAASkiC,GAAGpiC,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,CAAC,GAAGA,EAAE,CAAC,EAAE,OAAOH,EAAE,EAAE,EAAE,CAAC,EAAE,EAAE,EAAE,EAAE,CAAC,EAAE,CAAC,IAAI,EAAEF,EAAE,EAAEI,EAAEJ,EAAEA,EAAE,OAAO,EAAE,EAAE,CAAC,EAAE,EAAE,CAAC,EAAE,EAAE,EAAE,CAAC,EAAE,EAAE,CAAC,EAAE,CAAC,CAAC,CAAC,IAAIlB,GAAG,SAAalX,GAAG,KAAK,CAAC,OAAO,IAAIgZ,EAAE,CAAC,OAAO,IAAInX,GAAGmX,CAAC,CAAC,CAAC,OAAO,SAASA,EAAEV,EAAE,EAAE,GAAG,CAAC,OAAO,IAAIlZ,GAAG4Z,EAAEV,EAAE,CAAC,CAAC,CAAC,OAAO,QAAQU,EAAEV,EAAE,GAAG,EAAE,EAAEG,EAAE,KAAKwB,EAAE,GAAG,CAAC,OAAO,IAAI1Z,GAAGyY,EAAEV,EAAE,EAAEG,EAAEwB,CAAC,CAAC,CAAC,OAAO,KAAKjB,EAAE,KAAKV,EAAE,GAAG,EAAE,KAAKG,EAAE,KAAK,CAAC,OAAO,IAAI9gB,GAAGqhB,EAAEV,EAAE,EAAEG,CAAC,CAAC,CAAC,OAAO,SAASO,EAAE,KAAKV,EAAE,IAAI,EAAE,KAAK,CAAC,OAAO,IAAI7gB,GAAGuhB,EAAEV,EAAE,CAAC,CAAC,CAAC,OAAO,OAAOU,EAAE,KAAKV,EAAE,GAAG,EAAE,KAAKG,EAAE,KAAKwB,EAAE,EAAE,CAAC,OAAO,IAAIriB,GAAGohB,EAAEV,EAAE,EAAEG,EAAEwB,CAAC,CAAC,CAAC,OAAO,QAAQjB,EAAEV,EAAE,GAAG,CAAC,OAAO,IAAI5gB,GAAGshB,EAAEV,CAAC,CAAC,CAAC,EAAMrC,GAAGjW,GAAOy6C,GAAG,OAAO,uBAAuB,YAAY,sBAAsB,OAAO,cAAc,YAAY,aAAariC,GAAGA,EAAE,EAAE,SAASlJ,IAAI,CAAC,OAAO,IAAI,QAAQkJ,GAAGqiC,GAAG,IAAIriC,EAAE,CAAC,CAAC,CAAC,CAAC,IAAItS,EAAE,CAAC,EAAEuS,GAAGvS,EAAE,CAAC,OAAO,IAAI40C,GAAG,OAAO,IAAIC,GAAG,OAAO,IAAIC,GAAG,OAAO,IAAIC,GAAG,OAAO,IAAIC,GAAG,MAAM,IAAIC,GAAG,sBAAsB,IAAIC,GAAG,iBAAiB,IAAIC,GAAG,WAAW,IAAIC,GAAG,gBAAgB,IAAIC,GAAG,gBAAgB,IAAI1L,GAAG,2BAA2B,IAAI/K,GAAG,2BAA2B,IAAIgB,GAAG,uBAAuB,IAAI0V,GAAG,mBAAmB,IAAIC,GAAG,qBAAqB,IAAI/V,GAAG,gBAAgB,IAAIuI,GAAG,oBAAoB,IAAIyN,GAAG,0BAA0B,IAAIxZ,GAAG,iBAAiB,IAAIyD,GAAG,kCAAkC,IAAIgW,GAAG,qBAAqB,IAAIC,GAAG,oBAAoB,IAAIC,GAAG,kBAAkB,IAAI3a,GAAG,kBAAkB,IAAIK,GAAG,kBAAkB,IAAIK,GAAG,sBAAsB,IAAIZ,GAAG,yBAAyB,IAAI8a,GAAG,0BAA0B,IAAIlW,GAAG,gBAAgB,IAAImW,GAAG,kBAAkB,IAAI5a,GAAG,kBAAkB,IAAIE,GAAG,wBAAwB,IAAIJ,GAAG,qBAAqB,IAAI+a,GAAG,+BAA+B,IAAIha,GAAG,qBAAqB,IAAI6D,GAAG,SAAS,IAAIoW,GAAG,UAAU,IAAIC,GAAG,uBAAuB,IAAIC,GAAG,uBAAuB,IAAIC,GAAG,mBAAmB,IAAIrW,GAAG,iBAAiB,IAAIhB,GAAG,oBAAoB,IAAIsX,GAAG,qBAAqB,IAAIC,GAAG,qBAAqB,IAAIC,GAAG,qBAAqB,IAAI3M,GAAG,qBAAqB,IAAID,GAAG,eAAe,IAAI6M,GAAG,iBAAiB,IAAIvW,GAAG,YAAY,IAAIwW,GAAG,cAAc,IAAIC,GAAG,iBAAiB,IAAI1X,GAAG,YAAY,IAAI2X,GAAG,oBAAoB,IAAIC,GAAG,2BAA2B,IAAIC,GAAG,oBAAoB,IAAIC,GAAG,aAAa,IAAIC,GAAG,gDAAgD,IAAIC,GAAG,gDAAgD,IAAIC,GAAG,kDAAkD,IAAIC,GAAG,qDAAqD,IAAIC,GAAG,gDAAgD,IAAIC,GAAG,gDAAgD,IAAIC,GAAG,yDAAyD,IAAIC,GAAG,8CAA8C,IAAIC,GAAG,uDAAuD,IAAIC,GAAG,wDAAwD,IAAIC,GAAG,6DAA6D,IAAIC,GAAG,yDAAyD,IAAIC,GAAG,uBAAuB,IAAI3X,GAAG,sBAAsB,IAAI4X,GAAG,IAAI,IAAI5nB,GAAG,uBAAuB,IAAI6nB,GAAG,mBAAmB,IAAIrE,GAAG,iBAAiB,IAAIsE,GAAG,aAAa,IAAIC,GAAG,WAAW,IAAIjO,GAAG,WAAW,IAAI57B,GAAG,uBAAuB,IAAI8pC,GAAG,8BAA8B,IAAI/b,GAAG,kBAAkB,IAAIF,GAAG,WAAW,IAAIlrB,GAAG,0BAA0B,IAAIonC,GAAG,cAAc,IAAI/P,GAAG,oBAAoB,IAAIC,GAAG,KAAK,IAAIpY,EAAE,CAAC,EAAE,SAASylB,GAAGhjC,EAAE,EAAE,CAAC,IAAIE,EAAEF,EAAE,CAAC,EAAE,OAAOA,EAAE,QAAQ,CAACK,EAAE,IAAI,CAACia,EAAEja,EAAE,SAASH,EAAE,IAAI,kBAAkBA,CAAC,sBAAsB,CAAC,+CAA+CA,CAAC,GAAG,CAAC,CAAC,EAAEoa,EAAE,GAAG,GAAG,EAAEpa,EAAE,IAAI,kBAAkBA,CAAC,iCAAiCA,EAAE,CAAC,GAAG,EAAE,IAAIE,EAAEJ,EAAE,CAAC,EAAEA,EAAE,QAAQ,CAACK,EAAE,IAAI,CAAC,QAAQ,EAAE,EAAE,EAAEH,EAAE,IAAIoa,EAAE,IAAI,GAAGja,EAAE,CAAC,IAAID,EAAE,CAAC,EAAE,IAAI,kBAAkBF,CAAC,uBAAuB,CAAC,MAAMG,CAAC,2CAA2CD,CAAC,qCAAqC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,SAASmjC,GAAGvjC,EAAE,EAAE,CAAC,IAAIE,EAAEF,EAAE,CAAC,EAAE,MAAM,EAAE,QAAQI,EAAE,EAAEA,EAAEJ,EAAE,OAAOI,IAAIF,EAAE,CAAC,GAAGF,EAAEI,CAAC,EAAE,CAAC,EAAE,OAAOF,CAAC,CAAC,IAAI2iC,IAAI,SAAS7iC,EAAE,CAACA,EAAEA,EAAE,eAAe,CAAC,EAAE,iBAAiBA,EAAEA,EAAE,aAAa,CAAC,EAAE,eAAeA,EAAEA,EAAE,YAAY,CAAC,EAAE,cAAcA,EAAEA,EAAE,WAAW,CAAC,EAAE,aAAaA,EAAEA,EAAE,WAAW,CAAC,EAAE,aAAaA,EAAEA,EAAE,WAAW,CAAC,EAAE,YAAY,GAAG6iC,KAAKA,GAAG,CAAC,EAAE,EAAE,SAASM,GAAGnjC,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAE,IAAI,MAAM,GAAGF,GAAG,MAAM,GAAG,KAAK,OAAOE,EAAE,GAAG,GAAG,KAAK,KAAKA,EAAE,OAAOJ,EAAEE,EAAE,QAAQE,EAAE,KAAK,EAAE,OAAOA,EAAE,EAAE,MAAM,EAAE,GAAGF,GAAG,KAAK,OAAOE,EAAE,GAAGJ,EAAEE,EAAE,SAASE,EAAE,OAAO,MAAM,IAAI,MAAM,4BAA4B,CAAC,sCAAsCJ,EAAEE,EAAE,MAAM,sBAAsBE,EAAE,MAAM,EAAE,EAAE,QAAQC,EAAE,EAAEA,EAAEH,EAAE,OAAO,EAAEG,EAAE,CAAC,IAAI,EAAEH,EAAEG,CAAC,EAAE,EAAED,EAAEA,EAAE,OAAOF,EAAE,OAAOG,CAAC,EAAE0B,EAAE3B,EAAE,CAAC,EAAE,GAAG,GAAG,EAAE,GAAG2B,GAAG,GAAG,GAAGA,IAAI,EAAE,MAAM,IAAI,MAAM,4BAA4B,CAAC,qCAAqC1B,EAAEL,CAAC,OAAO,CAAC,cAAcK,EAAEL,CAAC,OAAO+B,CAAC,EAAE,OAAO3B,EAAE,CAAC,EAAE,CAAC,CAAC,OAAOA,CAAC,CAAC,SAASikC,GAAGrkC,EAAE,CAAC,IAAI,EAAE,CAAC,eAAe6iC,GAAG,eAAe,aAAaA,GAAG,aAAa,YAAYA,GAAG,YAAY,WAAWA,GAAG,WAAW,WAAWA,GAAG,WAAW,WAAWA,GAAG,UAAU,EAAE3iC,EAAE,CAAC,EAAE,QAAQE,KAAKJ,EAAE,GAAGI,KAAK,EAAEF,EAAE,KAAK,EAAEE,CAAC,CAAC,MAAO,OAAM,OAAOF,CAAC,CAAC,SAASgkC,GAAGlkC,EAAE,CAAC,OAAOA,EAAE,SAAS,EAAE,EAAEA,EAAE,CAAC,IAAI6iC,GAAG,eAAe7iC,EAAE,OAAO,EAAEA,EAAE,MAAM,CAAC,SAASylC,GAAGzlC,EAAE,EAAE,CAAC,GAAGA,GAAG,MAAM,GAAG,KAAK,OAAO,IAAIE,EAAEF,EAAE,OAAOI,EAAE,EAAE,OAAO,GAAGF,GAAGE,EAAE,MAAM,IAAI,MAAM,sBAAsBJ,CAAC,uCAAuC,CAAC,2CAA2CE,CAAC,4DAA4DE,CAAC,GAAG,EAAE,QAAQC,EAAE,EAAEA,EAAE,KAAK,IAAIH,EAAEE,EAAE,CAAC,EAAE,EAAEC,EAAE,CAAC,IAAI,EAAEL,EAAEK,CAAC,EAAE,EAAE,EAAEA,EAAE,CAAC,EAAE,GAAG,GAAG,GAAG,GAAG,GAAG,IAAI,GAAG,IAAI,EAAE,MAAM,IAAI,MAAM,sBAAsBL,CAAC,8CAA8C,CAAC,yCAAyCK,EAAEL,EAAE,MAAM,OAAO,CAAC,6CAA6CK,EAAEL,EAAE,MAAM,OAAO,CAAC,EAAE,CAAC,CAAC,CAAC,IAAI4iC,GAAG,GAAG,SAASU,GAAGtjC,EAAE,CAAC,OAAOA,GAAG4iC,GAAG5iC,EAAEkc,GAAGlc,EAAE,KAAK,MAAM,KAAK,KAAKA,CAAC,CAAC,CAAC,CAAC,CAAC,SAASgkC,GAAGhkC,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAEF,GAAG,OAAOF,GAAG,SAASA,EAAEA,EAAE,CAAC,GAAGK,EAAE,GAAG,OAAOL,GAAG,SAASA,EAAEA,EAAE,CAAC,GAAG,MAAM,CAACI,EAAEC,CAAC,CAAC,CAAC,SAAS8jC,GAAGnkC,EAAE,EAAEE,EAAEE,EAAE,GAAG,CAAC,IAAIC,EAAE,CAAC,EAAE,GAAGD,EAAEC,EAAEA,EAAE,OAAO,EAAE,MAAM,CAAC,CAAC,EAAEA,EAAE,KAAKL,EAAE,CAAC,EAAEE,CAAC,EAAEG,EAAEA,EAAE,OAAOL,EAAE,MAAM,CAAC,CAAC,MAAM,CAACK,EAAEA,EAAE,OAAOL,EAAE,CAAC,CAAC,EAAE,IAAI,EAAE,EAAE,OAAO,QAAQ,EAAE,EAAE,EAAE,EAAE,EAAE,EAAEK,EAAEA,EAAE,OAAO,CAACL,EAAE,EAAE,CAAC,EAAE,EAAE,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC,EAAEK,EAAEA,EAAE,OAAOL,EAAE,MAAM,EAAE,CAAC,CAAC,CAAC,CAAC,OAAOK,CAAC,CAAC,SAAS4jC,GAAGjkC,EAAE,EAAEE,EAAE,GAAG,CAAC,IAAIE,EAAE,CAAC,EAAE,GAAGF,EAAE,CAACE,EAAE,KAAK,CAAC,EAAE,QAAQC,EAAE,EAAE,EAAEA,EAAEL,EAAE,EAAEK,EAAEA,GAAG,EAAE,GAAGD,EAAE,KAAKC,CAAC,EAAED,EAAE,KAAKC,GAAG,EAAE,EAAE,GAAGD,EAAE,KAAKC,CAAC,CAAC,KAAK,CAAC,IAAIA,EAAE,CAAC,EAAE,EAAE,CAAC,EAAE,QAAQ,EAAE,EAAE,EAAEL,EAAE,EAAE,EAAE,GAAG,EAAE,EAAE,GAAG,EAAE,IAAI,EAAE,EAAE,KAAK,CAAC,EAAEK,EAAE,KAAK,CAAC,EAAED,EAAE,KAAK,GAAGC,CAAC,EAAED,EAAE,KAAK,CAAC,EAAEA,EAAE,KAAK,GAAG,CAAC,CAAC,CAAC,OAAOA,CAAC,CAAC,SAASgkC,GAAGpkC,EAAE,EAAEE,EAAEE,EAAE,GAAG,CAAC,IAAIC,EAAE,CAAC,EAAED,EAAEC,EAAE,KAAKL,EAAE,CAAC,EAAEE,CAAC,EAAEG,EAAE,KAAKL,EAAE,CAAC,EAAEE,CAAC,EAAE,QAAQ,EAAE,EAAE,EAAEF,EAAE,OAAO,EAAE,EAAE,GAAG,EAAE,OAAOI,EAAEC,EAAE,KAAK,EAAE,EAAE,CAAC,EAAEL,EAAE,CAAC,CAAC,EAAEK,EAAE,KAAKL,EAAE,CAAC,EAAE,EAAE,EAAE,CAAC,CAAC,EAAEK,EAAE,KAAKL,EAAE,CAAC,CAAC,EAAE,OAAOK,CAAC,CAAC,SAASikC,GAAGtkC,EAAE,EAAE,CAAC,IAAIE,EAAE,CAAC,CAAC,EAAE,QAAQE,EAAE,EAAEA,EAAE,EAAE,EAAEA,EAAEF,EAAE,KAAKF,EAAEI,CAAC,EAAE,CAAC,CAAC,EAAE,OAAOF,CAAC,CAAC,SAASqkC,GAAGvkC,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAEJ,EAAE,MAAM,EAAE,CAAC,EAAE,QAAQK,EAAE,EAAEA,EAAEH,EAAE,EAAEG,EAAED,EAAE,KAAKJ,EAAEK,EAAE,CAAC,EAAE,EAAEA,CAAC,EAAE,CAAC,EAAE,EAAEA,CAAC,EAAE,CAAC,CAAC,EAAE,OAAOD,CAAC,CAAC,IAAI2iC,GAAG,mBAAmBD,GAAG,mBAAuBH,GAAG,SAASL,GAAG,WAAWC,GAAG,YAAYC,GAAG,YAAYC,GAAG,aAAaC,GAAG,YAAY,SAAS2C,GAAGrlC,EAAE,EAAE,CAAC,GAAGA,EAAE,SAAS,EAAE,OAAO,MAAM,IAAI,MAAM,gEAAgEA,EAAE,MAAM,WAAW,EAAE,MAAM,GAAG,EAAE,IAAIE,EAAE,IAAI,aAAaF,EAAE,OAAO,CAAC,EAAE,QAAQI,EAAE,EAAEA,EAAEF,EAAE,OAAOE,GAAG,EAAEF,EAAEE,CAAC,EAAEJ,EAAEI,EAAE,CAAC,EAAEF,EAAEE,EAAE,CAAC,EAAE,EAAEA,EAAE,CAAC,EAAE,OAAOF,CAAC,CAAC,SAASslC,GAAGxlC,EAAE,CAAC,IAAI,EAAE,IAAI,aAAaA,EAAE,OAAO,CAAC,EAAEE,EAAE,IAAI,aAAaF,EAAE,OAAO,CAAC,EAAE,QAAQI,EAAE,EAAEA,EAAEJ,EAAE,OAAOI,GAAG,EAAE,EAAEA,EAAE,CAAC,EAAEJ,EAAEI,CAAC,EAAEF,EAAEE,EAAE,CAAC,EAAEJ,EAAEI,EAAE,CAAC,EAAE,MAAM,CAAC,KAAK,EAAE,KAAKF,CAAC,CAAC,CAAC,SAASkjC,GAAGpjC,EAAE,CAAC,IAAI,EAAE,KAAK,KAAKA,EAAE,OAAO,CAAC,EAAEE,EAAE,IAAI,aAAa,CAAC,EAAEE,EAAE,IAAI,aAAa,CAAC,EAAE,QAAQC,EAAE,EAAEA,EAAEL,EAAE,OAAOK,GAAG,EAAEH,EAAE,KAAK,MAAMG,EAAE,CAAC,CAAC,EAAEL,EAAEK,CAAC,EAAED,EAAE,KAAK,MAAMC,EAAE,CAAC,CAAC,EAAEL,EAAEK,EAAE,CAAC,EAAE,MAAM,CAAC,KAAKH,EAAE,KAAKE,CAAC,CAAC,CAAC,SAASijC,GAAGrjC,EAAE,CAAC,IAAI,EAAE,KAAK,MAAMA,EAAE,OAAO,CAAC,EAAEE,EAAE,IAAI,aAAa,CAAC,EAAEE,EAAE,IAAI,aAAa,CAAC,EAAE,QAAQC,EAAE,EAAEA,EAAEL,EAAE,OAAOK,GAAG,EAAEH,EAAE,KAAK,MAAMG,EAAE,CAAC,CAAC,EAAEL,EAAEK,CAAC,EAAED,EAAE,KAAK,MAAMC,EAAE,CAAC,CAAC,EAAEL,EAAEK,EAAE,CAAC,EAAE,MAAM,CAAC,KAAKH,EAAE,KAAKE,CAAC,CAAC,CAAC,SAASyjC,GAAG7jC,EAAE,EAAE,CAAC,IAAIE,EAAEF,EAAE,EAAE,CAAC,EAAEI,EAAEJ,EAAE,EAAE,EAAE,CAAC,EAAE,MAAM,CAAC,KAAKE,EAAE,KAAKE,CAAC,CAAC,CAAC,SAAS6iC,GAAGjjC,EAAE,EAAEE,EAAEE,EAAE,CAACJ,EAAEI,EAAE,CAAC,EAAE,EAAEJ,EAAEI,EAAE,EAAE,CAAC,EAAEF,CAAC,CAAC,SAASwjC,GAAG1jC,EAAE,EAAE,CAAC,IAAIE,EAAE,IAAI,aAAaF,EAAE,CAAC,EAAEI,EAAE,IAAI,aAAaJ,EAAE,CAAC,EAAE,QAAQK,EAAE,EAAEA,EAAE,KAAK,KAAKL,EAAE,CAAC,EAAEK,IAAI,CAAC,IAAI,GAAG,EAAE,EAAE,IAAI,KAAK,IAAIA,EAAEL,GAAGE,EAAEG,CAAC,EAAE,KAAK,IAAI,CAAC,EAAED,EAAEC,CAAC,EAAE,KAAK,IAAI,CAAC,CAAC,CAAC,MAAM,CAAC,KAAKH,EAAE,KAAKE,CAAC,CAAC,CAAC,SAASqjC,GAAGzjC,EAAE,EAAEE,EAAE,CAAC,IAAIE,GAAGF,EAAE,EAAE,IAAI,KAAK,IAAIF,EAAE,GAAGK,EAAE,KAAK,IAAID,CAAC,EAAE,EAAE,KAAK,IAAIA,CAAC,EAAE,MAAM,CAAC,KAAKC,EAAE,KAAK,CAAC,CAAC,CAAC,IAAIqlC,GAAG,KAAKC,GAAG,MAAMC,GAAG,IAAIC,GAAG,MAAM,SAASrC,GAAGxjC,EAAE,EAAE,CAACA,EAAEA,EAAE,QAAQ,MAAM,EAAE,EAAE,IAAIE,GAAGF,EAAE,OAAOA,EAAE,QAAQ2lC,GAAG,EAAE,EAAE,QAAQD,GAAG,OAAO,GAAGxlC,EAAE,EAAE,MAAM,IAAI,MAAM,+CAA+C,EAAE,GAAGA,EAAE,EAAE,MAAM,IAAI,MAAM,6CAA6CwlC,EAAE,KAAK,EAAE,GAAG,CAACtlC,EAAEC,CAAC,EAAEL,EAAE,MAAM0lC,EAAE,EAAEprB,EAAEla,EAAE,QAAQylC,EAAE,IAAI,GAAG,IAAI,2BAA2BA,EAAE,0BAA0B,EAAE,IAAI,EAAEzlC,EAAE,MAAMwlC,EAAE,EAAE,EAAE,EAAE,OAAO,GAAG,IAAI,EAAE,MAAM,IAAI,MAAM,YAAY,CAAC,4BAA4B,CAAC,EAAE,EAAE,GAAG,EAAE,EAAE,MAAM,IAAI,MAAM,+DAA+D,EAAE,IAAI7jC,EAAE,CAAC,EAAE,QAAQa,EAAE,EAAEA,EAAEvC,EAAE,OAAO,EAAEuC,EAAE,CAAC,IAAIC,EAAExC,EAAEuC,CAAC,EAAE,GAAG,CAAC,EAAE,KAAKE,GAAGA,EAAE,QAAQD,CAAC,IAAI,EAAE,EAAE,MAAM,IAAI,MAAM,uCAAuCA,CAAC,uCAAuC,EAAEd,EAAE,QAAQc,CAAC,IAAI,IAAId,EAAE,KAAKc,CAAC,CAAC,CAAC,QAAQD,EAAE,EAAEA,EAAExC,EAAE,OAAO,EAAEwC,EAAE,CAAC,IAAIC,EAAEzC,EAAEwC,CAAC,EAAEb,EAAE,QAAQc,CAAC,IAAI,IAAIA,IAAI+iC,IAAI7jC,EAAE,KAAKc,CAAC,CAAC,CAAC,IAAIb,EAAE,IAAI,MAAM,EAAE,MAAM,EAAE,QAAQY,EAAE,EAAEA,EAAE,EAAE,EAAEA,EAAE,CAAC,GAAG,IAAI,IAAI,EAAEA,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,OAAO,EAAEA,CAAC,EAAE,OAAO,MAAM,IAAI,MAAM,2CAA2C,EAAEA,CAAC,CAAC,+DAA+D,EAAEZ,EAAEY,CAAC,EAAE,CAAC,EAAE,QAAQC,EAAE,EAAEA,EAAE,EAAED,CAAC,EAAE,OAAO,EAAEC,EAAEb,EAAEY,CAAC,EAAE,KAAKb,EAAE,QAAQ,EAAEa,CAAC,EAAEC,CAAC,CAAC,CAAC,CAAC,CAAC,IAAIZ,EAAEF,EAAE,OAAOW,EAAErC,EAAE,OAAOsC,EAAE,CAAC,EAAE,QAAQC,EAAEF,EAAEE,EAAEX,EAAE,EAAEW,EAAED,EAAE,KAAKC,CAAC,EAAE,MAAM,CAAC,QAAQb,EAAE,WAAWY,EAAE,OAAOX,CAAC,CAAC,CAAC,SAAS+hC,GAAG/jC,EAAE,EAAE,CAAC,IAAIE,EAAE,IAAI,MAAMF,CAAC,EAAEE,EAAE,KAAK,EAAE,EAAE,QAAQG,EAAE,EAAEA,EAAE,EAAE,OAAO,EAAEA,EAAEH,EAAE,EAAEG,CAAC,CAAC,EAAEA,EAAE,IAAID,EAAE,CAAC,EAAE,QAAQC,EAAE,EAAEA,EAAEL,EAAE,EAAEK,EAAEH,EAAEG,CAAC,IAAI,IAAID,EAAE,KAAKC,CAAC,EAAE,OAAOH,EAAEA,EAAE,OAAOG,GAAGA,IAAI,EAAE,EAAE,CAAC,mBAAmBH,EAAE,WAAWE,CAAC,CAAC,CAAC,SAAS8iC,GAAGljC,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAE,IAAI,MAAMJ,CAAC,EAAE,QAAQK,EAAE,EAAEA,EAAEH,EAAE,OAAO,EAAEG,EAAE,CAAC,IAAI,EAAEH,EAAEG,CAAC,EAAE,MAAM,QAAQ,EAAE,EAAE,EAAE,EAAEA,CAAC,EAAE,OAAO,EAAE,EAAED,EAAE,EAAEC,CAAC,EAAE,CAAC,CAAC,IAAI,OAAOD,EAAE,EAAEC,CAAC,EAAE,CAAC,CAAC,EAAE,EAAE,CAAC,EAAEia,EAAEla,EAAE,EAAEC,CAAC,EAAE,CAAC,CAAC,IAAI,EAAE,CAAC,EAAE,IAAI,sBAAsBD,EAAE,EAAEC,CAAC,EAAE,CAAC,CAAC,CAAC,YAAY,CAAC,oBAAoB,KAAK,UAAU,CAAC,CAAC,uBAAuB,EAAE,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,SAASyjC,GAAG9jC,EAAE,EAAE,CAAC,IAAIE,EAAEF,EAAEI,EAAE,CAAC,EAAEC,EAAE,EAAEL,EAAE,SAAS,GAAGE,EAAE,KAAK,EAAE,EAAEG,EAAEL,EAAE,OAAO,EAAE,QAAQ,EAAE,EAAE,EAAEK,EAAE,EAAE,EAAED,EAAE,KAAK,CAAC,CAAC,EAAE,IAAI,EAAE,CAAC,EAAE,QAAQ,EAAE,EAAE,EAAEF,EAAE,OAAO,EAAE,EAAE,CAAC,IAAI6B,EAAE7B,EAAE,CAAC,EAAE8B,EAAE8jC,GAAG,EAAE/jC,CAAC,EAAE,QAAQE,KAAKD,EAAE,EAAE,QAAQC,CAAC,IAAI,KAAK7B,EAAE,CAAC,EAAE,KAAK6B,CAAC,EAAE,EAAE,KAAKA,CAAC,EAAE,CAAC,MAAM,CAAC,KAAK/B,EAAE,MAAME,CAAC,CAAC,CAAC,SAASglC,GAAGplC,EAAE,CAAC,OAAOA,EAAE,MAAM,CAAC,EAAEE,IAAI,IAAIA,CAAC,CAAC,CAAC,SAAS4lC,GAAG9lC,EAAE,EAAE,CAAC,IAAIE,EAAE,CAAC,EAAE,QAAQE,EAAE,EAAEA,EAAEJ,EAAE,OAAO,EAAEI,GAAGJ,EAAEI,CAAC,EAAE,SAAS,GAAGJ,EAAEI,CAAC,EAAE,QAAQ,CAAC,IAAI,IAAI,IAAI,KAAKF,EAAE,KAAKE,CAAC,EAAE,OAAOF,CAAC,CAAC,SAASolC,GAAGtlC,EAAE,EAAEE,EAAE,EAAE,CAAC,IAAIE,EAAE,CAAC,EAAE,GAAG,OAAO,GAAG,SAASka,EAAEta,EAAE,MAAME,CAAC,EAAE,IAAI,EAAE,IAAI,+CAA+C,EAAEE,EAAE,IAAI,MAAM,CAAC,EAAE,KAAKJ,EAAE,MAAME,CAAC,EAAE,CAAC,MAAM,CAAC,IAAIG,EAAE,EAAE,OAAO,CAAC,EAAE0B,KAAKA,IAAI,KAAK,GAAG,GAAG,GAAG,CAAC,EAAEuY,EAAEja,GAAG,EAAE,IAAI,yDAAyD,EAAE,IAAI,EAAE,EAAE,QAAQ,EAAE,EAAE,GAAG,IAAI,GAAG,CAAC,IAAI,EAAE,EAAE,OAAO,CAAC0B,EAAEC,IAAIA,EAAE,EAAED,EAAEC,EAAED,CAAC,EAAE,EAAE,CAAC,EAAE/B,EAAE,MAAME,CAAC,EAAE,CAAC,CAACoa,EAAEta,EAAE,MAAME,CAAC,IAAI,EAAE,OAAO,CAAC,EAAE6B,IAAI,EAAEA,CAAC,EAAE,IAAI,6DAA6D,EAAE3B,EAAE,CAAC,CAAC,OAAOA,CAAC,CAAC,SAASokC,GAAGxkC,EAAE,CAAC,MAAM;AAAA,uBAC/02BA,CAAC,EAAE,CAAC,SAASykC,GAAGzkC,EAAE,EAAE,CAAC,MAAM,WAAWA,CAAC,oBAAoB,CAAC,MAAM,CAAC,SAAS0kC,GAAG1kC,EAAE,EAAEE,EAAE,CAAC,MAAM,WAAWF,CAAC,oBAAoB,CAAC,OAAOE,CAAC,EAAE,CAAC,SAAS4kC,GAAG9kC,EAAE,EAAE,CAAC,MAAM,iDAAiDA,CAAC,QAAQ,CAAC,EAAE,CAAC,SAAS+kC,GAAG/kC,EAAE,EAAE,CAAC,MAAM,QAAQA,CAAC,8BAA8B,CAAC,EAAE,CAAC,SAAS2kC,IAAI,CAAC,MAAM,+GAA+G,CAAC,SAASE,GAAG7kC,EAAE,EAAE,CAAC,IAAIE,EAAEwa,GAAG1a,CAAC,EAAEI,EAAEsa,GAAG,CAAC,EAAE,MAAM,2CAA2Cxa,CAAC;AAAA,iEAChdE,CAAC,gBAAgBJ,CAAC,iBAAiB,CAAC,EAAE,CAAC,SAAS4kC,GAAG5kC,EAAE,EAAE,CAAC,IAAIE,EAAEwa,GAAG1a,CAAC,EAAEI,EAAEsa,GAAG,CAAC,EAAE,MAAM,qCAAqCxa,CAAC,8CAA8CE,CAAC,gBAAgBJ,CAAC,gBAAgB,CAAC,EAAE,CAAC,SAASilC,IAAI,CAAC,MAAM,0BAA0B,CAAC,SAASC,IAAI,CAAC,MAAM,gCAAgC,CAAC,SAASC,GAAGnlC,EAAE,EAAE,CAAC,MAAM,cAAcA,CAAC,qBAAqB,CAAC,qDAAqD,CAAC,SAASglC,GAAGhlC,EAAE,EAAEE,EAAE,CAAC,MAAM,gBAAgBF,CAAC,QAAQ,CAAC,qBAAqBE,CAAC,GAAG,CAAC,IAAIqlC,GAAG,CAAC,EAAEtlC,GAAGslC,GAAG,CAAC,yBAAyB,IAAIQ,GAAG,gBAAgB,IAAIC,GAAG,8BAA8B,IAAIC,EAAE,CAAC,EAAE,SAASA,GAAGjmC,EAAE,EAAE,CAAC,IAAIE,EAAE,GAAGE,EAAE,IAAIJ,GAAG4iC,IAAIxiC,EAAEJ,EAAEE,EAAE,IAAIE,EAAE8b,GAAGlc,EAAE,KAAK,MAAM,KAAK,KAAKA,CAAC,CAAC,CAAC,EAAE,CAACE,GAAGE,EAAE,GAAGA,IAAIJ,EAAEE,EAAE,GAAGE,EAAE8b,GAAGlc,EAAEI,EAAE,CAAC,EAAE,OAAOA,CAAC,CAAC,SAAS4lC,GAAGhmC,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAE,CAAC,EAAEC,EAAEL,EAAE,OAAO,QAAQ,EAAE,EAAE,EAAEK,EAAE,IAAI,IAAI,EAAED,EAAE,KAAKJ,EAAE,CAAC,CAAC,EAAEI,EAAE,KAAKF,CAAC,EAAE,OAAOE,CAAC,CAAC,SAAS2lC,GAAG/lC,EAAE,EAAEE,EAAEE,EAAE,CAAC,IAAIC,EAAE,EAAE,MAAM,OAAO,EAAEL,EAAE,MAAM,OAAO,GAAGI,IAAI,IAAIA,EAAE,CAACC,GAAGD,EAAEC,GAAG,MAAM,IAAI,MAAM,sCAAsCA,CAAC,KAAKA,CAAC,cAAcD,CAAC,EAAE,EAAE,GAAGA,EAAE,IAAIA,GAAGC,GAAGD,EAAE,EAAE,MAAM,IAAI,MAAM,cAAcA,CAAC;AAAA,MACxkC,CAAC,IAAI,EAAE,GAAGF,EAAEE,EAAE,MAAM,IAAI,MAAM,cAAcA,CAAC,yCAAyCF,CAAC,IAAI,EAAE,QAAQyC,EAAE,EAAEA,EAAEvC,EAAE,EAAEuC,EAAE,GAAG3C,EAAE,MAAM2C,CAAC,IAAI,EAAE,MAAMA,CAAC,EAAE,MAAM,IAAI,MAAM,WAAWA,CAAC,MAAM3C,EAAE,MAAM2C,CAAC,CAAC,qCAAqCA,CAAC,MAAM,EAAE,MAAMA,CAAC,CAAC,GAAG,EAAE,IAAI,EAAE3C,EAAE,MAAME,CAAC,EAAE6B,EAAE,CAAC,EAAEC,EAAE,EAAEC,EAAE,EAAES,EAAE,EAAE,QAAQC,EAAE,EAAEA,EAAEvC,EAAE,EAAEuC,EAAEZ,EAAE,KAAK/B,EAAE,MAAM2C,CAAC,CAAC,EAAEX,GAAGhC,EAAE,MAAM2C,CAAC,EAAE,QAAQA,EAAEvC,EAAEuC,EAAEzC,EAAEyC,IAAIZ,EAAE,KAAK/B,EAAE,MAAM2C,CAAC,CAAC,EAAEV,GAAGjC,EAAE,MAAM2C,CAAC,EAAE,QAAQA,EAAEvC,EAAEuC,EAAEtC,EAAEsC,IAAIZ,EAAE,KAAK,EAAE,MAAMY,CAAC,CAAC,EAAE,QAAQA,EAAEzC,EAAE,EAAEyC,EAAE,EAAEA,IAAIZ,EAAE,KAAK/B,EAAE,MAAM2C,CAAC,CAAC,EAAED,GAAG1C,EAAE,MAAM2C,CAAC,EAAE,MAAM,CAAC,UAAUX,EAAE,UAAUU,EAAE,UAAUT,EAAE,QAAQ,EAAE,YAAYF,CAAC,CAAC,CAAC,SAAS6hC,GAAG5jC,EAAE,CAAC,GAAG,CAAC,OAAOA,EAAE,IAAI,GAAG6d,GAAG,CAAC,CAAC,CAAC,OAAO,EAAE,CAAC,MAAM,IAAI,MAAM,4DAA4D,CAAC,EAAE,CAAC,CAAC,CAAC,SAAS8lB,GAAG3jC,EAAE,CAAC,OAAOA,EAAE,IAAI,GAAG8d,GAAG,CAAC,CAAC,CAAC,CAAC,IAAI7pB,GAAG,CAAC,EAAEgM,GAAGhM,GAAG,CAAC,wBAAwB,IAAIslC,GAAG,wBAAwB,IAAIE,GAAG,wBAAwB,IAAIC,GAAG,UAAU,IAAIxD,EAAE,CAAC,EAAEiI,GAAG,EAAE,IAAI+H,GAAG,CAAC,WAAWhnD,GAAG,aAAa,CAAC,GAAG,EAAE,SAAS,CAAC8gB,EAAE,IAAI,CAAC,GAAG,CAACE,CAAC,EAAE,EAAE,MAAM,CAAC,EAAE,IAAIxJ,EAAEsJ,EAAEzD,GAAG7N,GAAEwR,EAAE,SAAS,EAAE,EAAE,CAAC,CAAC,CAAC,CAAC,EAAMimC,GAAG,CAAC,WAAWhnD,GAAG,aAAa,CAAC,GAAG,EAAE,SAAS,CAAC6gB,EAAE,IAAI,CAAC,GAAG,CAACE,CAAC,EAAE,EAAE,MAAM,CAAC,EAAE,IAAI,CAAC,IAAIE,EAAEjE,GAAGzN,GAAEwR,EAAE,SAAS,CAAC,EAAEG,EAAEnE,GAAGQ,GAAG1C,GAAG,CAAC,EAAEoG,CAAC,CAAC,EAAE,OAAOvJ,GAAGhG,GAAGmP,EAAEK,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAM+lC,GAAG,CAAC,WAAWhnD,GAAG,aAAa,CAAC,GAAG,EAAE,SAAS,CAAC4gB,EAAE,IAAI,CAAC,GAAG,CAACE,CAAC,EAAE,EAAE,MAAM,CAAC,EAAE,IAAI,CAAC,IAAIE,EAAElE,GAAGQ,GAAGP,GAAGzN,GAAEwR,EAAE,SAAS,CAAC,EAAE,CAAC,CAAC,EAAE,OAAOrP,GAAGmP,EAAEI,CAAC,CAAC,CAAC,CAAC,CAAC,EAAMimC,GAAG,CAAC,WAAW5mD,GAAG,aAAa,CAAC,IAAI,GAAG,EAAE,SAAS,CAACugB,EAAE,IAAI,CAAC,GAAG,CAACE,EAAEE,CAAC,EAAE,EAAEC,EAAEisB,GAAGpsB,EAAE,MAAME,EAAE,KAAK,EAAE,MAAM,CAAC,EAAE,IAAI,CAAC,IAAI2B,EAAE/B,EAAEgC,EAAEwqB,GAAGtsB,EAAE,MAAMG,CAAC,EAAE,OAAO2B,EAAE,OAAO,IAAID,EAAEpF,GAAGoF,EAAEC,CAAC,GAAGzI,EAAEwI,EAAE7B,EAAE,KAAK,CAAC,EAAE,EAAE,IAAI,CAAC,IAAI6B,EAAE/B,EAAEgC,EAAEwqB,GAAGpsB,EAAE,MAAMC,CAAC,EAAE,OAAO2B,EAAE,OAAO,IAAID,EAAEpF,GAAGoF,EAAEC,CAAC,GAAGzI,EAAEwI,EAAE3B,EAAE,KAAK,CAAC,CAAC,CAAC,CAAC,EAAMkmC,GAAG,CAAC,WAAW5mD,GAAG,cAAc,GAAG,SAAS,CAACsgB,EAAE,IAAI,CAAC,IAAIE,EAAE,CAAC,EAAE,OAAO,EAAE,QAAQ,CAACE,EAAEC,IAAI,CAACH,EAAEG,CAAC,EAAE,IAAIL,EAAE,MAAM,CAAC,CAAC,EAAEE,CAAC,CAAC,EAAMqmC,GAAG,CAAC,WAAW1mD,GAAG,aAAa,CAAC,GAAG,EAAE,SAAS,CAACmgB,EAAE,IAAI,CAAC,GAAG,CAACE,CAAC,EAAE,EAAE,MAAM,CAAC,EAAE,IAAIV,GAAGU,CAAC,CAAC,CAAC,CAAC,EAAMsmC,GAAG,CAAC,WAAW1mD,GAAG,aAAa,CAAC,GAAG,EAAE,SAAS,CAACkgB,EAAE,IAAI,CAAC,GAAG,CAACE,CAAC,EAAE,EAAE,MAAM,CAAC,EAAE,IAAIV,GAAGU,CAAC,CAAC,CAAC,CAAC,EAAMumC,GAAG,CAAC,WAAW1mD,GAAG,aAAa,CAAC,GAAG,EAAE,SAAS,CAACigB,EAAE,IAAI,CAAC,GAAG,CAACE,CAAC,EAAE,EAAE,MAAM,CAAC,EAAE,IAAIrP,GAAGmP,EAAE9D,GAAGQ,GAAG1C,GAAG,CAAC,EAAEmC,GAAGzN,GAAEwR,EAAE,SAAS,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAMwmC,GAAG,CAAC,WAAW1mD,GAAG,aAAa,CAAC,GAAG,EAAE,SAAS,CAACggB,EAAE,IAAI,CAAC,GAAG,CAACE,CAAC,EAAE,EAAE,MAAM,CAAC,EAAE,IAAI,CAAC,IAAIE,EAAElE,GAAGtP,EAAEoN,GAAG,CAAC,EAAEmC,GAAGzN,GAAEwR,EAAE,SAAS,CAAC,CAAC,CAAC,EAAE,OAAOrP,GAAGmP,EAAEI,CAAC,CAAC,CAAC,CAAC,CAAC,EAAMumC,GAAG,CAAC,WAAWzmD,GAAG,aAAa,CAAC,IAAI,GAAG,EAAE,SAAS,CAAC8f,EAAE,IAAI,CAAC,GAAG,CAACE,EAAEE,CAAC,EAAE,EAAEC,EAAEisB,GAAGpsB,EAAE,MAAME,EAAE,KAAK,EAAE,MAAM,CAAC,EAAE,IAAI,CAAC,IAAI2B,EAAEnV,EAAEuP,GAAG+D,CAAC,EAAE/D,GAAGiE,CAAC,CAAC,EAAE4B,EAAEtL,EAAEsJ,EAAEnP,GAAGuP,EAAE2B,CAAC,CAAC,EAAEE,EAAEuqB,GAAGtsB,EAAE,MAAMG,CAAC,EAAE,OAAO4B,EAAE,OAAO,IAAID,EAAErF,GAAGqF,EAAEC,CAAC,GAAG1I,EAAEyI,EAAE9B,EAAE,KAAK,CAAC,EAAE,EAAE,IAAI,CAAC,IAAI6B,EAAEnV,EAAEuP,GAAG+D,CAAC,EAAE/D,GAAGiE,CAAC,CAAC,EAAE4B,EAAEnL,GAAGH,EAAEsJ,EAAEnP,GAAGqP,EAAE6B,CAAC,CAAC,CAAC,EAAEE,EAAEuqB,GAAGpsB,EAAE,MAAMC,CAAC,EAAE,OAAO4B,EAAE,OAAO,IAAID,EAAErF,GAAGqF,EAAEC,CAAC,GAAG1I,EAAEyI,EAAE5B,EAAE,KAAK,CAAC,CAAC,CAAC,CAAC,EAAMwmC,GAAG,CAAC,WAAW3mD,GAAG,aAAa,CAAC,GAAG,EAAE,SAAS,CAAC+f,EAAE,IAAI,CAAC,GAAG,CAACE,CAAC,EAAE,EAAE,MAAM,CAAC,EAAE,IAAIrP,GAAGmP,EAAEpT,EAAEuP,GAAGzN,GAAEwR,EAAE,SAAS,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,EAAM2mC,GAAG,CAAC,WAAW1mD,GAAG,aAAa,CAAC,GAAG,EAAE,SAAS,CAAC6f,EAAE,IAAI,CAAC,GAAG,CAACE,CAAC,EAAE,EAAE,MAAM,CAAC,EAAE,IAAIrP,GAAGmP,EAAEtD,GAAG1C,GAAG,CAAC,EAAEmC,GAAGzN,GAAEwR,EAAE,SAAS,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,SAAS4mC,GAAG9mC,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,CAAC,IAAI,EAAEqiB,EAAE1iB,EAAE,KAAK,eAAe,EAAE+B,EAAE2gB,EAAE,EAAE,QAAQ,eAAe,EAAE1gB,EAAE,EAAEC,EAAEF,EAAEW,EAAE,GAAGX,EAAE,OAAO,IAAIW,EAAE,GAAGV,EAAEzI,EAAE,EAAE,CAAC,EAAE,EAAE,MAAM,CAAC,EAAE,EAAE,MAAM,CAAC,EAAE,EAAE,MAAM,CAAC,EAAE,EAAE,MAAM,CAAC,CAAC,CAAC,EAAE0I,EAAE1I,EAAEwI,EAAE,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,CAAC,CAAC,GAAGuY,EAAEtY,EAAE,OAAO,EAAE,IAAI,0DAA0DA,EAAE,IAAI,GAAG,EAAEsY,EAAErY,EAAE,OAAO,EAAE,IAAI,6DAA6DA,EAAE,IAAI,GAAG,EAAEynB,GAAG,gBAAgBrpB,EAAE,CAAC,EAAE,IAAIsC,EAAE,CAAC,GAAGX,EAAE,MAAMC,CAAC,EAAEW,EAAE,CAAC,WAAW1C,EAAE,QAAQE,EAAE,IAAIC,EAAE,gBAAgB,CAAC,EAAEwC,EAAEgf,EAAE,UAAUvhC,GAAGqiB,EAAEC,CAAC,EAAE,OAAOF,EAAEnJ,EAAEsJ,EAAE,CAACA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,CAAC,CAAC,EAAEA,CAAC,CAAC,IAAIkkC,GAAG3vC,EAAE,CAAC,eAAe0vC,EAAE,CAAC,EAAME,GAAG,CAAC,WAAW3mD,GAAG,aAAa,CAAC,GAAG,EAAE,SAAS,CAAC2f,EAAE,EAAEE,IAAI,CAAC,GAAG,CAACE,CAAC,EAAE,EAAE,CAAC,WAAWC,EAAE,QAAQ,EAAE,IAAI,EAAE,gBAAgB0B,CAAC,EAAE7B,EAAE,MAAM,CAAC,EAAE,IAAI6mC,GAAG/mC,EAAEI,EAAEC,EAAE,EAAE,EAAE0B,CAAC,CAAC,CAAC,CAAC,EAAE,SAASklC,GAAGjnC,EAAE,EAAEE,EAAEE,EAAEC,EAAE,CAAC,IAAI,EAAEqiB,EAAE1iB,EAAE,KAAK,aAAa,EAAE,EAAE0iB,EAAE,EAAE,QAAQ,aAAa,EAAEpI,EAAE,EAAE,OAAO,EAAE,KAAK,IAAI,kBAAkB,EAAE,IAAI,gCAAgC,EAAE,IAAI,GAAG,EAAE,IAAIvY,EAAE,EAAEC,EAAE,EAAEC,EAAE,GAAG,EAAE,OAAO,IAAIA,EAAE,GAAGF,EAAExI,EAAE,EAAE,CAAC,EAAE,EAAE,MAAM,CAAC,EAAE,EAAE,MAAM,CAAC,EAAE,EAAE,MAAM,CAAC,CAAC,CAAC,EAAEyI,EAAEzI,EAAE,EAAE,CAAC,EAAE,EAAE,MAAM,CAAC,EAAE,EAAE,MAAM,CAAC,EAAE,EAAE,MAAM,CAAC,CAAC,CAAC,GAAG+gB,EAAEtY,EAAE,OAAO,EAAE,IAAI,wDAAwDA,EAAE,IAAI,GAAG,EAAEsY,EAAEvY,EAAE,OAAO,EAAE,IAAI,2DAA2DA,EAAE,IAAI,GAAG,EAAE,IAAIW,EAAE,CAAC,GAAGV,EAAE,MAAMD,CAAC,EAAEY,EAAE,CAAC,WAAWzC,EAAE,QAAQE,EAAE,IAAIC,CAAC,EAAEuC,EAAEif,EAAE,UAAUthC,GAAGmiB,EAAEC,CAAC,EAAE,OAAOV,EAAE1I,EAAEqJ,EAAE,CAACA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,CAAC,CAAC,EAAEA,CAAC,CAAC,IAAIskC,GAAG9vC,EAAE,CAAC,aAAa6vC,EAAE,CAAC,EAAME,GAAG,CAAC,WAAW/mD,GAAG,aAAa,CAAC,GAAG,EAAE,SAAS,CAAC4f,EAAE,EAAEE,IAAI,CAAC,GAAG,CAACE,CAAC,EAAE,EAAE,CAAC,WAAWC,EAAE,QAAQ,EAAE,IAAI,CAAC,EAAEH,EAAE,MAAM,CAAC,EAAE,IAAIgnC,GAAGlnC,EAAEI,EAAEC,EAAE,EAAE,CAAC,CAAC,CAAC,CAAC,EAAM+mC,GAAG,CAAC,WAAW3mD,GAAG,aAAa,CAAC,IAAI,GAAG,EAAE,SAAS,CAACuf,EAAE,EAAEE,IAAI,CAAC,GAAG,CAACE,EAAEC,CAAC,EAAE,EAAE,CAAC,WAAW,EAAE,WAAW,CAAC,EAAEH,EAAE,MAAM,CAAC,GAAG,CAAC,EAAE,CAAC,EAAE,IAAI3K,GAAGyK,EAAEK,EAAE,GAAG,EAAE,EAAE,EAAE,IAAI9K,GAAG6K,EAAEJ,EAAE,GAAG,EAAE,CAAC,EAAE,CAAC,GAAG,EAAE,CAAC,EAAE,IAAIzK,GAAGyK,EAAEK,EAAE,GAAG,EAAE,EAAE,EAAE,IAAI9K,GAAGyK,EAAEI,EAAE,GAAG,EAAE,CAAC,EAAE,GAAG,CAAC,EAAE,CAAC,EAAE,IAAI7K,GAAG8K,EAAEL,EAAE,GAAG,EAAE,EAAE,EAAE,IAAIzK,GAAG6K,EAAEJ,EAAE,GAAG,EAAE,CAAC,EAAE,CAAC,EAAE,IAAIzK,GAAG8K,EAAEL,EAAE,GAAG,EAAE,EAAE,EAAE,IAAIzK,GAAGyK,EAAEI,EAAE,GAAG,EAAE,CAAC,CAAC,CAAC,EAAMinC,GAAG,CAAC,WAAW3mD,GAAG,SAAS,CAACsf,EAAE,EAAEE,IAAI,CAAC,GAAG,CAAC,WAAWE,EAAE,MAAMC,CAAC,EAAEH,EAAE,MAAM,CAAC,EAAE,IAAIrE,GAAGmE,EAAEI,EAAEC,CAAC,CAAC,CAAC,CAAC,EAAMinC,GAAG,CAAC,WAAWxmD,GAAG,SAAS,CAACkf,EAAE,EAAEE,IAAI,CAAC,IAAIE,EAAEF,EAAEG,EAAED,EAAE,WAAW,EAAEA,EAAE,MAAM,EAAE,MAAM,KAAK,CAAC,EAAE,QAAQ4B,EAAE3B,EAAE,OAAO,EAAE2B,GAAG,EAAEA,IAAI,GAAG3B,EAAE2B,CAAC,IAAI,EAAEA,CAAC,EAAE,EAAEA,CAAC,EAAE,UAAU3B,EAAE2B,CAAC,IAAI,EAAE,MAAM,IAAI,MAAM,mBAAmB3B,CAAC,6BAA6B,CAAC,IAAI,EAAE,IAAI0B,EAAE,CAAC,EAAE,QAAQC,EAAE,EAAEA,EAAE,EAAE,OAAOA,IAAI,EAAEA,CAAC,EAAE,GAAGD,EAAE,KAAKC,CAAC,EAAE,MAAM,CAAC,EAAE,IAAIrF,GAAGqD,EAAE+B,EAAE,EAAE,CAAC,CAAC,CAAC,EAAMwlC,GAAG,CAAC,WAAWtmD,GAAG,SAAS+e,IAAI,CAAC,EAAE,IAAIA,EAAE,MAAM,CAAC,EAAE,EAAMwnC,GAAG,CAAC,WAAWtmD,GAAG,SAAS8e,IAAI,CAAC,EAAE,IAAIR,GAAGQ,CAAC,CAAC,EAAE,EAAMynC,GAAG,CAAC,WAAWtmD,GAAG,aAAa,CAAC,GAAG,EAAE,SAAS,CAAC6e,EAAE,EAAEE,IAAI,CAAC,GAAG,CAACE,CAAC,EAAE,EAAE,CAAC,aAAaC,EAAE,aAAa,CAAC,EAAEH,EAAE,MAAM,CAAC,EAAE,IAAIb,GAAGpK,GAAG7B,GAAGgN,EAAEC,CAAC,EAAEhM,GAAG+L,EAAE,CAAC,CAAC,EAAEJ,EAAER,GAAGQ,CAAC,CAAC,CAAC,CAAC,CAAC,EAAM0nC,GAAG,CAAC,WAAWrmD,GAAG,aAAa,CAAC,GAAG,EAAE,SAAS6kD,GAAG,QAAQ,EAAMyB,GAAG,CAAC,WAAWrmD,GAAG,cAAc,GAAG,SAAS,CAAC0e,EAAE,EAAEE,IAAI,CAAC,IAAIE,EAAE,EAAE,IAAI4B,GAAGA,EAAE,KAAK,EAAE,CAAC,KAAK3B,CAAC,EAAEH,EAAE,EAAEkb,GAAG/a,EAAE,EAAE,CAAC,EAAE,KAAK,EAAE,CAAC,EAAE,EAAED,EAAE,IAAI4B,GAAGA,EAAE,CAAC,CAAC,EAAE,OAAO/F,GAAG+D,EAAE,EAAE,CAAC,EAAE,IAAIgC,GAAG,IAAIA,CAAC,CAAC,CAAC,EAAM4lC,GAAG,CAAC,WAAWrmD,GAAG,aAAa,CAAC,IAAI,QAAQ,EAAE,SAAS,CAACye,EAAE,EAAEE,IAAI,CAAC,GAAG,CAACE,EAAEC,CAAC,EAAE,EAAE,CAAC,UAAU,EAAE,QAAQ,EAAE,IAAI0B,EAAE,WAAWC,CAAC,EAAE9B,EAAE,OAAOoa,EAAEiP,GAAG,CAAC,EAAE,IAAI,iHAAiH,CAAC,GAAG,EAAE,CAAC,EAAE,IAAIgC,GAAGnrB,EAAE,MAAMJ,EAAEK,EAAE,EAAE0B,EAAEC,CAAC,EAAE,OAAO,IAAIk1B,GAAG92B,EAAEJ,EAAEK,EAAE,MAAM,EAAE0B,EAAEC,CAAC,CAAC,CAAC,CAAC,EAAM6lC,GAAG,CAAC,WAAWpmD,GAAG,aAAa,CAAC,KAAK,QAAQ,EAAE,SAAS,CAACue,EAAE,EAAEE,IAAI,CAAC,GAAG,CAACE,EAAEC,CAAC,EAAE,EAAE,CAAC,QAAQ,EAAE,IAAI,EAAE,WAAW0B,EAAE,gBAAgBC,CAAC,EAAE9B,EAAE,MAAM,CAAC,GAAG,IAAI5Q,GAAG0Q,EAAEK,EAAE,EAAE,EAAE0B,EAAE,EAAEC,CAAC,EAAE,OAAO,IAAIk1B,GAAGl3B,EAAEI,EAAEC,EAAE,MAAM,EAAE,EAAE0B,EAAEC,CAAC,CAAC,CAAC,CAAC,EAAE,SAAS8lC,GAAG9nC,EAAE,EAAEE,EAAEE,EAAEC,EAAE,CAAC,IAAI,EAAEL,EAAEA,EAAE,OAAO,IAAI,EAAEzG,EAAEyG,EAAE,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,CAAC,CAAC,GAAG,IAAI,EAAE,EAAE,EAAE,OAAO,IAAI,EAAEzG,EAAE,EAAE,CAAC,EAAE,EAAE,MAAM,CAAC,EAAE,EAAE,MAAM,CAAC,EAAE,EAAE,MAAM,CAAC,EAAE,EAAE,MAAM,CAAC,CAAC,CAAC,GAAG+gB,EAAE,EAAE,OAAO,EAAE,IAAI,iEAAiE,EAAE,KAAK,GAAG,EAAEA,EAAE,EAAE,OAAO,EAAE,IAAI,8DAA8D,EAAE,KAAK,GAAG,EAAEA,EAAEpa,EAAE,SAAS,EAAE,IAAI,mEAAmEA,CAAC,GAAG,EAAEoa,EAAE,EAAE,MAAM,CAAC,IAAIpa,EAAE,CAAC,EAAE,IAAI,4CAA4C,EAAE,MAAM,CAAC,CAAC,uCAAuCA,EAAE,CAAC,CAAC,GAAG,EAAEoa,EAAE,EAAE,MAAM,CAAC,IAAIpa,EAAE,CAAC,EAAE,IAAI,0CAA0C,EAAE,MAAM,CAAC,CAAC,yCAAyCA,EAAE,CAAC,CAAC,IAAI,EAAE,IAAI6B,EAAE,CAAC,EAAE,EAAE,GAAG,CAAC,EAAEC,EAAE,CAAC,QAAQ5B,EAAE,IAAIC,EAAE,YAAYH,CAAC,EAAE,OAAO2hB,EAAE,UAAUlgC,GAAGogB,EAAEC,CAAC,CAAC,CAAC,IAAI+lC,GAAG3wC,EAAE,CAAC,sBAAsB0wC,EAAE,CAAC,EAAME,GAAG,CAAC,WAAWtmD,GAAG,aAAa,CAAC,IAAI,QAAQ,EAAE,SAAS,CAACse,EAAE,EAAEE,IAAI,CAAC,GAAG,CAAC,UAAUE,EAAE,QAAQC,EAAE,IAAI,CAAC,EAAEH,EAAEoa,EAAEiP,GAAGnpB,CAAC,EAAE,IAAI,iHAAiHA,CAAC,GAAG,EAAE,GAAG,CAAC,EAAE2B,CAAC,EAAE,EAAE,MAAM,CAAC,EAAE,IAAI4pB,GAAG,EAAE,MAAM3rB,EAAE+B,EAAE1B,EAAE,CAAC,EAAE,OAAO,IAAI0nC,GAAG,EAAE/nC,EAAE+B,EAAE,MAAM1B,EAAE,CAAC,CAAC,CAAC,CAAC,EAAM4nC,GAAG,CAAC,WAAWpmD,GAAG,aAAa,CAAC,GAAG,EAAE,SAAS,CAACme,EAAE,IAAI,CAAC,GAAG,CAACE,CAAC,EAAE,EAAE,MAAM,CAAC,EAAE,IAAIxJ,EAAEG,GAAGsE,GAAGzM,GAAEwR,EAAE,SAAS,CAAC,CAAC,EAAEF,CAAC,CAAC,CAAC,CAAC,EAAMkoC,GAAG,CAAC,WAAWpmD,GAAG,aAAa,CAAC,GAAG,EAAE,SAAS,CAACke,EAAE,IAAI,CAAC,GAAG,CAACE,CAAC,EAAE,EAAE,MAAM,CAAC,EAAE,IAAIxJ,EAAE0E,GAAG1M,GAAEwR,EAAE,SAAS,CAAC,EAAEF,CAAC,CAAC,CAAC,CAAC,EAAMmoC,GAAG,CAAC,WAAWlmD,GAAG,aAAa,CAAC,GAAG,EAAE,SAAS,CAAC+d,EAAE,EAAEE,IAAI,CAAC,GAAG,CAACE,CAAC,EAAE,EAAE,CAAC,KAAKC,EAAE,UAAU,EAAE,QAAQ,CAAC,EAAEH,EAAE,MAAM,CAAC,EAAE,IAAI,CAAC,IAAI6B,EAAEwrB,GAAG,CAACltB,CAAC,EAAED,EAAE,IAAI,EAAE4B,EAAEjS,GAAGiQ,EAAEK,EAAE,EAAE,CAAC,CAAC,EAAE,OAAO0B,GAAG,OAAOC,EAAElE,GAAGkE,EAAED,CAAC,GAAGC,CAAC,CAAC,CAAC,CAAC,EAAMomC,GAAG,CAAC,WAAW9lD,GAAG,aAAa,CAAC,IAAI,QAAQ,EAAE,SAAS,CAAC0d,EAAE,EAAEE,IAAI,CAAC,GAAG,CAAC,UAAUE,EAAE,QAAQC,EAAE,IAAI,EAAE,gBAAgB,CAAC,EAAEH,EAAE6B,EAAE3B,GAAG,KAAK,CAAC,EAAE,CAAC,EAAEA,EAAEka,EAAEiP,GAAGxnB,CAAC,EAAE,IAAI,mHAAmHA,CAAC,GAAG,EAAE,GAAG,CAACC,EAAEC,CAAC,EAAE,EAAE,OAAOqY,EAAEtY,EAAE,OAAO,EAAE,IAAI,kFAAkFA,EAAE,IAAI,GAAG,EAAEsY,EAAErY,EAAE,OAAO,EAAE,IAAI,mFAAmFA,EAAE,IAAI,GAAG,EAAEqY,EAAEtY,EAAE,MAAM,CAAC,IAAIC,EAAE,MAAM,CAAC,EAAE,IAAI,mEAAmED,EAAE,MAAM,CAAC,CAAC,mDAAmDC,EAAE,MAAM,CAAC,CAAC,GAAG,EAAEqY,EAAEkP,GAAGnpB,EAAE0B,CAAC,EAAE,IAAI,6FAA6F1B,CAAC,mBAAmB0B,CAAC,IAAI,EAAE2nB,GAAG,kBAAkB,EAAE,CAAC,EAAE,CAAC,EAAE,IAAIiO,GAAG31B,EAAE,MAAMhC,EAAEiC,EAAE5B,EAAE,EAAE0B,EAAE,CAAC,EAAE,OAAO,IAAI01B,GAAGz1B,EAAEhC,EAAEiC,EAAE,MAAM5B,EAAE,EAAE0B,EAAE,CAAC,CAAC,CAAC,CAAC,EAAMsmC,GAAG,CAAC,WAAW3lD,GAAG,aAAa,CAAC,IAAI,QAAQ,EAAE,SAAS,CAACsd,EAAE,EAAEE,IAAI,CAAC,GAAG,CAACE,EAAEC,CAAC,EAAE,EAAE,EAAE,CAAC,EAAED,EAAE,OAAOC,EAAE,GAAGL,CAAC,EAAE,EAAE,CAAC,EAAEI,EAAE,OAAOC,EAAE,GAAGL,CAAC,EAAE,MAAM,CAAC,EAAE,IAAI6hB,EAAE,UAAUj/B,GAAG,EAAEsd,CAAC,EAAE,OAAO,IAAI2hB,EAAE,UAAUl/B,GAAG,EAAEud,CAAC,CAAC,CAAC,CAAC,EAAMooC,GAAG,CAAC,WAAWrlD,GAAG,cAAc,CAAC,EAAE,EAAE,SAAS,CAAC+c,EAAE,IAAI,CAAC,GAAG,CAACE,CAAC,EAAE,EAAEE,EAAE,CAAC,GAAGJ,EAAE,EAAEE,CAAC,EAAE,MAAM,CAAC,EAAE,IAAI2hB,EAAE,UAAU3+B,GAAGkd,CAAC,CAAC,CAAC,CAAC,EAAMmoC,GAAG,CAAC,WAAWllD,GAAG,aAAa,CAAC,GAAG,EAAE,SAAS,CAAC2c,EAAE,IAAI,CAAC,GAAG,CAACE,CAAC,EAAE,EAAEE,EAAE1J,EAAE9E,GAAGiF,GAAGsF,GAAG+D,CAAC,CAAC,CAAC,EAAE,EAAE,KAAK,KAAK,KAAK,EAAE,CAAC,EAAE,MAAM,CAAC,EAAE,IAAIxJ,EAAEsJ,EAAEI,CAAC,CAAC,CAAC,CAAC,EAAMooC,GAAG,CAAC,WAAWllD,GAAG,cAAc,CAAC,EAAE,EAAE,SAAS,CAAC0c,EAAE,IAAI,CAAC,GAAG,CAACE,CAAC,EAAE,EAAE,MAAM,CAAC,EAAE,IAAIxJ,EAAEsJ,EAAEE,CAAC,CAAC,CAAC,CAAC,EAAMuoC,GAAG,CAAC,WAAWllD,GAAG,aAAa,CAAC,OAAO,EAAE,SAAS,CAACyc,EAAE,IAAI,CAAC,GAAG,CAACE,CAAC,EAAE,EAAE,MAAM,CAAC,MAAM,IAAI3G,EAAEyG,EAAEE,EAAE,KAAK,CAAC,CAAC,CAAC,EAAMwoC,GAAG,CAAC,WAAWllD,GAAG,aAAa,CAAC,GAAG,EAAE,SAAS,CAACwc,EAAE,IAAI,CAAC,GAAG,CAACE,CAAC,EAAE,EAAE,MAAM,CAAC,EAAE,IAAIxJ,EAAEsJ,EAAEpO,GAAGsO,CAAC,CAAC,CAAC,CAAC,CAAC,EAAMyoC,GAAG,CAAC,WAAW/kD,GAAG,SAASoc,IAAI,CAAC,EAAE,IAAIR,GAAGQ,CAAC,CAAC,EAAE,EAAM4oC,GAAG,CAAC,WAAW/kD,GAAG,aAAa,CAAC,IAAI,GAAG,EAAE,SAAS,CAACmc,EAAE,IAAI,CAAC,GAAG,CAACE,EAAEE,CAAC,EAAE,EAAEC,EAAEisB,GAAGpsB,EAAE,MAAME,EAAE,KAAK,EAAE,MAAM,CAAC,EAAE,IAAI,CAAC,IAAI2B,EAAElR,GAAGmP,EAAEtR,GAAE0R,EAAE,SAAS,CAAC,EAAE4B,EAAEwqB,GAAGtsB,EAAE,MAAMG,CAAC,EAAE,OAAO2B,EAAE,OAAO,EAAEzI,EAAEoD,GAAGoF,EAAEC,CAAC,EAAE9B,EAAE,KAAK,EAAE6B,CAAC,EAAE,EAAE,IAAI,CAAC,IAAIA,EAAErL,EAAEsJ,EAAEtR,GAAEwR,EAAE,SAAS,CAAC,EAAE8B,EAAEwqB,GAAGpsB,EAAE,MAAMC,CAAC,EAAE2B,EAAE,OAAO,IAAID,EAAExI,EAAEoD,GAAGoF,EAAEC,CAAC,EAAE5B,EAAE,KAAK,GAAG,IAAI6B,EAAE9F,GAAGiE,CAAC,EAAE,OAAOvJ,GAAGhG,GAAGkR,EAAErT,GAAEuT,EAAE,SAAS,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAM4mC,GAAG,CAAC,WAAW9kD,GAAG,aAAa,CAAC,IAAI,OAAO,WAAW,OAAO,EAAE,SAAS,CAACic,EAAE,EAAEE,IAAI,CAAC,GAAG,CAAC,gBAAgBE,CAAC,EAAEF,EAAE,CAACG,EAAE,EAAE,EAAE0B,CAAC,EAAE,EAAEC,EAAED,GAAG,KAAK/H,GAAG,CAAC,EAAE+H,EAAEE,EAAEuqB,GAAG,EAAE,MAAMnsB,EAAE,KAAK,EAAEqC,EAAE,CAAC,EAAE,GAAG,EAAE,OAAO,EAAE,CAAC,QAAQgC,EAAE,EAAEA,EAAErE,EAAE,MAAM,OAAO,EAAE,EAAEqE,EAAEhC,EAAE,KAAKrC,EAAE,MAAMqE,CAAC,CAAC,EAAEhC,EAAE,KAAK,CAAC,CAAC,CAAC,IAAIC,EAAEjG,GAAG2D,EAAE,CAAC,EAAEuC,EAAElM,EAAEsJ,EAAEgC,CAAC,EAAEa,EAAE9I,GAAGnN,EAAE,EAAEoN,GAAGoG,CAAC,CAAC,CAAC,EAAE0C,EAAEpM,EAAEA,EAAEA,EAAEmM,EAAEA,CAAC,EAAEA,CAAC,EAAE7I,GAAG,GAAG,CAAC,EAAE,MAAM,CAAC,EAAE,IAAI,EAAE,OAAO,EAAET,EAAE7C,EAAEA,EAAEsJ,EAAEtC,GAAGnE,EAAEsJ,EAAE,CAAC,EAAE,EAAE,EAAE,EAAE,MAAM,CAAC,CAAC,CAAC,EAAEH,CAAC,CAAC,EAAEV,CAAC,EAAE3B,EAAE,KAAK,EAAE9G,EAAE7C,EAAEA,EAAEsJ,EAAE6C,CAAC,EAAEb,CAAC,EAAE3B,EAAE,KAAK,EAAE,KAAK,IAAI,CAAC,IAAIqE,EAAEhO,EAAEA,EAAEmM,EAAE7I,GAAG,EAAE,CAAC,EAAE4I,CAAC,EAAE,OAAO,EAAE,OAAO,IAAI8B,EAAE/H,GAAG+H,EAAEzC,CAAC,GAAG1I,EAAEmL,EAAE,EAAE,KAAK,CAAC,EAAE,SAAS,IAAI,CAAC,IAAIA,EAAEhO,EAAEA,EAAEoM,EAAEH,CAAC,EAAEC,CAAC,EAAE,OAAO,EAAE,OAAO,IAAI8B,EAAE/H,GAAG+H,EAAEzC,CAAC,GAAG1I,EAAEmL,EAAE,EAAE,KAAK,CAAC,EAAE,MAAM,IAAI,CAAC,IAAIA,EAAEhO,EAAEiM,EAAEE,CAAC,EAAE8B,EAAEjO,EAAEsJ,EAAE0E,CAAC,EAAE,OAAO,EAAE,OAAO,IAAIC,EAAEhI,GAAGgI,EAAE1C,CAAC,GAAG1I,EAAEoL,EAAE,EAAE,KAAK,CAAC,EAAE,OAAO,IAAI,CAAC,IAAID,EAAE1E,EAAE,OAAO,EAAE,OAAO,IAAI0E,EAAE/H,GAAG+H,EAAEzC,CAAC,GAAG1I,EAAEmL,EAAE,EAAE,KAAK,CAAC,CAAC,CAAC,CAAC,EAAMokC,GAAG,CAAC,WAAW1kD,GAAG,aAAa,CAAC,IAAI,SAAS,EAAE,SAAS,CAAC4b,EAAE,EAAEE,IAAI,CAAC,GAAG,CAACE,EAAEC,CAAC,EAAE,EAAE,CAAC,KAAK,EAAE,UAAU,CAAC,EAAEH,EAAE6B,EAAEqZ,GAAG,EAAEhb,EAAE,KAAK,EAAE,CAAC,EAAE4B,EAAE,CAACC,EAAES,EAAEC,IAAI,IAAI,CAAC,IAAIC,EAAEX,EAAE,MAAMY,EAAEH,EAAE,KAAKI,EAAEF,EAAE,MAAM,EAAEb,CAAC,EAAEiC,EAAElB,EAAE,OAAO,EAAEF,EAAE,MAAM,EAAEA,EAAE,MAAM,EAAE,MAAM,CAAC,EAAE0E,EAAE,EAAE,OAAOxC,EAAEikC,GAAG,EAAE/kC,CAAC,EAAES,EAAEskC,GAAG/kC,EAAE,EAAEA,EAAE,EAAEsD,CAAC,EAAE5C,EAAEskC,GAAG,CAAClmC,EAAE,CAACD,CAAC,EAAE,CAAC,CAAC,EAAE8B,EAAEpL,EAAEoJ,EAAE+B,CAAC,EAAEE,EAAErL,EAAEmJ,EAAE,CAACG,CAAC,CAAC,EAAEgC,EAAEmkC,GAAG,CAAC,CAAChlC,CAAC,EAAEc,EAAEL,CAAC,CAAC,EAAE8C,EAAEzJ,GAAG6G,EAAEE,CAAC,EAAE,EAAE1G,GAAGoJ,EAAE3C,EAAE3C,EAAE,MAAMF,CAAC,CAAC,EAAEiD,EAAEwoB,GAAG3oB,CAAC,EAAE,OAAO,EAAE/G,GAAG,EAAEkH,CAAC,EAAE,CAAC,EAAE,GAAG,IAAI,EAAE,CAAC,IAAI/C,EAAE7B,EAAE,MAAM,CAAC,EAAEsC,EAAEtC,EAAE,MAAM6B,EAAE,CAAC,EAAE,MAAM,CAAC,EAAE,IAAI3F,GAAGoG,EAAE,IAAI,CAACG,EAAEC,IAAId,EAAEa,EAAExC,EAAE,MAAMyC,EAAE,CAAC,EAAE9C,EAAE,MAAM8C,EAAE,CAAC,CAAC,EAAE,CAAC,CAAC,EAAE,QAAQ1C,EAAE,KAAK,EAAE,QAAQ,IAAIC,CAAC,CAAC,KAAM,OAAM,CAAC,EAAE2B,EAAE5B,EAAEC,EAAEL,CAAC,EAAE,QAAQ,IAAIK,CAAC,CAAC,CAAC,EAAE,SAAS0oC,GAAG/oC,EAAE,EAAE,CAAC,IAAIE,EAAE,CAAC,EAAE,QAAQE,EAAEJ,EAAEI,EAAE,EAAE,EAAEA,EAAEF,EAAE,KAAKE,CAAC,EAAE,OAAOF,CAAC,CAAC,SAAS8oC,GAAGhpC,EAAE,CAAC,IAAI,EAAE,CAAC,EAAE,QAAQE,EAAE,EAAEA,EAAEF,EAAE,OAAO,EAAEE,EAAE,QAAQE,EAAE,EAAEA,EAAEJ,EAAEE,CAAC,EAAE,OAAO,EAAEE,EAAE,EAAE,KAAKJ,EAAEE,CAAC,EAAEE,CAAC,CAAC,EAAE,OAAO,CAAC,CAAC,IAAI6oC,GAAG,CAAC,WAAW1kD,GAAG,aAAa,CAAC,IAAI,GAAG,EAAE,SAAS,CAACyb,EAAE,IAAI,CAAC,GAAG,CAACE,EAAEE,CAAC,EAAE,EAAE,MAAM,CAAC,EAAE,IAAIZ,GAAGU,CAAC,EAAE,EAAE,IAAIV,GAAGY,CAAC,CAAC,CAAC,CAAC,EAAM8oC,GAAG,CAAC,WAAWxkD,GAAG,SAASsb,IAAI,CAAC,EAAE,IAAItR,GAAEsR,EAAE,SAAS,CAAC,EAAE,EAAMmpC,GAAG,CAAC,WAAWtkD,GAAG,SAASmb,IAAI,CAAC,EAAE,IAAIR,GAAGQ,CAAC,CAAC,EAAE,EAAMopC,GAAG,CAAC,WAAWtkD,GAAG,SAASkb,IAAI,CAAC,EAAE,IAAIR,GAAGQ,CAAC,CAAC,EAAE,EAAMqpC,GAAG,CAAC,WAAWtkD,GAAG,SAASib,IAAI,CAAC,EAAE,IAAIR,GAAGQ,CAAC,CAAC,EAAE,EAAMspC,GAAG,CAAC,WAAWjkD,GAAG,aAAa,CAAC,GAAG,EAAE,SAAS,CAAC2a,EAAE,EAAEE,IAAI,CAAC,GAAG,CAACE,CAAC,EAAE,EAAE,CAAC,MAAMC,CAAC,EAAEH,EAAE,EAAE/M,GAAGiN,EAAE,CAAC,EAAE,MAAM,CAAC,EAAE,IAAIf,GAAG,EAAEW,EAAEtJ,EAAEsJ,EAAEK,CAAC,CAAC,CAAC,CAAC,CAAC,EAAMkpC,GAAG,CAAC,WAAW7jD,GAAG,aAAa,CAAC,GAAG,EAAE,SAAS,CAACsa,EAAE,IAAI,CAAC,GAAG,CAACE,CAAC,EAAE,EAAE,MAAM,CAAC,EAAE,IAAIrP,GAAGmP,EAAEpT,EAAEsT,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,EAAMspC,GAAG,CAAC,WAAW/jD,GAAG,aAAa,CAAC,GAAG,EAAE,SAAS,CAACua,EAAE,IAAI,CAAC,GAAG,CAACE,CAAC,EAAE,EAAE,MAAM,CAAC,EAAE,IAAIrP,GAAGmP,EAAEtR,GAAEwR,EAAE,SAAS,CAAC,CAAC,CAAC,CAAC,EAAMupC,GAAG,CAAC,WAAW9jD,GAAG,aAAa,CAAC,EAAE,cAAc,CAAC,EAAE,EAAE,SAAS,CAACqa,EAAE,EAAEE,IAAI,CAAC,GAAG,CAACE,CAAC,EAAE,EAAE,CAAC,KAAKC,CAAC,EAAEH,EAAE,MAAM,CAAC,OAAO,IAAI,CAAC,IAAI4B,EAAElQ,GAAGwO,CAAC,EAAE,OAAO1D,GAAGsD,EAAEtJ,EAAEiG,GAAGqD,EAAEK,EAAE,EAAE,EAAEyB,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,SAAS4nC,GAAG1pC,EAAE,EAAEE,EAAEE,EAAE,EAAEC,EAAE,EAAE,EAAE,EAAE,EAAE,GAAG,CAAC,IAAI0B,EAAE,CAAC,EAAE/B,EAAE,EAAE,EAAE,GAAGE,CAAC,EAAE8B,EAAE,CAAC,YAAY5B,EAAE,KAAKC,EAAE,MAAM,EAAE,KAAK,CAAC,EAAE,OAAOwhB,EAAE,UAAU38B,GAAG6c,EAAEC,CAAC,CAAC,CAAC,IAAI2nC,GAAGvyC,EAAE,CAAC,oCAAoCsyC,EAAE,CAAC,EAAME,GAAG,CAAC,WAAW3kD,GAAG,aAAa,CAAC,GAAG,EAAE,cAAc,CAAC,EAAE,EAAE,SAAS,CAAC+a,EAAE,EAAEE,IAAI,CAAC,GAAG,CAACE,EAAEC,CAAC,EAAE,EAAE,CAAC,YAAY,EAAE,KAAK,EAAE,MAAM0B,EAAE,KAAKC,CAAC,EAAE9B,EAAE,MAAM,CAAC,EAAE,IAAIypC,GAAGvpC,EAAEC,EAAEL,EAAE,EAAE,EAAE+B,EAAEC,CAAC,CAAC,CAAC,CAAC,EAAE,SAAS6nC,GAAG7pC,EAAE,EAAEE,EAAEE,EAAE,CAAC,OAAO,EAAE,KAAKF,EAAE,OAAO,EAAE3G,EAAE,EAAE8zB,GAAG,EAAE,MAAMjtB,CAAC,CAAC,GAAGJ,EAAE,KAAKE,EAAE,OAAOF,EAAEzG,EAAEyG,EAAEqtB,GAAGrtB,EAAE,MAAMI,CAAC,CAAC,GAAG,CAAC,EAAE,IAAI1J,EAAEsJ,EAAEtR,GAAE+C,GAAGyO,EAAE,CAAC,EAAEF,EAAE,KAAK,CAAC,CAAC,CAAC,CAAC,IAAI8pC,GAAG,CAAC,WAAW1jD,GAAG,aAAa,CAAC,GAAG,EAAE,cAAc,CAAC,EAAE,EAAE,SAAS,CAAC4Z,EAAE,EAAEE,IAAI,CAAC,IAAIE,EAAEF,EAAE,CAAC,iBAAiBG,CAAC,EAAED,EAAE,EAAE,EAAE,CAAC,EAAE,EAAE,EAAE,CAAC,EAAE2B,EAAEqZ,GAAG/a,EAAE,EAAE,KAAK,EAAE2B,EAAE6nC,GAAG7pC,EAAE,EAAE,EAAE+B,CAAC,EAAE,MAAM,CAAC,EAAE,IAAIC,EAAE,EAAE,CAAC,CAAC,CAAC,EAAM+nC,GAAG,CAAC,WAAWrjD,GAAG,aAAa,CAAC,IAAI,GAAG,EAAE,SAAS,CAACsZ,EAAE,IAAI,CAAC,GAAG,CAACE,EAAEE,CAAC,EAAE,EAAE,MAAM,CAAC,EAAE,IAAI1J,EAAEsJ,EAAEtR,GAAE0E,GAAG8M,EAAEE,CAAC,EAAE,SAAS,CAAC,EAAE,EAAE,IAAI1J,EAAEsJ,EAAEtR,GAAE0F,GAAG8L,EAAEE,CAAC,EAAE,SAAS,CAAC,CAAC,CAAC,CAAC,EAAE,SAAS4pC,GAAGhqC,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,EAAE,CAAC,IAAI0B,EAAE2gB,EAAE1iB,EAAE,KAAK,eAAe,EAAEgC,EAAE0gB,EAAE,EAAE,QAAQ,eAAe,EAAEzgB,EAAEygB,EAAExiB,EAAE,SAAS,eAAe,EAAEwC,EAAEX,EAAEY,EAAEX,EAAEY,EAAEX,EAAEY,EAAE,GAAGb,EAAE,OAAO,IAAIa,EAAE,GAAGH,EAAEnJ,EAAEwI,EAAE,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,CAAC,CAAC,EAAEY,EAAEpJ,EAAEyI,EAAE,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,CAAC,CAAC,EAAEY,EAAErJ,EAAE0I,EAAE,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,CAAC,CAAC,GAAGqY,EAAE5X,EAAE,OAAO,EAAE,IAAI,0DAA0DA,EAAE,IAAI,GAAG,EAAE4X,EAAE3X,EAAE,OAAO,EAAE,IAAI,6DAA6DA,EAAE,IAAI,GAAG,EAAE2X,EAAE1X,EAAE,OAAO,EAAE,IAAI,8DAA8DA,EAAE,IAAI,GAAG,EAAE8mB,GAAG,gBAAgB,EAAE,CAAC,EAAE,IAAI5mB,EAAE,CAAC,GAAGJ,EAAE,MAAMC,EAAE,OAAOC,CAAC,EAAEoB,EAAE,CAAC,WAAW5D,EAAE,QAAQC,EAAE,IAAI,EAAE,gBAAgB,CAAC,EAAE,EAAEwhB,EAAE,UAAUt7B,GAAGuc,EAAEkB,CAAC,EAAE,OAAOnB,EAAEtJ,EAAE,EAAE,CAAC,EAAE,MAAM,CAAC,EAAE,EAAE,MAAM,CAAC,EAAE,EAAE,MAAM,CAAC,EAAE,EAAE,MAAM,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,IAAI0wC,GAAG7yC,EAAE,CAAC,eAAe4yC,EAAE,CAAC,EAAME,GAAG,CAAC,WAAW5jD,GAAG,aAAa,CAAC,GAAG,EAAE,cAAc,CAAC,EAAE,EAAE,SAAS,CAAC0Z,EAAE,EAAEE,IAAI,CAAC,GAAG,CAACE,EAAEC,CAAC,EAAE,EAAE,CAAC,WAAW,EAAE,QAAQ,EAAE,IAAI0B,EAAE,gBAAgBC,CAAC,EAAE9B,EAAE,MAAM,CAAC,EAAE,IAAI+pC,GAAGjqC,EAAEI,EAAEC,EAAE,EAAE,EAAE0B,EAAEC,CAAC,CAAC,CAAC,CAAC,EAAE,SAASmoC,GAAGnqC,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,EAAE,CAAC,IAAI0B,EAAE2gB,EAAE1iB,EAAE,KAAK,aAAa,EAAEgC,EAAE0gB,EAAE,EAAE,QAAQ,aAAa,EAAEzgB,EAAEygB,EAAExiB,EAAE,SAAS,aAAa,EAAEoa,EAAEtY,EAAE,OAAOD,EAAE,KAAK,IAAI,kBAAkBC,EAAE,IAAI,gCAAgCD,EAAE,IAAI,GAAG,EAAEuY,EAAEvY,EAAE,OAAO,EAAE,IAAI,wDAAwDA,EAAE,IAAI,GAAG,EAAEuY,EAAEtY,EAAE,OAAO,EAAE,IAAI,2DAA2DA,EAAE,IAAI,GAAG,EAAE0nB,GAAG,cAAc,EAAE,CAAC,EAAE,IAAIhnB,EAAE,CAAC,GAAGX,EAAE,MAAMC,EAAE,OAAOC,CAAC,EAAEU,EAAE,CAAC,WAAWvC,EAAE,QAAQC,EAAE,IAAI,EAAE,gBAAgB,CAAC,EAAE,OAAOwhB,EAAE,UAAUr7B,GAAGkc,EAAEC,CAAC,CAAC,CAAC,IAAIynC,GAAGhzC,EAAE,CAAC,aAAa+yC,EAAE,CAAC,EAAME,GAAG,CAAC,WAAWhkD,GAAG,aAAa,CAAC,GAAG,EAAE,cAAc,CAAC,EAAE,EAAE,SAAS,CAAC2Z,EAAE,EAAEE,IAAI,CAAC,GAAG,CAACE,EAAEC,CAAC,EAAE,EAAE,CAAC,WAAW,EAAE,QAAQ,EAAE,IAAI0B,CAAC,EAAE7B,EAAE,MAAM,CAAC,EAAE,IAAIkqC,GAAGpqC,EAAEI,EAAEC,EAAE,EAAE,EAAE0B,CAAC,CAAC,CAAC,CAAC,EAAMuoC,GAAG,CAAC,WAAW3jD,GAAG,aAAa,CAAC,GAAG,EAAE,SAAS,CAACqZ,EAAE,EAAEE,IAAI,CAAC,GAAG,CAACE,CAAC,EAAE,EAAE,CAAC,KAAKC,CAAC,EAAEH,EAAE,EAAEkb,GAAG/a,EAAED,EAAE,KAAK,EAAE2B,EAAEqrB,GAAGhtB,EAAE,MAAM,CAAC,EAAE,CAAC,EAAE4B,EAAE0Y,GAAG3Y,CAAC,EAAE,MAAM,CAAC,EAAE,IAAI,CAAC,IAAIW,EAAEtC,EAAE,MAAM,MAAM,EAAE,EAAE,QAAQyC,GAAG,CAACH,EAAEG,CAAC,EAAE,CAAC,CAAC,EAAE,IAAIF,EAAEpJ,EAAEyG,EAAE0C,CAAC,EAAE,OAAO7R,GAAG6F,EAAEiM,EAAEzL,GAAGkJ,EAAE,MAAM,SAAS,CAAC,EAAE4B,CAAC,CAAC,CAAC,CAAC,CAAC,EAAMuoC,GAAG,CAAC,WAAW3jD,GAAG,aAAa,CAAC,GAAG,EAAE,cAAc,CAAC,EAAE,EAAE,SAAS,CAACoZ,EAAE,EAAEE,IAAI,CAAC,IAAIE,EAAEF,EAAE,CAAC,KAAKG,CAAC,EAAED,EAAE,CAAC,EAAE,CAAC,EAAE,EAAE2B,EAAEqZ,GAAG/a,EAAE,EAAE,KAAK,EAAE2B,EAAE6nC,GAAG7pC,EAAE,EAAE,EAAE+B,CAAC,EAAE,MAAM,CAAC,EAAE,IAAIC,EAAE,EAAE,CAAC,CAAC,CAAC,EAAMwoC,GAAG,CAAC,WAAW3jD,GAAG,aAAa,CAAC,IAAI,GAAG,EAAE,SAAS,CAACmZ,EAAE,IAAI,CAAC,GAAG,CAACE,EAAEE,CAAC,EAAE,EAAE,MAAM,CAAC,EAAE,IAAI1J,EAAEsJ,EAAEtR,GAAE2F,GAAG6L,EAAEE,CAAC,EAAE,SAAS,CAAC,EAAE,EAAE,IAAI1J,EAAEsJ,EAAEtR,GAAEyE,GAAG+M,EAAEE,CAAC,EAAE,SAAS,CAAC,CAAC,CAAC,CAAC,EAAMqqC,GAAG,CAAC,WAAW3jD,GAAG,aAAa,CAAC,GAAG,EAAE,SAAS,CAACkZ,EAAE,EAAEE,IAAI,CAAC,IAAIE,EAAE,EAAE,CAAC,EAAE,CAAC,SAASC,CAAC,EAAEH,EAAE,EAAEG,EAAE,IAAI,GAAG,EAAE,CAAC,CAAC,EAAE,MAAM,CAAC,EAAE,IAAIhF,GAAG2E,EAAE,EAAEI,EAAE,KAAK,CAAC,CAAC,CAAC,EAAMsqC,GAAG,CAAC,WAAW3jD,GAAG,aAAa,CAAC,IAAI,GAAG,EAAE,SAAS,CAACiZ,EAAE,IAAI,CAAC,GAAG,CAACE,EAAEE,CAAC,EAAE,EAAEC,EAAEisB,GAAGpsB,EAAE,MAAME,EAAE,KAAK,EAAE,MAAM,CAAC,EAAE,IAAI,CAAC,IAAI2B,EAAEyqB,GAAGtsB,EAAE,MAAMG,CAAC,EAAE,OAAO0B,EAAE,OAAO,EAAExI,EAAEoD,GAAGqD,EAAE+B,CAAC,EAAE7B,EAAE,KAAK,EAAEF,CAAC,EAAE,EAAE,IAAI,CAAC,IAAI+B,EAAErL,EAAEsJ,EAAEnJ,GAAGzE,GAAGvB,GAAGqP,EAAEE,CAAC,CAAC,CAAC,CAAC,EAAE4B,EAAEwqB,GAAGpsB,EAAE,MAAMC,CAAC,EAAE,OAAO2B,EAAE,OAAO,EAAEzI,EAAEoD,GAAGoF,EAAEC,CAAC,EAAE5B,EAAE,KAAK,EAAE2B,CAAC,CAAC,CAAC,CAAC,EAAM4oC,GAAG,CAAC,WAAWzjD,GAAG,aAAa,CAAC,IAAI,GAAG,EAAE,SAAS,CAAC8Y,EAAE,IAAI,CAAC,GAAG,CAACE,EAAEE,CAAC,EAAE,EAAEC,EAAEisB,GAAGpsB,EAAE,MAAME,EAAE,KAAK,EAAE,MAAM,CAAC,EAAE,IAAI,CAAC,IAAI2B,EAAErL,EAAEsJ,EAAEtR,GAAE0R,EAAE,SAAS,CAAC,EAAE4B,EAAEwqB,GAAGtsB,EAAE,MAAMG,CAAC,EAAE,OAAO2B,EAAE,OAAO,EAAEzI,EAAEoD,GAAGoF,EAAEC,CAAC,EAAE9B,EAAE,KAAK,EAAE6B,CAAC,EAAE,EAAE,IAAI,CAAC,IAAIA,EAAErL,EAAEsJ,EAAEtR,GAAEwR,EAAE,SAAS,CAAC,EAAE8B,EAAEwqB,GAAGpsB,EAAE,MAAMC,CAAC,EAAE,OAAO2B,EAAE,OAAO,EAAEzI,EAAEoD,GAAGoF,EAAEC,CAAC,EAAE5B,EAAE,KAAK,EAAE2B,CAAC,CAAC,CAAC,CAAC,EAAM6oC,GAAG,CAAC,WAAWzjD,GAAG,SAAS6Y,IAAI,CAAC,EAAE,IAAInJ,GAAGmJ,CAAC,CAAC,EAAE,EAAM6qC,GAAG,CAAC,WAAWpjD,GAAG,aAAa,CAAC,SAAS,EAAE,SAAS,CAACuY,EAAE,IAAI,CAAC,IAAIE,EAAE,EAAE,CAAC,EAAE,MAAM,CAAC,QAAQ,IAAIX,GAAGW,EAAE,MAAM,SAAS,CAAC,CAAC,CAAC,EAAM4qC,GAAG,CAAC,WAAWpjD,GAAG,SAASsY,IAAI,CAAC,EAAE,IAAIR,GAAGQ,CAAC,CAAC,EAAE,EAAM+qC,GAAG,CAAC,WAAWljD,GAAG,cAAc,GAAG,SAAS,CAACmY,EAAE,EAAEE,IAAI,CAAC,GAAG,CAAC,KAAKE,CAAC,EAAEF,EAAE,OAAO9B,GAAG4B,EAAEI,CAAC,EAAE,IAAIyB,GAAG,IAAIA,CAAC,CAAC,CAAC,EAAMmpC,GAAG,CAAC,WAAWljD,GAAG,aAAa,CAAC,GAAG,EAAE,SAAS,CAACkY,EAAE,EAAEE,IAAI,CAAC,IAAIE,EAAE,EAAE,CAAC,EAAE,CAAC,SAASC,CAAC,EAAEH,EAAE,EAAEG,EAAE,IAAI,GAAG,EAAE,CAAC,CAAC,EAAE,MAAM,CAAC,EAAE,IAAIhF,GAAG2E,EAAE,EAAEI,EAAE,KAAK,CAAC,CAAC,CAAC,EAAM6qC,GAAG,CAAC,WAAWjjD,GAAG,aAAa,CAAC,IAAI,GAAG,EAAE,cAAc,CAAC,EAAE,EAAE,SAAS,CAACgY,EAAE,IAAI,CAAC,GAAG,CAACE,EAAEE,EAAEC,CAAC,EAAE,EAAE,EAAEH,EAAE,EAAEE,EAAE2B,EAAEuqB,GAAG,EAAE,MAAM,EAAE,KAAK,EAAE,MAAM,CAAC,EAAE,IAAI,CAAC,IAAI5pB,EAAEhU,GAAE,EAAE,SAAS,EAAEiU,EAAEjM,EAAEsJ,EAAEtJ,EAAEgM,EAAE9K,GAAG,EAAE8E,GAAGgG,EAAE1I,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE4I,EAAE4pB,GAAG,EAAE,MAAMzqB,CAAC,EAAE,OAAOa,EAAE,OAAO,IAAID,EAAEhG,GAAGgG,EAAEC,CAAC,GAAGrJ,EAAEoJ,EAAE,EAAE,KAAK,CAAC,EAAE,EAAE,IAAI,CAAC,IAAID,EAAEvP,GAAG,EAAE,CAAC,EAAEwP,EAAEtD,GAAGqD,EAAE9N,GAAG,CAAC,EAAE4K,GAAG,CAAC,CAAC,EAAEoD,EAAElM,EAAEsJ,EAAEtJ,EAAE2J,EAAEsC,CAAC,CAAC,EAAEE,EAAE2pB,GAAG,EAAE,MAAMzqB,CAAC,EAAE,OAAOc,EAAE,OAAO,IAAID,EAAEjG,GAAGiG,EAAEC,CAAC,GAAGtJ,EAAEqJ,EAAE,EAAE,KAAK,CAAC,CAAC,CAAC,CAAC,EAAMsoC,GAAG,CAAC,WAAWjjD,GAAG,aAAa,CAAC,IAAI,OAAO,EAAE,SAAS,CAAC+X,EAAE,IAAI,CAAC,GAAG,CAACE,EAAEE,CAAC,EAAE,EAAEC,EAAElN,GAAG+M,EAAE,CAAC,EAAE,MAAM,CAAC,EAAE,IAAIb,GAAGgB,EAAEL,EAAEtJ,EAAEsJ,EAAEI,CAAC,CAAC,EAAE,MAAM,IAAI,CAAC,IAAI,EAAEf,GAAGgB,EAAEb,GAAGQ,CAAC,EAAEtJ,EAAEsJ,EAAEE,CAAC,CAAC,EAAE,EAAEssB,GAAGpsB,EAAE,MAAMJ,EAAE,KAAK,EAAE,OAAO,EAAE,OAAO,IAAI,EAAErD,GAAG,EAAE,CAAC,GAAGpD,EAAE,EAAE6G,EAAE,KAAK,CAAC,CAAC,CAAC,CAAC,EAAE,SAAS+qC,GAAGnrC,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAEJ,EAAE,MAAM,MAAM,EAAEI,EAAEF,CAAC,EAAE,EAAE,IAAIG,EAAE9G,EAAE,EAAE6G,CAAC,EAAE,EAAEtQ,GAAGkQ,EAAEE,EAAE,GAAG,EAAE,EAAE,EAAEpQ,GAAGkQ,EAAEE,EAAE,GAAG,EAAE,EAAE6B,EAAErL,EAAE,EAAE,CAAC,EAAE,OAAOA,EAAE2J,EAAE0B,CAAC,CAAC,CAAC,SAASqpC,GAAGprC,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAEJ,EAAE,MAAM,OAAOK,EAAED,EAAEF,EAAE,OAAO,EAAExS,EAAE,mBAAmBwS,EAAEE,CAAC,EAAE,EAAEJ,EAAE,GAAG,OAAO,EAAElC,GAAGkC,EAAE,CAAC,GAAG,IAAI+B,EAAE,EAAE,MAAM,MAAM,EAAE,EAAEA,EAAE,OAAO3B,EAAEF,EAAE,OAAOA,EAAE,MAAM,EAAE,OAAO,CAAC0C,EAAEC,IAAID,EAAEC,EAAE,CAAC,EAAEd,EAAE,KAAK,CAAC,EAAE,IAAIW,EAAE,EAAE,QAAQX,CAAC,EAAE,EAAEopC,GAAGzoC,EAAE,EAAErC,CAAC,EAAE,GAAG,EAAE,EAAE,QAAQ,EAAE,KAAK,EAAE,GAAG,KAAK,CAAC,IAAIuC,EAAElV,EAAE,uBAAuB,CAAC,EAAE,EAAEoQ,GAAG,EAAE8E,CAAC,CAAC,CAAC,OAAO,CAAC,CAAC,IAAIyoC,GAAG,CAAC,WAAWnjD,GAAG,aAAa,CAAC,GAAG,EAAE,SAAS,CAAC8X,EAAE,EAAEE,IAAI,CAAC,GAAG,CAACE,CAAC,EAAE,EAAE,CAAC,KAAKC,CAAC,EAAEH,EAAE,EAAE,CAAC,EAAE,OAAOG,GAAG,KAAK,EAAED,EAAE,MAAM,IAAI,CAAC,EAAE2B,IAAIA,CAAC,EAAE,OAAO1B,GAAG,SAAS,EAAE,CAACA,CAAC,EAAE,EAAEA,EAAE,CAAC,EAAE,IAAI+qC,GAAGhrC,EAAEJ,EAAE,CAAC,CAAC,CAAC,CAAC,EAAMsrC,GAAG,CAAC,WAAW3iD,GAAG,aAAa,CAAC,IAAI,GAAG,EAAE,SAAS,CAACqX,EAAE,IAAI,CAAC,GAAG,CAACE,EAAEE,CAAC,EAAE,EAAEC,EAAEisB,GAAGpsB,EAAE,MAAME,EAAE,KAAK,EAAE,MAAM,CAAC,EAAE,IAAI,CAAC,IAAI2B,EAAElR,GAAGmP,EAAEtR,GAAE0R,EAAE,SAAS,CAAC,EAAE4B,EAAEwqB,GAAGtsB,EAAE,MAAMG,CAAC,EAAE,OAAO2B,EAAE,OAAO,EAAEzI,EAAEoD,GAAGoF,EAAEC,CAAC,EAAE9B,EAAE,KAAK,EAAE6B,CAAC,EAAE,EAAE,IAAI,CAAC,IAAIA,EAAErL,EAAEsJ,EAAEtR,GAAEwR,EAAE,SAAS,CAAC,EAAE8B,EAAEwqB,GAAGpsB,EAAE,MAAMC,CAAC,EAAE2B,EAAE,OAAO,IAAID,EAAExI,EAAEoD,GAAGoF,EAAEC,CAAC,EAAE5B,EAAE,KAAK,GAAG,IAAI6B,EAAE9F,GAAGiE,CAAC,EAAE,OAAOvJ,GAAGhG,GAAGkR,EAAErT,GAAEuT,EAAE,SAAS,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAMspC,GAAG,CAAC,WAAW3iD,GAAG,aAAa,CAAC,GAAG,EAAE,SAAS,CAACoX,EAAE,IAAI,CAAC,GAAG,CAACE,CAAC,EAAE,EAAE,MAAM,CAAC,EAAE,IAAIrP,GAAGmP,EAAEnJ,GAAGsF,GAAG+D,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAMsrC,GAAG,CAAC,WAAWziD,GAAG,aAAa,CAAC,GAAG,EAAE,SAAS,CAACiX,EAAE,IAAI,CAAC,GAAG,CAACE,CAAC,EAAE,EAAEE,EAAE1J,EAAErC,GAAG6L,EAAE,CAAC,EAAE3D,GAAG2D,CAAC,CAAC,EAAE,MAAM,CAAC,EAAE,IAAIxJ,EAAEsJ,EAAEtR,GAAE0R,EAAE,SAAS,CAAC,CAAC,CAAC,CAAC,EAAMqrC,GAAG,CAAC,WAAW3iD,GAAG,aAAa,CAAC,GAAG,EAAE,SAAS,CAACkX,EAAE,IAAI,CAAC,GAAG,CAACE,CAAC,EAAE,EAAE,MAAM,CAAC,EAAE,IAAIxJ,EAAEsJ,EAAEtR,GAAE6N,GAAG2D,CAAC,EAAE,SAAS,CAAC,CAAC,CAAC,CAAC,EAAMwrC,GAAG,CAAC,WAAW1iD,GAAG,aAAa,CAAC,GAAG,EAAE,SAAS,CAACgX,EAAE,IAAI,CAAC,GAAG,CAACE,CAAC,EAAE,EAAE,MAAM,CAAC,EAAE,IAAI3G,EAAEyG,EAAEE,EAAE,KAAK,CAAC,CAAC,CAAC,EAAMyrC,GAAG,CAAC,WAAW1iD,GAAG,aAAa,CAAC,QAAQ,EAAE,SAAS,CAAC+W,EAAE,EAAEE,IAAI,CAAC,GAAG,CAACE,CAAC,EAAE,EAAEC,EAAE,CAAC,GAAGL,EAAE,OAAOI,CAAC,EAAE,MAAM,CAAC,OAAO,IAAIyhB,EAAE,UAAU34B,GAAGmX,EAAEH,CAAC,CAAC,CAAC,CAAC,EAAM0rC,GAAG,CAAC,WAAWziD,GAAG,aAAa,CAAC,QAAQ,EAAE,SAAS,CAAC6W,EAAE,EAAEE,IAAI,CAAC,GAAG,CAACE,CAAC,EAAE,EAAEC,EAAE,CAAC,GAAGL,EAAE,OAAOI,CAAC,EAAE,MAAM,CAAC,OAAO,IAAIyhB,EAAE,UAAUz4B,GAAGiX,EAAEH,CAAC,CAAC,CAAC,CAAC,EAAM2rC,GAAG,CAAC,WAAWxiD,GAAG,SAAS,CAAC2W,EAAE,EAAEE,IAAI,CAAC,GAAG,CAAC,KAAKE,CAAC,EAAEF,EAAEG,EAAE+a,GAAGhb,EAAEJ,EAAE,KAAK,EAAE,MAAM,CAAC,EAAE,IAAIxG,GAAGwG,EAAEK,CAAC,CAAC,CAAC,CAAC,EAAMyrC,GAAG,CAAC,WAAWviD,GAAG,SAASyW,IAAI,CAAC,EAAE,IAAIR,GAAGQ,CAAC,CAAC,EAAE,EAAM+rC,GAAG,CAAC,WAAWviD,GAAG,aAAa,CAAC,GAAG,EAAE,SAAS,CAACwW,EAAE,IAAI,CAAC,GAAG,CAACE,CAAC,EAAE,EAAE,MAAM,CAAC,EAAE,IAAIrJ,GAAGhG,GAAGmP,EAAEtJ,EAAEkB,GAAGsI,EAAE,GAAG,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAM8rC,GAAG,CAAC,WAAWpiD,GAAG,aAAa,CAAC,WAAW,EAAE,SAAS,CAACoW,EAAE,IAAI,CAAC,GAAG,CAACE,CAAC,EAAE,EAAE,MAAM,CAAC,UAAU,IAAIxR,GAAE8Q,GAAGU,CAAC,EAAE,SAAS,EAAE,EAAE,IAAIxJ,EAAEsJ,EAAEtR,GAAEwR,EAAEF,EAAE,KAAK,CAAC,EAAE,EAAE,IAAItJ,EAAEsJ,EAAEtR,GAAEwG,GAAGgL,CAAC,EAAEF,EAAE,KAAK,CAAC,CAAC,CAAC,CAAC,EAAMisC,GAAG,CAAC,WAAWpiD,GAAG,aAAa,CAAC,GAAG,EAAE,SAAS,CAACmW,EAAE,IAAI,CAAC,GAAG,CAACE,CAAC,EAAE,EAAE,MAAM,CAAC,EAAE,IAAI,CAAC,IAAIE,EAAEjN,GAAG+M,EAAElG,GAAG,CAAC,CAAC,EAAEqG,EAAErG,GAAG+oC,EAAE,EAAE,EAAE/oC,GAAG8oC,EAAE,EAAE,EAAEpsC,EAAEsJ,EAAE,CAAC,EAAE+B,EAAErL,EAAEA,EAAEsJ,EAAEK,CAAC,EAAEzO,GAAGlD,GAAEwR,EAAE,SAAS,CAAC,CAAC,EAAE,OAAOb,GAAGe,EAAE,EAAE2B,CAAC,CAAC,CAAC,CAAC,CAAC,EAAMmqC,GAAG,CAAC,WAAWniD,GAAG,cAAc,CAAC,EAAE,EAAE,SAAS,CAACiW,EAAE,IAAI,CAAC,GAAG,CAACE,CAAC,EAAE,EAAE,MAAM,CAAC,EAAE,IAAIxJ,EAAEsJ,EAAEtJ,EAAEwJ,EAAExD,GAAG1C,GAAG,CAAC,EAAEkG,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAMisC,GAAG,CAAC,WAAWniD,GAAG,SAASgW,IAAI,CAAC,EAAE,IAAIR,GAAGQ,CAAC,CAAC,EAAE,EAAMosC,GAAG,CAAC,WAAWniD,GAAG,aAAa,CAAC,GAAG,EAAE,SAAS,CAAC+V,EAAE,IAAI,CAAC,GAAG,CAACE,CAAC,EAAE,EAAE,MAAM,CAAC,EAAE,IAAIxJ,EAAE/G,GAAGjB,GAAEwR,EAAE,SAAS,CAAC,EAAEF,CAAC,CAAC,CAAC,CAAC,EAAMqsC,GAAG,CAAC,WAAWniD,GAAG,aAAa,CAAC,GAAG,EAAE,SAAS,CAAC8V,EAAE,IAAI,CAAC,GAAG,CAACE,CAAC,EAAE,EAAE,MAAM,CAAC,EAAE,IAAIxJ,EAAE9G,GAAGlB,GAAEwR,EAAE,SAAS,CAAC,EAAEF,CAAC,CAAC,CAAC,CAAC,EAAMssC,GAAG,CAAC,WAAWniD,GAAG,aAAa,CAAC,GAAG,EAAE,SAAS,CAAC6V,EAAE,EAAEE,IAAI,CAAC,GAAG,CAACE,CAAC,EAAE,EAAE,CAAC,MAAMC,EAAE,KAAK,CAAC,EAAEH,EAAE,EAAEE,EAAE,MAAM,CAAC2B,EAAEC,CAAC,EAAEu/B,GAAGnhC,EAAEC,EAAE,CAAC,EAAE4B,EAAE,CAAC,EAAE,QAAQS,EAAE,EAAEA,EAAE1C,EAAE,KAAK0C,IAAIT,EAAE,KAAK,CAACF,EAAEW,CAAC,EAAE,EAAEA,CAAC,EAAEX,EAAEW,CAAC,EAAEV,EAAEU,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,EAAE,IAAIpL,GAAG0I,EAAEiC,CAAC,CAAC,CAAC,CAAC,EAAMsqC,GAAG,CAAC,WAAWniD,GAAG,cAAc,CAAC,EAAE,EAAE,SAAS,CAAC4V,EAAE,EAAEE,IAAI,CAAC,GAAG,CAACE,CAAC,EAAE,EAAE,CAAC,IAAIC,CAAC,EAAEH,EAAE,EAAE,GAAG,EAAExJ,EAAEsJ,EAAEI,CAAC,EAAE,MAAM,CAAC,OAAO,IAAI1D,GAAG,EAAEhG,EAAEiG,GAAG,EAAE,CAAC0D,CAAC,EAAE,CAAC,EAAED,CAAC,CAAC,CAAC,CAAC,CAAC,EAAMosC,GAAG,CAAC,WAAWniD,GAAG,aAAa,CAAC,GAAG,EAAE,SAAS,CAAC2V,EAAE,IAAI,CAAC,GAAG,CAACE,CAAC,EAAE,EAAE,MAAM,CAAC,EAAE,IAAIxJ,EAAEsJ,EAAEhF,GAAGkF,CAAC,CAAC,CAAC,CAAC,CAAC,EAAMusC,GAAG,CAAC,WAAWniD,GAAG,SAAS,CAAC0V,EAAE,EAAEE,IAAI,CAAC,GAAG,CAAC,WAAWE,EAAE,SAASC,CAAC,EAAEH,EAAE,MAAM,CAAC,EAAE,IAAIlS,GAAGgS,EAAEI,EAAEC,CAAC,CAAC,CAAC,CAAC,EAAMqsC,GAAG,CAAC,WAAW9hD,GAAG,SAAS,CAACoV,EAAE,EAAEE,IAAI,CAAC,GAAG,CAAC,KAAKE,CAAC,EAAEF,EAAE,MAAM,CAAC,EAAE,IAAInR,GAAGiR,EAAEI,CAAC,CAAC,CAAC,CAAC,EAAMusC,GAAG,CAAC,WAAW9hD,GAAG,aAAa,CAAC,GAAG,EAAE,SAAS,CAACmV,EAAE,IAAI,CAAC,GAAG,CAACE,CAAC,EAAE,EAAE,MAAM,CAAC,EAAE,IAAIrP,GAAGmP,EAAEtJ,EAAEwF,GAAGxN,GAAEwR,EAAE,SAAS,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,EAAM0sC,GAAG,CAAC,WAAW9hD,GAAG,aAAa,CAAC,GAAG,EAAE,SAAS,CAACkV,EAAE,IAAI,CAAC,GAAG,CAACE,CAAC,EAAE,EAAE,MAAM,CAAC,EAAE,IAAIxJ,EAAEsJ,EAAEtJ,EAAEhI,GAAEwR,EAAE,SAAS,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,EAAM2sC,GAAG,CAAC,WAAW9hD,GAAG,aAAa,CAAC,IAAI,GAAG,EAAE,SAAS,CAACiV,EAAE,IAAI,CAAC,GAAG,CAACE,EAAEE,CAAC,EAAE,EAAEC,EAAErG,GAAG,CAAC,EAAE,MAAM,CAAC,EAAE,IAAItD,EAAEsJ,EAAEtJ,EAAE2J,EAAE3D,GAAGwD,EAAEE,CAAC,CAAC,CAAC,EAAE,EAAE,IAAI1J,EAAEsJ,EAAEtJ,EAAE2J,EAAE3D,GAAG0D,EAAEF,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAM4sC,GAAG,CAAC,WAAW7hD,GAAG,SAAS+U,IAAI,CAAC,EAAE,IAAIR,GAAGQ,CAAC,CAAC,EAAE,EAAM+sC,GAAG,CAAC,WAAWzhD,GAAG,aAAa,CAAC,IAAI,GAAG,EAAE,SAAS,CAAC0U,EAAE,IAAI,CAAC,GAAG,CAACE,EAAEE,CAAC,EAAE,EAAEC,EAAEisB,GAAGpsB,EAAE,MAAME,EAAE,KAAK,EAAE,MAAM,CAAC,EAAE,IAAI,CAAC,IAAI2B,EAAE/B,EAAEgC,EAAEwqB,GAAGtsB,EAAE,MAAMG,CAAC,EAAE,OAAO2B,EAAE,OAAO,IAAID,EAAEpF,GAAGoF,EAAEC,CAAC,GAAGzI,EAAEwI,EAAE7B,EAAE,KAAK,CAAC,EAAE,EAAE,IAAI,CAAC,IAAI6B,EAAE/B,EAAEgC,EAAEwqB,GAAGpsB,EAAE,MAAMC,CAAC,EAAE,OAAO2B,EAAE,OAAO,IAAID,EAAEpF,GAAGoF,EAAEC,CAAC,GAAGzI,EAAE1C,GAAGkL,CAAC,EAAE3B,EAAE,KAAK,CAAC,CAAC,CAAC,CAAC,EAAM4sC,GAAG,CAAC,WAAWzhD,GAAG,aAAa,CAAC,GAAG,EAAE,SAAS,CAACyU,EAAE,EAAEE,IAAI,CAAC,GAAG,CAACE,CAAC,EAAE,EAAEC,EAAED,EAAE,MAAM,MAAM,EAAE,CAAC,KAAK,CAAC,EAAEF,EAAEkb,GAAG,EAAEhb,EAAE,KAAK,EAAE,QAAQ,GAAG,CAACC,EAAE,CAAC,EAAE,CAAC,CAAC,EAAE,IAAI0B,EAAExI,EAAEyG,EAAEK,CAAC,EAAE2B,EAAEtL,EAAEqL,EAAE7K,GAAGkJ,EAAE,MAAM,SAAS,CAAC,EAAE,MAAM,CAAC,EAAE,IAAI4B,CAAC,CAAC,CAAC,EAAMirC,GAAG,CAAC,WAAWxhD,GAAG,aAAa,CAAC,GAAG,EAAE,SAAS,CAACuU,EAAE,IAAI,CAAC,GAAG,CAACE,CAAC,EAAE,EAAE,MAAM,CAAC,EAAE,IAAIrP,GAAGmP,EAAE7D,GAAGxM,GAAGuQ,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAMgtC,GAAG,CAAC,WAAWxhD,GAAG,cAAc,CAAC,EAAE,EAAE,SAAS,CAACsU,EAAE,IAAI,CAAC,GAAG,CAACE,CAAC,EAAE,EAAE,MAAM,CAAC,EAAE,IAAIxJ,EAAEgG,GAAG1C,GAAG,CAAC,EAAEmC,GAAG+D,CAAC,CAAC,EAAEF,CAAC,CAAC,CAAC,CAAC,EAAMmtC,GAAG,CAAC,WAAWrhD,GAAG,aAAa,CAAC,GAAG,EAAE,SAAS,CAACkU,EAAE,EAAEE,IAAI,CAAC,GAAG,CAACE,CAAC,EAAE,EAAE,CAAC,KAAKC,CAAC,EAAEH,EAAE,MAAM,CAAC,EAAE,IAAI,CAAC,IAAI4B,EAAEtC,GAAGY,CAAC,EAAE,GAAGA,EAAE,OAAO,EAAE,QAAQ2B,EAAE,EAAEA,EAAE1B,EAAE,CAAC,EAAE,EAAE0B,EAAED,EAAElV,EAAEkV,EAAEzG,GAAG2E,EAAE,CAAC+B,EAAE3B,EAAE,MAAM,CAAC,CAAC,EAAE,CAACA,EAAE,MAAM,CAAC,CAAC,CAAC,CAAC,UAAUA,EAAE,OAAO,EAAE,QAAQ2B,EAAE,EAAEA,EAAE1B,EAAE,CAAC,EAAE,EAAE0B,EAAE,QAAQC,EAAE,EAAEA,EAAE3B,EAAE,CAAC,EAAE,EAAE2B,EAAEF,EAAElV,EAAEkV,EAAEzG,GAAG2E,EAAE,CAAC+B,EAAE3B,EAAE,MAAM,CAAC,EAAE4B,EAAE5B,EAAE,MAAM,CAAC,CAAC,EAAE,CAACA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,CAAC,CAAC,CAAC,UAAUA,EAAE,OAAO,EAAE,QAAQ2B,EAAE,EAAEA,EAAE1B,EAAE,CAAC,EAAE,EAAE0B,EAAE,QAAQC,EAAE,EAAEA,EAAE3B,EAAE,CAAC,EAAE,EAAE2B,EAAE,QAAQ,EAAE,EAAE,EAAE3B,EAAE,CAAC,EAAE,EAAE,EAAEyB,EAAElV,EAAEkV,EAAEzG,GAAG2E,EAAE,CAAC+B,EAAE3B,EAAE,MAAM,CAAC,EAAE4B,EAAE5B,EAAE,MAAM,CAAC,EAAE,EAAEA,EAAE,MAAM,CAAC,CAAC,EAAE,CAACA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,CAAC,CAAC,CAAC,UAAUA,EAAE,OAAO,EAAE,QAAQ2B,EAAE,EAAEA,EAAE1B,EAAE,CAAC,EAAE,EAAE0B,EAAE,QAAQC,EAAE,EAAEA,EAAE3B,EAAE,CAAC,EAAE,EAAE2B,EAAE,QAAQ,EAAE,EAAE,EAAE3B,EAAE,CAAC,EAAE,EAAE,EAAE,QAAQqC,EAAE,EAAEA,EAAErC,EAAE,CAAC,EAAE,EAAEqC,EAAEZ,EAAElV,EAAEkV,EAAEzG,GAAG2E,EAAE,CAAC+B,EAAE3B,EAAE,MAAM,CAAC,EAAE4B,EAAE5B,EAAE,MAAM,CAAC,EAAE,EAAEA,EAAE,MAAM,CAAC,EAAEsC,EAAEtC,EAAE,MAAM,CAAC,CAAC,EAAE,CAACA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,CAAC,CAAC,CAAC,MAAO,OAAM,IAAI,MAAM,2DAA2DA,EAAE,IAAI,eAAe,EAAE,OAAO0B,CAAC,CAAC,CAAC,CAAC,EAAMsrC,GAAG,CAAC,WAAWnhD,GAAG,SAAS,CAAC+T,EAAE,EAAEE,IAAI,CAAC,IAAIE,EAAEF,EAAE,CAAC,KAAKG,CAAC,EAAED,EAAE,EAAEotB,GAAGntB,CAAC,EAAE,MAAM,CAAC,EAAE,IAAIvC,GAAGkC,EAAE,CAAC,CAAC,CAAC,CAAC,EAAMqtC,GAAG,CAAC,WAAWlhD,GAAG,SAAS,CAAC6T,EAAE,EAAEE,IAAI,CAAC,IAAIE,EAAEF,EAAE,CAAC,KAAKG,CAAC,EAAED,EAAE,MAAM,CAAC,MAAM,IAAI9D,GAAG0D,EAAEK,CAAC,CAAC,CAAC,CAAC,EAAMitC,GAAG,CAAC,WAAWlhD,GAAG,aAAa,CAAC,YAAY,EAAE,SAAS,CAAC4T,EAAE,IAAI,CAAC,GAAG,CAACE,CAAC,EAAE,EAAE,MAAM,CAAC,EAAE,IAAIqtC,GAAGvtC,EAAEE,CAAC,CAAC,CAAC,CAAC,EAAE,SAASqtC,GAAGvtC,EAAE,EAAE,CAAC,IAAIE,EAAErK,GAAG,EAAE2J,GAAG,CAAC,CAAC,EAAEY,EAAE5N,GAAGwN,EAAEE,CAAC,EAAEG,EAAEjN,GAAG,EAAE4G,GAAG,EAAE,OAAO,CAAC,EAAE,EAAEoG,EAAE,KAAKC,EAAE,KAAK,QAAQ0B,EAAE,EAAEA,EAAE,EAAE,EAAEA,EAAE1B,EAAExO,GAAGwO,EAAE0B,EAAE,CAAC,EAAE1B,EAAEpL,GAAGoL,EAAEnJ,GAAGkJ,EAAE,MAAM,MAAM,CAAC,EAAE,IAAI,EAAEZ,GAAGY,CAAC,EAAE,OAAOf,GAAGgB,EAAED,EAAE,CAAC,CAAC,CAAC,IAAIotC,GAAG,CAAC,WAAWjhD,GAAG,SAASyT,IAAI,CAAC,EAAE,IAAIR,GAAGQ,CAAC,CAAC,EAAE,EAAMytC,GAAG,CAACvH,GAAGC,GAAGC,GAAGC,GAAGC,GAAGC,GAAGC,GAAGC,GAAGC,GAAGC,GAAGC,GAAGC,GAAGG,GAAGG,GAAGC,GAAGC,GAAGC,GAAGC,GAAGC,GAAGC,GAAGC,GAAGC,GAAGE,GAAGD,GAAGI,GAAGC,GAAGC,GAAGC,GAAGC,GAAGC,GAAGiD,GAAGhD,GAAGC,GAAGC,GAAGC,GAAGC,GAAGE,GAAGD,GAAGE,GAAGC,GAAGG,GAAGC,GAAGC,GAAGC,GAAGC,GAAGC,GAAGC,GAAGC,GAAGC,GAAGG,GAAGE,GAAGA,GAAGC,GAAGG,GAAGG,GAAGC,GAAGC,GAAGC,GAAGC,GAAGC,GAAGC,GAAGC,GAAGC,GAAGC,GAAGC,GAAGC,GAAGA,GAAGC,GAAGC,GAAGG,GAAGE,GAAGC,GAAGC,GAAGC,GAAGC,GAAGC,GAAGC,GAAGC,GAAGC,GAAGC,GAAGC,GAAGC,GAAGC,GAAGC,GAAGC,GAAGC,GAAGC,GAAGC,GAAGC,GAAGA,GAAGC,GAAGA,GAAGC,GAAGE,GAAGD,GAAGE,GAAGC,GAAGC,GAAGC,GAAGC,GAAGC,GAAGC,GAAGC,GAAGC,GAAGE,EAAE,EAAE,QAAQxtC,KAAKytC,GAAGz0C,GAAGgH,CAAC,EAAE4gB,EAAE,EAAE,UAAU,IAAI,UAAU,CAAC,OAAO,KAAK,gBAAgB,EAAEn0B,GAAG,IAAI,CAAC,EAAEm0B,EAAE,EAAE,UAAU,KAAK,UAAU,CAAC,OAAO,KAAK,gBAAgB,EAAEl0B,GAAG,IAAI,CAAC,EAAEk0B,EAAE,EAAE,UAAU,MAAM,UAAU,CAAC,OAAO,KAAK,gBAAgB,EAAEj0B,GAAG,IAAI,CAAC,EAAEi0B,EAAE,EAAE,UAAU,IAAI,SAAS5gB,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAEpT,EAAE,KAAKoT,CAAC,CAAC,EAAE4gB,EAAE,EAAE,UAAU,IAAI,SAAS5gB,EAAE,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAElT,GAAG,KAAKkT,EAAE,CAAC,CAAC,EAAE4gB,EAAE,EAAE,UAAU,IAAI,SAAS5gB,EAAE,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAEjT,GAAG,KAAKiT,EAAE,CAAC,CAAC,EAAE4gB,EAAE,EAAE,UAAU,OAAO,SAAS5gB,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAEhT,GAAG,KAAKgT,CAAC,CAAC,EAAE4gB,EAAE,EAAE,UAAU,OAAO,SAAS5gB,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAE/S,GAAG,KAAK+S,CAAC,CAAC,EAAE4gB,EAAE,EAAE,UAAU,SAAS,UAAU,CAAC,OAAO,KAAK,gBAAgB,EAAEtG,EAAE,KAAK,OAAO,EAAE,IAAI,qCAAqC,EAAE/gB,EAAE,KAAK,CAAC,CAAC,CAAC,EAAEqnB,EAAE,EAAE,UAAU,OAAO,SAAS5gB,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAEtR,GAAE,KAAKsR,CAAC,CAAC,EAAE4gB,EAAE,EAAE,UAAU,KAAK,UAAU,CAAC,OAAO,KAAK,gBAAgB,EAAErnB,EAAE,KAAK,CAAC,KAAK,IAAI,CAAC,CAAC,EAAEqnB,EAAE,EAAE,UAAU,KAAK,SAAS5gB,EAAE,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAEzG,EAAE,KAAK,CAACyG,EAAE,CAAC,CAAC,CAAC,EAAE4gB,EAAE,EAAE,UAAU,KAAK,SAAS5gB,EAAE,EAAEE,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAE3G,EAAE,KAAK,CAACyG,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE0gB,EAAE,EAAE,UAAU,KAAK,SAAS5gB,EAAE,EAAEE,EAAEE,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAE7G,EAAE,KAAK,CAACyG,EAAE,EAAEE,EAAEE,CAAC,CAAC,CAAC,EAAEwgB,EAAE,EAAE,UAAU,KAAK,SAAS5gB,EAAE,EAAEE,EAAEE,EAAEC,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAE9G,EAAE,KAAK,CAACyG,EAAE,EAAEE,EAAEE,EAAEC,CAAC,CAAC,CAAC,EAAEugB,EAAE,EAAE,UAAU,KAAK,UAAU,CAAC,OAAO,KAAK,gBAAgB,EAAE1zB,GAAG,IAAI,CAAC,EAAE0zB,EAAE,EAAE,UAAU,MAAM,UAAU,CAAC,OAAO,KAAK,gBAAgB,EAAEzzB,GAAG,IAAI,CAAC,EAAEyzB,EAAE,EAAE,UAAU,KAAK,UAAU,CAAC,OAAO,KAAK,gBAAgB,EAAExzB,GAAG,IAAI,CAAC,EAAEwzB,EAAE,EAAE,UAAU,MAAM,SAAS5gB,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAE3S,GAAG,KAAK2S,CAAC,CAAC,EAAE4gB,EAAE,EAAE,UAAU,MAAM,UAAU,CAAC,OAAO,KAAK,gBAAgB,EAAEtzB,GAAG,IAAI,CAAC,EAAEszB,EAAE,EAAE,UAAU,QAAQ,SAAS5gB,EAAE,EAAEE,EAAEE,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAE7S,GAAG,KAAKyS,EAAE,EAAEE,EAAEE,CAAC,CAAC,EAAEwgB,EAAE,EAAE,UAAU,eAAe,SAAS5gB,EAAE,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAEhS,GAAG,KAAKgS,EAAE,CAAC,CAAC,EAAE4gB,EAAE,EAAE,UAAU,UAAU,SAAS5gB,EAAE,EAAEE,EAAEE,EAAEC,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAEzS,GAAG,KAAKoS,EAAE,EAAEE,EAAEE,EAAEC,CAAC,CAAC,EAAEugB,EAAE,EAAE,UAAU,YAAY,SAAS5gB,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAE3R,GAAG,KAAK2R,CAAC,CAAC,EAAE4gB,EAAE,EAAE,UAAU,KAAK,SAAS5gB,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAEtR,GAAE,KAAKsR,CAAC,CAAC,EAAE4gB,EAAE,EAAE,UAAU,KAAK,UAAU,CAAC,OAAO,KAAK,gBAAgB,EAAEjyB,GAAG,IAAI,CAAC,EAAEiyB,EAAE,EAAE,UAAU,YAAY,SAAS5gB,EAAE,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAEpR,GAAG,KAAKoR,EAAE,CAAC,CAAC,EAAE4gB,EAAE,EAAE,UAAU,OAAO,SAAS5gB,EAAE,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAEA,aAAarU,KAAKqU,EAAE,CAACA,CAAC,GAAGjR,GAAG,CAAC,KAAK,GAAGiR,CAAC,EAAE,CAAC,CAAC,EAAE4gB,EAAE,EAAE,UAAU,OAAO,SAAS5gB,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAEhR,GAAG,KAAK2Q,EAAE,EAAEE,EAAEE,EAAEC,EAAE,CAAC,CAAC,EAAEugB,EAAE,EAAE,UAAU,gBAAgB,SAAS5gB,EAAE,EAAEE,EAAEE,EAAEC,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAE9Q,GAAG,KAAKyQ,EAAE,EAAEE,EAAEE,EAAEC,CAAC,CAAC,EAAEugB,EAAE,EAAE,UAAU,OAAO,SAAS5gB,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAE/Q,GAAG,KAAK0Q,EAAE,EAAEE,EAAEE,EAAEC,EAAE,CAAC,CAAC,EAAEugB,EAAE,EAAE,UAAU,IAAI,UAAU,CAAC,OAAO,KAAK,gBAAgB,EAAEjxB,GAAG,IAAI,CAAC,EAAEixB,EAAE,EAAE,UAAU,KAAK,UAAU,CAAC,OAAO,KAAK,gBAAgB,EAAEhxB,GAAG,IAAI,CAAC,EAAEgxB,EAAE,EAAE,UAAU,QAAQ,SAAS5gB,EAAE,EAAEE,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAEpQ,GAAG,KAAKkQ,EAAE,EAAEE,CAAC,CAAC,EAAE0gB,EAAE,EAAE,UAAU,OAAO,SAAS5gB,EAAE,EAAEE,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAEnQ,GAAG,KAAKiQ,EAAE,EAAEE,CAAC,CAAC,EAAE0gB,EAAE,EAAE,UAAU,aAAa,SAAS5gB,EAAE,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAE5P,GAAG,KAAK4P,EAAE,CAAC,CAAC,EAAE4gB,EAAE,EAAE,UAAU,gBAAgB,SAAS5gB,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAEhQ,GAAG,KAAK2P,EAAE,EAAEE,EAAEE,EAAEC,EAAE,CAAC,CAAC,EAAEugB,EAAE,EAAE,UAAU,WAAW,SAAS5gB,EAAE,EAAEE,EAAEE,EAAEC,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAE5P,GAAG,KAAKuP,EAAE,EAAEE,EAAEE,EAAEC,CAAC,CAAC,EAAEugB,EAAE,EAAE,UAAU,SAAS,SAAS5gB,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAElP,GAAG,KAAKkP,CAAC,CAAC,EAAE4gB,EAAE,EAAE,UAAU,IAAI,SAAS5gB,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAEnP,GAAG,KAAKmP,CAAC,CAAC,EAAE4gB,EAAE,EAAE,UAAU,IAAI,SAAS5gB,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAEjP,GAAG,KAAKiP,CAAC,CAAC,EAAE4gB,EAAE,EAAE,UAAU,IAAI,UAAU,CAAC,OAAO,KAAK,gBAAgB,EAAE1vB,GAAG,IAAI,CAAC,EAAE0vB,EAAE,EAAE,UAAU,MAAM,SAAS5gB,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAEvO,GAAG,KAAKuO,CAAC,CAAC,EAAE4gB,EAAE,EAAE,UAAU,IAAI,UAAU,CAAC,OAAO,KAAK,gBAAgB,EAAElvB,GAAG,IAAI,CAAC,EAAEkvB,EAAE,EAAE,UAAU,cAAc,SAAS5gB,EAAE,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAErO,GAAG,KAAKqO,EAAE,CAAC,CAAC,EAAE4gB,EAAE,EAAE,UAAU,IAAI,UAAU,CAAC,OAAO,KAAK,gBAAgB,EAAEhvB,GAAG,IAAI,CAAC,EAAEgvB,EAAE,EAAE,UAAU,WAAW,SAAS5gB,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAEnO,GAAG,KAAKmO,CAAC,CAAC,EAAE4gB,EAAE,EAAE,UAAU,MAAM,UAAU,CAAC,OAAO,KAAK,gBAAgB,EAAE9uB,GAAG,IAAI,CAAC,EAAE8uB,EAAE,EAAE,UAAU,IAAI,UAAU,CAAC,OAAO,KAAK,gBAAgB,EAAE5uB,GAAG,IAAI,CAAC,EAAE4uB,EAAE,EAAE,UAAU,QAAQ,UAAU,CAAC,OAAO,KAAK,gBAAgB,EAAErnB,EAAE,KAAK,CAAC,KAAK,IAAI,CAAC,CAAC,EAAEqnB,EAAE,EAAE,UAAU,MAAM,UAAU,CAAC,OAAO,KAAK,gBAAgB,EAAExuB,GAAG,IAAI,CAAC,EAAEwuB,EAAE,EAAE,UAAU,SAAS,SAAS5gB,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAE3N,GAAG,KAAK2N,CAAC,CAAC,EAAE4gB,EAAE,EAAE,UAAU,OAAO,SAAS5gB,EAAE,EAAEE,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAE1N,GAAG,KAAKwN,EAAE,EAAEE,CAAC,CAAC,EAAE0gB,EAAE,EAAE,UAAU,aAAa,SAAS5gB,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAE5M,GAAG,KAAK4M,CAAC,CAAC,EAAE4gB,EAAE,EAAE,UAAU,QAAQ,SAAS5gB,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAE7M,GAAG,KAAK6M,CAAC,CAAC,EAAE4gB,EAAE,EAAE,UAAU,KAAK,UAAU,CAAC,OAAO,KAAK,gBAAgB,EAAEvtB,GAAG,IAAI,CAAC,EAAEutB,EAAE,EAAE,UAAU,MAAM,UAAU,CAAC,OAAO,KAAK,gBAAgB,EAAEhtB,GAAG,IAAI,CAAC,EAAEgtB,EAAE,EAAE,UAAU,SAAS,UAAU,CAAC,OAAO,KAAK,gBAAgB,EAAE/sB,GAAG,IAAI,CAAC,EAAE+sB,EAAE,EAAE,UAAU,MAAM,UAAU,CAAC,OAAO,KAAK,gBAAgB,EAAE9sB,GAAG,IAAI,CAAC,EAAE8sB,EAAE,EAAE,UAAU,MAAM,UAAU,CAAC,OAAO,KAAK,gBAAgB,EAAE7sB,GAAG,IAAI,CAAC,EAAE6sB,EAAE,EAAE,UAAU,UAAU,SAAS5gB,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAE7L,GAAG,KAAK6L,CAAC,CAAC,EAAE4gB,EAAE,EAAE,UAAU,UAAU,SAAS5gB,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAE3L,GAAG,KAAK2L,CAAC,CAAC,EAAE4gB,EAAE,EAAE,UAAU,KAAK,SAAS5gB,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAE5L,GAAG,KAAK4L,CAAC,CAAC,EAAE4gB,EAAE,EAAE,UAAU,2BAA2B,SAAS5gB,EAAE,EAAEE,EAAEE,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAEzL,GAAG,KAAKqL,EAAE,EAAEE,EAAEE,CAAC,CAAC,EAAEwgB,EAAE,EAAE,UAAU,WAAW,UAAU,CAAC,OAAO,KAAK,gBAAgB,EAAE9rB,GAAG,IAAI,CAAC,EAAE8rB,EAAE,EAAE,UAAU,WAAW,SAAS5gB,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAEjL,GAAG,KAAKiL,CAAC,CAAC,EAAE4gB,EAAE,EAAE,UAAU,UAAU,SAAS5gB,EAAE,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAEhL,GAAG,KAAKgL,EAAE,CAAC,CAAC,EAAE4gB,EAAE,EAAE,UAAU,IAAI,UAAU,CAAC,OAAO,KAAK,gBAAgB,EAAEhsB,GAAG,IAAI,CAAC,EAAEgsB,EAAE,EAAE,UAAU,MAAM,UAAU,CAAC,OAAO,KAAK,gBAAgB,EAAE/rB,GAAG,IAAI,CAAC,EAAE+rB,EAAE,EAAE,UAAU,WAAW,SAAS5gB,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAE/K,GAAG,KAAK+K,CAAC,CAAC,EAAE4gB,EAAE,EAAE,UAAU,WAAW,UAAU,CAAC,OAAO,KAAK,gBAAgB,EAAE1rB,GAAG,IAAI,CAAC,EAAE0rB,EAAE,EAAE,UAAU,UAAU,SAAS5gB,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAE7K,GAAG,KAAK6K,CAAC,CAAC,EAAE4gB,EAAE,EAAE,UAAU,WAAW,SAAS5gB,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAE5K,GAAG,KAAK4K,CAAC,CAAC,EAAE4gB,EAAE,EAAE,UAAU,OAAO,SAAS5gB,EAAE,EAAEE,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAE3K,GAAG,KAAKyK,EAAE,EAAEE,CAAC,CAAC,EAAE0gB,EAAE,EAAE,UAAU,QAAQ,SAAS5gB,EAAE,EAAEE,EAAEE,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAE1K,GAAG,KAAKsK,EAAE,EAAEE,EAAEE,CAAC,CAAC,EAAEwgB,EAAE,EAAE,UAAU,IAAI,SAAS5gB,EAAE,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAEvK,GAAG,KAAKuK,EAAE,CAAC,CAAC,EAAE4gB,EAAE,EAAE,UAAU,QAAQ,SAAS5gB,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAEnK,GAAG,KAAKmK,CAAC,CAAC,EAAE4gB,EAAE,EAAE,UAAU,KAAK,SAAS5gB,EAAE,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAElK,GAAG,KAAKkK,EAAE,CAAC,CAAC,EAAE4gB,EAAE,EAAE,UAAU,IAAI,SAAS5gB,EAAE,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAE9J,GAAG,KAAK8J,EAAE,CAAC,CAAC,EAAE4gB,EAAE,EAAE,UAAU,QAAQ,SAAS5gB,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAE7J,GAAG,KAAK6J,CAAC,CAAC,EAAE4gB,EAAE,EAAE,UAAU,UAAU,SAAS5gB,EAAE,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAE5J,GAAG,KAAK4J,EAAE,CAAC,CAAC,EAAE4gB,EAAE,EAAE,UAAU,IAAI,SAAS5gB,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAE3J,GAAG,KAAK2J,CAAC,CAAC,EAAE4gB,EAAE,EAAE,UAAU,IAAI,SAAS5gB,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAEtJ,EAAE,KAAKsJ,CAAC,CAAC,EAAE4gB,EAAE,EAAE,UAAU,IAAI,UAAU,CAAC,OAAO,KAAK,gBAAgB,EAAE/pB,GAAG,IAAI,CAAC,EAAE+pB,EAAE,EAAE,UAAU,KAAK,SAAS5gB,EAAE,EAAEE,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAEnJ,GAAG,KAAKiJ,EAAE,EAAEE,CAAC,CAAC,EAAE0gB,EAAE,EAAE,UAAU,SAAS,SAAS5gB,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAEhJ,GAAG,KAAKgJ,CAAC,CAAC,EAAE4gB,EAAE,EAAE,UAAU,OAAO,SAAS5gB,EAAE,EAAE,EAAEE,EAAE,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAEjJ,GAAG,KAAK+I,EAAE,EAAEE,CAAC,CAAC,EAAE0gB,EAAE,EAAE,UAAU,SAAS,UAAU,CAAC,OAAO,KAAK,gBAAgB,EAAEzpB,GAAG,IAAI,CAAC,EAAEypB,EAAE,EAAE,UAAU,IAAI,SAAS5gB,EAAE,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAE1I,GAAG,KAAK0I,EAAE,CAAC,CAAC,EAAE4gB,EAAE,EAAE,UAAU,KAAK,SAAS5gB,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAE1I,GAAG,KAAKqI,EAAE,EAAEE,EAAEE,EAAEC,EAAE,CAAC,CAAC,EAAEugB,EAAE,EAAE,UAAU,IAAI,SAAS5gB,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAEpI,GAAG,KAAKoI,CAAC,CAAC,EAAE4gB,EAAE,EAAE,UAAU,MAAM,SAAS5gB,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAEnI,GAAG,KAAKmI,CAAC,CAAC,EAAE4gB,EAAE,EAAE,UAAU,KAAK,SAAS5gB,EAAE,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAEjI,GAAG,KAAKiI,EAAE,CAAC,CAAC,EAAE4gB,EAAE,EAAE,UAAU,WAAW,UAAU,CAAC,OAAO,KAAK,gBAAgB,EAAE/nB,GAAG,IAAI,CAAC,EAAE+nB,EAAE,EAAE,UAAU,KAAK,UAAU,CAAC,OAAO,KAAK,gBAAgB,EAAExnB,GAAG,IAAI,CAAC,EAAEwnB,EAAE,EAAE,UAAU,MAAM,UAAU,CAAC,OAAO,KAAK,gBAAgB,EAAEvnB,GAAG,IAAI,CAAC,EAAEunB,EAAE,EAAE,UAAU,UAAU,SAAS5gB,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAEzG,EAAE,KAAKyG,EAAE,KAAK,CAAC,EAAE4gB,EAAE,EAAE,UAAU,QAAQ,SAAS5gB,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAEzG,EAAE,KAAKyG,CAAC,CAAC,EAAE4gB,EAAE,EAAE,UAAU,eAAe,SAAS5gB,EAAE,EAAEE,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAEu6B,GAAG,KAAKz6B,EAAE,EAAEE,CAAC,CAAC,EAAE0gB,EAAE,EAAE,UAAU,sBAAsB,SAAS5gB,EAAE,EAAEE,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAEy6B,GAAG,KAAK36B,EAAE,EAAEE,CAAC,CAAC,EAAE0gB,EAAE,EAAE,UAAU,QAAQ,SAAS5gB,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAExG,GAAG,KAAKwG,CAAC,CAAC,EAAE4gB,EAAE,EAAE,UAAU,KAAK,UAAU,CAAC,OAAO,KAAK,gBAAgB,EAAE/mB,GAAG,IAAI,CAAC,EAAE+mB,EAAE,EAAE,UAAU,MAAM,UAAU,CAAC,OAAO,KAAK,gBAAgB,EAAE9mB,GAAG,IAAI,CAAC,EAAE8mB,EAAE,EAAE,UAAU,MAAM,UAAU,CAAC,OAAO,KAAK,gBAAgB,EAAE7mB,GAAG,IAAI,CAAC,EAAE6mB,EAAE,EAAE,UAAU,KAAK,UAAU,CAAC,OAAO,KAAK,gBAAgB,EAAExmB,GAAG,IAAI,CAAC,EAAEwmB,EAAE,EAAE,UAAU,gBAAgB,SAAS5gB,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAEhG,GAAG,KAAK2F,EAAE,EAAEE,EAAEE,EAAEC,EAAE,CAAC,CAAC,EAAEugB,EAAE,EAAE,UAAU,QAAQ,UAAU,CAAC,OAAO,KAAK,gBAAgB,EAAE5lB,GAAG,IAAI,CAAC,EAAE4lB,EAAE,EAAE,UAAU,KAAK,UAAU,CAAC,OAAO,KAAK,gBAAgB,EAAE3lB,GAAG,IAAI,CAAC,EAAE2lB,EAAE,EAAE,UAAU,IAAI,UAAU,CAAC,OAAO,KAAK,gBAAgB,EAAEzlB,GAAG,IAAI,CAAC,EAAEylB,EAAE,EAAE,UAAU,KAAK,UAAU,CAAC,OAAO,KAAK,gBAAgB,EAAExlB,GAAG,IAAI,CAAC,EAAEwlB,EAAE,EAAE,UAAU,MAAM,SAAS5gB,EAAE,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAE3E,GAAG,KAAK2E,EAAE,CAAC,CAAC,EAAE4gB,EAAE,EAAE,UAAU,QAAQ,SAAS5gB,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAErE,GAAG,KAAKqE,CAAC,CAAC,EAAE4gB,EAAE,EAAE,UAAU,SAAS,UAAU,CAAC,OAAO,KAAK,gBAAgB,EAAEhlB,GAAG,IAAI,CAAC,EAAEglB,EAAE,EAAE,UAAU,eAAe,SAAS5gB,EAAE,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAEnE,GAAG,KAAKmE,EAAE,CAAC,CAAC,EAAE4gB,EAAE,EAAE,UAAU,MAAM,SAAS5gB,EAAE,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAE/D,GAAG,KAAK+D,EAAE,CAAC,CAAC,EAAE4gB,EAAE,EAAE,UAAU,KAAK,UAAU,CAAC,OAAO,KAAK,gBAAgB,EAAE1kB,GAAG,IAAI,CAAC,EAAE0kB,EAAE,EAAE,UAAU,OAAO,UAAU,CAAC,OAAO,KAAK,gBAAgB,EAAEzkB,GAAG,IAAI,CAAC,EAAEykB,EAAE,EAAE,UAAU,kBAAkB,SAAS5gB,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAE5D,GAAG,KAAK4D,CAAC,CAAC,EAAE4gB,EAAE,EAAE,UAAU,QAAQ,SAAS5gB,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAE3D,GAAG,KAAK2D,CAAC,CAAC,EAAE4gB,EAAE,EAAE,UAAU,MAAM,SAAS5gB,EAAE,EAAE,CAAC,KAAK,gBAAgB,EAAE,IAAIE,EAAEF,aAAarU,GAAG,CAAC,KAAKqU,CAAC,EAAE,CAAC,KAAK,GAAGA,CAAC,EAAE,OAAO1D,GAAG4D,EAAE,CAAC,CAAC,EAAE0gB,EAAE,EAAE,UAAU,KAAK,SAAS5gB,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAEzD,GAAG,KAAKyD,CAAC,CAAC,EAAE4gB,EAAE,EAAE,UAAU,aAAa,SAAS5gB,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,EAAE0B,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAEvF,GAAG,KAAKwD,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,EAAE0B,CAAC,CAAC,EAAE6e,EAAE,EAAE,UAAU,IAAI,SAAS5gB,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAEtD,GAAG,KAAKsD,CAAC,CAAC,EAAE4gB,EAAE,EAAE,UAAU,IAAI,SAAS5gB,EAAE,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAErD,GAAG,KAAKqD,EAAE,CAAC,CAAC,EAAE4gB,EAAE,EAAE,UAAU,IAAI,UAAU,CAAC,OAAO,KAAK,gBAAgB,EAAE/jB,GAAG,IAAI,CAAC,EAAE+jB,EAAE,EAAE,UAAU,KAAK,UAAU,CAAC,OAAO,KAAK,gBAAgB,EAAE9jB,GAAG,IAAI,CAAC,EAAE8jB,EAAE,EAAE,UAAU,KAAK,SAAS5gB,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAEtC,GAAG,KAAKsC,CAAC,CAAC,EAAE4gB,EAAE,EAAE,UAAU,OAAO,UAAU,CAAC,OAAO,KAAK,gBAAgB,EAAElyB,GAAE,KAAK,MAAM,CAAC,EAAEkyB,EAAE,EAAE,UAAU,QAAQ,UAAU,CAAC,OAAO,KAAK,gBAAgB,EAAElyB,GAAE,KAAK,SAAS,CAAC,EAAEkyB,EAAE,EAAE,UAAU,MAAM,UAAU,CAAC,OAAO,KAAK,gBAAgB,EAAElyB,GAAE,KAAK,OAAO,CAAC,EAAEkyB,EAAE,EAAE,UAAU,KAAK,SAAS5gB,EAAE,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAEpC,GAAG,KAAKoC,EAAE,CAAC,CAAC,EAAE4gB,EAAE,EAAE,UAAU,UAAU,SAAS5gB,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAElC,GAAG,KAAKkC,CAAC,CAAC,EAAE4gB,EAAE,EAAE,UAAU,OAAO,SAAS5gB,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAEhC,GAAG,KAAKgC,CAAC,CAAC,EAAE4gB,EAAE,EAAE,UAAU,mBAAmB,SAAS5gB,EAAE,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAE7B,GAAG,KAAK6B,EAAE,CAAC,CAAC,EAAE4gB,EAAE,EAAE,UAAU,QAAQ,SAAS5gB,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAE5B,GAAG,KAAK4B,CAAC,CAAC,EAAE4gB,EAAE,EAAE,UAAU,MAAM,SAAS5gB,EAAE,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAEX,GAAGW,EAAE,KAAK,CAAC,CAAC,EAAE4gB,EAAE,EAAE,UAAU,UAAU,UAAU,CAAC,OAAO,KAAK,gBAAgB,EAAEphB,GAAG,IAAI,CAAC,EAAE,IAAIkuC,GAAG,MAAM1tC,WAAU,KAAK,CAAC,YAAY,EAAE,CAAC,MAAM,CAAC,EAAE,OAAO,eAAe,KAAKA,GAAE,SAAS,CAAC,CAAC,EAAE2tC,GAAG,MAAM3tC,WAAU,KAAK,CAAC,YAAY,EAAE,CAAC,MAAM,CAAC,EAAE,OAAO,eAAe,KAAKA,GAAE,SAAS,CAAC,CAAC,EAAE4tC,EAAE,MAAM5tC,WAAU,KAAK,CAAC,YAAY,EAAE,CAAC,MAAM,CAAC,EAAE,OAAO,eAAe,KAAKA,GAAE,SAAS,CAAC,CAAC,EAAE6tC,GAAG,MAAM7tC,WAAU,KAAK,CAAC,YAAY,EAAE,CAAC,MAAM,CAAC,EAAE,OAAO,eAAe,KAAKA,GAAE,SAAS,CAAC,CAAC,EAAE8tC,GAAG,MAAM9tC,WAAU,KAAK,CAAC,YAAY,EAAE,CAAC,MAAM,CAAC,EAAE,OAAO,eAAe,KAAKA,GAAE,SAAS,CAAC,CAAC,EAAM+tC,GAAG,KAAK,CAAC,YAAYntC,EAAE,CAAC,KAAK,WAAWA,GAAG,IAAI,KAAK,MAAM,IAAI,GAAG,CAAC,IAAIA,EAAE,CAAC,IAAIV,EAAE,OAAO,KAAK,MAAM,IAAIU,CAAC,IAAIV,EAAE,KAAK,MAAM,IAAIU,CAAC,EAAE,KAAK,MAAM,OAAOA,CAAC,EAAE,KAAK,MAAM,IAAIA,EAAEV,CAAC,GAAGA,CAAC,CAAC,IAAIU,EAAEV,EAAE,CAAC,GAAG,KAAK,MAAM,IAAIU,CAAC,EAAE,KAAK,MAAM,OAAOA,CAAC,UAAU,KAAK,MAAM,MAAM,KAAK,WAAW,CAAC,IAAI,EAAE,KAAK,MAAM,KAAK,EAAE,KAAK,EAAE,MAAM,KAAK,MAAM,OAAO,CAAC,CAAC,CAAC,KAAK,MAAM,IAAIA,EAAEV,CAAC,CAAC,CAAC,eAAe,CAAC,OAAO,KAAK,UAAU,CAAC,cAAcU,EAAE,CAAC,GAAGA,EAAE,EAAE,MAAM,IAAI,MAAM,4DAA4DA,CAAC,GAAG,EAAE,GAAG,KAAK,WAAWA,EAAE,QAAQV,EAAE,EAAEA,EAAE,KAAK,WAAWU,EAAEV,IAAI,CAAC,IAAI,EAAE,KAAK,MAAM,KAAK,EAAE,KAAK,EAAE,MAAM,KAAK,MAAM,OAAO,CAAC,CAAC,CAAC,KAAK,WAAWU,CAAC,CAAC,EAAE,SAASotC,GAAGhuC,EAAE,EAAE,CAAC,GAAG,MAAM,QAAQA,CAAC,EAAE,CAAC,IAAIE,EAAE,CAAC,EAAE,QAAQE,EAAE,EAAEA,EAAE,EAAEA,IAAIF,EAAEA,EAAE,OAAOF,CAAC,EAAE,OAAOE,CAAC,KAAK,CAAC,IAAIA,EAAE,IAAI,MAAM,CAAC,EAAE,OAAOA,EAAE,KAAKF,CAAC,EAAEE,CAAC,CAAC,CAAC,SAAS+tC,GAAGjuC,EAAE,EAAE,CAAC,GAAG,CAACA,EAAE,MAAM,IAAI8tC,GAAG,CAAC,CAAC,CAAC,SAASI,GAAGluC,EAAE,EAAE,CAAC,IAAIE,EAAE,EAAE,QAAQE,KAAKJ,EAAEI,IAAI,GAAGF,IAAI,OAAOA,CAAC,CAAC,SAASiuC,GAAGnuC,EAAE,CAAC,OAAOA,EAAE,SAAS,EAAEA,EAAE,CAAC,EAAEA,CAAC,CAAC,SAASouC,GAAGpuC,EAAE,CAAC,OAAO,MAAM,QAAQA,CAAC,EAAEA,EAAE,CAACA,CAAC,CAAC,CAAC,SAASquC,GAAGruC,EAAE,CAAC,IAAIE,EAAEF,EAAE,QAAQ,uBAAuB,OAAO,EAAE,QAAQ,kBAAkB,OAAO,EAAE,YAAY,EAAE,OAAOE,EAAE,CAAC,IAAI,IAAIA,EAAE,UAAUA,CAAC,CAAC,SAASouC,GAAGtuC,EAAE,CAAC,OAAOA,EAAE,QAAQ,GAAGA,EAAE,QAAQ,GAAG,IAAI,GAAGA,EAAEA,EAAE,QAAQ,cAAc,CAAC,EAAEE,IAAIA,EAAE,YAAY,CAAC,CAAC,CAAC,IAAIquC,GAAG,CAAC,EAAE,SAASC,GAAGxuC,EAAE,CAAC,GAAGA,GAAG,KAAK,OAAO,KAAK,IAAI,EAAE,CAAC,EAAE,OAAO,EAAE,UAAUA,EAAE,aAAa,EAAE,EAAE,OAAOA,EAAE,UAAU,EAAE,CAAC,CAAC,SAASyuC,GAAGzuC,EAAE,CAAC,GAAG,EAAEA,GAAG,MAAM,OAAOA,GAAG,UAAU,GAAG,MAAM,QAAQA,CAAC,EAAEA,EAAE,QAAQ,GAAGyuC,GAAG,CAAC,CAAC,MAAM,CAAC,IAAI,EAAE,OAAO,KAAKzuC,CAAC,EAAE,QAAQE,KAAK,EAAE,CAAC,IAAIE,EAAEJ,EAAEE,CAAC,EAAEE,GAAG,MAAM,OAAOA,GAAG,WAAW,CAAC,MAAM,QAAQA,CAAC,GAAGA,EAAE,OAAO,WAAW,OAAOA,EAAE,OAAO,SAASJ,EAAEE,CAAC,EAAEE,EAAE,MAAMquC,GAAGruC,CAAC,EAAE,CAAC,CAAC,CAAC,SAASsuC,GAAG1uC,EAAE,EAAE,CAAC,EAAEE,EAAE,CAAC,EAAEE,EAAE,SAASC,EAAE,GAAG,CAAC,GAAG,OAAOL,GAAG,SAAS,CAAC,IAAI,EAAEA,EAAE,EAAE,GAAG,KAAKE,EAAE,EAAEA,EAAE,CAAC,UAAU,KAAKquC,GAAG,EAAEA,GAAG,CAAC,UAAU,EAAE,EAAE,CAAC,EAAE,GAAG,KAAK,MAAM,IAAIX,EAAE,WAAWxtC,CAAC,KAAKJ,CAAC;AAAA,SAC59kCI,CAAC;AAAA,gBACMA,CAAC,kGAAkG,EAAE,OAAO,CAAC,KAAK,CAAC,IAAI,EAAEJ,EAAE,GAAG,EAAE,WAAW,MAAM,EAAE,QAAQ,KAAK,MAAM,IAAI4tC,EAAE,GAAGxtC,CAAC,6BAA6B,KAAK,UAAU,CAAC,CAAC;AAAA,mCAC3M,EAAE,IAAI,EAAE,EAAE,UAAU2B,EAAEC,EAAE,GAAG,KAAK9B,EAAE,CAAC6B,EAAEC,CAAC,EAAE9B,EAAE,CAAC,EAAE,KAAKquC,GAAG,CAACxsC,EAAEC,CAAC,EAAEusC,GAAG,UAAU,KAAK,IAAI,CAACxsC,EAAEC,CAAC,EAAE,EAAE,CAAC,GAAGD,GAAG,KAAK,MAAM,IAAI6rC,EAAE,WAAWxtC,CAAC,KAAK,CAAC;AAAA,SAC7JA,CAAC;AAAA,gBACMA,CAAC,kGAAkG,EAAE,GAAG4B,GAAG,KAAK,CAAC,IAAIC,EAAE,CAAC,EAAE,QAAQY,KAAK,OAAO,KAAK0rC,EAAE,EAAEtsC,EAAEY,CAAC,EAAE0rC,GAAG1rC,CAAC,EAAE,QAAQA,KAAK,OAAO,KAAK3C,CAAC,EAAE+B,EAAEY,CAAC,EAAE3C,EAAE2C,CAAC,EAAE,IAAIH,EAAE,EAAE,OAAOA,EAAE,cAAcT,EAAE,IAAIU,EAAE,OAAO,OAAO,CAAC,EAAE4rC,EAAE,EAAE,QAAQ1rC,KAAK,OAAO,KAAK3C,CAAC,EAAEquC,GAAG1rC,CAAC,EAAE3C,EAAE2C,CAAC,EAAE4rC,GAAG,EAAE,MAAM,EAAE,IAAI7rC,EAAEZ,EAAED,EAAE,EAAE,OAAO7B,EAAEG,CAAC,EAAE,OAAOkuC,GAAG,OAAO,OAAO,CAAC,EAAE5rC,CAAC,EAAEC,CAAC,KAAK,CAAC,IAAIX,EAAE,OAAO,OAAO,CAAC,EAAEssC,EAAE,EAAE,QAAQ5rC,KAAK,OAAO,KAAKzC,CAAC,EAAEquC,GAAG5rC,CAAC,EAAEzC,EAAEyC,CAAC,EAAE,IAAID,EAAE,IAAIX,EAAE,EAAE,MAAM,EAAE,OAAOwsC,GAAG,OAAO,OAAO,CAAC,EAAEtsC,CAAC,EAAES,CAAC,CAAC,CAAC,CAAC,SAASisC,GAAG3uC,EAAE,EAAE,CAAC,OAAOA,EAAE,EAAE,GAAGA,EAAE,EAAE,EAAE,CAAC,CAAC,SAAS4uC,GAAG5uC,EAAE,EAAE,CAAC,MAAM,GAAG2uC,GAAG3uC,EAAE,CAAC,CAAC,CAAC,SAAS6uC,GAAG7uC,EAAE,CAAC,GAAGA,GAAG,KAAK,OAAOA,EAAE,IAAI,EAAE,CAAC,EAAE,QAAQE,KAAKF,EAAE,EAAE,QAAQE,CAAC,IAAI,IAAI,EAAE,KAAKA,CAAC,EAAE,OAAO,CAAC,CAAC,SAAS4uC,GAAG9uC,EAAE,CAAC,GAAGA,GAAG,KAAK,MAAM,IAAI4tC,EAAE,yBAAyB,KAAK,UAAU5tC,CAAC,CAAC,EAAE,EAAE,QAAQ,KAAKA,EAAE,GAAGA,EAAE,eAAe,CAAC,EAAE,MAAM,GAAG,MAAM,EAAE,CAAC,SAAS+uC,GAAG/uC,EAAE,EAAEE,EAAE,CAAC,GAAGA,GAAG,MAAMF,EAAE,QAAQE,CAAC,EAAE,EAAE,MAAM,IAAI0tC,EAAE,GAAG1tC,CAAC,mBAAmB,CAAC,uBAAuBF,CAAC,qBAAqB,CAAC,CAAC,SAASgvC,GAAGhvC,EAAE,EAAEE,EAAE,EAAEE,EAAE,IAAI,CAAC,OAAO6tC,GAAG/tC,GAAG,CAAC,EAAE+tC,GAAG7tC,GAAGF,CAAC,EAAE,MAAM,QAAQF,CAAC,GAAGA,EAAE,QAAQE,GAAGF,EAAE,QAAQI,GAAGJ,EAAE,MAAMK,GAAG,OAAOA,IAAI,CAAC,CAAC,CAAC,SAAS4uC,GAAGjvC,EAAE,EAAE,CAAC,MAAM,QAAQA,CAAC,GAAGzB,EAAE,OAAOyB,EAAE,OAAO,EAAE,IAAI,GAAG,CAAC,kCAAkC,EAAEA,EAAE,QAAQ,CAACE,EAAEE,IAAI6uC,GAAG/uC,EAAE,WAAWE,EAAE,CAAC,OAAO,CAAC,EAAE,CAAC,GAAG7B,EAAE,OAAO,OAAO,UAAUyB,CAAC,GAAGA,EAAE,EAAE,IAAI,YAAY,CAAC,sCAAsCkvC,GAAGlvC,CAAC,CAAC,GAAG,CAAC,CAAC,SAASkvC,GAAGlvC,EAAE,CAAC,OAAOA,IAAI,KAAK,OAAO,MAAM,QAAQA,CAAC,EAAE,IAAIA,EAAE,IAAI,GAAGkvC,GAAG,CAAC,CAAC,EAAE,KAAK,GAAG,EAAE,IAAI,OAAOlvC,GAAG,SAAS,IAAIA,CAAC,IAAI,GAAGA,CAAC,EAAE,CAAC,SAASmvC,GAAGnvC,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAEF,GAAG,KAAKA,EAAE,EAAE3B,EAAE,IAAI,EAAE8B,EAAE,MAAM,IAAIyB,IAAI,CAAC,IAAIC,EAAE7B,GAAG,KAAKA,EAAE,EAAE3B,EAAE,IAAI,EAAE,OAAOwD,EAAE3B,EAAE,IAAIA,EAAE2B,EAAE1B,EAAEL,EAAE,GAAG8B,CAAC,GAAGzB,CAAC,CAAC,CAAC,SAAS+uC,GAAGpvC,EAAE,CAAC,OAAOA,IAAI,OAAO,OAAOA,IAAI,SAAS,SAASA,IAAI,MAAM,MAAM,IAAI,CAAC,IAAIqvC,GAAG,EAAE,SAASC,IAAI,CAAC,OAAOD,IAAI,CAAC,IAAIE,GAAG,CAAC,EAAE,SAASC,GAAGxvC,EAAE,GAAG,CAAC,OAAOA,KAAKuvC,KAAKA,GAAGvvC,CAAC,EAAE,GAAGuvC,GAAGvvC,CAAC,GAAG,EAAEA,EAAEuvC,GAAGvvC,CAAC,EAAE,SAAS,CAAC,CAAC,IAAIyvC,GAAG,CAAC,gBAAgB,cAAc,EAAEC,GAAG,CAAC,UAAU,UAAU,EAAEC,GAAG,CAAC,QAAQ,OAAO,QAAQ,EAAEC,GAAG,CAAC,MAAM,KAAK,EAAEC,GAAG,CAAC,MAAM,MAAM,SAAS,KAAK,EAAMC,GAAG,IAAI,IAAI,SAASC,GAAG/vC,EAAE,CAAC+uC,GAAGU,GAAG,aAAazvC,CAAC,CAAC,CAAC,SAASgwC,GAAGhwC,EAAE,CAAC+uC,GAAGW,GAAG,sBAAsB1vC,CAAC,CAAC,CAAC,SAASiwC,GAAGjwC,EAAE,CAAC+uC,GAAGY,GAAG,cAAc3vC,CAAC,CAAC,CAAC,SAASkwC,GAAGlwC,EAAE,CAAC+uC,GAAGa,GAAG,WAAW5vC,CAAC,CAAC,CAAC,IAAImwC,GAAG,CAAC,EAAEC,GAAG,IAAI,SAASC,GAAGrwC,EAAE,EAAE,CAACmwC,GAAG,KAAKnwC,CAAC,EAAE,GAAG,CAAC,IAAIE,EAAE,EAAE,EAAE,OAAOiwC,GAAG,IAAI,EAAEjwC,CAAC,OAAOA,EAAE,CAAC,MAAMiwC,GAAG,IAAI,EAAEjwC,CAAC,CAAC,CAAC,SAASowC,IAAI,CAAC,OAAOH,GAAG,SAAS,EAAE,GAAGA,GAAG,KAAKC,EAAE,EAAEA,EAAE,CAAC,SAASG,GAAGvwC,EAAE,CAAC,GAAG,CAACwwC,GAAGxwC,CAAC,EAAE,MAAM,IAAI,MAAM,6BAA6BA,EAAE,GAAG,EAAE,OAAOswC,GAAG,EAAEtwC,CAAC,CAAC,SAASywC,GAAGzwC,EAAE,CAAC,GAAG,CAACwwC,GAAGxwC,CAAC,EAAE,MAAM,IAAI,MAAM,6BAA6BA,EAAE,GAAG,EAAE8vC,GAAG,IAAI9vC,CAAC,GAAG8vC,GAAG,IAAI9vC,EAAE,CAAC,EAAE,IAAI,EAAE8vC,GAAG,IAAI9vC,CAAC,EAAE,GAAG8vC,GAAG,IAAI9vC,EAAE8vC,GAAG,IAAI9vC,CAAC,EAAE,CAAC,EAAE,EAAE,EAAE,CAAC,IAAIE,EAAE,GAAGF,CAAC,IAAI,CAAC,GAAG,OAAO8vC,GAAG,IAAI5vC,EAAE,CAAC,EAAEA,CAAC,KAAM,QAAOF,CAAC,CAAC,IAAI0wC,GAAG,IAAI,OAAO,iCAAiC,EAAE,SAASF,GAAGxwC,EAAE,CAAC,MAAM,CAAC,CAACA,EAAE,MAAM0wC,EAAE,CAAC,CAAC,SAASC,GAAG3wC,EAAE,CAAC,OAAOA,IAAI,SAASA,EAAE,SAAS,EAAE,EAAE,CAAC,CAAC,SAAS4wC,GAAG5wC,EAAE,EAAEE,EAAE,CAAC,GAAG,OAAO,EAAE,GAAGA,GAAG,OAAOA,EAAEF,EAAE,QAAQ,IAAII,EAAE,EAAE,QAAQC,EAAE,EAAEA,EAAEH,EAAE,EAAEG,EAAED,GAAGJ,EAAEK,CAAC,EAAE,OAAOD,CAAC,CAAC,SAASywC,GAAG7wC,EAAE,CAAC,GAAGA,EAAE,SAAS,EAAE,OAAO,OAAO,IAAI,IAAI,EAAE,OAAO,kBAAkB,QAAQE,EAAE,EAAEA,EAAEF,EAAE,OAAOE,IAAI,CAAC,IAAIE,EAAEJ,EAAEE,CAAC,EAAEE,EAAE,IAAI,EAAEA,EAAE,CAAC,OAAO,CAAC,CAAC,SAAS0wC,GAAG9wC,EAAE,CAAC,GAAGA,EAAE,SAAS,EAAE,OAAO,OAAO,IAAI,IAAI,EAAE,OAAO,kBAAkB,QAAQE,EAAE,EAAEA,EAAEF,EAAE,OAAOE,IAAI,CAAC,IAAIE,EAAEJ,EAAEE,CAAC,EAAEE,EAAE,IAAI,EAAEA,EAAE,CAAC,OAAO,CAAC,CAAC,SAAS2wC,GAAG/wC,EAAE,EAAE,CAAC,GAAG,EAAEA,EAAE,MAAM,IAAI4tC,EAAE,QAAQ,CAAC,cAAc5tC,CAAC,iBAAiB,EAAE,IAAIE,EAAE,CAAC,EAAE,QAAQE,EAAEJ,EAAEI,EAAE,EAAE,EAAEA,EAAEF,EAAE,KAAKE,CAAC,EAAE,OAAOF,CAAC,CAAC,IAAI8wC,GAAG,SAASC,IAAI,CAAC,OAAOD,IAAI,OAAOA,GAAGvjD,GAAG,EAAE,QAAQ,GAAGujD,EAAE,CAAC,SAASE,IAAI,CAAC,MAAM,cAAc,CAAC,SAASC,GAAGnxC,EAAE,EAAE,CAAC,OAAOtR,GAAEsR,EAAE,CAAC,CAAC,CAAC,SAASoxC,GAAGpxC,EAAE,EAAE,GAAG,CAAC,IAAIE,EAAEF,EAAE,MAAM,MAAM,EAAE,OAAO,EAAE,IAAI,EAAEE,EAAE,OAAO,EAAE,GAAGA,EAAE,OAAO,EAAE,EAAE,CAAC,EAAE3G,EAAEyG,EAAEE,CAAC,CAAC,CAAC,SAASmxC,GAAGrxC,EAAE,EAAE,CAAC,OAAOvC,EAAE,IAAI,CAAC,GAAGuC,EAAE,MAAM,SAAS,EAAE,MAAM,IAAI4tC,EAAE,yDAAyD5tC,EAAE,MAAM,MAAM,UAAU,EAAE,IAAIE,EAAEkxC,GAAGpxC,EAAE,CAAC,EAAE,OAAOsxC,GAAGpxC,EAAE,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,SAASqxC,GAAGvxC,EAAE,CAAC,IAAI,EAAE,CAAC4wC,GAAG5wC,EAAE,KAAK,CAAC,EAAE,OAAOzG,EAAEyG,EAAE,CAAC,CAAC,CAAC,SAASwxC,GAAGxxC,EAAE,CAAC,GAAGA,EAAE,MAAM,EAAE,MAAM,IAAI4tC,EAAE,wDAAwD5tC,EAAE,IAAI,GAAG,EAAE,IAAI,EAAE,CAACA,EAAE,MAAM,CAAC,EAAE4wC,GAAG5wC,EAAE,MAAM,CAAC,CAAC,EAAE,OAAOzG,EAAEyG,EAAE,CAAC,CAAC,CAAC,SAASyxC,GAAGzxC,EAAE,EAAEE,EAAE,CAAC,OAAOzC,EAAE,IAAI,CAAC,OAAOuC,EAAE,KAAK,CAAC,IAAK,GAAE,OAAO1E,GAAG0E,EAAE,EAAEE,CAAC,EAAE,IAAK,GAAE,OAAO3E,GAAGyE,EAAE,CAAC,EAAE,CAAC,EAAE,CAACE,EAAEF,EAAE,MAAM,CAAC,CAAC,CAAC,EAAE,IAAK,GAAE,OAAOxE,GAAGwE,EAAE,CAAC,EAAE,EAAE,CAAC,EAAE,CAACE,EAAEF,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,CAAC,CAAC,EAAE,IAAK,GAAE,OAAOvE,GAAGuE,EAAE,CAAC,EAAE,EAAE,EAAE,CAAC,EAAE,CAACE,EAAEF,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,CAAC,CAAC,EAAE,IAAK,GAAE,OAAO3E,GAAG2E,EAAE,CAAC,EAAE,EAAE,EAAE,EAAE,CAAC,EAAE,CAACE,EAAEF,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,CAAC,CAAC,EAAE,IAAK,GAAE,OAAO3E,GAAG2E,EAAE,CAAC,EAAE,EAAE,EAAE,EAAE,EAAE,CAAC,EAAE,CAACE,EAAEF,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,CAAC,CAAC,EAAE,QAAQ,MAAM,IAAI4tC,EAAE,8DAA8D5tC,EAAE,IAAI,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,SAAS0xC,GAAG1xC,EAAE,EAAEE,EAAE,CAAC,OAAOzC,EAAE,IAAI,CAAC,OAAOuC,EAAE,KAAK,CAAC,IAAK,GAAE,OAAO1E,GAAG0E,EAAE,EAAEE,CAAC,EAAE,IAAK,GAAE,OAAO3E,GAAGyE,EAAE,CAAC,EAAE,CAAC,EAAE,CAACA,EAAE,MAAM,CAAC,EAAEE,CAAC,CAAC,EAAE,IAAK,GAAE,OAAO1E,GAAGwE,EAAE,CAAC,EAAE,EAAE,CAAC,EAAE,CAACA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEE,CAAC,CAAC,EAAE,IAAK,GAAE,OAAOzE,GAAGuE,EAAE,CAAC,EAAE,EAAE,EAAE,CAAC,EAAE,CAACA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEE,CAAC,CAAC,EAAE,QAAQ,MAAM,IAAI0tC,EAAE,6DAA6D5tC,EAAE,IAAI,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,SAAS2xC,GAAG3xC,EAAE,EAAEE,EAAEE,EAAE,CAAC,OAAO3C,EAAE,IAAI,CAAC,OAAOuC,EAAE,KAAK,CAAC,IAAK,GAAE,OAAO1E,GAAG0E,EAAE,EAAEE,CAAC,EAAE,IAAK,GAAE,OAAOE,EAAE,CAAC,IAAK,GAAE,OAAOqxC,GAAGzxC,EAAE,EAAEE,CAAC,EAAE,IAAK,GAAE,OAAOwxC,GAAG1xC,EAAE,EAAEE,CAAC,EAAE,QAAQ,MAAM,IAAI0tC,EAAE,iDAAiDxtC,CAAC,EAAE,CAAC,CAAC,IAAK,GAAE,OAAOA,EAAE,CAAC,IAAK,GAAE,OAAOqxC,GAAGzxC,EAAE,EAAEE,CAAC,EAAE,IAAK,GAAE,OAAO1E,GAAGwE,EAAE,CAAC,EAAE,EAAE,CAAC,EAAE,CAACA,EAAE,MAAM,CAAC,EAAEE,EAAEF,EAAE,MAAM,CAAC,CAAC,CAAC,EAAE,IAAK,GAAE,OAAO0xC,GAAG1xC,EAAE,EAAEE,CAAC,EAAE,QAAQ,MAAM,IAAI0tC,EAAE,iDAAiDxtC,CAAC,EAAE,CAAC,CAAC,IAAK,GAAE,OAAOA,EAAE,CAAC,IAAK,GAAE,OAAOqxC,GAAGzxC,EAAE,EAAEE,CAAC,EAAE,IAAK,GAAE,OAAOzE,GAAGuE,EAAE,CAAC,EAAE,EAAE,EAAE,CAAC,EAAE,CAACA,EAAE,MAAM,CAAC,EAAEE,EAAEF,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,CAAC,CAAC,EAAE,IAAK,GAAE,OAAOvE,GAAGuE,EAAE,CAAC,EAAE,EAAE,EAAE,CAAC,EAAE,CAACA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEE,EAAEF,EAAE,MAAM,CAAC,CAAC,CAAC,EAAE,IAAK,GAAE,OAAO0xC,GAAG1xC,EAAE,EAAEE,CAAC,EAAE,QAAQ,MAAM,IAAI0tC,EAAE,iDAAiDxtC,CAAC,EAAE,CAAC,CAAC,QAAQ,MAAM,IAAIwtC,EAAE,6DAA6D5tC,EAAE,IAAI,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,SAAS4xC,GAAG5xC,EAAE,EAAE,GAAG,CAAC,IAAIE,EAAE,OAAO,EAAE,IAAIA,EAAEF,EAAE,CAAC,EAAE,KAAKE,IAAI,EAAE,EAAEA,EAAE,EAAE,GAAG,IAAIF,EAAE,CAAC,EAAE,OAAO,EAAE,IAAIjR,GAAGiR,EAAE,CAAC,CAAC,CAAC,SAAS6xC,GAAG7xC,EAAE,EAAE,CAAC,OAAOA,EAAE,KAAK,CAAC,IAAK,GAAE,OAAOhR,GAAG,CAACgR,EAAE,CAAC,CAAC,EAAE,IAAK,GAAE,OAAO/Q,GAAG,CAAC+Q,EAAE,CAAC,EAAE,CAAC,EAAE,IAAK,GAAE,OAAO9Q,GAAG,CAAC8Q,EAAE,CAAC,EAAE,CAAC,EAAE,IAAK,GAAE,OAAO7Q,GAAG,CAAC6Q,EAAE,CAAC,EAAE,CAAC,EAAE,QAAQ,MAAM,IAAI4tC,EAAE,+DAA+D5tC,EAAE,IAAI,EAAE,CAAC,CAAC,CAAC,SAASsxC,GAAGtxC,EAAE,EAAE,CAAC,GAAG,MAAM,QAAQ,CAAC,IAAI,EAAE,CAAC,CAAC,GAAGA,EAAE,OAAO,EAAE,OAAO,MAAM,IAAI4tC,EAAE,0BAA0B,EAAE,MAAM,yDAAyD5tC,EAAE,IAAI,GAAG,EAAE,OAAOtC,GAAGsC,EAAE,CAAC,CAAC,CAAC,SAAS8xC,GAAG9xC,EAAE,EAAE,EAAEE,EAAE,EAAEE,EAAEC,EAAE,CAAC,OAAO/H,GAAG0H,EAAE,EAAEE,EAAEE,EAAEC,CAAC,CAAC,CAAC,SAAS0xC,GAAG/xC,EAAE,EAAEE,EAAEE,EAAE,CAAC,GAAGJ,EAAE,KAAK,GAAG,EAAE,KAAK,EAAE,MAAM,IAAI6tC,GAAG,8DAA8D7tC,EAAE,KAAK,kBAAkB,EAAE,KAAK,EAAE,EAAE,GAAG,EAAE,MAAM,EAAE,CAAC,IAAIK,EAAEL,EAAE,MAAM,MAAM,EAAE,EAAE,CAAC,EAAE,EAAE,EAAE,MAAM,MAAM,EAAE,EAAE,CAAC,EAAE,GAAGK,IAAI,EAAE,MAAM,IAAIwtC,GAAG,gGAAgG7tC,EAAE,KAAK,mBAAmB,EAAE,KAAK,EAAE,CAAC,CAAC,GAAGA,EAAE,OAAO,GAAG,EAAE,OAAO,EAAE,OAAOzN,GAAG,OAAO,CAAC,EAAEyN,EAAE,EAAE,EAAE,WAAW,GAAG,WAAW,GAAG,KAAKI,EAAE4xC,GAAGhyC,EAAE,KAAKI,EAAE8wC,GAAG,CAAC,EAAE,KAAK,WAAWhxC,CAAC,CAAC,EAAE,CAAC,IAAIG,EAAEL,EAAE,MAAM,MAAM,EAAE,EAAEK,EAAE,IAAI,EAAEL,EAAEzG,EAAEyG,EAAE,CAAC,GAAG,CAAC,CAAC,EAAE,IAAI,EAAE,EAAE,MAAM,MAAM,EAAE+B,EAAE,EAAE,IAAI,EAAEC,EAAE,EAAE,IAAI,EAAEC,EAAE,CAAC,GAAG,EAAEF,CAAC,EAAEW,EAAE,MAAM,KAAK,CAAC,OAAO,EAAE,IAAI,EAAE,CAACI,EAAE,IAAI,IAAI,EAAE,EAAE,KAAK,EAAE,GAAG,EAAE,KAAK,EAAE,EAAE,EAAE,CAAC,EAAE,EAAEvJ,EAAEuE,GAAG,EAAE4E,CAAC,EAAE,CAACV,EAAE,EAAE,CAAC,EAAE,IAAIW,EAAE,CAAC,GAAGtC,EAAE,GAAG4B,CAAC,EAAE,OAAO1I,EAAEhH,GAAG,OAAO,CAAC,EAAEyN,EAAE,EAAE,EAAE,WAAW,GAAG,WAAW,GAAG,KAAKI,EAAE4xC,GAAGhyC,EAAE,KAAKI,EAAE8wC,GAAG,CAAC,EAAE,KAAK,WAAWhxC,CAAC,CAAC,EAAEyC,CAAC,CAAC,CAAC,CAAC,SAASsvC,GAAGjyC,EAAE,EAAEE,EAAE,CAAC,OAAOzC,EAAE,KAAK,MAAM,QAAQ,CAAC,EAAE,EAAET,GAAG,EAAE,OAAO,EAAE,EAAEtO,GAAE,EAAE,OAAO,EAAE8D,GAAGwN,EAAE,EAAEE,CAAC,EAAE,CAAC,CAAC,SAASgyC,GAAGlyC,EAAE,CAAC,OAAOtJ,EAAEsJ,EAAEA,CAAC,CAAC,CAAC,SAASgyC,GAAGhyC,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAE,EAAE,MAAM,GAAG,EAAE,OAAO,GAAG,EAAE,OAAOJ,EAAE,MAAM,IAAI4tC,EAAE,+BAA+B,EAAE,IAAI,4BAA4B5tC,CAAC,EAAE,EAAE,GAAGA,IAAI,EAAE,CAAC,GAAGE,IAAI,gBAAgB,OAAOE,EAAE,SAAS,EAAE7G,EAAE,EAAE,CAAC,EAAE6G,EAAE,CAAC,EAAE,EAAE,EAAE,CAAC,CAAC,EAAE7G,EAAE,EAAE,CAAC,EAAE6G,EAAE,CAAC,EAAEA,EAAE,CAAC,EAAEA,EAAE,CAAC,EAAEA,EAAE,CAAC,CAAC,CAAC,EAAE,GAAGF,IAAI,eAAe,OAAOE,EAAE,SAAS,EAAE7G,EAAE,EAAE,CAAC,EAAE,EAAE,EAAE,EAAE6G,EAAE,CAAC,CAAC,CAAC,EAAE7G,EAAE,EAAE,CAAC,CAAC,EAAE,OAAO6G,CAAC,CAAC,CAAC,SAASJ,IAAI,EAAE,CAAC,GAAGE,IAAI,gBAAgB,OAAOE,EAAE,SAAS,EAAE7G,EAAE,EAAE,CAAC,EAAE6G,EAAE,CAAC,EAAE,EAAE,CAAC,CAAC,EAAE7G,EAAE,EAAE,CAAC,EAAE6G,EAAE,CAAC,EAAEA,EAAE,CAAC,EAAEA,EAAE,CAAC,CAAC,CAAC,EAAE,GAAGF,IAAI,eAAe,OAAOE,EAAE,SAAS,EAAE7G,EAAE,EAAE,CAAC,EAAE,EAAE,EAAE6G,EAAE,CAAC,CAAC,CAAC,EAAE7G,EAAE,EAAE,CAAC,CAAC,EAAE,OAAO6G,CAAC,CAAC,CAAC,SAASJ,IAAI,EAAE,CAAC,GAAGE,IAAI,gBAAgB,OAAOE,EAAE,SAAS,EAAE7G,EAAE,EAAE,CAAC,EAAE6G,EAAE,CAAC,EAAE,CAAC,CAAC,EAAE7G,EAAE,EAAE,CAAC,EAAE6G,EAAE,CAAC,EAAEA,EAAE,CAAC,CAAC,CAAC,EAAE,GAAGF,IAAI,eAAe,OAAOE,EAAE,SAAS,EAAE7G,EAAE,EAAE,CAAC,EAAE,EAAE6G,EAAE,CAAC,CAAC,CAAC,EAAE7G,EAAE,EAAE,CAAC,CAAC,EAAE,OAAO6G,CAAC,CAAC,CAAC,SAASJ,EAAE,EAAE,OAAO,EAAE,MAAM,IAAI4tC,EAAE,sCAAsC,EAAE,IAAI,EAAE,CAAC,CAAC,SAASuE,GAAGnyC,EAAE,EAAEE,EAAE,CAAC,OAAOzC,EAAE,KAAKyC,GAAG,OAAOA,EAAEgxC,GAAG,GAAGnB,GAAG7vC,CAAC,EAAEtT,EAAEoT,EAAEgyC,GAAGhyC,EAAE,KAAK,EAAEE,CAAC,CAAC,EAAE,CAAC,CAAC,SAASkyC,GAAGpyC,EAAE,EAAE,EAAE,CAAC,GAAG,IAAI,EAAE,MAAM,IAAI6tC,GAAG,0CAA0C,CAAC,2BAA2B,EAAE,OAAO38C,GAAG8O,CAAC,CAAC,CAAC,SAASqyC,GAAGryC,EAAE,CAAC,OAAOvC,EAAE,IAAI5M,GAAGmP,EAAEpT,EAAEH,GAAGuT,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,SAASsyC,GAAGtyC,EAAE,EAAEE,EAAEE,EAAE,CAAC,OAAO3C,EAAE,IAAIzM,GAAGgP,EAAE,EAAEE,EAAEE,CAAC,CAAC,CAAC,CAAC,SAASmyC,GAAGvyC,EAAE,CAAC,OAAOvC,EAAE,IAAI,CAAC,IAAI,EAAE7Q,EAAE,GAAG8J,EAAE,GAAGsJ,CAAC,CAAC,EAAE,OAAOpR,GAAG,EAAE,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,SAAS4jD,GAAGxyC,EAAE,EAAEE,EAAE,GAAG,CAAC,OAAOA,EAAEF,EAAE,EAAE,EAAE,CAAC,CAAC,IAAIyyC,GAAG,CAAC,QAAQ,SAAS,QAAQ,EAAEC,GAAG,CAAC,SAAS,UAAU,iBAAiB,EAAE,SAASC,GAAG3yC,EAAE,CAAC+uC,GAAG0D,GAAG,UAAUzyC,CAAC,CAAC,CAAC,SAAS4yC,GAAG5yC,EAAE,CAAC+uC,GAAG2D,GAAG,eAAe1yC,CAAC,CAAC,CAAC,IAAI6yC,GAAG,cAAct4C,GAAE,YAAY,CAAC,6BAA6B,CAAC,MAAM,EAAE,CAAC,WAAW,CAAC,MAAM,CAAC,CAAC,CAAC,EAAEu4C,GAAG,cAAcD,EAAE,CAAC,MAAMjyC,EAAEV,EAAE,CAAC,OAAOX,GAAGqB,EAAEV,CAAC,CAAC,CAAC,EAAE4yC,GAAG,UAAU,QAAQv4C,GAAE,cAAcu4C,EAAE,EAAE,IAAIC,GAAG,cAAcF,EAAE,CAAC,MAAMjyC,EAAEV,EAAE,CAAC,OAAOhJ,GAAG0J,EAAEV,CAAC,CAAC,CAAC,EAAE6yC,GAAG,UAAU,OAAOx4C,GAAE,cAAcw4C,EAAE,EAAE,IAAIC,GAAG,cAAcH,EAAE,CAAC,YAAYjyC,EAAE,CAAC,GAAG,MAAM,EAAE,OAAOA,GAAG,SAAS,MAAM,IAAIgtC,EAAE,oDAAoDhtC,CAAC,EAAE,EAAE,GAAGA,EAAE,QAAQ,OAAO,MAAM,IAAIgtC,EAAE,sCAAsChtC,CAAC,EAAE,EAAE,KAAK,MAAMA,EAAE,KAAK,CAAC,MAAMA,EAAEV,EAAE,CAAC,OAAOzC,EAAE,IAAI/G,EAAEsD,GAAG,KAAK,KAAK,EAAE9C,GAAG0J,EAAEV,CAAC,CAAC,CAAC,CAAC,CAAC,WAAW,CAAC,MAAM,CAAC,MAAM,KAAK,KAAK,CAAC,CAAC,EAAE8yC,GAAG,UAAU,WAAWz4C,GAAE,cAAcy4C,EAAE,EAAE,IAAIC,GAAG,cAAcJ,EAAE,CAAC,YAAYjyC,EAAE,CAAC,MAAM,EAAE,KAAK,eAAe,KAAK,KAAK,eAAe,IAAI,KAAK,OAAOA,EAAE,QAAQ,KAAK,eAAe,KAAK,OAAOA,EAAE,QAAQ,KAAK,eAAe,KAAK,KAAKA,EAAE,IAAI,CAAC,MAAMA,EAAEV,EAAE,CAAC,OAAO1H,GAAGoI,EAAE,KAAK,OAAO,KAAK,OAAOV,EAAE,KAAK,IAAI,CAAC,CAAC,WAAW,CAAC,MAAM,CAAC,OAAO,KAAK,OAAO,OAAO,KAAK,OAAO,KAAK,KAAK,IAAI,CAAC,CAAC,EAAE+yC,GAAG,UAAU,gBAAgB14C,GAAE,cAAc04C,EAAE,EAAE,IAAIC,GAAG,cAAcL,EAAE,CAAC,YAAYjyC,EAAE,CAAC,MAAM,EAAE,KAAK,aAAa,EAAE,KAAK,eAAe,IAAI,KAAK,KAAKA,EAAE,MAAM,KAAK,aAAa,KAAK,OAAOA,EAAE,QAAQ,KAAK,eAAe,KAAK,KAAKA,EAAE,IAAI,CAAC,MAAMA,EAAEV,EAAE,CAAC,GAAGA,EAAEA,GAAG,UAAUA,IAAI,WAAWA,IAAI,QAAQ,MAAM,IAAI2tC,GAAG,uCAAuC3tC,CAAC,GAAG,EAAE,OAAO4xC,GAAGlxC,EAAE,KAAK,KAAK,KAAK,OAAOV,EAAE,KAAK,IAAI,CAAC,CAAC,WAAW,CAAC,MAAM,CAAC,KAAK,KAAK,KAAK,OAAO,KAAK,OAAO,KAAK,KAAK,IAAI,CAAC,CAAC,EAAEgzC,GAAG,UAAU,eAAe34C,GAAE,cAAc24C,EAAE,EAAE,IAAIC,GAAG,cAAcN,EAAE,CAAC,YAAYjyC,EAAE,CAAC,MAAM,EAAE,KAAK,aAAa,EAAE,KAAK,eAAe,IAAI,KAAK,KAAKA,EAAE,MAAM,KAAK,aAAa,KAAK,OAAOA,EAAE,QAAQ,KAAK,eAAe,KAAK,KAAKA,EAAE,IAAI,CAAC,MAAMA,EAAEV,EAAE,CAAC,GAAGA,EAAEA,GAAG,UAAUA,IAAI,WAAWA,IAAI,QAAQ,MAAM,IAAI2tC,GAAG,0CAA0C3tC,CAAC,GAAG,EAAE,OAAOnC,GAAG6C,EAAE,KAAK,KAAK,KAAK,OAAOV,EAAE,KAAK,IAAI,CAAC,CAAC,WAAW,CAAC,MAAM,CAAC,KAAK,KAAK,KAAK,OAAO,KAAK,OAAO,KAAK,KAAK,IAAI,CAAC,CAAC,EAAEizC,GAAG,UAAU,kBAAkB54C,GAAE,cAAc44C,EAAE,EAAE,IAAIC,GAAG,cAAcP,EAAE,CAAC,YAAYjyC,EAAE,CAAC,MAAM,EAAE,KAAK,KAAKA,EAAE,MAAM,KAAKA,EAAE,KAAK,CAAC,CAAC,MAAMA,EAAEV,EAAE,CAAC,OAAOzC,EAAE,IAAI,CAAC,GAAGmD,EAAE,SAAS,GAAGA,EAAE,CAAC,IAAIA,EAAE,CAAC,EAAE,MAAM,IAAIgtC,EAAE,sEAAsE,EAAE,OAAOl3C,EAAE,KAAK,KAAK3E,GAAG6O,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,WAAW,CAAC,MAAM,CAAC,KAAK,KAAK,IAAI,CAAC,CAAC,EAAEwyC,GAAG,UAAU,WAAW74C,GAAE,cAAc64C,EAAE,EAAE,SAASC,GAAGrzC,EAAE,EAAE,eAAe,CAAC,IAAIE,EAAEE,EAAE,GAAG2vC,GAAG,CAAC,EAAE/vC,EAAE,SAAS,EAAEE,EAAEF,EAAE,CAAC,EAAEI,EAAEJ,EAAE,CAAC,UAAU,CAAC,EAAE,EAAE,CAAC,EAAE,QAAQA,EAAE,MAAM,IAAI,IAAI,GAAG,IAAI,gBAAgB,CAAC,IAAIK,EAAEuwC,GAAG5wC,EAAE,CAAC,EAAEE,EAAEF,EAAE,CAAC,EAAEK,EAAED,EAAEJ,EAAE,CAAC,EAAEK,CAAC,SAAS,IAAI,eAAe,CAAC,IAAIA,EAAEuwC,GAAG5wC,EAAE,EAAEA,EAAE,OAAO,CAAC,EAAEE,EAAEF,EAAEA,EAAE,OAAO,CAAC,EAAEK,EAAED,EAAEJ,EAAEA,EAAE,OAAO,CAAC,EAAEK,CAAC,MAAM,CAAC,IAAIA,EAAEuwC,GAAG5wC,CAAC,EAAEE,EAAE,KAAK,KAAKG,CAAC,EAAED,EAAE,KAAK,KAAKC,CAAC,CAAC,CAAC,MAAM,CAACH,EAAEE,CAAC,CAAC,CAAC,IAAIkzC,GAAG,cAAcT,EAAE,CAAC,YAAYjyC,EAAE,CAAC,GAAG,MAAM,EAAEA,EAAE,MAAM,EAAE,MAAM,IAAIgtC,EAAE,wCAAwChtC,EAAE,KAAK,EAAE,EAAE,KAAK,MAAMA,EAAE,OAAO,KAAK,EAAEA,EAAE,MAAM,KAAK,KAAKA,EAAE,MAAM,KAAK,QAAQA,EAAE,KAAK+xC,GAAG,KAAK,IAAI,EAAE,KAAK,aAAa/xC,EAAE,cAAc,KAAK,SAASA,EAAE,aAAagyC,GAAG,KAAK,YAAY,EAAE,KAAK,KAAKhyC,EAAE,IAAI,CAAC,MAAMA,EAAEV,EAAE,CAAC,IAAI,EAAEmzC,GAAGzyC,CAAC,EAAEP,EAAE,EAAE,CAAC,EAAEwB,EAAE,EAAE,CAAC,EAAEC,EAAE,KAAK,MAAM,GAAG,KAAK,OAAO,QAAQA,GAAG,KAAK,IAAI,EAAEzB,CAAC,EAAE,KAAK,OAAO,SAASyB,GAAG,KAAK,IAAI,EAAED,CAAC,EAAEC,GAAG,KAAK,IAAI,GAAGzB,EAAEwB,GAAG,CAAC,EAAE,KAAK,eAAe,SAAS,CAAC,IAAIE,EAAE,KAAK,KAAKD,CAAC,EAAE,GAAG5B,EAAEA,GAAG,UAAUA,IAAI,WAAWA,IAAI,QAAQ,MAAM,IAAI2tC,GAAG,GAAG,KAAK,aAAa,CAAC,2BAA2B3tC,CAAC,GAAG,EAAE,OAAOnC,GAAG6C,EAAE,EAAEmB,EAAE7B,EAAE,KAAK,IAAI,CAAC,KAAK,CAAC,IAAI6B,EAAE,KAAK,KAAK,EAAED,CAAC,EAAE,OAAOtJ,GAAGoI,EAAE,CAACmB,EAAEA,EAAE7B,EAAE,KAAK,IAAI,CAAC,CAAC,CAAC,WAAW,CAAC,MAAM,CAAC,MAAM,KAAK,MAAM,KAAK,KAAK,KAAK,aAAa,KAAK,aAAa,KAAK,KAAK,IAAI,CAAC,CAAC,EAAEozC,GAAG,UAAU,kBAAkB/4C,GAAE,cAAc+4C,EAAE,EAAE,IAAIC,GAAG,cAAcD,EAAE,CAAC,YAAY1yC,EAAE,CAAC,MAAM,CAAC,MAAM,EAAE,KAAK,SAAS,aAAa,UAAU,KAAKA,GAAG,KAAK,KAAKA,EAAE,IAAI,CAAC,CAAC,CAAC,cAAc,CAAC,OAAO0yC,GAAG,SAAS,CAAC,EAAEC,GAAG,UAAU,gBAAgBh5C,GAAE,cAAcg5C,EAAE,EAAE,IAAIC,GAAG,cAAcF,EAAE,CAAC,YAAY1yC,EAAE,CAAC,MAAM,CAAC,MAAM,EAAE,KAAK,SAAS,aAAa,SAAS,KAAKA,GAAG,KAAK,KAAKA,EAAE,IAAI,CAAC,CAAC,CAAC,cAAc,CAAC,OAAO0yC,GAAG,SAAS,CAAC,EAAEE,GAAG,UAAU,eAAej5C,GAAE,cAAci5C,EAAE,EAAE,IAAIC,GAAG,cAAcH,EAAE,CAAC,YAAY1yC,EAAE,CAAC,MAAM,CAAC,MAAM,EAAE,KAAK,QAAQ,aAAa,SAAS,KAAKA,GAAG,KAAK,KAAKA,EAAE,IAAI,CAAC,CAAC,CAAC,cAAc,CAAC,OAAO0yC,GAAG,SAAS,CAAC,EAAEG,GAAG,UAAU,WAAWl5C,GAAE,cAAck5C,EAAE,EAAE,IAAIC,GAAG,cAAcJ,EAAE,CAAC,YAAY1yC,EAAE,CAAC,MAAM,CAAC,MAAM,EAAE,KAAK,QAAQ,aAAa,UAAU,KAAKA,GAAG,KAAK,KAAKA,EAAE,IAAI,CAAC,CAAC,CAAC,cAAc,CAAC,OAAO0yC,GAAG,SAAS,CAAC,EAAEI,GAAG,UAAU,YAAYn5C,GAAE,cAAcm5C,EAAE,EAAE,IAAIC,GAAG,cAAcL,EAAE,CAAC,YAAY1yC,EAAE,CAAC,MAAM,CAAC,MAAM,EAAE,KAAK,QAAQ,aAAa,SAAS,KAAKA,GAAG,KAAK,KAAKA,EAAE,IAAI,CAAC,CAAC,CAAC,cAAc,CAAC,OAAO0yC,GAAG,SAAS,CAAC,EAAEK,GAAG,UAAU,cAAcp5C,GAAE,cAAco5C,EAAE,EAAE,IAAIC,GAAG,cAAcN,EAAE,CAAC,YAAY1yC,EAAE,CAAC,MAAM,CAAC,MAAM,EAAE,KAAK,QAAQ,aAAa,UAAU,KAAKA,GAAG,KAAK,KAAKA,EAAE,IAAI,CAAC,CAAC,CAAC,cAAc,CAAC,OAAO0yC,GAAG,SAAS,CAAC,EAAEM,GAAG,UAAU,eAAer5C,GAAE,cAAcq5C,EAAE,EAAE,IAAIC,GAAG,cAAchB,EAAE,CAAC,YAAYjyC,EAAE,CAAC,MAAM,EAAE,KAAK,aAAa,EAAE,KAAK,mBAAmB,IAAI,KAAK,KAAKA,EAAE,MAAM,KAAK,KAAK,aAAaA,EAAE,KAAK,KAAK,KAAKA,EAAE,IAAI,CAAC,MAAMA,EAAEV,EAAE,CAAC,OAAOzC,EAAE,IAAI,CAAC,GAAGmD,EAAE,OAAO,EAAE,MAAM,IAAIitC,GAAG,4BAA4B,EAAE,GAAG3tC,IAAI,SAASA,IAAI,WAAWA,IAAI,OAAO,MAAM,IAAI,UAAU,yBAAyBA,CAAC,GAAG,EAAEA,EAAEA,EAAE,IAAI,EAAE3B,EAAE,cAAcqC,EAAE,MAAM,EAAE,EAAE,CAAC,EAAEP,EAAEO,EAAEA,EAAE,OAAO,CAAC,EAAEiB,EAAE,EAAExB,EAAEwB,EAAE,KAAK,oBAAoB,QAAQ,KAAK,qEAAqE,KAAK,kBAAkB,KAAKA,CAAC,kCAAkC,EAAE,IAAIC,EAAE,CAAC,KAAK,IAAIzB,EAAE,CAAC,EAAE,KAAK,IAAIA,EAAE,CAAC,CAAC,EAAE0B,EAAE+vC,GAAGhwC,EAAE,EAAE,EAAE5B,EAAE,KAAK,IAAI,EAAE8B,EAAE1N,GAAG,GAAGyN,EAAE,EAAE,EAAE,EAAEC,EAAE,CAAC,EAAEW,EAAEX,EAAE,CAAC,EAAE,QAAQ,EAAE,aAAa,CAAC,CAAC,EAAE,CAAC,KAAK,IAAI3B,EAAE,CAAC,EAAE,KAAK,IAAIA,EAAE,CAAC,CAAC,EAAE,CAAC,KAAK,IAAIA,EAAE,CAAC,EAAE,CAAC,CAAC,EAAE,OAAO,EAAE3J,EAAE,EAAEiM,EAAE,KAAK,CAAC,EAAE,EAAEtC,IAAI,EAAE,EAAE,UAAU,GAAG3J,EAAEsD,GAAG,KAAK,IAAI,EAAE,EAAE,QAAQ4G,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,WAAW,CAAC,MAAM,CAAC,KAAK,KAAK,KAAK,KAAK,KAAK,IAAI,CAAC,CAAC,EAAEizC,GAAG,UAAU,aAAat5C,GAAE,cAAcs5C,EAAE,EAAE,IAAIC,GAAG,CAAC,SAAS,WAAW,aAAa,eAAe,cAAc,gBAAgB,SAAS,WAAW,UAAU,YAAY,SAAS,WAAW,YAAY,cAAc,aAAa,eAAe,KAAK,OAAO,WAAW,aAAa,aAAa,eAAe,cAAc,gBAAgB,gBAAgB,kBAAkB,gBAAgB,kBAAkB,MAAM,OAAO,EAAE,SAASC,GAAG/zC,EAAE,EAAE,CAAC,EAAE,CAAC,OAAO0uC,GAAG1uC,EAAEzF,GAAE,iBAAiB,OAAO,EAAE,aAAa,EAAE,aAAa,CAAC,CAAC,SAASy5C,GAAGh0C,EAAE,CAAC,OAAOwuC,GAAGxuC,CAAC,CAAC,CAAC,SAASi0C,GAAGj0C,EAAE,CAAC,GAAG,OAAOA,GAAG,SAAS,CAAC,IAAI,EAAEA,KAAK8zC,GAAGA,GAAG9zC,CAAC,EAAEA,EAAE,GAAG,IAAI,eAAe,OAAO,IAAIwzC,GAAG,GAAG,IAAI,gBAAgB,OAAO,IAAID,GAAG,GAAG,IAAI,WAAW,OAAO,IAAIE,GAAG,GAAG,IAAI,YAAY,OAAO,IAAIC,GAAG,GAAG,IAAI,cAAc,OAAO,IAAIC,GAAG,GAAG,IAAI,eAAe,OAAO,IAAIC,GAAG,CAAC,IAAI1zC,EAAE,CAAC,EAAE,OAAOA,EAAE,UAAU,EAAEA,EAAE,OAAO,CAAC,EAAE6zC,GAAG7zC,CAAC,CAAC,CAAC,KAAM,QAAOF,aAAa6yC,GAAG7yC,EAAE+zC,GAAG/zC,CAAC,CAAC,CAAC,SAASk0C,GAAGl0C,EAAE,CAAC,OAAO,MAAM,QAAQA,CAAC,GAAG,MAAM,QAAQA,EAAE,CAAC,CAAC,CAAC,CAAC,SAASm0C,GAAGn0C,EAAE,CAAC,OAAOA,EAAE,SAAS,EAAE,CAAC,EAAE,MAAM,QAAQA,EAAE,CAAC,CAAC,EAAEA,EAAE,CAACA,CAAC,CAAC,CAAC,SAASo0C,GAAGp0C,EAAE,CAAC,IAAI,EAAE,GAAG,MAAM,QAAQA,CAAC,EAAE,CAAC,GAAGA,EAAE,SAAS,EAAE,MAAM,IAAI4tC,EAAE,uCAAuC5tC,EAAE,MAAM,EAAE,EAAE,EAAEA,EAAE,CAAC,CAAC,MAAM,EAAEA,EAAE,OAAO,CAAC,CAAC,SAASq0C,GAAGr0C,EAAE,CAAC,GAAG,MAAM,QAAQA,CAAC,GAAG,MAAM,QAAQA,EAAE,CAAC,CAAC,EAAE,CAAC,GAAGA,EAAE,SAAS,EAAE,OAAOA,EAAEA,EAAEA,EAAE,CAAC,EAAE,MAAM,IAAI4tC,EAAE,iCAAiC5tC,EAAE,MAAM,EAAE,CAAC,KAAM,QAAOA,CAAC,CAAC,SAASs0C,GAAGt0C,EAAE,CAAC,IAAI,EAAE,EAAE,QAAQE,KAAKF,EAAEE,EAAE,MAAM,SAAS,EAAE,GAAG,EAAE,GAAGA,EAAE,MAAM,OAAO,CAACE,EAAEC,IAAID,EAAEC,CAAC,EAAE,OAAO,CAAC,CAAC,IAAIk0C,GAAG,WAAWpvD,GAAG,KAAK,CAAC,YAAYyb,EAAEV,EAAE,UAAU,EAAEq0C,GAAGl0C,EAAE,GAAGwB,EAAE,KAAK,CAAC,KAAK,MAAM3B,GAAG,KAAK,UAAUA,EAAE,KAAK,MAAMU,EAAE,MAAM,KAAK,GAAG0uC,GAAG,EAAE,EAAE,GAAG,KAAKiF,GAAG,EAAE,KAAK,aAAahE,GAAG,CAAC,EAAE,KAAK,KAAKE,GAAG,KAAK,YAAY,EAAE,KAAK,WAAWpwC,EAAE,KAAK,WAAWwB,EAAE,KAAK,IAAInD,GAAGkC,EAAE,KAAK,WAAW,KAAK,KAAK,KAAK,KAAK,CAAC,CAAC,MAAM,CAAC,OAAO,KAAK,kBAAkB,EAAE,KAAK,GAAG,CAAC,MAAMA,EAAE,CAAC,OAAO,KAAK,kBAAkB,EAAE4zC,GAAG,KAAK,IAAI5zC,CAAC,EAAE,KAAK,IAAI,KAAKA,EAAE,KAAK,KAAK,IAAI,OAAOA,CAAC,EAAE,KAAK,YAAY,MAAM,KAAK,IAAI,OAAO,KAAK,WAAW,MAAM,KAAK,GAAG,CAAC,GAAG,IAAI,CAAC,SAAS,CAAC,KAAK,kBAAkB,EAAE,KAAK,IAAI,QAAQ,CAAC,CAAC,mBAAmB,CAAC,GAAG,KAAK,IAAI,WAAW,MAAM,IAAI,MAAM,kBAAkB,KAAK,IAAI,uBAAuB,CAAC,CAAC,IAAI,WAAW,CAAC,OAAO,KAAK,UAAU,CAAC,IAAI,UAAUA,EAAE,CAAC,KAAK,WAAWA,EAAE,KAAK,IAAI,UAAUA,CAAC,CAAC,EAAE,SAAS4zC,GAAGx0C,EAAE,EAAE,CAAC,GAAGA,EAAE,MAAM,SAAS,IAAI,EAAE,MAAM,SAAS,EAAE,MAAM,IAAI,MAAM,mBAAmB,KAAK,UAAUA,EAAE,KAAK,EAAE,QAAQ,KAAK,UAAU,EAAE,KAAK,CAAC,CAAC,CAAC,SAASy0C,GAAGz0C,EAAE,CAAC,OAAOA,EAAE,IAAI,GAAG,EAAE,KAAK,CAAC,CAAC,CAAC,SAAS00C,GAAG10C,EAAE,CAACA,EAAE,QAAQ,GAAG,CAAC,EAAE,CAAC,EAAE,MAAM,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,IAAIpb,GAAG,KAAK,CAAC,YAAYgc,EAAE,CAAC,KAAK,MAAMA,EAAE,MAAM,KAAK,MAAMA,EAAE,MAAMA,EAAE,OAAO,KAAK,KAAK,KAAKA,EAAE,MAAM,OAAO,KAAK,KAAKA,EAAE,KAAK,KAAK,QAAQA,EAAE,QAAQ,KAAK,QAAQA,EAAE,QAAQ,KAAK,KAAKA,EAAE,MAAM,CAAC,CAAC,CAAC,EAAEpV,GAAG,KAAK,CAAC,YAAYoV,EAAEV,EAAE,EAAEG,EAAEwB,EAAEC,EAAEC,EAAE,CAAC,KAAK,MAAMnB,EAAE,KAAK,MAAMV,EAAE,KAAK,YAAY,EAAE,KAAK,OAAOG,EAAE,KAAK,SAASwB,EAAE,KAAK,kBAAkBE,EAAE,KAAK,GAAGutC,GAAG,EAAExtC,GAAG,OAAO,KAAK,aAAayuC,GAAGzuC,CAAC,EAAE,KAAK,KAAK2uC,GAAG,KAAK,YAAY,GAAG,KAAK,KAAKvwC,EAAE,MAAM,CAAC,EAAEy0C,GAAG,EAAEC,GAAG,KAAK,CAAC,YAAYh0C,EAAEV,EAAE,CAAC,KAAK,SAASA,EAAE,KAAK,GAAGy0C,KAAK,KAAK,cAAc/zC,EAAE,cAAc,KAAK,cAAcA,EAAE,cAAc,KAAK,YAAYA,EAAE,YAAY,KAAK,cAAcA,EAAE,cAAc,KAAK,aAAaA,EAAE,aAAa,KAAK,cAAcA,EAAE,cAAc,KAAK,WAAWA,EAAE,WAAW,KAAK,YAAYA,EAAE,YAAY,KAAK,YAAYA,EAAE,YAAY,KAAK,aAAaA,EAAE,aAAa,QAAQ,KAAKA,EAAE,cAAc,GAAG,MAAM,EAAE,cAAc,KAAK,IAAI,EAAEA,EAAE,cAAc,aAAa,KAAK,IAAI,CAAC,CAAC,WAAW,CAAC,IAAIA,EAAE,CAAC,EAAE,QAAQV,KAAK,KAAK,cAAcA,GAAG,KAAKU,EAAE,KAAKV,EAAE,IAAI,EAAEU,EAAE,KAAK,IAAI,EAAE,MAAM,CAAC,cAAc,KAAK,cAAc,KAAK,cAAc,KAAK,KAAK,cAAcA,EAAE,YAAY,KAAK,YAAY,cAAc,KAAK,aAAa,CAAC,CAAC,EAAEi0C,GAAG,EAAEC,GAAG,cAAcv6C,GAAE,YAAY,CAAC,YAAYqG,EAAE,CAAC,EAAE,CAAC,MAAM,EAAE,KAAK,UAAU,KAAK,KAAK,kBAAkB,CAAC,EAAE,KAAK,UAAU,GAAG,KAAK,GAAGi0C,KAAK,KAAK,oBAAoB,KAAK,KAAK,UAAU,KAAK,KAAK,gBAAgB,GAAG,KAAK,kBAAkB,CAAC,EAAE,KAAK,qBAAqB,CAAC,EAAE,KAAK,QAAQ,CAAC,EAAE,KAAK,SAAS,CAAC,EAAE,KAAK,OAAO,GAAG,KAAK,aAAa,CAAC,EAAE,KAAK,cAAc,CAAC,EAAE,IAAI30C,EAAEU,EAAE,KAAK,GAAG,CAACV,EAAE,CAAC,IAAI,EAAE,KAAK,aAAa,EAAEA,EAAEmuC,GAAG,CAAC,EAAE,IAAImB,GAAG,CAAC,CAAC,CAAC,GAAG,KAAK,KAAKtvC,EAAE,KAAK,WAAWU,EAAE,WAAW,KAAK,GAAGA,EAAE,UAAUA,EAAE,YAAY,MAAMA,EAAE,iBAAiB,KAAK,CAAC,IAAI,EAAE,GAAGA,EAAE,iBAAiB,KAAK,EAAEA,EAAE,wBAAwBA,EAAE,YAAY,KAAK,CAAC,IAAIiB,EAAE,KAAKjB,EAAE,WAAW,OAAOiB,EAAEjB,EAAE,WAAW,EAAE,CAACiB,CAAC,EAAE,OAAOjB,EAAE,UAAU,CAAC,CAAC,KAAK,gBAAgB,EAAE,IAAIP,EAAEO,EAAE,MAAMP,GAAG,OAAOA,EAAEO,EAAE,YAAYP,GAAG,OAAOA,EAAE,WAAW,KAAK,MAAMA,CAAC,CAACO,EAAE,SAAS,KAAK,KAAK,eAAeA,EAAE,QAAQ,KAAK,eAAe,KAAK,KAAK,UAAU,KAAK,KAAK,0BAA0B,EAAE,CAAC,OAAO,QAAQA,EAAEV,EAAE,CAAC,OAAOU,EAAE,KAAK,OAAOV,EAAE,SAAS,CAAC,CAAC,eAAeU,EAAEV,EAAE,CAAC,GAAG,KAAK,aAAa,SAAS,EAAE,MAAM,IAAIytC,GAAG,2DAA2DztC,CAAC,GAAG,EAAE,GAAG,KAAK,aAAa,QAAQU,EAAE,MAAM,IAAIgtC,EAAE,gBAAgB1tC,CAAC,YAAYU,CAAC,4BAA4B,KAAK,aAAa,MAAM,iBAAiB,EAAE,OAAO,KAAK,aAAaA,CAAC,CAAC,CAAC,WAAWA,EAAE,CAAC,OAAOutC,GAAG,KAAK,eAAevtC,EAAE,OAAO,EAAE,YAAY,CAAC,CAAC,YAAYA,EAAE,CAAC,OAAOutC,GAAG,KAAK,eAAevtC,EAAE,QAAQ,EAAE,aAAa,CAAC,CAAC,IAAI,OAAO,CAAC,GAAG,KAAK,aAAa,OAAO,EAAE,MAAM,IAAI8sC,GAAG,SAAS,KAAK,IAAI,uHAAuH,EAAE,GAAG,KAAK,aAAa,SAAS,EAAE,MAAM,IAAIA,GAAG,SAAS,KAAK,IAAI,wCAAwC,EAAE,OAAOS,GAAG,KAAK,eAAe,EAAE,OAAO,EAAE,YAAY,CAAC,CAAC,IAAI,QAAQ,CAAC,GAAG,KAAK,aAAa,SAAS,EAAE,MAAM,IAAIT,GAAG,SAAS,KAAK,IAAI,wBAAwB,EAAE,GAAG,KAAK,aAAa,OAAO,EAAE,MAAM,IAAIA,GAAG,SAAS,KAAK,IAAI,yHAAyH,EAAE,OAAOS,GAAG,KAAK,eAAe,EAAE,QAAQ,EAAE,aAAa,CAAC,CAAC,IAAI,QAAQ,CAAC,OAAO,KAAK,OAAO,CAAC,iBAAiB,CAAC,OAAO,KAAK,OAAO,IAAIvtC,GAAGA,EAAE,CAAC,CAAC,CAAC,IAAI,SAAS,CAAC,OAAO,KAAK,QAAQ,CAAC,IAAI,OAAO,CAAC,OAAO,KAAK,MAAM,CAAC,IAAI,MAAMA,EAAE,CAAC,KAAK,OAAOA,CAAC,CAAC,IAAI,WAAW,CAAC,OAAO,KAAK,UAAU,CAAC,IAAI,UAAUA,EAAE,CAAC,KAAK,kBAAkB,QAAQV,GAAGA,EAAE,UAAUU,CAAC,EAAE,KAAK,WAAWA,CAAC,CAAC,IAAI,kBAAkB,CAAC,OAAO,KAAK,WAAW,KAAK,kBAAkB,OAAOA,GAAGA,EAAE,SAAS,EAAE,CAAC,CAAC,CAAC,IAAI,iBAAiBA,EAAE,CAAC,KAAK,kBAAkBA,CAAC,CAAC,IAAI,qBAAqB,CAAC,OAAO,KAAK,UAAU,KAAK,kBAAkB,OAAOA,GAAG,CAACA,EAAE,SAAS,EAAE,OAAO,KAAK,oBAAoB,EAAE,KAAK,kBAAkB,OAAO,KAAK,oBAAoB,CAAC,CAAC,IAAI,oBAAoBA,EAAE,CAAC,KAAK,qBAAqBA,CAAC,CAAC,IAAI,SAAS,CAAC,OAAO,KAAK,iBAAiB,OAAO,KAAK,mBAAmB,CAAC,CAAC,IAAI,UAAU,CAAC,OAAO,KAAK,SAAS,CAAC,aAAa,CAAC,GAAG,CAAC,KAAK,SAAS,MAAM,IAAI,MAAM,sEAAsE,CAAC,CAAC,yBAAyBA,EAAE,CAAC,IAAIV,EAAEkuC,GAAGxtC,CAAC,EAAE,GAAG,KAAK,WAAW,MAAM,KAAK,UAAU,SAAS,EAAE,OAAO,IAAI,EAAEwtC,GAAG,KAAK,SAAS,EAAE,GAAGluC,EAAE,SAAS,EAAE,OAAO,MAAM,IAAI0tC,EAAE,SAAS,KAAK,IAAI,YAAY,EAAE,MAAM,4BAA4B1tC,EAAE,MAAM,mCAAmCU,CAAC,EAAE,EAAE,QAAQP,EAAE,EAAEA,EAAEH,EAAE,OAAOG,IAAI,CAAC,IAAIwB,EAAE3B,EAAEG,CAAC,EAAEyB,EAAE,EAAEzB,CAAC,EAAE,GAAGyB,GAAG,KAAK,SAAS,IAAIC,EAAEF,EAAE,KAAK,GAAGC,EAAE,MAAM,MAAMC,IAAID,EAAE,KAAK,MAAM,IAAI8rC,EAAE,SAASvtC,CAAC,+BAA+B,KAAK,IAAI,mBAAmByB,EAAE,IAAI,gBAAgBC,CAAC,EAAE,EAAE,GAAGD,EAAE,SAAS,MAAMC,EAAED,EAAE,QAAQ,MAAM,IAAI8rC,EAAE,SAASvtC,CAAC,+BAA+B,KAAK,IAAI,uBAAuByB,EAAE,OAAO,gBAAgBC,CAAC,EAAE,EAAE,GAAGD,EAAE,SAAS,MAAMC,EAAED,EAAE,QAAQ,MAAM,IAAI8rC,EAAE,SAASvtC,CAAC,+BAA+B,KAAK,IAAI,uBAAuByB,EAAE,OAAO,gBAAgBC,CAAC,GAAG,EAAE,GAAGD,EAAE,OAAO,MAAMD,EAAE,QAAQC,EAAE,MAAM,MAAM,IAAI8rC,EAAE,SAASvtC,CAAC,+BAA+B,KAAK,IAAI,qBAAqByB,EAAE,KAAK,iBAAiBD,EAAE,KAAK,GAAG,EAAE,GAAGC,EAAE,KAAK,CAAC,IAAIE,EAAEH,EAAE,MAAM,QAAQ,KAAKC,EAAE,KAAK,CAAC,IAAIY,EAAE,OAAO,CAAC,EAAE,EAAEZ,EAAE,KAAK,CAAC,EAAEc,EAAEF,GAAG,EAAEV,EAAEU,CAAC,EAAEV,EAAEA,EAAE,OAAOU,CAAC,EAAE,GAAG,GAAG,MAAM,CAAC,EAAE,IAAI,EAAE,QAAQE,CAAC,IAAI,GAAG,MAAM,IAAIgrC,EAAE,SAASvtC,CAAC,+BAA+B,KAAK,IAAI,mBAAmBqC,CAAC,iCAAiC,CAAC,kBAAkBV,CAAC,GAAG,CAAC,CAAC,CAAC,GAAGF,EAAE,OAAO,KAAK,QAAQE,EAAE,EAAEA,EAAEF,EAAE,MAAM,OAAO,EAAEE,EAAE,CAAC,IAAI,EAAEF,EAAE,MAAME,CAAC,EAAEU,EAAEb,EAAE,MAAMG,CAAC,EAAE,GAAG,GAAG,MAAMU,GAAG,MAAM,IAAIA,EAAE,MAAM,IAAIkrC,EAAE,SAASvtC,CAAC,+BAA+B,KAAK,IAAI,oBAAoByB,EAAE,KAAK,iBAAiBD,EAAE,KAAK,GAAG,CAAC,CAAC,CAAC,CAAC,KAAKjB,EAAEV,EAAE,CAAC,OAAOU,CAAC,CAAC,eAAeA,EAAEV,EAAE,CAAC,KAAK,WAAW,MAAM,KAAK,UAAUU,EAAEV,CAAC,CAAC,CAAC,YAAYU,EAAE,CAAC,KAAK,UAAUA,CAAC,CAAC,eAAe,CAAC,KAAK,UAAU,IAAI,CAAC,MAAMA,EAAEV,EAAE,CAACA,EAAEA,GAAG,CAAC,EAAE,KAAK,kBAAkB,EAAE,IAAI,EAAEkuC,GAAGxtC,CAAC,EAAEP,EAAE00C,GAAGn0C,CAAC,EAAEiB,EAAEmzC,GAAGp0C,CAAC,EAAE,GAAGP,IAAIwB,EAAE,MAAM,IAAI+rC,EAAE,iEAAiE,EAAE,OAAOyC,GAAG,KAAK,KAAK,IAAI,CAAC,GAAG,CAAC,KAAK,MAAM,CAAC,KAAK,yBAAyBzvC,CAAC,EAAE,IAAIkB,EAAE,CAAC,EAAE,QAAQC,KAAKqsC,GAAGxtC,CAAC,EAAEkB,EAAE,KAAKC,EAAE,KAAK,EAAE,KAAK,MAAMosC,GAAGrsC,CAAC,CAAC,EAAE,KAAK,MAAM,GAAG,KAAK,gBAAgB,KAAK,WAAW,KAAK,cAAc,EAAE,KAAK,YAAY,MAAMD,IAAI,KAAK,UAAU,EAAE,CAAC,GAAG,KAAK,yBAAyBjB,CAAC,EAAEiB,EAAE,CAAC,IAAIC,EAAE,KAAK,KAAKlB,EAAEV,CAAC,EAAE,KAAK,iBAAiB,KAAK,gBAAgBU,EAAEkB,CAAC,EAAE,IAAIC,EAAEqsC,GAAGtsC,CAAC,EAAEE,EAAE,CAAC,EAAE,QAAQ,KAAKD,EAAE,EAAE,QAAQ,CAAC,IAAI,KAAK,EAAE,EAAE,MAAM,GAAGC,EAAE,KAAK,CAAC,EAAE,GAAGF,EAAEqsC,GAAGnsC,CAAC,EAAE,KAAK,qBAAqB,KAAK,MAAM,IAAI6rC,GAAG,mFAAmF,EAAE,OAAO/rC,CAAC,KAAK,CAAC,IAAIA,EAAEmzC,GAAGr0C,CAAC,EAAEmB,EAAE,KAAK,mBAAmBD,CAAC,EAAEE,EAAE,EAAEkzC,GAAGt0C,CAAC,EAAE,GAAG,KAAK,6BAA6B,MAAM,QAAQA,CAAC,EAAEkB,EAAE,CAAC,EAAEA,CAAC,EAAEC,GAAG,MAAMA,EAAE,OAAO,GAAG,MAAM,QAAQA,EAAE,CAAC,CAAC,EAAEC,EAAED,EAAE,IAAI,CAACW,EAAE,IAAI,IAAIlX,GAAG,EAAEkX,EAAE,KAAK0rC,GAAGxtC,CAAC,EAAEV,EAAE,KAAK,KAAK,CAAC,CAAC,EAAE8B,EAAE,IAAIxW,GAAG,EAAEuW,EAAE,KAAKqsC,GAAGxtC,CAAC,EAAEV,EAAE,KAAK,IAAI,EAAE,KAAK,eAAeU,EAAEoB,EAAE,KAAK,KAAKF,EAAEC,EAAE7B,CAAC,EAAE,KAAK,YAAY,KAAK,qBAAqB,KAAK,MAAM,IAAI2tC,GAAG,mFAAmF,EAAE,OAAO7rC,CAAC,CAAC,CAAC,CAAC,CAAC,6BAA6BpB,EAAE,CAAC,GAAG,KAAK,iBAAiB,KAAK,GAAGA,EAAE,SAAS,KAAK,gBAAgB,OAAO,QAAQ,KAAK,iDAAiD,KAAK,UAAUA,CAAC,CAAC,iDAAiD,KAAK,UAAU,KAAK,eAAe,CAAC,kBAAkB,KAAK,IAAI,EAAE,MAAM,CAAC,IAAIV,EAAE,GAAG,KAAK,gBAAgB,QAAQ,CAAC,EAAEG,IAAI,CAAC,GAAG,MAAMO,EAAEP,CAAC,GAAG,MAAMO,EAAEP,CAAC,IAAI,IAAIH,EAAE,GAAG,CAAC,EAAEA,GAAG,QAAQ,KAAK,kCAAkC,KAAK,UAAUU,CAAC,CAAC,6CAA6C,KAAK,IAAI,KAAK,KAAK,UAAU,KAAK,eAAe,CAAC,EAAE,CAAC,CAAC,CAAC,IAAI,aAAa,CAAC,GAAG,KAAK,cAAc,MAAM,KAAK,aAAa,SAAS,EAAE,MAAM,IAAI8sC,GAAG,aAAa,KAAK,IAAI,8DAA8D,EAAE,IAAI9sC,EAAE,CAAC,EAAE,QAAQV,KAAK,KAAK,aAAa,CAAC,IAAI,EAAE,KAAK,UAAUA,EAAE,YAAY,EAAEU,EAAE,QAAQ,CAAC,IAAI,IAAIA,EAAE,KAAK,CAAC,CAAC,CAAC,GAAGA,EAAE,SAAS,EAAE,CAAC,IAAIV,EAAE,KAAK,aAAa,CAAC,EAAE,aAAa,OAAO,MAAM,QAAQA,CAAC,GAAG,MAAM,QAAQA,EAAE,CAAC,CAAC,GAAGA,EAAE,SAAS,EAAEA,EAAE,CAAC,EAAEA,CAAC,KAAM,OAAM,IAAIwtC,GAAG,aAAa,KAAK,IAAI,4HAA4H,CAAC,CAAC,aAAa,CAAC,GAAG,CAAC,KAAK,MAAM,MAAM,IAAIC,GAAG,sCAAsC,KAAK,IAAI,qFAAqF,EAAE,OAAO2G,GAAG,KAAK,OAAO,CAAC,CAAC,MAAM1zC,EAAE,CAAC,KAAK,MAAM,EAAE,CAAC,WAAWA,EAAE,GAAG,CAAC,OAAO6zC,GAAG7zC,EAAE,KAAK,iBAAiB,KAAK,OAAO,CAAC,CAAC,WAAWA,EAAE,CAACnD,EAAE,IAAI,CAAC,IAAIyC,EAAE,KAAK,QAAQ,GAAGA,EAAE,SAASU,EAAE,OAAO,MAAM,IAAIgtC,EAAE,4CAA4C,KAAK,IAAI,kCAAkChtC,EAAE,MAAM,iCAAiCV,EAAE,MAAM,+BAA+BU,CAAC,KAAK,EAAE,GAAGV,EAAE,SAAS,EAAE,OAAO,IAAI,EAAE,CAAC,EAAEG,EAAEo0C,GAAGv0C,CAAC,EAAE,QAAQ2B,EAAE,EAAEA,EAAExB,EAAE,OAAO,EAAEwB,EAAE,CAAC,IAAIC,EAAEzB,EAAEwB,CAAC,EAAEE,EAAE7B,EAAE2B,CAAC,EAAEG,EAAEpB,EAAEiB,CAAC,EAAE,GAAG,CAACtD,EAAE,YAAYuD,EAAE,MAAME,EAAE,KAAK,EAAE,MAAM,IAAI4rC,EAAE,sBAAsB9rC,EAAE,KAAK,8CAA8CE,EAAE,KAAK,EAAE,EAAE,EAAE,KAAK,CAACD,EAAEC,CAAC,CAAC,CAAC,CAAC0yC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,UAAU9zC,EAAEV,EAAE,EAAEG,EAAEwB,EAAEC,EAAEC,EAAEC,EAAE,CAAC,GAAG,KAAK,kBAAkB,QAAQpB,CAAC,IAAI,GAAG,MAAM,IAAIgtC,EAAE,yBAAyBhtC,CAAC,cAAc,KAAK,IAAI,EAAE,EAAE,KAAK,kBAAkB,KAAKA,CAAC,EAAE,GAAG,OAAO,EAAE,WAAW,KAAK,4BAA4BP,EAAE2B,GAAG,KAAKA,EAAE,EAAEiyC,GAAG,OAAO,GAAG,IAAI,EAAE5zC,EAAE,MAAMH,EAAE,CAAC,EAAEwC,EAAE,IAAIvd,GAAG,EAAE,EAAEyb,EAAEkB,EAAEC,CAAC,EAAE,OAAO,EAAE,QAAQ,EAAEF,GAAG,MAAM,KAAK,QAAQ,IAAIA,EAAE,MAAMa,EAAE,KAAK,CAAC,CAAC,EAAEZ,GAAG,OAAOA,EAAE,IAAIA,EAAE,KAAK,kBAAkB,KAAKY,CAAC,EAAE,KAAK,qBAAqB,KAAKA,CAAC,EAAEA,CAAC,CAAC,6BAA6B9B,EAAE,CAAC,KAAK,0BAA0BA,CAAC,CAAC,QAAQA,EAAE,CAACA,GAAG,MAAM,MAAM,QAAQA,CAAC,GAAGA,EAAE,SAAS,IAAIA,EAAEwtC,GAAGxtC,CAAC,EAAE,KAAK,UAAU,QAAQ,KAAK,UAAU,MAAM,KAAK,OAAO,KAAK,GAAGA,CAAC,EAAE,CAAC,mBAAmBA,EAAE,CAAC,OAAOA,CAAC,CAAC,YAAYA,EAAEV,EAAE,CAAC,GAAG,CAAC,KAAK,gBAAgB,CAAC,GAAGA,GAAG,KAAK,GAAG,MAAM,QAAQA,CAAC,EAAEA,EAAE,QAAQ,GAAG,CAAC,GAAG,GAAG,KAAK,MAAM,IAAI,UAAU,SAAS,KAAK,IAAI,yDAAyD,CAAC,CAAC,MAAO,OAAM,IAAI,UAAU,SAAS,KAAK,IAAI,yDAAyD,EAAE,OAAO,IAAI,CAAC,OAAOA,CAAC,CAAC,gBAAgBU,EAAEV,EAAE,EAAE,CAAC,GAAG,CAAC,KAAK,gBAAgB,OAAO,IAAIG,EAAE,KAAK,YAAYO,EAAE,CAAC,EAAEiB,EAAEusC,GAAGluC,CAAC,EAAE4B,EAAEssC,GAAG/tC,CAAC,EAAE,GAAGwB,EAAE,SAASC,EAAE,OAAO,MAAM,IAAI,MAAM,GAAG,KAAK,IAAI,YAAYD,EAAE,MAAM,gBAAgBA,EAAE,MAAM,0BAA0B,EAAE,QAAQE,EAAE,EAAEA,EAAEF,EAAE,OAAOE,IAAIF,EAAEE,CAAC,EAAE,UAAUD,EAAEC,CAAC,CAAC,CAAC,eAAenB,EAAEV,EAAE,EAAEG,EAAEwB,EAAEC,EAAEC,EAAE,KAAK,CAAC,IAAIC,EAAEosC,GAAGxtC,CAAC,EAAEV,EAAEkuC,GAAGluC,CAAC,EAAE,EAAEkuC,GAAG,CAAC,EAAE/tC,EAAE+tC,GAAG/tC,CAAC,EAAEwB,EAAEsyC,GAAGtyC,CAAC,EAAEC,EAAEqyC,GAAGryC,CAAC,EAAE,IAAI,EAAE,CAAC,EAAEY,EAAE,CAAC,EAAE,EAAE,CAAC,EAAE,QAAQE,KAAKZ,EAAE,EAAE,KAAKY,EAAE,WAAW,EAAEF,EAAE,KAAKE,EAAE,SAAS,EAAE,EAAE,KAAKA,EAAE,WAAW,EAAE,IAAIgyC,GAAG,CAAC,cAAc,KAAK,cAAc,EAAE,YAAYlyC,EAAE,cAAc,EAAE,aAAaV,EAAE,cAAc9B,EAAE,WAAW,EAAE,YAAYG,EAAE,YAAYwB,EAAE,aAAaC,CAAC,EAAEC,CAAC,EAAE,QAAQa,EAAE,EAAEA,EAAE1C,EAAE,OAAO0C,IAAI1C,EAAE0C,CAAC,EAAE,YAAY,KAAK1C,EAAE0C,CAAC,EAAE,UAAU,KAAK,aAAa,OAAO,EAAE1C,EAAE0C,CAAC,EAAE,YAAYA,CAAC,CAAC,WAAW,CAAC,IAAIhC,EAAE,CAAC,KAAK,KAAK,KAAK,UAAU,KAAK,SAAS,EAAE,OAAO,KAAK,iBAAiB,OAAOA,EAAE,gBAAgB,KAAK,iBAAiB,KAAK,OAAO,OAAOA,EAAE,MAAM,KAAK,OAAOA,CAAC,CAAC,gBAAgB,CAAC,OAAO,KAAK,QAAQ,QAAQA,GAAGA,EAAE,QAAQ,CAAC,EAAE,KAAK,QAAQ,MAAM,CAAC,mBAAmB,CAAC,GAAG,KAAK,YAAY,EAAE,MAAM,IAAI,MAAM,UAAU,KAAK,IAAI,wBAAwB,CAAC,CAAC,SAAS,CAAC,GAAG,CAAC,KAAK,MAAM,MAAM,IAAI,MAAM,wBAAwB,KAAK,IAAI,qCAAqC,EAAE,GAAG,KAAK,YAAY,KAAK,MAAM,IAAI,MAAM,wBAAwB,KAAK,IAAI,oCAAoC,EAAE,KAAK,kBAAkB,EAAE,IAAIA,EAAE,EAAE,MAAM,EAAE,KAAK,YAAY,IAAIA,EAAE,KAAK,eAAe,GAAG,CAAC,qBAAqB,KAAK,UAAU,qBAAqBA,CAAC,CAAC,CAAC,EAAE,SAASq0C,GAAGj1C,EAAE,CAACA,EAAEouC,GAAGpuC,CAAC,EAAE,IAAI,EAAE,CAAC,EAAE,QAAQE,KAAKF,EAAE,EAAE,KAAKE,EAAE,KAAK,EAAE,OAAOiuC,GAAG,CAAC,CAAC,CAAC,SAAS+G,GAAGl1C,EAAE,CAAC,MAAM,SAAS,CAAC,SAASm1C,GAAGn1C,EAAE,EAAEE,EAAE,CAAC,IAAI,GAAG,MAAMA,GAAG,MAAMA,EAAE,KAAK,EAAEF,EAAE,YAAYE,EAAEF,EAAE,WAAW,EAAE,aAAa,SAAS,EAAE,MAAM,CAACA,CAAC,EAAE,CAAC,IAAII,EAAE,EAAE,aAAaF,CAAC,EAAE,GAAGE,EAAE,cAAc,SAAS,EAAE,OAAOA,EAAE,aAAa,CAAC,IAAIC,EAAE,CAAC,EAAE,QAAQ,EAAE,EAAE,EAAED,EAAE,cAAc,OAAO,IAAI,CAAC,IAAI,EAAEA,EAAE,aAAa,CAAC,EAAE2B,EAAE3B,EAAE,cAAc,CAAC,EAAE4B,EAAE5B,EAAE,YAAY,CAAC,EAAE6B,EAAEkzC,GAAG,EAAEpzC,EAAEC,CAAC,EAAE,QAAQU,KAAKT,EAAE5B,EAAE,QAAQqC,CAAC,IAAI,IAAIrC,EAAE,KAAKqC,CAAC,CAAC,CAAC,OAAOrC,CAAC,CAAC,CAAC,CAAC,SAAS00C,GAAG/0C,EAAE,CAAC,IAAI,EAAE,GAAG,QAAQE,KAAKkuC,GAAGpuC,CAAC,EAAE,GAAG,EAAEE,aAAa1U,IAAI,CAAC,EAAE,GAAG,KAAK,CAAC,OAAO,CAAC,CAAC,SAASwpD,GAAGh1C,EAAE,CAAC,IAAI,EAAE,GAAG,QAAQE,KAAKkuC,GAAGpuC,CAAC,EAAE,GAAGE,aAAa1U,GAAG,CAAC,EAAE,GAAG,KAAK,CAAC,OAAO,CAAC,CAAC,IAAI4pD,GAAG,cAAcN,EAAE,CAAC,YAAYl0C,EAAE,CAAC,GAAG,MAAM,CAAC,MAAMA,EAAE,MAAM,KAAKA,EAAE,MAAM,KAAKA,EAAE,KAAK4uC,GAAG,OAAO,EAAE,SAAS,CAAC,CAAC,EAAE5uC,EAAE,WAAW,OAAOA,EAAE,UAAU,MAAMA,EAAE,QAAQ,OAAOA,EAAE,OAAO,IAAI,KAAK,UAAU,GAAG,KAAK,MAAM,GAAG,KAAK,OAAOA,EAAE,OAAOA,EAAE,YAAY,MAAMA,EAAE,iBAAiB,KAAK,MAAM,IAAIgtC,EAAE,mGAAmG,EAAE,IAAI1tC,EAAEU,EAAE,gBAAgB,GAAGV,GAAG,KAAK,CAAC,GAAGU,EAAE,YAAY,KAAK,MAAM,IAAIgtC,EAAE,+EAA+E,EAAE1tC,EAAE,CAACU,EAAE,SAAS,EAAE,OAAOA,EAAE,UAAU,CAAC,SAASA,EAAE,WAAW,KAAK,MAAM,IAAIgtC,EAAE,uFAAuF,EAAE,IAAI,EAAEhtC,EAAE,OAAO,UAAU,KAAK,gBAAgBV,EAAE,KAAK,MAAM,EAAE,KAAK,UAAU,CAAC,CAAC,MAAMA,CAAC,CAAC,EAAE,IAAIG,EAAE,IAAI7U,GAAG,KAAK,MAAM,KAAK,gBAAgB,KAAK,CAAC,EAAE,CAAC,EAAE,KAAK,IAAI,EAAE6U,EAAE,UAAU,EAAEA,EAAE,YAAY,EAAE,IAAIu0C,GAAG,CAAC,cAAc,KAAK,cAAc,CAAC,EAAE,YAAY,CAAC,EAAE,cAAc,CAAC,EAAE,aAAa,CAACv0C,CAAC,EAAE,cAAc,CAACA,CAAC,EAAE,WAAW,CAAC,IAAI,EAAE,YAAY,CAAC,IAAI,EAAE,YAAY,CAACH,CAAC,EAAE,aAAa,CAACA,CAAC,CAAC,CAAC,CAAC,CAAC,MAAMU,EAAEV,EAAE,CAAC,MAAM,IAAI0tC,EAAE,6EAA6E,KAAK,IAAI,EAAE,CAAC,CAAC,SAAS,CAAC,MAAM,CAAC,qBAAqB,KAAK,UAAU,qBAAqB,CAAC,CAAC,CAAC,WAAW,CAAC,MAAM,CAAC,gBAAgB,KAAK,gBAAgB,MAAM,KAAK,MAAM,OAAO,KAAK,OAAO,KAAK,KAAK,IAAI,CAAC,CAAC,EAAEwH,GAAG,UAAU,aAAa76C,GAAE,cAAc66C,EAAE,EAAE,SAASC,GAAGr1C,EAAE,CAAC,GAAGA,EAAE,YAAY,MAAMA,EAAE,OAAO,KAAK,MAAM,IAAI,MAAM,8HAA8H,EAAE,GAAGA,EAAE,YAAY,MAAMA,EAAE,OAAO,KAAK,MAAM,IAAI4tC,EAAE,kFAAkF,EAAE,IAAI,EAAE5tC,EAAE,WAAWA,EAAE,OAAO,MAAM,GAAG,OAAO,EAAE,CAAC,IAAI,EAAE,OAAOA,EAAE,KAAK,GAAG,IAAIE,EAAEF,EAAE,MAAM,OAAOE,GAAG,OAAOA,EAAE,WAAW,IAAIk1C,GAAG,CAAC,gBAAgB,EAAE,KAAKp1C,EAAE,KAAK,MAAME,EAAE,OAAOF,EAAE,MAAM,CAAC,EAAE,aAAa,CAAC,EAAE,cAAc,CAAC,CAAC,CAAC,SAASs1C,GAAGt1C,EAAE,EAAE,CAAC,GAAGA,EAAE,OAAO,MAAMA,EAAE,QAAQ,EAAE,MAAM,OAAO,EAAE,GAAG,CAAC,OAAOtR,GAAE,EAAEsR,EAAE,KAAK,CAAC,OAAOE,EAAE,CAAC,MAAM,IAAI0tC,EAAE,0BAA0B,EAAE,KAAK,8CAA8C5tC,EAAE,IAAI,MAAMA,EAAE,KAAK,IAAI,CAAC,CAAC,CAAC,IAAIu1C,GAAG,MAAMv1C,EAAC,CAAC,YAAY,EAAE,CAAC,GAAG,KAAK,SAAS,CAAC,EAAE,KAAK,QAAQ,CAAC,EAAE,KAAK,QAAQ,CAAC,EAAE,aAAaA,GAAE,QAAQE,KAAK,EAAE,SAAS,KAAK,SAASA,CAAC,EAAE,EAAE,SAASA,CAAC,EAAEA,KAAK,EAAE,UAAU,KAAK,QAAQA,CAAC,EAAE,EAAE,QAAQA,CAAC,OAAO,CAAC,GAAG,GAAG,KAAK,OAAO,QAAQA,KAAK,EAAE,KAAK,IAAIA,EAAE,IAAIA,EAAE,KAAK,CAAC,CAAC,CAAC,IAAI,EAAEA,EAAEE,EAAE,CAAC,GAAG,KAAK,SAAS,EAAE,EAAE,GAAG,KAAK,KAAK,SAAS,EAAE,EAAE,EAAEk1C,GAAG,EAAEp1C,CAAC,EAAE,KAAK,QAAQ,EAAE,IAAI,EAAE,EAAE,GAAGE,GAAG,OAAO,KAAK,QAAQ,EAAE,EAAE,EAAEA,OAAQ,OAAM,IAAIwtC,EAAE,uBAAuB,EAAE,IAAI,QAAQ,EAAE,EAAE,EAAE,EAAE,OAAO,IAAI,CAAC,QAAQ,EAAE,CAAC,KAAK,IAAI,EAAE,IAAI,EAAE,KAAK,CAAC,CAAC,OAAO,EAAE,CAAC,OAAO,KAAK,SAAS,EAAE,EAAE,GAAG,IAAI,CAAC,OAAO,CAAC,OAAO,OAAO,KAAK,KAAK,OAAO,CAAC,CAAC,SAAS,EAAE,CAAC,GAAG,aAAapiD,GAAG,CAAC,GAAG,KAAK,SAAS,EAAE,EAAE,GAAG,KAAK,MAAM,IAAIoiD,EAAE,oBAAoB,EAAE,IAAI,EAAE,EAAE,OAAO,KAAK,SAAS,EAAE,EAAE,CAAC,KAAK,CAAC,IAAI1tC,EAAE,KAAK,QAAQ,CAAC,EAAE,GAAGA,GAAG,KAAK,MAAM,IAAI0tC,EAAE,yCAAyC,CAAC,EAAE,EAAE,OAAO,KAAK,SAAS1tC,CAAC,CAAC,CAAC,CAAC,QAAQ,EAAE,CAAC,GAAG,aAAa1U,GAAG,CAAC,GAAG,KAAK,SAAS,EAAE,EAAE,GAAG,KAAK,MAAM,IAAIoiD,EAAE,oBAAoB,EAAE,IAAI,EAAE,EAAE,OAAO,KAAK,QAAQ,EAAE,EAAE,CAAC,KAAK,CAAC,IAAI1tC,EAAE,KAAK,QAAQ,CAAC,EAAE,GAAGA,GAAG,KAAK,MAAM,IAAI0tC,EAAE,yCAAyC,CAAC,EAAE,EAAE,OAAO,KAAK,QAAQ1tC,CAAC,CAAC,CAAC,CAAC,cAAc,CAAC,KAAK,SAAS,MAAMvP,GAAG,KAAK,OAAO,CAAC,CAAC,EAAE6kD,GAAG,IAAIzH,GAAG0H,GAAG,IAAI1H,GAAG,SAAS2H,GAAG11C,EAAE,CAACw1C,IAAI,MAAMA,GAAG,cAAcx1C,CAAC,EAAEy1C,IAAI,MAAMA,GAAG,cAAcz1C,CAAC,CAAC,CAAC,SAAS21C,GAAG31C,EAAE,EAAEE,EAAEE,EAAE,CAAC,IAAIC,EAAEH,GAAG,KAAK,GAAGA,EAAE,SAAS,EAAE,MAAM,QAAQF,CAAC,EAAE,EAAE,EAAEA,EAAE,CAACA,CAAC,EAAE+B,EAAE,EAAE,IAAIe,GAAGA,EAAE,IAAI,EAAEd,EAAE,CAAC,EAAEC,EAAE,EAAE,MAAM,EAAE,QAAQa,KAAKf,EAAEE,EAAE,QAAQa,CAAC,IAAI,GAAGd,EAAE,KAAK,EAAE,SAASc,CAAC,CAAC,EAAEd,EAAE,KAAK,IAAI,EAAE5B,GAAG,OAAOA,EAAE,cAAc,KAAKA,EAAE,cAAc,KAAK,IAAIsC,EAAEX,EAAE,KAAK,GAAG,EAAE,IAAI,EAAE,MAAM,EAAE,KAAK,EAAE,KAAK,GAAG,EAAEY,EAAE6yC,GAAG,IAAI9yC,CAAC,EAAEE,EAAE,GAAGD,GAAG,KAAK,CAAC,IAAIG,EAAE8yC,GAAG,EAAE,CAAC,EAAEjzC,EAAEG,EAAE,OAAOF,EAAEE,EAAE,gBAAgB0yC,GAAG,IAAI9yC,EAAEC,CAAC,EAAE8yC,GAAG,IAAI/yC,EAAEE,CAAC,CAAC,CAACA,EAAE,CAAC,EAAEvC,GAAG,OAAO,OAAOuC,EAAE6yC,GAAG,IAAI/yC,CAAC,CAAC,EAAE,IAAIG,EAAE,IAAI0yC,GAAG,CAAC,EAAE,QAAQzyC,EAAE,EAAEA,EAAEH,EAAE,OAAO,EAAEG,EAAE,CAAC,GAAG1C,GAAG,KAAK,CAAC,IAAI,EAAErK,GAAG,EAAE,WAAW,EAAEqK,EAAE,gBAAgBA,EAAE,cAAc,GAAG,EAAEA,EAAE,gBAAgBA,EAAE,cAAc,EAAE,CAAC,IAAI4D,EAAErB,EAAEG,CAAC,EAAE,EAAEkB,EAAE,YAAY,GAAG,aAAaoxC,GAAG,SAAS,IAAI9tC,EAAE,CAAC,EAAExC,EAAE,CAAC,EAAEL,EAAE,CAAC,EAAEC,EAAE,GAAG,QAAQ,KAAKV,EAAE,OAAO,CAAC,IAAIgB,EAAEnC,EAAE,SAAS,CAAC,EAAEoC,EAAEpC,EAAE,QAAQ,CAAC,EAAEyE,EAAE,KAAKtC,CAAC,EAAEF,EAAE,KAAKG,CAAC,EAAEA,GAAG,OAAOP,EAAE,IAAIrE,IAAIuC,EAAE,EAAE,IAAI,IAAIA,EAAE,EAAE,IAAI,IAAI,GAAG,CAAC,EAAE,OAAO,CAAC,GAAGb,EAAE,QAAQ,EAAE,IAAI,IAAI,IAAI,CAACiD,EAAE,YAAY,EAAE,YAAY,WAAW,IAAIP,EAAE,KAAKO,CAAC,EAAE,CAACN,IAAIxE,EAAEA,GAAG,CAAC,EAAEA,EAAE,KAAK4E,EAAE,CAAC,GAAG,IAAIH,EAAEypC,GAAG,EAAE,MAAM9mC,EAAEpH,CAAC,CAAC,EAAE0E,EAAE,KAAK,EAAE,kBAAkBA,EAAE,EAAE,YAAY0C,EAAExC,CAAC,GAAG,IAAID,EAAEgxC,GAAG7xC,CAAC,EAAEuD,EAAE,MAAM,QAAQ1C,CAAC,EAAEA,EAAE,CAACA,CAAC,EAAE,QAAQ,EAAE,EAAE,EAAE0C,EAAE,OAAO,EAAE,EAAE,CAAC1E,EAAE,OAAO0E,EAAE,CAAC,CAAC,GAAG1E,EAAE,IAAI0E,EAAE,CAAC,EAAE5C,EAAE,CAAC,EAAE,MAAM,QAAQC,CAAC,EAAEA,EAAE,CAAC,EAAEA,CAAC,EAAE,IAAII,EAAEjD,EAAE,QAAQwF,EAAE,CAAC,EAAE,IAAI,EAAEvC,IAAI,KAAKhD,EAAEgD,CAAC,EAAEL,EAAE,CAAC,EAAE,CAACtE,GAAG1P,GAAG8T,CAAC,CAAC,CAAC,OAAO5B,EAAE,aAAa,EAAE,EAAEb,EAAEA,EAAE,CAAC,CAAC,CAAC,SAAS4zC,GAAG51C,EAAE,EAAE,CAACzB,EAAE,OAAOyB,GAAG,MAAMA,EAAE,OAAO,EAAE,IAAI,uCAAuC,EAAE,IAAIE,EAAE,CAAC,EAAEE,EAAE,CAAC,EAAE,GAAGJ,EAAE,SAAS,EAAE,CAAC,IAAIK,EAAEy1C,GAAG91C,EAAE,CAAC,EAAE,CAAC,EAAEE,EAAEG,EAAE,OAAOD,EAAEC,EAAE,YAAY,KAAK,CAAC,IAAIA,EAAE,IAAI,IAAI,QAAQ,KAAKL,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,aAAa+B,CAAC,EAAE+zC,GAAG,EAAE,CAAC,EAAE,QAAQ9zC,KAAK,EAAE3B,EAAE,IAAI2B,EAAE,IAAI,IAAI9B,EAAE,KAAK8B,CAAC,EAAE3B,EAAE,IAAI2B,EAAE,IAAI,GAAG,QAAQA,KAAKD,EAAE3B,EAAE4B,CAAC,GAAG,OAAO5B,EAAE4B,CAAC,EAAE,IAAI,KAAKD,EAAEC,CAAC,EAAE,QAAQC,GAAG7B,EAAE4B,CAAC,EAAE,IAAIC,CAAC,CAAC,CAAC,CAAC,CAAC,MAAM,CAAC,OAAO/B,EAAE,gBAAgB61C,GAAG31C,CAAC,CAAC,CAAC,CAAC,SAAS21C,GAAG/1C,EAAE,CAAC,IAAI,EAAE,CAAC,EAAE,QAAQE,KAAKF,EAAE,EAAEE,CAAC,EAAEF,EAAEE,CAAC,EAAE,KAAK,OAAO,CAAC,CAAC,SAAS41C,GAAG91C,EAAE,EAAE,CAAC,IAAIE,EAAE,IAAI,IAAIE,EAAE,CAAC,EAAEC,EAAE,CAAC,EAAE,QAAQ0B,KAAK,EAAE,MAAM,EAAE7B,EAAE,IAAI6B,CAAC,EAAE,IAAI,EAAE,CAAC,EAAE,EAAE,CAAC,EAAE,IAAI,EAAE,KAAK/B,CAAC,EAAE,EAAE,OAAO,GAAG,CAAC,IAAI+B,EAAE,EAAE,EAAE,OAAO,CAAC,EAAE,GAAG7B,EAAE,IAAI6B,EAAE,IAAI,EAAE,CAAC,EAAE,IAAI,EAAE,QAAQ,CAAC,IAAIC,EAAE,EAAE,EAAE,OAAO,CAAC,IAAI,EAAE,OAAO,EAAE,GAAGD,EAAE,OAAO,SAAS,GAAGC,EAAE,EAAE,IAAI,EAAE5B,EAAE,KAAK2B,CAAC,EAAE7B,EAAE,IAAI6B,EAAE,IAAI,EAAEC,GAAG,EAAE,IAAI,MAAM,CAAC,EAAE,KAAK,EAAE,OAAO,CAAC,EAAE,QAAQC,KAAKF,EAAE,OAAO1B,EAAE4B,EAAE,IAAI,GAAG,OAAO5B,EAAE4B,EAAE,IAAI,EAAE,IAAI,KAAK5B,EAAE4B,EAAE,IAAI,EAAE,IAAIF,EAAE,IAAI,EAAE,CAAC7B,EAAE,IAAI+B,EAAE,IAAI,GAAG,EAAE,KAAKA,CAAC,CAAC,CAAC,CAAC,MAAM,CAAC,OAAO7B,EAAE,aAAaC,CAAC,CAAC,CAAC,SAASw1C,GAAG71C,EAAE,CAAC,IAAI,EAAE,GAAGA,EAAE,YAAY,aAAa,SAAS,EAAE,EAAEA,EAAE,YAAY,WAAW,CAAC,IAAIE,EAAE,KAAK,QAAQE,EAAE,EAAEA,EAAEJ,EAAE,YAAY,aAAa,OAAO,EAAEI,EAAE,QAAQC,KAAKL,EAAE,YAAY,aAAaI,CAAC,EAAE,cAAc,GAAGC,EAAE,KAAKL,EAAE,GAAG,CAACE,EAAEE,EAAE,KAAK,CAAC,EAAEJ,EAAE,YAAY,YAAYE,CAAC,CAAC,CAAC,OAAO,CAAC,CAAC,IAAI81C,GAAGxkD,EAAE,EAAEwkD,GAAG,aAAa,qCAAqC,IAAI,IAAIN,EAAE,EAAE,IAAItmD,GAAG,CAAC,EAAE6Q,GAAG7Q,GAAG,CAAC,QAAQ,IAAI6mD,GAAG,WAAW,IAAIC,GAAG,OAAO,IAAIC,GAAG,SAAS,IAAIC,EAAE,CAAC,EAAE,SAASC,GAAGr2C,EAAE,EAAE,CAAC,OAAOvC,EAAE,IAAIvB,GAAGS,GAAGjG,EAAEsJ,EAAEA,CAAC,EAAE,EAAE,EAAE,CAAC,CAAC,CAAC,CAAC,IAAIs2C,GAAG,cAAc/7C,GAAE,YAAY,CAAC,WAAW,CAAC,MAAM,CAAC,CAAC,CAAC,EAAEg8C,GAAG,cAAcD,EAAE,CAAC,YAAY11C,EAAE,CAAC,MAAM,EAAE,KAAK,gBAAgB,EAAE,KAAK,YAAY,EAAE,KAAK,SAASA,EAAE,UAAU,KAAKA,EAAE,SAAS,KAAK,gBAAgB,KAAK,KAAKA,EAAE,MAAM,KAAKA,EAAE,KAAK,KAAK,WAAW,CAAC,MAAMA,EAAE,CAAC,OAAOnD,EAAE,IAAI,CAAC,IAAIyC,EAAEm2C,GAAGz1C,EAAE,KAAK,IAAI,EAAE,EAAEhS,GAAGsR,EAAE,EAAE,KAAK,QAAQ,EAAE,OAAOxJ,EAAEkK,EAAE/P,GAAG,EAAEjE,EAAEqkD,GAAG,EAAE/wC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,WAAW,CAAC,MAAM,CAAC,SAAS,KAAK,SAAS,KAAK,KAAK,IAAI,CAAC,CAAC,EAAEq2C,GAAG,UAAU,UAAUh8C,GAAE,cAAcg8C,EAAE,EAAE,IAAIC,GAAG,cAAcF,EAAE,CAAC,YAAY11C,EAAE,CAAC,MAAM,EAAE,KAAK,YAAY,EAAE,KAAK,KAAKA,EAAE,MAAM,KAAKA,EAAE,KAAK,KAAK,WAAW,CAAC,MAAMA,EAAE,CAAC,OAAOnD,EAAE,IAAI5M,GAAG+P,EAAEhU,EAAEqkD,GAAG,EAAEoF,GAAGz1C,EAAE,KAAK,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,WAAW,CAAC,MAAM,CAAC,KAAK,KAAK,IAAI,CAAC,CAAC,EAAE41C,GAAG,UAAU,WAAWj8C,GAAE,cAAci8C,EAAE,EAAE,IAAIC,GAAG,cAAcH,EAAE,CAAC,MAAM11C,EAAE,CAAC,OAAOxH,GAAGwH,CAAC,CAAC,CAAC,EAAE61C,GAAG,UAAU,SAASl8C,GAAE,cAAck8C,EAAE,EAAE,IAAIC,GAAG,cAAcJ,EAAE,CAAC,YAAY11C,EAAE,CAAC,MAAM,EAAE,KAAK,gBAAgB,EAAE,KAAK,gBAAgB,EAAE,KAAK,YAAY,EAAE,KAAK,YAAY,EAAE,KAAK,SAASA,EAAE,UAAU,KAAKA,EAAE,SAAS,KAAK,gBAAgB,KAAK,SAASA,EAAE,UAAU,KAAKA,EAAE,SAAS,KAAK,gBAAgB,KAAK,KAAKA,EAAE,MAAM,KAAKA,EAAE,KAAK,KAAK,YAAY,KAAK,KAAKA,EAAE,MAAM,KAAKA,EAAE,KAAK,KAAK,WAAW,CAAC,MAAMA,EAAE,CAAC,OAAOnD,EAAE,IAAI,CAAC,IAAIyC,EAAEm2C,GAAGz1C,EAAE,KAAK,IAAI,EAAE,EAAEhU,EAAE8J,EAAE,KAAK,KAAK9H,GAAGsR,EAAE,KAAK,SAAS,KAAK,QAAQ,CAAC,EAAExJ,EAAE,EAAE,KAAK,KAAKwJ,CAAC,CAAC,EAAE,OAAOxJ,EAAEkK,EAAE/P,GAAG,EAAEjE,EAAEqkD,GAAG,EAAE/wC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,WAAW,CAAC,MAAM,CAAC,SAAS,KAAK,SAAS,SAAS,KAAK,SAAS,KAAK,KAAK,KAAK,KAAK,KAAK,IAAI,CAAC,CAAC,EAAEw2C,GAAG,UAAU,aAAan8C,GAAE,cAAcm8C,EAAE,EAAE,IAAIC,GAAG,CAAC,QAAQ,UAAU,WAAW,aAAa,OAAO,SAAS,SAAS,UAAU,EAAE,SAASC,GAAG52C,EAAE,CAAC,OAAOwuC,GAAGxuC,CAAC,CAAC,CAAC,SAAS62C,GAAG72C,EAAE,EAAE,CAAC,EAAE,CAAC,OAAO0uC,GAAG1uC,EAAEzF,GAAE,iBAAiB,OAAO,EAAE,aAAa,EAAE,YAAY,CAAC,CAAC,SAASu8C,GAAG92C,EAAE,CAAC,GAAGA,GAAG,KAAK,OAAO,KAAK,GAAG,OAAOA,GAAG,SAAS,CAAC,IAAIE,EAAE,CAAC,UAAUF,KAAK22C,GAAGA,GAAG32C,CAAC,EAAEA,EAAE,OAAO,CAAC,CAAC,EAAE,OAAO62C,GAAG32C,CAAC,CAAC,KAAM,QAAOF,aAAas2C,GAAGt2C,EAAE62C,GAAG72C,CAAC,CAAC,CAAC,SAASi2C,GAAGj2C,EAAE,CAAC,OAAO,IAAIu2C,GAAGv2C,CAAC,CAAC,CAAC,SAASo2C,GAAGp2C,EAAE,CAAC,OAAO,IAAIw2C,GAAGx2C,CAAC,CAAC,CAAC,SAASm2C,IAAI,CAAC,OAAO,IAAIM,EAAE,CAAC,SAASP,GAAGl2C,EAAE,CAAC,OAAO,IAAI02C,GAAG12C,CAAC,CAAC,CAAC,IAAIvM,GAAG,CAAC,EAAEwM,GAAGxM,GAAG,CAAC,SAAS,IAAIsjD,GAAG,aAAa,IAAIC,GAAG,cAAc,IAAIC,GAAG,SAAS,IAAIC,GAAG,UAAU,IAAIC,GAAG,SAAS,IAAIC,GAAG,YAAY,IAAIC,GAAG,aAAa,IAAIC,GAAG,KAAK,IAAIC,GAAG,WAAW,IAAIC,GAAG,aAAa,IAAIC,GAAG,cAAc,IAAIC,GAAG,gBAAgB,IAAIC,GAAG,gBAAgB,IAAIC,GAAG,MAAM,IAAIC,EAAE,CAAC,EAAE,SAASA,IAAI,CAAC,OAAO,IAAI/E,EAAE,CAAC,SAASyE,IAAI,CAAC,OAAO,IAAIxE,EAAE,CAAC,SAASgE,GAAG/2C,EAAE,CAAC,OAAO,IAAIgzC,GAAGhzC,CAAC,CAAC,CAAC,SAAS03C,GAAG13C,EAAE,CAAC,OAAO,IAAIizC,GAAGjzC,CAAC,CAAC,CAAC,SAASy3C,GAAGz3C,EAAE,CAAC,OAAO,IAAIkzC,GAAGlzC,CAAC,CAAC,CAAC,SAAS23C,GAAG33C,EAAE,CAAC,OAAO,IAAImzC,GAAGnzC,CAAC,CAAC,CAAC,SAASo3C,GAAGp3C,EAAE,CAAC,OAAO,IAAIozC,GAAGpzC,CAAC,CAAC,CAAC,SAAS43C,GAAG53C,EAAE,CAAC,OAAO,IAAIszC,GAAGtzC,CAAC,CAAC,CAAC,SAASi3C,GAAGj3C,EAAE,CAAC,OAAO,IAAIuzC,GAAGvzC,CAAC,CAAC,CAAC,SAASg3C,GAAGh3C,EAAE,CAAC,OAAO,IAAIwzC,GAAGxzC,CAAC,CAAC,CAAC,SAASk3C,GAAGl3C,EAAE,CAAC,OAAO,IAAIyzC,GAAGzzC,CAAC,CAAC,CAAC,SAASm3C,GAAGn3C,EAAE,CAAC,OAAO,IAAI0zC,GAAG1zC,CAAC,CAAC,CAAC,SAASq3C,GAAGr3C,EAAE,CAAC,OAAO,IAAI2zC,GAAG3zC,CAAC,CAAC,CAAC,SAASs3C,GAAGt3C,EAAE,CAAC,OAAO,IAAI4zC,GAAG5zC,CAAC,CAAC,CAAC,SAASw3C,GAAGx3C,EAAE,CAAC,OAAO,IAAI6zC,GAAG7zC,CAAC,CAAC,CAAC,IAAI9L,GAAG,CAAC,EAAE+L,GAAG/L,GAAG,CAAC,MAAM,IAAI4gD,GAAG,IAAI,IAAI1sD,GAAG,QAAQ,IAAI0vD,GAAG,WAAW,IAAIC,GAAG,IAAI,IAAIC,GAAG,aAAa,IAAIC,GAAG,QAAQ,IAAIC,GAAG,iBAAiB,IAAIC,GAAG,iBAAiB,IAAIC,GAAG,iBAAiB,IAAIC,GAAG,UAAU,IAAIC,GAAG,UAAU,IAAIC,GAAG,UAAU,IAAIC,GAAG,aAAa,IAAIC,GAAG,aAAa,IAAIC,GAAG,aAAa,IAAIC,GAAG,mBAAmB,IAAIC,GAAG,cAAc,IAAIC,GAAG,iBAAiB,IAAIC,GAAG,WAAW,IAAIC,GAAG,YAAY,IAAIC,GAAG,OAAO,IAAIC,GAAG,OAAO,IAAIC,GAAG,gBAAgB,IAAIC,GAAG,OAAO,IAAIC,GAAG,gBAAgB,IAAIC,GAAG,WAAW,IAAIC,GAAG,eAAe,IAAIC,GAAG,WAAW,IAAIC,GAAG,MAAM,IAAIC,GAAG,gBAAgB,IAAIC,GAAG,IAAI,IAAIC,GAAG,QAAQ,IAAIC,GAAG,IAAI,IAAIC,GAAG,UAAU,IAAIC,GAAG,QAAQ,IAAIC,GAAG,gBAAgB,IAAIC,GAAG,cAAc,IAAIC,GAAG,uBAAuB,IAAIC,GAAG,uBAAuB,IAAIC,GAAG,gBAAgB,IAAIC,GAAG,gBAAgB,IAAIC,GAAG,mBAAmB,IAAIC,GAAG,mBAAmB,IAAIC,GAAG,IAAI,IAAIC,GAAG,QAAQ,IAAIC,GAAG,MAAM,IAAI/mD,GAAG,WAAW,IAAIgnD,GAAG,mBAAmB,IAAIC,GAAG,UAAU,IAAIC,GAAG,KAAK,IAAIC,GAAG,SAAS,IAAIC,GAAG,QAAQ,IAAIC,GAAG,UAAU,IAAIC,GAAG,UAAU,IAAIC,GAAG,aAAa,IAAIC,GAAG,aAAa,IAAIC,GAAG,aAAa,IAAIC,GAAG,QAAQ,IAAIC,GAAG,QAAQ,IAAIC,GAAG,SAAS,IAAIC,GAAG,QAAQ,IAAIC,GAAG,MAAM,IAAIC,GAAG,YAAY,IAAIC,GAAG,KAAK,IAAIC,GAAG,aAAa,IAAIC,GAAG,UAAU,IAAIC,GAAG,QAAQ,IAAIC,GAAG,SAAS,IAAIC,GAAG,IAAI,IAAIC,GAAG,gBAAgB,IAAIC,GAAG,UAAU,IAAIC,GAAG,cAAc,IAAIC,GAAG,QAAQ,IAAIC,GAAG,iBAAiB,IAAIC,GAAG,gBAAgB,IAAIC,GAAG,gBAAgB,IAAIC,GAAG,gBAAgB,IAAIC,GAAG,aAAa,IAAIC,GAAG,cAAc,IAAIC,EAAE,CAAC,EAAE,eAAeC,GAAG38C,EAAE,CAAC,GAAGA,GAAG,KAAK,OAAO,IAAI,EAAE,CAAC,EAAEE,EAAE,CAAC,EAAEE,EAAE,CAAC,EAAE,QAAQC,KAAKL,EAAE,CAAC,IAAI,EAAEA,EAAEK,CAAC,EAAE,GAAG,OAAO,GAAG,SAAS,CAAC,IAAI,EAAE,EAAE,EAAE,KAAK,EAAE,KAAK,CAAC,EAAEH,EAAE,KAAKG,CAAC,EAAED,EAAE,KAAK,CAAC,CAAC,CAAC,CAAC,GAAG,EAAE,OAAO,EAAE,CAAC,IAAIC,EAAE,MAAM,QAAQ,IAAI,CAAC,EAAE,QAAQ,EAAE,EAAE,EAAEA,EAAE,OAAO,EAAE,EAAEL,EAAEE,EAAE,CAAC,CAAC,EAAEG,EAAE,CAAC,EAAE,CAAC,EAAE1P,GAAGyP,CAAC,CAAC,CAAC,CAAC,SAASw8C,GAAG58C,EAAE,CAAC,GAAGA,GAAG,KAAK,QAAQ,KAAKA,EAAE,CAAC,IAAIE,EAAEF,EAAE,CAAC,EAAE,OAAOE,GAAG,UAAUA,EAAE,QAAQ,CAAC,CAAC,CAAC,IAAI28C,IAAI,SAAS78C,EAAE,CAACA,EAAEA,EAAE,OAAO,CAAC,EAAE,SAASA,EAAEA,EAAE,QAAQ,CAAC,EAAE,SAAS,GAAG68C,KAAKA,GAAG,CAAC,EAAE,EAAE,IAAIC,GAAG,IAAIC,GAAG,KAAK,CAAC,aAAa,CAAC,KAAK,eAAe,IAAI,CAAC,UAAUn8C,EAAE,CAAC,KAAK,OAAOA,CAAC,CAAC,MAAM,aAAaA,EAAEV,EAAE,CAAC,CAAC,MAAM,WAAWU,EAAEV,EAAE,CAAC,CAAC,MAAM,aAAaU,EAAEV,EAAE,CAAC,CAAC,MAAM,WAAWU,EAAEV,EAAE,CAAC,CAAC,MAAM,aAAaU,EAAE,CAAC,CAAC,MAAM,WAAWA,EAAE,CAAC,CAAC,SAASA,EAAE,CAAC,CAAC,EAAE5f,GAAG,KAAK,CAAC,YAAY4f,EAAEV,EAAE,GAAG,CAACU,GAAG,OAAOA,EAAE,CAAC,GAAG,KAAK,UAAUA,EAAE,KAAK,YAAYV,CAAC,CAAC,OAAOU,EAAE,CAAC,KAAK,UAAU,KAAKA,CAAC,CAAC,CAAC,UAAUA,EAAE,CAAC,QAAQV,KAAK,KAAK,UAAUA,EAAE,UAAUU,CAAC,CAAC,CAAC,SAASA,EAAE,CAAC,QAAQV,KAAK,KAAK,UAAUA,EAAE,SAASU,CAAC,CAAC,CAAC,MAAM,aAAaA,EAAEV,EAAE,CAACA,GAAG,OAAOA,EAAE,CAAC,GAAG,QAAQ,KAAK,KAAK,UAAU,MAAM,EAAE,aAAaU,EAAEV,CAAC,CAAC,CAAC,MAAM,WAAWU,EAAEV,EAAE,CAACA,GAAG,OAAOA,EAAE,CAAC,GAAG,QAAQ,KAAK,KAAK,UAAU,MAAM,EAAE,WAAWU,EAAEV,CAAC,CAAC,CAAC,MAAM,aAAaU,EAAEV,EAAE,CAACA,GAAG,OAAOA,EAAE,CAAC,GAAG,QAAQ,KAAK,KAAK,UAAU,MAAM,EAAE,aAAaU,EAAEV,CAAC,CAAC,CAAC,MAAM,WAAWU,EAAEV,EAAE,CAACA,GAAG,OAAOA,EAAE,CAAC,GAAG,QAAQ,KAAK,KAAK,UAAU,MAAM,EAAE,WAAWU,EAAEV,CAAC,CAAC,CAAC,MAAM,aAAaU,EAAE,CAACA,GAAG,OAAOA,EAAE,CAAC,GAAG,QAAQV,KAAK,KAAK,UAAU,MAAMA,EAAE,aAAaU,CAAC,CAAC,CAAC,MAAM,WAAWA,EAAE,CAACA,GAAG,OAAOA,EAAE,CAAC,GAAG,QAAQV,KAAK,KAAK,UAAU,MAAMA,EAAE,WAAWU,CAAC,CAAC,CAAC,EAAEo8C,GAAG,cAAcD,EAAE,CAAC,aAAa,CAAC,MAAM,CAAC,CAAC,MAAM,aAAan8C,EAAE,CAAC,KAAK,KAAK,EAAE,KAAK,OAAO,CAAC,CAAC,CAAC,MAAM,WAAWA,EAAEV,EAAE,CAACA,GAAG,OAAOA,EAAE,CAAC,GAAG,IAAI,EAAEA,EAAE,MAAM,KAAK,EAAEA,EAAE,KAAK,KAAK,MAAM,EAAE,QAAQG,KAAKH,EAAE,CAAC,IAAI2B,EAAE3B,EAAEG,CAAC,EAAE,GAAG,OAAOwB,GAAG,SAAS,KAAK,OAAO,eAAexB,CAAC,IAAI,KAAK,OAAOA,CAAC,EAAE,GAAG,KAAK,OAAOA,CAAC,EAAE,KAAK,OAAOA,CAAC,EAAEwB,EAAE,MAAM,CAAC,IAAIC,EAAEzB,KAAK,KAAK,OAAOyB,EAAE,KAAK,OAAOzB,CAAC,EAAE,KAAK,OAAOA,CAAC,EAAE,EAAE,IAAI0B,EAAEtE,EAAE,IAAI7Q,EAAE,KAAK,OAAOyT,CAAC,EAAE3J,EAAEmL,EAAE,CAAC,CAAC,CAAC,EAAE,KAAK,OAAOxB,CAAC,EAAE0B,EAAED,GAAG,MAAMA,EAAE,QAAQ,CAAC,CAAC,CAAC,CAAC,MAAM,WAAWlB,EAAEV,EAAE,CAAC,GAAGA,GAAG,KAAK,QAAQ,KAAK,KAAK,OAAO,QAAQ,KAAK,OAAO,CAAC,GAAG,OAAO,OAAO,KAAK,OAAO,CAAC,GAAG,SAASA,EAAE,CAAC,EAAE,KAAK,OAAO,CAAC,EAAE,KAAK,KAAKzC,EAAE,IAAI,CAAC,IAAI4C,EAAE3J,EAAE7F,GAAG,EAAE,KAAK,IAAI,EAAE,KAAK,OAAO,CAAC,CAAC,EAAEqP,EAAE,CAAC,EAAEG,EAAE,KAAK,OAAO,CAAC,EAAE,QAAQ,EAAErM,GAAGkM,EAAE,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE1b,GAAG,cAAcu4D,EAAE,CAAC,MAAM,aAAan8C,EAAE,CAAC,KAAK,MAAM,CAAC,EAAE,KAAK,QAAQ,CAAC,CAAC,CAAC,MAAM,WAAWA,EAAEV,EAAE,CAACA,GAAG,OAAOA,EAAE,CAAC,GAAG,KAAK,MAAM,KAAKU,CAAC,EAAE,QAAQ,KAAKV,EAAE,KAAK,QAAQ,CAAC,GAAG,OAAO,KAAK,QAAQ,CAAC,EAAE,CAAC,GAAG,KAAK,QAAQ,CAAC,EAAE,KAAKA,EAAE,CAAC,CAAC,CAAC,CAAC,MAAM,UAAU,CAAC,IAAIU,EAAE,CAAC,EAAEV,EAAE,CAAC,EAAE,EAAE,CAAC,EAAE,QAAQ2B,KAAK,KAAK,QAAQ,CAAC,IAAIC,EAAE,KAAK,QAAQD,CAAC,EAAE,QAAQE,EAAE,EAAEA,EAAED,EAAE,OAAO,EAAEC,EAAE,GAAG,OAAOD,EAAEC,CAAC,GAAG,SAAS,CAAC,IAAIC,EAAEF,EAAEC,CAAC,EAAEnB,EAAE,KAAKoB,EAAE,KAAK,CAAC,EAAE9B,EAAE,KAAK2B,CAAC,EAAE,EAAE,KAAKE,CAAC,CAAC,CAAC,CAAC,IAAI1B,EAAE,MAAM,QAAQ,IAAIO,CAAC,EAAE,QAAQiB,EAAE,EAAEA,EAAExB,EAAE,OAAO,EAAEwB,EAAE,KAAK,QAAQ3B,EAAE2B,CAAC,CAAC,EAAE,EAAEA,CAAC,CAAC,EAAE,QAAQ,EAAE,KAAK,QAAQ3B,EAAE2B,CAAC,CAAC,EAAE,EAAEA,CAAC,CAAC,EAAExB,EAAEwB,CAAC,EAAE,CAAC,CAAC,CAAC,EAAE3f,GAAG,cAAc66D,EAAE,CAAC,YAAYn8C,EAAEV,EAAE,CAAC,GAAG,MAAM,EAAE,KAAK,aAAa,EAAE,KAAK,QAAQU,EAAE,QAAQ,KAAK,cAAcA,EAAE,eAAe9J,GAAG,KAAK,WAAWoJ,GAAG,OAAO,KAAK,aAAa,SAAS,KAAK,WAAW48C,IAAI,KAAK,aAAa,SAASl8C,EAAE,SAAS,KAAK,MAAM,IAAI,MAAM,iHAAiH,EAAErC,EAAE,SAAS,KAAK,UAAU,IAAI,KAAK,UAAU4wC,GAAG,KAAK,UAAU,KAAK,IAAI,EAAE,KAAK,WAAW,KAAK,OAAO,GAAG,KAAK,WAAWvuC,EAAE,aAAa,KAAK,SAASA,EAAE,WAAW,KAAK,WAAWA,EAAE,aAAa,KAAK,SAASA,EAAE,WAAW,KAAK,WAAWA,EAAE,aAAa,KAAK,SAASA,EAAE,WAAW,KAAK,MAAMA,EAAE,OAAO,CAAC,MAAM,UAAUA,EAAEV,EAAE,EAAE,CAAC,IAAIG,EAAE,CAAC,EAAE,KAAK,OAAO,OAAO,MAAMs8C,GAAG,CAAC,EAAEt8C,EAAE,KAAK,KAAK,MAAMO,EAAEV,EAAE,CAAC,CAAC,GAAGG,EAAE,KAAK,KAAK,cAAc,CAAC,EAAE,MAAM,QAAQ,IAAIA,CAAC,CAAC,CAAC,MAAM,aAAaO,EAAEV,EAAE,CAAC,KAAK,aAAaU,EAAE,KAAK,YAAY,OAAO,MAAM+7C,GAAGz8C,CAAC,EAAE,MAAM,KAAK,WAAWU,EAAEV,CAAC,EAAE,CAAC,MAAM,WAAWU,EAAEV,EAAE,CAAC,IAAI,EAAE,CAAC,EAAE,KAAK,UAAU,OAAO,MAAMy8C,GAAGz8C,CAAC,EAAE,EAAE,KAAK,KAAK,SAASU,EAAEV,CAAC,CAAC,GAAG,KAAK,aAAa,SAAS,EAAE,KAAK,KAAK,cAAc,CAAC,EAAE,MAAM,QAAQ,IAAI,CAAC,CAAC,CAAC,MAAM,aAAaU,EAAEV,EAAE,CAAC,KAAK,YAAY,OAAO,MAAMy8C,GAAGz8C,CAAC,EAAE,MAAM,KAAK,WAAWU,EAAEV,CAAC,EAAE,CAAC,MAAM,WAAWU,EAAEV,EAAE,CAAC,IAAI,EAAE,CAAC,EAAE,KAAK,UAAU,OAAO,MAAMy8C,GAAGz8C,CAAC,EAAE,EAAE,KAAK,KAAK,SAASU,EAAEV,CAAC,CAAC,GAAG,KAAK,aAAa,QAAQ,EAAE,KAAK,KAAK,cAAc,CAAC,EAAE3B,EAAE,SAAS,KAAK,UAAU,GAAG,EAAE,KAAK,KAAK,UAAU,KAAK,aAAaqC,EAAEV,CAAC,CAAC,EAAE,MAAM,QAAQ,IAAI,CAAC,CAAC,CAAC,MAAM,aAAaU,EAAE,CAAC,KAAK,YAAY,OAAO,MAAM+7C,GAAG/7C,CAAC,EAAE,MAAM,KAAK,WAAWA,CAAC,EAAE,CAAC,MAAM,WAAWA,EAAE,CAAC,KAAK,UAAU,OAAO,MAAM+7C,GAAG/7C,CAAC,EAAE,MAAM,KAAK,SAASA,CAAC,EAAE,CAAC,EAAE,SAASq8C,GAAGj9C,EAAE,EAAE,CAAC,OAAOA,GAAG,OAAOA,EAAE,CAAC,GAAGA,aAAa+8C,GAAG,CAAC/8C,CAAC,EAAE,MAAM,QAAQA,CAAC,GAAGA,EAAE,CAAC,YAAY+8C,GAAG/8C,EAAEouC,GAAGpuC,CAAC,EAAE,IAAI,GAAG,IAAI9d,GAAG,EAAE,CAAC,CAAC,CAAC,CAAC,IAAIg7D,GAAG,MAAMl9C,EAAC,CAAC,aAAa,CAAC,CAAC,OAAO,4BAA4B,EAAEE,EAAE,CAAC3B,EAAE,OAAO,GAAG,GAAG,OAAO,UAAU,CAAC,EAAE,IAAI,8DAA8D,CAAC,EAAE,EAAEyB,GAAE,kBAAkBE,CAAC,EAAEF,GAAE,aAAa,CAAC,GAAG,OAAOA,GAAE,aAAa,CAAC,EAAE,CAAC,GAAGA,GAAE,aAAa,CAAC,EAAE,KAAKE,CAAC,CAAC,CAAC,OAAO,kBAAkB,EAAE,CAAC,QAAQA,KAAKF,GAAE,aAAaA,GAAE,aAAa,CAACE,CAAC,EAAE,QAAQG,GAAG,CAAC,GAAGA,IAAI,EAAE,MAAM,IAAIutC,EAAE,iCAAiC,CAAC,CAAC,CAAC,CAAC,OAAO,OAAO,CAAC5tC,GAAE,aAAa,CAAC,CAAC,CAAC,OAAO,gBAAgB,EAAE,CAAC,IAAIE,EAAE,CAAC,EAAE,QAAQE,KAAKJ,GAAE,aAAa,CAAC,IAAIK,EAAE,CAACD,EAAE,GAAGC,GAAGH,EAAE,KAAK,GAAGF,GAAE,aAAaK,CAAC,CAAC,CAAC,CAAC,OAAOH,EAAE,IAAIE,GAAG,IAAIA,CAAC,CAAC,CAAC,EAAE88C,GAAG,aAAa,CAAC,EAAE,SAASC,GAAGn9C,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,EAAE0B,EAAEC,EAAE,CAAC,IAAIC,EAAE,IAAIzd,GAAGke,EAAE,CAAC,IAAIs6C,GAAG,GAAGE,GAAG,gBAAgB,CAAC,CAAC,EAAEl9C,GAAG,MAAM0C,EAAE,KAAK,GAAG1C,CAAC,EAAE0C,EAAE,KAAKT,CAAC,EAAE,IAAIU,EAAE,IAAI3hB,GAAG0hB,CAAC,EAAE,OAAOC,EAAE,UAAU,CAAC,OAAOzC,EAAE,aAAaE,EAAE,QAAQC,EAAE,MAAM,EAAE,UAAU,EAAE,QAAQ,EAAE,aAAa0B,EAAE,QAAQC,CAAC,CAAC,EAAE,CAAC,aAAaW,EAAE,QAAQV,CAAC,CAAC,CAAC,SAASm7C,GAAGp9C,EAAE,EAAE,CAAC,EAAEE,EAAE,GAAG,CAAC,OAAOwuC,GAAG1uC,EAAEzF,GAAE,iBAAiB,OAAO,EAAE,aAAa,EAAE,QAAQ2F,CAAC,CAAC,CAAC,SAASm9C,GAAGr9C,EAAE,EAAE,CAAC,OAAOvC,EAAE,IAAI,CAACuC,EAAE,QAAQ,YAAYA,EAAEtR,GAAEsR,EAAE,SAAS,GAAG,IAAIE,EAAEvD,GAAGu1C,GAAGlyC,CAAC,EAAE,EAAE,EAAE,EAAEI,EAAEnO,GAAGiO,EAAE,MAAM+wC,GAAG,CAAC,EAAE5wC,EAAEnE,GAAGrG,GAAGqK,EAAEE,CAAC,CAAC,EAAE,OAAOvP,GAAGmP,EAAEK,CAAC,CAAC,CAAC,CAAC,CAAC,SAASi9C,GAAGt9C,EAAE,EAAE,CAAC,OAAOvC,EAAE,IAAI3H,GAAGo8C,GAAGx1C,GAAG,EAAEsD,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC,SAASu9C,GAAGv9C,EAAE,EAAE,CAAC,OAAOvC,EAAE,IAAI3H,GAAGrJ,GAAGiQ,GAAG,EAAEsD,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC,SAASw9C,GAAGx9C,EAAE,EAAE,CAAC,OAAOvC,EAAE,IAAI,CAAC,IAAIyC,EAAExD,GAAGsD,EAAE,CAAC,EAAEI,EAAExR,GAAGnC,GAAGuT,CAAC,EAAEixC,GAAG,EAAE,OAAO,SAAS,EAAE5wC,EAAE5T,GAAGoE,GAAGqP,EAAEE,CAAC,CAAC,EAAE,OAAO1J,EAAE,IAAIZ,GAAGuK,EAAE,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,SAASo9C,GAAGz9C,EAAE,EAAE,CAAC,OAAOvC,EAAE,IAAI,CAAC,IAAIyC,EAAEtR,GAAG,EAAEqiD,GAAG,EAAE,OAAO,SAAS,EAAE7wC,EAAExL,GAAGhI,EAAE,EAAEsT,CAAC,CAAC,EAAEG,EAAEzR,GAAGoR,EAAEixC,GAAG,EAAE,OAAO,SAAS,EAAE,EAAEr8C,GAAGhI,EAAE,EAAEyT,CAAC,CAAC,EAAE,OAAOvK,GAAGo8C,GAAGx1C,GAAG0D,EAAE,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC,CAAC,SAASs9C,GAAG19C,EAAE,EAAE,CAAC,OAAOvC,EAAE,IAAI,CAAC,IAAIyC,EAAErK,GAAG,EAAE6G,GAAG,EAAEhG,EAAEsJ,EAAE,CAAC,CAAC,CAAC,EAAE,OAAOlK,GAAGo8C,GAAGhyC,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC,CAAC,SAASy9C,GAAG39C,EAAE,EAAE,CAAC,OAAOvC,EAAE,IAAI,CAAC,IAAIyC,EAAErK,GAAG,EAAE6G,GAAG,EAAEhG,EAAEsJ,EAAE,CAAC,CAAC,CAAC,EAAE,OAAOlK,GAAGoK,EAAE,EAAE,CAAC,CAAC,CAAC,CAAC,SAAS09C,GAAG59C,EAAE,EAAE,CAAC,OAAOvC,EAAE,IAAI,CAAC,IAAIyC,EAAEvD,GAAGjG,EAAEsJ,EAAE,CAAC,EAAE,EAAE,EAAEI,EAAE3K,GAAGiB,EAAEgG,GAAG,EAAEsD,CAAC,EAAE,CAAC,EAAE,EAAE,EAAE,OAAOnK,GAAG,EAAEjJ,EAAE,EAAE8P,GAAG0D,EAAEF,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,SAAS29C,GAAG79C,EAAE,EAAE,CAAC,OAAOvC,EAAE,IAAI,CAAC,IAAIyC,EAAE,KAAK,IAAI,CAAC,EAAEE,EAAE1D,GAAG,EAAEsD,CAAC,EAAEK,EAAE3D,GAAG9P,EAAEwT,EAAExE,GAAGlF,EAAE,GAAG0J,CAAC,CAAC,CAAC,EAAEF,CAAC,EAAE,OAAOpK,GAAGuK,EAAE,EAAE,CAAC,CAAC,CAAC,CAAC,SAASy9C,GAAG99C,EAAE,EAAEE,EAAE,GAAG,CAAC,OAAOzC,EAAE,IAAI,CAAC,GAAGyC,EAAE,EAAEvE,GAAG,CAAC,MAAM,CAAC,IAAIyE,EAAEzD,GAAG,EAAE,EAAE,MAAM,OAAO,EAAE,EAAE,EAAE,EAAE9L,GAAG,EAAEuP,CAAC,CAAC,CAAC,OAAO,EAAExR,GAAG,EAAEqiD,GAAG,EAAE,EAAEA,GAAG,CAAC,EAAEp6C,GAAG8F,GAAGjG,EAAEhI,GAAEsR,EAAE,SAAS,EAAEpL,GAAG,CAAC,CAAC,EAAE,EAAE,MAAM,OAAO,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,SAASmpD,GAAG/9C,EAAE,EAAEE,EAAE,GAAG,CAAC,OAAOzC,EAAE,IAAI,CAAC,IAAI2C,EAAE1R,GAAE0D,GAAGm/C,GAAGvxC,CAAC,CAAC,EAAE,OAAO,EAAE,EAAEpR,GAAG,EAAEqiD,GAAG,EAAE,EAAEA,GAAG,CAAC,EAAE,IAAI5wC,EAAE,EAAE,MAAM,EAAE9G,EAAEtC,GAAGmJ,EAAEC,EAAEA,EAAE,OAAO,CAAC,CAAC,EAAEA,CAAC,EAAE,OAAOy9C,GAAG,EAAE,EAAE59C,CAAC,CAAC,CAAC,CAAC,CAAC,SAAS89C,GAAGh+C,EAAE,EAAE,CAAC,GAAG,CAACzB,EAAE,YAAYyB,EAAE,MAAM,EAAE,KAAK,EAAE,MAAM,IAAI4tC,EAAE,8DAA8D,KAAK,UAAU5tC,EAAE,KAAK,CAAC,QAAQ,KAAK,UAAU,EAAE,KAAK,CAAC,EAAE,EAAE,OAAOvC,EAAE,IAAI,CAAC,IAAIyC,EAAE9G,GAAG,CAAC,EAAEgH,EAAEvJ,GAAGpK,GAAG,CAAC,CAAC,EAAE,OAAOG,EAAE8P,GAAGwD,EAAExJ,EAAE,EAAEsJ,CAAC,CAAC,EAAEnL,GAAGjD,GAAGwO,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,SAAS69C,GAAGj+C,EAAE,EAAE,CAAC,OAAOvC,EAAE,IAAI,CAAC,IAAIyC,EAAE,OAAOA,EAAEtR,GAAG,EAAEqiD,GAAG,EAAE,EAAEA,GAAG,CAAC,EAAE/wC,EAAEtL,GAAG/D,GAAGqP,EAAExD,GAAG,EAAEwD,CAAC,CAAC,CAAC,EAAEpK,GAAGkoD,GAAGh+C,EAAEE,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC,CAAC,SAASg+C,GAAGl+C,EAAE,EAAE,CAAC,OAAOvC,EAAE,IAAI,CAAC,IAAIyC,EAAEtR,GAAGoR,EAAEixC,GAAG,EAAE,CAAC,EAAE7wC,EAAExR,GAAG,EAAEqiD,GAAG,EAAE,CAAC,EAAE,OAAOt0C,GAAGjG,EAAEsJ,EAAEpL,GAAG/D,GAAGqP,EAAEE,CAAC,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC,CAAC,SAAS+9C,GAAGn+C,EAAE,EAAE,CAAC,OAAOvC,EAAE,IAAI,CAAC,IAAIyC,EAAEtL,GAAGhI,EAAEqkD,GAAG,EAAE,CAAC,CAAC,EAAE,OAAOn7C,GAAG4G,GAAG,EAAEhG,EAAEsJ,EAAEE,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC,CAAC,SAASk+C,GAAGp+C,EAAE,EAAE,CAAC,OAAOvC,EAAE,IAAI,CAAC,IAAIyC,EAAEm9C,GAAGr9C,EAAE,EAAE,EAAEI,EAAEi9C,GAAG,EAAE,EAAE,EAAEh9C,EAAE3J,EAAEwJ,EAAEE,CAAC,EAAE,OAAOvJ,GAAG8F,GAAG0D,EAAE,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,IAAIg+C,GAAG,CAAC,iBAAiBf,GAAG,kBAAkBC,GAAG,4BAA4BC,GAAG,4BAA4BC,GAAG,aAAaC,GAAG,MAAMC,GAAG,iBAAiBC,GAAG,QAAQC,GAAG,wBAAwBC,GAAG,8BAA8BC,GAAG,mBAAmBE,GAAG,0BAA0BC,GAAG,QAAQC,GAAG,gBAAgBC,EAAE,EAAE,SAASE,GAAGt+C,EAAE,CAAC,GAAG,OAAOA,GAAG,SAAS,CAAC,GAAGA,KAAKq+C,GAAG,OAAOA,GAAGr+C,CAAC,EAAE,IAAI,EAAE,gBAAgBA,CAAC,GAAG,MAAMA,EAAE,YAAY,EAAE,SAAS,qBAAqB,IAAI,EAAE,gBAAgBA,CAAC,wFAAwF,IAAI4tC,EAAE,CAAC,CAAC,KAAM,QAAO5tC,CAAC,CAAC,SAASu+C,GAAGv+C,EAAE,EAAE,CAAC,OAAOvC,EAAE,IAAI,CAAC,IAAIyC,EAAExJ,EAAE,GAAGS,GAAG,CAAC,CAAC,EAAEiJ,EAAE+wC,GAAGh+C,GAAG,EAAE+M,CAAC,EAAEF,EAAE,KAAK,EAAE,OAAOlK,GAAGrE,GAAGuO,EAAEI,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC,CAAC,SAASo+C,GAAGx+C,EAAE,EAAE,CAAC,OAAOvC,EAAE,IAAI0zC,GAAG1/C,GAAGzE,GAAGgT,EAAE,EAAE,EAAEhT,GAAG,EAAE,EAAE,CAAC,EAAE,SAAS,CAAC,CAAC,CAAC,SAASyxD,GAAGz+C,EAAE,EAAE,CAAC,OAAOvC,EAAE,IAAI/O,GAAEiO,GAAG1H,GAAGxD,GAAGuO,EAAE,CAAC,EAAEvO,GAAG,EAAE,CAAC,CAAC,CAAC,EAAE,SAAS,CAAC,CAAC,CAAC,SAASitD,GAAG1+C,EAAE,EAAE,CAAC,OAAOvC,EAAE,IAAI/O,GAAEiO,GAAG1H,GAAGxD,GAAGuO,EAAE,CAAC,EAAEvO,GAAG,EAAE,CAAC,CAAC,CAAC,EAAE,SAAS,CAAC,CAAC,CAAC,SAASktD,GAAG3+C,EAAE,EAAE,CAAC,OAAOvC,EAAE,IAAI/O,GAAEiO,GAAG1H,GAAGxD,GAAGuO,EAAE,CAAC,EAAEvO,GAAG,EAAE,CAAC,CAAC,CAAC,EAAE,SAAS,CAAC,CAAC,CAAC,SAASmtD,GAAG5+C,EAAE,EAAE,CAAC,OAAOvC,EAAE,IAAI,CAAC,IAAIyC,EAAEu+C,GAAGz+C,EAAE,CAAC,EAAEI,EAAEu+C,GAAG3+C,EAAE,CAAC,EAAEK,EAAEzT,EAAEsT,EAAEE,CAAC,EAAE,OAAO1R,GAAE2Q,GAAGlM,GAAGkN,EAAE,CAAC,EAAExP,GAAGqP,EAAEG,CAAC,EAAE,CAAC,EAAE,SAAS,CAAC,CAAC,CAAC,CAAC,SAASw+C,GAAG7+C,EAAE,EAAE,CAAC,OAAOvC,EAAE,IAAI,CAAC,IAAIyC,EAAEu+C,GAAGz+C,EAAE,CAAC,EAAEI,EAAEs+C,GAAG1+C,EAAE,CAAC,EAAEK,EAAEzT,EAAEsT,EAAEE,CAAC,EAAE,OAAO1R,GAAE2Q,GAAGlM,GAAGkN,EAAE,CAAC,EAAExP,GAAGqP,EAAEG,CAAC,EAAE,CAAC,EAAE,SAAS,CAAC,CAAC,CAAC,CAAC,SAASy+C,GAAG9+C,EAAE,EAAE,CAAC,OAAOi+C,GAAGj+C,EAAE,CAAC,CAAC,CAAC,SAAS++C,GAAG/+C,EAAE,EAAE,CAAC,OAAOA,EAAE,OAAO,EAAE,OAAOA,EAAE3D,GAAG2D,EAAE,CAACA,EAAE,KAAK,CAAC,CAAC,GAAG,EAAEhT,GAAG,EAAE,EAAE,EAAE,EAAE,QAAQgT,EAAE,QAAQ,EAAEtR,GAAE,EAAEsR,EAAE,KAAK,GAAGtR,GAAE+C,GAAGuO,EAAE,CAAC,EAAE,SAAS,CAAC,CAAC,SAASg/C,GAAGh/C,EAAE,EAAE,CAAC,OAAOvC,EAAE,IAAI,CAAC,IAAIyC,EAAEF,EAAE,IAAI,CAAC,EAAE,OAAO,EAAE,IAAI,EAAEI,EAAEJ,EAAE,IAAIA,EAAE,KAAK,CAAC,EAAE,OAAO,EAAE,IAAI,EAAE,OAAOhG,GAAG,CAAC,EAAE,IAAIkG,EAAE,IAAIE,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,IAAI6+C,GAAG3B,GAAG4B,GAAG5B,GAAG6B,GAAG5B,GAAG6B,GAAG7B,GAAG8B,GAAG7B,GAAG8B,GAAG9B,GAAG+B,GAAGzB,GAAG0B,GAAGpB,GAAGqB,GAAG1B,GAAG2B,GAAG,CAAC,eAAenB,GAAG,oBAAoBC,GAAG,UAAUI,GAAG,wBAAwBW,GAAG,8BAA8BE,GAAG,IAAIR,GAAG,IAAIC,GAAG,IAAIC,GAAG,IAAIC,GAAG,KAAKC,GAAG,KAAKC,GAAG,OAAOE,EAAE,EAAE,SAASG,GAAG3/C,EAAE,CAAC,GAAG,OAAOA,GAAG,UAAUA,KAAK0/C,GAAG,OAAOA,GAAG1/C,CAAC,EAAE,GAAG,OAAOA,GAAG,UAAUA,GAAG,KAAK,OAAOA,EAAE,MAAM,IAAI4tC,EAAE,kBAAkB5tC,CAAC,EAAE,CAAC,CAAC,SAAS4/C,GAAG5/C,EAAE,CAAC,GAAGiuC,GAAGjuC,IAAI,KAAK,0BAA0BA,CAAC,EAAE,EAAE,OAAOA,GAAG,SAAS,OAAOA,EAAE,CAAC,IAAI,EAAE,QAAQE,KAAK,OAAO,KAAKm+C,EAAE,EAAE,GAAGA,GAAGn+C,CAAC,IAAIF,EAAE,CAAC,EAAEE,EAAE,KAAK,CAAC,GAAG,IAAI,OAAO,OAAO,EAAE,QAAQA,KAAK,OAAO,KAAKw/C,EAAE,EAAE,GAAGA,GAAGx/C,CAAC,IAAIF,EAAE,CAAC,EAAEE,EAAE,KAAK,CAAC,OAAO,IAAI,OAAO,EAAEF,EAAE,IAAI,CAAC,CAAC,SAAS6/C,GAAG7/C,EAAE,CAAC,IAAI,EAAE,CAAC,QAAQ,IAAInC,GAAG,QAAQ,GAAG,EAAE,SAAS,IAAIA,GAAG,SAAS,EAAE,IAAIozC,GAAG,CAAC,EAAE,KAAK,IAAIpzC,GAAG,KAAK,KAAK,GAAG,KAAKozC,GAAG,CAAC,EAAE,OAAO,IAAIpzC,GAAG,OAAO,KAAK,GAAG,KAAKozC,GAAG,EAAE,CAAC,EAAE,QAAQ,IAAIpzC,GAAG,QAAQ,KAAK,GAAG,EAAEozC,GAAG,CAAC,EAAE,IAAI,IAAIpzC,GAAG,IAAI,GAAG,CAAC,EAAE,GAAG,EAAE,QAAQ,EAAE,QAAQ,EAAE,SAAS,EAAE,SAAS,EAAE,KAAK,EAAE,KAAK,EAAE,OAAO,EAAE,OAAO,EAAE,QAAQ,EAAE,QAAQ,EAAE,IAAI,EAAE,IAAImC,KAAK,EAAE,OAAO,EAAEA,CAAC,EAAE,EAAE,MAAM,IAAI4tC,EAAE,qBAAqB5tC,CAAC,EAAE,CAAC,CAAC,SAAS8/C,GAAG9/C,EAAE,EAAEE,EAAE,GAAG,CAAC,GAAGF,GAAG,MAAM,OAAOA,GAAG,UAAU,OAAO,eAAeA,CAAC,IAAI,OAAO,WAAW,CAAC+/C,GAAG//C,CAAC,EAAE,MAAM,IAAI,MAAM,oEAAoE,EAAE,GAAGE,EAAE,CAAC,IAAIE,EAAE,KAAK,UAAUJ,CAAC,EAAEI,EAAE,OAAO,SAAS,QAAQ,KAAK,mCAAmC,CAAC,kCAAkCA,EAAE,MAAM,sJAAsJ,CAAC,CAAC,CAAC,SAAS2/C,GAAG//C,EAAE,CAAC,GAAGA,IAAI,KAAK,MAAM,GAAG,GAAG,OAAOA,GAAG,SAAS,GAAG,OAAO,eAAeA,CAAC,IAAI,OAAO,UAAU,CAAC,IAAI,EAAE,OAAO,KAAKA,CAAC,EAAE,QAAQE,KAAK,EAAE,GAAG,OAAOA,GAAG,UAAU,CAAC6/C,GAAG//C,EAAEE,CAAC,CAAC,EAAE,MAAM,GAAG,MAAM,EAAE,SAAS,MAAM,QAAQF,CAAC,EAAE,CAAC,QAAQ,KAAKA,EAAE,GAAG,CAAC+/C,GAAG,CAAC,EAAE,MAAM,GAAG,MAAM,EAAE,KAAM,OAAM,OAAO,CAAC,IAAI,EAAE,OAAO//C,EAAE,OAAO,IAAI,UAAU,IAAI,UAAU,IAAI,SAAS,CAAC,CAAC,SAASggD,GAAGhgD,EAAE,EAAEE,EAAEE,EAAE,QAAQ,IAAI,CAAC,IAAIC,EAAE4/C,GAAGjgD,CAAC,EAAE,EAAE,CAAC,eAAe,cAAc,eAAe,SAAS,EAAEK,GAAG,EAAE,GAAG,GAAGH,EAAEA,GAAG,CAAC,IAAI,IAAI,IAAI,CAAC,IAAI,EAAE,GAAG,IAAIA,EAAEA,GAAG,CAAC,IAAI,IAAI,GAAG,GAAG,CAAC,GAAGA,EAAEA,EAAE,OAAO,CAAC,GAAG,IAAIA,EAAEA,EAAE,IAAIwC,GAAG,KAAK,MAAM,EAAEA,CAAC,CAAC,GAAG,IAAI,EAAE,GAAG,CAACrC,EAAE,CAAC,EAAE,KAAK,iBAAiB,EAAE,EAAE,CAAC,EAAE,QAAQqC,KAAK1C,EAAE,aAAa,EAAE,KAAK,GAAGA,EAAE,aAAa0C,CAAC,CAAC,CAAC,CAACtC,EAAE,IAAI,OAAO,CAAC,CAAC,EAAE8/C,GAAG,EAAEhgD,EAAEE,CAAC,EAAEA,EAAE,IAAI,OAAO,CAAC,CAAC,EAAE,IAAI2B,EAAE/B,EAAE,OAAO,QAAQ0C,EAAE,EAAEA,EAAEX,EAAE,OAAO,EAAEW,EAAErC,EAAE8/C,GAAGp+C,EAAEW,CAAC,EAAExC,EAAEE,CAAC,EAAEggD,GAAGr+C,EAAEW,CAAC,EAAExC,EAAE,EAAEE,CAAC,EAAEA,GAAGsC,IAAIX,EAAE,OAAO,EAAE,IAAI,KAAK,OAAO,CAAC,CAAC,EAAE/B,EAAE,iCAAiC,EAAE,IAAIgC,EAAEq+C,GAAGrgD,CAAC,EAAEiC,EAAEqyC,GAAGt0C,EAAE,mBAAmB,EAAEI,EAAE,iBAAiB4B,EAAEC,CAAC,EAAE,EAAE7B,EAAE,qBAAqB4B,CAAC,EAAE,EAAE5B,EAAE,yBAAyB6B,CAAC,EAAE,EAAE7B,EAAE,IAAI,OAAO,CAAC,CAAC,CAAC,CAAC,SAASigD,GAAGrgD,EAAE,CAAC,IAAI,EAAE,OAAOA,EAAE,2BAA2B,KAAK,EAAEs0C,GAAGt0C,EAAE,yBAAyB,EAAE,EAAEs0C,GAAGt0C,EAAE,gBAAgB,EAAE,CAAC,CAAC,SAASigD,GAAGjgD,EAAE,CAAC,IAAI,EAAE,GAAGE,EAAE,CAAC,EAAEE,EAAE,CAAC,EAAE,QAAQC,KAAKL,EAAE,aAAaE,EAAE,KAAKF,EAAE,aAAaK,CAAC,CAAC,EAAE,QAAQA,KAAKH,EAAE,CAAC,GAAGG,EAAE,OAAO,GAAGA,EAAE,SAAS,GAAGA,EAAE,CAAC,EAAE,cAAc,OAAO,EAAE,CAAC,EAAE,GAAG,KAAK,CAACD,EAAE,KAAK,GAAGC,CAAC,CAAC,CAAC,GAAG,EAAE,QAAQA,KAAKL,EAAE,OAAO,CAAC,IAAI,EAAE,GAAG,QAAQ,KAAKK,EAAE,aAAa,GAAGD,EAAE,QAAQ,CAAC,IAAI,GAAG,GAAG,EAAE,CAAC,EAAE,GAAG,KAAK,MAAM,EAAE,GAAG,GAAG,CAAC,EAAE,KAAK,CAAC,OAAO,CAAC,CAAC,SAAS8/C,GAAGlgD,EAAE,EAAEE,EAAE,QAAQ,IAAI,CAAC,IAAIE,EAAE,GAAG,QAAQC,EAAE,EAAEA,EAAEL,EAAE,OAAO,EAAEK,EAAEA,EAAE,IAAID,EAAEA,EAAE,MAAM,EAAEA,EAAE,OAAO,CAAC,EAAE,KAAKA,GAAGJ,EAAEK,CAAC,EAAED,EAAEA,EAAE,MAAM,EAAE,EAAEC,CAAC,CAAC,EAAED,GAAG,IAAI,OAAO,EAAEC,CAAC,EAAED,EAAE,MAAM,EAAEF,EAAEE,CAAC,CAAC,CAAC,SAAS+/C,GAAGngD,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAEC,EAAE,GAAG,CAACA,EAAEL,EAAE,aAAa,IAAIgC,GAAG,KAAK,UAAUA,EAAE,WAAW,CAAC,EAAE,KAAK,GAAG,CAAC,OAAOA,EAAE,CAAC3B,EAAE,UAAU,CAAC,GAAG,CAACD,EAAE,KAAK,UAAUJ,EAAE,WAAW,CAAC,OAAOgC,EAAE,CAAC5B,EAAE,UAAU,CAAC,IAAI,EAAEJ,EAAE,KAAK,EAAEA,EAAE,aAAa,EAAE+B,EAAE,CAAC,GAAG,CAAC,KAAK,CAAC,IAAI1B,EAAED,EAAEJ,EAAE,YAAY,EAAE,SAAS,CAAC,EAAEkgD,GAAGn+C,EAAE,EAAE7B,CAAC,CAAC,CAAC,SAASkgD,GAAGpgD,EAAE,EAAEE,EAAEE,EAAE,CAAC,IAAIC,EAAE,EAAE,GAAG,CAAC,EAAEL,EAAE,aAAa,IAAI2C,GAAG,KAAK,UAAUA,EAAE,WAAW,CAAC,EAAE,KAAK,GAAG,CAAC,OAAOA,EAAE,CAAC,EAAE,UAAU,CAAC,GAAG,CAACtC,EAAE,KAAK,UAAUL,EAAE,WAAW,CAAC,OAAO2C,EAAE,CAACtC,EAAE,UAAU,CAAC,IAAI,EAAE,CAAC,EAAE,QAAQsC,KAAK3C,EAAE,aAAa,GAAG,EAAEE,GAAG,MAAMA,EAAE,OAAO,GAAGA,EAAE,QAAQyC,CAAC,IAAI,IAAI,QAAQC,EAAE,EAAEA,EAAED,EAAE,cAAc,OAAO,EAAEC,EAAE,CAAC,IAAIC,EAAEF,EAAE,cAAcC,CAAC,EAAE,KAAKE,EAAEH,EAAE,YAAYC,CAAC,EAAEoB,EAAErB,EAAE,cAAcC,CAAC,EAAE,EAAE,KAAK,GAAGC,CAAC,IAAIC,CAAC,KAAKkB,CAAC,GAAG,CAAC,CAAC,IAAIjC,EAAE/B,EAAE,KAAKgC,EAAEhC,EAAE,aAAa,EAAEiC,EAAE,EAAE,SAAS,EAAE,GAAG,EAAE,CAAC,EAAES,EAAE,CAAC,GAAGX,CAAC,KAAKC,CAAC,IAAI,EAAE3B,EAAEL,EAAE,YAAY,EAAE,SAAS,EAAEiC,CAAC,EAAEi+C,GAAGx9C,EAAE,EAAEtC,CAAC,EAAE,QAAQuC,EAAE,EAAEA,EAAE,EAAE,OAAO,EAAEA,EAAEu9C,GAAG,CAAC,GAAG,GAAG,GAAG,GAAG,EAAEv9C,CAAC,CAAC,EAAE,EAAEvC,CAAC,CAAC,CAAC,SAASkgD,GAAGtgD,EAAE,EAAEE,EAAE,CAAC,OAAOF,IAAI,gBAAgBA,IAAI,gBAAgBA,IAAI,gBAAgB,IAAI,GAAG,OAAOE,GAAG,QAAQ,CAAC,SAASqgD,GAAGvgD,EAAE,EAAE,CAAC,GAAGA,IAAI,KAAK,OAAO,KAAK,GAAG,OAAOA,GAAG,SAAS,OAAOsuC,GAAGtuC,CAAC,EAAE,GAAG,OAAOA,GAAG,UAAU,OAAOA,GAAG,UAAU,OAAOA,EAAE,GAAGA,aAAa,MAAM,CAAC,IAAIE,EAAE,CAAC,EAAEE,EAAEJ,EAAE,OAAO,QAAQK,EAAE,EAAEA,EAAED,EAAE,EAAEC,EAAE,CAAC,IAAI,EAAEL,EAAEK,CAAC,EAAEigD,GAAG,EAAEjgD,EAAE,CAAC,EAAEH,EAAE,KAAK,CAAC,EAAEA,EAAE,KAAKqgD,GAAG,EAAE,CAAC,CAAC,CAAC,CAAC,OAAOrgD,CAAC,KAAK,CAAC,IAAIA,EAAE,CAAC,EAAE,QAAQE,KAAK,OAAO,KAAKJ,CAAC,EAAE,CAAC,IAAIK,EAAEL,EAAEI,CAAC,EAAE,GAAGA,IAAI,QAAQ,OAAOC,GAAG,SAASH,EAAEE,CAAC,EAAEC,MAAM,CAAC,IAAI,EAAEiuC,GAAGluC,CAAC,EAAEF,EAAE,CAAC,EAAEqgD,GAAGlgD,EAAE,CAAC,CAAC,CAAC,CAAC,OAAOH,CAAC,CAAC,CAAC,SAASsgD,GAAGxgD,EAAE,EAAE,CAAC,GAAGA,GAAG,KAAK,OAAO,KAAK,GAAG,OAAOA,GAAG,SAAS,OAAOquC,GAAGruC,CAAC,EAAE,GAAG,OAAOA,GAAG,UAAU,OAAOA,GAAG,UAAU,OAAOA,EAAE,GAAGA,aAAa,MAAM,CAAC,IAAIE,EAAE,CAAC,EAAEE,EAAEJ,EAAE,OAAO,QAAQK,EAAE,EAAEA,EAAED,EAAE,EAAEC,EAAE,CAAC,IAAI,EAAEL,EAAEK,CAAC,EAAEigD,GAAG,EAAEjgD,EAAE,CAAC,EAAEH,EAAE,KAAK,CAAC,EAAEA,EAAE,KAAKsgD,GAAG,EAAE,CAAC,CAAC,CAAC,CAAC,OAAOtgD,CAAC,KAAK,CAAC,IAAIA,EAAE,CAAC,EAAE,QAAQE,KAAK,OAAO,KAAKJ,CAAC,EAAE,CAAC,IAAIK,EAAEL,EAAEI,CAAC,EAAE,EAAEiuC,GAAGjuC,CAAC,GAAGA,IAAI,QAAQA,IAAI,cAAc,OAAOC,GAAG,SAASH,EAAE,CAAC,EAAEG,EAAEH,EAAE,CAAC,EAAEsgD,GAAGngD,EAAED,CAAC,CAAC,CAAC,OAAOF,CAAC,CAAC,CAAC,IAAIlB,GAAG,SAAayhD,GAAGzgD,GAAG,CAAC,IAAI,EAAE,OAAO,KAAKA,CAAC,EAAE,GAAG,EAAE,SAAS,EAAE,MAAM,GAAG,IAAIE,EAAE,EAAE,CAAC,EAAE,MAAM,GAAG,EAAE,MAAM,CAAC,MAAM,SAASA,EAAEA,EAAE,OAAO,CAAC,EAAE,EAAE,CAAC,CAAC,EAAEwgD,GAAG,MAAM1gD,WAAU80C,EAAE,CAAC,YAAY,EAAE,CAAC,GAAG,MAAM,CAAC,CAAC,EAAE,KAAK,eAAe,IAAI,IAAI,KAAK,KAAK,EAAE,KAAK,KAAK,MAAM,KAAK,CAAC,IAAIhwC,EAAE,KAAK,aAAa,EAAE,YAAY,EAAE,KAAK,KAAK0qC,GAAG1qC,CAAC,CAAC,CAAC,GAAG,KAAK,gBAAgB,GAAG,KAAK,WAAW,GAAG,MAAM,QAAQ,EAAE,MAAM,EAAE,KAAK,OAAO,EAAE,OAAO,MAAM,EAAE,KAAK,OAAO,CAAC,EAAE,MAAM,EAAE,MAAM,QAAQ,EAAE,OAAO,EAAE,KAAK,QAAQ,EAAE,QAAQ,MAAM,EAAE,KAAK,QAAQ,CAAC,EAAE,OAAO,EAAE+pC,GAAG,KAAK,MAAM,EAAE,SAAS,KAAK,OAAO,OAAO,MAAM,IAAIjB,EAAE,mGAAmG,KAAK,OAAO,IAAI9oC,GAAGA,EAAE,IAAI,CAAC,EAAE,EAAE+pC,GAAG,KAAK,OAAO,EAAE,SAAS,KAAK,QAAQ,QAAQ,QAAQ,KAAK,qGAAqG,KAAK,QAAQ,IAAI/pC,GAAGA,EAAE,IAAI,CAAC,EAAE,EAAE,KAAK,YAAY,CAAC,EAAE,KAAK,uBAAuB,CAAC,EAAE,KAAK,yBAAyB,CAAC,EAAE,KAAK,aAAa,CAAC,EAAE,KAAK,wBAAwB,CAAC,EAAE,KAAK,0BAA0B,CAAC,EAAE,KAAK,OAAO,CAAC,EAAE,KAAK,sBAAsB,CAAC,EAAE,QAAQA,KAAK,KAAK,QAAQ,CAAC,IAAIL,EAAEK,EAAE,YAAYJ,EAAEI,EAAE,UAAUH,EAAEG,EAAE,YAAY,KAAK,aAAa,KAAKL,CAAC,EAAE,KAAK,wBAAwB,KAAKC,CAAC,EAAE,KAAK,0BAA0B,KAAKC,CAAC,CAAC,CAAC,QAAQG,KAAK,KAAK,OAAO,CAAC,IAAIL,EAAEK,EAAE,YAAYJ,EAAEI,EAAE,UAAUH,EAAEG,EAAE,YAAYmpC,GAAGvpC,IAAI,EAAE,0BAA0B,EAAEupC,GAAGtpC,IAAI,EAAE,4BAA4B,EAAE,KAAK,YAAY,KAAKF,CAAC,EAAE,KAAK,uBAAuB,KAAKC,CAAC,EAAE,KAAK,yBAAyB,KAAKC,CAAC,CAAC,CAAC,KAAK,WAAW,CAAC,EAAE,KAAK,YAAY,CAAC,EAAE,KAAK,gBAAgB,CAAC,EAAE,KAAK,eAAe,CAAC,EAAE,KAAK,gBAAgB,CAAC,EAAE,QAAQG,EAAE,EAAEA,EAAE,KAAK,YAAY,OAAOA,IAAI,CAAC,IAAIL,EAAE,KAAK,YAAYK,CAAC,EAAE,GAAG,EAAEL,aAAa2wC,IAAI,MAAM,IAAI,UAAU,8EAA8E,EAAE,MAAM,WAAWtwC,CAAC,yCAAyCL,EAAE,aAAa,CAAC,GAAG,EAAE,KAAK,WAAW,KAAKA,EAAE,IAAI,EAAE,KAAK,gBAAgB,KAAKA,EAAE,eAAe,EAAE,KAAK,eAAe,KAAKA,EAAE,IAAI,CAAC,CAAC,QAAQK,KAAK,KAAK,aAAa,KAAK,YAAY,KAAKA,EAAE,IAAI,EAAE,KAAK,oBAAoB,KAAK,OAAO,IAAIA,GAAGA,EAAE,KAAK,EAAE,KAAK,qBAAqB,KAAK,QAAQ,IAAIA,GAAGA,EAAE,KAAK,EAAE,IAAI5E,EAAE,CAAC,EAAEE,EAAE,CAAC,EAAEC,EAAE,CAAC,EAAE,EAAE,CAAC,EAAE,EAAE,CAAC,EAAE0B,EAAE,CAAC,EAAEC,EAAE,CAAC8C,EAAEL,EAAEC,EAAEC,EAAEC,EAAEC,IAAI,EAAEF,GAAG,MAAMC,GAAG,MAAMC,GAAG,QAAQF,EAAEG,EAAE,YAAYF,EAAEE,EAAE,UAAUD,EAAEC,EAAE,aAAa,IAAIyC,EAAE5C,EAAE,aAAaC,CAAC,EAAE,GAAGF,EAAE,QAAQ6C,CAAC,IAAI,GAAG,MAAM,IAAIomC,GAAG,cAAc7oC,EAAE,IAAI,cAAcH,EAAE,IAAI,uBAAuB,EAAE,GAAGF,EAAE,QAAQ8C,CAAC,IAAI,GAAG,OAAO,KAAK,eAAe,IAAIvH,GAAE,QAAQ2E,EAAEC,CAAC,CAAC,EAAED,EAAE,MAAM,IAAI,EAAEA,EAAE,EAAE,EAAE,OAAO,KAAK,CAAC,EAAE,QAAQD,EAAE,QAAQ6C,CAAC,IAAI,IAAI7C,EAAE,KAAK6C,CAAC,EAAE,IAAI,EAAEA,EAAE,cAAc,OAAO,QAAQvC,EAAE,EAAEA,EAAE,EAAEA,IAAI,CAAC,IAAIC,EAAEsC,EAAE,aAAavC,CAAC,EAAEE,EAAEqC,EAAE,cAAcvC,CAAC,EAAEG,EAAEoC,EAAE,YAAYvC,CAAC,EAAEI,EAAEmC,EAAE,cAAcvC,CAAC,EAAEhD,EAAEiD,EAAER,EAAEC,EAAEQ,EAAEC,EAAEC,CAAC,CAAC,CAAC,IAAIX,EAAE,KAAK8C,CAAC,EAAE7C,EAAE,QAAQ6C,CAAC,GAAG,GAAG7C,EAAE,OAAOA,EAAE,QAAQ6C,CAAC,EAAE,CAAC,EAAExF,EAAE,KAAKwF,CAAC,CAAC,EAAEtF,EAAE,CAAC,EAAES,EAAE,CAAC,EAAE,QAAQoC,KAAK,KAAK,QAAQ9C,EAAE8C,EAAE7C,EAAES,CAAC,EAAE,IAAIC,EAAEZ,EAAE,MAAM,EAAE,QAAQ,EAAE,QAAQ+C,KAAKnC,EAAE,CAACvC,EAAE0E,EAAE,EAAE,EAAEA,EAAEA,EAAE,MAAM5E,IAAIA,EAAE4E,EAAE,EAAE,EAAE,GAAG,IAAIL,EAAEvE,EAAE4E,EAAE,EAAE,EAAEJ,EAAErE,EAAEyE,EAAE,cAAc,EAAE,GAAG,KAAK,EAAEzE,EAAEyE,EAAE,cAAc,EAAE,EAAEL,EAAE,KAAK,IAAIA,EAAEC,CAAC,EAAErE,EAAEyE,EAAE,cAAc,EAAE,EAAEL,EAAE,EAAEK,EAAE,cAAc,EAAE,EAAEA,EAAE,cAAc5E,EAAE4E,EAAE,EAAE,EAAEL,EAAE,QAAQE,EAAE,EAAEA,EAAEG,EAAE,cAAc,OAAOH,IAAI,CAAC,IAAIC,EAAEE,EAAE,cAAcH,CAAC,EAAEE,EAAEC,EAAE,YAAYH,CAAC,EAAE4C,EAAE3C,EAAE,aAAaC,CAAC,EAAE,EAAE3E,EAAEqH,EAAE,EAAE,GAAG,KAAK,EAAErH,EAAEqH,EAAE,EAAE,EAAErH,EAAEqH,EAAE,EAAE,EAAE,KAAK,IAAI9C,EAAE,EAAE,CAAC,EAAErE,EAAEmH,EAAE,EAAE,EAAEA,CAAC,CAAC,CAAC,IAAI3E,EAAE,CAAC,EAAE,QAAQkC,KAAK5E,EAAE,CAAC,IAAIuE,EAAEvE,EAAE4E,CAAC,EAAEL,KAAK7B,IAAIA,EAAE6B,CAAC,EAAE,CAAC,GAAG7B,EAAE6B,CAAC,EAAE,KAAKrE,EAAE0E,CAAC,CAAC,CAAC,CAAC,IAAIjC,EAAE,CAAC,EAAE,QAAQiC,KAAKzE,EAAE,CAAC,IAAIoE,EAAEpE,EAAEyE,CAAC,EAAEL,KAAK5B,IAAIA,EAAE4B,CAAC,EAAE,CAAC,GAAG5B,EAAE4B,CAAC,EAAE,KAAK,EAAEK,CAAC,CAAC,CAAC,CAAC,IAAIhC,EAAE,OAAO,KAAKD,CAAC,EAAE,IAAIiC,GAAG,SAASA,EAAE,EAAE,CAAC,EAAE,KAAK8pC,EAAE,EAAE,KAAK,OAAO,CAAC,EAAE,QAAQ9pC,KAAKhC,EAAE,CAAC,IAAI2B,EAAE5B,EAAEiC,CAAC,EAAEL,EAAE,KAAK,CAACC,EAAEC,IAAI,CAAC,IAAIC,EAAE,EAAEF,EAAE,EAAE,EAAEG,EAAE,EAAEF,EAAE,EAAE,EAAE,OAAOC,EAAEC,EAAE,GAAGD,EAAEC,EAAE,EAAE,CAAC,CAAC,EAAE,QAAQH,KAAKD,EAAEC,aAAa1E,IAAG,KAAK,sBAAsB,KAAK0E,CAAC,EAAE,KAAK,OAAO,KAAKA,CAAC,CAAC,CAAC,KAAK,cAAc7B,EAAEC,EAAE,OAAO,KAAKF,CAAC,EAAE,IAAIkC,GAAG,SAASA,EAAE,EAAE,CAAC,EAAE,KAAK8pC,EAAE,EAAE,IAAI5qC,EAAE,KAAK,OAAO,MAAM,EAAE,EAAE,CAAC,EAAE,QAAQc,KAAKhC,EAAE,QAAQ2B,KAAK7B,EAAEkC,CAAC,EAAE,CAAC,IAAIJ,EAAED,EAAE,cAAc,GAAGC,GAAG,KAAK,CAAC,QAAQC,KAAKF,EAAE,aAAa,GAAGT,EAAE,QAAQW,CAAC,IAAI,GAAG,MAAM,IAAIgpC,GAAG,sDAAsDhpC,CAAC,cAAcD,EAAE,IAAI,iEAAiE,CAAC,EAAE,EAAE,QAAQC,KAAKF,EAAE,cAAcT,EAAE,KAAKW,CAAC,EAAE,EAAE,KAAKD,EAAE,IAAI,CAAC,CAAC,CAAC,KAAK,aAAa9B,EAAE,IAAI0E,EAAE,KAAK,OAAO,IAAIxC,GAAGA,EAAE,IAAI,EAAE,QAAQA,KAAKwC,EAAE,CAAC,IAAI7C,EAAE6C,EAAE,OAAO5C,GAAGA,IAAII,CAAC,EAAE,OAAO,GAAGL,IAAI,EAAE,MAAM,IAAIkpC,GAAG,aAAa7oC,CAAC,aAAaL,CAAC,uEAAuE,KAAK,UAAU6C,CAAC,CAAC,CAAC,CAAC,KAAK,cAAc,CAAC,EAAE,KAAK,aAAa,CAAC,EAAE,IAAIstC,GAAG,CAAC,cAAc,KAAK,cAAc,CAAC,EAAE,YAAY,CAAC,EAAE,cAAc,CAAC,EAAE,aAAa,KAAK,OAAO,cAAc,KAAK,QAAQ,WAAW,KAAK,OAAO,IAAI9vC,GAAG,IAAI,EAAE,YAAY,KAAK,QAAQ,IAAIA,GAAG,IAAI,EAAE,YAAY,KAAK,OAAO,IAAIA,GAAGA,EAAE,KAAK,EAAE,aAAa,KAAK,QAAQ,IAAIA,GAAGA,EAAE,KAAK,CAAC,CAAC,EAAE,KAAK,MAAM,GAAG,KAAK,UAAU,CAAC,CAAC,mBAAmB,CAAC,GAAG,KAAK,YAAY,EAAE,MAAM,IAAI,MAAM,cAAc,KAAK,IAAI,wBAAwB,CAAC,CAAC,SAAS,CAAC,KAAK,kBAAkB,EAAE,IAAI,EAAE,CAAC,qBAAqB,KAAK,qBAAqB,CAAC,EAAE,GAAG,EAAE,KAAK,YAAY,EAAE,CAAC,QAAQ5E,KAAK,KAAK,OAAO,EAAE,sBAAsBA,EAAE,QAAQ,EAAE,qBAAqB,QAAQA,KAAK,KAAK,sBAAsB,EAAE,sBAAsBA,EAAE,QAAQ,EAAE,oBAAoB,CAAC,OAAO,EAAE,qBAAqB,KAAK,UAAU,CAAC,CAAC,IAAI,WAAW,CAAC,OAAO,KAAK,UAAU,CAAC,IAAI,UAAU,EAAE,CAAC,KAAK,OAAO,QAAQA,GAAG,CAACA,EAAE,kBAAkB,QAAQE,GAAGA,EAAE,UAAU,CAAC,CAAC,CAAC,EAAE,KAAK,WAAW,CAAC,CAAC,IAAI,kBAAkB,CAAC,GAAG,KAAK,kBAAkB,OAAO,EAAE,MAAM,IAAIwtC,EAAE,sNAAsN,EAAE,GAAG,CAAC,KAAK,UAAU,MAAM,CAAC,EAAE,IAAI,EAAE,CAAC,EAAE,QAAQ1tC,KAAK,KAAK,OAAO,EAAE,EAAE,OAAOA,EAAE,gBAAgB,EAAE,OAAO,CAAC,CAAC,IAAI,qBAAqB,CAAC,IAAI,EAAE,CAAC,EAAE,QAAQA,KAAK,KAAK,OAAO,EAAE,KAAK,GAAGA,EAAE,mBAAmB,EAAE,GAAG,CAAC,KAAK,UAAU,CAAC,IAAIA,EAAE,CAAC,EAAE,QAAQE,KAAK,KAAK,OAAOF,EAAE,KAAK,GAAGE,EAAE,gBAAgB,EAAE,OAAOF,EAAE,OAAO,CAAC,CAAC,CAAC,OAAO,CAAC,CAAC,IAAI,SAAS,CAAC,OAAO,KAAK,iBAAiB,OAAO,KAAK,mBAAmB,CAAC,CAAC,YAAY,EAAEA,EAAE,GAAG,CAAC,IAAIE,EAAE,CAAC,EAAEC,EAAE,EAAE,EAAEogD,GAAG,CAAC,EAAE,GAAG,KAAK,aAAa,CAAC,EAAE,QAAQ1+C,KAAK,KAAK,OAAO,OAAO,CAACC,EAAEC,CAAC,IAAIF,EAAE,QAAQ,QAAQ,EAAE,CAAC,IAAIW,EAAE,EAAE,GAAGT,EAAE,KAAK,MAAM,GAAG,EAAE,MAAM,EAAE,EAAE,EAAE,KAAK,GAAG,EAAE,GAAG,GAAGD,CAAC,GAAGC,EAAE,aAAa,GAAG7B,EAAEsC,CAAC,GAAG,KAAK,MAAM,IAAIkrC,EAAE,0BAA0BlrC,CAAC,EAAE,EAAEtC,EAAEsC,CAAC,EAAET,EAAE5B,GAAG,CAAC,IAAI,EAAE,CAAC,EAAE,QAAQ0B,KAAK,EAAE,CAAC,IAAIC,EAAED,EAAE,GAAG3B,EAAE2B,CAAC,GAAG,KAAK,CAAC,IAAIE,EAAEF,EAAE,MAAM,GAAG,EAAEC,EAAEC,EAAE,MAAM,EAAE,EAAE,EAAE,OAAO,CAACA,EAAEA,EAAE,OAAO,CAAC,CAAC,CAAC,EAAE,KAAK,GAAG,CAAC,CAAC,GAAG7B,EAAE4B,CAAC,GAAG,KAAK,EAAE,KAAK,CAAC5B,EAAE4B,CAAC,EAAE,EAAED,CAAC,CAAC,CAAC,UAAU7B,EAAE,MAAM,IAAI0tC,EAAE,gDAAgD7rC,CAAC,EAAE,EAAE,OAAO3B,EAAE4B,CAAC,CAAC,CAAC,GAAG9B,EAAE,CAAC,IAAI6B,EAAE,CAAC,EAAE,QAAQC,KAAK5B,EAAE2B,EAAE,KAAKC,CAAC,EAAE,GAAGD,EAAE,OAAO,EAAE,MAAM,IAAI6rC,EAAE,GAAG7rC,EAAE,MAAM,OAAO1B,CAAC,yBAAyB0B,CAAC,EAAE,CAAC,CAAC2yC,GAAG,CAAC,CAAC,CAAC,aAAa,EAAE,CAAC,QAAQx0C,KAAK,OAAO,KAAK,CAAC,EAAE,CAAC,IAAIE,EAAEF,EAAE,MAAM,GAAG,EAAEG,EAAE,CAAC,OAAO,+BAA+B,EAAE,EAAED,EAAE,IAAI,GAAG,EAAE,WAAW,GAAG,EAAE,EAAE,MAAM,CAAC,EAAE,CAAC,EAAE,OAAO,GAAG,CAACC,EAAE,SAAS,CAAC,CAAC,EAAE,KAAK,GAAG,EAAE,IAAIH,IAAI,EAAE,CAAC,EAAE,EAAEA,CAAC,EAAE,OAAO,EAAEA,CAAC,EAAE,CAAC,CAAC,eAAe,CAAC,IAAI,EAAE,KAAK,UAAU,EAAEA,EAAE,CAAC,EAAE,OAAOA,EAAE,UAAU,KAAK,aAAa,EAAEA,EAAE,OAAO,EAAEA,EAAE,aAAa,eAAelB,EAAE,GAAGkB,EAAE,QAAQ,gBAAgBA,CAAC,CAAC,OAAO,EAAEA,EAAE,GAAG,CAAC,IAAIE,EAAEogD,GAAG,KAAK,cAAc,CAAC,EAAE,OAAOtgD,EAAE,KAAK,UAAUE,CAAC,EAAEA,CAAC,CAAC,KAAK,EAAEF,EAAE,CAAC,OAAOzC,EAAE,IAAI,CAAC,EAAE2wC,GAAG,CAAC,EAAE,IAAIhuC,EAAE,IAAIm1C,GAAG,QAAQl1C,EAAE,EAAEA,EAAE,KAAK,OAAO,OAAO,EAAEA,EAAED,EAAE,IAAI,KAAK,OAAOC,CAAC,EAAE,EAAEA,CAAC,CAAC,EAAE,OAAOs1C,GAAG,KAAK,QAAQv1C,EAAEF,CAAC,CAAC,CAAC,CAAC,CAAC,YAAY,EAAEA,EAAE,CAAC,OAAOzC,EAAE,IAAI,CAAC,EAAE2wC,GAAG,CAAC,EAAE,IAAIhuC,EAAE,OAAOF,GAAG,KAAKE,EAAE4tC,GAAG,KAAK,EAAE,MAAM,EAAE5tC,EAAEguC,GAAGluC,CAAC,EAAE,KAAK,iBAAiB,EAAEE,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,mBAAmB,EAAE,CAAC,IAAIF,EAAEi0C,GAAG,CAAC,EAAE,GAAGj0C,EAAE,SAAS,KAAK,YAAY,OAAO,MAAM,IAAI0tC,EAAE,+BAA+B,CAAC,eAAe,KAAK,YAAY,MAAM,iBAAiB,EAAE,IAAIxtC,EAAE,CAAC,EAAE,QAAQ2B,EAAE,EAAEA,EAAE7B,EAAE,OAAO6B,IAAI,CAAC,IAAIC,EAAE,KAAK,YAAYD,CAAC,EAAEE,EAAE/B,EAAE6B,CAAC,EAAEW,EAAEV,EAAE,KAAK,OAAO5B,EAAEsC,CAAC,EAAET,CAAC,CAAC,IAAI5B,EAAE,OAAO,KAAK,KAAK,YAAY,EAAE,IAAI0B,GAAG,SAASA,EAAE,EAAE,CAAC,EAAE,KAAK6sC,EAAE,EAAE,GAAGvuC,EAAE,OAAO,EAAE,QAAQ0B,KAAK1B,EAAE,CAAC,IAAI2B,EAAE,KAAK,aAAaD,CAAC,EAAE,QAAQE,KAAKD,EAAE,CAAC,IAAIU,EAAET,EAAE,cAAc,GAAG,KAAK,YAAY,IAAI+B,GAAGA,EAAE,EAAE,EAAE,QAAQtB,EAAE,EAAE,IAAI,GAAG,SAAS,IAAIC,EAAE,CAAC,EAAE,QAAQqB,EAAE,EAAEA,EAAE/B,EAAE,cAAc,OAAO+B,IAAI,CAAC,IAAI,EAAE/B,EAAE,cAAc+B,CAAC,EAAEsD,EAAErF,EAAE,YAAY+B,CAAC,EAAEc,EAAE7C,EAAE,cAAc+B,CAAC,EAAES,EAAE,GAAG,EAAE,IAAI,IAAI6C,CAAC,IAAIxC,CAAC,GAAGJ,EAAEtE,EAAEqE,CAAC,EAAE9B,EAAE,KAAK+B,CAAC,CAAC,CAAC,IAAI9B,EAAEF,EAAE,mBAAmByrC,GAAGxrC,CAAC,CAAC,EAAEE,EAAEsxC,GAAGvxC,CAAC,EAAEE,EAAEJ,EAAE,aAAa,QAAQT,CAAC,EAAE,QAAQ+B,EAAE,EAAEA,EAAEnB,EAAE,OAAOmB,IAAI,CAAC,IAAI,EAAE,GAAGtB,EAAE,IAAI,IAAII,CAAC,IAAIkB,CAAC,GAAG5D,EAAE,CAAC,EAAEyC,EAAEmB,CAAC,CAAC,CAAC,CAAC,CAAC,IAAI,EAAE,CAAC,EAAE,EAAE,CAAC,EAAE,QAAQjC,EAAE,EAAEA,EAAE,KAAK,aAAa,OAAOA,IAAI,CAAC,IAAIC,EAAE,KAAK,aAAaD,CAAC,EAAEE,EAAE,KAAK,wBAAwBF,CAAC,EAAEW,EAAE,KAAK,0BAA0BX,CAAC,EAAEY,EAAE,GAAGX,EAAE,IAAI,IAAIC,CAAC,IAAIS,CAAC,GAAG,EAAE,KAAKC,CAAC,CAAC,CAAC,QAAQZ,EAAE,EAAEA,EAAE,EAAE,OAAOA,IAAI,CAAC,IAAIC,EAAE,EAAED,CAAC,EAAEksC,GAAGjsC,KAAK5B,CAAC,EAAE,EAAE,KAAKA,EAAE4B,CAAC,CAAC,CAAC,CAAC,OAAOmsC,GAAG,CAAC,CAAC,CAAC,iBAAiB,EAAEjuC,EAAE,CAACA,GAAG,OAAOA,EAAE8tC,GAAG,KAAK,EAAE,MAAM,GAAG,IAAI5tC,EAAE,CAAC,EAAE,QAAQ4B,EAAE,EAAEA,EAAE,KAAK,OAAO,OAAO,EAAEA,EAAE,CAAC,IAAIC,EAAE,KAAK,OAAOD,CAAC,EAAEU,EAAE,EAAEV,CAAC,EAAEW,EAAEzC,EAAE8B,CAAC,EAAE5B,EAAE6B,EAAE,EAAE,EAAE,CAACS,EAAEC,CAAC,CAAC,CAAC,IAAItC,EAAE,OAAO,KAAK,KAAK,YAAY,EAAE,IAAI2B,GAAG,SAASA,EAAE,EAAE,CAAC,EAAE,KAAK4sC,EAAE,EAAE,QAAQ5sC,KAAK3B,EAAE,CAAC,IAAI4B,EAAE,KAAK,aAAaD,CAAC,EAAE,QAAQU,KAAKT,EAAE,CAAC,IAAIU,EAAED,EAAE,cAAcE,EAAEF,EAAE,aAAaG,EAAEH,EAAE,cAAcI,EAAE,IAAI,MAAM,QAAQkB,KAAKpB,EAAEoB,EAAE,MAAM5D,GAAG0C,EAAE,KAAK1C,EAAE4D,EAAE,EAAE,CAAC,EAAE,GAAGlB,EAAE,SAASF,EAAE,OAAO,CAAC,IAAIoB,EAAE,CAAC,EAAE,EAAEsD,EAAExC,EAAEL,EAAE,GAAG/B,EAAE,UAAU,OAAOsB,EAAEtB,EAAE,UAAUI,EAAE,SAAS,EAAE,CAAC,GAAG,CAAC4B,EAAEC,CAAC,EAAE7B,EAAE,CAAC,EAAEkB,EAAE,MAAM,OAAOA,EAAE,KAAKW,GAAGG,EAAEspC,GAAGzrC,EAAE,KAAK+B,EAAEV,CAAC,CAAC,EAAES,EAAE2pC,GAAGzrC,EAAE,YAAY+B,EAAEC,CAAC,CAAC,EAAE,EAAE,CAACD,CAAC,EAAE4C,EAAE,CAAC3C,CAAC,CAAC,MAAM,EAAE7B,EAAE,IAAI4B,GAAGA,EAAE,CAAC,CAAC,EAAE4C,EAAExE,EAAE,IAAI4B,GAAGA,EAAE,CAAC,CAAC,EAAEV,EAAE,MAAM,OAAOA,EAAE,KAAKsD,GAAGxC,EAAEspC,GAAGzrC,EAAE,KAAK,EAAEqB,CAAC,CAAC,EAAES,EAAE2pC,GAAGzrC,EAAE,YAAY,EAAE2E,CAAC,CAAC,EAAE,GAAG3E,EAAE,oBAAoB,MAAM,IAAIkrC,GAAG,uHAAuH,EAAE,QAAQnpC,EAAE,EAAEA,EAAE7B,EAAE,OAAO,EAAE6B,EAAE,CAAC,IAAIC,EAAE9B,EAAE6B,CAAC,EAAEE,EAAEE,EAAEJ,CAAC,EAAEG,EAAEJ,EAAEC,CAAC,EAAEtE,EAAEuE,EAAE,EAAE,EAAE,CAACC,EAAEC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,IAAI,EAAE,CAAC,EAAE,EAAE,CAAC,EAAE9C,EAAE,CAAC,EAAE,QAAQC,KAAK,KAAK,QAAQ,CAACisC,GAAGjsC,EAAE,MAAM5B,EAAE,4BAA4B4B,EAAE,IAAI,MAAMA,EAAE,EAAE,EAAE,EAAE,GAAG,CAACC,EAAES,CAAC,EAAEtC,EAAE4B,EAAE,EAAE,EAAED,EAAE,KAAKE,EAAE,KAAK,EAAE,EAAE,KAAKA,CAAC,EAAE,EAAE,KAAKS,CAAC,CAAC,CAAC,MAAM,CAAC,EAAE,EAAEX,CAAC,CAAC,CAAC,uBAAuB,EAAE,CAAC,IAAI7B,EAAE,CAAC,EAAEE,EAAE,QAAQC,KAAK,KAAK,OAAO,CAACD,EAAEC,aAAaL,GAAE,EAAE,EAAE,QAAQ,EAAE,EAAE,EAAEK,EAAE,aAAa,OAAO,IAAI,CAAC,IAAI,EAAEL,GAAE,QAAQK,EAAE,CAAC,EAAE,KAAK,eAAe,IAAI,CAAC,IAAIH,EAAE,CAAC,EAAEE,EAAEA,GAAG,EAAE,CAAC,CAAC,OAAOF,CAAC,CAAC,SAAS,EAAEA,EAAE,CAAC,GAAGA,GAAG,KAAK,OAAO,KAAK,UAAUA,CAAC,EAAE,GAAG,GAAG,KAAK,MAAM,IAAI0tC,EAAE,4CAA4C,EAAE,GAAG,OAAO,GAAG,SAAS,OAAO,KAAK,UAAU,CAAC,EAAE,QAAQxtC,KAAK,KAAK,OAAO,GAAGA,EAAE,OAAO,EAAE,OAAOA,EAAE,MAAM,IAAIwtC,EAAE,kBAAkB,CAAC,EAAE,CAAC,CAAC,UAAU,EAAE,CAAC,GAAG,KAAK,OAAO,QAAQ,EAAE,MAAM,IAAIA,EAAE,wCAAwC,CAAC,wBAAwB,KAAK,OAAO,MAAM,YAAY,EAAE,OAAO,KAAK,OAAO,CAAC,CAAC,CAAC,iBAAiB,CAAC,OAAOnwC,EAAE,IAAI,CAAC,IAAI,EAAE,CAAC,EAAE,QAAQyC,KAAK,KAAK,OAAO,QAAQE,EAAE,EAAEA,EAAEF,EAAE,aAAa,OAAO,EAAEE,EAAE,CAAC,IAAIC,EAAEL,GAAE,QAAQE,EAAEE,CAAC,EAAE,KAAK,eAAe,IAAIC,CAAC,GAAG,EAAE,KAAK,GAAGH,EAAE,gBAAgB,CAAC,CAAC,CAAC,OAAO,CAAC,CAAC,CAAC,CAAC,WAAW,CAAC,IAAI,EAAE,CAAC,KAAK,KAAK,IAAI,EAAEA,EAAE,KAAK,uBAAuB,KAAK,MAAM,EAAEE,EAAE,CAAC,EAAE,QAAQ,KAAK,KAAK,OAAO,CAAC,IAAI2B,EAAE,EAAE,aAAa,EAAEC,EAAE,EAAE,UAAU,EAAEC,EAAE,CAAC,EAAE,QAAQU,EAAE,EAAEA,EAAE,EAAE,aAAa,OAAOA,IAAI,CAAC,IAAIC,EAAE,EAAE,aAAaD,CAAC,EAAEE,EAAE7C,GAAE,QAAQ,EAAE2C,CAAC,EAAEG,EAAE,CAAC,EAAE,GAAG,KAAK,eAAe,IAAID,CAAC,EAAE,CAAC,GAAGD,EAAE,SAAS,GAAG,CAAC,KAAK,UAAUA,EAAE,QAAQ,EAAEE,EAAEF,EAAE,QAAQ,OAAOoB,EAAE,CAAC,QAAQ,KAAK,SAAS,EAAE,IAAI,mDAAmDpB,EAAE,QAAQ,yGAAyG,EAAEE,EAAE,CAAC,CAAC,CAAC,GAAGF,EAAE,cAAc,OAAO,EAAE,CAAC,IAAIoB,EAAE,CAAC,EAAE,QAAQ,EAAE,EAAE,EAAEpB,EAAE,cAAc,OAAO,IAAI,CAAC,IAAI0E,EAAE1E,EAAE,cAAc,CAAC,EAAEkC,EAAElC,EAAE,YAAY,CAAC,EAAE6B,EAAE7B,EAAE,cAAc,CAAC,EAAE8B,EAAE1E,GAAE,QAAQsH,EAAExC,CAAC,EAAEH,EAAEzE,EAAEwE,CAAC,EAAEC,GAAG,OAAOA,EAAE,GAAGX,EAAE,KAAK,CAACsD,EAAE,KAAK3C,EAAEF,EAAE3B,CAAC,CAAC,CAAC,CAACb,EAAE,KAAK+B,CAAC,CAAC,CAAC,CAAC,CAAC,IAAItB,EAAE,CAAC,EAAEA,EAAE,KAAK,EAAE,KAAKA,EAAE,UAAUX,EAAEW,EAAE,OAAOV,EAAEU,EAAE,aAAaT,EAAE7B,EAAE,KAAKsC,CAAC,CAAC,CAAC,EAAE,OAAOtC,EAAE,IAAIC,EAAE,CAAC,EAAE,QAAQ,EAAE,EAAE,EAAE,KAAK,YAAY,OAAO,IAAI,CAAC,IAAI0B,EAAE,KAAK,YAAY,CAAC,EAAEC,EAAE,KAAK,uBAAuB,CAAC,EAAEC,EAAEjC,GAAE,QAAQ+B,EAAEC,CAAC,EAAE,GAAG,CAAC,KAAK,eAAe,IAAIC,CAAC,EAAE,SAAS,IAAIS,EAAExC,EAAE+B,CAAC,EAAES,GAAG,OAAOA,EAAE,GAAG,IAAIC,EAAE,KAAK,yBAAyB,CAAC,EAAEtC,EAAE,KAAK,CAAC0B,EAAE,KAAKW,EAAEC,CAAC,CAAC,CAAC,CAAC,EAAE,YAAYtC,EAAE,IAAI,EAAE,CAAC,EAAE,QAAQ,EAAE,EAAE,EAAE,KAAK,aAAa,OAAO,IAAI,CAAC,IAAI0B,EAAE,KAAK,aAAa,CAAC,EAAEC,EAAE,KAAK,wBAAwB,CAAC,EAAEC,EAAEjC,GAAE,QAAQ+B,EAAEC,CAAC,EAAE,GAAG,CAAC,KAAK,eAAe,IAAIC,CAAC,EAAE,SAAS,IAAIS,EAAExC,EAAE+B,CAAC,EAAES,GAAG,OAAOA,EAAE,GAAG,IAAIC,EAAE,KAAK,0BAA0B,CAAC,EAAE,EAAE,KAAK,CAACZ,EAAE,KAAKW,EAAEC,CAAC,CAAC,CAAC,CAAC,OAAO,EAAE,aAAa,EAAE,CAAC,CAAC,OAAO,WAAW,EAAEzC,EAAEE,EAAE,CAAC,EAAEC,EAAE,GAAG,CAAC,IAAI,EAAE,CAAC,EAAE,EAAE,CAAC,EAAE,SAAS0B,EAAE,EAAEuF,EAAE,CAAC,EAAE,QAAQ,EAAE,EAAE,EAAE,IAAI,EAAE,KAAKA,CAAC,EAAE,EAAE,EAAE,IAAI,EAAE,CAACA,CAAC,CAAC,CAAC,SAAStF,EAAE,EAAEsF,EAAE,CAAC,IAAIxC,EAAE,CAAC,EAAEL,EAAE,QAAQC,KAAK4C,EAAE,CAAC,IAAI3C,EAAED,EAAE,CAAC,EAAEE,EAAEF,EAAE,CAAC,EAAEG,EAAEH,EAAE,CAAC,EAAE,GAAGD,EAAEC,EAAE,CAAC,GAAG,KAAK,CAAC,EAAEA,EAAE,CAAC,EAAE,EAAEC,KAAK,GAAG,CAAC5C,EAAE,EAAEuF,CAAC,EAAE,MAAM,CAAC,IAAIC,EAAE,EAAE5C,CAAC,EAAE,GAAG4C,EAAE,aAAa,QAAQ3C,EAAE,CAAC7C,EAAE,EAAEuF,CAAC,EAAE,MAAM,CAAC,IAAI,EAAEC,EAAE,aAAa3C,CAAC,EAAEE,EAAE,KAAK,EAAE,cAAcD,CAAC,CAAC,CAAC,CAACC,EAAE,OAAO,GAAG,EAAE,MAAMqpC,GAAGrpC,CAAC,EAAEL,CAAC,CAAC,CAAC,SAASxC,EAAE,EAAE,CAAC,IAAIqF,EAAE,EAAE,KAAKxC,EAAEs4C,GAAG,EAAEl9C,EAAE,eAAe,KAAKA,EAAE,cAAc,CAAC,CAAC,EAAE4E,EAAE,6BAA6BzE,CAAC,EAAE,EAAEiH,CAAC,EAAExC,EAAE,EAAE,aAAa,QAAQJ,GAAG,CAAC,GAAG,EAAEA,aAAa,OAAO,MAAM,IAAIkpC,EAAE,yDAAyDlpC,CAAC,EAAE,EAAE3C,EAAE+C,EAAEJ,CAAC,CAAC,CAAC,CAAC,CAAC,IAAIhC,EAAExC,EAAE,KAAKyC,EAAEzC,EAAE,OAAO,QAAQ,KAAKyC,EAAEV,EAAE,CAAC,EAAE,KAAK,CAAC6sC,GAAG,CAAC,GAAG,QAAQ,KAAKnsC,EAAE,CAAC,IAAI2E,EAAE,EAAE,EAAE,IAAI,EAAE,GAAGA,EAAE,QAAQ,EAAE,CAAC,IAAIxC,EAAE,EAAEwC,EAAE,IAAI,EAAE,OAAO,EAAEA,EAAE,IAAI,EAAE,QAAQ7C,KAAKK,EAAE9C,EAAEsF,EAAE7C,CAAC,CAAC,CAAC,CAAC,IAAI7B,EAAE,CAAC,EAAEC,EAAE,CAAC,EAAEC,EAAE5C,EAAE,YAAY,QAAQ,KAAK4C,EAAE,CAAC,IAAIwE,EAAE,EAAE,CAAC,EAAExC,EAAE,EAAE,CAAC,EAAEL,EAAE,EAAE,CAAC,EAAEwpC,GAAG3mC,KAAK,CAAC,EAAE,IAAI3C,EAAE,EAAE2C,CAAC,EAAE,aAAaxC,CAAC,EAAE,cAAclC,EAAE,KAAK+B,EAAEF,CAAC,CAAC,CAAC,CAAC,IAAIT,EAAE9D,EAAE,aAAa,QAAQ,KAAK8D,EAAE,CAAC,IAAIsD,EAAE,EAAE,CAAC,EAAExC,EAAE,EAAE,CAAC,EAAEL,EAAE,EAAE,CAAC,EAAEwpC,GAAG3mC,KAAK,CAAC,EAAE,IAAI3C,EAAE,EAAE2C,CAAC,EAAE,aAAaxC,CAAC,EAAE,cAAcjC,EAAE,KAAK8B,EAAEF,CAAC,CAAC,CAAC,CAAC,OAAO,IAAI,EAAE,CAAC,OAAO7B,EAAE,QAAQC,EAAE,KAAKH,CAAC,CAAC,CAAC,CAAC,IAAI,UAAU,CAAC,GAAG,KAAK,UAAU,MAAM,IAAIkrC,EAAE,sLAAsL,EAAE,QAAQ,KAAK,KAAK,OAAO,GAAG,EAAE,SAAS,MAAM,GAAG,MAAM,EAAE,CAAC,aAAa,CAACnwC,EAAE,IAAI,CAAC,KAAK,OAAO,QAAQ,GAAG,CAAC,EAAE,UAAU,EAAE,YAAY,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,SAASkjD,GAAG3gD,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAE,EAAE,OAAO,GAAGJ,GAAG,MAAM,MAAM,QAAQA,CAAC,GAAGA,EAAE,SAAS,EAAE,OAAO,EAAE,IAAIK,GAAG,IAAI,EAAE,GAAGD,IAAI,EAAE,OAAO,MAAM,QAAQJ,CAAC,GAAGA,EAAE,SAAS,EAAEA,EAAE,OAAOA,GAAG,UAAU,EAAE,CAAC,IAAIA,EAAE,CAACA,EAAE,EAAE,CAAC,CAAC,CAAC,EAAE,CAACA,CAAC,EAAE,GAAG,MAAM,QAAQA,CAAC,EAAE,CAAC,GAAGA,EAAE,SAASI,EAAE,MAAM,IAAI,MAAM,YAAYF,CAAC,mBAAmBF,EAAE,MAAM,kCAAkCI,CAAC,yEAAyE,EAAE,OAAOJ,CAAC,SAAS,OAAOA,GAAG,UAAU,OAAO,KAAKA,CAAC,EAAE,OAAO,GAAG,OAAOA,EAAE,OAAO,KAAKA,CAAC,EAAE,CAAC,CAAC,GAAG,SAAS,CAAC,IAAIK,EAAE,CAAC,EAAE,OAAO,EAAE,QAAQ,GAAG,CAAC,KAAKL,EAAEK,EAAE,KAAKL,EAAE,CAAC,CAAC,EAAEK,EAAE,KAAK,IAAI,CAAC,CAAC,EAAEA,CAAC,KAAM,OAAM,IAAI,MAAM,2BAA2BD,CAAC,iBAAiBF,CAAC,iCAAiCE,CAAC,+BAA+B,CAAC,mBAAmBF,CAAC,oBAAoB,KAAK,UAAUF,CAAC,CAAC,EAAE,CAAC,CAAC,SAAS4gD,GAAG5gD,EAAE,EAAE,CAAC,OAAO2gD,GAAG3gD,EAAE,EAAE,aAAa,CAAC,CAAC,eAAe6gD,GAAG7gD,EAAE,EAAEE,EAAEE,EAAE,CAAC,GAAG,GAAG,MAAMA,GAAG,KAAK,MAAM,IAAI,MAAM,6CAA6C,EAAE,GAAGF,GAAG,KAAK,CAAC,IAAIG,EAAE5C,EAAE,IAAI,CAAC,GAAGuC,EAAE,MAAM,SAAS,EAAE,OAAOnR,GAAGmR,CAAC,EAAE,GAAGA,EAAE,MAAM,SAAS,EAAE,CAAC,GAAGA,EAAE,MAAM,CAAC,EAAE,EAAE,OAAOhT,GAAGgT,EAAE,CAAC,EAAE,GAAGA,EAAE,MAAM,CAAC,IAAI,EAAE,OAAOzG,EAAEyG,EAAE,CAACA,EAAE,MAAM,CAAC,CAAC,CAAC,EAAE,MAAM,IAAI,MAAM,+CAA+CA,EAAE,MAAM,CAAC,CAAC,sEAAsE,CAAC,KAAM,OAAM,IAAI,MAAM,yCAAyCA,EAAE,IAAI,wEAAwE,CAAC,CAAC,EAAE,EAAE,MAAM,KAAK,MAAMK,EAAE,KAAK,CAAC,EAAE1P,GAAG0P,CAAC,EAAE,IAAI,EAAE,CAAC,EAAE,OAAO,EAAE,QAAQ0B,GAAG,CAAC,GAAG7B,EAAE6B,CAAC,GAAG,KAAK,MAAM,IAAI,MAAM,wEAAwEA,CAAC,4CAA4C,EAAE,EAAE,KAAK7B,EAAE6B,CAAC,CAAC,CAAC,CAAC,EAAE/E,GAAG,EAAE,SAAS,CAAC,KAAM,QAAO,IAAI,CAAC,SAAS8jD,GAAG9gD,EAAE,EAAE,CAAC,OAAOtJ,EAAEsJ,EAAE,CAAC,CAAC,CAAC,IAAI+gD,GAAG,GAAG,SAASC,GAAGhhD,EAAE,EAAE,CAAC,IAAIE,EAAEE,EAAEC,EAAE,EAAEH,EAAEG,EAAE,GAAGD,EAAEC,EAAE,GAAG9B,EAAE,OAAO2B,GAAG,MAAME,GAAG,KAAK,IAAI,mPAAmP,CAAC,EAAE,EAAE,IAAI,EAAE6gD,GAAG,QAAQjhD,EAAE,WAAWE,CAAC,EAAE,EAAE+gD,GAAG,SAASjhD,EAAE,YAAYI,CAAC,EAAE2B,EAAE,EAAE,CAAC,EAAE,MAAM,CAAC,EAAExD,EAAE,OAAO,EAAE,SAASyB,EAAE,OAAO,OAAO,IAAI,mBAAmBA,EAAE,OAAO,MAAM,qCAAqC,EAAE,MAAM,mCAAmC,KAAK,UAAUA,EAAE,UAAU,CAAC,GAAG,EAAEzB,EAAE,OAAO,EAAE,SAASyB,EAAE,QAAQ,OAAO,IAAI,mBAAmBA,EAAE,QAAQ,MAAM,sCAAsC,EAAE,MAAM,qCAAqC,KAAK,UAAUA,EAAE,WAAW,CAAC,GAAG,EAAE,QAAQgC,EAAE,EAAEA,EAAE,EAAE,OAAOA,IAAIzD,EAAE,OAAO,EAAEyD,CAAC,EAAE,MAAM,CAAC,IAAID,EAAE,IAAI,8BAA8B/B,EAAE,WAAWgC,CAAC,CAAC,QAAQ,EAAEA,CAAC,EAAE,MAAM,CAAC,CAAC,eAAeD,CAAC,mBAAmB/B,EAAE,WAAW,CAAC,CAAC,GAAG,EAAE,QAAQgC,EAAE,EAAEA,EAAE,EAAE,OAAOA,IAAIzD,EAAE,OAAO,EAAEyD,CAAC,EAAE,MAAM,CAAC,IAAID,EAAE,IAAI,+BAA+B/B,EAAE,YAAYgC,CAAC,CAAC,QAAQ,EAAEA,CAAC,EAAE,MAAM,CAAC,CAAC,eAAeD,CAAC,mBAAmB/B,EAAE,WAAW,CAAC,CAAC,GAAG,EAAE,MAAM,CAAC,GAAG,EAAE,GAAG,CAAC,CAAC,CAAC,SAASihD,GAAGjhD,EAAE,EAAEE,EAAE,CAAC,GAAGA,aAAavU,GAAG,MAAM,CAACuU,CAAC,EAAE,GAAG,MAAM,QAAQA,CAAC,EAAE,OAAO3B,EAAE,OAAO2B,EAAE,SAAS,EAAE,OAAO,IAAI,wBAAwBA,EAAE,MAAM,0BAA0B,EAAE,MAAM,iBAAiBF,CAAC,SAAS,CAAC,GAAG,EAAEE,EAAE,CAAC,IAAIE,EAAE,CAAC,EAAE,QAAQC,KAAK,EAAE,CAAC,GAAGH,EAAEG,CAAC,GAAG,KAAK,MAAM,IAAIutC,EAAE,gEAAgE5tC,CAAC,SAASK,CAAC,IAAI,EAAED,EAAE,KAAKF,EAAEG,CAAC,CAAC,CAAC,CAAC,OAAOD,CAAC,CAAC,CAAC,SAAS8gD,GAAGlhD,EAAE,CAAC,GAAGA,EAAE,SAAS,EAAE,MAAM,IAAI6tC,GAAG,wDAAwD,EAAE,MAAM,CAAC,GAAG7tC,EAAE,CAAC,EAAE,GAAGA,EAAE,CAAC,CAAC,CAAC,CAAC,eAAemhD,GAAGnhD,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAEF,EAAE,iBAAiB,KAAK,GAAG3B,EAAE,OAAOyB,EAAE,WAAW,KAAK,IAAI,gGAAgG,EAAEzB,EAAE,OAAO2B,GAAG,KAAK,IAAI,+FAA+F,EAAE3B,EAAE,OAAO2B,EAAE,QAAQ,MAAMA,EAAE,OAAO,GAAG,OAAO,UAAUA,EAAE,MAAM,EAAE,IAAI,iFAAiFA,EAAE,MAAM,EAAE,EAAE3B,EAAE,OAAO,CAAC6B,GAAGF,EAAE,gBAAgB,GAAG,OAAO,UAAUA,EAAE,eAAe,EAAE,IAAI,uGAAuGA,EAAE,eAAe,EAAE,EAAE3B,EAAE,OAAO2B,EAAE,iBAAiB,KAAK,IAAI,mFAAmF,EAAEF,EAAE,WAAW,MAAM,IAAI,MAAM,8DAA8D,EAAEA,EAAE,WAAW,GAAG,GAAG,CAAC,IAAIK,EAAEH,EAAE,gBAAgB,KAAK,EAAE,EAAE,GAAGG,EAAE,GAAG+gD,GAAGlhD,EAAE,cAAc,EAAE3B,EAAE,OAAO2B,EAAE,mBAAmB,MAAMA,EAAE,kBAAkB,GAAG,OAAO,UAAUA,EAAE,iBAAiB,EAAE,IAAI,iJAAiJA,EAAE,iBAAiB,EAAE,MAAM,CAAC,IAAI,EAAEghD,GAAGhhD,EAAE,cAAc,EAAE,EAAE,EAAE,GAAG,EAAE,EAAE,EAAE,CAAC,IAAI6B,EAAE/B,EAAE,kBAAkB,EAAEgC,EAAEhC,EAAE,uBAAuB,EAAEiC,EAAE5B,EAAE4B,EAAED,EAAE,MAAM,EAAE,OAAOA,EAAE,IAAI,GAAG,OAAO,CAAC,CAAC,EAAEC,EAAED,EAAE,MAAM,EAAE,IAAIU,EAAEu6C,GAAG/8C,EAAE,UAAUA,EAAE,UAAU,EAAEyC,EAAEzC,EAAE,SAAS,KAAK,EAAEA,EAAE,QAAQ,CAAC,aAAa0C,EAAE,QAAQC,CAAC,EAAEs6C,GAAGz6C,EAAEC,EAAEzC,EAAE,OAAO,KAAK,KAAKmhD,GAAG,EAAEnhD,CAAC,EAAE,KAAKG,EAAE4B,CAAC,EAAEW,EAAE,SAAS5C,CAAC,EAAEA,EAAE,QAAQ6C,EAAE,MAAMD,EAAE,aAAa,EAAE5C,EAAE,cAAc,GAAG,IAAI8C,EAAE5C,EAAE,cAAc,KAAK,EAAEA,EAAE,aAAa8D,EAAE,MAAM,EAAE,SAAS,EAAE,KAAKlB,EAAE5C,EAAE,QAAQ,CAAC,IAAI,EAAE,CAAC,EAAE,MAAM0C,EAAE,aAAaE,CAAC,EAAE,IAAIwE,EAAE,EAAExC,EAAE,EAAE,IAAI1E,IAAI4D,EAAE,MAAM,EAAE,SAAS,GAAG,CAAC5D,GAAGkH,EAAEpH,EAAE,iBAAiB,CAAC,IAAIuE,EAAE,MAAMT,EAAE,KAAK,EAAE,GAAG5D,GAAGqE,EAAE,KAAK,CAAC,QAAQ,KAAK,uCAAuCvE,EAAE,eAAe,qDAAqDoH,CAAC,0IAA0IpH,EAAE,gBAAgBA,EAAE,MAAM,kFAAkF,EAAE,KAAK,CAAC,GAAGuE,EAAE,OAAO,KAAK,CAAC,GAAG,CAAC,GAAGC,EAAE,GAAGC,CAAC,EAAEq8C,GAAGhhD,EAAEyE,EAAE,KAAK,EAAEG,EAAE,CAAC,EAAEA,EAAE,MAAME,EAAEF,EAAE,KAAKF,EAAE,CAAC,EAAE,MAAM,CAAC,EAAE,MAAM9B,EAAE,aAAakC,EAAEF,CAAC,EAAE,IAAIC,EAAE,CAAC,EAAE,GAAG3E,EAAE,aAAa,KAAK,CAAC,IAAI8E,EAAE47C,GAAG1gD,EAAE,YAAYF,EAAE,WAAW,EAAE,QAAQiF,EAAE,EAAEA,EAAED,EAAE,OAAO,EAAEC,EAAEJ,EAAE,KAAK,MAAMg8C,GAAGl8C,EAAEM,CAAC,EAAE,KAAKD,EAAEC,CAAC,CAAC,CAAC,CAAC,CAAC,IAAIsC,EAAE7C,EAAE,OAAOC,CAAC,EAAE,OAAOE,CAAC,EAAE,EAAE9C,EAAEwF,CAAC,EAAE5W,GAAG4W,CAAC,EAAE,QAAQvC,EAAE,EAAEA,EAAEhD,EAAE,OAAO,EAAEgD,EAAE,CAAC,IAAIC,EAAEjD,EAAEgD,CAAC,EAAEE,EAAE,EAAEF,CAAC,EAAEJ,EAAEK,CAAC,EAAEC,EAAElR,GAAGkR,CAAC,CAAC,CAAC,MAAMtC,EAAE,WAAWkC,EAAEF,CAAC,EAAEg4C,GAAGh4C,CAAC,EAAEE,IAAIwC,GAAG,CAAC,GAAGlH,EAAEkH,GAAGpH,EAAE,gBAAgBuE,EAAE,KAAK,CAAC,GAAGpE,EAAE,CAAC,IAAIqE,EAAE08C,GAAGlhD,EAAE,cAAc,EAAEwE,EAAE0pC,GAAG,MAAMpuC,EAAE,gBAAgBE,EAAE,eAAe,CAAC,QAAQA,EAAE,iBAAiB,CAAC,CAAC,EAAEwE,EAAE0pC,GAAGpuC,EAAE,SAAS,EAAE,EAAE,CAAC,UAAUE,EAAE,qBAAqB,KAAK6gD,GAAG7gD,EAAE,oBAAoB,QAAQ,CAAC,CAAC,CAAC,EAAE,QAAQyE,EAAE,EAAEA,EAAE3E,EAAE,aAAa,OAAO,EAAE2E,EAAE,EAAE,OAAO3E,EAAE,aAAa2E,CAAC,CAAC,EAAE,EAAED,EAAEC,CAAC,CAAC,CAAC,KAAK,CAAC,GAAG3E,EAAE,cAAc,KAAK,CAAC,GAAG,MAAM4C,EAAE,WAAWE,EAAE,CAAC,EAAEA,IAAI9C,EAAE,cAAc,KAAK,CAAC,OAAO,MAAM4C,EAAE,WAAW,EAAE,MAAM5C,EAAE,QAAQ,SAAS,EAAEA,EAAE,OAAO,QAAC,CAAQA,EAAE,WAAW,EAAE,CAAC,CAAC,SAASqhD,GAAGrhD,EAAE,EAAE,CAAC,IAAIE,EAAE,KAAK,OAAO,EAAE,iBAAiB,KAAKA,EAAE,EAAE,gBAAgB,OAAO,SAASF,EAAE,IAAI,IAAIE,EAAEF,EAAE,MAAME,CAAC,CAAC,SAASkhD,GAAGphD,EAAE,CAAC,OAAO,OAAOA,EAAE,UAAU,UAAU,CAAC,SAASshD,GAAGthD,EAAE,CAAC,OAAO,OAAOA,EAAE,MAAM,UAAU,CAAC,eAAeuhD,GAAGvhD,EAAE,EAAEE,EAAE,CAACA,EAAEA,GAAG,CAAC,EAAE,IAAIE,EAAEF,EAAE,SAAS,KAAKG,EAAEL,EAAE,aAAa,EAAE,CAAC,EAAE,GAAGE,EAAE,QAAQ,EAAE,MAAM,IAAI2tC,GAAG,sCAAsC,EAAEtvC,EAAE,OAAO,CAAC6B,GAAGF,EAAE,QAAQ,GAAG,OAAO,UAAUA,EAAE,OAAO,EAAE,IAAI,wEAAwE,KAAK,UAAUA,EAAE,OAAO,CAAC,EAAE,EAAE,IAAI,EAAEohD,GAAG,CAAC,EAAE,EAAE,MAAM,EAAE,SAAS,EAAEv/C,EAAE,EAAEC,EAAE,EAAE,KAAK,CAAC5B,GAAG4B,EAAE9B,EAAE,SAAS,CAAC,IAAI+B,EAAE,MAAM,EAAE,KAAK,EAAE,GAAG,EAAExE,EAAE,IAAI,CAAC,GAAGwE,EAAE,MAAM,CAAC,GAAG,CAAC,GAAGS,EAAE,GAAGC,CAAC,EAAEq+C,GAAGhhD,EAAEiC,EAAE,KAAK,EAAEW,EAAEF,EAAE,OAAOC,CAAC,EAAEE,EAAEpF,EAAE,IAAI4C,EAAEuC,CAAC,CAAC,EAAE,GAAGjS,GAAGiS,CAAC,EAAEZ,IAAI,EAAE,QAAQgC,EAAE,EAAEA,EAAEnB,EAAE,OAAO,EAAEmB,EAAE,EAAE,KAAKhK,GAAG,CAAC,CAAC,EAAE,IAAI8I,EAAEF,EAAE,CAAC,EAAE,MAAM,CAAC,EAAE,QAAQoB,EAAE,EAAEA,EAAEnB,EAAE,OAAO,EAAEmB,EAAE,CAAC,IAAI,EAAEnB,EAAEmB,CAAC,EAAEsD,EAAE,EAAEtD,CAAC,EAAE,EAAEA,CAAC,EAAEvG,EAAE,IAAI7Q,EAAE,EAAEoX,CAAC,EAAEtN,EAAEoM,EAAE,CAAC,CAAC,CAAC,EAAEd,EAAE,GAAGrR,GAAG2W,CAAC,CAAC,CAAC3W,GAAGkS,CAAC,EAAEd,GAAGe,EAAE,EAAEd,CAAC,CAAC,OAAO,CAAC,CAAC,EAAEC,EAAE,KAAK,CAAC7B,GAAG,QAAQ,KAAK,gLAAgLF,EAAE,OAAO,kFAAkF,EAAE,KAAK,CAAC,CAAC,QAAQ+B,EAAE,EAAEA,EAAE,EAAE,OAAO,EAAEA,EAAE,CAAC,IAAIS,EAAE,EAAET,CAAC,EAAE,EAAEA,CAAC,EAAEpR,GAAG,EAAEoR,CAAC,EAAEF,CAAC,EAAEpR,GAAG+R,CAAC,CAAC,CAAC,OAAOyrC,GAAG,CAAC,CAAC,CAAC,SAASqT,GAAGxhD,EAAE,CAACzB,EAAE,OAAOyB,EAAE,GAAG,OAAO,UAAUA,CAAC,EAAE,IAAI,2DAA2DA,CAAC,EAAE,CAAC,CAAC,SAASyhD,GAAGzhD,EAAE,EAAEE,EAAE,CAAC,OAAOF,GAAG,KAAK,CAAC,IAAI,EAAE,MAAM,QAAQA,CAAC,EAAEA,EAAE,IAAII,GAAGqxC,GAAGrxC,EAAE,EAAEF,EAAE,CAAC,CAAC,EAAEuxC,GAAGzxC,EAAE,EAAEE,EAAE,CAAC,CAAC,CAAC,SAASwhD,GAAG1hD,EAAE,EAAE,CAAC,OAAOvC,EAAE,IAAIuC,GAAG,KAAK,KAAK,MAAM,QAAQA,CAAC,EAAEA,EAAE,IAAIE,GAAGwhD,GAAGxhD,EAAE,CAAC,CAAC,EAAE+xC,GAAGjyC,EAAE,EAAE,QAAQ,QAAQ,EAAEtR,GAAE,EAAE,OAAO,CAAC,CAAC,CAAC,CAAC,SAASizD,GAAG3hD,EAAE,EAAE,CAAC,IAAIE,EAAE,CAAC,EAAEE,EAAE,EAAEC,EAAE,KAAK,KAAKD,EAAEJ,GAAGK,EAAED,EAAE,EAAEC,GAAGL,IAAIK,EAAEL,GAAGE,EAAE,KAAK,CAACE,EAAEC,CAAC,CAAC,EAAED,EAAEC,EAAE,OAAOH,CAAC,CAAC,SAAS0hD,GAAG5hD,EAAE,CAAC,IAAI,EAAE,CAAC,EAAEA,aAAarU,KAAKqU,EAAE,CAACA,CAAC,GAAG,QAAQE,EAAE,EAAEA,EAAEF,EAAE,OAAO,EAAEE,EAAE,CAAC,IAAIE,EAAEJ,EAAEE,CAAC,EAAE,GAAGE,EAAE,OAAO,EAAE,EAAE,KAAKgxC,GAAGhxC,EAAE,CAAC,CAAC,MAAM,CAAC,GAAGA,EAAE,OAAO,EAAE,MAAM,IAAI,MAAM,uEAAuE,EAAE,EAAE,KAAKA,CAAC,CAAC,CAAC,CAAC,OAAO,CAAC,CAAC,SAASyhD,GAAG7hD,EAAE,EAAE,CAAC,GAAGA,GAAG,KAAK,OAAO,IAAIE,EAAE,CAAC,EAAE,GAAG,aAAavU,GAAGuU,EAAE,KAAK,EAAE,EAAE,UAAU,MAAM,QAAQ,CAAC,EAAE,EAAE,QAAQG,GAAGH,EAAE,KAAKG,EAAE,EAAE,CAAC,UAAU,GAAG,KAAK,QAAQA,KAAK,EAAE,CAAC,IAAI,EAAE,EAAEA,CAAC,EAAEH,EAAE,KAAK,EAAE,EAAE,CAAC,CAAC,IAAIE,EAAE,CAAC,EAAE,GAAGJ,aAAarU,GAAGuU,EAAE,QAAQF,EAAE,EAAE,IAAI,IAAII,EAAE,KAAKJ,CAAC,UAAU,MAAM,QAAQA,CAAC,EAAEA,EAAE,QAAQK,GAAG,CAACH,EAAE,QAAQG,EAAE,EAAE,IAAI,IAAID,EAAE,KAAKC,CAAC,CAAC,CAAC,UAAUL,GAAG,KAAK,QAAQK,KAAKL,EAAE,CAAC,IAAI,EAAEA,EAAEK,CAAC,EAAEH,EAAE,QAAQ,EAAE,EAAE,IAAI,IAAIE,EAAE,KAAK,CAAC,CAAC,CAACA,EAAE,QAAQC,GAAG,CAACA,EAAE,YAAYA,EAAE,QAAQ,CAAC,CAAC,CAAC,CAAC,SAASyhD,GAAG9hD,EAAE,CAAC,OAAOA,aAAarU,EAAE,CAAC,SAASo2D,GAAG/hD,EAAE,CAAC,OAAO,MAAM,QAAQA,CAAC,CAAC,CAAC,SAASgiD,GAAGhiD,EAAE,CAAC,MAAM,CAAC8hD,GAAG9hD,CAAC,GAAG,CAAC+hD,GAAG/hD,CAAC,CAAC,CAAC,SAASiiD,GAAGjiD,EAAE,EAAEE,EAAEE,EAAE,GAAGC,EAAE,GAAG,CAAC,GAAG,GAAG,MAAM,EAAE,SAAS,EAAE,CAAC,GAAGL,GAAG,KAAK,CAAC,IAAI,EAAE,GAAG,GAAG+hD,GAAG/hD,CAAC,GAAGA,EAAE,OAAO,EAAE,EAAE,WAAWgiD,GAAGhiD,CAAC,GAAG,QAAQ+B,KAAK/B,EAAE,GAAGA,EAAE,eAAe+B,CAAC,EAAE,CAAC,EAAE,GAAG,KAAK,OAAO,EAAE,GAAG,GAAG,EAAE,MAAM,IAAI6rC,EAAE,6BAA6BvtC,CAAC,8BAA8BL,CAAC,EAAE,CAAC,CAAC,MAAM,CAAC,CAAC,CAAC,GAAGA,GAAG,KAAK,OAAO,EAAE,IAAI,GAAG,IAAI,EAAE,IAAI,EAAE,GAAGgiD,GAAGhiD,CAAC,EAAE,CAACA,EAAEA,EAAE,EAAE,CAAC,EAAE,QAAQ,KAAK,EAAE,CAAC,GAAGA,EAAE,CAAC,GAAG,KAAK,MAAM,IAAI4tC,EAAE,yBAAyB,CAAC,iCAAiC,CAAC,EAAE,EAAE,EAAE,KAAK5tC,EAAE,CAAC,CAAC,CAAC,CAAC,SAAS+hD,GAAG/hD,CAAC,EAAE,CAAC,GAAGA,EAAEA,EAAEA,EAAE,SAAS,EAAE,OAAO,MAAM,IAAI4tC,EAAE,6BAA6BvtC,CAAC,iHAAiH,EAAE,MAAM,gEAAgEL,CAAC,EAAE,EAAE,EAAEA,CAAC,KAAK,CAAC,GAAGA,EAAEA,EAAE,EAAE,OAAO,EAAE,MAAM,IAAI4tC,EAAE,aAAavtC,CAAC,YAAY,EAAE,MAAM,sEAAsEL,EAAE,KAAK,EAAE,EAAE,EAAE,CAACA,CAAC,CAAC,CAAC,GAAG,EAAE4hD,GAAG,CAAC,EAAE1hD,GAAG,KAAK,QAAQ,EAAE,EAAE,EAAE,EAAE,OAAO,EAAE,EAAE,CAAC,GAAGA,EAAE,CAAC,GAAG,KAAK,SAAS,IAAI6B,EAAE,EAAE,CAAC,EAAE,GAAGA,EAAE,MAAM,SAAS7B,EAAE,CAAC,EAAE,OAAO,MAAM,IAAI0tC,EAAE,uBAAuBvtC,CAAC,cAAc,EAAE,CAAC,CAAC,YAAYH,EAAE,CAAC,EAAE,MAAM,2CAA2C6B,EAAE,KAAK,EAAE,EAAE,QAAQC,EAAE,EAAEA,EAAE9B,EAAE,CAAC,EAAE,OAAO,EAAE8B,EAAE,CAAC,GAAGA,IAAI,GAAG,CAAC5B,EAAE,SAAS,IAAI6B,EAAEF,EAAE,MAAMC,CAAC,EAAEU,EAAExC,EAAE,CAAC,EAAE8B,CAAC,EAAE,GAAGU,GAAG,MAAMA,GAAG,GAAGT,IAAIS,EAAE,MAAM,IAAIkrC,EAAE,GAAGvtC,CAAC,+DAA+DH,EAAE,CAAC,EAAE,MAAM,EAAEA,EAAE,CAAC,EAAE,MAAM,CAAC,2BAA2BA,EAAE,CAAC,EAAE,MAAM,EAAEA,EAAE,CAAC,EAAE,MAAM,CAAC,cAAcG,CAAC,2BAA2B0B,EAAE,MAAM,CAAC,CAAC,+BAA+BA,EAAE,MAAM,MAAM,EAAEA,EAAE,MAAM,MAAM,CAAC,oBAAoBA,EAAE,KAAK,IAAI,CAAC,CAAC,CAAC,OAAO,CAAC,CAAC,SAASmgD,GAAGliD,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAEyuC,GAAG7uC,EAAE,IAAI,GAAG,EAAE,MAAM,CAAC,CAAC,CAAC,EAAEI,EAAE,KAAK,EAAE,IAAIC,EAAEwuC,GAAG,EAAE,IAAI,GAAG,EAAE,MAAM,CAAC,CAAC,CAAC,EAAE,GAAGxuC,EAAE,KAAK,EAAED,EAAE,OAAO,EAAE,MAAM,IAAIwtC,EAAE,mFAAmF,KAAK,UAAU5tC,EAAE,IAAI,GAAG,EAAE,KAAK,CAAC,CAAC,EAAE,EAAE,GAAGK,EAAE,OAAO,EAAE,MAAM,IAAIutC,EAAE,oFAAoF,KAAK,UAAU,EAAE,IAAI,GAAG,EAAE,KAAK,CAAC,CAAC,EAAE,EAAE,GAAGxtC,EAAE,OAAO,GAAGC,EAAE,OAAO,GAAG,CAAC9B,EAAE,YAAY6B,EAAEC,CAAC,EAAE,MAAM,IAAIutC,EAAE,iFAAiFxtC,EAAE,CAAC,CAAC,wBAAwBC,EAAE,CAAC,CAAC,oBAAoB,CAAC,CAAC,SAAS8hD,GAAGniD,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAE,CAACk9C,GAAGW,GAAGH,EAAE,EAAE,QAAQz9C,EAAE,EAAEA,EAAEL,EAAE,OAAO,EAAEK,EAAE,CAAC,IAAI,EAAEL,EAAEK,CAAC,EAAE,EAAE,EAAEA,CAAC,EAAE0B,EAAE7B,EAAEG,CAAC,EAAE,GAAG,GAAG,KAAK,CAAC,GAAG,IAAIy9C,IAAI,EAAE,MAAM,EAAE,MAAM,OAAO,CAAC,IAAI,EAAE,MAAM,IAAIlQ,EAAE,2CAA2C,EAAE,KAAK,0JAA0J,EAAE,GAAGxtC,EAAE,QAAQ,CAAC,IAAI,GAAG,CAAC,IAAI4B,EAAE,EAAE,MAAM,MAAM,CAAC,EAAEC,EAAEF,EAAE,MAAM,CAAC,EAAE,QAAQW,EAAE,EAAEA,EAAEV,EAAE,OAAO,EAAEU,EAAE,CAAC,IAAIC,EAAEX,EAAEU,CAAC,EAAEE,EAAEX,EAAES,CAAC,EAAE,GAAGE,GAAG,MAAMD,IAAIC,EAAE,MAAM,IAAIgrC,EAAE,8BAA8B,EAAE,KAAK,sCAAsC7rC,CAAC,0FAA0F,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,SAASqgD,GAAGpiD,EAAE,EAAEE,EAAEE,EAAE,GAAGC,EAAE,GAAG,CAAC,IAAI,EAAE,GAAG,MAAM,QAAQL,CAAC,EAAE,CAAC,GAAGA,EAAE,SAAS,EAAE,OAAO,MAAM,IAAI4tC,EAAE,6BAA6BvtC,CAAC,qHAAqH,EAAE,MAAM,+BAA+BL,EAAE,MAAM,cAAc,EAAE,EAAEA,CAAC,KAAK,CAAC,GAAG,EAAE,OAAO,EAAE,MAAM,IAAI4tC,EAAE,qBAAqB,EAAE,MAAM,IAAIvtC,CAAC,mEAAmE,KAAK,UAAUL,EAAE,KAAK,CAAC,GAAG,EAAE,EAAE,CAACA,CAAC,CAAC,CAAC,GAAGE,GAAG,KAAK,QAAQ,EAAE,EAAE,EAAE,EAAE,OAAO,EAAE,EAAE,CAAC,GAAGA,EAAE,CAAC,GAAG,KAAK,SAAS,IAAI6B,EAAE,EAAE,CAAC,EAAE,GAAGA,EAAE,MAAM,SAAS7B,EAAE,CAAC,EAAE,OAAO,MAAM,IAAI0tC,EAAE,uBAAuBvtC,CAAC,cAAc,EAAE,CAAC,CAAC,YAAYH,EAAE,CAAC,EAAE,MAAM,2CAA2C,KAAK,UAAU6B,EAAE,KAAK,CAAC,EAAE,EAAE,QAAQC,EAAE,EAAEA,EAAE9B,EAAE,CAAC,EAAE,OAAO,EAAE8B,EAAE,CAAC,GAAGA,IAAI,GAAG,CAAC5B,EAAE,SAAS,IAAI6B,EAAEF,EAAE,MAAMC,CAAC,EAAEU,EAAExC,EAAE,CAAC,EAAE8B,CAAC,EAAE,GAAGU,GAAG,MAAMA,IAAIT,EAAE,MAAM,IAAI2rC,EAAE,uBAAuBvtC,CAAC,cAAc,EAAE,CAAC,CAAC,kBAAkB,KAAK,UAAUH,EAAE,CAAC,CAAC,CAAC,6BAA6B,KAAK,UAAU6B,EAAE,KAAK,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,SAASsgD,GAAGriD,EAAE,EAAE,CAAC,GAAGA,GAAG,MAAM,MAAM,QAAQA,CAAC,GAAGA,EAAE,SAAS,EAAE,OAAO,EAAE,IAAII,GAAG,CAAC,CAAC,EAAE,IAAIF,EAAE,GAAG,OAAOF,GAAG,UAAU,OAAOA,GAAG,WAAWE,EAAE,CAACF,CAAC,UAAU,MAAM,QAAQA,CAAC,GAAG,OAAOA,GAAG,SAASE,EAAEF,MAAO,OAAM,IAAI,UAAU,kGAAkGA,CAAC,EAAE,EAAE,GAAG,MAAM,QAAQE,CAAC,EAAE,OAAO,EAAE,IAAIE,GAAGF,CAAC,EAAE,CAAC,IAAIE,EAAE,CAAC,EAAE,QAAQC,KAAK,EAAE,CAAC,IAAI,EAAEH,EAAE,eAAeG,CAAC,EAAEH,EAAEG,CAAC,EAAE,CAAC,EAAE,MAAM,QAAQ,CAAC,IAAI,EAAE,CAAC,CAAC,GAAGD,EAAE,KAAK,CAAC,CAAC,CAAC,OAAOA,CAAC,CAAC,CAAC,IAAIkiD,GAAG,eAAel9D,GAAG,cAAcs7D,EAAE,CAAC,YAAY9/C,EAAE,CAAC,MAAMA,CAAC,EAAE,KAAK,WAAW,EAAE,CAAC,QAAQA,EAAEV,EAAE,EAAE,QAAQ,IAAI,CAAC,GAAG,CAAC,KAAK,MAAM,MAAM,IAAI0tC,EAAE,8KAA8K,EAAEoS,GAAG,KAAKp/C,EAAEV,EAAE,CAAC,CAAC,CAAC,QAAQU,EAAE,CAAC,GAAGA,EAAE,MAAM,OAAOA,EAAE,KAAK,CAAC,GAAG,KAAK,KAAKA,EAAE,KAAK,OAAOA,EAAE,WAAW,SAAS,KAAK,WAAWi/C,GAAGj/C,EAAE,SAAS,EAAE,KAAK,iBAAiB,OAAO,CAAC,GAAG,EAAEA,EAAE,qBAAqBjZ,IAAI,MAAM,IAAIimD,EAAE,6DAA6D,EAAE,KAAK,WAAWhtC,EAAE,UAAU,KAAK,iBAAiB,EAAE,CAAC,IAAIV,EAAE,CAAC,EAAE,GAAG,CAAC,MAAM,QAAQU,EAAE,IAAI,GAAG,OAAOA,EAAE,MAAM,UAAU,OAAOA,EAAE,MAAM,WAAW,CAACA,EAAE,KAAKA,EAAE,KAAK,QAAQkB,KAAKlB,EAAE,KAAK,GAAG,KAAK,YAAY,QAAQkB,CAAC,IAAI,GAAG,MAAM,IAAI8rC,EAAE,sCAAsC9rC,CAAC,wCAAwC,KAAK,WAAW,EAAE,EAAE,QAAQA,KAAK,KAAK,YAAYlB,EAAE,KAAKkB,CAAC,GAAG,MAAM,QAAQ,KAAK,WAAWA,CAAC,4HAA4HA,CAAC,kBAAkB,EAAE5B,EAAE,KAAKo+C,GAAG19C,EAAE,KAAKkB,CAAC,CAAC,CAAC,CAAC,SAAS,MAAM,QAAQlB,EAAE,IAAI,EAAE,CAAC,GAAGA,EAAE,KAAK,SAAS,KAAK,QAAQ,OAAO,MAAM,IAAIgtC,EAAE,2FAA2F,KAAK,QAAQ,MAAM,mCAAmChtC,EAAE,IAAI,GAAG,EAAEV,EAAEU,EAAE,KAAK,IAAImB,GAAGu8C,GAAGv8C,CAAC,CAAC,CAAC,KAAK,CAAC,IAAID,EAAEw8C,GAAG19C,EAAE,IAAI,EAAE,KAAK,QAAQ,QAAQmB,GAAG,CAAC7B,EAAE,KAAK4B,CAAC,CAAC,CAAC,CAAC,CAAC,KAAK,cAAc5B,EAAE,KAAK,gBAAgB,CAAC,EAAE,KAAK,iBAAiB,CAAC,EAAE,KAAK,YAAY,CAAC,EAAE,QAAQ4B,EAAE,EAAEA,EAAE,KAAK,QAAQ,OAAO,EAAEA,EAAE,CAAC,IAAIC,EAAE,KAAK,qBAAqBD,CAAC,EAAEE,EAAE,KAAK,YAAYF,CAAC,EAAE,KAAK,gBAAgB,KAAKE,CAAC,EAAE,KAAK,iBAAiB,KAAKD,CAAC,EAAE,KAAK,YAAY,KAAK,KAAK,cAAcD,CAAC,CAAC,CAAC,CAAC,IAAI,EAAE,CAAC,EAAE,KAAK,QAAQlB,EAAE,QAAQ,KAAK,aAAa,CAAC,MAAM,EAAE,KAAK,eAAe,CAAC,EAAEyvC,GAAG,OAAO,IAAI,CAAC,QAAQvuC,EAAE,EAAEA,EAAE,KAAK,QAAQ,OAAO,EAAEA,EAAE,CAAC,GAAG,EAAE,QAAQA,CAAC,IAAI,GAAG,SAAS,IAAIC,EAAE,KAAK,cAAcD,CAAC,EAAE,KAAK,QAAQ,OAAO,IAAI,KAAK,eAAe,KAAK,CAACC,EAAED,CAAC,CAAC,EAAE,KAAK,aAAa,KAAK,KAAK,YAAYA,CAAC,EAAE,OAAO,EAAE,CAAC,CAAC,EAAE,IAAIzB,EAAEgiD,GAAGzhD,EAAE,QAAQ,KAAK,WAAW,EAAEiB,EAAE,CAACC,EAAEC,EAAEC,IAAI,CAAC,KAAK,YAAY,OAAO,IAAID,EAAE,KAAK,YAAYD,CAAC,EAAE,IAAIC,GAAG,KAAK,aAAa,KAAKA,CAAC,EAAE,KAAK,eAAe,KAAK,CAACC,EAAEF,CAAC,CAAC,CAAC,EAAEuuC,GAAG,SAAS,IAAI,CAAC,QAAQvuC,EAAE,EAAEA,EAAE,KAAK,QAAQ,OAAO,EAAEA,EAAE,CAAC,GAAG,EAAE,QAAQA,CAAC,IAAI,GAAG,SAAS,IAAIC,EAAE1B,EAAEyB,CAAC,GAAGG,GAAG,CAAC,IAAIS,EAAE,GAAGC,EAAEC,EAAEC,EAAE,QAAQC,KAAKb,EAAE,CAAC,GAAG,OAAOa,GAAG,UAAU,CAAC,WAAW,MAAM,eAAe,IAAI,EAAE,QAAQA,CAAC,IAAI,GAAG,CAAC,IAAImB,EAAE,KAAK,qBAAqBnC,CAAC,EAAEmC,EAAEA,EAAE,OAAO,CAAC,IAAI,GAAG,KAAK,cAAcnC,CAAC,IAAIm8C,GAAG,CAAC,WAAW,KAAK,EAAE,QAAQn7C,CAAC,IAAI,GAAGF,EAAE27C,GAAG,CAAC,eAAe,IAAI,EAAE,QAAQz7C,CAAC,IAAI,KAAKF,EAAEk8C,IAAI,KAAK,cAAch9C,CAAC,IAAIi8C,GAAG,CAAC,WAAW,KAAK,EAAE,QAAQj7C,CAAC,IAAI,GAAGF,EAAEm8C,GAAG,CAAC,eAAe,IAAI,EAAE,QAAQj8C,CAAC,IAAI,KAAKF,EAAE68C,IAAI,CAAC,WAAW,KAAK,EAAE,QAAQ38C,CAAC,IAAI,GAAGF,EAAE47C,GAAG,CAAC,eAAe,IAAI,EAAE,QAAQ17C,CAAC,IAAI,KAAKF,EAAE28C,IAAI,IAAIj4C,EAAE,CAAC,WAAW,KAAK,EAAE,QAAQxE,CAAC,IAAI,GAAGwE,EAAE,MAAM,CAAC,eAAe,IAAI,EAAE,QAAQxE,CAAC,IAAI,KAAKwE,EAAE,MAAMzE,EAAED,EAAED,EAAED,EAAE4E,CAAC,MAAMzE,EAAE88C,GAAG78C,CAAC,EAAEH,EAAED,EAAEk9C,GAAG98C,CAAC,EAAE,IAAI,EAAEutC,GAAG1tC,EAAE,IAAI,CAAC,EAAEE,CAAC,CAAC,EAAEhB,EAAEC,EAAEa,EAAE,CAAC,CAAC,CAAC,GAAGZ,CAAC,CAAC,CAAC,CAAC,EAAE,KAAK,0BAA0B,KAAK,gBAAgB,CAAC,kCAAkC,CAAC,KAAK,2BAA2B,MAAM,KAAK,iBAAiB,SAAS,KAAK,0BAA0B,QAAQ,QAAQ,KAAK,mJAAmJ,CAAC,CAAC,SAASnB,EAAEV,EAAE,EAAE,CAAC,EAAE,CAAC,IAAIG,EAAE,EAAE,WAAW,KAAK,GAAG,EAAE,UAAUmhD,GAAGnhD,CAAC,EAAE,IAAIyB,EAAE,KAAK,sBAAsBlB,EAAEV,EAAE,GAAGG,CAAC,EAAE,GAAG,CAAC,IAAI0B,EAAED,EAAE,CAAC,EAAE,OAAOA,EAAE,CAAC,CAAC,EAAE,KAAK,iBAAiB,EAAE,IAAIE,EAAE,KAAK,aAAaC,EAAE,KAAK,SAASD,EAAED,EAAE1B,EAAE,EAAE,QAAQ,EAAE,KAAK,EAAE,OAAO8tC,GAAGlsC,CAAC,CAAC,QAAC,CAAQ4/C,GAAG//C,EAAE,CAAC,EAAElB,CAAC,EAAEihD,GAAG//C,EAAE,CAAC,EAAE5B,CAAC,CAAC,CAAC,CAAC,MAAM,gBAAgBU,EAAEV,EAAE,CAAC,OAAO,KAAK,iBAAiB,EAAEqhD,GAAG,KAAK3gD,EAAEV,CAAC,CAAC,CAAC,gBAAgBU,EAAEV,EAAE,EAAEG,EAAE,QAAQ,CAAC,IAAIwB,EAAE,GAAG,GAAG,MAAM,GAAGA,EAAE,KAAK3B,GAAG,KAAK,MAAM,IAAI0tC,EAAE,MAAMvtC,CAAC,gEAAgEH,CAAC,EAAE,UAAUU,GAAG,KAAK,MAAM,QAAQA,CAAC,EAAEiB,EAAEjB,EAAE,CAAC,EAAE,MAAM,CAAC,EAAEiB,EAAEjB,EAAE,MAAM,CAAC,MAAO,OAAM,IAAIgtC,EAAE,yDAAyDvtC,CAAC,sBAAsB,EAAE,OAAOwB,CAAC,CAAC,QAAQjB,EAAEV,EAAE,CAAC,GAAG,MAAM,QAAQA,CAAC,GAAGA,EAAE,SAAS,EAAE,MAAM,IAAI0tC,EAAE,oDAAoD,EAAE,IAAI,EAAE,MAAM,QAAQ1tC,CAAC,EAAEG,EAAE,EAAEH,EAAE,CAACA,CAAC,EAAE2B,EAAE,KAAK,wBAAwBxB,CAAC,EAAEyB,EAAE,IAAIyzC,GAAG,GAAG30C,aAAajV,KAAKiV,EAAE,CAACA,CAAC,GAAG,MAAM,QAAQA,CAAC,EAAE,CAAC,GAAGA,EAAE,SAAS,KAAK,OAAO,OAAO,MAAM,IAAIgtC,EAAE,kCAAkChtC,EAAE,MAAM,wDAAwD,KAAK,OAAO,MAAM,IAAI,EAAE,QAAQoB,EAAE,EAAEA,EAAE,KAAK,OAAO,OAAO,EAAEA,EAAEF,EAAE,IAAI,KAAK,OAAOE,CAAC,EAAEpB,EAAEoB,CAAC,CAAC,CAAC,KAAM,SAAQA,KAAK,KAAK,OAAO,CAAC,IAAI,EAAEpB,EAAEoB,EAAE,IAAI,EAAE,GAAG,GAAG,KAAK,MAAM,IAAI4rC,EAAE,8CAA8C5rC,EAAE,IAAI,EAAE,EAAEF,EAAE,IAAIE,EAAE,CAAC,CAAC,CAAC,IAAID,EAAE4zC,GAAG9zC,EAAEC,CAAC,EAAE,OAAO,EAAEC,EAAEA,EAAE,CAAC,CAAC,CAAC,wBAAwBnB,EAAE,CAAC,IAAIV,EAAE8tC,GAAG,KAAKptC,EAAE,MAAM,EAAE,EAAEA,EAAE,OAAO,QAAQP,KAAK,KAAK,OAAO,CAAC,IAAIwB,EAAE,MAAM,QAAQxB,EAAE,MAAM,EAAEA,EAAE,OAAO,CAACA,EAAE,MAAM,EAAEyB,EAAED,EAAE,IAAIE,GAAGA,EAAE,IAAI,EAAE,QAAQA,EAAE,EAAEA,EAAEnB,EAAE,OAAO,EAAEmB,EAAE,CAAC,IAAIC,EAAEF,EAAE,QAAQlB,EAAEmB,CAAC,CAAC,EAAE,GAAGC,IAAI,KAAK9B,EAAE6B,CAAC,EAAEF,EAAEG,CAAC,EAAE,KAAK,IAAI,EAAE,KAAK,CAAC,GAAG,IAAI,EAAE,KAAK,CAAC,GAAG,EAAE,EAAE,CAAC,IAAI3B,EAAE,CAAC,EAAE,MAAMH,EAAE,QAAQ,CAAC2B,EAAEC,IAAI,CAACD,GAAG,MAAMxB,EAAE,KAAKO,EAAEkB,CAAC,CAAC,CAAC,CAAC,EAAE,IAAI8rC,EAAE,mDAAmD,KAAK,UAAUvtC,CAAC,CAAC,EAAE,CAAC,CAAC,OAAOH,CAAC,CAAC,YAAYU,EAAEV,EAAE,GAAG,EAAE,GAAG,CAAC,OAAOzC,EAAE,IAAI,CAAC,IAAI4C,EAAE,KAAK,gBAAgBO,CAAC,EAAE,GAAG,EAAE,MAAM,IAAIitC,GAAG,+CAA+C,EAAE,IAAIhsC,EAAE8/C,GAAGthD,EAAEH,CAAC,EAAE4B,EAAE,KAAK,QAAQ,IAAIC,GAAG,CAAC,CAAC,EAAE,QAAQA,EAAE,EAAEA,EAAEF,EAAE,OAAO,EAAEE,EAAEtE,EAAE,IAAI,CAAC,IAAIwE,EAAEJ,EAAEE,CAAC,EAAE,CAAC,EAAEW,EAAEb,EAAEE,CAAC,EAAE,CAAC,EAAEY,EAAE8+C,GAAG7gD,EAAEqB,EAAES,CAAC,EAAEE,EAAE,CAAC,EAAE,GAAG,MAAM,QAAQD,CAAC,EAAE,QAAQG,EAAE,EAAEA,EAAEH,EAAE,OAAO,EAAEG,EAAEF,EAAE,KAAK,CAAC,IAAI,KAAK,OAAOE,CAAC,EAAE,MAAMH,EAAEG,CAAC,CAAC,CAAC,OAAOF,EAAE,KAAK,CAAC,IAAI,KAAK,OAAO,CAAC,EAAE,MAAMD,CAAC,CAAC,EAAE,IAAIE,EAAE,IAAI0yC,GAAG3yC,CAAC,EAAE,OAAO+yC,GAAG,KAAK,QAAQ9yC,CAAC,CAAC,CAAC,EAAE,QAAQ,CAACZ,EAAES,IAAIZ,EAAEY,CAAC,EAAE,KAAKT,CAAC,CAAC,EAAE,OAAOksC,GAAGrsC,EAAE,IAAIC,GAAGhT,GAAGgT,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,QAAQnB,EAAEV,EAAE,CAAC,EAAE,CAAC,IAAI,EAAE0hD,GAAGhhD,CAAC,EAAEwhD,GAAG,EAAE,KAAK,WAAW,KAAK,gBAAgB,EAAE,EAAE,GAAG,CAAC,IAAI/hD,EAAEH,EAAE,WAAW,KAAK,GAAGA,EAAE,UAAU,OAAOshD,GAAGnhD,CAAC,EAAE,KAAK,YAAY,EAAEA,CAAC,CAAC,QAAC,CAAQwhD,GAAG,EAAEjhD,CAAC,CAAC,CAAC,CAAC,eAAeA,EAAE,CAACwhD,GAAGxhD,EAAE,KAAK,WAAW,KAAK,gBAAgB,EAAE,EAAE,IAAIV,GAAG,MAAM,QAAQU,CAAC,EAAEA,EAAE,CAAC,EAAEA,GAAG,MAAM,CAAC,EAAE,OAAO,KAAK,YAAYA,EAAEV,CAAC,CAAC,CAAC,sBAAsBU,EAAEV,EAAE,EAAE,GAAGG,EAAE,CAAC,GAAG,KAAK,YAAY,KAAK,MAAM,IAAIstC,GAAG,8FAA8F,EAAE,IAAI9rC,EAAE,CAAC,EAAE,QAAQC,EAAE,EAAEA,EAAE,KAAK,iBAAiB,OAAO,EAAEA,EAAE,CAAC,IAAIC,EAAE,KAAK,iBAAiBD,CAAC,EAAE,KAAK,YAAYA,CAAC,IAAIi8C,GAAGl8C,EAAE,KAAKE,EAAE,MAAM,EAAEA,EAAE,OAAO,CAAC,EAAE,OAAO,CAAC,CAAC,CAAC,CAAC,EAAEF,EAAE,KAAKE,CAAC,CAAC,CAAC,GAAGnB,EAAEqhD,GAAGrhD,EAAE,KAAK,eAAe,KAAK,gBAAgB,GAAG,OAAO,EAAEV,EAAE+hD,GAAG/hD,EAAE,KAAK,gBAAgB2B,EAAE,GAAG,QAAQ,EAAEqgD,GAAGthD,EAAEV,EAAE,IAAI,EAAEiiD,GAAGjiD,EAAE,KAAK,YAAY,KAAK,gBAAgB,EAAE,KAAK,UAAUG,GAAG,MAAMA,EAAE,GAAGO,EAAE,CAAC,EAAE,MAAM,CAAC,EAAEP,IAAI,EAAE,MAAM,IAAIutC,EAAE,mHAAmHvtC,CAAC,YAAYO,EAAE,CAAC,EAAE,MAAM,CAAC,CAAC,aAAa,EAAE,MAAM,CAACA,EAAEV,CAAC,CAAC,CAAC,MAAM,oBAAoBU,EAAEV,EAAE,EAAEG,EAAEwB,EAAE,GAAGC,EAAE,CAAC,GAAG,CAACC,EAAEC,CAAC,EAAE,KAAK,sBAAsBpB,EAAEV,EAAE2B,EAAEC,CAAC,EAAE,GAAG,GAAG,KAAK,MAAM,IAAI,MAAM,qCAAqC,EAAE,IAAI,EAAE,KAAK,GAAGzB,GAAG,KAAK,CAAC,IAAIqC,EAAEk+C,GAAGvgD,EAAE,KAAK,WAAW,EAAE,EAAE,CAAC,EAAE,QAAQ,EAAE,EAAE,EAAEqC,EAAE,OAAO,EAAE,EAAE,EAAE,KAAK,MAAMm+C,GAAG7+C,EAAE,CAAC,EAAE,KAAKU,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,MAAM,CAACX,EAAEC,EAAE,CAAC,CAAC,CAAC,SAASpB,EAAEV,EAAE,EAAEG,EAAE,EAAEwB,EAAE,CAAC,OAAOpE,EAAE,IAAI,CAAC,IAAIqE,EAAE,KAAK,gBAAgB5B,EAAE,EAAE2B,EAAE,OAAO,EAAEE,EAAE,CAAC,EAAE,GAAG1B,EAAE,EAAE,MAAM,IAAIwtC,GAAG,sCAAsC,EAAE,GAAGhsC,GAAG,KAAK,MAAM,IAAIgsC,GAAG,iDAAiD,EAAE,CAAC,IAAI7rC,EAAE2/C,GAAG7/C,EAAE,CAAC,EAAE,EAAE9E,GAAG+zC,GAAG,EAAEjvC,CAAC,CAAC,EAAE,QAAQY,EAAE,EAAEA,EAAEV,EAAE,OAAO,EAAEU,EAAE,CAAC,IAAI,EAAEV,EAAEU,CAAC,EAAE,CAAC,EAAEE,EAAEZ,EAAEU,CAAC,EAAE,CAAC,EAAEG,EAAE4uC,GAAG,EAAE,EAAE7uC,EAAE,CAAC,EAAEE,EAAE4+C,GAAGxhD,EAAE2C,CAAC,EAAEmB,EAAEpD,EAAEkC,CAAC,EAAE,GAAGJ,IAAI,EAAE,QAAQuB,EAAE,EAAEA,EAAED,EAAE,OAAO,EAAEC,EAAElC,EAAE,KAAK/H,GAAG,CAAC,CAAC,EAAE,QAAQiK,EAAE,EAAEA,EAAED,EAAE,OAAO,EAAEC,EAAE,CAAC,IAAIqD,EAAEtD,EAAEC,CAAC,EAAElC,EAAEkC,CAAC,EAAErX,EAAEmV,EAAEkC,CAAC,EAAEvN,EAAEkM,EAAE,EAAE0E,CAAC,CAAC,CAAC,CAAC,CAAC,QAAQ5E,EAAE,EAAEA,EAAEX,EAAE,OAAO,EAAEW,EAAEX,EAAEW,CAAC,EAAE7R,GAAGkR,EAAEW,CAAC,EAAEZ,CAAC,CAAC,CAAC,OAAOC,CAAC,CAAC,CAAC,CAAC,wBAAwB,CAAC,IAAInB,EAAE,KAAK,aAAaV,EAAE,CAAC,EAAE,QAAQ,EAAE,EAAE,EAAEU,EAAE,OAAO,EAAE,EAAE,CAAC,IAAIP,EAAEO,EAAE,CAAC,EAAEiB,EAAExB,EAAE,GAAG6tC,GAAGttC,EAAEP,CAAC,EAAE,EAAE,CAAC,IAAIyB,EAAEosC,GAAGttC,EAAE,MAAM,EAAE,CAAC,EAAEP,CAAC,EAAEwB,GAAG,IAAIC,CAAC,EAAE,CAAC5B,EAAE,KAAK2B,CAAC,CAAC,CAAC,OAAO3B,CAAC,CAAC,mBAAmB,CAAC,OAAOU,GAAG,CAAC,IAAIV,EAAE,CAAC,EAAE,EAAEU,EAAE,MAAM,EAAE,KAAK,OAAO,MAAM,EAAEP,EAAEO,EAAE,MAAM,KAAK,OAAO,OAAO,KAAK,OAAO,OAAO,KAAK,QAAQ,MAAM,EAAEiB,EAAEjB,EAAE,MAAM,KAAK,OAAO,OAAO,KAAK,QAAQ,OAAO,KAAK,OAAO,OAAO,KAAK,QAAQ,OAAO,CAAC,EAAEkB,EAAE,CAAC,EAAEC,EAAE,IAAI,CAAC,IAAIY,EAAE,CAAC,EAAE,QAAQqB,EAAE,EAAEA,EAAE,KAAK,OAAO,OAAO,EAAEA,EAAErB,EAAE,KAAK,CAAC,IAAI,KAAK,OAAOqB,CAAC,EAAE,MAAM,EAAEA,CAAC,CAAC,CAAC,EAAE,IAAIpB,EAAE,IAAI2yC,GAAG5yC,CAAC,EAAEE,EAAE8yC,GAAG,KAAK,QAAQ/yC,EAAE,CAAC,SAAS,EAAE,CAAC,EAAE,EAAE,QAAQoB,EAAE,EAAEA,EAAE,KAAK,cAAc,OAAO,EAAEA,EAAE,CAAC,IAAIC,EAAE,KAAK,cAAcD,CAAC,EAAEsD,EAAErD,EAAE5D,EAAE2D,CAAC,EAAEnB,EAAEmB,CAAC,CAAC,EAAEnC,EAAEmC,CAAC,GAAG,OAAOsD,EAAEw5C,GAAGx5C,EAAEzF,EAAEmC,CAAC,CAAC,GAAG,IAAIc,EAAEhP,GAAGwR,CAAC,EAAEpH,EAAE,KAAK4E,CAAC,EAAEd,IAAI,EAAE,EAAEsD,EAAE,EAAE1a,EAAE,EAAE0a,CAAC,CAAC,CAAC,QAAQtD,EAAE,EAAEA,EAAE,KAAK,eAAe,OAAO,EAAEA,EAAE,CAAC,IAAIC,EAAE,GAAG,KAAK,QAAQ,OAAO,GAAGD,EAAE,KAAK,QAAQ,OAAOC,EAAE/D,EAAE8D,CAAC,MAAM,CAAC,IAAIsD,EAAE,KAAK,eAAetD,CAAC,EAAE,CAAC,EAAEc,EAAE,KAAK,eAAed,CAAC,EAAE,CAAC,EAAEC,EAAEnO,GAAGwR,EAAEjH,EAAEyE,CAAC,EAAEjC,EAAEiC,CAAC,CAAC,CAAC,CAAC,CAAC9Q,GAAGiQ,CAAC,EAAEnC,EAAE,KAAKmC,CAAC,CAAC,CAAC,OAAO,EAAEnO,GAAG,CAAC,EAAE,KAAK,gBAAgB,EAAE,QAAQkO,GAAG,CAAC,EAAEpX,EAAE,EAAEoX,CAAC,CAAC,CAAC,EAAE,CAAC,EAAEhC,EAAE,KAAK,0BAA0B,IAAIW,GAAGA,EAAE,KAAK,CAAC,EAAE,MAAM,CAAC,KAAK,WAAW,SAASZ,EAAE,GAAGC,CAAC,CAAC,EAAE,OAAOF,CAAC,CAAC,CAAC,CAAC,kBAAkB,CAAC,KAAK,aAAalB,GAAGnD,EAAE,IAAI,CAAC,IAAIyC,EAAE,CAAC,EAAE,EAAEG,EAAEO,EAAE,MAAM,EAAE,KAAK,OAAO,MAAM,EAAEiB,EAAEjB,EAAE,MAAM,KAAK,OAAO,OAAO,KAAK,OAAO,OAAO,KAAK,QAAQ,MAAM,EAAEkB,EAAE,CAAC,EAAE,QAAQ,EAAE,EAAE,EAAE,KAAK,OAAO,OAAO,EAAE,EAAEA,EAAE,KAAK,CAAC,IAAI,KAAK,OAAO,CAAC,EAAE,MAAMzB,EAAE,CAAC,CAAC,CAAC,EAAE,IAAI0B,EAAE,IAAIwzC,GAAGzzC,CAAC,EAAEE,EAAE2zC,GAAG,KAAK,QAAQ5zC,CAAC,EAAE,QAAQ,EAAE,EAAE,EAAE,KAAK,cAAc,OAAO,EAAE,EAAE,CAAC,IAAIW,EAAE,KAAK,cAAc,CAAC,EAAE,EAAE5M,GAAG4M,EAAEb,EAAE,CAAC,EAAEG,EAAE,CAAC,CAAC,CAAC,EAAE,IAAI,EAAE,EAAE,EAAE,EAAEpV,EAAE,EAAE,CAAC,EAAEsT,EAAE,KAAK,CAAC,CAAC,CAAC,QAAQ,EAAE,EAAE,EAAE,KAAK,eAAe,OAAO,EAAE,EAAE,CAAC,IAAIwC,EAAE,KAAK,eAAe,CAAC,EAAE,CAAC,EAAE,EAAE,KAAK,eAAe,CAAC,EAAE,CAAC,EAAEE,EAAE9M,GAAG4M,EAAEb,EAAE,CAAC,EAAEG,EAAE,CAAC,CAAC,CAAC,EAAE9B,EAAE,KAAK0C,CAAC,CAAC,CAAC,OAAO1C,CAAC,CAAC,CAAC,CAAC,MAAM,IAAIU,EAAEV,EAAE,EAAE,CAAC,EAAE,CAAC,GAAG,KAAK,WAAW,MAAM,IAAI,MAAM,8DAA8D,EAAE,KAAK,WAAW,GAAG,IAAIG,EAAEwB,EAAEC,EAAEC,EAAEC,EAAE,EAAEU,EAAE,EAAEE,EAAE,GAAG,CAAC,IAAIC,EAAE,EAAE,WAAW,KAAK,GAAG,EAAE,UAAU2+C,GAAG3+C,CAAC,EAAE,IAAI,EAAE,MAAM,KAAK,oBAAoBjC,EAAEV,EAAE,EAAE,aAAa,EAAE,YAAY,GAAG2C,CAAC,EAAExC,EAAE,EAAE,CAAC,EAAEwB,EAAE,EAAE,CAAC,EAAEe,EAAE,EAAE,CAAC,EAAE,IAAIqB,EAAE,GAAGqD,EAAE,GAAG,EAAE,gBAAgB,MAAM,EAAE,eAAe,OAAO,EAAE,CAAC,GAAGrD,EAAE,GAAG,EAAE,eAAe,SAAS,EAAEjC,EAAE,EAAE,eAAe,CAAC,EAAE,EAAE,EAAE,eAAe,CAAC,MAAO,OAAM,EAAE,eAAe,SAAS,EAAE,IAAI6rC,GAAG,+DAA+D,EAAE,IAAID,EAAE,0GAA0G,EAAE,cAAc,cAAc,EAAE,IAAI5oC,EAAE,MAAM,KAAK,oBAAoBhD,EAAE,EAAE,KAAK,KAAK,GAAGa,CAAC,EAAEH,EAAEsC,EAAE,CAAC,EAAE,EAAEA,EAAE,CAAC,EAAEsC,EAAE5E,EAAE,OAAO,CAAC,CAAC,SAAS,EAAE,iBAAiB,MAAM,EAAE,gBAAgB,GAAG,EAAE,gBAAgB,EAAE,CAACuB,EAAE,GAAG,IAAIc,EAAE,KAAK,MAAM1E,EAAE,CAAC,EAAE,MAAM,CAAC,GAAG,EAAE,EAAE,gBAAgB,EAAE2E,EAAE3E,EAAE,CAAC,EAAE,MAAM,CAAC,EAAEqC,EAAE++C,GAAGphD,EAAE0E,EAAEC,CAAC,EAAElD,EAAEzB,EAAEA,EAAEohD,GAAGphD,EAAE,EAAE0E,CAAC,EAAE,EAAE08C,GAAG5/C,EAAEkD,EAAEC,CAAC,EAAEjD,EAAEF,EAAEA,EAAE4/C,GAAG5/C,EAAE,EAAEkD,CAAC,EAAEuC,EAAE5E,EAAE,OAAO,CAAC,CAAC,MAAM,EAAE,iBAAiB,OAAOuB,EAAE,IAAI,IAAIa,EAAEzE,EAAE,OAAOwB,CAAC,EAAE,OAAOe,CAAC,EAAE,KAAK,iCAAiC,EAAE,IAAI6B,EAAE,KAAK,kBAAkB,EAAEC,EAAE,KAAK,uBAAuB,EAAEC,EAAEC,EAAEX,GAAG,KAAK,iBAAiB,EAAEU,EAAE,KAAK,aAAaC,EAAEF,EAAE,MAAM,EAAE,OAAOA,EAAE,IAAIK,GAAG,OAAOA,CAAC,CAAC,IAAIJ,EAAE,KAAK2C,EAAE,CAAC,EAAE1C,EAAEF,EAAE,MAAM,GAAG,IAAIG,EAAEo4C,GAAG,EAAE,UAAU,EAAE,UAAU,EAAE,OAAO,MAAM,KAAK,QAAQx4C,EAAEK,EAAEJ,EAAE7B,EAAE,EAAE,OAAO,EAAE,QAAQgC,EAAEF,EAAE2C,EAAE,EAAE,QAAQ1C,EAAE,EAAE,aAAa,KAAK,IAAI,CAAC,QAAC,CAAQ,KAAK,WAAW,GAAGi9C,GAAGxhD,EAAEO,CAAC,EAAEihD,GAAGhgD,EAAE3B,CAAC,EAAE2hD,GAAG//C,EAAElB,CAAC,EAAEihD,GAAG9/C,EAAE7B,CAAC,EAAE2hD,GAAGn/C,EAAEV,CAAC,EAAE6/C,GAAG,EAAE,CAAC,EAAEj/C,GAAG,MAAMjS,GAAGiS,CAAC,CAAC,CAAC,CAAC,MAAM,QAAQhC,EAAEV,EAAE,EAAEG,EAAEwB,EAAEC,EAAEC,EAAEC,EAAE,EAAEU,EAAE,EAAEE,EAAEC,EAAEC,EAAE,CAACzC,GAAG,OAAOA,EAAE,IAAIwB,GAAG,OAAOA,EAAE,GAAGa,GAAG,OAAOA,EAAE,IAAIE,GAAG,OAAOA,EAAE,GAAG,IAAIoB,EAAE,GAAG,GAAGhC,GAAG,MAAM,GAAG,OAAOgC,EAAE,IAAIlB,GAAG,OAAOkB,EAAE,GAAGnB,GAAG,MAAM,MAAM,IAAI+qC,EAAE,kGAAkG,EAAE,IAAI3pC,EAAE,KAAK,gBAAgB/D,EAAEG,EAAEwC,EAAE,iBAAiB,EAAEyE,EAAErD,GAAG,OAAOqD,EAAEypC,GAAG,EAAE9sC,CAAC,GAAGnC,GAAG,OAAOA,EAAE,GAAG,GAAG,CAAC,aAAa,EAAE,QAAQ2C,CAAC,EAAE04C,GAAGp7C,EAAED,EAAED,EAAEe,EAAEqB,EAAEpB,EAAExC,EAAE2D,EAAE,CAAC,EAAE,EAAE,SAAS,IAAI,EAAE,KAAK,QAAQS,EAAE,MAAM,EAAE,aAAa,EAAE,KAAK,cAAc,GAAG,QAAQC,EAAE9B,EAAE8B,EAAE7C,EAAE,EAAE6C,EAAE,CAAC,MAAM,EAAE,aAAaA,CAAC,EAAE,IAAIC,EAAE,CAAC,EAAE,GAAG9B,GAAG,KAAK,MAAM,IAAIgrC,GAAG,4CAA4C,EAAE,CAAC,GAAGnrC,IAAI,QAAQ,MAAM,IAAImrC,GAAG,wCAAwC,EAAEnrC,GAAGnE,EAAE,QAAQ+I,CAAC,EAAE,IAAI1C,EAAE5H,GAAGsK,CAAC,EAAEzC,EAAE88C,GAAG19C,EAAE5D,CAAC,EAAE,QAAQkH,EAAE,EAAEA,EAAE1C,EAAE,OAAO,EAAE0C,EAAE,CAAC,IAAIxC,EAAE,CAAC,EAAE,GAAG,MAAM,EAAE,aAAawC,EAAExC,CAAC,EAAEtH,EAAE,IAAI,CAAC,IAAIuH,EAAEH,EAAE0C,CAAC,EAAE,CAAC,EAAEtC,EAAEJ,EAAE0C,CAAC,EAAE,CAAC,EAAErC,EAAEusC,GAAG7sC,EAAEI,EAAEC,EAAED,CAAC,EAAED,EAAE,MAAMwC,EAAExC,EAAE,KAAKE,EAAED,EAAE,IAAIG,EAAEu8C,GAAGxhD,EAAEgF,CAAC,EAAEE,EAAExE,EAAEuE,CAAC,EAAE,QAAQE,EAAE,EAAEA,EAAE,EAAE,OAAO,EAAEA,EAAE,CAAC,IAAI2C,EAAE,EAAE3C,CAAC,EAAEoC,EAAErC,EAAEC,CAAC,EAAEN,EAAEiD,CAAC,EAAEP,EAAEzT,GAAGyT,CAAC,CAAC,CAAC,GAAGF,IAAI1C,EAAE,OAAO,GAAGb,EAAE,CAAC,IAAIqB,EAAE,KAAK,SAASrD,EAAE,EAAE3B,CAAC,EAAE,QAAQ2H,EAAE,EAAEA,EAAE,EAAE,OAAO,EAAEA,EAAE,CAAC,IAAIP,EAAE,EAAEO,CAAC,EAAEC,EAAE5C,EAAE2C,CAAC,EAAEhU,GAAGiU,CAAC,EAAEtD,EAAE,OAAO8C,CAAC,EAAEQ,CAAC,CAAC,CAAC,CAAC,EAAE,MAAM,EAAE,WAAWV,EAAExC,CAAC,EAAE63C,GAAG73C,CAAC,EAAE,KAAK,cAAc,KAAK,CAACH,EAAE,QAAQ,CAAC,CAAC,GAAG,MAAM,EAAE,WAAWF,EAAEC,CAAC,EAAE,KAAK,cAAc,KAAK,CAAC,OAAO,MAAM,EAAE,WAAW,EAAE,MAAM,KAAK,QAAQ,SAAS,EAAE,KAAK,OAAO,CAAC,MAAM,WAAW/D,EAAEV,EAAE,CAAC,OAAOihD,GAAG,KAAKvgD,EAAEV,CAAC,CAAC,CAAC,MAAM,aAAaU,EAAEV,EAAE,CAAC,IAAI,EAAE,MAAM,KAAK,oBAAoBU,EAAEV,CAAC,EAAEG,EAAE,EAAE,CAAC,EAAEwB,EAAE,EAAE,CAAC,EAAEE,EAAE,KAAK,kBAAkB,EAAE1B,EAAE,OAAOwB,CAAC,CAAC,EAAEG,EAAE,CAAC,EAAE,QAAQC,KAAKF,EAAE,CAAC,IAAIW,EAAE,MAAMT,EAAE,KAAK,EAAED,EAAE,KAAKU,EAAE,CAAC,CAAC,CAAC,CAAC,OAAO/R,GAAGoR,CAAC,EAAE8/C,GAAG,EAAE,CAAC,EAAEjhD,CAAC,EAAEihD,GAAG,EAAE,CAAC,EAAE3hD,CAAC,EAAEiuC,GAAGnsC,CAAC,CAAC,CAAC,gBAAgBpB,EAAE,CAAC,IAAIV,EAAE,CAAC,EAAE,EAAEU,GAAG,MAAMA,EAAE,cAAcP,EAAE,EAAE,KAAK,iBAAiB,KAAK,QAAQwB,EAAE,KAAK,WAAW,CAAC,EAAE,QAAQC,EAAE,EAAEA,EAAEzB,EAAE,OAAO,EAAEyB,EAAE,GAAG,CAACzB,EAAEyB,CAAC,EAAE,WAAW5B,EAAE,KAAK,CAAC,KAAKG,EAAEyB,CAAC,EAAE,aAAa,OAAOD,EAAEC,CAAC,CAAC,CAAC,EAAE,OAAO5B,CAAC,CAAC,IAAI,aAAaU,EAAE,CAAC,KAAK,cAAcA,CAAC,CAAC,IAAI,cAAc,CAAC,OAAO,KAAK,aAAa,CAAC,IAAI,WAAW,CAAC,OAAO,KAAK,UAAU,CAAC,IAAI,UAAUA,EAAE,CAAC,KAAK,aAAaA,IAAI,KAAK,WAAWA,EAAE,KAAK,iBAAiB,GAAG,CAAC,SAAS,CAAC,IAAIA,EAAE,MAAM,QAAQ,EAAE,GAAGA,EAAE,uBAAuB,GAAG,KAAK,WAAW,MAAM,KAAK,iBAAiB,CAAC,IAAIV,EAAEnK,GAAG,EAAE,WAAW,KAAK,WAAW,QAAQ,EAAE6K,EAAE,sBAAsBV,EAAEnK,GAAG,EAAE,UAAU,CAAC,OAAO6K,CAAC,CAAC,oBAAoB,CAAC,IAAIA,EAAE,GAAG,OAAO,KAAK,MAAM,SAASA,EAAEytC,GAAG,KAAK,IAAI,UAAU,MAAM,QAAQ,KAAK,IAAI,EAAE,CAAC,QAAQnuC,KAAK,KAAK,KAAK,GAAG,OAAOA,GAAG,SAAS,MAAM,IAAI,MAAM,oDAAoD,EAAEU,EAAE,KAAK,KAAK,IAAIV,GAAGmuC,GAAGnuC,CAAC,CAAC,CAAC,KAAK,CAAC,IAAIA,EAAE,OAAO,KAAK,KAAK,IAAI,EAAEU,EAAE,CAAC,EAAE,IAAI,EAAE,KAAK,KAAK,QAAQP,KAAKH,EAAE,GAAG,OAAO,EAAEG,CAAC,GAAG,SAASO,EAAEP,CAAC,EAAEguC,GAAG,EAAEhuC,CAAC,CAAC,MAAO,OAAM,IAAI,MAAM,oDAAoD,CAAC,CAAC,OAAOO,CAAC,CAAC,sBAAsB,CAAC,GAAG,OAAO,KAAK,SAAS,UAAU,OAAO,KAAK,SAAS,WAAW,MAAM,CAACytC,GAAGuR,GAAG,KAAK,OAAO,CAAC,CAAC,EAAE,GAAG,MAAM,QAAQ,KAAK,OAAO,EAAE,OAAO,KAAK,QAAQ,IAAIh/C,GAAGytC,GAAGuR,GAAGh/C,CAAC,CAAC,CAAC,EAAE,CAAC,IAAIA,EAAE,CAAC,EAAE,QAAQV,KAAK,KAAK,QAAQU,EAAEV,CAAC,EAAEmuC,GAAGuR,GAAG,KAAK,QAAQ1/C,CAAC,CAAC,CAAC,EAAE,OAAOU,CAAC,CAAC,CAAC,mBAAmB,CAAC,MAAM,CAAC,KAAK,KAAK,mBAAmB,EAAE,QAAQ,KAAK,qBAAqB,EAAE,iBAAiB,CAAC,WAAW,KAAK,UAAU,aAAa,EAAE,OAAO,KAAK,UAAU,UAAU,CAAC,CAAC,CAAC,CAAC,mBAAmBA,EAAE,CAAC,GAAGA,EAAE,kBAAkB,KAAK,MAAM,IAAI,MAAM,8CAA8C,EAAE,GAAGA,EAAE,cAAc,KAAK,MAAM,IAAI,MAAM,4CAA4C,EAAE,GAAGA,EAAE,oBAAoB,KAAK,MAAM,IAAI,MAAM,kDAAkD,EAAE,IAAIV,EAAEqgD,GAAG3/C,EAAE,gBAAgB,EAAE,EAAEw8C,GAAGl9C,CAAC,EAAEG,EAAE,GAAG,OAAOO,EAAE,MAAM,SAASP,EAAEiuC,GAAG1tC,EAAE,IAAI,UAAU,MAAM,QAAQA,EAAE,IAAI,EAAEP,EAAEO,EAAE,KAAK,IAAIkB,GAAGwsC,GAAGxsC,CAAC,CAAC,UAAUlB,EAAE,MAAM,KAAK,CAACP,EAAE,CAAC,EAAE,QAAQyB,KAAKlB,EAAE,KAAKP,EAAEyB,CAAC,EAAEwsC,GAAG1tC,EAAE,KAAKkB,CAAC,CAAC,CAAC,CAAC,IAAID,EAAE,GAAG,MAAM,QAAQjB,EAAE,OAAO,EAAEiB,EAAEjB,EAAE,QAAQ,IAAIkB,GAAGwsC,GAAGxsC,CAAC,CAAC,UAAUlB,EAAE,SAAS,KAAK,CAACiB,EAAE,CAAC,EAAE,QAAQC,KAAKlB,EAAE,QAAQiB,EAAEC,CAAC,EAAEwsC,GAAG1tC,EAAE,QAAQkB,CAAC,CAAC,CAAC,CAAC,KAAK,QAAQ,CAAC,KAAKzB,EAAE,QAAQwB,EAAE,UAAU,CAAC,CAAC,CAAC,CAAC,MAAM,KAAKjB,EAAEV,EAAE,CAAC,GAAG,OAAOU,GAAG,SAAS,CAAC,IAAIqB,EAAEtO,GAAG,gBAAgBiN,CAAC,EAAE,GAAGqB,EAAE,SAAS,EAAE,MAAM,IAAI2rC,EAAE,0CAA0ChtC,CAAC,GAAG,EAAE,GAAGqB,EAAE,OAAO,EAAE,MAAM,IAAI2rC,EAAE,wBAAwB3rC,EAAE,MAAM,4BAA4BrB,CAAC,GAAG,EAAEA,EAAEqB,EAAE,CAAC,CAAC,CAAC,GAAGrB,EAAE,MAAM,KAAK,MAAM,IAAIgtC,EAAE,8GAA8G,EAAE,IAAI,EAAE,MAAMj6C,GAAG,cAAc,KAAK,gBAAgBuM,CAAC,CAAC,EAAE,EAAE,CAAC,cAAc,KAAK,OAAO,KAAK,EAAE,EAAE,OAAOoiD,GAAG,YAAY,8BAA8BtjD,EAAE,GAAG,YAAY,IAAI,EAAE,GAAIkB,GAAG,MAAQA,EAAE,kBAAmB,KAAK,WAAW,KAAK,CAAC,EAAE,eAAe,KAAK,kBAAkB,EAAE,IAAI+B,EAAE,YAAY,CAAC,KAAKS,EAAE,MAAMC,CAAC,EAAE,MAAMhP,GAAG,cAAc,MAAM,KAAK,UAAU,WAAW,EAAEsO,CAAC,EAAE,EAAE,MAAM,KAAK,GAAGU,CAAC,EAAE,EAAE,KAAKhP,GAAG,wBAAwB,CAAC,EAAE,KAAK+O,CAAC,CAAC,CAAC,CAAC,OAAO,KAAK,qBAAqB,OAAOo9C,GAAG,KAAK,oBAAoB,KAAK,KAAK,EAAE,EAAE,EAAE,oBAAoB,KAAK,qBAAqB,EAAE,WAAW,EAAE,KAAK,EAAE,YAAY,EAAE,MAAMl/C,EAAE,KAAK,CAAC,CAAC,CAAC,uBAAuBA,EAAE,CAACk/C,GAAGl/C,EAAE,KAAK,IAAI,EAAE,KAAK,oBAAoBA,CAAC,CAAC,wBAAwB,CAAC,OAAO,KAAK,mBAAmB,CAAC,EAAExb,GAAG,UAAU,QAAQmV,GAAE,cAAcnV,EAAE,EAAE,IAAIm9D,GAAG,cAAcn9D,EAAE,CAAC,EAAEm9D,GAAG,UAAU,aAAahoD,GAAE,cAAcgoD,EAAE,EAAE,eAAeC,GAAGxiD,EAAE,EAAE,CAAC,kBAAkBA,IAAIA,EAAE,CAAC,cAAcA,CAAC,GAAGA,EAAEA,EAAE,IAAIE,EAAEF,EAAE,cAAcE,EAAE,cAAc,OAAOA,EAAEA,EAAE,cAAc,IAAIE,EAAEmgD,GAAGrgD,CAAC,EAAEG,EAAE+8C,GAAGh9C,EAAE,CAAC,EAAE,GAAGJ,EAAE,iBAAiB,KAAK,CAAC,IAAI,EAAE,MAAMrM,GAAG,YAAYqM,EAAE,gBAAgBA,EAAE,WAAWK,EAAE,QAAQ,IAAI0B,GAAGA,EAAE,YAAY,CAAC,EAAE,EAAE,CAAC,EAAE,QAAQA,KAAK1B,EAAE,QAAQ,EAAE0B,EAAE,YAAY,EAAE,EAAEA,EAAE,YAAY,EAAE1B,EAAE,YAAY,CAAC,EAAE1P,GAAG,CAAC,CAAC,CAAC,OAAO0P,CAAC,CAAC,eAAe3L,GAAGsL,EAAE,EAAE,CAAC,GAAG,GAAG,OAAO,EAAE,CAAC,GAAG,OAAOA,GAAG,SAAS,CAAC,IAAIE,EAAEvM,GAAG,gBAAgBqM,EAAE,CAAC,EAAE,GAAGE,EAAE,SAAS,EAAEA,EAAE,KAAKvM,GAAG,mBAAmBqM,EAAE,CAAC,CAAC,UAAUE,EAAE,OAAO,EAAE,MAAM,IAAI0tC,EAAE,wBAAwB1tC,EAAE,MAAM,4BAA4BF,CAAC,GAAG,EAAEA,EAAEE,EAAE,CAAC,CAAC,CAAC,OAAOuiD,GAAGziD,EAAE,OAAO,CAAC,CAAC,CAAC,eAAeyiD,GAAGziD,EAAE,EAAEE,EAAE,CAAC,GAAGA,GAAG,OAAOA,EAAE,CAAC,GAAGF,EAAE,MAAM,KAAK,MAAM,IAAI4tC,EAAE,+GAA+G,EAAE,IAAIxtC,EAAE,MAAMJ,EAAE,KAAK,EAAEK,EAAED,EAAE,cAAcC,EAAE,cAAc,OAAOA,EAAEA,EAAE,cAAc,IAAI,EAAEH,EAAE,QAAQ,KAAK,GAAGA,EAAE,OAAO,EAAEE,EAAE,YAAY,MAAMA,EAAE,aAAa,MAAM,EAAE2B,EAAEq7C,GAAGmD,GAAGlgD,CAAC,EAAE,EAAE,CAAC,EAAE2B,EAAE5B,EAAE,eAAe,GAAG4B,GAAG,MAAMD,EAAE,mBAAmBC,CAAC,EAAE5B,EAAE,qBAAqB,MAAM2B,EAAE,uBAAuB3B,EAAE,mBAAmB,EAAEA,EAAE,YAAY,KAAK,CAAC,GAAGA,EAAE,aAAa,KAAK,MAAM,IAAIwtC,EAAE,gHAAgH,EAAE,GAAG,CAAC,aAAa3rC,EAAE,iBAAiBS,CAAC,EAAEggD,GAAGtiD,EAAE,WAAWA,EAAE,WAAW,EAAE2B,EAAE,YAAYE,EAAE,CAAC,EAAEF,EAAE,WAAW,MAAMW,EAAE,OAAO,GAAG,MAAMX,EAAE,UAAU,WAAWW,CAAC,EAAE/R,GAAGsR,CAAC,EAAEtR,GAAG+R,EAAE,IAAIC,GAAGA,EAAE,MAAM,CAAC,CAAC,CAAC,OAAOZ,CAAC,CAAC,SAAS2gD,GAAG1iD,EAAE,EAAE,CAAC,IAAIE,EAAEvM,GAAG,cAAcqM,EAAE,CAAC,EAAEI,EAAE,CAAC,EAAEC,EAAE,CAAC,EAAE,OAAO,EAAE,QAAQ,GAAG,CAAC,EAAE,QAAQ,YAAYA,EAAE,KAAK,CAAC,KAAK,EAAE,KAAK,OAAOH,EAAE,EAAE,IAAI,CAAC,CAAC,EAAEE,EAAE,EAAE,IAAI,EAAEF,EAAE,EAAE,IAAI,CAAC,CAAC,EAAE,CAAC,aAAaE,EAAE,iBAAiBC,CAAC,CAAC,CAAC,IAAIvW,GAAG,MAAMkW,WAAU5a,EAAE,CAAC,YAAY,EAAE,CAAC,GAAG,MAAM,CAAC,OAAO,CAAC,EAAE,QAAQ,CAAC,CAAC,CAAC,EAAE,EAAE,GAAG,CAAC,EAAE,KAAK,UAAU,GAAG,KAAK,MAAM,GAAG,KAAK,KAAK,EAAE,MAAM,KAAK,EAAE,KAAKoqD,GAAG,aAAa,EAAE,EAAE,QAAQ,KAAK,QAAQtvC,KAAK,EAAE,OAAO,KAAK,IAAIA,CAAC,CAAC,CAAC,WAAW,EAAE,CAAC,GAAG,EAAE,aAAa,CAAC,EAAE,cAAc,CAAC,EAAE,MAAM,KAAK,GAAG,EAAE,CAAC,EAAE,MAAM,IAAI0tC,EAAE,kDAAkD,EAAE,IAAI,sBAAsB,EAAE,aAAa,CAAC,EAAE,aAAa,CAAC,EAAE,KAAK,GAAG,CAAC,CAAC,IAAI,EAAE,CAAC,IAAI1tC,EAAE,aAAaF,IAAG,aAAa5a,GAAGgb,EAAE,GAAGF,EAAE,CAAC,GAAGE,EAAE,EAAEA,EAAE,QAAQ,SAAS,EAAE,MAAM,IAAIwtC,EAAE,uHAAuH,EAAE,GAAGxtC,EAAE,OAAO,SAAS,EAAE,MAAM,IAAIwtC,EAAE,qHAAqH,CAAC,CAAC,GAAG,KAAK,QAAQ,SAAS,EAAE,CAAC,GAAG,EAAE,aAAa,SAAS,EAAE,CAAC,GAAG,EAAE,iBAAiB,KAAK,MAAM,IAAIA,EAAE,+FAA+F,EAAE,IAAIvtC,EAAEg1C,GAAG,CAAC,WAAW,EAAE,gBAAgB,MAAM,EAAE,MAAM,KAAK,EAAE,KAAK,QAAQ,CAAC,EAAE,EAAE,MAAMh1C,CAAC,CAAC,CAAC,GAAGH,EAAE,KAAK,QAAQE,EAAE,QAAQ,KAAK,OAAOA,EAAE,WAAW,CAAC,GAAG,EAAE,aAAa,SAAS,EAAE,MAAM,IAAIwtC,EAAE,gHAAgH,EAAE,IAAI,cAAc,EAAE,aAAa,MAAM,oCAAoC,EAAE,GAAG,EAAE,aAAa,CAAC,EAAE,cAAc,SAAS,EAAE,MAAM,IAAIA,EAAE,uHAAuH,EAAE,KAAK,WAAW,CAAC,EAAE,KAAK,QAAQ,CAAC,EAAE,aAAa,CAAC,EAAE,cAAc,CAAC,CAAC,EAAE,KAAK,OAAOuH,GAAG,KAAK,QAAQ,CAAC,CAAC,CAAC,CAAC,KAAK,aAAa,CAAC,EAAE,IAAIP,GAAG,CAAC,cAAc,KAAK,cAAc,CAAC,EAAE,YAAY,CAAC,EAAE,cAAc,CAAC,EAAE,aAAa,KAAK,OAAO,cAAc,KAAK,QAAQ,WAAW5G,GAAG,KAAK,KAAK,OAAO,MAAM,EAAE,YAAY,CAAC,IAAI,EAAE,YAAY,KAAK,OAAO,IAAI3tC,GAAGA,EAAE,KAAK,EAAE,aAAa,KAAK,QAAQ,CAAC,EAAE,KAAK,CAAC,CAAC,KAAK,CAAC,IAAIA,EAAE,EAAE,MAAM,KAAK,QAAQ,CAAC,CAAC,EAAE,GAAG,MAAM,QAAQA,CAAC,EAAE,MAAM,IAAI,UAAU,uHAAuH,EAAE,KAAK,WAAW,CAAC,EAAE,KAAK,QAAQ,CAACA,CAAC,EAAE,KAAK,aAAa,CAAC,EAAE,cAAc,KAAK,QAAQ,KAAK,aAAa,CAAC,EAAE,aAAa,CAAC,KAAK,QAAQ,CAAC,EAAE,KAAK,CAAC,CAAC,KAAK,OAAO,KAAK,CAAC,EAAE,KAAK,MAAM,EAAE,CAAC,KAAK,CAAC,GAAG,KAAK,OAAO,SAAS,EAAE,MAAM,IAAI,UAAU,mCAAmC,EAAE,GAAG,KAAK,OAAO,IAAI,EAAE,KAAK,OAAO,SAAS,EAAE,KAAK,QAAQ,CAAC,EAAE,KAAK,aAAa,CAAC,EAAE,KAAK,cAAc,CAAC,MAAM,CAAC,IAAI,EAAE,KAAK,OAAO,OAAO,EAAE,KAAK,OAAO,CAAC,EAAE,cAAc,CAAC,EAAE,KAAK,QAAQ,CAAC,KAAK,OAAO,CAAC,EAAE,MAAM,EAAE,KAAK,aAAa,CAAC,EAAE,cAAc,KAAK,QAAQ,KAAK,aAAa,CAAC,EAAE,aAAa,CAAC,KAAK,QAAQ,CAAC,EAAE,KAAK,CAAC,CAAC,CAAC,KAAK,EAAEH,EAAE,CAAC,OAAO,KAAK,OAAO,MAAM,KAAK,MAAM,EAAE,KAAK,MAAM,KAAK,EAAEA,CAAC,CAAC,CAAC,MAAM,EAAE,CAAC,GAAGm0C,GAAG,CAAC,EAAE,KAAK,OAAO,SAAS,GAAG,KAAK,QAAQ,SAAS,EAAE,MAAM,IAAI,UAAU,0EAA0E,EAAE,KAAK,MAAM,IAAIjvD,GAAG,CAAC,OAAO,KAAK,OAAO,QAAQ,KAAK,QAAQ,CAAC,EAAE,KAAK,KAAK,KAAK,QAAQ,CAAC,EAAE,KAAK,MAAM,UAAU,KAAK,UAAU,KAAK,gBAAgB,KAAK,MAAM,gBAAgB,KAAK,YAAY,KAAK,MAAM,YAAY,KAAK,uBAAuB,KAAK,MAAM,uBAAuB,KAAK,yBAAyB,KAAK,MAAM,yBAAyB,KAAK,aAAa,KAAK,MAAM,aAAa,KAAK,wBAAwB,KAAK,MAAM,wBAAwB,KAAK,0BAA0B,KAAK,MAAM,0BAA0B,KAAK,aAAa,KAAK,MAAM,aAAa,KAAK,eAAe,KAAK,MAAM,eAAe,KAAK,YAAY,KAAK,MAAM,YAAY,KAAK,WAAW,KAAK,MAAM,WAAW,KAAK,MAAM,EAAE,CAAC,aAAa,CAAC,OAAO,KAAK,OAAO,KAAK,MAAM,EAAE,MAAM,YAAY,CAAC,CAAC,QAAQ,EAAE8a,EAAEE,EAAE,QAAQ,IAAI,CAAC,KAAK,OAAO,KAAK,MAAM,EAAE,MAAM,QAAQ,EAAEF,EAAEE,CAAC,CAAC,CAAC,WAAW,EAAE,CAAC,KAAK,OAAO,MAAM,KAAK,MAAM,EAAE,KAAK,MAAM,WAAW,CAAC,CAAC,CAAC,SAAS,EAAEF,EAAEE,EAAE,CAAC,EAAE,CAAC,GAAG,CAAC,KAAK,MAAM,MAAM,IAAIutC,GAAG,mDAAmD,EAAE,OAAO,KAAK,MAAM,SAAS,EAAEztC,EAAEE,CAAC,CAAC,CAAC,MAAM,gBAAgB,EAAEF,EAAE,CAAC,GAAG,CAAC,KAAK,MAAM,MAAM,IAAIytC,GAAG,mDAAmD,EAAE,OAAO,KAAK,MAAM,gBAAgB,EAAEztC,CAAC,CAAC,CAAC,QAAQ,EAAEA,EAAE,CAAC,EAAE,CAAC,OAAO,KAAK,OAAO,MAAM,KAAK,MAAM,EAAE,KAAK,MAAM,QAAQ,EAAEA,CAAC,CAAC,CAAC,eAAe,EAAE,CAAC,OAAO,KAAK,OAAO,MAAM,KAAK,MAAM,EAAE,KAAK,MAAM,eAAe,CAAC,CAAC,CAAC,QAAQ,EAAE,CAAC,KAAK,MAAM,EAAE,KAAK,MAAM,QAAQ,CAAC,EAAE,KAAK,WAAW,KAAK,MAAM,UAAU,KAAK,iBAAiB,KAAK,MAAM,iBAAiB,KAAK,KAAK,KAAK,MAAM,KAAK,KAAK,QAAQ,KAAK,MAAM,QAAQ,KAAK,eAAe,KAAK,MAAM,eAAe,KAAK,aAAa,KAAK,MAAM,YAAY,CAAC,IAAI,WAAW,CAAC,OAAO,KAAK,OAAO,KAAK,OAAO,KAAK,MAAM,SAAS,CAAC,IAAI,UAAU,EAAE,CAAC,KAAK,MAAM,UAAU,CAAC,CAAC,MAAM,IAAI,EAAEA,EAAEE,EAAE,CAAC,EAAE,CAAC,GAAG,CAAC,KAAK,MAAM,MAAM,IAAIutC,GAAG,mDAAmD,EAAE,OAAO,KAAK,MAAM,IAAI,EAAEztC,EAAEE,CAAC,CAAC,CAAC,MAAM,WAAW,EAAEF,EAAE,CAAC,GAAG,CAAC,KAAK,MAAM,MAAM,IAAIytC,GAAG,mDAAmD,EAAE,OAAO,KAAK,MAAM,WAAW,EAAEztC,CAAC,CAAC,CAAC,MAAM,aAAa,EAAEA,EAAE,CAAC,OAAO,KAAK,MAAM,aAAa,EAAEA,CAAC,CAAC,CAAC,OAAO,WAAW,EAAEA,EAAEE,EAAE,CAAC,EAAEC,EAAE,GAAG,CAAC,IAAI,EAAE,EAAE,CAAC,EAAE,GAAGH,aAAa,MAAM,CAAC,GAAGA,EAAE,CAAC,EAAE,WAAW,MAAMA,EAAE,CAAC,EAAE,YAAY,QAAQ,MAAM,IAAI0tC,EAAE,gDAAgD,EAAE,EAAE1tC,CAAC,MAAM3B,EAAE,OAAO2B,EAAE,QAAQ,KAAK,IAAI,qHAAqH,EAAE,EAAEA,EAAE,OAAO,OAAOA,EAAE,OAAO,EAAEA,EAAE,IAAI6B,EAAE,IAAI,EAAE,CAAC,EAAE,GAAG,EAAEA,aAAa/B,IAAG,MAAM,IAAI6tC,GAAG,yDAAyD9rC,CAAC,EAAE,EAAE,QAAQC,KAAK,EAAE,CAAC,IAAIU,EAAE06C,GAAGp7C,EAAE,OAAO3B,CAAC,EAAEA,GAAGqC,EAAE,6BAA6B,EAAE,EAAEX,EAAE,IAAIW,CAAC,CAAC,CAAC,OAAOX,CAAC,CAAC,IAAI,aAAa,EAAE,CAAC,GAAG,KAAK,OAAO,KAAK,MAAM,IAAI6rC,EAAE,mFAAmF,EAAE,KAAK,MAAM,aAAa,CAAC,CAAC,IAAI,cAAc,CAAC,GAAG,KAAK,OAAO,KAAK,MAAM,IAAIA,EAAE,mFAAmF,EAAE,OAAO,KAAK,MAAM,YAAY,CAAC,WAAW,CAAC,IAAI,EAAE,CAAC,EAAE,QAAQ1tC,KAAK,KAAK,OAAO,CAAC,IAAIE,EAAE,CAAC,EAAEA,EAAE,UAAUF,EAAE,aAAa,EAAEE,EAAE,OAAOF,EAAE,UAAU,EAAE,EAAE,KAAKE,CAAC,CAAC,CAAC,MAAM,CAAC,KAAK,KAAK,KAAK,OAAO,CAAC,CAAC,CAAC,EAAEtW,GAAG,UAAU,aAAayQ,GAAE,cAAczQ,EAAE,EAAE,SAASwM,GAAG0J,EAAE,CAAC,OAAO,IAAI5a,GAAG4a,CAAC,CAAC,CAAC,SAAS1F,GAAG0F,EAAE,CAAC,OAAO,IAAIlW,GAAGkW,CAAC,CAAC,CAAC,SAAStM,GAAGsM,EAAE,CAAC,OAAOq1C,GAAGr1C,CAAC,CAAC,CAAC,SAASjH,GAAGiH,EAAE,EAAE,CAACk9C,GAAG,4BAA4Bl9C,EAAE,CAAC,CAAC,CAAC,IAAI2iD,GAAG,cAAcpoD,GAAE,YAAY,CAAC,WAAW,CAAC,MAAM,CAAC,CAAC,CAAC,EAAEqoD,GAAG,cAAcD,EAAE,CAAC,MAAM/hD,EAAEV,EAAE,EAAE,CAAC,OAAOkyC,GAAGxxC,EAAEV,CAAC,CAAC,CAAC,EAAE0iD,GAAG,UAAU,MAAMroD,GAAE,cAAcqoD,EAAE,EAAE,IAAIC,GAAG,cAAcF,EAAE,CAAC,MAAM/hD,EAAE,CAAC,OAAOxG,GAAGwG,CAAC,CAAC,CAAC,EAAEiiD,GAAG,UAAU,OAAOtoD,GAAE,cAAcsoD,EAAE,EAAE,IAAIC,GAAG,cAAcH,EAAE,CAAC,MAAM/hD,EAAE,CAAC,OAAOxH,GAAGwH,CAAC,CAAC,CAAC,EAAEkiD,GAAG,UAAU,OAAOvoD,GAAE,cAAcuoD,EAAE,EAAE,IAAIC,GAAG,cAAcJ,EAAE,CAAC,MAAM/hD,EAAE,CAAC,OAAOnD,EAAE,IAAItH,GAAG,EAAEiD,GAAGwH,CAAC,CAAC,CAAC,CAAC,CAAC,EAAEmiD,GAAG,UAAU,QAAQxoD,GAAE,cAAcwoD,EAAE,EAAE,IAAIC,GAAG,cAAcL,EAAE,CAAC,MAAM/hD,EAAE,CAAC,OAAOA,CAAC,CAAC,EAAEoiD,GAAG,UAAU,SAASzoD,GAAE,cAAcyoD,EAAE,EAAE,IAAIC,GAAG,cAAcN,EAAE,CAAC,MAAM/hD,EAAE,CAAC,OAAO5F,GAAG4F,CAAC,CAAC,CAAC,EAAEqiD,GAAG,UAAU,UAAU1oD,GAAE,cAAc0oD,EAAE,EAAE,IAAIC,GAAG,cAAcP,EAAE,CAAC,MAAM/hD,EAAE,CAAC,OAAO2xC,GAAG3xC,CAAC,CAAC,CAAC,EAAEsiD,GAAG,UAAU,cAAc3oD,GAAE,cAAc2oD,EAAE,EAAE,IAAIC,GAAG,cAAcR,EAAE,CAAC,MAAM/hD,EAAE,CAAC,OAAOhF,GAAGgF,CAAC,CAAC,CAAC,EAAEuiD,GAAG,UAAU,WAAW5oD,GAAE,cAAc4oD,EAAE,EAAE,IAAIC,GAAG,cAAcT,EAAE,CAAC,MAAM/hD,EAAE,CAAC,OAAOyxC,GAAGzxC,CAAC,CAAC,CAAC,EAAEwiD,GAAG,UAAU,WAAW7oD,GAAE,cAAc6oD,EAAE,EAAE,IAAIC,GAAG,cAAcV,EAAE,CAAC,MAAM/hD,EAAE,CAAC,OAAO9D,GAAG8D,CAAC,CAAC,CAAC,EAAEyiD,GAAG,UAAU,OAAO9oD,GAAE,cAAc8oD,EAAE,EAAE,IAAIC,GAAG,cAAcX,EAAE,CAAC,MAAM/hD,EAAEV,EAAE,GAAG,CAAC,OAAOvE,GAAGiF,EAAEV,CAAC,CAAC,CAAC,EAAEojD,GAAG,UAAU,UAAU/oD,GAAE,cAAc+oD,EAAE,EAAE,IAAIC,GAAG,cAAcZ,EAAE,CAAC,MAAM/hD,EAAEV,EAAE,GAAG,CAAC,OAAOnL,GAAG6L,EAAEV,CAAC,CAAC,CAAC,EAAEqjD,GAAG,UAAU,aAAahpD,GAAE,cAAcgpD,EAAE,EAAE,IAAIC,GAAG,cAAcb,EAAE,CAAC,MAAM/hD,EAAE,CAAC,OAAOnD,EAAE,IAAIA,EAAE,IAAI,CAAC,IAAIyC,EAAE,KAAK,KAAK,CAAC,EAAE,EAAExJ,EAAE,GAAG9J,EAAE,EAAE8E,GAAGb,GAAG+P,EAAEV,CAAC,CAAC,CAAC,CAAC,EAAE,OAAOxJ,EAAEkK,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE4iD,GAAG,UAAU,OAAOjpD,GAAE,cAAcipD,EAAE,EAAE,IAAIC,GAAG,cAAcd,EAAE,CAAC,MAAM/hD,EAAE,CAAC,OAAOnD,EAAE,IAAI/G,EAAE,GAAGA,EAAEkK,EAAEhU,EAAE,EAAEkQ,GAAGpG,EAAEwF,GAAGrL,GAAG,EAAE,KAAK,EAAE,CAAC,EAAEjE,EAAEgU,EAAElK,EAAE,QAAQkB,GAAGgJ,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE6iD,GAAG,UAAU,WAAWlpD,GAAE,cAAckpD,EAAE,EAAE,IAAIC,GAAG,cAAcf,EAAE,CAAC,MAAM/hD,EAAE,CAAC,OAAOnD,EAAE,IAAI/G,EAAEkK,EAAE9D,GAAGlB,GAAGgF,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE8iD,GAAG,UAAU,OAAOnpD,GAAE,cAAcmpD,EAAE,EAAE,IAAIC,GAAG,cAAchB,EAAE,CAAC,MAAM/hD,EAAEV,EAAE,EAAE,CAAC,OAAOzC,EAAE,IAAI/G,EAAEsE,GAAGtE,EAAEkK,EAAEV,CAAC,CAAC,EAAEU,CAAC,CAAC,CAAC,CAAC,EAAE+iD,GAAG,UAAU,QAAQppD,GAAE,cAAcopD,EAAE,EAAE,SAASC,GAAG5jD,EAAE,CAAC,OAAOA,EAAE,aAAa,CAAC,CAAC,SAAS6jD,GAAG7jD,EAAE,EAAE,CAAC,EAAE,CAAC,OAAO0uC,GAAG1uC,EAAEzF,GAAE,iBAAiB,OAAO,EAAE,aAAa,EAAE,YAAY,CAAC,CAAC,SAASupD,GAAG9jD,EAAE,CAAC,GAAGA,GAAG,KAAK,CAAC,IAAI,EAAE,CAAC,EAAE,OAAO,EAAE,UAAU,SAAS,EAAE,OAAO,CAAC,EAAE6jD,GAAG,CAAC,CAAC,CAAC,GAAG,OAAO7jD,GAAG,SAAS,CAAC,IAAI,EAAE,CAAC,EAAE,OAAO,EAAE,UAAUA,EAAE,EAAE,OAAO,CAAC,EAAE6jD,GAAG,CAAC,CAAC,KAAM,QAAO7jD,aAAa2iD,GAAG3iD,EAAE6jD,GAAG7jD,CAAC,CAAC,CAAC,SAAS+jD,GAAG/jD,EAAE,CAAC,GAAGA,GAAG,MAAM,OAAOA,GAAG,SAAS,MAAM,IAAI,MAAM,yFAAyFA,CAAC,EAAE,CAAC,CAAC,IAAIgkD,GAAG,cAAczpD,GAAE,YAAY,CAAC,EAAE0pD,GAAG,cAAcD,EAAE,CAAC,YAAYpjD,EAAE,CAAC,MAAM,EAAEmjD,GAAGnjD,CAAC,EAAE,KAAK,GAAGA,GAAG,MAAMA,EAAE,IAAI,KAAK,IAAIA,EAAE,GAAG,KAAK,GAAGA,GAAG,MAAMA,EAAE,IAAI,KAAK,IAAIA,EAAE,GAAG,KAAK,MAAM,KAAK,KAAK,EAAE,KAAK,MAAM,KAAK,KAAK,CAAC,CAAC,MAAMA,EAAE,CAAC,OAAOnD,EAAE,IAAI,CAAC,IAAIyC,EAAEX,GAAG,CAAC,CAAC,CAAC,EAAE,OAAO,KAAK,QAAQW,EAAEtT,EAAEsT,EAAEvD,GAAGjG,EAAE,KAAK,GAAGjK,GAAGmU,CAAC,CAAC,CAAC,CAAC,GAAG,KAAK,QAAQV,EAAEtT,EAAEsT,EAAEvD,GAAGjG,EAAE,KAAK,GAAGw7C,GAAGtxC,CAAC,CAAC,CAAC,CAAC,GAAGrH,EAAE2G,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,WAAW,CAAC,MAAM,CAAC,GAAG,KAAK,GAAG,GAAG,KAAK,EAAE,CAAC,CAAC,OAAO,WAAWU,EAAEV,EAAE,CAAC,OAAO,IAAIU,EAAE,CAAC,GAAGV,EAAE,GAAG,GAAGA,EAAE,EAAE,CAAC,CAAC,CAAC,EAAE+jD,GAAG,UAAU,OAAO1pD,GAAE,cAAc0pD,EAAE,EAAE,SAASC,GAAGlkD,EAAE,CAAC,OAAO+jD,GAAG/jD,CAAC,EAAE,IAAIikD,GAAG,CAAC,GAAGjkD,GAAG,KAAKA,EAAE,GAAG,KAAK,GAAG,CAAC,CAAC,CAAC,CAAC,SAASmkD,GAAGnkD,EAAE,CAAC,OAAO+jD,GAAG/jD,CAAC,EAAE,IAAIikD,GAAG,CAAC,GAAGjkD,GAAG,KAAKA,EAAE,GAAG,KAAK,GAAG,CAAC,CAAC,CAAC,CAAC,IAAIokD,GAAG,CAAC,KAAK,MAAM,EAAE,SAASC,GAAGrkD,EAAE,CAAC,OAAOwuC,GAAGxuC,CAAC,CAAC,CAAC,SAASskD,GAAGtkD,EAAE,EAAE,CAAC,EAAE,CAAC,OAAO0uC,GAAG1uC,EAAEzF,GAAE,iBAAiB,OAAO,EAAE,aAAa,EAAE,aAAa,CAAC,CAAC,SAASgqD,GAAGvkD,EAAE,CAAC,GAAGA,GAAG,KAAK,OAAO,KAAK,GAAG,OAAOA,GAAG,SAAS,CAAC,IAAIE,EAAE,CAAC,UAAUF,KAAKokD,GAAGA,GAAGpkD,CAAC,EAAEA,EAAE,OAAO,CAAC,CAAC,EAAE,OAAOskD,GAAGpkD,CAAC,CAAC,KAAM,QAAOF,aAAagkD,GAAGhkD,EAAEskD,GAAGtkD,CAAC,CAAC,CAAC,IAAIwkD,GAAG,cAAc1P,EAAE,CAAC,YAAYl0C,EAAE,CAAC,MAAMA,GAAG,KAAK,CAAC,EAAEA,CAAC,EAAE,KAAK,gBAAgB,GAAGA,GAAG,OAAO,KAAK,SAASA,EAAE,SAAS,CAAC,KAAKA,EAAEV,EAAE,CAACU,EAAEwzC,GAAGxzC,CAAC,EAAE,IAAI,EAAExH,GAAGwH,CAAC,EAAE,OAAO,KAAK,UAAU,OAAO,EAAEhS,GAAG,EAAE,EAAE,KAAK,QAAQ,GAAG,CAAC,CAAC,mBAAmBgS,EAAE,CAAC,OAAOA,CAAC,CAAC,WAAW,CAAC,IAAIA,EAAE,CAAC,SAAS,KAAK,QAAQ,EAAEV,EAAE,MAAM,UAAU,EAAE,OAAO,OAAO,OAAOU,EAAEV,CAAC,EAAEU,CAAC,CAAC,EAAE4jD,GAAG,UAAU,OAAOjqD,GAAE,cAAciqD,EAAE,EAAE,IAAIC,GAAG,cAAc3P,EAAE,CAAC,YAAYl0C,EAAE,CAAC,MAAMA,GAAG,KAAK,CAAC,EAAEA,CAAC,EAAE,KAAK,cAAc,GAAGA,GAAG,OAAOA,EAAE,CAAC,GAAG,KAAK,MAAMA,EAAE,OAAO,KAAK,KAAK,cAAcA,EAAE,KAAK,CAAC,KAAKA,EAAEV,EAAE,CAAC,IAAI,EAAEk0C,GAAGxzC,CAAC,EAAE,OAAOzM,GAAG,EAAE,KAAK,KAAK,CAAC,CAAC,mBAAmByM,EAAE,CAAC,OAAOA,CAAC,CAAC,WAAW,CAAC,IAAIA,EAAE,CAAC,MAAM,KAAK,KAAK,EAAEV,EAAE,MAAM,UAAU,EAAE,OAAO,OAAO,OAAOU,EAAEV,CAAC,EAAEU,CAAC,CAAC,EAAE6jD,GAAG,UAAU,YAAYlqD,GAAE,cAAckqD,EAAE,EAAE,IAAIC,GAAG,cAAc5P,EAAE,CAAC,YAAYl0C,EAAE,CAAC,GAAG,MAAMA,GAAG,KAAK,CAAC,EAAEA,CAAC,EAAE,KAAK,0BAA0B,QAAQA,GAAG,OAAOA,EAAE,CAAC,GAAG,KAAK,gBAAgB,GAAG,KAAK,iBAAiBqzC,GAAGrzC,EAAE,kBAAkB,KAAK,yBAAyB,EAAE,KAAK,iBAAiB2jD,GAAG3jD,EAAE,gBAAgB,EAAE,KAAK,gBAAgBk2C,GAAGl2C,EAAE,eAAe,EAAEA,EAAE,YAAY,KAAK,KAAK,WAAW,aAAa,MAAM,QAAQA,EAAE,UAAU,EAAE,KAAK,WAAWA,EAAE,mBAAmB,OAAOA,EAAE,YAAY,SAAS,KAAK,WAAW,CAACA,EAAE,UAAU,MAAO,OAAM,IAAIgtC,EAAE,sEAAsEhtC,EAAE,UAAU,EAAE,CAAC,CAAC,MAAMA,EAAE,CAACA,EAAEyzC,GAAGzzC,CAAC,EAAE,IAAIV,EAAEU,EAAE,MAAM,CAAC,EAAE,GAAG,KAAK,YAAY,KAAK,QAAQP,KAAK,KAAK,WAAWH,EAAEG,EAAE,CAAC,EAAE,EAAE,KAAK,MAAM,KAAK,UAAU,QAAQH,EAAE,UAAU,KAAK,iBAAiB,KAAK,iBAAiB,GAAG,KAAK,eAAe,EAAE,IAAI,EAAE,CAAC,EAAE,GAAG,KAAK,YAAY,KAAK,QAAQG,EAAE,EAAEA,EAAEO,EAAE,OAAO,EAAEP,EAAE,EAAEA,CAAC,EAAEO,EAAEP,CAAC,EAAE,KAAK,UAAU,CAAC,IAAIzb,GAAG,CAAC,KAAKgc,EAAE,OAAO,KAAK,CAAC,CAAC,CAAC,EAAE,KAAK,MAAM,EAAE,CAAC,KAAKA,EAAEV,EAAE,CAAC,OAAOU,EAAEwzC,GAAGxzC,CAAC,EAAE/I,GAAG+I,EAAE,KAAK,MAAM,KAAK,CAAC,CAAC,CAAC,WAAW,CAAC,IAAIA,EAAE,CAAC,iBAAiBozC,GAAG,KAAK,gBAAgB,EAAE,iBAAiBqQ,GAAG,KAAK,gBAAgB,EAAE,gBAAgBzN,GAAG,KAAK,eAAe,EAAE,WAAW,KAAK,UAAU,EAAE12C,EAAE,MAAM,UAAU,EAAE,OAAO,OAAO,OAAOU,EAAEV,CAAC,EAAEU,CAAC,CAAC,EAAE8jD,GAAG,UAAU,QAAQnqD,GAAE,cAAcmqD,EAAE,EAAE,IAAIC,GAAG,cAAc7P,EAAE,CAAC,YAAYl0C,EAAE,CAAC,GAAG,MAAMA,GAAG,KAAK,CAAC,EAAEA,CAAC,EAAE,KAAK,cAAc,EAAEA,GAAG,OAAOA,EAAE,CAAC,GAAGA,EAAE,OAAO,MAAMA,EAAE,QAAQ,KAAK,cAAc,MAAM,IAAIitC,GAAG,4BAA4BjtC,EAAE,KAAK,0CAA0C,EAAE,KAAK,MAAMA,EAAE,OAAO,KAAK,KAAK,cAAcA,EAAE,KAAK,CAAC,KAAKA,EAAEV,EAAE,CAAC,IAAI,EAAEk0C,GAAGxzC,CAAC,EAAE,OAAO1P,GAAG,CAAC,CAAC,CAAC,mBAAmB0P,EAAE,CAAC,OAAOA,CAAC,CAAC,WAAW,CAAC,IAAIA,EAAE,CAAC,MAAM,KAAK,KAAK,EAAEV,EAAE,MAAM,UAAU,EAAE,OAAO,OAAO,OAAOU,EAAEV,CAAC,EAAEU,CAAC,CAAC,EAAE+jD,GAAG,UAAU,MAAMpqD,GAAE,cAAcoqD,EAAE,EAAE,IAAIC,GAAG,cAAc9P,EAAE,CAAC,YAAYl0C,EAAE,CAAC,MAAMA,GAAG,KAAK,CAAC,EAAEA,CAAC,EAAE,KAAK,cAAc,EAAEA,GAAG,OAAOA,EAAE,CAAC,GAAG,KAAK,MAAMA,EAAE,OAAO,KAAK,KAAK,cAAcA,EAAE,KAAK,CAAC,KAAKA,EAAEV,EAAE,CAAC,IAAI,EAAEk0C,GAAGxzC,CAAC,EAAE,OAAOlK,EAAE,EAAEhI,GAAEyE,GAAG,EAAE,KAAK,KAAK,EAAE,SAAS,CAAC,CAAC,CAAC,mBAAmByN,EAAE,CAAC,OAAOA,CAAC,CAAC,WAAW,CAAC,IAAIA,EAAE,CAAC,MAAM,KAAK,KAAK,EAAEV,EAAE,MAAM,UAAU,EAAE,OAAO,OAAO,OAAOU,EAAEV,CAAC,EAAEU,CAAC,CAAC,EAAEgkD,GAAG,UAAU,kBAAkBrqD,GAAE,cAAcqqD,EAAE,EAAE,IAAIC,GAAG,cAAc/P,EAAE,CAAC,YAAYl0C,EAAE,CAAC,MAAMA,GAAG,KAAK,CAAC,EAAEA,CAAC,EAAE,KAAK,aAAa,EAAEA,GAAG,OAAOA,EAAE,CAAC,GAAG,KAAK,QAAQ,IAAI0iD,GAAG,EAAE,MAAM,KAAK,KAAK1iD,EAAE,MAAM,KAAK,KAAK,aAAaA,EAAE,IAAI,CAAC,KAAKA,EAAEV,EAAE,CAAC,OAAOzC,EAAE,IAAI,CAAC,IAAI,EAAE22C,GAAGxzC,CAAC,EAAEP,EAAEH,EAAE,KAAK,GAAGG,GAAG,KAAK,CAAC,IAAIwB,EAAEnL,EAAEgG,GAAGxF,GAAG,EAAE,KAAK,EAAExI,GAAE2R,EAAE,EAAE,KAAK,CAAC,EAAErG,GAAG,IAAI,CAAC,EAAE,EAAEpN,EAAE,EAAEiV,CAAC,CAAC,CAAC,OAAO,KAAK,gBAAgB,MAAM,KAAK,KAAK,OAAO,EAAEjQ,GAAG8K,GAAG,EAAE1H,GAAG,EAAE,KAAK,KAAK,EAAE,CAAC,CAAC,EAAE,KAAK,QAAQ,EAAE,KAAK,KAAK,CAAC,CAAC,EAAE,KAAK,QAAQ,EAAE,KAAK,IAAI,CAAC,CAAC,CAAC,CAAC,mBAAmB4L,EAAE,CAAC,OAAOA,CAAC,CAAC,WAAW,CAAC,IAAIA,EAAE,CAAC,KAAK,KAAK,IAAI,EAAEV,EAAE,MAAM,UAAU,EAAE,OAAO,OAAO,OAAOU,EAAEV,CAAC,EAAEU,CAAC,CAAC,EAAEikD,GAAG,UAAU,UAAUtqD,GAAE,cAAcsqD,EAAE,EAAE,SAASC,GAAG9kD,EAAE,EAAEE,EAAE,CAAC,GAAG,OAAOF,GAAG,SAAS,OAAOguC,GAAGhuC,EAAE,CAAC,EAAE,GAAGA,EAAE,SAAS,EAAE,MAAM,IAAI4tC,EAAE,OAAO1tC,CAAC,4CAA4C,CAAC,wBAAwBF,EAAE,MAAM,YAAY,EAAE,QAAQI,EAAE,EAAEA,EAAE,EAAE,EAAEA,EAAE,CAAC,IAAIC,EAAEL,EAAEI,CAAC,EAAE,GAAG,CAACuwC,GAAGtwC,CAAC,EAAE,MAAM,IAAIutC,EAAE,OAAO1tC,CAAC,4CAA4C,CAAC,wBAAwB,KAAK,UAAUF,CAAC,CAAC,mCAAmCK,CAAC,EAAE,CAAC,CAAC,OAAOL,CAAC,CAAC,SAAS+kD,GAAG/kD,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,CAAC,GAAGL,GAAG,KAAK,OAAOA,EAAE,IAAI,EAAE,GAAG,EAAE,IAAIK,EAAE,GAAG,EAAE,OAAOH,IAAI,OAAO,EAAEF,EAAE,EAAEA,EAAE,EAAE,EAAE,KAAK,OAAO,EAAEI,EAAE,GAAGA,CAAC,CAAC,CAAC,SAAS4kD,GAAGhlD,EAAE,EAAEE,EAAEE,EAAE,CAAC,GAAGJ,GAAG,KAAK,OAAO,KAAK,GAAGI,IAAI,QAAQJ,EAAEA,EAAE,EAAE8wC,GAAG,CAAC5wC,EAAE,EAAE,CAAC,CAAC,UAAUE,IAAI,OAAOJ,EAAEA,EAAE,MAAO,OAAM,IAAI4tC,EAAE,2BAA2BxtC,CAAC,GAAG,EAAE,OAAOJ,CAAC,CAAC,SAASilD,GAAGjlD,EAAE,EAAE,CAAC,OAAOvC,EAAE,KAAKsyC,GAAG,CAAC,EAAE,IAAI,gBAAgBjyC,GAAGkC,EAAE,CAAC,EAAE,EAAE,EAAE,CAAC,CAAC,EAAEA,EAAE,CAAC,CAAC,SAASklD,GAAGllD,EAAE,EAAE,CAAC,OAAOvC,EAAE,KAAKsyC,GAAG,CAAC,EAAE,IAAI,gBAAgBjyC,GAAGkC,EAAE,CAAC,EAAE,EAAE,EAAE,EAAE,CAAC,CAAC,EAAEA,EAAE,CAAC,CAAC,SAASmlD,GAAGnlD,EAAE,EAAEE,EAAEE,EAAE,EAAEC,EAAE,QAAQ,EAAE,EAAE,EAAE,CAAC,OAAO5C,EAAE,IAAI,CAAC,GAAG,GAAG,OAAO,EAAEyzC,GAAG,GAAGnB,GAAG,CAAC,EAAE/vC,EAAE,MAAM,SAAS,EAAE,MAAM,IAAI4tC,EAAE,+DAA+D5tC,EAAE,MAAM,MAAM,WAAW,EAAE,GAAG,EAAE,MAAM,SAAS,EAAE,MAAM,IAAI4tC,EAAE,iEAAiE,EAAE,MAAM,MAAM,UAAU,EAAE,GAAG1tC,GAAG,MAAMA,EAAE,MAAM,SAAS,EAAE,MAAM,IAAI0tC,EAAE,+DAA+D1tC,EAAE,MAAM,MAAM,UAAU,EAAE,GAAG,IAAI,kBAAkBF,EAAElC,GAAGkC,EAAE,CAAC,EAAE,EAAE,CAAC,CAAC,GAAGK,IAAI,SAAS,MAAM,IAAIwtC,GAAG,+EAA+E,EAAE,IAAI9rC,EAAE1S,GAAG2Q,EAAE,EAAEI,EAAEC,IAAI,OAAO,OAAO,QAAQ,MAAM,CAAC,EAAE,OAAOH,GAAG,OAAO6B,EAAEowC,GAAGpwC,EAAE7B,CAAC,GAAG6B,CAAC,CAAC,CAAC,CAAC,SAASqjD,GAAGplD,EAAE,EAAEE,EAAEE,EAAE,CAAC,EAAE,CAAC,EAAEC,EAAE,QAAQ,EAAE,EAAE0B,EAAE,KAAK,CAAC,OAAOtE,EAAE,IAAI,CAAC,GAAG,GAAG,OAAO,EAAEyzC,GAAG,GAAGnB,GAAG,CAAC,EAAE/vC,EAAE,OAAO,GAAGA,EAAE,OAAO,EAAE,MAAM,IAAI4tC,EAAE,6EAA6E5tC,EAAE,IAAI,GAAG,EAAE,GAAG,EAAE,OAAO,GAAG,EAAE,OAAO,EAAE,MAAM,IAAI4tC,EAAE,8EAA8E5tC,EAAE,IAAI,GAAG,EAAE,IAAIgC,EAAEijD,GAAGjlD,EAAE,CAAC,EAAE,GAAGK,IAAI,SAAS,MAAM,IAAIwtC,GAAG,+EAA+E,EAAE,OAAO7rC,EAAEzP,GAAG,OAAO,CAAC,EAAEyP,EAAE,OAAO,EAAE,QAAQ5B,EAAE,IAAIC,IAAI,OAAO,OAAO,QAAQ,UAAU,EAAE,WAAW,OAAO,KAAKH,EAAE,WAAW6B,CAAC,CAAC,EAAE,IAAI,kBAAkBC,EAAElE,GAAGkE,EAAE,CAAC,EAAE,EAAE,EAAE,CAAC,CAAC,GAAGA,CAAC,CAAC,CAAC,CAAC,SAASqjD,GAAGrlD,EAAE,EAAEE,EAAEE,EAAE,CAAC,EAAE,EAAE,CAAC,EAAEC,EAAE,QAAQ,EAAE,EAAE,CAAC,OAAO5C,EAAE,IAAI,CAAC,GAAG,GAAG,OAAO,EAAEyzC,GAAG,GAAGnB,GAAG,CAAC,EAAE/vC,EAAE,OAAO,GAAGA,EAAE,OAAO,EAAE,MAAM,IAAI4tC,EAAE,mEAAmE5tC,EAAE,IAAI,GAAG,EAAE,GAAG,EAAE,OAAO,GAAG,EAAE,OAAO,EAAE,MAAM,IAAI4tC,EAAE,oEAAoE5tC,EAAE,IAAI,GAAG,EAAE,IAAI+B,EAAEmjD,GAAGllD,EAAE,CAAC,EAAE,GAAGK,IAAI,SAAS,MAAM,IAAIwtC,GAAG,+EAA+E,EAAE,OAAO9rC,EAAEvS,GAAGuS,EAAE,EAAE3B,EAAEC,IAAI,OAAO,OAAO,QAAQ,QAAQ,CAAC,EAAEH,GAAG,OAAO6B,EAAEowC,GAAGpwC,EAAE7B,CAAC,GAAG,IAAI,kBAAkB6B,EAAEjE,GAAGiE,EAAE,CAAC,EAAE,EAAE,EAAE,EAAE,CAAC,CAAC,GAAGA,CAAC,CAAC,CAAC,CAAC,IAAIujD,GAAG,MAAMtlD,WAAU80C,EAAE,CAAC,YAAY,EAAE50C,EAAE,CAAC,GAAG,MAAMA,CAAC,EAAE,KAAK,KAAK,KAAK,KAAK,2BAA2B,eAAe,KAAK,yBAAyB,QAAQF,GAAE,WAAWE,CAAC,EAAE,KAAK,KAAK,EAAE+uC,GAAG,KAAK,KAAK,MAAM,EAAE,KAAK,OAAO,GAAG,KAAK,OAAO,GAAG,KAAK,OAAO,EAAE,MAAM,IAAIpB,GAAG,qDAAqD,KAAK,IAAI,2BAA2B,EAAE,GAAG,KAAK,WAAWiX,GAAG5kD,EAAE,WAAW,EAAE,YAAY,EAAE,KAAK,QAAQ4kD,GAAG5kD,EAAE,SAAS,KAAK,EAAEA,EAAE,QAAQ,EAAE,SAAS,EAAE,KAAK,QAAQA,EAAE,SAAS,KAAK,QAAQA,EAAE,QAAQ+vC,GAAG,KAAK,OAAO,EAAE,KAAK,WAAW/vC,EAAE,YAAY,KAAK,eAAeA,EAAE,WAAW6vC,GAAG,KAAK,UAAU,EAAE,KAAK,WAAW+T,GAAG5jD,EAAE,UAAU,EAAE,KAAK,QAAQA,EAAE,SAAS,KAAK,GAAGA,EAAE,QAAQ,KAAK,gBAAgB+zC,GAAG/zC,EAAE,iBAAiB,KAAK,wBAAwB,EAAE,KAAK,eAAe42C,GAAG52C,EAAE,cAAc,EAAE,KAAK,gBAAgBqkD,GAAGrkD,EAAE,eAAe,EAAE,KAAK,oBAAoBqkD,GAAGrkD,EAAE,mBAAmB,EAAE,KAAK,aAAa4kD,GAAG5kD,EAAE,cAAc,KAAK,EAAEA,EAAE,aAAa,EAAE,cAAc,EAAE,KAAK,OAAO,GAAG,MAAM,QAAQ,KAAK,YAAY,GAAG,KAAK,aAAa,SAAS,EAAE,MAAM,IAAI0tC,EAAE,iGAAiG,KAAK,UAAU,KAAK,YAAY,CAAC,EAAE,EAAE,GAAG,KAAK,OAAO,GAAG,GAAG,OAAO,KAAK,cAAc,SAAS,KAAK,aAAa,CAAC,KAAK,aAAa,KAAK,YAAY,UAAU,KAAK,aAAa,SAAS,EAAE,MAAM,IAAIA,EAAE,0FAA0F,KAAK,UAAU,KAAK,YAAY,CAAC,EAAE,UAAU,KAAK,OAAO,GAAG,GAAG,OAAO,KAAK,cAAc,SAAS,KAAK,aAAa,CAAC,KAAK,aAAa,KAAK,aAAa,KAAK,YAAY,UAAU,KAAK,aAAa,SAAS,EAAE,MAAM,IAAIA,EAAE,4FAA4F,KAAK,UAAU,KAAK,YAAY,CAAC,EAAE,EAAE,CAAC,OAAO,WAAW,EAAE,CAAC,GAAGK,GAAG,eAAe,EAAE,yCAAyC,EAAE,OAAO,EAAE,YAAY,UAAU,CAACe,GAAG,EAAE,WAAW,SAAS,EAAE,CAAC,EAAE,MAAM,IAAIpB,EAAE,oGAAoG,KAAK,UAAU,EAAE,UAAU,CAAC,GAAG,CAAC,CAAC,WAAW,CAAC,IAAI,EAAE,CAAC,WAAW,KAAK,WAAW,QAAQ,KAAK,QAAQ,QAAQ,KAAK,QAAQ,WAAW,KAAK,WAAW,aAAa,KAAK,aAAa,WAAWgW,GAAG,KAAK,UAAU,EAAE,QAAQ,KAAK,QAAQ,gBAAgB5P,GAAG,KAAK,eAAe,EAAE,gBAAgBqQ,GAAG,KAAK,eAAe,EAAE,oBAAoBA,GAAG,KAAK,mBAAmB,EAAE,eAAezN,GAAG,KAAK,cAAc,CAAC,EAAE12C,EAAE,MAAM,UAAU,EAAE,OAAO,OAAO,OAAO,EAAEA,CAAC,EAAE,CAAC,CAAC,EAAEqlD,GAAG,MAAMvlD,WAAUslD,EAAE,CAAC,YAAY,EAAEplD,EAAE,CAAC,MAAM,EAAEA,CAAC,EAAE,KAAK,OAAO,KAAKF,GAAE,WAAWE,CAAC,EAAE,KAAK,QAAQA,EAAE,QAAQ+uC,GAAG,KAAK,QAAQ,SAAS,EAAE,KAAK,kBAAkBgF,GAAG/zC,EAAE,mBAAmB,KAAK,0BAA0B,EAAE,KAAK,iBAAiB42C,GAAG52C,EAAE,gBAAgB,EAAE,KAAK,kBAAkBqkD,GAAGrkD,EAAE,iBAAiB,CAAC,CAAC,MAAM,EAAE,CAAC,EAAEm0C,GAAG,CAAC,EAAE,IAAIn0C,EAAE,KAAK,aAAa,gBAAgB,EAAE,EAAE,OAAO,EAAE,GAAG,EAAEA,CAAC,GAAG,KAAK,MAAM,IAAI0tC,EAAE,+DAA+D,EAAE1tC,CAAC,CAAC,EAAE,EAAE,IAAIE,EAAE,EAAEF,CAAC,EAAEG,EAAE,KAAK,WAAW,OAAO,CAACD,EAAE,KAAK,OAAO,CAAC,EAAE,KAAK,OAAO,KAAK,UAAU,SAASC,EAAE,KAAK,KAAK,kBAAkB,KAAK,kBAAkB,GAAG,KAAK,gBAAgB,EAAE,KAAK,UAAU,KAAK,KAAK,KAAK,UAAU,OAAO,CAAC,KAAK,OAAO,EAAE,KAAK,KAAK,gBAAgB,KAAK,gBAAgB,GAAG,KAAK,cAAc,GAAG,KAAK,UAAU,CAAC,CAAC,KAAK,KAAK,KAAK,EAAE,KAAK,CAAC,CAACH,CAAC,EAAEE,CAAC,CAAC,CAAC,EAAE,KAAK,MAAM,EAAE,CAAC,KAAK,EAAEF,EAAE,CAAC,OAAOzC,EAAE,IAAI,CAAC,EAAE22C,GAAG,CAAC,EAAE,IAAIh0C,EAAEC,EAAE,KAAK,MAAM,KAAK,KAAK,KAAK,KAAK,KAAK,EAAE,EAAE+uC,GAAG,KAAK,WAAW,aAAa,CAAC,EAAE,GAAG,GAAG,MAAM,KAAK,OAAO,EAAEhvC,EAAEglD,GAAG,EAAE,KAAK,OAAO,KAAK,EAAE/kD,EAAE,KAAK,QAAQ,KAAK,QAAQ,KAAK,WAAW,KAAK,aAAa,CAAC,MAAM,CAAC,GAAG,KAAK,OAAO,EAAED,EAAE+kD,GAAG,EAAE,KAAK,OAAO,KAAK,EAAE9kD,EAAE,KAAK,QAAQ,CAAC,EAAE,KAAK,QAAQ,KAAK,WAAW,KAAK,aAAa,CAAC,CAAC,UAAU,KAAK,OAAO,EAAED,EAAEglD,GAAG,EAAE,KAAK,OAAO,KAAK,EAAE/kD,EAAE,KAAK,QAAQ,KAAK,QAAQ,KAAK,WAAW,KAAK,YAAY,UAAU,KAAK,OAAO,EAAED,EAAEilD,GAAG,EAAE,KAAK,OAAO,KAAK,EAAEhlD,EAAE,KAAK,QAAQ,KAAK,QAAQ,KAAK,WAAW,KAAK,YAAY,MAAO,OAAM,IAAIwtC,GAAG,uDAAuD,EAAE,KAAK,YAAY,OAAOztC,EAAE,KAAK,WAAW,MAAMA,CAAC,EAAE,CAAC,OAAOA,CAAC,CAAC,CAAC,CAAC,mBAAmB,EAAE,CAAC,EAAEi0C,GAAG,CAAC,EAAE,IAAIn0C,EAAE,CAAC,EAAEE,EAAE,KAAK,aAAa,eAAe,EAAE,MAAM,EAAE,EAAE,OAAO,CAAC,EAAE,EAAE,MAAM,CAAC,EAAE,QAAQ,EAAE,EAAE,EAAEA,EAAE,OAAO,EAAE,EAAE,CAAC,IAAI,EAAE2kD,GAAG3kD,EAAE,CAAC,EAAE,KAAK,WAAW,CAAC,EAAE,KAAK,QAAQ,KAAK,QAAQ,CAAC,EAAE,OAAO,KAAK,cAAc,SAAS,KAAK,aAAa,KAAK,aAAa,CAAC,CAAC,EAAEF,EAAE,KAAK,CAAC,CAAC,CAAC,IAAIG,EAAE,CAAC,EAAE,CAAC,CAAC,EAAE,OAAO,KAAK,aAAa,gBAAgBA,EAAEA,EAAE,OAAOH,CAAC,EAAEG,EAAE,KAAK,KAAK,OAAO,IAAIA,EAAE,KAAK,KAAK,OAAO,EAAEA,EAAEA,EAAE,OAAOH,CAAC,GAAGG,CAAC,CAAC,WAAW,CAAC,IAAI,EAAE,CAAC,QAAQ,KAAK,QAAQ,kBAAkB2zC,GAAG,KAAK,iBAAiB,EAAE,kBAAkBqQ,GAAG,KAAK,iBAAiB,EAAE,iBAAiBzN,GAAG,KAAK,gBAAgB,CAAC,EAAE12C,EAAE,MAAM,UAAU,EAAE,OAAO,OAAO,OAAO,EAAEA,CAAC,EAAE,CAAC,CAAC,OAAO,WAAW,EAAE,CAAC,GAAG,EAAE,YAAY,IAAI,OAAO,EAAE,SAAS,UAAU,EAAE,QAAQ,EAAE,MAAM,IAAI0tC,EAAE,0EAA0E,KAAK,UAAU,EAAE,OAAO,CAAC,EAAE,CAAC,CAAC,EAAE4X,GAAG,MAAMxlD,WAAUulD,EAAE,CAAC,YAAY,EAAE,CAAC,MAAM,EAAE,CAAC,EAAEvlD,GAAE,WAAW,CAAC,CAAC,CAAC,WAAW,CAAC,IAAI,EAAE,MAAM,UAAU,EAAE,OAAO,OAAO,EAAE,KAAK,CAAC,CAAC,OAAO,WAAW,EAAE,CAAC,GAAG,OAAO,EAAE,YAAY,UAAU,CAACgvC,GAAG,EAAE,WAAW,SAAS,EAAE,CAAC,EAAE,MAAM,IAAIpB,EAAE,8FAA8F,KAAK,UAAU,EAAE,UAAU,CAAC,GAAG,CAAC,CAAC,EAAE4X,GAAG,UAAU,SAASjrD,GAAE,cAAcirD,EAAE,EAAE,IAAIC,GAAG,MAAMzlD,WAAUulD,EAAE,CAAC,YAAY,EAAE,CAAC,MAAM,EAAE,CAAC,EAAEvlD,GAAE,WAAW,CAAC,CAAC,CAAC,WAAW,CAAC,IAAI,EAAE,MAAM,UAAU,EAAE,OAAO,OAAO,EAAE,KAAK,CAAC,CAAC,OAAO,WAAW,EAAE,CAAC,GAAG,OAAO,EAAE,YAAY,UAAU,EAAE,MAAM,QAAQ,EAAE,UAAU,IAAI,EAAE,WAAW,SAAS,GAAG,EAAE,WAAW,SAAS,IAAI,MAAM,IAAI4tC,EAAE,2FAA2F,KAAK,UAAU,EAAE,UAAU,CAAC,GAAG,CAAC,CAAC,EAAE6X,GAAG,UAAU,SAASlrD,GAAE,cAAckrD,EAAE,EAAE,IAAIC,GAAG,cAAcF,EAAE,CAAC,YAAY5kD,EAAE,CAAC,GAAG,MAAMA,CAAC,EAAE,KAAK,UAAU,CAAC,IAAIhc,GAAG,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,KAAK,UAAU,QAAQ,KAAK,UAAU,QAAQ,MAAM,IAAIgpD,EAAE,uGAAuG,KAAK,OAAO,EAAE,CAAC,CAAC,MAAMhtC,EAAE,CAAC,GAAGA,EAAEyzC,GAAGzzC,CAAC,EAAEA,EAAE,SAAS,EAAE,MAAM,IAAIgtC,EAAE,mDAAmD,KAAK,UAAUhtC,CAAC,CAAC,EAAE,IAAIV,EAAE,KAAK,aAAa,gBAAgB,EAAEU,EAAE,OAAO,EAAE,GAAGA,EAAEV,CAAC,GAAG,KAAK,MAAM,IAAI0tC,EAAE,sEAAsE,EAAE,IAAI,EAAEhtC,EAAEV,CAAC,EAAEG,EAAE,KAAK,WAAW,OAAO,CAAC,KAAK,QAAQ,CAAC,CAAC,EAAE,KAAK,OAAO,KAAK,UAAU,SAASA,EAAE,UAAU,KAAK,kBAAkB,KAAK,kBAAkB,GAAG,KAAK,gBAAgB,EAAE,KAAK,UAAU,KAAK,KAAK,KAAK,UAAU,OAAO,CAAC,KAAK,OAAO,EAAE,UAAU,KAAK,gBAAgB,KAAK,gBAAgB,GAAG,KAAK,cAAc,GAAG,KAAK,UAAU,CAAC,IAAIzb,GAAG,CAAC,KAAK,EAAE,KAAK,CAAC,CAACsb,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,EAAE,KAAK,MAAM,EAAE,CAAC,KAAKU,EAAEV,EAAE,CAAC,OAAOzC,EAAE,IAAI,CAAC,IAAI,EAAE22C,GAAGxzC,CAAC,EAAE,GAAG,EAAE,MAAM,SAAS,EAAE,MAAM,IAAIgtC,EAAE,2FAA2F,EAAE,MAAM,MAAM,EAAE,EAAE,IAAIvtC,EAAE,EAAE,MAAMwB,EAAExB,EAAE,CAAC,EAAEyB,EAAEC,EAAE,KAAK,aAAa,iBAAiBD,EAAE,EAAEC,EAAE,IAAID,EAAE,EAAEC,EAAE,GAAG,IAAIC,EAAE3B,EAAEyB,CAAC,EAAE,EAAEzB,EAAE0B,CAAC,EAAEW,EAAE,KAAK,WAAW,CAAC,EAAE,EAAE,KAAK,WAAW,CAAC,EAAEE,EAAE,KAAK,QAAQ,CAAC,EAAEC,EAAE,KAAK,QAAQ,CAAC,EAAEC,EAAEkiD,GAAGhjD,EAAEY,EAAEF,EAAE,KAAK,OAAO,EAAEsB,EAAEghD,GAAG,EAAEniD,EAAE,EAAE,KAAK,OAAO,EAAEoB,EAAE,CAACpC,EAAEiB,EAAEkB,EAAE,KAAK,OAAO,EAAE,KAAK,aAAa,iBAAiB,EAAElG,GAAG,EAAE,CAAC,EAAE,EAAE,EAAE,CAAC,CAAC,GAAG,IAAIwJ,EAAE/X,GAAG,EAAE,KAAK,OAAO,KAAK,EAAE0U,EAAE,KAAK,QAAQ,KAAK,OAAO,EAAE,OAAO,KAAK,aAAa,iBAAiBqD,EAAExJ,GAAGwJ,EAAE,CAAC,EAAE,EAAE,EAAE,CAAC,CAAC,GAAG,KAAK,MAAM,OAAOA,EAAE6qC,GAAG7qC,EAAE,KAAK,KAAK,KAAK,EAAE,KAAK,UAAU,GAAG,KAAK,YAAY,OAAOA,EAAE,KAAK,WAAW,MAAMA,CAAC,GAAGA,CAAC,CAAC,CAAC,CAAC,mBAAmB1G,EAAE,CAACA,EAAEyzC,GAAGzzC,CAAC,EAAE,IAAIV,EAAEU,EAAE,MAAM,EAAE,EAAEP,EAAEwB,EAAE,KAAK,aAAa,iBAAiB,EAAE,EAAExB,EAAE,EAAEwB,EAAE,IAAI,EAAE,EAAExB,EAAE,EAAEwB,EAAE,GAAG,IAAIC,EAAE,KAAK,WAAW,CAAC,EAAEC,EAAE,KAAK,WAAW,CAAC,EAAEC,EAAE,KAAK,QAAQ,CAAC,EAAE,EAAE,KAAK,QAAQ,CAAC,EAAE,OAAO9B,EAAE,CAAC,EAAE,KAAK,QAAQA,EAAEG,CAAC,EAAE2kD,GAAG9kD,EAAEG,CAAC,EAAE2B,EAAEF,EAAE,KAAK,OAAO,EAAE5B,EAAE2B,CAAC,EAAEmjD,GAAG9kD,EAAE2B,CAAC,EAAE,EAAEE,EAAE,KAAK,OAAO,EAAE7B,CAAC,CAAC,WAAW,CAAC,IAAIU,EAAE,MAAM,UAAU,EAAE,OAAO,OAAOA,EAAE,aAAaA,CAAC,CAAC,EAAE8kD,GAAG,UAAU,kBAAkBnrD,GAAE,cAAcmrD,EAAE,EAAE,IAAIC,GAAG,cAAcF,EAAE,CAAC,YAAY7kD,EAAE,CAAC,GAAG,MAAMA,CAAC,EAAE,KAAK,UAAU,CAAC,IAAIhc,GAAG,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,KAAK,UAAU,QAAQ,KAAK,UAAU,QAAQ,MAAM,IAAIgpD,EAAE,uGAAuG,KAAK,OAAO,EAAE,CAAC,CAAC,MAAMhtC,EAAE,CAAC,GAAGA,EAAEyzC,GAAGzzC,CAAC,EAAEA,EAAE,SAAS,EAAE,MAAM,IAAIgtC,EAAE,mDAAmD,KAAK,UAAUhtC,CAAC,CAAC,EAAE,IAAIV,EAAE,KAAK,aAAa,gBAAgB,EAAEU,EAAE,OAAO,EAAE,GAAGA,EAAEV,CAAC,GAAG,KAAK,MAAM,IAAI0tC,EAAE,sEAAsE,EAAE,IAAI,EAAEhtC,EAAEV,CAAC,EAAEG,EAAE,KAAK,WAAW,OAAO,CAAC,KAAK,QAAQ,CAAC,CAAC,EAAE,KAAK,OAAO,KAAK,UAAU,SAASA,EAAE,UAAU,KAAK,kBAAkB,KAAK,kBAAkB,GAAG,KAAK,gBAAgB,EAAE,KAAK,UAAU,KAAK,KAAK,KAAK,UAAU,OAAO,CAAC,KAAK,OAAO,EAAE,UAAU,KAAK,gBAAgB,KAAK,gBAAgB,GAAG,KAAK,cAAc,GAAG,KAAK,UAAU,CAAC,IAAIzb,GAAG,CAAC,KAAK,EAAE,KAAK,CAAC,CAACsb,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,EAAE,KAAK,MAAM,EAAE,CAAC,KAAKU,EAAEV,EAAE,CAAC,OAAOzC,EAAE,IAAI,CAAC,IAAI,EAAE22C,GAAGxzC,CAAC,EAAE,GAAG,EAAE,MAAM,SAAS,EAAE,MAAM,IAAIgtC,EAAE,2FAA2F,EAAE,MAAM,MAAM,EAAE,EAAE,IAAIvtC,EAAE,EAAE,MAAMwB,EAAExB,EAAE,CAAC,EAAEyB,EAAEC,EAAEC,EAAE,KAAK,aAAa,iBAAiBA,EAAE,EAAEF,EAAE,EAAEC,EAAE,IAAIC,EAAE,EAAEF,EAAE,EAAEC,EAAE,GAAG,IAAI,EAAE1B,EAAE2B,CAAC,EAAEU,EAAErC,EAAEyB,CAAC,EAAE,EAAEzB,EAAE0B,CAAC,EAAEa,EAAE,KAAK,WAAW,CAAC,EAAEC,EAAE,KAAK,WAAW,CAAC,EAAEC,EAAE,KAAK,WAAW,CAAC,EAAEkB,EAAE,KAAK,QAAQ,CAAC,EAAEC,EAAE,KAAK,QAAQ,CAAC,EAAEqD,EAAE,KAAK,QAAQ,CAAC,EAAE,EAAE09C,GAAG,EAAEhhD,EAAEpB,EAAE,KAAK,OAAO,EAAE6B,EAAEugD,GAAGtiD,EAAEuB,EAAEpB,EAAE,KAAK,OAAO,EAAE6B,EAAEsgD,GAAG,EAAE19C,EAAExE,EAAE,KAAK,OAAO,EAAE6B,EAAE,CAAC9C,EAAE,EAAE4C,EAAEC,EAAE,KAAK,OAAO,EAAE,KAAK,aAAa,iBAAiB,EAAE5G,GAAG,EAAE,CAAC,EAAE,EAAE,EAAE,EAAE,CAAC,CAAC,GAAG,IAAI8G,EAAEnV,GAAG,EAAE,KAAK,OAAO,KAAK,EAAEkV,EAAE,KAAK,QAAQ,KAAK,OAAO,EAAE,OAAO,KAAK,aAAa,iBAAiBC,EAAE9G,GAAG8G,EAAE,CAAC,EAAE,EAAE,EAAE,EAAE,CAAC,CAAC,GAAG,KAAK,OAAO,OAAOA,EAAEutC,GAAGvtC,EAAE,KAAK,KAAK,KAAK,EAAE,KAAK,UAAU,GAAG,KAAK,aAAa,OAAOA,EAAE,KAAK,WAAW,MAAMA,CAAC,GAAGA,CAAC,CAAC,CAAC,CAAC,mBAAmBhE,EAAE,CAACA,EAAEyzC,GAAGzzC,CAAC,EAAE,IAAIV,EAAEU,EAAE,MAAM,EAAE,EAAEP,EAAEwB,EAAEC,EAAE,KAAK,aAAa,iBAAiB,EAAE,EAAEzB,EAAE,EAAEwB,EAAE,EAAEC,EAAE,IAAI,EAAE,EAAEzB,EAAE,EAAEwB,EAAE,EAAEC,EAAE,GAAG,IAAIC,EAAE,KAAK,WAAW,CAAC,EAAEC,EAAE,KAAK,WAAW,CAAC,EAAE,EAAE,KAAK,WAAW,CAAC,EAAEU,EAAE,KAAK,QAAQ,CAAC,EAAE,EAAE,KAAK,QAAQ,CAAC,EAAEE,EAAE,KAAK,QAAQ,CAAC,EAAE,OAAO1C,EAAE,CAAC,EAAE,KAAK,QAAQA,EAAEG,CAAC,EAAE2kD,GAAG9kD,EAAEG,CAAC,EAAEqC,EAAEX,EAAE,KAAK,OAAO,EAAE7B,EAAE2B,CAAC,EAAEmjD,GAAG9kD,EAAE2B,CAAC,EAAE,EAAEG,EAAE,KAAK,OAAO,EAAE9B,EAAE4B,CAAC,EAAEkjD,GAAG9kD,EAAE4B,CAAC,EAAEc,EAAE,EAAE,KAAK,OAAO,EAAE1C,CAAC,CAAC,WAAW,CAAC,IAAIU,EAAE,MAAM,UAAU,EAAE,OAAO,OAAOA,EAAE,aAAaA,CAAC,CAAC,EAAE+kD,GAAG,UAAU,kBAAkBprD,GAAE,cAAcorD,EAAE,EAAE,IAAIC,GAAG,cAAcL,EAAE,CAAC,YAAY3kD,EAAEV,EAAE,CAAC,GAAG,MAAMU,EAAEV,CAAC,EAAE,KAAK,8BAA8B,gBAAgB,KAAK,8BAA8B,gBAAgB,KAAK,gBAAgB,KAAK,KAAK,gBAAgB,KAAKA,EAAE,SAAS,KAAK,MAAM,IAAI0tC,EAAE,qFAAqF,EAAE,GAAG1tC,EAAE,mBAAmB,MAAMA,EAAE,mBAAmB,MAAMA,EAAE,kBAAkB,KAAK,MAAM,IAAI0tC,EAAE,oPAAoP,EAAE,GAAG1tC,EAAE,SAAS,MAAMA,EAAE,UAAU,QAAQA,EAAE,UAAU,QAAQ,MAAM,IAAI0tC,EAAE,gBAAgB,KAAK,IAAI,mEAAmE,KAAK,UAAU1tC,EAAE,OAAO,CAAC,EAAE,EAAE,KAAK,gBAAgBA,EAAE,iBAAiB,KAAK,EAAEA,EAAE,gBAAgB,KAAK,qBAAqB+zC,GAAG/zC,EAAE,sBAAsB,KAAK,6BAA6B,EAAE,KAAK,qBAAqBqkD,GAAGrkD,EAAE,oBAAoB,EAAE,KAAK,oBAAoB42C,GAAG52C,EAAE,mBAAmB,EAAE,KAAK,qBAAqB+zC,GAAG/zC,EAAE,sBAAsB,KAAK,6BAA6B,EAAE,KAAK,qBAAqBqkD,GAAGrkD,EAAE,oBAAoB,EAAE,KAAK,oBAAoB42C,GAAG52C,EAAE,mBAAmB,CAAC,CAAC,MAAMU,EAAE,CAAC,GAAGA,EAAEyzC,GAAGzzC,CAAC,EAAEA,EAAE,OAAO,KAAK,KAAK,EAAE,MAAM,IAAIgtC,EAAE,0BAA0B,KAAK,IAAI,sBAAsB,KAAK,KAAK,CAAC,+BAA+B,KAAK,UAAUhtC,CAAC,CAAC,EAAE,EAAE,IAAIV,EAAE,KAAK,aAAa,gBAAgB,EAAEU,EAAE,OAAO,EAAE,GAAGA,EAAEV,CAAC,GAAG,MAAMU,EAAEV,CAAC,EAAE,EAAE,MAAM,IAAI0tC,EAAE,oEAAoE,KAAK,UAAUhtC,EAAEV,CAAC,CAAC,CAAC,EAAE,EAAE,IAAI,EAAEU,EAAEV,CAAC,EAAEG,EAAE,KAAK,WAAW,OAAO,CAAC,EAAE,KAAK,eAAe,CAAC,EAAEwB,EAAE,CAAC,EAAE,QAAQE,EAAE,EAAEA,EAAE,KAAK,KAAK,EAAEA,EAAEF,EAAE,KAAK,CAAC,EAAEA,EAAE,KAAK,EAAE,KAAK,gBAAgB,KAAK,OAAO,EAAE,IAAIC,EAAE,GAAG,KAAK,gBAAgB,KAAK,UAAU,mBAAmBzB,EAAE,UAAU,KAAK,qBAAqB,KAAK,qBAAqByB,EAAE,KAAK,mBAAmB,EAAE,KAAK,gBAAgB,KAAK,UAAU,mBAAmBD,EAAE,UAAU,KAAK,qBAAqB,KAAK,qBAAqBC,EAAE,KAAK,mBAAmB,EAAE,KAAK,QAAQ,KAAK,KAAK,KAAK,UAAU,OAAO,CAAC,KAAK,OAAO,EAAE,UAAU,KAAK,gBAAgB,KAAK,gBAAgBA,EAAE,KAAK,cAAc,EAAE,KAAK,KAAK,KAAK,KAAK,UAAU,CAAC,IAAIld,GAAG,CAAC,KAAK,KAAK,KAAK,EAAE,KAAK,CAAC,CAACsb,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,EAAE,KAAK,MAAM,EAAE,CAAC,KAAKU,EAAEV,EAAE,CAAC,OAAOzC,EAAE,IAAI,CAACmD,EAAEwzC,GAAGxzC,CAAC,EAAE,IAAI,EAAE,GAAG,KAAK,OAAO,EAAE,MAAM,IAAIitC,GAAG,kDAAkD,EAAE,OAAO,KAAK,OAAO,IAAI,KAAK,aAAa,kBAAkBjtC,EAAE9C,GAAG8C,EAAE,CAAC,EAAE,EAAE,EAAE,CAAC,CAAC,GAAG,EAAEvG,GAAGuG,EAAE,KAAK,gBAAgB,KAAK,EAAE,KAAK,gBAAgB,KAAK,EAAE,KAAK,QAAQ,KAAK,QAAQ,KAAK,aAAa,MAAM,GAAG,KAAK,UAAU,EAAEuxC,GAAG,EAAE,KAAK,KAAK,KAAK,EAAE,KAAK,UAAU,GAAG,KAAK,YAAY,OAAO,EAAE,KAAK,WAAW,MAAM,CAAC,GAAG,KAAK,aAAa,kBAAkB,EAAEr0C,GAAG,EAAE,CAAC,EAAE,EAAE,EAAE,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,WAAW,CAAC,IAAI8C,EAAE,MAAM,UAAU,EAAE,OAAO,OAAOA,EAAE,KAAK,OAAOA,EAAE,kBAAkB,OAAOA,EAAE,kBAAkB,OAAOA,EAAE,iBAAiBA,EAAE,qBAAqBozC,GAAG,KAAK,oBAAoB,EAAEpzC,EAAE,qBAAqBozC,GAAG,KAAK,oBAAoB,EAAEpzC,EAAE,qBAAqByjD,GAAG,KAAK,oBAAoB,EAAEzjD,EAAE,qBAAqByjD,GAAG,KAAK,oBAAoB,EAAEzjD,EAAE,oBAAoBg2C,GAAG,KAAK,mBAAmB,EAAEh2C,EAAE,oBAAoBg2C,GAAG,KAAK,mBAAmB,EAAEh2C,CAAC,CAAC,EAAEglD,GAAG,UAAU,gBAAgB,IAAIC,GAAG,cAAcD,EAAE,CAAC,YAAYhlD,EAAE,CAAC,MAAM,EAAEA,CAAC,CAAC,CAAC,EAAEilD,GAAG,UAAU,kBAAkBtrD,GAAE,cAAcsrD,EAAE,EAAE,IAAIC,GAAG,MAAM9lD,WAAUulD,EAAE,CAAC,YAAY,EAAE,CAAC,MAAM,EAAE,CAAC,EAAEvlD,GAAE,WAAW,CAAC,EAAE,KAAK,UAAU,CAAC,CAAC,KAAK,CAAC,CAAC,CAAC,CAAC,WAAW,CAAC,IAAI,EAAE,MAAM,UAAU,EAAE,OAAO,OAAO,EAAE,KAAK,OAAO,EAAE,WAAW,CAAC,CAAC,OAAO,WAAW,EAAE,CAAC,GAAG,OAAO,EAAE,YAAY,UAAU,CAACgvC,GAAG,EAAE,WAAW,SAAS,EAAE,CAAC,EAAE,MAAM,IAAIpB,EAAE,yFAAyF,KAAK,UAAU,EAAE,UAAU,CAAC,GAAG,CAAC,CAAC,EAAEkY,GAAG,UAAU,SAASvrD,GAAE,cAAcurD,EAAE,EAAE,IAAIC,GAAG,cAAcjR,EAAE,CAAC,YAAYl0C,EAAE,CAAC,MAAMA,CAAC,EAAE,OAAOA,EAAE,UAAU,SAAS,KAAK,SAAS,CAAC,CAACA,EAAE,SAASA,EAAE,QAAQ,EAAE,CAACA,EAAE,SAASA,EAAE,QAAQ,CAAC,EAAE,OAAOA,EAAE,SAAS,CAAC,GAAG,SAAS,KAAK,SAAS,CAAC,CAACA,EAAE,SAAS,CAAC,EAAEA,EAAE,SAAS,CAAC,CAAC,EAAE,CAACA,EAAE,SAAS,CAAC,EAAEA,EAAE,SAAS,CAAC,CAAC,CAAC,EAAE,KAAK,SAASA,EAAE,SAAS,KAAK,WAAWA,EAAE,aAAa,OAAO,eAAeA,EAAE,WAAW,KAAK,UAAU,CAAC,CAAC,KAAK,CAAC,CAAC,CAAC,CAAC,mBAAmBA,EAAE,CAAC,OAAO,KAAK,aAAa,gBAAgB,CAACA,EAAE,CAAC,EAAEA,EAAE,CAAC,EAAEA,EAAE,CAAC,EAAE,KAAK,SAAS,CAAC,EAAE,CAAC,EAAE,KAAK,SAAS,CAAC,EAAE,CAAC,EAAEA,EAAE,CAAC,EAAE,KAAK,SAAS,CAAC,EAAE,CAAC,EAAE,KAAK,SAAS,CAAC,EAAE,CAAC,CAAC,EAAE,CAACA,EAAE,CAAC,EAAEA,EAAE,CAAC,EAAE,KAAK,SAAS,CAAC,EAAE,CAAC,EAAE,KAAK,SAAS,CAAC,EAAE,CAAC,EAAEA,EAAE,CAAC,EAAE,KAAK,SAAS,CAAC,EAAE,CAAC,EAAE,KAAK,SAAS,CAAC,EAAE,CAAC,EAAEA,EAAE,CAAC,CAAC,CAAC,CAAC,KAAKA,EAAEV,EAAE,CAAC,OAAOzC,EAAE,IAAI,CAAC,GAAGmD,EAAEwzC,GAAGxzC,CAAC,EAAE,KAAK,aAAa,eAAe,CAAC,IAAI,EAAE+wC,GAAG/wC,EAAE,KAAK,SAAS,CAAC,EAAE,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAE,KAAK,SAAS,CAAC,EAAE,CAAC,EAAE,KAAK,SAAS,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,OAAO+wC,GAAG,EAAE,KAAK,SAAS,CAAC,EAAE,CAAC,EAAE/wC,EAAE,MAAM,CAAC,EAAE,KAAK,SAAS,CAAC,EAAE,CAAC,EAAE,KAAK,SAAS,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,KAAK,CAAC,IAAI,EAAE+wC,GAAG/wC,EAAE,KAAK,SAAS,CAAC,EAAE,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAE,KAAK,SAAS,CAAC,EAAE,CAAC,EAAE,KAAK,SAAS,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,OAAO+wC,GAAG,EAAE,KAAK,SAAS,CAAC,EAAE,CAAC,EAAE/wC,EAAE,MAAM,CAAC,EAAE,KAAK,SAAS,CAAC,EAAE,CAAC,EAAE,KAAK,SAAS,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,WAAW,CAAC,IAAIA,EAAE,CAAC,SAAS,KAAK,SAAS,WAAW,KAAK,UAAU,EAAEV,EAAE,MAAM,UAAU,EAAE,OAAO,OAAO,OAAOU,EAAEV,CAAC,EAAEU,CAAC,CAAC,EAAEmlD,GAAG,UAAU,aAAaxrD,GAAE,cAAcwrD,EAAE,EAAE,IAAIC,GAAG,cAAclR,EAAE,CAAC,YAAYl0C,EAAE,CAAC,MAAMA,CAAC,EAAE,KAAK,aAAa,CAAC,EAAE,CAAC,EAAE,KAAK,UAAU,CAAC,CAAC,KAAK,CAAC,CAAC,EAAE,KAAK,KAAKA,EAAE,MAAM,KAAK,KAAK,aAAaA,EAAE,KAAK,KAAK,WAAWA,EAAE,YAAY,KAAK,eAAeA,EAAE,WAAWmvC,GAAG,KAAK,UAAU,EAAE,KAAK,cAAcnvC,EAAE,eAAe,KAAK,UAAUA,EAAE,cAAcovC,GAAG,KAAK,aAAa,CAAC,CAAC,mBAAmBpvC,EAAE,CAAC,GAAG,KAAK,aAAa,gBAAgB,CAAC,IAAIV,EAAEU,EAAE,CAAC,GAAG,KAAK,KAAK,KAAK,KAAK,CAAC,EAAEA,EAAE,CAAC,EAAE,EAAEA,EAAE,CAAC,GAAG,KAAK,KAAK,KAAK,KAAK,CAAC,EAAEA,EAAE,CAAC,EAAE,MAAM,CAACA,EAAE,CAAC,EAAEA,EAAE,CAAC,EAAEV,EAAE,CAAC,CAAC,KAAK,CAAC,IAAIA,EAAEU,EAAE,CAAC,GAAG,KAAK,KAAK,KAAK,KAAK,CAAC,EAAEA,EAAE,CAAC,EAAE,EAAEA,EAAE,CAAC,GAAG,KAAK,KAAK,KAAK,KAAK,CAAC,EAAEA,EAAE,CAAC,EAAE,MAAM,CAACA,EAAE,CAAC,EAAEV,EAAE,EAAEU,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,KAAKA,EAAEV,EAAE,CAAC,OAAOzC,EAAE,IAAI,CAAC,IAAI,EAAE22C,GAAGxzC,CAAC,EAAEP,EAAE,EAAE,MAAM,GAAG,KAAK,aAAa,gBAAgB,CAAC,EAAEvC,GAAG,EAAE,CAAC,EAAE,EAAE,EAAE,CAAC,CAAC,EAAE,IAAI+D,EAAE,KAAK,KAAK,CAAC,EAAExB,EAAE,CAAC,EAAEyB,EAAE,KAAK,KAAK,CAAC,EAAEzB,EAAE,CAAC,EAAE0B,EAAE,KAAK,gBAAgB,UAAUxO,GAAG,sBAAsB,EAAE,CAACsO,EAAEC,CAAC,CAAC,EAAEvO,GAAG,eAAe,EAAE,CAACsO,EAAEC,CAAC,CAAC,EAAE,OAAOhE,GAAGiE,EAAE,CAAC,EAAE,EAAE,EAAE,CAAC,CAAC,CAAC,KAAK,CAAC,IAAIF,EAAE,KAAK,KAAK,CAAC,EAAExB,EAAE,CAAC,EAAEyB,EAAE,KAAK,KAAK,CAAC,EAAEzB,EAAE,CAAC,EAAE,OAAO,KAAK,gBAAgB,UAAU9M,GAAG,sBAAsB,EAAE,CAACsO,EAAEC,CAAC,CAAC,EAAEvO,GAAG,eAAe,EAAE,CAACsO,EAAEC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,WAAW,CAAC,IAAIlB,EAAE,CAAC,KAAK,KAAK,KAAK,WAAW,KAAK,WAAW,cAAc,KAAK,aAAa,EAAEV,EAAE,MAAM,UAAU,EAAE,OAAO,OAAO,OAAOU,EAAEV,CAAC,EAAEU,CAAC,CAAC,EAAEolD,GAAG,UAAU,eAAezrD,GAAE,cAAcyrD,EAAE,EAAE,SAASC,GAAGjmD,EAAE,EAAEE,EAAE,CAAC,EAAE,CAAC,EAAEE,EAAE,QAAQC,EAAE,EAAE,CAAC,OAAO5C,EAAE,IAAI,CAAC4C,GAAG,OAAOA,EAAE6wC,GAAG,GAAGnB,GAAG1vC,CAAC,EAAE,IAAI,EAAE4kD,GAAGjlD,EAAEK,CAAC,EAAE,GAAGL,EAAE,OAAO,EAAE,MAAM,IAAI4tC,EAAE,mEAAmE5tC,EAAE,IAAI,IAAI,EAAE,GAAG,EAAE,OAAO,EAAE,MAAM,IAAI4tC,EAAE,yDAAyD,EAAE,IAAI,IAAI,EAAE,OAAO,EAAEv9C,GAAG,EAAE,EAAE6P,EAAEE,IAAI,OAAO,OAAO,QAAQ,OAAO,CAAC,EAAEC,IAAI,kBAAkB,EAAEvC,GAAG,EAAE,CAAC,EAAE,EAAE,EAAE,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,IAAIooD,GAAG,cAAcZ,EAAE,CAAC,YAAY1kD,EAAE,CAAC,MAAM,EAAEA,CAAC,EAAE,KAAK,gBAAgB,KAAK,KAAK,gBAAgBA,EAAE,iBAAiB,KAAK,EAAEA,EAAE,gBAAgB,KAAK,qBAAqBqzC,GAAGrzC,EAAE,sBAAsB,KAAK,0BAA0B,EAAE,KAAK,oBAAoBk2C,GAAGl2C,EAAE,mBAAmB,EAAE,KAAK,qBAAqB2jD,GAAG3jD,EAAE,oBAAoB,CAAC,CAAC,MAAMA,EAAE,CAAC,GAAGA,EAAEyzC,GAAGzzC,CAAC,EAAEA,EAAE,OAAO,EAAE,MAAM,IAAIgtC,EAAE,uEAAuE,KAAK,UAAUhtC,CAAC,CAAC,GAAG,EAAE,IAAIV,EAAE,KAAK,aAAa,gBAAgB,EAAE,EAAE,GAAGU,EAAEV,CAAC,GAAG,MAAMU,EAAEV,CAAC,EAAE,EAAE,MAAM,IAAI0tC,EAAE,yFAAyFhtC,EAAEV,CAAC,CAAC,IAAI,EAAE,IAAI,EAAEU,EAAEV,CAAC,EAAEG,EAAE,CAAC,KAAK,WAAW,CAAC,EAAE,KAAK,WAAW,CAAC,EAAE,EAAE,KAAK,eAAe,EAAE,KAAK,gBAAgB,KAAK,UAAU,mBAAmBA,EAAE,KAAK,KAAK,qBAAqB,KAAK,qBAAqB,GAAG,KAAK,mBAAmB,EAAE,KAAK,QAAQ,KAAK,KAAK,KAAK,UAAU,OAAO,CAAC,EAAE,KAAK,eAAe,EAAE,KAAK,KAAK,gBAAgB,KAAK,gBAAgB,GAAG,KAAK,cAAc,EAAE,KAAK,KAAK,KAAK,KAAK,MAAM,EAAE,CAAC,KAAKO,EAAEV,EAAE,CAAC,OAAOzC,EAAE,IAAI,CAACmD,EAAEwzC,GAAGxzC,CAAC,EAAE,IAAI,EAAEqlD,GAAGrlD,EAAE,KAAK,gBAAgB,KAAK,EAAE,KAAK,QAAQ,KAAK,QAAQ,KAAK,WAAW,IAAI,EAAE,OAAO,KAAK,UAAU,EAAEuxC,GAAG,EAAE,KAAK,KAAK,KAAK,EAAE,KAAK,UAAU,GAAG,KAAK,YAAY,OAAO,EAAE,KAAK,WAAW,MAAM,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,mBAAmBvxC,EAAE,CAACA,EAAEyzC,GAAGzzC,CAAC,EAAE,IAAIV,EAAE,KAAK,aAAa,gBAAgBU,EAAE,CAAC,EAAEA,EAAE,CAAC,EAAE,EAAE,KAAK,aAAa,gBAAgBA,EAAE,CAAC,EAAEA,EAAE,CAAC,EAAEP,EAAE,KAAK,aAAa,gBAAgBO,EAAE,CAAC,EAAE,KAAK,gBAAgBA,EAAE,CAAC,EAAE,KAAK,gBAAgBiB,EAAEkjD,GAAG7kD,EAAE,KAAK,WAAW,CAAC,EAAE,KAAK,QAAQ,KAAK,QAAQ,CAAC,CAAC,EAAE4B,EAAEijD,GAAG,EAAE,KAAK,WAAW,CAAC,EAAE,KAAK,QAAQ,KAAK,QAAQ,CAAC,CAAC,EAAE,OAAO,KAAK,aAAa,gBAAgB,CAACnkD,EAAE,CAAC,EAAEP,EAAEwB,EAAEC,CAAC,EAAE,CAAClB,EAAE,CAAC,EAAEiB,EAAEC,EAAEzB,CAAC,CAAC,CAAC,WAAW,CAAC,IAAIO,EAAE,MAAM,UAAU,EAAE,OAAOA,EAAE,gBAAgB,KAAK,gBAAgBA,EAAE,qBAAqBozC,GAAG,KAAK,oBAAoB,EAAEpzC,EAAE,qBAAqByjD,GAAG,KAAK,oBAAoB,EAAEzjD,EAAE,oBAAoBg2C,GAAG,KAAK,oBAAoB,EAAEh2C,CAAC,CAAC,EAAEslD,GAAG,UAAU,kBAAkB3rD,GAAE,cAAc2rD,EAAE,EAAE,SAASC,GAAGnmD,EAAE,EAAEE,EAAEE,EAAE,CAAC,GAAG,MAAM,QAAQJ,CAAC,EAAE,CAAC,GAAG,GAAG,MAAME,GAAG,KAAK,MAAM,IAAI0tC,EAAE,+EAA+E,EAAExtC,GAAG,OAAOF,EAAEF,EAAE,MAAMA,EAAE,OAAOI,EAAEJ,EAAE,MAAM,EAAEA,EAAEA,EAAE,MAAM,EAAEA,EAAE,OAAOI,CAAC,GAAGJ,EAAE,OAAO,IAAI,EAAEA,EAAE,MAAM,EAAEA,EAAE,MAAM,GAAGA,EAAEA,EAAE,CAAC,CAAC,CAAC,SAASK,EAAE,EAAE,CAAC,OAAO,GAAG,MAAM,MAAM,QAAQ,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC,CAAC,OAAO,EAAEA,EAAE,CAAC,EAAEH,EAAEG,EAAEH,CAAC,EAAE,CAAC,OAAOF,EAAE,aAAa,EAAE,UAAUE,CAAC,CAAC,CAAC,SAASkmD,GAAGpmD,EAAE,EAAEE,EAAEE,EAAE,GAAGC,EAAE,EAAE,EAAE,GAAG0B,EAAE,GAAG,CAAC,OAAOtE,EAAE,IAAI,CAAC,IAAIuE,EAAE,EAAE,MAAM,OAAO,GAAGA,EAAE,EAAE,MAAM,IAAI4rC,EAAE,uCAAuC5rC,CAAC,IAAI,EAAE,IAAIC,EAAE,CAAC,EAAE,CAAC,EAAE,OAAO8uC,GAAG,EAAE/uC,CAAC,CAAC,EAAE,GAAG,EAAElE,GAAG,EAAEmE,CAAC,EAAE,GAAG,KAAK,MAAM,IAAI4rC,GAAG,gFAAgF,EAAE,GAAG,QAAQ,KAAK,mGAAmG,EAAExtC,GAAG,OAAOA,EAAE3R,GAAEA,GAAE2R,EAAE,MAAM,EAAE,SAAS,EAAEA,EAAE,OAAO2B,EAAE,IAAI3B,EAAExO,GAAGwO,EAAE,EAAE,GAAGA,EAAEvC,GAAGuC,EAAE4B,CAAC,GAAG7B,IAAI,EAAE5G,GAAG,EAAE,CAAC,EAAE6G,GAAG,OAAOA,EAAE7G,GAAG6G,EAAE,CAAC,IAAI,IAAIqC,EAAE,CAAC,EAAEC,EAAEC,EAAE1C,EAAE2C,EAAE,EAAE,MAAM,CAAC,EAAEC,EAAE1E,GAAG,CAAC,EAAE4F,EAAE3D,GAAG,OAAO2D,EAAE5F,GAAGiC,CAAC,GAAG,QAAQiH,EAAE,EAAEA,EAAEzE,EAAE,EAAEyE,EAAE,CAAC,IAAIxC,EAAEhC,EAAEwE,CAAC,EAAE7C,EAAEhH,EAAE,IAAIuC,EAAE8E,EAAElC,CAAC,CAAC,EAAE,GAAGvC,GAAG,KAAKsC,EAAE8B,EAAE,CAAC,EAAE7B,EAAE6B,EAAE,CAAC,MAAM,CAAC,IAAIC,EAAEjH,EAAE,IAAI,CAAC,IAAIkH,EAAEX,EAAEsD,CAAC,EAAE1C,EAAElI,GAAGvF,GAAGwN,CAAC,EAAEA,CAAC,EAAEE,EAAEjY,EAAE8J,EAAE+N,EAAE,CAAC,EAAEE,CAAC,EAAEjO,EAAEkM,EAAE,CAAC,EAAEgC,CAAC,CAAC,EAAE2C,EAAE3E,EAAE,IAAI,CAAC,EAAEoC,IAAIpY,EAAE8J,EAAE+N,EAAE,CAAC,EAAEO,CAAC,EAAEL,CAAC,EAAEjO,EAAE,EAAEkO,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,OAAOC,EAAE,UAAU0C,CAAC,CAAC,CAAC,EAAE5E,EAAE+B,EAAE,OAAO9B,EAAE8B,EAAE,SAAS,CAAC3C,GAAGW,EAAE,KAAKC,CAAC,CAAC,CAAC,IAAI,EAAE,OAAOZ,IAAI,EAAEzF,GAAGoG,EAAE,CAAC,GAAG,CAACC,EAAE,EAAEC,CAAC,CAAC,CAAC,CAAC,CAAC,IAAIxa,GAAG,MAAM4X,WAAU80C,EAAE,CAAC,YAAY,EAAE,CAAC,MAAM,CAAC,EAAE,IAAI50C,EAAE,GAAG,EAAE,MAAM,KAAK,MAAM,IAAI0tC,EAAE,sDAAsD,EAAE,GAAG,MAAM,QAAQ,EAAE,IAAI,EAAE1tC,EAAE,IAAImmD,GAAG,CAAC,MAAM,EAAE,IAAI,CAAC,EAAEnmD,EAAE,EAAE,KAAKA,EAAE,WAAW,KAAK,MAAM,IAAI0tC,EAAE,mGAAmG,EAAE,KAAK,KAAK1tC,EAAE,KAAK,gBAAgB,EAAE,iBAAiB,KAAK,GAAG,EAAE,gBAAgB,KAAK,YAAY,EAAE,aAAa,KAAK,GAAG,EAAE,YAAY,KAAK,YAAY,EAAE,aAAa,KAAK,GAAG,EAAE,YAAY,KAAK,UAAU,EAAE,UAAU,KAAK,GAAG,EAAE,SAAS,KAAK,OAAO,EAAE,QAAQ,KAAK,GAAG,EAAE,OAAO,KAAK,gBAAgB,GAAG,KAAK,UAAU,CAAC,IAAItb,GAAG,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,KAAK,UAAU,KAAK,KAAK,QAAQ,KAAK,KAAK,aAAa,KAAK,KAAK,WAAW,CAAC,CAAC,CAAC,WAAW,CAAC,GAAG,KAAK,SAAS,KAAK,CAAC,IAAI,EAAE,MAAM,QAAQ,KAAK,KAAK,SAAS,EAAE,KAAK,KAAK,UAAU,OAAO,EAAE,OAAOmsD,GAAG,EAAE,CAAC,EAAE,IAAI7wC,GAAG,IAAI,CAAC,KAAM,QAAO,KAAK,OAAO,CAAC,UAAU,EAAE,CAAC,KAAK,QAAQ,CAAC,CAAC,mBAAmB,EAAE,CAACg0C,GAAG,CAAC,IAAI,EAAE,EAAE,CAAC,GAAG,EAAE,EAAE,IAAIh0C,EAAE,KAAK,KAAK,UAAU,MAAM,QAAQA,CAAC,IAAIA,EAAE,CAACA,CAAC,GAAG,IAAIE,EAAEF,EAAE,CAAC,EAAEG,EAAE,GAAG,KAAK,gBAAgBA,EAAE,CAAC,EAAE,CAAC,EAAE,EAAE,CAAC,EAAED,CAAC,EAAEC,EAAE,CAAC,EAAE,CAAC,EAAED,CAAC,EAAE,KAAK,YAAY,CAAC,IAAI,EAAE,CAAC,EAAE,QAAQ,KAAKF,EAAE,EAAE,KAAK,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,EAAE,MAAM,CAACG,CAAC,EAAE,OAAO,CAAC,CAAC,KAAM,QAAOA,CAAC,CAAC,YAAY,EAAEH,EAAE,CAAC,OAAOzC,EAAE,IAAI,CAAC,MAAM,QAAQyC,CAAC,IAAIA,EAAEA,EAAE,CAAC,GAAG,IAAIE,EAAE,KAAK,gBAAgBF,EAAE,KAAK,GAAG,KAAK,YAAY,CAAC,IAAIG,EAAE,KAAK,OAAO,IAAI,GAAG,IAAI,EAAE,MAAM,CAACD,CAAC,EAAE,OAAOC,CAAC,CAAC,KAAM,QAAOD,CAAC,CAAC,CAAC,CAAC,IAAI,QAAQ,CAAC,GAAG,KAAK,SAAS,KAAK,CAAC,IAAI,EAAE,MAAM,QAAQ,KAAK,KAAK,SAAS,EAAE,KAAK,KAAK,UAAU,OAAO,EAAEF,EAAE,CAAC,EAAE,QAAQE,EAAE,EAAEA,EAAE,EAAE,EAAEA,EAAEF,EAAE,KAAK,IAAI,EAAE,OAAOA,CAAC,KAAM,QAAO,KAAK,OAAO,CAAC,IAAI,OAAO,EAAE,CAAC,KAAK,QAAQ,CAAC,CAAC,MAAM,EAAE,CAAC,GAAG,KAAK,cAAc,KAAK,MAAM,IAAI2tC,GAAG,kDAAkD,EAAEqG,GAAG,CAAC,IAAI,EAAE,EAAE,CAAC,GAAG,EAAE,EAAE,IAAI,EAAE,KAAK,SAAS,EAAE,CAAC,EAAE,KAAK7zC,EAAE,EAAE,MAAM,CAAC,EAAE,KAAK,UAAU,CAAC,EAAE,IAAIzb,GAAG,CAAC,MAAM,CAAC,EAAE,KAAK,GAAGyb,CAAC,CAAC,CAAC,EAAE,IAAIwB,EAAE,CAAC,EAAE,CAAC,CAAC,EAAE,OAAO,EAAE,MAAM,CAAC,CAAC,EAAE,KAAK,KAAK,MAAMA,CAAC,EAAE,IAAIC,EAAE,GAAG,MAAM,QAAQ,KAAK,KAAK,SAAS,EAAEA,EAAE,KAAK,KAAK,UAAUA,EAAE,CAAC,KAAK,KAAK,SAAS,EAAE,KAAK,WAAW,MAAM,GAAG,CAACvD,EAAE,YAAY,KAAK,UAAU,IAAIwD,GAAGA,EAAE,MAAMA,EAAE,MAAM,OAAO,CAAC,CAAC,EAAED,CAAC,EAAE,MAAM,IAAI8rC,EAAE,6FAA6F,KAAK,SAAS,+BAA+B,KAAK,KAAK,SAAS,EAAE,OAAO,KAAK,UAAU9rC,EAAE,IAAIC,GAAG,IAAInd,GAAG,CAAC,MAAM,CAAC,KAAKmd,CAAC,CAAC,CAAC,CAAC,EAAE,KAAK,UAAU,KAAK,YAAY,CAAC,CAAC,YAAY,EAAE7B,EAAE,GAAG,CAACzC,EAAE,IAAI,CAAC,GAAG,CAAC,KAAK,SAAS,MAAM,IAAIiwC,GAAG,iEAAiE,EAAE,IAAIttC,EAAE,KAAK,UAAU,CAAC,EAAE,MAAM,CAAC,EAAE,GAAGA,GAAG,KAAK,MAAM,IAAIwtC,EAAE,uUAAuU,EAAE,GAAG,KAAK,SAAS,KAAK,MAAM,QAAQ,KAAK,KAAK,SAAS,EAAE,KAAK,QAAQ,KAAK,KAAK,UAAU,IAAIvtC,GAAGd,GAAG,CAACa,EAAEC,CAAC,CAAC,CAAC,EAAE,KAAK,QAAQ,CAACd,GAAG,CAACa,EAAE,KAAK,KAAK,SAAS,CAAC,CAAC,UAAU,GAAG,KAAKzP,GAAG,KAAK,OAAO,EAAE,KAAK,YAAY,OAAOA,GAAG,KAAK,UAAU,EAAE,KAAK,WAAW,CAAC,GAAG,MAAM,QAAQ,KAAK,KAAK,SAAS,EAAE,KAAK,QAAQ,KAAK,KAAK,UAAU,IAAI0P,GAAGd,GAAG,CAACa,EAAEC,CAAC,CAAC,CAAC,EAAE,KAAK,QAAQ,CAAC,EAAEd,GAAG,CAACa,EAAE,KAAK,KAAK,SAAS,CAAC,MAAM,CAAC,GAAG,MAAM,QAAQ,CAAC,IAAI,EAAE,CAAC,CAAC,GAAG,EAAE,SAAS,KAAK,QAAQ,OAAO,MAAM,IAAIwtC,EAAE,SAAS,KAAK,IAAI,YAAY,KAAK,QAAQ,MAAM,8BAA8B,EAAE,MAAM,oCAAoC,CAAC,EAAE,EAAE1tC,IAAI,GAAG,KAAK,WAAW,KAAK,KAAK,QAAQ,MAAM,CAAC,EAAEvP,GAAG,KAAK,OAAO,EAAE,QAAQ0P,EAAE,EAAEA,EAAE,KAAK,QAAQ,OAAO,EAAEA,EAAE,CAAC,IAAI,EAAE,EAAEA,CAAC,EAAE,EAAE,MAAM,QAAQ,KAAK,KAAK,SAAS,EAAE,KAAK,KAAK,UAAUA,CAAC,EAAE,KAAK,KAAK,UAAU0B,EAAE,CAAC3B,EAAE,CAAC,EAAE,GAAG,CAAC7B,EAAE,YAAY,EAAE,MAAMwD,CAAC,EAAE,MAAM,IAAI6rC,EAAE,SAASvtC,CAAC,+BAA+B,KAAK,IAAI,oBAAoB0B,CAAC,oBAAoB,EAAE,KAAK,EAAE,EAAE,KAAK,QAAQ1B,CAAC,EAAE,CAAC,CAAC,CAAC,KAAK,QAAQ,KAAK,QAAQ,IAAIA,GAAGrM,GAAGqM,EAAE,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,MAAM,EAAEH,EAAE,CAAC,IAAIE,EAAEF,GAAG,KAAK,KAAKA,EAAE,aAAaG,EAAEH,GAAG,KAAK,KAAKA,EAAE,UAAUA,GAAG,OAAOA,EAAE,CAAC,GAAG,IAAI,EAAEimD,GAAG,EAAE/lD,EAAEC,EAAE,KAAK,YAAY,EAAE,EAAE,EAAE,OAAOD,EAAE,EAAE,aAAaC,EAAE,EAAE,UAAU,IAAI,EAAE,CAAC,EAAE0B,EAAE,CAAC,EAAE,GAAG3B,GAAG,KAAK,CAACF,EAAE,aAAaE,EAAE,EAAE,EAAE,OAAOA,CAAC,EAAE,KAAK,UAAU,CAAC,EAAE,QAAQ,KAAKA,EAAE,KAAK,UAAU,KAAK,IAAIxb,GAAG,CAAC,MAAM,EAAE,KAAK,CAAC,CAAC,EAAEmd,EAAEA,EAAE,OAAO,KAAK,SAAS,CAAC,CAAC,GAAG1B,GAAG,OAAOH,EAAE,UAAUG,EAAE,EAAE,EAAE,OAAOA,CAAC,EAAE,KAAK,aAAaA,EAAE,QAAQ,EAAE,CAAC,YAAY7U,GAAG,CAAC,IAAI,EAAE,CAAC,CAAC,EAAE,OAAO,CAAC,EAAEkX,EAAE,KAAK,UAAU,OAAOX,CAAC,EAAE,EAAE,KAAK,UAAU,KAAK,UAAUW,EAAE,IAAIE,EAAE,MAAM,MAAM,EAAE1C,CAAC,EAAE,OAAO,KAAK,UAAU,EAAE0C,CAAC,KAAM,QAAO,MAAM,MAAM,EAAE1C,CAAC,CAAC,CAAC,KAAK,EAAEA,EAAE,CAAC,OAAOzC,EAAE,IAAI,CAAC,IAAI2C,EAAEF,GAAG,KAAK,KAAKA,EAAE,KAAKG,EAAEH,GAAG,KAAK,KAAKA,EAAE,SAAS,EAAEA,GAAG,KAAK,KAAKA,EAAE,aAAa,EAAEk0C,GAAG,CAAC,EAAE,GAAG,OAAO,KAAK,SAAS,EAAE,KAAK,QAAQ,EAAE,KAAK,gBAAgB,CAAC,GAAG,IAAI,EAAE,MAAM,QAAQ,KAAK,KAAK,SAAS,EAAE,KAAK,KAAK,UAAU,OAAO,EAAE,GAAG,EAAE,SAAS,EAAE,MAAM,IAAIxG,EAAE,iBAAiB,CAAC,4BAA4B,EAAE,MAAM,oBAAoB,EAAE,KAAK,QAAQ,QAAQ,KAAK,kEAAkE,EAAE,IAAI7rC,EAAE,CAAC,SAAS1B,CAAC,EAAE,EAAE+lD,GAAG,CAACtjD,EAAEkB,IAAI,CAAC,IAAIC,EAAE,KAAK,KAAK,KAAK,CAACnB,CAAC,EAAE,OAAOkB,CAAC,EAAEjC,CAAC,EAAE,MAAM,CAACkC,EAAE,CAAC,EAAEA,EAAE,MAAM,CAAC,CAAC,CAAC,EAAE,EAAE,EAAE,KAAK,YAAY7D,EAAE,KAAK,KAAK,OAAO,KAAK,eAAe,EAAEsC,EAAE,EAAE,CAAC,EAAE,EAAE,EAAE,CAAC,EAAEE,EAAE,EAAE,CAAC,EAAE,KAAK,UAAU,KAAK,YAAYA,EAAEvC,CAAC,EAAE,IAAIwC,EAAE,KAAK,gBAAgB,EAAEH,EAAE,OAAO,KAAK,YAAY,CAACG,CAAC,EAAE,OAAOD,CAAC,EAAEC,CAAC,CAAC,CAAC,CAAC,gBAAgB,EAAE,CAAC,OAAOpF,EAAE,IAAI,CAAC,IAAIyC,EAAEX,GAAG,EAAE,KAAK,EAAE,OAAOW,EAAEvD,GAAGuD,EAAE,CAAC,EAAE,CAAC,CAAC,EAAEA,EAAEkxC,GAAGlxC,CAAC,EAAE,MAAM,QAAQ,KAAK,KAAK,SAAS,EAAE,KAAK,KAAK,UAAU,IAAIE,GAAGA,EAAE,EAAEkxC,GAAGpxC,EAAE,CAAC,EAAEE,CAAC,CAAC,EAAEF,CAAC,EAAE,KAAK,KAAK,UAAU,EAAE,CAACoxC,GAAGpxC,EAAE,CAAC,EAAE,KAAK,KAAK,SAAS,CAAC,CAAC,EAAE,CAACA,CAAC,CAAC,CAAC,CAAC,CAAC,IAAI,kBAAkB,CAAC,OAAO,KAAK,UAAU,KAAK,KAAK,iBAAiB,CAAC,CAAC,CAAC,IAAI,qBAAqB,CAAC,OAAO,KAAK,UAAU,KAAK,KAAK,oBAAoB,KAAK,KAAK,OAAO,CAAC,6BAA6B,EAAE,CAAC,MAAM,6BAA6B,CAAC,EAAE,KAAK,MAAM,MAAM,KAAK,KAAK,6BAA6B,CAAC,CAAC,CAAC,WAAW,CAAC,IAAI,EAAE,MAAM,UAAU,EAAEA,EAAE,CAAC,gBAAgB,KAAK,gBAAgB,YAAY,KAAK,YAAY,YAAY,KAAK,YAAY,SAAS,KAAK,SAAS,OAAO,KAAK,MAAM,EAAE,KAAK,cAAc,OAAOA,EAAE,aAAa,KAAK,cAAc,IAAIE,EAAE,KAAK,KAAK,UAAU,EAAE,OAAO,KAAK,aAAa,IAAIJ,GAAE,YAAYE,EAAE,KAAK,CAAC,UAAU,KAAK,KAAK,aAAa,EAAE,OAAOE,CAAC,GAAG,OAAO,OAAO,OAAO,OAAO,OAAO,OAAO,CAAC,EAAEA,CAAC,EAAE,CAAC,EAAEF,CAAC,CAAC,CAAC,OAAO,WAAW,EAAEA,EAAEE,EAAE,CAAC,EAAE,CAAC,IAAIC,EAAEH,EAAE,KAAK,EAAEk9C,GAAG/8C,EAAED,CAAC,EAAE,OAAO,IAAI,EAAE,OAAO,OAAOF,EAAE,CAAC,KAAK,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE9X,GAAG,UAAU,MAAMmS,GAAE,cAAcnS,EAAE,EAAE,IAAI0vD,GAAG,cAAchD,EAAE,CAAC,EAAEwR,GAAG,cAAcxO,EAAE,CAAC,YAAYl3C,EAAE,CAAC,MAAMA,CAAC,EAAE,KAAK,mBAAmB,OAAO,KAAK,2BAA2B,eAAe,KAAK,8BAA8B,aAAa,KAAK,yBAAyB,QAAQ,KAAK,MAAMA,EAAE,MAAMquC,GAAG,KAAK,MAAM,OAAO,EAAE,KAAK,WAAW6U,GAAGljD,EAAE,YAAY,KAAK,KAAK,mBAAmBA,EAAE,UAAU,EAAE,KAAK,QAAQA,EAAE,SAAS,KAAK,GAAGA,EAAE,QAAQ,KAAK,kBAAkBqzC,GAAGrzC,EAAE,mBAAmB,KAAK,0BAA0B,EAAE,KAAK,qBAAqBqzC,GAAGrzC,EAAE,sBAAsB,KAAK,6BAA6B,EAAE,KAAK,gBAAgBqzC,GAAGrzC,EAAE,iBAAiB,KAAK,wBAAwB,EAAE,KAAK,kBAAkB2jD,GAAG3jD,EAAE,iBAAiB,EAAE,KAAK,qBAAqB2jD,GAAG3jD,EAAE,oBAAoB,EAAE,KAAK,gBAAgB2jD,GAAG3jD,EAAE,eAAe,EAAE,KAAK,iBAAiBk2C,GAAGl2C,EAAE,gBAAgB,EAAE,KAAK,oBAAoBk2C,GAAGl2C,EAAE,mBAAmB,EAAE,KAAK,eAAek2C,GAAGl2C,EAAE,cAAc,EAAE,KAAK,QAAQiwC,GAAG,CAAC,EAAEC,GAAG,CAAC,EAAElwC,EAAE,SAAS,KAAK,EAAEA,EAAE,OAAO,CAAC,CAAC,CAAC,EAAE,KAAK,iBAAiBiwC,GAAG,CAAC,EAAEC,GAAG,CAAC,EAAElwC,EAAE,kBAAkB,KAAK,EAAEA,EAAE,gBAAgB,CAAC,CAAC,CAAC,EAAE,KAAK,YAAYA,EAAE,YAAY,KAAK,UAAU,KAAK,MAAM,KAAK,YAAY,KAAK,KAAK,qBAAqB,IAAI,CAAC,MAAMA,EAAE,CAACA,EAAEyzC,GAAGzzC,CAAC,EAAE,KAAK,OAAO,KAAK,UAAU,SAAS,CAACA,EAAEA,EAAE,OAAO,CAAC,EAAE,KAAK,KAAK,EAAE,KAAK,KAAK,kBAAkB,KAAK,kBAAkB,GAAG,KAAK,gBAAgB,EAAE,KAAK,gBAAgB,KAAK,UAAU,mBAAmB,CAAC,KAAK,MAAM,KAAK,KAAK,EAAE,KAAK,KAAK,qBAAqB,KAAK,qBAAqB,GAAG,KAAK,mBAAmB,EAAE,KAAK,QAAQ,KAAK,KAAK,KAAK,UAAU,OAAO,CAAC,KAAK,KAAK,EAAE,KAAK,KAAK,gBAAgB,KAAK,gBAAgB,GAAG,KAAK,cAAc,EAAE,KAAK,KAAK,KAAK,KAAK,MAAM,EAAE,CAAC,KAAKA,EAAEV,EAAE,CAAC,OAAOzC,EAAE,IAAI,CAAC,GAAGmD,EAAEA,EAAEA,EAAE,SAAS,EAAE,MAAM,IAAIgtC,EAAE,8CAA8ChtC,EAAE,MAAM,GAAG,EAAE,IAAI,EAAEA,EAAE,CAAC,EAAEA,EAAEA,EAAE,CAAC,EAAE,IAAIP,EAAEH,EAAE,UAAU,KAAK,GAAGA,EAAE,SAAS,EAAE,KAAK,SAAS,KAAK,QAAQ,GAAG,KAAK,aAAa,OAAO,KAAK,YAAYqmD,GAAG,CAAC,KAAK,IAAIpvD,GAAGyJ,CAAC,EAAE,KAAK,KAAK,QAAQ,SAASP,EAAE,YAAY,KAAK,WAAW,CAAC,GAAG,EAAE,KAAK,kBAAkB,KAAK,iBAAiB,GAAG,KAAK,sBAAsB,OAAO,KAAK,qBAAqBkmD,GAAG,CAAC,KAAK,IAAIpvD,GAAG,CAAC,EAAE,KAAK,KAAK,iBAAiB,SAASkJ,EAAE,YAAY,KAAK,WAAW,CAAC,GAAG,IAAIwB,EAAEC,EAAE,KAAK,YAAYC,EAAE,KAAK,qBAAqBD,GAAG,KAAKD,EAAEkwC,GAAGr7C,EAAEkK,EAAEkB,CAAC,EAAE,KAAK,OAAO,KAAK,CAAC,EAAED,EAAEkwC,GAAGnxC,EAAE,KAAK,OAAO,KAAK,CAAC,EAAE,KAAK,MAAM,OAAOiB,EAAEswC,GAAGtwC,EAAE,KAAK,KAAK,KAAK,CAAC,GAAGE,GAAG,OAAO,EAAErL,EAAE,EAAEqL,CAAC,GAAG,IAAIC,EAAEpV,EAAEiV,EAAEkwC,GAAG,EAAE,KAAK,gBAAgB,KAAK,CAAC,CAAC,EAAE,OAAO,KAAK,YAAY,OAAO/vC,EAAE,KAAK,WAAW,MAAMA,CAAC,GAAG,CAACA,EAAEA,CAAC,CAAC,CAAC,CAAC,CAAC,WAAW,CAAC,IAAIpB,EAAE,MAAM,UAAU,EAAEV,EAAE,CAAC,MAAM,KAAK,MAAM,WAAW0jD,GAAG,KAAK,UAAU,EAAE,QAAQ,KAAK,QAAQ,kBAAkB5P,GAAG,KAAK,iBAAiB,EAAE,qBAAqBA,GAAG,KAAK,oBAAoB,EAAE,gBAAgBA,GAAG,KAAK,eAAe,EAAE,kBAAkBqQ,GAAG,KAAK,iBAAiB,EAAE,qBAAqBA,GAAG,KAAK,oBAAoB,EAAE,gBAAgBA,GAAG,KAAK,eAAe,EAAE,oBAAoBA,GAAG,KAAK,mBAAmB,EAAE,iBAAiBzN,GAAG,KAAK,gBAAgB,EAAE,oBAAoBA,GAAG,KAAK,mBAAmB,EAAE,eAAeA,GAAG,KAAK,cAAc,EAAE,QAAQ,KAAK,QAAQ,iBAAiB,KAAK,gBAAgB,EAAE,OAAO,OAAO,OAAO,OAAO,OAAO,CAAC,EAAEh2C,CAAC,EAAEV,CAAC,CAAC,CAAC,EAAEomD,GAAG,UAAU,gBAAgB/rD,GAAE,cAAc+rD,EAAE,EAAE,IAAIE,GAAG,cAAcp+D,EAAE,CAAC,YAAYwY,EAAE,CAACA,EAAE,KAAK,IAAI0lD,GAAG1lD,CAAC,EAAE,MAAMA,CAAC,CAAC,CAAC,KAAKA,EAAEV,EAAE,CAAC,OAAOzC,EAAE,IAAI,CAAC,KAAK,KAAK,aAAa,OAAO9M,GAAG,KAAK,KAAK,WAAW,EAAE,KAAK,KAAK,YAAY,MAAM,KAAK,KAAK,sBAAsB,OAAOA,GAAG,KAAK,KAAK,oBAAoB,EAAE,KAAK,KAAK,qBAAqB,MAAM,IAAI,EAAEuP,GAAG,KAAK,KAAKA,EAAE,KAAKG,EAAEH,GAAG,KAAK,KAAKA,EAAE,SAAS2B,EAAE3B,GAAG,KAAK,KAAKA,EAAE,aAAa,OAAO,MAAM,KAAKU,EAAE,CAAC,KAAK,EAAE,SAASP,EAAE,aAAawB,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,OAAO,WAAWjB,EAAEV,EAAE,CAAC,OAAO,IAAIU,EAAEV,CAAC,CAAC,CAAC,EAAEsmD,GAAG,UAAU,YAAYjsD,GAAE,cAAcisD,EAAE,EAAE,IAAIC,GAAG,cAAc3O,EAAE,CAAC,YAAYl3C,EAAE,CAAC,GAAG,MAAMA,CAAC,EAAE,KAAK,mBAAmB,OAAO,KAAK,6BAA6B,cAAc,KAAK,2BAA2B,eAAe,KAAK,8BAA8B,aAAa,KAAK,yBAAyB,QAAQA,EAAE,WAAW,MAAM,IAAIgtC,EAAE,6DAA6D,EAAE,KAAK,MAAMhtC,EAAE,MAAMquC,GAAG,KAAK,MAAM,OAAO,EAAE,KAAK,WAAW6U,GAAGljD,EAAE,aAAa,OAAO,KAAK,mBAAmBA,EAAE,UAAU,EAAE,KAAK,oBAAoBkjD,GAAGljD,EAAE,sBAAsB,OAAO,KAAK,6BAA6BA,EAAE,mBAAmB,EAAE,KAAK,QAAQA,EAAE,SAAS,KAAK,GAAGA,EAAE,QAAQ,KAAK,kBAAkBqzC,GAAGrzC,EAAE,mBAAmB,KAAK,0BAA0B,EAAE,KAAK,qBAAqBqzC,GAAGrzC,EAAE,sBAAsB,KAAK,6BAA6B,EAAE,KAAK,gBAAgBqzC,GAAGrzC,EAAE,iBAAiB,KAAK,wBAAwB,EAAE,KAAK,kBAAkB2jD,GAAG3jD,EAAE,iBAAiB,EAAE,KAAK,qBAAqB2jD,GAAG3jD,EAAE,oBAAoB,EAAE,KAAK,gBAAgB2jD,GAAG3jD,EAAE,eAAe,EAAE,KAAK,iBAAiBk2C,GAAGl2C,EAAE,gBAAgB,EAAE,KAAK,oBAAoBk2C,GAAGl2C,EAAE,mBAAmB,EAAE,KAAK,eAAek2C,GAAGl2C,EAAE,cAAc,EAAE,KAAK,QAAQiwC,GAAG,CAAC,EAAEC,GAAG,CAAC,EAAElwC,EAAE,SAAS,KAAK,EAAEA,EAAE,OAAO,CAAC,CAAC,CAAC,EAAE,KAAK,iBAAiBiwC,GAAG,CAAC,EAAEC,GAAG,CAAC,EAAElwC,EAAE,kBAAkB,KAAK,EAAEA,EAAE,gBAAgB,CAAC,CAAC,CAAC,EAAE,KAAK,YAAYA,EAAE,YAAY,KAAK,eAAeA,EAAE,eAAe,KAAK,UAAU,KAAK,MAAM,KAAK,YAAY,KAAK,KAAK,qBAAqB,IAAI,CAAC,MAAMA,EAAE,CAACA,EAAEyzC,GAAGzzC,CAAC,EAAE,IAAIV,EAAEU,EAAEA,EAAE,OAAO,CAAC,EAAE,KAAK,OAAO,KAAK,UAAU,SAAS,CAACV,EAAE,KAAK,MAAM,CAAC,EAAE,KAAK,KAAK,kBAAkB,KAAK,kBAAkB,GAAG,KAAK,gBAAgB,EAAE,KAAK,gBAAgB,KAAK,UAAU,mBAAmB,CAAC,KAAK,MAAM,KAAK,MAAM,CAAC,EAAE,KAAK,KAAK,qBAAqB,KAAK,qBAAqB,GAAG,KAAK,mBAAmB,EAAE,KAAK,QAAQ,KAAK,KAAK,KAAK,UAAU,OAAO,CAAC,KAAK,MAAM,CAAC,EAAE,KAAK,KAAK,gBAAgB,KAAK,gBAAgB,GAAG,KAAK,cAAc,EAAE,KAAK,KAAK,KAAK,KAAK,MAAM,EAAE,CAAC,KAAKU,EAAEV,EAAE,CAAC,OAAOzC,EAAE,IAAI,CAAC,GAAGmD,EAAEA,EAAEA,EAAE,SAAS,EAAE,MAAM,IAAIgtC,EAAE,uDAAuDhtC,EAAE,MAAM,GAAG,EAAE,IAAI,EAAEV,EAAE,UAAU,KAAK,GAAGA,EAAE,SAASG,EAAEO,EAAE,CAAC,EAAEA,EAAEA,EAAE,CAAC,EAAE,EAAE,KAAK,SAAS,KAAK,QAAQ,GAAG,KAAK,aAAa,OAAO,KAAK,YAAY2lD,GAAG,CAAC,KAAK,IAAIpvD,GAAGyJ,CAAC,EAAE,KAAK,KAAK,QAAQ,SAAS,EAAE,MAAM,EAAE,YAAY,KAAK,WAAW,CAAC,GAAG,EAAE,KAAK,kBAAkB,KAAK,iBAAiB,GAAG,KAAK,sBAAsB,OAAO,KAAK,qBAAqB2lD,GAAG,CAAC,KAAK,IAAIpvD,GAAGkJ,CAAC,EAAE,KAAK,KAAK,iBAAiB,SAAS,EAAE,MAAM,EAAE,YAAY,KAAK,WAAW,CAAC,GAAG,IAAIwB,EAAE,KAAK,YAAYC,EAAE,KAAK,qBAAqBC,EAAEC,EAAE,EAAE,EAAE,KAAK,SAAS,KAAK,QAAQ,IAAIpB,EAAElK,EAAEkK,EAAEiB,EAAE,CAAC,CAAC,GAAG,IAAIa,EAAEqvC,GAAGnxC,EAAE,KAAK,OAAO,KAAK,CAAC,EAAE,KAAK,UAAU8B,EAAEyvC,GAAGzvC,EAAE,KAAK,KAAK,KAAK,CAAC,GAAG,EAAE,KAAK,kBAAkB,KAAK,iBAAiB,IAAIrC,EAAE3J,EAAE2J,EAAEyB,EAAE,CAAC,CAAC,GAAG,IAAI,EAAE,KAAK,gBAAgB,KAAK,EAAE,CAACc,EAAEC,CAAC,EAAE5G,GAAG,EAAE,CAAC,EAAE,KAAK,MAAM,KAAK,KAAK,EAAE,EAAE,KAAK,CAAC,EAAE6G,EAAEivC,GAAG1xC,EAAEuC,CAAC,EAAE,CAACoB,EAAEC,EAAEqD,CAAC,EAAErL,GAAGyG,EAAE,EAAEA,EAAE,KAAK,CAAC,EAAE,CAAC,EAAE+B,CAAC,EAAExI,GAAG6G,EAAE,EAAEA,EAAE,KAAK,CAAC,EAAEf,EAAE,KAAK,oBAAoB,MAAMnV,EAAEoX,EAAE,CAAC,CAAC,EAAEhC,EAAE,KAAK,oBAAoB,MAAMpV,EAAEqX,EAAEQ,CAAC,CAAC,EAAE,IAAIC,EAAEqtC,GAAGr7C,EAAEsL,EAAE3B,CAAC,EAAEwC,CAAC,EAAE,EAAE,KAAK,WAAW,MAAMjW,EAAE0a,EAAE5C,CAAC,CAAC,EAAE,IAAIC,EAAE/X,EAAE8J,EAAEqL,EAAE1B,CAAC,EAAE3J,EAAE9J,EAAE,EAAEiK,GAAGkL,CAAC,CAAC,EAAE,CAAC,CAAC,EAAE,MAAM,CAAC4C,EAAEA,CAAC,CAAC,CAAC,CAAC,CAAC,WAAW,CAAC,IAAI/D,EAAE,MAAM,UAAU,EAAEV,EAAE,CAAC,MAAM,KAAK,MAAM,WAAW0jD,GAAG,KAAK,UAAU,EAAE,oBAAoBA,GAAG,KAAK,mBAAmB,EAAE,QAAQ,KAAK,QAAQ,kBAAkB5P,GAAG,KAAK,iBAAiB,EAAE,qBAAqBA,GAAG,KAAK,oBAAoB,EAAE,gBAAgBA,GAAG,KAAK,eAAe,EAAE,kBAAkBqQ,GAAG,KAAK,iBAAiB,EAAE,qBAAqBA,GAAG,KAAK,oBAAoB,EAAE,gBAAgBA,GAAG,KAAK,eAAe,EAAE,oBAAoBA,GAAG,KAAK,mBAAmB,EAAE,iBAAiBzN,GAAG,KAAK,gBAAgB,EAAE,oBAAoBA,GAAG,KAAK,mBAAmB,EAAE,eAAeA,GAAG,KAAK,cAAc,EAAE,QAAQ,KAAK,QAAQ,iBAAiB,KAAK,iBAAiB,eAAe,KAAK,eAAe,WAAW,EAAE,EAAE,OAAO,OAAO,OAAO,OAAO,OAAO,CAAC,EAAEh2C,CAAC,EAAEV,CAAC,CAAC,CAAC,EAAEumD,GAAG,UAAU,UAAUlsD,GAAE,cAAcksD,EAAE,EAAE,IAAIC,GAAG,cAAct+D,EAAE,CAAC,YAAYwY,EAAE,CAACA,EAAE,iBAAiB,GAAG,QAAQ,KAAK,gHAAgH,EAAEA,EAAE,KAAK,IAAI6lD,GAAG7lD,CAAC,EAAE,MAAMA,CAAC,CAAC,CAAC,KAAKA,EAAEV,EAAE,CAAC,OAAOzC,EAAE,IAAI,CAAC,KAAK,KAAK,aAAa,OAAO9M,GAAG,KAAK,KAAK,WAAW,EAAE,KAAK,KAAK,YAAY,MAAM,KAAK,KAAK,sBAAsB,OAAOA,GAAG,KAAK,KAAK,oBAAoB,EAAE,KAAK,KAAK,qBAAqB,MAAM,IAAI,EAAEuP,GAAG,KAAK,KAAKA,EAAE,KAAKG,EAAEH,GAAG,KAAK,KAAKA,EAAE,SAAS2B,EAAE3B,GAAG,KAAK,KAAKA,EAAE,aAAa,OAAO,MAAM,KAAKU,EAAE,CAAC,KAAK,EAAE,SAASP,EAAE,aAAawB,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,OAAO,WAAWjB,EAAEV,EAAE,CAAC,OAAOA,EAAE,gBAAgB,IAAIA,EAAE,eAAe,GAAG,IAAIU,EAAEV,CAAC,CAAC,CAAC,EAAEwmD,GAAG,UAAU,MAAMnsD,GAAE,cAAcmsD,EAAE,EAAE,IAAIC,GAAG,cAAc7O,EAAE,CAAC,YAAYl3C,EAAE,CAAC,MAAMA,CAAC,EAAE,KAAK,mBAAmB,OAAO,KAAK,6BAA6B,cAAc,KAAK,2BAA2B,eAAe,KAAK,8BAA8B,aAAa,KAAK,yBAAyB,QAAQ,KAAK,MAAMA,EAAE,MAAMquC,GAAG,KAAK,MAAM,OAAO,EAAE,KAAK,WAAW6U,GAAGljD,EAAE,aAAa,OAAO,KAAK,mBAAmBA,EAAE,UAAU,EAAE,KAAK,oBAAoBkjD,GAAGljD,EAAE,sBAAsB,OAAO,KAAK,6BAA6BA,EAAE,mBAAmB,EAAE,KAAK,QAAQA,EAAE,SAAS,KAAK,GAAGA,EAAE,QAAQ,KAAK,kBAAkBqzC,GAAGrzC,EAAE,mBAAmB,KAAK,0BAA0B,EAAE,KAAK,qBAAqBqzC,GAAGrzC,EAAE,sBAAsB,KAAK,6BAA6B,EAAE,KAAK,gBAAgBqzC,GAAGrzC,EAAE,iBAAiB,KAAK,wBAAwB,EAAE,KAAK,eAAeA,EAAE,eAAe,KAAK,kBAAkB2jD,GAAG3jD,EAAE,iBAAiB,EAAE,KAAK,qBAAqB2jD,GAAG3jD,EAAE,oBAAoB,EAAE,KAAK,gBAAgB2jD,GAAG3jD,EAAE,eAAe,EAAE,KAAK,iBAAiBk2C,GAAGl2C,EAAE,gBAAgB,EAAE,KAAK,oBAAoBk2C,GAAGl2C,EAAE,mBAAmB,EAAE,KAAK,eAAek2C,GAAGl2C,EAAE,cAAc,EAAE,KAAK,QAAQiwC,GAAG,CAAC,EAAEC,GAAG,CAAC,EAAElwC,EAAE,SAAS,KAAK,EAAEA,EAAE,OAAO,CAAC,CAAC,CAAC,EAAE,KAAK,iBAAiBiwC,GAAG,CAAC,EAAEC,GAAG,CAAC,EAAElwC,EAAE,kBAAkB,KAAK,EAAEA,EAAE,gBAAgB,CAAC,CAAC,CAAC,EAAE,KAAK,YAAYA,EAAE,YAAY,KAAK,eAAeA,EAAE,eAAe,KAAK,UAAU,CAAC,KAAK,MAAM,KAAK,KAAK,EAAE,KAAK,YAAY,KAAK,KAAK,qBAAqB,IAAI,CAAC,MAAMA,EAAE,CAAC,IAAIV,EAAEU,EAAEyzC,GAAGzzC,CAAC,EAAE,IAAI,EAAEA,EAAEA,EAAE,OAAO,CAAC,EAAE,KAAK,OAAO,KAAK,UAAU,SAAS,CAAC,EAAE,KAAK,MAAM,CAAC,EAAE,KAAK,KAAK,kBAAkB,KAAK,kBAAkB,GAAG,KAAK,gBAAgB,EAAE,KAAK,gBAAgB,KAAK,UAAU,mBAAmB,CAAC,KAAK,MAAM,KAAK,MAAM,CAAC,EAAE,KAAK,KAAK,qBAAqB,KAAK,qBAAqB,GAAG,KAAK,mBAAmB,EAAE,IAAIP,EAAE,GAAG,KAAK,QAAQ,CAAC,GAAG,KAAK,eAAe,CAAC,IAAIwB,EAAE,KAAK,gBAAgBC,EAAE,KAAK,MAAMzB,EAAE,IAAIH,EAAE,cAAc2yC,EAAE,CAAC,MAAM7wC,EAAEC,EAAE,CAAC,IAAIS,EAAEb,EAAE,MAAM,CAACC,CAAC,CAAC,EAAEa,EAAE,IAAIowC,GAAG,EAAE,MAAM,CAACjxC,CAAC,CAAC,EAAEc,EAAEf,EAAE,MAAM,CAACC,EAAE,CAAC,CAAC,EAAE,OAAO+vC,GAAGA,GAAGnvC,EAAEC,CAAC,EAAEC,CAAC,CAAC,CAAC,EAAE1C,EAAE,UAAU,aAAaA,EAAE,MAAMG,EAAE,KAAK,gBAAgB,KAAK,KAAK,KAAK,UAAU,OAAO,CAAC,KAAK,MAAM,CAAC,EAAE,KAAKA,EAAE,KAAK,gBAAgB,GAAG,KAAK,cAAc,CAAC,MAAM,KAAK,KAAK,KAAK,KAAK,MAAM,EAAE,CAAC,KAAKO,EAAEV,EAAE,CAAC,OAAOzC,EAAE,IAAI,CAAC,IAAI,EAAEyC,EAAE,UAAU,KAAK,GAAGA,EAAE,SAAS,GAAGU,EAAEA,EAAEA,EAAE,SAAS,EAAE,MAAM,IAAIgtC,EAAE,wDAAwDhtC,EAAE,MAAM,GAAG,EAAE,IAAIP,EAAEO,EAAE,CAAC,EAAEiB,EAAEjB,EAAE,CAAC,EAAEA,EAAEA,EAAE,CAAC,EAAE,EAAE,KAAK,SAAS,KAAK,QAAQ,GAAG,KAAK,aAAa,OAAO,KAAK,YAAY2lD,GAAG,CAAC,KAAK,IAAIpvD,GAAGyJ,CAAC,EAAE,KAAK,KAAK,QAAQ,SAAS,EAAE,MAAM,EAAE,YAAY,KAAK,WAAW,CAAC,GAAG,EAAE,KAAK,kBAAkB,KAAK,iBAAiB,GAAG,KAAK,sBAAsB,OAAO,KAAK,qBAAqB2lD,GAAG,CAAC,KAAK,IAAIpvD,GAAGkJ,CAAC,EAAE,KAAK,KAAK,iBAAiB,SAAS,EAAE,MAAM,EAAE,YAAY,KAAK,WAAW,CAAC,GAAG,IAAIyB,EAAE,KAAK,YAAYC,EAAE,KAAK,qBAAqBC,EAAE,EAAEU,EAAE,EAAE,EAAE,KAAK,SAAS,KAAK,QAAQ,IAAI9B,EAAElK,EAAEkK,EAAEkB,EAAE,CAAC,CAAC,GAAG,IAAIc,EAAEmvC,GAAGnxC,EAAE,KAAK,OAAO,KAAK,CAAC,EAAE,EAAE,KAAK,kBAAkB,KAAK,iBAAiB,IAAIP,EAAE3J,EAAE2J,EAAE0B,EAAE,CAAC,CAAC,GAAGa,EAAEhW,EAAEgW,EAAEmvC,GAAG1xC,EAAE,KAAK,gBAAgB,KAAK,CAAC,CAAC,EAAE,KAAK,UAAUuC,EAAEuvC,GAAGvvC,EAAE,KAAK,KAAK,KAAK,CAAC,GAAG,GAAG,CAACC,EAAEC,EAAEkB,EAAEC,CAAC,EAAEhI,GAAG2G,EAAE,EAAEA,EAAE,KAAK,CAAC,EAAEZ,EAAE,KAAK,oBAAoB,MAAMa,CAAC,EAAE,EAAE,KAAK,oBAAoB,MAAMC,CAAC,EAAEJ,EAAE9V,EAAE8J,EAAE,EAAEmL,CAAC,EAAEnL,EAAEsL,EAAE,KAAK,WAAW,MAAMgC,CAAC,CAAC,CAAC,EAAE,EAAE,KAAK,oBAAoB,MAAMC,CAAC,EAAE,IAAIqD,EAAE5Q,EAAE,EAAE,KAAK,WAAW,MAAMgM,CAAC,CAAC,EAAE,MAAM,CAAC4E,EAAEA,EAAE5E,CAAC,CAAC,CAAC,CAAC,CAAC,WAAW,CAAC,IAAI9B,EAAE,MAAM,UAAU,EAAEV,EAAE,CAAC,MAAM,KAAK,MAAM,WAAW0jD,GAAG,KAAK,UAAU,EAAE,oBAAoBA,GAAG,KAAK,mBAAmB,EAAE,QAAQ,KAAK,QAAQ,kBAAkB5P,GAAG,KAAK,iBAAiB,EAAE,qBAAqBA,GAAG,KAAK,oBAAoB,EAAE,gBAAgBA,GAAG,KAAK,eAAe,EAAE,eAAe,KAAK,eAAe,kBAAkBqQ,GAAG,KAAK,iBAAiB,EAAE,qBAAqBA,GAAG,KAAK,oBAAoB,EAAE,gBAAgBA,GAAG,KAAK,eAAe,EAAE,oBAAoBA,GAAG,KAAK,mBAAmB,EAAE,iBAAiBzN,GAAG,KAAK,gBAAgB,EAAE,oBAAoBA,GAAG,KAAK,mBAAmB,EAAE,eAAeA,GAAG,KAAK,cAAc,EAAE,QAAQ,KAAK,QAAQ,iBAAiB,KAAK,iBAAiB,eAAe,KAAK,cAAc,EAAE,OAAO,OAAO,OAAO,OAAO,OAAO,CAAC,EAAEh2C,CAAC,EAAEV,CAAC,CAAC,CAAC,EAAEymD,GAAG,UAAU,WAAWpsD,GAAE,cAAcosD,EAAE,EAAE,IAAIC,GAAG,cAAcx+D,EAAE,CAAC,YAAYwY,EAAE,CAACA,EAAE,iBAAiB,GAAG,QAAQ,KAAK,gHAAgH,EAAEA,EAAE,KAAK,IAAI+lD,GAAG/lD,CAAC,EAAE,MAAMA,CAAC,CAAC,CAAC,KAAKA,EAAEV,EAAE,CAAC,OAAOzC,EAAE,IAAI,CAAC,KAAK,KAAK,aAAa,OAAO9M,GAAG,KAAK,KAAK,WAAW,EAAE,KAAK,KAAK,YAAY,MAAM,KAAK,KAAK,sBAAsB,OAAOA,GAAG,KAAK,KAAK,oBAAoB,EAAE,KAAK,KAAK,qBAAqB,MAAM,IAAI,EAAEuP,GAAG,KAAK,KAAKA,EAAE,KAAKG,EAAEH,GAAG,KAAK,KAAKA,EAAE,SAAS2B,EAAE3B,GAAG,KAAK,KAAKA,EAAE,aAAa,OAAO,MAAM,KAAKU,EAAE,CAAC,KAAK,EAAE,SAASP,EAAE,aAAawB,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,OAAO,WAAWjB,EAAEV,EAAE,CAAC,OAAOA,EAAE,gBAAgB,IAAIA,EAAE,eAAe,GAAG,IAAIU,EAAEV,CAAC,CAAC,CAAC,EAAE0mD,GAAG,UAAU,OAAOrsD,GAAE,cAAcqsD,EAAE,EAAE,IAAIP,GAAG,cAAcvO,EAAE,CAAC,YAAYl3C,EAAE,CAAC,MAAMA,CAAC,EAAE,KAAK,MAAMA,EAAE,KAAK,CAAC,IAAI,WAAW,CAAC,IAAIA,EAAE,CAAC,EAAE,QAAQV,KAAK,KAAK,MAAM,MAAM,EAAE,QAAQ,EAAE,MAAM,QAAQA,EAAE,SAAS,EAAEU,EAAE,KAAK,GAAGV,EAAE,SAAS,EAAEU,EAAE,KAAKV,EAAE,SAAS,EAAE,OAAOU,CAAC,CAAC,KAAKA,EAAEV,EAAE,CAAC,OAAOzC,EAAE,IAAI,CAACmD,EAAEA,EAAE,IAAI,EAAEA,EAAE,MAAM,CAAC,EAAEP,EAAE,CAAC,EAAE,QAAQ0B,KAAK,KAAK,MAAM,MAAM,EAAE,QAAQ,EAAE,MAAM,QAAQA,EAAE,SAAS,EAAE1B,EAAE,KAAK,EAAE,OAAO,EAAE0B,EAAE,UAAU,MAAM,CAAC,EAAE1B,EAAE,KAAK,EAAE,OAAO,EAAE,CAAC,CAAC,EAAEA,EAAE,QAAQ,EAAE,IAAIwB,EAAE,CAAC,EAAEC,EAAE,QAAQC,EAAE,EAAEA,EAAE,KAAK,MAAM,OAAO,EAAEA,EAAE,CAAC,IAAIC,EAAE,KAAK,MAAMD,CAAC,EAAE,EAAE1B,EAAE0B,CAAC,EAAEA,IAAI,EAAED,EAAE,CAAClB,EAAE,CAAC,CAAC,EAAE,OAAO,CAAC,EAAEkB,EAAE,CAACA,EAAE,CAAC,CAAC,EAAE,OAAO,CAAC,EAAEA,EAAEE,EAAE,KAAKF,EAAE5B,CAAC,EAAE2B,EAAE,KAAKC,EAAE,MAAM,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,QAAQC,KAAKF,EAAE,MAAM,EAAE,QAAQ,EAAE,EAAE,KAAK,GAAGE,CAAC,EAAE,MAAM,CAACD,EAAE,CAAC,CAAC,EAAE,OAAO,CAAC,CAAC,CAAC,CAAC,CAAC,MAAMlB,EAAE,CAACszC,GAAGtzC,CAAC,IAAIA,EAAEA,EAAE,CAAC,GAAGA,EAAEA,EAAE,IAAIV,EAAE,KAAK,MAAM,QAAQ,CAAC,EAAEG,IAAI,CAACgwC,GAAG,WAAWhwC,CAAC,GAAG,IAAI,CAAC,EAAE,MAAMO,CAAC,EAAE,MAAM,QAAQ,EAAE,SAAS,EAAEV,EAAE,EAAE,UAAU,CAAC,EAAEA,EAAE,EAAE,UAAUU,EAAE,CAACA,EAAE,CAAC,EAAEV,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,KAAK,MAAM,EAAE,CAAC,WAAW,CAAC,IAAIU,EAAE,MAAM,UAAU,EAAEV,EAAE2B,IAAI,CAAC,UAAUA,EAAE,aAAa,EAAE,OAAOA,EAAE,UAAU,CAAC,GAAGxB,EAAE,CAAC,MAAM,KAAK,MAAM,IAAIH,CAAC,CAAC,EAAE,OAAO,OAAO,OAAO,OAAO,OAAO,CAAC,EAAEU,CAAC,EAAEP,CAAC,CAAC,CAAC,OAAO,WAAWO,EAAEV,EAAE,EAAE,CAAC,EAAE,CAAC,IAAIG,EAAE,CAAC,EAAE,QAAQwB,KAAK3B,EAAE,MAAMG,EAAE,KAAK+8C,GAAGv7C,EAAE,CAAC,CAAC,EAAE,OAAO,IAAIjB,EAAE,CAAC,MAAMP,CAAC,CAAC,CAAC,CAAC,IAAI,kBAAkB,CAAC,GAAG,CAAC,KAAK,UAAU,MAAM,CAAC,EAAE,IAAIO,EAAE,CAAC,EAAE,QAAQV,KAAK,KAAK,MAAMU,EAAE,KAAK,GAAGV,EAAE,gBAAgB,EAAE,OAAOU,CAAC,CAAC,IAAI,qBAAqB,CAAC,IAAIA,EAAE,CAAC,EAAE,QAAQV,KAAK,KAAK,MAAMU,EAAE,KAAK,GAAGV,EAAE,mBAAmB,EAAE,GAAG,CAAC,KAAK,UAAU,CAAC,IAAIA,EAAE,CAAC,EAAE,QAAQ,KAAK,KAAK,MAAMA,EAAE,KAAK,GAAG,EAAE,gBAAgB,EAAE,OAAOA,EAAE,OAAOU,CAAC,CAAC,CAAC,OAAOA,CAAC,CAAC,YAAY,CAAC,IAAIA,EAAE,CAAC,EAAE,QAAQV,KAAK,KAAK,MAAMU,EAAE,KAAK,GAAGV,EAAE,OAAO,EAAE,OAAOu0C,GAAG7zC,CAAC,CAAC,CAAC,WAAWA,EAAE,CAAC,IAAIV,EAAE,CAAC,EAAE,QAAQ,KAAK,KAAK,MAAM,CAAC,IAAIG,EAAE,EAAE,QAAQ,OAAOwB,EAAEjB,EAAE,OAAOP,CAAC,EAAE,QAAQyB,EAAE,EAAEA,EAAE,EAAE,QAAQ,OAAO,EAAEA,EAAE5B,EAAE,KAAK,CAAC,EAAE,QAAQ4B,CAAC,EAAED,EAAEC,CAAC,CAAC,CAAC,CAAC,CAAC4yC,GAAGx0C,CAAC,CAAC,CAAC,EAAEmmD,GAAG,UAAU,kBAAkB9rD,GAAE,cAAc8rD,EAAE,EAAE,SAASE,GAAGvmD,EAAE,CAAC,GAAG,CAAC,KAAK,EAAE,KAAKE,EAAE,SAASE,EAAE,GAAG,MAAMC,EAAE,EAAE,YAAY,CAAC,EAAEL,EAAE,EAAE,IAAI,GAAG,KAAK,EAAE,EAAE,EAAEE,CAAC,EAAEoyC,GAAG,EAAE,EAAEpyC,CAAC,EAAE6B,EAAE,IAAIywC,GAAG,EAAE,EAAEpyC,CAAC,EAAE,MAAM,CAACC,GAAGA,GAAG,EAAErM,GAAG+N,EAAE,EAAE,MAAM,CAAC,EAAE,MAAM1B,CAAC,EAAE,KAAK,MAAM,EAAE,IAAI0B,CAAC,EAAE,IAAI,GAAG/N,GAAG,EAAE,MAAM,CAAC,CAAC,CAAC,CAAC,IAAI6yD,GAAG,SAAS7mD,EAAE,EAAE,CAAC,IAAIE,EAAE,CAAC,EAAE,QAAQE,KAAKJ,EAAE,OAAO,UAAU,eAAe,KAAKA,EAAEI,CAAC,GAAG,EAAE,QAAQA,CAAC,EAAE,IAAIF,EAAEE,CAAC,EAAEJ,EAAEI,CAAC,GAAG,GAAGJ,GAAG,MAAM,OAAO,OAAO,uBAAuB,WAAW,QAAQK,EAAE,EAAED,EAAE,OAAO,sBAAsBJ,CAAC,EAAEK,EAAED,EAAE,OAAOC,IAAI,EAAE,QAAQD,EAAEC,CAAC,CAAC,EAAE,GAAG,OAAO,UAAU,qBAAqB,KAAKL,EAAEI,EAAEC,CAAC,CAAC,IAAIH,EAAEE,EAAEC,CAAC,CAAC,EAAEL,EAAEI,EAAEC,CAAC,CAAC,GAAG,OAAOH,CAAC,EAAM4mD,GAAG,cAAc1+D,EAAE,CAAC,YAAYwY,EAAE,CAAC,GAAGA,EAAE,OAAO,MAAM,IAAIitC,GAAG,oDAAoD,EAAE,GAAG,MAAM,QAAQjtC,EAAE,IAAI,EAAE,MAAM,IAAIitC,GAAG,gEAAgE,EAAE,MAAMjtC,CAAC,EAAE,KAAK,UAAU,CAAC,IAAIhc,GAAG,CAAC,KAAK,CAAC,CAAC,CAAC,CAAC,CAAC,KAAKgc,EAAEV,EAAE,CAAC,OAAOzC,EAAE,IAAI,CAAC,GAAG,KAAK,KAAK,aAAa,OAAO9M,GAAG,KAAK,KAAK,WAAW,EAAE,KAAK,KAAK,YAAY,MAAM,KAAK,KAAK,sBAAsB,OAAOA,GAAG,KAAK,KAAK,oBAAoB,EAAE,KAAK,KAAK,qBAAqB,MAAMuP,GAAGA,EAAE,UAAU,MAAM,IAAI0tC,EAAE,2CAA2C,EAAE,IAAI,EAAE1tC,GAAG,KAAK,KAAKA,EAAE,KAAKG,EAAEH,GAAG,KAAK,KAAKA,EAAE,SAAS2B,EAAE3B,GAAG,KAAK,KAAKA,EAAE,aAAa,OAAO,MAAM,KAAKU,EAAE,CAAC,KAAK,EAAE,SAASP,EAAE,aAAawB,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,mBAAmBjB,EAAE,CAAC,IAAIV,EAAE,KAAK,yBAAyBU,CAAC,EAAE,OAAO,KAAK,kBAAkBV,EAAE,CAACA,EAAE,CAAC,EAAE,GAAGA,EAAE,MAAM,CAAC,CAAC,GAAG,KAAK,cAAcA,EAAE,CAACA,EAAE,GAAG,MAAM,CAAC,EAAE,KAAK,CAACU,EAAE,CAAC,EAAE,GAAGV,EAAE,MAAM,EAAE,CAAC,CAAC,CAAC,GAAGA,CAAC,CAAC,gBAAgBU,EAAE,CAAC,OAAOnD,EAAE,IAAI,CAAC,GAAG,CAAC,UAAUyC,CAAC,EAAE,KAAK,KAAK,EAAEU,EAAE,MAAMP,EAAE,KAAK,yBAAyB,CAAC,EAAEwB,EAAE,CAACxB,EAAE,CAAC,EAAE,GAAGA,EAAE,MAAM,CAAC,CAAC,EAAEyB,EAAEvC,GAAGsC,CAAC,EAAE,OAAO,MAAM,QAAQ3B,CAAC,EAAE,MAAMA,EAAE,MAAM,EAAE,KAAK4B,CAAC,EAAE,CAACA,CAAC,CAAC,CAAC,CAAC,CAAC,YAAYlB,EAAEV,EAAE,GAAG,CAACzC,EAAE,IAAI,CAAC,GAAG,CAAC,KAAK,SAAS,MAAM,IAAIiwC,GAAG,iEAAiE,EAAE,IAAI,EAAE,KAAK,UAAU,CAAC,EAAE,MAAMrtC,EAAE,KAAK,yBAAyB,CAAC,EAAEwB,EAAE,CAACxB,EAAE,CAAC,EAAE,GAAGA,EAAE,MAAM,CAAC,CAAC,EAAE,GAAG,EAAE,CAAC,GAAG,KAAK,MAAM,IAAIutC,EAAE,uUAAuU,EAAE,GAAG,KAAK,UAAU,GAAG,KAAK,MAAM,QAAQ,KAAK,KAAK,SAAS,EAAE,KAAK,QAAQ,KAAK,KAAK,UAAU,IAAI,IAAIruC,GAAGsC,CAAC,CAAC,EAAE,KAAK,QAAQ,CAACtC,GAAGsC,CAAC,CAAC,UAAUjB,GAAG,KAAKjQ,GAAG,KAAK,OAAO,EAAE,KAAK,YAAY,OAAOA,GAAG,KAAK,UAAU,EAAE,KAAK,WAAW,CAAC,GAAG,MAAM,QAAQ,KAAK,KAAK,SAAS,EAAE,KAAK,QAAQ,KAAK,KAAK,UAAU,IAAI,IAAI4O,GAAGsC,CAAC,CAAC,EAAE,KAAK,QAAQ,CAAC,EAAEtC,GAAGsC,CAAC,MAAM,CAAC,GAAG,MAAM,QAAQjB,CAAC,IAAIA,EAAE,CAACA,CAAC,GAAGA,EAAE,SAAS,KAAK,QAAQ,OAAO,MAAM,IAAIgtC,EAAE,SAAS,KAAK,IAAI,YAAY,KAAK,QAAQ,MAAM,8BAA8BhtC,EAAE,MAAM,oCAAoCA,CAAC,EAAE,EAAEV,EAAE,KAAK,WAAW,KAAK,KAAK,QAAQ,MAAM,CAAC,EAAEvP,GAAG,KAAK,OAAO,EAAE,QAAQoR,EAAE,EAAEA,EAAE,KAAK,QAAQ,OAAO,EAAEA,EAAE,CAAC,IAAIC,EAAEpB,EAAEmB,CAAC,EAAEE,EAAEJ,EAAE,GAAG,CAACtD,EAAE,YAAYyD,EAAE,MAAMC,CAAC,EAAE,MAAM,IAAI2rC,EAAE,SAAS7rC,CAAC,+BAA+B,KAAK,IAAI,oBAAoBE,CAAC,oBAAoBD,EAAE,KAAK,EAAE,EAAE,KAAK,QAAQD,CAAC,EAAEC,CAAC,CAAC,CAAC,KAAK,QAAQ,KAAK,QAAQ,IAAID,GAAG/N,GAAG+N,EAAE,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,yBAAyBnB,EAAE,CAAC,GAAG,CAAC,WAAWV,EAAE,QAAQ,EAAE,WAAWG,EAAE,QAAQwB,EAAE,QAAQC,EAAE,aAAaC,CAAC,EAAE,KAAK,KAAKC,EAAE9B,IAAI,gBAAgB,EAAEU,EAAEoB,EAAE,EAAE,CAAC,EAAEU,EAAE9B,EAAEoB,EAAE,EAAE,CAAC,EAAE,EAAE+iD,GAAG,EAAE1kD,EAAE,CAAC,EAAEwB,EAAEC,EAAE,CAAC,EAAEC,EAAE,CAAC,CAAC,EAAEa,EAAEmiD,GAAGriD,EAAErC,EAAE,CAAC,EAAEwB,EAAEC,EAAE,CAAC,EAAEC,EAAE,CAAC,CAAC,EAAE,MAAM,CAAC,GAAGnB,EAAE,MAAM,EAAE,CAAC,EAAE,GAAGoB,EAAE,CAAC,EAAE,EAAEY,CAAC,EAAE,CAAC,EAAEA,EAAE,CAAC,CAAC,CAAC,CAAC,EAAEkkD,GAAG,UAAU,YAAY,IAAIC,GAAG,cAAcJ,EAAE,CAAC,YAAY/lD,EAAE,CAAC,GAAG,CAAC,QAAQV,EAAE,WAAW,EAAE,QAAQG,EAAE,QAAQwB,EAAE,WAAWC,EAAE,aAAaC,CAAC,EAAEnB,EAAE,MAAM,OAAO,OAAO,OAAO,OAAO,CAAC,EAAEA,CAAC,EAAE,CAAC,MAAMV,CAAC,CAAC,CAAC,EAAE,KAAK,QAAQA,EAAE+uC,GAAG,KAAK,QAAQ,SAAS,EAAE,KAAK,WAAW6V,GAAG,EAAE,EAAE,YAAY,EAAE,KAAK,WAAW,QAAQ9iD,GAAGitC,GAAGjtC,EAAE,YAAY,CAAC,EAAE,KAAK,QAAQ8iD,GAAGzkD,GAAG,EAAE,EAAE,SAAS,EAAE,KAAK,QAAQ,QAAQ2B,GAAGitC,GAAGjtC,EAAE,SAAS,CAAC,EAAE,KAAK,QAAQH,GAAG,QAAQouC,GAAG,KAAK,OAAO,EAAE,KAAK,WAAWnuC,GAAG,eAAeiuC,GAAG,KAAK,UAAU,EAAE,KAAK,aAAa+U,GAAG/iD,GAAG,EAAE,EAAE,cAAc,EAAE,KAAK,aAAa,QAAQC,GAAGitC,GAAGjtC,EAAE,cAAc,CAAC,CAAC,CAAC,MAAMpB,EAAE,CAAC,IAAIV,EAAEU,EAAEyzC,GAAGzzC,CAAC,EAAE,IAAI,EAAE,KAAK,aAAa,gBAAgB,EAAEA,EAAE,OAAO,EAAE,GAAGA,EAAE,CAAC,GAAG,KAAK,MAAM,IAAIgtC,EAAE,+DAA+DhtC,EAAE,CAAC,CAAC,EAAE,EAAE,IAAIP,EAAEO,EAAE,CAAC,EAAEiB,EAAE,EAAEC,EAAE,KAAK,WAAW,OAAO,CAACzB,EAAE,KAAK,QAAQwB,CAAC,CAAC,EAAE,KAAK,OAAO,KAAK,UAAU,SAASC,EAAE,KAAK,KAAK,kBAAkB,KAAK,kBAAkB,GAAG,KAAK,gBAAgB,EAAE,IAAIC,EAAE,KAAK,WAAW,OAAO,CAAC,KAAK,QAAQ,KAAK,QAAQF,CAAC,CAAC,EAAE,GAAG,KAAK,gBAAgB,KAAK,UAAU,mBAAmBE,EAAE,KAAK,KAAK,qBAAqB,KAAK,qBAAqB,GAAG,KAAK,mBAAmB,EAAE,KAAK,QAAQ,CAAC,IAAIC,EAAE,GAAG,KAAK,eAAe,CAAC,IAAI,EAAE,KAAK,gBAAgBU,EAAE,KAAK,QAAQV,EAAE,IAAI9B,EAAE,cAAc2yC,EAAE,CAAC,MAAMjwC,EAAEC,EAAE,CAAC,IAAIC,EAAE,EAAE,MAAM,CAACJ,CAAC,CAAC,EAAE,EAAExL,GAAG,CAACwL,CAAC,CAAC,EAAEuB,EAAE,EAAE,MAAM,CAACvB,EAAE,CAAC,CAAC,EAAE,OAAOkvC,GAAG,CAAC9uC,EAAE,EAAEmB,CAAC,CAAC,CAAC,CAAC,EAAE/D,EAAE,UAAU,aAAaA,EAAE,MAAM8B,EAAE,KAAK,gBAAgB,KAAK,KAAK,KAAK,UAAU,OAAO,CAAC,KAAK,QAAQH,CAAC,EAAE,KAAKG,EAAE,KAAK,gBAAgB,GAAG,KAAK,cAAc,CAAC,CAAC,KAAK,MAAM,EAAE,CAAC,KAAKpB,EAAEV,EAAE,CAAC,OAAOzC,EAAE,IAAI,CAAC,GAAGmD,EAAE,SAAS,EAAE,MAAM,IAAIgtC,EAAE,8DAA8DhtC,EAAE,MAAM,GAAG,EAAE,IAAI,EAAEV,EAAE,UAAU,GAAGG,EAAEO,EAAE,CAAC,EAAEiB,EAAEjB,EAAE,CAAC,EAAEkB,EAAElB,EAAE,CAAC,EAAEmB,EAAE,EAAE,EAAE,KAAK,SAAS,KAAK,QAAQ,GAAG,KAAK,aAAa,OAAO,KAAK,YAAYwkD,GAAG,CAAC,KAAK,IAAIpvD,GAAGkJ,CAAC,EAAE,KAAK,KAAK,QAAQ,SAAS,EAAE,MAAM0B,EAAE,YAAY,KAAK,WAAW,CAAC,GAAG,IAAIC,EAAE,KAAK,YAAY,EAAE,CAACmG,EAAGC,EAAGC,KAAK,CAACD,GAAI,CAACA,EAAGC,EAAE,EAAEF,EAAGzR,EAAE0R,EAAGC,EAAE,EAAEF,CAAE,EAAEzF,EAAE,EAAErC,EAAE2B,EAAE,CAAC,EAAE,EAAE,EAAE3B,EAAE2B,EAAE,CAAC,EAAEY,EAAE,EAAEvC,EAAE2B,EAAE,CAAC,EAAEa,EAAE,EAAExC,EAAE2B,EAAE,CAAC,EAAE,EAAE,KAAK,kBAAkB,KAAK,iBAAiB,GAAG,KAAK,sBAAsB,OAAO,KAAK,qBAAqBukD,GAAG,CAAC,KAAK,IAAIpvD,GAAG0K,CAAC,EAAE,KAAK,KAAK,iBAAiB,SAAS,EAAE,MAAME,EAAE,YAAY,KAAK,WAAW,CAAC,GAAG,IAAIe,EAAE,KAAK,qBAAqBkB,EAAE,EAAEnC,EAAEiB,EAAE,CAAC,EAAEmB,EAAE,EAAEpC,EAAEiB,EAAE,CAAC,EAAEwE,EAAE,EAAEzF,EAAEiB,EAAE,CAAC,EAAE,EAAE,EAAEjB,EAAEiB,EAAE,CAAC,EAAE2B,EAAE,EAAE,CAACC,EAAEC,EAAEC,EAAEC,CAAC,EAAE5I,GAAG,KAAK,OAAO,KAAK,EAAE8F,EAAE0C,CAAC,EAAE,CAAC8C,EAAExC,EAAEC,EAAEC,CAAC,EAAE,KAAK,QAAQhJ,GAAG,KAAK,KAAK,KAAK,EAAE8F,CAAC,EAAE,CAAC,KAAK,KAAK,KAAK,IAAI,EAAEW,EAAE,KAAK,UAAUA,EAAEgC,EAAE6C,EAAE,KAAK,OAAO,EAAE,EAAE,KAAK,UAAU,EAAE5C,EAAEI,EAAE,KAAK,OAAO,EAAEnC,EAAE,KAAK,UAAUA,EAAEgC,EAAEI,EAAE,KAAK,OAAO,EAAEnC,EAAE,KAAK,UAAUA,EAAEgC,EAAEI,EAAE,KAAK,OAAO,EAAE,GAAG,CAACC,EAAEC,EAAEC,EAAEC,CAAC,EAAEpJ,GAAG,KAAK,gBAAgB,KAAK,EAAE8F,EAAE0C,CAAC,EAAET,EAAE,KAAK,cAAcA,EAAEkB,CAAC,EAAEjB,EAAE,KAAK,cAAcA,EAAEkB,CAAC,EAAEmC,EAAE,KAAK,cAAcA,EAAElC,CAAC,EAAE,EAAE,KAAK,cAAc,EAAEC,CAAC,EAAE,IAAI2C,EAAE,KAAK,oBAAoB,MAAMpb,EAAE8V,EAAEsB,CAAC,CAAC,EAAEyD,EAAE,KAAK,oBAAoB,MAAM7a,EAAE,EAAEqX,CAAC,CAAC,EAAEgE,EAAErb,EAAE8J,EAAE+Q,EAAE3F,CAAC,EAAEpL,EAAEsR,EAAE,KAAK,WAAW,MAAMpb,EAAEgW,EAAE0E,CAAC,CAAC,CAAC,CAAC,EAAEY,EAAGxR,EAAE,KAAK,oBAAoB,MAAM9J,EAAEiW,EAAE,CAAC,CAAC,EAAE,KAAK,WAAW,MAAMoF,CAAC,CAAC,EAAE,MAAM,CAACC,EAAGA,EAAGD,CAAC,CAAC,CAAC,CAAC,CAAC,WAAW,CAAC,IAAIrH,EAAE,MAAM,UAAU,EAAE,CAAC,MAAMV,CAAC,EAAEU,EAAE,EAAEimD,GAAGjmD,EAAE,CAAC,OAAO,CAAC,EAAEP,EAAE,CAAC,QAAQ,KAAK,QAAQ,WAAW,KAAK,WAAW,QAAQ,KAAK,QAAQ,WAAW,KAAK,WAAW,aAAa,KAAK,aAAa,QAAQ,KAAK,OAAO,EAAE,OAAO,OAAO,OAAO,OAAO,OAAO,CAAC,EAAE,CAAC,EAAEA,CAAC,CAAC,CAAC,UAAUO,EAAEV,EAAE,EAAEG,EAAE,CAAC,IAAIwB,EAAEvS,GAAGsR,EAAEV,EAAE,KAAK,QAAQG,GAAG,QAAQ,KAAK,aAAa,gBAAgB,OAAO,OAAO,KAAK,YAAY,EAAE,OAAO,EAAE8xC,GAAGtwC,EAAE,EAAE,KAAK,UAAU,EAAEA,CAAC,CAAC,cAAcjB,EAAEV,EAAE,CAAC,OAAO5Q,GAAGsR,EAAEV,EAAE,EAAE,OAAO,KAAK,aAAa,gBAAgB,OAAO,MAAM,CAAC,CAAC,EAAE6mD,GAAG,UAAU,iBAAiBxsD,GAAE,cAAcwsD,EAAE,EAAE,IAAIC,GAAG,cAAcF,EAAE,CAAC,YAAYlmD,EAAE,CAAC,IAAIV,EAAE,IAAI6mD,GAAGnmD,CAAC,EAAE,MAAM,OAAO,OAAO,OAAO,OAAO,CAAC,EAAEA,CAAC,EAAE,CAAC,KAAKV,CAAC,CAAC,CAAC,CAAC,CAAC,OAAO,WAAWU,EAAEV,EAAE,CAAC,OAAO,IAAIU,EAAEV,CAAC,CAAC,CAAC,EAAE8mD,GAAG,UAAU,aAAazsD,GAAE,cAAcysD,EAAE,EAAE,IAAIC,GAAG,cAAcnS,EAAE,CAAC,YAAYl0C,EAAE,CAAC,MAAMA,CAAC,EAAE,KAAK,KAAK,KAAK,IAAI,KAAK,IAAIA,EAAE,KAAK,CAAC,EAAE,CAAC,EAAE,KAAK,WAAWA,EAAE,WAAW,KAAK,KAAKA,EAAE,KAAK,KAAK,gBAAgB,EAAE,CAAC,cAAcA,EAAE,CAAC,GAAG,KAAK,YAAY,KAAK,OAAO,KAAK,WAAW,IAAIV,EAAEU,EAAE,MAAM,EAAE,CAAC,EAAE,QAAQP,EAAE,EAAEA,EAAE,KAAK,WAAW,OAAO,EAAEA,EAAE,EAAE,KAAK,KAAK,WAAWA,CAAC,GAAG,KAAKH,EAAEG,CAAC,EAAE,KAAK,WAAWA,CAAC,CAAC,EAAE,OAAO,CAAC,CAAC,KAAKO,EAAEV,EAAE,CAAC,OAAOzC,EAAE,IAAI,CAAC,KAAK,eAAemD,EAAEV,CAAC,EAAE,IAAI,EAAEk0C,GAAGxzC,CAAC,EAAE,GAAG,EAAE,KAAK,MAAM,KAAK,KAAK,EAAE,CAAC,IAAIP,EAAEH,EAAE,UAAU,KAAK,GAAGA,EAAE,SAAS2B,EAAE,KAAK,cAAc,CAAC,EAAE,OAAO2wC,GAAG,IAAIF,GAAG,EAAE,KAAK,KAAKzwC,EAAE,KAAK,IAAI,EAAE,IAAI,EAAExB,CAAC,CAAC,CAAC,OAAOO,CAAC,CAAC,CAAC,CAAC,WAAW,CAAC,IAAIA,EAAE,CAAC,KAAK,KAAK,KAAK,WAAW,KAAK,WAAW,KAAK,KAAK,IAAI,EAAEV,EAAE,MAAM,UAAU,EAAE,OAAO,OAAO,OAAOU,EAAEV,CAAC,EAAEU,CAAC,CAAC,SAAS,CAAC,OAAO,MAAM,QAAQ,CAAC,CAAC,EAAEqmD,GAAG,UAAU,UAAU1sD,GAAE,cAAc0sD,EAAE,EAAE,IAAIC,GAAG,cAAcD,EAAE,CAAC,YAAYrmD,EAAE,CAAC,MAAMA,CAAC,EAAE,KAAK,UAAU,CAAC,CAAC,KAAK,CAAC,CAAC,CAAC,CAAC,cAAcA,EAAE,CAAC,IAAIV,EAAEU,EAAE,MAAM,MAAM,CAACV,EAAE,CAAC,EAAE,EAAEA,EAAE,CAAC,CAAC,CAAC,CAAC,EAAEgnD,GAAG,UAAU,mBAAmB3sD,GAAE,cAAc2sD,EAAE,EAAE,IAAIC,GAAG,cAAcrS,EAAE,CAAC,YAAYl0C,EAAE,CAAC,GAAG,MAAMA,CAAC,EAAE,KAAK,WAAW,KAAK,KAAK,QAAQ,GAAG,KAAK,OAAO,KAAK,KAAK,KAAK,KAAK,KAAK,2BAA2B,eAAe,KAAK,yBAAyB,QAAQA,EAAE,iBAAiB,MAAMA,EAAE,YAAY,MAAMA,EAAE,UAAU,KAAK,CAAC,IAAIV,EAAE,KAAKU,EAAE,WAAW,OAAOV,EAAEU,EAAE,WAAW,KAAK,gBAAgB,CAACV,EAAEU,EAAE,QAAQ,CAAC,CAAC,KAAK,MAAMA,EAAE,MAAMquC,GAAG,KAAK,MAAM,OAAO,EAAE,KAAK,WAAW6U,GAAGljD,EAAE,UAAU,EAAEA,EAAE,SAAS,OAAO,KAAK,QAAQA,EAAE,SAAS,KAAK,kBAAkBqzC,GAAGrzC,EAAE,mBAAmB,KAAK,0BAA0B,EAAE,KAAK,gBAAgBqzC,GAAGrzC,EAAE,iBAAiB,KAAK,wBAAwB,EAAE,KAAK,iBAAiBk2C,GAAGl2C,EAAE,gBAAgB,EAAE,KAAK,eAAek2C,GAAGl2C,EAAE,cAAc,EAAE,KAAK,kBAAkB2jD,GAAG3jD,EAAE,iBAAiB,EAAE,KAAK,gBAAgB2jD,GAAG3jD,EAAE,eAAe,EAAE,KAAK,oBAAoB2jD,GAAG3jD,EAAE,mBAAmB,EAAE,KAAK,gBAAgB,GAAG,KAAK,UAAU,CAAC,CAAC,QAAQ,CAAC,CAAC,CAAC,CAAC,MAAMA,EAAE,CAACA,EAAEyzC,GAAGzzC,CAAC,EAAE,IAAIV,EAAEU,EAAEA,EAAE,OAAO,CAAC,EAAE,KAAK,QAAQ,OAAO,KAAK,OAAO,KAAK,UAAU,SAAS,CAACV,EAAE,KAAK,KAAK,EAAE,KAAK,KAAK,kBAAkB,KAAK,kBAAkB,GAAG,KAAK,gBAAgB,EAAE,KAAK,UAAU,KAAK,KAAK,KAAK,UAAU,OAAO,CAAC,KAAK,KAAK,EAAE,KAAK,KAAK,gBAAgB,KAAK,gBAAgB,GAAG,KAAK,cAAc,IAAI,KAAK,UAAU,CAAC,CAAC,QAAQ,EAAE,KAAK,CAAC,CAAC,EAAE,EAAEA,CAAC,CAAC,CAAC,EAAE,KAAK,MAAM,EAAE,CAAC,mBAAmBU,EAAE,CAACA,EAAEyzC,GAAGzzC,CAAC,EAAE,IAAIV,EAAEU,EAAE,MAAM,EAAE,OAAOV,EAAEA,EAAE,OAAO,CAAC,EAAE,KAAK,MAAMA,CAAC,CAAC,KAAKU,EAAEV,EAAE,CAAC,OAAOzC,EAAE,IAAI,CAAC,KAAK,eAAemD,EAAEV,CAAC,EAAE,IAAI,EAAEk0C,GAAGxzC,CAAC,EAAEP,EAAE+uC,GAAG,KAAK,WAAW,aAAa,CAAC,EAAEvtC,EAAE,OAAOxB,GAAG,KAAKwB,EAAEkwC,GAAG,EAAE,KAAK,OAAO,KAAK,EAAE1xC,EAAE,KAAK,KAAK,KAAK,KAAK,KAAK,EAAE,IAAI,GAAGwB,EAAEkwC,GAAG,EAAE,KAAK,OAAO,KAAK,CAAC,EAAE,KAAK,MAAM,OAAOlwC,EAAEswC,GAAGtwC,EAAE,KAAK,KAAK,KAAK,CAAC,GAAG,KAAK,YAAY,OAAOA,EAAE,KAAK,WAAW,MAAMA,CAAC,IAAIA,CAAC,CAAC,CAAC,CAAC,WAAW,CAAC,IAAIjB,EAAE,CAAC,MAAM,KAAK,MAAM,WAAWgjD,GAAG,KAAK,UAAU,EAAE,QAAQ,KAAK,QAAQ,kBAAkB5P,GAAG,KAAK,iBAAiB,EAAE,gBAAgBA,GAAG,KAAK,eAAe,EAAE,kBAAkBqQ,GAAG,KAAK,iBAAiB,EAAE,gBAAgBA,GAAG,KAAK,eAAe,EAAE,oBAAoBA,GAAG,KAAK,mBAAmB,EAAE,iBAAiBzN,GAAG,KAAK,gBAAgB,EAAE,eAAeA,GAAG,KAAK,cAAc,CAAC,EAAE12C,EAAE,MAAM,UAAU,EAAE,OAAO,OAAO,OAAOU,EAAEV,CAAC,EAAEU,CAAC,CAAC,EAAEumD,GAAG,UAAU,QAAQ5sD,GAAE,cAAc4sD,EAAE,EAAE,IAAIC,GAAG,cAActS,EAAE,CAAC,YAAYl0C,EAAE,CAACA,EAAEA,GAAG,CAAC,EAAE,MAAMA,CAAC,EAAE,KAAK,UAAU,CAAC,CAAC,QAAQ,CAAC,CAAC,EAAE,KAAK,WAAWA,EAAE,UAAU,CAAC,mBAAmBA,EAAE,CAACA,EAAEyzC,GAAGzzC,CAAC,EAAE,QAAQV,KAAKU,EAAE,MAAM,CAAC,EAAE,GAAGV,GAAG,KAAK,MAAM,IAAI0tC,EAAE,iEAAiEhtC,EAAE,MAAM,CAAC,CAAC,iHAAiH,EAAE,MAAM,CAACA,EAAE,CAAC,EAAEgwC,GAAGhwC,EAAE,CAAC,CAAC,CAAC,CAAC,KAAKA,EAAEV,EAAE,CAAC,OAAOzC,EAAE,IAAI,CAAC,KAAK,eAAemD,EAAEV,CAAC,EAAE,IAAI,EAAEk0C,GAAGxzC,CAAC,EAAE,GAAG,KAAK,aAAa,iBAAiB,EAAE,KAAK,EAAE,CAAC,IAAIP,EAAE,CAAC,CAAC,EAAE,QAAQwB,EAAE,EAAEA,EAAE,EAAE,KAAK,EAAEA,EAAExB,EAAE,KAAKwB,CAAC,EAAExB,EAAE,KAAK,CAAC,EAAE,EAAEvC,GAAG,EAAEuC,CAAC,CAAC,CAAC,OAAOmxC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,WAAW,CAAC,IAAI5wC,EAAE,CAAC,EAAE,KAAK,YAAY,OAAOA,EAAE,WAAW,KAAK,YAAY,IAAIV,EAAE,MAAM,UAAU,EAAE,OAAO,OAAO,OAAOU,EAAEV,CAAC,EAAEU,CAAC,CAAC,EAAEwmD,GAAG,UAAU,UAAU7sD,GAAE,cAAc6sD,EAAE,EAAE,IAAIC,GAAG,cAAcvS,EAAE,CAAC,YAAYl0C,EAAE,CAAC,MAAMA,CAAC,EAAE,KAAK,gBAAgB,GAAG,KAAK,WAAWkjD,GAAGljD,EAAE,UAAU,CAAC,CAAC,KAAKA,EAAEV,EAAE,CAAC,OAAOzC,EAAE,IAAI,CAAC,KAAK,eAAemD,EAAEV,CAAC,EAAE,IAAI,EAAEk0C,GAAGxzC,CAAC,EAAE,OAAO,KAAK,WAAW,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,WAAW,CAAC,IAAIA,EAAE,CAAC,WAAWgjD,GAAG,KAAK,UAAU,CAAC,EAAE1jD,EAAE,MAAM,UAAU,EAAE,OAAO,OAAO,OAAOU,EAAEV,CAAC,EAAEU,CAAC,CAAC,EAAEymD,GAAG,UAAU,aAAa9sD,GAAE,cAAc8sD,EAAE,EAAE,IAAIC,GAAG,cAAcxS,EAAE,CAAC,YAAYl0C,EAAE,CAAC,MAAMA,CAAC,EAAE,KAAK,EAAEA,EAAE,EAAE,KAAK,UAAU,CAAC,CAAC,KAAK,CAAC,CAAC,CAAC,CAAC,mBAAmBA,EAAE,CAAC,MAAM,CAACA,EAAE,CAAC,EAAE,KAAK,EAAEA,EAAE,CAAC,CAAC,CAAC,CAAC,KAAKA,EAAEV,EAAE,CAAC,OAAOzC,EAAE,KAAKmD,EAAEwzC,GAAGxzC,CAAC,EAAEywC,GAAGzwC,EAAE,KAAK,CAAC,EAAE,CAAC,CAAC,WAAW,CAAC,IAAIA,EAAE,CAAC,EAAE,KAAK,CAAC,EAAEV,EAAE,MAAM,UAAU,EAAE,OAAO,OAAO,OAAOU,EAAEV,CAAC,EAAEU,CAAC,CAAC,EAAE0mD,GAAG,UAAU,eAAe/sD,GAAE,cAAc+sD,EAAE,EAAE,IAAIC,GAAG,cAAczS,EAAE,CAAC,YAAYl0C,EAAE,CAAC,MAAMA,CAAC,EAAE,KAAK,YAAYA,EAAE,YAAY,QAAQV,EAAE,EAAEA,EAAE,KAAK,YAAY,OAAO,EAAEA,EAAE,KAAK,UAAU,KAAK,YAAYA,CAAC,CAAC,IAAI,KAAK,YAAYA,CAAC,EAAE,KAAK,CAAC,UAAUU,EAAE,CAAC,OAAOA,EAAE,GAAGA,GAAG,IAAI,CAAC,oBAAoBA,EAAEV,EAAE,CAAC,IAAI,EAAE,6CAA6CG,EAAEH,EAAE,MAAM,EAAE2B,EAAE,EAAEC,EAAE,KAAK,QAAQE,EAAE,EAAEA,EAAE3B,EAAE,OAAO,EAAE2B,EAAE,CAAC,IAAI,EAAE3B,EAAE2B,CAAC,EAAE,GAAG,KAAK,UAAU,CAAC,EAAE,GAAGF,IAAI,KAAKA,EAAEE,MAAO,OAAM,IAAI4rC,EAAE,0CAA0C,OAAO/rC,GAAG,CAAC,CAAC,IAAIE,EAAE6uC,GAAGhwC,CAAC,EAAE,GAAGkB,IAAI,KAAK,CAAC,GAAGD,IAAI,GAAGE,EAAEF,IAAI,EAAE,MAAM,IAAI+rC,EAAE,CAAC,EAAEvtC,EAAEyB,CAAC,EAAEC,EAAEF,CAAC,SAASE,IAAIF,EAAE,MAAM,IAAI+rC,EAAE,CAAC,EAAE,OAAOvtC,CAAC,CAAC,mBAAmBO,EAAE,CAAC,IAAIV,EAAE,GAAG,QAAQ,EAAE,EAAE,EAAEU,EAAE,OAAO,EAAE,EAAE,GAAG,KAAK,UAAUA,EAAE,CAAC,CAAC,EAAE,CAACV,EAAE,GAAG,KAAK,CAAC,OAAOA,EAAEU,EAAE,MAAM,EAAE,CAAC,EAAE,OAAO,KAAK,WAAW,EAAEA,EAAE,MAAM,EAAE,CAAC,EAAE,OAAO,KAAK,oBAAoBA,EAAE,MAAM,CAAC,EAAE,KAAK,WAAW,CAAC,CAAC,CAAC,KAAKA,EAAEV,EAAE,CAAC,OAAOzC,EAAE,IAAI,CAAC,KAAK,eAAemD,EAAEV,CAAC,EAAE,IAAI,EAAEk0C,GAAGxzC,CAAC,EAAEP,EAAE,EAAE,MAAMwB,EAAExB,EAAE,MAAM,EAAE,CAAC,EAAE,OAAO,KAAK,oBAAoBA,EAAE,MAAM,CAAC,EAAE,KAAK,WAAW,CAAC,EAAE,OAAO9G,EAAE,EAAEsI,CAAC,CAAC,CAAC,CAAC,CAAC,WAAW,CAAC,IAAIjB,EAAE,CAAC,YAAY,KAAK,WAAW,EAAEV,EAAE,MAAM,UAAU,EAAE,OAAO,OAAO,OAAOU,EAAEV,CAAC,EAAEU,CAAC,CAAC,EAAE2mD,GAAG,UAAU,UAAUhtD,GAAE,cAAcgtD,EAAE,EAAE,IAAIC,GAAG,cAAc1S,EAAE,CAAC,YAAYl0C,EAAE,CAAC,GAAG,MAAMA,CAAC,EAAEA,EAAE,MAAM,KAAK,MAAM,IAAI,MAAM,iFAAiF,EAAE,GAAG,CAAC,MAAM,QAAQA,EAAE,IAAI,EAAE,MAAM,IAAI,MAAM,sEAAsEA,EAAE,IAAI,WAAW,EAAE,IAAIV,EAAE6wC,GAAG,EAAEnwC,EAAE,KAAK,OAAO,CAAC,EAAE,GAAG,CAACrC,EAAE,YAAYqC,EAAE,KAAK,MAAM,EAAE,KAAK,EAAEV,CAAC,EAAE,MAAM,IAAI,MAAM,+BAA+B,KAAK,UAAUU,EAAE,IAAI,EAAE,4DAA4D,EAAE,KAAK,KAAKA,EAAE,KAAK,KAAK,mBAAmB,CAAC,CAAC,EAAE,OAAO,KAAK,IAAI,EAAE,KAAK,UAAU,CAAC,IAAIhc,GAAG,CAAC,KAAK,KAAK,KAAK,OAAO,CAAC,CAAC,CAAC,CAAC,CAAC,mBAAmBgc,EAAE,CAACA,EAAEyzC,GAAGzzC,CAAC,EAAE,IAAIV,EAAEU,EAAE,MAAM,EAAE,OAAO,KAAK,KAAK,QAAQ,CAAC,EAAEP,IAAI,CAACH,EAAEG,EAAE,CAAC,EAAEO,EAAE,CAAC,CAAC,CAAC,EAAEV,CAAC,CAAC,KAAKU,EAAEV,EAAE,CAAC,OAAOpC,GAAGs2C,GAAGxzC,CAAC,EAAE,KAAK,kBAAkB,CAAC,CAAC,WAAW,CAAC,IAAIA,EAAE,CAAC,KAAK,KAAK,IAAI,EAAEV,EAAE,MAAM,UAAU,EAAE,OAAO,OAAO,OAAOU,EAAEV,CAAC,EAAEU,CAAC,CAAC,EAAE4mD,GAAG,UAAU,UAAUjtD,GAAE,cAAcitD,EAAE,EAAE,IAAIC,GAAG,cAAc3S,EAAE,CAAC,YAAYl0C,EAAE,CAAC,MAAMA,GAAG,KAAK,CAAC,EAAEA,CAAC,EAAE,KAAK,gBAAgB,GAAGA,GAAG,KAAK,KAAK,UAAUA,EAAE,WAAW,KAAK,EAAEA,EAAE,UAAU,KAAK,UAAU,CAAC,CAAC,mBAAmBA,EAAE,CAAC,OAAOA,CAAC,CAAC,WAAW,CAAC,IAAIA,EAAE,MAAM,UAAU,EAAEV,EAAE,CAAC,UAAU,KAAK,SAAS,EAAE,OAAO,OAAO,OAAOA,EAAEU,CAAC,EAAEV,CAAC,CAAC,YAAYU,EAAEV,EAAE,CAAC,IAAI,EAAEk0C,GAAGxzC,CAAC,EAAE,OAAO7T,GAAGiK,GAAG,EAAE,KAAK,SAAS,EAAE,EAAE,CAAC,CAAC,KAAK4J,EAAEV,EAAE,CAAC,OAAOzC,EAAE,IAAI,CAAC,KAAK,eAAemD,EAAEV,CAAC,EAAE,IAAI,EAAEk0C,GAAGxzC,CAAC,EAAEkB,EAAE/U,GAAGiK,GAAG,EAAE,KAAK,SAAS,EAAE,GAAG,EAAE,EAAE,OAAON,EAAE,EAAEhI,GAAEoT,EAAE,EAAE,KAAK,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE2lD,GAAG,UAAU,UAAUltD,GAAE,cAAcktD,EAAE,EAAE,IAAIC,GAAG,cAAc5S,EAAE,CAAC,YAAYl0C,EAAE,CAAC,GAAG,MAAMA,CAAC,EAAE,KAAK,WAAW,KAAK,KAAK,+BAA+B,gBAAgBA,EAAE,iBAAiB,MAAMA,EAAE,YAAY,KAAK,CAAC,IAAIV,EAAE,KAAKU,EAAE,WAAW,OAAOV,EAAEU,EAAE,WAAWA,EAAE,aAAa,KAAK,KAAK,gBAAgB,CAACV,EAAE,IAAI,EAAE,KAAK,gBAAgB,CAACA,CAAC,EAAE,OAAOkuC,GAAGxtC,EAAE,WAAW,CAAC,CAAC,CAAC,KAAK,SAASA,EAAE,SAASquC,GAAG,KAAK,SAAS,UAAU,EAAE,KAAK,UAAUruC,EAAE,UAAUquC,GAAG,KAAK,UAAU,WAAW,EAAE,KAAK,sBAAsBgF,GAAGrzC,EAAE,uBAAuB,KAAK,8BAA8B,EAAE,KAAK,sBAAsB2jD,GAAG3jD,EAAE,qBAAqB,EAAE,KAAK,oBAAoB2jD,GAAG3jD,EAAE,mBAAmB,EAAE,KAAK,qBAAqBk2C,GAAGl2C,EAAE,oBAAoB,EAAE,KAAK,SAASA,EAAE,SAAS,KAAK,gBAAgBA,EAAE,SAAS,KAAK,YAAYA,EAAE,WAAW,CAAC,MAAMA,EAAE,CAAC,KAAK,WAAW,KAAK,UAAU,aAAa,CAAC,KAAK,SAAS,KAAK,SAAS,EAAE,KAAK,MAAM,KAAK,sBAAsB,KAAK,sBAAsB,GAAG,KAAK,oBAAoB,EAAE,KAAK,MAAM,EAAE,CAAC,6BAA6BA,EAAE,CAAC,CAAC,YAAYA,EAAEV,EAAE,CAAC,OAAOzC,EAAE,IAAI,KAAK,UAAUmD,EAAEwzC,GAAGxzC,CAAC,EAAE5J,GAAG4J,EAAEpB,GAAGoB,CAAC,CAAC,GAAG,IAAI,CAAC,CAAC,mBAAmBA,EAAE,CAAC,GAAGA,EAAEyzC,GAAGzzC,CAAC,EAAE,KAAK,aAAa,KAAK,MAAM,CAAC,GAAGA,EAAE,KAAK,SAAS,EAAE,IAAIV,EAAEkuC,GAAG,KAAK,WAAW,EAAE,GAAGluC,EAAE,SAASU,EAAE,OAAO,EAAE,MAAM,IAAIgtC,EAAE,oBAAoB,KAAK,WAAW,wCAAwChtC,CAAC,EAAE,EAAE,CAAC,IAAI,EAAE,EAAE,QAAQP,EAAE,EAAEA,EAAEH,EAAE,OAAO,EAAEG,EAAE,CAAC,IAAIwB,EAAE3B,EAAEG,CAAC,EAAEyB,EAAElB,EAAEP,EAAE,CAAC,EAAE,GAAGwB,GAAG,MAAMC,GAAG,MAAMD,IAAIC,EAAE,MAAM,IAAI8rC,EAAE,oBAAoB,KAAK,WAAW,wCAAwChtC,CAAC,EAAE,EAAEiB,GAAG,OAAO3B,EAAE,CAAC,EAAE4B,GAAG,GAAG,CAAC,CAAC,MAAM,CAAClB,EAAE,CAAC,EAAE,GAAGV,EAAE,KAAK,SAAS,CAAC,CAAC,KAAKU,EAAEV,EAAE,CAAC,OAAOzC,EAAE,IAAI,CAAC,KAAK,eAAemD,EAAEV,CAAC,EAAE,IAAI,EAAEk0C,GAAGxzC,CAAC,EAAE,EAAE,QAAQ,UAAU,EAAEuwC,GAAG,EAAE,OAAO,GAAG,IAAI9wC,EAAE4xC,GAAG,KAAK,WAAW,KAAK,EAAE14C,EAAE,EAAE,CAAC,EAAE,IAAI,CAAC,CAAC,EAAE,OAAOA,EAAE8G,EAAEg0C,GAAG,KAAK,mBAAmB,EAAE,KAAK,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,WAAW,CAAC,IAAIzzC,EAAE,CAAC,SAAS,KAAK,SAAS,UAAU,KAAK,UAAU,sBAAsBozC,GAAG,KAAK,qBAAqB,EAAE,sBAAsBqQ,GAAG,KAAK,qBAAqB,EAAE,oBAAoBA,GAAG,KAAK,mBAAmB,EAAE,qBAAqBzN,GAAG,KAAK,oBAAoB,EAAE,SAAS,KAAK,SAAS,YAAY,KAAK,WAAW,EAAE12C,EAAE,MAAM,UAAU,EAAE,OAAO,OAAO,OAAOU,EAAEV,CAAC,EAAEU,CAAC,CAAC,EAAE8mD,GAAG,UAAU,YAAYntD,GAAE,cAAcmtD,EAAE,EAAE,IAAIC,GAAG,cAAc7S,EAAE,CAAC,YAAYl0C,EAAE,CAAC,MAAMA,GAAG,CAAC,CAAC,EAAE,KAAK,gBAAgB,EAAE,CAAC,cAAcA,EAAE,CAAC,MAAM,IAAIitC,EAAE,CAAC,gCAAgCjtC,EAAEV,EAAE,CAAC,GAAGU,GAAG,MAAMV,GAAG,KAAK,OAAO,KAAK,GAAGU,EAAE,OAAOV,EAAE,OAAO,OAAO,KAAK,gCAAgCA,EAAEU,CAAC,EAAE,GAAGV,EAAE,SAAS,EAAE,OAAOU,EAAE,IAAI,EAAEA,EAAE,MAAM,EAAEA,EAAE,OAAOV,EAAE,MAAM,EAAE,QAAQG,EAAE,EAAEA,EAAEH,EAAE,OAAO,EAAEG,EAAE,CAAC,IAAIwB,EAAEjB,EAAEA,EAAE,OAAOV,EAAE,OAAOG,CAAC,EAAEyB,EAAE5B,EAAEG,CAAC,EAAE,GAAGwB,GAAG,MAAMC,GAAG,MAAMD,EAAE,GAAGC,EAAE,EAAE,EAAE,KAAK,IAAI,UAAUD,IAAI,EAAE,EAAE,KAAKC,CAAC,UAAUA,IAAI,EAAE,EAAE,KAAKD,CAAC,MAAM,CAAC,GAAGA,IAAIC,EAAE,MAAM,IAAI8rC,EAAE,wDAAwD,KAAK,UAAUhtC,CAAC,EAAE,IAAI,KAAK,UAAUV,CAAC,CAAC,EAAE,EAAE,KAAK2B,CAAC,CAAC,CAAC,CAAC,OAAO,CAAC,CAAC,MAAMjB,EAAE,CAAC,GAAG,MAAM,QAAQA,CAAC,GAAG,CAAC,MAAM,QAAQA,EAAE,CAAC,CAAC,IAAIA,EAAE,CAACyzC,GAAGzzC,CAAC,CAAC,GAAGA,EAAEA,EAAEA,EAAE,OAAO,EAAE,MAAM,IAAIgtC,EAAE,wEAAwEhtC,EAAE,MAAM,YAAY,EAAE,IAAIV,EAAE,CAAC,EAAE,QAAQ2B,KAAKjB,EAAEiB,GAAG,MAAMA,EAAE,CAAC,IAAI,MAAM3B,EAAE,KAAK2B,EAAE,CAAC,CAAC,EAAE,GAAG3B,EAAE2uC,GAAG3uC,CAAC,EAAEA,EAAE,OAAO,EAAE,MAAM,IAAI0tC,EAAE,8EAA8E,KAAK,UAAUhtC,CAAC,CAAC,GAAG,EAAE,IAAI,EAAEA,EAAE,CAAC,GAAG,KAAK,KAAKA,EAAE,CAAC,EAAE,MAAM,CAAC,EAAE,QAAQiB,EAAE,EAAEA,EAAEjB,EAAE,OAAO,EAAEiB,EAAE,CAAC,IAAIC,EAAElB,EAAEiB,CAAC,GAAG,KAAK,KAAKjB,EAAEiB,CAAC,EAAE,MAAM,CAAC,EAAE,EAAE,KAAK,gCAAgC,EAAEC,CAAC,CAAC,CAAC,IAAIzB,EAAEO,EAAE,IAAIiB,GAAGA,EAAE,MAAM,EAAEjB,EAAE,QAAQ,IAAI,IAAI,IAAIiuC,GAAGxuC,CAAC,EAAE,SAAS,EAAE,KAAK,gBAAgB,GAAG,KAAK,gBAAgB,EAAE,CAAC,KAAKO,EAAEV,EAAE,CAAC,OAAOzC,EAAE,IAAI,CAAC,GAAGmD,EAAEA,EAAE,KAAK,gBAAgB,CAAC,IAAI,EAAE,CAAC,EAAEP,EAAEO,EAAE,IAAIiB,GAAGA,EAAE,IAAI,EAAE,GAAGxB,EAAE,QAAQ,IAAI,IAAI,GAAG,CAAC,IAAIwB,EAAEivC,GAAGzwC,CAAC,EAAE,QAAQyB,KAAKlB,EAAE,CAAC,IAAImB,EAAED,EAAE,KAAK,QAAQE,EAAE,EAAEA,EAAEH,EAAEE,EAAE,EAAEC,EAAEF,EAAEsvC,GAAGtvC,EAAE,CAAC,EAAE,EAAE,KAAKA,CAAC,CAAC,CAAC,OAAO,KAAK,cAAc,CAAC,CAAC,KAAK,CAAC,IAAID,EAAE,GAAG,QAAQG,KAAKpB,EAAE,CAAC,IAAI,EAAEoB,EAAE,KAAK,GAAG,GAAG,KAAK,CAAC,IAAIU,EAAEV,EAAE,MAAM,EAAEU,EAAE,CAAC,EAAEE,EAAEF,EAAE,MAAM,CAAC,EAAE,OAAO,CAAC,CAAC,CAAC,EAAEG,EAAEtJ,EAAEyI,EAAE,CAAC,CAAC,EAAE,OAAO4uC,GAAGluC,EAAE,MAAM,CAAC,CAAC,CAAC,CAAC,EAAEG,EAAE/E,GAAG+E,EAAE,CAAC,EAAE,CAAC,CAAC,EAAEA,EAAEtJ,EAAEsJ,EAAED,CAAC,EAAE,EAAE,KAAKC,CAAC,EAAEhB,EAAE,EAAE,SAAS,EAAE,EAAE,CAAC,IAAIa,EAAEquC,GAAG,EAAE,CAAC,EAAE,OAAO,CAAC,CAAC,CAAC,EAAE,EAAE,KAAKjzC,GAAGkE,EAAEU,CAAC,CAAC,EAAEb,EAAE,EAAE,MAAM,EAAE,KAAKG,CAAC,CAAC,CAAC,IAAIF,EAAE,KAAK,cAAc,CAAC,EAAEC,EAAED,EAAE,KAAK,GAAGD,GAAG,GAAGE,GAAG,KAAK,CAAC,IAAIC,EAAEF,EAAE,MAAM,EAAEE,EAAE,OAAOU,EAAEV,EAAE,EAAE,CAAC,EAAE,EAAE,CAACU,CAAC,EAAE,OAAOV,EAAE,MAAM,EAAEA,EAAE,OAAO,CAAC,CAAC,EAAEF,EAAEvI,EAAEuE,GAAGvE,EAAEuI,EAAE,CAAC,GAAGY,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,EAAE,CAAC,CAAC,SAASX,EAAE,EAAE,CAAC,IAAIC,EAAE,CAACD,EAAE,CAAC,EAAE,OAAOgvC,GAAG,EAAEhvC,EAAE,CAAC,CAAC,EAAED,EAAEhE,GAAGgE,EAAEE,CAAC,CAAC,EAAE,OAAOF,CAAC,CAAC,KAAM,QAAO,KAAK,cAAclB,CAAC,CAAC,CAAC,CAAC,CAAC,mBAAmBA,EAAE,CAACA,EAAEA,EAAE,IAAIV,EAAEU,EAAE,CAAC,GAAG,KAAKV,EAAE,KAAKA,EAAEU,EAAE,CAAC,EAAE,MAAM,CAAC,EAAE,QAAQP,EAAE,EAAEA,EAAEO,EAAE,OAAO,EAAEP,EAAE,CAAC,IAAIwB,EAAEjB,EAAEP,CAAC,GAAG,KAAK,KAAKO,EAAEP,CAAC,EAAE,MAAM,CAAC,EAAEH,EAAE,KAAK,gCAAgCA,EAAE2B,CAAC,CAAC,CAAC,IAAI,EAAE,CAAC,EAAE,QAAQxB,KAAKO,EAAEP,GAAG,MAAMA,EAAE,CAAC,IAAI,MAAM,EAAE,KAAKA,EAAE,CAAC,CAAC,EAAE,OAAO,EAAEwuC,GAAG,CAAC,EAAE,EAAE,SAAS,EAAE3uC,EAAE,EAAE,OAAOA,CAAC,EAAEA,EAAE,CAAC,IAAI,EAAE,OAAOA,CAAC,EAAEA,CAAC,CAAC,YAAYU,EAAEV,EAAE,CAAC,OAAOzC,EAAE,IAAI,CAAC,GAAGyC,GAAG,KAAK,OAAO,KAAK,GAAG,CAAC,MAAM,QAAQA,CAAC,EAAE,MAAM,IAAI0tC,EAAE,2BAA2B,EAAE,GAAG,CAAC,MAAM,QAAQhtC,CAAC,EAAE,MAAM,IAAIgtC,EAAE,6BAA6B,EAAE,GAAG1tC,EAAE,SAASU,EAAE,OAAO,MAAM,IAAIgtC,EAAE,mGAAmGhtC,EAAE,MAAM,OAAOV,EAAE,MAAM,GAAG,EAAE,GAAGA,EAAE,MAAMG,GAAGA,GAAG,IAAI,EAAE,OAAO,KAAKH,EAAEA,EAAE,IAAIG,GAAGA,GAAG,KAAKA,EAAExO,GAAGwO,EAAE,CAAC,CAAC,EAAE,IAAI,EAAEH,EAAE,CAAC,EAAE,QAAQG,EAAE,EAAEA,EAAEH,EAAE,OAAO,EAAE,EAAEG,EAAE,EAAEpL,GAAG,EAAEiL,EAAEG,CAAC,CAAC,EAAE,OAAO,CAAC,CAAC,CAAC,CAAC,EAAEunD,GAAG,cAAcD,EAAE,CAAC,YAAY/mD,EAAE,CAAC,MAAMA,CAAC,CAAC,CAAC,cAAcA,EAAE,CAAC,OAAOnD,EAAE,IAAI,CAAC,IAAIyC,EAAEU,EAAE,CAAC,EAAE,MAAM,EAAE,QAAQ,EAAE,EAAE,EAAEA,EAAE,OAAO,EAAE,EAAEV,EAAEtT,EAAEsT,EAAEU,EAAE,CAAC,CAAC,EAAE,OAAOV,CAAC,CAAC,CAAC,CAAC,EAAE0nD,GAAG,UAAU,MAAMrtD,GAAE,cAAcqtD,EAAE,EAAE,IAAIC,GAAG,cAAcF,EAAE,CAAC,YAAY/mD,EAAE,CAAC,MAAMA,CAAC,CAAC,CAAC,cAAcA,EAAE,CAAC,OAAOnD,EAAE,IAAI,CAAC,IAAIyC,EAAEU,EAAE,CAAC,EAAE,MAAM,EAAE,QAAQ,EAAE,EAAE,EAAEA,EAAE,OAAO,EAAE,EAAEV,EAAExJ,EAAEwJ,EAAEU,EAAE,CAAC,CAAC,EAAE,OAAOV,CAAC,CAAC,CAAC,CAAC,EAAE2nD,GAAG,UAAU,WAAWttD,GAAE,cAAcstD,EAAE,EAAE,IAAIC,GAAG,cAAcH,EAAE,CAAC,YAAY/mD,EAAE,CAAC,MAAMA,CAAC,CAAC,CAAC,cAAcA,EAAE,CAAC,OAAOnD,EAAE,IAAI,CAAC,IAAIyC,EAAEU,EAAE,CAAC,EAAE,MAAM,EAAE,QAAQ,EAAE,EAAE,EAAEA,EAAE,OAAO,EAAE,EAAEV,EAAEtT,EAAEsT,EAAEU,EAAE,CAAC,CAAC,EAAE,OAAOlK,EAAE,EAAEkK,EAAE,OAAOV,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE4nD,GAAG,UAAU,UAAUvtD,GAAE,cAAcutD,EAAE,EAAE,IAAIC,GAAG,cAAcJ,EAAE,CAAC,YAAY/mD,EAAE,CAAC,MAAMA,CAAC,CAAC,CAAC,cAAcA,EAAE,CAAC,OAAOnD,EAAE,IAAI,CAAC,IAAIyC,EAAEU,EAAE,CAAC,EAAE,QAAQ,EAAE,EAAE,EAAEA,EAAE,OAAO,EAAE,EAAEV,EAAErK,GAAGqK,EAAEU,EAAE,CAAC,CAAC,EAAE,OAAOV,CAAC,CAAC,CAAC,CAAC,EAAE6nD,GAAG,UAAU,UAAUxtD,GAAE,cAAcwtD,EAAE,EAAE,IAAIC,GAAG,cAAcL,EAAE,CAAC,YAAY/mD,EAAE,CAAC,MAAMA,CAAC,CAAC,CAAC,cAAcA,EAAE,CAAC,OAAOnD,EAAE,IAAI,CAAC,IAAIyC,EAAEU,EAAE,CAAC,EAAE,QAAQ,EAAE,EAAE,EAAEA,EAAE,OAAO,EAAE,EAAEV,EAAE/J,GAAG+J,EAAEU,EAAE,CAAC,CAAC,EAAE,OAAOV,CAAC,CAAC,CAAC,CAAC,EAAE8nD,GAAG,UAAU,UAAUztD,GAAE,cAAcytD,EAAE,EAAE,IAAIC,GAAG,cAAcN,EAAE,CAAC,YAAY/mD,EAAE,CAAC,MAAMA,CAAC,EAAE,KAAK,aAAa,GAAGA,GAAG,OAAOA,EAAE,CAAC,GAAG,KAAK,KAAKA,EAAE,MAAM,KAAK,KAAK,aAAaA,EAAE,KAAK,KAAK,gBAAgB,GAAG,KAAK,gBAAgB,EAAE,CAAC,MAAMA,EAAE,CAAC,GAAG,EAAE,MAAM,QAAQA,CAAC,GAAG,MAAM,QAAQA,EAAE,CAAC,CAAC,IAAIA,EAAE,SAAS,EAAE,MAAM,IAAIgtC,EAAE,uEAAuE,EAAEhtC,EAAEA,EAAE,IAAIV,EAAE,GAAG,QAAQG,KAAKO,EAAE,GAAGP,GAAG,KAAK,CAACH,EAAE,GAAG,KAAK,CAAC,GAAGA,EAAE,OAAO,IAAI,EAAE,CAAC,EAAE,QAAQG,EAAE,EAAEA,EAAEO,EAAE,OAAO,EAAEP,EAAE,CAAC,IAAIwB,EAAEjB,EAAEP,CAAC,EAAE,MAAM,EAAEwB,EAAE,OAAO,KAAK,KAAK,CAAC,EAAE,IAAIC,EAAE,GAAG,QAAQC,KAAK,EAAE,GAAGxD,EAAE,YAAYwD,EAAEF,CAAC,EAAE,CAACC,EAAE,GAAG,KAAK,CAACA,GAAG,EAAE,KAAKD,CAAC,CAAC,CAAC,GAAG,EAAE,OAAO,EAAE,MAAM,IAAI+rC,EAAE,4GAA4G,KAAK,UAAUhtC,CAAC,CAAC,CAAC,CAAC,cAAcA,EAAE,CAAC,OAAOnD,EAAE,IAAIm0C,GAAGhxC,EAAE,KAAK,IAAI,CAAC,CAAC,CAAC,mBAAmBA,EAAE,CAAC,GAAG,EAAE,MAAM,QAAQA,CAAC,GAAG,MAAM,QAAQA,EAAE,CAAC,CAAC,GAAG,MAAM,IAAIgtC,EAAE,6DAA6D,EAAE,IAAI1tC,EAAEU,EAAE,EAAEV,EAAE,CAAC,EAAE,MAAM,EAAEG,EAAE,KAAK,KAAK,EAAE,EAAE,OAAO,KAAK,KAAK,KAAK,KAAK,QAAQwB,KAAK3B,EAAE,MAAM,CAAC,EAAE,CAAC,GAAG,EAAEG,CAAC,GAAG,MAAMwB,EAAExB,CAAC,GAAG,KAAK,CAAC,EAAEA,CAAC,EAAE,KAAK,KAAK,CAAC,EAAEA,CAAC,GAAGwB,EAAExB,CAAC,CAAC,CAAC,OAAO,CAAC,CAAC,YAAYO,EAAEV,EAAE,CAAC,GAAGA,GAAG,KAAK,OAAO,KAAK,GAAG,CAAC,MAAM,QAAQA,CAAC,EAAE,MAAM,IAAI0tC,EAAE,2CAA2C,EAAE,GAAG,CAAC,MAAM,QAAQhtC,CAAC,EAAE,MAAM,IAAIgtC,EAAE,6CAA6C,EAAE,GAAG1tC,EAAE,SAASU,EAAE,OAAO,MAAM,IAAIgtC,EAAE,mCAAmC1tC,EAAE,MAAM,+BAA+BU,EAAE,MAAM,GAAG,EAAE,OAAOnD,EAAE,IAAI,CAAC,IAAI,EAAE,GAAG,GAAGyC,EAAE,QAAQ4B,GAAG,CAAC,GAAGA,GAAG,KAAK,CAAC,EAAE,GAAG,MAAM,CAAC,CAAC,EAAE,EAAE,OAAO,KAAK,IAAIzB,EAAE,CAAC,EAAE,QAAQyB,EAAE,EAAEA,EAAElB,EAAE,OAAO,EAAEkB,EAAE5B,EAAE4B,CAAC,GAAG,KAAKzB,EAAE,KAAK3R,GAAEyI,GAAGyJ,EAAEkB,CAAC,CAAC,EAAE,MAAM,CAAC,EAAE5B,EAAE4B,CAAC,EAAE,KAAKlB,EAAEkB,CAAC,EAAE,KAAKzB,EAAE,KAAKxO,GAAGqO,EAAE4B,CAAC,EAAE,EAAE,CAAC,EAAEzB,EAAE,KAAKH,EAAE4B,CAAC,CAAC,EAAE,IAAID,EAAE9S,GAAGsR,EAAE,KAAK,IAAI,EAAE,OAAOvT,GAAG+U,EAAE,GAAG,EAAE,CAAC,CAAC,CAAC,CAAC,WAAW,CAAC,IAAIjB,EAAE,CAAC,KAAK,KAAK,IAAI,EAAEV,EAAE,MAAM,UAAU,EAAE,OAAO,OAAO,OAAOU,EAAEV,CAAC,EAAEU,CAAC,CAAC,EAAEqnD,GAAG,UAAU,cAAc1tD,GAAE,cAAc0tD,EAAE,EAAE,SAASC,GAAGloD,EAAE,EAAE,CAAC,KAAKA,EAAE,GAAGA,GAAG,EAAE,OAAOA,CAAC,CAAC,SAASmoD,GAAGnoD,EAAE,EAAEE,EAAE,CAAC,GAAGF,EAAE,MAAM,OAAO,GAAG,EAAE,MAAM,OAAO,EAAE,MAAM,IAAI6tC,GAAG,kEAAkE,EAAE,GAAGtvC,EAAE,OAAOyB,EAAE,MAAM,QAAQ,EAAE,IAAI,uDAAuDA,EAAE,MAAM,MAAM,EAAE,EAAEzB,EAAE,OAAOyB,EAAE,MAAM,QAAQ,EAAE,IAAI,uDAAuD,EAAE,MAAM,MAAM,EAAE,EAAE,OAAOE,GAAG,WAAWA,EAAE,CAACA,EAAEA,CAAC,GAAGF,EAAE,QAAQ,aAAa,EAAE,QAAQ,YAAY,MAAM,IAAI6tC,GAAG,6DAA6D,EAAE,IAAIztC,EAAEJ,EAAE,MAAM,OAAOK,EAAE,EAAE,MAAM,OAAOH,GAAG,OAAOA,EAAE,CAACE,EAAE,EAAEC,EAAE,CAAC,GAAG,IAAI,EAAEH,EAAE,OAAOzC,EAAE,IAAI,CAAC,IAAI,EAAE,GAAG2C,EAAEC,EAAE,CAAC,EAAED,EAAEC,EAAE,IAAI2B,EAAE,CAAC,EAAE,QAAQC,EAAE,EAAEA,EAAE,EAAE,EAAEA,EAAED,EAAE,KAAK,CAAC,EAAE,EAAEzI,EAAE,EAAE,EAAE,MAAM,OAAOyI,CAAC,CAAC,CAAC,SAAS3B,EAAED,EAAE,CAAC,EAAEC,EAAED,EAAE,IAAI4B,EAAE,CAAC,EAAE,QAAQC,EAAE,EAAEA,EAAE,EAAE,EAAEA,EAAED,EAAE,KAAK,CAAC,EAAEhC,EAAEzG,EAAEyG,EAAEA,EAAE,MAAM,OAAOgC,CAAC,CAAC,CAAC,MAAM,EAAE,EAAE,IAAID,EAAE,GAAG/B,EAAE,MAAM,SAAS,GAAG,EAAE,MAAM,SAAS,EAAE,EAAE,CAAC,IAAI,EAAE,CAAC,EAAE+B,EAAEpF,GAAGjG,EAAEsJ,EAAE,CAAC,EAAE,EAAE,CAAC,CAAC,EAAE+B,EAAEpF,GAAGjG,EAAEoH,GAAGkC,EAAE,CAAC,EAAE,CAAC,CAAC,EAAE,CAAC,EAAE,EAAE,CAAC,CAAC,MAAM,CAAC,IAAIgC,EAAE,EAAE,CAAC,IAAIhC,EAAE,MAAM,OAAO,EAAEiC,EAAE,EAAE,CAAC,IAAI,EAAE,MAAM,OAAO,EAAEF,EAAExM,GAAGyK,EAAE,EAAEgC,EAAEC,CAAC,CAAC,CAAC,GAAG,EAAE,EAAE,CAAC,IAAID,EAAE5B,EAAEC,EAAE2B,EAAE5B,EAAEC,EAAE,EAAE2B,EAAE5B,EAAE,EAAE,IAAI6B,EAAE,CAAC,EAAE,QAAQS,EAAEV,EAAEU,EAAEV,EAAE,EAAE,EAAEU,EAAET,EAAE,KAAKS,CAAC,EAAEX,EAAE1F,GAAG0F,EAAEE,CAAC,CAAC,CAAC,OAAOF,EAAE,MAAM,SAAS,IAAIA,EAAElQ,GAAGkQ,EAAE,CAAC,GAAGA,CAAC,CAAC,CAAC,CAAC,IAAIqmD,GAAG,cAAcT,EAAE,CAAC,YAAY/mD,EAAE,CAAC,MAAMA,CAAC,EAAE,KAAK,KAAKA,EAAE,KAAK,KAAK,UAAUA,EAAE,WAAW,KAAK,GAAGA,EAAE,UAAU,KAAK,gBAAgB,GAAG,KAAK,gBAAgB,EAAE,CAAC,MAAMA,EAAE,CAACrC,EAAE,OAAO,MAAM,QAAQqC,CAAC,GAAGA,EAAE,SAAS,GAAG,MAAM,QAAQA,EAAE,CAAC,CAAC,GAAG,MAAM,QAAQA,EAAE,CAAC,CAAC,EAAE,IAAI,+DAA+D,EAAE,IAAIV,EAAEU,EAAE,CAAC,EAAE,EAAEA,EAAE,CAAC,EAAE,GAAGV,EAAE,OAAO,GAAG,EAAE,OAAO,EAAE,MAAM,IAAI2tC,GAAG,8DAA8D,EAAE,IAAIxtC,EAAE,KAAK,cAAcH,EAAE,CAAC,EAAE,GAAGA,EAAEG,EAAE,CAAC,CAAC,IAAI,EAAEA,EAAE,CAAC,CAAC,EAAE,MAAM,IAAIutC,EAAE,8BAA8B1tC,EAAEG,EAAE,CAAC,CAAC,CAAC,QAAQ,EAAEA,EAAE,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,cAAcO,EAAE,CAAC,GAAGA,EAAE,SAAS,EAAE,MAAM,IAAIgtC,EAAE,oEAAoEhtC,EAAE,MAAM,YAAY,EAAE,IAAIV,EAAEU,EAAE,CAAC,EAAE,EAAEA,EAAE,CAAC,EAAEP,EAAE,OAAO,MAAM,QAAQ,KAAK,IAAI,EAAEA,EAAE,KAAK,KAAK,IAAI,CAACwB,EAAEC,IAAIomD,GAAGrmD,EAAEjB,EAAEkB,CAAC,EAAE,MAAM,MAAM,CAAC,EAAEzB,EAAE,CAAC6nD,GAAG,KAAK,KAAKhoD,EAAE,MAAM,MAAM,EAAEgoD,GAAG,KAAK,KAAK,EAAE,MAAM,MAAM,CAAC,EAAE,KAAK,YAAYhoD,EAAEm9C,GAAGn9C,EAAEG,EAAE,CAAC,CAAC,EAAE,EAAEg9C,GAAG,EAAEh9C,EAAE,CAAC,CAAC,GAAG8nD,GAAGjoD,EAAE,EAAEG,CAAC,CAAC,CAAC,cAAcO,EAAEV,EAAE,CAAC,IAAI,EAAE,OAAO,MAAM,QAAQ,KAAK,IAAI,EAAE,EAAE,KAAK,KAAK,EAAE,CAACgoD,GAAG,KAAK,KAAKtnD,EAAE,MAAM,EAAEsnD,GAAG,KAAK,KAAKhoD,EAAE,MAAM,CAAC,EAAE,CAAC,CAAC,mBAAmBU,EAAE,CAACrC,EAAE,OAAO,MAAM,QAAQqC,CAAC,GAAGA,EAAE,SAAS,GAAG,MAAM,QAAQA,EAAE,CAAC,CAAC,GAAG,MAAM,QAAQA,EAAE,CAAC,CAAC,EAAE,IAAI,+DAA+D,EAAE,IAAIV,EAAEU,EAAE,CAAC,EAAE,MAAM,EAAE,EAAEA,EAAE,CAAC,EAAE,MAAM,EAAE,GAAGV,EAAE,OAAO,GAAG,EAAE,OAAO,EAAE,MAAM,IAAI2tC,GAAG,8DAA8D,EAAE,IAAIxtC,EAAE,KAAK,cAAcH,EAAE,CAAC,EAAEA,EAAE,OAAOG,EAAE,CAAC,EAAE,CAAC,EAAE,EAAE,OAAOA,EAAE,CAAC,EAAE,CAAC,EAAE,EAAE,OAAO,EAAE,CAAC,EAAE,IAAIwB,EAAE3B,EAAE,OAAO,CAAC,EAAE,OAAO2B,EAAE,SAAS,GAAGA,EAAE,KAAK,CAAC,EAAEA,CAAC,CAAC,YAAYjB,EAAEV,EAAE,CAAC,OAAO,IAAI,CAAC,WAAW,CAAC,IAAIU,EAAE,CAAC,KAAK,KAAK,KAAK,UAAU,KAAK,SAAS,EAAEV,EAAE,MAAM,UAAU,EAAE,OAAO,OAAO,OAAOU,EAAEV,CAAC,EAAEU,CAAC,CAAC,EAAEwnD,GAAG,UAAU,MAAM7tD,GAAE,cAAc6tD,EAAE,EAAE,IAAIC,GAAG,cAAcvT,EAAE,CAAC,YAAYl0C,EAAE,CAAC,MAAMA,CAAC,EAAE,KAAK,gBAAgB,GAAG,KAAK,OAAOA,EAAE,MAAM,CAAC,mBAAmBA,EAAE,CAAC,OAAOA,CAAC,CAAC,WAAW,CAAC,IAAIA,EAAE,MAAM,UAAU,EAAEV,EAAE,CAAC,OAAO,KAAK,MAAM,EAAE,OAAO,OAAO,OAAOA,EAAEU,CAAC,EAAEV,CAAC,CAAC,KAAKU,EAAEV,EAAE,CAAC,OAAOzC,EAAE,IAAI,CAAC,KAAK,eAAemD,EAAEV,CAAC,EAAE,IAAI,EAAEk0C,GAAGxzC,CAAC,EAAE,OAAO4xC,GAAG,IAAI5lD,EAAEklD,GAAG,EAAE,MAAM,EAAE,KAAK,MAAM,EAAE,CAAC,EAAE,IAAI,EAAE5xC,EAAE,UAAU,EAAE,CAAC,CAAC,CAAC,CAAC,EAAEmoD,GAAG,UAAU,gBAAgB9tD,GAAE,cAAc8tD,EAAE,EAAE,IAAIC,GAAG,cAAcxT,EAAE,CAAC,YAAYl0C,EAAE,CAAC,MAAMA,CAAC,EAAE,KAAK,gBAAgB,GAAG,KAAK,KAAKA,EAAE,IAAI,CAAC,mBAAmBA,EAAE,CAAC,OAAOA,CAAC,CAAC,WAAW,CAAC,IAAIA,EAAE,MAAM,UAAU,EAAEV,EAAE,CAAC,KAAK,KAAK,IAAI,EAAE,OAAO,OAAO,OAAOA,EAAEU,CAAC,EAAEV,CAAC,CAAC,KAAKU,EAAEV,EAAE,CAAC,OAAOzC,EAAE,IAAI,CAAC,KAAK,eAAemD,EAAEV,CAAC,EAAE,IAAI,EAAEk0C,GAAGxzC,CAAC,EAAE,OAAO,KAAK,KAAK,GAAG,KAAK,KAAK,EAAE4xC,GAAG,IAAI,CAAC,IAAI3wC,EAAE,KAAK,KAAK,KAAK,MAAM,EAAE,KAAK,KAAK,EAAE,OAAOnL,EAAE,EAAEo7C,GAAG,EAAE,MAAM,EAAEjwC,CAAC,CAAC,CAAC,EAAE,IAAI,EAAE3B,EAAE,UAAU,EAAE,EAAE,CAAC,CAAC,CAAC,CAAC,EAAEooD,GAAG,UAAU,kBAAkB/tD,GAAE,cAAc+tD,EAAE,EAAE,IAAIC,GAAG,cAAczT,EAAE,CAAC,YAAYl0C,EAAE,CAAC,MAAMA,CAAC,EAAE,KAAK,gBAAgB,GAAG,KAAK,KAAKA,EAAE,KAAK,KAAK,WAAWA,EAAE,UAAU,CAAC,eAAeA,EAAE,CAAC,OAAO,KAAK,YAAYwzC,GAAGxzC,CAAC,EAAE,KAAK,CAAC,mBAAmBA,EAAE,CAAC,OAAOA,CAAC,CAAC,WAAW,CAAC,IAAIA,EAAE,MAAM,UAAU,EAAEV,EAAE,CAAC,KAAK,KAAK,IAAI,EAAE,OAAO,OAAO,OAAOA,EAAEU,CAAC,EAAEV,CAAC,CAAC,KAAKU,EAAEV,EAAE,CAAC,OAAOzC,EAAE,IAAI,CAAC,GAAG,KAAK,KAAK,GAAG,KAAK,KAAK,EAAE,CAAC,IAAI,EAAE,KAAK,eAAemD,CAAC,EAAE,OAAO4xC,GAAG,IAAI,CAAC,IAAI3wC,EAAEuyC,GAAGxzC,CAAC,EAAEoB,EAAE,oBAAoB,mBAAmBC,EAAE7O,GAAGoF,GAAG,CAAC,EAAE,KAAK,IAAI,EAAEyJ,EAAEkvC,GAAGlvC,EAAE,SAAS,EAAE,IAAIS,IAAI,EAAE,KAAK,OAAO,EAAE,KAAK,KAAKV,GAAG,KAAK,IAAIW,EAAE,CAACD,EAAEV,EAAE,KAAK,KAAKY,EAAEhW,EAAE8J,EAAEmL,EAAEI,CAAC,EAAEvL,EAAE9J,EAAEqV,EAAE,EAAE,EAAED,CAAC,CAAC,EAAE,OAAOpV,EAAE8J,EAAEkM,EAAEF,CAAC,EAAEC,CAAC,CAAC,EAAE,IAAIyxC,GAAGxzC,CAAC,EAAEV,EAAE,UAAU,EAAE,CAAC,CAAC,OAAOU,CAAC,CAAC,CAAC,CAAC,EAAE2nD,GAAG,UAAU,eAAehuD,GAAE,cAAcguD,EAAE,EAAE,SAASC,GAAGxoD,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,KAAK,CAAC,IAAI,EAAE,GAAGL,EAAE,OAAO,EAAE,EAAEnS,GAAGmS,EAAE,EAAEE,EAAEE,EAAEC,EAAE,CAAC,UAAUL,EAAE,OAAO,EAAE,EAAElS,GAAGkS,EAAE,EAAEE,EAAEE,EAAEC,EAAE,CAAC,UAAUL,EAAE,OAAO,EAAE,EAAEjS,GAAGiS,EAAE,EAAEE,EAAEE,EAAEC,EAAE,CAAC,MAAO,OAAM,IAAIwtC,GAAG,2DAA2D7tC,EAAE,IAAI,MAAM,EAAE,OAAO,CAAC,CAAC,SAASyoD,GAAGzoD,EAAE,EAAEE,EAAEE,EAAEC,EAAE,KAAK,CAAC,OAAO5C,EAAE,IAAI,CAAC,IAAI,EAAEjH,GAAGwJ,EAAEI,CAAC,EAAE,EAAE,EAAE,KAAK2B,EAAE,EAAE,SAAS,MAAM,CAACymD,GAAGxoD,EAAE,EAAE+B,EAAE7B,EAAE,EAAEG,CAAC,EAAE,EAAE0B,CAAC,CAAC,CAAC,CAAC,CAAC,SAAS2mD,GAAG1oD,EAAE,EAAEE,EAAEE,EAAEC,EAAE,KAAK,CAAC,OAAO5C,EAAE,IAAI,CAAC,IAAI,EAAEjH,GAAGwJ,EAAEI,CAAC,EAAE,EAAE,EAAE,KAAK2B,EAAE,EAAE,SAASC,EAAE,CAAC,EAAE,QAAQc,KAAKiuC,GAAG,EAAE/wC,EAAE,IAAI,EAAEI,EAAE,QAAQ0C,CAAC,IAAI,GAAGd,EAAE,KAAK,CAAC,EAAEA,EAAE,KAAKhC,EAAE,MAAM8C,CAAC,CAAC,EAAE,IAAIb,EAAE1I,EAAE,EAAEyI,CAAC,EAAEU,EAAEnJ,EAAEwI,EAAEC,CAAC,EAAEW,EAAE,GAAG,KAAK,KAAKpJ,EAAE,EAAEyI,CAAC,EAAEY,EAAE1C,GAAG,KAAK,KAAK3G,EAAE2G,EAAE8B,CAAC,EAAE,MAAM,CAACwmD,GAAGxoD,EAAEiC,EAAES,EAAEE,EAAED,EAAEtC,CAAC,EAAE,EAAE0B,CAAC,CAAC,CAAC,CAAC,CAAC,SAAS4mD,GAAG3oD,EAAE,EAAEE,EAAEE,EAAEC,EAAE,KAAK,CAAC,OAAO9B,EAAE,YAAY6B,EAAE,MAAM,EAAE,KAAK,EAAE2wC,GAAG,EAAE/wC,EAAE,KAAK,CAAC,CAAC,EAAEyoD,GAAGzoD,EAAE,EAAEE,EAAEE,EAAEC,CAAC,EAAEqoD,GAAG1oD,EAAE,EAAEE,EAAEE,EAAEC,CAAC,CAAC,CAAC,IAAIuoD,GAAG,cAAc9T,EAAE,CAAC,YAAYl0C,EAAE,CAACA,GAAG,OAAOA,EAAE,CAAC,GAAG,MAAMA,CAAC,EAAE,KAAK,gBAAgB,GAAG,KAAK,KAAKA,EAAE,MAAM,KAAK,GAAGA,EAAE,KAAK,KAAK,SAASA,EAAE,UAAU,KAAK,IAAIA,EAAE,SAAS,KAAK,QAAQA,EAAE,SAAS,KAAK,KAAKA,EAAE,QAAQ,KAAK,OAAOA,EAAE,QAAQ,KAAK,GAAGA,EAAE,OAAO,KAAK,MAAMA,EAAE,OAAO,KAAK,GAAGA,EAAE,MAAM,KAAK,gBAAgBqzC,GAAGrzC,EAAE,iBAAiB,OAAO,EAAE,KAAK,iBAAiBqzC,GAAGrzC,EAAE,kBAAkB,MAAM,EAAE,KAAK,sBAAsBqzC,GAAGrzC,EAAE,uBAAuB,OAAO,EAAE,KAAK,0BAA0BqzC,GAAGrzC,EAAE,2BAA2B,MAAM,EAAE,KAAK,eAAek2C,GAAGl2C,EAAE,cAAc,EAAE,KAAK,gBAAgBk2C,GAAGl2C,EAAE,eAAe,EAAE,KAAK,gBAAgB2jD,GAAG3jD,EAAE,eAAe,EAAE,KAAK,iBAAiB2jD,GAAG3jD,EAAE,gBAAgB,CAAC,CAAC,MAAMA,EAAE,CAACA,EAAEyzC,GAAGzzC,CAAC,EAAE,IAAIV,EAAE,KAAK,MAAM,EAAE,KAAK,KAAK,KAAK,KAAKU,EAAE,OAAO,EAAEA,EAAEV,CAAC,EAAE,GAAG,GAAG,KAAK,MAAM,IAAI0tC,EAAE,QAAQ1tC,CAAC,+FAA+F,KAAK,UAAUU,CAAC,CAAC,GAAG,EAAE,KAAK,UAAU,CAAC,IAAIhc,GAAG,CAAC,KAAKgc,EAAE,OAAO,KAAK,CAAC,CAACV,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,EAAE,IAAIG,EAAE,CAAC,CAAC,EAAE,KAAK,QAAQ,KAAK,MAAM,KAAK,UAAU,QAAQA,EAAE,KAAK,KAAK,iBAAiB,KAAK,iBAAiB,GAAG,KAAK,eAAe,GAAG,KAAK,SAAS,KAAK,KAAK,KAAK,UAAU,OAAOA,EAAE,KAAK,KAAK,gBAAgB,KAAK,gBAAgB,GAAG,KAAK,cAAc,GAAG,KAAK,WAAW,KAAK,UAAU,cAAcA,EAAE,KAAK,KAAK,sBAAsB,KAAK,EAAE,EAAE,KAAK,eAAe,KAAK,UAAU,kBAAkBA,EAAE,KAAK,KAAK,0BAA0B,KAAK,EAAE,EAAE,KAAK,MAAM,EAAE,CAAC,KAAKO,EAAEV,EAAE,CAAC,OAAOzC,EAAE,IAAI,CAAC,IAAI,EAAEyC,EAAE,UAAU,KAAK,GAAGA,EAAE,SAASG,EAAE+zC,GAAGxzC,CAAC,EAAEiB,EAAExB,EAAE,MAAMyB,EAAED,EAAE,OAAOE,EAAEgvC,GAAG,EAAEjvC,CAAC,EAAEE,EAAE,KAAK,MAAM,EAAE,KAAK,KAAK,KAAK,KAAKF,EAAEC,EAAE,OAAOC,EAAE,CAAC,EAAE,IAAI,EAAEgsC,GAAG,EAAElsC,CAAC,EAAE,EAAEE,CAAC,EAAEH,EAAEG,CAAC,EAAE,IAAIU,EAAEX,EAAE,MAAM,EAAEW,EAAE,KAAK,EAAE,IAAI,EAAE,CAACnE,EAAE,YAAYmE,EAAEquC,GAAG,EAAEjvC,CAAC,EAAE,MAAM,EAAEA,EAAE,CAAC,CAAC,EAAEc,EAAE,IAAI,CAAC,GAAG,EAAE,CAAC,IAAIkC,EAAEvL,EAAE,KAAK,WAAW,KAAK,EAAE,CAAC,EAAEkL,EAAElL,EAAE,KAAK,eAAe,KAAK,EAAE,CAAC,EAAEmL,EAAE,KAAK,OAAOnL,EAAE,KAAK,KAAK,KAAK,EAAE,CAAC,EAAE,KAAKoL,EAAE,KAAK,MAAMpL,EAAE,KAAK,MAAM,KAAK,EAAE,CAAC,EAAE,KAAK,OAAOivD,GAAGnoD,EAAEyE,EAAEL,EAAEC,EAAEC,EAAE,KAAK,OAAO,CAAC,KAAM,QAAO6jD,GAAGnoD,EAAE,KAAK,WAAW,KAAK,EAAE,KAAK,eAAe,KAAK,EAAE,KAAK,MAAM,KAAK,KAAK,KAAK,KAAK,KAAK,EAAE,KAAK,OAAO,KAAK,KAAK,KAAK,MAAM,KAAK,EAAE,KAAK,OAAO,CAAC,EAAE,GAAG,CAAC,EAAE,OAAOuC,EAAE,EAAE,GAAG,CAACC,EAAEC,EAAEkB,CAAC,EAAE2kD,GAAGtoD,EAAE,KAAK,MAAM,KAAK,EAAE,KAAK,KAAK,KAAK,EAAE0B,EAAE,KAAK,OAAO,EAAEkC,EAAE,CAACa,EAAEL,EAAEC,IAAI,CAACjH,EAAE,IAAI,CAAC,IAAIkH,EAAE,EAAED,EAAEE,EAAEE,EAAE,KAAK,EAAED,EAAEnO,EAAEgG,GAAGkI,EAAEH,CAAC,EAAEE,CAAC,EAAEG,EAAE,MAAMpI,GAAGkI,EAAEC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,OAAYZ,EAAE,KAAK,WAAWnB,EAAE,KAAK,QAAQ,EAAEmB,EAAE,KAAK,eAAeD,EAAE,KAAK,QAAQ,EAAMnB,CAAC,CAAC,CAAC,CAAC,WAAW,CAAC,IAAIjC,EAAE,CAAC,KAAK,KAAK,KAAK,SAAS,KAAK,SAAS,QAAQ,KAAK,QAAQ,OAAO,KAAK,OAAO,MAAM,KAAK,MAAM,gBAAgBozC,GAAG,KAAK,eAAe,EAAE,iBAAiBA,GAAG,KAAK,gBAAgB,EAAE,sBAAsBA,GAAG,KAAK,qBAAqB,EAAE,0BAA0BA,GAAG,KAAK,yBAAyB,EAAE,gBAAgBqQ,GAAG,KAAK,eAAe,EAAE,iBAAiBA,GAAG,KAAK,gBAAgB,EAAE,eAAezN,GAAG,KAAK,cAAc,EAAE,gBAAgBA,GAAG,KAAK,eAAe,CAAC,EAAE12C,EAAE,MAAM,UAAU,EAAE,OAAO,OAAO,OAAOU,EAAEV,CAAC,EAAEU,CAAC,CAAC,EAAEgoD,GAAG,UAAU,qBAAqBruD,GAAE,cAAcquD,EAAE,EAAE,IAAIC,GAAG,cAAc/T,EAAE,CAAC,YAAYl0C,EAAE,CAAC,GAAGA,GAAG,OAAOA,EAAE,CAAC,GAAG,MAAMA,CAAC,EAAE,KAAK,KAAKA,EAAE,MAAM,KAAK,GAAGA,EAAE,KAAK,OAAO,KAAK,MAAM,UAAU,GAAG,CAAC,OAAO,UAAU,KAAK,IAAI,EAAE,MAAM,IAAI,MAAM,gDAAgD,KAAK,IAAI,EAAE,UAAU,MAAM,QAAQ,KAAK,IAAI,GAAG,QAAQV,KAAK,KAAK,KAAK,GAAG,CAAC,OAAO,UAAUA,CAAC,EAAE,MAAM,IAAI,MAAM,0DAA0D,KAAK,UAAU,KAAK,IAAI,CAAC,EAAE,MAAO,OAAM,IAAI,MAAM,wEAAwE,KAAK,UAAU,KAAK,IAAI,CAAC,EAAE,EAAE,KAAK,QAAQU,EAAE,SAAS,KAAK,KAAKA,EAAE,QAAQ,KAAK,OAAOA,EAAE,QAAQ,KAAK,GAAGA,EAAE,OAAO,KAAK,MAAMA,EAAE,OAAO,KAAK,GAAGA,EAAE,MAAM,KAAK,gBAAgBqzC,GAAGrzC,EAAE,iBAAiB,OAAO,EAAE,KAAK,iBAAiBqzC,GAAGrzC,EAAE,kBAAkB,MAAM,EAAE,KAAK,gBAAgB2jD,GAAG3jD,EAAE,eAAe,EAAE,KAAK,iBAAiB2jD,GAAG3jD,EAAE,gBAAgB,EAAE,KAAK,gBAAgB,EAAE,CAAC,MAAMA,EAAE,CAACA,EAAEyzC,GAAGzzC,CAAC,EAAE,IAAIV,EAAEU,EAAE,OAAO,OAAO,KAAK,MAAM,WAAW,KAAK,KAAK,CAAC,KAAK,IAAI,GAAG,QAAQiB,EAAE,EAAEA,EAAE,KAAK,KAAK,OAAO,EAAEA,EAAE,KAAK,KAAKA,CAAC,EAAE,IAAI,KAAK,KAAKA,CAAC,GAAG3B,GAAG,QAAQ2B,KAAK,KAAK,KAAK,GAAGA,EAAE,GAAGA,GAAG3B,EAAE,MAAM,IAAI,MAAM,iBAAiB2B,CAAC,EAAE,EAAE,GAAG,KAAK,KAAK,SAASgtC,GAAG,KAAK,IAAI,EAAE,OAAO,MAAM,IAAI,MAAM,4BAA4B,KAAK,IAAI,EAAE,EAAE,IAAI,EAAE,KAAK,KAAK,IAAIhtC,GAAGjB,EAAEiB,CAAC,CAAC,EAAExB,EAAE,GAAG,KAAK,MAAM,KAAK,MAAM,KAAK,UAAU,QAAQ,EAAE,UAAU,KAAK,iBAAiB,KAAK,iBAAiBA,CAAC,EAAE,KAAK,MAAM,KAAK,KAAK,OAAO,KAAK,KAAK,KAAK,UAAU,OAAO,EAAE,UAAU,KAAK,gBAAgB,KAAK,gBAAgBA,CAAC,EAAE,KAAK,KAAK,KAAK,KAAK,MAAM,EAAE,CAAC,KAAKO,EAAEV,EAAE,CAAC,IAAI,EAAEk0C,GAAGxzC,CAAC,EAAEP,EAAE,EAAE,MAAMwB,EAAExB,EAAE,OAAO,OAAO5C,EAAE,IAAI,CAAC,GAAG,CAAC,KAAKsE,EAAE,SAASC,CAAC,EAAExL,GAAG,EAAE,KAAK,KAAK,EAAE,EAAEyL,EAAE+rC,GAAG,EAAEnsC,CAAC,EAAE,QAAQ,KAAK,KAAK,KAAKI,EAAE,CAAC,EAAE5B,EAAE,CAAC,EAAE,IAAIqC,EAAE,GAAG,GAAG,MAAM,EAAE,MAAM,SAASb,EAAEtI,EAAE,EAAE0I,CAAC,EAAE,EAAEU,EAAE,KAAK,MAAMD,EAAE,KAAK,MAAM,KAAK,CAAC,EAAE,KAAKE,EAAE,KAAK,OAAOF,EAAE,KAAK,KAAK,KAAK,CAAC,EAAE,KAAKG,EAAE,CAAC,EAAEC,EAAE,CAAC,EAAE,QAAQ,EAAE,EAAE,EAAEjB,EAAE,EAAE,EAAE,KAAK,KAAK,QAAQ,CAAC,IAAI,IAAIgB,EAAE,KAAKxC,EAAE,CAAC,CAAC,EAAEyC,EAAE,KAAK,CAAC,IAAID,EAAE,KAAK,CAAC,EAAEC,EAAE,KAAKzC,EAAE,CAAC,CAAC,GAAG,OAAO0B,EAAErE,GAAGqE,EAAEc,CAAC,EAAEb,EAAEtE,GAAGsE,EAAEa,CAAC,EAAEF,GAAG,OAAOA,EAAEjF,GAAGiF,EAAEG,CAAC,GAAGF,GAAG,OAAOA,EAAElF,GAAGkF,EAAEE,CAAC,GAAG0lD,GAAG,EAAEzmD,EAAEC,EAAEY,EAAED,EAAE,KAAK,OAAO,CAAC,CAAC,CAAC,CAAC,WAAW,CAAC,IAAI/B,EAAE,CAAC,KAAK,KAAK,KAAK,QAAQ,KAAK,QAAQ,OAAO,KAAK,OAAO,MAAM,KAAK,MAAM,gBAAgBozC,GAAG,KAAK,eAAe,EAAE,iBAAiBA,GAAG,KAAK,gBAAgB,EAAE,gBAAgBqQ,GAAG,KAAK,eAAe,EAAE,iBAAiBA,GAAG,KAAK,gBAAgB,CAAC,EAAEnkD,EAAE,MAAM,UAAU,EAAE,OAAO,OAAO,OAAOU,EAAEV,CAAC,EAAEU,CAAC,CAAC,EAAEioD,GAAG,UAAU,qBAAqBtuD,GAAE,cAAcsuD,EAAE,EAAE,SAASC,GAAG9oD,EAAE,EAAEE,EAAE,CAAC,OAAOzC,EAAE,IAAI,CAAC,GAAGuC,EAAE,OAAO,EAAE,MAAM,IAAI4tC,EAAE,kEAAkE5tC,EAAE,IAAI,YAAY,EAAE,GAAG,GAAG,OAAO,EAAE,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,GAAG,EAAE,SAAS,GAAG,EAAE,CAAC,EAAE,SAAS,GAAG,EAAE,CAAC,EAAE,SAAS,EAAE,MAAM,IAAI4tC,EAAE,6GAA6G,EAAE,GAAG1tC,GAAG,OAAOA,EAAEgxC,GAAG,GAAGhxC,IAAI,gBAAgBA,IAAI,gBAAgB,MAAM,IAAI0tC,EAAE,wBAAwB1tC,CAAC,iEAAiE,EAAE,IAAIE,EAAE,OAAOF,IAAI,gBAAgBE,EAAE,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,EAAE,CAAC,EAAE,EAAE,CAAC,CAAC,EAAEA,EAAE,CAAC,CAAC,EAAE,CAAC,EAAE,EAAE,CAAC,EAAE,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,EAAE9I,GAAG0I,EAAEI,CAAC,CAAC,CAAC,CAAC,CAAC,IAAI2oD,GAAG,cAAcjU,EAAE,CAAC,YAAYl0C,EAAE,CAAC,GAAGA,GAAG,OAAOA,EAAE,CAAC,GAAG,MAAMA,CAAC,EAAE,KAAK,WAAWA,EAAE,YAAY,KAAKswC,GAAG,EAAEtwC,EAAE,WAAWA,EAAE,SAAS,KAAK,KAAK,QAAQ,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,UAAU,OAAOA,EAAE,SAAS,SAAS,KAAK,QAAQ,CAAC,CAACA,EAAE,QAAQA,EAAE,OAAO,EAAE,CAACA,EAAE,QAAQA,EAAE,OAAO,CAAC,MAAM,CAAC,GAAGA,EAAE,QAAQA,EAAE,QAAQA,EAAE,QAAQ,SAAS,EAAE,MAAM,IAAIgtC,EAAE,+EAA+EhtC,EAAE,QAAQ,MAAM,SAAS,EAAE,IAAIV,EAAE,EAAE,GAAG,OAAOU,EAAE,QAAQ,CAAC,GAAG,SAASV,EAAE,CAACU,EAAE,QAAQ,CAAC,EAAEA,EAAE,QAAQ,CAAC,CAAC,EAAE,EAAE,CAACA,EAAE,QAAQ,CAAC,EAAEA,EAAE,QAAQ,CAAC,CAAC,MAAM,CAAC,GAAGA,EAAE,QAAQA,EAAE,QAAQA,EAAE,QAAQ,CAAC,EAAE,SAAS,EAAE,MAAM,IAAIgtC,EAAE,sFAAsFhtC,EAAE,QAAQ,CAAC,EAAE,MAAM,SAAS,EAAE,GAAGV,EAAEU,EAAE,QAAQ,CAAC,EAAEA,EAAE,QAAQ,CAAC,EAAE,SAAS,EAAE,MAAM,IAAIgtC,EAAE,qFAAqFhtC,EAAE,QAAQ,CAAC,EAAE,MAAM,SAAS,EAAE,EAAEA,EAAE,QAAQ,CAAC,CAAC,CAAC,KAAK,QAAQ,CAACV,EAAE,CAAC,CAAC,CAAC,KAAK,UAAU,CAAC,IAAItb,GAAG,CAAC,KAAK,CAAC,CAAC,CAAC,CAAC,CAAC,mBAAmBgc,EAAE,CAACA,EAAEyzC,GAAGzzC,CAAC,EAAE,IAAIV,EAAE,EAAE,OAAO,KAAK,aAAa,iBAAiBU,EAAE,CAAC,GAAG,MAAMA,EAAE,CAAC,GAAG,EAAEV,EAAEU,EAAE,CAAC,EAAE,KAAK,QAAQ,CAAC,EAAE,CAAC,EAAE,KAAK,QAAQ,CAAC,EAAE,CAAC,EAAEV,EAAE,KAAKU,EAAE,CAAC,GAAG,MAAMA,EAAE,CAAC,GAAG,EAAE,EAAEA,EAAE,CAAC,EAAE,KAAK,QAAQ,CAAC,EAAE,CAAC,EAAE,KAAK,QAAQ,CAAC,EAAE,CAAC,EAAE,EAAE,KAAK,CAACA,EAAE,CAAC,EAAEA,EAAE,CAAC,EAAEV,EAAE,CAAC,IAAIU,EAAE,CAAC,GAAG,MAAMA,EAAE,CAAC,GAAG,EAAEV,EAAEU,EAAE,CAAC,EAAE,KAAK,QAAQ,CAAC,EAAE,CAAC,EAAE,KAAK,QAAQ,CAAC,EAAE,CAAC,EAAEV,EAAE,KAAKU,EAAE,CAAC,GAAG,MAAMA,EAAE,CAAC,GAAG,EAAE,EAAEA,EAAE,CAAC,EAAE,KAAK,QAAQ,CAAC,EAAE,CAAC,EAAE,KAAK,QAAQ,CAAC,EAAE,CAAC,EAAE,EAAE,KAAK,CAACA,EAAE,CAAC,EAAEV,EAAE,EAAEU,EAAE,CAAC,CAAC,EAAE,CAAC,KAAKA,EAAEV,EAAE,CAAC,OAAOzC,EAAE,IAAIqrD,GAAG1U,GAAGxzC,CAAC,EAAE,KAAK,QAAQ,KAAK,UAAU,CAAC,CAAC,CAAC,WAAW,CAAC,IAAIA,EAAE,CAAC,QAAQ,KAAK,QAAQ,WAAW,KAAK,UAAU,EAAEV,EAAE,MAAM,UAAU,EAAE,OAAO,OAAO,OAAOU,EAAEV,CAAC,EAAEU,CAAC,CAAC,EAAEmoD,GAAG,UAAU,gBAAgBxuD,GAAE,cAAcwuD,EAAE,EAAE,SAASC,GAAGhpD,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,CAAC,OAAO5C,EAAE,IAAI,CAACsyC,GAAG1vC,CAAC,EAAE6vC,GAAG,CAAC,EAAED,GAAG7vC,CAAC,EAAEF,GAAG,OAAOA,EAAE,CAAC,EAAE,CAAC,GAAGE,GAAG,OAAOA,EAAE,SAASC,GAAG,OAAOA,EAAE6wC,GAAG,GAAG,GAAG,OAAO,EAAE,OAAOlxC,EAAEilD,GAAGjlD,EAAEK,CAAC,EAAE,IAAI,EAAE0B,EAAE3B,IAAI,OAAO,OAAO,QAAQ,OAAO,IAAI,MAAM,EAAE1K,GAAGsK,EAAE,EAAEE,EAAE6B,CAAC,EAAE,EAAExU,GAAGyS,EAAE,EAAEE,EAAE6B,CAAC,EAAE1B,IAAI,kBAAkB,EAAEvC,GAAG,EAAE,CAAC,EAAE,EAAE,EAAE,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,SAASmrD,GAAGjpD,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,CAAC,OAAO5C,EAAE,IAAI,CAACsyC,GAAG1vC,CAAC,EAAE6vC,GAAG,CAAC,EAAED,GAAG7vC,CAAC,EAAEF,GAAG,OAAOA,EAAE,CAAC,EAAE,EAAE,CAAC,GAAGE,GAAG,OAAOA,EAAE,SAASC,GAAG,OAAOA,EAAE6wC,GAAG,GAAG,GAAG,OAAO,EAAE,OAAOlxC,EAAEklD,GAAGllD,EAAEK,CAAC,EAAE,IAAI,EAAE0B,EAAE3B,IAAI,OAAO,OAAO,QAAQ,OAAO,IAAI,MAAM,EAAEzK,GAAGqK,EAAE,EAAEE,EAAE6B,CAAC,EAAE,EAAEvU,GAAGwS,EAAE,EAAEE,EAAE6B,CAAC,EAAE1B,IAAI,kBAAkB,EAAEvC,GAAG,EAAE,CAAC,EAAE,EAAE,EAAE,EAAE,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,IAAIorD,GAAG,cAAcpU,EAAE,CAAC,YAAYl0C,EAAE,CAAC,GAAGA,EAAE,UAAU,OAAOA,EAAE,SAAS,GAAG,MAAMA,CAAC,EAAE,OAAOA,EAAE,UAAU,SAAS,KAAK,SAAS,CAACA,EAAE,QAAQ,UAAU,MAAM,QAAQA,EAAE,QAAQ,GAAGA,EAAE,SAAS,SAAS,GAAG,OAAOA,EAAE,SAAS,CAAC,GAAG,SAAS,KAAK,SAASA,EAAE,aAAc,OAAM,IAAIgtC,EAAE,qGAAqG,KAAK,UAAUhtC,EAAE,QAAQ,CAAC,EAAE,EAAE,GAAGquC,GAAG,KAAK,SAAS,UAAU,EAAEruC,EAAE,SAAS,KAAK,KAAK,QAAQ,KAAK,iBAAiB,OAAOA,EAAE,SAAS,SAAS,KAAK,QAAQ,CAACA,EAAE,OAAO,UAAU,MAAM,QAAQA,EAAE,OAAO,GAAGA,EAAE,QAAQ,SAAS,GAAG,OAAOA,EAAE,QAAQ,CAAC,GAAG,SAAS,KAAK,QAAQA,EAAE,YAAa,OAAM,IAAIgtC,EAAE,oGAAoG,KAAK,UAAUhtC,EAAE,OAAO,CAAC,EAAE,EAAEquC,GAAG,KAAK,QAAQ,SAAS,EAAE,KAAK,QAAQruC,EAAE,SAAS,KAAK,QAAQA,EAAE,QAAQqvC,GAAG,KAAK,OAAO,EAAE,KAAK,UAAU,CAAC,IAAIrrD,GAAG,CAAC,KAAK,CAAC,CAAC,CAAC,CAAC,CAAC,mBAAmBgc,EAAE,CAACA,EAAEyzC,GAAGzzC,CAAC,EAAE,IAAIV,EAAE6kD,GAAGnkD,EAAE,CAAC,EAAE,KAAK,SAAS,CAAC,EAAE,KAAK,QAAQ,KAAK,QAAQ,CAAC,CAAC,EAAE,MAAM,CAACA,EAAE,CAAC,EAAEV,EAAEU,EAAE,CAAC,CAAC,CAAC,CAAC,KAAKA,EAAEV,EAAE,CAAC,OAAOzC,EAAE,IAAI,CAAC,KAAK,eAAemD,EAAEV,CAAC,EAAEU,EAAEwwC,GAAGgD,GAAGxzC,CAAC,EAAE,CAAC,EAAE,IAAI,EAAE,KAAK,gBAAgBwzC,GAAGxzC,CAAC,EAAE,CAAC,KAAK,SAAS,CAAC,EAAE,CAAC,EAAE,CAAC,KAAK,QAAQ,CAAC,EAAE,CAAC,EAAE,KAAK,QAAQ,cAAc,EAAE,OAAOvE,GAAG,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,WAAW,CAAC,IAAIuE,EAAE,CAAC,SAAS,KAAK,SAAS,QAAQ,KAAK,QAAQ,QAAQ,KAAK,OAAO,EAAEV,EAAE,MAAM,UAAU,EAAE,OAAO,OAAO,OAAOU,EAAEV,CAAC,EAAEU,CAAC,CAAC,EAAEuoD,GAAG,cAAcD,EAAE,CAAC,YAAYtoD,EAAE,CAAC,MAAMA,CAAC,CAAC,CAAC,gBAAgBA,EAAEV,EAAE,EAAEG,EAAEwB,EAAE,CAAC,OAAOkuC,GAAGluC,CAAC,EAAEouC,GAAG5vC,CAAC,EAAE2oD,GAAGpoD,EAAEV,EAAE,EAAEG,EAAEwB,EAAE,KAAK,CAAC,CAAC,EAAEsnD,GAAG,UAAU,eAAe5uD,GAAE,cAAc4uD,EAAE,EAAE,IAAIC,GAAG,cAAcF,EAAE,CAAC,YAAYtoD,EAAE,CAAC,MAAMA,CAAC,CAAC,CAAC,gBAAgBA,EAAEV,EAAE,EAAEG,EAAEwB,EAAE,CAAC,OAAOkuC,GAAGluC,CAAC,EAAEouC,GAAG5vC,CAAC,EAAE2oD,GAAGpoD,EAAEV,EAAE,EAAEG,EAAEwB,EAAE,KAAK,CAAC,CAAC,EAAEunD,GAAG,UAAU,mBAAmB7uD,GAAE,cAAc6uD,EAAE,EAAE,IAAIC,GAAG,cAAcvU,EAAE,CAAC,YAAYl0C,EAAE,CAAC,GAAGA,EAAE,UAAU,OAAOA,EAAE,SAAS,CAAC,EAAE,CAAC,GAAG,MAAMA,CAAC,EAAE,KAAK,SAAS,MAAM,QAAQA,EAAE,QAAQ,EAAEA,EAAE,SAAS,CAACA,EAAE,SAASA,EAAE,QAAQ,EAAEA,EAAE,SAAS,KAAK,KAAK,QAAQ,KAAK,iBAAiB,MAAM,QAAQA,EAAE,OAAO,EAAE,CAAC,GAAGA,EAAE,QAAQ,SAAS,EAAE,MAAM,IAAIgtC,EAAE,wHAAwHhtC,EAAE,QAAQ,MAAM,GAAG,EAAE,KAAK,QAAQA,EAAE,OAAO,MAAM,KAAK,QAAQ,CAACA,EAAE,QAAQA,EAAE,OAAO,EAAEquC,GAAG,KAAK,SAAS,UAAU,EAAEA,GAAG,KAAK,QAAQ,SAAS,EAAE,KAAK,QAAQruC,EAAE,SAAS,KAAK,QAAQA,EAAE,QAAQ,KAAK,WAAWA,EAAE,YAAY,KAAK,eAAeA,EAAE,WAAWmvC,GAAG,KAAK,UAAU,EAAEE,GAAG,KAAK,OAAO,EAAE,KAAK,UAAU,CAAC,IAAIrrD,GAAG,CAAC,KAAK,CAAC,CAAC,CAAC,CAAC,CAAC,mBAAmBgc,EAAE,CAACA,EAAEyzC,GAAGzzC,CAAC,EAAE,IAAIV,EAAE,KAAK,aAAa,gBAAgBU,EAAE,CAAC,EAAEA,EAAE,CAAC,EAAE,EAAE,KAAK,aAAa,gBAAgBA,EAAE,CAAC,EAAEA,EAAE,CAAC,EAAE,OAAOV,EAAE6kD,GAAG7kD,EAAE,KAAK,SAAS,CAAC,EAAE,KAAK,QAAQ,KAAK,QAAQ,CAAC,CAAC,EAAE,EAAE6kD,GAAG,EAAE,KAAK,SAAS,CAAC,EAAE,KAAK,QAAQ,KAAK,QAAQ,CAAC,CAAC,EAAE,KAAK,aAAa,gBAAgB,CAACnkD,EAAE,CAAC,EAAEA,EAAE,CAAC,EAAEV,EAAE,CAAC,EAAE,CAACU,EAAE,CAAC,EAAEV,EAAE,EAAEU,EAAE,CAAC,CAAC,CAAC,CAAC,KAAKA,EAAEV,EAAE,CAAC,OAAOzC,EAAE,KAAK,KAAK,eAAemD,EAAEV,CAAC,EAAE,KAAK,gBAAgBk0C,GAAGxzC,CAAC,EAAE,KAAK,SAAS,KAAK,QAAQ,KAAK,QAAQ,KAAK,UAAU,EAAE,CAAC,CAAC,WAAW,CAAC,IAAIA,EAAE,CAAC,SAAS,KAAK,SAAS,QAAQ,KAAK,QAAQ,QAAQ,KAAK,QAAQ,WAAW,KAAK,UAAU,EAAEV,EAAE,MAAM,UAAU,EAAE,OAAO,OAAO,OAAOU,EAAEV,CAAC,EAAEU,CAAC,CAAC,EAAE0oD,GAAG,cAAcD,EAAE,CAAC,YAAYzoD,EAAE,CAAC,MAAMA,CAAC,CAAC,CAAC,gBAAgBA,EAAEV,EAAE,EAAEG,EAAEwB,EAAE,CAAC,OAAOkuC,GAAGluC,CAAC,EAAEouC,GAAG5vC,CAAC,EAAE2oD,GAAGpoD,EAAEV,EAAE,EAAEG,EAAEwB,EAAE,KAAK,CAAC,CAAC,EAAEynD,GAAG,UAAU,eAAe/uD,GAAE,cAAc+uD,EAAE,EAAE,IAAIC,GAAG,cAAcF,EAAE,CAAC,YAAYzoD,EAAE,CAAC,MAAMA,CAAC,CAAC,CAAC,gBAAgBA,EAAEV,EAAE,EAAEG,EAAEwB,EAAE,CAAC,OAAOkuC,GAAGluC,CAAC,EAAEouC,GAAG5vC,CAAC,EAAE2oD,GAAGpoD,EAAEV,EAAE,EAAEG,EAAEwB,EAAE,KAAK,CAAC,CAAC,EAAE0nD,GAAG,UAAU,mBAAmBhvD,GAAE,cAAcgvD,EAAE,EAAE,IAAIC,GAAG,cAAc1U,EAAE,CAAC,YAAYl0C,EAAE,CAAC,GAAGA,EAAE,UAAU,OAAOA,EAAE,SAAS,CAAC,EAAE,EAAE,CAAC,GAAG,MAAMA,CAAC,EAAE,KAAK,SAAS,MAAM,QAAQA,EAAE,QAAQ,EAAEA,EAAE,SAAS,CAACA,EAAE,SAASA,EAAE,SAASA,EAAE,QAAQ,EAAEA,EAAE,SAAS,KAAK,KAAK,QAAQ,KAAK,iBAAiB,MAAM,QAAQA,EAAE,OAAO,EAAE,CAAC,GAAGA,EAAE,QAAQ,SAAS,EAAE,MAAM,IAAIgtC,EAAE,wHAAwHhtC,EAAE,QAAQ,MAAM,GAAG,EAAE,KAAK,QAAQA,EAAE,OAAO,MAAM,KAAK,QAAQ,CAACA,EAAE,QAAQA,EAAE,QAAQA,EAAE,OAAO,EAAEquC,GAAG,KAAK,SAAS,UAAU,EAAEA,GAAG,KAAK,QAAQ,SAAS,EAAE,KAAK,QAAQruC,EAAE,SAAS,KAAK,QAAQA,EAAE,QAAQ,KAAK,WAAWA,EAAE,YAAY,KAAK,eAAeA,EAAE,WAAWmvC,GAAG,KAAK,UAAU,EAAEE,GAAG,KAAK,OAAO,EAAE,KAAK,UAAU,CAAC,IAAIrrD,GAAG,CAAC,KAAK,CAAC,CAAC,CAAC,CAAC,CAAC,mBAAmBgc,EAAE,CAACA,EAAEyzC,GAAGzzC,CAAC,EAAE,IAAIV,EAAE,KAAK,aAAa,gBAAgBU,EAAE,CAAC,EAAEA,EAAE,CAAC,EAAE,EAAE,KAAK,aAAa,gBAAgBA,EAAE,CAAC,EAAEA,EAAE,CAAC,EAAEP,EAAE,KAAK,aAAa,gBAAgBO,EAAE,CAAC,EAAEA,EAAE,CAAC,EAAE,OAAOV,EAAE6kD,GAAG7kD,EAAE,KAAK,SAAS,CAAC,EAAE,KAAK,QAAQ,KAAK,QAAQ,CAAC,CAAC,EAAE,EAAE6kD,GAAG,EAAE,KAAK,SAAS,CAAC,EAAE,KAAK,QAAQ,KAAK,QAAQ,CAAC,CAAC,EAAE1kD,EAAE0kD,GAAG1kD,EAAE,KAAK,SAAS,CAAC,EAAE,KAAK,QAAQ,KAAK,QAAQ,CAAC,CAAC,EAAE,KAAK,aAAa,gBAAgB,CAACO,EAAE,CAAC,EAAEA,EAAE,CAAC,EAAEV,EAAE,EAAEG,CAAC,EAAE,CAACO,EAAE,CAAC,EAAEV,EAAE,EAAEG,EAAEO,EAAE,CAAC,CAAC,CAAC,CAAC,KAAKA,EAAEV,EAAE,CAAC,OAAOzC,EAAE,KAAK,KAAK,eAAemD,EAAEV,CAAC,EAAE,KAAK,gBAAgBk0C,GAAGxzC,CAAC,EAAE,KAAK,SAAS,KAAK,QAAQ,KAAK,QAAQ,KAAK,UAAU,EAAE,CAAC,CAAC,WAAW,CAAC,IAAIA,EAAE,CAAC,SAAS,KAAK,SAAS,QAAQ,KAAK,QAAQ,QAAQ,KAAK,QAAQ,WAAW,KAAK,UAAU,EAAEV,EAAE,MAAM,UAAU,EAAE,OAAO,OAAO,OAAOU,EAAEV,CAAC,EAAEU,CAAC,CAAC,EAAE6oD,GAAG,cAAcD,EAAE,CAAC,YAAY5oD,EAAE,CAAC,MAAMA,CAAC,CAAC,CAAC,gBAAgBA,EAAEV,EAAE,EAAEG,EAAEwB,EAAE,CAAC,OAAOkuC,GAAGluC,CAAC,EAAEouC,GAAG5vC,CAAC,EAAE4oD,GAAGroD,EAAEV,EAAE,EAAEG,EAAEwB,EAAE,KAAK,CAAC,CAAC,EAAE4nD,GAAG,UAAU,eAAelvD,GAAE,cAAckvD,EAAE,EAAE,IAAIC,GAAG,cAAcF,EAAE,CAAC,YAAY5oD,EAAE,CAAC,MAAMA,CAAC,CAAC,CAAC,gBAAgBA,EAAEV,EAAE,EAAEG,EAAEwB,EAAE,CAAC,OAAOkuC,GAAGluC,CAAC,EAAEouC,GAAG5vC,CAAC,EAAE4oD,GAAGroD,EAAEV,EAAE,EAAEG,EAAEwB,EAAE,KAAK,CAAC,CAAC,EAAE6nD,GAAG,UAAU,mBAAmBnvD,GAAE,cAAcmvD,EAAE,EAAE,IAAIC,GAAG,cAAc7U,EAAE,CAAC,YAAYl0C,EAAE,CAAC,MAAMA,CAAC,EAAE,KAAK,UAAU,CAAC,IAAIhc,GAAG,CAAC,KAAK,CAAC,CAAC,CAAC,CAAC,CAAC,mBAAmBgc,EAAE,CAAC,MAAM,CAACA,EAAE,CAAC,EAAEA,EAAE,CAAC,CAAC,CAAC,CAAC,KAAKA,EAAEV,EAAE,CAAC,MAAM,IAAI2tC,EAAE,CAAC,EAAE+b,GAAG,cAAcD,EAAE,CAAC,YAAY/oD,EAAE,CAAC,MAAMA,GAAG,CAAC,CAAC,CAAC,CAAC,KAAKA,EAAEV,EAAE,CAAC,OAAOzC,EAAE,IAAI,CAAC,IAAI,EAAE22C,GAAGxzC,CAAC,EAAE,OAAO9K,GAAG,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE8zD,GAAG,UAAU,yBAAyBrvD,GAAE,cAAcqvD,EAAE,EAAE,IAAIC,GAAG,cAAcF,EAAE,CAAC,YAAY/oD,EAAE,CAAC,MAAMA,GAAG,CAAC,CAAC,CAAC,CAAC,KAAKA,EAAEV,EAAE,CAAC,OAAOzC,EAAE,IAAI,CAAC,IAAI,EAAE22C,GAAGxzC,CAAC,EAAE,OAAOnL,GAAG,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,EAAEo0D,GAAG,UAAU,qBAAqBtvD,GAAE,cAAcsvD,EAAE,EAAE,IAAIC,GAAG,cAAchV,EAAE,CAAC,YAAYl0C,EAAE,CAAC,MAAMA,CAAC,EAAE,KAAK,WAAWA,EAAE,YAAY,KAAK,eAAeA,EAAE,WAAWmvC,GAAG,KAAK,UAAU,EAAE,KAAK,UAAU,CAAC,IAAInrD,GAAG,CAAC,KAAK,CAAC,CAAC,CAAC,CAAC,CAAC,mBAAmBgc,EAAE,CAAC,OAAOA,EAAEA,EAAE,KAAK,aAAa,eAAe,CAACA,EAAE,CAAC,EAAEA,EAAE,CAAC,CAAC,EAAE,CAACA,EAAE,CAAC,EAAEA,EAAE,CAAC,CAAC,CAAC,CAAC,KAAKA,EAAEV,EAAE,CAAC,MAAM,IAAI2tC,EAAE,CAAC,WAAW,CAAC,IAAIjtC,EAAE,CAAC,WAAW,KAAK,UAAU,EAAEV,EAAE,MAAM,UAAU,EAAE,OAAO,OAAO,OAAOU,EAAEV,CAAC,EAAEU,CAAC,CAAC,EAAEmpD,GAAG,cAAcD,EAAE,CAAC,KAAKlpD,EAAEV,EAAE,CAAC,OAAOzC,EAAE,IAAI,CAAC,IAAI,EAAE22C,GAAGxzC,CAAC,EAAE,OAAO,KAAK,aAAa,eAAe9K,GAAG,EAAE,CAAC,EAAE,CAAC,CAAC,EAAEA,GAAG,EAAE,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAEi0D,GAAG,UAAU,yBAAyBxvD,GAAE,cAAcwvD,EAAE,EAAE,IAAIC,GAAG,cAAcF,EAAE,CAAC,KAAKlpD,EAAEV,EAAE,CAAC,OAAOzC,EAAE,IAAI,CAAC,IAAI,EAAE22C,GAAGxzC,CAAC,EAAE,OAAO,KAAK,aAAa,eAAenL,GAAG,EAAE,CAAC,EAAE,CAAC,CAAC,EAAEA,GAAG,EAAE,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAEu0D,GAAG,UAAU,qBAAqBzvD,GAAE,cAAcyvD,EAAE,EAAE,IAAIC,GAAG,cAAcnV,EAAE,CAAC,YAAYl0C,EAAE,CAAC,MAAMA,CAAC,EAAE,KAAK,MAAMA,EAAE,KAAK,CAAC,MAAMA,EAAE,CAAC,KAAK,MAAM,EAAE,CAAC,IAAI,WAAW,CAAC,OAAO,KAAK,OAAO,KAAK,KAAK,MAAM,UAAU,EAAE,CAAC,IAAI,UAAUA,EAAE,CAAC,KAAK,OAAO,OAAO,KAAK,MAAM,UAAUA,EAAE,CAAC,IAAI,kBAAkB,CAAC,OAAO,KAAK,MAAM,gBAAgB,CAAC,IAAI,qBAAqB,CAAC,OAAO,KAAK,MAAM,mBAAmB,CAAC,IAAI,SAAS,CAAC,OAAO,KAAK,MAAM,QAAQ,CAAC,IAAI,QAAQ,CAAC,OAAO,KAAK,MAAM,MAAM,CAAC,YAAY,CAAC,OAAO,KAAK,MAAM,WAAW,CAAC,CAAC,WAAWA,EAAE,CAAC,KAAK,MAAM,WAAWA,CAAC,CAAC,CAAC,WAAW,CAAC,IAAIA,EAAE,CAAC,MAAM,CAAC,UAAU,KAAK,MAAM,aAAa,EAAE,OAAO,KAAK,MAAM,UAAU,CAAC,CAAC,EAAEV,EAAE,MAAM,UAAU,EAAE,OAAO,OAAO,OAAOU,EAAEV,CAAC,EAAEU,CAAC,CAAC,6BAA6BA,EAAE,CAAC,MAAM,6BAA6BA,CAAC,EAAE,KAAK,OAAO,MAAM,KAAK,MAAM,6BAA6BA,CAAC,CAAC,CAAC,OAAO,WAAWA,EAAEV,EAAE,EAAE,CAAC,EAAE,CAAC,IAAIG,EAAEH,EAAE,MAAM2B,EAAEu7C,GAAG/8C,EAAE,CAAC,EAAE,OAAOH,EAAE,MAAM,IAAI4B,EAAE,CAAC,MAAMD,CAAC,EAAE,OAAO,OAAO,OAAOC,EAAE5B,CAAC,EAAE,IAAIU,EAAEkB,CAAC,CAAC,CAAC,EAAEooD,GAAG,cAAcD,EAAE,CAAC,YAAYrpD,EAAE,CAAC,MAAMA,CAAC,EAAE,KAAK,gBAAgB,EAAE,CAAC,MAAMA,EAAE,CAAC,GAAGA,EAAEyzC,GAAGzzC,CAAC,EAAEA,EAAE,OAAO,EAAE,MAAM,IAAIgtC,EAAE,gFAAgF,KAAK,UAAUhtC,CAAC,CAAC,EAAE,EAAE,KAAK,UAAU,CAAC,CAAC,MAAMA,CAAC,CAAC,EAAE,IAAIV,EAAE,CAACU,EAAE,CAAC,CAAC,EAAE,OAAOA,EAAE,MAAM,CAAC,CAAC,EAAE,KAAK,MAAM,QAAQ,KAAK,MAAM,MAAMV,CAAC,EAAE,KAAK,MAAM,MAAM,IAAI,MAAM,MAAMU,CAAC,CAAC,CAAC,mBAAmBA,EAAE,CAACA,EAAEyzC,GAAGzzC,CAAC,EAAE,IAAIV,EAAE,CAACU,EAAE,CAAC,CAAC,EAAE,OAAOA,EAAE,MAAM,CAAC,CAAC,EAAE,EAAE,KAAK,MAAM,mBAAmBV,CAAC,EAAEG,EAAEO,EAAE,CAAC,EAAE,MAAM,CAAC,EAAE,CAAC,EAAEP,CAAC,EAAE,OAAO,EAAE,MAAM,CAAC,CAAC,CAAC,CAAC,KAAKO,EAAEV,EAAE,CAAC,OAAOzC,EAAE,KAAKmD,EAAEwzC,GAAGxzC,CAAC,EAAEwlD,GAAG,CAACtkD,EAAE,IAAI,CAACsyC,GAAG,KAAK,MAAM,KAAKtyC,EAAE5B,CAAC,CAAC,EAAE,CAAC,CAAC,EAAEU,EAAE,CAAC,EAAE,GAAG,KAAK,KAAK,GAAG,EAAE,EAAE,CAAC,EAAE,CAAC,CAAC,EAAEspD,GAAG,UAAU,kBAAkB3vD,GAAE,cAAc2vD,EAAE,EAAE,SAASC,GAAGnqD,EAAE,CAAC+uC,GAAGc,GAAG,yBAAyB7vC,CAAC,CAAC,CAAC,IAAIoqD,GAAG,SAASC,GAAG,cAAcJ,EAAE,CAAC,YAAYrpD,EAAE,CAAC,MAAMA,CAAC,EAAE,IAAIV,EAAEU,EAAE,MAAM,UAAU,EAAE,EAAE,CAAC,EAAE,EAAE,UAAUA,EAAE,MAAM,aAAa,EAAE,EAAE,OAAOV,EAAE,KAAK,aAAak9C,GAAG,CAAC,EAAEl9C,EAAE,YAAYA,EAAE,cAAc,GAAG,IAAIG,EAAE,CAAC,EAAE,GAAGA,EAAE,UAAUO,EAAE,MAAM,aAAa,EAAEP,EAAE,OAAOH,EAAE,KAAK,cAAck9C,GAAG/8C,CAAC,EAAE,KAAK,aAAa,KAAK,WAAW,KAAK,aAAa,KAAK,KAAK,cAAc,KAAK,YAAY,KAAK,cAAc,KAAK,KAAK,UAAUO,EAAE,YAAY,OAAOwpD,GAAGxpD,EAAE,UAAUupD,GAAG,KAAK,SAAS,EAAEvpD,EAAE,QAAQ,MAAM,IAAIitC,GAAG,iEAAiE,EAAE,KAAK,UAAUjtC,EAAE,MAAM,SAAS,KAAK,gBAAgBA,EAAE,MAAM,gBAAgB,KAAK,YAAYA,EAAE,MAAM,YAAY,KAAK,gBAAgB,GAAG,KAAK,WAAW,GAAG,KAAK,UAAUA,EAAE,MAAM,UAAU,KAAK,aAAa,IAAI,CAAC,IAAI,WAAW,CAAC,OAAO,KAAK,UAAU,CAAC,IAAI,UAAUA,EAAE,CAAC,KAAK,WAAWA,EAAE,KAAK,cAAc,OAAO,KAAK,aAAa,UAAUA,GAAG,KAAK,eAAe,OAAO,KAAK,cAAc,UAAUA,EAAE,CAAC,YAAY,CAAC,OAAO,KAAK,aAAa,WAAW,EAAE,OAAO,KAAK,cAAc,WAAW,CAAC,CAAC,CAAC,WAAWA,EAAE,CAAC,IAAIV,EAAEU,EAAE,OAAO,EAAE,KAAK,MAAMV,EAAE,CAAC,EAAE,KAAK,aAAa,WAAWU,EAAE,MAAM,EAAE,CAAC,CAAC,EAAE,KAAK,cAAc,WAAWA,EAAE,MAAM,CAAC,CAAC,CAAC,CAAC,mBAAmBA,EAAE,CAAC,IAAIV,EAAE,KAAK,aAAa,mBAAmBU,CAAC,EAAE,MAAM,QAAQV,CAAC,GAAG,MAAM,QAAQA,EAAE,CAAC,CAAC,IAAIA,EAAE,CAACA,CAAC,GAAGA,EAAEA,EAAE,IAAI,EAAEG,EAAEwB,EAAE,OAAO,KAAK,cAAcA,EAAE3B,EAAE,MAAM,CAAC,GAAG,EAAEA,EAAE,CAAC,EAAE,EAAE,EAAE,KAAK,YAAY,UAAU,EAAE,EAAE,OAAO,CAAC,GAAG,EAAEG,EAAE,CAAC,CAAC,GAAG,KAAK,WAAW,KAAKA,EAAE,CAAC,EAAE,EAAE,MAAM,CAAC,EAAEA,EAAE,CAAC,CAAC,EAAE,KAAK,YAAY,KAAK,WAAW,KAAKA,EAAE,OAAOwB,CAAC,EAAE,OAAOA,EAAE,MAAM,CAAC,EAAE,CAAC,CAAC,EAAE,OAAOA,CAAC,EAAE,OAAOA,EAAE,MAAM,CAAC,EAAEssC,GAAG9tC,CAAC,CAAC,CAAC,MAAMO,EAAEV,EAAE,CAAC,IAAI,EAAEA,GAAG,KAAK,KAAKA,EAAE,aAAaG,EAAEH,GAAG,KAAK,KAAKA,EAAE,UAAUA,GAAG,OAAOA,EAAE,CAAC,GAAG,IAAI2B,EAAEskD,GAAGvlD,EAAE,EAAEP,EAAE,KAAK,YAAY,EAAE,GAAGO,EAAEiB,EAAE,OAAO,EAAEA,EAAE,aAAaxB,EAAEwB,EAAE,UAAU,MAAM,QAAQjB,CAAC,IAAI,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAEA,EAAE,CAAC,IAAI,GAAG,MAAM,EAAE,SAAS,IAAIP,GAAG,KAAK,OAAO,MAAM,MAAMO,EAAEV,CAAC,EAAE,IAAI4B,EAAE,CAAC,EAAEC,EAAE,CAAC,EAAE,GAAG,GAAG,KAAK,CAAC,IAAI,EAAE,EAAE,OAAO,GAAG,EAAE,EAAE,EAAE,MAAM,IAAI6rC,EAAE,+HAA+H,EAAE1tC,EAAE,aAAa,EAAE4B,EAAE,KAAK,GAAG,CAAC,EAAE,IAAIY,EAAE,EAAE,IAAI,GAAG,IAAI9d,GAAG,CAAC,MAAM,EAAE,KAAK,CAAC,CAAC,EAAE,KAAK,aAAa,UAAU8d,EAAE,MAAM,EAAE,EAAE,CAAC,EAAE,KAAK,cAAc,UAAUA,EAAE,MAAM,EAAE,CAAC,EAAEX,EAAE,KAAK,GAAGW,CAAC,CAAC,CAAC,GAAGrC,GAAG,KAAK,MAAM,IAAIwtC,GAAG,uEAAuE,EAAE,IAAI7rC,EAAEF,EAAE,CAAC,YAAYtW,GAAG,QAAQ,KAAKsW,EAAE,GAAG,aAAatW,KAAKwW,EAAE,MAAM,IAAI4rC,EAAE,8GAA8G,EAAE,GAAG5rC,EAAE,CAAC,IAAI,EAAE,CAACpB,CAAC,EAAE,OAAOkB,CAAC,EAAEY,EAAE,KAAK,UAAU,OAAOX,CAAC,EAAE,EAAE,KAAK,UAAU,KAAK,UAAUW,EAAE,IAAIE,EAAE,MAAM,MAAM,EAAE1C,CAAC,EAAE,OAAO,KAAK,UAAU,EAAE0C,CAAC,KAAM,QAAO,MAAM,MAAMhC,EAAEV,CAAC,CAAC,CAAC,KAAKU,EAAEV,EAAE,CAAC,OAAOzC,EAAE,IAAI,CAAC,IAAI,EAAEyC,EAAE,aAAaG,EAAEwB,EAAE,GAAG,GAAG,KAAKxB,EAAE,KAAK,aAAa,KAAKO,EAAEV,CAAC,EAAE2B,EAAE,KAAK,cAAc,KAAKjB,EAAEV,CAAC,MAAM,CAAC,IAAI8B,EAAE,EAAE,MAAM,EAAE,EAAE,OAAO,CAAC,EAAE,EAAE,EAAE,MAAM,EAAE,OAAO,CAAC,EAAE3B,EAAE,KAAK,aAAa,KAAKO,EAAE,OAAO,OAAOV,EAAE,CAAC,aAAa8B,CAAC,CAAC,CAAC,EAAEH,EAAE,KAAK,cAAc,KAAKjB,EAAE,OAAO,OAAOV,EAAE,CAAC,aAAa,CAAC,CAAC,CAAC,CAAC,CAAC,IAAI4B,EAAE,KAAK,cAAc,MAAM,QAAQzB,CAAC,IAAIyB,EAAEzB,EAAE,MAAM,CAAC,EAAE,OAAOwB,EAAE,MAAM,CAAC,CAAC,GAAGxB,EAAEA,EAAE,CAAC,EAAEwB,EAAEA,EAAE,CAAC,GAAG,KAAK,kBAAkBA,EAAErI,GAAGqI,EAAE,CAAC,GAAG,IAAIE,EAAE,OAAO,KAAK,YAAY,SAASA,EAAE6vC,GAAG,CAACvxC,EAAEwB,CAAC,CAAC,EAAE,KAAK,YAAY,MAAME,EAAEnV,EAAEyT,EAAEwB,CAAC,EAAE,KAAK,YAAY,MAAME,EAAErL,EAAE,GAAG9J,EAAEyT,EAAEwB,CAAC,CAAC,EAAE,KAAK,YAAY,MAAME,EAAErL,EAAE2J,EAAEwB,CAAC,EAAE,KAAK,WAAW,OAAOE,EAAE,CAAC1B,EAAEwB,CAAC,GAAG,KAAK,YAAY,KAAK,WAAW,KAAKE,EAAE,OAAOD,CAAC,EAAE,CAACC,CAAC,EAAE,OAAOD,CAAC,EAAEC,CAAC,CAAC,CAAC,CAAC,YAAYnB,EAAE,CAAC,KAAK,aAAa,YAAY,EAAE,KAAK,cAAc,YAAY,CAAC,CAAC,MAAMA,EAAE,CAACyvC,GAAG,KAAK,aAAa,KAAK,IAAI,CAAC,KAAK,aAAa,MAAMzvC,CAAC,CAAC,CAAC,EAAEyvC,GAAG,KAAK,cAAc,KAAK,IAAI,CAAC,KAAK,cAAc,MAAMzvC,CAAC,CAAC,CAAC,EAAE,KAAK,MAAM,EAAE,CAAC,YAAYA,EAAEV,EAAE,CAAC,MAAM,QAAQA,CAAC,IAAIA,EAAEA,EAAE,CAAC,GAAG,IAAI,EAAE,GAAG,KAAK,gBAAgB,KAAK,WAAW,KAAK,EAAE,CAACA,EAAEA,CAAC,EAAE,EAAEA,EAAE,KAAK,WAAW,KAAK,EAAE,CAAC,KAAK,IAAI,EAAE,EAAE,KAAK,KAAK,YAAY,CAAC,IAAI2B,EAAE,KAAK,aAAa,OAAO,IAAIC,GAAG,IAAI,EAAE,OAAO,MAAM,QAAQ,CAAC,EAAE,EAAE,OAAOD,CAAC,EAAE,OAAOA,CAAC,EAAE,CAAC,CAAC,EAAE,OAAOA,CAAC,EAAE,OAAOA,CAAC,CAAC,KAAM,QAAO,CAAC,CAAC,IAAI,kBAAkB,CAAC,OAAO,KAAK,aAAa,iBAAiB,OAAO,KAAK,cAAc,gBAAgB,CAAC,CAAC,IAAI,qBAAqB,CAAC,OAAO,KAAK,aAAa,oBAAoB,OAAO,KAAK,cAAc,mBAAmB,CAAC,CAAC,6BAA6BjB,EAAE,CAAC,MAAM,6BAA6BA,CAAC,EAAE,KAAK,cAAc,MAAM,KAAK,aAAa,6BAA6BA,CAAC,EAAE,KAAK,eAAe,MAAM,KAAK,cAAc,6BAA6BA,CAAC,CAAC,CAAC,WAAW,CAAC,IAAIA,EAAE,CAAC,UAAU,KAAK,SAAS,EAAEV,EAAE,MAAM,UAAU,EAAE,OAAO,OAAO,OAAOU,EAAEV,CAAC,EAAEU,CAAC,CAAC,OAAO,WAAWA,EAAEV,EAAE,CAAC,IAAI,EAAEk9C,GAAGl9C,EAAE,KAAK,EAAE,GAAG,OAAOA,EAAE,MAAMA,EAAE,cAAc,KAAK,MAAM,IAAI2tC,GAAG,0FAA0F,EAAE,IAAIxtC,EAAEH,EAAE,OAAOG,EAAE,MAAM,EAAE,IAAIO,EAAEP,CAAC,CAAC,CAAC,EAAEgqD,GAAG,UAAU,gBAAgB9vD,GAAE,cAAc8vD,EAAE,EAAE,IAAIC,GAAG,cAAcxV,EAAE,CAAC,YAAYl0C,EAAE,CAAC,MAAMA,CAAC,EAAE,KAAK,MAAMA,EAAE,MAAMA,EAAE,OAAO,KAAK,OAAOA,EAAE,OAAO,KAAK,OAAO,CAAC,CAAC,WAAW,CAAC,IAAIA,EAAE,CAAC,MAAM,KAAK,MAAM,OAAO,KAAK,MAAM,EAAEV,EAAE,MAAM,UAAU,EAAE,OAAO,OAAO,OAAOU,EAAEV,CAAC,EAAEU,CAAC,CAAC,KAAKA,EAAEV,EAAE,CAAC,OAAOzC,EAAE,KAAKmD,EAAEwzC,GAAGxzC,CAAC,EAAEA,EAAE,QAAQ,YAAYA,EAAEuwC,GAAGvwC,EAAE,SAAS,GAAGhU,EAAE8J,EAAEkK,EAAE,KAAK,KAAK,EAAE,KAAK,MAAM,EAAE,CAAC,CAAC,EAAE0pD,GAAG,UAAU,YAAY/vD,GAAE,cAAc+vD,EAAE,EAAE,GAAG,CAAC,eAAeC,GAAG,cAAcC,EAAE,EAAEj3D,GAAGk3D,GAAG,cAAc3V,EAAE,CAAC,YAAYl0C,EAAE,CAAC,MAAMA,CAAC,EAAE,KAAK,OAAOA,EAAE,OAAO,KAAK,MAAMA,EAAE,KAAK,CAAC,WAAWA,EAAEV,EAAE,EAAEG,EAAEwB,EAAEC,EAAEC,EAAEC,EAAE,CAAC,OAAOvE,EAAE,IAAI,CAAC,IAAI,EAAEiF,EAAE,GAAG,EAAExC,EAAE4B,EAAEc,EAAE,EAAEb,EAAEc,GAAGxC,EAAEH,GAAG4B,EAAEgB,GAAGjB,EAAE,GAAGE,EAAEiC,EAAE,CAAC,EAAEpB,EAAEC,EAAEC,CAAC,EAAEmB,EAAE,CAAC,EAAErD,EAAE,OAAO,GAAG8B,EAAE,GAAG,EAAEpG,GAAG,CAACsE,CAAC,CAAC,GAAG,EAAEA,EAAE,QAAQ+D,EAAE,EAAEA,EAAE,EAAE,MAAM,CAAC,EAAEA,IAAIV,EAAE,KAAKD,CAAC,EAAE,IAAIsD,EAAEvK,GAAGkH,EAAE,CAACA,EAAE,OAAO,CAAC,CAAC,EAAE,EAAEvL,GAAG,EAAEuL,EAAE,OAAO,EAAE,OAAO,EAAES,EAAE8lD,GAAG,EAAEljD,EAAE,EAAE,CAACjH,EAAEwB,CAAC,EAAE,SAAS,EAAE,OAASsvC,GAAFzuC,EAAK0xC,GAAGh2C,GAAGsG,CAAC,CAAC,EAAQA,EAAN1C,CAAC,CAAS,CAAC,CAAC,CAAC,OAAOpB,EAAEV,EAAE,EAAEG,EAAE,CAAC,OAAO5C,EAAE,IAAI,CAAC,IAAIoE,EAAE0oD,GAAG3pD,EAAE,CAACV,EAAE,CAAC,CAAC,EAAE,OAAOixC,GAAGtvC,EAAExB,CAAC,CAAC,CAAC,CAAC,CAAC,KAAKO,EAAEV,EAAE,CAAC,OAAOzC,EAAE,IAAI,CAAC,IAAI,EAAE22C,GAAGxzC,CAAC,EAAEP,EAAE,EAAE,MAAMwB,EAAE,EAAE,MAAMC,EAAED,EAAEA,EAAE,OAAO,CAAC,EAAEE,EAAEF,EAAEA,EAAE,OAAO,CAAC,EAAEG,EAAE,EAAEF,IAAI,KAAK,SAASE,EAAE,KAAK,OAAOF,EAAE,KAAK,QAAQ,CAAC,GAAG,IAAI,EAAE,EAAE,OAAOC,IAAI,KAAK,QAAQ,EAAE,KAAK,OAAOA,EAAE,KAAK,OAAO,CAAC,EAAE,IAAI,IAAI,EAAE,IAAIC,GAAG,GAAG,GAAG,EAAE,KAAK,WAAW,EAAEA,EAAE,EAAE,KAAK,OAAO,KAAK,MAAMF,EAAEC,EAAE1B,CAAC,EAAE,KAAK,OAAOO,EAAE,KAAK,OAAO,KAAK,MAAMP,CAAC,CAAC,CAAC,CAAC,CAAC,WAAW,CAAC,IAAIO,EAAE,CAAC,OAAO,KAAK,OAAO,MAAM,KAAK,KAAK,EAAEV,EAAE,MAAM,UAAU,EAAE,OAAO,OAAO,OAAOU,EAAEV,CAAC,EAAEU,CAAC,CAAC,mBAAmBA,EAAE,CAACA,EAAEyzC,GAAGzzC,CAAC,EAAE,IAAIV,EAAEU,EAAE,OAAO,EAAE,EAAEA,EAAE,OAAO,EAAE,OAAOA,EAAEV,CAAC,EAAE,KAAK,OAAOU,EAAE,CAAC,EAAE,KAAK,MAAMA,CAAC,CAAC,EAAE6pD,GAAG,UAAU,aAAalwD,GAAE,cAAckwD,EAAE,EAAE,SAASC,GAAG1qD,EAAE,EAAEE,EAAEE,EAAE,CAAC,IAAIC,EAAE+zC,GAAGp0C,CAAC,EAAE,GAAGK,EAAE,QAAQ,UAAUA,EAAE8wC,GAAG9wC,EAAE,OAAO,GAAG,IAAI,MAAM,OAAOA,EAAE,IAAI,EAAEA,EAAE,MAAM,GAAGA,EAAE,OAAO,IAAIA,EAAExO,GAAGwO,EAAE,EAAE,GAAG,IAAI,UAAUA,EAAE,MAAMA,EAAE,MAAM,OAAO,CAAC,IAAI,IAAIA,EAAExO,GAAGwO,EAAE,EAAE,GAAGA,EAAE,KAAK,EAAE,MAAM,IAAIutC,EAAE,4EAA4E,CAAC,oBAAoB,CAAC,sCAAsCvtC,EAAE,IAAI,GAAG,EAAE,IAAI,EAAE,CAAC,WAAW,QAAQ,EAAE,SAAS,CAAC,EAAE0B,EAAE1B,EAAE2B,EAAE,GAAG,OAAO5B,GAAG,aAAa,IAAI,QAAQ4B,EAAE9R,GAAG6R,EAAE3B,EAAEF,EAAE,CAAC,EAAE8B,EAAE9R,GAAG6R,EAAE,CAAC,EAAE7B,EAAE,CAAC,EAAE,IAAI,QAAQ,OAAO8B,EAAE,GAAG5B,EAAE,OAAO1J,EAAEsL,EAAE5B,CAAC,EAAE,MAAM,IAAIwtC,EAAE,uDAAuD,CAAC,CAAC,IAAI+c,GAAG,cAAc7V,EAAE,CAAC,YAAYl0C,EAAE,CAAC,MAAMA,CAAC,EAAE,KAAK,UAAUA,EAAE,UAAUA,EAAE,WAAW,KAAK,WAAWA,EAAE,WAAW,KAAK,WAAW,UAAU,CAAC,WAAW,CAAC,IAAIA,EAAE,CAAC,UAAU,KAAK,UAAU,WAAW,KAAK,UAAU,EAAEV,EAAE,MAAM,UAAU,EAAE,OAAO,OAAO,OAAOU,EAAEV,CAAC,EAAEU,CAAC,CAAC,mBAAmBA,EAAE,CAAC,OAAOA,EAAEyzC,GAAGzzC,CAAC,EAAEA,GAAG,KAAK,CAAC,KAAK,SAAS,EAAE,KAAK,aAAa,UAAUA,EAAEA,EAAE,OAAO,CAAC,IAAI,GAAGA,EAAE,KAAK,KAAK,SAAS,EAAEA,IAAIA,EAAEA,EAAE,OAAO,CAAC,EAAE,KAAK,UAAUA,EAAE,CAAC,KAAKA,EAAEV,EAAE,CAAC,OAAOzC,EAAE,IAAI,CAACmD,EAAEwzC,GAAGxzC,CAAC,EAAEA,EAAE,QAAQ,UAAUA,EAAEuwC,GAAGvwC,EAAE,OAAO,GAAG,IAAI,EAAE,GAAG,OAAOV,EAAE,cAAc,YAAY,CAAC,GAAG,KAAK,aAAa,QAAQ,MAAM,IAAI0tC,EAAE;AAAA,sCAC/onM1tC,EAAE,YAAY,EAAE,EAAE,EAAEk0C,GAAGl0C,EAAE,YAAY,CAAC,CAAC,IAAIG,EAAE5K,GAAGmL,CAAC,EAAEiB,EAAE3L,GAAG0K,CAAC,EAAEkB,EAAE3O,GAAG,KAAK,UAAUkN,CAAC,EAAE,WAAW,EAAE,IAAI,CAAC,EAAE0B,EAAE3O,GAAGyO,EAAE,CAAC,EAAE,WAAW,EAAE,IAAI,CAAC,EAAE,GAAG,EAAEC,GAAGC,GAAG,MAAM,IAAI6rC,EAAE,uEAAuE,KAAK,SAAS,EAAE,EAAE,OAAO8c,GAAG9pD,EAAE,KAAK,WAAW,KAAK,UAAU,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE+pD,GAAG,UAAU,mBAAmBpwD,GAAE,cAAcowD,EAAE,EAAE,IAAIC,GAAG,CAAC,WAAW,SAAS,EAAEC,GAAG,IAAI,IAAID,EAAE,EAAEE,GAAG,cAAchW,EAAE,CAAC,YAAYl0C,EAAE,CAAC,GAAG,MAAMA,CAAC,EAAE,KAAK,OAAOA,EAAE,OAAO,KAAK,MAAMA,EAAE,MAAMA,EAAE,cAAc,GAAGiqD,GAAG,IAAIjqD,EAAE,aAAa,EAAE,KAAK,cAAcA,EAAE,kBAAmB,OAAM,IAAIgtC,EAAE,oCAAoChtC,EAAE,aAAa,qBAAqB,OAAO,KAAK,cAAc,WAAW,KAAK,kBAAkB,CAAC,CAACA,EAAE,iBAAiB,CAAC,mBAAmBA,EAAE,CAACA,EAAEyzC,GAAGzzC,CAAC,EAAE,IAAIV,EAAEU,EAAE,CAAC,EAAE,MAAM,CAAC,KAAK,OAAO,KAAK,MAAMV,CAAC,CAAC,CAAC,WAAW,CAAC,IAAIU,EAAE,CAAC,OAAO,KAAK,OAAO,MAAM,KAAK,MAAM,cAAc,KAAK,cAAc,kBAAkB,KAAK,iBAAiB,EAAEV,EAAE,MAAM,UAAU,EAAE,OAAO,OAAO,OAAOU,EAAEV,CAAC,EAAEU,CAAC,CAAC,KAAKA,EAAEV,EAAE,CAAC,OAAOzC,EAAE,IAAI,CAAC,IAAI,EAAE,CAAC,KAAK,OAAO,KAAK,KAAK,EAAE,GAAG,KAAK,gBAAgB,WAAW,OAAOlK,GAAG,eAAeqN,EAAE,EAAE,CAAC,KAAK,iBAAiB,EAAE,GAAG,KAAK,gBAAgB,UAAU,OAAOrN,GAAG,sBAAsBqN,EAAE,EAAE,CAAC,KAAK,iBAAiB,EAAE,MAAM,IAAI,MAAM,oBAAoB,KAAK,aAAa,aAAa,CAAC,GAAGiqD,EAAE,CAAC,gBAAgB,CAAC,CAAC,CAAC,CAAC,EAAEC,GAAG,UAAU,WAAWvwD,GAAE,cAAcuwD,EAAE,EAAE,IAAIC,GAAG,KAAK,CAAC,YAAYnqD,EAAE,CAAC,KAAK,KAAKA,CAAC,CAAC,MAAM,CAAC,GAAG,KAAK,OAAO,OAAO,OAAO,KAAK,MAAM,CAAC,EAAEmqD,GAAG,UAAU,aAAa,IAAIC,GAAG,cAAclW,EAAE,CAAC,YAAYl0C,EAAE,CAAC,MAAMA,CAAC,EAAE,KAAK,gBAAgB,IAAImqD,GAAGnqD,EAAE,IAAI,CAAC,CAAC,WAAW,CAAC,IAAIA,EAAE,CAAC,KAAK,KAAK,gBAAgB,IAAI,EAAEV,EAAE,MAAM,UAAU,EAAE,OAAO,OAAO,OAAOU,EAAEV,CAAC,EAAEU,CAAC,CAAC,EAAEoqD,GAAG,UAAU,kBAAkB,IAAIC,GAAG,CAAC,WAAW,SAAS,EAAEC,GAAG,IAAI,IAAID,EAAE,EAAEE,GAAG,cAAcH,EAAE,CAAC,YAAYpqD,EAAE,CAAC,MAAMA,CAAC,EAAE,GAAG,CAAC,OAAOV,EAAE,cAAc,EAAE,UAAU,EAAEU,EAAE,GAAG,KAAK,OAAOV,EAAE,MAAM,QAAQ,KAAK,MAAM,GAAG,KAAK,OAAO,SAAS,EAAE,KAAK,WAAW,KAAK,OAAO,CAAC,EAAE,KAAK,WAAW,KAAK,OAAO,CAAC,UAAU,CAAC,MAAM,QAAQ,KAAK,MAAM,GAAG,KAAK,OAAO,EAAE,KAAK,WAAW,CAAC,KAAK,OAAO,KAAK,WAAW,KAAK,WAAY,OAAM,IAAI0tC,EAAE,mBAAmB,KAAK,MAAM,iDAAiD,EAAE,GAAG,KAAK,WAAW,IAAI,KAAK,WAAW,GAAG,MAAM,IAAIA,EAAE,gDAAgD,KAAK,MAAM,EAAE,EAAE,GAAG,KAAK,WAAW,KAAK,WAAW,MAAM,IAAIA,EAAE;AAAA,2BAC7xE,KAAK,UAAU;AAAA,2BACf,KAAK,UAAU;AAAA,OACnC,EAAE,GAAG,EAAE,GAAGsd,GAAG,IAAI,CAAC,EAAE,KAAK,cAAc,MAAO,OAAM,IAAItd,EAAE,oCAAoC,CAAC,qBAAqB,CAAC,CAAC,WAAW,CAAC,IAAIhtC,EAAE,CAAC,OAAO,KAAK,OAAO,cAAc,KAAK,aAAa,EAAEV,EAAE,MAAM,UAAU,EAAE,OAAO,OAAO,OAAOU,EAAEV,CAAC,EAAEU,CAAC,CAAC,mBAAmBA,EAAE,CAACA,EAAEyzC,GAAGzzC,CAAC,EAAE,IAAIV,EAAEU,EAAE,CAAC,EAAE,MAAM,CAAC,KAAK,UAAU,GAAGV,CAAC,CAAC,CAAC,KAAKU,EAAEV,EAAE,CAAC,OAAOzC,EAAE,IAAI,CAAC,IAAI,EAAE22C,GAAGxzC,CAAC,EAAE,KAAK,UAAU,EAAE,MAAM,EAAE,MAAM,OAAO,CAAC,EAAE,IAAIP,EAAE,EAAE,MAAM,EAAE,MAAM,OAAO,CAAC,EAAE,KAAK,YAAY7H,GAAG,CAAC,CAAC,EAAE,EAAE,KAAK,WAAW,EAAE,KAAK,WAAW,UAAU,KAAK,gBAAgB,KAAK,CAAC,EAAE,IAAIqJ,EAAE,KAAK,YAAY,SAAS,EAAE,CAAC,EAAExB,EAAEwB,EAAE,KAAK,MAAMA,CAAC,EAAE,IAAIC,EAAE,CAAC,KAAK,UAAUD,CAAC,EAAE,OAAO,KAAK,cAAc,CAAC,IAAI,WAAW,OAAOtO,GAAG,eAAeqN,EAAEkB,CAAC,EAAE,IAAI,UAAU,OAAOvO,GAAG,sBAAsBqN,EAAEkB,CAAC,EAAE,QAAQ,MAAM,IAAI,MAAM,oBAAoB,KAAK,aAAa;AAAA,qBAC9vB,CAAC,GAAGopD,EAAE,CAAC,gBAAgB,CAAC,CAAC,CAAC,CAAC,CAAC,EAAEC,GAAG,UAAU,cAAc5wD,GAAE,cAAc4wD,EAAE,EAAE,SAASzQ,GAAG16C,EAAE,CAAC,OAAO,IAAIo1C,GAAGp1C,CAAC,CAAC,CAAC,SAAS65C,GAAG75C,EAAE,CAAC,OAAO,IAAI2kD,GAAG3kD,CAAC,CAAC,CAAC,SAAS27C,GAAG37C,EAAE,CAAC,OAAO,IAAIwkD,GAAGxkD,CAAC,CAAC,CAAC,SAAS46C,GAAG56C,EAAE,CAAC,OAAO,IAAIykD,GAAGzkD,CAAC,CAAC,CAAC,SAASy7C,GAAGz7C,EAAE,CAAC,OAAO,IAAI0kD,GAAG1kD,CAAC,CAAC,CAAC,SAASo8C,GAAGp8C,EAAE,CAAC,OAAO,IAAI6kD,GAAG7kD,CAAC,CAAC,CAAC,SAASu8C,GAAGv8C,EAAE,CAAC,OAAO,IAAI4kD,GAAG5kD,CAAC,CAAC,CAAC,SAASi5C,GAAGj5C,EAAE,CAAC,OAAO,IAAI8lD,GAAG9lD,CAAC,CAAC,CAAC,SAASk5C,GAAGl5C,EAAE,CAAC,OAAO,IAAIwlD,GAAGxlD,CAAC,CAAC,CAAC,SAASm5C,GAAGn5C,EAAE,CAAC,OAAO,IAAI0lD,GAAG1lD,CAAC,CAAC,CAAC,SAASo5C,GAAGp5C,EAAE,CAAC,OAAO,IAAIylD,GAAGzlD,CAAC,CAAC,CAAC,SAASq5C,GAAGr5C,EAAE,CAAC,OAAO,IAAI2lD,GAAG3lD,CAAC,CAAC,CAAC,SAASi8C,GAAGj8C,EAAE,CAAC,OAAO,IAAI6lD,GAAG7lD,CAAC,CAAC,CAAC,SAASw5C,GAAGx5C,EAAE,CAAC,OAAO,IAAI+lD,GAAG/lD,CAAC,CAAC,CAAC,SAASy8C,GAAGz8C,EAAE,CAAC,OAAO,IAAIgmD,GAAGhmD,CAAC,CAAC,CAAC,SAAS05C,GAAG15C,EAAE,CAAC,OAAO,IAAIkmD,GAAGlmD,CAAC,CAAC,CAAC,SAAS+3C,GAAG/3C,EAAE,CAAC,OAAO,IAAIqnD,GAAGrnD,CAAC,CAAC,CAAC,SAASy5C,GAAGz5C,EAAE,CAAC,OAAO,IAAImnD,GAAGnnD,CAAC,CAAC,CAAC,SAAS45C,GAAG55C,EAAE,CAAC,OAAO,IAAIinD,GAAGjnD,CAAC,CAAC,CAAC,SAASq8C,GAAGr8C,EAAE,CAAC,OAAO,IAAIknD,GAAGlnD,CAAC,CAAC,CAAC,SAAS+5C,GAAG/5C,EAAE,CAAC,OAAO,IAAIonD,GAAGpnD,CAAC,CAAC,CAAC,SAAS47C,GAAG57C,EAAE,CAAC,OAAO,IAAIsnD,GAAGtnD,CAAC,CAAC,CAAC,SAAS87C,GAAG97C,EAAE,CAAC,OAAO,IAAIunD,GAAGvnD,CAAC,CAAC,CAAC,SAASw7C,GAAGx7C,EAAE,CAAC,OAAO,IAAIwnD,GAAGxnD,CAAC,CAAC,CAAC,SAAS85C,GAAG95C,EAAE,CAAC,OAAO,IAAI0nD,GAAG1nD,CAAC,CAAC,CAAC,SAASg4C,GAAGh4C,EAAE,CAAC,OAAO,IAAI4nD,GAAG5nD,CAAC,CAAC,CAAC,SAASk4C,GAAGl4C,EAAE,CAAC,OAAO,IAAI8nD,GAAG9nD,CAAC,CAAC,CAAC,SAASg5C,GAAGh5C,EAAE,CAAC,OAAO,IAAIioD,GAAGjoD,CAAC,CAAC,CAAC,SAASq7C,GAAGr7C,EAAE,CAAC,OAAO,IAAI+nD,GAAG/nD,CAAC,CAAC,CAAC,SAASs7C,GAAGt7C,EAAE,CAAC,OAAO,IAAIgoD,GAAGhoD,CAAC,CAAC,CAAC,SAASu7C,GAAGv7C,EAAE,CAAC,OAAO,IAAI6nD,GAAG7nD,CAAC,CAAC,CAAC,SAAS25C,GAAG35C,EAAE,CAAC,OAAO,IAAIooD,GAAGpoD,CAAC,CAAC,CAAC,SAAS44C,GAAG54C,EAAE,CAAC,OAAO,IAAI4oD,GAAG5oD,CAAC,CAAC,CAAC,SAAS26C,GAAG36C,EAAE,CAAC,OAAO,IAAI6oD,GAAG7oD,CAAC,CAAC,CAAC,SAAS08C,GAAG18C,EAAE,CAAC,OAAO,IAAI+oD,GAAG/oD,CAAC,CAAC,CAAC,SAASm4C,GAAGn4C,EAAE,CAAC,OAAO,IAAIopD,GAAGppD,CAAC,CAAC,CAAC,SAASs4C,GAAGt4C,EAAE,CAAC,OAAOm4C,GAAGn4C,CAAC,CAAC,CAAC,SAASy4C,GAAGz4C,EAAE,CAAC,OAAOm4C,GAAGn4C,CAAC,CAAC,CAAC,SAASo4C,GAAGp4C,EAAE,CAAC,OAAO,IAAIupD,GAAGvpD,CAAC,CAAC,CAAC,SAASu4C,GAAGv4C,EAAE,CAAC,OAAOo4C,GAAGp4C,CAAC,CAAC,CAAC,SAAS04C,GAAG14C,EAAE,CAAC,OAAOo4C,GAAGp4C,CAAC,CAAC,CAAC,SAASq4C,GAAGr4C,EAAE,CAAC,OAAO,IAAI0pD,GAAG1pD,CAAC,CAAC,CAAC,SAASw4C,GAAGx4C,EAAE,CAAC,OAAOq4C,GAAGr4C,CAAC,CAAC,CAAC,SAAS24C,GAAG34C,EAAE,CAAC,OAAOq4C,GAAGr4C,CAAC,CAAC,CAAC,SAASk6C,GAAGl6C,EAAE,CAAC,OAAO,IAAI4pD,GAAG5pD,CAAC,CAAC,CAAC,SAASm6C,GAAGn6C,EAAE,CAAC,OAAO,IAAI+pD,GAAG/pD,CAAC,CAAC,CAAC,SAASs6C,GAAGt6C,EAAE,CAAC,OAAO,IAAI6pD,GAAG7pD,CAAC,CAAC,CAAC,SAASu6C,GAAGv6C,EAAE,CAAC,OAAO,IAAIgqD,GAAGhqD,CAAC,CAAC,CAAC,SAASk7C,GAAGl7C,EAAE,CAAC,OAAO,IAAImpD,GAAGnpD,CAAC,CAAC,CAAC,SAASm7C,GAAGn7C,EAAE,CAAC,OAAO,IAAIspD,GAAGtpD,CAAC,CAAC,CAAC,SAASo7C,GAAGp7C,EAAE,CAAC,OAAO,IAAIypD,GAAGzpD,CAAC,CAAC,CAAC,SAASw6C,GAAGx6C,EAAE,CAAC,OAAO,IAAI0mD,GAAG1mD,CAAC,CAAC,CAAC,SAASy6C,GAAGz6C,EAAE,CAAC,OAAO,IAAIymD,GAAGzmD,CAAC,CAAC,CAAC,SAAS66C,GAAG76C,EAAE,CAAC,OAAO,IAAI4mD,GAAG5mD,CAAC,CAAC,CAAC,SAAS86C,GAAG96C,EAAE,CAAC,OAAO,IAAI2mD,GAAG3mD,CAAC,CAAC,CAAC,SAASk8C,GAAGl8C,EAAE,CAAC,OAAO,IAAIwmD,GAAGxmD,CAAC,CAAC,CAAC,SAASm8C,GAAGn8C,EAAE,CAAC,OAAO,IAAIsmD,GAAGtmD,CAAC,CAAC,CAAC,SAASs5C,GAAGt5C,EAAE,CAAC,OAAO,IAAIgnD,GAAGhnD,CAAC,CAAC,CAAC,SAASu5C,GAAGv5C,EAAE,CAAC,OAAO,IAAI+mD,GAAG/mD,CAAC,CAAC,CAAC,SAASg8C,GAAGh8C,EAAE,CAAC,OAAO,IAAI5X,GAAG4X,CAAC,CAAC,CAAC,SAASs8C,GAAGt8C,EAAE,CAAC,OAAO,IAAIqmD,GAAGrmD,CAAC,CAAC,CAAC,SAAS64C,GAAG74C,EAAE,CAAC,OAAO,IAAIqqD,GAAGrqD,CAAC,CAAC,CAAC,SAASw8C,GAAGx8C,EAAE,CAAC,OAAO,IAAIkqD,GAAGlqD,CAAC,CAAC,CAAC,IAAIo6C,GAAGE,GAAGD,GAAGE,GAAGS,GAAGE,GAAGD,GAAGE,GAAG,SAASlB,GAAGj6C,EAAE,CAAC,OAAO,IAAIqoD,GAAGroD,CAAC,CAAC,CAAC,SAASg6C,GAAGh6C,EAAE,CAAC,OAAO,IAAIsoD,GAAGtoD,CAAC,CAAC,CAAC,SAASi4C,GAAGj4C,EAAE,CAAC,OAAO,IAAIuoD,GAAGvoD,CAAC,CAAC,CAAC,SAAS+6C,GAAG/6C,EAAE,CAAC,OAAO,IAAIynD,GAAGznD,CAAC,CAAC,CAAC,SAAS67C,GAAG77C,EAAE,CAAC,OAAO,IAAIsqD,GAAGtqD,CAAC,CAAC,CAAC,SAAS+4C,GAAG/4C,EAAE,CAAC,OAAO,IAAIyqD,GAAGzqD,CAAC,CAAC,CAAC,SAAS+7C,GAAG/7C,EAAE,CAAC,OAAO,IAAI8qD,GAAG9qD,CAAC,CAAC,CAAC,SAAS84C,GAAG94C,EAAE,CAAC,OAAO,IAAI2qD,GAAG3qD,CAAC,CAAC,CAAC,SAAS07C,GAAG17C,EAAE,CAAC,OAAO,IAAImrD,GAAGnrD,CAAC,CAAC,CAAC,IAAI/J,GAAG,CAAC,EAAEgK,GAAGhK,GAAG,CAAC,KAAK,IAAIm1D,GAAG,IAAI,IAAIC,GAAG,eAAe,IAAIC,GAAG,mBAAmB,IAAIC,GAAG,oBAAoB,IAAIC,GAAG,wBAAwB,IAAIC,GAAG,gBAAgB,IAAIC,GAAG,KAAK,IAAIC,GAAG,kBAAkB,IAAIC,GAAG,4BAA4B,IAAIC,GAAG,iBAAiB,IAAIC,GAAG,IAAI,IAAIC,GAAG,UAAU,IAAIC,GAAG,QAAQ,IAAIC,GAAG,OAAO,IAAIC,GAAG,0BAA0B,IAAIC,EAAE,CAAC,EAAE,SAASb,GAAGtrD,EAAE,EAAE,CAAC,OAAOu+C,GAAGv+C,EAAE,CAAC,CAAC,CAAC,SAASurD,GAAGvrD,EAAE,EAAE,CAAC,OAAO8+C,GAAG9+C,EAAE,CAAC,CAAC,CAAC,SAASmsD,GAAGnsD,EAAE,EAAE,CAAC,OAAO++C,GAAG/+C,EAAE,CAAC,CAAC,CAAC,SAASwrD,GAAGxrD,EAAE,EAAE,CAAC,OAAOw+C,GAAGx+C,EAAE,CAAC,CAAC,CAAC,SAASyrD,GAAGzrD,EAAE,EAAE,CAAC,OAAOu/C,GAAGv/C,EAAE,CAAC,CAAC,CAAC,SAASgsD,GAAGhsD,EAAE,EAAE,CAAC,OAAO4+C,GAAG5+C,EAAE,CAAC,CAAC,CAAC,SAASksD,GAAGlsD,EAAE,EAAE,CAAC,OAAO6+C,GAAG7+C,EAAE,CAAC,CAAC,CAAC,SAAS0rD,GAAG1rD,EAAE,EAAE,CAAC,OAAOo+C,GAAGp+C,EAAE,CAAC,CAAC,CAAC,SAAS4rD,GAAG5rD,EAAE,EAAE,CAAC,OAAOu9C,GAAGv9C,EAAE,CAAC,CAAC,CAAC,SAAS6rD,GAAG7rD,EAAE,EAAE,CAAC,OAAOw9C,GAAGx9C,EAAE,CAAC,CAAC,CAAC,SAASorD,GAAGprD,EAAE,EAAE,CAAC,OAAOw9C,GAAGx9C,EAAE,CAAC,CAAC,CAAC,SAAS2rD,GAAG3rD,EAAE,EAAE,CAAC,OAAOw9C,GAAGx9C,EAAE,CAAC,CAAC,CAAC,SAAS8rD,GAAG9rD,EAAE,EAAE,CAAC,OAAOs9C,GAAGt9C,EAAE,CAAC,CAAC,CAAC,SAASqrD,GAAGrrD,EAAE,EAAE,CAAC,OAAOs9C,GAAGt9C,EAAE,CAAC,CAAC,CAAC,SAAS+rD,GAAG/rD,EAAE,EAAE,CAAC,OAAOs9C,GAAGt9C,EAAE,CAAC,CAAC,CAAC,SAASisD,GAAGjsD,EAAE,EAAE,CAAC,OAAOg/C,GAAGh/C,EAAE,CAAC,CAAC,CAAC,IAAIzJ,GAAG,CAAC,EAAE0J,GAAG1J,GAAG,CAAC,cAAc,IAAIisD,EAAE,CAAC,EAAE,IAAIrpD,GAAG,CAAC,EAAE8G,GAAG9G,GAAG,CAAC,GAAG,IAAIizD,GAAG,KAAK,IAAIC,GAAG,GAAG,IAAIC,EAAE,CAAC,EAAE,SAASD,GAAGrsD,EAAE,CAAC,OAAO,IAAIikD,GAAGjkD,CAAC,CAAC,CAAC,SAASosD,GAAGpsD,EAAE,CAAC,OAAOkkD,GAAGlkD,CAAC,CAAC,CAAC,SAASssD,GAAGtsD,EAAE,CAAC,OAAOmkD,GAAGnkD,CAAC,CAAC,CAAC,IAAIjf,GAAG,cAAcg8D,EAAE,CAAC,aAAa,CAAC,MAAM,GAAG,SAAS,EAAE,KAAK,MAAM,IAAI,CAAC,SAASn8C,EAAE,CAAC,GAAG,EAAEA,aAAaxb,IAAI,MAAM,IAAI,MAAM,uDAAuD,EAAE,KAAK,MAAMwb,CAAC,CAAC,EAAE,SAAS2rD,GAAGvsD,EAAE,EAAE,CAAC,OAAOA,EAAE,CAAC,CAAC,SAASwsD,GAAGxsD,EAAE,EAAE,CAAC,OAAOA,EAAE,CAAC,CAAC,IAAIjd,GAAG,cAAchC,EAAE,CAAC,YAAY6f,EAAE,CAAC,GAAG,MAAM,EAAEA,GAAG,OAAOA,EAAE,CAAC,GAAGA,EAAE,mBAAmB,MAAM,IAAIitC,GAAG,oEAAoE,EAAE,KAAK,QAAQjtC,EAAE,SAAS,WAAW,KAAK,SAAS,KAAK,IAAIA,EAAE,UAAU,CAAC,EAAE,KAAK,SAASA,EAAE,UAAU,EAAE,KAAK,QAAQA,EAAE,SAAS,EAAE,KAAK,KAAKA,EAAE,MAAM,OAAO,KAAK,SAASA,EAAE,SAAS,CAAC,OAAO,MAAM,KAAK,EAAE,QAAQ,KAAK,IAAI,IAAI,KAAK,QAAQ,KAAK,uBAAuB,KAAK,IAAI,4CAA4C,EAAE,KAAK,KAAK,QAAQ,KAAK,OAAO,MAAM,KAAK,YAAY2rD,GAAG,KAAK,OAAO,MAAM,KAAK,YAAYC,GAAG,KAAK,QAAQ,QAAQ,KAAK,IAAI,GAAG,KAAK,YAAYA,GAAG,KAAK,YAAYD,GAAG,KAAK,cAAcA,KAAK,KAAK,UAAU,GAAG,CAAC,MAAM,aAAa3rD,EAAE,CAAC,KAAK,KAAK,EAAE,KAAK,aAAa,EAAE,KAAK,UAAU,KAAK,KAAK,KAAK,KAAK,SAAS,KAAK,KAAK,KAAK,cAAc2rD,GAAG,IAAI,IAAI,CAAC,MAAM,WAAW3rD,EAAEV,EAAE,CAAC,MAAMy8C,GAAGz8C,CAAC,EAAE,IAAI,EAAE,KAAK,gBAAgBA,CAAC,EAAE,GAAG,OAAO,KAAK,YAAY,EAAE,KAAK,SAAS,KAAK,IAAI,GAAG,KAAK,KAAK,EAAE,KAAK,KAAK,IAAI,KAAK,OAAO,KAAK,MAAM,KAAK,WAAW,KAAK,aAAaU,EAAE,KAAK,MAAM,aAAa,KAAK,CAAC,MAAM,WAAWA,EAAE,CAAC,KAAK,aAAa,GAAG,KAAK,SAAS,QAAQ,IAAI,SAAS,KAAK,YAAY,mBAAmB,CAAC,CAAC,gBAAgBA,EAAE,CAACA,GAAG,OAAOA,EAAE,CAAC,GAAG,IAAIV,EAAEU,EAAE,KAAK,OAAO,EAAE,OAAOV,GAAG,MAAM,QAAQ,KAAK,4BAA4B,KAAK,OAAO,6CAA6C,OAAO,KAAKU,CAAC,CAAC,EAAE,EAAEV,CAAC,CAAC,EAAE,SAASusD,GAAGzsD,EAAE,CAAC,OAAO,IAAIjd,GAAGid,CAAC,CAAC,CAAC,IAAIvR,GAAG,CAAC,cAAcg+D,EAAE,EAAMC,GAAGl7D,EAAE,EAAEk7D,GAAG,aAAa,4BAA4B,IAAI,GAAG1sD,GAAG,CAACA,GAAG,QAAQ,KAAK,+OAA+O,CAAC,CAAC,EAAE,IAAI2sD,IAAI,SAAS3sD,EAAE,CAACA,EAAEA,EAAE,WAAW,CAAC,EAAE,aAAaA,EAAEA,EAAE,SAAS,CAAC,EAAE,WAAWA,EAAEA,EAAE,UAAU,CAAC,EAAE,YAAYA,EAAEA,EAAE,SAAS,CAAC,EAAE,WAAWA,EAAEA,EAAE,SAAS,CAAC,EAAE,WAAWA,EAAEA,EAAE,SAAS,CAAC,EAAE,WAAWA,EAAEA,EAAE,QAAQ,CAAC,EAAE,UAAUA,EAAEA,EAAE,UAAU,CAAC,EAAE,YAAYA,EAAEA,EAAE,aAAa,CAAC,EAAE,eAAeA,EAAEA,EAAE,SAAS,CAAC,EAAE,WAAWA,EAAEA,EAAE,QAAQ,EAAE,EAAE,UAAUA,EAAEA,EAAE,SAAS,EAAE,EAAE,WAAWA,EAAEA,EAAE,UAAU,EAAE,EAAE,YAAYA,EAAEA,EAAE,UAAU,EAAE,EAAE,YAAYA,EAAEA,EAAE,YAAY,EAAE,EAAE,cAAcA,EAAEA,EAAE,UAAU,EAAE,EAAE,YAAYA,EAAEA,EAAE,WAAW,EAAE,EAAE,aAAaA,EAAEA,EAAE,UAAU,EAAE,EAAE,YAAYA,EAAEA,EAAE,cAAc,EAAE,EAAE,gBAAgBA,EAAEA,EAAE,QAAQ,EAAE,EAAE,UAAUA,EAAEA,EAAE,YAAY,EAAE,EAAE,cAAcA,EAAEA,EAAE,WAAW,EAAE,EAAE,aAAaA,EAAEA,EAAE,UAAU,EAAE,EAAE,YAAYA,EAAEA,EAAE,UAAU,EAAE,EAAE,YAAYA,EAAEA,EAAE,aAAa,GAAG,EAAE,eAAeA,EAAEA,EAAE,cAAc,GAAG,EAAE,gBAAgBA,EAAEA,EAAE,aAAa,GAAG,EAAE,eAAeA,EAAEA,EAAE,aAAa,GAAG,EAAE,eAAeA,EAAEA,EAAE,aAAa,GAAG,EAAE,eAAeA,EAAEA,EAAE,YAAY,GAAG,EAAE,cAAcA,EAAEA,EAAE,cAAc,GAAG,EAAE,gBAAgBA,EAAEA,EAAE,iBAAiB,GAAG,EAAE,mBAAmBA,EAAEA,EAAE,aAAa,GAAG,EAAE,eAAeA,EAAEA,EAAE,YAAY,GAAG,EAAE,cAAcA,EAAEA,EAAE,aAAa,GAAG,EAAE,eAAeA,EAAEA,EAAE,cAAc,GAAG,EAAE,gBAAgBA,EAAEA,EAAE,cAAc,GAAG,EAAE,gBAAgBA,EAAEA,EAAE,gBAAgB,GAAG,EAAE,kBAAkBA,EAAEA,EAAE,cAAc,GAAG,EAAE,gBAAgBA,EAAEA,EAAE,eAAe,GAAG,EAAE,iBAAiBA,EAAEA,EAAE,cAAc,GAAG,EAAE,gBAAgBA,EAAEA,EAAE,kBAAkB,GAAG,EAAE,oBAAoBA,EAAEA,EAAE,YAAY,GAAG,EAAE,cAAcA,EAAEA,EAAE,gBAAgB,GAAG,EAAE,kBAAkBA,EAAEA,EAAE,eAAe,GAAG,EAAE,iBAAiBA,EAAEA,EAAE,cAAc,GAAG,EAAE,gBAAgBA,EAAEA,EAAE,cAAc,GAAG,EAAE,eAAe,GAAG2sD,KAAKA,GAAG,CAAC,EAAE,EAAE,IAAIC,IAAI,SAAS5sD,EAAE,CAAC,IAAI,GAAG,SAASE,EAAE,CAACA,EAAEA,EAAE,OAAO,CAAC,EAAE,SAASA,EAAEA,EAAE,GAAG,CAAC,EAAE,KAAKA,EAAEA,EAAE,GAAG,CAAC,EAAE,IAAI,GAAG,EAAEF,EAAE,0BAA0BA,EAAE,wBAAwB,CAAC,EAAE,CAAC,GAAG4sD,KAAKA,GAAG,CAAC,EAAE,EAAE,IAAIC,GAAG,CAAC,EAAE,SAAS3zD,GAAG8G,EAAE,EAAE,CAAC,IAAIE,EAAE,CAAC,SAASF,EAAE,SAAS,SAAS,OAAO,CAAC,EAAE,MAAM,CAAC,EAAE,eAAe,CAAC,EAAE6sD,GAAG7sD,CAAC,EAAEE,CAAC,CAAC,SAAS4sD,GAAG9sD,EAAE,CAAC,OAAO6sD,GAAG7sD,CAAC,CAAC,CAAC,SAAS1P,GAAG0P,EAAE,CAAC,OAAO6sD,GAAG7sD,CAAC,CAAC,CAAC,SAAS+sD,EAAE/sD,EAAE,EAAEE,EAAEE,EAAEC,EAAE,CAAC,IAAI,EAAE,EAAE,YAAYL,CAAC,EAAE,GAAG,GAAG,EAAE,kBAAkB,OAAO,CAAC,IAAI+B,EAAE,EAAE,gBAAgBC,EAAE,EAAE,gBAAgB,EAAE,OAAO,EAAE,gBAAgB,OAAOD,EAAE,EAAE,EAAE,cAAcE,EAAEF,EAAE,EAAE,EAAE,WAAW,OAAOA,EAAEA,EAAE,GAAG,EAAE,OAAO,SAAS,OAAOirD,GAAG,EAAE,WAAW/qD,CAAC,EAAE/B,EAAEE,EAAEC,CAAC,EAAE,GAAG,EAAE,OAAO,UAAU,CAAC,IAAIuC,EAAE,EAAE,OAAO,MAAMb,EAAEC,CAAC,EAAE,OAAO,EAAE,WAAW,MAAMD,EAAEC,CAAC,EAAE,OAAO,CAACc,EAAEkB,IAAI,CAAC,IAAIC,EAAE,QAAQA,EAAErB,EAAEoB,CAAC,KAAK,MAAMC,IAAI,OAAO,OAAOA,EAAE,MAAM,MAAM,CAAC,EAAE,IAAInB,GAAGkqD,GAAGlqD,EAAE5C,EAAEE,EAAEC,CAAC,CAAC,CAAC,CAAC,IAAIqC,EAAEsqD,GAAG,EAAE,WAAW/qD,CAAC,EAAE/B,EAAEE,EAAEC,CAAC,EAAEsC,EAAED,EAAE,SAAS,EAAE,OAAO,EAAE,OAAO,SAASC,EAAE,CAAC,EAAEpE,EAAE,cAAcmE,EAAE,MAAMC,CAAC,CAAC,CAAC,IAAI,EAAE,EAAE,WAAW3C,CAAC,EAAE,OAAO,GAAG,EAAE,KAAK,CAAC,SAASgtD,GAAGhtD,EAAE,EAAEE,EAAEE,EAAE,CAAC,GAAG,CAACC,EAAE,CAAC,EAAE4sD,GAAGjtD,EAAEE,CAAC,EAAE,GAAGE,GAAG,KAAK,CAAC,IAAI2B,EAAE3B,EAAE,yBAAyBC,CAAC,EAAE,GAAG0B,GAAG,KAAK,OAAOA,CAAC,CAAC,IAAI,EAAE7B,EAAE,kBAAkB,KAAK6B,GAAG,CAAC,CAAC,EAAEmrD,GAAG7sD,EAAE0B,CAAC,CAAC,CAAC,EAAE,OAAO,IAAI,OAAO,EAAEmrD,GAAG7sD,EAAE,CAAC,CAAC,EAAE,CAAC,EAAE,MAAM,CAAC,SAAS8sD,GAAGntD,EAAE,EAAEE,EAAE,CAAC,OAAO,EAAEgtD,GAAGltD,EAAEE,EAAE,gBAAgB,CAAC,CAAC,CAAC,SAASktD,GAAGptD,EAAE,EAAE,CAAC,GAAG,CAACE,EAAEE,EAAEC,CAAC,EAAE4sD,GAAGjtD,EAAE,CAAC,EAAE,MAAM,CAACktD,GAAGhtD,EAAE,GAAG,EAAE,gBAAgB,EAAEE,EAAEC,CAAC,CAAC,CAAC,SAAS6sD,GAAGltD,EAAE,EAAE,CAAC,OAAO,EAAE,GAAGA,CAAC,IAAI,CAAC,GAAGA,CAAC,CAAC,SAASitD,GAAGjtD,EAAE,EAAE,CAAC,GAAGA,IAAI,GAAG,MAAM,CAAC,GAAG,EAAE,MAAM,EAAE,IAAIE,EAAE,GAAG,MAAM,EAAE,oBAAoB,KAAK,GAAGA,EAAE,CAAC,IAAI,EAAE,EAAE,mBAAmB,IAAIF,CAAC,EAAE,GAAG,GAAG,KAAK,OAAO,CAAC,CAAC,IAAII,EAAEJ,EAAE,MAAM,GAAG,EAAEK,EAAE,GAAGD,EAAE,SAAS,EAAEC,EAAE,CAACL,EAAE,EAAE,MAAM,MAAM,CAAC,IAAI,EAAEI,EAAE,CAAC,EAAE,EAAEA,EAAE,SAAS,EAAEA,EAAE,CAAC,EAAE,OAAO2B,EAAE,OAAO3B,EAAEA,EAAE,OAAO,CAAC,CAAC,EAAEC,EAAE,CAAC,EAAE0B,EAAE,CAAC,CAAC,CAAC,OAAO7B,GAAG,EAAE,mBAAmB,IAAIF,EAAEK,CAAC,EAAEA,CAAC,CAAC,SAASgtD,GAAGrtD,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAE2sD,EAAE,MAAM/sD,EAAE,EAAEE,CAAC,EAAE,GAAGE,IAAI,WAAW,CAACA,EAAE2sD,EAAE,mBAAmB/sD,EAAE,EAAEE,CAAC,EAAE,IAAIG,EAAE,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,EAAE,QAAQ,EAAE,EAAE,EAAE,EAAE,IAAIA,EAAE,CAAC,EAAE,CAAC,EAAED,EAAE,EAAE,CAAC,EAAEC,EAAE,CAAC,EAAE,CAAC,EAAED,EAAE,EAAE,EAAE,CAAC,EAAE,OAAOC,CAAC,CAAC,OAAOD,CAAC,CAAC,SAASktD,GAAGttD,EAAE,CAAC,OAAOA,EAAE,KAAKA,EAAEnR,GAAGmR,CAAC,CAAC,CAAC,IAAIutD,GAAG,CAAC,EAAEttD,GAAGstD,GAAG,CAAC,KAAK,IAAIC,EAAE,CAAC,EAAE,IAAIA,GAAG,CAAC,CAAC,SAAS,MAAM,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,QAAQ,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,OAAO,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,IAAI,EAAE,KAAK,UAAU,KAAK,SAAS,CAAC,CAAC,EAAE,CAAC,SAAS,UAAU,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,EAAE,CAAC,OAAO,cAAc,KAAK,aAAa,KAAK,SAAS,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,MAAM,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,UAAU,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,MAAM,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,WAAW,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,WAAW,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,MAAM,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,UAAU,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,UAAU,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,MAAM,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,oBAAoB,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,MAAM,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,WAAW,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,CAAC,EAAMC,GAAG,CAAC,EAAExtD,GAAGwtD,GAAG,CAAC,KAAK,IAAIC,EAAE,CAAC,EAAE,IAAIA,GAAG,CAAC,CAAC,SAAS,MAAM,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,OAAO,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,OAAO,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,OAAO,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,QAAQ,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,OAAO,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,cAAc,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,eAAe,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,eAAe,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,UAAU,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,OAAO,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,OAAO,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,aAAa,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,MAAM,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,OAAO,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,MAAM,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,MAAM,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,QAAQ,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,MAAM,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,OAAO,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,EAAE,CAAC,OAAO,OAAO,KAAK,aAAa,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,MAAM,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,OAAO,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,EAAE,CAAC,OAAO,OAAO,KAAK,aAAa,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,QAAQ,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,QAAQ,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,OAAO,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,QAAQ,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,OAAO,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,UAAU,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,MAAM,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,OAAO,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,OAAO,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,QAAQ,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,SAAS,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,MAAM,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,OAAO,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,OAAO,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,QAAQ,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,QAAQ,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,QAAQ,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,aAAa,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,WAAW,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,QAAQ,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,QAAQ,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,QAAQ,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,MAAM,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,YAAY,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,QAAQ,KAAK,QAAQ,KAAK,SAAS,aAAa,EAAE,EAAE,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,QAAQ,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,WAAW,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,QAAQ,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,CAAC,EAAMC,GAAG,CAAC,EAAE1tD,GAAG0tD,GAAG,CAAC,KAAK,IAAIC,EAAE,CAAC,EAAE,IAAIA,GAAG,CAAC,CAAC,SAAS,kBAAkB,SAAS,UAAU,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,eAAe,KAAK,OAAO,EAAE,CAAC,MAAM,EAAE,KAAK,iBAAiB,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,gBAAgB,KAAK,eAAe,KAAK,OAAO,CAAC,CAAC,EAAE,CAAC,SAAS,WAAW,SAAS,UAAU,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,OAAO,KAAK,QAAQ,CAAC,CAAC,EAAE,CAAC,SAAS,SAAS,SAAS,UAAU,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,OAAO,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,OAAO,KAAK,QAAQ,CAAC,CAAC,EAAE,CAAC,SAAS,QAAQ,SAAS,UAAU,OAAO,CAAC,CAAC,MAAM,EAAE,IAAI,EAAE,KAAK,UAAU,KAAK,SAAS,CAAC,CAAC,EAAE,CAAC,SAAS,QAAQ,SAAS,UAAU,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,SAAS,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,EAAE,CAAC,OAAO,aAAa,KAAK,YAAY,KAAK,QAAQ,EAAE,CAAC,OAAO,cAAc,KAAK,aAAa,KAAK,MAAM,CAAC,CAAC,EAAE,CAAC,SAAS,OAAO,SAAS,UAAU,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,SAAS,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,gBAAgB,SAAS,UAAU,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,SAAS,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,gBAAgB,SAAS,UAAU,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,OAAO,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,QAAQ,KAAK,QAAQ,KAAK,OAAO,EAAE,CAAC,OAAO,gBAAgB,KAAK,eAAe,KAAK,OAAO,EAAE,CAAC,OAAO,eAAe,KAAK,cAAc,KAAK,MAAM,EAAE,CAAC,OAAO,mBAAmB,KAAK,iBAAiB,KAAK,MAAM,EAAE,CAAC,OAAO,2BAA2B,KAAK,yBAAyB,KAAK,MAAM,EAAE,CAAC,OAAO,oBAAoB,KAAK,OAAO,KAAK,QAAQ,CAAC,CAAC,EAAE,CAAC,SAAS,qBAAqB,SAAS,UAAU,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,gBAAgB,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,QAAQ,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,SAAS,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,SAAS,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,oBAAoB,SAAS,UAAU,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,gBAAgB,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,QAAQ,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,SAAS,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,QAAQ,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,sBAAsB,SAAS,UAAU,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,gBAAgB,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,UAAU,KAAK,UAAU,EAAE,CAAC,MAAM,EAAE,KAAK,SAAS,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,QAAQ,KAAK,QAAQ,KAAK,OAAO,EAAE,CAAC,OAAO,gBAAgB,KAAK,eAAe,KAAK,OAAO,CAAC,CAAC,EAAE,CAAC,SAAS,uBAAuB,SAAS,UAAU,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,gBAAgB,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,UAAU,KAAK,UAAU,EAAE,CAAC,MAAM,EAAE,KAAK,SAAS,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,SAAS,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,OAAO,CAAC,CAAC,EAAE,CAAC,SAAS,sBAAsB,SAAS,UAAU,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,gBAAgB,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,SAAS,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,QAAQ,KAAK,QAAQ,KAAK,OAAO,EAAE,CAAC,OAAO,wBAAwB,KAAK,sBAAsB,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,qBAAqB,SAAS,UAAU,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,gBAAgB,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,SAAS,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,UAAU,KAAK,UAAU,EAAE,CAAC,MAAM,EAAE,KAAK,SAAS,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,OAAO,CAAC,CAAC,EAAE,CAAC,SAAS,oBAAoB,SAAS,UAAU,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,gBAAgB,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,SAAS,KAAK,QAAQ,CAAC,CAAC,EAAE,CAAC,SAAS,qBAAqB,SAAS,UAAU,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,gBAAgB,KAAK,QAAQ,CAAC,CAAC,EAAE,CAAC,SAAS,cAAc,SAAS,UAAU,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,OAAO,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,IAAI,EAAE,KAAK,OAAO,KAAK,SAAS,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,cAAc,KAAK,aAAa,KAAK,MAAM,EAAE,CAAC,OAAO,cAAc,KAAK,aAAa,KAAK,MAAM,CAAC,CAAC,EAAE,CAAC,SAAS,KAAK,SAAS,UAAU,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,OAAO,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,IAAI,EAAE,KAAK,OAAO,KAAK,SAAS,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,cAAc,KAAK,aAAa,KAAK,MAAM,EAAE,CAAC,OAAO,cAAc,KAAK,aAAa,KAAK,MAAM,CAAC,CAAC,EAAE,CAAC,SAAS,iBAAiB,SAAS,UAAU,OAAO,CAAC,CAAC,MAAM,EAAE,IAAI,EAAE,KAAK,OAAO,KAAK,SAAS,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,OAAO,KAAK,OAAO,KAAK,MAAM,EAAE,CAAC,OAAO,OAAO,KAAK,OAAO,KAAK,MAAM,CAAC,CAAC,EAAE,CAAC,SAAS,QAAQ,SAAS,UAAU,OAAO,CAAC,CAAC,MAAM,EAAE,IAAI,EAAE,KAAK,OAAO,KAAK,SAAS,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,OAAO,KAAK,OAAO,KAAK,MAAM,EAAE,CAAC,OAAO,OAAO,KAAK,OAAO,KAAK,MAAM,CAAC,CAAC,EAAE,CAAC,SAAS,oBAAoB,SAAS,UAAU,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,SAAS,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,UAAU,KAAK,UAAU,EAAE,CAAC,MAAM,EAAE,KAAK,eAAe,KAAK,OAAO,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,gBAAgB,KAAK,eAAe,KAAK,OAAO,CAAC,CAAC,EAAE,CAAC,SAAS,sBAAsB,SAAS,UAAU,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,SAAS,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,UAAU,KAAK,UAAU,EAAE,CAAC,MAAM,EAAE,KAAK,eAAe,KAAK,OAAO,EAAE,CAAC,MAAM,EAAE,KAAK,cAAc,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,gBAAgB,KAAK,eAAe,KAAK,OAAO,CAAC,CAAC,EAAE,CAAC,SAAS,mBAAmB,SAAS,UAAU,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,eAAe,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,UAAU,KAAK,UAAU,EAAE,CAAC,MAAM,EAAE,KAAK,eAAe,KAAK,OAAO,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,gBAAgB,KAAK,eAAe,KAAK,OAAO,CAAC,CAAC,EAAE,CAAC,SAAS,oBAAoB,SAAS,UAAU,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,eAAe,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,QAAQ,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,eAAe,KAAK,OAAO,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,gBAAgB,KAAK,eAAe,KAAK,OAAO,CAAC,CAAC,EAAE,CAAC,SAAS,oBAAoB,SAAS,UAAU,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,eAAe,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,QAAQ,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,SAAS,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,gBAAgB,KAAK,eAAe,KAAK,OAAO,CAAC,CAAC,EAAE,CAAC,SAAS,oBAAoB,SAAS,UAAU,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,eAAe,KAAK,OAAO,EAAE,CAAC,MAAM,EAAE,KAAK,cAAc,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,gBAAgB,KAAK,eAAe,KAAK,OAAO,CAAC,CAAC,EAAE,CAAC,SAAS,uBAAuB,SAAS,UAAU,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,SAAS,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,eAAe,KAAK,OAAO,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,gBAAgB,KAAK,eAAe,KAAK,OAAO,CAAC,CAAC,EAAE,CAAC,SAAS,kBAAkB,SAAS,UAAU,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,eAAe,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,eAAe,KAAK,OAAO,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,gBAAgB,KAAK,eAAe,KAAK,OAAO,EAAE,CAAC,OAAO,eAAe,KAAK,cAAc,KAAK,OAAO,CAAC,CAAC,EAAE,CAAC,SAAS,kBAAkB,SAAS,UAAU,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,SAAS,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,eAAe,KAAK,OAAO,EAAE,CAAC,MAAM,EAAE,KAAK,UAAU,KAAK,UAAU,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,gBAAgB,KAAK,eAAe,KAAK,OAAO,CAAC,CAAC,EAAE,CAAC,SAAS,mBAAmB,SAAS,UAAU,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,eAAe,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,gBAAgB,KAAK,eAAe,KAAK,OAAO,EAAE,CAAC,OAAO,gBAAgB,KAAK,eAAe,KAAK,OAAO,CAAC,CAAC,EAAE,CAAC,SAAS,qBAAqB,SAAS,UAAU,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,eAAe,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,gBAAgB,KAAK,eAAe,KAAK,OAAO,EAAE,CAAC,OAAO,gBAAgB,KAAK,eAAe,KAAK,OAAO,CAAC,CAAC,EAAE,CAAC,SAAS,oBAAoB,SAAS,UAAU,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,eAAe,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,eAAe,KAAK,OAAO,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,gBAAgB,KAAK,eAAe,KAAK,OAAO,CAAC,CAAC,EAAE,CAAC,SAAS,qBAAqB,SAAS,UAAU,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,eAAe,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,SAAS,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,gBAAgB,KAAK,eAAe,KAAK,OAAO,CAAC,CAAC,EAAE,CAAC,SAAS,mBAAmB,SAAS,UAAU,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,eAAe,KAAK,QAAQ,CAAC,CAAC,EAAE,CAAC,SAAS,mBAAmB,SAAS,UAAU,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,eAAe,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,OAAO,KAAK,QAAQ,CAAC,CAAC,CAAC,EAAMC,GAAG,CAAC,EAAE5tD,GAAG4tD,GAAG,CAAC,KAAK,IAAIC,EAAE,CAAC,EAAE,IAAIA,GAAG,CAAC,CAAC,SAAS,UAAU,SAAS,cAAc,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,UAAU,KAAK,UAAU,KAAK,UAAU,EAAE,CAAC,OAAO,UAAU,KAAK,MAAM,KAAK,QAAQ,EAAE,CAAC,OAAO,cAAc,KAAK,aAAa,KAAK,SAAS,aAAa,EAAE,EAAE,CAAC,OAAO,QAAQ,KAAK,aAAa,KAAK,UAAU,EAAE,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,UAAU,SAAS,cAAc,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,UAAU,KAAK,UAAU,KAAK,UAAU,EAAE,CAAC,OAAO,UAAU,KAAK,MAAM,KAAK,QAAQ,EAAE,CAAC,OAAO,cAAc,KAAK,aAAa,KAAK,SAAS,aAAa,EAAE,EAAE,CAAC,OAAO,QAAQ,KAAK,aAAa,KAAK,UAAU,EAAE,CAAC,OAAO,oBAAoB,KAAK,mBAAmB,KAAK,WAAW,aAAa,CAAC,EAAE,aAAa,EAAE,EAAE,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,oBAAoB,SAAS,cAAc,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,UAAU,KAAK,UAAU,KAAK,UAAU,EAAE,CAAC,OAAO,UAAU,KAAK,MAAM,KAAK,QAAQ,EAAE,CAAC,OAAO,QAAQ,KAAK,aAAa,KAAK,UAAU,EAAE,CAAC,OAAO,yBAAyB,KAAK,sBAAsB,KAAK,MAAM,EAAE,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,YAAY,SAAS,cAAc,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,UAAU,KAAK,UAAU,KAAK,UAAU,EAAE,CAAC,OAAO,UAAU,KAAK,MAAM,KAAK,QAAQ,EAAE,CAAC,OAAO,cAAc,KAAK,aAAa,KAAK,SAAS,aAAa,EAAE,EAAE,CAAC,OAAO,QAAQ,KAAK,aAAa,KAAK,UAAU,EAAE,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,YAAY,SAAS,cAAc,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,UAAU,KAAK,UAAU,KAAK,UAAU,EAAE,CAAC,OAAO,UAAU,KAAK,MAAM,KAAK,QAAQ,EAAE,CAAC,OAAO,cAAc,KAAK,aAAa,KAAK,SAAS,aAAa,EAAE,EAAE,CAAC,OAAO,QAAQ,KAAK,aAAa,KAAK,UAAU,EAAE,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,SAAS,SAAS,cAAc,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,SAAS,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,SAAS,KAAK,SAAS,KAAK,QAAQ,EAAE,CAAC,OAAO,UAAU,KAAK,MAAM,KAAK,QAAQ,EAAE,CAAC,OAAO,cAAc,KAAK,aAAa,KAAK,SAAS,aAAa,KAAK,EAAE,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,EAAE,CAAC,OAAO,WAAW,KAAK,WAAW,KAAK,SAAS,aAAa,CAAC,CAAC,CAAC,EAAE,CAAC,SAAS,SAAS,SAAS,cAAc,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,SAAS,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,EAAE,CAAC,OAAO,UAAU,KAAK,UAAU,KAAK,UAAU,EAAE,CAAC,OAAO,UAAU,KAAK,MAAM,KAAK,QAAQ,EAAE,CAAC,OAAO,gBAAgB,KAAK,gBAAgB,KAAK,MAAM,EAAE,CAAC,OAAO,cAAc,KAAK,aAAa,KAAK,SAAS,aAAa,MAAM,EAAE,CAAC,OAAO,oBAAoB,KAAK,mBAAmB,KAAK,WAAW,aAAa,CAAC,CAAC,EAAE,CAAC,OAAO,YAAY,KAAK,YAAY,KAAK,UAAU,CAAC,CAAC,EAAE,CAAC,SAAS,eAAe,SAAS,cAAc,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,SAAS,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,IAAI,EAAE,KAAK,OAAO,KAAK,SAAS,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,WAAW,KAAK,UAAU,KAAK,QAAQ,EAAE,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,EAAE,CAAC,OAAO,UAAU,KAAK,UAAU,KAAK,UAAU,EAAE,CAAC,OAAO,UAAU,KAAK,MAAM,KAAK,QAAQ,EAAE,CAAC,OAAO,oBAAoB,KAAK,mBAAmB,KAAK,WAAW,aAAa,CAAC,CAAC,EAAE,CAAC,OAAO,mBAAmB,KAAK,gBAAgB,KAAK,OAAO,aAAa,EAAE,EAAE,CAAC,OAAO,cAAc,KAAK,aAAa,KAAK,SAAS,aAAa,MAAM,EAAE,CAAC,OAAO,YAAY,KAAK,YAAY,KAAK,WAAW,aAAa,CAAC,EAAE,EAAE,EAAE,CAAC,CAAC,EAAE,CAAC,OAAO,YAAY,KAAK,WAAW,KAAK,WAAW,aAAa,CAAC,CAAC,EAAE,CAAC,OAAO,UAAU,KAAK,UAAU,KAAK,SAAS,aAAa,IAAI,EAAE,CAAC,OAAO,kBAAkB,KAAK,iBAAiB,KAAK,SAAS,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,sBAAsB,SAAS,cAAc,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,SAAS,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,cAAc,KAAK,UAAU,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,UAAU,KAAK,UAAU,KAAK,UAAU,EAAE,CAAC,OAAO,UAAU,KAAK,MAAM,KAAK,QAAQ,EAAE,CAAC,OAAO,cAAc,KAAK,aAAa,KAAK,SAAS,aAAa,EAAE,EAAE,CAAC,OAAO,oBAAoB,KAAK,mBAAmB,KAAK,WAAW,aAAa,CAAC,CAAC,EAAE,CAAC,OAAO,YAAY,KAAK,YAAY,KAAK,WAAW,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,kBAAkB,SAAS,cAAc,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,QAAQ,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,SAAS,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,UAAU,KAAK,UAAU,KAAK,UAAU,EAAE,CAAC,OAAO,UAAU,KAAK,MAAM,KAAK,QAAQ,EAAE,CAAC,OAAO,cAAc,KAAK,aAAa,KAAK,SAAS,aAAa,MAAM,EAAE,CAAC,OAAO,oBAAoB,KAAK,mBAAmB,KAAK,WAAW,aAAa,CAAC,CAAC,EAAE,CAAC,OAAO,YAAY,KAAK,YAAY,KAAK,UAAU,CAAC,CAAC,EAAE,CAAC,SAAS,wBAAwB,SAAS,cAAc,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,QAAQ,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,SAAS,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,UAAU,KAAK,UAAU,KAAK,UAAU,EAAE,CAAC,OAAO,UAAU,KAAK,MAAM,KAAK,QAAQ,EAAE,CAAC,OAAO,cAAc,KAAK,aAAa,KAAK,SAAS,aAAa,MAAM,EAAE,CAAC,OAAO,oBAAoB,KAAK,mBAAmB,KAAK,WAAW,aAAa,CAAC,CAAC,EAAE,CAAC,OAAO,YAAY,KAAK,YAAY,KAAK,UAAU,CAAC,CAAC,EAAE,CAAC,SAAS,6BAA6B,SAAS,cAAc,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,SAAS,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,IAAI,EAAE,KAAK,OAAO,KAAK,SAAS,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,WAAW,KAAK,UAAU,KAAK,QAAQ,EAAE,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,EAAE,CAAC,OAAO,UAAU,KAAK,UAAU,KAAK,UAAU,EAAE,CAAC,OAAO,UAAU,KAAK,MAAM,KAAK,QAAQ,EAAE,CAAC,OAAO,cAAc,KAAK,aAAa,KAAK,SAAS,aAAa,MAAM,EAAE,CAAC,OAAO,YAAY,KAAK,YAAY,KAAK,WAAW,aAAa,CAAC,EAAE,EAAE,EAAE,CAAC,CAAC,EAAE,CAAC,OAAO,YAAY,KAAK,WAAW,KAAK,WAAW,aAAa,CAAC,CAAC,EAAE,CAAC,OAAO,oBAAoB,KAAK,mBAAmB,KAAK,WAAW,aAAa,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,SAAS,SAAS,SAAS,cAAc,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,SAAS,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,UAAU,KAAK,UAAU,KAAK,UAAU,EAAE,CAAC,OAAO,UAAU,KAAK,MAAM,KAAK,QAAQ,EAAE,CAAC,OAAO,cAAc,KAAK,aAAa,KAAK,SAAS,aAAa,MAAM,EAAE,CAAC,OAAO,YAAY,KAAK,YAAY,KAAK,UAAU,CAAC,CAAC,EAAE,CAAC,SAAS,aAAa,SAAS,cAAc,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,SAAS,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,UAAU,KAAK,UAAU,KAAK,UAAU,EAAE,CAAC,OAAO,QAAQ,KAAK,YAAY,KAAK,UAAU,EAAE,CAAC,OAAO,UAAU,KAAK,MAAM,KAAK,QAAQ,CAAC,CAAC,CAAC,EAAMC,GAAG,CAAC,EAAE9tD,GAAG8tD,GAAG,CAAC,KAAK,IAAIC,EAAE,CAAC,EAAE,IAAIA,GAAG,CAAC,CAAC,SAAS,OAAO,SAAS,WAAW,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,QAAQ,KAAK,UAAU,EAAE,CAAC,MAAM,EAAE,KAAK,QAAQ,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,OAAO,CAAC,CAAC,EAAE,CAAC,SAAS,WAAW,SAAS,WAAW,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,QAAQ,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,OAAO,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,MAAM,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,SAAS,SAAS,WAAW,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,UAAU,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,QAAQ,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,UAAU,KAAK,SAAS,aAAa,CAAC,EAAE,CAAC,MAAM,EAAE,KAAK,WAAW,KAAK,SAAS,aAAa,CAAC,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,OAAO,KAAK,OAAO,KAAK,SAAS,aAAa,EAAE,EAAE,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,OAAO,CAAC,CAAC,EAAE,CAAC,SAAS,OAAO,SAAS,WAAW,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,QAAQ,KAAK,UAAU,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,OAAO,CAAC,CAAC,EAAE,CAAC,SAAS,WAAW,SAAS,WAAW,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,QAAQ,KAAK,QAAQ,KAAK,OAAO,CAAC,CAAC,EAAE,CAAC,SAAS,uBAAuB,SAAS,WAAW,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,QAAQ,KAAK,UAAU,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,OAAO,KAAK,OAAO,KAAK,SAAS,aAAa,CAAC,EAAE,CAAC,OAAO,QAAQ,KAAK,QAAQ,KAAK,SAAS,aAAa,EAAE,aAAa,EAAE,EAAE,CAAC,OAAO,QAAQ,KAAK,QAAQ,KAAK,OAAO,EAAE,CAAC,OAAO,IAAI,KAAK,IAAI,KAAK,SAAS,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,gBAAgB,SAAS,WAAW,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,QAAQ,KAAK,UAAU,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,SAAS,KAAK,SAAS,KAAK,SAAS,aAAa,CAAC,EAAE,CAAC,OAAO,SAAS,KAAK,SAAS,KAAK,SAAS,aAAa,CAAC,EAAE,CAAC,OAAO,QAAQ,KAAK,QAAQ,KAAK,OAAO,EAAE,CAAC,OAAO,OAAO,KAAK,OAAO,KAAK,SAAS,aAAa,CAAC,EAAE,CAAC,OAAO,QAAQ,KAAK,QAAQ,KAAK,SAAS,aAAa,EAAE,aAAa,EAAE,EAAE,CAAC,OAAO,IAAI,KAAK,IAAI,KAAK,SAAS,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,mBAAmB,SAAS,WAAW,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,QAAQ,KAAK,UAAU,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,SAAS,KAAK,SAAS,KAAK,QAAQ,EAAE,CAAC,OAAO,SAAS,KAAK,SAAS,KAAK,QAAQ,EAAE,CAAC,OAAO,OAAO,KAAK,OAAO,KAAK,SAAS,aAAa,CAAC,EAAE,CAAC,OAAO,QAAQ,KAAK,QAAQ,KAAK,SAAS,aAAa,EAAE,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,QAAQ,SAAS,WAAW,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,QAAQ,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,OAAO,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,OAAO,KAAK,SAAS,aAAa,CAAC,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,OAAO,KAAK,QAAQ,KAAK,OAAO,CAAC,CAAC,EAAE,CAAC,SAAS,kBAAkB,SAAS,WAAW,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,QAAQ,KAAK,UAAU,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,QAAQ,KAAK,OAAO,KAAK,SAAS,aAAa,CAAC,EAAE,CAAC,OAAO,SAAS,KAAK,SAAS,KAAK,SAAS,aAAa,CAAC,EAAE,CAAC,OAAO,OAAO,KAAK,OAAO,KAAK,QAAQ,EAAE,CAAC,OAAO,QAAQ,KAAK,QAAQ,KAAK,SAAS,aAAa,EAAE,aAAa,EAAE,EAAE,CAAC,OAAO,QAAQ,KAAK,QAAQ,KAAK,OAAO,EAAE,CAAC,OAAO,IAAI,KAAK,IAAI,KAAK,SAAS,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,QAAQ,SAAS,WAAW,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,QAAQ,KAAK,UAAU,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,OAAO,CAAC,CAAC,EAAE,CAAC,SAAS,YAAY,SAAS,WAAW,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,OAAO,CAAC,CAAC,EAAE,CAAC,SAAS,cAAc,SAAS,WAAW,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,SAAS,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,aAAa,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,OAAO,KAAK,OAAO,KAAK,QAAQ,EAAE,CAAC,OAAO,QAAQ,KAAK,QAAQ,KAAK,QAAQ,EAAE,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,OAAO,EAAE,CAAC,OAAO,eAAe,KAAK,eAAe,KAAK,OAAO,CAAC,CAAC,CAAC,EAAMC,GAAG,CAAC,EAAEhuD,GAAGguD,GAAG,CAAC,KAAK,IAAIC,EAAE,CAAC,EAAE,IAAIA,GAAG,CAAC,CAAC,SAAS,sBAAsB,SAAS,UAAU,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,QAAQ,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,SAAS,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,gBAAgB,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,eAAe,KAAK,QAAQ,CAAC,CAAC,EAAE,CAAC,SAAS,sBAAsB,SAAS,UAAU,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,QAAQ,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,SAAS,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,gBAAgB,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,eAAe,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,iBAAiB,KAAK,QAAQ,CAAC,CAAC,EAAE,CAAC,SAAS,sBAAsB,SAAS,UAAU,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,QAAQ,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,SAAS,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,gBAAgB,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,eAAe,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,iBAAiB,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,EAAE,CAAC,OAAO,cAAc,KAAK,YAAY,KAAK,QAAQ,aAAa,EAAE,EAAE,CAAC,OAAO,yBAAyB,KAAK,qBAAqB,KAAK,MAAM,CAAC,CAAC,EAAE,CAAC,SAAS,sBAAsB,SAAS,UAAU,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,QAAQ,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,SAAS,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,gBAAgB,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,eAAe,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,iBAAiB,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,eAAe,KAAK,QAAQ,CAAC,CAAC,EAAE,CAAC,SAAS,QAAQ,SAAS,UAAU,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,YAAY,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,WAAW,SAAS,UAAU,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,CAAC,EAAMC,GAAG,CAAC,EAAEluD,GAAGkuD,GAAG,CAAC,KAAK,IAAIC,EAAE,CAAC,EAAE,IAAIA,GAAG,CAAC,CAAC,SAAS,aAAa,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,iBAAiB,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,SAAS,KAAK,QAAQ,CAAC,CAAC,EAAE,CAAC,SAAS,SAAS,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,SAAS,KAAK,SAAS,KAAK,MAAM,CAAC,CAAC,EAAE,CAAC,SAAS,aAAa,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,iBAAiB,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,SAAS,KAAK,QAAQ,CAAC,CAAC,EAAE,CAAC,SAAS,SAAS,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,CAAC,EAAE,CAAC,SAAS,WAAW,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,OAAO,KAAK,QAAQ,CAAC,CAAC,CAAC,EAAMC,GAAG,CAAC,EAAEpuD,GAAGouD,GAAG,CAAC,KAAK,IAAIC,EAAE,CAAC,EAAE,IAAIA,GAAG,CAAC,CAAC,SAAS,yBAAyB,SAAS,QAAQ,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,UAAU,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,QAAQ,KAAK,QAAQ,KAAK,OAAO,EAAE,CAAC,OAAO,QAAQ,KAAK,QAAQ,KAAK,OAAO,CAAC,CAAC,EAAE,CAAC,SAAS,cAAc,SAAS,QAAQ,MAAM,CAAC,CAAC,OAAO,QAAQ,KAAK,QAAQ,KAAK,OAAO,EAAE,CAAC,OAAO,QAAQ,KAAK,QAAQ,KAAK,OAAO,CAAC,CAAC,EAAE,CAAC,SAAS,QAAQ,SAAS,OAAO,EAAE,CAAC,SAAS,WAAW,SAAS,QAAQ,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,CAAC,EAAE,CAAC,SAAS,YAAY,SAAS,QAAQ,OAAO,CAAC,CAAC,MAAM,EAAE,IAAI,EAAE,KAAK,IAAI,KAAK,SAAS,CAAC,CAAC,EAAE,CAAC,SAAS,WAAW,SAAS,QAAQ,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,CAAC,EAAE,CAAC,SAAS,OAAO,SAAS,QAAQ,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,CAAC,EAAE,CAAC,SAAS,OAAO,SAAS,QAAQ,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,CAAC,EAAE,CAAC,SAAS,QAAQ,SAAS,QAAQ,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,CAAC,EAAE,CAAC,SAAS,SAAS,SAAS,QAAQ,OAAO,CAAC,CAAC,MAAM,EAAE,IAAI,EAAE,KAAK,IAAI,KAAK,SAAS,CAAC,CAAC,EAAE,CAAC,SAAS,QAAQ,SAAS,QAAQ,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,OAAO,KAAK,SAAS,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,UAAU,KAAK,UAAU,KAAK,QAAQ,EAAE,CAAC,OAAO,UAAU,KAAK,SAAS,KAAK,SAAS,aAAa,EAAE,EAAE,CAAC,OAAO,YAAY,KAAK,YAAY,KAAK,SAAS,aAAa,CAAC,CAAC,CAAC,EAAE,CAAC,SAAS,OAAO,SAAS,QAAQ,OAAO,CAAC,CAAC,EAAE,CAAC,SAAS,eAAe,SAAS,QAAQ,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,CAAC,EAAE,CAAC,SAAS,0BAA0B,SAAS,QAAQ,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,MAAM,KAAK,MAAM,KAAK,QAAQ,EAAE,CAAC,OAAO,MAAM,KAAK,MAAM,KAAK,QAAQ,CAAC,CAAC,CAAC,EAAMC,GAAG,CAAC,EAAEtuD,GAAGsuD,GAAG,CAAC,KAAK,IAAIC,EAAE,CAAC,EAAE,IAAIA,GAAG,CAAC,CAAC,SAAS,YAAY,SAAS,aAAa,OAAO,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,cAAc,KAAK,aAAa,KAAK,QAAQ,EAAE,CAAC,OAAO,wBAAwB,KAAK,qBAAqB,KAAK,MAAM,EAAE,CAAC,OAAO,YAAY,KAAK,WAAW,KAAK,OAAO,EAAE,CAAC,OAAO,cAAc,KAAK,aAAa,KAAK,OAAO,CAAC,CAAC,EAAE,CAAC,SAAS,cAAc,SAAS,aAAa,OAAO,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,cAAc,KAAK,aAAa,KAAK,QAAQ,EAAE,CAAC,OAAO,wBAAwB,KAAK,qBAAqB,KAAK,MAAM,EAAE,CAAC,OAAO,YAAY,KAAK,WAAW,KAAK,OAAO,EAAE,CAAC,OAAO,cAAc,KAAK,aAAa,KAAK,OAAO,CAAC,CAAC,EAAE,CAAC,SAAS,oBAAoB,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,cAAc,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,OAAO,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,SAAS,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,MAAM,KAAK,MAAM,KAAK,QAAQ,aAAa,EAAE,EAAE,CAAC,OAAO,OAAO,KAAK,OAAO,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,sBAAsB,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,cAAc,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,OAAO,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,SAAS,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,MAAM,KAAK,MAAM,KAAK,QAAQ,aAAa,EAAE,EAAE,CAAC,OAAO,OAAO,KAAK,OAAO,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,kBAAkB,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,cAAc,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,OAAO,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,eAAe,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,MAAM,KAAK,MAAM,KAAK,QAAQ,aAAa,EAAE,EAAE,CAAC,OAAO,OAAO,KAAK,OAAO,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,oBAAoB,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,cAAc,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,OAAO,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,eAAe,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,MAAM,KAAK,MAAM,KAAK,QAAQ,aAAa,EAAE,EAAE,CAAC,OAAO,OAAO,KAAK,OAAO,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,kBAAkB,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,cAAc,KAAK,QAAQ,CAAC,CAAC,EAAE,CAAC,SAAS,oBAAoB,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,cAAc,KAAK,QAAQ,CAAC,CAAC,EAAE,CAAC,SAAS,kBAAkB,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,cAAc,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,OAAO,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,SAAS,KAAK,QAAQ,CAAC,CAAC,EAAE,CAAC,SAAS,oBAAoB,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,cAAc,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,OAAO,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,SAAS,KAAK,QAAQ,CAAC,CAAC,CAAC,EAAMC,GAAG,CAAC,EAAExuD,GAAGwuD,GAAG,CAAC,KAAK,IAAIC,EAAE,CAAC,EAAE,IAAIA,GAAG,CAAC,CAAC,SAAS,iBAAiB,SAAS,QAAQ,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,SAAS,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,OAAO,KAAK,UAAU,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,gBAAgB,KAAK,eAAe,KAAK,MAAM,EAAE,CAAC,OAAO,qBAAqB,KAAK,mBAAmB,KAAK,MAAM,EAAE,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,wBAAwB,SAAS,QAAQ,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,SAAS,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,OAAO,KAAK,UAAU,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,gBAAgB,KAAK,eAAe,KAAK,MAAM,EAAE,CAAC,OAAO,qBAAqB,KAAK,mBAAmB,KAAK,MAAM,EAAE,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,gBAAgB,SAAS,QAAQ,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,QAAQ,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,QAAQ,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,SAAS,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,WAAW,KAAK,UAAU,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,SAAS,KAAK,SAAS,KAAK,QAAQ,EAAE,CAAC,OAAO,sBAAsB,KAAK,qBAAqB,KAAK,QAAQ,CAAC,CAAC,EAAE,CAAC,SAAS,6BAA6B,SAAS,QAAQ,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,SAAS,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,aAAa,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,cAAc,KAAK,UAAU,EAAE,CAAC,MAAM,EAAE,KAAK,YAAY,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,gBAAgB,KAAK,gBAAgB,KAAK,QAAQ,EAAE,CAAC,OAAO,YAAY,KAAK,WAAW,KAAK,QAAQ,CAAC,CAAC,CAAC,EAAMC,GAAG,CAAC,EAAE1uD,GAAG0uD,GAAG,CAAC,KAAK,IAAIC,EAAE,CAAC,EAAE,IAAIA,GAAG,CAAC,CAAC,SAAS,QAAQ,SAAS,UAAU,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,WAAW,SAAS,UAAU,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,UAAU,SAAS,UAAU,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,eAAe,SAAS,UAAU,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,OAAO,SAAS,UAAU,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,YAAY,SAAS,UAAU,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,aAAa,SAAS,UAAU,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,aAAa,SAAS,UAAU,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,YAAY,SAAS,UAAU,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,SAAS,SAAS,UAAU,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,YAAY,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,WAAW,SAAS,UAAU,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,YAAY,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,aAAa,SAAS,UAAU,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,CAAC,CAAC,EAAMC,GAAG,CAAC,EAAE5uD,GAAG4uD,GAAG,CAAC,KAAK,IAAIC,EAAE,CAAC,EAAE,IAAIA,GAAG,CAAC,CAAC,SAAS,eAAe,SAAS,WAAW,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,IAAI,EAAE,KAAK,OAAO,KAAK,SAAS,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,WAAW,KAAK,UAAU,KAAK,QAAQ,EAAE,CAAC,OAAO,YAAY,KAAK,WAAW,KAAK,WAAW,aAAa,CAAC,CAAC,EAAE,CAAC,OAAO,UAAU,KAAK,UAAU,KAAK,SAAS,aAAa,IAAI,EAAE,CAAC,OAAO,cAAc,KAAK,aAAa,KAAK,OAAO,aAAa,EAAE,EAAE,CAAC,OAAO,cAAc,KAAK,aAAa,KAAK,OAAO,aAAa,EAAE,EAAE,CAAC,OAAO,kBAAkB,KAAK,iBAAiB,KAAK,SAAS,aAAa,EAAE,EAAE,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,SAAS,SAAS,WAAW,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,cAAc,KAAK,aAAa,KAAK,OAAO,aAAa,EAAE,EAAE,CAAC,OAAO,cAAc,KAAK,aAAa,KAAK,OAAO,aAAa,EAAE,EAAE,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,cAAc,SAAS,WAAW,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,QAAQ,KAAK,aAAa,KAAK,OAAO,aAAa,EAAE,EAAE,CAAC,OAAO,QAAQ,KAAK,aAAa,KAAK,OAAO,aAAa,EAAE,EAAE,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,gBAAgB,SAAS,WAAW,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,QAAQ,KAAK,aAAa,KAAK,OAAO,aAAa,EAAE,EAAE,CAAC,OAAO,QAAQ,KAAK,aAAa,KAAK,OAAO,aAAa,EAAE,EAAE,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,YAAY,SAAS,WAAW,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,OAAO,KAAK,UAAU,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,SAAS,SAAS,WAAW,OAAO,CAAC,CAAC,MAAM,EAAE,IAAI,EAAE,KAAK,UAAU,KAAK,SAAS,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,WAAW,KAAK,WAAW,KAAK,QAAQ,EAAE,CAAC,OAAO,IAAI,KAAK,IAAI,KAAK,SAAS,aAAa,CAAC,EAAE,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,OAAO,CAAC,CAAC,EAAE,CAAC,SAAS,iBAAiB,SAAS,WAAW,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,WAAW,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,WAAW,KAAK,QAAQ,CAAC,CAAC,CAAC,EAAMC,GAAG,CAAC,EAAE9uD,GAAG8uD,GAAG,CAAC,KAAK,IAAIC,EAAE,CAAC,EAAE,IAAIA,GAAG,CAAC,CAAC,SAAS,gBAAgB,SAAS,gBAAgB,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,OAAO,KAAK,UAAU,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,YAAY,KAAK,WAAW,KAAK,OAAO,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,iBAAiB,SAAS,gBAAgB,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,QAAQ,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,SAAS,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,OAAO,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,WAAW,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,UAAU,KAAK,UAAU,KAAK,SAAS,aAAa,IAAI,EAAE,CAAC,OAAO,cAAc,KAAK,aAAa,KAAK,SAAS,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,mBAAmB,SAAS,gBAAgB,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,QAAQ,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,SAAS,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,OAAO,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,WAAW,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,UAAU,KAAK,UAAU,KAAK,SAAS,aAAa,IAAI,EAAE,CAAC,OAAO,cAAc,KAAK,aAAa,KAAK,SAAS,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,mBAAmB,SAAS,gBAAgB,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,QAAQ,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,SAAS,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,OAAO,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,WAAW,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,UAAU,KAAK,UAAU,KAAK,SAAS,aAAa,IAAI,EAAE,CAAC,OAAO,cAAc,KAAK,aAAa,KAAK,SAAS,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,MAAM,SAAS,gBAAgB,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,eAAe,KAAK,SAAS,KAAK,SAAS,aAAa,CAAC,EAAE,CAAC,OAAO,OAAO,KAAK,OAAO,KAAK,SAAS,aAAa,CAAC,EAAE,CAAC,OAAO,QAAQ,KAAK,QAAQ,KAAK,SAAS,aAAa,CAAC,EAAE,CAAC,OAAO,OAAO,KAAK,OAAO,KAAK,SAAS,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,UAAU,SAAS,gBAAgB,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,CAAC,EAAE,CAAC,SAAS,aAAa,SAAS,gBAAgB,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,CAAC,CAAC,EAAMC,GAAG,CAAC,EAAEhvD,GAAGgvD,GAAG,CAAC,KAAK,IAAIC,EAAE,CAAC,EAAE,IAAIA,GAAG,CAAC,CAAC,SAAS,WAAW,SAAS,YAAY,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,OAAO,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,UAAU,KAAK,QAAQ,CAAC,CAAC,EAAE,CAAC,SAAS,gBAAgB,SAAS,YAAY,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,OAAO,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,UAAU,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,gBAAgB,KAAK,eAAe,KAAK,MAAM,CAAC,CAAC,EAAE,CAAC,SAAS,MAAM,SAAS,YAAY,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,OAAO,KAAK,UAAU,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,YAAY,KAAK,WAAW,KAAK,MAAM,CAAC,CAAC,EAAE,CAAC,SAAS,OAAO,SAAS,YAAY,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,OAAO,KAAK,UAAU,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,YAAY,KAAK,WAAW,KAAK,MAAM,CAAC,CAAC,EAAE,CAAC,SAAS,MAAM,SAAS,YAAY,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,OAAO,KAAK,UAAU,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,YAAY,KAAK,WAAW,KAAK,MAAM,CAAC,CAAC,EAAE,CAAC,SAAS,MAAM,SAAS,YAAY,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,OAAO,KAAK,UAAU,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,YAAY,KAAK,WAAW,KAAK,MAAM,CAAC,CAAC,EAAE,CAAC,SAAS,MAAM,SAAS,YAAY,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,OAAO,KAAK,UAAU,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,YAAY,KAAK,WAAW,KAAK,MAAM,CAAC,CAAC,EAAE,CAAC,SAAS,MAAM,SAAS,YAAY,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,OAAO,KAAK,UAAU,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,YAAY,KAAK,WAAW,KAAK,MAAM,CAAC,CAAC,EAAE,CAAC,SAAS,SAAS,SAAS,YAAY,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,OAAO,KAAK,QAAQ,CAAC,CAAC,EAAE,CAAC,SAAS,SAAS,SAAS,YAAY,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,OAAO,KAAK,QAAQ,CAAC,CAAC,EAAE,CAAC,SAAS,OAAO,SAAS,YAAY,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,OAAO,KAAK,UAAU,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,YAAY,KAAK,WAAW,KAAK,MAAM,EAAE,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,UAAU,SAAS,YAAY,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,OAAO,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,YAAY,KAAK,YAAY,KAAK,MAAM,EAAE,CAAC,OAAO,UAAU,KAAK,UAAU,KAAK,MAAM,CAAC,CAAC,EAAE,CAAC,SAAS,SAAS,SAAS,YAAY,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,OAAO,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,YAAY,KAAK,YAAY,KAAK,MAAM,EAAE,CAAC,OAAO,UAAU,KAAK,UAAU,KAAK,MAAM,CAAC,CAAC,CAAC,EAAMC,GAAG,CAAC,EAAElvD,GAAGkvD,GAAG,CAAC,KAAK,IAAIC,EAAE,CAAC,EAAE,IAAIA,GAAG,CAAC,CAAC,SAAS,WAAW,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,IAAI,GAAG,KAAK,UAAU,KAAK,SAAS,EAAE,CAAC,MAAM,GAAG,KAAK,OAAO,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,IAAI,KAAK,SAAS,aAAa,CAAC,CAAC,CAAC,EAAE,CAAC,SAAS,SAAS,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,IAAI,EAAE,KAAK,UAAU,KAAK,SAAS,EAAE,CAAC,MAAM,EAAE,KAAK,OAAO,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,IAAI,KAAK,SAAS,aAAa,CAAC,CAAC,CAAC,EAAE,CAAC,SAAS,WAAW,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,UAAU,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,OAAO,KAAK,SAAS,aAAa,CAAC,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,aAAa,KAAK,YAAY,KAAK,SAAS,aAAa,CAAC,CAAC,CAAC,EAAE,CAAC,SAAS,SAAS,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,UAAU,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,mBAAmB,KAAK,kBAAkB,KAAK,OAAO,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,UAAU,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,OAAO,KAAK,QAAQ,CAAC,CAAC,EAAE,CAAC,SAAS,YAAY,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,OAAO,KAAK,UAAU,CAAC,CAAC,EAAE,CAAC,SAAS,QAAQ,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,QAAQ,KAAK,UAAU,EAAE,CAAC,MAAM,EAAE,KAAK,OAAO,KAAK,UAAU,CAAC,CAAC,EAAE,CAAC,SAAS,eAAe,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,QAAQ,KAAK,UAAU,EAAE,CAAC,MAAM,EAAE,KAAK,MAAM,KAAK,UAAU,EAAE,CAAC,MAAM,EAAE,KAAK,UAAU,KAAK,UAAU,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,aAAa,KAAK,YAAY,KAAK,SAAS,aAAa,CAAC,EAAE,CAAC,OAAO,WAAW,KAAK,UAAU,KAAK,SAAS,aAAa,CAAC,EAAE,CAAC,OAAO,gBAAgB,KAAK,cAAc,KAAK,SAAS,aAAa,CAAC,EAAE,CAAC,OAAO,gBAAgB,KAAK,eAAe,KAAK,SAAS,aAAa,CAAC,EAAE,CAAC,OAAO,mBAAmB,KAAK,iBAAiB,KAAK,SAAS,aAAa,CAAC,CAAC,CAAC,EAAE,CAAC,SAAS,OAAO,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,IAAI,EAAE,KAAK,UAAU,KAAK,SAAS,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,OAAO,KAAK,OAAO,KAAK,SAAS,aAAa,CAAC,CAAC,CAAC,EAAE,CAAC,SAAS,SAAS,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,SAAS,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,OAAO,KAAK,OAAO,KAAK,SAAS,aAAa,CAAC,EAAE,CAAC,OAAO,MAAM,KAAK,MAAM,KAAK,SAAS,aAAa,EAAE,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,OAAO,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,OAAO,KAAK,UAAU,CAAC,CAAC,EAAE,CAAC,SAAS,QAAQ,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,OAAO,KAAK,SAAS,aAAa,CAAC,EAAE,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,YAAY,KAAK,kBAAkB,KAAK,SAAS,aAAa,CAAC,CAAC,CAAC,EAAE,CAAC,SAAS,SAAS,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,kBAAkB,KAAK,UAAU,EAAE,CAAC,MAAM,EAAE,KAAK,OAAO,KAAK,SAAS,aAAa,CAAC,CAAC,CAAC,EAAE,CAAC,SAAS,YAAY,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,UAAU,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,SAAS,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,QAAQ,KAAK,UAAU,CAAC,CAAC,EAAE,CAAC,SAAS,WAAW,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,UAAU,KAAK,QAAQ,CAAC,CAAC,EAAE,CAAC,SAAS,gBAAgB,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,gBAAgB,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,cAAc,KAAK,UAAU,EAAE,CAAC,MAAM,EAAE,KAAK,eAAe,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,eAAe,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,mBAAmB,KAAK,kBAAkB,KAAK,OAAO,aAAa,GAAG,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,sBAAsB,SAAS,aAAa,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,SAAS,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,UAAU,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,SAAS,KAAK,QAAQ,CAAC,CAAC,CAAC,EAAMC,GAAG,CAAC,EAAEpvD,GAAGovD,GAAG,CAAC,KAAK,IAAIC,EAAE,CAAC,EAAE,IAAIA,GAAG,CAAC,CAAC,SAAS,sBAAsB,SAAS,SAAS,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,UAAU,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,SAAS,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,aAAa,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,eAAe,KAAK,QAAQ,CAAC,CAAC,EAAE,CAAC,SAAS,gBAAgB,SAAS,SAAS,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,eAAe,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,aAAa,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,WAAW,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,IAAI,KAAK,QAAQ,KAAK,QAAQ,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,oBAAoB,SAAS,SAAS,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,OAAO,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,UAAU,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,aAAa,KAAK,QAAQ,CAAC,CAAC,EAAE,CAAC,SAAS,mBAAmB,SAAS,SAAS,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,OAAO,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,UAAU,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,aAAa,KAAK,QAAQ,CAAC,CAAC,CAAC,EAAMC,GAAG,CAAC,EAAEtvD,GAAGsvD,GAAG,CAAC,KAAK,IAAIC,EAAE,CAAC,EAAE,IAAIA,GAAG,CAAC,CAAC,SAAS,MAAM,SAAS,WAAW,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,CAAC,EAAE,CAAC,SAAS,OAAO,SAAS,WAAW,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,CAAC,EAAE,CAAC,SAAS,OAAO,SAAS,WAAW,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,aAAa,KAAK,SAAS,aAAa,EAAE,CAAC,CAAC,EAAE,CAAC,SAAS,QAAQ,SAAS,WAAW,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,aAAa,KAAK,SAAS,aAAa,EAAE,CAAC,CAAC,CAAC,EAAMC,GAAG,CAAC,EAAExvD,GAAGwvD,GAAG,CAAC,KAAK,IAAIC,EAAE,CAAC,EAAE,IAAIA,GAAG,CAAC,CAAC,SAAS,qBAAqB,SAAS,SAAS,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,QAAQ,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,UAAU,KAAK,UAAU,KAAK,QAAQ,EAAE,CAAC,OAAO,UAAU,KAAK,UAAU,KAAK,QAAQ,EAAE,CAAC,OAAO,iBAAiB,KAAK,gBAAgB,KAAK,MAAM,CAAC,CAAC,EAAE,CAAC,SAAS,eAAe,SAAS,SAAS,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,OAAO,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,aAAa,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,YAAY,KAAK,YAAY,KAAK,QAAQ,EAAE,CAAC,OAAO,eAAe,KAAK,cAAc,KAAK,UAAU,EAAE,CAAC,OAAO,WAAW,KAAK,UAAU,KAAK,QAAQ,EAAE,CAAC,OAAO,YAAY,KAAK,WAAW,KAAK,QAAQ,EAAE,CAAC,OAAO,YAAY,KAAK,WAAW,KAAK,QAAQ,EAAE,CAAC,OAAO,2BAA2B,KAAK,yBAAyB,KAAK,MAAM,CAAC,EAAE,QAAQ,CAAC,SAAS,eAAe,CAAC,EAAE,CAAC,SAAS,cAAc,SAAS,SAAS,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,QAAQ,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,YAAY,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,aAAa,KAAK,YAAY,KAAK,MAAM,CAAC,EAAE,QAAQ,CAAC,UAAU,SAAS,OAAO,CAAC,EAAE,CAAC,SAAS,yBAAyB,SAAS,SAAS,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,QAAQ,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,cAAc,KAAK,aAAa,KAAK,QAAQ,CAAC,CAAC,CAAC,EAAMC,GAAG,CAAC,EAAE1vD,GAAG0vD,GAAG,CAAC,KAAK,IAAIC,EAAE,CAAC,EAAE,IAAIA,GAAG,CAAC,CAAC,SAAS,OAAO,SAAS,iBAAiB,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,OAAO,KAAK,SAAS,KAAK,QAAQ,aAAa,EAAE,EAAE,CAAC,OAAO,OAAO,KAAK,QAAQ,KAAK,OAAO,CAAC,CAAC,EAAE,CAAC,SAAS,aAAa,SAAS,iBAAiB,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,OAAO,KAAK,QAAQ,CAAC,CAAC,EAAE,CAAC,SAAS,YAAY,SAAS,iBAAiB,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,UAAU,KAAK,UAAU,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,OAAO,KAAK,OAAO,KAAK,QAAQ,CAAC,CAAC,EAAE,CAAC,SAAS,MAAM,SAAS,iBAAiB,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,UAAU,KAAK,UAAU,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,iBAAiB,KAAK,gBAAgB,KAAK,SAAS,aAAa,CAAC,CAAC,CAAC,EAAE,CAAC,SAAS,QAAQ,SAAS,iBAAiB,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,UAAU,KAAK,UAAU,EAAE,CAAC,MAAM,EAAE,KAAK,gBAAgB,KAAK,SAAS,aAAa,CAAC,CAAC,CAAC,EAAE,CAAC,SAAS,UAAU,SAAS,iBAAiB,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,QAAQ,KAAK,UAAU,CAAC,CAAC,EAAE,CAAC,SAAS,cAAc,SAAS,iBAAiB,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,QAAQ,KAAK,UAAU,CAAC,CAAC,EAAE,CAAC,SAAS,UAAU,SAAS,iBAAiB,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,OAAO,iBAAiB,eAAe,KAAK,OAAO,KAAK,UAAU,CAAC,CAAC,EAAE,CAAC,SAAS,iBAAiB,SAAS,iBAAiB,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,aAAa,KAAK,UAAU,EAAE,CAAC,MAAM,EAAE,KAAK,WAAW,KAAK,UAAU,CAAC,CAAC,EAAE,CAAC,SAAS,iBAAiB,SAAS,iBAAiB,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,aAAa,KAAK,UAAU,EAAE,CAAC,MAAM,EAAE,KAAK,QAAQ,KAAK,UAAU,CAAC,CAAC,EAAE,CAAC,SAAS,eAAe,SAAS,iBAAiB,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,OAAO,aAAa,KAAK,YAAY,KAAK,QAAQ,EAAE,CAAC,OAAO,cAAc,KAAK,aAAa,KAAK,QAAQ,CAAC,CAAC,EAAE,CAAC,SAAS,cAAc,SAAS,iBAAiB,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,IAAI,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,QAAQ,KAAK,UAAU,CAAC,EAAE,MAAM,CAAC,CAAC,EAAE,CAAC,SAAS,gBAAgB,SAAS,iBAAiB,OAAO,CAAC,CAAC,MAAM,EAAE,KAAK,KAAK,KAAK,QAAQ,EAAE,CAAC,MAAM,EAAE,KAAK,KAAK,KAAK,QAAQ,CAAC,EAAE,MAAM,CAAC,CAAC,CAAC,EAAMC,GAAG,KAAK,CAAC,WAAW,UAAU,CAAC,OAAO,KAAK,YAAY,KAAK,UAAU,IAAI,KAAK,CAAC,aAAa,CAAC,IAAIjvD,EAAE,CAAC2sD,GAAGE,GAAGE,GAAGE,GAAGE,GAAGE,GAAGE,GAAGE,GAAGE,GAAGE,GAAGE,GAAGE,GAAGE,GAAGE,GAAGE,GAAGE,GAAGE,GAAGE,GAAGE,EAAE,EAAEzvD,EAAE,CAAC,EAAE,OAAO,GAAGU,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC,EAAE,KAAK,UAAUV,EAAE,OAAO,CAAC,EAAEG,KAAK,EAAEA,EAAE,QAAQ,EAAEA,EAAE,GAAG,CAAC,CAAC,CAAC,CAAC,eAAeO,EAAEV,EAAE,CAAC,EAAE,CAAC,IAAI,EAAEU,EAAE,KAAKP,EAAE,CAAC,EAAEwB,EAAE,CAAC,EAAEC,EAAE,CAAC,EAAEC,EAAE,EAAE,OAAO,CAACiC,EAAEC,KAAKD,EAAEC,EAAE,IAAI,EAAE,KAAK,QAAQA,CAAC,EAAEA,EAAE,GAAG,WAAW,aAAa,EAAE5D,EAAE,KAAK2D,EAAEC,EAAE,IAAI,CAAC,EAAEA,EAAE,KAAK,QAAQpC,EAAE,KAAKmC,EAAEC,EAAE,IAAI,CAAC,GAAGA,EAAE,OAAO,MAAMA,EAAE,MAAM,SAAS,IAAInC,EAAE,KAAKkC,EAAEC,EAAE,IAAI,CAAC,EAAED,GAAG,CAAC,CAAC,EAAEhC,EAAE,CAAC,EAAE,EAAE,CAAC,EAAEU,EAAE,CAAC,EAAE,EAAE,CAAC,EAAExC,GAAG,OAAOwC,EAAE,KAAK,oBAAoBxC,EAAE,MAAM,EAAE,EAAE,KAAK,oBAAoBA,EAAE,OAAO,GAAG,IAAI0C,EAAE,OAAO,KAAKb,CAAC,EAAEa,EAAE,QAAQoB,GAAG,CAAC,IAAIC,EAAElC,EAAEiC,CAAC,EAAEC,EAAE,WAAW,QAAQ,CAACqD,EAAE,IAAI,CAAC,GAAG,CAAC7C,EAAE,CAACC,CAAC,EAAE0oD,GAAG9lD,CAAC,EAAE3C,EAAE5C,EAAE0C,CAAC,EAAE,GAAGE,EAAE,SAAS,KAAK,CAAC,IAAIC,EAAED,EAAE,QAAQ,QAAQD,CAAC,EAAE,GAAGE,IAAI,GAAG,CAAC,IAAIC,EAAE,GAAGJ,CAAC,IAAIG,CAAC,GAAGX,EAAE,WAAW,CAAC,EAAEY,CAAC,CAAC,CAACZ,EAAE,OAAO,KAAKU,CAAC,EAAEA,EAAE,SAAS,KAAKV,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,OAAO,KAAK,CAAC,EAAE,SAAS,EAAErB,EAAE,QAAQoB,GAAG,CAAC,IAAIC,EAAElC,EAAEiC,CAAC,EAAEC,EAAE,SAAS,SAAS,GAAG,EAAE,KAAKA,CAAC,CAAC,CAAC,EAAE,OAAO,KAAK,CAAC,EAAE,QAAQD,GAAG,CAAC,GAAG,CAACC,CAAC,EAAEmpD,GAAGppD,CAAC,EAAEsD,EAAEvF,EAAEkC,CAAC,EAAEqD,GAAG,OAAOA,EAAE,aAAa,EAAEtD,CAAC,EAAE,EAAE,KAAKsD,CAAC,EAAE,CAAC,EAAE,OAAO,KAAK5E,CAAC,EAAE,OAAO,EAAE,OAAO,KAAKA,CAAC,EAAE,QAAQsB,GAAG,CAAC,GAAG,CAACC,CAAC,EAAEmpD,GAAGppD,CAAC,EAAEsD,EAAEvF,EAAEkC,CAAC,EAAEqD,IAAIA,EAAE,aAAa5E,EAAEsB,CAAC,EAAEhC,EAAE,KAAKsF,CAAC,EAAE,CAAC,EAAEtF,EAAE3B,EAAE,IAAIwC,EAAE,CAAC,EAAEjC,EAAE,SAAS,MAAMA,EAAE,QAAQ,UAAU,OAAOiC,EAAEjC,EAAE,QAAQ,SAAS,OAAO,CAACoD,EAAEC,KAAKD,EAAEC,EAAE,UAAU,IAAI,EAAE,KAAK,YAAYA,CAAC,EAAED,GAAG,CAAC,CAAC,GAAG,IAAIlB,EAAE,CAAC,MAAMf,EAAE,OAAOC,EAAE,QAAQ,EAAE,QAAQH,EAAE,aAAaxB,EAAE,UAAUH,EAAE,UAAU2C,CAAC,EAAE,OAAOf,EAAE,OAAO,IAAIgB,EAAE,UAAUhB,GAAGgB,CAAC,CAAC,oBAAoBlC,EAAE,CAAC,OAAO,OAAO,KAAKA,GAAG,CAAC,CAAC,EAAE,OAAO,CAACV,EAAE,KAAKA,EAAEU,EAAE,CAAC,EAAE,IAAI,EAAE,EAAEV,GAAG,CAAC,CAAC,CAAC,CAAC,QAAQU,EAAE,CAAC,IAAIV,EAAE4sD,GAAGlsD,EAAE,EAAE,GAAG,KAAK,UAAUA,EAAE,EAAE,GAAG,CAAC,EAAEA,EAAE,MAAM,OAAOA,EAAE,KAAK,CAAC,GAAG,IAAI,EAAE,CAAC,KAAKA,EAAE,KAAK,GAAGA,EAAE,GAAG,SAASV,EAAE,SAAS,YAAYU,EAAE,OAAO,CAAC,GAAG,IAAIP,GAAGA,EAAE,WAAW,GAAG,EAAEA,EAAE,MAAM,CAAC,EAAEA,CAAC,EAAE,OAAO,CAAC,EAAE,SAAS,CAAC,EAAE,YAAY,CAAC,EAAE,WAAW,CAAC,EAAE,SAASO,EAAE,KAAK,QAAQV,EAAE,OAAO,EAAE,OAAOA,EAAE,QAAQ,OAAO,EAAE,YAAYA,EAAE,OAAO,OAAO,CAACG,EAAEwB,KAAKxB,EAAEwB,EAAE,IAAI,EAAE,CAAC,KAAKA,EAAE,KAAK,gBAAgBA,EAAE,MAAM,cAAcA,EAAE,GAAG,EAAExB,GAAG,CAAC,CAAC,GAAGH,EAAE,OAAO,OAAO,EAAE,WAAWA,EAAE,MAAM,OAAO,CAACG,EAAEwB,IAAI,CAAC,IAAIC,EAAED,EAAE,KAAKE,EAAE,OAAOF,EAAE,KAAK,CAAC,IAAI,SAASE,EAAE+tD,GAAGlvD,EAAE,KAAKiB,EAAE,OAAOA,EAAE,YAAY,EAAEE,IAAI,QAAQF,EAAE,mBAAmBE,EAAE+tD,GAAGlvD,EAAE,KAAKiB,EAAE,iBAAiBA,EAAE,YAAY,GAAG,MAAM,IAAI,WAAWE,EAAEguD,GAAGnvD,EAAE,KAAKiB,EAAE,OAAOA,EAAE,YAAY,EAAEE,IAAI,QAAQF,EAAE,mBAAmBE,EAAEguD,GAAGnvD,EAAE,KAAKiB,EAAE,iBAAiBA,EAAE,YAAY,GAAG,MAAM,IAAI,SAASE,EAAEiuD,GAAGpvD,EAAE,KAAKiB,EAAE,OAAOA,EAAE,cAAc,CAAC,EAAEE,IAAI,QAAQF,EAAE,mBAAmBE,EAAEiuD,GAAGpvD,EAAE,KAAKiB,EAAE,iBAAiBA,EAAE,YAAY,GAAG,MAAM,IAAI,WAAWE,EAAEkuD,GAAGrvD,EAAE,KAAKiB,EAAE,OAAOA,EAAE,YAAY,EAAEE,IAAI,QAAQF,EAAE,mBAAmBE,EAAEkuD,GAAGrvD,EAAE,KAAKiB,EAAE,iBAAiBA,EAAE,YAAY,GAAG,MAAM,IAAI,OAAOE,EAAEmuD,GAAGtvD,EAAE,KAAKiB,EAAE,OAAOA,EAAE,YAAY,EAAEE,IAAI,QAAQF,EAAE,mBAAmBE,EAAEmuD,GAAGtvD,EAAE,KAAKiB,EAAE,iBAAiBA,EAAE,YAAY,GAAG,MAAM,IAAI,SAASE,EAAEouD,GAAGvvD,EAAE,KAAKiB,EAAE,OAAOA,EAAE,YAAY,EAAEE,IAAI,QAAQF,EAAE,mBAAmBE,EAAEouD,GAAGvvD,EAAE,KAAKiB,EAAE,iBAAiBA,EAAE,YAAY,GAAG,MAAM,IAAI,QAAQE,EAAEquD,GAAGxvD,EAAE,KAAKiB,EAAE,OAAOA,EAAE,YAAY,EAAEE,IAAI,QAAQF,EAAE,mBAAmBE,EAAEquD,GAAGxvD,EAAE,KAAKiB,EAAE,iBAAiBA,EAAE,YAAY,GAAG,MAAM,IAAI,UAAUE,EAAEsuD,GAAGzvD,EAAE,KAAKiB,EAAE,OAAOA,EAAE,YAAY,EAAEE,IAAI,QAAQF,EAAE,mBAAmBE,EAAEsuD,GAAGzvD,EAAE,KAAKiB,EAAE,iBAAiBA,EAAE,YAAY,GAAG,MAAM,IAAI,QAAQE,EAAEuuD,GAAG1vD,EAAE,KAAKiB,EAAE,OAAOA,EAAE,YAAY,EAAEE,IAAI,QAAQF,EAAE,mBAAmBE,EAAEuuD,GAAG1vD,EAAE,KAAKiB,EAAE,iBAAiBA,EAAE,YAAY,GAAG,MAAM,IAAI,UAAUE,EAAEwuD,GAAG3vD,EAAE,KAAKiB,EAAE,OAAOA,EAAE,YAAY,EAAEE,IAAI,QAAQF,EAAE,mBAAmBE,EAAEwuD,GAAG3vD,EAAE,KAAKiB,EAAE,iBAAiBA,EAAE,YAAY,GAAG,MAAM,IAAI,OAAOE,EAAEyuD,GAAG5vD,EAAE,KAAKiB,EAAE,OAAOA,EAAE,YAAY,EAAEE,IAAI,QAAQF,EAAE,mBAAmBE,EAAEyuD,GAAG5vD,EAAE,KAAKiB,EAAE,iBAAiBA,EAAE,YAAY,GAAG,MAAM,IAAI,SAAS,IAAI,UAAU,MAAM,QAAQ,MAAM,IAAI,MAAM,2BAA2BA,EAAE,IAAI,YAAYjB,EAAE,EAAE,EAAE,CAAC,CAAC,OAAOP,EAAEwB,EAAE,IAAI,EAAE,CAAC,MAAME,EAAE,KAAKD,CAAC,EAAEzB,CAAC,EAAE,CAAC,CAAC,GAAG,CAAC,CAAC,YAAYO,EAAE,CAAC,IAAIV,EAAEU,EAAE,QAAQ,EAAE,CAAC,EAAEP,EAAE,CAAC,EAAEwB,EAAE,CAAC,EAAE3B,GAAG,OAAO2B,EAAE3B,EAAE,OAAO,CAACyC,EAAEC,KAAKD,EAAEC,EAAE,IAAI,EAAE,KAAK,QAAQA,CAAC,EAAEA,EAAE,KAAK,SAASvC,EAAE,KAAKsC,EAAEC,EAAE,IAAI,CAAC,EAAED,GAAG,CAAC,CAAC,GAAG,IAAIb,EAAE,CAAC,EAAEC,EAAE,CAAC,EAAEnB,EAAE,UAAU,SAAS,QAAQ+B,GAAG,CAAC,GAAG,CAACC,CAAC,EAAEwqD,GAAGzqD,EAAE,IAAI,EAAEE,EAAE,CAAC,KAAKD,EAAE,GAAG,cAAc,OAAO,CAAC,EAAE,WAAW,CAAC,EAAE,SAAS,QAAQ,YAAY,CAAC,EAAE,WAAW,CAAC,MAAM,CAAC,MAAM6tD,GAAG9tD,EAAE,IAAI,EAAE,KAAK,OAAO,CAAC,EAAE,SAAS,CAAC,CAAC,EAAEE,EAAE,aAAaF,EAAE,KAAKb,EAAE,KAAKe,CAAC,EAAEhB,EAAEe,CAAC,EAAEC,CAAC,CAAC,EAAE,OAAO,KAAKhB,CAAC,EAAE,QAAQc,GAAG,CAAC,IAAIC,EAAEf,EAAEc,CAAC,EAAEC,EAAE,WAAW,QAAQ,CAACC,EAAEC,IAAI,CAAC,GAAG,CAAC,EAAE,CAACmB,CAAC,EAAEmpD,GAAGvqD,CAAC,EAAEyE,EAAEzF,EAAE,CAAC,EAAE,GAAGyF,EAAE,SAAS,KAAK,CAAC,IAAIxC,EAAEwC,EAAE,QAAQ,QAAQrD,CAAC,EAAE,GAAGa,IAAI,GAAG,CAAC,IAAIL,EAAE,GAAG,CAAC,IAAIK,CAAC,GAAGlC,EAAE,WAAWE,CAAC,EAAE2B,CAAC,CAAC,CAAC7B,EAAE,OAAO,KAAK0E,CAAC,EAAEA,EAAE,SAAS,KAAK1E,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,IAAIX,EAAErB,EAAE,IAAIA,EAAE,UAAU,UAAU,QAAQ+B,GAAG,CAAC,GAAG,CAACC,EAAEC,CAAC,EAAEuqD,GAAGnrD,EAAEU,EAAE,IAAI,CAAC,EAAEG,EAAEjB,EAAEe,CAAC,EAAEE,GAAG,OAAOA,EAAE,cAAcD,EAAEd,EAAE,KAAKe,CAAC,EAAE,CAAC,EAAE,IAAIJ,EAAE,KAAK,mBAAmB9B,CAAC,EAAE,MAAM,CAAC,MAAMiB,EAAE,OAAOC,EAAE,QAAQC,EAAE,QAAQ1B,EAAE,aAAa,EAAE,UAAUqC,CAAC,CAAC,CAAC,mBAAmB9B,EAAE,CAAC,MAAM,CAAC,WAAWA,EAAE,UAAU,KAAK,OAAOA,EAAE,UAAU,SAAS,OAAO,CAACV,EAAE,KAAKA,EAAE,EAAE,IAAI,EAAE,KAAK,mBAAmB,CAAC,EAAEA,GAAG,CAAC,CAAC,EAAE,QAAQU,EAAE,UAAU,UAAU,OAAO,CAACV,EAAE,KAAKA,EAAE,EAAE,IAAI,EAAE,KAAK,mBAAmB,EAAEU,EAAE,GAAG,EAAEV,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,mBAAmBU,EAAEV,EAAE,CAAC,IAAI,EAAEU,EAAE,KAAK,OAAOV,GAAG,OAAO,EAAEA,EAAE,CAAC,GAAG,CAAC,KAAK,EAAE,MAAMU,EAAE,IAAI,CAAC,CAAC,EAAE,SAAS8vD,GAAG1wD,EAAE,CAAC,IAAI,EAAExO,EAAE,EAAE,OAAO,GAAG,OAAO,EAAE,MAAM,YAAY,OAAO,EAAE,KAAKwO,CAAC,EAAE,GAAG,OAAO,QAAQ,YAAY,OAAO,IAAI,OAAOA,EAAE,QAAQ,EAAE,SAAS,EAAE,MAAM,IAAI,MAAM,kFAAkF,CAAC,CAAC,SAAS2wD,GAAG3wD,EAAE,EAAE,CAAC,IAAIE,EAAE,MAAM,QAAQF,CAAC,EAAE,OAAO,aAAa,MAAM,KAAKA,CAAC,EAAE0wD,GAAG1wD,CAAC,EAAE,OAAO,EAAEE,EAAEA,EAAE,YAAY,CAAC,CAAC,SAAS4vD,GAAG9vD,EAAE,EAAEE,EAAEE,EAAE,GAAG,CAAC,IAAIC,EAAEL,EAAE,CAAC,EAAE,OAAOK,GAAG,KAAKswD,GAAGtwD,EAAE,EAAED,CAAC,EAAEF,CAAC,CAAC,SAASgwD,GAAGlwD,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAEJ,EAAE,CAAC,EAAE,OAAOI,EAAEA,EAAE,EAAEF,CAAC,CAAC,SAAS8vD,GAAGhwD,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAEJ,EAAE,CAAC,GAAG,CAAC,EAAEK,EAAED,EAAE,GAAG,KAAKA,EAAE,EAAEA,EAAE,GAAG,KAAKA,EAAE,EAAEF,EAAE,OAAO,OAAOG,GAAG,SAASA,EAAE,SAASA,EAAE,EAAE,CAAC,CAAC,SAASowD,GAAGzwD,EAAE,CAAC,OAAO,OAAOA,GAAG,WAAWA,EAAE2sD,GAAG3sD,CAAC,GAAGA,EAAE,CAAC,KAAK2sD,GAAG,SAAS,KAAKA,GAAG,QAAQ,MAAM,UAAU,KAAKA,GAAG,SAAS,KAAKA,GAAG,SAAS,KAAKA,GAAG,QAAQ,KAAKA,GAAG,SAAS,MAAM,QAAQ,KAAKA,GAAG,QAAQ,MAAM,OAAO,KAAKA,GAAG,UAAU,MAAM,UAAU,KAAKA,GAAG,UAAU,MAAM,SAAS,KAAKA,GAAG,aAAa,KAAKA,GAAG,cAAc,MAAM,YAAY,QAAQ,OAAO,IAAI,CAAC,CAAC,SAAS6D,GAAGxwD,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAEJ,EAAE,CAAC,EAAE,OAAOI,GAAGA,EAAE,KAAKA,EAAE,KAAK,KAAKF,CAAC,CAAC,SAASowD,GAAGtwD,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAEJ,EAAE,CAAC,EAAE,OAAOI,GAAGA,EAAE,KAAKqwD,GAAGrwD,EAAE,IAAI,EAAEF,CAAC,CAAC,SAASqwD,GAAGvwD,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAEJ,EAAE,CAAC,EAAE,OAAOI,GAAGA,EAAE,MAAMA,EAAE,KAAK,KAAKA,EAAE,KAAK,KAAK,IAAIC,GAAGowD,GAAGpwD,CAAC,CAAC,EAAEH,CAAC,CAAC,SAAS0wD,GAAG5wD,EAAE,CAAC,GAAG,CAACA,EAAE,YAAY,OAAOA,EAAE,KAAK,KAAKA,EAAE,IAAI,IAAI,GAAG,OAAO,EAAE,MAAM,SAAS,EAAE,KAAK,SAAS,EAAE,KAAK,EAAE,CAAC,EAAE,CAAC,CAAC,CAAC,SAASowD,GAAGpwD,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAEJ,EAAE,CAAC,EAAE,OAAOI,GAAGA,EAAE,MAAMwwD,GAAGxwD,EAAE,KAAK,EAAEF,CAAC,CAAC,SAAS+vD,GAAGjwD,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAEJ,EAAE,CAAC,EAAE,OAAOI,IAAIA,EAAE,KAAK,GAAGA,EAAE,KAAK,EAAE,OAAOA,EAAE,KAAK,EAAEA,EAAE,KAAK,IAAI,CAAC,GAAG,IAAIC,GAAG,OAAOA,GAAG,SAASA,EAAE,SAASA,EAAE,EAAE,CAAC,EAAEH,CAAC,CAAC,SAAS6vD,GAAG/vD,EAAE,EAAEE,EAAEE,EAAE,GAAG,CAAC,IAAIC,EAAEL,EAAE,CAAC,EAAE,OAAOK,GAAGA,EAAE,MAAMA,EAAE,KAAK,EAAEA,EAAE,KAAK,EAAE,IAAI,GAAGswD,GAAG,EAAEvwD,CAAC,CAAC,EAAEF,CAAC,CAAC,SAASmwD,GAAGrwD,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAEJ,EAAE,CAAC,EAAE,OAAOI,GAAGA,EAAE,MAAMA,EAAE,KAAK,MAAMA,EAAE,KAAK,MAAM,IAAIC,GAAGuwD,GAAGvwD,CAAC,CAAC,EAAEH,CAAC,CAAC,SAASiwD,GAAGnwD,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAEJ,EAAE,CAAC,EAAE,OAAOI,GAAGA,EAAE,MAAMA,EAAE,KAAK,EAAEA,EAAE,KAAK,EAAEF,CAAC,CAAC,IAAI2wD,GAAG,KAAK,CAAC,YAAYjwD,EAAEV,EAAE,EAAE,CAAC,KAAK,KAAKU,EAAE,KAAK,UAAUV,EAAE,KAAK,QAAQ,EAAE,KAAK,OAAO,CAAC,EAAE,KAAK,MAAM,CAAC,EAAE,KAAK,OAAOU,EAAE,WAAW,IAAIP,GAAG,KAAK,SAASA,CAAC,CAAC,EAAEO,EAAE,UAAU,OAAO,KAAK,MAAM,OAAO,KAAKA,EAAE,QAAQ,EAAE,OAAO,CAACP,EAAEwB,KAAKxB,EAAEwB,CAAC,EAAE,KAAK,QAAQA,CAAC,EAAExB,GAAG,CAAC,CAAC,EAAE,CAAC,SAASO,EAAE,CAAC,OAAOosD,GAAGpsD,EAAE,KAAK,UAAU,KAAK,OAAO,CAAC,CAAC,QAAQA,EAAEV,EAAE,CAAC,IAAI,EAAE,KAAK,KAAK,SAASU,CAAC,EAAE,GAAG,EAAE,QAAQ,KAAK,OAAOosD,GAAGpsD,EAAE,KAAK,UAAU,KAAK,OAAO,EAAE,GAAG,EAAE,GAAG,MAAM,EAAE,GAAG,KAAK,OAAOovD,GAAG,KAAK,KAAK,SAASpvD,EAAEV,CAAC,EAAE,GAAG,EAAE,GAAG,KAAK,OAAO4vD,GAAG,KAAK,KAAK,SAASlvD,EAAEV,CAAC,EAAE,GAAG,EAAE,GAAG,KAAK,OAAOgwD,GAAG,KAAK,KAAK,SAAStvD,EAAEV,CAAC,EAAE,GAAG,EAAE,OAAO,KAAK,OAAOkwD,GAAG,KAAK,KAAK,SAASxvD,EAAEV,CAAC,EAAE,GAAG,EAAE,MAAM,KAAK,OAAOowD,GAAG,KAAK,KAAK,SAAS1vD,EAAEV,CAAC,EAAE,GAAG,EAAE,MAAM,KAAK,CAAC,GAAG,EAAE,KAAK,GAAG,MAAM,EAAE,KAAK,GAAG,KAAK,OAAO+vD,GAAG,KAAK,KAAK,SAASrvD,EAAEV,CAAC,EAAE,GAAG,EAAE,KAAK,GAAG,KAAK,OAAO6vD,GAAG,KAAK,KAAK,SAASnvD,EAAEV,CAAC,EAAE,GAAG,EAAE,KAAK,OAAO,KAAK,OAAOmwD,GAAG,KAAK,KAAK,SAASzvD,EAAEV,CAAC,EAAE,GAAG,EAAE,KAAK,GAAG,KAAK,OAAOiwD,GAAG,KAAK,KAAK,SAASvvD,EAAEV,CAAC,EAAE,GAAG,EAAE,KAAK,MAAM,KAAK,OAAOqwD,GAAG,KAAK,KAAK,SAAS3vD,EAAEV,CAAC,CAAC,CAAC,OAAOA,CAAC,CAAC,EAAM4wD,GAAG,CAAC,EAAE7wD,GAAG6wD,GAAG,CAAC,gBAAgB,IAAItpE,GAAG,IAAI,IAAIiF,GAAG,KAAK,IAAIC,GAAG,MAAM,IAAIC,GAAG,IAAI,IAAIC,EAAE,KAAK,IAAIC,GAAG,IAAI,IAAIC,GAAG,IAAI,IAAIC,GAAG,OAAO,IAAIC,GAAG,OAAO,IAAIC,GAAG,KAAK,IAAIC,GAAG,MAAM,IAAIC,GAAG,KAAK,IAAIC,GAAG,MAAM,IAAIC,GAAG,MAAM,IAAIC,GAAG,QAAQ,IAAIC,GAAG,UAAU,IAAIC,GAAG,cAAc,IAAIG,GAAG,UAAU,IAAIC,GAAG,YAAY,IAAIC,GAAG,YAAY,IAAIC,GAAG,YAAY,IAAIC,GAAG,eAAe,IAAIC,GAAG,SAAS,IAAIC,GAAG,WAAW,IAAIC,GAAG,iBAAiB,IAAIC,GAAG,cAAc,IAAIC,GAAG,YAAY,IAAIC,GAAG,OAAO,IAAIG,GAAG,KAAK,IAAIE,GAAE,KAAK,IAAIC,GAAG,YAAY,IAAIC,GAAG,MAAM,IAAIC,GAAG,QAAQ,IAAIC,GAAG,OAAO,IAAIC,GAAG,SAAS,IAAIC,GAAG,SAAS,IAAIC,GAAG,SAAS,IAAIC,GAAG,SAAS,IAAIC,GAAG,OAAO,IAAIE,GAAG,OAAO,IAAIC,GAAG,gBAAgB,IAAIC,GAAG,OAAO,IAAIC,GAAG,gBAAgB,IAAIC,GAAG,IAAI,IAAIE,GAAG,KAAK,IAAIC,GAAG,aAAa,IAAIC,GAAG,QAAQ,IAAIC,GAAG,OAAO,IAAIC,GAAG,cAAc,IAAIG,GAAG,aAAa,IAAIE,GAAG,gBAAgB,IAAIC,GAAG,KAAK,IAAIG,GAAG,WAAW,IAAIC,GAAG,IAAI,IAAII,GAAG,SAAS,IAAIC,GAAG,IAAI,IAAIC,GAAG,QAAQ,IAAIC,GAAG,OAAO,IAAIC,GAAG,IAAI,IAAIC,GAAG,oBAAoB,IAAIG,GAAG,YAAY,IAAIE,GAAG,MAAM,IAAIE,GAAG,IAAI,IAAIC,GAAG,cAAc,IAAIC,GAAG,IAAI,IAAIC,GAAG,WAAW,IAAIC,GAAG,MAAM,IAAIC,GAAG,IAAI,IAAIC,GAAG,IAAI,IAAIC,GAAG,KAAK,IAAIC,GAAG,MAAM,IAAIG,GAAG,SAAS,IAAIC,GAAG,MAAM,IAAIE,GAAG,OAAO,IAAIC,GAAG,SAAS,IAAIC,GAAG,QAAQ,IAAIU,GAAG,aAAa,IAAIC,GAAG,KAAK,IAAIC,GAAG,KAAK,IAAIC,GAAG,MAAM,IAAIC,GAAG,YAAY,IAAIC,GAAG,MAAM,IAAII,GAAG,SAAS,IAAIC,GAAG,MAAM,IAAIC,GAAG,MAAM,IAAIC,GAAG,UAAU,IAAII,GAAG,KAAK,IAAIC,GAAG,UAAU,IAAIC,GAAG,OAAO,IAAIC,GAAG,SAAS,IAAIC,GAAG,2BAA2B,IAAII,GAAG,IAAI,IAAIC,GAAG,MAAM,IAAIC,GAAG,WAAW,IAAIC,GAAG,WAAW,IAAIC,GAAG,UAAU,IAAIC,GAAG,WAAW,IAAIC,GAAG,WAAW,IAAIC,GAAG,UAAU,IAAIC,GAAG,WAAW,IAAIC,GAAG,OAAO,IAAIC,GAAG,WAAW,IAAIC,GAAG,OAAO,IAAIC,GAAG,IAAI,IAAIE,GAAG,QAAQ,IAAIC,GAAG,UAAU,IAAIC,GAAG,kBAAkB,IAAIC,GAAG,QAAQ,IAAIC,GAAG,KAAK,IAAIC,GAAG,SAAS,IAAIE,GAAG,IAAI,IAAIE,GAAG,QAAQ,IAAIC,GAAG,UAAU,IAAIC,GAAG,IAAI,IAAIC,GAAG,QAAQ,IAAIG,GAAG,cAAc,IAAIC,GAAG,IAAI,IAAIC,EAAE,aAAa,IAAIC,GAAG,YAAY,IAAIC,GAAG,IAAI,IAAIC,GAAG,KAAK,IAAIE,GAAG,SAAS,IAAIC,GAAG,OAAO,IAAIC,GAAG,KAAK,IAAIC,GAAG,SAAS,IAAIC,GAAG,GAAG,IAAIC,EAAE,aAAa,IAAIC,GAAG,IAAI,IAAIC,GAAG,MAAM,IAAIC,GAAG,MAAM,IAAIC,GAAG,MAAM,IAAIC,GAAG,MAAM,IAAIC,GAAG,KAAK,IAAIC,GAAG,IAAI,IAAIC,GAAG,MAAM,IAAIC,GAAG,MAAM,IAAIC,GAAG,KAAK,IAAIC,GAAG,aAAa,IAAIE,GAAG,YAAY,IAAIC,GAAG,qBAAqB,IAAIC,GAAG,KAAK,IAAIC,GAAG,YAAY,IAAIC,GAAG,aAAa,IAAIC,GAAG,qBAAqB,IAAIC,GAAG,cAAc,IAAIC,GAAG,iBAAiB,IAAIC,GAAG,MAAM,IAAIC,GAAG,KAAK,IAAIE,GAAG,WAAW,IAAIC,GAAG,KAAK,IAAIO,GAAG,MAAM,IAAIC,GAAG,QAAQ,IAAIE,EAAE,QAAQ,IAAIC,GAAG,UAAU,IAAIC,GAAG,UAAU,IAAIC,GAAG,UAAU,IAAIC,GAAG,UAAU,IAAIC,GAAG,KAAK,IAAIC,GAAG,MAAM,IAAIC,GAAG,MAAM,IAAIC,GAAG,OAAO,IAAIC,GAAG,UAAU,IAAIC,GAAG,aAAa,IAAIE,GAAG,KAAK,IAAIC,GAAG,gBAAgB,IAAIC,GAAG,eAAe,IAAIS,GAAG,QAAQ,IAAIE,GAAG,KAAK,IAAIC,GAAG,OAAO,IAAIC,GAAG,IAAI,IAAIC,GAAG,KAAK,IAAIC,GAAG,MAAM,IAAIC,GAAG,QAAQ,IAAIC,GAAG,QAAQ,IAAIC,GAAG,QAAQ,IAAIC,GAAG,QAAQ,IAAIC,GAAG,QAAQ,IAAIE,GAAG,SAAS,IAAIC,GAAG,eAAe,IAAIC,GAAG,OAAO,IAAIC,GAAG,cAAc,IAAIC,GAAG,SAAS,IAAIC,GAAG,MAAM,IAAIC,GAAG,KAAK,IAAIC,GAAG,OAAO,IAAIC,GAAG,kBAAkB,IAAIC,GAAG,QAAQ,IAAIC,GAAG,MAAM,IAAIC,GAAG,KAAK,IAAIC,GAAG,aAAa,IAAIC,GAAG,OAAO,IAAIC,GAAG,IAAI,IAAIC,GAAG,IAAI,IAAIC,GAAG,IAAI,IAAIE,GAAG,KAAK,IAAIC,GAAG,OAAO,IAAIC,GAAG,SAAS,IAAIC,GAAG,SAAS,IAAIC,GAAG,SAAS,IAAIC,GAAG,SAAS,IAAIC,GAAG,SAAS,IAAIC,GAAG,SAAS,IAAIC,GAAG,oBAAoB,IAAIC,GAAG,KAAK,IAAII,GAAG,KAAK,IAAIE,GAAG,UAAU,IAAIE,GAAG,gBAAgB,IAAIC,GAAG,OAAO,IAAIC,GAAG,mBAAmB,IAAIG,GAAG,QAAQ,IAAIC,GAAG,WAAW,IAAIE,GAAG,SAAS,IAAII,GAAG,MAAM,IAAIW,GAAG,WAAW,IAAIC,GAAG,MAAM,IAAIC,GAAG,UAAU,IAAIC,EAAE,CAAC,EAAE,IAAIuxD,GAAG,CAAC/wD,EAAE,EAAEE,EAAEE,EAAE0wD,KAAK,CAAC,OAAO9wD,EAAE,GAAG,CAAC,IAAI,UAAU,IAAI,QAAQ,IAAI,MAAM,MAAM,CAACI,EAAE,IAAI2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,OAAO,MAAM,CAACE,EAAE,KAAK2sD,EAAE,UAAU/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,WAAW,IAAI,MAAM,MAAM,CAACE,EAAE,IAAI2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,MAAM,MAAM,CAACE,EAAE,IAAI2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,UAAU,IAAI,MAAM,MAAM,CAACE,EAAE,IAAI2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,WAAW,MAAM,CAACE,EAAE,SAAS2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,WAAW,MAAM,CAACE,EAAE,SAAS2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,MAAM,MAAM,CAACE,EAAE,IAAI2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,UAAU,MAAM,CAACE,EAAE,QAAQ2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,UAAU,MAAM,CAACE,EAAE,QAAQ2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,MAAM,MAAM,CAACE,EAAE,IAAI2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,oBAAoB,MAAM,CAACE,EAAE,kBAAkB2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,QAAQ,MAAM,UAAU,aAAaF,EAAE,EAAE,qBAAqB,CAAC,CAAC,EAAMgxD,GAAG,CAAChxD,EAAE,EAAEE,EAAEE,EAAE0wD,KAAK,CAAC,OAAO9wD,EAAE,GAAG,CAAC,IAAI,MAAM,IAAI,aAAa,MAAM,CAACI,EAAE,IAAI2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,OAAO,MAAM,CAACE,EAAE,KAAK2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,QAAQ,MAAM,CAACE,EAAE,MAAM2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,OAAO,MAAM,CAACE,EAAE,KAAK2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,QAAQ,MAAM,CAACE,EAAE,MAAM2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,OAAO,MAAM,CAACE,EAAE,KAAK2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,QAAQ,MAAM,CAACE,EAAE,MAAM2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,QAAQ,MAAM,CAACE,EAAE,MAAM2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,OAAO,MAAM,CAACE,EAAE,KAAK2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,UAAU,MAAM,CAACE,EAAE,QAAQ2sD,EAAE,OAAO/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,OAAO/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,MAAM,MAAM,CAACE,EAAE,IAAI2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,OAAO,MAAM,CAACE,EAAE,KAAK2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,MAAM,MAAM,CAACE,EAAE,IAAI2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,MAAM,MAAM,CAACE,EAAE,IAAI2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,MAAM,MAAM,CAACE,EAAE,IAAI2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,QAAQ,MAAM,CAACE,EAAE,MAAM2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,QAAQ,MAAM,CAACE,EAAE,MAAM2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,MAAM,MAAM,CAACE,EAAE,IAAI2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,QAAQ,MAAM,CAACE,EAAE,MAAM2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,OAAO,MAAM,CAACE,EAAE,KAAK2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,MAAM,MAAM,CAACE,EAAE,IAAI2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,aAAa,MAAM,CAACE,EAAE,WAAW2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,OAAO,MAAM,CAACE,EAAE,KAAK2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,OAAO,MAAM,CAACE,EAAE,KAAK2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,QAAQ,MAAM,CAACE,EAAE,MAAM2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,OAAO,MAAM,CAACE,EAAE,KAAK2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,UAAU,MAAM,CAACE,EAAE,QAAQ2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,MAAM,MAAM,CAACE,EAAE,IAAI2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,OAAO,MAAM,CAACE,EAAE,KAAK2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,OAAO,MAAM,CAACE,EAAE,KAAK2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,WAAW,MAAM,CAACE,EAAE,SAAS2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,OAAO,MAAM,CAACE,EAAE,KAAK2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,SAAS,MAAM,CAACE,EAAE,OAAO2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,OAAO,MAAM,CAACE,EAAE,KAAK2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,MAAM,MAAM,CAACE,EAAE,IAAI2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,cAAc,MAAM,CAACE,EAAE,YAAY2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,eAAe/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,eAAe/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,QAAQ,MAAM,CAACE,EAAE,MAAM2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,QAAQ,MAAM,CAACE,EAAE,MAAM4sD,GAAGhtD,EAAE,WAAW,CAAC,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,YAAY,MAAM,CAACE,EAAE,UAAU2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,QAAQ/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,QAAQ,MAAM,CAACE,EAAE,MAAM2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,QAAQ/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,QAAQ,MAAM,CAACE,EAAE,MAAM4sD,GAAGhtD,EAAE,WAAW,CAAC,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,QAAQ,MAAM,CAACE,EAAE,MAAM4sD,GAAGhtD,EAAE,WAAW,CAAC,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,WAAW,MAAM,CAACE,EAAE,SAAS4sD,GAAGhtD,EAAE,WAAW,CAAC,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,QAAQ,MAAM,UAAU,aAAaF,EAAE,EAAE,qBAAqB,CAAC,CAAC,EAAE,SAASixD,GAAGjxD,EAAE,EAAEE,EAAE,GAAG,CAAC,GAAG,EAAE,OAAOF,GAAG,UAAU,OAAO,GAAG,UAAU,CAACzB,EAAE,OAAOyB,EAAE,SAAS,EAAE,OAAO,IAAIE,EAAE,WAAWF,CAAC,QAAQ,CAAC,aAAa,EAAE,QAAQI,EAAE,EAAEA,EAAEJ,EAAE,OAAOI,IAAI,CAAC,IAAIC,EAAEL,EAAEI,CAAC,EAAE,EAAE,EAAEA,CAAC,EAAE7B,EAAE,OAAO8B,EAAE,GAAG,EAAE,GAAGA,IAAI,EAAE,IAAIH,EAAE,WAAWF,CAAC,QAAQ,CAAC,aAAa,CAAC,CAAC,CAAC,CAAC,SAASkxD,GAAGlxD,EAAE,CAAC,MAAM,EAAE,OAAOA,GAAG,UAAUA,EAAE,KAAK,GAAG,EAAE,CAAC,EAAE,CAAC,SAASmxD,GAAGnxD,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAEgxD,GAAGpxD,EAAEE,CAAC,EAAEG,EAAE,CAAC6wD,GAAG9wD,CAAC,EAAE,GAAGC,GAAG,EAAE,SAAS,EAAE,MAAM,IAAI,MAAM,qFAAqFD,CAAC,EAAE,EAAE,GAAGC,GAAG,EAAE,QAAQ,GAAG,CAACD,EAAEgxD,GAAG,EAAE,MAAMhxD,CAAC,CAAC,CAAC,EAAE,CAAC8wD,GAAG9wD,CAAC,EAAE,MAAM,IAAI,MAAM,mCAAmCA,CAAC,EAAE,EAAE,OAAOA,CAAC,CAAC,SAASgxD,GAAGpxD,EAAE,EAAE,CAAC,GAAG,OAAOA,GAAG,SAAS,OAAO,EAAE,GAAG,OAAO,GAAG,SAAS,OAAOA,EAAE,GAAGA,EAAE,SAAS,EAAE,OAAO,MAAM,IAAI,MAAM,oCAAoCA,CAAC,QAAQ,CAAC,EAAE,EAAE,IAAIE,EAAE,CAAC,EAAE,QAAQE,EAAE,EAAEA,EAAEJ,EAAE,OAAO,EAAEI,EAAE,CAAC,IAAIC,EAAEL,EAAEI,CAAC,EAAE,EAAE,EAAEA,CAAC,EAAE,GAAGC,GAAG,GAAG,GAAG,GAAGA,IAAI,EAAE,MAAM,IAAI,MAAM,oCAAoCL,CAAC,QAAQ,CAAC,EAAE,EAAEE,EAAEE,CAAC,EAAEC,GAAG,EAAEA,EAAE,CAAC,CAAC,OAAOH,CAAC,CAAC,IAAImxD,GAAG,KAAK,CAAC,YAAYzwD,EAAEV,EAAE,EAAEG,EAAEwB,EAAEC,EAAEC,EAAE,CAAC,KAAK,KAAKnB,EAAE,KAAK,MAAMV,EAAE,KAAK,QAAQ,EAAE,KAAK,aAAaG,EAAE,KAAK,uBAAuBwB,EAAE,KAAK,YAAYC,EAAE,KAAK,eAAeC,EAAE,KAAK,QAAQ,CAAC,EAAE,KAAK,QAAQ,GAAG,KAAK,SAAS/H,GAAG,CAAC,EAAEhG,GAAG,KAAK,QAAQ,CAAC,CAAC,IAAI,IAAI,CAAC,OAAO,KAAK,SAAS,EAAE,CAAC,IAAI,QAAQ,CAAC,OAAO,KAAK,OAAO,CAAC,cAAc4M,EAAE,CAAC,KAAK,QAAQ,QAAQV,GAAG,EAAEU,GAAG,MAAM,CAACA,EAAE,IAAIV,EAAE,OAAO,EAAE,IAAIA,EAAE,OAAO,QAAQ,CAAC,CAAC,EAAE,KAAK,QAAQ,CAAC,EAAE,KAAK,QAAQ,GAAG,KAAK,SAAS,QAAQ,CAAC,CAAC,MAAM,CAAC,OAAO,KAAK,QAAQ,MAAM,CAAC,KAAKU,EAAE,CAAC,GAAG,KAAK,QAAQ,MAAM,IAAI,MAAM,eAAe,KAAK,IAAI,2BAA2B,EAAE,GAAGA,EAAE,GAAGA,GAAG,KAAK,KAAK,EAAE,MAAM,IAAI,MAAM,4BAA4BA,CAAC,wBAAwB,KAAK,KAAK,CAAC,EAAE,EAAE,IAAIV,EAAE,KAAK,QAAQU,CAAC,EAAE,GAAGV,EAAE,QAAQ,MAAM,IAAI,MAAM,eAAe,KAAK,IAAI,0BAA0BU,CAAC,sGAAsG,EAAE,OAAO,KAAK,iBAAiBV,EAAE,QAAQ,IAAIA,EAAE,KAAK,GAAGA,EAAE,MAAM,CAAC,SAASU,EAAE,CAAC,OAAOA,EAAE,IAAIV,GAAG,KAAK,KAAKA,CAAC,CAAC,CAAC,CAAC,MAAMU,EAAEV,EAAE,CAAC,GAAG,KAAK,QAAQ,MAAM,IAAI,MAAM,eAAe,KAAK,IAAI,2BAA2B,EAAE,GAAGU,EAAE,GAAG,CAAC,KAAK,aAAaA,GAAG,KAAK,QAAQ,MAAM,IAAI,MAAM,2BAA2BA,CAAC,8CAA8C,KAAK,OAAO,EAAE,EAAE,IAAI,EAAE,KAAK,QAAQA,CAAC,GAAG,CAAC,EAAE,GAAGV,EAAE,QAAQ,KAAK,MAAM,MAAM,IAAI,MAAM,eAAe,KAAK,IAAI,0CAA0CU,CAAC;AAAA,uCAC302EV,EAAE,KAAK,8BAA8B,KAAK,KAAK,GAAG,EAAE,GAAG,KAAK,KAAK,IAAI,IAAI,KAAK,cAAc,MAAM,KAAK,aAAa,SAAS,KAAK,KAAK,aAAaA,EAAE,OAAO+wD,GAAG,KAAK,aAAa/wD,EAAE,MAAM,eAAe,KAAK,IAAI,0CAA0CU,CAAC,GAAG,EAAE,EAAE,KAAK,MAAM,IAAI,MAAM,eAAe,KAAK,IAAI,0CAA0CA,CAAC,qCAAqC,EAAE,GAAG,EAAE,QAAQ,MAAM,IAAI,MAAM,eAAe,KAAK,IAAI,0CAA0CA,CAAC,wCAAwC,EAAE,EAAE,OAAOV,EAAElM,GAAGkM,CAAC,EAAE,EAAE,QAAQ,GAAG,KAAK,QAAQU,CAAC,EAAE,CAAC,CAAC,UAAUA,EAAEV,EAAE,CAAC,GAAGU,EAAE,SAASV,EAAE,OAAO,MAAM,IAAI,MAAM,eAAe,KAAK,IAAI,8DAA8DU,EAAE,MAAM,qCAAqCV,EAAE,MAAM,GAAG,EAAEU,EAAE,QAAQ,CAAC,EAAEP,IAAI,KAAK,MAAM,EAAEH,EAAEG,CAAC,CAAC,CAAC,CAAC,CAAC,OAAOO,EAAEV,EAAE,CAAC,GAAGA,GAAGA,IAAI,KAAK,MAAM,MAAM,IAAI,MAAM,wBAAwB,KAAK,KAAK,+BAA+BA,CAAC,EAAE,EAAE,GAAGU,EAAEA,EAAEA,EAAE,MAAM,EAAE,KAAK,KAAK,CAAC,MAAM,CAACA,EAAE,CAAC,EAAE,QAAQP,EAAE,EAAEA,EAAE,KAAK,KAAK,EAAEA,IAAIO,EAAE,KAAKP,CAAC,CAAC,CAAC,GAAGO,EAAE,SAAS,EAAE,OAAO7D,GAAG,CAAC,EAAE,CAAC,CAAC,EAAE,OAAO,KAAK,YAAY,CAAC,EAAE,IAAI,EAAE,KAAK,SAAS6D,CAAC,EAAE,OAAOqwD,GAAG,KAAK,aAAa,EAAE,CAAC,EAAE,MAAM,8BAA8B,EAAE30D,GAAG,EAAE,CAAC,CAAC,CAAC,OAAOsE,EAAE,CAAC,GAAGA,GAAGA,IAAI,KAAK,MAAM,MAAM,IAAI,MAAM,wBAAwB,KAAK,KAAK,+BAA+BA,CAAC,EAAE,EAAE,GAAG,KAAK,KAAK,IAAI,EAAE,OAAO7D,GAAG,CAAC,EAAE,CAAC,CAAC,EAAE,OAAO,KAAK,YAAY,CAAC,EAAE,IAAImD,EAAE,CAAC,EAAE,QAAQG,EAAE,EAAEA,EAAE,KAAK,KAAK,EAAEA,IAAIH,EAAE,KAAKG,CAAC,EAAE,IAAI,EAAE,KAAK,SAASH,CAAC,EAAE,OAAO+wD,GAAG,KAAK,aAAa,EAAE,CAAC,EAAE,MAAM,mDAAmD,KAAK,YAAY,4BAA4B,EAAE,CAAC,EAAE,KAAK,GAAG,EAAEliE,GAAG,EAAE,CAAC,CAAC,CAAC,QAAQ6R,EAAEV,EAAE,CAAC,GAAGA,EAAE,QAAQ,KAAK,MAAM,MAAM,IAAI,MAAM,wBAAwB,KAAK,KAAK,yBAAyBA,EAAE,KAAK,EAAE,EAAE,GAAGU,EAAE,SAASV,EAAE,MAAM,CAAC,EAAE,MAAM,IAAI,MAAM,sDAAsDU,EAAE,MAAM,QAAQV,EAAE,MAAM,CAAC,CAAC,EAAE,EAAE,IAAI,EAAE,KAAK,IAAI,GAAGU,CAAC,EAAE,GAAG,CAAC,KAAK,aAAa,GAAG,KAAK,QAAQ,MAAM,IAAI,MAAM,mCAAmC,CAAC,SAAS,KAAK,OAAO,GAAG,EAAE,KAAK,UAAUA,EAAExC,GAAG8B,EAAE,CAAC,CAAC,CAAC,CAAC,MAAMU,EAAEV,EAAE,CAAC,GAAGA,EAAE,QAAQ,KAAK,MAAM,MAAM,IAAI,MAAM,wBAAwB,KAAK,KAAK,yBAAyBA,EAAE,KAAK,EAAE,EAAE,IAAI,EAAE,EAAEG,EAAEO,EAAE,IAAIoB,IAAI,GAAGA,EAAE,EAAE,EAAE,GAAG,IAAI9B,EAAE,MAAM,CAAC,EAAE,MAAM,IAAI,MAAM;AAAA;AAAA,UAE3pE,CAAC,4BAA4BA,EAAE,KAAK,EAAE,EAAE,GAAG,CAAC,KAAK,aAAaU,EAAE,SAAS,KAAK,QAAQ,MAAM,IAAI,MAAM,2DAA2D,KAAK,OAAO,QAAQA,EAAE,MAAM,gEAAgE,EAAE,IAAIiB,EAAE,IAAI,EAAE,EAAE3B,EAAE,KAAK,EAAE4B,EAAE,CAAC,EAAErE,EAAE,IAAI,CAACyC,EAAE3G,EAAE2G,EAAE,CAAC,EAAE,EAAE2B,CAAC,CAAC,EAAE,QAAQG,EAAE,EAAEA,EAAEpB,EAAE,OAAO,EAAEoB,EAAE,CAAC,IAAIU,EAAE,CAAC,EAAEV,IAAI,EAAE,EAAE3B,EAAE2B,EAAE,CAAC,EAAE,CAAC,EAAEW,EAAE,CAAC,EAAE/B,EAAEoB,CAAC,EAAEH,CAAC,EAAEC,EAAEE,CAAC,EAAEzI,EAAE8B,GAAG6E,EAAEwC,EAAEC,CAAC,EAAE,KAAK,YAAY,CAAC,CAAC,OAAOb,CAAC,CAAC,EAAE,IAAIC,EAAE,CAAC,EAAE,QAAQC,EAAE,EAAEA,EAAEpB,EAAE,OAAOoB,IAAID,EAAEC,CAAC,EAAEA,EAAE,KAAK,UAAUD,EAAED,CAAC,CAAC,CAAC,EAAMwvD,GAAG,MAAMtxD,EAAC,CAAC,IAAI,IAAI,CAAC,OAAO,KAAK,SAAS,EAAE,CAAC,YAAY,EAAEE,EAAEE,EAAEC,EAAE,GAAG,CAAC,KAAK,QAAQ,EAAE,KAAK,aAAaH,EAAE,KAAK,aAAaE,EAAE,GAAG,MAAM,EAAE,QAAQ,GAAG,CAAC,GAAGA,IAAI,EAAE,MAAM,MAAM,IAAI,MAAM,mCAAmCA,CAAC,uBAAuB,EAAE,KAAK,EAAE,EAAE6wD,GAAG/wD,EAAE,EAAE,MAAM,6BAA6B,EAAElM,GAAG,CAAC,CAAC,CAAC,EAAE,KAAK,SAASgG,GAAG,CAAC,EAAE,KAAK,eAAeqG,EAAErM,GAAG,KAAK,QAAQ,CAAC,CAAC,MAAM,CAAC,OAAO,IAAIgM,GAAE,CAAC,GAAG,KAAK,OAAO,EAAE,KAAK,aAAa,KAAK,YAAY,CAAC,CAAC,cAAc,EAAE,CAAC,KAAK,QAAQ,QAAQE,GAAG,EAAE,GAAG,MAAM,CAAC,EAAE,IAAIA,EAAE,EAAE,IAAIA,EAAE,QAAQ,CAAC,CAAC,EAAE,KAAK,QAAQ,OAAO,EAAE,KAAK,SAAS,QAAQ,CAAC,CAAC,MAAM,CAAC,OAAO,KAAK,QAAQ,MAAM,CAAC,MAAM,EAAEA,EAAEE,EAAE,GAAG,CAAC,GAAGF,IAAI,KAAK,aAAa,MAAM,IAAI,MAAM,mCAAmCA,CAAC,uBAAuB,KAAK,YAAY,EAAE,EAAE,GAAGE,IAAI,IAAI,KAAK,QAAQ,SAASA,EAAE,MAAM,IAAI,MAAM,kCAAkCA,CAAC,iCAAiC,KAAK,QAAQ,MAAM,YAAY,EAAE6wD,GAAG,EAAE,KAAK,aAAa,6BAA6B,EAAE,IAAI5wD,EAAE8wD,GAAG,KAAK,aAAa,KAAK,QAAQ,CAAC,EAAE,OAAO1zD,EAAE,IAAI,CAAC,IAAI,EAAE,KAAK,QAAQ,IAAI,GAAGlE,EAAE,EAAE8G,CAAC,CAAC,EAAE,OAAO/D,GAAG,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,QAAQ,EAAE4D,EAAE,CAAC,GAAGA,IAAI,KAAK,aAAa,MAAM,IAAI,MAAM,mCAAmCA,CAAC,uBAAuB,KAAK,YAAY,EAAE,EAAE,GAAG,KAAK,KAAK,IAAI,EAAE,MAAM,IAAI,MAAM,mCAAmC,EAAE,IAAIE,EAAE+wD,GAAG,KAAK,aAAa,KAAK,QAAQ,CAAC,EAAE9wD,EAAE,KAAK,QAAQ,IAAI,EAAE,OAAOA,EAAE,KAAK,GAAG4wD,GAAG5wD,EAAE,MAAM,EAAE,6BAA6B,EAAE9G,EAAE8G,EAAED,CAAC,CAAC,CAAC,SAAS,EAAE,CAAC,GAAG,EAAE,QAAQ,KAAK,aAAa,MAAM,IAAI,MAAM,mCAAmC,EAAE,KAAK,uBAAuB,KAAK,YAAY,EAAE,EAAE,GAAG6wD,GAAG,EAAE,MAAM,KAAK,aAAa,6BAA6B,EAAE,KAAK,iBAAiB,KAAK,KAAK,EAAE,MAAM,IAAI,MAAM,0CAA0C,EAAEj9D,GAAG,CAAC,EAAE,KAAK,QAAQ,KAAK,CAAC,CAAC,CAAC,OAAO,EAAE,CAAC,GAAG,EAAE,EAAE,MAAM,IAAI,MAAM,0DAA0D,CAAC,EAAE,EAAE,GAAG,KAAK,iBAAiB,IAAI,EAAE,KAAK,eAAe,MAAM,IAAI,MAAM,+BAA+B,CAAC,6BAA6B,KAAK,cAAc,GAAG,EAAE,IAAIkM,EAAE,IAAIF,GAAE,CAAC,EAAE,KAAK,aAAa,KAAK,aAAa,KAAK,cAAc,EAAEE,EAAE,QAAQ,OAAO,EAAE,QAAQE,EAAE,EAAEA,EAAE,KAAK,IAAI,KAAK,QAAQ,OAAO,CAAC,EAAE,EAAEA,EAAEF,EAAE,QAAQE,CAAC,EAAE,KAAK,QAAQA,CAAC,EAAE,OAAOF,CAAC,CAAC,QAAQ,EAAEA,EAAEE,EAAE,CAAC,GAAGA,IAAI,KAAK,aAAa,MAAM,IAAI,MAAM,mCAAmCA,CAAC,uBAAuB,KAAK,YAAY,EAAE,EAAE,GAAG,EAAE,GAAG,EAAE,KAAK,QAAQ,OAAO,MAAM,IAAI,MAAM,4BAA4B,CAAC,mBAAmB,KAAK,QAAQ,MAAM,YAAY,EAAE,GAAG,KAAK,QAAQ,CAAC,GAAG,KAAK,MAAM,IAAI,MAAM,oBAAoB,CAAC,WAAW,EAAE6wD,GAAG,KAAK,QAAQ,CAAC,EAAE,MAAM/wD,EAAE,6BAA6B,EAAE,IAAIG,EAAE8wD,GAAG,KAAK,aAAa,KAAK,QAAQjxD,CAAC,EAAE,OAAO3G,EAAE,KAAK,QAAQ,CAAC,EAAE8G,CAAC,CAAC,CAAC,QAAQ,EAAEH,EAAE,CAAC,GAAGA,EAAE,QAAQ,KAAK,aAAa,MAAM,IAAI,MAAM,mCAAmCA,EAAE,KAAK,uBAAuB,KAAK,YAAY,EAAE,EAAE,GAAG,EAAE,GAAG,KAAK,iBAAiB,IAAI,GAAG,KAAK,eAAe,MAAM,IAAI,MAAM,yBAAyB,CAAC,uBAAuB,KAAK,cAAc,YAAY,EAAE+wD,GAAG,KAAK,aAAa/wD,EAAE,MAAM,6BAA6B,EAAElM,GAAGkM,CAAC,EAAE,KAAK,QAAQ,CAAC,GAAG,OAAO,KAAK,QAAQ,CAAC,EAAE,KAAK,IAAI,KAAK,QAAQ,CAAC,EAAEA,CAAC,CAAC,OAAO,EAAEA,EAAEE,EAAE,CAAC,GAAGF,IAAI,KAAK,aAAa,MAAM,IAAI,MAAM,mCAAmCA,CAAC,uBAAuB,KAAK,YAAY,EAAE,EAAE+wD,GAAG,KAAK,aAAa7wD,EAAE,6BAA6B,EAAE,EAAE,EAAE,MAAM,EAAE,KAAK,KAAK,CAAC,EAAE,IAAIC,EAAE8wD,GAAG,KAAK,aAAa,KAAK,QAAQ/wD,CAAC,EAAE,OAAO,EAAE,SAAS,EAAErD,GAAG,CAAC,EAAE,CAAC,CAAC,EAAE,OAAOsD,CAAC,CAAC,EAAE5C,EAAE,IAAI,CAAC,IAAI,EAAE,EAAE,IAAI,GAAGlE,EAAE,KAAK,QAAQ,CAAC,EAAE8G,CAAC,CAAC,EAAE,OAAO/D,GAAG,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,OAAO,EAAE4D,EAAE,CAAC,GAAG,GAAG,IAAI,KAAK,aAAa,MAAM,IAAI,MAAM,uBAAuB,KAAK,YAAY,+BAA+B,CAAC,EAAE,EAAE+wD,GAAG,KAAK,aAAa/wD,EAAE,6BAA6B,EAAE,IAAIE,EAAE+wD,GAAG,KAAK,aAAa,KAAK,QAAQjxD,CAAC,EAAE,OAAO,KAAK,KAAK,IAAI,EAAEnD,GAAG,CAAC,EAAE,CAAC,CAAC,EAAE,OAAOqD,CAAC,CAAC,EAAE3C,EAAE,IAAI,CAAC,IAAI4C,EAAE,KAAK,QAAQ,IAAI,GAAG9G,EAAE,EAAE6G,CAAC,CAAC,EAAE,OAAOrR,GAAGsR,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,SAASkxD,GAAGvxD,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAEJ,EAAE,MAAM,GAAGA,EAAE,MAAM,OAAO,EAAE,MAAM,IAAI,MAAM,oDAAoDA,EAAE,KAAK,EAAE,EAAE,GAAGA,EAAE,QAAQE,EAAE,MAAM,IAAI,MAAM,mCAAmCF,EAAE,KAAK,uBAAuBE,CAAC,EAAE,EAAE,IAAIG,EAAEL,EAAE,MAAM,MAAM,CAAC,EAAEixD,GAAG5wD,EAAE,EAAE,6BAA6B,EAAE,IAAI,EAAEjC,GAAG4B,CAAC,EAAE,OAAO,IAAIsxD,GAAG,EAAE,EAAElxD,CAAC,CAAC,CAAC,SAASoxD,GAAGxxD,EAAE,EAAEE,EAAEE,EAAE,CAAC,OAAO,IAAIkxD,GAAG,CAAC,EAAEtxD,EAAE,EAAEI,CAAC,CAAC,CAAC,SAASqxD,GAAGzxD,EAAE,EAAEE,EAAEE,EAAE,CAAC,GAAG,EAAE,SAASJ,EAAE,MAAM,CAAC,EAAE,MAAM,IAAI,MAAM,sDAAsD,EAAE,MAAM,QAAQA,EAAE,MAAM,CAAC,CAAC,EAAE,EAAE,IAAIK,EAAE,KAAK,IAAI,GAAG,CAAC,EAAE,GAAGD,GAAG,MAAMA,IAAI,IAAIC,GAAGD,EAAE,MAAM,IAAI,MAAM,mCAAmCC,CAAC,SAASD,CAAC,GAAG,EAAE,IAAI,EAAE,IAAIkxD,GAAG,CAAC,EAAEpxD,EAAEF,EAAE,MAAMI,CAAC,EAAE,EAAEhC,GAAG4B,EAAE,CAAC,EAAE,OAAO,EAAE,QAAQ,CAAC+B,EAAEC,IAAI,CAAC,EAAE,QAAQD,EAAE,EAAEC,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,SAAS0vD,GAAG1xD,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAE,EAAEC,EAAE,EAAE,IAAIqC,IAAItC,GAAGsC,EAAEtC,EAAE,EAAE,GAAGA,IAAIJ,EAAE,MAAM,CAAC,EAAE,MAAM,IAAI,MAAM;AAAA;AAAA,UAE75JI,CAAC,4BAA4BJ,EAAE,KAAK,EAAE,EAAE,IAAI,EAAEA,EAAE,MAAM,MAAM,CAAC,EAAE,EAAEoxD,GAAG,EAAElxD,CAAC,EAAE6B,EAAE3B,IAAI,EAAE,EAAEJ,EAAE,KAAKI,EAAE4B,EAAEvE,EAAE,IAAI,CAAC,IAAIiF,EAAE,CAAC,EAAE1C,EAAEzG,EAAEyG,EAAE,CAAC,EAAEI,EAAE2B,CAAC,CAAC,EAAE,QAAQY,EAAE,EAAEA,EAAE,EAAE,OAAO,EAAEA,EAAE,CAAC,IAAIE,EAAE,CAAC,EAAEF,IAAI,EAAE,EAAEtC,EAAEsC,EAAE,CAAC,EAAE,CAAC,EAAEG,EAAE,CAAC,EAAE,EAAEH,CAAC,EAAEZ,CAAC,EAAEW,EAAEC,CAAC,EAAEpJ,EAAE8B,GAAG2E,EAAE6C,EAAEC,CAAC,EAAE,CAAC,CAAC,CAAC,OAAO9C,EAAE,QAAQ,EAAE0C,CAAC,CAAC,EAAET,EAAE,IAAIqvD,GAAG,CAAC,EAAEpxD,EAAEF,EAAE,MAAM,EAAE,MAAM,EAAE,QAAQ0C,EAAE,EAAEA,EAAEV,EAAE,OAAOU,IAAIT,EAAE,QAAQS,EAAEV,EAAEU,CAAC,CAAC,EAAE,OAAOT,CAAC,CAAC,IAAI0vD,GAAG,MAAM3xD,EAAE,EAAEE,IAAI,CAAC,OAAOF,EAAE,GAAG,CAAC,IAAI,KAAK,IAAI,cAAc,CAAC,IAAII,EAAE2sD,EAAE,aAAa/sD,EAAE,EAAEE,CAAC,EAAEG,EAAE0sD,EAAE,aAAa/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,OAAO/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,OAAO/sD,EAAE,EAAEE,CAAC,EAAE,OAAO,MAAM,EAAE,KAAK,GAAG,CAAC,EAAEA,EAAE,YAAYE,CAAC,EAAE,qBAAqB,EAAEF,EAAE,eAAeA,EAAE,aAAa,EAAEA,EAAE,YAAYG,CAAC,EAAE,qBAAqB,EAAEH,EAAE,eAAeA,EAAE,aAAa,CAAC,CAAC,IAAI,QAAQ,IAAI,iBAAiB,CAAC,IAAIE,EAAE2sD,EAAE,OAAO/sD,EAAE,EAAEE,CAAC,EAAEG,EAAE0sD,EAAE,OAAO/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,OAAO/sD,EAAE,EAAEE,CAAC,EAAE,EAAE,MAAMA,EAAE,YAAYG,CAAC,EAAE,qBAAqB,EAAEH,EAAE,eAAeA,EAAE,aAAa,EAAE6B,EAAE,EAAE,IAAIW,GAAGA,EAAE,EAAE,EAAEV,EAAE,MAAM,EAAE,CAAC,EAAE,KAAK,EAAE,EAAE,QAAQU,GAAG,CAAC,CAACA,EAAE,MAAMX,EAAE,QAAQW,EAAE,EAAE,IAAI,IAAIA,EAAE,QAAQ,CAAC,CAAC,EAAE,IAAIT,EAAE,EAAE,KAAKD,EAAE,CAAC,GAAG,CAAC,IAAIU,EAAET,EAAEA,EAAE,MAAM/B,EAAE,YAAYE,CAAC,EAAE,qBAAqB6B,EAAE/B,EAAE,eAAeA,EAAE,aAAa,EAAE,IAAIyC,EAAEV,EAAE,IAAIY,GAAGA,EAAE,EAAE,EAAEH,EAAE,QAAQG,GAAG,CAAC,CAACA,EAAE,MAAMd,EAAE,QAAQc,EAAE,EAAE,IAAI,IAAIF,EAAE,QAAQE,EAAE,EAAE,IAAI,IAAIA,EAAE,QAAQ,CAAC,CAAC,EAAE,IAAID,EAAE,MAAM1C,EAAE,YAAYG,CAAC,EAAE,qBAAqB4B,EAAE/B,EAAE,eAAeA,EAAE,aAAa,EAAE8B,EAAE,MAAMY,EAAE,CAAC,EAAE,KAAK,EAAEA,EAAE,QAAQC,GAAG,CAAC,CAACA,EAAE,MAAMd,EAAE,QAAQc,EAAE,EAAE,IAAI,IAAIF,EAAE,QAAQE,EAAE,EAAE,IAAI,IAAIA,EAAE,QAAQ,CAAC,CAAC,CAAC,CAAC,OAAOZ,CAAC,CAAC,IAAI,WAAW,CAAC,IAAI7B,EAAE2sD,EAAE,OAAO/sD,EAAE,EAAEE,CAAC,EAAE,MAAM,CAACotD,GAAGltD,CAAC,CAAC,CAAC,CAAC,IAAI,SAAS,CAAC,IAAIA,EAAE2sD,EAAE,OAAO/sD,EAAE,EAAEE,CAAC,EAAEG,EAAE0sD,EAAE,OAAO/sD,EAAE,EAAEE,CAAC,EAAE,OAAOG,EAAE,OAAOA,EAAEitD,GAAGjtD,CAAC,IAAI,MAAMD,EAAE,KAAK,GAAG,CAAC,EAAE,CAAC,OAAOC,CAAC,EAAE,CAACA,EAAE,MAAM,CAAC,CAAC,IAAI,QAAQ,CAAC,IAAID,EAAEJ,EAAE,WAAW,KAAKK,GAAG2sD,GAAG3sD,EAAE,EAAEH,CAAC,IAAI,MAAM,EAAE,GAAGE,EAAE,CAAC,IAAIC,EAAE2sD,GAAG5sD,EAAE,EAAEF,CAAC,EAAE,MAAM,CAACotD,GAAGjtD,CAAC,CAAC,CAAC,CAAC,MAAM,CAAC,IAAI,QAAQ,CAAC,IAAID,EAAE2sD,EAAE,YAAY/sD,EAAE,EAAEE,CAAC,EAAEG,EAAE0sD,EAAE,SAAS/sD,EAAE,EAAEE,CAAC,EAAE,OAAOA,EAAE,WAAWE,CAAC,EAAE,CAACktD,GAAGjtD,CAAC,CAAC,CAAC,CAAC,IAAI,OAAO,CAAC,IAAID,EAAE2sD,EAAE,SAAS/sD,EAAE,EAAEE,CAAC,EAAE,OAAOA,EAAE,UAAU,EAAE,CAACotD,GAAGltD,CAAC,CAAC,CAAC,CAAC,IAAI,gBAAgB,CAAC,IAAIA,EAAE2sD,EAAE,SAAS/sD,EAAE,EAAEE,CAAC,EAAE,OAAOA,EAAE,cAAc,EAAE,CAACotD,GAAGltD,CAAC,CAAC,CAAC,CAAC,IAAI,gBAAgB,CAAC,IAAIA,EAAE2sD,EAAE,OAAO/sD,EAAE,EAAEE,CAAC,EAAEG,EAAE0sD,EAAE,QAAQ/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,eAAe/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,cAAc/sD,EAAE,EAAEE,CAAC,EAAE6B,EAAEgrD,EAAE,iBAAiB/sD,EAAE,EAAEE,CAAC,EAAE8B,EAAE+qD,EAAE,yBAAyB/sD,EAAE,EAAEE,CAAC,EAAE+B,EAAE8qD,EAAE,OAAO/sD,EAAE,EAAEE,CAAC,EAAEwC,EAAE,IAAI2uD,GAAGpvD,EAAE5B,EAAED,EAAE,EAAE4B,EAAE,EAAED,CAAC,EAAE,OAAO7B,EAAE,eAAewC,CAAC,EAAE,CAACA,EAAE,SAAS1I,GAAG,CAAC,CAAC,CAAC,CAAC,IAAI,qBAAqB,CAAC,IAAIoG,EAAE2sD,EAAE,gBAAgB/sD,EAAE,EAAEE,CAAC,EAAEG,EAAE0sD,EAAE,QAAQ/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,SAAS/sD,EAAE,EAAEE,CAAC,EAAE,EAAEA,EAAE,eAAeE,EAAE,EAAE,EAAE,OAAO,EAAE,MAAMC,EAAE,CAAC,EAAE,CAAC,EAAE,QAAQ,CAAC,CAAC,IAAI,oBAAoB,CAAC,IAAID,EAAE2sD,EAAE,gBAAgB/sD,EAAE,EAAEE,CAAC,EAAEG,EAAE0sD,EAAE,QAAQ/sD,EAAE,EAAEE,CAAC,EAAE,MAAM,CAACA,EAAE,eAAeE,EAAE,EAAE,EAAE,KAAKC,CAAC,CAAC,CAAC,CAAC,IAAI,sBAAsB,CAAC,IAAID,EAAE2sD,EAAE,gBAAgB/sD,EAAE,EAAEE,CAAC,EAAEG,EAAE0sD,EAAE,UAAU/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,QAAQ/sD,EAAE,EAAEE,CAAC,EAAE,MAAM,CAACA,EAAE,eAAeE,EAAE,EAAE,EAAE,OAAOC,EAAE,CAAC,CAAC,CAAC,CAAC,IAAI,uBAAuB,CAAC,IAAID,EAAE2sD,EAAE,gBAAgB/sD,EAAE,EAAEE,CAAC,EAAEG,EAAE0sD,EAAE,UAAU/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,SAAS/sD,EAAE,EAAEE,CAAC,EAAE,EAAEA,EAAE,eAAeE,EAAE,EAAE,EAAE,OAAO,EAAE,QAAQC,EAAE,CAAC,EAAE,CAAC,EAAE,QAAQ,CAAC,CAAC,IAAI,sBAAsB,CAAC,IAAID,EAAE2sD,EAAE,gBAAgB/sD,EAAE,EAAEE,CAAC,EAAEG,EAAEH,EAAE,eAAeE,EAAE,EAAE,EAAE,EAAE2sD,EAAE,QAAQ/sD,EAAE,EAAEE,CAAC,EAAE,MAAM,CAACG,EAAE,OAAO,CAAC,CAAC,CAAC,CAAC,IAAI,qBAAqB,CAAC,IAAID,EAAE2sD,EAAE,gBAAgB/sD,EAAE,EAAEE,CAAC,EAAEG,EAAE0sD,EAAE,SAAS/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,UAAU/sD,EAAE,EAAEE,CAAC,EAAE,EAAEA,EAAE,eAAeE,EAAE,EAAE,EAAE,OAAO,EAAE,MAAM,EAAEC,CAAC,EAAE,CAAC,EAAE,QAAQ,CAAC,CAAC,IAAI,oBAAoB,CAAC,IAAID,EAAE2sD,EAAE,gBAAgB/sD,EAAE,EAAEE,CAAC,EAAEG,EAAEH,EAAE,eAAeE,EAAE,EAAE,EAAE,MAAM,CAACpG,GAAGqG,EAAE,KAAK,EAAE,OAAO,CAAC,CAAC,CAAC,IAAI,qBAAqB,CAAC,IAAID,EAAE2sD,EAAE,gBAAgB/sD,EAAE,EAAEE,CAAC,EAAEG,EAAEH,EAAE,eAAeE,EAAE,EAAE,EAAE,OAAOC,EAAE,cAAc,EAAE,CAACA,EAAE,QAAQ,CAAC,CAAC,IAAI,oBAAoB,CAAC,IAAID,EAAE2sD,EAAE,eAAe/sD,EAAE,EAAEE,CAAC,EAAEG,EAAE0sD,EAAE,QAAQ/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,SAAS/sD,EAAE,EAAEE,CAAC,EAAE,EAAEA,EAAE,cAAcE,EAAE,EAAE,EAAE,OAAO,EAAE,QAAQC,EAAE,CAAC,EAAE,CAAC,EAAE,QAAQ,CAAC,CAAC,IAAI,oBAAoB,CAAC,IAAID,EAAE2sD,EAAE,eAAe/sD,EAAE,EAAEE,CAAC,EAAEG,EAAE0sD,EAAE,QAAQ/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,eAAe/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,eAAe/sD,EAAE,EAAEE,CAAC,EAAE,MAAM,CAACA,EAAE,cAAcE,EAAE,EAAE,EAAE,QAAQC,EAAE,EAAE,CAAC,CAAC,CAAC,CAAC,IAAI,sBAAsB,IAAI,oBAAoB,CAAC,IAAID,EAAE2sD,EAAE,UAAU/sD,EAAE,EAAEE,CAAC,EAAEG,EAAE0sD,EAAE,SAAS/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,eAAe/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,cAAc/sD,EAAE,EAAEE,CAAC,EAAE6B,EAAE0vD,GAAGpxD,EAAED,EAAE,EAAE,CAAC,EAAE,OAAOF,EAAE,cAAc6B,CAAC,EAAE,CAACA,EAAE,QAAQ,CAAC,CAAC,IAAI,oBAAoB,IAAI,kBAAkB,CAAC,IAAI3B,EAAE2sD,EAAE,eAAe/sD,EAAE,EAAEE,CAAC,EAAEG,EAAE0sD,EAAE,eAAe/sD,EAAE,EAAEE,CAAC,EAAE,EAAEF,EAAE,KAAK,oBAAoB,EAAE,cAAc,EAAE,iBAAiB,IAAI,EAAE+sD,EAAE,EAAE/sD,EAAE,EAAEE,CAAC,EAAE6B,EAAE/B,EAAE,KAAK,oBAAoB,GAAG,EAAEgC,EAAEwvD,GAAGpxD,EAAEC,EAAE,EAAE0B,CAAC,EAAE,OAAO7B,EAAE,cAAc8B,CAAC,EAAE,CAACA,EAAE,QAAQ,CAAC,CAAC,IAAI,mBAAmB,CAAC,IAAI5B,EAAE2sD,EAAE,eAAe/sD,EAAE,EAAEE,CAAC,EAAEG,EAAE0sD,EAAE,UAAU/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,eAAe/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,eAAe/sD,EAAE,EAAEE,CAAC,EAAE,MAAM,CAACA,EAAE,cAAcE,EAAE,EAAE,EAAE,OAAOC,EAAE,EAAE,CAAC,CAAC,CAAC,CAAC,IAAI,kBAAkB,CAAC,IAAID,EAAE2sD,EAAE,eAAe/sD,EAAE,EAAEE,CAAC,EAAEG,EAAE0sD,EAAE,eAAe/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,eAAe/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,cAAc/sD,EAAE,EAAEE,CAAC,EAAE,MAAM,CAACA,EAAE,cAAcE,EAAE,EAAE,EAAE,MAAMC,EAAE,EAAE,CAAC,CAAC,CAAC,CAAC,IAAI,uBAAuB,CAAC,IAAID,EAAE2sD,EAAE,SAAS/sD,EAAE,EAAEE,CAAC,EAAEG,EAAE0sD,EAAE,eAAe/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,eAAe/sD,EAAE,EAAEE,CAAC,EAAE,EAAEqxD,GAAGnxD,EAAEC,EAAE,CAAC,EAAE,OAAOH,EAAE,cAAc,CAAC,EAAE,CAAC,EAAE,QAAQ,CAAC,CAAC,IAAI,mBAAmB,IAAI,qBAAqB,CAAC,IAAIE,EAAE2sD,EAAE,eAAe/sD,EAAE,EAAEE,CAAC,EAAEG,EAAEH,EAAE,cAAcE,EAAE,EAAE,EAAE,EAAE2sD,EAAE,QAAQ/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,eAAe/sD,EAAE,EAAEE,CAAC,EAAE,MAAM,CAACG,EAAE,OAAO,EAAE,CAAC,CAAC,CAAC,CAAC,IAAI,qBAAqB,CAAC,IAAID,EAAE2sD,EAAE,eAAe/sD,EAAE,EAAEE,CAAC,EAAEG,EAAE0sD,EAAE,SAAS/sD,EAAE,EAAEE,CAAC,EAAE,EAAEA,EAAE,cAAcE,EAAE,EAAE,EAAE,OAAO,EAAE,SAASC,CAAC,EAAE,CAAC,EAAE,QAAQ,CAAC,CAAC,IAAI,oBAAoB,CAAC,IAAID,EAAE2sD,EAAE,eAAe/sD,EAAE,EAAEE,CAAC,EAAEG,EAAE0sD,EAAE,eAAe/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,eAAe/sD,EAAE,EAAEE,CAAC,EAAE,MAAM,CAACA,EAAE,cAAcE,EAAE,EAAE,EAAE,QAAQC,EAAE,CAAC,CAAC,CAAC,CAAC,IAAI,kBAAkB,CAAC,IAAID,EAAE2sD,EAAE,SAAS/sD,EAAE,EAAEE,CAAC,EAAEG,EAAE0sD,EAAE,eAAe/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,UAAU/sD,EAAE,EAAEE,CAAC,EAAE,EAAEwxD,GAAGtxD,EAAE,EAAEC,CAAC,EAAE,OAAOH,EAAE,cAAc,CAAC,EAAE,CAAC,EAAE,QAAQ,CAAC,CAAC,IAAI,mBAAmB,CAAC,IAAIE,EAAE2sD,EAAE,eAAe/sD,EAAE,EAAEE,CAAC,EAAEG,EAAEH,EAAE,cAAcE,EAAE,EAAE,EAAE,MAAM,CAACpG,GAAGqG,EAAE,KAAK,EAAE,OAAO,CAAC,CAAC,CAAC,IAAI,mBAAmB,CAAC,IAAID,EAAE2sD,EAAE,eAAe/sD,EAAE,EAAEE,CAAC,EAAEG,EAAE0sD,EAAE,OAAO/sD,EAAE,EAAEE,CAAC,EAAE4B,EAAE5B,EAAE,cAAcE,EAAE,EAAE,EAAE,OAAOC,CAAC,EAAE,OAAOH,EAAE,cAAc4B,CAAC,EAAE,CAACA,EAAE,QAAQ,CAAC,CAAC,QAAQ,MAAM,UAAU,aAAa9B,EAAE,EAAE,qBAAqB,CAAC,CAAC,EAAE,SAAS4xD,GAAG5xD,EAAE,EAAEE,EAAE,CAAC,GAAG,CAACE,EAAEC,CAAC,EAAE0sD,EAAE,WAAW/sD,EAAE,EAAEE,CAAC,EAAE,EAAEE,IAAI,UAAU,EAAE,CAAC,EAAE2B,EAAE1B,IAAI,QAAQ2B,EAAE5B,IAAI,iBAAiB6B,EAAE8qD,EAAE,UAAU/sD,EAAE,EAAEE,CAAC,EAAE,GAAG,EAAE,CAAC,GAAG6B,GAAGE,IAAI,EAAE,MAAM,IAAI,MAAM,uGAAuG,EAAE,GAAG,CAACF,GAAG,GAAGE,IAAI,EAAE,MAAM,IAAI,MAAM,kFAAkF,CAAC,CAAC,GAAGD,EAAE,MAAM,IAAI,MAAM,sEAAsE,EAAE,IAAIU,EAAEqqD,EAAE,UAAU/sD,EAAE,EAAEE,CAAC,EAAEyC,EAAE0qD,GAAGrtD,EAAE,EAAEE,CAAC,EAAE0C,EAAEmqD,EAAE,aAAa/sD,EAAE,EAAEE,CAAC,EAAE,YAAY,EAAE2C,EAAEkqD,EAAE,YAAY/sD,EAAE,EAAEE,CAAC,EAAE,CAAC4C,EAAEkB,CAAC,EAAE+oD,EAAE,OAAO/sD,EAAE,EAAEE,CAAC,EAAE,IAAI8D,EAAElB,EAAEA,EAAE,QAAQ,IAAI,EAAEiqD,EAAE,iBAAiB/sD,EAAE,EAAEE,CAAC,EAAE,MAAM,CAAC,OAAOwC,EAAE,IAAIC,EAAE,WAAWC,EAAE,UAAUC,EAAE,QAAQC,EAAE,SAASkB,EAAE,eAAe3D,EAAE,eAAe,CAAC,CAAC,CAAC,IAAIwxD,GAAG,CAAC7xD,EAAE,EAAEE,EAAEE,EAAE0wD,KAAK,CAAC,OAAO9wD,EAAE,GAAG,CAAC,IAAI,SAAS,CAAC,IAAIK,EAAE0sD,EAAE,SAAS/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,MAAM/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,aAAa/sD,EAAE,EAAEE,CAAC,EAAE,YAAY,EAAE6B,EAAEgrD,EAAE,WAAW/sD,EAAE,EAAEE,CAAC,EAAE,MAAM,CAACE,EAAE,OAAO2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,SAAS/sD,EAAE,EAAEE,CAAC,EAAEG,EAAE,EAAE,EAAE0B,CAAC,CAAC,CAAC,CAAC,IAAI,SAAS,CAAC,IAAI1B,EAAE0sD,EAAE,UAAU/sD,EAAE,EAAEE,CAAC,EAAE,EAAEmtD,GAAGrtD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,aAAa/sD,EAAE,EAAEE,CAAC,EAAE,YAAY,EAAE6B,EAAEgrD,EAAE,YAAY/sD,EAAE,EAAEE,CAAC,EAAE,MAAM,CAACE,EAAE,OAAO2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,SAAS/sD,EAAE,EAAEE,CAAC,EAAE,CAACG,EAAE,CAAC,EAAEA,EAAE,CAAC,CAAC,EAAE,EAAE,EAAE,CAAC0B,EAAE,CAAC,EAAEA,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,IAAI,eAAe,CAAC,GAAG,CAAC,OAAO1B,EAAE,IAAI,EAAE,WAAW,EAAE,UAAU0B,EAAE,QAAQC,EAAE,SAASC,EAAE,eAAeS,EAAE,eAAeC,CAAC,EAAEivD,GAAG5xD,EAAE,EAAEE,CAAC,EAAE,MAAM,CAACE,EAAE,MAAM,OAAO,CAAC,EAAE2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE,OAAO6sD,EAAE,SAAS/sD,EAAE,EAAEE,CAAC,EAAE,QAAQ,CAACG,EAAE,CAAC,EAAEA,EAAE,CAAC,CAAC,EAAE,IAAI,EAAE,WAAW,EAAE,UAAU,CAAC0B,EAAE,CAAC,EAAEA,EAAE,CAAC,CAAC,EAAE,KAAKC,EAAE,WAAWU,EAAE,uBAAuBT,EAAE,eAAeU,CAAC,CAAC,CAAC,CAAC,CAAC,IAAI,6BAA6B,CAAC,GAAG,CAAC,OAAOtC,EAAE,IAAI,EAAE,WAAW,EAAE,UAAU0B,EAAE,QAAQC,EAAE,SAASC,EAAE,eAAeS,EAAE,eAAeC,CAAC,EAAEivD,GAAG5xD,EAAE,EAAEE,CAAC,EAAE,MAAM,CAACE,EAAE,MAAM,gBAAgB,CAAC,EAAE2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE,OAAO6sD,EAAE,SAAS/sD,EAAE,EAAEE,CAAC,EAAE,QAAQ,CAACG,EAAE,CAAC,EAAEA,EAAE,CAAC,CAAC,EAAE,IAAI,EAAE,WAAW,EAAE,UAAU,CAAC0B,EAAE,CAAC,EAAEA,EAAE,CAAC,CAAC,EAAE,KAAKC,EAAE,WAAWU,EAAE,uBAAuBT,EAAE,eAAeU,CAAC,CAAC,CAAC,CAAC,CAAC,IAAI,sBAAsB,IAAI,kBAAkB,CAAC,IAAItC,EAAE0sD,EAAE,cAAc/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,UAAU/sD,EAAE,EAAEE,CAAC,EAAE,EAAEmtD,GAAGrtD,EAAE,EAAEE,CAAC,EAAE,MAAM,CAACE,EAAE,gBAAgB2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,SAAS/sD,EAAE,EAAEE,CAAC,EAAEG,EAAE,CAAC,EAAE,CAAC,EAAE,EAAE,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,IAAI,wBAAwB,IAAI,kBAAkB,CAAC,IAAIA,EAAE0sD,EAAE,UAAU/sD,EAAE,EAAEE,CAAC,EAAE,EAAEmtD,GAAGrtD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,YAAY/sD,EAAE,EAAEE,CAAC,EAAE6B,EAAEgrD,EAAE,aAAa/sD,EAAE,EAAEE,CAAC,EAAE,YAAY,EAAE,MAAM,CAACE,EAAE,gBAAgB2sD,EAAE,QAAQ/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,SAAS/sD,EAAE,EAAEE,CAAC,EAAE,CAACG,EAAE,CAAC,EAAEA,EAAE,CAAC,CAAC,EAAE,EAAE0B,EAAE,CAAC,EAAE,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,IAAI,SAAS,CAAC,IAAI1B,EAAE0sD,EAAE,UAAU/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,MAAM/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,aAAa/sD,EAAE,EAAEE,CAAC,EAAE,YAAY,EAAE6B,EAAEgrD,EAAE,YAAY/sD,EAAE,EAAEE,CAAC,EAAE,MAAM,CAACE,EAAE,OAAO2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,SAAS/sD,EAAE,EAAEE,CAAC,EAAE,CAACG,EAAE,CAAC,EAAEA,EAAE,CAAC,EAAEA,EAAE,CAAC,CAAC,EAAE,EAAE,EAAE,CAAC0B,EAAE,CAAC,EAAEA,EAAE,CAAC,EAAEA,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,IAAI,UAAU,CAAC,IAAI1B,EAAE0sD,EAAE,UAAU/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,MAAM/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,aAAa/sD,EAAE,EAAEE,CAAC,EAAE,MAAM,CAACE,EAAE,QAAQ2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,EAAE,CAAC,CAAC,EAAE,CAACG,EAAE,CAAC,EAAEA,EAAE,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,IAAI,UAAU,CAAC,IAAIA,EAAE0sD,EAAE,UAAU/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,MAAM/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,aAAa/sD,EAAE,EAAEE,CAAC,EAAE,MAAM,CAACE,EAAE,QAAQ2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,EAAE,CAAC,CAAC,EAAE,CAACG,EAAE,CAAC,EAAEA,EAAE,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,IAAI,oBAAoB,CAAC,IAAIA,EAAE0sD,EAAE,UAAU/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,MAAM/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,aAAa/sD,EAAE,EAAEE,CAAC,EAAE6B,EAAEgrD,EAAE,sBAAsB/sD,EAAE,EAAEE,CAAC,EAAE,CAAC,OAAO8B,EAAE,QAAQC,CAAC,EAAE7B,EAAE,kBAAkB2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,EAAE,CAAC,CAAC,EAAE,CAACG,EAAE,CAAC,EAAEA,EAAE,CAAC,CAAC,EAAE,EAAE0B,CAAC,EAAE,MAAM,CAACC,EAAEC,CAAC,CAAC,CAAC,IAAI,YAAY,CAAC,IAAI5B,EAAE0sD,EAAE,UAAU/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,MAAM/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,aAAa/sD,EAAE,EAAEE,CAAC,EAAE,MAAM,CAACE,EAAE,UAAU2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,EAAE,CAAC,EAAE,EAAE,CAAC,CAAC,EAAE,CAACG,EAAE,CAAC,EAAEA,EAAE,CAAC,EAAEA,EAAE,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,IAAI,YAAY,CAAC,IAAIA,EAAE0sD,EAAE,UAAU/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,MAAM/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,aAAa/sD,EAAE,EAAEE,CAAC,EAAE,MAAM,CAACE,EAAE,UAAU2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,EAAE,CAAC,EAAE,EAAE,CAAC,CAAC,EAAE,CAACG,EAAE,CAAC,EAAEA,EAAE,CAAC,EAAEA,EAAE,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,IAAI,aAAa,CAAC,IAAIA,EAAE0sD,EAAE,UAAU/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,MAAM/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,YAAY/sD,EAAE,EAAEE,CAAC,EAAE6B,EAAE1B,EAAE,CAAC,EAAE2B,EAAE3B,EAAE,CAAC,EAAE4B,EAAE,EAAE,CAAC,EAAES,EAAE,EAAE,CAAC,EAAE,MAAM,CAACtC,EAAE,WAAW2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,SAAS/sD,EAAE,EAAEE,CAAC,EAAE,CAAC6B,EAAEC,CAAC,EAAE,EAAE,CAACC,EAAES,CAAC,EAAE,MAAM,CAAC,CAAC,CAAC,QAAQ,MAAM,UAAU,aAAa1C,EAAE,EAAE,qBAAqB,CAAC,CAAC,EAAM8xD,GAAG,CAAC9xD,EAAE,EAAEE,EAAEE,EAAE0wD,KAAK,CAAC,OAAO9wD,EAAE,GAAG,CAAC,IAAI,OAAO,CAAC,IAAIK,EAAE0sD,EAAE,QAAQ/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,QAAQ/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,QAAQ/sD,EAAE,EAAEE,CAAC,EAAE,MAAM,CAACE,EAAE,KAAKC,EAAE,EAAE,CAAC,CAAC,CAAC,CAAC,IAAI,WAAW,CAAC,IAAIA,EAAE0sD,EAAE,QAAQ/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,OAAO/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,MAAM/sD,EAAE,EAAEE,CAAC,EAAE,MAAM,CAACE,EAAE,SAASC,EAAE,EAAE,CAAC,CAAC,CAAC,CAAC,IAAI,cAAc,CAAC,IAAIA,EAAE0sD,EAAE,SAAS/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,aAAa/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,OAAO/sD,EAAE,EAAEE,CAAC,EAAE,MAAM,CAACE,EAAE,YAAYC,EAAE,EAAE,CAAC,CAAC,CAAC,CAAC,IAAI,SAAS,CAAC,IAAIA,EAAE0sD,EAAE,UAAU/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,QAAQ/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,UAAU/sD,EAAE,EAAEE,CAAC,EAAE6B,EAAEgrD,EAAE,WAAW/sD,EAAE,EAAEE,CAAC,EAAE8B,EAAE+qD,EAAE,QAAQ/sD,EAAE,EAAEE,CAAC,EAAE,MAAM,CAACE,EAAE,OAAOC,EAAE,EAAE,EAAE0B,EAAEC,CAAC,CAAC,CAAC,CAAC,IAAI,OAAO,MAAM,CAAC5B,EAAE,KAAK2sD,EAAE,QAAQ/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,QAAQ/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,WAAW,MAAM,CAACE,EAAE,SAAS2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,uBAAuB,MAAM,CAACE,EAAE,qBAAqB2sD,EAAE,QAAQ/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,QAAQ/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,OAAO/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,gBAAgB,MAAM,CAACE,EAAE,cAAc2sD,EAAE,QAAQ/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,SAAS/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,SAAS/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,QAAQ/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,mBAAmB,MAAM,CAACE,EAAE,iBAAiB2sD,EAAE,QAAQ/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,SAAS/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,SAAS/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,OAAO/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,QAAQ,CAAC,IAAIG,EAAE0sD,EAAE,QAAQ/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,OAAO/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,OAAO/sD,EAAE,EAAEE,CAAC,EAAE,MAAM,CAACE,EAAE,MAAMC,EAAE,EAAE,EAAE0sD,EAAE,QAAQ/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,CAAC,CAAC,IAAI,kBAAkB,CAAC,IAAIG,EAAE0sD,EAAE,QAAQ/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,OAAO/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,SAAS/sD,EAAE,EAAEE,CAAC,EAAE6B,EAAEgrD,EAAE,OAAO/sD,EAAE,EAAEE,CAAC,EAAE,MAAM,CAACE,EAAE,gBAAgBC,EAAE,EAAE,EAAE0sD,EAAE,QAAQ/sD,EAAE,EAAEE,CAAC,EAAE6B,CAAC,CAAC,CAAC,CAAC,IAAI,QAAQ,MAAM,CAAC3B,EAAE,MAAM2sD,EAAE,QAAQ/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,QAAQ/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,YAAY,MAAM,CAACE,EAAE,UAAU2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,QAAQ,MAAM,UAAU,aAAaF,EAAE,EAAE,qBAAqB,CAAC,CAAC,EAAE,SAAS+xD,GAAG/xD,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAE2sD,EAAE,QAAQ/sD,EAAE,EAAEE,CAAC,EAAEG,EAAE0sD,EAAE,SAAS/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,gBAAgB/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,eAAe/sD,EAAE,EAAEE,CAAC,EAAE6B,EAAEgrD,EAAE,iBAAiB/sD,EAAE,EAAEE,CAAC,EAAE8B,EAAE+qD,EAAE,eAAe/sD,EAAE,EAAEE,CAAC,EAAE,MAAM,CAAC,MAAME,EAAE,OAAOC,EAAE,cAAc,EAAE,aAAa,EAAE,eAAe0B,EAAE,aAAaC,CAAC,CAAC,CAAC,IAAIgwD,GAAG,MAAMhyD,EAAE,EAAEE,EAAEE,EAAEC,EAAEywD,KAAK,CAAC,OAAO9wD,EAAE,GAAG,CAAC,IAAI,sBAAsB,CAAC,GAAG,CAAC,MAAM,EAAE,OAAO,EAAE,cAAc+B,EAAE,aAAaC,EAAE,eAAeC,EAAE,aAAaS,CAAC,EAAEqvD,GAAG/xD,EAAE,EAAEE,CAAC,EAAEyC,EAAE,MAAMtC,EAAE,MAAM,gCAAgC,EAAE,EAAE0B,EAAEC,EAAEC,EAAES,CAAC,EAAE,MAAM,CAACC,EAAE,gBAAgBA,EAAE,cAAc,CAAC,CAAC,IAAI,sBAAsB,CAAC,GAAG,CAAC,MAAM,EAAE,OAAO,EAAE,cAAcZ,EAAE,aAAaC,EAAE,eAAeC,CAAC,EAAE8vD,GAAG/xD,EAAE,EAAEE,CAAC,EAAEwC,EAAEqqD,EAAE,qBAAqB/sD,EAAE,EAAEE,CAAC,EAAEyC,EAAE,MAAMtC,EAAE,MAAM,6BAA6B,EAAE,EAAE0B,EAAEC,EAAEC,EAAES,CAAC,EAAE,MAAM,CAACC,EAAE,gBAAgBA,EAAE,YAAY,CAAC,CAAC,IAAI,sBAAsB,IAAI,sBAAsB,CAAC,GAAG,CAAC,MAAM,EAAE,OAAO,EAAE,cAAcZ,EAAE,aAAaC,EAAE,eAAeC,CAAC,EAAE8vD,GAAG/xD,EAAE,EAAEE,CAAC,EAAE,MAAM,CAAC,MAAMG,EAAE,MAAM,uBAAuB,EAAE,EAAE0B,EAAEC,EAAEC,CAAC,CAAC,CAAC,CAAC,IAAI,QAAQ,CAAC,IAAI,EAAE5B,EAAE,KAAK0sD,EAAE,YAAY/sD,EAAE,EAAEE,CAAC,EAAE,MAAM,EAAE,EAAE,CAAC,MAAMG,EAAE,WAAW,CAAC,CAAC,EAAE,OAAO,EAAE,QAAQ,EAAE,CAAC,CAAC,IAAI,WAAW,OAAOA,EAAE,eAAe0sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,CAAC,EAAE,QAAQ,MAAM,UAAU,aAAaF,EAAE,EAAE,qBAAqB,CAAC,CAAC,EAAMiyD,GAAG,CAACjyD,EAAE,EAAEE,EAAEE,EAAE0wD,KAAK,CAAC,OAAO9wD,EAAE,GAAG,CAAC,IAAI,aAAa,CAAC,IAAIK,EAAE0sD,EAAE,iBAAiB/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,SAAS/sD,EAAE,EAAEE,CAAC,EAAE,MAAM,CAACE,EAAE,WAAWC,EAAE,CAAC,CAAC,CAAC,CAAC,IAAI,SAAS,CAAC,IAAIA,EAAE0sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,SAAS/sD,EAAE,EAAEE,CAAC,EAAE6B,EAAE3B,EAAE,KAAKC,EAAE,EAAE,CAAC,EAAE,MAAM,CAAC0B,EAAE,OAAOA,EAAE,OAAO,CAAC,CAAC,IAAI,aAAa,CAAC,IAAI1B,EAAE0sD,EAAE,iBAAiB/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,SAAS/sD,EAAE,EAAEE,CAAC,EAAE,MAAM,CAACE,EAAE,WAAWC,EAAE,CAAC,CAAC,CAAC,CAAC,IAAI,SAAS,CAAC,IAAIA,EAAE0sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE,EAAEE,EAAE,OAAOC,CAAC,EAAE,MAAM,CAAC,EAAE,OAAO,EAAE,OAAO,CAAC,CAAC,IAAI,WAAW,CAAC,IAAIA,EAAE0sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,OAAO/sD,EAAE,EAAEE,CAAC,EAAE,EAAEE,EAAE,OAAOC,EAAE,CAAC,EAAE,MAAM,CAAC,EAAE,OAAO,EAAE,OAAO,CAAC,CAAC,QAAQ,MAAM,UAAU,aAAaL,EAAE,EAAE,qBAAqB,CAAC,CAAC,EAAMkyD,GAAG,CAAClyD,EAAE,EAAEE,EAAEE,EAAE0wD,KAAK,CAAC,OAAO9wD,EAAE,GAAG,CAAC,IAAI,QAAQ,OAAO,EAAEA,EAAE,IAAI,EAAE,IAAI,yBAAyB,IAAIK,EAAE0sD,EAAE,UAAU/sD,EAAE,EAAEE,CAAC,EAAE,MAAM,CAAC8sD,GAAGhtD,EAAE,KAAK,EAAEE,CAAC,GAAGG,CAAC,EAAE,IAAI,cAAc,MAAM,CAAC2sD,GAAGhtD,EAAE,KAAK,EAAEE,CAAC,CAAC,EAAE,IAAI,WAAW,IAAI,eAAe,IAAI,0BAA0B,CAAC,IAAIwC,EAAEqqD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE,MAAM,CAACotD,GAAG5qD,CAAC,CAAC,CAAC,CAAC,IAAI,YAAY,OAAOqqD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE,IAAIwC,GAAG4qD,GAAG5qD,CAAC,CAAC,EAAE,IAAI,WAAW,IAAI,EAAEqqD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE,MAAM,CAACotD,GAAG,CAAC,CAAC,EAAE,IAAI,QAAQ,MAAM,CAACltD,EAAE,SAAS2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE,MAAM,OAAO,CAAC,EAAE,IAAI,SAAS,OAAO6sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE,IAAIwC,GAAGtC,EAAE,SAASsC,EAAE,KAAK,CAAC,EAAE,IAAI,OAAO,MAAM,CAACtC,EAAE,OAAO2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE,KAAK,OAAO,CAAC,EAAE,IAAI,OAAO,MAAM,CAACE,EAAE,OAAO2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE,KAAK,OAAO,CAAC,EAAE,IAAI,OAAO,MAAM,CAACE,EAAE,OAAO,CAAC,CAAC,EAAE,IAAI,QAAQ,IAAI,EAAE2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE6B,EAAEgrD,EAAE,OAAO/sD,EAAE,EAAEE,CAAC,EAAE8B,EAAE+qD,EAAE,UAAU/sD,EAAE,EAAEE,CAAC,EAAE+B,EAAE8qD,EAAE,YAAY/sD,EAAE,EAAEE,CAAC,EAAE,QAAQ,KAAK,gGAAgG,EAAE,QAAQ,IAAI8B,CAAC,EAAE,QAAQU,EAAE,EAAEA,EAAEX,EAAE,OAAOW,IAAI,QAAQ,IAAI,MAAM,UAAU,MAAM,KAAKX,EAAEW,CAAC,EAAE,SAAS,CAAC,EAAE,MAAM,EAAET,CAAC,CAAC,EAAE,MAAM,CAAC,CAAC,EAAE,QAAQ,MAAM,UAAU,aAAajC,EAAE,EAAE,qBAAqB,CAAC,CAAC,EAAMmyD,GAAG,KAAK,CAAC,IAAI,IAAI,CAAC,OAAO,KAAK,OAAO,EAAE,CAAC,YAAYvxD,EAAEV,EAAE,CAAC,KAAK,SAASU,EAAE,KAAK,WAAWV,EAAE,KAAK,OAAOlG,GAAG,CAAC,EAAE,KAAK,UAAU,IAAI,IAAIhG,GAAG,KAAK,MAAM,CAAC,CAAC,eAAe,CAAC,KAAK,UAAU,QAAQ4M,GAAGA,EAAE,QAAQ,CAAC,EAAE,KAAK,UAAU,MAAM,EAAE,KAAK,OAAO,QAAQ,CAAC,CAAC,MAAM,CAAC,OAAO,KAAK,UAAU,IAAI,CAAC,YAAY,CAAC,OAAO5G,GAAG,KAAK,KAAK,EAAE,OAAO,CAAC,CAAC,MAAM,OAAO4G,EAAEV,EAAE,CAAC,KAAK,uBAAuBU,EAAEV,CAAC,EAAE,IAAI,EAAE,MAAMU,EAAE,KAAK,EAAE,OAAO,KAAK,UAAU,QAAQP,GAAGA,EAAE,QAAQ,CAAC,EAAE,KAAK,UAAU,MAAM,EAAE5C,EAAE,IAAI,CAAC,IAAI4C,EAAEjC,GAAG8B,CAAC,EAAE2B,EAAE,EAAE,OAAOC,EAAEzB,EAAE,OAAO9B,EAAE,OAAOsD,IAAIC,EAAE,IAAI,kDAAkDD,CAAC,6BAA6BC,CAAC,YAAY,EAAE,QAAQC,EAAE,EAAEA,EAAEF,EAAEE,IAAI,CAAC,IAAIC,EAAE,EAAED,CAAC,EAAE,EAAE1B,EAAE0B,CAAC,EAAE/N,GAAG,CAAC,EAAE,KAAK,UAAU,IAAIgO,EAAE,CAAC,CAAC,CAAC,OAAO,KAAK,MAAM,CAAC,CAAC,CAAC,MAAM,KAAKpB,EAAEV,EAAE,CAAC,KAAK,uBAAuBU,EAAEV,CAAC,EAAE,IAAI,EAAE,MAAMU,EAAE,KAAK,EAAE,OAAOnD,EAAE,IAAI,CAAC,IAAI4C,EAAE,CAAC,EAAE,QAAQwB,EAAE,EAAEA,EAAE,EAAE,OAAOA,IAAI,CAAC,IAAIC,EAAE,EAAED,CAAC,EAAEE,EAAE,KAAK,gBAAgBD,EAAE5B,CAAC,EAAEG,EAAE,KAAK0B,CAAC,CAAC,CAAC,OAAOzF,GAAG+D,CAAC,CAAC,CAAC,CAAC,CAAC,gBAAgBO,EAAEV,EAAE,CAAC,IAAI,EAAE,KAAK,UAAU,IAAIU,CAAC,EAAE,OAAO,GAAG,KAAK,EAAEV,CAAC,CAAC,uBAAuBU,EAAEV,EAAE,CAAC,GAAGU,EAAE,QAAQ,KAAK,SAAS,MAAM,IAAI,MAAM,oBAAoB,KAAK,QAAQ,aAAaA,EAAE,KAAK,EAAE,EAAE,GAAGV,EAAE,QAAQ,KAAK,WAAW,MAAM,IAAI,MAAM,sBAAsB,KAAK,UAAU,aAAaA,EAAE,KAAK,EAAE,CAAC,CAAC,EAAMkyD,GAAG,MAAMpyD,EAAE,EAAEE,EAAEE,IAAI,CAAC,OAAOJ,EAAE,GAAG,CAAC,IAAI,YAAY,IAAI,cAAc,CAAC,IAAIK,EAAED,EAAE,yBAAyBJ,EAAE,IAAI,EAAE,GAAGK,GAAG,KAAK,MAAM,CAACA,CAAC,EAAE,CAAC,IAAI,EAAE0sD,EAAE,WAAW/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,aAAa/sD,EAAE,EAAEE,CAAC,EAAE6B,EAAE,IAAIowD,GAAG,EAAE,CAAC,EAAE,OAAO/xD,EAAE,aAAaJ,EAAE,KAAK+B,CAAC,EAAE,CAACA,EAAE,MAAM,CAAC,CAAC,CAAC,IAAI,kBAAkB,IAAI,oBAAoB,IAAI,oBAAoB,IAAI,sBAAsB,CAAC,IAAI1B,EAAE0sD,EAAE,cAAc/sD,EAAE,EAAEE,EAAEE,CAAC,EAAE,EAAE2sD,EAAE,OAAO/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,SAAS/sD,EAAE,EAAEE,CAAC,EAAE,MAAM,CAAC,MAAME,EAAE,iBAAiBC,EAAE,EAAE,EAAE,OAAO,EAAE,CAAC,CAAC,CAAC,CAAC,IAAI,kBAAkB,IAAI,oBAAoB,CAAC,IAAIA,EAAE0sD,EAAE,cAAc/sD,EAAE,EAAEE,EAAEE,CAAC,EAAE,EAAE2sD,EAAE,OAAO/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,eAAe/sD,EAAE,EAAEE,CAAC,EAAE,MAAM,CAAC,MAAME,EAAE,iBAAiBC,EAAE,EAAE,EAAE,KAAK,EAAE,CAAC,CAAC,CAAC,CAAC,IAAI,kBAAkB,IAAI,oBAAoB,CAAC,IAAIA,EAAE0sD,EAAE,cAAc/sD,EAAE,EAAEE,EAAEE,CAAC,EAAE,MAAM,CAACA,EAAE,iBAAiBC,EAAE,EAAE,EAAE,WAAW,CAAC,CAAC,CAAC,QAAQ,MAAM,UAAU,aAAaL,EAAE,EAAE,qBAAqB,CAAC,CAAC,EAAMqyD,GAAG,CAACryD,EAAE,EAAEE,EAAEE,EAAE0wD,KAAK,CAAC,OAAO9wD,EAAE,GAAG,CAAC,IAAI,iBAAiB,CAAC,IAAIK,EAAE0sD,EAAE,SAAS/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,OAAO/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,eAAe/sD,EAAE,EAAEE,CAAC,EAAE6B,EAAEgrD,EAAE,mBAAmB/sD,EAAE,EAAEE,CAAC,EAAE,MAAM,CAACE,EAAE,MAAM,eAAeC,EAAE,CAAC,EAAE,CAAC,EAAE,EAAE,CAAC,CAAC,EAAE,EAAE0B,CAAC,CAAC,CAAC,CAAC,IAAI,wBAAwB,CAAC,IAAI1B,EAAE0sD,EAAE,SAAS/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,OAAO/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,eAAe/sD,EAAE,EAAEE,CAAC,EAAE6B,EAAEgrD,EAAE,mBAAmB/sD,EAAE,EAAEE,CAAC,EAAE,MAAM,CAACE,EAAE,MAAM,sBAAsBC,EAAE,CAAC,EAAE,CAAC,EAAE,EAAE,CAAC,CAAC,EAAE,EAAE0B,CAAC,CAAC,CAAC,CAAC,IAAI,gBAAgB,CAAC,IAAI1B,EAAE0sD,EAAE,QAAQ/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,QAAQ/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,SAAS/sD,EAAE,EAAEE,CAAC,EAAE6B,EAAEgrD,EAAE,WAAW/sD,EAAE,EAAEE,CAAC,EAAE8B,EAAE+qD,EAAE,SAAS/sD,EAAE,EAAEE,CAAC,EAAE+B,EAAE8qD,EAAE,qBAAqB/sD,EAAE,EAAEE,CAAC,EAAE,MAAM,CAACE,EAAE,MAAM,cAAcC,EAAE,EAAE,EAAE0B,EAAEC,EAAEC,CAAC,CAAC,CAAC,CAAC,IAAI,6BAA6B,CAAC,IAAI5B,EAAE0sD,EAAE,SAAS/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,aAAa/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,cAAc/sD,EAAE,EAAEE,CAAC,EAAE6B,EAAEgrD,EAAE,YAAY/sD,EAAE,EAAEE,CAAC,EAAE8B,EAAE+qD,EAAE,gBAAgB/sD,EAAE,EAAEE,CAAC,EAAE+B,EAAE8qD,EAAE,WAAW/sD,EAAE,EAAEE,CAAC,EAAE,MAAM,CAACE,EAAE,MAAM,UAAUC,EAAE,EAAE2B,EAAE,YAAY,EAAEC,EAAE,YAAY,EAAEF,EAAE,CAAC,CAAC,CAAC,CAAC,QAAQ,MAAM,UAAU,aAAa/B,EAAE,EAAE,qBAAqB,CAAC,CAAC,EAAMsyD,GAAG,CAACtyD,EAAE,EAAEE,EAAEE,EAAE0wD,KAAK,CAAC,OAAO9wD,EAAE,GAAG,CAAC,IAAI,QAAQ,MAAM,CAACI,EAAE,MAAM2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,WAAW,MAAM,CAACE,EAAE,SAAS2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,UAAU,MAAM,CAACE,EAAE,QAAQ2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,eAAe,MAAM,CAACE,EAAE,aAAa2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,OAAO,MAAM,CAACE,EAAE,KAAK2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,YAAY,MAAM,CAACE,EAAE,UAAU2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,aAAa,MAAM,CAACE,EAAE,WAAW2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,aAAa,MAAM,CAACE,EAAE,WAAW2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,YAAY,MAAM,CAACE,EAAE,UAAU2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,SAAS,IAAI,WAAW,MAAM,CAACE,EAAE,MAAM2sD,EAAE,YAAY/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,aAAa,MAAM,CAACE,EAAE,WAAW2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,QAAQ,MAAM,UAAU,aAAaF,EAAE,EAAE,qBAAqB,CAAC,CAAC,EAAMuyD,GAAG,CAACvyD,EAAE,EAAEE,EAAEE,EAAE0wD,KAAK,CAAC,OAAO9wD,EAAE,GAAG,CAAC,IAAI,cAAc,IAAI,gBAAgB,IAAI,SAAS,MAAM,CAACI,EAAE,OAAO2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,aAAa/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,aAAa/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,SAAS,MAAM,CAACE,EAAE,OAAO2sD,EAAE,WAAW/sD,EAAE,EAAEE,CAAC,EAAE,GAAG6sD,EAAE,UAAU/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,YAAY,MAAM,CAACE,EAAE,UAAU2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,OAAO/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,eAAe,GAAG,CAACG,EAAE,CAAC,EAAE0sD,EAAE,WAAW/sD,EAAE,EAAEE,CAAC,EAAE,EAAEG,IAAI,UAAU0B,EAAE,IAAI,QAAQC,EAAE+qD,EAAE,UAAU/sD,EAAE,EAAEE,CAAC,EAAE+B,EAAE8qD,EAAE,iBAAiB/sD,EAAE,EAAEE,CAAC,EAAE,GAAG,EAAE,CAAC,GAAG6B,GAAGC,IAAI,EAAE,MAAM,IAAI,MAAM,oFAAoF,EAAE,GAAG,CAACD,GAAGC,IAAI,EAAE,MAAM,IAAI,MAAM,+DAA+D,CAAC,CAAC,GAAG,CAACU,EAAEC,CAAC,EAAEoqD,EAAE,OAAO/sD,EAAE,EAAEE,CAAC,EAAE,MAAM,CAACE,EAAE,MAAM,OAAO,CAAC,EAAE2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE,WAAW6sD,EAAE,aAAa/sD,EAAE,EAAEE,CAAC,EAAE,WAAW6sD,EAAE,aAAa/sD,EAAE,EAAEE,CAAC,EAAE,KAAKwC,EAAE,WAAW,EAAE,uBAAuBC,EAAE,eAAeV,CAAC,CAAC,CAAC,EAAE,IAAI,iBAAiB,MAAM,CAAC7B,EAAE,OAAO,SAAS2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,WAAW/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,WAAW/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,QAAQ,MAAM,UAAU,aAAaF,EAAE,EAAE,qBAAqB,CAAC,CAAC,EAAMwyD,GAAG,CAACxyD,EAAE,EAAEE,EAAEE,EAAE0wD,KAAK,CAAC,OAAO9wD,EAAE,GAAG,CAAC,IAAI,gBAAgB,MAAM,CAACI,EAAE,cAAc2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,OAAO/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,WAAW/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,iBAAiB,IAAI,mBAAmB,MAAM,CAACE,EAAE,UAAU2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,OAAO/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,WAAW/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,SAAS/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,QAAQ/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,UAAU/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,mBAAmB,MAAM,CAACE,EAAE,UAAU2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,OAAO/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,WAAW/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,SAAS/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,QAAQ/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,UAAU/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,MAAM,MAAM,CAACE,EAAE,2BAA2B2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,SAAS/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,OAAO/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,QAAQ/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,OAAO/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,UAAU,MAAM,CAACE,EAAE,QAAQ2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,aAAa,MAAM,CAACE,EAAE,WAAW2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,QAAQ,MAAM,UAAU,aAAaF,EAAE,EAAE,qBAAqB,CAAC,CAAC,EAAMyyD,GAAG,CAACzyD,EAAE,EAAEE,EAAEE,EAAE0wD,KAAK,CAAC,OAAO9wD,EAAE,GAAG,CAAC,IAAI,eAAe,CAAC,GAAG,CAAC,mBAAmBK,EAAE,kBAAkB,CAAC,EAAED,EAAE,aAAa2sD,EAAE,qBAAqB/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,oBAAoB/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,UAAU/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,mBAAmB/sD,EAAE,EAAEE,CAAC,CAAC,EAAE,OAAOG,EAAE,OAAO,CAAC,CAAC,CAAC,IAAI,cAAc,CAAC,GAAG,CAAC,eAAeA,EAAE,cAAc,CAAC,EAAED,EAAE,YAAY2sD,EAAE,SAAS/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,SAAS/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,SAAS/sD,EAAE,EAAEE,CAAC,CAAC,EAAE,MAAM,CAACG,EAAE,CAAC,CAAC,CAAC,IAAI,uBAAuB,MAAM,CAACD,EAAE,qBAAqB2sD,EAAE,QAAQ/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,SAAS/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,eAAe/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,sBAAsB/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,oBAAoB/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,QAAQ,MAAM,UAAU,aAAaF,EAAE,EAAE,qBAAqB,CAAC,CAAC,EAAM0yD,GAAG,CAAC1yD,EAAE,EAAEE,EAAEE,EAAE0wD,KAAK,CAAC,OAAO9wD,EAAE,GAAG,CAAC,IAAI,MAAM,CAAC,IAAI+B,EAAEgrD,EAAE,OAAO/sD,EAAE,EAAEE,CAAC,EAAE8B,EAAE+qD,EAAE,WAAW/sD,EAAE,EAAEE,CAAC,EAAE,MAAM,CAACE,EAAE,IAAI2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE6B,EAAEC,CAAC,CAAC,CAAC,CAAC,IAAI,OAAO,CAAC,IAAID,EAAEgrD,EAAE,OAAO/sD,EAAE,EAAEE,CAAC,EAAE8B,EAAE+qD,EAAE,WAAW/sD,EAAE,EAAEE,CAAC,EAAE,MAAM,CAACE,EAAE,KAAK2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE6B,EAAEC,CAAC,CAAC,CAAC,CAAC,IAAI,MAAM,CAAC,IAAID,EAAEgrD,EAAE,OAAO/sD,EAAE,EAAEE,CAAC,EAAE8B,EAAE+qD,EAAE,WAAW/sD,EAAE,EAAEE,CAAC,EAAE,MAAM,CAACE,EAAE,IAAI2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE6B,EAAEC,CAAC,CAAC,CAAC,CAAC,IAAI,MAAM,CAAC,IAAID,EAAEgrD,EAAE,OAAO/sD,EAAE,EAAEE,CAAC,EAAE8B,EAAE+qD,EAAE,WAAW/sD,EAAE,EAAEE,CAAC,EAAE,MAAM,CAACE,EAAE,IAAI2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE6B,EAAEC,CAAC,CAAC,CAAC,CAAC,IAAI,MAAM,CAAC,IAAID,EAAEgrD,EAAE,OAAO/sD,EAAE,EAAEE,CAAC,EAAE8B,EAAE+qD,EAAE,WAAW/sD,EAAE,EAAEE,CAAC,EAAE,MAAM,CAACE,EAAE,IAAI2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE6B,EAAEC,CAAC,CAAC,CAAC,CAAC,IAAI,MAAM,CAAC,IAAID,EAAEgrD,EAAE,OAAO/sD,EAAE,EAAEE,CAAC,EAAE8B,EAAE+qD,EAAE,WAAW/sD,EAAE,EAAEE,CAAC,EAAE,MAAM,CAACE,EAAE,IAAI2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE6B,EAAEC,CAAC,CAAC,CAAC,CAAC,IAAI,SAAS,CAAC,IAAID,EAAEgrD,EAAE,OAAO/sD,EAAE,EAAEE,CAAC,EAAE,MAAM,CAACE,EAAE,OAAO2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE6B,CAAC,CAAC,CAAC,CAAC,IAAI,SAAS,CAAC,IAAIA,EAAEgrD,EAAE,OAAO/sD,EAAE,EAAEE,CAAC,EAAE,MAAM,CAACE,EAAE,OAAO2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE6B,CAAC,CAAC,CAAC,CAAC,IAAI,OAAO,CAAC,IAAIA,EAAEgrD,EAAE,OAAO/sD,EAAE,EAAEE,CAAC,EAAE8B,EAAE+qD,EAAE,WAAW/sD,EAAE,EAAEE,CAAC,EAAE,MAAM,CAACE,EAAE,KAAK2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE6B,EAAEC,CAAC,CAAC,CAAC,CAAC,IAAI,UAAU,CAAC,IAAID,EAAEgrD,EAAE,OAAO/sD,EAAE,EAAEE,CAAC,EAAE8B,EAAE+qD,EAAE,YAAY/sD,EAAE,EAAEE,CAAC,EAAE+B,EAAE8qD,EAAE,UAAU/sD,EAAE,EAAEE,CAAC,EAAE,MAAM,CAACE,EAAE,QAAQ2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE6B,EAAEC,EAAEC,CAAC,CAAC,CAAC,CAAC,IAAI,SAAS,CAAC,IAAIF,EAAEgrD,EAAE,OAAO/sD,EAAE,EAAEE,CAAC,EAAE8B,EAAE+qD,EAAE,YAAY/sD,EAAE,EAAEE,CAAC,EAAE+B,EAAE8qD,EAAE,UAAU/sD,EAAE,EAAEE,CAAC,EAAE,MAAM,CAACE,EAAE,OAAO2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE6B,EAAEC,EAAEC,CAAC,CAAC,CAAC,CAAC,IAAI,WAAW,IAAI5B,EAAE0sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,UAAU/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,OAAO/sD,EAAE,EAAEE,CAAC,EAAE,MAAM,CAACE,EAAE,SAASC,EAAE,EAAE,CAAC,CAAC,EAAE,IAAI,gBAAgB,CAAC,IAAI0B,EAAEgrD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE8B,EAAE+qD,EAAE,UAAU/sD,EAAE,EAAEE,CAAC,EAAE+B,EAAE8qD,EAAE,OAAO/sD,EAAE,EAAEE,CAAC,EAAEwC,EAAEqqD,EAAE,eAAe/sD,EAAE,EAAEE,CAAC,EAAE,MAAM,CAACE,EAAE,cAAc2B,EAAEC,EAAEC,EAAES,CAAC,CAAC,CAAC,CAAC,QAAQ,MAAM,UAAU,aAAa1C,EAAE,EAAE,qBAAqB,CAAC,CAAC,EAAM2yD,GAAG,CAAC3yD,EAAE,EAAEE,EAAEE,EAAE0wD,KAAK,CAAC,OAAO9wD,EAAE,GAAG,CAAC,IAAI,WAAW,IAAI,SAAS,CAAC,IAAIK,EAAE0sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,OAAO/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,UAAU/sD,EAAE,EAAEE,CAAC,EAAE,OAAO,EAAE,EAAE,MAAM,EAAEG,CAAC,EAAE,CAACD,EAAE,OAAO,EAAE,CAAC,CAAC,CAAC,CAAC,IAAI,SAAS,CAAC,IAAIC,EAAE0sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,UAAU/sD,EAAE,EAAEE,CAAC,EAAE,MAAM,CAACE,EAAE,OAAOC,EAAED,EAAE,KAAK,EAAE,OAAO,EAAE,CAAC,CAAC,CAAC,CAAC,IAAI,WAAW,CAAC,IAAIC,EAAE0sD,EAAE,OAAO/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,YAAY/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE6B,EAAEgrD,EAAE,UAAU/sD,EAAE,EAAEE,CAAC,EAAE,MAAM,CAACE,EAAE,OAAO,EAAEA,EAAE,KAAK2B,EAAE,OAAO,EAAE1B,EAAE,CAAC,CAAC,CAAC,CAAC,IAAI,UAAU,CAAC,IAAIA,EAAE0sD,EAAE,OAAO/sD,EAAE,EAAEE,CAAC,EAAE,EAAE,CAAC,EAAE,QAAQ6B,EAAE,EAAEA,EAAE1B,EAAE,OAAO0B,IAAI1B,EAAE0B,CAAC,GAAG,EAAE,KAAKA,CAAC,EAAE,IAAI,EAAEgrD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE,MAAM,CAACE,EAAE,QAAQ,EAAE,CAAC,CAAC,CAAC,CAAC,IAAI,YAAY,CAAC,IAAIC,EAAE0sD,EAAE,OAAO/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE,MAAM,CAACE,EAAE,QAAQ,EAAEC,CAAC,CAAC,CAAC,CAAC,IAAI,QAAQ,CAAC,IAAIA,EAAE0sD,EAAE,QAAQ/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,OAAO/sD,EAAE,EAAEE,CAAC,EAAE,MAAM,CAACE,EAAE,MAAM2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAEG,EAAE,CAAC,CAAC,CAAC,CAAC,IAAI,eAAe,CAAC,IAAIA,EAAE0sD,EAAE,QAAQ/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,MAAM/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,UAAU/sD,EAAE,EAAEE,CAAC,EAAE6B,EAAEgrD,EAAE,YAAY/sD,EAAE,EAAEE,CAAC,EAAE8B,EAAE+qD,EAAE,UAAU/sD,EAAE,EAAEE,CAAC,EAAE+B,EAAE8qD,EAAE,eAAe/sD,EAAE,EAAEE,CAAC,EAAEwC,EAAEqqD,EAAE,cAAc/sD,EAAE,EAAEE,CAAC,EAAEyC,EAAEoqD,EAAE,iBAAiB/sD,EAAE,EAAEE,CAAC,EAAE0C,EAAEmqD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE,MAAM,CAACE,EAAE,aAAawC,EAAEvC,EAAE,EAAE,EAAE0B,EAAEC,EAAEC,EAAES,EAAEC,CAAC,CAAC,CAAC,CAAC,IAAI,OAAO,OAAOlF,EAAE,IAAI,CAAC,IAAI4C,EAAE0sD,EAAE,OAAO/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,UAAU/sD,EAAE,EAAEE,CAAC,EAAE,EAAE,EAAE,CAAC,EAAE,MAAM6B,EAAE3B,EAAE,QAAQ,EAAE,CAAC,CAAC,EAAE,MAAM4B,EAAE,EAAE,IAAIC,GAAG,CAAC,IAAIS,EAAEnE,EAAE,YAAY0D,EAAE,MAAM,CAAC,EAAE,GAAG,CAACS,GAAG,CAACnE,EAAE,YAAY6B,EAAE,QAAQ6B,CAAC,EAAE,MAAMF,CAAC,EAAE,MAAM,IAAI,MAAM,wCAAwC,EAAE,OAAOW,EAAET,EAAE7B,EAAE,QAAQ6B,EAAE,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC7B,EAAE,MAAM4B,EAAE3B,CAAC,CAAC,CAAC,CAAC,EAAE,IAAI,SAAS,CAAC,IAAIA,EAAE0sD,EAAE,OAAO/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,SAAS/sD,EAAE,EAAEE,CAAC,EAAE,OAAOE,EAAE,QAAQ,EAAEC,CAAC,CAAC,CAAC,IAAI,OAAO,CAAC,IAAIA,EAAE0sD,EAAE,OAAO/sD,EAAE,EAAEE,CAAC,EAAE,MAAM,CAACE,EAAE,KAAK2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAEG,CAAC,CAAC,CAAC,CAAC,IAAI,QAAQ,IAAI,SAAS,CAAC,IAAIA,EAAE0sD,EAAE,OAAO/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,kBAAkB/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE,OAAOE,EAAE,MAAM,EAAE,EAAEC,CAAC,CAAC,CAAC,IAAI,YAAY,CAAC,IAAIA,EAAE0sD,EAAE,UAAU/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,SAAS/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,QAAQ/sD,EAAE,EAAEE,CAAC,EAAE,MAAM,CAACE,EAAE,UAAUC,EAAE,EAAE,CAAC,CAAC,CAAC,CAAC,IAAI,WAAW,CAAC,IAAIA,EAAE0sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,UAAU/sD,EAAE,EAAEE,CAAC,EAAE,MAAM,CAACE,EAAE,SAASC,EAAE,CAAC,CAAC,CAAC,CAAC,IAAI,gBAAgB,CAAC,IAAIA,EAAE0sD,EAAE,gBAAgB/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,cAAc/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,eAAe/sD,EAAE,EAAEE,CAAC,EAAE6B,EAAEgrD,EAAE,eAAe/sD,EAAE,EAAEE,CAAC,EAAE,MAAM,CAACE,EAAE,cAAcC,EAAE,EAAE,EAAE,EAAE,QAAQ0B,EAAE,MAAMA,EAAE3B,EAAE,KAAK2B,EAAE,EAAE,KAAK,CAAC,CAAC,CAAC,CAAC,IAAI,sBAAsB,CAAC,IAAI1B,EAAE0sD,EAAE,UAAU/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,SAAS/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,SAAS/sD,EAAE,EAAEE,CAAC,EAAE,MAAM,CAACE,EAAE,oBAAoB,EAAEC,EAAE,CAAC,CAAC,CAAC,CAAC,QAAQ,MAAM,UAAU,aAAaL,EAAE,EAAE,qBAAqB,CAAC,CAAC,EAAM4yD,GAAG,CAAC5yD,EAAE,EAAEE,EAAEE,EAAE0wD,KAAK,CAAC,OAAO9wD,EAAE,GAAG,CAAC,IAAI,sBAAsB,CAAC,GAAG,CAAC,cAAcK,EAAE,aAAa,EAAE,kBAAkB,EAAE,gBAAgB0B,CAAC,EAAE3B,EAAE,OAAO,oBAAoB2sD,EAAE,UAAU/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,SAAS/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,aAAa/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,eAAe/sD,EAAE,EAAEE,CAAC,CAAC,EAAE,MAAM,CAACG,EAAE,EAAE,EAAE0B,CAAC,CAAC,CAAC,IAAI,gBAAgB,CAAC,GAAG,CAAC,cAAc1B,EAAE,YAAY,CAAC,EAAED,EAAE,OAAO,cAAc2sD,EAAE,eAAe/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,aAAa/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,WAAW/sD,EAAE,EAAEE,CAAC,CAAC,EAAE,MAAM,CAACG,EAAE,CAAC,CAAC,CAAC,IAAI,oBAAoB,MAAM,CAACD,EAAE,OAAO,kBAAkB2sD,EAAE,OAAO/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,UAAU/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,aAAa/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,mBAAmB,MAAM,CAACE,EAAE,OAAO,iBAAiB2sD,EAAE,OAAO/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,UAAU/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,aAAa/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,QAAQ,MAAM,UAAU,aAAaF,EAAE,EAAE,qBAAqB,CAAC,CAAC,EAAM6yD,GAAG,CAAC7yD,EAAE,EAAEE,EAAEE,EAAE0wD,KAAK,CAAC,OAAO9wD,EAAE,GAAG,CAAC,IAAI,MAAM,MAAM,CAACI,EAAE,IAAI2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,OAAO,MAAM,CAACE,EAAE,KAAK2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,OAAO,MAAM,CAACE,EAAE,KAAK2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,QAAQ,MAAM,CAACE,EAAE,MAAM2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,QAAQ,MAAM,UAAU,aAAaF,EAAE,EAAE,qBAAqB,CAAC,CAAC,EAAM8yD,GAAG,CAAC9yD,EAAE,EAAEE,EAAEE,EAAE0wD,KAAK,CAAC,OAAO9wD,EAAE,GAAG,CAAC,IAAI,qBAAqB,MAAM,CAACI,EAAE,OAAO,mBAAmB2sD,EAAE,QAAQ/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,UAAU/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,UAAU/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,gBAAgB/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,eAAe,CAAC,GAAG,CAAC,OAAOG,EAAE,aAAa,CAAC,EAAED,EAAE,OAAO,aAAa2sD,EAAE,OAAO/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,aAAa/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,YAAY/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,cAAc/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,UAAU/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,WAAW/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,WAAW/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,yBAAyB/sD,EAAE,EAAEE,CAAC,CAAC,EAAE,MAAM,CAACG,EAAE,CAAC,CAAC,CAAC,IAAI,cAAc,CAAC,GAAG,CAAC,QAAQA,EAAE,OAAO,EAAE,MAAM,CAAC,EAAED,EAAE,OAAO,YAAY2sD,EAAE,QAAQ/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,YAAY/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,YAAY/sD,EAAE,EAAEE,CAAC,CAAC,EAAE,MAAM,CAACG,EAAE,EAAE,CAAC,CAAC,CAAC,IAAI,yBAAyB,MAAM,CAACD,EAAE,OAAO,uBAAuB2sD,EAAE,QAAQ/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,aAAa/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,QAAQ,MAAM,UAAU,aAAaF,EAAE,EAAE,qBAAqB,CAAC,CAAC,EAAM+yD,GAAG,CAAC/yD,EAAE,EAAEE,EAAEE,EAAE0wD,KAAK,CAAC,OAAO9wD,EAAE,GAAG,CAAC,IAAI,OAAO,MAAM,CAACI,EAAE,KAAK2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,QAAQ/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,aAAa,CAAC,IAAIG,EAAE0sD,EAAE,OAAO/sD,EAAE,EAAEE,CAAC,EAAE,MAAM,CAACE,EAAE,WAAW2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAEG,CAAC,CAAC,CAAC,CAAC,IAAI,UAAU,CAAC,IAAIA,EAAE0sD,EAAE,OAAO/sD,EAAE,EAAEE,CAAC,EAAE,MAAM,CAACE,EAAE,QAAQ2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAEG,CAAC,CAAC,CAAC,CAAC,IAAI,UAAU,MAAM,CAACD,EAAE,QAAQ2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,QAAQ/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,cAAc,MAAM,CAACE,EAAE,YAAY2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,QAAQ/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,YAAY,MAAM,CAACE,EAAE,UAAU2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,UAAU/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,OAAO/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,QAAQ,IAAI,MAAM,MAAM,CAACE,EAAE,IAAI2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,UAAU/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,gBAAgB/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,iBAAiB,CAAC,IAAIG,EAAE0sD,EAAE,aAAa/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,WAAW/sD,EAAE,EAAEE,CAAC,EAAE,MAAM,CAACE,EAAE,eAAe2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAEG,EAAE,CAAC,CAAC,CAAC,CAAC,IAAI,iBAAiB,CAAC,IAAIA,EAAE0sD,EAAE,aAAa/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,QAAQ/sD,EAAE,EAAEE,CAAC,EAAE,MAAM,CAACE,EAAE,eAAe2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAEG,EAAE,CAAC,CAAC,CAAC,CAAC,IAAI,eAAe,CAAC,IAAIA,EAAE0sD,EAAE,YAAY/sD,EAAE,EAAEE,CAAC,EAAE,EAAE6sD,EAAE,aAAa/sD,EAAE,EAAEE,CAAC,EAAE,YAAY,EAAE,MAAM,CAACE,EAAE,aAAa2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAEG,EAAE,CAAC,CAAC,CAAC,CAAC,IAAI,cAAc,MAAM,CAACD,EAAE,YAAY2sD,EAAE,IAAI/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,QAAQ/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,IAAI,gBAAgB,MAAM,CAACE,EAAE,cAAc2sD,EAAE,KAAK/sD,EAAE,EAAEE,CAAC,EAAE6sD,EAAE,KAAK/sD,EAAE,EAAEE,CAAC,CAAC,CAAC,EAAE,QAAQ,MAAM,UAAU,aAAaF,EAAE,EAAE,qBAAqB,CAAC,CAAC,EAAE,SAASgzD,GAAGhzD,EAAE,EAAEE,EAAEE,EAAEC,EAAE5C,EAAE,CAAC,IAAI,GAAG,CAAC,EAAEsE,EAAEC,IAAI,CAAC,OAAO,EAAE,SAAS,CAAC,IAAI,aAAa,OAAO3B,EAAE,IAAI0wD,GAAG,EAAEhvD,EAAEC,CAAC,CAAC,EAAE,IAAI,aAAa,OAAO3B,EAAE,IAAI2wD,GAAG,EAAEjvD,EAAEC,CAAC,CAAC,EAAE,IAAI,UAAU,OAAO2vD,GAAG,EAAE5vD,EAAEC,CAAC,EAAE,IAAI,cAAc,OAAO3B,EAAE,IAAIwxD,GAAG,EAAE9vD,EAAEC,CAAC,CAAC,EAAE,IAAI,WAAW,OAAO3B,EAAE,IAAIyxD,GAAG,EAAE/vD,EAAEC,CAAC,CAAC,EAAE,IAAI,UAAU,OAAOgwD,GAAG,EAAEjwD,EAAEC,CAAC,EAAE,IAAI,aAAa,OAAO3B,EAAE,IAAI4xD,GAAG,EAAElwD,EAAEC,CAAC,CAAC,EAAE,IAAI,QAAQ,OAAO3B,EAAE,IAAIgyD,GAAG,EAAEtwD,EAAEC,CAAC,CAAC,EAAE,IAAI,QAAQ,OAAO3B,EAAE,IAAI6xD,GAAG,EAAEnwD,EAAEC,CAAC,CAAC,EAAE,IAAI,UAAU,OAAO3B,EAAE,IAAIiyD,GAAG,EAAEvwD,EAAEC,CAAC,CAAC,EAAE,IAAI,WAAW,OAAO3B,EAAE,IAAIkyD,GAAG,EAAExwD,EAAEC,CAAC,CAAC,EAAE,IAAI,gBAAgB,OAAO3B,EAAE,IAAImyD,GAAG,EAAEzwD,EAAEC,CAAC,CAAC,EAAE,IAAI,SAAS,OAAO3B,EAAE,IAAIoyD,GAAG,EAAE1wD,EAAEC,CAAC,CAAC,EAAE,IAAI,YAAY,OAAO3B,EAAE,IAAIqyD,GAAG,EAAE3wD,EAAEC,CAAC,CAAC,EAAE,IAAI,aAAa,OAAO3B,EAAE,IAAIsyD,GAAG,EAAE5wD,EAAEC,CAAC,CAAC,EAAE,IAAI,SAAS,OAAO3B,EAAE,IAAIuyD,GAAG,EAAE7wD,EAAEC,CAAC,CAAC,EAAE,IAAI,WAAW,OAAO3B,EAAE,IAAIwyD,GAAG,EAAE9wD,EAAEC,CAAC,CAAC,EAAE,IAAI,SAAS,OAAO3B,EAAE,IAAIyyD,GAAG,EAAE/wD,EAAEC,CAAC,CAAC,EAAE,IAAI,iBAAiB,OAAO3B,EAAE,IAAI0yD,GAAG,EAAEhxD,EAAEC,CAAC,CAAC,EAAE,IAAI,aAAa,OAAOowD,GAAG,EAAErwD,EAAEC,EAAE5B,CAAC,EAAE,IAAI,SAAS,IAAI6B,EAAE6qD,GAAG,EAAE,EAAE,EAAE,GAAG7qD,GAAGA,EAAE,eAAe,OAAOA,EAAE,eAAe,IAAI4uD,GAAG,EAAE9uD,EAAEC,CAAC,CAAC,EAAE,MAAM,UAAU,aAAa,EAAE,EAAE,qBAAqB,EAAE,QAAQ,MAAM,UAAU,eAAe,EAAE,EAAE,qIAAqI,CAAC,CAAC,GAAGhC,EAAE,EAAEE,CAAC,EAAE,OAAO3B,EAAE,UAAU,CAAC,EAAE,EAAE,KAAK,GAAG,CAAC,EAAE,OAAO,CAAC,CAAC,EAAE,CAAC,EAAE,OAAO,CAAC,CAAC,CAAC,IAAI00D,GAAG,KAAK,CAAC,YAAYryD,EAAE,CAAC,EAAEV,EAAE,CAAC,EAAE,EAAE,CAAC,EAAEG,EAAE,CAAC,EAAEwB,EAAE,CAAC,KAAK,UAAUjB,EAAE,KAAK,eAAeV,EAAE,KAAK,cAAc,EAAE,KAAK,YAAYG,EAAE,KAAK,mBAAmBwB,EAAE,KAAK,YAAY,CAAC,GAAG,EAAE,UAAU,GAAG,YAAY,CAAC,EAAE,KAAK,SAAS,CAAC,KAAK,WAAW,EAAE,KAAK,OAAO,EAAE,KAAK,0BAA0B,CAAC,CAAC,SAASjB,EAAEV,EAAE,CAAC,MAAM,CAAC,GAAGU,EAAE,UAAUV,EAAE,YAAY,CAAC,CAAC,CAAC,IAAI,eAAeU,EAAE,CAAC,KAAK,WAAWA,IAAI,KAAK,SAASA,EAAE,KAAK,0BAA0B,EAAE,CAAC,IAAI,gBAAgB,CAAC,OAAO,KAAK,QAAQ,CAAC,IAAI,kBAAkB,CAAC,OAAO,KAAK,mBAAmB,CAAC,CAAC,CAAC,IAAI,mBAAmB,CAAC,OAAO,KAAK,kBAAkB,CAAC,2BAA2B,CAAC,IAAIA,EAAE,CAAC,EAAE,QAAQV,EAAE,EAAEA,EAAE,KAAK,SAAS,OAAO,EAAEA,IAAI,CAAC,IAAI,EAAE,KAAK,SAAS,MAAM,EAAE,KAAK,SAAS,OAAOA,CAAC,EAAEU,EAAE,KAAK,KAAK,qBAAqB,CAAC,CAAC,CAAC,CAACA,EAAE,KAAK,EAAE,EAAE,KAAK,mBAAmBA,CAAC,CAAC,qBAAqBA,EAAE,CAAC,OAAOA,EAAEA,EAAE,IAAIV,GAAGA,EAAE,KAAK,GAAGA,EAAE,cAAc,EAAE,GAAG,GAAGA,EAAE,SAAS,IAAIA,EAAE,WAAW,EAAE,EAAE,KAAK,GAAG,EAAE,EAAE,CAAC,WAAWU,EAAE,CAAC,KAAK,WAAW,KAAK,SAAS,KAAK,SAAS,KAAK,SAAS,MAAM,EAAE,KAAK,SAAS,KAAK,KAAK,SAAS,KAAK,OAAOA,CAAC,CAAC,EAAE,KAAK,mBAAmB,QAAQ,KAAK,qBAAqB,KAAK,QAAQ,CAAC,EAAE,CAAC,WAAW,CAAC,GAAG,KAAK,UAAU,KAAK,SAAS,OAAO,EAAE,KAAK,SAAS,KAAK,SAAS,MAAM,EAAE,KAAK,SAAS,OAAO,EAAE,EAAE,KAAK,kBAAkB,MAAM,MAAO,OAAM,IAAI,MAAM,yCAAyC,CAAC,CAAC,eAAe,CAAC,GAAG,KAAK,UAAU,KAAK,SAAS,OAAO,EAAE,CAAC,KAAK,SAAS,KAAK,SAAS,MAAM,EAAE,KAAK,SAAS,IAAIA,EAAE,OAAO,OAAO,CAAC,EAAE,KAAK,SAAS,KAAK,SAAS,OAAO,CAAC,CAAC,EAAEA,EAAE,aAAa,EAAEA,EAAE,GAAG,KAAK,OAAO,KAAK,SAAS,OAAO,GAAG,EAAEA,CAAC,EAAE,KAAK,mBAAmB,OAAO,EAAE,EAAE,KAAK,qBAAqB,KAAK,QAAQ,CAAC,CAAC,KAAM,OAAM,IAAI,MAAM,uDAAuD,CAAC,CAAC,UAAUA,EAAE,CAAC,OAAO,KAAK,UAAUA,CAAC,CAAC,CAAC,eAAeA,EAAE,CAAC,KAAK,eAAeA,EAAE,EAAE,EAAEA,CAAC,CAAC,eAAeA,EAAE,CAAC,OAAO,KAAK,eAAeA,CAAC,CAAC,CAAC,cAAcA,EAAE,CAAC,KAAK,cAAcA,EAAE,EAAE,EAAEA,CAAC,CAAC,cAAcA,EAAE,CAAC,OAAO,KAAK,cAAcA,CAAC,CAAC,CAAC,QAAQA,EAAE,CAAC,QAAQV,KAAK,KAAK,eAAe,KAAK,eAAeA,CAAC,EAAE,cAAcU,CAAC,EAAE,QAAQV,KAAK,KAAK,cAAc,KAAK,cAAcA,CAAC,EAAE,cAAcU,CAAC,CAAC,CAAC,EAAE,SAASsyD,GAAGlzD,EAAE,EAAEE,EAAEE,EAAE,CAAC,IAAIC,EAAE,IAAI,IAAI,EAAE,CAAC,EAAE,EAAE,KAAK0B,EAAE,KAAKC,EAAE,IAAI,IAAIC,EAAE,IAAI,IAAI,OAAO,KAAKjC,CAAC,EAAE,IAAI4C,GAAGqqD,GAAGrqD,CAAC,EAAE,CAAC,CAAC,CAAC,EAAExC,EAAEA,GAAG,CAAC,EAAE,IAAIsC,EAAE,IAAI,IAAItC,EAAE,IAAIwC,GAAGqqD,GAAGrqD,EAAE,IAAI,EAAE,CAAC,CAAC,CAAC,EAAED,EAAE,CAAC,GAAG,CAAC,EAAE,KAAKA,EAAE,OAAO,GAAG,CAAC,IAAIC,EAAED,EAAE,IAAI,EAAE,IAAIwwD,GAAGvwD,CAAC,GAAGwwD,GAAIxwD,CAAC,GAAGywD,GAAIzwD,CAAC,IAAI,GAAG,OAAO,EAAEA,EAAEb,EAAE,EAAE,SAAS,IAAIc,GAAGA,EAAE,IAAI,EAAE,OAAOA,GAAGxC,EAAE,IAAIwC,CAAC,CAAC,GAAGxC,EAAE,IAAIuC,EAAE,IAAI,EAAE1C,EAAE0C,EAAE,IAAI,GAAG,MAAM,CAACX,EAAE,IAAIW,EAAE,IAAI,GAAG,CAACF,EAAE,IAAIE,EAAE,IAAI,EAAE,CAAC,GAAGA,EAAE,OAAO,SAAS,EAAE,CAAC,EAAE,KAAKA,EAAE,IAAI,EAAE,QAAQ,CAACA,EAAE,OAAO,QAAQC,GAAG,CAACb,EAAE,IAAIa,EAAE,IAAI,IAAIb,EAAE,IAAIa,EAAE,IAAI,EAAEF,EAAE,KAAKE,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,MAAM,CAAC,OAAO7C,EAAE,QAAQ,EAAE,UAAUK,EAAE,cAAc,EAAE,YAAY,EAAE,WAAW0B,CAAC,CAAC,CAAC,SAASuxD,GAAGtzD,EAAE,EAAE,CAAC,GAAG,CAAC,UAAUE,EAAE,OAAOE,CAAC,EAAE,EAAEC,EAAE,OAAO,KAAKD,CAAC,EAAE,IAAI,GAAG6sD,GAAG,CAAC,EAAE,CAAC,CAAC,EAAE,IAAI,GAAGjtD,EAAE,MAAM,CAAC,CAAC,EAAE,EAAEA,EAAE,WAAW,CAAC,EAAE,EAAE,GAAGE,EAAE,IAAI,OAAO,GAAG,SAAS,EAAE,EAAE,IAAI,EAAE,SAAS6B,EAAE,EAAE,CAAC,MAAM,CAAC,GAAG,IAAI,IAAI,EAAE,IAAIuF,GAAG,CAACA,EAAE,KAAKA,CAAC,CAAC,CAAC,EAAE,OAAO,CAAC,CAAC,CAAC,IAAItF,EAAED,EAAE,CAAC,GAAG1B,EAAE,GAAGL,EAAE,QAAQ,GAAG,CAAC,CAAC,EAAE,OAAO,CAAC,EAAEiC,EAAEF,EAAE,CAAC,GAAGC,EAAE,GAAG,OAAO,OAAOhC,EAAE,KAAK,CAAC,CAAC,EAAE,OAAO,CAAC,EAAE0C,EAAE,IAAI,IAAIT,EAAE,IAAI,GAAG,CAAC,EAAE,KAAK,CAAC,CAAC,CAAC,EAAEU,EAAE,CAAC,EAAE,QAAQ,KAAKV,EAAE,CAACU,EAAE,EAAE,IAAI,EAAEA,EAAE,EAAE,IAAI,GAAG,EAAE,QAAQ2E,KAAK,EAAE,SAAS,EAAEA,CAAC,IAAI3E,EAAE2E,EAAE,IAAI,EAAE,OAAO,mBAAmB3E,EAAE2E,EAAE,IAAI,GAAG3E,EAAE2E,EAAE,IAAI,GAAG,GAAG,CAAC,CAAC,IAAI1E,EAAE,OAAO,QAAQD,CAAC,EAAE,OAAO,CAAC,CAAC,CAAC,CAAC,IAAI,IAAI,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,IAAI,CAAC,EAAEE,EAAE,CAAC,GAAGD,CAAC,EAAE,KAAKA,EAAE,OAAO,GAAG,CAAC,IAAI,EAAEA,EAAE,IAAI,EAAE0E,EAAE5E,EAAE,IAAI,CAAC,EAAE,QAAQoC,KAAKwC,EAAE,SAAS,OAAO,CAAC,EAAE,EAAE3E,EAAEmC,EAAE,IAAI,IAAI,IAAIjC,EAAE,KAAKiC,EAAE,IAAI,EAAElC,EAAE,KAAKkC,EAAE,IAAI,EAAE,CAAC,IAAIhC,EAAED,EAAE,IAAI,GAAGH,EAAE,IAAI,CAAC,CAAC,EAAEsB,EAAEuvD,GAAIzwD,EAAEd,CAAC,EAAE,OAAOwxD,GAAIxvD,EAAEhC,CAAC,EAAEgC,CAAC,CAAC,SAASuvD,GAAIvzD,EAAE,EAAE,CAAC,IAAIE,EAAE,IAAI,IAAIF,EAAE,IAAI8B,GAAG,CAACA,EAAE,KAAKA,CAAC,CAAC,CAAC,EAAE1B,EAAE,EAAE,IAAI0B,GAAGA,EAAE,IAAI,EAAEzB,EAAE,IAAI,IAAID,CAAC,EAAE,KAAKA,EAAE,OAAO,GAAG,CAAC,IAAI0B,EAAE1B,EAAE,IAAI,EAAE2B,EAAE7B,EAAE,IAAI4B,CAAC,EAAE,QAAQE,KAAKD,EAAE,SAAS,CAAC7B,EAAE,IAAI8B,EAAE,IAAI,GAAG3B,EAAE,IAAI2B,EAAE,IAAI,IAAI3B,EAAE,IAAI2B,EAAE,IAAI,EAAE5B,EAAE,KAAK4B,EAAE,IAAI,EAAE,CAAC,OAAOhC,EAAE,OAAO8B,GAAGzB,EAAE,IAAIyB,EAAE,IAAI,CAAC,CAAC,CAAC,IAAI2xD,GAAG,cAAc,KAAK,CAAC,YAAY7yD,EAAE,CAAC,MAAM,6BAA6BA,CAAC,EAAE,CAAC,CAAC,EAAE,SAAS4yD,GAAIxzD,EAAE,EAAE,CAAC,IAAIE,EAAE,IAAI,IAAIF,EAAE,IAAI,CAAC+B,EAAEC,IAAI,CAACD,EAAE,KAAKC,CAAC,CAAC,CAAC,EAAE5B,EAAE,IAAI,IAAI,EAAE,IAAI2B,GAAGA,EAAE,IAAI,CAAC,EAAE1B,EAAE0B,GAAG3B,EAAE,IAAI,OAAO2B,GAAG,SAASA,EAAEA,EAAE,IAAI,EAAE,EAAE,IAAI,IAAI/B,EAAE,IAAI+B,GAAGA,EAAE,IAAI,CAAC,EAAE,EAAEA,GAAG,EAAE,IAAI,OAAOA,GAAG,SAASA,EAAEA,EAAE,IAAI,EAAE,QAAQA,KAAK/B,EAAE,CAAC,QAAQgC,KAAKD,EAAE,SAAS,OAAO,CAAC,EAAE,CAAC,GAAG,CAAC7B,EAAE,IAAI8B,EAAE,IAAI,EAAE,MAAM,IAAIyxD,GAAG,SAASzxD,EAAE,IAAI,YAAYD,EAAE,IAAI,kBAAkB,EAAE,GAAG7B,EAAE,IAAI6B,EAAE,IAAI,EAAE7B,EAAE,IAAI8B,EAAE,IAAI,EAAE,MAAM,IAAIyxD,GAAG,QAAQ1xD,EAAE,IAAI,wCAAwCC,EAAE,IAAI,GAAG,CAAC,CAAC,GAAG,CAAC3B,EAAE0B,CAAC,EAAE,QAAQC,KAAKD,EAAE,OAAO,CAAC,GAAG,CAAC7B,EAAE,IAAI8B,EAAE,IAAI,EAAE,MAAM,IAAIyxD,GAAG,SAASzxD,EAAE,IAAI,YAAYD,EAAE,IAAI,kBAAkB,EAAE,GAAG7B,EAAE,IAAI8B,EAAE,IAAI,EAAE9B,EAAE,IAAI6B,EAAE,IAAI,EAAE,MAAM,IAAI0xD,GAAG,QAAQ1xD,EAAE,IAAI,yCAAyCC,EAAE,IAAI,GAAG,CAAC,CAAC,CAAC,CAAC,SAAS0xD,GAAG1zD,EAAE,CAAC,IAAI,EAAE,IAAI,IAAIA,EAAE,IAAI,CAAC+B,EAAEC,IAAI,CAACD,EAAE,KAAKC,CAAC,CAAC,CAAC,EAAE9B,EAAE,OAAO,iBAAiBE,EAAEJ,EAAE,IAAI,CAAC+B,EAAEC,IAAImxD,GAAGpxD,CAAC,EAAE7B,EAAE8B,CAAC,EAAE3B,EAAE0B,GAAG,CAAC,IAAIC,EAAE5B,EAAE,EAAE,IAAI2B,EAAE,IAAI,CAAC,EAAE,OAAOC,GAAG,KAAK,GAAGA,CAAC,EAAE,EAAEhC,EAAE,IAAI,CAAC+B,EAAEC,IAAID,EAAE,SAAS,IAAI1B,CAAC,EAAE,OAAO,CAAC4B,EAAES,IAAI,KAAK,IAAIT,EAAES,CAAC,EAAEtC,EAAE4B,CAAC,CAAC,CAAC,EAAE,EAAE,IAAI,IAAI,QAAQD,EAAE,EAAEA,EAAE/B,EAAE,OAAO,EAAE+B,EAAE,CAAC,IAAIC,EAAE,EAAED,CAAC,EAAE,GAAGC,IAAI9B,EAAE,SAAS,IAAI+B,EAAEjC,EAAE+B,CAAC,EAAEW,EAAE1C,EAAEgC,CAAC,EAAE,EAAE,IAAIU,EAAE,IAAI,GAAG,EAAE,IAAIA,EAAE,KAAK,CAAC,CAAC,EAAE,EAAE,IAAIA,EAAE,IAAI,EAAE,KAAKT,CAAC,CAAC,CAAC,OAAO,CAAC,CAAC,IAAI0xD,GAAI,IAAI,IAAI,CAAC,SAAS,QAAQ,QAAQ,OAAO,gBAAgB,cAAc,iBAAiB,KAAK,OAAO,CAAC,EAAEC,GAAI,IAAI,IAAI,CAAC,sBAAsB,sBAAsB,sBAAsB,OAAO,CAAC,EAAEC,GAAI,IAAI,IAAI,CAAC,YAAY,cAAc,oBAAoB,sBAAsB,kBAAkB,oBAAoB,kBAAkB,mBAAmB,CAAC,EAAE,SAASV,GAAGnzD,EAAE,CAAC,OAAO2zD,GAAI,IAAI3zD,EAAE,EAAE,CAAC,CAAC,SAASozD,GAAIpzD,EAAE,CAAC,OAAO4zD,GAAI,IAAI5zD,EAAE,EAAE,CAAC,CAAC,SAASqzD,GAAIrzD,EAAE,CAAC,OAAO6zD,GAAI,IAAI7zD,EAAE,EAAE,CAAC,CAAC,IAAI8zD,GAAG,MAAM9zD,EAAC,CAAC,IAAI,WAAW,CAAC,OAAO,KAAK,OAAO,KAAK,OAAO,UAAU,KAAK,UAAU,CAAC,IAAI,qBAAqB,CAAC,OAAO,KAAK,OAAO,KAAK,OAAO,oBAAoB,KAAK,oBAAoB,CAAC,IAAI,WAAW,CAAC,OAAO,KAAK,OAAO,KAAK,OAAO,UAAU,KAAK,UAAU,CAAC,IAAI,UAAU,EAAE,CAAC,IAAIE,EAAE,OAAO,KAAK,CAAC,EAAE,IAAIE,GAAG,EAAEA,CAAC,EAAE,IAAIC,GAAGA,EAAE,EAAE,CAAC,EAAE,KAAK,WAAW,CAAC,EAAE,OAAO,GAAGH,CAAC,EAAE,KAAK,WAAW,CAAC,CAAC,IAAI,gBAAgB,EAAE,CAAC,KAAK,iBAAiB,CAAC,CAAC,IAAI,QAAQ,CAAC,OAAO,KAAK,QAAQ,IAAI,IAAI,CAAC,KAAK,EAAE,KAAK,MAAM,EAAE,WAAW,MAAM,EAAE,WAAW,MAAM,MAAM,OAAO,MAAM,EAAE,WAAW,MAAM,EAAE,WAAW,MAAM,MAAM,MAAM,EAAE,CAAC,CAAC,IAAI,SAAS,CAAC,OAAO,KAAK,SAAS,IAAI,IAAI,CAAC,KAAK,EAAE,KAAK,MAAM,EAAE,WAAW,MAAM,EAAE,WAAW,MAAM,MAAM,OAAO,MAAM,EAAE,WAAW,MAAM,EAAE,WAAW,MAAM,MAAM,MAAM,EAAE,CAAC,CAAC,IAAI,YAAY,CAAC,OAAO,KAAK,QAAQ,IAAI,GAAG,EAAE,cAAc,EAAE,IAAI,CAAC,CAAC,IAAI,aAAa,CAAC,OAAO,KAAK,SAAS,IAAI,GAAG,CAAC,IAAIA,EAAE,EAAE,cAAc,EAAE,KAAK,OAAO,EAAE,cAAc,GAAGA,CAAC,IAAI,EAAE,aAAa,GAAGA,CAAC,CAAC,CAAC,CAAC,IAAI,WAAW,CAAC,OAAO,OAAO,KAAK,KAAK,UAAU,EAAE,OAAO,CAAC,EAAEA,KAAK,EAAEA,CAAC,EAAE,KAAK,WAAWA,CAAC,EAAE,UAAU,GAAG,CAAC,CAAC,CAAC,CAAC,YAAY,EAAEA,EAAE,CAAC,KAAK,MAAM,EAAE,KAAK,OAAOA,EAAE,KAAK,YAAY,IAAI,IAAI,KAAK,mBAAmB,IAAI,IAAI,KAAK,WAAW,CAAC,EAAE,KAAK,UAAU,IAAI,KAAK,WAAW,CAAC,EAAE,KAAK,qBAAqB,CAAC,EAAE,KAAK,wBAAwB,GAAG,KAAK,SAAS,EAAE,QAAQ,KAAK,QAAQ,EAAE,OAAO,KAAK,WAAW,EAAE,UAAU,KAAK,WAAW,EAAE,UAAU,KAAK,WAAW,EAAE,UAAU,EAAE,WAAW,MAAM,OAAO,KAAK,EAAE,SAAS,EAAE,QAAQE,GAAG,CAAC,KAAK,qBAAqBA,CAAC,EAAE,IAAIJ,GAAE,EAAE,UAAUI,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,CAAC,kBAAkB,EAAEF,EAAE,CAAC,IAAIE,EAAE,EAAE,IAAI,GAAG,EAAE,IAAI,EAAE,KAAK,EAAEC,EAAEH,EAAE,IAAI,GAAG,EAAE,IAAI,EAAE,KAAK,EAAE,OAAOE,EAAE,KAAK,KAAK,SAAS,EAAE,KAAKC,EAAE,KAAK,KAAK,SAAS,CAAC,CAAC,QAAQ,EAAEH,EAAE,CAAC,IAAIE,EAAE8yD,GAAG,EAAEhzD,EAAE,KAAK,UAAU,KAAK,UAAU,EAAE,CAAC,cAAcG,EAAE,YAAY,EAAE,WAAW,CAAC,EAAED,EAAE,GAAG,GAAG,KAAK,MAAM,IAAI,MAAM,qCAAqC,EAAE,IAAI,gCAAgC,EAAE,EAAE,4GAA4G,CAAC,GAAG,EAAE,GAAGC,EAAE,OAAO,EAAE,CAAC,IAAI4B,EAAE/B,EAAE,IAAIyC,GAAGA,EAAE,IAAI,EAAED,EAAE,OAAO,KAAK,CAAC,EAAE,MAAM,IAAI,MAAM,+BAA+BT,CAAC,+BAA+BS,CAAC,qCAAqCrC,CAAC,GAAG,CAAC,CAAC,IAAI0B,EAAEuxD,GAAG,KAAK,MAAMlzD,CAAC,EAAE4B,EAAE0xD,GAAG3xD,CAAC,EAAE,MAAM,CAAC,aAAaA,EAAE,iBAAiBC,CAAC,CAAC,CAAC,mBAAmB,EAAE,CAAC,GAAG,GAAG,KAAK,OAAO,KAAK,IAAI9B,EAAE,EAAE,MAAM,EAAE,OAAOlM,GAAGkM,CAAC,EAAEA,CAAC,CAAC,gBAAgB,EAAE,CAAC,OAAO,EAAE,EAAE,IAAI,GAAG,KAAK,mBAAmB,CAAC,CAAC,EAAE,IAAI,CAAC,eAAe,EAAE,CAAC,OAAO,OAAO,YAAY,OAAO,QAAQ,CAAC,EAAE,IAAI,CAAC,CAACA,EAAEE,CAAC,IAAI,CAACF,EAAE,KAAK,gBAAgBE,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,QAAQ,EAAEF,EAAE,CAAC,KAAK,2BAA2B,EAAE,EAAE,KAAK,UAAU,CAAC,EAAE,IAAIE,EAAE,OAAO,KAAK,CAAC,EAAE,KAAK,EAAE,KAAK,YAAY,CAAC,EAAE,KAAK,uBAAuB,CAAC,EAAEF,EAAE,KAAK,WAAWA,CAAC,EAAE,KAAK,aAAaA,CAAC,EAAE,IAAIG,EAAED,EAAE,IAAIwC,GAAG,KAAK,MAAM,MAAMqqD,GAAGrqD,CAAC,EAAE,CAAC,CAAC,CAAC,EAAE,EAAE1C,EAAE,IAAI0C,GAAGqqD,GAAGrqD,CAAC,EAAE,CAAC,CAAC,EAAE,EAAE,IAAI,IAAI,CAAC,EAAEb,EAAE,EAAE,IAAIa,GAAG,KAAK,MAAM,MAAMA,CAAC,CAAC,EAAEb,EAAE,SAAS,IAAIA,EAAE,KAAK,UAAU,IAAIC,EAAE,KAAK,kBAAkB3B,EAAE0B,CAAC,EAAEE,EAAE,KAAK,YAAY,IAAID,CAAC,EAAEC,GAAG,OAAOA,EAAE,KAAK,QAAQ,EAAEF,CAAC,EAAE,KAAK,YAAY,IAAIC,EAAEC,CAAC,GAAG,GAAG,CAAC,KAAK,wBAAwBzQ,EAAE,EAAE,QAAQ,2BAA2B,CAAC,OAAOoR,EAAE,CAAC,KAAK,wBAAwB,GAAG,QAAQ,KAAKA,EAAE,OAAO,CAAC,CAAC,IAAIF,EAAE,CAAC,EAAEC,EAAE,CAAC,EAAE,OAAOlF,EAAE,IAAI,CAAC,IAAImF,EAAE,IAAIqwD,GAAG,KAAK,UAAUvwD,EAAEC,EAAE,KAAK,oBAAoB,KAAK,kBAAkB,EAAEE,EAAE,OAAO,OAAO,CAAC,EAAE,KAAK,SAAS,EAAE,KAAK,0BAA0B,KAAK,iBAAiB,KAAK,eAAe,KAAK,SAAS,GAAG,OAAO,KAAK,CAAC,EAAE,QAAQyE,GAAG,CAAC,GAAG,CAACxC,EAAEL,CAAC,EAAEwoD,GAAG3lD,EAAE1E,CAAC,EAAE8B,EAAE,CAAC,EAAEA,EAAED,CAAC,EAAE,EAAE6C,CAAC,EAAEzE,EAAEiC,CAAC,EAAEJ,EAAE,KAAK,0BAA0B,KAAK,iBAAiBI,CAAC,EAAE,KAAK,gBAAgBJ,CAAC,EAAE,CAAC,EAAE,IAAI5B,EAAE,KAAK,mBAAmBD,CAAC,EAAE,CAAC,aAAamB,EAAE,iBAAiB,CAAC,EAAE/B,EAAE,QAAQqF,KAAKtD,EAAE,CAAC,GAAGnB,EAAEyE,EAAE,IAAI,EAAE,SAAS,IAAIxC,EAAEkuD,GAAG1rD,EAAEzE,EAAED,EAAE,KAAK,gBAAgB,EAAE,GAAGrE,EAAE,UAAUuG,CAAC,EAAE,MAAM,IAAI,MAAM,4BAA4BwC,EAAE,EAAE,gEAAgE,EAAEzE,EAAEyE,EAAE,IAAI,EAAExC,EAAE,KAAK,0BAA0B,KAAK,iBAAiBwC,EAAE,IAAI,EAAE,KAAK,gBAAgBxC,CAAC,GAAG,KAAK,4CAA4CwC,EAAEzE,EAAED,EAAEE,EAAE,EAAE,EAAE,IAAIwE,EAAE,IAAI,CAAC,CAAC,CAAC,OAAO,KAAK,QAAQ,MAAM1E,EAAE,QAAQE,CAAC,EAAE5C,EAAE,IAAIoH,GAAG0lD,GAAG1lD,EAAEzE,EAAED,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,mBAAmB,EAAE,CAAC,IAAI1C,EAAE,CAAC,EAAE,OAAO,MAAM,CAAC,EAAE,OAAO,KAAK,CAAC,EAAE,IAAIE,GAAG,EAAEA,CAAC,CAAC,EAAE,IAAIA,GAAGA,EAAE,IAAIC,GAAGA,EAAE,EAAE,CAAC,CAAC,EAAE,OAAO,IAAI,IAAIH,CAAC,CAAC,CAAC,uBAAuB,EAAEA,EAAEE,EAAEC,EAAE,EAAE,EAAE0B,EAAE,CAAC,GAAG,EAAEoxD,GAAGjzD,CAAC,GAAG,EAAE,IAAI,CAAC,GAAG,CAAC,QAAQ8B,KAAK5B,EAAE,CAAC,EAAE4B,GAAG,OAAOD,EAAEC,EAAE,EAAE,GAAGD,EAAEC,EAAE,EAAE,GAAG,GAAG9B,EAAE,SAAS,QAAQ,QAAQ8B,KAAK9B,EAAE,OAAO,CAAC,GAAGizD,GAAGnxD,CAAC,EAAE,SAAS,IAAIC,EAAEkrD,GAAGnrD,EAAE,KAAK5B,EAAEC,CAAC,EAAE,GAAG4B,GAAG,KAAK,QAAQS,KAAKT,EAAE,CAAC,GAAG,CAACS,GAAGA,EAAE,MAAM,EAAE,IAAIA,EAAE,EAAE,EAAE,SAAS,IAAIC,EAAEZ,EAAEW,EAAE,EAAE,EAAEC,IAAI,GAAGD,EAAE,QAAQ,EAAE,OAAOX,EAAEW,EAAE,EAAE,GAAGC,GAAG,MAAMZ,EAAEW,EAAE,EAAE,GAAG,CAAC,CAAC,CAAC,CAAC,4CAA4C,EAAExC,EAAEE,EAAEC,EAAE,EAAE,EAAE,CAAC,SAAS0B,EAAEC,EAAE,CAAC,OAAOmxD,GAAGnxD,CAAC,GAAG,EAAE,IAAIA,EAAE,IAAI,CAAC,CAAC,GAAG,EAAEmxD,GAAG,CAAC,GAAG,GAAG,MAAM,QAAQnxD,KAAK,EAAE,CAAC,GAAGD,EAAEC,CAAC,EAAE,SAAS,IAAIC,EAAEkrD,GAAGnrD,EAAE,KAAK9B,EAAEE,CAAC,EAAE,QAAQsC,KAAKT,EAAE,CAACS,GAAGA,EAAE,MAAMrC,EAAE,IAAIqC,EAAE,EAAE,GAAGA,EAAE,QAAQ,CAAC,CAAC,CAAC,MAAM,aAAa,EAAExC,EAAE,CAAC,OAAO,KAAK,cAAc,EAAEA,CAAC,CAAC,CAAC,4BAA4B,CAAC,KAAK,mBAAmB,OAAO,OAAO,KAAK,gBAAgB,EAAE,QAAQ,GAAG,CAAC,QAAQA,KAAK,EAAEA,GAAG,CAACA,EAAE,YAAYA,EAAE,QAAQ,CAAC,CAAC,EAAE,KAAK,iBAAiB,KAAK,CAAC,wBAAwB,CAAC,OAAO,KAAK,gBAAgB,CAAC,MAAM,cAAc,EAAEA,EAAEE,EAAE,GAAGC,EAAE,CAAC,EAAE,EAAE,CAAC,EAAE,CAAC,KAAK,2BAA2B,EAAED,IAAI,EAAE,KAAK,UAAU,CAAC,EAAE,KAAK,YAAY,CAAC,EAAE,KAAK,uBAAuB,CAAC,EAAEF,EAAE,KAAK,WAAWA,CAAC,EAAE,KAAK,aAAaA,CAAC,GAAG,GAAG,CAAC,KAAK,wBAAwB1O,EAAE,EAAE,QAAQ,2BAA2B,CAAC,OAAOoR,EAAE,CAAC,KAAK,wBAAwB,GAAG,QAAQ,KAAKA,EAAE,OAAO,CAAC,CAAC,IAAI,EAAE,IAAIqwD,GAAG,KAAK,UAAU5yD,EAAE,EAAE,KAAK,oBAAoB,KAAK,kBAAkB,EAAE,KAAK,0BAA0B,KAAK,iBAAiB,KAAK,eAAe,KAAK,SAAS,GAAG,IAAI0B,EAAE,MAAM,KAAK,uBAAuB,EAAE,EAAE7B,EAAEE,CAAC,EAAE4B,EAAE9B,EAAE,IAAI0C,GAAGoqD,GAAGpqD,EAAEb,EAAE,CAAC,CAAC,EAAEE,EAAED,EAAE,IAAIY,GAAGA,EAAE,EAAE,EAAEF,EAAE,OAAO,KAAK,CAAC,EAAE,IAAIE,GAAG,EAAEA,CAAC,EAAE,EAAE,EAAED,EAAE,IAAI,IAAI,CAAC,GAAGV,EAAE,GAAGS,EAAE,GAAG,KAAK,SAAS,CAAC,EAAE,OAAO,OAAO,OAAOX,CAAC,EAAE,QAAQa,GAAG,CAACA,EAAE,QAAQC,GAAG,CAACA,GAAG,CAACA,EAAE,YAAY,CAACF,EAAE,IAAIE,EAAE,EAAE,GAAGA,EAAE,QAAQ,CAAC,CAAC,CAAC,CAAC,EAAE,KAAK,QAAQ,MAAM,EAAE,QAAQF,CAAC,EAAEX,CAAC,CAAC,MAAM,qBAAqB,EAAE9B,EAAEE,EAAE,CAAC,IAAIC,EAAE,EAAE,OAAO,CAAC,EAAE,EAAE0B,KAAK,EAAE,KAAK,OAAOA,CAAC,EAAE,IAAI,EAAE,EAAE,GAAG,CAAC,CAAC,EAAE,OAAO,KAAK,cAAc1B,EAAE,KAAK,YAAY,GAAGH,EAAEE,CAAC,CAAC,CAAC,MAAM,uBAAuB,EAAEF,EAAEE,EAAEC,EAAE,CAAC,IAAI,EAAE,OAAO,KAAK,CAAC,EAAE,EAAE,EAAE,IAAIqE,GAAG,KAAK,MAAM,MAAMuoD,GAAGvoD,CAAC,EAAE,CAAC,CAAC,CAAC,EAAE3C,EAAE3B,EAAE,IAAIsE,GAAGuoD,GAAGvoD,CAAC,EAAE,CAAC,CAAC,EAAE1C,EAAE,IAAI,IAAID,CAAC,EAAEE,EAAEF,EAAE,IAAI2C,GAAG,KAAK,MAAM,MAAMA,CAAC,CAAC,EAAEzC,EAAE,SAAS,IAAIA,EAAE,KAAK,UAAU,GAAG,CAAC,UAAUS,EAAE,cAAcC,EAAE,YAAYC,EAAE,WAAWC,CAAC,EAAEqwD,GAAG,EAAEjxD,EAAE,KAAK,UAAU,KAAK,UAAU,EAAEa,EAAE,CAAC,GAAG,EAAE,GAAG,KAAK,MAAM,QAAQ,GAAG,KAAK,YAAY,CAAC,CAAC,EAAE,IAAI4B,IAAI,CAAC,KAAKA,EAAE,SAASxE,EAAE,cAAc,EAAE,EAAE8D,EAAE,OAAO,OAAO,CAAC,EAAE,KAAK,SAAS,EAAE,OAAO,KAAK,CAAC,EAAE,QAAQU,GAAG,CAAC,GAAG,CAACC,EAAEC,CAAC,EAAEqoD,GAAGvoD,CAAC,EAAEG,EAAE,CAAC,EAAEA,EAAED,CAAC,EAAE,EAAEF,CAAC,EAAEV,EAAEW,CAAC,EAAEE,CAAC,CAAC,EAAE,IAAI,EAAE,CAAC,EAAEyC,EAAE,KAAK,mBAAmBtD,CAAC,EAAEc,EAAE,CAAC,EAAE,KAAKhC,EAAE,OAAO,GAAG,CAAC,IAAI4B,EAAE,KAAK,aAAa,EAAE5B,EAAE5C,EAAE8D,EAAEc,EAAEwC,EAAEtF,EAAE,EAAEU,CAAC,EAAE,MAAM,QAAQ,IAAIgC,CAAC,CAAC,CAAC9B,GAAG,MAAM,CAACvC,GAAG,QAAQ,KAAK,iIAAiI,EAAE,IAAIoE,EAAExC,EAAE,OAAOyC,GAAG,CAACyuD,GAAGzuD,CAAC,GAAG,CAACsoD,GAAGtoD,EAAE,KAAKV,EAAE9D,CAAC,CAAC,EAAE,IAAIwE,GAAGA,EAAE,IAAI,EAAE,GAAGD,EAAE,OAAO,EAAE,CAAC,IAAIC,EAAE,GAAG,MAAM9B,GAAG,OAAO8B,EAAE,wFAAwF7B,CAAC,KAAK,IAAI,MAAM,+BAA+B4B,CAAC,+BAA+B,CAAC,gDAAgD9B,CAAC,MAAM+B,CAAC,EAAE,CAAC,CAAC,OAAOV,CAAC,CAAC,aAAa,EAAE9D,EAAEE,EAAEC,EAAE,EAAE,EAAE0B,EAAEC,EAAEC,EAAE,CAAC,IAAIS,EAAE,CAAC,EAAE,KAAKxC,EAAE,OAAO,GAAG,CAAC,IAAIyC,EAAEzC,EAAE,IAAI,EAAEE,EAAE,eAAeuC,EAAE,SAAS,IAAIC,EAAE,GAAG,GAAGD,EAAE,KAAK,KAAK,SAASoqD,EAAE,aAAapqD,EAAE,KAAKtC,EAAED,CAAC,IAAI,CAACwC,CAAC,EAAEwqD,GAAGzqD,EAAE,KAAK,KAAKvC,CAAC,GAAGC,EAAEsC,EAAE,KAAK,IAAI,GAAG,KAAK,CAAC,IAAIE,EAAEmwD,GAAGrwD,EAAE,KAAKtC,EAAED,EAAE,KAAK,gBAAgB,EAAEwC,IAAI,CAACA,CAAC,EAAEwqD,GAAGzqD,EAAE,KAAK,KAAKvC,CAAC,GAAG,IAAI0C,EAAE1C,EAAE,eAAe7B,EAAE,UAAUsE,CAAC,EAAEH,EAAE,KAAKG,EAAE,KAAKmB,IAAI3D,EAAEuC,CAAC,EAAEoB,EAAE,KAAK,0BAA0B,KAAK,iBAAiBpB,CAAC,EAAE,KAAK,gBAAgBoB,CAAC,GAAG5D,EAAE,eAAe0C,EAAE,KAAK,uBAAuBF,EAAED,EAAE,KAAKtC,EAAED,EAAE,EAAE2B,EAAEC,CAAC,EAAE,KAAK,kBAAkBW,EAAE,KAAKzC,EAAEE,EAAEC,EAAE,EAAE4B,CAAC,EAAE+B,EAAE,CAAC,GAAG3D,EAAEuC,CAAC,EAAEC,EAAE,KAAK,0BAA0B,KAAK,iBAAiBD,CAAC,EAAE,KAAK,gBAAgBC,CAAC,GAAG,KAAK,uBAAuBD,EAAED,EAAE,KAAKtC,EAAED,EAAE,EAAE2B,EAAEC,CAAC,EAAE,KAAK,kBAAkBW,EAAE,KAAKzC,EAAEE,EAAEC,EAAE,EAAE4B,CAAC,EAAE,MAAM,KAAK,kBAAkBU,EAAE,KAAKzC,EAAEE,EAAEC,EAAE,EAAE4B,CAAC,CAAC,CAAC,OAAOS,CAAC,CAAC,kBAAkB,EAAExC,EAAEE,EAAEC,EAAE,EAAE,EAAE,CAAC,EAAE,SAAS,QAAQ0B,GAAG,CAAC,GAAG,CAACC,CAAC,EAAEorD,GAAGrrD,EAAE,KAAK3B,CAAC,EAAE,EAAE4B,CAAC,GAAG,CAAC,EAAE,IAAID,EAAE,IAAI,IAAIA,EAAE,KAAK,QAAQA,EAAE,WAAW,KAAKE,GAAG,CAAC,CAAC+qD,GAAG/qD,EAAE5B,EAAED,CAAC,CAAC,IAAI,EAAE4B,CAAC,EAAE,GAAG9B,EAAE,KAAK,CAAC,SAASE,EAAE,eAAe,KAAK2B,CAAC,CAAC,GAAGA,EAAE,WAAW,MAAME,GAAG,CAAC,CAAC+qD,GAAG/qD,EAAE5B,EAAED,CAAC,CAAC,IAAI,EAAE4B,CAAC,EAAE,GAAG9B,EAAE,KAAK,CAAC,SAASE,EAAE,eAAe,KAAK2B,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,SAAS,CAAC,OAAO,KAAK,KAAK,SAAS,EAAE,QAAQ,GAAG,KAAK,UAAU,CAAC,EAAE,QAAQ7B,GAAGA,EAAE,QAAQ,CAAC,CAAC,CAAC,CAAC,uBAAuB,EAAE,CAAC,OAAO,KAAK,CAAC,EAAE,QAAQA,GAAG,CAAC,IAAIE,EAAE,EAAEF,CAAC,EAAE,CAACG,CAAC,EAAE4sD,GAAG/sD,CAAC,EAAE,EAAE,KAAK,MAAM,MAAMG,CAAC,EAAE,GAAG,EAAE,WAAW,OAAO,EAAE,WAAW,MAAM,MAAM,CAAC,IAAI,EAAE,EAAE,WAAW,MAAM,MAAM0B,EAAE,EAAE,SAAS3B,EAAE,MAAM,QAAQA,EAAE,MAAM,MAAM,CAAC4B,EAAEC,IAAI,EAAEA,CAAC,IAAI,IAAI,EAAEA,CAAC,IAAID,CAAC,EAAEzD,EAAE,OAAOwD,EAAE,IAAI,sBAAsB,EAAE,IAAI,+CAA+C,CAAC,eAAe3B,EAAE,KAAK,GAAG,CAAC,CAAC,EAAE,WAAW,OAAO,EAAE,WAAW,MAAM,OAAO7B,EAAE,OAAO6B,EAAE,QAAQ,EAAE,WAAW,MAAM,MAAM,IAAI,sBAAsB,EAAE,IAAI,8CAA8C,EAAE,WAAW,MAAM,KAAK,aAAaA,EAAE,KAAK,EAAE,CAAC,CAAC,CAAC,CAAC,UAAU,EAAE,CAAC,IAAIF,EAAEE,EAAE,IAAIC,EAAE,CAAC,EAAE,QAAQ,KAAK,EAAE,CAAC,IAAI,GAAGD,GAAGF,EAAE,KAAK,cAAc,MAAMA,IAAI,OAAO,OAAOA,EAAE,UAAU,MAAME,IAAI,OAAO,OAAOA,EAAE,CAAC,EAAE,GAAG,KAAKC,EAAE,EAAE,IAAI,EAAE,EAAE,CAAC,EAAEA,EAAE,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC,OAAOA,CAAC,CAAC,YAAY,EAAE,CAAC,IAAIH,EAAE,OAAO,KAAK,CAAC,EAAE,OAAOE,GAAG,CAAC,GAAG,CAACC,CAAC,EAAE4sD,GAAG7sD,CAAC,EAAE,OAAO,KAAK,MAAM,MAAMC,CAAC,GAAG,IAAI,CAAC,EAAE,GAAGH,EAAE,OAAO,EAAE,MAAM,IAAI,MAAM,uDAAuDA,CAAC,8BAA8B,CAAC,CAAC,WAAW,EAAE,CAAC,OAAO,EAAE,IAAIA,GAAG,CAAC,IAAIE,EAAEC,EAAE,IAAI,GAAGA,GAAGD,EAAE,KAAK,cAAc,MAAMA,IAAI,OAAO,OAAOA,EAAE,WAAW,MAAMC,IAAI,OAAO,OAAOA,EAAEH,CAAC,EAAE,OAAO,GAAG,KAAK,EAAE,KAAKA,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,aAAa,EAAE,CAAC,EAAE,QAAQA,GAAG,CAAC,GAAG,CAACE,CAAC,EAAE6sD,GAAG/sD,CAAC,EAAE,GAAG,CAAC,KAAK,MAAM,MAAME,CAAC,EAAE,MAAM,IAAI,MAAM,eAAeF,CAAC,6BAA6B,CAAC,CAAC,CAAC,CAAC,EAAM6zD,GAAG,KAAK,CAAC,YAAYnzD,EAAE,CAAC,EAAEV,EAAE,CAAC,EAAE,CAAC,KAAK,sBAAsBU,EAAE,KAAK,aAAaV,CAAC,CAAC,aAAaU,EAAEV,EAAE,CAAC,KAAK,sBAAsBU,CAAC,EAAEV,EAAE,OAAO,KAAK,aAAaA,EAAE,EAAE,EAAEA,CAAC,CAAC,yBAAyBU,EAAE,CAAC,OAAO,KAAK,sBAAsBA,CAAC,CAAC,CAAC,iBAAiBA,EAAE,CAAC,OAAO,KAAK,aAAaA,CAAC,CAAC,CAAC,SAAS,CAAC,QAAQA,KAAK,KAAK,aAAa,KAAK,aAAaA,CAAC,EAAE,cAAc,EAAE,OAAO,KAAK,aAAaA,CAAC,EAAE,QAAQA,KAAK,KAAK,sBAAsB,KAAK,sBAAsBA,CAAC,EAAE,QAAQ,EAAE,OAAO,KAAK,sBAAsBA,CAAC,CAAC,CAAC,EAAMozD,GAAI,oBAAoBC,GAAI,aAAa5vE,GAAG,KAAK,CAAC,IAAI,cAAc,CAAC,OAAO,KAAK,OAAO,CAAC,IAAI,YAAY,CAAC,OAAO,KAAK,SAAS,UAAU,CAAC,IAAI,aAAa,CAAC,OAAO,KAAK,SAAS,WAAW,CAAC,IAAI,QAAQ,CAAC,OAAO,KAAK,SAAS,MAAM,CAAC,IAAI,SAAS,CAAC,OAAO,KAAK,SAAS,OAAO,CAAC,IAAI,SAAS,CAAC,OAAO,KAAK,SAAS,SAAS,CAAC,IAAI,UAAU,CAAC,OAAO,KAAK,UAAU,mBAAmB,CAAC,IAAI,gBAAgB,CAAC,OAAO,KAAK,SAAS,CAAC,IAAI,2BAA2B,CAAC,OAAO,KAAK,oBAAoB,CAAC,YAAYuc,EAAEV,EAAE,CAAC,EAAE,EAAEvM,GAAG,CAAC,KAAK,SAASiN,EAAE,KAAK,YAAYV,EAAE,KAAK,QAAQ,MAAM,KAAK,GAAG,EAAEA,GAAG,OAAO,KAAK,YAAY,CAAC,GAAG,KAAK,gBAAgB,IAAI6zD,EAAE,CAAC,eAAe,CAAC,IAAInzD,EAAE,KAAK,SAAS,GAAGA,EAAE,MAAM,KAAK,KAAK,QAAQA,UAAU,KAAK,YAAY,aAAa,KAAK,KAAK,QAAQ,KAAK,GAAG,mBAAmBA,EAAE,KAAK,WAAW,MAAM,CAAC,IAAIV,EAAE,KAAK,GAAG,gBAAgBU,EAAE,KAAK,WAAW,EAAE,GAAGV,EAAE,SAAS,EAAEA,EAAE,KAAK,KAAK,GAAG,mBAAmBU,EAAE,KAAK,WAAW,CAAC,UAAUV,EAAE,OAAO,EAAE,MAAM,IAAI,MAAM,wBAAwBA,EAAE,MAAM,4BAA4B,CAACU,CAAC,CAAC,GAAG,EAAE,KAAK,QAAQV,EAAE,CAAC,CAAC,CAAC,CAAC,MAAM,CAAC,GAAG,KAAK,cAAc,EAAE,KAAK,QAAQ,MAAM,KAAK,MAAM,IAAI,MAAM,+GAA+G,EAAE,IAAIU,EAAE,KAAK,QAAQ,KAAK,EAAE,OAAOrC,EAAE,UAAUqC,CAAC,EAAEA,EAAE,KAAKV,GAAGA,EAAE,iBAAiB,KAAK,KAAK,SAASA,CAAC,EAAE,KAAK,cAAcA,CAAC,CAAC,EAAE,KAAK,SAASU,CAAC,CAAC,CAAC,SAASA,EAAE,CAAC,IAAIV,EAAE,KAAK,GAAG,cAAcU,EAAE,WAAWA,EAAE,WAAW,EAAE,OAAO,KAAK,kBAAkBA,EAAEV,CAAC,CAAC,CAAC,MAAM,cAAcU,EAAE,CAAC,GAAGA,EAAE,iBAAiB,KAAK,MAAM,IAAI,MAAM,gDAAgD,EAAE,IAAIV,EAAE,MAAMwjB,GAAG9iB,EAAE,gBAAgB,EAAEA,EAAE,WAAW,EAAE,OAAO,KAAK,kBAAkBA,EAAEV,CAAC,CAAC,CAAC,kBAAkBU,EAAEV,EAAE,CAAC,KAAK,UAAUU,EAAE,IAAI,EAAE,KAAK,UAAU,cAAcP,EAAE,KAAK,UAAU,UAAU,GAAG,KAAK,UAAU,qBAAqB,KAAK,CAAC,IAAIwB,EAAE,KAAK,UAAU,oBAAoBA,EAAE,WAAW,OAAOxB,EAAEwB,EAAE,WAAWA,EAAE,sBAAsB,OAAO,KAAK,qBAAqBA,EAAE,qBAAqB,CAAC,GAAG,KAAK,UAAUxB,EAAE,KAAK,QAAQ,GAAG,EAAE,SAAS,QAAQ,IAAI,EAAE,SAAS,WAAW,GAAG,KAAK,SAAS,IAAIyzD,GAAGjE,GAAG,SAAS,eAAe,EAAE,KAAK,SAAS,CAAC,EAAE,KAAK,SAAS,UAAU,KAAK,6BAA6B3vD,CAAC,EAAE,KAAK,SAAS,gBAAgB,KAAK,gBAAgBU,EAAE,kBAAkB,MAAMA,EAAE,iBAAiB,MAAM,KAAK,CAAC,IAAIiB,EAAEguD,GAAG,SAAS,eAAejvD,EAAE,gBAAgB,EAAE,KAAK,YAAY,IAAIkzD,GAAGjyD,CAAC,EAAE,KAAK,YAAY,UAAU,KAAK,SAAS,UAAU,KAAK,YAAY,gBAAgB,KAAK,gBAAgB,KAAK,qBAAqBjB,EAAE,oBAAoB,CAAC,MAAM,EAAE,CAAC,MAAM,KAAKA,EAAEV,EAAE,CAAC,GAAG,OAAOU,GAAG,SAAS,CAAC,IAAI,EAAE,KAAK,GAAG,gBAAgBA,CAAC,EAAE,GAAG,EAAE,SAAS,EAAE,MAAM,IAAI,MAAM,0CAA0CA,CAAC,GAAG,EAAE,GAAG,EAAE,OAAO,EAAE,MAAM,IAAI,MAAM,wBAAwB,EAAE,MAAM,4BAA4BA,CAAC,GAAG,EAAEA,EAAE,EAAE,CAAC,CAAC,CAAC,GAAGA,EAAE,MAAM,KAAK,MAAM,IAAI,MAAM,6GAA6G,EAAE,OAAOA,EAAE,KAAK,KAAK,SAAS,CAAC,CAAC,yBAAyBA,EAAE,CAAC,GAAG,KAAK,qBAAqB,CAAC,IAAIV,EAAEU,aAAajV,GAAG,CAACiV,CAAC,EAAEA,EAAE,EAAE,CAAC,EAAE,OAAOV,EAAE,QAAQ,CAACG,EAAEwB,IAAI,EAAE,KAAK,qBAAqBA,CAAC,CAAC,EAAExB,CAAC,EAAE,CAAC,CAAC,OAAOO,CAAC,CAAC,QAAQA,EAAEV,EAAE,CAAC,IAAI,EAAE,KAAK,QAAQU,EAAE,KAAK,WAAW,EAAE,OAAO,KAAK,yBAAyB,CAAC,CAAC,CAAC,MAAM,aAAaA,EAAEV,EAAE,CAAC,IAAI,EAAE,MAAM,KAAK,aAAaU,EAAE,KAAK,WAAW,EAAE,OAAO,KAAK,yBAAyB,CAAC,CAAC,CAAC,gBAAgBA,EAAE,CAAC,IAAIV,EAAE,GAAG,EAAEU,aAAajV,KAAK,CAAC,MAAM,QAAQiV,CAAC,EAAE,CAAC,IAAIiB,GAAG3B,EAAE,KAAK,aAAa,MAAMA,IAAI,OAAO,OAAOA,EAAE,OAAO,GAAG2B,GAAG,KAAK,QAAQC,KAAKD,EAAE,CAAC,IAAIE,EAAEF,EAAEC,CAAC,EAAEC,EAAE,YAAY,OAAOnB,EAAEkB,CAAC,EAAE,KAAK,0BAA0BC,EAAE,UAAU,EAAE,CAAC,OAAOnB,CAAC,CAACA,EAAE,MAAM,QAAQA,CAAC,EAAEA,EAAE,CAACA,CAAC,EAAE,IAAI,EAAE,OAAO,KAAK,KAAK,yBAAyB,EAAE,OAAO,GAAGA,EAAE,OAAO,IAAI,KAAK,WAAW,OAAO,MAAM,IAAI,MAAM,oDAAoD,KAAK,WAAW,OAAO,CAAC,+CAA+CA,EAAE,MAAM,0BAA0B,EAAE,IAAIP,EAAE,EAAE,OAAO,KAAK,WAAW,OAAO,CAACwB,EAAEC,IAAI,CAAC,IAAIC,EAAEC,EAAE,EAAE,IAAIU,GAAG,GAAGV,GAAGD,EAAE,KAAK,aAAa,MAAMA,IAAI,OAAO,OAAOA,EAAE,UAAU,MAAMC,IAAI,OAAO,OAAOA,EAAEF,CAAC,KAAK,MAAM,IAAI,OAAO,OAAO,EAAE,WAAW,OAAOY,GAAG,KAAKb,EAAEC,CAAC,EAAE,KAAK,0BAA0BY,CAAC,EAAEb,EAAEC,CAAC,EAAElB,EAAEP,GAAG,EAAEwB,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,iBAAiBjB,EAAE,CAAC,OAAOA,EAAEA,GAAG,KAAK,YAAY,MAAM,QAAQA,CAAC,EAAEA,EAAE,CAACA,CAAC,CAAC,CAAC,yBAAyB,CAAC,OAAO,KAAK,aAAa,KAAK,CAAC,EAAE,KAAK,sBAAsB,KAAK,KAAK,YAAY,QAAQ,CAAC,EAAE,CAAC,CAAC,EAAE,KAAK,YAAY,QAAQ,CAAC,EAAE,OAAO,KAAK,KAAK,qBAAqB,OAAO,CAAC,CAAC,CAAC,MAAM,8BAA8B,CAAC,OAAO,KAAK,aAAa,KAAK,CAAC,EAAE,KAAK,sBAAsB,KAAK,KAAK,YAAY,aAAa,CAAC,EAAE,CAAC,CAAC,EAAE,KAAK,YAAY,aAAa,CAAC,EAAE,OAAO,KAAK,KAAK,qBAAqB,OAAO,CAAC,CAAC,CAAC,6BAA6BA,EAAE,CAAC,GAAG,KAAK,0BAA0B,CAAC,EAAE,KAAK,qBAAqB,CAAC,IAAIV,EAAE,KAAK,qBAAqB,QAAQ,EAAE,OAAO,KAAKA,CAAC,EAAE,QAAQG,EAAE,EAAEA,EAAE,EAAE,OAAOA,IAAI,CAAC,IAAIwB,EAAE,EAAExB,CAAC,EAAEyB,EAAE5B,EAAE2B,CAAC,EAAE,KAAK,0BAA0BC,EAAE,UAAU,EAAElB,EAAEP,CAAC,CAAC,CAAC,CAAC,CAAC,QAAQO,EAAEV,EAAE,CAAC,KAAK,2BAA2B,MAAM,KAAK,6BAA6B,KAAK,wBAAwB,CAAC,EAAEU,EAAE,KAAK,gBAAgBA,CAAC,EAAEV,EAAE,KAAK,iBAAiBA,CAAC,EAAE,IAAI,EAAE,KAAK,SAAS,QAAQU,EAAEV,CAAC,EAAE,OAAO,EAAE,OAAO,EAAE,EAAE,EAAE,CAAC,CAAC,CAAC,MAAM,aAAaU,EAAEV,EAAE,CAAC,KAAK,2BAA2B,MAAM,KAAK,6BAA6B,MAAM,KAAK,6BAA6B,CAAC,EAAEU,EAAE,KAAK,gBAAgBA,CAAC,EAAEV,EAAE,KAAK,iBAAiBA,CAAC,EAAE,IAAI,EAAE,MAAM,KAAK,SAAS,aAAaU,EAAEV,CAAC,EAAE,OAAO,EAAE,OAAO,EAAE,EAAE,EAAE,CAAC,CAAC,CAAC,wBAAwB,CAAC,OAAO,KAAK,SAAS,uBAAuB,CAAC,CAAC,4BAA4B,CAAC,KAAK,SAAS,2BAA2B,CAAC,CAAC,6BAA6BU,EAAE,CAAC,OAAO,OAAO,KAAKA,CAAC,EAAE,OAAO,CAACV,EAAE,KAAKA,EAAE,CAAC,EAAE,CAACU,EAAE,CAAC,CAAC,EAAEV,GAAG,CAAC,CAAC,CAAC,CAAC,SAAS,CAAC,KAAK,SAAS,QAAQ,EAAE,KAAK,cAAc,KAAK,YAAY,QAAQ,EAAE,KAAK,2BAA2BvP,GAAG,KAAK,yBAAyB,GAAG,KAAK,gBAAgB,QAAQ,CAAC,CAAC,EAAE,eAAe6D,GAAIwL,EAAE,EAAE,CAAC,EAAEE,EAAEvM,GAAG,CAAC,GAAGqM,GAAG,KAAK,MAAM,IAAI,MAAM,wGAAwG,EAAE,GAAG,OAAO,EAAE,CAAC,GAAG,EAAE,WAAW,OAAOA,GAAG,WAAWA,EAAEk0D,GAAIl0D,CAAC,GAAG,IAAII,EAAE,IAAI/b,GAAG2b,EAAE,EAAEE,CAAC,EAAE,OAAO,MAAME,EAAE,KAAK,EAAEA,CAAC,CAAC,SAAS3L,GAAIuL,EAAE,CAAC,GAAGA,GAAG,KAAK,MAAM,IAAI,MAAM,sHAAsH,EAAE,IAAI,EAAE,GAAGA,aAAa,MAAM,CAAC,GAAG,CAACI,EAAEC,CAAC,EAAEL,EAAE,GAAG,CAACI,EAAE,MAAM,IAAI,MAAM,kDAAkD,EAAE,GAAG,CAACC,GAAG,EAAEA,aAAa,aAAa,MAAM,IAAI,MAAM,mEAAmE,EAAE,GAAG,EAAE,kBAAkBD,GAAG,MAAM,IAAI,MAAM,uCAAuC,EAAE,GAAG,EAAE,oBAAoBA,GAAG,MAAM,IAAI,MAAM,yCAAyC,EAAE,IAAI,EAAEzM,GAAG,eAAeyM,EAAE,eAAe,EAAE,EAAEzM,GAAG,6BAA6ByM,EAAE,EAAEC,CAAC,EAAE,EAAE1M,GAAG,eAAe,CAAC,CAAC,SAAS,SAASqM,EAAE,EAAEA,UAAU,kBAAkBA,GAAG,gBAAgBA,GAAG,eAAeA,EAAE,EAAErM,GAAG,eAAeqM,CAAC,MAAO,OAAM,IAAI,MAAM,sBAAsB,EAAE,IAAIE,EAAE,IAAI7b,GAAG,CAAC,EAAE,OAAO6b,EAAE,KAAK,EAAEA,CAAC,CAAC,SAASg0D,GAAIl0D,EAAE,CAAC,OAAOA,EAAE,SAAS,GAAG,IAAIA,EAAEA,EAAE,KAAK,GAAGA,CAAC,GAAGi0D,EAAG,GAAGD,EAAG,EAAE,CAAC,IAAIn1D,GAAG,SAAa5O,GAAG,CAAC,EAAEgQ,GAAGhQ,GAAG,CAAC,WAAW,IAAIkkE,GAAG,QAAQ,IAAIC,GAAG,eAAe,IAAIC,GAAG,gBAAgB,IAAIC,GAAG,cAAc,IAAIC,GAAG,MAAM,IAAIC,GAAG,IAAI,IAAIC,GAAG,KAAK,IAAIC,GAAG,UAAU,IAAIC,GAAG,WAAW,IAAIC,GAAG,aAAa,IAAIC,GAAG,OAAO,IAAIC,GAAG,IAAI,IAAIC,EAAE,CAAC,EAAE,IAAIC,GAAG10D,GAAGgF,GAAG,CAAC,EAAM2vD,GAAG30D,GAAGgF,GAAG,CAAC,EAAE,SAAS4vD,GAAGl1D,EAAE,EAAE,CAAC,OAAOm1D,GAAGn1D,EAAE,CAAC,CAAC,CAAC,SAASm1D,GAAGn1D,EAAE,EAAEE,EAAE,IAAI,IAAIE,EAAE,IAAI,IAAI,CAAC,GAAGJ,GAAG,KAAK,OAAO,KAAK,GAAG,OAAO,MAAM,YAAYA,aAAa,KAAK,OAAOA,EAAE,MAAM,EAAE,GAAGI,EAAE,IAAIJ,CAAC,EAAE,MAAM,IAAI,MAAM,wCAAwC,EAAE,GAAGE,EAAE,IAAIF,CAAC,EAAE,OAAOE,EAAE,IAAIF,CAAC,EAAE,IAAIK,EAAE,EAAEL,CAAC,EAAE,GAAGK,EAAE,SAASA,EAAE,QAAQ,KAAK,MAAM,IAAI,MAAM,mEAAmE,EAAE,GAAGA,EAAE,QAAQ,GAAG+0D,GAAGp1D,CAAC,EAAE,CAAC,IAAI,EAAE,MAAM,QAAQA,CAAC,EAAE,CAAC,EAAE,CAAC,EAAEI,EAAE,IAAIJ,CAAC,EAAE,QAAQ,KAAKA,EAAE,CAAC,IAAI+B,EAAE/B,EAAE,CAAC,EAAEgC,EAAEmzD,GAAGpzD,EAAE,EAAE7B,EAAEE,CAAC,EAAE,EAAE,CAAC,EAAE4B,CAAC,CAAC,OAAO5B,EAAE,OAAOJ,CAAC,EAAEA,EAAE,YAAY,EAAE,UAAUA,EAAE,WAAW,CAAC,KAAM,OAAM,IAAI,MAAM,yCAAyCA,CAAC,EAAE,MAAO,QAAOE,EAAE,IAAIF,EAAEK,EAAE,KAAK,EAAEA,EAAE,KAAK,CAAC,SAASg1D,GAAGr1D,EAAE,EAAEs1D,GAAG,CAAC,OAAOC,GAAGv1D,EAAE,CAAC,CAAC,CAAC,SAASu1D,GAAGv1D,EAAE,EAAEE,EAAE,IAAI,IAAI,CAAC,IAAIE,EAAEJ,EAAE,CAAC,EAAE,GAAGE,EAAE,IAAIE,CAAC,EAAE,MAAM,IAAI,MAAM,wCAAwC,EAAE,IAAIC,EAAE,EAAEL,CAAC,EAAE,GAAGK,EAAE,SAASA,EAAE,QAAQ,KAAK,MAAM,IAAI,MAAM,mEAAmE,EAAE,GAAGA,EAAE,QAAQ,GAAG+0D,GAAGh1D,CAAC,EAAE,CAAC,IAAI,EAAE,MAAM,QAAQA,CAAC,EAAE,CAAC,EAAE,CAAC,EAAEF,EAAE,IAAIE,CAAC,EAAE,QAAQ,KAAKA,EAAE,CAAC,IAAI2B,EAAE/B,EAAE,IAAIiC,GAAGA,EAAE,CAAC,CAAC,EAAED,EAAEuzD,GAAGxzD,EAAE,EAAE7B,CAAC,EAAE,EAAE,CAAC,EAAE8B,CAAC,CAAC,OAAO9B,EAAE,OAAOE,CAAC,EAAE,CAAC,KAAM,OAAM,IAAI,MAAM,yCAAyCA,CAAC,EAAE,MAAO,QAAOC,EAAE,KAAK,CAAC,SAASi1D,GAAGt1D,EAAE,CAAC,OAAOA,IAAI,KAAK,KAAKo1D,GAAGp1D,EAAE,CAAC,CAAC,EAAE,CAAC,MAAM,KAAK,QAAQ,EAAE,EAAE,CAAC,MAAMA,EAAE,QAAQ,EAAE,CAAC,CAAC,eAAew1D,GAAGx1D,EAAE,EAAE,CAAC,IAAIE,EAAE,IAAI,IAAIi1D,GAAGn1D,EAAE,EAAEE,CAAC,EAAE,QAAQG,KAAK,MAAM,KAAKH,EAAE,KAAK,CAAC,EAAE,CAAC,IAAI2B,EAAE3B,EAAE,IAAIG,CAAC,EAAE,GAAG9B,EAAE,UAAUsD,CAAC,EAAE,CAAC,IAAIC,EAAE,MAAMD,EAAE3B,EAAE,IAAIG,EAAEyB,CAAC,CAAC,CAAC,CAAC,OAAOqzD,GAAGn1D,EAAE,EAAEE,CAAC,CAAC,CAAC,SAASk1D,GAAGp1D,EAAE,CAAC,IAAI,EAAE,GAAG,GAAGxO,EAAE,EAAE,IAAI,YAAY,EAAE,EAAEwO,aAAa,gBAAgB,CAAC,GAAG,CAAC,cAAcE,CAAC,EAAE8F,GAAG,EAAE,EAAEhG,aAAaE,CAAC,CAAC,OAAOF,GAAG,MAAM,CAAC,YAAY,OAAOA,CAAC,IAAI,MAAM,QAAQA,CAAC,GAAG,OAAOA,GAAG,UAAU,EAAEA,aAAarU,KAAK,EAAEqU,aAAa,UAAU,CAAC,EAAE,CAAC,SAASy1D,GAAGz1D,EAAE,CAAC,OAAOA,GAAG,MAAM01D,GAAI11D,CAAC,GAAG,MAAM,QAAQA,CAAC,GAAG,OAAOA,GAAG,UAAUA,aAAarU,IAAI4S,EAAE,aAAayB,CAAC,CAAC,CAAC,SAAS01D,GAAI11D,EAAE,CAAC,OAAOA,IAAI,MAAM,OAAOA,GAAG,UAAU,OAAOA,GAAG,UAAU,CAAC,SAAS21D,GAAG31D,EAAE,CAAC,OAAOk1D,GAAGl1D,EAAE41D,EAAG,CAAC,CAAC,SAASA,GAAI51D,EAAE,CAAC,OAAOA,aAAarU,GAAG,CAAC,MAAMqU,EAAE,MAAM,EAAE,QAAQ,EAAE,EAAEo1D,GAAGp1D,CAAC,EAAE,CAAC,MAAM,KAAK,QAAQ,EAAE,EAAE,CAAC,MAAMA,EAAE,QAAQ,EAAE,CAAC,CAAC,IAAI61D,GAAG,KAAK,CAAC,YAAYj1D,EAAE,CAAC,GAAG,KAAK,SAASA,EAAE,KAAK,MAAM,EAAE,KAAK,IAAI,EAAEA,GAAG,KAAK,MAAM,IAAI,WAAW,iDAAiD,EAAE,GAAGA,EAAE,EAAE,MAAM,IAAI,WAAW,2CAA2C,EAAE,KAAK,KAAK,IAAI,MAAMA,CAAC,EAAE,KAAK,gBAAgB,EAAEA,CAAC,CAAC,KAAKA,EAAE,CAAC,KAAKA,EAAE,GAAGA,GAAG,KAAK,gBAAgB,OAAOA,EAAE,KAAK,eAAe,CAAC,IAAIA,EAAE,CAAC,GAAGA,EAAE,EAAE,MAAM,IAAI,WAAW,qCAAqC,EAAE,OAAO,KAAK,KAAKA,EAAE,KAAK,QAAQ,CAAC,CAAC,IAAIA,EAAEV,EAAE,CAAC,GAAGU,EAAE,EAAE,MAAM,IAAI,WAAW,qCAAqC,EAAE,KAAK,KAAKA,EAAE,KAAK,QAAQ,EAAEV,CAAC,CAAC,QAAQ,CAAC,IAAIU,EAAE,KAAK,IAAI,KAAK,MAAM,OAAOA,EAAE,IAAIA,EAAE,KAAK,gBAAgBA,GAAGA,CAAC,CAAC,QAAQ,CAAC,OAAO,KAAK,OAAO,IAAI,KAAK,QAAQ,CAAC,SAAS,CAAC,OAAO,KAAK,OAAO,IAAI,CAAC,CAAC,KAAKA,EAAE,CAAC,GAAG,KAAK,OAAO,EAAE,MAAM,IAAI,WAAW,sBAAsB,EAAE,KAAK,IAAI,KAAK,IAAIA,CAAC,EAAE,KAAK,IAAI,KAAK,KAAK,KAAK,IAAI,CAAC,CAAC,CAAC,QAAQA,EAAE,CAAC,QAAQV,KAAKU,EAAE,KAAK,KAAKV,CAAC,CAAC,CAAC,KAAK,CAAC,GAAG,KAAK,QAAQ,EAAE,MAAM,IAAI,WAAW,uBAAuB,EAAE,KAAK,IAAI,KAAK,KAAK,KAAK,IAAI,CAAC,EAAE,IAAIU,EAAE,KAAK,IAAI,KAAK,GAAG,EAAE,OAAO,KAAK,IAAI,KAAK,IAAI,MAAM,EAAEA,CAAC,CAAC,QAAQA,EAAE,CAAC,GAAG,KAAK,OAAO,EAAE,MAAM,IAAI,WAAW,sBAAsB,EAAE,KAAK,MAAM,KAAK,KAAK,KAAK,MAAM,CAAC,EAAE,KAAK,IAAI,KAAK,MAAMA,CAAC,CAAC,CAAC,OAAO,CAAC,GAAG,KAAK,QAAQ,EAAE,MAAM,IAAI,WAAW,uBAAuB,EAAE,IAAIA,EAAE,KAAK,IAAI,KAAK,KAAK,EAAE,OAAO,KAAK,IAAI,KAAK,MAAM,MAAM,EAAE,KAAK,MAAM,KAAK,KAAK,KAAK,MAAM,CAAC,EAAEA,CAAC,CAAC,cAAcA,EAAE,CAAC,GAAG,KAAK,QAAQ,EAAE,MAAM,IAAI,WAAW,uBAAuB,EAAE,IAAIV,EAAE,KAAK,KAAK,KAAK,MAAMU,CAAC,EAAE,EAAE,KAAK,IAAIV,CAAC,EAAE,OAAO,KAAK,IAAIA,EAAE,KAAK,IAAI,CAAC,EAAE,CAAC,CAAC,EAAM41D,GAAG,MAAM91D,WAAU61D,EAAE,CAAC,aAAa,CAAC,MAAM71D,GAAE,gBAAgB,CAAC,CAAC,QAAQ,CAAC,MAAM,EAAE,CAAC,KAAK,EAAE,CAAC,MAAM,OAAO,GAAG,KAAK,OAAO,EAAE,MAAM,KAAK,CAAC,CAAC,CAAC,QAAQ,EAAE,CAAC,MAAM,OAAO,GAAG,KAAK,OAAO,EAAE,MAAM,QAAQ,CAAC,CAAC,CAAC,QAAQ,CAAC,IAAI,EAAE,KAAK,SAAS,EAAEE,EAAE,IAAI,MAAM,CAAC,EAAEE,EAAE,KAAK,OAAO,EAAE,QAAQC,EAAE,EAAEA,EAAED,EAAEC,IAAIH,EAAEG,CAAC,EAAE,KAAK,IAAI,KAAK,KAAK,KAAK,MAAMA,CAAC,CAAC,EAAE,KAAK,KAAKH,EAAE,KAAK,SAAS,EAAE,KAAK,gBAAgB,EAAE,KAAK,SAAS,KAAK,MAAM,EAAE,KAAK,IAAIE,CAAC,CAAC,EAAE01D,GAAG,iBAAiB,GAAG,SAASC,GAAG/1D,EAAE,CAAC,OAAO,IAAIg2D,GAAGh2D,CAAC,CAAC,CAAC,SAASi2D,GAAGj2D,EAAE,CAAC,OAAO,IAAIk2D,GAAGl2D,CAAC,CAAC,CAAC,SAASm2D,GAAGn2D,EAAE,EAAE,CAAC,OAAO,IAAIo2D,GAAGp2D,EAAE,CAAC,CAAC,CAAC,SAASq2D,GAAGr2D,EAAE,EAAEs2D,GAAG,KAAK,CAAC,OAAO,IAAIC,GAAGv2D,EAAE,CAAC,CAAC,CAAC,IAAIw2D,GAAG,KAAK,CAAC,MAAM,SAAS,CAAC,IAAI51D,EAAE,CAAC,EAAEV,EAAE,MAAM,KAAK,KAAK,EAAE,KAAK,CAACA,EAAE,MAAMU,EAAE,KAAKV,EAAE,KAAK,EAAEA,EAAE,MAAM,KAAK,KAAK,EAAE,OAAOU,CAAC,CAAC,MAAM,gBAAgB,CAAC,IAAIA,EAAE,KAAK,SAAS,GAAG,EAAEV,EAAE,CAAC,EAAE,EAAE,MAAMU,EAAE,KAAK,EAAE,KAAK,CAAC,EAAE,MAAMV,EAAE,KAAK,EAAE,KAAK,EAAE,EAAE,MAAMU,EAAE,KAAK,EAAE,OAAOV,CAAC,CAAC,MAAM,cAAc,CAAC,IAAIU,EAAE,MAAM,KAAK,KAAK,EAAE,KAAK,CAACA,EAAE,MAAMA,EAAE,MAAM,KAAK,KAAK,CAAC,CAAC,MAAM,aAAaA,EAAE,CAAC,IAAIV,EAAE,MAAM,KAAK,KAAK,EAAE,EAAEU,EAAEV,EAAE,KAAK,EAAE,KAAK,CAACA,EAAE,MAAM,GAAGA,EAAE,MAAM,KAAK,KAAK,EAAE,EAAEU,EAAEV,EAAE,KAAK,CAAC,CAAC,aAAaU,EAAE,CAAC,OAAO,IAAI61D,GAAG,KAAK71D,CAAC,CAAC,CAAC,OAAOA,EAAE,CAAC,OAAO,IAAI81D,GAAG,KAAK91D,CAAC,CAAC,CAAC,IAAIA,EAAE,CAAC,OAAO,IAAI+1D,GAAG,KAAK/1D,CAAC,CAAC,CAAC,SAASA,EAAE,CAAC,OAAO,IAAIg2D,GAAG,KAAKh2D,CAAC,CAAC,CAAC,eAAeA,EAAE,CAAC,OAAO,IAAIg2D,GAAG,KAAKh2D,CAAC,EAAE,OAAO,CAAC,CAAC,QAAQA,EAAE,CAAC,OAAO,IAAIi2D,GAAG,KAAKj2D,CAAC,CAAC,CAAC,MAAM,aAAaA,EAAE,CAAC,OAAO,KAAK,IAAIA,CAAC,EAAE,aAAa,CAAC,CAAC,MAAM,cAAcA,EAAE,CAAC,OAAO,KAAK,eAAeA,CAAC,EAAE,aAAaV,GAAGA,IAAI,EAAE,CAAC,CAAC,cAAcU,EAAEV,EAAE,GAAG,CAAC,OAAO,IAAI42D,GAAG,KAAKl2D,EAAEV,CAAC,CAAC,CAAC,iBAAiBU,EAAEV,EAAE,GAAG,EAAEo1D,GAAG,CAAC,OAAO,KAAK,cAAc10D,EAAEV,CAAC,EAAE,IAAI2B,GAAGwzD,GAAGxzD,EAAE,CAAC,CAAC,CAAC,CAAC,YAAYjB,EAAEV,EAAE,CAAC,OAAO,IAAIk2D,GAAGL,GAAG,CAAC,KAAKn1D,CAAC,CAAC,EAAEV,CAAC,CAAC,CAAC,KAAKU,EAAE,CAAC,OAAOA,EAAE,GAAGA,GAAG,KAAK,KAAK,IAAIm2D,GAAG,KAAKn2D,CAAC,CAAC,CAAC,KAAKA,EAAE,CAAC,OAAOA,EAAE,GAAGA,GAAG,KAAK,KAAK,IAAIo2D,GAAG,KAAKp2D,CAAC,CAAC,CAAC,SAASA,EAAE,CAAC,OAAO,IAAIq2D,GAAG,KAAKr2D,CAAC,CAAC,CAAC,QAAQA,EAAEV,EAAE,CAAC,OAAO,IAAIg3D,GAAG,KAAKt2D,EAAEV,CAAC,CAAC,CAAC,QAAQ,CAAC,OAAO,IAAIi3D,GAAG,IAAI,CAAC,CAAC,EAAEnB,GAAG,cAAcQ,EAAE,CAAC,YAAY51D,EAAE,CAAC,MAAM,EAAE,KAAK,MAAMA,EAAE,KAAK,KAAK,CAAC,CAAC,SAAS,CAAC,MAAM,YAAY,KAAK,MAAM,MAAM,QAAQ,CAAC,MAAM,MAAM,CAAC,GAAG,KAAK,MAAM,KAAK,MAAM,OAAO,MAAM,CAAC,MAAM,KAAK,KAAK,EAAE,EAAE,IAAIA,EAAE,KAAK,MAAM,KAAK,IAAI,EAAE,OAAO,KAAK,OAAO,CAAC,MAAM+0D,GAAG/0D,CAAC,EAAE,KAAK,EAAE,CAAC,CAAC,EAAEs1D,GAAG,cAAcM,EAAE,CAAC,YAAY51D,EAAE,CAAC,MAAM,EAAE,KAAK,OAAOA,CAAC,CAAC,SAAS,CAAC,MAAM,eAAe,CAAC,MAAM,MAAM,CAAC,GAAG,CAAC,OAAO,KAAK,OAAO,CAAC,OAAOA,EAAE,CAAC,MAAMA,EAAE,QAAQ,mDAAmDA,EAAE,OAAO,GAAGA,CAAC,CAAC,CAAC,EAAEu2D,GAAG,cAAcX,EAAE,CAAC,YAAY51D,EAAE,CAAC,MAAM,EAAE,KAAK,SAASA,EAAE,KAAK,SAAS,QAAQ,QAAQ,CAAC,MAAM,KAAK,KAAK,EAAE,CAAC,CAAC,CAAC,SAAS,CAAC,MAAM,GAAG,KAAK,SAAS,QAAQ,CAAC,YAAY,CAAC,MAAM,MAAM,CAAC,OAAO,KAAK,SAAS,KAAK,SAAS,KAAK,IAAI,KAAK,WAAW,CAAC,EAAE,KAAK,QAAQ,CAAC,MAAM,YAAY,CAAC,OAAO,KAAK,SAAS,KAAK,CAAC,CAAC,EAAEo2D,GAAG,cAAcR,EAAE,CAAC,YAAY51D,EAAEV,EAAE,CAAC,MAAM,EAAE,KAAK,SAASU,EAAE,KAAK,SAASV,EAAE,KAAK,MAAM,EAAE,KAAK,SAAS,QAAQ,QAAQ,CAAC,MAAM,KAAK,KAAK,EAAE,CAAC,CAAC,CAAC,SAAS,CAAC,MAAM,GAAG,KAAK,SAAS,QAAQ,CAAC,UAAU,CAAC,MAAM,MAAM,CAAC,OAAO,KAAK,SAAS,KAAK,SAAS,KAAK,IAAI,KAAK,WAAW,CAAC,EAAE,KAAK,QAAQ,CAAC,MAAM,YAAY,CAAC,KAAK,KAAK,QAAQ,KAAK,UAAU,CAAC,IAAIU,EAAE,MAAM,KAAK,SAAS,KAAK,EAAE,GAAGA,EAAE,KAAK,OAAOA,EAAEjQ,GAAGiQ,EAAE,KAAK,CAAC,CAAC,OAAO,KAAK,SAAS,KAAK,CAAC,CAAC,EAAEm2D,GAAG,cAAcP,EAAE,CAAC,YAAY51D,EAAEV,EAAE,CAAC,MAAM,EAAE,KAAK,SAASU,EAAE,KAAK,SAASV,EAAE,KAAK,MAAM,CAAC,CAAC,SAAS,CAAC,MAAM,GAAG,KAAK,SAAS,QAAQ,CAAC,UAAU,CAAC,MAAM,MAAM,CAAC,OAAO,KAAK,SAAS,KAAK,SAAS,CAAC,MAAM,KAAK,KAAK,EAAE,EAAE,KAAK,SAAS,KAAK,CAAC,CAAC,EAAE42D,GAAG,cAAcN,EAAE,CAAC,YAAY51D,EAAEV,EAAE,EAAE,GAAG,CAAC,MAAM,EAAE,KAAK,SAASU,EAAE,KAAK,UAAUV,EAAE,KAAK,qBAAqB,EAAE,KAAK,SAAS,QAAQ,QAAQ,CAAC,MAAM,KAAK,KAAK,EAAE,CAAC,CAAC,CAAC,SAAS,CAAC,MAAM,GAAG,KAAK,SAAS,QAAQ,CAAC,mBAAmB,CAAC,MAAM,MAAM,CAAC,OAAO,KAAK,SAAS,KAAK,SAAS,KAAK,IAAI,KAAK,WAAW,CAAC,EAAE,KAAK,QAAQ,CAAC,MAAM,YAAY,CAAC,IAAIU,EAAE,CAAC,EAAE,KAAKA,EAAE,OAAO,KAAK,WAAW,CAAC,IAAIV,EAAE,MAAM,KAAK,SAAS,KAAK,EAAE,GAAGA,EAAE,KAAK,OAAO,KAAK,sBAAsBU,EAAE,OAAO,EAAE,CAAC,MAAMA,EAAE,KAAK,EAAE,EAAE,CAAC,MAAM,KAAK,KAAK,EAAE,EAAEA,EAAE,KAAKV,EAAE,KAAK,CAAC,CAAC,MAAM,CAAC,MAAMU,EAAE,KAAK,EAAE,CAAC,CAAC,EAAE81D,GAAG,cAAcF,EAAE,CAAC,YAAY51D,EAAEV,EAAE,CAAC,MAAM,EAAE,KAAK,SAASU,EAAE,KAAK,UAAUV,EAAE,KAAK,SAAS,QAAQ,QAAQ,CAAC,MAAM,KAAK,KAAK,EAAE,CAAC,CAAC,CAAC,SAAS,CAAC,MAAM,GAAG,KAAK,SAAS,QAAQ,CAAC,YAAY,CAAC,MAAM,MAAM,CAAC,OAAO,KAAK,SAAS,KAAK,SAAS,KAAK,IAAI,KAAK,WAAW,CAAC,EAAE,KAAK,QAAQ,CAAC,MAAM,YAAY,CAAC,OAAO,CAAC,IAAIU,EAAE,MAAM,KAAK,SAAS,KAAK,EAAE,GAAGA,EAAE,MAAM,KAAK,UAAUA,EAAE,KAAK,EAAE,OAAOA,EAAEjQ,GAAGiQ,EAAE,KAAK,CAAC,CAAC,CAAC,EAAE+1D,GAAG,cAAcH,EAAE,CAAC,YAAY51D,EAAEV,EAAE,CAAC,MAAM,EAAE,KAAK,SAASU,EAAE,KAAK,UAAUV,CAAC,CAAC,SAAS,CAAC,MAAM,GAAG,KAAK,SAAS,QAAQ,CAAC,SAAS,CAAC,MAAM,MAAM,CAAC,IAAIU,EAAE,MAAM,KAAK,SAAS,KAAK,EAAE,GAAGA,EAAE,KAAK,MAAM,CAAC,MAAM,KAAK,KAAK,EAAE,EAAE,IAAIV,EAAE3C,GAAG,sBAAsBqD,EAAE,KAAK,EAAE,EAAE,KAAK,UAAUA,EAAE,KAAK,EAAEP,EAAE9C,GAAG,sBAAsB,CAAC,EAAE,QAAQsE,KAAK3B,EAAE3C,GAAG,eAAesE,EAAExB,CAAC,GAAGwB,EAAE,QAAQ,EAAE,MAAM,CAAC,MAAM,EAAE,KAAK,EAAE,CAAC,CAAC,EAAE40D,GAAG,cAAcD,EAAE,CAAC,YAAY51D,EAAEV,EAAE,CAAC,MAAM,EAAE,KAAK,SAASU,EAAE,KAAK,QAAQV,EAAE,KAAK,MAAM,EAAE,KAAK,SAAS,QAAQ,QAAQ,CAAC,MAAM,KAAK,KAAK,EAAE,CAAC,CAAC,CAAC,SAAS,CAAC,MAAM,GAAG,KAAK,SAAS,QAAQ,CAAC,kBAAkB,CAAC,MAAM,MAAM,CAAC,OAAO,KAAK,SAAS,KAAK,SAAS,KAAK,IAAI,KAAK,WAAW,CAAC,EAAE,KAAK,QAAQ,CAAC,MAAM,YAAY,CAAC,OAAO,GAAG,CAAC,OAAO,MAAM,KAAK,SAAS,KAAK,CAAC,OAAOU,EAAE,CAAC,GAAG,CAAC,KAAK,QAAQA,CAAC,EAAE,MAAM,CAAC,MAAM,KAAK,KAAK,EAAE,CAAC,CAAC,CAAC,EAAEg2D,GAAG,cAAcJ,EAAE,CAAC,YAAY51D,EAAEV,EAAE,CAAC,MAAM,EAAE,KAAK,SAASU,EAAE,KAAK,UAAUV,CAAC,CAAC,SAAS,CAAC,MAAM,GAAG,KAAK,SAAS,QAAQ,CAAC,cAAc,CAAC,MAAM,MAAM,CAAC,IAAIU,EAAE,MAAM,KAAK,SAAS,KAAK,EAAE,GAAGA,EAAE,KAAK,MAAM,CAAC,MAAM,KAAK,KAAK,EAAE,EAAE,IAAIV,EAAE3C,GAAG,sBAAsBqD,EAAE,KAAK,EAAE,EAAE,MAAM,KAAK,UAAUA,EAAE,KAAK,EAAEP,EAAE9C,GAAG,sBAAsB,CAAC,EAAE,QAAQsE,KAAK3B,EAAE3C,GAAG,eAAesE,EAAExB,CAAC,GAAGwB,EAAE,QAAQ,EAAE,MAAM,CAAC,MAAM,EAAE,KAAK,EAAE,CAAC,CAAC,EAAEu1D,GAAG,cAAcZ,EAAE,CAAC,aAAa,CAAC,MAAM,EAAE,KAAK,YAAY,IAAIV,GAAG,KAAK,SAAS,QAAQ,QAAQ,CAAC,MAAM,KAAK,KAAK,EAAE,CAAC,CAAC,CAAC,MAAM,MAAM,CAAC,OAAO,KAAK,SAAS,KAAK,SAAS,KAAK,IAAI,KAAK,WAAW,CAAC,EAAE,KAAK,QAAQ,CAAC,MAAM,YAAY,CAAC,KAAK,KAAK,YAAY,OAAO,IAAI,GAAG,GAAG,CAAC,MAAM,KAAK,KAAK,EAAE,MAAM,CAAC,MAAM,KAAK,KAAK,EAAE,EAAE,MAAM,CAAC,MAAM,KAAK,YAAY,MAAM,EAAE,KAAK,EAAE,CAAC,CAAC,EAAEe,GAAG,cAAcO,EAAE,CAAC,YAAYx2D,EAAEV,EAAE,CAAC,MAAM,EAAE,KAAK,SAASU,EAAE,KAAK,UAAUV,CAAC,CAAC,SAAS,CAAC,MAAM,GAAG,KAAK,SAAS,QAAQ,CAAC,aAAa,CAAC,MAAM,MAAM,CAAC,IAAIU,EAAE,MAAM,KAAK,SAAS,KAAK,EAAE,GAAGA,EAAE,KAAK,MAAM,GAAG,IAAIV,EAAE3C,GAAG,sBAAsBqD,EAAE,KAAK,EAAE,EAAE,KAAK,UAAUA,EAAE,KAAK,EAAEP,EAAE9C,GAAG,sBAAsB,CAAC,EAAE,KAAK,YAAY,QAAQ,CAAC,EAAE,QAAQsE,KAAK3B,EAAE3C,GAAG,eAAesE,EAAExB,CAAC,GAAGwB,EAAE,QAAQ,EAAE,MAAM,EAAE,CAAC,EAAEu0D,GAAG,cAAcI,EAAE,CAAC,YAAY51D,EAAEV,EAAE,CAAC,MAAM,EAAE,KAAK,iBAAiBA,EAAE,KAAK,SAAS,KAAK,KAAK,SAAS,KAAK,KAAK,cAAcU,CAAC,CAAC,SAAS,CAAC,MAAM,wDAAwD,CAAC,MAAM,MAAM,CAAC,OAAO,KAAK,SAAS,KAAK,cAAc,KAAK,QAAQ,EAAE,KAAK,QAAQ,CAAC,MAAM,cAAcA,EAAE,CAAC,GAAG,MAAMA,EAAE,KAAK,UAAU,KAAK,CAAC,IAAI,EAAE,MAAM,KAAK,cAAc,KAAK,EAAE,GAAG,EAAE,KAAK,MAAM,CAAC,MAAM,KAAK,KAAK,EAAE,EAAE,KAAK,SAAS,EAAE,MAAM,KAAK,kBAAkB,OAAO,KAAK,SAAS,KAAK,SAAS,aAAa,KAAK,gBAAgB,EAAE,CAAC,IAAIV,EAAE,MAAM,KAAK,SAAS,KAAK,EAAE,OAAOA,EAAE,MAAM,KAAK,SAAS,KAAK,KAAK,cAAcU,CAAC,GAAGV,CAAC,CAAC,EAAEo2D,IAAI,SAASt2D,EAAE,CAACA,EAAEA,EAAE,KAAK,CAAC,EAAE,OAAOA,EAAEA,EAAE,SAAS,CAAC,EAAE,WAAWA,EAAEA,EAAE,QAAQ,CAAC,EAAE,SAAS,GAAGs2D,KAAKA,GAAG,CAAC,EAAE,EAAE,IAAIC,GAAG,cAAcC,EAAE,CAAC,YAAY51D,EAAEV,EAAEo2D,GAAG,KAAK,CAAC,MAAM,EAAE,KAAK,UAAU11D,EAAE,KAAK,aAAaV,EAAE,KAAK,MAAM,EAAE,KAAK,eAAe,IAAI,CAAC,SAAS,CAAC,MAAM,kDAAkD,CAAC,MAAM,UAAUU,EAAE,CAAC,MAAMA,EAAE,IAAIV,EAAE,EAAE,EAAE,EAAE,SAASG,EAAEyB,EAAE,CAAC,OAAOA,aAAa00D,GAAG,CAAC,MAAM10D,EAAE,KAAK,EAAE,KAAKE,IAAI9B,IAAI8B,EAAE,MAAM,IAAIA,EAAE,MAAM,EAAE,QAAQ,EAAE,EAAE,CAAC,MAAM,KAAK,QAAQ,EAAE,CAAC,CAAC,IAAIH,EAAE,MAAM2zD,GAAG,KAAK,UAAUn1D,CAAC,EAAE,GAAGH,IAAI,EAAE,MAAM,CAAC,MAAM,KAAK,KAAK,EAAE,EAAE,GAAG,EAAE,EAAE,OAAO,KAAK,aAAa,CAAC,KAAKo2D,GAAG,KAAK,MAAM,IAAI,MAAM,qEAAqE,KAAK,KAAK,GAAG,EAAE,KAAKA,GAAG,SAAS,MAAM,CAAC,MAAM,KAAK,KAAK,EAAE,EAAE,KAAKA,GAAG,QAAQ,QAAQ,CAAC,OAAO,KAAK,QAAQ,CAAC,MAAMz0D,EAAE,KAAK,EAAE,CAAC,CAAC,MAAM,MAAM,CAAC,OAAO,KAAK,eAAe,KAAK,UAAU,KAAK,cAAc,EAAE,KAAK,cAAc,CAAC,EAAEo1D,GAAG,cAAcT,EAAE,CAAC,YAAY51D,EAAEV,EAAE,CAAC,MAAM,EAAE,KAAK,SAASU,EAAE,KAAK,WAAWV,EAAE,KAAK,OAAO,IAAI21D,GAAG31D,CAAC,CAAC,CAAC,SAAS,CAAC,MAAM,GAAG,KAAK,SAAS,QAAQ,CAAC,cAAc,CAAC,QAAQ,CAAC,KAAK,CAAC,KAAK,OAAO,OAAO,GAAG,CAAC,IAAIU,EAAE,KAAK,SAAS,KAAK,EAAE,KAAK,OAAO,KAAKA,CAAC,CAAC,CAAC,CAAC,MAAM,CAAC,OAAO,KAAK,OAAO,EAAE,KAAK,OAAO,MAAM,CAAC,CAAC,EAAEs2D,GAAG,cAAcD,EAAE,CAAC,YAAYr2D,EAAEV,EAAE,EAAE,CAAC,MAAMU,EAAEV,CAAC,EAAE,KAAK,SAASU,EAAE,KAAK,WAAWV,EAAE,KAAK,kBAAkB,GAAG,KAAK,OAAO+0D,GAAG,KAAK,GAAG12D,EAAE,IAAI,EAAE,SAAS,CAAC,EAAE,KAAK,SAAS,QAAQ,QAAQ,CAAC,MAAM,KAAK,KAAK,EAAE,CAAC,CAAC,CAAC,MAAM,MAAM,CAAC,OAAO,KAAK,SAAS,KAAK,SAAS,KAAK,IAAI,KAAK,WAAW,CAAC,EAAE,KAAK,QAAQ,CAAC,UAAUqC,EAAE,CAAC,OAAO,KAAK,MAAM,KAAK,OAAO,EAAEA,CAAC,CAAC,CAAC,aAAa,CAAC,OAAO,KAAK,UAAU,KAAK,OAAO,OAAO,CAAC,CAAC,CAAC,MAAM,YAAY,CAAC,IAAI,KAAK,mBAAmB,KAAK,OAAO,EAAE,CAAC,KAAK,OAAO,QAAQ,GAAG,CAAC,IAAIA,EAAE,KAAK,YAAY,EAAEV,EAAE,MAAM,KAAK,OAAO,cAAcU,CAAC,EAAE,GAAGV,EAAE,KAAK,KAAK,kBAAkB,OAAQ,QAAO,KAAK,OAAO,EAAEA,CAAC,CAAC,MAAM,CAAC,MAAM,KAAK,KAAK,EAAE,CAAC,CAAC,EAAMk0D,GAAG,KAAK,CAAC,aAAa,CAAC,KAAK,KAAK,IAAI,CAAC,MAAMxzD,EAAEV,EAAE,GAAG,CAAC,IAAI,EAAE,KAAK3B,EAAE,OAAOqC,EAAE,EAAE,IAAI;AAAA,QACtt3DA,CAAC,EAAE,EAAE,IAAIP,EAAE,OAAO,KAAK,OAAO,KAAK,KAAK,MAAM,KAAKA,EAAE,KAAK,KAAKH,EAAEG,EAAE,KAAK,KAAK,KAAK,KAAKO,CAAC,EAAEP,EAAE,KAAK,MAAM,KAAK,KAAKO,CAAC,EAAEy2D,GAAG,UAAU,MAAM,EAAE,SAAS,GAAG,iBAAiBz2D,EAAEV,EAAEo3D,EAAG,EAAEj3D,CAAC,CAAC,CAAC,YAAYO,EAAE,CAAC,IAAIV,EAAE,KAAK,EAAE,OAAO,KAAK,OAAO,KAAKU,EAAE,OAAO,IAAI,EAAE,IAAI,KAAK,MAAM,MAAMA,EAAE,MAAM,KAAK,EAAE,KAAK,KAAKA,EAAE,KAAK,EAAE,KAAKy2D,GAAG,UAAU,MAAMn3D,EAAE,SAAS,GAAG,YAAY,MAAMU,EAAE,SAAS,CAAC,EAAE,CAAC,CAAC,CAAC,OAAOA,EAAE,CAAC,IAAIV,EAAE,KAAK,EAAE,OAAO,KAAK,OAAO,IAAI,EAAE,IAAI,EAAE,KAAKm3D,GAAG,UAAU,MAAMn3D,EAAE,SAAS,GAAG,OAAOG,GAAG5C,EAAE,IAAImD,EAAEP,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,MAAM,aAAaO,EAAE,CAAC,OAAO,MAAM,KAAK,SAAS,GAAG,aAAaA,CAAC,CAAC,CAAC,IAAIA,EAAE,CAAC,IAAIV,EAAE,KAAK,OAAOm3D,GAAG,UAAU,MAAMn3D,EAAE,SAAS,GAAG,IAAI,GAAGzC,EAAE,IAAImD,EAAE,CAAC,CAAC,CAAC,EAAE,KAAK,IAAI,CAAC,CAAC,SAASA,EAAE,CAAC,IAAIV,EAAE,KAAK,OAAOm3D,GAAG,UAAU,MAAMn3D,EAAE,SAAS,GAAG,SAASU,CAAC,EAAE,KAAK,IAAI,CAAC,CAAC,SAASA,EAAE,CAAC,GAAGA,GAAG,KAAK,MAAM,IAAI,WAAW,2DAA2D,EAAE,IAAIV,EAAE,KAAK,OAAOm3D,GAAG,UAAU,MAAMn3D,EAAE,SAAS,GAAG,SAASU,CAAC,EAAE,KAAK,IAAI,CAAC,CAAC,OAAOA,EAAE,CAAC,IAAIV,EAAE,KAAK,EAAE,OAAO,KAAK,MAAM,MAAMU,EAAE,EAAE,EAAE,KAAK,KAAKA,EAAEA,IAAI,EAAE,EAAE,EAAE,KAAK,MAAM,OAAOA,IAAI,QAAQA,EAAE,GAAG,EAAE,IAAI,EAAE,KAAKy2D,GAAG,SAAS,CAAC,IAAIh3D,EAAE41D,GAAG,UAAU,CAAC,MAAM,MAAM/1D,EAAE,SAAS,EAAE,KAAK,EAAE,EAAE,EAAE,OAAOi2D,GAAG91D,EAAE,KAAKO,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,KAAKA,EAAE,CAAC,IAAIV,EAAE,KAAK,EAAE,OAAO,KAAK,MAAM,MAAMU,GAAG,GAAG,KAAK,MAAMA,EAAE,EAAE,KAAK,KAAKA,EAAE,KAAK,MAAM,OAAO,KAAK,KAAKA,GAAGA,IAAI,QAAQA,EAAE,GAAG,EAAE,EAAE,EAAE,KAAKy2D,GAAG,UAAU,MAAMn3D,EAAE,SAAS,GAAG,KAAKU,CAAC,EAAE,CAAC,CAAC,CAAC,QAAQA,EAAEV,EAAE,EAAE,GAAG,CAAC,GAAGU,GAAG,MAAMA,EAAE,EAAE,MAAM,KAAK,MAAM,KAAK,IAAI,WAAW,0DAA0D,EAAE,IAAI,WAAW,mNAAmN,KAAK,IAAI,YAAY,EAAE,IAAIP,EAAE,KAAKwB,EAAEmzD,GAAG,KAAK90D,GAAG3B,EAAE,IAAI,EAAE,SAAS,CAAC,EAAE,OAAO84D,GAAG,SAAS,CAAC,IAAIv1D,EAAED,EAAE,MAAM,EAAE,OAAO,IAAIC,GAAGD,EAAE,MAAM,IAAI,MAAMxB,EAAE,SAAS,GAAG,QAAQO,EAAEkB,EAAE,SAAS,CAAC,CAAC,EAAE,KAAK,IAAI,CAAC,CAAC,KAAKlB,EAAE,CAAC,IAAIV,EAAE,KAAK,EAAE,OAAO,KAAK,MAAM,MAAM,KAAK,KAAKU,EAAE,EAAEA,EAAE,KAAK,MAAM,MAAM,KAAK,MAAMA,EAAE,EAAE,KAAK,KAAK,EAAE,KAAKy2D,GAAG,UAAU,MAAMn3D,EAAE,SAAS,GAAG,KAAKU,CAAC,EAAE,CAAC,CAAC,CAAC,MAAM,SAAS,CAAC,GAAG,KAAK,OAAO,IAAI,MAAM,IAAI,MAAM,gDAAgD,EAAE,OAAO,MAAM,KAAK,SAAS,GAAG,QAAQ,CAAC,CAAC,MAAM,gBAAgB,CAAC,GAAG,KAAK,OAAO,IAAI,MAAM,IAAI,MAAM,gDAAgD,EAAE,OAAO,MAAM,KAAK,SAAS,GAAG,eAAe,CAAC,CAAC,EAAEwzD,GAAG,gBAAgB,IAAI,SAASiD,GAAGr3D,EAAE,EAAE,KAAK,CAAC,OAAO,IAAI,cAAco0D,EAAE,CAAC,aAAa,CAAC,MAAM,GAAG,SAAS,EAAE,KAAK,KAAK,CAAC,CAAC,MAAM,UAAU,CAAC,OAAOp0D,EAAE,CAAC,CAAC,CAAC,CAAC,SAASw0D,GAAGx0D,EAAE,CAAC,OAAOq3D,GAAG,SAAStB,GAAG/1D,CAAC,EAAEA,EAAE,MAAM,CAAC,CAAC,SAAS+0D,GAAG/0D,EAAE,CAAC,GAAG,CAACo1D,GAAGp1D,CAAC,EAAE,MAAM,IAAI,MAAM,mDAAmD,EAAE,IAAI,EAAE,GAAG,MAAM,QAAQA,CAAC,EAAE,QAAQE,EAAE,EAAEA,EAAEF,EAAE,OAAOE,IAAI,EAAE,GAAG,KAAKF,EAAEE,CAAC,EAAE,KAAK,KAAK,IAAI,EAAEF,EAAEE,CAAC,EAAE,IAAI,UAAUF,aAAa,OAAO,QAAQE,KAAKF,EAAE,EAAE,GAAG,KAAKA,EAAEE,CAAC,EAAE,KAAK,KAAK,IAAI,EAAEF,EAAEE,CAAC,EAAE,IAAI,EAAE,OAAOm3D,GAAG,SAAS,CAAC,IAAIn3D,EAAE,MAAMs1D,GAAGx1D,EAAEI,GAAG,CAAC,GAAGA,aAAag0D,GAAG,MAAM,CAAC,MAAMh0D,EAAE,SAAS,EAAE,QAAQ,EAAE,EAAE,GAAGg1D,GAAGh1D,CAAC,EAAE,MAAM,CAAC,MAAM,KAAK,QAAQ,EAAE,EAAE,MAAM,IAAI,MAAM,2EAA2E,CAAC,CAAC,EAAE,OAAOi2D,GAAGn2D,EAAEo2D,GAAG,QAAQ,CAAC,EAAE,CAAC,CAAC,CAAC,SAASgB,GAAIt3D,EAAE,CAAC,GAAGA,IAAI,KAAK,OAAO,KAAK,IAAI,EAAEA,EAAE,CAAC,EAAE,OAAOy1D,GAAG,CAAC,EAAE,CAAC,MAAM8B,GAAIv3D,CAAC,EAAE,QAAQ,EAAE,EAAE,CAAC,MAAM,KAAK,QAAQ,EAAE,CAAC,CAAC,SAASu3D,GAAIv3D,EAAE,CAAC,GAAGA,EAAE,SAAS,EAAE,MAAM,IAAI,MAAM,sCAAsC,EAAE,OAAOA,EAAE,CAAC,YAAYrU,GAAG2Q,GAAG0D,CAAC,EAAEjD,GAAGiD,CAAC,CAAC,CAAC,IAAIs0D,GAAG,cAAcF,EAAE,CAAC,YAAYxzD,EAAE,CAAC,MAAM,EAAE,KAAK,MAAMA,CAAC,CAAC,MAAM,UAAU,CAAC,OAAO,MAAM,KAAK,MAAM,SAAS,GAAG,WAAW,EAAE,MAAM;AAAA,CACz1G,EAAE,IAAIP,IAAIA,EAAE,SAAS,IAAI,IAAIA,EAAEA,EAAE,MAAM,EAAE,EAAE,GAAGA,EAAE,CAAC,CAAC,EAAMm3D,GAAG,IAAIC,GAAG,OAAO,KAAK,EAAEC,GAAG,OAAO,OAAO,EAAEC,GAAG,OAAO,OAAO,EAAEC,GAAG,OAAO,iBAAiB,EAAEC,GAAG,OAAO,cAAc,EAAE1D,GAAG,cAAcC,EAAE,CAAC,MAAM,aAAa,CAAC,OAAO,KAAK,sBAAsB,MAAM,KAAK,eAAe,EAAE,KAAK,sBAAsB,OAAO,KAAK,KAAK,aAAa,EAAE,KAAK,eAAe,CAAC,MAAM,gBAAgB,CAAC,IAAIxzD,EAAE,MAAM,KAAK,oBAAoB,EAAE,GAAG,CAAC,KAAK,iBAAiB,CAACA,EAAE,MAAM,IAAI,MAAM,2DAA2D,EAAE,KAAK,iBAAiBA,GAAGrC,EAAE,OAAOqC,EAAE,SAAS,KAAK,gBAAgB,OAAO,IAAI,uCAAuC,KAAK,gBAAgB,OAAO,SAAS,EAAE,kEAAkEA,EAAE,OAAO,SAAS,EAAE,IAAI,EAAE,KAAK,kBAAkB,KAAK,gBAAgBA,GAAG,IAAIV,EAAE,KAAK,gBAAgB,OAAO,CAACG,EAAEwB,KAAKxB,EAAEwB,CAAC,EAAExB,EAAEwB,CAAC,EAAE,GAAG,EAAExB,GAAG,CAAC,CAAC,EAAE,EAAE,OAAO,KAAKH,CAAC,EAAE,OAAOG,GAAGH,EAAEG,CAAC,EAAE,CAAC,EAAE,GAAG9B,EAAE,OAAO,EAAE,SAAS,EAAE,IAAI,iCAAiC,EAAE,SAAS,CAAC,EAAE,KAAK,eAAe,QAAQ8B,KAAK,OAAO,KAAK,KAAK,aAAa,EAAE,GAAG,KAAK,gBAAgB,QAAQA,CAAC,IAAI,GAAG,MAAM,IAAI,MAAM,YAAYA,EAAE,uEAAuE,KAAK,gBAAgB,SAAS,EAAE,IAAI,EAAE,KAAK,qBAAqB,EAAE,CAAC,MAAM,qBAAqB,CAAC,GAAG,KAAK,UAAU,CAAC,IAAI,EAAE,MAAM,MAAM,KAAK,KAAK,SAAS,GAAG,KAAK,EAAE,GAAG,EAAE,KAAK,MAAM,IAAI,MAAM,oCAAoC,EAAE,IAAID,EAAE,EAAE,MAAM,OAAO,KAAK,SAASA,EAAE,EAAE,CAAC,KAAM,QAAO,IAAI,CAAC,YAAYQ,EAAEV,EAAE,CAAC,MAAM,EAAE,KAAK,MAAMU,EAAE,KAAK,UAAU,GAAG,KAAK,gBAAgB,KAAK,KAAK,qBAAqB,GAAG,KAAK,cAAc,KAAK,KAAK,sBAAsB,GAAG,KAAK,UAAU,IAAI,KAAK,gBAAgB,GAAG,KAAK,KAAK,IAAI0zD,GAAG1zD,CAAC,EAAEV,IAAIA,EAAE,CAAC,GAAG,KAAK,UAAUA,EAAE,YAAY,GAAG,KAAK,gBAAgBA,EAAE,YAAY,KAAK,cAAcA,EAAE,cAAc,KAAK,sBAAsBA,EAAE,sBAAsBA,EAAE,iBAAiB3B,EAAE,OAAO2B,EAAE,WAAW,KAAK,IAAI,gEAAgE,EAAE,KAAK,gBAAgB,GAAG,KAAK,UAAU,KAAK,KAAK,UAAUA,EAAE,UAAUA,EAAE,UAAU,GAAG,CAAC,MAAM,UAAU,CAAC,KAAK,sBAAsB,MAAM,KAAK,eAAe,EAAE,IAAIU,EAAE,MAAM,KAAK,KAAK,SAAS,EAAE,OAAO,KAAK,YAAYA,EAAEA,EAAE,KAAK,CAAC,GAAGA,EAAE,IAAIV,GAAG,KAAK,gBAAgBA,CAAC,CAAC,CAAC,CAAC,gBAAgBU,EAAE,CAAC,IAAIV,EAAE,KAAK,SAASU,CAAC,EAAE,EAAE,CAAC,EAAEP,EAAE,CAAC,EAAE,QAAQwB,EAAE,EAAEA,EAAE,KAAK,gBAAgB,OAAOA,IAAI,CAAC,IAAIC,EAAE,KAAK,gBAAgBD,CAAC,EAAEE,EAAE,KAAK,cAAc,KAAK,cAAcD,CAAC,EAAE,KAAK,GAAG,EAAE,KAAK,uBAAuB,CAACC,GAAG,CAAC,IAAIC,EAAE9B,EAAE2B,CAAC,EAAE,EAAE,KAAK,GAAGG,IAAI,GAAG,GAAGD,GAAGA,EAAE,UAAU,OAAO,EAAEA,EAAE,YAAY,CAAC,GAAGA,IAAIA,EAAE,UAAUA,EAAE,SAAS,MAAM,IAAI,MAAM,mBAAmBD,CAAC,2BAA2BlB,CAAC,EAAE,EAAE,EAAE,MAAM,KAAK,CAAC,IAAI8B,EAAE,OAAOV,CAAC,EAAE,GAAG,MAAMU,CAAC,EAAEX,GAAGA,EAAE,QAAQ,OAAO,EAAE,KAAK,WAAWC,CAAC,EAAE,EAAEA,UAAU,CAACD,GAAG,CAACA,EAAE,MAAM,EAAEW,MAAO,QAAOX,EAAE,MAAM,CAAC,IAAI,UAAU,EAAEW,EAAE,MAAM,IAAI,QAAQ,EAAE,KAAK,MAAMA,CAAC,EAAE,MAAM,IAAI,OAAO,EAAE,KAAK,WAAWV,CAAC,EAAE,MAAM,QAAQ,EAAEU,CAAC,CAAC,CAACX,GAAGA,EAAE,QAAQ1B,EAAEyB,CAAC,EAAE,EAAE,EAAEA,CAAC,EAAE,CAAC,CAAC,CAAC,OAAO,OAAO,KAAKzB,CAAC,EAAE,SAAS,EAAE,EAAE,CAAC,GAAG,EAAE,GAAGA,CAAC,CAAC,CAAC,WAAWO,EAAE,CAAC,OAAOA,IAAI,KAAKA,EAAE,YAAY,IAAI,OAAO,EAAE,CAAC,CAAC,SAASA,EAAEV,EAAE,GAAG,CAAC,IAAI,EAAE,CAAC,EAAEG,EAAE,EAAEwB,EAAEjB,EAAE,OAAOkB,EAAE21D,GAAG,QAAQ11D,EAAE,EAAEA,EAAEF,EAAEE,IAAI,OAAOD,EAAE,CAAC,KAAK21D,GAAG,OAAO72D,EAAE,OAAOmB,CAAC,EAAE,CAAC,KAAKy1D,GAAGn3D,EAAE0B,EAAE,EAAED,EAAE61D,GAAG,MAAM,KAAK,KAAK,UAAU,GAAGt3D,EAAE0B,EAAE,EAAE,KAAK,YAAY,KAAK,KAAK,gBAAgB,MAAM,EAAE,KAAK,EAAE,EAAED,EAAE21D,GAAG,MAAM,QAAQ31D,EAAE41D,GAAGr3D,EAAE0B,EAAE,KAAK,CAAC,MAAM,KAAK21D,GAAG,OAAO92D,EAAE,OAAOmB,CAAC,EAAE,CAAC,KAAK,KAAK,UAAU,EAAE,KAAKnB,EAAE,UAAUP,EAAE0B,CAAC,CAAC,EAAED,EAAE21D,GAAGp3D,EAAE0B,EAAE,EAAE,MAAM,QAAQ,CAAC,MAAM,KAAK41D,GAAG,OAAO/2D,EAAE,OAAOmB,CAAC,EAAE,CAAC,KAAKy1D,GAAG11D,EAAE81D,GAAG,MAAM,QAAQ,CAAC,MAAM,KAAKA,GAAG,OAAOh3D,EAAE,OAAOmB,CAAC,EAAE,CAAC,KAAK,KAAK,UAAU,EAAE,KAAKnB,EAAE,UAAUP,EAAE0B,EAAE,CAAC,CAAC,EAAED,EAAE21D,GAAGp3D,EAAE0B,EAAE,EAAE,MAAM,KAAKy1D,GAAG11D,EAAE61D,GAAG,MAAM,QAAQ71D,EAAE+1D,GAAG,KAAK,CAAC,MAAM,KAAKA,GAAG,OAAOj3D,EAAE,OAAOmB,CAAC,EAAE,CAAC,KAAKy1D,GAAG11D,EAAE61D,GAAG,MAAM,QAAQ,CAAC,MAAM,QAAQ,CAAC,GAAG71D,IAAI81D,GAAG,EAAE,KAAKh3D,EAAE,UAAUP,EAAEwB,EAAE,CAAC,CAAC,EAAE,EAAE,KAAKjB,EAAE,UAAUP,CAAC,CAAC,EAAEH,GAAG,EAAE,SAAS,KAAK,gBAAgB,OAAO,MAAM,IAAI,MAAM,wCAAwC,KAAK,gBAAgB,MAAM,+BAA+B,CAAC,EAAE,EAAE,OAAO,CAAC,CAAC,EAAM43D,GAAG,MAAM93D,WAAUw2D,EAAE,CAAC,YAAY,EAAE,CAAC,MAAM,EAAE,KAAK,iBAAiB,EAAE,KAAK,SAAS,GAAG,KAAK,QAAQ,EAAE,SAAS,KAAK,IAAIt2D,EAAE,KAAK,KAAK,KAAK,OAAO,EAAE,GAAG,KAAK,QAAQ,GAAGA,EAAE,GAAGA,EAAE,IAAI,CAAC,OAAO,UAAUA,CAAC,EAAE,MAAM,IAAI,MAAM,gFAAgF,KAAK,OAAO,EAAE,EAAE,GAAG,KAAK,UAAU,EAAE,yBAAyB,GAAG,KAAK,aAAa,EAAE,aAAa,KAAK,qBAAqB,EAAE,sBAAsB,KAAK,QAAQ,KAAK,sBAAsB,EAAE,sBAAsB,KAAK,sBAAsB,EAAE,uBAAuB,EAAE,KAAK,mBAAmB,EAAE,qBAAqB,GAAG,KAAK,gBAAgB,EAAE,kBAAkB,GAAG,CAAC,KAAK,oBAAoB,CAAC,KAAK,gBAAgB,MAAM,IAAI,MAAM,sGAAsG,CAAC,CAAC,SAAS,CAAC,MAAM,YAAY,CAAC,aAAa,OAAO,EAAE,CAAC,EAAE,CAAC,GAAG,CAAC1O,EAAE,EAAE,IAAI,YAAY,EAAE,MAAM,IAAI,MAAM,0DAA0D,EAAE,IAAI0O,EAAE,IAAIF,GAAE,CAAC,EAAE,OAAO,MAAME,EAAE,MAAM,EAAEA,CAAC,CAAC,MAAM,OAAO,CAAC,GAAG,CAAC,KAAK,OAAO,MAAM,UAAU,aAAa,aAAa,CAAC,MAAM,KAAK,uBAAuB,KAAK,GAAG,KAAK,sBAAsB,MAAM,EAAE,CAAC,CAAC,OAAOE,EAAE,CAAC,MAAM,IAAI,MAAM,iDAAiDA,EAAE,OAAO,EAAE,CAAC,CAAC,GAAG,CAAC,KAAK,OAAO,MAAM,IAAI,MAAM,yCAAyC,EAAE,IAAI,EAAE,OAAO,cAAc,OAAO,mBAAmB,GAAG,KAAK,aAAa,IAAI,EAAE,CAAC,KAAK,aAAa,KAAK,aAAa,KAAK,aAAa,mBAAmB,KAAK,aAAa,aAAa,KAAK,aAAa,MAAM,IAAI,MAAM,wCAAwC,KAAK,YAAY,aAAa,KAAK,aAAa,UAAU,EAAE,EAAE,IAAIF,EAAE,KAAK,aAAa,wBAAwB,KAAK,MAAM,EAAE,KAAK,SAAS,KAAK,aAAa,eAAe,EAAE,KAAK,SAAS,QAAQ,KAAK,QAAQ,EAAE,KAAK,SAAS,sBAAsB,KAAK,sBAAsBA,EAAE,QAAQ,KAAK,QAAQ,EAAE,KAAK,SAAS,IAAI,aAAa,KAAK,OAAO,EAAE,KAAK,SAAS,IAAI,aAAa,KAAK,OAAO,CAAC,CAAC,MAAM,MAAM,CAAC,GAAG,KAAK,SAAS,MAAM,CAAC,MAAM,KAAK,KAAK,EAAE,EAAE,IAAI,EAAEA,EAAEE,EAAE,MAAM,KAAK,aAAa,EAAE,GAAG,KAAK,mBAAmB,CAAC,IAAIC,EAAE,KAAK,aAAaD,EAAE,aAAa,EAAE,EAAE,KAAK,4BAA4BC,EAAE,CAAC,KAAK,UAAU,KAAK,qBAAqB,CAAC,CAAC,CAAC,CAAC,GAAG,KAAK,gBAAgB,CAAC,IAAIA,EAAE,KAAK,aAAaD,EAAE,aAAa,EAAEF,EAAE,KAAK,4BAA4BG,EAAE,CAAC,KAAK,UAAU,KAAK,QAAQ,CAAC,CAAC,CAAC,CAAC,MAAM,CAAC,MAAM,CAAC,YAAY,EAAE,SAASH,CAAC,EAAE,KAAK,EAAE,CAAC,CAAC,MAAM,SAAS,CAAC,OAAO,MAAM,KAAK,KAAK,GAAG,KAAK,CAAC,MAAM,cAAc,CAAC,IAAI,EAAE,CAAC,EAAEA,EAAE,CAAC,EAAEE,EAAE,EAAE,OAAO,IAAI,QAAQC,GAAG,CAAC,IAAI,EAAE,YAAY,IAAI,CAAC,KAAK,qBAAqB,KAAK,SAAS,sBAAsB,KAAK,QAAQ,EAAE,KAAK,SAAS,CAAC,IAAI,MAAMA,EAAE,CAAC,cAAc,EAAE,cAAcH,CAAC,CAAC,EAAE,EAAE,KAAK,KAAK,SAAS,MAAM,EAAE,KAAK,oBAAoB,CAAC,GAAG,KAAK,kBAAkB,KAAK,SAAS,uBAAuB,KAAK,QAAQ,EAAEA,EAAE,KAAK,KAAK,SAAS,MAAM,CAAC,GAAG,EAAEE,IAAI,KAAK,YAAY,cAAc,CAAC,EAAEC,EAAE,CAAC,cAAc,EAAE,cAAcH,CAAC,CAAC,EAAE,EAAE,KAAK,QAAQ,KAAK,aAAa,GAAG,CAAC,CAAC,CAAC,CAAC,MAAM,CAAC,KAAK,WAAW,KAAK,SAAS,GAAG,KAAK,SAAS,WAAW,EAAE,KAAK,aAAa,MAAM,EAAE,KAAK,QAAQ,MAAM,KAAK,OAAO,UAAU,EAAE,OAAO,GAAG,KAAK,OAAO,UAAU,EAAE,CAAC,EAAE,KAAK,EAAE,CAAC,SAAS,CAAC,MAAM,IAAI,MAAM,iDAAiD,CAAC,CAAC,eAAe,CAAC,OAAO,KAAK,YAAY,CAAC,aAAa,EAAE,CAAC,IAAIA,EAAE,EAAE,CAAC,EAAE,OAAOE,EAAE,IAAI,aAAa,EAAE,OAAOF,CAAC,EAAE,OAAO,EAAE,QAAQ,CAACG,EAAE,IAAID,EAAE,IAAIC,EAAE,EAAEH,CAAC,CAAC,EAAEE,CAAC,CAAC,4BAA4B,EAAEF,EAAE,CAAC,IAAIE,EAAE,IAAI,aAAa7B,EAAE,cAAc2B,CAAC,CAAC,EAAE,OAAOE,EAAE,IAAI,EAAEA,EAAE,OAAO,EAAE,MAAM,EAAErD,GAAGqD,EAAEF,CAAC,CAAC,CAAC,EAAM63D,GAAG,MAAM/3D,WAAUw2D,EAAE,CAAC,YAAY,EAAEt2D,EAAE,CAAC,GAAG,MAAM,EAAE,KAAK,mBAAmB,EAAE,KAAK,aAAaA,EAAE,KAAK,SAAS,GAAG,KAAK,OAAO,GAAG,KAAK,aAAa,EAAE,GAAG,KAAK,OAAO,GAAG,KAAK,SAAS,CAAC,KAAK,aAAa,aAAa,KAAK,aAAa,WAAW,EAAE,KAAK,WAAWlD,GAAG,CAAC,CAAC,EAAE,OAAO,EAAE,KAAK,aAAa,WAAW,CAAC,IAAIoD,EAAE,KAAK,aAAa,YAAY,EAAE,KAAK,mBAAmB,MAAMC,EAAE,KAAK,aAAa,aAAa,EAAE,KAAK,mBAAmB,OAAO,GAAG,EAAED,GAAG,EAAE,GAAG,EAAEC,GAAG,EAAE0B,EAAE,EAAE3B,EAAE4B,EAAE3B,EAAE,EAAE,KAAK,QAAQpD,GAAG,CAAC,EAAE,EAAE+E,EAAED,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,CAAC,MAAM,KAAK,QAAQ9E,GAAG,CAAC,EAAE,EAAE,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,SAAS,CAAC,MAAM,QAAQ,CAAC,aAAa,OAAO,EAAEiD,EAAE,CAAC,EAAE,CAAC,GAAG,CAAC1O,EAAE,EAAE,IAAI,YAAY,EAAE,MAAM,IAAI,MAAM,0DAA0D,EAAE,GAAG,CAAC,EAAE,CAAC,GAAG,EAAE,SAAS,cAAc,OAAO,EAAE,CAAC0O,EAAE,aAAa,CAACA,EAAE,aAAa,MAAM,IAAI,MAAM,wGAAwG,EAAE,EAAE,MAAMA,EAAE,YAAY,EAAE,OAAOA,EAAE,YAAY,CAAC,IAAIE,EAAE,IAAIJ,GAAE,EAAEE,CAAC,EAAE,OAAO,MAAME,EAAE,MAAM,EAAEA,CAAC,CAAC,MAAM,OAAO,CAAC,KAAK,aAAa,YAAY7B,EAAE,OAAO,KAAK,aAAa,aAAa,QAAQ,KAAK,aAAa,aAAa,cAAc,IAAI,+BAA+B,KAAK,aAAa,UAAU,0CAA0C,EAAE,GAAG,CAAC,KAAK,OAAO,MAAM,UAAU,aAAa,aAAa,CAAC,MAAM,CAAC,SAAS,KAAK,aAAa,SAAS,WAAW,KAAK,aAAa,WAAW,KAAK,aAAa,WAAW,OAAO,MAAM,KAAK,mBAAmB,MAAM,OAAO,KAAK,mBAAmB,MAAM,CAAC,CAAC,CAAC,OAAO,EAAE,CAAC,MAAM,EAAE,QAAQ,iDAAiD,EAAE,OAAO,GAAG,CAAC,CAAC,GAAG,CAAC,KAAK,OAAO,MAAM,IAAI,MAAM,qCAAqC,EAAE,GAAG,CAAC,KAAK,mBAAmB,UAAU,KAAK,MAAM,OAAO,EAAE,CAAC,QAAQ,IAAI,CAAC,EAAE,KAAK,mBAAmB,IAAI,OAAO,IAAI,gBAAgB,KAAK,MAAM,CAAC,CAAC,OAAO,KAAK,mBAAmB,KAAK,EAAE,KAAK,SAAS,GAAG,IAAI,QAAQ,GAAG,CAAC,KAAK,mBAAmB,iBAAiB,IAAI,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,MAAM,MAAM,CAAC,GAAG,KAAK,SAAS,MAAM,CAAC,MAAM,KAAK,KAAK,EAAE,EAAE,IAAI,EAAE,GAAG,CAAC,EAAEhQ,GAAG,WAAW,KAAK,kBAAkB,CAAC,OAAO2R,EAAE,CAAC,MAAM,IAAI,MAAM,4CAA4C,KAAK,UAAUA,CAAC,CAAC,EAAE,CAAC,CAAC,GAAG,KAAK,OAAO,GAAG,CAAC,MAAM,CAAC,MAAM,KAAK,mBAAmB,CAAC,EAAE,KAAK,EAAE,CAAC,OAAOA,EAAE,CAAC,MAAM,IAAI,MAAM,oCAAoCA,EAAE,OAAO,EAAE,CAAC,QAAC,CAAQ,EAAE,QAAQ,CAAC,KAAM,OAAM,CAAC,MAAM,EAAE,KAAK,EAAE,CAAC,CAAC,cAAc,CAAC,MAAM,CAAC,EAAE,KAAK,aAAa,aAAa,KAAK,aAAa,eAAe,KAAK,mBAAmB,QAAQ,KAAK,aAAa,aAAa,KAAK,mBAAmB,SAAS,KAAK,aAAa,cAAc,CAAC,mBAAmB,EAAE,CAAC,OAAOzC,EAAE,IAAI,CAAC,IAAIyC,EAAErO,GAAGnD,GAAE,EAAE,SAAS,EAAE,CAAC,EAAE0R,EAAEA,EAAE7M,GAAG,cAAc2M,EAAE,KAAK,QAAQ,KAAK,WAAW,KAAK,SAAS,UAAU,EAAE,IAAIG,EAAED,EAAE,MAAM,OAAO7G,EAAE6G,EAAEC,EAAE,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,MAAM,SAAS,CAAC,OAAO,MAAM,KAAK,KAAK,GAAG,KAAK,CAAC,MAAM,CAAC,KAAK,OAAO,UAAU,EAAE,QAAQH,GAAGA,EAAE,KAAK,CAAC,EAAE,GAAG,CAAC,KAAK,mBAAmB,UAAU,IAAI,OAAOA,EAAE,CAAC,QAAQ,IAAIA,CAAC,EAAE,KAAK,mBAAmB,IAAI,IAAI,CAAC,KAAK,SAAS,EAAE,CAAC,SAAS,CAAC,MAAM,IAAI,MAAM,iDAAiD,CAAC,CAAC,EAAM83D,GAAG,KAAK,CAAC,EAAMC,GAAG,cAAczB,EAAE,CAAC,MAAM51D,EAAE,CAAC,OAAO,IAAIs3D,GAAG,KAAKt3D,CAAC,CAAC,CAAC,EAAEs3D,GAAG,cAAcD,EAAE,CAAC,YAAYr3D,EAAEV,EAAE,CAAC,MAAM,EAAE,KAAK,SAASU,EAAE,KAAK,KAAK,IAAIu3D,GAAGv3D,EAAEV,CAAC,CAAC,CAAC,SAAS,CAAC,OAAO,KAAK,KAAK,QAAQ,CAAC,CAAC,MAAM,MAAM,CAAC,OAAO,KAAK,KAAK,KAAK,CAAC,CAAC,EAAEi4D,GAAG,cAAcf,EAAE,CAAC,YAAYx2D,EAAEV,EAAE,CAAC,MAAM,EAAE,KAAK,SAASU,EAAE,KAAK,UAAUV,EAAE,KAAK,UAAU,EAAE,CAAC,SAAS,CAAC,MAAM,GAAG,KAAK,SAAS,QAAQ,CAAC,cAAc,KAAK,SAAS,IAAI,CAAC,MAAM,MAAM,CAAC,IAAIU,EAAE,MAAM,KAAK,SAAS,KAAK,EAAE,GAAGA,EAAE,KAAK,OAAO,KAAK,YAAY,GAAG,IAAI,KAAK,YAAY,KAAK,KAAK,SAAS,EAAE,KAAK,UAAU,GAAG,IAAI,IAAIV,EAAEU,EAAE,MAAM,MAAM,KAAK,SAAS,EAAEV,EAAE,CAAC,EAAE,KAAK,UAAUA,EAAE,CAAC,EAAE,QAAQ,KAAKA,EAAE,MAAM,EAAE,EAAE,EAAE,KAAK,YAAY,KAAK,CAAC,EAAE,OAAO,KAAK,UAAUA,EAAEA,EAAE,OAAO,CAAC,EAAE,EAAE,CAAC,EAAMk4D,GAAG,cAAc5B,EAAE,CAAC,YAAY,CAAC,OAAO,IAAI6B,GAAG,IAAI,CAAC,CAAC,EAAEA,GAAG,cAAcJ,EAAE,CAAC,YAAYr3D,EAAE,CAAC,MAAM,EAAE,KAAK,SAASA,EAAE,KAAK,KAAK,IAAI03D,GAAG13D,CAAC,CAAC,CAAC,SAAS,CAAC,OAAO,KAAK,KAAK,QAAQ,CAAC,CAAC,MAAM,MAAM,CAAC,OAAO,KAAK,KAAK,KAAK,CAAC,CAAC,EAAE03D,GAAG,cAAclB,EAAE,CAAC,YAAYx2D,EAAE,CAAC,GAAG,MAAM,EAAE,KAAK,SAASA,EAAEpP,EAAE,EAAE,IAAI,YAAY,EAAE,KAAK,QAAQ,IAAI,YAAY,OAAO,MAAM,CAAC,GAAG,CAAC,cAAc0O,CAAC,EAAE8F,GAAG,EAAE,KAAK,QAAQ,IAAI9F,EAAE,MAAM,CAAC,CAAC,CAAC,SAAS,CAAC,MAAM,GAAG,KAAK,SAAS,QAAQ,CAAC,UAAU,CAAC,MAAM,MAAM,CAAC,IAAIU,EAAE,MAAM,KAAK,SAAS,KAAK,EAAEV,EAAE,GAAGU,EAAE,KAAK,MAAM,GAAGV,EAAEU,EAAE,MAAM,IAAI,EAAE,OAAOpP,EAAE,EAAE,IAAI,YAAY,EAAE,EAAE,KAAK,QAAQ,OAAO0O,EAAE,CAAC,OAAO,EAAE,CAAC,EAAE,EAAE,KAAK,QAAQ,MAAM,OAAO,KAAKA,EAAE,MAAM,CAAC,EAAE,KAAK,YAAY,KAAK,CAAC,EAAE,EAAE,CAAC,EAAMq4D,GAAG,cAAcH,EAAE,CAAC,YAAYx3D,EAAEV,EAAE,CAAC,EAAE,CAAC,MAAM,EAAE,KAAK,KAAKU,EAAE,KAAK,QAAQV,EAAE3B,EAAE,OAAOqC,aAAa,aAAapP,EAAE,EAAE,IAAI,YAAY,EAAEoP,aAAa,MAAMA,aAAa,KAAK,IAAI,IAAI,sEAAsE,EAAE,KAAK,OAAOV,EAAE,QAAQ,EAAE,KAAK,UAAUA,EAAE,WAAW,KAAK,IAAI,CAAC,SAAS,CAAC,MAAM,cAAc,KAAK,IAAI,EAAE,CAAC,MAAM,MAAM,CAAC,OAAO,KAAK,SAAS,KAAK,gBAAgB,WAAW,KAAK,KAAK,WAAW,KAAK,KAAK,MAAM,CAAC,MAAM,KAAK,KAAK,EAAE,EAAE,CAAC,MAAM,MAAM,IAAI,QAAQ,CAAC,EAAEE,IAAI,CAAC,IAAIC,EAAE,KAAK,OAAO,KAAK,UAAU,GAAG,KAAK,gBAAgB,WAAW,EAAE,IAAI,WAAW,KAAK,KAAK,MAAM,KAAK,OAAOA,CAAC,CAAC,CAAC,MAAM,CAAC,IAAIwB,EAAE,IAAI,WAAWA,EAAE,OAAOE,GAAG,CAAC,IAAIC,EAAEH,EAAE,OAAO,GAAGG,aAAa,cAAcA,EAAE,IAAI,WAAWA,CAAC,GAAG,EAAEA,aAAa,YAAY,OAAO5B,EAAE,IAAI,UAAU,mCAAmC,CAAC,EAAE,EAAE4B,CAAC,CAAC,EAAEH,EAAE,QAAQE,GAAG3B,EAAE,IAAI,MAAM,SAAS,CAAC,EAAEyB,EAAE,QAAQE,GAAG3B,EAAE,IAAI,MAAM2B,EAAE,IAAI,CAAC,EAAE,IAAID,EAAE,KAAK,KAAK,MAAM,KAAK,OAAOzB,CAAC,EAAEwB,EAAE,kBAAkBC,CAAC,CAAC,CAAC,KAAK,OAAOzB,CAAC,CAAC,EAAE,KAAK,EAAE,CAAC,CAAC,EAAE,eAAem4D,GAAGx4D,EAAE,EAAE,CAAC,EAAEE,EAAE,CAAC,IAAIE,EAAEC,EAAE,OAAOL,GAAG,SAASI,EAAEJ,GAAGI,EAAEJ,EAAE,IAAIK,EAAEo4D,GAAIz4D,CAAC,GAAG,IAAI,EAAE,MAAME,GAAG3B,EAAE,OAAO6B,EAAEC,CAAC,EAAE,GAAG,EAAE,GAAG,CAAC,IAAI,EAAE,IAAI,WAAW,MAAM,EAAE,YAAY,CAAC,EAAE,OAAO,IAAIk4D,GAAG,EAAE,CAAC,CAAC,KAAM,OAAM,IAAI,MAAM,EAAE,UAAU,CAAC,CAAC,IAAIE,GAAIz4D,IAAI,CAAC,OAAOA,EAAE,OAAO,QAAQA,EAAE,QAAQ,KAAKA,EAAE,KAAK,KAAKA,EAAE,KAAK,YAAYA,EAAE,YAAY,MAAMA,EAAE,MAAM,SAASA,EAAE,SAAS,SAASA,EAAE,SAAS,UAAUA,EAAE,SAAS,GAAG,SAAS04D,GAAG14D,EAAE,CAAC,OAAO,OAAOA,GAAG,UAAUA,EAAE,MAAM,EAAE,CAAC,IAAI,SAAS,CAAC,IAAIq0D,GAAG,cAAc2D,EAAE,CAAC,YAAYp3D,EAAEV,EAAE,CAAC,EAAE,CAAC,MAAM,EAAE,KAAK,MAAMU,EAAE,KAAK,QAAQV,CAAC,CAAC,MAAM,UAAU,CAAC,GAAGw4D,GAAG,KAAK,KAAK,GAAGlnE,EAAE,EAAE,IAAI,SAAS,EAAE,CAAC,IAAIoP,EAAEqF,GAAG,EAAE,KAAK,MAAMrF,EAAE,aAAa,KAAK,MAAM,MAAM,CAAC,CAAC,CAAC,CAAC,OAAO,IAAI23D,GAAG,KAAK,MAAM,KAAK,OAAO,CAAC,CAAC,EAAMhE,GAAG,cAAcyD,EAAE,CAAC,YAAYp3D,EAAEV,EAAE,CAAC,EAAE,CAAC,MAAM,EAAE,KAAK,IAAIU,EAAE,KAAK,YAAYV,CAAC,CAAC,MAAM,UAAU,CAAC,OAAOw4D,GAAG,KAAK,GAAG,EAAE,IAAIrE,GAAG,KAAK,IAAI,KAAK,WAAW,EAAE,SAAS,EAAEmE,GAAG,KAAK,IAAI,KAAK,WAAW,CAAC,CAAC,EAAE,SAAS/D,GAAGz0D,EAAE,EAAE,CAAC,EAAE,CAAC,OAAO,IAAIm0D,GAAG,IAAII,GAAGv0D,CAAC,EAAE,CAAC,CAAC,CAAC,SAAS00D,GAAG10D,EAAE,CAAC,IAAI,EAAEi2D,GAAGj2D,CAAC,EAAE,OAAOq3D,GAAG,SAAS,CAAC,CAAC,CAAC,SAAS1C,GAAG30D,EAAE,CAAC,OAAOq3D,GAAG,SAAS,CAAC,IAAI,EAAE,MAAMr3D,EAAE,EAAE,OAAOi2D,GAAG,IAAI,EAAE,KAAK,CAAC,CAAC,CAAC,CAAC,CAAC,eAAenB,GAAG90D,EAAE,EAAE,CAAC,OAAO+3D,GAAG,OAAO/3D,EAAE,CAAC,CAAC,CAAC,eAAe40D,GAAG50D,EAAE,CAAC,OAAO83D,GAAG,OAAO93D,CAAC,CAAC,CAAC,IAAI60D,GAAG,SAAS,SAAS8D,GAAG34D,EAAE,EAAE,CAAC,MAAM,QAAQA,CAAC,IAAIA,EAAE,CAACA,CAAC,GAAGA,EAAE,QAAQE,GAAG,CAACA,GAAG,MAAM3B,EAAE,OAAO2B,EAAE,QAAQ,YAAY,IAAI,GAAG,CAAC,yDAAyD,CAAC,CAAC,CAAC,CAAC,IAAI04D,GAAI3kE,GAAG,UAAUhO,GAAG,MAAM+Z,WAAUhb,EAAE,CAAC,YAAY,CAAC,OAAOgb,GAAE,YAAY,CAAC,aAAa,CAAC,MAAM,EAAE,KAAK,UAAU,GAAG,KAAK,SAAS,GAAG,KAAK,KAAK,IAAI7d,GAAG,KAAKmP,GAAG,CAAC,CAAC,CAAC,MAAM,EAAE4O,EAAEE,EAAE,CAAC,KAAK,WAAW,KAAK,SAAS,GAAG5O,EAAE,EAAE,IAAI,SAAS,GAAG9D,EAAE,KAAK;AAAA;AAAA;AAAA,6BAG96b,GAAG,IAAI2S,EAAE,CAAC,GAAG,KAAK,WAAW,CAAC,EAAE,OAAO,KAAK,KAAK,IAAIA,EAAE,CAAC,OAAO,EAAE,MAAMD,EAAE,SAAS,CAAC,CAAC,EAAEC,CAAC,CAAC,eAAe,EAAEH,EAAEE,EAAE,CAAC,IAAIC,EAAE,GAAGH,IAAI,UAAUE,GAAG,MAAMA,EAAE,OAAO,GAAG7B,EAAE,SAAS6B,EAAE,CAAC,CAAC,EAAE,CAAC,IAAI,EAAEA,EAAE,IAAI,GAAG7B,EAAE,aAAa,CAAC,CAAC,EAAE8B,EAAE,KAAK,MAAM,EAAE,EAAEH,CAAC,CAAC,MAAMG,EAAE,KAAK,MAAMD,EAAE,EAAEF,CAAC,EAAE,MAAM,CAAC,OAAOG,EAAE,MAAM,EAAE,MAAMH,CAAC,CAAC,CAAC,SAAS,EAAE,CAAC,OAAO,KAAK,KAAK,IAAI,CAAC,EAAE,KAAK,KAAK,IAAI,CAAC,EAAE,SAAS,CAAC,CAAC,OAAO,EAAE,CAAC,IAAIA,EAAE,KAAK,KAAK,IAAI,CAAC,EAAEA,EAAE,UAAU,CAAC,OAAO,EAAE,CAAC,GAAG,KAAK,KAAK,IAAI,CAAC,EAAE,CAAC,IAAIA,EAAE,KAAK,KAAK,IAAI,CAAC,EAAEA,EAAE,UAAU,CAAC,CAAC,KAAK,EAAEA,EAAEE,EAAEC,EAAE,EAAE,CAAC,KAAK,KAAK,IAAI,EAAE,CAAC,OAAOH,EAAE,MAAMG,EAAE,SAAS,CAAC,CAAC,CAAC,CAAC,YAAY,CAAC,OAAO,KAAK,KAAK,WAAW,CAAC,CAAC,MAAM,KAAK,EAAE,CAAC,OAAO,KAAK,SAAS,CAAC,CAAC,CAAC,SAAS,EAAE,CAAC,GAAG,CAAC,MAAMH,EAAE,mBAAmBE,CAAC,EAAE,KAAK,KAAK,IAAI,CAAC,EAAE,GAAGF,IAAI,YAAY,CAAC,IAAIG,EAAE,KAAK,SAASD,EAAE,KAAK,MAAM,EAAE,EAAE,KAAK,SAASA,EAAE,KAAK,MAAM,EAAE,OAAO1S,EAAE,uBAAuB2S,EAAE,CAAC,CAAC,CAAC,OAAO9B,EAAE,mCAAmC,KAAK,KAAK,IAAI,CAAC,EAAE,OAAO2B,CAAC,CAAC,CAAC,WAAW,EAAE,CAAC,IAAIA,EAAE,KAAK,SAAS,EAAE,MAAM,EAAE,GAAG,EAAE,QAAQ,SAAS,GAAG,CAAC,IAAIE,EAAEF,EAAE,IAAIG,GAAG9B,EAAE,aAAa8B,CAAC,CAAC,EAAE,OAAO7R,GAAG,EAAE,MAAM,EAAE,MAAM4R,CAAC,CAAC,OAAOA,EAAE,CAAC,MAAM,IAAI,MAAM,kDAAkD,CAAC,CAAC,OAAO5R,GAAG,EAAE,MAAM,EAAE,MAAM0R,CAAC,CAAC,CAAC,WAAW,EAAEA,EAAEE,EAAE,CAAC,OAAO9O,GAAG,EAAE,yBAAyB,KAAK,eAAe4O,EAAEE,EAAE,CAAC,EAAE,IAAI,CAAC,CAAC,YAAY,EAAEF,EAAE,GAAG,CAAC,GAAG,KAAK,KAAK,IAAI,CAAC,EAAE,CAAC,GAAG,KAAK,KAAK,IAAI,CAAC,EAAE,WAAW,CAACA,GAAG,KAAK,KAAK,IAAI,CAAC,EAAE,SAAS,EAAE,MAAM,GAAG,GAAG,CAAC,mBAAmBE,CAAC,EAAE,KAAK,KAAK,IAAI,CAAC,EAAEA,GAAG,OAAO,KAAK,YAAYA,EAAE,KAAK,OAAO,EAAE,EAAE,KAAK,YAAYA,EAAE,KAAK,OAAO,EAAE,GAAG,KAAK,KAAK,OAAO,CAAC,CAAC,CAAC,MAAM,EAAE,CAAC,8BAA8B,EAAE,CAAC,KAAK,YAAY,EAAE,MAAM,CAAC,CAAC,MAAM,KAAK,EAAE,CAAC,IAAIF,EAAE3B,EAAE,IAAI,EAAE,OAAO,EAAE,EAAE,CAAC,SAASA,EAAE,IAAI,EAAE2B,CAAC,CAAC,CAAC,QAAQ,CAAC,MAAM,CAAC,WAAW,GAAG,QAAQ,CAAC,oHAAoH,CAAC,CAAC,CAAC,MAAM,EAAE,CAACy4D,GAAG,CAAC,CAAC,EAAE,OAAO,EAAE,IAAIz4D,EAAE,KAAK,SAAS,EAAE,MAAM,EAAE,OAAO04D,GAAI,EAAE,MAAM14D,CAAC,CAAC,CAAC,SAAS,CAAC,CAAC,gBAAgB,CAAC,MAAO,GAAE,CAAC,SAAS,CAAC,OAAO,MAAM,QAAQ,CAAC,CAAC,EAAEja,GAAG,WAAW,EAAE,IAAI8U,GAAG,CAAC,EAAEkF,GAAGlF,GAAG,CAAC,QAAQ,IAAI89D,GAAG,aAAa,IAAIC,GAAG,mBAAmB,IAAIC,GAAG,eAAe,IAAIC,GAAG,SAAS,IAAIC,GAAG,SAAS,IAAIC,GAAG,WAAW,IAAIC,GAAG,UAAU,IAAIC,GAAG,QAAQ,IAAIC,GAAG,UAAU,IAAIC,GAAG,aAAa,IAAIC,GAAG,UAAU,IAAIC,GAAG,aAAa,IAAIC,GAAG,aAAa,IAAIC,GAAG,iBAAiB,IAAIC,GAAG,YAAY,IAAIC,GAAG,cAAc,IAAIC,GAAG,SAAS,IAAIC,GAAG,aAAa,IAAIC,GAAG,QAAQ,IAAIC,GAAG,QAAQ,IAAIC,GAAG,YAAY,IAAIC,GAAG,YAAY,IAAIC,GAAG,aAAa,IAAIC,GAAG,QAAQ,IAAIC,GAAG,aAAa,IAAIC,GAAG,SAAS,IAAIC,GAAG,iBAAiB,IAAIC,GAAG,gBAAgB,IAAIC,GAAG,yBAAyB,IAAIC,GAAG,UAAU,IAAIC,GAAG,UAAU,IAAIC,GAAG,YAAY,IAAIC,GAAG,YAAY,IAAIC,GAAG,cAAc,IAAIC,GAAG,UAAU,IAAIC,GAAG,wBAAwB,IAAIC,GAAG,kBAAkB,IAAIC,GAAG,2BAA2B,IAAIC,GAAG,SAAS,IAAIC,GAAG,sBAAsB,IAAIC,GAAG,uBAAuB,IAAIC,GAAG,iBAAiB,IAAIC,GAAG,iBAAiB,IAAIC,GAAG,gBAAgB,IAAIC,GAAG,2BAA2B,IAAIC,GAAG,QAAQ,IAAIC,GAAG,SAAS,IAAIC,GAAG,SAAS,IAAIC,GAAG,cAAc,IAAIC,GAAG,WAAW,IAAIC,EAAE,CAAC,EAAE,SAAShB,GAAG/6D,EAAE,CAAC,IAAI,EAAE,IAAI,aAAaA,EAAE,MAAM,EAAE,QAAQE,EAAE,EAAEA,EAAEF,EAAE,OAAO,EAAEE,EAAE,EAAEA,CAAC,EAAE,KAAK,IAAIF,EAAEE,CAAC,CAAC,EAAE,OAAO,CAAC,CAAC,IAAI87D,GAAIh8D,GAAG,CAAC,GAAG,CAAC,EAAE,CAAC,EAAEA,EAAE,OAAOE,EAAEF,EAAE,QAAQ24D,GAAG,EAAE,KAAK,EAAE,IAAIv4D,EAAE,IAAI,aAAa7B,EAAE,cAAc,EAAE,KAAK,CAAC,EAAE8B,EAAEH,EAAE,KAAK,IAAI,EAAE,MAAM,EAAE,OAAO,OAAOE,EAAE26D,GAAG16D,CAAC,EAAEH,EAAE,WAAWE,EAAE,EAAE,MAAM,EAAE,KAAK,CAAC,EAAE67D,GAAG,CAAC,WAAW/8E,GAAG,YAAY,MAAM,WAAW88E,EAAG,EAAE,SAASE,GAAGl8D,EAAE,CAAC,MAAM,CAAC,EAAEE,EAAEE,EAAEC,EAAE,IAAI,CAAC,IAAI,EAAE3S,EAAE,2BAA2B,EAAEwS,CAAC,EAAE6B,EAAE,EAAE,OAAOC,EAAEzD,EAAE,eAAe,CAAC,EAAE0D,EAAE1D,EAAE,cAAc,CAAC,EAAEmE,EAAEnE,EAAE,uBAAuB,EAAE0D,CAAC,EAAEU,EAAE,EAAE,OAAOC,EAAE1C,EAAE,OAAO2C,EAAEtE,EAAE,eAAe,CAAC,EAAEuE,EAAEvE,EAAE,eAAe2B,CAAC,EAAE8D,EAAEtW,EAAE,iBAAiB,EAAE,CAAC,EAAE,EAAEA,EAAE,iBAAiBwS,EAAE,CAAC,EAAE,GAAG8D,EAAE,OAAO,EAAE,SAAS,EAAE,QAAQsD,EAAE,EAAEA,EAAE5E,EAAE,OAAO,EAAE4E,EAAE5E,EAAE4E,CAAC,EAAEtH,EAAEI,EAAEkH,EAAElH,EAAE,MAAM,EAAEC,EAAEiH,EAAEjH,EAAE,MAAM,CAAC,MAAO,SAAQiH,EAAE,EAAEA,EAAE5E,EAAE,OAAO,EAAE4E,EAAE,CAAC,IAAIxC,EAAEvG,EAAE,WAAW+I,EAAEvF,EAAEC,CAAC,EAAEyC,EAAEK,EAAE,MAAM,CAACnC,CAAC,EAAEqB,EAAE,QAAQa,GAAGJ,EAAEI,CAAC,EAAE,CAAC,EAAE,IAAIH,EAAEnG,EAAE,WAAWkG,EAAE9B,EAAEE,CAAC,EAAE8B,EAAEG,EAAE,MAAM,CAAClC,CAAC,EAAE,EAAE,QAAQiC,GAAGF,EAAEE,CAAC,EAAE,CAAC,EAAE,IAAID,EAAErG,EAAE,WAAWoG,EAAE/B,EAAEE,CAAC,EAAEJ,EAAE4E,CAAC,EAAEtH,EAAEI,EAAEsE,CAAC,EAAErE,EAAEuE,CAAC,CAAC,CAAC,CAAC,MAAM,CAAClC,EAAE,CAAC,CAAC,CAAC,CAAC,SAASy5D,GAAGn8D,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,CAAC,EAAEF,EAAE,CAAC,KAAKI,EAAE,KAAKC,CAAC,EAAE,EAAE,EAAEH,EAAE,KAAK,IAAIE,EAAE,MAAM,EAAE,OAAO,EAAEF,EAAE,KAAK,IAAIG,EAAE,MAAM,EAAE,OAAO0B,EAAE7B,EAAE,eAAeE,EAAE,MAAM,WAAW,EAAE4B,EAAE9B,EAAE,KAAK,IAAI6B,EAAE,MAAM,EAAE,OAAOC,EAAE,mBAAmB,CAAC,KAAK9B,EAAE,eAAeE,EAAE,MAAM,UAAU,CAAC,EAAE,KAAKF,EAAE,eAAeG,EAAE,MAAM,UAAU,CAAC,CAAC,EAAE0B,CAAC,CAAC,IAAIq6D,GAAG,CAAC,WAAWh7E,GAAG,YAAY,MAAM,WAAW+6E,EAAE,EAAE,SAASE,GAAGr8D,EAAE,EAAEE,EAAE,UAAU,CAAC,GAAGA,IAAI,YAAY,CAAC,IAAIG,EAAEg8D,GAAGr8D,EAAE,EAAE,SAAS,EAAE,EAAEq8D,GAAGr8D,EAAE,EAAE,SAAS,EAAE,OAAOm8D,GAAG,CAAC,OAAO,CAAC,KAAK97D,EAAE,KAAK,CAAC,EAAE,QAAQL,CAAC,CAAC,CAAC,CAAC,IAAII,EAAE7B,EAAE,oBAAoBA,EAAE,cAAc,CAAC,EAAE2B,CAAC,EAAE,OAAOF,EAAE,eAAe,EAAEE,EAAEE,CAAC,CAAC,CAAC,SAASk8D,GAAGt8D,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,CAAC,EAAEF,EAAE,CAAC,EAAEI,CAAC,EAAE,EAAE,OAAOF,EAAE,OAAOE,EAAE,MAAM,EAAE,CAAC,OAAOA,EAAE,OAAO,MAAMA,EAAE,MAAM,MAAMA,EAAE,KAAK,CAAC,CAAC,IAAIm8D,GAAG,CAAC,WAAW73E,GAAG,YAAY,MAAM,WAAW43E,EAAE,EAAE,SAASE,GAAGx8D,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,CAAC,EAAEF,EAAE,CAAC,MAAMI,CAAC,EAAE,EAAEC,EAAEH,EAAE,KAAK,IAAIE,EAAE,MAAM,EAAE,mBAAmB,KAAK,EAAEF,EAAE,KAAK,IAAIG,EAAE,MAAM,EAAE,OAAO,OAAOH,EAAE,eAAeG,EAAE,MAAMA,EAAE,MAAM,CAAC,CAAC,CAAC,IAAIo8D,GAAG,CAAC,WAAW/zE,GAAG,YAAY,MAAM,WAAW8zE,EAAE,EAAE,SAASvD,GAAGj5D,EAAE,EAAEE,EAAEE,EAAE,CAAC,GAAGA,IAAI,QAAQ,CAAC,IAAIC,EAAE,WAAW,KAAKL,CAAC,EAAE,MAAM,CAAC,EAAE,QAAQK,CAAC,CAAC,CAAC,GAAGD,IAAI,OAAO,CAAC,IAAIC,EAAE9B,EAAE,aAAa,CAAC,CAAC,EAAE2B,CAAC,EAAE,CAAC,EAAE,CAAC,EAAEg8D,GAAG,CAACn6D,EAAEC,IAAID,IAAIC,EAAE,EAAE,CAAC,EAAE,EAAE,CAAC,EAAEhC,EAAEK,EAAE,MAAM,EAAE,MAAM,CAAC,EAAE,OAAO,CAAC,CAAC,CAAC,MAAM,IAAI,MAAM,iCAAiCH,CAAC,OAAOE,CAAC,EAAE,CAAC,CAAC,SAASs8D,GAAG18D,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,CAAC,EAAE,EAAE,CAAC,MAAM,CAAC,EAAED,EAAE,GAAG,IAAI,YAAY,CAAC,GAAGC,EAAE,QAAQ,YAAY,OAAOi8D,GAAG,CAAC,OAAO,CAAC,EAAEj8D,CAAC,EAAE,QAAQH,CAAC,CAAC,EAAE,IAAIwC,EAAE25D,GAAGn8D,EAAEG,EAAE,MAAMA,EAAE,KAAK,EAAEsC,EAAE+5D,GAAG,CAAC,OAAO,CAAC,EAAEr8D,CAAC,EAAE,QAAQH,EAAE,MAAM,CAAC,MAAM,SAAS,CAAC,CAAC,EAAE0C,EAAEu5D,GAAG,CAAC,OAAO,CAAC,KAAKx5D,EAAE,KAAKD,CAAC,EAAE,QAAQxC,CAAC,CAAC,EAAE,OAAOA,EAAE,8BAA8BwC,CAAC,EAAExC,EAAE,8BAA8ByC,CAAC,EAAEC,CAAC,CAAC,GAAGvC,EAAE,QAAQ,YAAY,CAAC,IAAIqC,EAAE85D,GAAG,CAAC,OAAO,CAAC,MAAMn8D,CAAC,EAAE,QAAQH,CAAC,CAAC,EAAEyC,EAAE+5D,GAAG,CAAC,OAAO,CAAC,EAAEh6D,CAAC,EAAE,QAAQxC,EAAE,MAAM,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,OAAOA,EAAE,8BAA8BwC,CAAC,EAAEC,CAAC,CAAC,GAAG,CAACpE,EAAE,gBAAgB8B,EAAE,MAAM,CAAC,EAAE,CAAC,IAAIqC,EAAE45D,GAAG,CAAC,OAAO,CAAC,EAAEj8D,CAAC,EAAE,QAAQH,CAAC,CAAC,EAAE,MAAM,CAAC,OAAOwC,EAAE,OAAO,MAAMA,EAAE,MAAM,MAAM,CAAC,CAAC,CAAC,IAAI,EAAExC,EAAE,KAAK,IAAIG,EAAE,MAAM,EAAE,OAAO,CAAC0B,EAAEC,EAAEC,CAAC,EAAEg3D,GAAG,EAAE54D,EAAE,MAAMA,EAAE,MAAM,CAAC,EAAE,OAAOH,EAAE,eAAe6B,EAAEC,EAAEC,CAAC,CAAC,CAAC,IAAI06D,GAAG,CAAC,WAAW17E,GAAG,YAAY,MAAM,WAAWy7E,EAAE,EAAE,SAASE,GAAG58D,EAAE,EAAEE,EAAEE,EAAE,CAAC,OAAOF,GAAG,KAAK,CAAC,CAAC,OAAOG,EAAE,QAAQ,CAAC,IAAI,CAAC,GAAG,CAAC,EAAE,EAAE,EAAE0B,CAAC,EAAE1B,EAAE2B,EAAE,EAAE22D,GAAG,CAAC,EAAE52D,CAAC,EAAE/B,CAAC,EAAE,IAAIiC,EAAED,EAAE,KAAK,IAAI,EAAE,MAAM,EAAE,OAAOU,EAAEV,EAAE,KAAK,IAAID,EAAE,MAAM,EAAE,OAAOY,EAAE,EAAE,QAAQ,SAASjV,EAAE,uBAAuBuU,CAAC,EAAEA,EAAEW,EAAE,EAAE,QAAQ,SAASlV,EAAE,uBAAuBgV,CAAC,EAAEA,EAAEG,EAAEzC,GAAG,EAAE,MAAM,CAAC0C,EAAEkB,CAAC,EAAE,EAAE,EAAE,MAAMjC,EAAE,MAAMY,EAAEC,EAAEC,CAAC,EAAE,OAAOb,EAAE,eAAegC,EAAEnB,EAAEC,CAAC,CAAC,EAAE,CAAC,CAAC,OAAOzC,EAAE,QAAQ,CAAC,IAAI,CAAC,GAAG,CAAC,EAAE,EAAE,EAAE0B,CAAC,EAAE1B,EAAE2B,EAAE,EAAE,GAAG,EAAE,QAAQ,aAAaD,EAAE,QAAQ,YAAY,CAAC,IAAIE,EAAEy6D,GAAG,CAAC,OAAO,CAAC,EAAE,CAAC,EAAE,QAAQ16D,EAAE,MAAM,CAAC,MAAM,WAAW,CAAC,CAAC,EAAEU,EAAEV,EAAE,KAAK,IAAIC,EAAE,MAAM,EAAEU,EAAED,EAAE,mBAAmB,KAAKE,EAAEF,EAAE,mBAAmB,KAAKG,EAAEb,EAAE,KAAK,IAAIW,EAAE,MAAM,EAAE,OAAOG,EAAEd,EAAE,KAAK,IAAIY,EAAE,MAAM,EAAE,OAAOoB,EAAE04D,GAAG,CAAC,OAAO,CAAC,EAAE36D,CAAC,EAAE,QAAQC,EAAE,MAAM,CAAC,MAAM,WAAW,CAAC,CAAC,EAAE,EAAEA,EAAE,KAAK,IAAIgC,EAAE,MAAM,EAAEsD,EAAE,EAAE,mBAAmB,KAAKxC,EAAE,EAAE,mBAAmB,KAAKL,EAAEzC,EAAE,KAAK,IAAIsF,EAAE,MAAM,EAAE,OAAO5C,EAAE1C,EAAE,KAAK,IAAI8C,EAAE,MAAM,EAAE,OAAO,CAACH,EAAEC,EAAEC,CAAC,EAAE3E,EAAE,EAAE,MAAM6B,EAAE,MAAMc,EAAEC,EAAE2B,EAAEC,CAAC,EAAE6C,EAAEvF,EAAE,eAAe6C,EAAE,UAAUF,CAAC,EAAE,EAAE3C,EAAE,eAAe6C,EAAE,UAAUD,CAAC,EAAEI,EAAEm3D,GAAG,CAAC,OAAO,CAAC,KAAK50D,EAAE,KAAK,CAAC,EAAE,QAAQvF,CAAC,CAAC,EAAE,OAAOA,EAAE,8BAA8BC,CAAC,EAAED,EAAE,8BAA8BgC,CAAC,EAAEhC,EAAE,8BAA8BuF,CAAC,EAAEvF,EAAE,8BAA8B,CAAC,EAAEgD,CAAC,KAAK,CAAC,IAAI/C,EAAED,EAAE,KAAK,IAAI,EAAE,MAAM,EAAE,OAAOU,EAAEV,EAAE,KAAK,IAAID,EAAE,MAAM,EAAE,OAAOY,EAAEvC,GAAG,EAAE,MAAM,CAACwC,EAAEC,CAAC,EAAE,EAAE,EAAE,MAAMd,EAAE,MAAME,EAAES,EAAEC,CAAC,EAAE,OAAOX,EAAE,eAAea,EAAEF,EAAEC,CAAC,CAAC,CAAC,CAAC,CAAC,SAASi6D,GAAG78D,EAAE,CAAC,MAAM,CAAC,EAAEE,EAAEE,EAAEC,EAAE,EAAE,IAAI,CAAC,IAAI0B,EAAErU,EAAE,2BAA2B,EAAEwS,CAAC,EAAE8B,EAAEzD,EAAE,cAAcwD,CAAC,EAAEE,EAAEF,EAAE,OAAOW,EAAEnE,EAAE,eAAewD,CAAC,EAAEY,EAAEpE,EAAE,uBAAuB,UAAUyD,CAAC,EAAEY,EAAErE,EAAE,uBAAuB,UAAUyD,CAAC,EAAEa,EAAEnV,EAAE,iBAAiB,EAAEqU,CAAC,EAAEe,EAAEpV,EAAE,iBAAiBwS,EAAE6B,CAAC,EAAEiC,EAAEtW,EAAE,uBAAuB0S,EAAEC,CAAC,EAAE,EAAE3S,EAAE,uBAAuB,EAAE,CAAC,EAAE4Z,EAAE,EAAE,OAAOxC,EAAEvG,EAAE,eAAe,CAAC,EAAEkG,EAAEvE,EAAE,OAAOwE,EAAEnG,EAAE,eAAe2B,CAAC,EAAE,GAAG2C,EAAE,OAAOC,EAAE,SAAS,EAAE,QAAQ6B,EAAE,EAAEA,EAAEhC,EAAE,OAAOgC,IAAI,CAAC,IAAIC,EAAED,EAAEX,EAAE,OAAOa,EAAEF,EAAE,EAAE,OAAO4C,EAAEvH,EAAEgE,EAAEY,EAAE,CAAC,EAAEZ,EAAEY,EAAE,EAAE,CAAC,EAAE,EAAEC,EAAE,CAAC,EAAE,EAAEA,EAAE,EAAE,CAAC,CAAC,EAAElC,EAAEgC,CAAC,EAAE4C,EAAE,KAAK3E,EAAE+B,CAAC,EAAE4C,EAAE,IAAI,KAAM,SAAQ5C,EAAE,EAAEA,EAAEhC,EAAE,OAAOgC,IAAI,CAAC,IAAIC,EAAErG,EAAE,WAAWoG,EAAE1C,EAAES,CAAC,EAAEmC,EAAED,EAAE,MAAM,CAAC0C,CAAC,EAAEzE,EAAE,QAAQqC,GAAGL,EAAEK,CAAC,EAAE,CAAC,EAAE,IAAIqC,EAAEhJ,EAAE,WAAWsG,EAAEyC,EAAExC,CAAC,EAAE,EAAEF,EAAE,MAAM,CAACH,CAAC,EAAE3B,EAAE,QAAQoC,GAAG,EAAEA,CAAC,EAAE,CAAC,EAAE,IAAIF,EAAEzG,EAAE,WAAW,EAAEkG,EAAEC,CAAC,EAAEO,EAAEjF,EAAEgE,EAAEuD,EAAE,CAAC,EAAEvD,EAAEuD,EAAE,EAAE,CAAC,EAAE,EAAEvC,EAAE,CAAC,EAAE,EAAEA,EAAE,EAAE,CAAC,CAAC,EAAErC,EAAEgC,CAAC,EAAEM,EAAE,KAAKrC,EAAE+B,CAAC,EAAEM,EAAE,IAAI,CAAC,MAAM,CAACtC,EAAEC,EAAEb,CAAC,CAAC,CAAC,CAAC,IAAI82D,GAAGqD,GAAG,CAACl8D,EAAE,IAAIA,EAAE,CAAC,EAAE88D,GAAID,GAAG,CAAC78D,EAAE,EAAEE,EAAEE,KAAK,CAAC,KAAKJ,EAAEE,EAAE,KAAK,EAAEE,CAAC,EAAE,EAAE28D,GAAGH,GAAGn9E,GAAGo5E,GAAGiE,EAAG,EAAEE,GAAG,CAAC,WAAWv9E,GAAG,YAAY,MAAM,WAAWs9E,EAAE,EAAE,SAASjE,GAAG94D,EAAE,EAAEE,EAAEE,EAAEC,EAAE,CAAC,IAAI,EAAE9B,EAAE,cAAc6B,CAAC,EAAE,EAAE7B,EAAE,oBAAoB8B,EAAEH,CAAC,EAAE,QAAQ6B,EAAE,EAAEA,EAAE/B,EAAE,OAAO+B,IAAI,CAAC,IAAIC,EAAEhC,EAAE+B,CAAC,EAAE,GAAGC,EAAE,EAAE,MAAM,IAAI,MAAM,+BAA+B,EAAEA,GAAG3B,IAAI,EAAE,EAAE,EAAE2B,CAAC,GAAG,EAAED,CAAC,EAAE,EAAEC,CAAC,GAAG,EAAE,CAAC,OAAO,CAAC,CAAC,SAAS+2D,GAAG/4D,EAAE,EAAEE,EAAEE,EAAE,GAAG,CAAC,IAAIC,EAAEL,EAAE,MAAM,CAAC,EAAE,EAAEA,EAAE,MAAM,CAAC,EAAE,EAAExR,GAAG,CAAC6R,EAAEH,CAAC,EAAE,EAAE,KAAK,EAAE,QAAQ6B,EAAE,EAAEA,EAAE1B,EAAE0B,IAAI,QAAQC,EAAE,EAAEA,EAAE,EAAEA,IAAI,CAAC,IAAIC,EAAEjC,EAAE,IAAI+B,EAAEC,CAAC,EAAE,GAAGC,EAAE,EAAE,MAAM,IAAI,MAAM,+BAA+B,EAAEA,GAAG/B,IAAIE,EAAE,EAAE,IAAI,EAAE2B,EAAEE,CAAC,EAAE,EAAE,KAAK,EAAE,EAAE,IAAI,EAAE,IAAIF,EAAEE,CAAC,EAAE,EAAE,IAAIF,EAAEC,CAAC,EAAED,EAAEE,CAAC,EAAE,EAAE,IAAI,EAAE,IAAIF,EAAEE,CAAC,EAAE,EAAEF,EAAEE,CAAC,EAAE,CAAC,OAAO,CAAC,CAAC,IAAI+2D,GAAGkD,GAAG,CAACl8D,EAAE,IAAIA,EAAE,CAAC,EAAEi9D,GAAIL,GAAGh8E,GAAGo4E,EAAE,EAAEkE,GAAG,CAAC,WAAWt8E,GAAG,YAAY,MAAM,WAAWq8E,EAAG,EAAE,SAASE,GAAGn9D,EAAE,CAAC,MAAM,CAAC,EAAEE,EAAEE,IAAI,CAAC,IAAIC,EAAE9B,EAAE,kBAAkB2B,EAAE,EAAE,MAAM,EAAE,QAAQ,EAAE,EAAE,EAAE,EAAE,OAAO,EAAE,EAAEG,EAAE,CAAC,EAAEL,EAAE,EAAE,CAAC,EAAEI,CAAC,EAAE,OAAOC,CAAC,CAAC,CAAC,SAAS+8D,GAAGp9D,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAE+8D,GAAG,CAAC,EAAE,OAAOE,GAAGr9D,EAAEI,EAAEF,CAAC,CAAC,CAAC,SAASm9D,GAAGr9D,EAAE,EAAEE,EAAE,CAAC,MAAM,CAAC,CAAC,OAAOE,EAAE,MAAMC,EAAE,QAAQ,CAAC,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,EAAED,EAAEu4D,GAAG,EAAE34D,CAAC,EAAE,IAAI+B,EAAE,EAAEC,EAAED,EAAE,KAAK,IAAI,EAAE,MAAM,EAAE,OAAOE,EAAE,GAAG,EAAE,QAAQ,SAAS,CAAC,GAAG,CAAC,MAAM,QAAQD,CAAC,EAAE,MAAM,IAAI,MAAM,oDAAoD,EAAEC,EAAEvU,EAAE,uBAAuBsU,CAAC,CAAC,MAAMC,EAAED,EAAE,IAAIU,EAAExC,GAAG,EAAE,MAAMyC,EAAE,EAAEV,EAAES,EAAErC,CAAC,EAAE,OAAO0B,EAAE,eAAe,EAAE,MAAMW,EAAEC,CAAC,CAAC,CAAC,CAAC,IAAIu2D,GAAGiE,GAAGn9D,GAAG,KAAK,KAAKA,CAAC,CAAC,EAAEs9D,GAAID,GAAGn8E,GAAGg4E,EAAE,EAAEqE,GAAG,CAAC,WAAWr8E,GAAG,YAAY,MAAM,WAAWo8E,EAAG,EAAE,SAASnE,GAAGn5D,EAAE,EAAEE,EAAEE,EAAE,CAAC,IAAIC,EAAE9B,EAAE,kBAAkB2B,EAAE3B,EAAE,cAAc,CAAC,CAAC,EAAE,GAAG6B,GAAGF,IAAI,SAAS,CAAC,IAAI,EAAE,EAAEF,EAAE,QAAQ,GAAG,CAAC,IAAI+B,EAAExD,EAAE,cAAc,EAAE,KAAK,EAAE8B,EAAE,IAAI,EAAE,KAAK,CAAC,EAAE,GAAG0B,CAAC,CAAC,CAAC,KAAK,CAAC,IAAI,EAAE,EAAE/B,EAAE,QAAQ,GAAG,CAAC,IAAI+B,EAAE7B,IAAI,SAASxS,EAAE,uBAAuB,EAAE,IAAI,EAAE,EAAE,KAAKsU,EAAE,EAAE,QAAQC,EAAE,EAAEA,EAAE,EAAE,MAAM,CAAC,EAAE,EAAEA,EAAE,CAAC,IAAIS,EAAET,EAAE,EAAE,CAAC,EAAE,EAAE,QAAQU,EAAE,EAAEA,EAAE,EAAE,MAAM,CAAC,EAAE,EAAEA,EAAEtC,EAAEqC,EAAEC,CAAC,EAAEZ,EAAEC,GAAG,CAAC,CAAC,GAAG,EAAE,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,OAAO3B,CAAC,CAAC,IAAI+4D,GAAG8C,GAAG,CAACl8D,EAAE,IAAIA,IAAI,EAAE,EAAE,CAAC,EAAEw9D,GAAGZ,GAAGx5E,GAAGg2E,GAAG,KAAK,MAAM,EAAEqE,GAAG,CAAC,WAAWr6E,GAAG,YAAY,MAAM,WAAWo6E,EAAE,EAAMnE,GAAG8D,GAAGn9D,GAAG,KAAK,IAAIA,CAAC,CAAC,EAAE09D,GAAGL,GAAG/5E,GAAG+1E,GAAG,SAAS,EAAEsE,GAAG,CAAC,WAAWr6E,GAAG,YAAY,MAAM,WAAWo6E,EAAE,EAAMpE,GAAG6D,GAAGn9D,GAAG,KAAK,MAAMA,CAAC,CAAC,EAAE49D,GAAIP,GAAG75E,GAAG81E,EAAE,EAAEuE,GAAG,CAAC,WAAWr6E,GAAG,YAAY,MAAM,WAAWo6E,EAAG,EAAMpE,GAAG2D,GAAGn9D,GAAG,KAAK,MAAMA,CAAC,CAAC,EAAE89D,GAAIT,GAAGz5E,GAAG41E,EAAE,EAAEuE,GAAG,CAAC,WAAWn6E,GAAG,YAAY,MAAM,WAAWk6E,EAAG,EAAMvE,GAAG2C,GAAG,CAACl8D,EAAE,IAAI,KAAK,MAAMA,EAAE,CAAC,CAAC,EAAEg+D,GAAIpB,GAAG/4E,GAAG01E,GAAG,KAAK,OAAO,EAAE0E,GAAG,CAAC,WAAWp6E,GAAG,YAAY,MAAM,WAAWm6E,EAAG,EAAE,SAASvE,GAAGz5D,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,EAAE0B,EAAEC,EAAE,CAAC,IAAIC,EAAEzT,GAAG,CAAC4R,EAAE,CAAC,EAAEF,CAAC,EAAE,QAAQwC,EAAE,EAAEA,EAAEtC,EAAEsC,IAAI,CAAC,IAAIC,EAAE,CAAC,EAAEC,EAAE,EAAE,QAAQC,EAAE,EAAEA,EAAExC,EAAEwC,IAAI,CAAC,IAAIC,EAAE9C,EAAE0C,EAAErC,EAAEwC,CAAC,EAAED,GAAGE,EAAE,EAAED,CAAC,EAAEF,EAAE,KAAKG,CAAC,CAAC,CAAC,GAAGF,EAAE,GAAGA,GAAGZ,EAAE,EAAE,MAAM,IAAI,MAAM,oBAAoBW,CAAC,wBAAwBZ,CAAC,EAAE,EAAE,QAAQc,EAAE,EAAEA,EAAE,EAAEA,IAAIZ,EAAE,OAAOS,EAAE,EAAEG,CAAC,EAAE,EAAE,IAAI,GAAG,EAAE,WAAWD,EAAE,EAAEC,CAAC,CAAC,CAAC,CAAC,OAAOZ,CAAC,CAAC,SAASy3D,GAAG15D,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAE5R,GAAG0R,EAAEF,EAAE,KAAK,EAAE,QAAQK,EAAE,EAAEA,EAAED,EAAE,KAAK,EAAEC,EAAE,CAAC,IAAIyB,EAAE1B,EAAE,WAAWC,CAAC,EAAE,MAAM,EAAE0B,EAAED,EAAE,CAAC,EAAEE,EAAEF,EAAE,CAAC,EAAE,EAAE,EAAE,WAAW,CAACC,EAAEC,CAAC,CAAC,EAAEF,EAAE,CAAC,EAAE,EAAE,OAAO,CAAC,EAAE,IAAIY,EAAE1C,EAAE,WAAW8B,CAAC,EAAE,GAAGY,GAAGA,EAAE1C,EAAE,OAAO,SAASI,EAAE,OAAOC,CAAC,EAAEL,EAAE,OAAO0C,CAAC,EAAE,CAAC,OAAOtC,CAAC,CAAC,IAAIw5D,GAAGsC,GAAG,CAACl8D,EAAE,IAAIA,EAAE,EAAE,EAAE,CAAC,EAAEk+D,GAAItB,GAAGt4E,GAAGs1E,GAAG,KAAK,MAAM,EAAEuE,GAAG,CAAC,WAAW75E,GAAG,YAAY,MAAM,WAAW45E,EAAG,EAAMvE,GAAGuC,GAAG,CAACl8D,EAAE,IAAIA,GAAG,EAAE,EAAE,CAAC,EAAEo+D,GAAIxB,GAAGr4E,GAAGo1E,GAAG,KAAK,MAAM,EAAE0E,GAAG,CAAC,WAAW95E,GAAG,YAAY,MAAM,WAAW65E,EAAG,EAAMtE,GAAGoC,GAAG,CAACl8D,EAAE,IAAIA,EAAE,EAAE,EAAE,CAAC,EAAEs+D,GAAI1B,GAAGt3E,GAAGw0E,GAAG,KAAK,MAAM,EAAEyE,GAAG,CAAC,WAAWj5E,GAAG,YAAY,MAAM,WAAWg5E,EAAG,EAAMzE,GAAGqC,GAAG,CAACl8D,EAAE,IAAIA,GAAG,EAAE,EAAE,CAAC,EAAEw+D,GAAI5B,GAAGr3E,GAAGs0E,GAAG,KAAK,MAAM,EAAE4E,GAAG,CAAC,WAAWl5E,GAAG,YAAY,MAAM,WAAWi5E,EAAG,EAAE,SAASzE,GAAG/5D,EAAE,EAAEE,EAAE,CAAC,IAAIE,GAAG,EAAEJ,IAAIE,EAAE,GAAGG,EAAE9B,EAAE,oBAAoB2B,EAAE,SAAS,EAAEG,EAAE,CAAC,EAAEL,EAAE,QAAQ,EAAE,EAAE,EAAEK,EAAE,OAAO,IAAIA,EAAE,CAAC,EAAEA,EAAE,EAAE,CAAC,EAAED,EAAE,OAAOC,CAAC,CAAC,IAAI25D,GAAGmD,GAAGn9D,GAAG,KAAK,IAAIA,CAAC,CAAC,EAAE0+D,GAAIrB,GAAG53E,GAAGu0E,EAAE,EAAE2E,GAAG,CAAC,WAAWl5E,GAAG,YAAY,MAAM,WAAWi5E,EAAG,EAAE,SAASzE,GAAGj6D,EAAE,EAAEE,EAAEE,EAAE,CAAC,IAAIC,EAAE9B,EAAE,uBAAuB6B,EAAE7B,EAAE,cAAc2B,CAAC,CAAC,EAAE,QAAQ,EAAE,EAAE,EAAEG,EAAE,OAAO,EAAE,EAAE,CAAC,IAAI,EAAE,EAAE,EAAE0B,EAAE/B,EAAE,CAAC,EAAE,QAAQgC,EAAE,EAAEA,EAAE,EAAE,EAAEA,EAAE,CAAC,IAAIC,EAAEjC,EAAE,EAAEgC,CAAC,GAAG,OAAO,MAAMC,CAAC,GAAGA,EAAEF,KAAKA,EAAEE,EAAE,CAAC5B,EAAE,CAAC,EAAE0B,CAAC,CAAC,OAAO1B,CAAC,CAAC,IAAI65D,GAAGgC,GAAG,CAACl8D,EAAE,IAAI,KAAK,IAAIA,EAAE,CAAC,CAAC,EAAE4+D,GAAIhC,GAAGl2E,GAAGwzE,EAAE,EAAE2E,GAAG,CAAC,WAAWn4E,GAAG,YAAY,MAAM,WAAWk4E,EAAG,EAAMzE,GAAG+B,GAAG,CAACl8D,EAAE,IAAI,KAAK,IAAIA,EAAE,CAAC,CAAC,EAAE8+D,GAAIlC,GAAG/1E,GAAGszE,EAAE,EAAE4E,GAAG,CAAC,WAAWl4E,GAAG,YAAY,MAAM,WAAWi4E,EAAG,EAAM1E,GAAG8B,GAAG,CAACl8D,EAAE,IAAIA,EAAE,CAAC,EAAEg/D,GAAInC,GAAG,CAAC78D,EAAE,EAAEE,EAAEE,KAAK,CAAC,KAAKJ,EAAEE,EAAE,EAAEE,EAAE,KAAKJ,EAAEI,EAAE,EAAEF,CAAC,EAAE,EAAE++D,GAAGrC,GAAG11E,GAAGkzE,GAAG4E,EAAG,EAAEE,GAAG,CAAC,WAAWh4E,GAAG,YAAY,MAAM,WAAW+3E,EAAE,EAAE,SAAS5E,GAAGr6D,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAE7B,EAAE,kBAAkB,GAAG2B,CAAC,EAAE,OAAOk6D,GAAG,CAAC,EAAE,EAAEh6D,EAAEJ,EAAEE,CAAC,CAAC,CAAC,SAASi/D,GAAIn/D,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,CAAC,EAAEF,EAAE,CAAC,EAAEI,CAAC,EAAE,EAAEu4D,GAAGv4D,EAAE,KAAK,EAAE,IAAIC,EAAEH,EAAE,KAAK,IAAIE,EAAE,MAAM,EAAE,OAAO,CAAC,EAAE,CAAC,EAAEi6D,GAAGh6D,EAAED,EAAE,MAAMA,EAAE,KAAK,EAAE,OAAOF,EAAE,eAAe,EAAEE,EAAE,MAAM,CAAC,CAAC,CAAC,IAAIg/D,GAAG,CAAC,WAAWj4E,GAAG,YAAY,MAAM,WAAWg4E,EAAG,EAAM7E,GAAG4B,GAAG,CAACl8D,EAAE,IAAIA,IAAI,EAAE,EAAE,CAAC,EAAEq/D,GAAIzC,GAAGr1E,GAAG+yE,GAAG,KAAK,MAAM,EAAEgF,GAAG,CAAC,WAAW/3E,GAAG,YAAY,MAAM,WAAW83E,EAAG,EAAE,SAASvD,GAAG97D,EAAE,EAAEE,EAAEE,EAAEC,EAAE,CAAC,IAAI,EAAE,EAAE,OAAO,EAAE9B,EAAE,cAAc,CAAC,EAAEwD,EAAExD,EAAE,eAAe,CAAC,EAAEyD,EAAEzD,EAAE,eAAe8B,CAAC,EAAE4B,EAAE1D,EAAE,uBAAuB2B,EAAE3B,EAAE,cAAc8B,CAAC,CAAC,EAAE,QAAQqC,EAAE,EAAEA,EAAE,EAAE,EAAEA,EAAE,CAAC,IAAIC,EAAEpE,EAAE,WAAWmE,EAAE,EAAEX,CAAC,EAAEa,EAAE,IAAI,MAAMD,EAAE,MAAM,EAAE,QAAQG,EAAE,EAAEA,EAAEF,EAAE,OAAOE,IAAIF,EAAEE,CAAC,EAAEH,EAAEvC,EAAE0C,CAAC,CAAC,EAAE,IAAID,EAAEtE,EAAE,WAAWqE,EAAE,EAAEZ,CAAC,EAAEC,EAAEY,CAAC,EAAE7C,EAAE0C,CAAC,CAAC,CAAC,OAAOT,CAAC,CAAC,SAASs9D,GAAGv/D,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,MAAME,EAAE,QAAQE,CAAC,EAAEJ,EAAE,CAAC,EAAEK,CAAC,EAAE,EAAE,CAAC,KAAK,CAAC,EAAEH,EAAEy4D,GAAGt4D,EAAE,WAAW,EAAE,IAAI,EAAEA,EAAE,MAAM,OAAO0B,EAAE,IAAI,MAAM,CAAC,EAAE,QAAQ,EAAE,EAAE,EAAEA,EAAE,OAAO,IAAIA,EAAE,CAAC,EAAE1B,EAAE,MAAM,EAAE,CAAC,CAAC,EAAE,IAAI2B,EAAE5B,EAAE,KAAK,IAAIC,EAAE,MAAM,EAAE,OAAO4B,EAAE65D,GAAG95D,EAAE3B,EAAE,MAAMA,EAAE,MAAM,EAAE0B,CAAC,EAAE,MAAM,CAAC,OAAO3B,EAAE,MAAM6B,EAAEF,EAAE1B,EAAE,KAAK,EAAE,MAAM0B,EAAE,MAAM1B,EAAE,KAAK,CAAC,CAAC,IAAIm/D,GAAG,CAAC,WAAWvzE,GAAG,YAAY,MAAM,WAAWszE,EAAE,EAAE,SAAShF,GAAGv6D,EAAE,EAAEE,EAAEE,EAAE,CAAC,GAAG,CAACC,EAAE,CAAC,EAAE3S,EAAE,0BAA0BsS,EAAEI,CAAC,EAAE,EAAE/B,GAAG,EAAE,OAAO,EAAE0D,EAAExD,EAAE,oBAAoBA,EAAE,cAAc8B,CAAC,EAAE,CAAC,EAAE2B,EAAEzD,EAAE,cAAc,CAAC,EAAE,QAAQ0D,EAAE,EAAEA,EAAEF,EAAE,OAAO,EAAEE,EAAE,CAAC,IAAIS,EAAET,EAAED,EAAEW,EAAE,EAAE,QAAQC,EAAE,EAAEA,EAAEZ,EAAE,EAAEY,EAAED,GAAGzC,EAAEwC,EAAEE,CAAC,EAAEb,EAAEE,CAAC,EAAEU,CAAC,CAAC,MAAM,CAAC,QAAQZ,EAAE,SAAS1B,EAAE,SAAS,CAAC,CAAC,CAAC,SAASo/D,GAAIz/D,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,CAAC,EAAE,EAAE,CAAC,KAAK,EAAE,SAAS,CAAC,EAAED,EAAEu4D,GAAGt4D,EAAE,MAAM,EAAE,IAAI0B,EAAE1B,EAAE,MAAM,OAAO2B,EAAEzD,EAAE,eAAe,EAAE8B,EAAE,KAAK,EAAE4B,EAAEvU,EAAE,mBAAmBsU,EAAED,CAAC,EAAEW,EAAEV,EAAEW,EAAEtC,EAAEuC,EAAE,CAAC,EAAEX,GAAG,OAAOU,EAAE48D,GAAG,CAAC,OAAO,CAAC,EAAEl/D,CAAC,EAAE,QAAQH,EAAE,MAAM,CAAC,KAAK+B,CAAC,CAAC,CAAC,EAAEW,EAAE,KAAKD,CAAC,EAAED,EAAEhV,EAAE,iBAAiBgV,EAAE,OAAOX,CAAC,GAAG,IAAIc,EAAE3C,EAAE,KAAK,IAAIyC,EAAE,MAAM,EAAE,OAAO,CAAC,QAAQG,EAAE,SAASkB,EAAE,SAAS,CAAC,EAAEu2D,GAAG53D,EAAE,MAAMA,EAAE,MAAME,EAAEH,CAAC,EAAE4E,EAAEtD,EAAE,OAAO,IAAIsD,EAAE5Z,EAAE,qBAAqBsW,EAAEhC,CAAC,GAAGY,EAAE,QAAQkC,GAAG5E,EAAE,8BAA8B4E,CAAC,CAAC,EAAE5E,EAAE,eAAeoH,EAAE,EAAExE,CAAC,CAAC,CAAC,IAAI48D,GAAG,CAAC,WAAWx3E,GAAG,YAAY,MAAM,WAAWu3E,EAAG,EAAE,SAASE,GAAI3/D,EAAE,EAAEE,EAAE,CAACF,EAAE,QAAQ,CAACI,EAAEC,IAAI,CAAC,GAAGD,EAAE,GAAGA,GAAGF,EAAE,CAAC,IAAI,EAAE3B,EAAE,WAAW8B,EAAE,EAAE,OAAO9B,EAAE,eAAe,CAAC,CAAC,EAAE,KAAK,GAAG,EAAE,MAAM,IAAI,MAAM,WAAW,CAAC,OAAO6B,CAAC,kBAAkBF,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,SAAS0/D,GAAI5/D,EAAE,EAAE,CAAC,QAAQE,EAAE,EAAEA,EAAEF,EAAE,OAAO,EAAEE,EAAE,CAAC,IAAIE,EAAEJ,EAAEE,CAAC,EAAEG,EAAEH,IAAIF,EAAE,OAAO,EAAE,EAAEA,EAAEE,EAAE,CAAC,EAAE,OAAO,GAAGE,EAAE,SAAS,EAAE,MAAM,IAAI,MAAM,gCAAgC,EAAE,GAAGA,EAAE,CAAC,EAAE,EAAE,MAAM,IAAI,MAAM,oCAAoC,EAAE,GAAGA,EAAEA,EAAE,OAAO,CAAC,EAAEC,EAAE,MAAM,IAAI,MAAM,0CAA0C,EAAE,QAAQ,EAAE,EAAE,EAAED,EAAE,OAAO,EAAE,EAAE,GAAGA,EAAE,EAAE,CAAC,EAAEA,EAAE,CAAC,EAAE,MAAM,IAAI,MAAM,iDAAiD,CAAC,CAAC,CAAC,SAASy/D,GAAI7/D,EAAE,EAAEE,EAAEE,EAAE,CAAC,IAAIC,EAAE,CAAC,EAAE,EAAE,EAAE,EAAE,EAAE,OAAO,EAAEH,EAAE,OAAO6B,EAAE,IAAI,MAAM,CAAC,EAAE,KAAK,IAAI,EAAE,IAAI,IAAI,CAAC,CAAC,CAAC,EAAE69D,GAAI1/D,EAAEE,CAAC,EAAE,IAAI4B,EAAE,EAAE,QAAQC,EAAE,EAAEA,EAAE,EAAE,OAAO,EAAE,EAAEA,EAAE,CAACD,GAAG,EAAEC,CAAC,EAAE,IAAIS,EAAE,EAAET,EAAE,CAAC,EAAE,QAAQU,EAAE,EAAEA,EAAEX,EAAE,EAAE,EAAEW,EAAEZ,EAAEE,CAAC,EAAE,KAAKU,EAAED,CAAC,CAAC,CAAC,QAAQT,EAAE,EAAEA,EAAEjC,EAAE,OAAO,EAAEiC,EAAE,CAAC,IAAIS,EAAE1C,EAAEiC,CAAC,EAAEU,EAAE3C,EAAEiC,CAAC,EAAE,EAAE,QAAQW,EAAE,EAAEA,EAAE1C,EAAE,OAAO,EAAE0C,EAAE,CAAC,IAAIC,EAAE3C,EAAE0C,CAAC,EAAEE,EAAEF,EAAE,EAAE,OAAO,EAAE,GAAGE,GAAG,EAAE,CAAC,IAAIkB,EAAEjC,EAAEe,CAAC,EAAE,EAAEkB,EAAEA,EAAE,OAAO,CAAC,EAAEnB,EAAEH,CAAC,EAAE,QAAQ4E,EAAE5E,EAAE4E,EAAE3E,EAAE,EAAE2E,EAAEvF,EAAEe,CAAC,EAAE,KAAKD,EAAEyE,EAAE,CAAC,EAAE,CAAC,CAAC,CAAC5E,EAAEG,EAAEH,CAAC,EAAEC,EAAEE,EAAEF,CAAC,CAAC,CAACA,IAAID,IAAIrC,EAAE,KAAK,CAACqC,EAAEC,CAAC,CAAC,EAAE,GAAGA,EAAED,EAAE,CAAC,MAAM,CAAC,UAAUX,EAAE,YAAY1B,EAAE,UAAU,CAAC,CAAC,CAAC,SAASy/D,GAAI9/D,EAAE,CAAC,IAAI,EAAE,CAAC,EAAE,QAAQE,EAAE,EAAEA,EAAEF,EAAE,OAAO,EAAEE,EAAE,CAAC,IAAIE,EAAEJ,EAAEE,CAAC,EAAE,OAAOG,EAAE9B,EAAE,kBAAkB,QAAQ6B,CAAC,EAAE,EAAE,KAAKC,CAAC,EAAEL,EAAEE,CAAC,EAAE,QAAQ,CAAC,EAAE,IAAIG,EAAE,CAAC,EAAE,CAAC,CAAC,CAAC,OAAO,CAAC,CAAC,SAAS0/D,GAAG//D,EAAE,EAAE,CAAC,IAAIE,EAAEF,EAAE,MAAM,EAAE,CAAC,EAAE,KAAKE,EAAE,OAAO,GAAGA,EAAE,KAAK,CAAC,EAAE,QAAQE,EAAE,EAAEA,EAAEJ,EAAE,OAAOI,IAAIF,EAAE,EAAE,CAAC,GAAGF,EAAEI,CAAC,EAAE,OAAOF,CAAC,CAAC,SAAS8/D,GAAIhgE,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,CAAC,IAAI,EAAE0/D,GAAG,EAAE,CAAC,EAAE,CAAC,EAAEh+D,EAAEg+D,GAAG,EAAE,CAAC,EAAE,CAAC,EAAE/9D,EAAE,EAAE,QAAQC,KAAK/B,EAAE,QAAQwC,EAAET,EAAE,CAAC,EAAES,EAAET,EAAE,CAAC,EAAE,EAAES,EAAE,CAAC,QAAQC,EAAE,EAAEA,EAAEvC,EAAE,EAAEuC,EAAEtC,EAAE2B,EAAED,EAAEY,CAAC,EAAE3C,EAAE0C,EAAE,EAAEC,CAAC,EAAE,EAAEX,CAAC,CAAC,CAAC,SAASi+D,GAAIjgE,EAAE,EAAEE,EAAEE,EAAEC,EAAE,CAAC,IAAI,EAAE,EAAE,MAAM,EAAE,EAAE,CAAC,EAAEA,EAAE,IAAI,EAAE9B,EAAE,kBAAkB2B,EAAE3B,EAAE,cAAc,CAAC,CAAC,EAAEwD,EAAE/B,EAAE,OAAOgC,EAAED,IAAI,EAAE,EAAEA,EAAE,EAAE,CAAC,EAAE,OAAOi+D,GAAIhgE,EAAE,EAAEI,EAAE4B,EAAE,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,CAAC,SAASw4D,GAAGx6D,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,EAAE0B,EAAE,CAAC,GAAG/B,EAAE,SAAS,EAAE,MAAM,IAAI,MAAM,sCAAsC,EAAE,GAAG,EAAE,CAAC,EAAE,SAAS,EAAE,MAAM,IAAI,MAAM,mCAAmC,EAAE,IAAIgC,EAAE,EAAE,CAAC,EAAE,CAAC,EAAE,EAAE,GAAG29D,GAAI,EAAE,EAAE39D,CAAC,EAAE5B,EAAE,SAAS,EAAE,MAAM,IAAI,MAAM,6BAA6B,EAAE,IAAI6B,EAAE7B,EAAE,CAAC,EAAE,CAAC,UAAUsC,EAAE,YAAYC,EAAE,UAAUC,CAAC,EAAEi9D,GAAI,EAAE,EAAE7/D,EAAEiC,CAAC,EAAEY,EAAEi9D,GAAIp9D,CAAC,EAAEI,EAAEm9D,GAAI//D,EAAEE,EAAEC,EAAEsC,EAAEC,CAAC,EAAE,MAAM,CAACC,EAAEC,EAAE,CAAC,EAAEA,EAAE,CAAC,CAAC,CAAC,CAAC,IAAIo9D,GAAG,WAAW,SAASzF,GAAGz6D,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,EAAE,CAAC,GAAG,EAAE,OAAO,EAAE,MAAM,IAAI,MAAM,mCAAmC,EAAE,GAAGA,EAAE,OAAO,EAAE,MAAM,IAAI,MAAM,mCAAmC,EAAE,GAAG,EAAE,OAAO,EAAE,MAAM,IAAI,MAAM,mCAAmC,EAAE,IAAI0B,EAAE,EAAE,SAAS,EAAEC,EAAE3B,EAAE,SAAS,EAAE4B,EAAE,EAAE,SAAS,EAAES,EAAE,CAAC,EAAEX,GAAGW,EAAE,KAAK,EAAE,CAAC,CAAC,EAAEV,GAAGU,EAAE,KAAKrC,EAAE,CAAC,CAAC,EAAE4B,GAAGS,EAAE,KAAK,EAAE,CAAC,CAAC,EAAE,QAAQ,EAAE,EAAE,EAAEA,EAAE,OAAO,EAAE,EAAE,GAAGA,EAAE,CAAC,IAAIA,EAAE,EAAE,CAAC,EAAE,MAAM,IAAI,MAAM,qDAAqD,EAAE,IAAIC,EAAED,EAAE,SAAS,EAAE,EAAEA,EAAE,CAAC,EAAEE,EAAErE,EAAE,kBAAkB,QAAQoE,EAAE,CAAC,EAAEC,EAAE,CAAC,EAAE,EAAE,QAAQ,EAAE,EAAE,EAAED,EAAE,EAAE,EAAE,CAAC,IAAI2E,EAAEvF,EAAE/B,EAAE,CAAC,EAAEA,EAAE,CAAC,EAAE8E,EAAE9C,EAAE5B,EAAE,CAAC,EAAEA,EAAE,CAAC,EAAEqE,EAAExC,EAAE,EAAE,CAAC,EAAE,EAAE,CAAC,EAAE,GAAGwC,IAAI,EAAE,MAAM,IAAI,MAAM,qBAAqB,EAAE,IAAIC,EAAE,GAAGD,EAAE,GAAGK,EAAEwC,GAAG7C,EAAE,GAAGK,EAAEwC,EAAE5C,EAAE,UAAUA,EAAE,KAAK,KAAK,KAAK,KAAKI,EAAEwC,GAAG7C,CAAC,CAAC,EAAEC,EAAEw7D,GAAG,MAAM,IAAI,MAAM,yCAAyCA,EAAE,EAAE,EAAEt9D,EAAE,EAAE,CAAC,EAAEA,EAAE,CAAC,EAAE8B,CAAC,CAAC,IAAI7B,EAAED,EAAED,CAAC,EAAEG,EAAEvE,EAAE,kBAAkB2B,EAAE2C,CAAC,EAAEmB,EAAE,EAAE,QAAQ,EAAE,EAAE,EAAErB,EAAE,EAAE,EAAE,CAAC,IAAI2E,EAAE1E,EAAE,EAAE,CAAC,EAAEA,EAAE,CAAC,EAAEkC,EAAE/C,EAAE/B,EAAE,CAAC,EAAEA,EAAE,CAAC,EAAEyE,EAAExC,EAAE,EAAE,CAAC,EAAE,EAAE,CAAC,EAAE,QAAQyC,EAAE,EAAEA,EAAE4C,EAAE,EAAE5C,EAAE5B,EAAEkB,GAAG,EAAEc,EAAEA,GAAGL,CAAC,CAAC,MAAM,CAAC7B,EAAEE,CAAC,CAAC,CAAC,IAAIq9D,GAAGzyE,EAAE,iBAAiB0yE,GAAG,MAAMpgE,EAAC,CAAC,YAAY,EAAEE,EAAEE,EAAEC,EAAE,EAAE,EAAE0B,EAAEC,EAAEC,EAAES,EAAE,CAAC,KAAK,MAAM,EAAE,KAAK,WAAWxC,EAAE,KAAK,OAAOE,EAAE,KAAK,YAAYC,EAAE,KAAK,YAAY,EAAE,KAAK,aAAa,EAAE,KAAK,kBAAkB0B,EAAE,KAAK,mBAAmBC,EAAE,KAAK,yBAAyBC,EAAE,KAAK,kBAAkBvU,EAAE,2BAA2BgV,CAAC,EAAE,KAAK,WAAWhV,EAAE,cAAc,KAAK,iBAAiB,CAAC,CAAC,+BAA+B,EAAE,CAAC,OAAO,KAAK,kBAAkB,CAAC,IAAIyyE,GAAG,eAAe,KAAK,kBAAkB,EAAE,CAAC,EAAE,KAAK,kBAAkB,CAAC,CAAC,CAAC,sBAAsB,EAAE,CAAC,OAAO,KAAK,kBAAkB,CAAC,IAAIA,GAAG,eAAe,KAAK,mBAAmB,EAAE,CAAC,EAAE,KAAK,mBAAmB,CAAC,CAAC,CAAC,YAAY,EAAE,CAAC,IAAIjgE,EAAE,KAAK,sBAAsB,EAAE,CAAC,EAAE,OAAO,KAAK,+BAA+B,EAAE,CAAC,EAAE,CAAC,KAAKigE,GAAG,aAAa,OAAOngE,GAAE,sBAAsBE,CAAC,EAAE,KAAKigE,GAAG,WAAW,OAAOngE,GAAE,oBAAoBE,CAAC,EAAE,QAAQ,MAAM,IAAI,MAAM,gCAAgCigE,GAAG,KAAK,+BAA+B,EAAE,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,OAAO,oBAAoB,EAAE,CAAC,IAAIjgE,EAAE,EAAE,OAAO,GAAGA,IAAI,GAAGA,IAAI,EAAE,MAAO,GAAE,IAAIE,EAAE,EAAE,QAAQC,EAAE,EAAEA,EAAEH,EAAE,EAAE,EAAEG,EAAE,CAAC,IAAI,EAAE,EAAEA,EAAE,CAAC,EAAE,EAAEA,CAAC,EAAE,EAAED,IAAIA,EAAE,EAAE,CAAC,OAAOA,CAAC,CAAC,OAAO,sBAAsB,EAAE,CAAC,IAAIF,EAAE,EAAE,OAAO,GAAGA,IAAI,EAAE,MAAO,GAAE,IAAIE,EAAE,EAAEC,EAAE,EAAE,CAAC,EAAE,EAAE,EAAE,QAAQ,EAAE,EAAE,EAAEH,EAAE,EAAE,EAAE,CAAC,IAAI6B,EAAE,EAAE,CAAC,EAAEA,IAAI1B,IAAIA,EAAE0B,EAAE,EAAE,KAAK,IAAI,EAAE3B,EAAE,CAAC,EAAEA,EAAE,EAAE,CAAC,OAAO,KAAK,IAAIF,EAAEE,EAAE,CAAC,CAAC,CAAC,sBAAsB,EAAEF,EAAEE,EAAE,GAAG,CAAC,GAAGF,EAAE,SAAS,EAAE,CAAC,GAAG,EAAE,CAAC,IAAI,GAAG,MAAM,CAAC,EAAE,MAAM,IAAI,MAAM,gFAAgF,CAAC,CAAC,OAAOmgE,GAAG,EAAEjgE,CAAC,CAAC,CAAC,oBAAoB,EAAE,CAAC,IAAIF,EAAE,KAAK,YAAYE,EAAE,KAAK,kBAAkB1S,EAAE,0BAA0B0S,EAAEF,CAAC,EAAE,IAAIG,EAAE,KAAK,sBAAsB,KAAK,MAAM,KAAK,UAAU,EAAEyB,EAAEpU,EAAE,kCAAkC,KAAK,WAAW2S,EAAEH,CAAC,EAAE4B,EAAE,CAAC,EAAE,IAAIA,EAAE,CAAC,EAAE,GAAG,QAAQC,EAAE,EAAEA,GAAG,KAAK,WAAW,EAAEA,EAAED,EAAEC,CAAC,EAAE,IAAID,EAAEC,CAAC,EAAE,KAAK,YAAYA,CAAC,GAAG,OAAOD,CAAC,CAAC,gCAAgC,EAAE5B,EAAEE,EAAE,CAAC,IAAIC,EAAE,KAAK,IAAI,EAAED,CAAC,EAAE,EAAE,CAAC,EAAE,EAAE,EAAE,QAAQ2B,EAAE,EAAEA,EAAE1B,EAAE,EAAE0B,EAAE,GAAG7B,EAAE,EAAE,KAAK,CAAC,EAAE,QAAQ6B,EAAE1B,EAAE0B,EAAE,EAAE,EAAEA,EAAE,EAAE,KAAK,EAAE,EAAE,OAAOxD,EAAE,OAAO,EAAE,SAAS,EAAE,IAAI,yDAAyD,EAAE,CAAC,CAAC,6BAA6B,EAAE2B,EAAEE,EAAEC,EAAE,CAAC,IAAI,EAAE,EAAE,OAAO,EAAE,CAAC,EAAE,QAAQ0B,EAAE,EAAEA,EAAE,EAAE,EAAE,EAAEA,EAAE,CAAC,IAAIC,EAAE,EAAED,EAAE,CAAC,EAAE,EAAEA,CAAC,EAAEE,EAAE,KAAK,IAAI5B,EAAE2B,CAAC,EAAEU,EAAExC,EAAE6B,CAAC,EAAEW,IAAI,KAAKT,EAAE,GAAG,QAAQU,EAAE,EAAEA,EAAEV,EAAE,EAAEU,EAAE,EAAE,KAAKD,CAAC,EAAEA,GAAGtC,EAAE,QAAQuC,EAAE,EAAEA,EAAEX,EAAEC,EAAE,EAAEU,EAAE,EAAE,KAAK,EAAE,CAAC,CAAC,GAAG,EAAE,GAAG,EAAE,SAAS,EAAE,EAAE,CAAC,EAAE,MAAM,IAAI,MAAM,yBAAyB,EAAE,OAAO,CAAC,CAAC,+BAA+B,EAAEzC,EAAEE,EAAEC,EAAE,CAAC,IAAI,EAAE,EAAE,OAAO,EAAE,CAAC,EAAE,GAAG,IAAI,EAAE,MAAM,CAAC,EAAE,IAAI0B,EAAE,EAAEC,EAAE,EAAE,CAAC,EAAE,GAAGA,GAAG9B,EAAE,OAAO,MAAM,IAAI,MAAM,yBAAyB8B,CAAC,4BAA4B9B,EAAE,MAAM,EAAE,EAAE,IAAI+B,EAAE/B,EAAE8B,CAAC,EAAE,EAAE,KAAKC,CAAC,EAAE,QAAQS,EAAE,EAAEA,EAAE,EAAE,EAAEA,EAAE,CAAC,IAAIC,EAAE,EAAED,CAAC,EAAE,GAAGC,IAAIX,EAAEC,GAAG,IAAI,EAAEF,EAAEA,EAAE1B,EAAE4B,GAAG7B,EAAE6B,EAAE,QAAQ,CAAC,GAAGF,EAAE,EAAEC,EAAEW,EAAEA,GAAGzC,EAAE,OAAO,MAAM,IAAI,MAAM,sBAAsByC,CAAC,2BAA2BzC,EAAE,MAAM,EAAE,EAAE+B,EAAE/B,EAAEyC,CAAC,CAAC,CAAC,EAAE,KAAKV,CAAC,CAAC,CAAC,GAAG,EAAE,SAAS,EAAE,OAAO,MAAM,IAAI,MAAM,kBAAkB,EAAE,OAAO,CAAC,CAAC,qBAAqB,EAAE/B,EAAEE,EAAEC,EAAE,CAAC,IAAI,EAAE,KAAK,sBAAsB,CAAC,EAAE,EAAE,KAAK,+BAA+B,CAAC,EAAE,OAAO,EAAE,CAAC,KAAK8/D,GAAG,aAAa,OAAO,KAAK,+BAA+B,EAAEjgE,EAAEE,EAAEC,CAAC,EAAE,KAAK8/D,GAAG,WAAW,GAAG,EAAE,OAAO,EAAEjgE,EAAE,OAAO,MAAM,IAAI,MAAM,mDAAmD,EAAE,OAAO,CAAC,MAAMA,EAAE,MAAM,EAAE,EAAE,OAAO,KAAK,6BAA6B,EAAEA,EAAEE,EAAEC,CAAC,EAAE,QAAQ,MAAM,IAAI,MAAM,+BAA+B8/D,GAAG,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,uBAAuB,CAAC,IAAI,EAAE,KAAK,mBAAmB,CAAC,EAAE,GAAG,KAAK,kBAAkB,SAAS,EAAE,MAAM,IAAI,MAAM,+BAA+B,EAAE,IAAIjgE,EAAE,KAAK,kBAAkB,CAAC,EAAE,OAAOA,EAAE,CAAC,KAAKigE,GAAG,eAAe,OAAO,EAAE,CAAC,EAAE,KAAKA,GAAG,aAAa,MAAM,IAAI,MAAM,gDAAgD,EAAE,KAAKA,GAAG,WAAW,OAAO,KAAK,yBAAyB,CAAC,EAAE,CAAC,EAAE,EAAE,QAAQ,MAAM,IAAI,MAAM,sBAAsBA,GAAGjgE,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,SAAS,CAAC,GAAG,KAAK,mBAAmB,CAAC,EAAE,QAAQ,EAAE,MAAM,IAAI,MAAM,sEAAsE,EAAE,IAAIA,EAAE,KAAK,sBAAsB,EAAE,EAAE,KAAK,oBAAoBA,CAAC,EAAEG,EAAE,IAAI,MAAM,KAAK,WAAW,CAAC,EAAEA,EAAEA,EAAE,OAAO,CAAC,EAAE,EAAE,QAAQ2B,EAAE3B,EAAE,OAAO,EAAE2B,GAAG,EAAE,EAAEA,EAAE3B,EAAE2B,CAAC,EAAE3B,EAAE2B,EAAE,CAAC,EAAE,EAAEA,EAAE,CAAC,EAAE,IAAIH,EAAEw+D,GAAG,EAAE,EAAE,EAAEv+D,EAAEvD,EAAE,kBAAkB,KAAK,YAAYA,EAAE,cAAcsD,CAAC,CAAC,EAAE,GAAGxB,EAAE,CAAC,EAAE,EAAE,CAAC,EAAE,EAAE,CAAC,IAAI2B,EAAE,KAAK,gCAAgC9B,EAAEG,EAAE,CAAC,EAAE,EAAE,CAAC,CAAC,EAAE,QAAQ4B,EAAE,EAAEA,GAAG,KAAK,WAAW,EAAEA,EAAED,EAAE,KAAK,qBAAqBC,EAAE,EAAED,EAAE3B,EAAE4B,CAAC,EAAE,EAAEA,CAAC,CAAC,EAAE,KAAK,UAAU,KAAK,WAAWD,EAAEF,EAAED,CAAC,CAAC,CAAC,MAAM,CAACA,EAAEC,CAAC,CAAC,CAAC,UAAU,EAAE5B,EAAEE,EAAEC,EAAE,CAAC,GAAGD,EAAE,SAAS,EAAE,OAAO,IAAI,EAAE,KAAK,OAAO,EAAEA,EAAE2B,EAAE1B,EAAE,MAAM,EAAE0B,EAAEA,EAAE,MAAM,EAAE,CAAC,EAAE,IAAIC,EAAEzD,EAAE,cAAcwD,CAAC,EAAEE,EAAE/B,EAAE,OAAOwC,EAAE,KAAK,aAAa,GAAGA,EAAE,SAASV,GAAGU,EAAE,SAAS,EAAE,CAAC,IAAII,EAAE,KAAK,kBAAkBrF,EAAE,IAAI,CAAC,IAAIuG,EAAEzK,EAAEmJ,EAAEI,CAAC,EAAEJ,EAAErU,GAAG2V,EAAEjC,CAAC,EAAE,SAAS,CAAC,CAAC,CAAC,CAAC,IAAIY,EAAE,EAAEC,EAAE,EAAEC,EAAE,EAAE,QAAQC,EAAE,EAAEA,GAAGb,EAAE,EAAEa,EAAE,CAAC,IAAIkB,EAAElB,EAAEb,EAAE/B,EAAE4C,CAAC,EAAE,GAAG,GAAGkB,IAAInB,EAAE,CAAC,EAAEA,EAAE,QAAQ,CAAC,GAAGD,EAAEC,EAAE,CAAC,IAAI,EAAE,EAAE,SAASF,EAAEX,CAAC,EAAEsF,EAAE,EAAE,SAAS1E,EAAEZ,CAAC,EAAE8C,GAAGjC,EAAED,GAAGZ,EAAEs+D,GAAGh5D,EAAE,EAAExC,CAAC,CAAC,CAAC,GAAGhC,GAAGb,EAAE,CAAC,IAAI,EAAE7B,EAAE,OAAO4D,EAAE,KAAK,MAAM,EAAEhC,CAAC,CAAC,CAAC,GAAGgC,EAAEnB,EAAE,GAAG,KAAK,aAAa,SAAS,EAAE,EAAE,SAASA,EAAEb,EAAEgC,EAAEhC,CAAC,EAAE,KAAK,KAAK,aAAa,CAAC,CAAC,EAAEa,EAAEmB,MAAO,MAAKA,EAAEnB,GAAG,CAAC,IAAI,EAAE,EAAE,MAAMA,EAAEb,CAAC,EAAEs+D,GAAG,EAAE59D,EAAEV,CAAC,EAAE,EAAEa,CAAC,CAACmB,EAAE,GAAGrB,EAAEG,EAAE,EAAEF,EAAEC,IAAIF,EAAEG,EAAEF,EAAEC,EAAEA,EAAED,EAAE,EAAE,CAAC,CAAC,EAAE,SAAS09D,GAAGtgE,EAAE,EAAEE,EAAE,CAAC,QAAQE,EAAE,EAAEA,EAAEF,EAAEE,IAAIJ,EAAEI,CAAC,EAAE,EAAEA,CAAC,CAAC,CAAC,SAASigE,GAAGrgE,EAAE,EAAE,CAAC,IAAIE,EAAE,CAAC,EAAE,QAAQE,KAAKJ,EAAE,CAAC,GAAGI,EAAE,EAAE,CAAC,GAAG,CAAC,EAAE,MAAM,IAAI,MAAM,aAAaA,CAAC,eAAe,EAAE,GAAGA,EAAE,GAAG,MAAM,IAAI,MAAM,aAAaA,CAAC,gBAAgB,EAAEA,EAAE,EAAE,CAACF,EAAE,KAAKE,CAAC,CAAC,CAAC,OAAOF,CAAC,CAAC,SAASw6D,GAAG16D,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,EAAE0B,EAAEC,EAAEC,EAAE,CAAC,OAAO,IAAIm+D,GAAGpgE,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,EAAE0B,EAAEC,EAAEC,CAAC,EAAE,QAAQ,CAAC,CAAC,SAAS04D,GAAG36D,EAAE,EAAEE,EAAEE,EAAE,CAAC,IAAIC,EAAEL,IAAI,EAAE,EAAEA,EAAE,GAAGE,EAAE,EAAE,EAAE,EAAEF,GAAGE,EAAE,EAAE,GAAGG,GAAG,GAAG,EAAE,OAAO9B,EAAE,oBAAoB,EAAE6B,CAAC,EAAE,IAAI2B,EAAE,KAAK,IAAI,KAAK,MAAM,EAAE/B,GAAGE,CAAC,CAAC,EAAE8B,EAAEzD,EAAE,oBAAoBwD,EAAE3B,CAAC,EAAE,EAAEJ,GAAGE,IAAI,IAAIA,EAAE,IAAI8B,EAAE,CAAC,EAAEhC,EAAE,QAAQiC,EAAE,EAAEA,EAAED,EAAE,OAAOC,IAAID,EAAEC,CAAC,EAAED,EAAEC,EAAE,CAAC,EAAE/B,EAAE,OAAO8B,CAAC,CAAC,IAAI44D,GAAGuC,GAAGn9D,GAAG,EAAE,KAAK,KAAKA,CAAC,CAAC,EAAEugE,GAAIlD,GAAG7zE,GAAGoxE,EAAE,EAAE4F,GAAG,CAAC,WAAWh3E,GAAG,YAAY,MAAM,WAAW+2E,EAAG,EAAE,SAAS1F,GAAG76D,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,EAAE0B,EAAEC,EAAEC,EAAE,CAAC,IAAIS,EAAE,CAACtC,EAAEC,EAAEA,CAAC,EAAEsC,EAAE3C,EAAE,OAAO4C,EAAE,EAAE,OAAO,GAAGxC,IAAI,EAAE,OAAO5R,GAAG0R,EAAE,EAAE,KAAK,EAAE,IAAI2C,EAAEb,aAAapW,GAAGoW,EAAExT,GAAGkU,EAAE,EAAE,KAAK,EAAE,OAAOV,GAAG,UAAU,OAAOA,GAAG,SAASa,EAAE,OAAO,KAAKb,CAAC,EAAE,OAAOA,GAAG,WAAWa,EAAE,OAAO,KAAK,CAACb,CAAC,EAAE,QAAQc,EAAE,EAAEA,EAAE,EAAEA,IAAI,CAAC,IAAIkB,EAAE,CAAC,EAAE,EAAE,EAAE,QAAQsD,EAAE,EAAEA,EAAE,EAAEA,IAAI,CAAC,IAAIxC,EAAEnC,EAAEG,EAAE,EAAEwE,CAAC,EAAEtD,EAAE,KAAKc,CAAC,EAAE,GAAGA,EAAE/C,EAAEuF,CAAC,CAAC,CAAC,GAAG,EAAE,GAAG,GAAGlH,EAAEC,EAAE,MAAM,IAAI,MAAM,oBAAoB2D,CAAC,wBAAwB9D,CAAC,EAAE,EAAE,QAAQoH,EAAE,EAAEA,EAAEjH,EAAEiH,IAAIrF,EAAEY,EAAE,OAAO,EAAExC,EAAEiH,CAAC,GAAG1E,EAAEE,EAAEzC,EAAEiH,CAAC,EAAEzE,EAAE,OAAO,EAAExC,EAAEiH,CAAC,EAAE,EAAE,OAAO,EAAE1E,EAAE,CAAC,EAAEA,EAAEE,EAAEzC,EAAEiH,CAAC,CAAC,CAAC,OAAOzE,CAAC,CAAC,IAAIi4D,GAAGqC,GAAGn9D,GAAG,GAAG,EAAE,KAAK,IAAI,CAACA,CAAC,EAAE,EAAEygE,GAAGrD,GAAGrzE,GAAGiW,GAAG,GAAG,EAAE,KAAK,IAAI,CAACA,CAAC,EAAE,EAAE0gE,GAAG,CAAC,WAAW32E,GAAG,YAAY,MAAM,WAAW02E,EAAE,EAAE,SAASzF,GAAGh7D,EAAE,EAAEE,EAAEE,EAAEC,EAAE,CAAC,IAAI,EAAE3E,GAAG,iBAAiB0E,EAAE,EAAEF,CAAC,EAAE,EAAE3B,EAAE,cAAc2B,CAAC,EAAE6B,EAAExD,EAAE,eAAe6B,CAAC,EAAE,GAAG,EAAE,CAAC,IAAIuC,EAAEjH,GAAG,kBAAkB,EAAEqG,CAAC,EAAE,OAAO1B,IAAI,SAASL,EAAE,MAAM2C,EAAEA,EAAE,CAAC,EAAE3C,EAAE,SAAS2C,EAAEA,EAAE,CAAC,CAAC,CAAC,IAAIX,EAAE3B,IAAI,SAAS3S,EAAE,uBAAuBsS,CAAC,EAAEA,EAAEiC,EAAEzT,GAAG4R,EAAEC,EAAE2B,CAAC,EAAEU,EAAElU,GAAG0R,EAAEG,CAAC,EAAE,QAAQsC,EAAE,EAAEA,EAAED,EAAE,KAAK,EAAEC,EAAE,CAAC,IAAIC,EAAEF,EAAE,WAAWC,CAAC,EAAEE,EAAED,EAAE,IAAI,CAACE,EAAEkB,IAAIlB,EAAE,EAAEkB,CAAC,CAAC,EAAEtB,EAAE,IAAIT,EAAE,IAAI,GAAGY,CAAC,EAAE,GAAGD,CAAC,CAAC,CAAC,OAAOvC,IAAI,SAAS3S,EAAE,uBAAuBgV,EAAE,MAAM,EAAEA,EAAE,MAAM,CAAC,SAASi+D,GAAG3gE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,CAAC,EAAE,EAAE,CAAC,MAAM,EAAE,KAAK,CAAC,EAAED,EAAEu4D,GAAGt4D,EAAE,OAAO,EAAE,GAAG,CAAC0B,EAAEC,CAAC,EAAEtG,GAAG,iBAAiB2E,EAAE,EAAE,CAAC,EAAE3E,GAAG,kBAAkB2E,EAAE0B,EAAEC,CAAC,EAAE,IAAIC,EAAE/B,EAAE,KAAK,IAAIG,EAAE,MAAM,EAAE,OAAOqC,EAAEs4D,GAAG/4D,EAAEF,EAAEC,EAAE3B,EAAE,MAAMA,EAAE,KAAK,EAAE,OAAOH,EAAE,eAAe8B,EAAE3B,EAAE,MAAMqC,CAAC,CAAC,CAAC,IAAIk+D,GAAG,CAAC,WAAWz2E,GAAG,YAAY,MAAM,WAAWw2E,EAAE,EAAE,SAAS1F,GAAGj7D,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,EAAE,CAAC,IAAI0B,EAAE,EAAE,CAAC,EAAEC,EAAE,EAAE,CAAC,EAAEC,EAAE,IAAI,MAAMD,CAAC,EAAEU,EAAE,IAAI,MAAMX,CAAC,EAAEY,EAAE,EAAE,CAAC,EAAE,GAAGX,IAAI,EAAE,CAAC,GAAGD,IAAI,EAAE,MAAM,IAAI,MAAMrU,EAAE,gDAAgDqU,CAAC,CAAC,EAAE,IAAI,EAAExD,EAAE,kBAAkB2B,EAAE,CAAC,EAAEoH,EAAE/I,EAAE,kBAAkB8B,EAAE,CAAC,EAAE,MAAM,CAAC,EAAE,CAAC,EAAEsC,CAAC,EAAE2E,EAAErF,EAAES,CAAC,CAAC,CAAC,IAAIE,EAAE,GAAGC,EAAE,EAAEC,EAAE,IAAI,MAAMd,CAAC,EAAE,KAAK,CAAC,EAAE,QAAQ,EAAE,EAAE,EAAED,EAAE,EAAE,EAAE,CAAC,IAAIuF,EAAEtH,EAAE,EAAE2C,CAAC,EAAE,GAAG2E,EAAE,EAAE,MAAM,IAAI,MAAM5Z,EAAE,gDAAgD,EAAE4Z,CAAC,CAAC,EAAE,GAAGA,GAAGtF,EAAE,MAAM,IAAI,MAAMtU,EAAE,kDAAkD,EAAE4Z,EAAEtF,CAAC,CAAC,EAAE,EAAEc,EAAEwE,CAAC,EAAE1E,EAAEA,GAAG0E,GAAGzE,EAAEA,EAAEyE,CAAC,CAAC,IAAItD,EAAE,GAAG,QAAQ,EAAE,EAAE,EAAEhC,EAAE,EAAE,EAAE,CAAC,IAAIsF,EAAExE,EAAE,CAAC,IAAI,EAAEb,EAAE,CAAC,EAAEqF,EAAEtD,EAAEA,GAAG,CAACsD,EAAExE,EAAE,CAAC,EAAE,KAAK,IAAIA,EAAE,CAAC,EAAE,CAAC,EAAE,EAAE,IAAIA,EAAE,CAAC,GAAGA,EAAE,EAAE,CAAC,EAAE,CAAC,GAAGkB,GAAGpB,EAAE,CAAC,IAAI,EAAE5C,EAAEsH,EAAElH,EAAE,QAAQ0E,EAAE,EAAEA,EAAE/C,EAAE,EAAE+C,EAAEpC,EAAEoC,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAE,CAAC/C,EAAEY,CAAC,EAAE2E,EAAErF,EAAES,CAAC,CAAC,KAAK,CAAC,IAAI,EAAEI,EAAEd,EAAE,CAAC,EAAEsF,EAAE/I,EAAE,kBAAkB2B,EAAE,EAAEyC,CAAC,EAAEmC,EAAEvG,EAAE,kBAAkB8B,EAAE,CAAC,EAAEoE,EAAE,IAAI,MAAMzC,CAAC,EAAE,KAAK,CAAC,EAAE,QAAQ0C,EAAE,EAAEA,EAAE3C,EAAE,EAAE2C,EAAE,CAAC,IAAIC,EAAE3E,EAAE0E,EAAE/B,CAAC,EAAEiC,EAAEH,EAAEE,CAAC,EAAEE,GAAGF,IAAI,EAAE,EAAE7B,EAAE6B,EAAE,CAAC,GAAGC,EAAEH,EAAEE,CAAC,IAAI,QAAQ4C,EAAE,EAAEA,EAAE5E,EAAE,EAAE4E,EAAED,EAAEzC,EAAElC,EAAE4E,CAAC,EAAEvH,EAAE0E,EAAE/B,EAAE4E,CAAC,EAAEzC,EAAED,CAAC,EAAEzE,EAAEsE,CAAC,EAAEhC,EAAEgC,CAAC,EAAEG,CAAC,CAAC,QAAQH,EAAE,EAAEA,EAAE1C,EAAE,EAAE0C,EAAE,GAAGD,EAAEC,CAAC,IAAI,EAAE,CAAC,IAAIE,EAAEF,IAAI,EAAE,EAAE5B,EAAE4B,EAAE,CAAC,EAAE4C,EAAE1C,EAAEjC,EAAE,CAAC,EAAE+B,EAAE,QAAQG,EAAE,EAAEA,EAAElC,EAAE,EAAEkC,EAAEyC,EAAE1C,EAAEjC,EAAEkC,CAAC,EAAE,EAAEC,EAAEF,CAAC,EAAE,CAAC,CAAC,MAAM,CAAC0C,EAAE,CAAC,EAAE3E,CAAC,EAAEmC,EAAE7C,EAAES,CAAC,CAAC,CAAC,CAAC,SAASw4D,GAAGl7D,EAAE,EAAEE,EAAEE,EAAEC,EAAE,CAAC,IAAI,EAAE9B,EAAE,cAAc6B,CAAC,EAAE,EAAE,EAAE,CAAC,EAAE2B,EAAE1B,EAAE,OAAO2B,EAAE,CAAC,EAAEC,EAAE,EAAES,EAAE,GAAG,QAAQuB,EAAE,EAAEA,EAAElC,EAAE,EAAEkC,EAAE,CAAC,IAAIqD,EAAEjH,EAAE4D,CAAC,EAAE,GAAGqD,IAAI,GAAG,CAAC,GAAG5E,IAAI,GAAG,MAAM,IAAI,MAAMhV,EAAE,yDAAyDgV,EAAEuB,CAAC,CAAC,EAAEvB,EAAEuB,EAAEjC,EAAE,KAAK,CAAC,CAAC,KAAK,CAAC,GAAGsF,EAAE,EAAE,MAAM,IAAI,MAAM5Z,EAAE,8CAA8CuW,EAAEqD,CAAC,CAAC,EAAErF,GAAGqF,EAAEtF,EAAE,KAAKsF,CAAC,CAAC,CAAC,CAAC,GAAG5E,IAAI,GAAG,CAAC,GAAGT,GAAG,EAAE,MAAM,IAAI,MAAMvU,EAAE,qDAAqD,CAAC,EAAE,IAAIuW,EAAE,KAAK,MAAM,EAAEhC,CAAC,EAAE,GAAGA,EAAEgC,IAAI,EAAE,MAAM,IAAI,MAAMvW,EAAE,gDAAgD0S,EAAE4B,CAAC,CAAC,EAAEA,EAAEU,CAAC,EAAEuB,CAAC,CAAC,GAAG1F,EAAE,cAAcyD,CAAC,IAAI,EAAE,MAAM,IAAI,MAAMtU,EAAE,gDAAgD0S,EAAE4B,CAAC,CAAC,EAAE,IAAIY,EAAExC,EAAE,OAAOyC,EAAE,CAAC,EAAE,GAAGD,EAAE,EAAE,CAACC,EAAED,EAAE,CAAC,EAAE,EAAE,QAAQqB,EAAErB,EAAE,EAAEqB,GAAG,EAAE,EAAEA,EAAEpB,EAAEoB,CAAC,EAAEpB,EAAEoB,EAAE,CAAC,EAAE7D,EAAE6D,EAAE,CAAC,CAAC,CAAC,IAAInB,EAAE,CAAC,EAAE,GAAGf,EAAE,EAAE,CAACe,EAAEf,EAAE,CAAC,EAAE,EAAE,QAAQkC,EAAElC,EAAE,EAAEkC,GAAG,EAAE,EAAEA,EAAEnB,EAAEmB,CAAC,EAAEnB,EAAEmB,EAAE,CAAC,EAAEjC,EAAEiC,EAAE,CAAC,CAAC,CAAC,IAAID,EAAEzF,EAAE,kBAAkB2B,EAAE,EAAE6B,CAAC,EAAE,QAAQkC,EAAE,EAAEA,EAAE,EAAE,EAAEA,EAAE,CAAC,IAAIqD,EAAE,EAAE,QAAQ,EAAE,EAAE,EAAE1E,EAAE,EAAE,EAAE0E,GAAGtH,EAAEiE,EAAErB,EAAE,CAAC,EAAEC,EAAE,CAAC,EAAE,QAAQ,EAAE,EAAE,EAAEd,EAAE,EAAE,EAAEiC,EAAEC,EAAElC,EAAE,CAAC,EAAE,KAAK,MAAMuF,EAAExE,EAAE,CAAC,CAAC,EAAEwE,GAAGxE,EAAE,CAAC,CAAC,CAAC,MAAM,CAACkB,EAAE,CAAC,EAAEjC,CAAC,EAAEC,CAAC,CAAC,CAAC,SAASm5D,GAAGn7D,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,GAAG,EAAE,EAAE,CAAC,IAAI0B,EAAE3B,EAAE,OAAO4B,EAAE,CAAC,EAAE,CAAC,EAAEhC,EAAE,OAAO,EAAE,CAAC,CAAC,EAAEiC,EAAED,EAAE,CAAC,EAAE,EAAED,EAAE,EAAE1B,EAAE0B,EAAE,CAAC,EAAE,EAAE,EAAE,GAAG,EAAE,EAAE,MAAM,IAAI,MAAMrU,EAAE,wDAAwD,CAAC,EAAE,IAAIkV,EAAE,EAAE,MAAM,EAAEA,EAAE,CAAC,EAAE,EAAE,IAAIC,EAAED,EAAE,OAAO,CAAC6B,EAAEC,IAAID,EAAEC,EAAE,CAAC,EAAE5B,EAAEvE,EAAE,kBAAkB2B,EAAE2C,CAAC,EAAE,GAAGd,IAAI,EAAE,OAAO,EAAE,GAAGe,EAAE,KAAK,CAAC,EAAE,CAACA,EAAEF,CAAC,EAAE,GAAG,GAAG,EAAE,MAAM,IAAI,MAAMlV,EAAE,wDAAwD,CAAC,EAAE,IAAIsW,EAAE,EAAEC,EAAE,EAAEqD,EAAE,EAAE,EAAEjH,EAAE2D,CAAC,EAAE,OAAO,CAAC,IAAIS,EAAE,EAAE,GAAGR,EAAElC,EAAE,CAAC,GAAG0C,EAAEpE,EAAE4D,CAAC,EAAE,IAAIQ,EAAE,CAAC,EAAER,EAAE,QAAQ,CAAC,GAAG,GAAGQ,EAAE,MAAM,IAAI,MAAM/W,EAAE,6DAA6D,CAAC,CAAC,CAAC,GAAG,EAAE,GAAG,GAAG,EAAE,MAAM,IAAI,MAAMA,EAAE,yDAAyD,EAAE,CAAC,CAAC,EAAE,EAAE4Z,GAAGxE,EAAE,KAAK,EAAEwE,EAAErF,EAAE,EAAEA,CAAC,EAAE,QAAQyC,EAAEV,EAAEU,EAAET,EAAE,EAAES,EAAE,CAAC,IAAIC,EAAEvE,EAAEsE,CAAC,EAAE,GAAGC,EAAE,GAAGA,GAAG3C,EAAE,CAAC,EAAE,MAAM,IAAI,MAAMtU,EAAE,uDAAuDgX,EAAEtE,EAAEsE,CAAC,EAAE1C,EAAE,CAAC,CAAC,CAAC,EAAE,QAAQ4C,EAAE,EAAEA,EAAE3C,EAAE2C,IAAI9B,EAAE,EAAEb,EAAE2C,CAAC,GAAG5E,EAAE2E,EAAE1C,EAAE2C,CAAC,CAAC,CAAC,GAAG,EAAE,QAAQF,EAAE,EAAEA,EAAEzC,EAAEyC,IAAI5B,EAAE,EAAEb,EAAEyC,CAAC,GAAGT,EAAED,EAAE,GAAGA,EAAEC,EAAE,EAAEA,EAAEqD,EAAE,EAAE,EAAE,EAAE7C,EAAER,EAAElC,EAAE,KAAK,CAAC,OAAOuF,EAAE,GAAGxE,EAAE,KAAK,EAAEwE,EAAErF,EAAE,EAAEA,CAAC,EAAE,CAACa,EAAEF,CAAC,CAAC,CAAC,IAAIw4D,GAAG+B,GAAGn9D,GAAG,KAAK,KAAKA,CAAC,CAAC,EAAE6gE,GAAIzD,GAAGvyE,GAAGmV,GAAG,KAAK,KAAKA,CAAC,CAAC,EAAE8gE,GAAG,CAAC,WAAWj2E,GAAG,YAAY,MAAM,WAAWg2E,EAAG,EAAMxF,GAAGa,GAAG,CAACl8D,EAAE,IAAI,CAAC,IAAIE,EAAEF,EAAE,EAAE,OAAOE,EAAEA,CAAC,CAAC,EAAE6gE,GAAInE,GAAG7xE,GAAGswE,EAAE,EAAE2F,GAAG,CAAC,WAAWj2E,GAAG,YAAY,MAAM,WAAWg2E,EAAG,EAAMzF,GAAG6B,GAAG,CAACn9D,EAAE,IAAI,CAAC,GAAG,CAAC,QAAQE,EAAE,cAAcE,EAAE,QAAQC,CAAC,EAAE,EAAE,OAAOL,EAAE,QAAQ,IAAI,OAAOE,EAAEE,EAAE,IAAI,EAAE,EAAEC,CAAC,CAAC,CAAC,EAAE4gE,GAAI5D,GAAGryE,GAAGswE,EAAE,EAAE4F,GAAG,CAAC,WAAWl2E,GAAG,YAAY,MAAM,WAAWi2E,EAAG,EAAE,SAAS1F,GAAGv7D,EAAE,EAAEE,EAAEE,EAAE,CAAC,IAAIC,EAAE7R,GAAGwR,EAAE,EAAE,KAAK,EAAE,QAAQ,EAAE,EAAE,EAAEK,EAAE,KAAK,IAAI,CAAC,IAAI,EAAEA,EAAE,WAAW,CAAC,EAAE0B,EAAE,IAAI,MAAM,EAAE,MAAM,EAAE,QAAQC,EAAE,EAAEA,EAAED,EAAE,OAAOC,IAAID,EAAEC,CAAC,EAAE,EAAEA,CAAC,EAAE9B,EAAE8B,CAAC,EAAE5B,EAAE4B,CAAC,EAAE3B,EAAE,IAAI,EAAE,IAAI,GAAG0B,CAAC,EAAE,GAAG,CAAC,CAAC,CAAC,OAAO1B,CAAC,CAAC,IAAI8gE,GAAG,KAAK,CAAC,YAAYvgE,EAAEV,EAAE,EAAEG,EAAEwB,EAAEC,EAAE,CAAC,KAAK,UAAUvD,EAAE,aAAaqC,CAAC,EAAE,KAAK,YAAYV,EAAE,KAAK,QAAQ3B,EAAE,aAAa,CAAC,EAAE,KAAK,SAASA,EAAE,aAAa8B,CAAC,EAAE,KAAK,SAASwB,EAAE,KAAK,cAAcC,CAAC,CAAC,YAAYlB,EAAE,CAAC,OAAO,KAAK,IAAI,KAAK,SAAS,EAAEA,EAAE,EAAE,KAAK,SAASA,EAAE,CAAC,CAAC,CAAC,aAAaA,EAAEV,EAAE,CAAC,IAAI,EAAE,KAAK,YAAYA,CAAC,EAAE,OAAO,KAAK,IAAI,EAAEU,EAAE,EAAE,EAAEV,EAAE,CAAC,CAAC,CAAC,aAAaU,EAAEV,EAAE,EAAEG,EAAEwB,EAAEC,EAAE,CAAC,QAAQC,EAAE,EAAEA,EAAEF,EAAE,EAAEE,EAAE,CAAC,IAAIC,EAAE,KAAK,YAAYF,CAAC,EAAE,EAAE,KAAK,IAAI,EAAEE,EAAED,CAAC,EAAEW,EAAE,KAAK,IAAI,EAAEV,GAAGH,GAAGE,EAAE,GAAG,EAAE,EAAED,GAAG,EAAEY,GAAGE,EAAE1C,GAAG,EAAE,EAAE,EAAE6B,EAAEC,GAAGa,EAAE,EAAEA,GAAG,EAAE,KAAK,QAAQ,OAAO,QAAQ,EAAE,EAAE,EAAE,EAAE,EAAE,EAAEA,GAAGjC,EAAEgC,EAAE,CAAC,EAAE,OAAOC,GAAGH,EAAE,KAAK,SAAS,OAAO,IAAII,EAAE,EAAEJ,EAAE,EAAE,EAAEG,GAAGC,EAAE,KAAK,UAAU,OAAO,EAAEzC,EAAE0B,CAAC,EAAE,IAAI,WAAWc,CAAC,EAAE,IAAImB,EAAE,EAAE3D,EAAE0B,CAAC,EAAEkC,EAAE,EAAEqD,EAAE,GAAG,EAAE,QAAQ7C,GAAGT,EAAEC,GAAG,EAAEQ,CAAC,EAAE,QAAQ,EAAE,EAAE,EAAE,EAAE,EAAE,EAAE6C,EAAE,KAAK,OAAO,EAAEA,EAAE,KAAK,SAAS,EAAE,QAAQ,EAAE,EAAE,EAAE,EAAE,EAAE,EAAE,EAAEA,EAAE1G,EAAEgC,EAAE,CAAC,CAAC,EAAE0E,EAAE,KAAK,SAAS,EAAE,GAAG,EAAE,EAAE,CAACA,EAAE1G,EAAEgC,EAAE,EAAE,CAAC,CAAC,EAAE,QAAQ,EAAE,EAAE,EAAEF,EAAE,EAAE,EAAE4E,EAAE,KAAK,SAAS,EAAEA,EAAE,KAAK,QAAQ,CAAC,KAAK,CAAC,QAAQ,EAAE,EAAE,EAAE5E,EAAE,EAAE,EAAE,EAAE4E,EAAE,KAAK,QAAQ,EAAEA,EAAE,KAAK,SAAS,EAAEA,EAAE,KAAK,QAAQ,CAAC,CAAC,CAAC,CAAC,QAAQ1G,EAAEV,EAAE,CAAC,IAAI,EAAEU,EAAE,OAAOP,EAAEH,EAAE,OAAO,GAAGG,EAAE,EAAE,CAAC,IAAI2B,EAAE9B,EAAE,CAAC,EAAE,GAAG8B,IAAI,EAAE,MAAM,IAAI,MAAM,oCAAoCA,CAAC,EAAE,EAAE,QAAQ,EAAE,EAAE,EAAE3B,EAAE,EAAE,EAAE,CAAC,IAAIqC,EAAExC,EAAE,CAAC,GAAG8B,EAAE,GAAGU,EAAEA,GAAGxC,EAAE,CAAC,GAAG,EAAE,CAACwC,EAAE,MAAM,IAAI,MAAM,uBAAuBxC,EAAE,CAAC,CAAC,iBAAiB8B,CAAC,KAAK,CAAC,GAAG,EAAEA,EAAE9B,EAAE,CAAC,CAAC,CAAC,GAAG8B,IAAI,EAAE,MAAM,IAAI,MAAM,gDAAgD,CAAC,SAASA,CAAC,EAAE,CAAC,CAAC,IAAIH,EAAExB,EAAE,EAAEyB,EAAEvD,EAAE,kBAAkB,QAAQ8B,CAAC,EAAE,GAAG,IAAI,GAAGA,IAAI,EAAE,CAAC,IAAI2B,EAAE,IAAI,MAAM,CAAC,EAAE,QAAQ,EAAE,EAAE,GAAGH,EAAE,EAAE,EAAEC,EAAE,CAAC,EAAE,EAAE,MAAM,CAACE,EAAEF,CAAC,CAAC,CAACA,EAAE,CAAC,EAAE,EAAE,QAAQE,EAAE,EAAEA,GAAGH,EAAE,EAAEG,EAAE,CAAC,IAAI,EAAE9B,EAAE8B,CAAC,EAAE9B,EAAE8B,EAAE,CAAC,EAAEU,EAAE,EAAE,KAAK,YAAY,QAAQ,GAAG,CAACA,GAAG,KAAK,aAAa,EAAE,CAAC,CAAC,CAAC,EAAE,KAAK,eAAe,EAAE,GAAGA,IAAI,IAAIA,EAAE,GAAGZ,EAAEE,CAAC,EAAEF,EAAEE,EAAE,CAAC,EAAEU,CAAC,CAAC,IAAIX,EAAE,IAAI,MAAMD,EAAED,CAAC,CAAC,EAAE,QAAQG,EAAE,EAAEA,EAAEH,EAAE,EAAEG,EAAE,CAAC,IAAI,EAAE9B,EAAE8B,CAAC,EAAEU,EAAEZ,EAAEE,CAAC,EAAE,GAAG,KAAK,YAAY,QAAQ,GAAG,CAAC,IAAIY,EAAE1C,EAAE8B,EAAE,CAAC,EAAE9B,EAAE8B,CAAC,EAAEa,EAAE,KAAK,aAAaD,EAAE,CAAC,EAAE,KAAK,aAAahC,EAAE,EAAEmB,EAAEW,EAAEG,EAAE,CAAC,EAAEH,GAAGG,CAAC,CAAC,EAAE,KAAK,eAAeH,IAAIZ,EAAEE,CAAC,EAAE,CAAC,IAAI,EAAE9B,EAAE8B,EAAE,CAAC,EAAE9B,EAAE8B,CAAC,EAAE,GAAG,IAAI,EAAE,SAAS,IAAIY,EAAE,EAAE,EAAE,KAAK,SAAS,KAAK,aAAahC,EAAE,EAAEmB,EAAEW,EAAE,EAAEE,CAAC,CAAC,CAAC,CAAC,MAAM,CAACb,EAAED,CAAC,CAAC,CAAC,EAAE,SAAS05D,GAAGx7D,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,EAAE0B,EAAE,CAAC,OAAO,IAAIo/D,GAAGjhE,EAAEE,EAAEC,EAAE,EAAE,EAAE0B,CAAC,EAAE,QAAQ/B,EAAE,CAAC,CAAC,CAAC,SAASohE,GAAIphE,EAAE,EAAEE,EAAEE,EAAE,CAAC,GAAG,CAACJ,EAAE,OAAO,OAAO,GAAG,EAAE,SAAS,EAAE,CAAC,QAAQ,EAAE,EAAE,EAAEA,EAAE,OAAO,EAAE,EAAEI,EAAE,KAAKJ,EAAE,SAAS,EAAE,EAAE,CAAC,CAAC,EAAE,MAAM,CAAC,GAAG,EAAE,SAAS,EAAE,CAAC,IAAI,EAAE,EAAE,CAAC,EAAE,EAAEA,EAAE,QAAQ,CAAC,EAAE,KAAK,IAAI,IAAI,CAAC,IAAI+B,EAAE/B,EAAE,SAAS,EAAE,CAAC,GAAG,CAACE,GAAG6B,EAAE,SAAS,IAAI3B,EAAE,KAAK2B,CAAC,EAAE/B,EAAEA,EAAE,SAAS,EAAE,CAAC,EAAE,EAAEA,EAAE,QAAQ,CAAC,CAAC,EAAE,CAACE,GAAGF,EAAE,SAAS,IAAII,EAAE,KAAKJ,CAAC,EAAE,MAAM,CAAC,IAAIK,EAAE,EAAE,QAAQ,EAAE,EAAE,EAAEL,EAAE,OAAO,EAAE,IAAI,GAAG,IAAIA,EAAE,QAAQ,EAAE,QAAQA,EAAE,CAAC,CAAC,IAAI,GAAG,CAAC,IAAI,EAAEA,EAAE,SAASK,EAAE,CAAC,GAAG,CAACH,GAAG,EAAE,SAAS,IAAIE,EAAE,KAAK,CAAC,EAAEC,EAAE,EAAE,CAAC,CAAC,CAAC,SAASo7D,GAAGz7D,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAEJ,EAAE,OAAOK,EAAE,CAAC,EAAE,EAAE,EAAE,EAAE,EAAE0B,EAAE,IAAI,MAAM3B,CAAC,EAAE,QAAQwC,EAAE,EAAEA,EAAExC,EAAE,EAAEwC,EAAE,CAAC,IAAIC,EAAExC,EAAE,OAAO+gE,GAAIphE,EAAE4C,CAAC,EAAE,EAAE1C,EAAEG,CAAC,EAAE,IAAIyC,EAAEzC,EAAE,OAAOwC,EAAEd,EAAEa,CAAC,EAAEE,EAAE,GAAGA,EAAE,EAAE,KAAK,IAAI,EAAEA,CAAC,CAAC,CAAC,IAAId,EAAEzD,EAAE,kBAAkB,QAAQ,EAAE,CAAC,EAAE0D,EAAE,IAAI,MAAM,CAAC,EAAES,EAAE,CAACtC,EAAE,CAAC,EAAEuC,EAAE,EAAE,QAAQC,EAAE,EAAEA,EAAExC,EAAE,EAAEwC,EAAE,QAAQC,EAAE,EAAEA,EAAEd,EAAEa,CAAC,EAAE,EAAEC,EAAEb,EAAEW,EAAE,CAAC,EAAEC,EAAEZ,EAAEW,EAAE,EAAE,CAAC,EAAEE,EAAEZ,EAAEU,CAAC,EAAEtC,EAAEsC,CAAC,EAAE,EAAEA,EAAE,MAAM,CAACX,EAAEC,EAAES,CAAC,CAAC,CAAC,SAASg5D,GAAG17D,EAAE,EAAE,CAAC,IAAIE,EAAE3B,EAAE,kBAAkB,QAAQyB,EAAE,MAAM,EAAE,QAAQI,EAAE,EAAEA,EAAEJ,EAAE,OAAO,EAAEI,EAAEF,EAAEE,CAAC,EAAE7B,EAAE,cAAcyB,EAAEI,CAAC,CAAC,EAAE,OAAO,CAAC,EAAE,mBAAmB,EAAE,OAAOF,CAAC,CAAC,IAAIy7D,GAAGO,GAAG,CAACl8D,EAAE,IAAIA,EAAE,CAAC,EAAEqhE,GAAIxE,GAAG,CAAC78D,EAAE,EAAEE,EAAEE,KAAK,CAAC,KAAKJ,EAAEE,EAAE,KAAK,EAAEE,CAAC,EAAE,EAAEkhE,GAAG1E,GAAGtxE,GAAGqwE,GAAG0F,EAAG,EAAEE,GAAG,CAAC,WAAWj2E,GAAG,YAAY,MAAM,WAAWg2E,EAAE,EAAE,SAAS1F,GAAG57D,EAAE,EAAE,CAAC,IAAIE,EAAE,IAAI,MAAMF,EAAE,IAAI,EAAE,QAAQK,EAAE,EAAEA,EAAEH,EAAE,OAAOG,IAAIH,EAAEG,CAAC,EAAEL,EAAE,MAAMK,CAAC,EAAE,EAAEA,CAAC,EAAE,IAAID,EAAE5R,GAAG0R,EAAEF,EAAE,KAAK,EAAE,QAAQK,EAAE,EAAEA,EAAED,EAAE,OAAO,OAAO,EAAEC,EAAE,CAAC,IAAI,EAAED,EAAE,WAAWC,CAAC,EAAE,EAAE,IAAI,MAAML,EAAE,IAAI,EAAE,QAAQgC,EAAE,EAAEA,EAAE,EAAE,OAAOA,IAAI,EAAEA,CAAC,EAAE,EAAEA,CAAC,EAAEhC,EAAE,MAAMgC,CAAC,EAAE,IAAID,EAAE/B,EAAE,WAAW,CAAC,EAAEI,EAAE,OAAOC,CAAC,EAAEL,EAAE,OAAO+B,CAAC,CAAC,CAAC,OAAO3B,CAAC,CAAC,IAAIohE,GAAG,CAACxhE,EAAE,IAAI,CAAC,IAAIE,EAAE,EAAE,MAAMF,EAAE,MAAM,OAAOE,IAAI,EAAEF,EAAE,MAAM,EAAE,MAAME,CAAC,EAAE,SAASuhE,GAAGzhE,EAAE,EAAEE,EAAE,EAAEE,EAAEJ,EAAE,OAAO,EAAE,CAAC,KAAKI,EAAEF,GAAG,CAAC,GAAGE,EAAEF,EAAE,IAAI,CAAC,IAAI6B,EAAE3B,EAAEF,EAAE,EAAE8B,EAAE,EAAE9B,EAAE,EAAE+B,EAAE,KAAK,IAAIF,CAAC,EAAEW,EAAE,GAAG,KAAK,IAAI,EAAET,EAAE,CAAC,EAAEU,EAAE,GAAG,KAAK,KAAKV,EAAES,GAAGX,EAAEW,GAAGX,CAAC,EAAE,KAAK,KAAKC,EAAED,EAAE,CAAC,EAAEa,EAAE,KAAK,IAAI1C,EAAE,KAAK,MAAM,EAAE8B,EAAEU,EAAEX,EAAEY,CAAC,CAAC,EAAEE,EAAE,KAAK,IAAIzC,EAAE,KAAK,MAAM,GAAG2B,EAAEC,GAAGU,EAAEX,EAAEY,CAAC,CAAC,EAAE8+D,GAAGzhE,EAAE,EAAE4C,EAAEC,CAAC,CAAC,CAAC,IAAIxC,EAAEL,EAAE,CAAC,EAAE,EAAEE,EAAE,EAAEE,EAAE,IAAI7B,EAAE,KAAKyB,EAAEE,EAAE,CAAC,EAAEshE,GAAGxhE,EAAEI,CAAC,EAAEC,CAAC,EAAE,GAAG9B,EAAE,KAAKyB,EAAEE,EAAEE,CAAC,EAAE,EAAE,GAAG,CAAC,IAAI7B,EAAE,KAAKyB,EAAE,EAAE,CAAC,EAAE,IAAI,IAAIwhE,GAAGxhE,EAAE,CAAC,EAAEK,CAAC,EAAE,GAAG,EAAE,EAAE,EAAE,KAAKmhE,GAAGxhE,EAAE,CAAC,EAAEK,CAAC,EAAE,GAAG,EAAE,EAAE,CAAC,CAACmhE,GAAGxhE,EAAEE,CAAC,EAAEG,CAAC,IAAI,EAAE9B,EAAE,KAAKyB,EAAEE,EAAE,CAAC,GAAG,EAAE,EAAE,EAAE3B,EAAE,KAAKyB,EAAE,EAAEI,CAAC,GAAG,GAAG,IAAIF,EAAE,EAAE,GAAG,GAAG,IAAIE,EAAE,EAAE,EAAE,CAAC,CAAC,SAASy7D,GAAG77D,EAAE,EAAEE,EAAEE,EAAEC,EAAE,CAAC,IAAI,EAAE,EAAE,EAAE,OAAO,CAAC,EAAE,CAAC,EAAE0B,CAAC,EAAE,CAAC/B,EAAE,OAAO,EAAE,CAAC,EAAEgC,EAAEzD,EAAE,uBAAuB2B,EAAE,EAAEE,CAAC,EAAE6B,EAAE1D,EAAE,uBAAuB,QAAQ,EAAE6B,CAAC,EAAE,QAAQuC,EAAE,EAAEA,EAAE,EAAEA,IAAI,CAAC,IAAIC,EAAED,EAAEZ,EAAEc,EAAE7C,EAAE,SAAS4C,EAAEA,EAAEb,CAAC,EAAEe,EAAE,IAAI,MAAMD,EAAE,MAAM,EAAEA,EAAE,QAAQ,CAACiC,EAAEL,IAAI3B,EAAE2B,CAAC,EAAE,CAAC,MAAMK,EAAE,MAAML,CAAC,CAAC,EAAErE,EAAE0C,EAAE,SAAS2+D,GAAG3+D,EAAE1C,CAAC,EAAE0C,EAAEA,EAAE,MAAM,EAAE1C,CAAC,GAAGC,GAAGyC,EAAE,KAAK0+D,EAAE,EAAE,IAAIx9D,EAAErB,EAAEvC,EAAE,EAAE4B,EAAE,SAASgC,EAAEA,EAAE5D,CAAC,EAAEkH,EAAErF,EAAE,SAAS+B,EAAEA,EAAE5D,CAAC,EAAE,QAAQ0E,EAAE,EAAEA,EAAE1E,EAAE0E,IAAI,EAAEA,CAAC,EAAEhC,EAAEgC,CAAC,EAAE,MAAMwC,EAAExC,CAAC,EAAEhC,EAAEgC,CAAC,EAAE,KAAK,CAAC,IAAIpC,EAAE,EAAE,MAAM,EAAE,OAAOA,EAAEA,EAAE,OAAO,CAAC,EAAEtC,EAAE,CAAC5R,GAAGkU,EAAExC,EAAE8B,CAAC,EAAExT,GAAGkU,EAAE,QAAQT,CAAC,CAAC,CAAC,CAAC,SAAS85D,GAAG/7D,EAAE,EAAEE,EAAEE,EAAE,CAAC,IAAIC,EAAE9B,EAAE,eAAe,EAAE2B,CAAC,EAAE,CAAC,EAAE,EAAE,CAAC,EAAEA,EAAE,CAAC,EAAE,CAAC,EAAE,QAAQ4C,EAAE,EAAEA,EAAEzC,EAAEyC,IAAI,EAAE,CAAC,GAAG5C,EAAE4C,CAAC,EAAE,EAAE,CAAC,EAAE5C,EAAEG,CAAC,EAAE,QAAQyC,EAAEzC,EAAE,EAAEyC,EAAE5C,EAAE,OAAO4C,IAAI,EAAE,CAAC,GAAG5C,EAAE4C,CAAC,EAAE,IAAI,EAAE,IAAI,IAAIf,EAAE,IAAI,WAAW7B,EAAEG,CAAC,CAAC,EAAE2B,EAAE,IAAIpW,GAAG,EAAEwU,EAAEJ,CAAC,EAAEiC,EAAE,CAAC,EAAES,EAAE,EAAE,CAAC,IAAI,GAAG,EAAE,CAAC,IAAI,EAAE,QAAQI,EAAE,EAAEA,EAAE5C,EAAEG,CAAC,EAAEyC,IAAI,CAAC,IAAIkB,EAAE,GAAGtB,EAAEsB,EAAEhE,EAAE8C,CAAC,EAAE,SAAS,MAAM,CAAC,IAAIwE,EAAE,CAAC,EAAE,QAAQxC,EAAE,EAAEA,EAAE,EAAE,CAAC,EAAEA,IAAI,QAAQL,EAAE,EAAEA,EAAE,EAAE,CAAC,EAAEA,IAAI6C,EAAE,KAAKtF,EAAE,IAAI8C,EAAEhC,EAAE2B,CAAC,CAAC,EAAET,EAAEsD,EAAE,KAAK,GAAG,CAAC,CAAC,IAAI,EAAE,EAAE,IAAItD,CAAC,EAAE,GAAG,GAAG,KAAKjC,EAAEe,CAAC,EAAE,MAAM,CAAC,IAAIwE,EAAE,EAAE,KAAK,EAAE,IAAItD,EAAEsD,CAAC,EAAEvF,EAAEe,CAAC,EAAEwE,EAAErF,EAAE,KAAKa,CAAC,CAAC,CAAC,CAAC,IAAIH,EAAE,EAAE,MAAM,EAAEA,EAAE,CAAC,EAAE,EAAE,KAAK,IAAIC,EAAE,IAAIhX,GAAG+W,EAAEvC,CAAC,EAAE6B,EAAE,QAAQ,CAACa,EAAEkB,IAAI,CAAC,QAAQ,EAAE,EAAE,EAAE,EAAE,CAAC,EAAE,IAAI,QAAQsD,EAAE,EAAEA,EAAE,EAAE,CAAC,EAAEA,IAAI1E,EAAE,IAAIZ,EAAE,IAAI,EAAEc,EAAEwE,CAAC,EAAE,EAAEtD,EAAEsD,CAAC,CAAC,CAAC,EAAE,IAAIzE,EAAE3C,EAAE,MAAM,EAAE,OAAO2C,EAAExC,CAAC,EAAEsC,EAAE,CAAC,EAAE,CAAC,aAAaC,EAAE,OAAO,YAAYC,EAAE,QAAQd,CAAC,CAAC,CAAC,IAAIhD,GAAG,SAASjG,GAAG,MAAM,IAAI,IAAI7S,GAAG,CAAC,EAAE,IAAIy7E,GAAGtE,GAAGn6E,GAAG+c,GAAGA,GAAG,EAAEA,EAAE,KAAK,IAAIA,CAAC,EAAE,CAAC,EAAE2hE,GAAG,CAAC,WAAW1+E,GAAG,YAAY,MAAM,WAAWy+E,EAAE,EAAE,SAASE,GAAG5hE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,CAAC,EAAE,EAAE,CAAC,MAAM,CAAC,EAAED,EAAEu4D,GAAG,CAACt4D,CAAC,EAAE,WAAW,EAAE,IAAI,EAAE9B,EAAE,cAAc8B,EAAE,KAAK,EAAE0B,EAAE7B,EAAE,KAAK,IAAIG,EAAE,MAAM,EAAE,OAAO2B,EAAEzD,EAAE,uBAAuB,UAAU,CAAC,EAAE,QAAQ0D,EAAE,EAAEA,EAAEF,EAAE,OAAOE,IAAID,EAAEC,CAAC,EAAEF,EAAEE,CAAC,EAAE,EAAE,EAAEF,EAAEE,CAAC,EAAEF,EAAEE,CAAC,EAAE,OAAO/B,EAAE,eAAeG,EAAE,MAAM,UAAU2B,CAAC,CAAC,CAAC,IAAI6/D,GAAG,CAAC,WAAWx8E,GAAG,YAAY,MAAM,WAAWu8E,EAAE,EAAME,GAAI5F,GAAG,CAACl8D,EAAE,IAAIA,EAAE,EAAE,EAAEA,EAAEA,CAAC,EAAE,SAAS+hE,GAAG/hE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,CAAC,EAAEF,EAAE,CAAC,EAAEI,EAAE,MAAMC,CAAC,EAAE,EAAEs4D,GAAG,CAACv4D,EAAEC,CAAC,EAAE,OAAO,EAAE,IAAI,EAAEH,EAAE,KAAK,IAAIE,EAAE,MAAM,EAAE,OAAO,EAAEF,EAAE,KAAK,IAAIG,EAAE,MAAM,EAAE,OAAO,CAAC0B,EAAEC,CAAC,EAAE8/D,GAAI1hE,EAAE,MAAMC,EAAE,MAAM,EAAE,EAAE,SAAS,EAAE,OAAOH,EAAE,eAAe8B,EAAE,UAAUD,CAAC,CAAC,CAAC,IAAIigE,GAAG,CAAC,WAAW/5E,GAAG,YAAY,MAAM,WAAW85E,EAAE,EAAME,GAAG7E,GAAGt0E,GAAGkX,GAAG,KAAK,IAAI,EAAEA,CAAC,CAAC,EAAEkiE,GAAG,CAAC,WAAWp5E,GAAG,YAAY,MAAM,WAAWm5E,EAAE,EAAME,GAAG/E,GAAGr0E,GAAGiX,GAAG,KAAK,IAAI,KAAK,IAAI,EAAEA,CAAC,EAAE,CAAC,CAAC,EAAEoiE,GAAG,CAAC,WAAWr5E,GAAG,YAAY,MAAM,WAAWo5E,EAAE,EAAE,SAASE,GAAGriE,EAAE,EAAEE,EAAEE,EAAEC,EAAE,CAAC,GAAGH,IAAI,SAAS,OAAOo8D,GAAG,CAAC,OAAO,CAAC,EAAE,CAAC,EAAE,QAAQt8D,CAAC,CAAC,EAAE,GAAGE,IAAI,OAAO,OAAO+hE,GAAG,CAAC,OAAO,CAAC,EAAE,CAAC,EAAE,QAAQjiE,CAAC,CAAC,EAAE,GAAGE,IAAI,MAAM,OAAOwhE,GAAG,CAAC,OAAO,CAAC,EAAE,CAAC,EAAE,QAAQ1hE,CAAC,CAAC,EAAE,GAAGE,IAAI,QAAQ,OAAOiiE,GAAG,CAAC,OAAO,CAAC,EAAE,CAAC,EAAE,QAAQniE,CAAC,CAAC,EAAE,GAAGE,IAAI,QAAQ,OAAO6hE,GAAG,CAAC,OAAO,CAAC,EAAE,EAAE,MAAM3hE,CAAC,EAAE,QAAQJ,CAAC,CAAC,EAAE,GAAGE,IAAI,YAAY,OAAO0hE,GAAG,CAAC,OAAO,CAAC,EAAE,CAAC,EAAE,QAAQ5hE,EAAE,MAAM,CAAC,MAAMK,CAAC,CAAC,CAAC,EAAE,GAAGH,IAAI,UAAU,OAAOugE,GAAG,CAAC,OAAO,CAAC,EAAE,CAAC,EAAE,QAAQzgE,CAAC,CAAC,EAAE,MAAM,IAAI,MAAM,cAAcE,CAAC,gDAAgD,CAAC,CAAC,SAASoiE,GAAGtiE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,CAAC,EAAE,EAAE,CAAC,MAAM,CAAC,EAAED,EAAE,EAAE7B,EAAE,cAAc8B,EAAE,KAAK,EAAE0B,EAAExD,EAAE,uBAAuB,EAAE,CAAC,EAAEyD,EAAEzD,EAAE,cAAcwD,CAAC,EAAExD,EAAE,OAAO,IAAIyD,EAAE,IAAI,kBAAkBD,CAAC,SAASC,CAAC,gCAAgC3B,EAAE,KAAK,SAAS,CAAC,+EAA+E,EAAEH,EAAE,OAAOG,EAAE,MAAM,EAAE,IAAI4B,EAAE/B,EAAE,KAAK,IAAIG,EAAE,MAAM,EAAE,GAAG4B,EAAE,oBAAoB,KAAK,CAAC,IAAIS,EAAET,EAAE,mBAAmB,KAAKU,EAAEV,EAAE,mBAAmB,KAAKS,EAAE,MAAMX,EAAEY,EAAE,MAAMZ,CAAC,CAAC,MAAM,CAAC,OAAO1B,EAAE,OAAO,MAAM0B,EAAE,MAAM1B,EAAE,KAAK,CAAC,CAAC,IAAIkiE,GAAG,CAAC,WAAWv5E,GAAG,YAAY,MAAM,WAAWs5E,EAAE,EAAE,SAASE,GAAGxiE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,EAAE,EAAE,CAAC,EAAE,EAAE,CAAC,WAAW,EAAE,WAAW0B,CAAC,EAAE3B,EAAEu4D,GAAG,CAACt4D,EAAE,CAAC,EAAE,QAAQ,EAAE,IAAI2B,EAAE3B,EAAE,MAAM,OAAO4B,EAAE,EAAE,MAAM,OAAOS,EAAE,EAAErC,EAAE,MAAM2B,EAAE,CAAC,EAAE3B,EAAE,MAAM2B,EAAE,CAAC,EAAEW,EAAEZ,EAAE,EAAE,MAAME,EAAE,CAAC,EAAE,EAAE,MAAMA,EAAE,CAAC,EAAEW,EAAE,EAAEvC,EAAE,MAAM2B,EAAE,CAAC,EAAE3B,EAAE,MAAM2B,EAAE,CAAC,EAAEa,EAAEd,EAAE,EAAE,MAAME,EAAE,CAAC,EAAE,EAAE,MAAMA,EAAE,CAAC,EAAEa,EAAEzC,EAAE,MAAM,MAAM,EAAE,EAAE,EAAE2D,EAAE,EAAE,MAAM,MAAM,EAAE,EAAE,EAAE,EAAEzF,EAAE,cAAcuE,CAAC,EAAEwE,EAAE/I,EAAE,cAAcyF,CAAC,EAAES,EAAEnW,GAAG,2BAA2B+R,EAAE,MAAM,MAAM,EAAE,EAAE,EAAE,EAAE,MAAM,MAAM,EAAE,EAAE,CAAC,EAAE,OAAO,CAACuC,EAAEC,CAAC,CAAC,EAAEtE,EAAE,OAAOmE,IAAIC,EAAE,IAAI,kCAAkCD,CAAC,UAAUC,CAAC,4BAA4BtC,EAAE,KAAK,QAAQ,EAAE,KAAK,mBAAmB,CAAC,mBAAmB0B,CAAC,cAAc,EAAE,IAAI2C,EAAE,EAAE,CAAC,EAAEhC,EAAEE,CAAC,EAAE,CAAC,EAAEA,EAAEF,CAAC,EAAEiC,EAAE5C,EAAE,CAACuF,EAAEzE,EAAEF,CAAC,EAAE,CAAC2E,EAAE3E,EAAEE,CAAC,EAAE+B,EAAE09D,GAAG,CAAC,OAAO,CAAC,EAAEjiE,CAAC,EAAE,QAAQH,EAAE,MAAM,CAAC,MAAMwE,CAAC,CAAC,CAAC,EAAEG,EAAEy9D,GAAG,CAAC,OAAO,CAAC,EAAE,CAAC,EAAE,QAAQpiE,EAAE,MAAM,CAAC,MAAMyE,CAAC,CAAC,CAAC,EAAE4C,EAAE,EAAE3C,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEG,EAAE,EAAEH,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEI,EAAEjD,EAAE8C,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEI,EAAE,KAAK,IAAI,EAAEqC,CAAC,EAAEpC,EAAEhF,EAAE,KAAK,IAAI0E,EAAE,MAAM,EAAE,OAAOO,EAAEjF,EAAE,KAAK,IAAI2E,EAAE,MAAM,EAAE,OAAOO,EAAE7G,EAAE,eAAeqG,EAAE,KAAK,EAAES,EAAE9G,EAAE,eAAesG,EAAE,KAAK,EAAE,CAACmD,EAAEP,EAAEQ,CAAC,EAAE,EAAE,CAAC7C,EAAE,CAAC,EAAE,EAAEA,EAAE,CAAC,CAAC,EAAE,CAACA,EAAE,CAAC,EAAEA,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC8C,EAAGC,EAAGC,CAAE,EAAErG,EAAE,CAAC,EAAEsD,EAAE,CAAC,EAAEA,EAAE,CAAC,CAAC,EAAE,CAACA,EAAE,CAAC,EAAE,EAAEA,EAAE,CAAC,CAAC,EAAEgD,GAAGtD,EAAEC,EAAEsD,GAAG9Z,GAAG,CAACyW,EAAEF,EAAEC,CAAC,EAAEJ,EAAE,KAAK,EAAE8B,GAAG4B,GAAG,OAAOE,GAAGtI,EAAE,UAAU,QAAQuI,GAAG,EAAEA,GAAGxD,EAAEwD,KAAK,CAAC,IAAIC,GAAGD,GAAG,EAAEE,GAAGF,GAAGnB,EAAE,QAAQsB,GAAG,EAAEA,GAAG7D,EAAE6D,IAAIJ,GAAG,CAAC,IAAIK,GAAG,KAAK,IAAID,GAAGJ,GAAGzD,CAAC,EAAE,QAAQmE,GAAG,EAAEA,GAAGlE,EAAEkE,IAAIV,GAAG,CAAC,IAAIW,GAAG,KAAK,IAAID,GAAGV,GAAGxD,CAAC,EAAE,QAAQoE,GAAG,EAAEA,GAAG7B,EAAE6B,IAAIZ,GAAG,CAAC,IAAI7B,GAAG,KAAK,IAAIyC,GAAGZ,GAAGjB,CAAC,EAAE,QAAQV,GAAG+B,GAAG/B,GAAGgC,GAAGhC,KAAK,QAAQC,GAAGoC,GAAGpC,GAAGqC,GAAGrC,KAAK,CAAC,IAAIC,GAAG,EAAE,QAAQsC,GAAGD,GAAGC,GAAG1C,GAAG0C,KAAK,CAAC,IAAIrC,GAAG9B,EAAEwD,GAAGV,EAAEnB,GAAGY,EAAE4B,GAAGpB,CAAC,EAAEhB,GAAG9B,EAAEkE,GAAGnB,EAAGpB,GAAGqB,EAAGQ,GAAGP,CAAE,EAAErB,IAAIC,GAAGC,EAAE,CAACP,GAAG+B,GAAGJ,IAAIxB,GAAG7B,EAAE8B,GAAG,GAAGC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,OAAO7G,EAAE,8BAA8B0E,CAAC,EAAE1E,EAAE,8BAA8B2E,CAAC,EAAE3E,EAAE,eAAeuE,EAAE6D,GAAG,MAAMA,GAAG,MAAM,CAAC,CAAC,IAAIm6D,GAAG,CAAC,WAAWhiF,GAAG,YAAY,MAAM,WAAW+hF,EAAE,EAAE,SAASE,GAAI1iE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,EAAE,EAAE,EAAE,KAAK,EAAE,uBAAuB0B,CAAC,EAAE,EAAE,CAAC,WAAWC,EAAE,WAAWC,EAAE,WAAWS,EAAE,eAAeC,CAAC,EAAEvC,EAAEwC,EAAEC,EAAEC,EAAEkB,EAAE,CAAC,EAAEpB,EAAE4/D,GAAG,CAAC,OAAO,CAAC,EAAEniE,EAAE,EAAE,CAAC,EAAE,MAAM,CAAC,WAAW2B,EAAE,WAAWC,CAAC,EAAE,QAAQ/B,CAAC,CAAC,EAAE,IAAI2C,EAAEk6D,GAAG,CAAC,OAAO,CAAC,EAAEn6D,EAAE,EAAE,CAAC,EAAE,QAAQ1C,CAAC,CAAC,EAAE8D,EAAE,KAAKpB,CAAC,EAAEA,EAAEC,GAAGH,IAAII,EAAEu/D,GAAGniE,EAAE0C,EAAEF,EAAEX,EAAEY,CAAC,EAAEqB,EAAE,KAAKpB,CAAC,EAAEA,EAAEE,GAAG,QAAQwE,KAAKtD,EAAE9D,EAAE,8BAA8BoH,CAAC,EAAE,OAAO1E,CAAC,CAAC,IAAI+/D,GAAG,CAAC,WAAWn2E,GAAG,YAAY,MAAM,WAAWk2E,EAAG,EAAME,GAAIxF,GAAGj+E,GAAG6gB,GAAG,KAAK,KAAKA,CAAC,CAAC,EAAE6iE,GAAG,CAAC,WAAW1jF,GAAG,YAAY,MAAM,WAAWyjF,EAAG,EAAME,GAAI1F,GAAGh+E,GAAG4gB,GAAG,KAAK,MAAMA,CAAC,CAAC,EAAE+iE,GAAG,CAAC,WAAW3jF,GAAG,YAAY,MAAM,WAAW0jF,EAAG,EAAE,SAASE,GAAIhjE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,CAAC,EAAEF,EAAEI,EAAE,EAAEu4D,GAAG,EAAE,MAAM,EAAE,IAAIt4D,EAAED,EAAE,IAAI2B,GAAG7B,EAAE,KAAK,IAAI6B,EAAE,MAAM,EAAE,MAAM,EAAE,EAAEvT,GAAG4R,EAAE,CAAC,EAAE,MAAMA,EAAE,CAAC,EAAE,KAAK,EAAE,EAAE,EAAE,OAAO,QAAQ2B,EAAE,EAAEA,EAAE3B,EAAE,OAAO2B,IAAI,CAAC,IAAIC,EAAE3B,EAAE0B,CAAC,EAAE,QAAQE,EAAE,EAAEA,EAAE,EAAE,OAAOA,IAAI,EAAEA,CAAC,GAAGD,EAAEC,CAAC,CAAC,CAAC,OAAO/B,EAAE,eAAe,EAAE,MAAM,EAAE,MAAM,EAAE,MAAM,CAAC,CAAC,IAAI+iE,GAAG,CAAC,WAAWvjF,GAAG,YAAY,MAAM,WAAWsjF,EAAG,EAAE,SAASE,GAAIljE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,CAAC,EAAE,EAAE,CAAC,KAAK,EAAE,SAAS,CAAC,EAAED,EAAEu4D,GAAGt4D,EAAE,KAAK,EAAE,IAAI0B,EAAExD,EAAE,eAAe,EAAE8B,EAAE,KAAK,EAAE2B,EAAED,EAAEE,EAAEvU,EAAE,mBAAmBsU,EAAE3B,EAAE,MAAM,MAAM,EAAEqC,EAAErC,EAAE4B,GAAG,OAAOS,EAAE68D,GAAG,CAAC,OAAO,CAAC,EAAEl/D,CAAC,EAAE,QAAQH,EAAE,MAAM,CAAC,KAAK+B,CAAC,CAAC,CAAC,EAAED,EAAEtU,EAAE,iBAAiBsU,EAAE,OAAO3B,EAAE,MAAM,MAAM,GAAG3S,EAAE,2BAA2B,MAAMsU,EAAEU,EAAE,MAAM,MAAM,EAAE,GAAG,CAACC,EAAEC,CAAC,EAAElV,EAAE,0BAA0BgV,EAAE,MAAMV,CAAC,EAAEa,EAAEtE,EAAE,cAAcqE,CAAC,EAAEE,EAAEvE,EAAE,oBAAoBA,EAAE,cAAcoE,CAAC,EAAED,EAAE,KAAK,EAAEsB,EAAE9D,EAAE,KAAK,IAAIwC,EAAE,MAAM,EAAE,OAAO,QAAQ4E,EAAE,EAAEA,EAAExE,EAAE,OAAO,EAAEwE,EAAE,CAAC,IAAIxC,EAAEwC,EAAEzE,EAAE4B,EAAET,EAAEc,CAAC,EAAE,QAAQJ,EAAE,EAAEA,EAAE7B,EAAE,EAAE6B,EAAE,CAAC,IAAIC,EAAEX,EAAEc,EAAEJ,CAAC,EAAED,EAAEA,GAAGE,CAAC,CAAC7B,EAAEwE,CAAC,EAAE7C,CAAC,CAACxC,GAAG,MAAM/B,EAAE,8BAA8BwC,CAAC,EAAE,IAAI,EAAExC,EAAE,eAAeyC,EAAED,EAAE,MAAMI,CAAC,EAAE,GAAG,EAAE,CAAC,IAAIwE,EAAE5Z,EAAE,qBAAqBiV,EAAEZ,CAAC,EAAE+C,EAAEw9D,GAAG,CAAC,OAAO,CAAC,EAAE,CAAC,EAAE,QAAQpiE,EAAE,MAAM,CAAC,MAAMoH,CAAC,CAAC,CAAC,EAAE,OAAOpH,EAAE,8BAA8B,CAAC,EAAE4E,CAAC,CAAC,OAAO,CAAC,CAAC,IAAIq+D,GAAG,CAAC,WAAWxjF,GAAG,YAAY,MAAM,WAAWujF,EAAG,EAAE,SAASE,GAAIpjE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,CAAC,EAAE,EAAE,CAAC,KAAK,EAAE,SAAS,CAAC,EAAED,EAAEu4D,GAAGt4D,EAAE,KAAK,EAAE,IAAI0B,EAAExD,EAAE,eAAe,EAAE8B,EAAE,KAAK,EAAE2B,EAAED,EAAEE,EAAEvU,EAAE,mBAAmBsU,EAAE3B,EAAE,MAAM,MAAM,EAAEqC,EAAErC,EAAE4B,GAAG,OAAOS,EAAE68D,GAAG,CAAC,OAAO,CAAC,EAAEl/D,CAAC,EAAE,QAAQH,EAAE,MAAM,CAAC,KAAK+B,CAAC,CAAC,CAAC,EAAED,EAAEtU,EAAE,iBAAiBsU,EAAE,OAAO3B,EAAE,MAAM,MAAM,GAAG3S,EAAE,2BAA2B,MAAMsU,EAAEU,EAAE,MAAM,MAAM,EAAE,GAAG,CAACC,EAAEC,CAAC,EAAElV,EAAE,0BAA0BgV,EAAE,MAAMV,CAAC,EAAEa,EAAEtE,EAAE,cAAcqE,CAAC,EAAEE,EAAEvE,EAAE,oBAAoBA,EAAE,cAAcoE,CAAC,EAAED,EAAE,KAAK,EAAEsB,EAAE9D,EAAE,KAAK,IAAIwC,EAAE,MAAM,EAAE,OAAO,QAAQ4E,EAAE,EAAEA,EAAExE,EAAE,OAAO,EAAEwE,EAAE,CAAC,IAAIxC,EAAEwC,EAAEzE,EAAE4B,EAAET,EAAEc,CAAC,EAAE,QAAQJ,EAAE,EAAEA,EAAE7B,EAAE,EAAE6B,EAAE,CAAC,IAAIC,EAAEX,EAAEc,EAAEJ,CAAC,EAAED,EAAEA,GAAGE,CAAC,CAAC7B,EAAEwE,CAAC,EAAE7C,CAAC,CAACxC,GAAG,MAAM/B,EAAE,8BAA8BwC,CAAC,EAAE,IAAI,EAAExC,EAAE,eAAeyC,EAAED,EAAE,MAAMI,CAAC,EAAE,GAAG,EAAE,CAAC,IAAIwE,EAAE5Z,EAAE,qBAAqBiV,EAAEZ,CAAC,EAAE+C,EAAEw9D,GAAG,CAAC,OAAO,CAAC,EAAE,CAAC,EAAE,QAAQpiE,EAAE,MAAM,CAAC,MAAMoH,CAAC,CAAC,CAAC,EAAE,OAAOpH,EAAE,8BAA8B,CAAC,EAAE4E,CAAC,CAAC,OAAO,CAAC,CAAC,IAAIu+D,GAAG,CAAC,WAAWzjF,GAAG,YAAY,MAAM,WAAWwjF,EAAG,EAAE,SAASE,GAAItjE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,CAAC,EAAE,EAAE,CAAC,KAAK,CAAC,EAAED,EAAEu4D,GAAGt4D,EAAE,QAAQ,EAAE,IAAI,EAAE9B,EAAE,eAAe,EAAE8B,EAAE,KAAK,EAAE0B,EAAErU,EAAE,mBAAmB,EAAE2S,EAAE,MAAM,MAAM,EAAE2B,EAAE3B,EAAE4B,EAAE,CAAC,EAAEF,GAAG,OAAOC,EAAEu9D,GAAG,CAAC,OAAO,CAAC,EAAEl/D,CAAC,EAAE,QAAQH,EAAE,MAAM,CAAC,KAAK6B,CAAC,CAAC,CAAC,EAAEE,EAAE,KAAKD,CAAC,EAAE,EAAEtU,EAAE,iBAAiB,EAAE,OAAOsU,EAAE,MAAM,MAAM,GAAG,EAAE,CAAC,EAAE,CAAC,CAAC,EAAEtU,EAAE,2BAA2B,SAAS,EAAEsU,EAAE,MAAM,MAAM,EAAE,GAAG,CAACU,EAAEC,CAAC,EAAEjV,EAAE,0BAA0BsU,EAAE,MAAM,CAAC,EAAEY,EAAErE,EAAE,cAAcmE,CAAC,EAAEG,EAAEtE,EAAE,oBAAoBqE,EAAE,OAAO,EAAEE,EAAEvE,EAAE,cAAcoE,CAAC,EAAEqB,EAAE9D,EAAE,KAAK,IAAI8B,EAAE,MAAM,EAAE,OAAO,QAAQ,EAAE,EAAE,EAAEa,EAAE,OAAO,EAAE,EAAE,CAAC,IAAIyE,EAAE,EAAExE,EAAEgC,EAAEd,EAAEsD,CAAC,EAAE7C,EAAE,EAAE,QAAQC,EAAE,EAAEA,EAAE5B,EAAE,EAAE4B,EAAE,CAAC,IAAIC,EAAEX,EAAEsD,EAAE5C,CAAC,EAAEC,EAAEG,IAAIA,EAAEH,EAAEF,EAAEC,EAAE,CAAC7B,EAAE,CAAC,EAAE4B,CAAC,CAAC,OAAOxC,EAAE,QAAQ,GAAG/B,EAAE,8BAA8B,CAAC,CAAC,EAAEA,EAAE,eAAewC,EAAE,QAAQG,CAAC,CAAC,CAAC,IAAI0gE,GAAG,CAAC,WAAW1jF,GAAG,YAAY,MAAM,WAAWyjF,EAAG,EAAE,SAASE,GAAIxjE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,CAAC,EAAE,EAAE,CAAC,KAAK,CAAC,EAAED,EAAEu4D,GAAGt4D,EAAE,QAAQ,EAAE,IAAI,EAAE9B,EAAE,eAAe,EAAE8B,EAAE,KAAK,EAAE0B,EAAErU,EAAE,mBAAmB,EAAE2S,EAAE,MAAM,MAAM,EAAE2B,EAAE3B,EAAE4B,EAAE,CAAC,EAAEF,GAAG,OAAOC,EAAEu9D,GAAG,CAAC,OAAO,CAAC,EAAEl/D,CAAC,EAAE,QAAQH,EAAE,MAAM,CAAC,KAAK6B,CAAC,CAAC,CAAC,EAAEE,EAAE,KAAKD,CAAC,EAAE,EAAEtU,EAAE,iBAAiB,EAAE,OAAOsU,EAAE,MAAM,MAAM,GAAG,EAAE,CAAC,EAAE,CAAC,CAAC,EAAEtU,EAAE,2BAA2B,SAAS,EAAEsU,EAAE,MAAM,MAAM,EAAE,GAAG,CAACU,EAAEC,CAAC,EAAEjV,EAAE,0BAA0BsU,EAAE,MAAM,CAAC,EAAEY,EAAErE,EAAE,cAAcmE,CAAC,EAAEG,EAAEtE,EAAE,oBAAoBqE,EAAE,OAAO,EAAEE,EAAEvE,EAAE,cAAcoE,CAAC,EAAEqB,EAAE9D,EAAE,KAAK,IAAI8B,EAAE,MAAM,EAAE,OAAO,QAAQ,EAAE,EAAE,EAAEa,EAAE,OAAO,EAAE,EAAE,CAAC,IAAIyE,EAAE,EAAExE,EAAEgC,EAAEd,EAAEsD,CAAC,EAAE7C,EAAE,EAAE,QAAQC,EAAE,EAAEA,EAAE5B,EAAE,EAAE4B,EAAE,CAAC,IAAIC,EAAEX,EAAEsD,EAAE5C,CAAC,EAAEC,EAAEG,IAAIA,EAAEH,EAAEF,EAAEC,EAAE,CAAC7B,EAAE,CAAC,EAAE4B,CAAC,CAAC,OAAOxC,EAAE,QAAQ,GAAG/B,EAAE,8BAA8B,CAAC,CAAC,EAAEA,EAAE,eAAewC,EAAE,QAAQG,CAAC,CAAC,CAAC,IAAI4gE,GAAG,CAAC,WAAW3jF,GAAG,YAAY,MAAM,WAAW0jF,EAAG,EAAME,GAAItG,GAAGr9E,GAAGigB,GAAG,KAAK,KAAKA,CAAC,CAAC,EAAE2jE,GAAG,CAAC,WAAW5jF,GAAG,YAAY,MAAM,WAAW2jF,EAAG,EAAME,GAAIxG,GAAGp9E,GAAGggB,GAAG,KAAK,MAAMA,CAAC,CAAC,EAAE6jE,GAAG,CAAC,WAAW7jF,GAAG,YAAY,MAAM,WAAW4jF,EAAG,EAAME,GAAI1G,GAAGn9E,GAAG+f,GAAG,KAAK,KAAKA,CAAC,CAAC,EAAE+jE,GAAG,CAAC,WAAW9jF,GAAG,YAAY,MAAM,WAAW6jF,EAAG,EAAME,GAAI9H,GAAG,CAACl8D,EAAE,IAAI,KAAK,MAAMA,EAAE,CAAC,CAAC,EAAEikE,GAAIrH,GAAG18E,GAAG8jF,EAAG,EAAEE,GAAG,CAAC,WAAWhkF,GAAG,YAAY,MAAM,WAAW+jF,EAAG,EAAME,GAAI/G,GAAGj9E,GAAG6f,GAAG,KAAK,MAAMA,CAAC,CAAC,EAAEokE,GAAG,CAAC,WAAWjkF,GAAG,YAAY,MAAM,WAAWgkF,EAAG,EAAE,SAASE,GAAGrkE,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,CAAC,IAAI,EAAEA,EAAE,aAAa0B,EAAE1B,EAAE,YAAY2B,EAAE3B,EAAE,eAAe4B,EAAE5B,EAAE,cAAcqC,EAAErC,EAAE,sBAAsBsC,EAAEtC,EAAE,qBAAqBuC,EAAEvC,EAAE,QAAQ,IAAIwC,EAAExC,EAAE,QAAQ,KAAKyC,EAAE,IAAI,MAAM,OAAO,kBAAkB,OAAO,kBAAkBkB,EAAExV,GAAG6R,EAAE,SAASH,CAAC,EAAE,EAAE8D,EAAE,OAAOsD,EAAEjH,EAAE,SAAS,CAAC,EAAEA,EAAE,SAAS,CAAC,EAAEA,EAAE,SAAS,CAAC,EAAEyE,EAAEzE,EAAE,SAAS,CAAC,EAAEA,EAAE,SAAS,CAAC,EAAEoE,EAAEpE,EAAE,SAAS,CAAC,EAAE,QAAQqE,EAAE,EAAEA,EAAErE,EAAE,UAAU,EAAEqE,EAAE,CAAC,IAAIC,EAAED,EAAE4C,EAAE1C,EAAEF,EAAEtE,EAAE,CAAC,EAAE,QAAQyE,EAAE,EAAEA,EAAExE,EAAE,WAAW,EAAEwE,EAAE,QAAQ0C,EAAE,EAAEA,EAAElH,EAAE,UAAU,EAAEkH,EAAE,CAAC,IAAI,EAAEA,EAAE,EAAE3E,EAAEoC,EAAE,KAAK,IAAI,EAAE,CAAC,EAAEC,EAAE,KAAK,IAAI5E,EAAE,SAASqC,EAAE,CAAC,EAAEwC,EAAEP,EAAE4C,EAAEzC,EAAE,QAAQK,EAAE,EAAEA,EAAE9E,EAAE,SAAS,EAAE8E,EAAE,CAAC,IAAIC,EAAED,EAAEpD,EAAEc,EAAEwC,EAAE,KAAK,IAAI,EAAED,CAAC,EAAE4C,EAAE,KAAK,IAAI3H,EAAE,QAAQsC,EAAEyC,CAAC,EAAEqC,EAAE3E,EAAEmF,EAAE,EAAEC,EAAG,EAAE,QAAQE,GAAGpD,EAAEoD,GAAGnD,EAAEmD,IAAIpG,EAAE,CAAC,IAAIqG,GAAGzD,EAAEwD,GAAGhI,EAAE,CAAC,EAAE,QAAQkI,GAAGjD,EAAEiD,GAAGN,EAAEM,IAAIrG,EAAE,CAAC,IAAIyE,GAAG2B,GAAGC,GAAGlI,EAAE,CAAC,EAAEoI,GAAGxI,EAAE0G,GAAG7B,CAAC,EAAE,IAAI,OAAO2D,GAAGf,EAAEA,EAAEe,GAAG,IAAI,QAAQP,GAAGO,GAAGN,IAAK,CAAC,GAAG,MAAMT,CAAC,EAAE,KAAK,CAAC,IAAIU,EAAGjD,EAAEC,EAAEV,EAAEI,EAAE,EAAEsD,CAAE,EAAE,IAAI,MAAMF,EAAEC,EAAGT,CAAC,CAAC,CAAC,CAAC,OAAOzD,CAAC,CAAC,SAASsgE,GAAGtkE,EAAE,EAAEE,EAAEE,EAAEC,EAAE,GAAG,EAAE,GAAG,CAAC,IAAI,EAAE7R,GAAG4R,EAAE,SAAS,OAAO,EAAE2B,EAAE3B,EAAE,aAAa4B,EAAE5B,EAAE,YAAY6B,EAAE7B,EAAE,eAAesC,EAAEtC,EAAE,cAAcuC,EAAEvC,EAAE,sBAAsBwC,EAAExC,EAAE,qBAAqByC,EAAEzC,EAAE,QAAQ,IAAI0C,EAAE1C,EAAE,QAAQ,KAAK4D,EAAExV,GAAG,EAAE0R,EAAEF,CAAC,EAAE,QAAQ,EAAE,EAAE,EAAEI,EAAE,UAAU,EAAE,EAAE,QAAQkH,EAAE,EAAEA,EAAElH,EAAE,WAAW,EAAEkH,EAAE,QAAQxC,EAAE,EAAEA,EAAE1E,EAAE,UAAU,EAAE0E,EAAE,CAAC,IAAIL,EAAEK,EAAE/C,EAAEc,EAAE6B,EAAED,EAAE,KAAKC,EAAE,GAAGA,GAAGzC,EAAE,IAAI0C,EAAE,KAAK,IAAIvE,EAAE,SAASuC,EAAE8B,CAAC,EAAE,QAAQG,EAAE,EAAEA,EAAExE,EAAE,SAAS,EAAEwE,EAAE,CAAC,IAAIC,EAAED,EAAE5C,EAAEc,EAAEyE,EAAE1C,EAAE,KAAK0C,EAAE,GAAGA,GAAG7E,EAAE,IAAI,EAAE,KAAK,IAAItC,EAAE,QAAQwC,EAAEiC,CAAC,EAAEG,EAAE,OAAO,kBAAkBC,EAAE,GAAG,QAAQC,EAAER,EAAEQ,EAAEP,EAAEO,GAAGjD,EAAE,CAAC,IAAIkD,EAAED,EAAET,EAAE,QAAQW,EAAEmC,EAAEnC,EAAE,EAAEA,GAAG1C,EAAE,CAAC,IAAI2C,EAAED,EAAEP,EAAEmD,EAAEhE,EAAE,IAAI,EAAEkB,EAAEE,EAAEkC,CAAC,EAAEU,EAAEhD,IAAIA,EAAEgD,EAAE3H,EAAE4E,EAAE,IAAI,EAAE7E,EAAE,SAAS8E,GAAG9E,EAAE,QAAQgF,GAAGhF,EAAE,WAAWkH,GAAGpC,EAAE9E,EAAE,QAAQgF,GAAGhF,EAAE,WAAWkH,EAAErC,EAAEE,EAAEvC,EAAEyC,EAAE,CAAC,CAAC,EAAE,IAAIJ,EAAE,EAAEH,EAAEF,EAAE0C,CAAC,CAAC,CAAC,CAAC,OAAO,CAAC,CAAC,SAASi9D,GAAGvkE,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,CAAC,IAAI,EAAEA,EAAE,YAAY0B,EAAE1B,EAAE,aAAa2B,EAAE3B,EAAE,YAAY4B,EAAE5B,EAAE,cAAcqC,EAAErC,EAAE,eAAesC,EAAEtC,EAAE,cAAcuC,EAAEvC,EAAE,qBAAqBwC,EAAExC,EAAE,sBAAsByC,EAAEzC,EAAE,qBAAqB2D,EAAE3D,EAAE,QAAQ,MAAM,EAAEA,EAAE,QAAQ,IAAIiH,EAAEjH,EAAE,QAAQ,KAAKyE,EAAE,IAAI,MAAM,OAAO,kBAAkB,OAAO,kBAAkBL,EAAEjW,GAAG6R,EAAE,SAASH,CAAC,EAAEwE,EAAED,EAAE,OAAOE,EAAEtE,EAAE,SAAS,CAAC,EAAEA,EAAE,SAAS,CAAC,EAAEA,EAAE,SAAS,CAAC,EAAEA,EAAE,SAAS,CAAC,EAAEuE,EAAEvE,EAAE,SAAS,CAAC,EAAEA,EAAE,SAAS,CAAC,EAAEA,EAAE,SAAS,CAAC,EAAEwE,EAAExE,EAAE,SAAS,CAAC,EAAEA,EAAE,SAAS,CAAC,EAAEkH,EAAElH,EAAE,SAAS,CAAC,EAAE,QAAQ,EAAE,EAAE,EAAEA,EAAE,UAAU,EAAE,EAAE,CAAC,IAAI2E,EAAE,EAAEL,EAAEM,EAAE,EAAE7E,EAAE,CAAC,EAAE,QAAQ8E,EAAE,EAAEA,EAAE7E,EAAE,WAAW,EAAE6E,EAAE,QAAQC,EAAE,EAAEA,EAAE9E,EAAE,SAAS,EAAE8E,EAAE,CAAC,IAAIC,EAAED,EAAE,EAAEnB,EAAEqB,EAAED,EAAE,KAAKC,EAAE,GAAGA,GAAGpD,EAAE,IAAI+F,EAAE,KAAK,IAAI3H,EAAE,QAAQuC,EAAEwC,CAAC,EAAEqC,EAAEzC,EAAEG,EAAEP,EAAE,QAAQqD,EAAE,EAAEA,EAAE5H,EAAE,UAAU,EAAE4H,EAAE,CAAC,IAAIC,EAAGD,EAAElG,EAAE,EAAEoG,EAAGD,EAAG,KAAKC,EAAG,GAAGA,GAAIzF,EAAE,IAAI0F,GAAG,KAAK,IAAI/H,EAAE,SAASwC,EAAEqF,CAAE,EAAEG,GAAGZ,EAAEQ,EAAEpD,EAAE,QAAQyD,GAAG,EAAEA,GAAGjI,EAAE,SAAS,EAAEiI,GAAG,CAAC,IAAI5B,GAAG4B,GAAGtG,EAAEsF,EAAEkB,GAAG9B,GAAG,KAAK8B,GAAG,GAAGA,IAAI7F,EAAE,IAAI8F,GAAG,KAAK,IAAIpI,EAAE,QAAQyC,EAAE4D,EAAE,EAAEgC,GAAGL,GAAGC,GAAGf,EAAEoB,GAAG7D,EAAE8D,GAAG,EAAEC,GAAG,EAAE,QAAQM,GAAG9D,EAAE8D,GAAGnB,EAAEmB,IAAIlH,EAAE,CAAC,IAAImH,GAAGnE,EAAEkE,GAAG/I,EAAE,CAAC,EAAE,QAAQuG,GAAGwB,EAAGxB,GAAGyB,GAAGzB,IAAIjE,EAAE,CAAC,IAAImE,GAAGuC,GAAGzC,GAAGvG,EAAE,CAAC,EAAE,QAAQ0G,GAAG0B,GAAG1B,GAAG2B,GAAG3B,IAAInE,EAAE,CAAC,IAAIoE,GAAGF,GAAGC,GAAG1G,EAAE,CAAC,EAAEiJ,GAAGrJ,EAAE+G,GAAG7B,CAAC,EAAE,GAAG,IAAI,OAAOmE,GAAGV,GAAGA,GAAGU,GAAG,IAAI,QAAQT,IAAIS,GAAGR,MAAM,MAAMF,EAAE,EAAE,KAAK,CAAC,GAAG,MAAMA,EAAE,EAAE,KAAK,CAAC,GAAG,MAAMA,EAAE,EAAE,KAAK,CAAC,IAAIO,GAAGR,GAAGxD,EAAER,EAAEwE,EAAE,EAAE,IAAI,MAAMN,GAAG,KAAK,IAAIC,GAAG,CAAC,EAAEF,EAAE,CAAC,CAAC,CAAC,CAAC,OAAOlE,CAAC,CAAC,SAAS+/D,GAAGxkE,EAAE,EAAE,CAAC,IAAIE,EAAE1R,GAAG,EAAE,SAAS,OAAO,EAAE4R,EAAE,EAAE,YAAYC,EAAE,EAAE,aAAa,EAAE,EAAE,YAAY,EAAE,EAAE,cAAc0B,EAAE,EAAE,eAAeC,EAAE,EAAE,cAAcC,EAAE,EAAE,qBAAqBS,EAAE,EAAE,sBAAsBC,EAAE,EAAE,qBAAqBC,EAAE,EAAE,QAAQ,MAAMC,EAAE,EAAE,QAAQ,IAAIC,EAAE,EAAE,QAAQ,KAAK,QAAQkB,EAAE,EAAEA,EAAE,EAAE,UAAU,EAAEA,EAAE,QAAQ,EAAE,EAAE,EAAE,EAAE,WAAW,EAAE,EAAE,QAAQsD,EAAE,EAAEA,EAAE,EAAE,SAAS,EAAEA,EAAE,CAAC,IAAIxC,EAAEwC,EAAElH,EAAEwC,EAAE6B,EAAEK,EAAE,KAAKL,EAAE,GAAGA,GAAG,EAAE,IAAIC,EAAE,KAAK,IAAI,EAAE,QAAQzC,EAAE6C,CAAC,EAAE,QAAQH,EAAE,EAAEA,EAAE,EAAE,UAAU,EAAEA,EAAE,CAAC,IAAIC,EAAED,EAAEtE,EAAEwC,EAAEgC,EAAED,EAAE,KAAKC,EAAE,GAAGA,GAAG9C,EAAE,IAAIwF,EAAE,KAAK,IAAI,EAAE,SAAS7E,EAAEkC,CAAC,EAAE,QAAQ,EAAE,EAAE,EAAE,EAAE,SAAS,EAAE,EAAE,CAAC,IAAII,EAAE,EAAE,EAAElC,EAAEmC,EAAED,EAAE,KAAKC,EAAE,GAAGA,GAAGjD,EAAE,IAAIkD,EAAE,KAAK,IAAI,EAAE,QAAQvC,EAAEqC,CAAC,EAAEG,EAAE,OAAO,kBAAkBC,EAAE,GAAG,QAAQC,EAAEZ,EAAEY,EAAEX,EAAEW,GAAG,EAAE,CAAC,IAAI2C,EAAE3C,EAAEP,EAAE,QAAQ2C,EAAE5C,EAAE4C,EAAEF,EAAEE,GAAG1F,EAAE,CAAC,IAAIkG,EAAER,EAAE7C,EAAE,QAAQsD,EAAGjD,EAAEiD,EAAGhD,EAAEgD,GAAIlG,EAAE,CAAC,IAAImG,EAAGD,EAAGlD,EAAEoD,GAAGpI,EAAE,IAAIgE,EAAEqB,EAAEoC,EAAES,EAAG,CAAC,EAAEE,IAAIjD,IAAIA,EAAEiD,GAAGhD,EAAE4C,EAAEtF,EAAEC,EAAEsF,EAAEvF,EAAEyF,EAAG,CAAC,CAAC,CAACjI,EAAE,IAAIkF,EAAEpB,EAAEsD,EAAE3C,EAAE,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,OAAOzE,CAAC,CAAC,SAASukE,GAAIzkE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,CAAC,EAAE,EAAEs4D,GAAGt4D,EAAE,SAAS,EAAE,GAAG,CAAC,WAAW,EAAE,QAAQ,EAAE,IAAI0B,EAAE,gBAAgBC,CAAC,EAAE5B,EAAE6B,EAAE,EAAE1D,EAAE,OAAO7Q,EAAE,+BAA+B,EAAEuU,CAAC,EAAE,IAAI,wEAAwE,CAAC,mBAAmBA,CAAC,GAAG,EAAE,IAAIS,EAAEhV,EAAE,kBAAkB2S,EAAE,MAAM,EAAE,EAAE4B,EAAEF,EAAEC,CAAC,EAAEW,EAAE,GAAGD,EAAE,cAAc,GAAGA,EAAE,eAAe,GAAGnE,EAAE,YAAYmE,EAAE,QAAQA,EAAE,QAAQ,EAAEC,EAAE25D,GAAG,CAAC,OAAO,CAAC,EAAEj8D,CAAC,EAAE,QAAQH,CAAC,CAAC,MAAM,CAAC,IAAI0C,EAAE1C,EAAE,KAAK,IAAIG,EAAE,MAAM,EAAE,OAAOwC,EAAEtE,EAAE,eAAe8B,EAAE,KAAK,EAAEyC,EAAEuhE,GAAGzhE,EAAEvC,EAAE,MAAMA,EAAE,MAAMwC,EAAEH,EAAE,KAAK,EAAEC,EAAEzC,EAAE,eAAewC,EAAE,SAASrC,EAAE,MAAMyC,EAAE,MAAM,CAAC,CAAC,OAAOH,CAAC,CAAC,IAAI+hE,GAAG,CAAC,WAAWtkF,GAAG,YAAY,MAAM,WAAWqkF,EAAG,EAAE,SAASE,GAAI3kE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,CAAC,EAAE,EAAE,CAAC,WAAW,EAAE,QAAQ,EAAE,IAAI0B,EAAE,gBAAgBC,EAAE,WAAWC,CAAC,EAAE7B,EAAEu4D,GAAGt4D,EAAE,WAAW,EAAE,IAAIqC,EAAEhV,EAAE,kBAAkB2S,EAAE,MAAM,EAAE,EAAE,EAAE0B,EAAEC,EAAEC,CAAC,EAAEU,EAAEzC,EAAE,KAAK,IAAIG,EAAE,MAAM,EAAE,OAAOuC,EAAE2hE,GAAG5hE,EAAEtC,EAAE,MAAMA,EAAE,MAAM9B,EAAE,eAAe8B,EAAE,KAAK,EAAEqC,EAAE,KAAK,EAAE,OAAOxC,EAAE,eAAe0C,EAAE,MAAM,UAAUA,EAAE,MAAM,CAAC,CAAC,IAAIgiE,GAAG,CAAC,WAAWvkF,GAAG,YAAY,MAAM,WAAWskF,EAAG,EAAE,SAASE,GAAI7kE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,GAAGK,EAAE,MAAM,CAAC,EAAE,EAAE,CAAC,WAAW,EAAE,QAAQ0B,EAAE,IAAIC,EAAE,gBAAgBC,CAAC,EAAE7B,EAAEu4D,GAAG,CAACt4D,EAAE,CAAC,EAAE,eAAe,EAAE,IAAIqC,EAAEhV,EAAE,kBAAkB,EAAE,MAAM,EAAEqU,EAAE,EAAEC,EAAEC,CAAC,EAAEU,EAAED,EAAE,YAAYE,EAAEF,EAAE,aAAaG,EAAEH,EAAE,YAAYI,EAAEJ,EAAE,YAAYsB,EAAEtB,EAAE,aAAa,EAAEA,EAAE,YAAY4E,EAAE5E,EAAE,cAAcoC,EAAEpC,EAAE,eAAe+B,EAAE/B,EAAE,cAAcgC,EAAEhC,EAAE,qBAAqBiC,EAAEjC,EAAE,sBAAsBkC,EAAElC,EAAE,qBAAqBmC,EAAEH,EAAE,EAAEhC,EAAE,QAAQ,MAAM6E,EAAE3C,EAAE,EAAElC,EAAE,QAAQ,KAAK,EAAEiC,EAAE,EAAEjC,EAAE,QAAQ,IAAIsC,EAAExW,GAAG,EAAE,MAAM,SAAS,EAAEyW,EAAE,GAAGnC,EAAEkB,EAAE,GAAGkB,EAAEhF,EAAE,WAAWG,CAAC,EAAE,QAAQ8E,EAAE,EAAEA,EAAEzC,EAAE,UAAU,EAAEyC,EAAE,QAAQC,EAAE,EAAEA,EAAE1C,EAAE,WAAW,EAAE0C,EAAE,QAAQC,EAAE,EAAEA,EAAE3C,EAAE,QAAQ,EAAE2C,EAAE,QAAQ2C,EAAE,EAAEA,EAAEtF,EAAE,SAAS,EAAEsF,EAAE,QAAQP,EAAE,EAAEA,EAAE/E,EAAE,QAAQ,EAAE+E,EAAE,CAAC,IAAIQ,EAAE5C,EAAER,EAAEqD,EAAGF,EAAE,EAAEG,EAAGV,EAAEF,EAAEa,GAAG,EAAE,QAAQC,GAAG,EAAEA,GAAG3D,EAAE2D,IAAIf,EAAE,CAAC,IAAIgB,IAAIL,EAAEI,IAAI1F,EAAE,GAAG,EAAE2F,GAAG,GAAGA,IAAI5F,EAAE,UAAU,KAAK,MAAM4F,EAAE,IAAIA,IAAI,QAAQ5B,GAAG,EAAEA,GAAG/B,EAAE+B,IAAI5B,EAAE,CAAC,IAAI0D,IAAIN,EAAGxB,IAAI9D,EAAE,GAAG,EAAE4F,GAAG,GAAGA,IAAI9F,EAAE,WAAW,KAAK,MAAM8F,EAAE,IAAIA,IAAI,QAAQC,GAAG,EAAEA,GAAG7D,EAAE6D,IAAIhE,EAAE,CAAC,IAAIiE,IAAIP,EAAGM,IAAI5F,EAAE,GAAG6F,GAAG,GAAGA,IAAIhG,EAAE,UAAU,KAAK,MAAMgG,EAAE,IAAIA,GAAG,SAAS,IAAIC,GAAGzD,EAAE,IAAIC,EAAEmD,GAAGE,GAAGE,GAAGtD,CAAC,EAAEgD,IAAIO,EAAE,CAAC,CAAC,CAAC3D,EAAE,IAAIoD,GAAGnD,EAAEE,EAAEE,EAAE2C,EAAEP,EAAErC,CAAC,CAAC,CAAC,OAAOlF,EAAE,eAAe8E,EAAE,MAAMA,EAAE,MAAMA,EAAE,MAAM,CAAC,CAAC,IAAI8/D,GAAG,CAAC,WAAWxkF,GAAG,YAAY,MAAM,WAAWukF,EAAG,EAAE,SAASE,GAAI/kE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,GAAGK,EAAE,MAAM,CAAC,EAAE,EAAE,EAAE,EAAEs4D,GAAG,CAACt4D,EAAE,CAAC,EAAE,aAAa,EAAE,GAAG,CAAC,WAAW0B,EAAE,QAAQC,EAAE,IAAIC,CAAC,EAAE7B,EAAEsC,EAAEhV,EAAE,kBAAkB,EAAE,MAAMqU,EAAEC,EAAE,EAAEC,CAAC,EAAEU,EAAED,EAAE,aAAaE,EAAEF,EAAE,YAAYG,EAAEH,EAAE,aAAaI,EAAEJ,EAAE,YAAYsB,EAAEtB,EAAE,eAAe,EAAEA,EAAE,cAAc4E,EAAE5E,EAAE,sBAAsBoC,EAAEpC,EAAE,qBAAqB+B,EAAEK,EAAE,EAAEpC,EAAE,QAAQ,KAAKgC,EAAE4C,EAAE,EAAE5E,EAAE,QAAQ,IAAIiC,EAAEnW,GAAG,EAAE,MAAM,SAAS,EAAEoW,EAAE,GAAG/B,EAAEC,GAAG+B,EAAE3E,EAAE,KAAK,IAAIG,EAAE,MAAM,EAAE,OAAOkH,EAAE/Y,GAAG6R,EAAE,MAAM,UAAUwE,CAAC,EAAE,QAAQ,EAAE,EAAE,EAAEnC,EAAE,UAAU,EAAE,EAAE,QAAQsC,EAAE,EAAEA,EAAEtC,EAAE,WAAW,EAAEsC,EAAE,QAAQC,EAAE,EAAEA,EAAEvC,EAAE,SAAS,EAAEuC,EAAE,QAAQC,EAAE,EAAEA,EAAExC,EAAE,QAAQ,EAAEwC,EAAE,CAAC,IAAIC,EAAEF,EAAEP,EAAEU,EAAEF,EAAET,EAAEY,EAAE,EAAE,QAAQ2C,EAAE,EAAEA,EAAEV,EAAEU,GAAGhE,EAAE,CAAC,IAAIyD,GAAGtC,EAAE6C,GAAGrF,EAAE,GAAG,EAAE8E,EAAE,GAAGA,GAAG/E,EAAE,WAAW,KAAK,MAAM+E,CAAC,IAAIA,GAAG,QAAQQ,EAAE,EAAEA,EAAEnD,EAAEmD,GAAG,EAAE,CAAC,IAAIC,GAAI9C,EAAE6C,GAAGrF,EAAE,GAAGsF,EAAG,GAAGA,GAAIxF,EAAE,UAAU,KAAK,MAAMwF,CAAE,IAAIA,EAAG,SAAS,IAAIC,EAAGZ,EAAE,IAAI,EAAEE,EAAES,EAAGlD,CAAC,EAAEK,GAAG8C,CAAE,CAAC,CAACxD,EAAE,IAAIU,EAAET,EAAE,EAAEK,EAAEC,EAAEF,CAAC,CAAC,CAAC,OAAO9E,EAAE,eAAeyE,EAAE,MAAMA,EAAE,MAAMA,EAAE,MAAM,CAAC,CAAC,IAAIqgE,GAAG,CAAC,WAAWzkF,GAAG,YAAY,MAAM,WAAWwkF,EAAG,EAAE,SAASE,GAAIjlE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,EAAE,MAAM,EAAE,OAAO,EAAE,KAAK0B,EAAE,SAASC,CAAC,EAAE,EAAEzD,EAAE,OAAOwD,EAAE,MAAM,SAASC,EAAE,MAAM,OAAO,IAAI,8EAA8E,EAAEzD,EAAE,OAAO,GAAG,MAAMwD,EAAE,MAAM,SAAS,EAAE,MAAM,OAAO,IAAI,4EAA4E,EAAExD,EAAE,OAAO,GAAG,MAAMwD,EAAE,MAAM,SAAS,EAAE,MAAM,OAAO,IAAI,2EAA2E,EAAE42D,GAAG,CAACt4D,EAAE0B,EAAEC,EAAE,EAAE,CAAC,EAAE,WAAW,EAAE,GAAG,CAAC,gBAAgBC,CAAC,EAAE7B,EAAE6B,GAAG,OAAOA,EAAE,MAAM,IAAIS,EAAExC,EAAE,KAAK,IAAIG,EAAE,MAAM,EAAE,OAAOsC,EAAEzC,EAAE,KAAK,IAAI6B,EAAE,MAAM,EAAE,OAAOa,EAAE1C,EAAE,KAAK,IAAI8B,EAAE,MAAM,EAAE,OAAOa,EAAE,EAAE3C,EAAE,KAAK,IAAI,EAAE,MAAM,EAAE,OAAO,IAAI,aAAa,CAAC,CAAC,CAAC,EAAE4C,EAAE,EAAE5C,EAAE,KAAK,IAAI,EAAE,MAAM,EAAE,OAAO,IAAI,aAAa,CAAC,CAAC,CAAC,EAAE8D,EAAE,IAAI,aAAatB,EAAE,MAAM,EAAE,EAAEI,EAAE,OAAOwE,EAAEzE,EAAE,OAAOiC,EAAElC,EAAE,OAAO6B,EAAE9B,EAAE,OAAO+B,EAAE,EAAEC,EAAE,EAAEC,EAAE,EAAEC,EAAE,EAAE,QAAQ0C,EAAE,EAAEA,EAAE7E,EAAE,OAAO,EAAE6E,EAAEvD,EAAEuD,CAAC,EAAEzE,EAAE4B,GAAG,GAAGhC,EAAE6E,CAAC,EAAE5E,EAAEgC,GAAG,GAAG9B,EAAE+B,GAAG,EAAE,KAAK,KAAKhC,EAAEiC,GAAG,EAAE5C,CAAC,EAAEyC,GAAG,IAAIA,EAAE,GAAGC,GAAGF,IAAIE,EAAE,GAAGC,GAAG0C,IAAI1C,EAAE,GAAGC,GAAGC,IAAID,EAAE,GAAG,OAAO3E,EAAE,eAAeG,EAAE,MAAMA,EAAE,MAAM2D,CAAC,CAAC,CAAC,IAAIkhE,GAAG,CAAC,WAAWnhF,GAAG,YAAY,MAAM,WAAWkhF,EAAG,EAAE,SAASE,GAAInlE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,CAAC,EAAE,EAAE,CAAC,WAAW,EAAE,MAAM,CAAC,EAAED,EAAEu4D,GAAG,CAACt4D,CAAC,EAAE,gBAAgB,EAAE,IAAI0B,EAAE,EAAE,OAAO,CAACuF,EAAExC,IAAIwC,EAAExC,CAAC,EAAE9C,EAAEtU,EAAE,YAAY2S,EAAE,MAAM,EAAE0B,CAAC,EAAEE,EAAEvU,EAAE,YAAYsU,EAAE,OAAO,EAAE,MAAM,EAAEU,EAAEhV,EAAE,oBAAoB2S,EAAE,MAAM,EAAE0B,CAAC,EAAEY,EAAEjV,EAAE,oBAAoB,EAAE,EAAE,MAAM,EAAEkV,EAAElV,EAAE,aAAagV,EAAE,EAAE,EAAE,MAAM,EAAEG,EAAEy/D,GAAG,CAAC,OAAO,CAAC,EAAEjiE,CAAC,EAAE,QAAQH,EAAE,MAAM,CAAC,MAAM8B,CAAC,CAAC,CAAC,EAAEc,EAAEy8D,GAAG,CAAC,OAAO,CAAC,EAAE18D,CAAC,EAAE,QAAQ3C,EAAE,MAAM,CAAC,KAAK+B,CAAC,CAAC,CAAC,EAAE+B,EAAEs+D,GAAG,CAAC,OAAO,CAAC,EAAEx/D,CAAC,EAAE,QAAQ5C,EAAE,MAAM,CAAC,MAAMwC,CAAC,CAAC,CAAC,EAAE,EAAEi+D,GAAG,CAAC,OAAO,CAAC,EAAE38D,CAAC,EAAE,QAAQ9D,EAAE,MAAM,CAAC,MAAMyC,EAAE,KAAKC,CAAC,CAAC,CAAC,EAAE,OAAO1C,EAAE,8BAA8B2C,CAAC,EAAE3C,EAAE,8BAA8B4C,CAAC,EAAE5C,EAAE,8BAA8B8D,CAAC,EAAE,CAAC,CAAC,IAAIohE,GAAG,CAAC,WAAW1kF,GAAG,YAAY,MAAM,WAAWykF,EAAG,EAAE,SAASE,GAAIrlE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,EAAE,QAAQ,CAAC,EAAE,EAAE,CAAC,KAAK,CAAC,EAAED,EAAE2B,EAAE7B,EAAE,KAAK,IAAIG,EAAE,MAAM,EAAE,OAAO2B,EAAE9B,EAAE,KAAK,IAAI,EAAE,MAAM,EAAE,OAAO+B,EAAE62D,GAAG/2D,EAAEC,EAAE,EAAE,MAAM,EAAE,MAAM,CAAC,EAAE,OAAO9B,EAAE,eAAe,CAAC,CAAC,EAAE,EAAE,MAAM+B,CAAC,CAAC,CAAC,IAAIqjE,GAAG,CAAC,WAAW3kF,GAAG,YAAY,MAAM,WAAW0kF,EAAG,EAAE,SAASE,GAAIvlE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,CAAC,EAAEF,EAAE,CAAC,GAAGI,EAAE,GAAGC,CAAC,EAAE,EAAE,EAAEH,EAAE,KAAK,IAAIE,EAAE,MAAM,EAAE,OAAO,EAAEF,EAAE,KAAK,IAAIG,EAAE,MAAM,EAAE,OAAO0B,EAAErU,EAAE,2BAA2B,MAAM,KAAK,CAAC,EAAE,MAAM,KAAK,CAAC,CAAC,EAAE,OAAOwS,EAAE,eAAe,CAAC6B,EAAE,MAAM,EAAE,QAAQ,WAAW,KAAKA,CAAC,CAAC,CAAC,CAAC,IAAIyjE,GAAG,CAAC,WAAW3kF,GAAG,YAAY,MAAM,WAAW0kF,EAAG,EAAME,GAAIrI,GAAGj8E,GAAG,CAAC6e,EAAE,IAAI,CAAC,IAAIE,EAAE,EAAE,OAAOF,EAAEE,EAAE,aAAaA,EAAE,aAAaF,EAAEE,EAAE,aAAaA,EAAE,aAAaF,CAAC,CAAC,EAAE0lE,GAAG,CAAC,WAAWvkF,GAAG,YAAY,MAAM,WAAWskF,EAAG,EAAME,GAAI3lE,GAAG,CAAC,GAAG,CAAC,EAAE,CAAC,EAAEA,EAAE,OAAOE,EAAEF,EAAE,QAAQI,EAAE,IAAI,aAAa7B,EAAE,cAAc,EAAE,KAAK,CAAC,EAAE8B,EAAEH,EAAE,KAAK,IAAI,EAAE,MAAM,EAAE,EAAEG,EAAE,mBAAmB,KAAK,EAAEA,EAAE,mBAAmB,KAAK0B,EAAE7B,EAAE,KAAK,IAAI,EAAE,MAAM,EAAE,OAAO8B,EAAE9B,EAAE,KAAK,IAAI,EAAE,MAAM,EAAE,OAAO,QAAQ+B,EAAE,EAAEA,EAAEF,EAAE,OAAOE,IAAI,CAAC,IAAIS,EAAEX,EAAEE,CAAC,EAAEU,EAAEX,EAAEC,CAAC,EAAE7B,EAAE6B,CAAC,EAAE,KAAK,MAAMS,EAAEC,CAAC,CAAC,CAAC,OAAOzC,EAAE,WAAWE,EAAE,EAAE,MAAM,SAAS,CAAC,EAAEwlE,GAAG,CAAC,WAAWvkF,GAAG,YAAY,MAAM,WAAWskF,EAAG,EAAE,SAASE,GAAG7lE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,CAAC,EAAEF,EAAE,CAAC,MAAMI,CAAC,EAAE,EAAEC,EAAEH,EAAE,KAAK,IAAIE,EAAE,MAAM,EAAE,mBAAmB,KAAK,EAAEF,EAAE,KAAK,IAAIG,EAAE,MAAM,EAAE,OAAO,OAAOH,EAAE,eAAeG,EAAE,MAAMA,EAAE,MAAM,CAAC,CAAC,CAAC,IAAIylE,GAAG,CAAC,WAAWnhF,GAAG,YAAY,MAAM,WAAWkhF,EAAE,EAAE,SAASE,GAAG/lE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,KAAKK,CAAC,EAAED,EAAE,EAAE7B,EAAE,eAAe8B,EAAE,EAAE,CAAC,EAAE,KAAK,EAAE,CAAC,EAAE,EAAE,EAAE,IAAI2D,GAAGA,EAAE,KAAK,EAAEtW,EAAE,uBAAuB,EAAE,CAAC,EAAE,IAAIqU,EAAErU,EAAE,gBAAgB,EAAE,IAAIsW,GAAGA,EAAE,KAAK,EAAE,CAAC,EAAE,GAAGzF,EAAE,cAAcwD,CAAC,IAAI,EAAE,OAAO7B,EAAE,eAAe6B,EAAE,EAAE,CAAC,EAAE,MAAM,CAAC,CAAC,EAAE,IAAIC,EAAE,EAAE,OAAOgC,GAAGzF,EAAE,cAAcyF,EAAE,KAAK,EAAE,CAAC,EAAE,GAAGhC,EAAE,SAAS,EAAE,OAAOs6D,GAAG,CAAC,OAAO,CAAC,EAAEt6D,EAAE,CAAC,CAAC,EAAE,QAAQ9B,CAAC,CAAC,EAAE,GAAG8B,EAAE,CAAC,EAAE,QAAQ,YAAY,CAAC,IAAIgC,EAAEhC,EAAE,IAAI0C,GAAG83D,GAAG,CAAC,OAAO,CAAC,MAAM93D,CAAC,EAAE,QAAQxE,CAAC,CAAC,CAAC,EAAE,EAAE8B,EAAE,IAAI0C,GAAGmhE,GAAG,CAAC,OAAO,CAAC,MAAMnhE,CAAC,EAAE,QAAQxE,CAAC,CAAC,CAAC,EAAEoH,EAAEy+D,GAAG,CAAC,OAAO/hE,EAAE,QAAQ9D,EAAE,MAAM,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE4E,EAAEihE,GAAG,CAAC,OAAO,EAAE,QAAQ7lE,EAAE,MAAM,CAAC,KAAK,CAAC,CAAC,CAAC,EAAEuE,EAAE03D,GAAG,CAAC,OAAO,CAAC,KAAK70D,EAAE,KAAKxC,CAAC,EAAE,QAAQ5E,CAAC,CAAC,EAAE,OAAO8D,EAAE,QAAQU,GAAGxE,EAAE,8BAA8BwE,CAAC,CAAC,EAAE,EAAE,QAAQA,GAAGxE,EAAE,8BAA8BwE,CAAC,CAAC,EAAExE,EAAE,8BAA8BoH,CAAC,EAAEpH,EAAE,8BAA8B4E,CAAC,EAAEL,CAAC,CAAC,IAAIxC,EAAED,EAAE,IAAIgC,GAAG,CAAC,IAAIsD,EAAE,CAAC,GAAG/I,EAAE,cAAcyF,EAAE,MAAM,MAAM,CAAC,CAAC,CAAC,EAAE,OAAOs+D,GAAG,CAAC,OAAO,CAAC,EAAEt+D,CAAC,EAAE,QAAQ9D,EAAE,MAAM,CAAC,MAAMoH,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE5E,EAAET,EAAE,IAAI+B,IAAI,CAAC,KAAK9D,EAAE,KAAK,IAAI8D,EAAE,MAAM,EAAE,OAAO,MAAMA,EAAE,KAAK,EAAE,EAAEjC,EAAErU,EAAE,gBAAgBuU,EAAE,IAAI+B,GAAGA,EAAE,KAAK,EAAE,CAAC,EAAE,IAAIrB,EAAEV,EAAE,CAAC,EAAE,MAAM,CAAC,IAAI,EAAEW,EAAEu2D,GAAGz2D,EAAEX,EAAE,EAAE,CAAC,EAAE,MAAMY,CAAC,EAAEE,EAAEnV,EAAE,gBAAgBsU,EAAE,IAAIgC,GAAGA,EAAE,KAAK,EAAE,CAAC,EAAElB,EAAE5C,EAAE,eAAe2C,EAAE,EAAE,CAAC,EAAE,MAAMD,CAAC,EAAE,OAAOX,EAAE,QAAQ+B,GAAG9D,EAAE,8BAA8B8D,CAAC,CAAC,EAAElB,CAAC,CAAC,IAAIkjE,GAAG,CAAC,WAAW1kF,GAAG,YAAY,MAAM,WAAWykF,EAAE,EAAE,SAASE,GAAGjmE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,EAAE,OAAO,CAAC,EAAE,EAAE,CAAC,QAAQ,EAAE,IAAI0B,EAAE,WAAWC,EAAE,UAAUC,EAAE,gBAAgBS,CAAC,EAAEtC,EAAEu4D,GAAG,CAACt4D,EAAE,CAAC,EAAE,QAAQ,EAAE,IAAIsC,EAAEjV,EAAE,wBAAwBsU,CAAC,EAAEY,EAAElV,EAAE,kBAAkB2S,EAAE,MAAM,EAAE,MAAM,EAAE4B,EAAEF,EAAEW,EAAE,GAAGC,CAAC,EAAEE,EAAED,EAAE,aAAaE,EAAEF,EAAE,YAAYoB,EAAEpB,EAAE,eAAe,EAAEA,EAAE,cAAc0E,EAAE1E,EAAE,QAAQ,KAAKkC,EAAElC,EAAE,QAAQ,IAAI6B,EAAE7B,EAAE,aAAa,eAAe8B,EAAE,IAAI9Y,GAAGgX,EAAE,SAASvC,EAAE,KAAK,EAAEsE,EAAEpG,EAAE,eAAe8B,EAAE,KAAK,EAAEuE,EAAErG,EAAE,eAAe,EAAE,KAAK,EAAEsG,EAAEF,EAAE,CAAC,EAAE4C,EAAE9C,EAAEE,EAAE,CAAC,EAAEA,EAAE,CAAC,EAAE,EAAEF,EAAEE,EAAE,CAAC,EAAE,EAAEK,EAAEP,EAAE,EAAEE,EAAE,CAAC,EAAEM,EAAEP,EAAE,QAAQ,CAAC,EAAEQ,EAAET,EAAEC,EAAE,QAAQ,CAAC,EAAEA,EAAE,QAAQ,CAAC,EAAES,EAAEV,EAAEC,EAAE,QAAQ,CAAC,EAAE,EAAEU,EAAEX,EAAE,EAAEC,EAAE,QAAQ,CAAC,EAAEW,EAAEnF,EAAE,KAAK,IAAIG,EAAE,MAAM,EAAE,OAAO2H,EAAE9H,EAAE,KAAK,IAAI,EAAE,MAAM,EAAE,OAAOuH,EAAE/C,EAAE,OAAO,QAAQuD,EAAE,EAAEA,EAAErF,EAAE,UAAU,EAAEqF,EAAE,CAAC,IAAIC,EAAGD,EAAEpD,EAAEsD,EAAGF,EAAEhD,EAAE,QAAQmD,GAAG,EAAEA,GAAGxF,EAAE,UAAU,EAAEwF,GAAG,CAAC,IAAIC,GAAGF,EAAGC,GAAGlD,EAAEoD,GAAGF,GAAGxF,EAAE,aAAakC,EAAE,QAAQ4B,GAAG,EAAEA,GAAG7D,EAAE,EAAE6D,GAAG,CAAC,IAAI8B,GAAGF,GAAG5B,GAAG1C,EAAE,GAAGwE,GAAG,GAAGA,IAAI5F,EAAE,SAAS,SAAS,IAAI6F,GAAG/B,GAAG9B,EAAE,CAAC,EAAE8D,GAAGR,EAAGM,GAAGjB,EAAE,QAAQoB,GAAG,EAAEA,GAAG/F,EAAE,SAAS,EAAE+F,GAAG,CAAC,IAAIC,GAAGP,GAAGM,GAAGxD,EAAE0D,GAAGF,GAAG/F,EAAE,YAAY0E,EAAE,QAAQ4B,GAAG,EAAEA,GAAGpG,EAAE,EAAEoG,GAAG,CAAC,IAAIC,GAAGN,GAAGK,GAAG,EAAE,GAAGC,GAAG,GAAGA,IAAIvG,EAAE,QAAQ,SAAS,IAAIwG,GAAGX,GAAGS,GAAGtE,EAAE,CAAC,EAAE+B,GAAG+B,GAAGS,GAAG,EAAEtC,GAAGuC,GAAG,QAAQtC,GAAG,EAAEA,GAAGlE,EAAE,WAAW,EAAEkE,GAAG,CAAC,IAAIC,GAAG1B,EAAEsB,GAAGG,GAAG9B,CAAC,EAAE,QAAQqE,GAAG,EAAEA,GAAGzG,EAAE,YAAY,EAAEyG,GAAG5B,EAAEmB,GAAGS,GAAGjE,CAAC,GAAG2B,GAAGiB,EAAEnB,GAAGwC,EAAE,EAAExC,IAAIjE,EAAE,WAAW,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,OAAO1C,EAAE,eAAewE,EAAE,MAAMA,EAAE,MAAM+C,CAAC,CAAC,CAAC,IAAIy+D,GAAG,CAAC,WAAW3kF,GAAG,YAAY,MAAM,WAAW0kF,EAAE,EAAE,SAASE,GAAInmE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,EAAE,GAAG,CAAC,EAAE,EAAE,CAAC,QAAQ,EAAE,IAAI0B,EAAE,WAAWC,EAAE,gBAAgBC,EAAE,YAAYS,CAAC,EAAEtC,EAAEu4D,GAAG,CAACt4D,EAAE,CAAC,EAAE,sBAAsB,EAAE,IAAIsC,EAAEjV,EAAE,wBAAwBsU,CAAC,EAAEY,EAAElV,EAAE,kBAAkB2S,EAAE,MAAMqC,EAAE,EAAE,EAAEX,EAAEE,EAAE,GAAGU,CAAC,EAAE,CAAC,aAAaE,EAAE,YAAYC,EAAE,aAAakB,EAAE,YAAY,CAAC,EAAEpB,EAAE0E,EAAE1E,EAAE,aAAa,eAAekC,EAAE,IAAIlZ,GAAGgX,EAAE,YAAY,SAAS,EAAE6B,EAAE7B,EAAE,QAAQ,KAAK8B,EAAE9B,EAAE,QAAQ,IAAI+B,EAAEzE,EAAE,KAAK,IAAIG,EAAE,MAAM,EAAE,OAAOuE,EAAE1E,EAAE,KAAK,IAAI,EAAE,MAAM,EAAE,OAAO2E,EAAE,IAAIjZ,GAAGyU,EAAE,MAAMA,EAAE,MAAMsE,CAAC,EAAE4C,EAAE,IAAI3b,GAAG,EAAE,MAAM,EAAE,MAAMgZ,CAAC,EAAE,QAAQ,EAAE,EAAE,EAAEZ,EAAE,EAAE,EAAE,CAAC,IAAIgB,EAAE,KAAK,IAAI,EAAE,KAAK,MAAMN,EAAE,GAAG7B,CAAC,CAAC,EAAEoC,EAAE,KAAK,IAAIrC,EAAE,WAAWA,EAAE,SAAS8B,EAAE,GAAG7B,CAAC,EAAE,QAAQqC,EAAE,EAAEA,EAAE,EAAE,EAAEA,EAAE,CAAC,IAAIC,EAAE,KAAK,IAAI,EAAE,KAAK,MAAMV,EAAES,GAAGpC,CAAC,CAAC,EAAEsC,EAAE,KAAK,IAAIxC,EAAE,UAAUA,EAAE,QAAQ6B,EAAES,GAAGpC,CAAC,EAAE,QAAQuC,EAAE,EAAEA,EAAEzC,EAAE,WAAW,EAAEyC,EAAE,QAAQ2C,EAAE,EAAEA,EAAEpF,EAAE,YAAY,EAAEoF,EAAE,CAAC,IAAIP,EAAE,EAAE,QAAQQ,EAAE,EAAEA,EAAErF,EAAE,UAAU,EAAEqF,EAAE,QAAQC,EAAGlD,EAAEkD,EAAGjD,EAAE,EAAEiD,EAAG,CAAC,IAAIC,EAAG,EAAED,EAAGrF,EAAE6B,EAAE,QAAQ0D,GAAGjD,EAAEiD,GAAGhD,EAAE,EAAEgD,GAAG,CAAC,IAAIC,GAAGnD,EAAEkD,GAAGtF,EAAE2B,EAAE6C,EAAEG,GAAG5C,EAAE,IAAIoD,EAAEE,EAAGE,GAAGhD,CAAC,EAAEkC,EAAE,IAAIU,EAAEC,EAAGE,GAAGJ,CAAC,EAAEP,GAAG5C,EAAE,IAAIoD,EAAE5C,EAAE8C,EAAGE,EAAE,EAAEd,EAAE,IAAIU,EAAED,EAAEE,EAAGE,EAAE,CAAC,CAAC,CAACtD,EAAE,IAAI2C,EAAE,EAAEvC,EAAEG,EAAE2C,CAAC,CAAC,CAAC,CAAC,CAAC,OAAO9H,EAAE,eAAe4E,EAAE,MAAMA,EAAE,MAAMA,EAAE,MAAM,CAAC,CAAC,IAAIshE,GAAG,CAAC,WAAW5kF,GAAG,YAAY,MAAM,WAAW2kF,EAAG,EAAE,SAASE,GAAIrmE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,GAAGK,EAAE,OAAO,CAAC,EAAE,EAAE,CAAC,WAAW,EAAE,QAAQ0B,EAAE,IAAIC,EAAE,WAAWC,EAAE,gBAAgBS,CAAC,EAAEtC,EAAEu4D,GAAG,CAACt4D,EAAE,CAAC,EAAE,qBAAqB,EAAE,IAAIsC,EAAEpE,EAAE,eAAe,EAAE,KAAK,EAAEqE,EAAErE,EAAE,eAAe8B,EAAE,KAAK,EAAEwC,EAAEnV,EAAE,wBAAwBuU,CAAC,EAAEa,EAAEpV,EAAE,kBAAkB,EAAE,EAAE,MAAMqU,EAAE,EAAEC,EAAEU,EAAE,GAAGG,CAAC,EAAEmB,EAAE,IAAIpY,GAAGkX,EAAE,QAAQ,SAAS,EAAE,EAAEkB,EAAE,OAAOsD,EAAEpH,EAAE,KAAK,IAAIG,EAAE,MAAM,EAAE,OAAOyE,EAAE5E,EAAE,KAAK,IAAI,EAAE,MAAM,EAAE,OAAO,CAACuE,EAAEC,EAAEC,CAAC,EAAEhC,EAAE,CAAC,UAAUiC,EAAE,aAAaC,EAAE,YAAY0C,EAAE,WAAW,EAAE,SAASvC,EAAE,QAAQC,EAAE,YAAYC,EAAE,UAAUC,EAAE,SAASC,EAAE,aAAaC,EAAE,YAAY2C,CAAC,EAAElF,EAAED,EAAEC,EAAE,WAAW,IAAI2E,EAAE5C,EAAE,EAAE/B,EAAE,QAAQ,IAAImF,EAAEV,EAAE,EAAEzE,EAAE,QAAQ,KAAKoF,EAAGrF,IAAI,eAAesF,EAAGnE,EAAE,QAAQ,CAAC,EAAEoE,GAAGF,EAAGlE,EAAE,QAAQ,CAAC,EAAEA,EAAE,QAAQ,CAAC,EAAEqE,GAAGH,EAAGlE,EAAE,QAAQ,CAAC,EAAE,EAAEsE,GAAGJ,EAAG,EAAElE,EAAE,QAAQ,CAAC,EAAE0C,GAAG9D,EAAE,CAAC,EAAE4F,GAAGN,EAAGtF,EAAE,CAAC,EAAEA,EAAE,CAAC,EAAE6F,GAAGP,EAAGtF,EAAE,CAAC,EAAE,EAAE8F,GAAGR,EAAG,EAAEtF,EAAE,CAAC,EAAE,QAAQ+F,GAAG,EAAEA,GAAG/D,EAAE,EAAE+D,GAAG,QAAQC,GAAG,EAAEA,GAAG,EAAE,EAAEA,GAAG,QAAQC,GAAG,EAAEA,GAAG7D,EAAE,EAAE6D,GAAG,CAAC,IAAIK,GAAGL,GAAGpB,EAAE0B,GAAG,KAAK,IAAI,EAAE,KAAK,KAAKD,GAAG7D,CAAC,CAAC,EAAE+D,GAAG,KAAK,IAAIjE,GAAGN,EAAEqE,IAAI7D,CAAC,EAAE,QAAQsB,GAAG,EAAEA,GAAG1B,EAAE,EAAE0B,GAAG,CAAC,IAAIE,GAAGF,GAAGsB,EAAEnB,GAAG,KAAK,IAAI,EAAE,KAAK,KAAKD,GAAGmB,CAAC,CAAC,EAAEjB,GAAG,KAAK,IAAI3B,GAAGmC,EAAEV,IAAImB,CAAC,EAAEqB,GAAG,EAAE,QAAQpC,GAAGkC,GAAGlC,GAAGmC,GAAG,EAAEnC,GAAG,CAAC,IAAIC,GAAGD,GAAG5B,EAAE6D,GAAG,QAAQ/B,GAAGL,GAAGK,GAAGJ,GAAG,EAAEI,GAAG,CAAC,IAAIP,GAAGO,GAAGa,EAAEnB,GAAGyC,GAAG5C,GAAGiC,GAAGH,GAAGvB,GAAGwB,GAAGtB,GAAGoC,GAAG9E,GAAGI,EAAE,EAAEqC,IAAIxC,GAAG6C,EAAE,EAAEX,IAAIjC,EAAEiE,GAAG,QAAQY,GAAG,EAAEA,GAAGtE,EAAE,EAAEsE,GAAG,CAAC,IAAIC,GAAGnC,EAAEgC,GAAGZ,GAAGc,EAAE,EAAEE,GAAG5E,EAAEyE,GAAGC,EAAE,EAAEH,IAAII,GAAGC,EAAE,CAAC,CAAC,CAAC,IAAI1C,GAAGmB,EAAGQ,GAAGP,GAAGS,GAAGR,GAAG1B,GAAG2B,GAAGM,GAAG,EAAE5B,EAAE,EAAEqC,EAAE,CAAC,CAAC,OAAOnJ,EAAE,eAAe8D,EAAE,MAAMA,EAAE,MAAMA,EAAE,MAAM,CAAC,CAAC,IAAIsiE,GAAG,CAAC,WAAW7kF,GAAG,YAAY,MAAM,WAAW4kF,EAAG,EAAE,SAASE,GAAIvmE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,EAAE,OAAO,CAAC,EAAE,EAAE,CAAC,QAAQ,EAAE,IAAI0B,EAAE,UAAUC,CAAC,EAAE5B,EAAEu4D,GAAG,CAACt4D,EAAE,CAAC,EAAE,QAAQ,EAAE,IAAI4B,EAAEvU,EAAE,kBAAkB2S,EAAE,MAAM,EAAE,MAAM,EAAE2B,EAAED,CAAC,EAAE,CAAC,YAAYW,EAAE,aAAaC,EAAE,YAAYC,EAAE,cAAcC,EAAE,eAAeC,EAAE,cAAckB,EAAE,QAAQ,CAAC,EAAE/B,EAAEqF,EAAE,EAAE,MAAMxC,EAAE,EAAE,KAAKL,EAAE,EAAE,IAAIC,EAAE,IAAI9Y,GAAGqW,EAAE,SAAS5B,EAAE,KAAK,EAAEsE,EAAEzE,EAAE,KAAK,IAAIG,EAAE,MAAM,EAAE,OAAOuE,EAAE1E,EAAE,KAAK,IAAI,EAAE,MAAM,EAAE,OAAO2E,EAAEH,EAAE,OAAO6C,EAAEhJ,EAAE,eAAe8B,EAAE,KAAK,EAAE,EAAE9B,EAAE,eAAe,EAAE,KAAK,EAAE,QAAQyG,EAAE,EAAEA,EAAE/C,EAAE,UAAU,EAAE+C,EAAE,CAAC,IAAIC,EAAED,EAAEuC,EAAE,CAAC,EAAErC,EAAEF,EAAEN,EAAE,QAAQ,CAAC,EAAE,QAAQS,EAAE,EAAEA,EAAElD,EAAE,SAAS,EAAEkD,EAAE,CAAC,IAAIC,EAAEF,EAAEC,EAAET,EAAE,QAAQ,CAAC,EAAEW,EAAEF,EAAElD,EAAE,YAAYqF,EAAE,QAAQU,EAAE,EAAEA,EAAEtF,EAAE,EAAEsF,EAAE,CAAC,IAAIP,EAAEpC,EAAE2C,EAAEnF,EAAE,GAAG4E,EAAE,GAAGA,GAAGxF,EAAE,QAAQ,SAAS,IAAIgG,EAAED,EAAE,EAAE,CAAC,EAAEE,EAAGjD,EAAEwC,EAAEF,EAAE,CAAC,EAAE,QAAQY,EAAG,EAAEA,EAAGlG,EAAE,UAAU,EAAEkG,EAAG,CAAC,IAAIC,GAAGhD,EAAE+C,EAAGzD,EAAE,QAAQ,CAAC,EAAE2D,GAAGF,EAAGlG,EAAE,aAAawC,EAAE,QAAQ6D,GAAG,EAAEA,GAAG3F,EAAE,EAAE2F,GAAG,CAAC,IAAI5B,GAAG2B,GAAGC,GAAGxF,EAAE,GAAG4D,GAAG,GAAGA,IAAIzE,EAAE,SAAS,SAAS,IAAIuG,GAAGP,EAAEK,GAAG,EAAE,CAAC,EAAEG,GAAGP,EAAGxB,GAAGa,EAAE,CAAC,EAAE,QAAQmB,GAAG,EAAEA,GAAGzG,EAAE,SAAS,EAAEyG,GAAG,CAAC,IAAIC,GAAGP,GAAGM,GAAGzG,EAAE,YAAY2G,GAAGF,GAAGzG,EAAE,YAAY6C,EAAE,QAAQ+D,GAAG,EAAEA,GAAGjG,EAAE,EAAEiG,GAAG,CAAC,IAAIK,GAAGN,GAAGC,GAAG7E,EAAE,GAAGkF,GAAG,GAAGA,IAAIjH,EAAE,QAAQ,SAAS,IAAIkH,GAAGX,GAAGK,GAAG,EAAE,CAAC,EAAEO,GAAGX,GAAGS,GAAGjH,EAAE,WAAW0E,GAAGwC,GAAG,QAAQtC,GAAG,EAAEA,GAAG5E,EAAE,WAAW,EAAE4E,GAAG,CAAC,IAAIC,GAAGnC,EAAEyE,GAAGvC,EAAE,EAAE,QAAQE,GAAG,EAAEA,GAAG9E,EAAE,YAAY,EAAE8E,GAAGlC,EAAE8D,GAAG5B,EAAE,GAAGD,GAAGlC,EAAE+B,GAAGI,EAAE,EAAEJ,IAAI1E,EAAE,WAAW,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,OAAO/B,EAAE,eAAewE,EAAE,MAAMA,EAAE,MAAMA,EAAE,MAAM,CAAC,CAAC,IAAI8hE,GAAG,CAAC,WAAW9kF,GAAG,YAAY,MAAM,WAAW6kF,EAAG,EAAE,SAASE,GAAIzmE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,EAAE,GAAG,CAAC,EAAE,EAAE,CAAC,QAAQ,EAAE,IAAI0B,EAAE,YAAYC,CAAC,EAAE5B,EAAEu4D,GAAG,CAACt4D,EAAE,CAAC,EAAE,wBAAwB,EAAE,IAAI4B,EAAE1D,EAAE,eAAe8B,EAAE,KAAK,EAAEqC,EAAEnE,EAAE,eAAe,EAAE,KAAK,EAAEoE,EAAEjV,EAAE,kBAAkB2S,EAAE,MAAM2B,EAAE,EAAE,EAAED,CAAC,EAAEa,EAAED,EAAE,YAAYE,EAAEF,EAAE,aAAaG,EAAEH,EAAE,YAAYqB,EAAErB,EAAE,YAAY,EAAEA,EAAE,aAAa2E,EAAE3E,EAAE,YAAYmC,EAAE,IAAIlZ,GAAG+W,EAAE,YAAY,SAAS,EAAE8B,EAAEK,EAAE,OAAO,CAACJ,EAAEC,EAAEC,EAAEC,CAAC,EAAEC,EAAE,QAAQyC,EAAErH,EAAE,KAAK,IAAI,EAAE,MAAM,EAAE,OAAO,CAAC,EAAE8E,EAAEC,EAAEC,CAAC,EAAExC,EAAEyC,EAAEjF,EAAE,KAAK,IAAIG,EAAE,MAAM,EAAE,OAAO,CAAC+E,EAAEC,EAAE2C,EAAEP,CAAC,EAAExF,EAAEgG,EAAEtF,EAAE,QAAQ,MAAMuF,EAAGvF,EAAE,QAAQ,KAAKwF,EAAGxF,EAAE,QAAQ,IAAI,QAAQyF,GAAG,EAAEA,GAAGpE,EAAE,EAAEoE,GAAG,CAAC,IAAIC,GAAG,KAAK,IAAI,EAAE,KAAK,MAAMJ,EAAEG,IAAIxF,CAAC,CAAC,EAAE0F,GAAG,KAAK,IAAI3F,EAAE,UAAUA,EAAE,QAAQsF,EAAEG,IAAIxF,CAAC,EAAE8D,GAAG0B,GAAG1D,EAAE,QAAQ8D,GAAG,EAAEA,GAAG,EAAE,EAAEA,GAAG,CAAC,IAAIC,GAAG,KAAK,IAAI,EAAE,KAAK,MAAMN,EAAGK,IAAI3F,CAAC,CAAC,EAAE6F,GAAG,KAAK,IAAI/F,EAAE,WAAWA,EAAE,SAASwF,EAAGK,IAAI3F,CAAC,EAAE8F,GAAGH,GAAG7D,EAAE+B,GAAG,QAAQkC,GAAG,EAAEA,GAAGtB,EAAE,EAAEsB,GAAG,CAAC,IAAIC,GAAG,KAAK,IAAI,EAAE,KAAK,MAAMX,EAAGU,IAAI9F,CAAC,CAAC,EAAEoG,GAAG,KAAK,IAAIvG,EAAE,UAAUA,EAAE,QAAQuF,EAAGU,IAAI9F,CAAC,EAAEqG,GAAGP,GAAGhE,EAAE+D,GAAG,QAAQS,GAAG,EAAEA,GAAGzG,EAAE,WAAW,EAAEyG,GAAG,CAAC,IAAIzC,GAAGyC,GAAGvE,EAAEsE,GAAG,QAAQtC,GAAG,EAAEA,GAAGlE,EAAE,YAAY,EAAEkE,GAAG,CAAC,IAAIC,GAAG,EAAE,QAAQC,GAAG,EAAEA,GAAGpE,EAAE,UAAU,EAAEoE,GAAG,CAAC,IAAIsC,GAAGtC,GAAG3B,EAAE4B,GAAGD,GAAG,EAAE,QAAQE,GAAGoB,GAAGpB,GAAGqB,GAAG,EAAErB,GAAG,CAAC,IAAIE,IAAIiB,GAAGnB,GAAGrE,EAAEqF,GAAG5C,EAAEgE,GAAGzC,GAAGK,GAAGjC,EAAEgC,GAAG,QAAQsC,GAAGb,GAAGa,GAAGZ,GAAG,EAAEY,GAAG,CAAC,IAAIE,IAAIhB,GAAGc,GAAGzG,EAAEsF,GAAIH,EAAEb,GAAGsC,GAAGH,GAAGrE,EAAE2B,GAAG,QAAQ8C,GAAGb,GAAGa,GAAGR,GAAG,EAAEQ,GAAG,CAAC,IAAI3B,IAAIa,GAAGc,GAAG5G,EAAEoF,GAAIT,EAAE+B,GAAGI,GAAGF,GAAGxE,EAAEuE,GAAG3C,IAAI3B,EAAE4C,GAAGqB,EAAE,EAAE7B,EAAEqC,GAAG/C,EAAE,CAAC,CAAC,CAAC,CAAC,CAACpC,EAAEkC,GAAGE,EAAE,EAAEC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,OAAO5G,EAAE,eAAe4E,EAAE,MAAMA,EAAE,MAAMA,EAAE,MAAM,CAAC,CAAC,IAAI4hE,GAAG,CAAC,WAAW/kF,GAAG,YAAY,MAAM,WAAW8kF,EAAG,EAAE,SAASE,GAAI3mE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,GAAGK,EAAE,OAAO,CAAC,EAAE,EAAE,CAAC,IAAI,EAAE,QAAQ0B,EAAE,WAAWC,CAAC,EAAE5B,EAAEu4D,GAAG,CAACt4D,CAAC,EAAE,uBAAuB,EAAE,IAAI4B,EAAE1D,EAAE,eAAe8B,EAAE,KAAK,EAAEqC,EAAEnE,EAAE,eAAe,EAAE,KAAK,EAAEoE,EAAEjV,EAAE,kBAAkBsU,EAAE,EAAE,MAAMD,EAAE,EAAE,CAAC,EAAEa,EAAE,IAAIhX,GAAG+W,EAAE,QAAQ,SAAS,EAAEE,EAAED,EAAE,OAAO,CAACE,EAAEkB,EAAE,EAAEsD,CAAC,EAAE1E,EAAE,QAAQkC,EAAE5E,EAAE,KAAK,IAAIG,EAAE,MAAM,EAAE,OAAO,CAACoE,EAAEC,EAAEC,EAAEC,CAAC,EAAE3C,EAAE4C,EAAE3E,EAAE,KAAK,IAAI,EAAE,MAAM,EAAE,OAAO,CAACqH,EAAE,EAAEvC,EAAEC,CAAC,EAAEvC,EAAE,CAAC,UAAUwC,EAAE,YAAYC,EAAE,aAAaC,EAAE,YAAYC,EAAE,WAAW2C,EAAE,QAAQP,EAAE,SAASQ,EAAE,QAAQC,EAAG,YAAYC,EAAG,SAASC,GAAG,UAAUC,GAAG,SAASC,GAAG,YAAY5B,GAAG,aAAa8B,GAAG,YAAYC,EAAE,EAAE9F,EAAE+F,GAAGvD,EAAE,EAAExC,EAAE,QAAQ,MAAMgG,GAAGvD,EAAE,EAAEzC,EAAE,QAAQ,IAAIiG,GAAGvD,EAAE,EAAE1C,EAAE,QAAQ,KAAK,QAAQkG,GAAG,EAAEA,GAAG3D,EAAE,EAAE2D,GAAG,QAAQK,GAAG,EAAEA,GAAGlB,EAAE,EAAEkB,GAAG,QAAQC,GAAG,EAAEA,GAAG1B,EAAE,EAAE0B,GAAG,CAAC,IAAIC,GAAGD,GAAGT,GAAG/B,GAAG,KAAK,IAAI,EAAE,KAAK,KAAKyC,GAAG1C,EAAE,CAAC,EAAEG,GAAG,KAAK,IAAIuB,IAAIjD,EAAEiE,IAAI1C,EAAE,EAAE,QAAQI,GAAG,EAAEA,GAAGmB,EAAE,EAAEnB,GAAG,CAAC,IAAIC,GAAGD,GAAG6B,GAAGU,GAAG,KAAK,IAAI,EAAE,KAAK,KAAKtC,GAAGyB,EAAE,CAAC,EAAExB,GAAG,KAAK,IAAIqB,IAAIjD,EAAE2B,IAAIyB,EAAE,EAAE,QAAQvB,GAAG,EAAEA,GAAGiB,EAAG,EAAEjB,GAAG,CAAC,IAAIC,GAAGD,GAAG2B,GAAGzB,GAAG,KAAK,IAAI,EAAE,KAAK,KAAKD,GAAGuB,EAAE,CAAC,EAAE7B,GAAG,KAAK,IAAI0B,IAAIjD,EAAE6B,IAAIuB,EAAE,EAAEa,GAAG,EAAE,QAAQC,GAAG5C,GAAG4C,GAAG1C,GAAG,EAAE0C,GAAG,CAAC,IAAIC,GAAGD,GAAG7C,GAAG0C,GAAG,QAAQK,GAAGJ,GAAGI,GAAGzC,GAAG,EAAEyC,GAAG,CAAC,IAAIC,GAAGD,GAAGjB,GAAGzB,GAAG,QAAQ4C,GAAGxC,GAAGwC,GAAG/C,GAAG,EAAE+C,GAAG,CAAC,IAAI5B,GAAG4B,GAAGlB,GAAGvB,GAAG0C,GAAGnF,EAAEoE,GAAGnE,EAAE6E,GAAG5E,EAAE8E,GAAG7E,EAAE+E,GAAGI,GAAGxC,GAAGpC,EAAE,EAAEqE,IAAI,GAAGpE,EAAE,EAAEsE,IAAI1E,GAAGK,EAAE,EAAE0C,IAAI9C,EAAEiE,GAAG,QAAQc,GAAG,EAAEA,GAAG7B,EAAG,EAAE6B,GAAG,CAAC,IAAIH,GAAG/E,EAAE8E,GAAGI,EAAE,EAAEE,GAAGrF,EAAEkF,GAAGC,EAAE,EAAEV,IAAIO,GAAGK,EAAE,CAAC,CAAC,CAAC,CAACrH,EAAEC,EAAE+F,GAAG7E,EAAEmF,GAAG,EAAErC,GAAGQ,EAAEL,GAAGiC,EAAE,EAAEI,EAAE,CAAC,CAAC,CAAC,OAAOpJ,EAAE,eAAe0C,EAAE,MAAMA,EAAE,MAAMA,EAAE,MAAM,CAAC,CAAC,IAAIgkE,GAAG,CAAC,WAAWhlF,GAAG,YAAY,MAAM,WAAW+kF,EAAG,EAAME,GAAIzJ,GAAGv7E,GAAGme,GAAG,KAAK,IAAIA,CAAC,CAAC,EAAE8mE,GAAG,CAAC,WAAWjlF,GAAG,YAAY,MAAM,WAAWglF,EAAG,EAAME,GAAI3J,GAAGt7E,GAAGke,GAAG,KAAK,KAAKA,CAAC,CAAC,EAAEgnE,GAAG,CAAC,WAAWllF,GAAG,YAAY,MAAM,WAAWilF,EAAG,EAAE,SAASE,GAAIjnE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,MAAMK,EAAE,MAAM,EAAE,OAAO,CAAC,EAAE,EAAE,CAAC,SAAS0B,EAAE,OAAOC,EAAE,mBAAmBC,CAAC,EAAE7B,EAAE,CAACsC,EAAEC,EAAEC,EAAEC,CAAC,EAAExC,EAAE,MAAMyC,EAAE,EAAE,MAAM,CAAC,EAAE,CAACkB,EAAE,CAAC,EAAEjC,EAAEuF,EAAE9Y,GAAG,CAACsU,EAAEkB,EAAE,EAAEnB,CAAC,EAAE,SAAS,EAAEiC,EAAE5E,EAAE,KAAK,IAAI,EAAE,MAAM,EAAE,OAAOuE,EAAEvE,EAAE,KAAK,IAAI,EAAE,MAAM,EAAE,OAAOwE,EAAExE,EAAE,KAAK,IAAIG,EAAE,MAAM,EAAE,OAAOsE,EAAEpG,EAAE,eAAe8B,EAAE,KAAK,EAAEuE,EAAErG,EAAE,eAAe+I,EAAE,KAAK,EAAE,QAAQzC,EAAE,EAAEA,EAAE/B,EAAE+B,IAAI,CAAC,IAAI0C,EAAE1C,EAAE,EAAE,EAAEC,EAAEyC,CAAC,EAAEvC,EAAEF,EAAEyC,EAAE,CAAC,EAAEtC,EAAEH,EAAEyC,EAAE,CAAC,EAAErC,EAAEJ,EAAEyC,EAAE,CAAC,EAAEpC,EAAEV,EAAEI,CAAC,EAAE,GAAGM,GAAGzC,EAAE,SAAS,IAAI0C,EAAEpB,EAAE,GAAGiB,EAAE,IAAItC,EAAE,IAAIqB,EAAE,GAAG,EAAEqB,EAAE,EAAE,GAAGH,EAAEF,IAAIpC,EAAE,IAAI,EAAE,GAAG,EAAE,QAAQoF,EAAE,EAAEA,EAAEhE,EAAEgE,IAAI,CAAC,IAAIP,EAAEzD,EAAE,EAAE,GAAGrB,EAAE,GAAGqF,EAAE5C,EAAE,IAAI,EAAEH,IAAItC,EAAE,GAAG,GAAG8E,EAAE,GAAGA,EAAE9E,EAAE,EAAE,CAAC,QAAQsF,EAAE,EAAEA,EAAE,EAAEA,IAAI,QAAQC,EAAG,EAAEA,EAAGrF,EAAEqF,IAAK,CAAC,IAAIC,EAAGD,EAAGD,EAAErD,EAAE,CAAC,EAAEoD,EAAEpD,EAAE,CAAC,EAAEC,EAAED,EAAE,CAAC,EAAE0C,EAAE,OAAOa,CAAE,EAAElG,CAAC,CAAC,QAAQ,CAAC,GAAGD,IAAI,WAAW,CAAC,IAAIiG,EAAE,KAAK,MAAMR,CAAC,EAAES,EAAG,KAAK,KAAKT,CAAC,EAAEU,EAAGV,EAAEQ,EAAE,QAAQG,GAAG,EAAEA,GAAG,EAAEA,KAAK,CAAC,IAAIC,GAAG,EAAE,EAAErD,GAAGpC,EAAE,GAAGwF,GAAG/C,EAAE,IAAIL,EAAEE,IAAItC,EAAE,GAAG,GAAGyF,GAAG,GAAGA,GAAGzF,EAAE,EAAE,CAAC,QAAQ6F,GAAG,EAAEA,GAAG5F,EAAE4F,KAAK,CAAC,IAAIC,GAAGD,GAAGL,GAAGxD,EAAE,CAAC,EAAEoD,EAAEpD,EAAE,CAAC,EAAEC,EAAED,EAAE,CAAC,EAAE0C,EAAE,OAAOoB,EAAE,EAAEzG,CAAC,CAAC,QAAQ,CAAC,IAAIqG,GAAG,KAAK,MAAMD,EAAE,EAAE3B,GAAG,KAAK,KAAK2B,EAAE,EAAEG,GAAGH,GAAGC,GAAG,QAAQG,GAAG,EAAEA,GAAG5F,EAAE4F,KAAK,CAAC,IAAIC,GAAGD,GAAGH,GAAG3D,EAAE,CAAC,EAAEsD,EAAEtD,EAAE,CAAC,EAAEQ,EAAER,EAAE,CAAC,EAAEgE,GAAGjE,EAAEgE,EAAE,EAAEA,GAAGD,GAAG/B,GAAG/B,EAAE,CAAC,EAAEsD,EAAEtD,EAAE,CAAC,EAAEQ,EAAER,EAAE,CAAC,EAAE,IAAIiE,GAAGlE,EAAEgE,EAAE,EAAEA,GAAGD,GAAGH,GAAG3D,EAAE,CAAC,EAAEuD,EAAGvD,EAAE,CAAC,EAAEQ,EAAER,EAAE,CAAC,EAAE,IAAIkE,GAAGnE,EAAEgE,EAAE,EAAEA,GAAGD,GAAG/B,GAAG/B,EAAE,CAAC,EAAEuD,EAAGvD,EAAE,CAAC,EAAEQ,EAAER,EAAE,CAAC,EAAE,IAAIuE,GAAGxE,EAAEgE,EAAE,EAAES,GAAGR,IAAIC,GAAGD,IAAIH,GAAGY,GAAGP,IAAIK,GAAGL,IAAIL,GAAGE,GAAGD,GAAGL,GAAGxD,EAAE,CAAC,EAAEoD,EAAEpD,EAAE,CAAC,EAAEC,EAAED,EAAE,CAAC,EAAE0C,EAAE,OAAOoB,EAAE,EAAES,IAAIC,GAAGD,IAAIhB,CAAE,CAAC,CAAC,KAAM,SAAQF,EAAE,EAAEA,EAAE,EAAE,EAAEA,EAAE,CAAC,IAAIC,EAAG,EAAE,EAAElD,GAAGpC,EAAE,GAAGqF,EAAE5C,EAAE,IAAIL,EAAEE,IAAItC,EAAE,GAAG,GAAGsF,EAAG,GAAGA,EAAGtF,EAAE,EAAE,CAAC,QAAQyF,GAAG,EAAEA,GAAGxF,EAAEwF,KAAK,CAAC,IAAIC,GAAGD,GAAGJ,EAAErD,EAAE,CAAC,EAAEoD,EAAEpD,EAAE,CAAC,EAAEC,EAAED,EAAE,CAAC,EAAE0C,EAAE,OAAOgB,EAAE,EAAErG,CAAC,CAAC,QAAQ,CAAC,IAAIkG,EAAG,KAAK,MAAMD,CAAE,EAAEE,GAAG,KAAK,MAAMX,CAAC,EAAE,QAAQY,GAAG,EAAEA,GAAGxF,EAAEwF,KAAK,CAAC,IAAIC,GAAGD,GAAGF,EAAGxD,EAAE,CAAC,EAAEyD,GAAGzD,EAAE,CAAC,EAAEQ,EAAER,EAAE,CAAC,EAAE+B,GAAG2B,GAAGJ,EAAErD,EAAE,CAAC,EAAEoD,EAAEpD,EAAE,CAAC,EAAEC,EAAED,EAAE,CAAC,EAAE0C,EAAE,OAAOZ,EAAE,EAAEhC,EAAE4D,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,OAAOpI,EAAE,eAAeoH,EAAE,MAAMA,EAAE,MAAMA,EAAE,MAAM,CAAC,CAAC,IAAI4/D,GAAG,CAAC,WAAWnlF,GAAG,YAAY,MAAM,WAAWklF,EAAG,EAAE,SAASE,GAAInnE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,CAAC,EAAE,EAAE,CAAC,KAAK,EAAE,UAAU,EAAE,QAAQ0B,CAAC,EAAE3B,EAAEu4D,GAAGt4D,EAAE,SAAS,EAAE,IAAI2B,EAAEtU,EAAE,mBAAmB,CAAC,CAAC,EAAE2S,EAAE,MAAM,MAAM,EAAE4B,EAAE5B,EAAE2B,GAAG,OAAOC,EAAEs9D,GAAG,CAAC,OAAO,CAAC,EAAEl/D,CAAC,EAAE,QAAQH,EAAE,MAAM,CAAC,KAAK8B,CAAC,CAAC,CAAC,GAAG,IAAIU,EAAEhV,EAAE,iBAAiB,EAAE2S,EAAE,MAAM,MAAM,EAAE,CAAC,EAAE,GAAGqC,IAAIT,EAAE,MAAM,OAAO,EAAE,MAAM,IAAI,MAAM,qDAAqDA,EAAE,MAAM,OAAO,CAAC,iBAAiBS,CAAC,EAAE,EAAE,IAAIC,EAAEtE,GAAG4D,EAAE,MAAM,OAAO,EAAEW,EAAErE,EAAE,mBAAmBA,EAAE,cAAc0D,EAAE,KAAK,EAAEU,CAAC,EAAEE,EAAE3C,EAAE,KAAK,IAAI+B,EAAE,MAAM,EAAE,OAAOa,EAAEb,EAAE,MAAMA,EAAE,MAAM,OAAO,CAAC,EAAE+B,EAAEjC,EAAE,CAACuF,EAAExC,IAAIwC,EAAExE,EAAEgC,EAAE,EAAE,CAACwC,EAAExC,IAAIwC,EAAExC,EAAE,QAAQwC,EAAE,EAAEA,EAAEzE,EAAE,OAAOyE,GAAGxE,EAAE,QAAQgC,EAAE,EAAEA,EAAEhC,EAAEgC,IAAI,CAAC,IAAIL,EAAET,EAAEsD,EAAExC,CAAC,EAAE,GAAGA,IAAI,EAAElC,EAAE6B,CAAC,EAAE,EAAE,EAAE5B,EAAE4B,CAAC,MAAM,CAAC,IAAIC,EAAEV,EAAEsD,EAAExC,EAAE,CAAC,EAAElC,EAAE6B,CAAC,EAAE,EAAE5B,EAAE6B,CAAC,EAAE9B,EAAE8B,CAAC,EAAE7B,EAAE4B,CAAC,EAAE7B,EAAE8B,CAAC,CAAC,CAAC,CAAC,IAAI,EAAExE,EAAE,eAAe+B,EAAE,MAAMU,EAAEC,CAAC,EAAE,GAAGZ,GAAG,KAAK,CAAC,IAAIsF,EAAE5Z,EAAE,uBAAuBsU,CAAC,EAAE8C,EAAEy6D,GAAG,CAAC,OAAO,CAAC,EAAE,CAAC,EAAE,QAAQr/D,EAAE,MAAM,CAAC,KAAKoH,CAAC,CAAC,CAAC,EAAE,OAAOpH,EAAE,8BAA8B,CAAC,EAAEA,EAAE,8BAA8B+B,CAAC,EAAE6C,CAAC,CAAC,OAAO,CAAC,CAAC,IAAIsiE,GAAG,CAAC,WAAWplF,GAAG,YAAY,MAAM,WAAWmlF,EAAG,EAAE,SAASE,GAAIrnE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,CAAC,EAAE,EAAE,CAAC,KAAK,EAAE,UAAU,EAAE,QAAQ0B,CAAC,EAAE3B,EAAEu4D,GAAGt4D,EAAE,QAAQ,EAAE,IAAI2B,EAAEtU,EAAE,mBAAmB,CAAC,CAAC,EAAE2S,EAAE,MAAM,MAAM,EAAE4B,EAAE5B,EAAE2B,GAAG,OAAOC,EAAEs9D,GAAG,CAAC,OAAO,CAAC,EAAEl/D,CAAC,EAAE,QAAQH,EAAE,MAAM,CAAC,KAAK8B,CAAC,CAAC,CAAC,GAAG,IAAIU,EAAEhV,EAAE,iBAAiB,EAAE2S,EAAE,MAAM,MAAM,EAAE,CAAC,EAAE,GAAGqC,IAAIT,EAAE,MAAM,OAAO,EAAE,MAAM,IAAI,MAAM,oDAAoDA,EAAE,MAAM,OAAO,CAAC,iBAAiBS,CAAC,EAAE,EAAE,IAAIC,EAAEtE,GAAG4D,EAAE,MAAM,OAAO,EAAEW,EAAErE,EAAE,oBAAoBA,EAAE,cAAc0D,EAAE,KAAK,EAAEU,CAAC,EAAEE,EAAE3C,EAAE,KAAK,IAAI+B,EAAE,MAAM,EAAE,OAAOa,EAAEb,EAAE,MAAMA,EAAE,MAAM,OAAO,CAAC,EAAE+B,EAAEjC,EAAE,CAACuF,EAAExC,IAAIwC,EAAExE,EAAEgC,EAAE,EAAE,CAACwC,EAAExC,IAAIwC,EAAExC,EAAE,QAAQwC,EAAE,EAAEA,EAAEzE,EAAE,OAAOyE,GAAGxE,EAAE,QAAQgC,EAAE,EAAEA,EAAEhC,EAAEgC,IAAI,CAAC,IAAIL,EAAET,EAAEsD,EAAExC,CAAC,EAAE,GAAGA,IAAI,EAAElC,EAAE6B,CAAC,EAAE,EAAE,EAAE5B,EAAE4B,CAAC,MAAM,CAAC,IAAIC,EAAEV,EAAEsD,EAAExC,EAAE,CAAC,EAAElC,EAAE6B,CAAC,EAAE,EAAE5B,EAAE6B,CAAC,EAAE9B,EAAE8B,CAAC,EAAE7B,EAAE4B,CAAC,EAAE7B,EAAE8B,CAAC,CAAC,CAAC,CAAC,IAAI,EAAExE,EAAE,eAAe+B,EAAE,MAAMU,EAAEC,CAAC,EAAE,GAAGZ,GAAG,KAAK,CAAC,IAAIsF,EAAE5Z,EAAE,uBAAuBsU,CAAC,EAAE8C,EAAEy6D,GAAG,CAAC,OAAO,CAAC,EAAE,CAAC,EAAE,QAAQr/D,EAAE,MAAM,CAAC,KAAKoH,CAAC,CAAC,CAAC,EAAE,OAAOpH,EAAE,8BAA8B,CAAC,EAAEA,EAAE,8BAA8B+B,CAAC,EAAE6C,CAAC,CAAC,OAAO,CAAC,CAAC,IAAIwiE,GAAG,CAAC,WAAWrlF,GAAG,YAAY,MAAM,WAAWolF,EAAG,EAAE,SAASE,GAAIvnE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,EAAE,QAAQ,CAAC,EAAE,EAAE,CAAC,KAAK,EAAE,aAAa0B,CAAC,EAAE3B,EAAE,GAAGC,EAAE,MAAM,SAAS,EAAE,CAAC,IAAI2B,EAAE9B,EAAE,KAAK,IAAIG,EAAE,MAAM,EAAE,OAAO4B,EAAE/B,EAAE,KAAK,IAAI,EAAE,MAAM,EAAE,OAAOwC,EAAEo2D,GAAG92D,EAAEC,EAAE,EAAE,MAAM,EAAE,MAAM,CAAC,EAAE,OAAO/B,EAAE,eAAe,CAAC,CAAC,EAAE,EAAE,MAAMwC,CAAC,CAAC,SAASrC,EAAE,MAAM,SAAS,EAAE,CAAC,IAAI2B,EAAE9B,EAAE,WAAWG,CAAC,EAAE4B,EAAE/B,EAAE,WAAW,CAAC,EAAEwC,EAAEq2D,GAAG/2D,EAAEC,EAAE,EAAEF,CAAC,EAAE,OAAO7B,EAAE,eAAewC,EAAE,MAAM,EAAE,MAAMA,EAAE,MAAM,CAAC,CAAC,MAAM,IAAI,MAAM,qEAAqErC,EAAE,MAAM,MAAM,GAAG,CAAC,CAAC,IAAImnE,GAAG,CAAC,WAAWplF,GAAG,YAAY,MAAM,WAAWmlF,EAAG,EAAE,SAASE,GAAIznE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,CAAC,EAAE,EAAE,CAAC,UAAU,EAAE,WAAW,CAAC,EAAED,EAAE7B,EAAE,OAAO,IAAI,OAAO,IAAI,+DAA+D,CAAC,EAAE,EAAE,IAAIwD,EAAE1B,EAAE,MAAM,CAAC,EAAE2B,EAAE3B,EAAE,MAAM,CAAC,EAAE4B,EAAE5B,EAAE,MAAM,CAAC,EAAEqC,EAAErC,EAAE,MAAM,CAAC,EAAEsC,EAAEX,EAAE,EAAEY,EAAEX,EAAE,EAAEY,EAAEH,GAAG,EAAE,GAAGI,EAAE5C,EAAE,KAAK,IAAIG,EAAE,MAAM,EAAE,OAAO2D,EAAE,IAAI,aAAajC,EAAEY,EAAEC,EAAEC,CAAC,EAAE,EAAE,EAAE,QAAQyE,EAAE,EAAEA,EAAEvF,EAAE,EAAEuF,EAAE,QAAQxC,EAAE,EAAEA,EAAEnC,EAAE,EAAEmC,EAAE,CAAC,IAAIL,EAAE,KAAK,MAAMK,EAAE,CAAC,EAAEJ,EAAEI,EAAE,EAAE,QAAQH,EAAE,EAAEA,EAAE/B,EAAE,EAAE+B,EAAE,CAAC,IAAIC,EAAE,KAAK,MAAMD,EAAE,CAAC,EAAEE,EAAEF,EAAE,EAAE4C,GAAG7C,EAAE,EAAEG,GAAGhC,EAAE,QAAQ,EAAE,EAAE,EAAEA,EAAE,EAAE,EAAE,CAAC,IAAIoC,EAAE,EAAEsC,EAAE7E,GAAGkC,EAAE3C,GAAGwC,EAAEzC,EAAEsF,IAAItD,EAAE,GAAG,EAAElB,EAAEmC,CAAC,CAAC,CAAC,CAAC,CAAC,OAAO/E,EAAE,eAAe,CAAC6B,EAAEY,EAAEC,EAAEC,CAAC,EAAExC,EAAE,MAAM2D,CAAC,CAAC,CAAC,IAAI0jE,GAAG,CAAC,WAAWrlF,GAAG,YAAY,MAAM,WAAWolF,EAAG,EAAE,SAASE,GAAG3nE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,EAAE,OAAO,CAAC,EAAE,EAAE,CAAC,QAAQ,EAAE,IAAI0B,EAAE,UAAUC,EAAE,gBAAgBC,CAAC,EAAE7B,EAAEu4D,GAAG,CAACt4D,EAAE,CAAC,EAAE,uBAAuB,EAAE,IAAIqC,EAAEnE,EAAE,eAAe8B,EAAE,KAAK,EAAEsC,EAAEpE,EAAE,eAAe,EAAE,KAAK,EAAEqE,EAAEZ,EAAEY,GAAG,OAAOA,EAAE,CAAC,EAAE,CAAC,GAAGrE,EAAE,OAAO7Q,EAAE,+BAA+B,EAAEkV,CAAC,EAAE,IAAI,gFAAgF,CAAC,mBAAmBA,CAAC,GAAG,EAAE,IAAIC,EAAEnV,EAAE,kBAAkB2S,EAAE,MAAM,EAAE,MAAM,EAAEuC,EAAEb,EAAEE,EAAE,EAAE,EAAE,CAAC,aAAaa,EAAE,YAAYkB,EAAE,eAAe,EAAE,cAAcsD,EAAE,QAAQxC,CAAC,EAAEjC,EAAE4B,EAAEK,EAAE,KAAKJ,EAAEI,EAAE,IAAIH,EAAE9B,EAAE,YAAYA,EAAE,WAAW+B,EAAE,IAAIhZ,GAAGiX,EAAE,SAASxC,EAAE,KAAK,EAAEwE,EAAE3E,EAAE,KAAK,IAAIG,EAAE,MAAM,EAAE,OAAOkH,EAAErH,EAAE,KAAK,IAAI,EAAE,MAAM,EAAE,OAAO,EAAE0E,EAAE,OAAO,QAAQI,EAAE,EAAEA,EAAEnC,EAAE,UAAU,EAAEmC,EAAE,CAAC,IAAIC,EAAED,EAAEtC,EAAE,CAAC,EAAEwC,EAAEF,EAAEJ,EAAE,QAAQ,CAAC,EAAE,QAAQO,EAAE,EAAEA,EAAEtC,EAAE,UAAU,EAAEsC,EAAE,CAAC,IAAIC,EAAEF,EAAEC,EAAEP,EAAE,QAAQ,CAAC,EAAES,EAAEF,EAAEtC,EAAE,aAAa6B,EAAE,QAAQsD,EAAE,EAAEA,EAAElF,EAAE,EAAEkF,EAAE,CAAC,IAAIP,EAAEpC,EAAE2C,EAAE,EAAE,GAAGP,EAAE,GAAGA,GAAG5E,EAAE,SAAS,SAAS,IAAIoF,EAAED,EAAErF,EAAE,CAAC,EAAEuF,EAAGjD,EAAEwC,EAAE/E,EAAE,CAAC,EAAE,QAAQyF,EAAG,EAAEA,EAAGtF,EAAE,SAAS,EAAEsF,EAAG,CAAC,IAAIC,GAAGhD,EAAE+C,EAAGvD,EAAE,QAAQ,CAAC,EAAEyD,GAAGF,EAAGtF,EAAE,YAAY4B,EAAE,QAAQ6D,GAAG,EAAEA,GAAGtE,EAAE,EAAEsE,GAAG,CAAC,IAAI5B,GAAG2B,GAAGC,GAAGhB,EAAE,GAAGZ,GAAG,GAAGA,IAAI7D,EAAE,QAAQ,SAAS,IAAI2F,GAAGP,EAAEK,GAAG3F,EAAE,CAAC,EAAE8F,GAAGP,EAAGxB,GAAG7D,EAAE,WAAW6F,GAAGN,GAAGO,GAAGH,GAAG,QAAQI,GAAG,EAAEA,GAAG/F,EAAE,WAAW,EAAE+F,GAAG,CAAC,IAAIC,GAAGhE,EAAE4D,GAAGG,EAAE,EAAE,QAAQM,GAAG,EAAEA,GAAGvE,EAAE,EAAEuE,GAAG,EAAER,GAAGQ,EAAE,GAAGL,GAAGtB,EAAEoB,GAAGO,EAAE,EAAER,IAAI/D,EAAEgE,IAAIhE,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,OAAOzE,EAAE,eAAe0E,EAAE,MAAMA,EAAE,MAAMA,EAAE,MAAM,CAAC,CAAC,IAAIgjE,GAAG,CAAC,WAAWtlF,GAAG,YAAY,MAAM,WAAWqlF,EAAE,EAAE,SAASE,GAAI7nE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,EAAE,GAAG,CAAC,EAAE,EAAE,CAAC,QAAQ,EAAE,UAAU0B,EAAE,IAAIC,EAAE,gBAAgBC,EAAE,YAAYS,CAAC,EAAEtC,EAAEu4D,GAAG,CAACt4D,EAAE,CAAC,EAAE,qCAAqC,EAAE,IAAIsC,EAAEjV,EAAE,kBAAkB2S,EAAE,MAAMqC,EAAE,EAAEX,EAAEC,EAAEC,EAAE,EAAE,EAAE,CAAC,aAAaW,EAAE,YAAYC,EAAE,aAAaC,EAAE,YAAYkB,CAAC,EAAErB,EAAE,EAAE,IAAI/W,GAAG+W,EAAE,YAAY,SAAS,EAAE2E,EAAE3E,EAAE,QAAQ,KAAKmC,EAAEnC,EAAE,QAAQ,IAAI8B,EAAE9B,EAAE,YAAYA,EAAE,WAAW+B,EAAExE,EAAE,KAAK,IAAIG,EAAE,MAAM,EAAE,OAAOsE,EAAE,IAAI/Y,GAAGyU,EAAE,MAAMA,EAAE,MAAMqE,CAAC,EAAEE,EAAE1E,EAAE,KAAK,IAAI,EAAE,MAAM,EAAE,OAAO2E,EAAE,IAAIjZ,GAAG,EAAE,MAAM,EAAE,MAAMgZ,CAAC,EAAE,QAAQ2C,EAAE,EAAEA,EAAEzE,EAAE,EAAEyE,EAAE,CAAC,IAAI,EAAE,KAAK,IAAI,EAAE,KAAK,MAAMzC,EAAEyC,GAAG3E,CAAC,CAAC,EAAEoC,EAAE,KAAK,IAAIrC,EAAE,WAAWA,EAAE,SAASmC,EAAEyC,GAAG3E,CAAC,EAAE,QAAQqC,EAAE,EAAEA,EAAEjB,EAAE,EAAEiB,EAAE,CAAC,IAAIC,EAAE,KAAK,IAAI,EAAE,KAAK,MAAMoC,EAAErC,GAAGpC,CAAC,CAAC,EAAEsC,EAAE,KAAK,IAAIxC,EAAE,UAAUA,EAAE,QAAQ2E,EAAErC,GAAGpC,CAAC,EAAE,QAAQuC,EAAE,EAAEA,EAAEzC,EAAE,YAAY,EAAEyC,EAAE,CAAC,IAAIC,EAAE,KAAK,MAAMD,EAAEX,CAAC,EAAEuD,EAAE5C,EAAEX,EAAEgD,EAAE,EAAE,QAAQQ,EAAE,EAAEA,EAAEtF,EAAE,UAAU,EAAEsF,EAAE,QAAQC,EAAG,EAAEA,EAAGlD,EAAE,EAAEkD,EAAG,CAAC,IAAIC,EAAGZ,EAAEW,EAAGtF,EAAEkC,EAAE,QAAQsD,GAAGlD,EAAEkD,GAAGjD,EAAE,EAAEiD,GAAG,CAAC,IAAIC,GAAGpD,EAAEmD,GAAGvF,EAAEyE,EAAEG,GAAG9C,EAAE,IAAIsD,EAAEE,EAAGE,GAAGhD,CAAC,EAAER,EAAE,IAAIoD,EAAEC,EAAGE,GAAGhD,CAAC,CAAC,CAAC,CAAC,EAAE,IAAIqC,EAAEF,EAAEtC,EAAEI,EAAE2C,CAAC,CAAC,CAAC,CAAC,CAAC,OAAO9H,EAAE,eAAe,EAAE,MAAM,EAAE,MAAM,EAAE,MAAM,CAAC,CAAC,IAAI4nE,GAAG,CAAC,WAAWvlF,GAAG,YAAY,MAAM,WAAWslF,EAAG,EAAE,SAASE,GAAI/nE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,GAAGK,EAAE,OAAO,CAAC,EAAE,EAAE,CAAC,QAAQ,EAAE,UAAU0B,EAAE,IAAIC,EAAE,gBAAgBC,EAAE,WAAWS,CAAC,EAAEtC,EAAEu4D,GAAG,CAACt4D,EAAE,CAAC,EAAE,oCAAoC,EAAE,IAAIsC,EAAEpE,EAAE,eAAe8B,EAAE,KAAK,EAAEuC,EAAErE,EAAE,eAAe,EAAE,KAAK,EAAEsE,EAAEnV,EAAE,kBAAkBgV,EAAE,EAAE,MAAM,EAAEX,EAAEC,EAAEC,EAAE,EAAE,EAAEa,EAAE,IAAIlX,GAAGiX,EAAE,QAAQ,SAAS,EAAEmB,EAAElB,EAAE,OAAO,CAAC,EAAEwE,EAAExC,CAAC,EAAEhC,EAAE,QAAQ2B,EAAEvE,EAAE,KAAK,IAAIG,EAAE,MAAM,EAAE,OAAO,CAACqE,EAAEC,EAAEC,CAAC,EAAEjC,EAAEkC,EAAE3E,EAAE,KAAK,IAAI,EAAE,MAAM,EAAE,OAAO,CAACqH,EAAE,EAAEvC,CAAC,EAAEpC,EAAE,CAAC,UAAUqC,EAAE,aAAaC,EAAE,YAAYC,EAAE,WAAWC,EAAE,SAASC,EAAE,QAAQ2C,EAAE,YAAYP,EAAE,UAAUQ,EAAE,SAASC,EAAG,aAAaC,EAAG,YAAYC,EAAE,EAAEvF,EAAEwF,GAAGnD,EAAE,EAAErC,EAAE,QAAQ,IAAIyF,GAAGnD,EAAE,EAAEtC,EAAE,QAAQ,KAAK6D,GAAGe,EAAErC,EAAE,QAAQoD,GAAG,EAAEA,GAAGvD,EAAE,EAAEuD,GAAG,QAAQC,GAAG,EAAEA,GAAGrD,EAAE,EAAEqD,GAAG,QAAQC,GAAG,EAAEA,GAAGrD,EAAE,EAAEqD,GAAG,CAAC,IAAIC,GAAGD,GAAGL,GAAGO,GAAG,KAAK,IAAI,EAAE,KAAK,KAAKD,GAAGR,CAAE,CAAC,EAAEU,GAAG,KAAK,IAAIZ,GAAG/C,EAAEyD,IAAIR,CAAE,EAAE,QAAQe,GAAG,EAAEA,GAAGlB,EAAE,EAAEkB,GAAG,CAAC,IAAIC,GAAGD,GAAGZ,GAAGc,GAAG,KAAK,IAAI,EAAE,KAAK,KAAKD,GAAGf,EAAE,CAAC,EAAEzB,GAAG,KAAK,IAAIuB,GAAI/C,EAAEgE,IAAIf,EAAE,EAAEvB,GAAG,EAAE,QAAQC,GAAG8B,GAAG9B,GAAG+B,GAAG,EAAE/B,GAAG,CAAC,IAAIC,GAAGD,GAAGqB,EAAGQ,GAAG,QAAQU,GAAGD,GAAGC,GAAG1C,GAAG,EAAE0C,GAAG,CAAC,IAAIrC,GAAGqC,GAAGjB,GAAGe,GAAGlC,GAAGvC,EAAE8D,GAAG7D,EAAEmC,GAAGlC,EAAEyE,GAAGnC,GAAGK,GAAGrC,EAAE,EAAE6B,IAAI,GAAG5B,EAAE,EAAE6B,IAAIhC,EAAEyD,GAAG,QAAQtB,GAAG,EAAEA,GAAGT,GAAG,EAAES,GAAG,CAAC,IAAIP,GAAG6B,GAAG/B,GAAGS,GAAGmC,GAAG7E,EAAEwC,GAAGL,EAAE,EAAE2C,GAAG1E,EAAEqC,GAAGC,EAAE,EAAEN,IAAIyC,GAAGC,EAAE,CAAC,CAAC,CAACvF,EAAE,EAAEwE,GAAGlB,EAAEoB,GAAG5D,EAAEoE,GAAGT,EAAE,EAAE5B,EAAE,CAAC,CAAC,OAAO3G,EAAE,eAAe4C,EAAE,MAAMA,EAAE,MAAMA,EAAE,MAAM,CAAC,CAAC,IAAIklE,GAAG,CAAC,WAAWxlF,GAAG,YAAY,MAAM,WAAWulF,EAAG,EAAE,SAASE,GAAIjoE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,CAAC,EAAEF,EAAE,CAAC,EAAEI,CAAC,EAAE,EAAEC,EAAE9B,EAAE,cAAc6B,EAAE,KAAK,EAAE,EAAEF,EAAE,KAAK,IAAIE,EAAE,MAAM,EAAE,OAAO,EAAE5R,GAAG,CAAC6R,EAAEA,CAAC,EAAED,EAAE,KAAK,EAAE2B,EAAE,EAAE,OAAO,QAAQE,EAAE,EAAEA,EAAE,EAAE,OAAOA,IAAIF,EAAEE,EAAE5B,EAAE4B,CAAC,EAAE,EAAEA,CAAC,EAAE,IAAID,EAAE,CAAC,GAAG5B,EAAE,MAAM,GAAGA,EAAE,KAAK,EAAE,OAAOF,EAAE,eAAe8B,EAAE,EAAE,MAAM,EAAE,MAAM,CAAC,CAAC,IAAIkmE,GAAG,CAAC,WAAWzlF,GAAG,YAAY,MAAM,WAAWwlF,EAAG,EAAME,GAAG,CAAC,WAAWzlF,GAAG,YAAY,MAAM,WAAW,CAAC,CAAC,OAAOsd,EAAE,QAAQ,EAAE,MAAME,CAAC,IAAI,CAAC,GAAG,CAAC,EAAEE,EAAE,OAAOC,CAAC,EAAEL,EAAE,CAAC,QAAQ,EAAE,IAAI,EAAE,UAAU+B,CAAC,EAAE7B,EAAE8B,EAAE,EAAEC,EAAED,EAAE,KAAK,IAAI5B,EAAE,MAAM,EAAE,OAAOsC,EAAEtC,EAAE,MAAM,OAAOuC,EAAEX,EAAE,KAAK,IAAI3B,EAAE,MAAM,EAAE,OAAOuC,EAAEvC,EAAE,MAAM,OAAO,CAAC,UAAUwC,EAAE,SAASC,EAAE,QAAQkB,EAAE,WAAW,EAAE,UAAUsD,EAAE,SAASxC,EAAE,QAAQL,EAAE,aAAaC,EAAE,YAAYC,EAAE,aAAaC,EAAE,YAAYC,EAAE,eAAe0C,EAAE,cAAc,EAAE,SAASvC,CAAC,EAAEtX,EAAE,sBAAsB0S,EAAE,MAAMC,EAAE,MAAM,EAAE,EAAE,OAAO0B,CAAC,EAAEkD,EAAE1G,EAAE,cAAcyG,CAAC,EAAEE,EAAEF,EAAE,OAAOG,EAAE5G,EAAE,kBAAkB6B,EAAE,MAAM6E,CAAC,EAAE,QAAQI,EAAE,EAAEA,EAAExC,EAAE,EAAEwC,EAAE,QAAQ2C,EAAE,EAAEA,EAAEV,EAAE,EAAEU,EAAE,CAAC,IAAIP,EAAEO,EAAEtD,EAAED,EAAE,IAAI,QAAQwD,EAAE,EAAEA,EAAEnD,EAAE,EAAEmD,EAAE,CAAC,IAAIC,EAAGD,EAAEtD,EAAEF,EAAE,KAAK,QAAQ0D,EAAG,EAAEA,EAAG,EAAE,EAAEA,EAAG,CAAC,IAAIC,EAAG,OAAO,iBAAiB,QAAQE,GAAG,EAAEA,GAAG1D,EAAE,EAAE0D,GAAG,CAAC,IAAI5B,GAAGe,EAAEa,GAAGf,EAAE,GAAGb,IAAI,GAAGA,GAAG5D,EAAE,QAAQ0F,GAAG,EAAEA,GAAG3D,EAAE,EAAE2D,GAAG,CAAC,IAAIC,GAAGP,EAAGM,GAAG,EAAE,GAAGC,IAAI,GAAGA,GAAGzE,EAAE,CAAC,IAAI0E,GAAGnK,EAAE,WAAW,CAAC8G,EAAEqB,GAAG+B,GAAGN,CAAE,EAAEzF,EAAEnE,EAAE,eAAe6B,EAAE,KAAK,CAAC,EAAEuI,GAAGpK,EAAE,WAAW,CAAC+J,GAAGE,GAAGL,CAAE,EAAEvF,EAAErE,EAAE,eAAe8B,EAAE,KAAK,CAAC,EAAEuI,GAAG3G,EAAEyG,EAAE,EAAE/F,EAAEgG,EAAE,EAAEC,GAAGR,IAAKA,EAAGQ,GAAG,CAAC,CAAC,CAAC,IAAIP,GAAG9J,EAAE,WAAW,CAAC8G,EAAE2C,EAAEC,EAAEE,CAAE,EAAEjD,EAAE3G,EAAE,eAAeyG,CAAC,CAAC,EAAEG,EAAEkD,EAAE,EAAED,CAAE,CAAC,CAAC,CAAC,MAAM,CAAC,OAAOpG,EAAE,MAAMzD,EAAE,aAAa4G,EAAE/E,EAAE,KAAK,EAAE4E,EAAE5E,EAAE,KAAK,EAAE,MAAM4E,EAAE,MAAM5E,EAAE,KAAK,CAAC,CAAC,EAAMgoE,GAAG,CAAC,WAAWzlF,GAAG,YAAY,MAAM,WAAW,CAAC,CAAC,OAAOqd,EAAE,QAAQ,EAAE,MAAME,CAAC,IAAI,CAAC,GAAG,CAAC,EAAEE,EAAE,OAAOC,EAAE,GAAG,CAAC,EAAEL,EAAE,CAAC,QAAQ,EAAE,IAAI+B,EAAE,UAAUC,CAAC,EAAE9B,EAAE+B,EAAE,EAAES,EAAEnE,EAAE,cAAc6B,EAAE,MAAM6B,EAAE,KAAK,IAAI7B,EAAE,MAAM,EAAE,MAAM,EAAEuC,EAAEpE,EAAE,cAAc8B,EAAE,MAAM4B,EAAE,KAAK,IAAI5B,EAAE,MAAM,EAAE,MAAM,EAAE,CAAC,UAAUuC,EAAE,SAASC,EAAE,QAAQC,EAAE,WAAWkB,EAAE,UAAU,EAAE,SAASsD,EAAE,QAAQxC,EAAE,aAAaL,EAAE,YAAYC,EAAE,aAAaC,EAAE,YAAYC,EAAE,eAAeC,EAAE,cAAc0C,EAAE,SAAS,CAAC,EAAE7Z,EAAE,sBAAsB0S,EAAE,MAAMC,EAAE,MAAM,EAAE0B,EAAE,OAAOC,CAAC,EAAEzD,EAAE,OAAO,EAAE,OAAO,EAAE,OAAO,IAAI,YAAY5b,EAAE,0CAA0C,EAAE,MAAM,aAAa,EAAE,IAAI,EAAE,EAAE,IAAIqiB,EAAEzG,EAAE,cAAc,EAAE0D,EAAE,KAAK,IAAI,EAAE,MAAM,EAAE,MAAM,EAAEgD,EAAE1G,EAAE,0BAA0B8B,EAAE,MAAMA,EAAE,KAAK,EAAE,QAAQ8E,EAAE,EAAEA,EAAEvC,EAAE,EAAEuC,EAAE,QAAQC,EAAE,EAAEA,EAAE,EAAE,EAAEA,EAAE,CAAC,IAAIC,EAAED,EAAEX,EAAEK,EAAE,IAAI,QAAQkD,EAAE,EAAEA,EAAEV,EAAE,EAAEU,EAAE,CAAC,IAAIP,EAAEO,EAAEtD,EAAEI,EAAE,KAAK,QAAQmD,EAAE,EAAEA,EAAEjE,EAAE,EAAEiE,EAAE,CAAC,IAAIC,EAAG,OAAO,iBAAiBC,EAAG,EAAEC,EAAG,EAAE,QAAQC,GAAG,EAAEA,GAAG1D,EAAE,EAAE0D,GAAG,CAAC,IAAIC,GAAGjD,EAAEgD,GAAGxD,EAAE,GAAGyD,IAAI,GAAGA,GAAGzF,EAAE,QAAQ6D,GAAG,EAAEA,GAAG9B,EAAE,EAAE8B,GAAG,CAAC,IAAI8B,GAAGf,EAAEf,GAAGa,EAAE,GAAGiB,IAAI,GAAGA,GAAG1F,EAAE,CAAC,IAAI2F,GAAG/F,EAAEyC,CAAC,EAAEmD,EAAE,EAAEE,EAAE,EAAEP,CAAC,EAAEtF,EAAE0F,EAAE,EAAE3B,EAAE,EAAEuB,CAAC,EAAEQ,GAAGP,IAAKA,EAAGO,GAAGN,EAAGE,GAAGD,EAAG1B,GAAG,CAAC,CAAC,CAACzB,EAAEkD,CAAE,EAAEC,CAAE,EAAEH,CAAC,GAAGjD,EAAEG,CAAC,EAAEC,CAAC,EAAE4C,CAAC,EAAEC,CAAC,CAAC,CAAC,CAAC,CAAC,MAAM,CAAC,OAAOhG,EAAE,MAAM1D,EAAE,aAAa0G,EAAE7E,EAAE,KAAK,EAAEC,EAAE,MAAMA,EAAE,KAAK,EAAE,MAAMA,EAAE,MAAM,MAAMA,EAAE,KAAK,CAAC,CAAC,EAAMgoE,GAAG,CAAC,WAAWzlF,GAAG,YAAY,MAAM,WAAW,CAAC,CAAC,OAAOod,EAAE,QAAQ,EAAE,MAAME,CAAC,IAAI,CAAC,GAAG,CAAC,EAAEE,EAAE,OAAOC,EAAE,GAAG,CAAC,EAAEL,EAAE,CAAC,QAAQ,EAAE,IAAI+B,EAAE,UAAUC,CAAC,EAAE9B,EAAE+B,EAAE,EAAES,EAAEnE,EAAE,cAAc6B,EAAE,MAAM6B,EAAE,KAAK,IAAI7B,EAAE,MAAM,EAAE,MAAM,EAAEuC,EAAEpE,EAAE,cAAc8B,EAAE,MAAM4B,EAAE,KAAK,IAAI5B,EAAE,MAAM,EAAE,MAAM,EAAE,CAAC,UAAUuC,EAAE,SAASC,EAAE,QAAQC,EAAE,WAAWkB,EAAE,UAAU,EAAE,SAASsD,EAAE,QAAQxC,EAAE,aAAaL,EAAE,YAAYC,EAAE,aAAaC,EAAE,YAAYC,EAAE,eAAeC,EAAE,cAAc0C,EAAE,SAAS,CAAC,EAAE7Z,EAAE,sBAAsB0S,EAAE,MAAMC,EAAE,MAAM,EAAE0B,EAAE,OAAOC,CAAC,EAAEzD,EAAE,OAAO,EAAE,OAAO,EAAE,OAAO,IAAI,YAAY3b,EAAE,0CAA0C,EAAE,MAAM,aAAa,EAAE,IAAI,EAAE,EAAE,IAAIoiB,EAAEzG,EAAE,cAAc,EAAE0D,EAAE,KAAK,IAAI,EAAE,MAAM,EAAE,MAAM,EAAEgD,EAAE1G,EAAE,0BAA0B6B,EAAE,MAAMA,EAAE,KAAK,EAAE,QAAQ+E,EAAE,EAAEA,EAAEvC,EAAE,EAAEuC,EAAE,QAAQC,EAAE,EAAEA,EAAE,EAAE,EAAEA,EAAE,CAAC,IAAIC,EAAED,EAAEX,EAAEK,EAAE,IAAI,QAAQkD,EAAE,EAAEA,EAAEV,EAAE,EAAEU,EAAE,CAAC,IAAIP,EAAEO,EAAEtD,EAAEI,EAAE,KAAK,QAAQmD,EAAE,EAAEA,EAAEjE,EAAE,EAAEiE,EAAE,CAAC,IAAIC,EAAG,OAAO,iBAAiBC,EAAG9C,EAAE,EAAE,EAAEA,EAAE+C,EAAGX,EAAE,EAAE,EAAEA,EAAE,QAAQY,GAAG,EAAEA,GAAG1D,EAAE,EAAE0D,GAAG,CAAC,IAAIC,GAAGjD,EAAEgD,GAAGxD,EAAE,GAAGyD,IAAI,GAAGA,GAAGzF,EAAE,QAAQ6D,GAAG,EAAEA,GAAG9B,EAAE,EAAE8B,GAAG,CAAC,IAAI8B,GAAGf,EAAEf,GAAGa,EAAE,GAAGiB,IAAI,GAAGA,GAAG1F,EAAE,CAAC,IAAI2F,GAAG/F,EAAEyC,CAAC,EAAEmD,EAAE,EAAEE,EAAE,EAAEP,CAAC,EAAEtF,EAAE0F,EAAE,EAAE3B,EAAE,EAAEuB,CAAC,EAAEQ,GAAGP,IAAKA,EAAGO,GAAGN,EAAGG,GAAGF,EAAGI,GAAG,CAAC,CAAC,CAACvD,EAAEE,CAAC,EAAEgD,CAAE,EAAEC,CAAE,EAAEH,CAAC,GAAGjD,EAAEG,CAAC,EAAEC,CAAC,EAAE4C,CAAC,EAAEC,CAAC,CAAC,CAAC,CAAC,CAAC,MAAM,CAAC,OAAOhG,EAAE,MAAM1D,EAAE,aAAa0G,EAAE7E,EAAE,KAAK,EAAEA,EAAE,MAAMA,EAAE,KAAK,EAAE,MAAMA,EAAE,MAAM,MAAMA,EAAE,KAAK,CAAC,CAAC,EAAE,SAASkoE,GAAItoE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,MAAMK,CAAC,EAAE,EAAE,CAAC,OAAO,EAAE,QAAQ,CAAC,EAAED,EAAE,CAAC,eAAe2B,EAAE,aAAaC,CAAC,EAAE,GAAG,CAAC,EAAEC,GAAGD,GAAG,KAAK,OAAOA,EAAE,QAAQ,EAAEU,GAAGX,GAAG,KAAK,OAAOA,EAAE,cAAc,KAAK,GAAGW,IAAI,KAAK,MAAM,IAAI,MAAM,gBAAgBX,EAAE,WAAW,uCAAuC,EAAE,IAAIY,EAAE,EAAE,WAAWD,GAAGX,GAAG,KAAK,OAAOA,EAAE,oBAAoB,CAAC,CAAC,EAAE,GAAGY,GAAG,KAAK,MAAM,IAAI,MAAM,kCAAkCD,CAAC,QAAQ,EAAE,GAAG,CAACE,EAAEC,CAAC,EAAExC,EAAE,MAAM,MAAM,EAAE,CAAC,EAAEyC,EAAEzC,EAAE,MAAM,SAAS,EAAE,EAAEA,EAAE,MAAM,CAAC,EAAE2D,EAAE9D,EAAE,KAAK,IAAIG,EAAE,MAAM,EAAE,OAAO,EAAEA,EAAE,QAAQ,UAAU,IAAI,EAAEiH,EAAE,IAAI,kBAAkBzE,EAAED,EAAE,CAAC,EAAE,QAAQ6B,EAAE,EAAEA,EAAE7B,EAAEC,EAAE,EAAE4B,EAAE,CAAC,IAAIC,EAAE,CAAC,EAAE,EAAE,EAAE,IAAIzC,CAAC,EAAE,QAAQ2C,EAAE,EAAEA,EAAE9B,EAAE8B,IAAI,CAAC,IAAIC,EAAEb,EAAES,EAAE3B,EAAE8B,CAAC,EAAE,GAAGvE,EAAE,QAAQ,WAAW,GAAGwE,EAAE,GAAGA,EAAE,EAAE,MAAM,IAAI,MAAM,mFAAmFA,CAAC,GAAG,UAAUxE,EAAE,QAAQ,UAAUwE,EAAE,GAAGA,EAAE,KAAK,MAAM,IAAI,MAAM,mFAAmFA,CAAC,GAAG,EAAE/B,IAAI,GAAG4B,EAAE,CAAC,EAAEG,EAAE,EAAEH,EAAE,CAAC,EAAEG,EAAE,EAAEH,EAAE,CAAC,EAAEG,EAAE,GAAGH,EAAEE,CAAC,EAAEC,EAAE,CAAC,CAAC,IAAIF,EAAEF,EAAE,EAAE6C,EAAE3C,EAAE,CAAC,EAAE,KAAK,MAAMD,EAAE,CAAC,CAAC,EAAE4C,EAAE3C,EAAE,CAAC,EAAE,KAAK,MAAMD,EAAE,CAAC,CAAC,EAAE4C,EAAE3C,EAAE,CAAC,EAAE,KAAK,MAAMD,EAAE,CAAC,CAAC,EAAE4C,EAAE3C,EAAE,CAAC,EAAE,KAAK,MAAMD,EAAE,CAAC,CAAC,CAAC,CAAC,EAAE,MAAM7B,EAAE,EAAE,OAAOD,EAAE,IAAIkC,EAAE,IAAI,UAAUwC,EAAEzE,EAAED,CAAC,EAAE,OAAOD,EAAE,aAAamC,EAAE,EAAE,CAAC,EAAEzE,CAAC,CAAC,IAAIkoE,GAAG,CAAC,WAAW1lF,GAAG,YAAY,MAAM,WAAWylF,EAAG,EAAE,SAASE,GAAGxoE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,CAAC,EAAE,EAAE,CAAC,KAAK,EAAE,SAAS,CAAC,EAAED,EAAEu4D,GAAGt4D,EAAE,KAAK,EAAE,IAAI0B,EAAE1B,EAAE,QAAQ,OAAO0B,EAAE26D,GAAG,CAAC,OAAO,CAAC,EAAEr8D,CAAC,EAAE,QAAQH,EAAE,MAAM,CAAC,MAAM,OAAO,CAAC,CAAC,EAAE6B,EAAEu6D,GAAG,CAAC,OAAO,CAAC,EAAEj8D,CAAC,EAAE,QAAQH,CAAC,CAAC,EAAE,IAAI8B,EAAED,EAAE,MAAM,OAAOE,EAAE1D,EAAE,eAAe,EAAEwD,EAAE,KAAK,EAAEW,EAAEhV,EAAE,mBAAmBuU,EAAED,CAAC,EAAEW,EAAEV,EAAEW,EAAEb,EAAEW,GAAG,OAAOE,EAAE28D,GAAG,CAAC,OAAO,CAAC,EAAEx9D,CAAC,EAAE,QAAQ7B,EAAE,MAAM,CAAC,KAAKwC,CAAC,CAAC,CAAC,EAAEC,EAAEjV,EAAE,iBAAiBiV,EAAE,OAAOX,CAAC,GAAGtU,EAAE,2BAA2B,MAAMiV,EAAEC,EAAE,MAAM,MAAM,EAAE,GAAG,CAACC,EAAEC,CAAC,EAAEpV,EAAE,0BAA0BkV,EAAE,MAAMD,CAAC,EAAEqB,EAAEtW,EAAE,WAAWkV,EAAE,MAAM,OAAO,EAAE,EAAEy5D,GAAGn8D,EAAE2C,EAAEmB,CAAC,EAAEsD,EAAE/I,EAAE,cAAcuE,CAAC,EAAEgC,EAAE5E,EAAE,KAAK,IAAI,EAAE,MAAM,EAAE,OAAOuE,EAAEvE,EAAE,KAAK,IAAI0C,EAAE,MAAM,EAAE,OAAO,QAAQ8B,EAAE,EAAEA,EAAEI,EAAE,OAAO,EAAEJ,EAAE,CAAC,IAAIC,EAAED,EAAE4C,EAAE1C,EAAE,EAAE,QAAQC,EAAE,EAAEA,EAAEyC,EAAE,EAAEzC,EAAED,GAAGH,EAAEE,EAAEE,CAAC,EAAEC,EAAEJ,CAAC,EAAEE,CAAC,CAAC,GAAG,EAAE,CAAC,IAAIF,EAAEhX,EAAE,qBAAqB,EAAE,MAAMuU,CAAC,EAAE0C,EAAE,EAAE,EAAE29D,GAAG,CAAC,OAAO,CAAC,EAAE,CAAC,EAAE,QAAQpiE,EAAE,MAAM,CAAC,MAAMwE,CAAC,CAAC,CAAC,EAAExE,EAAE,8BAA8ByE,CAAC,CAAC,CAAC,OAAOzE,EAAE,8BAA8B6B,CAAC,EAAEW,GAAG,MAAMxC,EAAE,8BAA8B0C,CAAC,EAAE,CAAC,CAAC,IAAI6lE,GAAG,CAAC,WAAWl9E,GAAG,YAAY,MAAM,WAAWi9E,EAAE,EAAE,SAASE,GAAI1oE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,SAASK,CAAC,EAAED,EAAE,EAAE,EAAE,CAAC,QAAQ,EAAE,WAAW2B,EAAE,OAAOC,CAAC,EAAEtU,EAAE,qBAAqB2S,EAAE,EAAE,MAAM,EAAE3S,EAAE,oBAAoB,EAAE,OAAOsU,EAAE,CAAC,EAAE,GAAG,CAAC,KAAKC,EAAE,MAAMS,CAAC,EAAEhV,EAAE,qBAAqBqU,EAAEC,CAAC,EAAEW,EAAED,EAAE,OAAOE,EAAE,KAAKC,EAAE,EAAE,OAAOC,EAAE,CAAC,EAAE,QAAQkB,EAAE,EAAEA,EAAErB,EAAE,EAAEqB,EAAE,CAAC,QAAQ,KAAKtB,EAAEsB,CAAC,EAAE,CAAC,GAAG,CAAC,mBAAmBsD,EAAE,WAAWxC,CAAC,EAAEpX,EAAE,qBAAqBmV,EAAEb,EAAE,CAAC,CAAC,EAAEyC,EAAE/W,EAAE,sBAAsB4Z,CAAC,EAAE7C,EAAE,EAAE,CAAC,GAAGA,EAAE86D,GAAG,CAAC,OAAO,CAAC,EAAE,EAAE,CAAC,CAAC,EAAE,QAAQr/D,EAAE,MAAM,CAAC,KAAKoH,CAAC,CAAC,CAAC,EAAExE,EAAE,KAAK2B,CAAC,GAAG,IAAIC,EAAED,EAAE,MAAM,MAAM,EAAE,QAAQE,EAAE,EAAEA,EAAEG,EAAE,OAAO,EAAEH,EAAED,EAAE,OAAOI,EAAEH,CAAC,EAAE,EAAE,CAAC,EAAEpG,EAAE,YAAYkG,EAAE,MAAMC,CAAC,IAAID,EAAE69D,GAAG,CAAC,OAAO,CAAC79D,CAAG,EAAE,QAAQvE,EAAE,MAAM,CAAC,MAAMwE,CAAC,CAAC,CAAC,EAAE5B,EAAE,KAAK2B,CAAC,GAAG7B,IAAI,KAAKA,EAAE6B,GAAG7B,EAAEq8D,GAAG,CAAC,OAAO,CAAC,EAAEx6D,EAAE,EAAE7B,CAAC,EAAE,QAAQ1C,CAAC,CAAC,EAAE4C,EAAE,KAAKF,CAAC,EAAE,CAACoB,EAAErB,EAAE,IAAIV,EAAE+B,CAAC,GAAG,IAAIpB,EAAE4lE,GAAG,CAAC,OAAO,CAAC,EAAE5lE,CAAC,EAAE,QAAQ1C,EAAE,MAAM,CAAC,KAAK+B,EAAE+B,CAAC,GAAG,EAAE,OAAOnB,GAAG,SAAS,EAAE,CAAC,CAAC,EAAEC,EAAE,KAAKF,CAAC,GAAGC,IAAI,CAAC,QAAQmB,KAAKlB,EAAEkB,IAAIpB,GAAG1C,EAAE,8BAA8B8D,CAAC,EAAE,OAAOpB,CAAC,CAAC,IAAI+lE,GAAG,CAAC,WAAW3lF,GAAG,YAAY,MAAM,WAAW0lF,EAAG,EAAE,SAASE,GAAI5oE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,CAAC,EAAEF,EAAE,CAAC,GAAGI,EAAE,EAAEC,CAAC,EAAE,EAAEs4D,GAAG,CAACv4D,EAAEC,CAAC,EAAE,SAAS,EAAE,IAAI,EAAE,IAAI,aAAa9B,EAAE,cAAc8B,EAAE,KAAK,CAAC,EAAE,EAAEH,EAAE,KAAK,IAAIG,EAAE,MAAM,EAAE,OAAO0B,EAAE7B,EAAE,KAAK,IAAIE,EAAE,MAAM,EAAE,OAAO,QAAQ4B,EAAE,EAAEA,EAAE,EAAE,OAAO,EAAEA,EAAE,CAAC,IAAIC,EAAE,EAAED,CAAC,EAAEC,GAAG,EAAE,EAAED,CAAC,EAAED,EAAEC,CAAC,EAAE,EAAEA,CAAC,EAAED,EAAEC,CAAC,GAAGC,EAAE,EAAE,CAAC,OAAO/B,EAAE,eAAeG,EAAE,MAAM,UAAU,CAAC,CAAC,CAAC,IAAIwoE,GAAG,CAAC,WAAW3lF,GAAG,YAAY,MAAM,WAAW0lF,EAAG,EAAME,GAAIp7E,EAAE,MAAMq7E,GAAIr7E,EAAE,OAAOs7E,GAAIt7E,EAAE,OAAOu7E,GAAIv7E,EAAE,OAAOw7E,GAAIx7E,EAAE,OAAOy7E,GAAIz7E,EAAE,OAAO07E,GAAIhM,GAAG/5E,GAAG2c,GAAG,CAAC,IAAI,EAAE,KAAK,KAAKA,CAAC,EAAEE,EAAE,KAAK,IAAIF,CAAC,EAAEI,EAAE,GAAG,EAAE0oE,GAAI5oE,GAAG,OAAO,GAAG,MAAMipE,GAAI/oE,EAAE8oE,IAAK9oE,EAAE6oE,IAAK7oE,EAAE4oE,IAAK5oE,EAAE2oE,IAAK3oE,EAAE,KAAK,IAAI,CAACF,EAAEA,CAAC,EAAE,CAAC,EAAEmpE,GAAG,CAAC,WAAWhmF,GAAG,YAAY,MAAM,WAAW+lF,EAAG,EAAE,SAASE,GAAGtpE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,MAAMK,CAAC,EAAE,EAAE,CAAC,IAAI,CAAC,EAAED,EAAE,EAAEC,EAAE,MAAM,OAAO0B,EAAE1B,EAAE,MAAM,MAAM,EAAE2B,EAAE,EAAE,OAAO,EAAE,IAAIzD,EAAE,OAAO,EAAE,EAAE,IAAI,EAAE,IAAI,iCAAiC,EAAE,EAAE,EAAE,KAAK,CAAC,GAAG,EAAEyD,EAAE,EAAE,EAAE,GAAGD,EAAE,OAAOC,EAAE,EAAE,CAAC,EAAEsgE,GAAG,CAAC,OAAO,CAAC,EAAEjiE,CAAC,EAAE,QAAQH,EAAE,MAAM,CAAC,MAAM6B,CAAC,CAAC,CAAC,CAAC,CAAC,IAAIwnE,GAAG,CAAC,WAAWhmF,GAAG,YAAY,MAAM,WAAW+lF,EAAE,EAAME,GAAItN,GAAG,CAACl8D,EAAE,IAAIA,EAAE,CAAC,EAAEypE,GAAG7M,GAAGj0E,GAAG6gF,EAAG,EAAEE,GAAG,CAAC,WAAW/gF,GAAG,YAAY,MAAM,WAAW8gF,EAAE,EAAE,SAASE,GAAG3pE,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAEJ,EAAE,MAAMK,EAAED,EAAE,CAAC,EAAE,EAAEA,EAAE,CAAC,EAAE,EAAEF,EAAE,KAAK,IAAIF,EAAE,MAAM,EAAE+B,EAAE,EAAE,mBAAmB,KAAKC,EAAE,EAAE,mBAAmB,KAAKC,EAAE,CAAC5B,EAAE,CAAC,EAAEqC,EAAEnE,EAAE,cAAc0D,CAAC,EAAEU,EAAEpE,EAAE,uBAAuB,UAAUmE,CAAC,EAAEE,EAAErE,EAAE,uBAAuB,UAAUmE,CAAC,EAAE,QAAQ,EAAE,EAAE,EAAErC,EAAE,IAAI,CAAC,IAAIiH,EAAEq5D,GAAG,CAAC,OAAO,CAAC,EAAE5+D,CAAC,EAAE,QAAQ7B,EAAE,MAAM,CAAC,MAAM,CAAC,EAAE,CAAC,EAAE,KAAK,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,EAAE4E,EAAE67D,GAAG,CAAC,OAAO,CAAC,EAAE3+D,CAAC,EAAE,QAAQ9B,EAAE,MAAM,CAAC,MAAM,CAAC,EAAE,CAAC,EAAE,KAAK,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,EAAEuE,EAAE03D,GAAG,CAAC,OAAO,CAAC,KAAK70D,EAAE,KAAKxC,CAAC,EAAE,QAAQ5E,CAAC,CAAC,EAAE,CAAC,KAAKwE,EAAE,KAAKC,CAAC,EAAEilE,GAAInlE,EAAE,EAAEvE,CAAC,EAAE0E,EAAElX,EAAE,uBAAuBgX,EAAEC,CAAC,EAAE,QAAQE,EAAE,EAAEA,EAAE,EAAEA,IAAI,CAAC,IAAI0C,EAAE7Z,EAAE,oBAAoBkX,EAAEC,CAAC,EAAElC,EAAE,EAAE,EAAEkC,CAAC,EAAE0C,EAAE,KAAK3E,EAAE,EAAE,EAAEiC,CAAC,EAAE0C,EAAE,IAAI,CAACrH,EAAE,8BAA8BoH,CAAC,EAAEpH,EAAE,8BAA8B4E,CAAC,EAAE5E,EAAE,8BAA8BuE,CAAC,CAAC,CAAC,IAAI5B,EAAE3C,EAAE,eAAe+B,EAAE,UAAUU,CAAC,EAAEG,EAAE5C,EAAE,eAAe+B,EAAE,UAAUW,CAAC,EAAEoB,EAAEm4D,GAAG,CAAC,OAAO,CAAC,KAAKt5D,EAAE,KAAKC,CAAC,EAAE,QAAQ5C,CAAC,CAAC,EAAE,OAAOA,EAAE,8BAA8B2C,CAAC,EAAE3C,EAAE,8BAA8B4C,CAAC,EAAEkB,CAAC,CAAC,SAAS4lE,GAAI5pE,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAE7B,EAAE,cAAcyB,EAAE,KAAK,EAAEK,EAAEH,EAAE,KAAK,IAAIF,EAAE,MAAM,EAAE,EAAEE,EAAE,KAAK,IAAIG,EAAE,mBAAmB,KAAK,MAAM,EAAE,OAAO,EAAEH,EAAE,KAAK,IAAIG,EAAE,mBAAmB,KAAK,MAAM,EAAE,OAAO,GAAGwpE,GAAIzpE,CAAC,EAAE,CAAC,IAAI2B,EAAE+nE,GAAG,EAAE,EAAE1pE,EAAE,EAAEF,CAAC,EAAE8B,EAAE,CAAChC,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,CAAC,EAAE,GAAG,EAAE,CAAC,IAAIiC,EAAE/B,EAAE,eAAe8B,EAAE,UAAUD,EAAE,IAAI,EAAEW,EAAExC,EAAE,eAAe8B,EAAE,UAAUD,EAAE,IAAI,EAAEY,EAAEzC,EAAE,eAAe,CAAC,EAAE,UAAU3B,EAAE,kBAAkB6B,EAAE,SAAS,CAAC,EAAEwC,EAAE05D,GAAG,CAAC,OAAO,CAAC,EAAE35D,CAAC,EAAE,QAAQzC,CAAC,CAAC,EAAE2C,EAAE6mE,GAAG,WAAW,CAAC,OAAO,CAAC,EAAEznE,EAAE,EAAEU,CAAC,EAAE,QAAQzC,CAAC,CAAC,EAAE4C,EAAE4mE,GAAG,WAAW,CAAC,OAAO,CAAC,EAAEhnE,EAAE,EAAEE,CAAC,EAAE,QAAQ1C,CAAC,CAAC,EAAE8D,EAAE9D,EAAE,KAAK,IAAI2C,EAAE,MAAM,EAAE,OAAO,EAAE3C,EAAE,KAAK,IAAI4C,EAAE,MAAM,EAAE,OAAO,OAAO5C,EAAE,8BAA8B+B,CAAC,EAAE/B,EAAE,8BAA8BwC,CAAC,EAAExC,EAAE,8BAA8ByC,CAAC,EAAEzC,EAAE,8BAA8B0C,CAAC,EAAE1C,EAAE,8BAA8B2C,CAAC,EAAE3C,EAAE,8BAA8B4C,CAAC,EAAE,CAAC,KAAKkB,EAAE,KAAK,CAAC,CAAC,CAAC,OAAOjC,CAAC,KAAK,CAAC,IAAIA,EAAErU,EAAE,uBAAuB,EAAE,CAAC,EAAEsU,EAAE+nE,GAAIhoE,EAAE3B,EAAE,CAAC,EAAE,OAAO1S,EAAE,uBAAuBsU,CAAC,CAAC,CAAC,CAAC,SAAS6nE,GAAI7pE,EAAE,CAAC,OAAOA,EAAEA,EAAE,KAAK,CAAC,CAAC,SAAS8pE,GAAG9pE,EAAE,EAAEE,EAAEE,EAAEC,EAAE,CAAC,GAAGH,IAAI,EAAE,MAAM,CAAC,KAAKF,EAAE,KAAK,CAAC,EAAE,IAAI,EAAEtS,EAAE,uBAAuBsS,EAAE,CAAC,EAAE,EAAEE,EAAE,EAAE6B,EAAErU,EAAE,qBAAqB,CAAC,EAAEsU,EAAED,EAAE,KAAKE,EAAEF,EAAE,KAAKW,EAAE,CAACV,EAAE,MAAM,EAAEW,EAAEtC,EAAE,eAAeqC,EAAE,UAAUV,CAAC,EAAEY,EAAEvC,EAAE,eAAeqC,EAAE,UAAUT,CAAC,EAAEY,EAAEs5D,GAAG,CAAC,OAAO,CAAC,KAAKx5D,EAAE,KAAKC,CAAC,EAAE,QAAQvC,CAAC,CAAC,EAAEyC,EAAEpV,EAAE,oBAAoB,CAAC,EAAEsW,EAAElB,EAAE,KAAK,EAAEA,EAAE,KAAKwE,EAAE,CAACtD,EAAE,MAAM,EAAEc,EAAEzE,EAAE,eAAeiH,EAAE,UAAUtD,CAAC,EAAES,EAAEpE,EAAE,eAAeiH,EAAE,UAAU,CAAC,EAAE5C,EAAEy3D,GAAG,CAAC,OAAO,CAAC,KAAKr3D,EAAE,KAAKL,CAAC,EAAE,QAAQpE,CAAC,CAAC,EAAEsE,EAAEmlE,GAAG9nE,EAAEC,EAAE,EAAE7B,EAAEC,CAAC,EAAEuE,EAAED,EAAE,KAAKE,EAAEF,EAAE,KAAK4C,EAAE,CAAC3C,EAAE,MAAM,EAAE,EAAEvE,EAAE,eAAekH,EAAE,UAAU3C,CAAC,EAAEI,EAAE3E,EAAE,eAAekH,EAAE,UAAU1C,CAAC,EAAEI,EAAEk3D,GAAG,CAAC,OAAO,CAAC,KAAK,EAAE,KAAKn3D,CAAC,EAAE,QAAQ3E,CAAC,CAAC,EAAE6E,EAAE4kE,GAAG9lE,EAAE,EAAE,EAAE5D,EAAEC,CAAC,EAAE8E,EAAED,EAAE,KAAKE,EAAEF,EAAE,KAAKG,EAAE,CAACF,EAAE,MAAM,EAAE6C,EAAE3H,EAAE,eAAegF,EAAE,UAAUF,CAAC,EAAEsC,EAAEpH,EAAE,eAAegF,EAAE,UAAUD,CAAC,EAAE6C,EAAEk0D,GAAG,CAAC,OAAO,CAAC,KAAKn0D,EAAE,KAAKP,CAAC,EAAE,QAAQpH,CAAC,CAAC,EAAE6H,EAAGxa,EAAE,UAAUwS,EAAEE,CAAC,EAAE+H,EAAG,CAACD,EAAG,KAAK,MAAM,EAAEE,GAAG/H,EAAE,eAAe8H,EAAG,UAAUD,EAAG,IAAI,EAAEG,GAAGhI,EAAE,eAAe8H,EAAG,UAAUD,EAAG,IAAI,EAAEI,GAAG6zD,GAAG,CAAC,OAAO,CAAC,KAAK/zD,GAAG,KAAKC,EAAE,EAAE,QAAQhI,CAAC,CAAC,EAAEqG,GAAGu4D,GAAG,CAAC,OAAO,CAAC,EAAE32D,GAAG,EAAEL,CAAC,EAAE,QAAQ5H,CAAC,CAAC,EAAEmI,GAAGu0D,GAAG,CAAC,OAAO,CAAC,EAAE93D,EAAE,EAAEyB,EAAE,EAAE,QAAQrG,CAAC,CAAC,EAAEoI,GAAG64D,GAAG,CAAC,OAAO,CAAC,EAAEr8D,EAAE,EAAEyB,EAAE,EAAE,QAAQrG,CAAC,CAAC,EAAEqI,GAAG8zD,GAAG,CAAC,OAAO,CAAC,MAAMh0D,EAAE,EAAE,QAAQnI,CAAC,CAAC,EAAEsI,GAAG6zD,GAAG,CAAC,OAAO,CAAC,MAAM/zD,EAAE,EAAE,QAAQpI,CAAC,CAAC,EAAEuI,GAAGi9D,GAAG,CAAC,OAAO,CAAC,MAAMr9D,EAAE,EAAE,QAAQnI,CAAC,CAAC,EAAEwI,GAAGg9D,GAAG,CAAC,OAAO,CAAC,MAAMp9D,EAAE,EAAE,QAAQpI,CAAC,CAAC,EAAE6I,GAAG68D,GAAG,CAAC,OAAO,CAACr9D,GAAGC,EAAE,EAAE,QAAQtI,EAAE,MAAM,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE8I,GAAG48D,GAAG,CAAC,OAAO,CAACn9D,GAAGC,EAAE,EAAE,QAAQxI,EAAE,MAAM,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE+I,GAAG/I,EAAE,KAAK,IAAI6I,GAAG,MAAM,EAAE,OAAOvC,GAAGtG,EAAE,KAAK,IAAI8I,GAAG,MAAM,EAAE,OAAO,OAAO9I,EAAE,8BAA8BsC,CAAC,EAAEtC,EAAE,8BAA8BuC,CAAC,EAAEvC,EAAE,8BAA8BwC,CAAC,EAAExC,EAAE,8BAA8ByE,CAAC,EAAEzE,EAAE,8BAA8BoE,CAAC,EAAEpE,EAAE,8BAA8BqE,CAAC,EAAErE,EAAE,8BAA8B,CAAC,EAAEA,EAAE,8BAA8B2E,CAAC,EAAE3E,EAAE,8BAA8B4E,CAAC,EAAE5E,EAAE,8BAA8B2H,CAAC,EAAE3H,EAAE,8BAA8BoH,CAAC,EAAEpH,EAAE,8BAA8B4H,CAAC,EAAE5H,EAAE,8BAA8B+H,EAAE,EAAE/H,EAAE,8BAA8BgI,EAAE,EAAEhI,EAAE,8BAA8BiI,EAAE,EAAEjI,EAAE,8BAA8BqG,EAAE,EAAErG,EAAE,8BAA8BmI,EAAE,EAAEnI,EAAE,8BAA8BoI,EAAE,EAAEpI,EAAE,8BAA8BqI,EAAE,EAAErI,EAAE,8BAA8BuI,EAAE,EAAEvI,EAAE,8BAA8BsI,EAAE,EAAEtI,EAAE,8BAA8BwI,EAAE,EAAExI,EAAE,8BAA8B6I,EAAE,EAAE7I,EAAE,8BAA8B8I,EAAE,EAAE,CAAC,KAAKC,GAAG,KAAKzC,EAAE,CAAC,CAAC,SAASojE,GAAI/pE,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAE,IAAI,aAAa,EAAE,CAAC,EAAE,QAAQC,EAAE,EAAEA,EAAE,EAAEA,IAAI,CAAC,IAAI,EAAE,EAAE,EAAE,EAAE,QAAQ0B,EAAE,EAAEA,EAAE,EAAEA,IAAI,CAAC,IAAIC,EAAEtU,EAAE,SAAS2S,EAAE0B,EAAE,EAAE7B,CAAC,EAAE+B,EAAEvU,EAAE,oBAAoBsS,EAAE+B,CAAC,EAAE,GAAGE,EAAE,KAAKD,EAAE,KAAKC,EAAE,KAAKD,EAAE,KAAK,GAAGC,EAAE,KAAKD,EAAE,KAAKC,EAAE,KAAKD,EAAE,IAAI,CAAC9B,IAAI,GAAG,EAAE,GAAG,GAAGxS,EAAE,mBAAmB0S,EAAE,EAAE,EAAEC,CAAC,CAAC,CAAC,OAAOD,CAAC,CAAC,SAAS4pE,GAAIhqE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,CAAC,EAAEF,EAAE,CAAC,MAAMI,CAAC,EAAE,EAAEC,EAAE9B,EAAE,cAAc6B,EAAE,KAAK,EAAE,EAAEA,EAAE,MAAMA,EAAE,MAAM,OAAO,CAAC,EAAE,EAAEC,EAAE,EAAE0B,EAAEugE,GAAG,CAAC,OAAO,CAAC,EAAEliE,CAAC,EAAE,QAAQF,EAAE,MAAM,CAAC,MAAM,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,EAAE8B,EAAE2nE,GAAG5nE,EAAE,GAAG7B,CAAC,EAAE+B,EAAEqgE,GAAG,CAAC,OAAO,CAAC,EAAEtgE,CAAC,EAAE,QAAQ9B,EAAE,MAAM,CAAC,MAAME,EAAE,KAAK,CAAC,CAAC,EAAE,OAAOF,EAAE,8BAA8B6B,CAAC,EAAE7B,EAAE,8BAA8B8B,CAAC,EAAEC,CAAC,CAAC,IAAIgoE,GAAG,CAAC,WAAWxmF,GAAG,YAAY,MAAM,WAAWumF,EAAG,EAAE,SAASE,GAAGlqE,EAAE,CAAC,GAAG,CAAC,QAAQ,EAAE,MAAME,CAAC,EAAEF,EAAE,CAAC,MAAMI,EAAE,MAAMC,EAAE,MAAM,CAAC,EAAEH,EAAE,EAAE,GAAG3B,EAAE,WAAW8B,CAAC,EAAE0B,EAAExD,EAAE,kBAAkB,EAAEA,EAAE,cAAc6B,CAAC,CAAC,EAAE,OAAO+pE,GAAIpoE,EAAE1B,EAAE,CAAC,EAAE,EAAE,eAAeD,EAAE,EAAE2B,CAAC,CAAC,CAAC,IAAIqoE,GAAG,CAAC,WAAW1mF,GAAG,YAAY,MAAM,WAAWwmF,EAAE,EAAE,SAASC,GAAInqE,EAAE,EAAEE,EAAE,CAACF,EAAE,KAAK,CAAC,CAAC,CAAC,IAAIqqE,GAAG,CAAC,WAAW1mF,GAAG,YAAY,MAAM,WAAW,CAAC,CAAC,OAAOqc,EAAE,MAAM,EAAE,QAAQE,CAAC,IAAI,CAAC,GAAG,CAAC,MAAME,CAAC,EAAEJ,EAAEK,EAAEH,EAAE,EAAE3B,EAAE,uBAAuB6B,EAAE,MAAM7B,EAAE,cAAc6B,EAAE,KAAK,CAAC,EAAE,CAAC,EAAE2B,EAAEC,EAAEC,CAAC,EAAE7B,EAAE,MAAMsC,EAAErC,EAAE,KAAK,IAAID,EAAE,MAAM,EAAE,OAAO,QAAQwC,EAAE,EAAEA,EAAE,EAAEA,IAAI,CAAC,IAAIC,EAAED,EAAEZ,EAAED,EAAEE,EAAE,QAAQa,EAAE,EAAEA,EAAEf,EAAEe,IAAI,CAAC,IAAIkB,EAAElB,GAAGd,EAAEC,GAAG,QAAQgC,EAAE,EAAEA,EAAEjC,EAAEiC,IAAI,CAAC,IAAIqD,EAAErD,EAAEhC,EAAE,QAAQ,EAAE,EAAE,EAAEA,EAAE,IAAI,CAAC,IAAIwC,EAAE,KAAK,MAAMzC,EAAEiC,EAAE,CAAC,EAAES,EAAE7B,EAAEmB,EAAEsD,EAAE,EAAE3C,EAAEjC,EAAEgC,CAAC,EAAE,GAAGD,GAAG,GAAGA,EAAEzC,EAAE,CAAC,IAAI4C,EAAEH,EAAExC,EAAE4C,EAAEhC,EAAEmB,EAAEY,EAAE,EAAED,EAAEjC,EAAEmC,CAAC,CAAC,CAAC,EAAEH,CAAC,EAAEC,CAAC,CAAC,CAAC,CAAC,CAAC,MAAM,CAAC,OAAOtE,EAAE,MAAM,EAAED,EAAE,MAAMA,EAAE,KAAK,EAAE,MAAMA,EAAE,MAAM,MAAMA,EAAE,KAAK,CAAC,CAAC,EAAE,SAASkqE,GAAItqE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,EAAE,OAAO,EAAE,KAAK,EAAE,uBAAuB0B,CAAC,EAAE,EAAE,CAAC,QAAQC,EAAE,IAAIC,EAAE,WAAWS,EAAE,UAAUC,EAAE,gBAAgBC,EAAE,WAAWC,EAAE,eAAeC,CAAC,EAAE1C,EAAE4D,EAAEiiE,GAAG,CAAC,OAAO,CAAC,EAAE5lE,EAAE,OAAO,CAAC,EAAE,QAAQH,EAAE,MAAM,CAAC,QAAQ8B,EAAE,IAAIC,EAAE,WAAWS,EAAE,UAAUC,EAAE,gBAAgBC,CAAC,CAAC,CAAC,EAAE,GAAG,EAAE,CAAC,IAAI,EAAEoB,EAAE,GAAGtB,IAAI,QAAQ,EAAE,MAAM,SAAS,GAAG,EAAE,MAAM,CAAC,IAAI,EAAE,CAAC,IAAI4E,EAAEg7D,GAAG,CAAC,OAAO,CAAC,EAAE,CAAC,EAAE,QAAQpiE,EAAE,MAAM,CAAC,MAAM,CAAC,EAAE,MAAM,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC,CAAC,EAAE8D,EAAE+4D,GAAG,CAAC,OAAO,CAAC,EAAE/4D,EAAEsD,CAAG,EAAE,QAAQpH,CAAC,CAAC,EAAEA,EAAE,8BAA8BoH,CAAC,CAAC,MAAMtD,EAAE+4D,GAAG,CAAC,OAAO,CAAC,EAAE/4D,EAAE,EAAE,CAAC,EAAE,QAAQ9D,CAAC,CAAC,EAAEA,EAAE,8BAA8B,CAAC,CAAC,CAAC,GAAG2C,EAAE,CAAC,IAAI,EAAEmB,EAAE,GAAGtB,IAAI,QAAQG,IAAI,SAASd,EAAE,MAAM,SAAS,GAAGA,EAAE,MAAM,CAAC,IAAI,EAAE,CAAC,IAAIuF,EAAEg7D,GAAG,CAAC,OAAO,CAAC,EAAEvgE,CAAC,EAAE,QAAQ7B,EAAE,MAAM,CAAC,MAAM,CAAC6B,EAAE,MAAM,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC,CAAC,EAAEiC,EAAEq+D,GAAGniE,EAAE8D,EAAEnB,EAAEyE,EAAExE,CAAC,EAAE5C,EAAE,8BAA8BoH,CAAC,CAAC,MAAMtD,EAAEq+D,GAAGniE,EAAE8D,EAAEnB,EAAEd,EAAEe,CAAC,EAAE5C,EAAE,8BAA8B,CAAC,CAAC,CAAC,OAAO8D,CAAC,CAAC,IAAIumE,GAAG,CAAC,WAAWvmF,GAAG,YAAY,MAAM,WAAWsmF,EAAG,EAAE,SAASE,GAAIxqE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,EAAE,OAAO,EAAE,KAAK,EAAE,uBAAuB0B,CAAC,EAAE,EAAE,CAAC,QAAQC,EAAE,IAAIC,EAAE,WAAWS,EAAE,UAAUC,EAAE,gBAAgBC,EAAE,WAAWC,EAAE,eAAeC,CAAC,EAAE1C,EAAE4D,EAAE2jE,GAAG,CAAC,OAAO,CAAC,EAAEtnE,EAAE,OAAO,CAAC,EAAE,QAAQH,EAAE,MAAM,CAAC,QAAQ8B,EAAE,IAAIC,EAAE,WAAWS,EAAE,UAAUC,EAAE,gBAAgBC,CAAC,CAAC,CAAC,EAAE,GAAG,EAAE,CAAC,IAAI,EAAEoB,EAAEA,EAAE+4D,GAAG,CAAC,OAAO,CAAC,EAAE/4D,EAAE,EAAE,CAAC,EAAE,QAAQ9D,CAAC,CAAC,EAAEA,EAAE,8BAA8B,CAAC,CAAC,CAAC,GAAG2C,EAAE,CAAC,IAAI,EAAEmB,EAAEA,EAAEq+D,GAAGniE,EAAE8D,EAAEnB,EAAEd,EAAEe,CAAC,EAAE5C,EAAE,8BAA8B,CAAC,CAAC,CAAC,OAAO8D,CAAC,CAAC,IAAIymE,GAAG,CAAC,WAAWxmF,GAAG,YAAY,MAAM,WAAWumF,EAAG,EAAE,SAASE,GAAI1qE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,CAAC,EAAEF,EAAE,CAAC,OAAOI,EAAE,QAAQC,CAAC,EAAE,EAAE,EAAE9B,EAAE,cAAc6B,EAAE,KAAK,EAAE,EAAEC,EAAE,MAAM0B,EAAE,EAAE,EAAE,OAAO,CAAC,EAAE,CAACC,EAAEC,EAAES,EAAEC,CAAC,EAAEjV,EAAE,mBAAmB0S,EAAEC,CAAC,EAAE,GAAG4B,IAAI,EAAE,OAAO/B,EAAE,eAAe8B,EAAE5B,EAAE,MAAM,CAAC,CAAC,EAAE,IAAIwC,EAAE1C,EAAE,KAAK,IAAIG,EAAE,MAAM,EAAE,OAAOwC,EAAE3C,EAAE,WAAWE,CAAC,EAAE0C,EAAE22D,GAAG72D,EAAEC,EAAEzC,EAAE,MAAM6B,EAAEF,EAAEW,EAAEC,EAAEvC,EAAE,MAAM,CAAC,EAAE,OAAOF,EAAE,eAAe8B,EAAE5B,EAAE,MAAM0C,EAAE,MAAM,CAAC,CAAC,IAAI6nE,GAAG,CAAC,WAAWxmF,GAAG,YAAY,MAAM,WAAWumF,EAAG,EAAE,SAASE,GAAI5qE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,EAAE,QAAQ,CAAC,EAAE,EAAE,CAAC,KAAK,EAAE,UAAU0B,CAAC,EAAE3B,EAAEu4D,GAAG,CAACt4D,EAAE,CAAC,EAAE,UAAU,EAAE,IAAI2B,EAAEzD,EAAE,eAAe,EAAE8B,EAAE,KAAK,EAAE,CAAC,EAAE4B,EAAE/B,EAAE,KAAK,IAAI,EAAE,MAAM,EAAE,OAAOwC,EAAErC,EAAE,MAAM2B,CAAC,EAAE,QAAQ0C,EAAE,EAAEA,EAAEzC,EAAE,OAAO,EAAEyC,EAAE,CAAC,IAAIC,EAAE1C,EAAEyC,CAAC,EAAEnG,EAAE,OAAOoG,GAAGjC,EAAE,GAAGiC,GAAG,EAAE,IAAI,6BAA6BA,CAAC,kBAAkBjC,EAAE,CAAC,GAAG,CAAC,CAAC,IAAIC,EAAEZ,EAAEA,GAAG,OAAOY,EAAE,GAAG,IAAIC,EAAErE,EAAE,cAAc,EAAE,KAAK,EAAEsE,EAAEnV,EAAE,aAAa,yBAAyB2S,EAAE,EAAE2B,EAAEW,CAAC,EAAEG,EAAEw/D,GAAG,CAAC,OAAO,CAAC,EAAEjiE,CAAC,EAAE,QAAQH,EAAE,MAAM,CAAC,MAAM,CAAC2C,EAAE,UAAUA,EAAE,UAAUA,EAAE,QAAQA,EAAE,SAAS,CAAC,CAAC,CAAC,EAAEmB,EAAEs+D,GAAG,CAAC,OAAO,CAAC,EAAE,CAAC,EAAE,QAAQpiE,EAAE,MAAM,CAAC,MAAM,CAAC2C,EAAE,UAAUD,EAAEC,EAAE,SAAS,CAAC,CAAC,CAAC,EAAE,EAAE,CAACA,EAAE,UAAUA,EAAE,UAAUD,EAAEC,EAAE,UAAUA,EAAE,SAAS,EAAEyE,EAAEpH,EAAE,WAAW8D,CAAC,EAAEc,EAAE5E,EAAE,WAAW4C,CAAC,EAAE2B,EAAEi1D,GAAG50D,EAAEwC,EAAE,CAAC,EAAE,OAAOpH,EAAE,8BAA8B4C,CAAC,EAAE5C,EAAE,8BAA8B8D,CAAC,EAAE9D,EAAE,eAAe2C,EAAE,YAAY4B,EAAE,MAAMA,EAAE,MAAM,CAAC,CAAC,IAAIomE,GAAG,CAAC,WAAWzmF,GAAG,YAAY,MAAM,WAAWwmF,EAAG,EAAE,SAASE,GAAI9qE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,CAAC,EAAEF,EAAE,CAAC,MAAMI,CAAC,EAAE,EAAEC,EAAE9B,EAAE,cAAc6B,EAAE,KAAK,EAAE,EAAEA,EAAE,MAAMA,EAAE,MAAM,OAAO,CAAC,EAAE,EAAEC,EAAE,EAAE0B,EAAEugE,GAAG,CAAC,OAAO,CAAC,EAAEliE,CAAC,EAAE,QAAQF,EAAE,MAAM,CAAC,MAAM,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,EAAE8B,EAAE2nE,GAAG5nE,EAAE,GAAG7B,CAAC,EAAE+B,EAAEqgE,GAAG,CAAC,OAAO,CAAC,EAAEtgE,CAAC,EAAE,QAAQ9B,EAAE,MAAM,CAAC,MAAME,EAAE,KAAK,CAAC,CAAC,EAAE,OAAOF,EAAE,8BAA8B6B,CAAC,EAAE7B,EAAE,8BAA8B8B,CAAC,EAAEC,CAAC,CAAC,IAAI8oE,GAAG,CAAC,WAAWtmF,GAAG,YAAY,MAAM,WAAWqmF,EAAG,EAAME,GAAI5N,GAAGv4E,GAAGmb,GAAG,OAAO,SAASA,CAAC,EAAE,EAAE,EAAE,MAAM,EAAEirE,GAAG,CAAC,WAAWpmF,GAAG,YAAY,MAAM,WAAWmmF,EAAG,EAAME,GAAI9N,GAAGt4E,GAAGkb,GAAG,KAAK,IAAIA,CAAC,IAAI,IAAI,EAAE,EAAE,MAAM,EAAEmrE,GAAG,CAAC,WAAWrmF,GAAG,YAAY,MAAM,WAAWomF,EAAG,EAAME,GAAIhO,GAAGr4E,GAAGib,GAAG,OAAO,MAAMA,CAAC,EAAE,EAAE,EAAE,MAAM,EAAEqrE,GAAG,CAAC,WAAWtmF,GAAG,YAAY,MAAM,WAAWqmF,EAAG,EAAE,SAASE,GAAItrE,EAAE,CAAC,GAAG,CAAC,QAAQ,EAAE,MAAME,CAAC,EAAEF,EAAE,CAAC,MAAMI,EAAE,KAAKC,EAAE,IAAI,CAAC,EAAEH,EAAE,EAAE65D,GAAG35D,EAAEC,EAAE,CAAC,EAAE,OAAO,EAAE,eAAe,CAAC,EAAE,MAAM,EAAE,UAAU,CAAC,CAAC,CAAC,IAAIkrE,GAAG,CAAC,WAAW/lF,GAAG,YAAY,MAAM,WAAW8lF,EAAG,EAAME,GAAIpO,GAAG13E,GAAGsa,GAAG,KAAK,MAAMA,CAAC,CAAC,EAAEyrE,GAAG,CAAC,WAAW/lF,GAAG,YAAY,MAAM,WAAW8lF,EAAG,EAAME,GAAIxP,GAAG,CAACl8D,EAAE,IAAIA,GAAG,CAAC,EAAE2rE,GAAI/O,GAAGh3E,GAAG8lF,GAAI,KAAK,MAAM,EAAEE,GAAG,CAAC,WAAWhmF,GAAG,YAAY,MAAM,WAAW+lF,EAAG,EAAME,GAAIzO,GAAGv3E,GAAGma,GAAGA,EAAE,EAAE,EAAE,MAAM,EAAE8rE,GAAG,CAAC,WAAWjmF,GAAG,YAAY,MAAM,WAAWgmF,EAAG,EAAME,GAAI7P,GAAG,CAACl8D,EAAE,IAAIA,GAAG,CAAC,EAAEgsE,GAAIpP,GAAG92E,GAAGimF,GAAI,KAAK,MAAM,EAAEE,GAAG,CAAC,WAAWnmF,GAAG,YAAY,MAAM,WAAWkmF,EAAG,EAAE,SAASE,GAAIlsE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,CAAC,EAAE,EAAE,CAAC,YAAY,EAAE,KAAK,EAAE,MAAM0B,EAAE,KAAKC,CAAC,EAAE5B,EAAEu4D,GAAGt4D,EAAE,KAAK,EAAE,IAAI4B,EAAE5B,EAAE,MAAM,CAAC,EAAEqC,EAAET,EAAE,EAAEU,EAAEzC,EAAE,KAAK,IAAIG,EAAE,MAAM,EAAE,OAAOuC,EAAErE,EAAE,cAAc8B,EAAE,KAAK,EAAEwC,EAAE,IAAI,aAAaD,CAAC,EAAE,SAASE,EAAEkB,EAAE,CAAC,IAAI,EAAEA,EAAE/B,EAAEqF,EAAEtD,EAAE,EAAE,KAAK,IAAI,EAAE,EAAE,CAAC,EAAEc,EAAEd,EAAE,EAAE,KAAK,IAAI,EAAE,EAAEtB,CAAC,EAAE+B,EAAE,EAAE,KAAK6C,GAAGxC,EAAEwC,IAAI,CAAC,IAAI5C,EAAE/B,EAAE2E,CAAC,EAAE7C,GAAGC,EAAEA,CAAC,CAAC,OAAOD,CAAC,CAAC,QAAQT,EAAE,EAAEA,EAAEpB,EAAEoB,IAAI,CAAC,IAAI,EAAElB,EAAEkB,CAAC,EAAEsD,EAAE3E,EAAEqB,CAAC,EAAE,KAAK,IAAI,EAAEjC,EAAE,EAAE,CAACC,CAAC,EAAEa,EAAEmB,CAAC,EAAEsD,CAAC,CAAC,OAAOpH,EAAE,eAAeG,EAAE,MAAMA,EAAE,MAAMwC,CAAC,CAAC,CAAC,IAAIspE,GAAG,CAAC,WAAWlnF,GAAG,YAAY,MAAM,WAAWinF,EAAG,EAAE,SAASE,GAAIpsE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,EAAE,EAAE,EAAE,GAAG,CAAC,EAAE,EAAE,CAAC,YAAY0B,EAAE,KAAKC,EAAE,MAAMC,EAAE,KAAKS,CAAC,EAAEtC,EAAEu4D,GAAG,EAAE,SAAS,EAAE,IAAIh2D,EAAEpE,EAAE,cAAc,EAAE,KAAK,EAAEqE,EAAE,EAAE,MAAM,CAAC,EAAEC,EAAE3C,EAAE,KAAK,IAAI,EAAE,MAAM,EAAE,OAAO4C,EAAE5C,EAAE,KAAK,IAAIG,EAAE,MAAM,EAAE,OAAO2D,EAAE9D,EAAE,KAAK,IAAI,EAAE,MAAM,EAAE,OAAO,EAAE,IAAI,aAAayC,CAAC,EAAE2E,EAAE3E,EAAE,QAAQmC,EAAE,EAAEA,EAAEwC,EAAExC,IAAI,CAAC,IAAIL,EAAEK,EAAElC,EAAE8B,EAAEI,EAAEL,EAAE,KAAK,IAAI,EAAEA,EAAE1C,CAAC,EAAE4C,EAAEG,EAAEL,EAAE,KAAK,IAAI7B,EAAE6B,EAAE1C,EAAE,CAAC,EAAE6C,EAAE,EAAE,QAAQC,EAAEH,EAAEG,EAAEF,EAAEE,IAAID,GAAG,KAAK,IAAI9B,EAAE+B,CAAC,EAAE,CAAC,EAAED,EAAE3C,EAAE2C,EAAE5C,EAAE,QAAQ6C,EAAEH,EAAEG,EAAEF,EAAEE,IAAI,CAAC,IAAI0C,EAAE,GAAGtF,EAAES,EAAEI,EAAE+B,CAAC,EAAEb,EAAEc,CAAC,EAAEF,EAAEE,IAAID,IAAI0C,GAAG,KAAK,IAAI3C,EAAE,CAAClC,CAAC,GAAG6E,GAAG1E,EAAEiC,CAAC,EAAE,EAAED,CAAC,GAAG0C,CAAC,CAAC,CAAC,OAAOrH,EAAE,eAAe,EAAE,MAAMG,EAAE,MAAM,CAAC,CAAC,CAAC,IAAIgsE,GAAG,CAAC,WAAWnnF,GAAG,YAAY,MAAM,WAAWknF,EAAG,EAAE,SAASE,GAAGtsE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,CAAC,EAAE,EAAE,CAAC,iBAAiB,EAAE,SAAS,CAAC,EAAED,EAAE2B,EAAE7B,EAAE8B,EAAE3B,EAAE,MAAM4B,EAAED,EAAE,OAAOU,EAAEnE,EAAE,eAAe,EAAEyD,CAAC,EAAEW,EAAED,EAAEE,EAAElV,EAAE,mBAAmBiV,EAAEV,CAAC,EAAEY,EAAEd,EAAE,KAAK,IAAI1B,EAAE,MAAM,EAAE,OAAO,GAAGuC,GAAG,KAAK,CAAC,IAAI8B,EAAE,IAAI,MAAMzC,CAAC,EAAE,QAAQ0C,EAAE,EAAEA,EAAED,EAAE,OAAOC,IAAID,EAAEC,CAAC,EAAE3C,EAAEY,EAAE+B,CAAC,CAAC,EAAE9B,EAAEi5D,GAAGj5D,EAAEb,EAAE3B,EAAE,MAAMuC,EAAE8B,CAAC,EAAE/B,EAAEjV,EAAE,iBAAiBiV,EAAE,OAAOV,CAAC,EAAED,EAAE0C,CAAC,CAACi0D,GAAGt4D,EAAE,KAAK,EAAE3S,EAAE,2BAA2B,MAAMiV,EAAEV,CAAC,EAAE,GAAG,CAACa,EAAEkB,CAAC,EAAEtW,EAAE,0BAA0BsU,EAAEW,CAAC,EAAE,EAAEpE,EAAE,cAAcyF,CAAC,EAAEsD,EAAE2yD,GAAGp3D,EAAE,EAAEC,EAAEzC,EAAE,KAAK,EAAEyE,EAAE/C,EAAE,MAAMuF,EAAExE,EAAEzC,EAAE,KAAK,EAAEoE,EAAE3B,EAAE,OAAO,IAAI2B,EAAE/W,EAAE,qBAAqBoV,EAAEJ,CAAC,GAAG,CAAC,OAAOoC,EAAE,MAAML,EAAE,MAAMpE,EAAE,KAAK,CAAC,CAAC,IAAIksE,GAAG,CAAC,WAAWnmF,GAAG,YAAY,MAAM,WAAWkmF,EAAE,EAAE,SAASE,GAAIxsE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,CAAC,EAAE,EAAEs4D,GAAGt4D,EAAE,SAAS,EAAE,GAAG,CAAC,WAAW,EAAE,QAAQ,EAAE,IAAI0B,EAAE,gBAAgBC,CAAC,EAAE5B,EAAE6B,EAAE,EAAE1D,EAAE,OAAO7Q,EAAE,+BAA+B,EAAEuU,CAAC,EAAE,IAAI,wEAAwE,CAAC,mBAAmBA,CAAC,GAAG,EAAE,IAAIS,EAAEhV,EAAE,kBAAkB2S,EAAE,MAAM,EAAE,EAAE4B,EAAEF,EAAEC,CAAC,EAAEW,EAAE,GAAGD,EAAE,cAAc,GAAGA,EAAE,eAAe,GAAGnE,EAAE,YAAYmE,EAAE,QAAQA,EAAE,QAAQ,EAAEC,EAAE25D,GAAG,CAAC,OAAO,CAAC,EAAEj8D,CAAC,EAAE,QAAQH,CAAC,CAAC,MAAM,CAAC,IAAI0C,EAAE1C,EAAE,KAAK,IAAIG,EAAE,MAAM,EAAE,OAAOwC,EAAEtE,EAAE,eAAe8B,EAAE,KAAK,EAAEyC,EAAEuhE,GAAGzhE,EAAEvC,EAAE,MAAMA,EAAE,MAAMwC,EAAEH,EAAE,KAAK,EAAEC,EAAEzC,EAAE,eAAewC,EAAE,SAASrC,EAAE,MAAMyC,EAAE,MAAM,CAAC,CAAC,OAAOH,CAAC,CAAC,IAAI8pE,GAAG,CAAC,WAAWpmF,GAAG,YAAY,MAAM,WAAWmmF,EAAG,EAAE,SAASE,GAAI1sE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,CAAC,EAAE,EAAE,CAAC,WAAW,EAAE,QAAQ,EAAE,IAAI0B,EAAE,gBAAgBC,EAAE,WAAWC,CAAC,EAAE7B,EAAEu4D,GAAGt4D,EAAE,WAAW,EAAE,IAAIqC,EAAEhV,EAAE,kBAAkB2S,EAAE,MAAM,EAAE,EAAE,EAAE0B,EAAEC,EAAEC,CAAC,EAAEU,EAAEzC,EAAE,KAAK,IAAIG,EAAE,MAAM,EAAE,OAAOuC,EAAE2hE,GAAG5hE,EAAEtC,EAAE,MAAMA,EAAE,MAAM9B,EAAE,eAAe8B,EAAE,KAAK,EAAEqC,EAAE,KAAK,EAAE,OAAOxC,EAAE,eAAe0C,EAAE,MAAM,UAAUA,EAAE,MAAM,CAAC,CAAC,IAAI+pE,GAAG,CAAC,WAAWrmF,GAAG,YAAY,MAAM,WAAWomF,EAAG,EAAE,SAASE,GAAI5sE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,GAAGK,EAAE,MAAM,CAAC,EAAE,EAAE,CAAC,WAAW,EAAE,QAAQ0B,EAAE,IAAIC,EAAE,gBAAgBC,CAAC,EAAE7B,EAAEu4D,GAAG,CAACt4D,EAAE,CAAC,EAAE,eAAe,EAAE,IAAIqC,EAAEhV,EAAE,kBAAkB,EAAE,MAAM,EAAEqU,EAAE,EAAEC,EAAEC,CAAC,EAAEU,EAAEzC,EAAE,WAAW,CAAC,EAAE0C,EAAE4hE,GAAG7hE,EAAED,CAAC,EAAEG,EAAEH,EAAE,YAAYI,EAAEJ,EAAE,aAAasB,EAAEtB,EAAE,YAAY,EAAEA,EAAE,cAAc4E,EAAE5E,EAAE,eAAeoC,EAAEpC,EAAE,cAAc+B,EAAE/B,EAAE,qBAAqBgC,EAAEhC,EAAE,sBAAsBiC,EAAEjC,EAAE,qBAAqBkC,EAAEH,EAAE,EAAE/B,EAAE,QAAQ,MAAMmC,EAAEF,EAAE,EAAEjC,EAAE,QAAQ,KAAK6E,EAAE7C,EAAE,EAAEhC,EAAE,QAAQ,IAAI,EAAElU,GAAG,EAAE,MAAM,SAAS,EAAEwW,EAAE9E,EAAE,WAAWG,CAAC,EAAE,QAAQ4E,EAAE,EAAEA,EAAEvC,EAAE,UAAU,EAAEuC,EAAE,QAAQC,EAAE,EAAEA,EAAExC,EAAE,WAAW,EAAEwC,EAAE,QAAQC,EAAE,EAAEA,EAAEzC,EAAE,QAAQ,EAAEyC,EAAE,QAAQC,EAAE,EAAEA,EAAE1C,EAAE,SAAS,EAAE0C,EAAE,QAAQC,EAAE,EAAEA,EAAE3C,EAAE,QAAQ,EAAE2C,EAAE,CAAC,IAAI2C,EAAE7C,EAAEP,EAAE6C,EAAErC,EAAEmC,EAAEU,EAAE5C,EAAER,EAAEqD,EAAG,EAAE,QAAQC,EAAG,EAAEA,EAAG1D,EAAE0D,GAAI,EAAE,CAAC,IAAIC,IAAIJ,EAAEG,GAAItF,EAAE,GAAG,EAAEuF,GAAG,GAAGA,IAAI1F,EAAE,UAAU,KAAK,MAAM0F,EAAE,IAAIA,IAAI,QAAQC,GAAG,EAAEA,GAAG3D,EAAE2D,IAAIf,EAAE,CAAC,IAAIgB,IAAIb,EAAEY,IAAIvF,EAAE,GAAG,EAAEwF,GAAG,GAAGA,IAAI5F,EAAE,WAAW,KAAK,MAAM4F,EAAE,IAAIA,IAAI,QAAQ5B,GAAG,EAAEA,GAAG/B,EAAE+B,IAAI5B,EAAE,CAAC,IAAI0D,IAAIP,EAAEvB,IAAI1C,EAAE,GAAGwE,GAAG,GAAGA,IAAI9F,EAAE,UAAU,KAAK,MAAM8F,EAAE,IAAIA,GAAG,SAAS,IAAIC,GAAGhE,EAAEC,EAAEC,EAAE,EAAE/B,EAAE,IAAIqC,EAAEmD,GAAGE,GAAGE,GAAGtD,CAAC,EAAEwD,GAAGP,EAAGzD,EAAEC,EAAE0D,GAAG1D,EAAE+B,GAAGiC,GAAGF,KAAKC,GAAG,EAAE,EAAE,GAAGC,KAAK,EAAE,SAAS,IAAIC,GAAG5D,EAAE,IAAIC,EAAEmD,GAAGE,GAAGE,GAAGtD,CAAC,EAAEgD,GAAIU,GAAGD,EAAE,CAAC,CAAC,CAAC,EAAE,IAAIT,EAAGjD,EAAEE,EAAEC,EAAEC,EAAEH,CAAC,CAAC,CAAC,OAAOhF,EAAE,eAAe,EAAE,MAAM,EAAE,MAAM,EAAE,MAAM,CAAC,CAAC,IAAI2sE,GAAG,CAAC,WAAWtmF,GAAG,YAAY,MAAM,WAAWqmF,EAAG,EAAE,SAASE,GAAI9sE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,GAAGK,EAAE,MAAM,EAAE,OAAO,CAAC,EAAE,EAAE0B,EAAE,EAAE42D,GAAG,CAAC,EAAE,CAAC,EAAE,aAAa,EAAE,GAAG,CAAC,WAAW32D,EAAE,QAAQC,EAAE,IAAIS,EAAE,gBAAgBC,CAAC,EAAEvC,EAAEwC,EAAElV,EAAE,kBAAkBqU,EAAE,MAAMC,EAAEC,EAAE,EAAES,EAAEC,CAAC,EAAEE,EAAE3C,EAAE,KAAK,IAAI6B,EAAE,MAAM,EAAE,OAAOe,EAAEtU,GAAGoU,EAAE,SAASb,EAAE,MAAMuiE,GAAGzhE,EAAEd,EAAE,MAAMA,EAAE,MAAMa,CAAC,EAAE,MAAM,EAAEoB,EAAEpB,EAAE,aAAa,EAAEA,EAAE,YAAY0E,EAAE1E,EAAE,eAAekC,EAAElC,EAAE,cAAc6B,EAAE7B,EAAE,sBAAsB8B,EAAE9B,EAAE,qBAAqB+B,EAAED,EAAE,EAAE9B,EAAE,QAAQ,KAAKgC,EAAEH,EAAE,EAAE7B,EAAE,QAAQ,IAAIiC,EAAErW,GAAGuT,EAAE,MAAM,SAAS,EAAEwF,EAAErH,EAAE,KAAK,IAAIG,EAAE,MAAM,EAAE,OAAO,EAAE7R,GAAG6R,EAAE,MAAM,UAAUkH,CAAC,EAAE,QAAQvC,EAAE,EAAEA,EAAEpC,EAAE,UAAU,EAAEoC,EAAE,QAAQC,EAAE,EAAEA,EAAErC,EAAE,WAAW,EAAEqC,EAAE,QAAQC,EAAE,EAAEA,EAAEtC,EAAE,SAAS,EAAEsC,EAAE,QAAQC,EAAE,EAAEA,EAAEvC,EAAE,QAAQ,EAAEuC,EAAE,CAAC,IAAIC,EAAEF,EAAEN,EAAES,EAAEF,EAAER,EAAEqD,EAAE,EAAE,QAAQP,EAAE,EAAEA,EAAEhD,EAAEgD,GAAGH,EAAE,CAAC,IAAIW,GAAG7C,EAAEqC,GAAGzD,EAAE,GAAG,EAAEiE,EAAE,GAAGA,GAAGrF,EAAE,WAAW,KAAK,MAAMqF,CAAC,IAAIA,GAAG,QAAQC,EAAG,EAAEA,EAAGxD,EAAEwD,GAAIpD,EAAE,CAAC,IAAIqD,GAAI9C,EAAE6C,GAAI,EAAE,GAAGC,EAAG,GAAGA,GAAIvF,EAAE,UAAU,KAAK,MAAMuF,CAAE,IAAIA,EAAG,SAAS,IAAIC,GAAG3D,EAAEC,EAAE,EAAE5B,EAAE,IAAIkC,EAAEiD,EAAEE,EAAGlD,CAAC,EAAEoD,GAAGZ,EAAE/C,EAAEwD,EAAGI,GAAGF,KAAKC,GAAG,EAAE,EAAE,GAAGC,KAAK,EAAE,SAAS,IAAI5B,GAAG,EAAE,IAAI1B,EAAEiD,EAAEE,EAAGlD,CAAC,EAAE+C,GAAGtB,GAAG4B,EAAE,CAAC,CAACzD,EAAE,IAAImD,EAAEhD,EAAEE,EAAEC,EAAEF,CAAC,CAAC,CAAC,OAAO/E,EAAE,eAAe2E,EAAE,MAAMA,EAAE,MAAMA,EAAE,MAAM,CAAC,CAAC,IAAIkoE,GAAG,CAAC,WAAWvmF,GAAG,YAAY,MAAM,WAAWsmF,EAAG,EAAE,SAASE,GAAGhtE,EAAE,EAAEE,EAAEE,EAAEC,EAAE,CAAC,IAAI,EAAE9B,EAAE,eAAe,CAAC,EAAE,EAAE8lE,GAAGrkE,EAAE,EAAEE,EAAE,EAAEG,EAAE,KAAK,EAAE0B,EAAEuiE,GAAGtkE,EAAE,EAAEE,EAAEG,EAAE,GAAGD,CAAC,EAAE,MAAM,CAAC,EAAE,OAAO2B,EAAE,MAAM,CAAC,CAAC,IAAIkrE,GAAG,CAAC,WAAWxmF,GAAG,YAAY,MAAM,WAAW,CAAC,CAAC,OAAOuZ,EAAE,MAAM,EAAE,QAAQE,CAAC,IAAI,CAAC,GAAG,CAAC,EAAEE,CAAC,EAAEJ,EAAE,CAAC,WAAWK,EAAE,QAAQ,EAAE,IAAI,EAAE,oBAAoB0B,CAAC,EAAE,EAAEC,EAAE9B,EAAEy4D,GAAGv4D,EAAE,mBAAmB,EAAE,IAAI6B,EAAED,EAAE,KAAK,IAAI5B,EAAE,MAAM,EAAE,OAAOsC,EAAEhV,EAAE,kBAAkB0S,EAAE,MAAMC,EAAE,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAACsC,EAAEC,CAAC,EAAEoqE,GAAG/qE,EAAE7B,EAAE,MAAMA,EAAE,MAAM2B,EAAEW,CAAC,EAAEG,EAAEb,EAAE,MAAMW,EAAED,EAAE,SAAStC,EAAE,KAAK,EAAE0C,EAAEd,EAAE,MAAMY,EAAEF,EAAE,SAAStC,EAAE,KAAK,EAAE,MAAM,CAAC,CAAC,OAAOyC,EAAE,MAAMH,EAAE,SAAS,MAAMtC,EAAE,KAAK,EAAE,CAAC,OAAO0C,EAAE,MAAMJ,EAAE,SAAS,MAAM,OAAO,CAAC,CAAC,CAAC,EAAE,SAASwqE,GAAIltE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,CAAC,EAAE,EAAE,CAAC,KAAK,EAAE,SAAS,CAAC,EAAED,EAAE2B,EAAExD,EAAE,eAAe,EAAE8B,EAAE,KAAK,EAAE,EAAE3S,EAAE,0BAA0B2S,EAAE,MAAM0B,CAAC,EAAE,CAAC,EAAEW,EAAEnE,EAAE,cAAc,CAAC,EAAE,EAAE,CAAC,EAAEqE,EAAE1C,EAAE,eAAe,CAAC,EAAE,UAAU,IAAI,aAAa,CAACwC,CAAC,CAAC,CAAC,EAAE,EAAE,KAAKE,CAAC,EAAE,IAAIC,EAAE65D,GAAG,CAAC,OAAO,CAAC,EAAEr8D,CAAC,EAAE,QAAQH,EAAE,MAAM,CAAC,MAAM,SAAS,CAAC,CAAC,EAAE,EAAE,KAAK2C,CAAC,EAAE,IAAIC,EAAE2mE,GAAG,CAAC,OAAO,CAAC,EAAE5mE,EAAE,EAAED,CAAC,EAAE,QAAQ1C,CAAC,CAAC,EAAE,EAAE,KAAK4C,CAAC,EAAE,IAAIkB,EAAEwkE,GAAG,CAAC,OAAO,CAAC,EAAE1lE,CAAC,EAAE,QAAQ5C,EAAE,MAAM,CAAC,KAAK,EAAE,SAAS,CAAC,CAAC,CAAC,EAAE,OAAO,EAAE,QAAQ+D,GAAG/D,EAAE,8BAA8B+D,CAAC,CAAC,EAAED,CAAC,CAAC,IAAImpE,GAAG,CAAC,WAAWxmF,GAAG,YAAY,MAAM,WAAWumF,EAAG,EAAE,SAASE,GAAIptE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,CAAC,EAAE,EAAE,CAAC,KAAK,EAAE,SAAS,CAAC,EAAED,EAAEu4D,GAAGt4D,EAAE,KAAK,EAAE,IAAI0B,EAAExD,EAAE,eAAe,EAAE8B,EAAE,KAAK,EAAE2B,EAAED,EAAEE,EAAEvU,EAAE,mBAAmBsU,EAAE3B,EAAE,MAAM,MAAM,EAAEqC,EAAErC,EAAE4B,GAAG,OAAOS,EAAE68D,GAAG,CAAC,OAAO,CAAC,EAAEl/D,CAAC,EAAE,QAAQH,EAAE,MAAM,CAAC,KAAK+B,CAAC,CAAC,CAAC,EAAED,EAAEtU,EAAE,iBAAiBsU,EAAE,OAAO3B,EAAE,MAAM,MAAM,GAAG3S,EAAE,2BAA2B,MAAMsU,EAAEU,EAAE,MAAM,MAAM,EAAE,GAAG,CAACC,EAAEC,CAAC,EAAElV,EAAE,0BAA0BgV,EAAE,MAAMV,CAAC,EAAEa,EAAEtE,EAAE,cAAcqE,CAAC,EAAEE,EAAEvE,EAAE,oBAAoBA,EAAE,cAAcoE,CAAC,EAAED,EAAE,KAAK,EAAEsB,EAAE9D,EAAE,KAAK,IAAIwC,EAAE,MAAM,EAAE,OAAO,QAAQ4E,EAAE,EAAEA,EAAExE,EAAE,OAAO,EAAEwE,EAAE,CAAC,IAAIxC,EAAEwC,EAAEzE,EAAE4B,EAAET,EAAEc,CAAC,EAAE,QAAQJ,EAAE,EAAEA,EAAE7B,EAAE,EAAE6B,EAAE,CAAC,IAAIC,EAAEX,EAAEc,EAAEJ,CAAC,GAAG,OAAO,MAAMC,CAAC,GAAGA,EAAEF,KAAKA,EAAEE,EAAE,CAAC7B,EAAEwE,CAAC,EAAE7C,CAAC,CAACxC,GAAG,MAAM/B,EAAE,8BAA8BwC,CAAC,EAAE,IAAI,EAAExC,EAAE,eAAeyC,EAAED,EAAE,MAAMI,CAAC,EAAE,GAAG,EAAE,CAAC,IAAIwE,EAAE5Z,EAAE,qBAAqBiV,EAAEZ,CAAC,EAAE+C,EAAEw9D,GAAG,CAAC,OAAO,CAAC,EAAE,CAAC,EAAE,QAAQpiE,EAAE,MAAM,CAAC,MAAMoH,CAAC,CAAC,CAAC,EAAE,OAAOpH,EAAE,8BAA8B,CAAC,EAAE4E,CAAC,CAAC,OAAO,CAAC,CAAC,IAAIuoE,GAAG,CAAC,WAAWzmF,GAAG,YAAY,MAAM,WAAWwmF,EAAG,EAAE,SAASE,GAAIttE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,CAAC,EAAE,EAAE,CAAC,SAAS,EAAE,KAAK,CAAC,EAAED,EAAEu4D,GAAGt4D,EAAE,WAAW,EAAE,IAAI0B,EAAE,EAAE,IAAI,CAAC0C,EAAEC,IAAID,EAAE,CAAC,EAAEpE,EAAE,MAAMqE,CAAC,EAAED,EAAE,CAAC,CAAC,EAAEzC,EAAE,EAAE,IAAIyC,GAAGA,EAAE,CAAC,CAAC,EAAExC,EAAE,EAAE,IAAI,CAACwC,EAAEC,IAAID,EAAE,CAAC,EAAEpE,EAAE,MAAMqE,CAAC,CAAC,EAAEhC,EAAE,IAAI,UAAU,EAAE,EAAEC,EAAEzC,EAAE,KAAK,IAAIG,EAAE,MAAM,EAAE,OAAOuC,EAAEvC,EAAE,MAAM,OAAOwC,EAAEtE,EAAE,eAAe8B,EAAE,KAAK,EAAEyC,EAAEvE,EAAE,cAAcwD,CAAC,EAAEiC,EAAEjC,EAAE,OAAO,EAAExD,EAAE,eAAewD,CAAC,EAAEuF,EAAE/I,EAAE,uBAAuB8B,EAAE,MAAMyC,CAAC,EAAE,QAAQ2B,EAAE,EAAEA,EAAE3B,EAAE2B,IAAI,CAAC,IAAIC,EAAEnG,EAAE,WAAWkG,EAAET,EAAE,CAAC,EAAE,QAAQY,EAAE,EAAEA,EAAEZ,EAAEY,IAAIF,EAAEE,CAAC,EAAE5C,EAAE4C,CAAC,EAAEF,EAAEE,CAAC,EAAE5C,EAAE4C,CAAC,EAAE,EAAEF,EAAEE,CAAC,EAAElC,EAAEgC,EAAEE,CAAC,GAAG3C,EAAE2C,CAAC,IAAIF,EAAEE,CAAC,GAAG3C,EAAE2C,CAAC,EAAE,GAAG,EAAEF,EAAEE,CAAC,EAAElC,GAAGgC,EAAEA,EAAE,IAAI,CAACE,EAAEC,IAAID,EAAE5C,EAAE6C,CAAC,CAAC,EAAE,IAAIF,EAAEpG,EAAE,WAAWmG,EAAE9B,EAAEC,CAAC,EAAEyE,EAAE7C,CAAC,EAAE9B,EAAEgC,CAAC,CAAC,CAAC,MAAM,CAAC,OAAOzE,EAAE,MAAMoH,EAAEvF,EAAE1B,EAAE,KAAK,EAAE,MAAM0B,EAAE,MAAM1B,EAAE,KAAK,CAAC,CAAC,IAAIktE,GAAG,CAAC,WAAWzmF,GAAG,YAAY,MAAM,WAAWwmF,EAAG,EAAME,GAAItR,GAAG,CAACl8D,EAAE,IAAI,CAAC,IAAIE,EAAEF,EAAE,EAAE,OAAOA,EAAE,GAAG,EAAE,GAAGA,GAAG,GAAG,GAAG,EAAEE,GAAGA,EAAE,GAAG,CAAC,CAAC,EAAEutE,GAAI7Q,GAAG71E,GAAGymF,EAAG,EAAEE,GAAG,CAAC,WAAW3mF,GAAG,YAAY,MAAM,WAAW0mF,EAAG,EAAME,GAAGrtE,GAAGgF,GAAG,CAAC,EAAE,SAASsoE,GAAG5tE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,OAAOK,CAAC,EAAE,EAAE,CAAC,IAAI,CAAC,EAAED,EAAE,EAAEC,EAAE,MAAM,OAAO0B,EAAE,EAAE,GAAGA,IAAI,KAAKA,EAAE,EAAE,GAAGA,IAAI,EAAE,EAAE,MAAM,MAAM,4EAA4E,CAAC,gBAAgBA,CAAC,EAAE,EAAE,IAAIC,EAAEzD,EAAE,eAAe,CAACwD,CAAC,EAAE1B,EAAE,KAAK,EAAE4B,EAAEqqE,GAAG,CAAC,OAAO,CAAC,EAAEjsE,CAAC,EAAE,QAAQH,EAAE,MAAM,CAAC,iBAAiB8B,EAAE,SAAS,EAAE,CAAC,CAAC,EAAEU,EAAEhV,EAAE,qBAAqBuU,EAAE,MAAMD,CAAC,EAAEW,EAAE2/D,GAAG,CAAC,OAAO,CAAC,EAAErgE,CAAC,EAAE,QAAQ/B,EAAE,MAAM,CAAC,MAAMwC,CAAC,CAAC,CAAC,EAAEE,EAAE0+D,GAAG,CAAC,OAAO,CAAC,EAAEjhE,EAAE,EAAEsC,CAAC,EAAE,QAAQzC,CAAC,CAAC,EAAE2C,EAAE66D,GAAG,CAAC,OAAO,CAAC,EAAE96D,CAAC,EAAE,QAAQ1C,CAAC,CAAC,EAAE4C,EAAE0lE,GAAG,CAAC,OAAO,CAAC,EAAE3lE,CAAC,EAAE,QAAQ3C,EAAE,MAAM,CAAC,KAAK8B,EAAE,SAAS,EAAE,CAAC,CAAC,EAAEgC,EAAEs+D,GAAG,CAAC,OAAO,CAAC,EAAEx/D,CAAC,EAAE,QAAQ5C,EAAE,MAAM,CAAC,MAAMwC,CAAC,CAAC,CAAC,EAAE,EAAE+mE,GAAG,CAAC,OAAO,CAAC,EAAE5mE,EAAE,EAAEmB,CAAC,EAAE,QAAQ9D,CAAC,CAAC,EAAE,OAAOA,EAAE,8BAA8B+B,CAAC,EAAE/B,EAAE,8BAA8ByC,CAAC,EAAEzC,EAAE,8BAA8B0C,CAAC,EAAE1C,EAAE,8BAA8B2C,CAAC,EAAE3C,EAAE,8BAA8B4C,CAAC,EAAE5C,EAAE,8BAA8B8D,CAAC,EAAE,CAAC,CAAC,IAAI6pE,GAAG,CAAC,WAAWzjF,GAAG,YAAY,MAAM,WAAWwjF,EAAE,EAAE,SAASE,GAAI9tE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,OAAOK,CAAC,EAAE,EAAE,CAAC,WAAW,EAAE,KAAK,EAAE,WAAW0B,CAAC,EAAE3B,EAAEu4D,GAAGt4D,EAAE,aAAa,EAAE,IAAI2B,EAAED,EAAE1B,EAAEutE,GAAG,CAAC,OAAO,CAAC,OAAOvtE,CAAC,EAAE,QAAQH,EAAE,MAAM,CAAC,IAAI,EAAE,CAAC,CAAC,EAAE+B,EAAED,EAAE,MAAM,CAAC,EAAEU,EAAEV,EAAE,MAAM,CAAC,EAAEW,EAAEzC,EAAE,KAAK,IAAI8B,EAAE,MAAM,EAAE,OAAOY,EAAE,CAACX,EAAE,CAAC,EAAEY,EAAEtE,EAAE,oBAAoBA,EAAE,cAAcqE,CAAC,EAAE,OAAO,EAAE,QAAQE,EAAE,EAAEA,EAAEb,EAAE,EAAEa,EAAE,CAAC,IAAIkB,EAAElB,EAAEJ,EAAE,EAAE,IAAI,aAAaA,EAAE,CAAC,EAAE,EAAE,CAAC,EAAEC,EAAEqB,CAAC,EAAE,QAAQS,EAAE,EAAEA,EAAE,EAAE,OAAO,EAAEA,EAAE,EAAEA,CAAC,EAAE,EAAEA,EAAE,CAAC,EAAE9B,EAAEqB,EAAES,CAAC,EAAE,IAAI6C,EAAEqmE,GAAG,KAAK,EAAE,SAAS,CAAC,EAAE7oE,EAAEhC,EAAE,EAAE,QAAQ2B,EAAE,EAAEA,EAAE,EAAE,EAAEA,EAAE,CAAC,IAAIC,EAAE4C,EAAE,EAAEzE,EAAEiC,EAAEL,CAAC,EAAE,EAAE,OAAO,QAAQE,EAAE,EAAEA,EAAE,EAAE,OAAOA,IAAI,GAAGD,EAAE,EAAEC,CAAC,EAAE,CAAC9B,EAAEiC,EAAEL,CAAC,EAAEE,EAAE,KAAK,CAAC,CAAC,CAAC,OAAO5C,GAAG7B,EAAE,8BAA8B8B,CAAC,EAAE9B,EAAE,eAAe0C,EAAE,QAAQC,CAAC,CAAC,CAAC,IAAIkrE,GAAG,CAAC,WAAW9mF,GAAG,YAAY,MAAM,WAAW6mF,EAAG,EAAME,GAAI/5E,GAAG,wBAAwB,SAASg6E,GAAIjuE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,MAAMK,EAAE,OAAO,CAAC,EAAE,EAAE,CAAC,cAAc,EAAE,aAAa0B,EAAE,eAAeC,CAAC,EAAE5B,EAAEu4D,GAAGt4D,EAAE,mBAAmB,EAAE,IAAI4B,EAAE/B,EAAE,KAAK,IAAIG,EAAE,MAAM,EAAE,OAAOqC,EAAExC,EAAE,KAAK,IAAI,EAAE,MAAM,EAAE,OAAO,CAAC,gBAAgByC,CAAC,EAAEqrE,GAAI/rE,EAAES,EAAE,EAAEX,EAAEC,CAAC,EAAE,OAAO9B,EAAE,eAAe,CAACyC,EAAE,MAAM,EAAE,QAAQ,IAAI,WAAWA,CAAC,CAAC,CAAC,CAAC,IAAIurE,GAAG,CAAC,WAAW9mF,GAAG,YAAY,MAAM,WAAW6mF,EAAG,EAAME,GAAIl6E,GAAG,wBAAwB,SAASm6E,GAAIpuE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,MAAMK,EAAE,OAAO,CAAC,EAAE,EAAE,CAAC,cAAc,EAAE,aAAa0B,EAAE,eAAeC,EAAE,mBAAmBC,CAAC,EAAE7B,EAAEu4D,GAAGt4D,EAAE,yBAAyB,EAAE,IAAIqC,EAAExC,EAAE,KAAK,IAAIG,EAAE,MAAM,EAAE,OAAOsC,EAAEzC,EAAE,KAAK,IAAI,EAAE,MAAM,EAAE,OAAO,CAAC,gBAAgB0C,EAAE,aAAaC,CAAC,EAAEsrE,GAAIzrE,EAAEC,EAAE,EAAEZ,EAAEC,EAAEC,CAAC,EAAE,MAAM,CAAC/B,EAAE,eAAe,CAAC0C,EAAE,MAAM,EAAE,QAAQ,IAAI,WAAWA,CAAC,CAAC,EAAE1C,EAAE,eAAe,CAAC,EAAE,QAAQ,IAAI,WAAW,CAAC2C,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,IAAIwrE,GAAG,CAAC,WAAWhnF,GAAG,YAAY,MAAM,WAAW+mF,EAAG,EAAME,GAAIr6E,GAAG,wBAAwB,SAASs6E,GAAIvuE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,MAAMK,EAAE,OAAO,CAAC,EAAE,EAAE,CAAC,cAAc,EAAE,aAAa0B,EAAE,eAAeC,EAAE,aAAaC,CAAC,EAAE7B,EAAEu4D,GAAGt4D,EAAE,4BAA4B,EAAE,IAAIqC,EAAExC,EAAE,KAAK,IAAIG,EAAE,MAAM,EAAE,OAAOsC,EAAEzC,EAAE,KAAK,IAAI,EAAE,MAAM,EAAE,OAAO0C,EAAE,EAAEC,EAAEd,EAAEe,EAAEd,EAAEgC,EAAE/B,EAAE,CAAC,gBAAgB,EAAE,eAAeqF,CAAC,EAAEgnE,GAAI5rE,EAAEC,EAAEC,EAAEC,EAAEC,EAAEkB,CAAC,EAAE,MAAM,CAAC9D,EAAE,eAAe,CAAC,EAAE,MAAM,EAAE,QAAQ,IAAI,WAAW,CAAC,CAAC,EAAEA,EAAE,eAAe,CAACoH,EAAE,MAAM,EAAE,UAAU,IAAI,aAAaA,CAAC,CAAC,CAAC,CAAC,CAAC,IAAIknE,GAAG,CAAC,WAAWlnF,GAAG,YAAY,MAAM,WAAWinF,EAAG,EAAE,SAASE,GAAIzuE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,QAAQK,CAAC,EAAE,EAAE,CAAC,MAAM,EAAE,MAAM,EAAE,QAAQ0B,EAAE,SAASC,CAAC,EAAE5B,EAAEu4D,GAAGt4D,EAAE,QAAQ,EAAE,IAAI4B,EAAE1D,EAAE,cAAc8B,EAAE,KAAK,EAAEqC,EAAE,IAAI,aAAaT,EAAE,CAAC,EAAES,EAAE,KAAKV,CAAC,EAAE,IAAIW,EAAEzC,EAAE,KAAK,IAAIG,EAAE,MAAM,EAAE,OAAO,QAAQuC,EAAE,EAAEA,EAAEX,EAAE,EAAEW,EAAED,EAAEC,CAAC,GAAG,GAAGD,EAAEC,CAAC,EAAE,IAAIF,EAAEE,EAAE,EAAED,EAAEC,CAAC,CAAC,EAAEb,GAAG,OAAO7B,EAAE,eAAe,CAAC,GAAGG,EAAE,MAAM,CAAC,EAAE,EAAEqC,CAAC,CAAC,CAAC,IAAIgsE,GAAG,CAAC,WAAWjnF,GAAG,YAAY,MAAM,WAAWgnF,EAAG,EAAE,SAASE,GAAG3uE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,CAAC,EAAEF,EAAE,CAAC,EAAEI,CAAC,EAAE,EAAE,GAAGA,EAAE,QAAQ,SAAS,MAAM,IAAI,MAAM,+CAA+C,EAAE,GAAGA,EAAE,QAAQ,YAAY,CAAC,IAAIC,EAAEm8D,GAAG,CAAC,OAAO,CAAC,MAAMp8D,CAAC,EAAE,QAAQF,CAAC,CAAC,EAAE,EAAEyuE,GAAG,CAAC,OAAO,CAAC,EAAEtuE,CAAC,EAAE,QAAQH,CAAC,CAAC,EAAE,EAAE2lE,GAAG,CAAC,OAAO,CAAC,MAAMzlE,CAAC,EAAE,QAAQF,CAAC,CAAC,EAAE6B,EAAE4sE,GAAG,CAAC,OAAO,CAAC,EAAE,CAAC,EAAE,QAAQzuE,CAAC,CAAC,EAAE8B,EAAEm6D,GAAG,CAAC,OAAO,CAAC,KAAK,EAAE,KAAKp6D,CAAC,EAAE,QAAQ7B,CAAC,CAAC,EAAE,OAAOA,EAAE,8BAA8BG,CAAC,EAAEH,EAAE,8BAA8B,CAAC,EAAEA,EAAE,8BAA8B,CAAC,EAAEA,EAAE,8BAA8B6B,CAAC,EAAEC,CAAC,KAAM,QAAOkoE,GAAG,CAAC,QAAQhqE,EAAE,MAAM,CAAC,MAAME,EAAE,MAAM,MAAM,EAAE,MAAMA,EAAE,KAAK,CAAC,CAAC,CAAC,CAAC,IAAIwuE,GAAG,CAAC,WAAWriF,GAAG,YAAY,MAAM,WAAWoiF,EAAE,EAAE,SAASE,GAAG7uE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,CAAC,EAAEF,EAAE,CAAC,EAAEI,CAAC,EAAE,EAAE,GAAGA,EAAE,QAAQ,SAAS,MAAM,IAAI,MAAM,8CAA8C,EAAE,GAAGA,EAAE,QAAQ,YAAY,CAAC,IAAIC,EAAEm8D,GAAG,CAAC,OAAO,CAAC,MAAMp8D,CAAC,EAAE,QAAQF,CAAC,CAAC,EAAE,EAAE2uE,GAAG,CAAC,OAAO,CAAC,EAAExuE,CAAC,EAAE,QAAQH,CAAC,CAAC,EAAE,EAAE2lE,GAAG,CAAC,OAAO,CAAC,MAAMzlE,CAAC,EAAE,QAAQF,CAAC,CAAC,EAAE6B,EAAE4sE,GAAG,CAAC,OAAO,CAAC,EAAE,CAAC,EAAE,QAAQzuE,CAAC,CAAC,EAAE8B,EAAEm6D,GAAG,CAAC,OAAO,CAAC,KAAK,EAAE,KAAKp6D,CAAC,EAAE,QAAQ7B,CAAC,CAAC,EAAE,OAAOA,EAAE,8BAA8BG,CAAC,EAAEH,EAAE,8BAA8B,CAAC,EAAEA,EAAE,8BAA8B,CAAC,EAAEA,EAAE,8BAA8B6B,CAAC,EAAEC,CAAC,KAAM,QAAOkoE,GAAG,CAAC,QAAQhqE,EAAE,MAAM,CAAC,MAAME,EAAE,MAAM,MAAM,EAAE,MAAMA,EAAE,KAAK,CAAC,CAAC,CAAC,CAAC,IAAI0uE,GAAG,CAAC,WAAWpnF,GAAG,YAAY,MAAM,WAAWmnF,EAAE,EAAE,SAASE,GAAG/uE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,KAAKK,CAAC,EAAED,EAAE,GAAG,EAAE,SAAS,EAAE,OAAOkpE,GAAG,CAAC,OAAO,CAAC,MAAM,EAAE,CAAC,CAAC,EAAE,QAAQppE,EAAE,MAAM,CAAC,IAAIG,CAAC,CAAC,CAAC,EAAE,IAAI,EAAE,EAAE,CAAC,EAAE,MAAM,EAAE,EAAE,CAAC,EAAE,MAAM,EAAE,QAAQqC,GAAG,CAACnE,EAAE,kBAAkB,EAAEmE,EAAE,MAAM,uDAAuD,EAAEnE,EAAE,OAAO,IAAImE,EAAE,MAAM,IAAI,uDAAuD,CAAC,CAAC,EAAE,IAAIX,EAAE,CAAC,EAAEC,EAAE,EAAE,IAAIU,GAAG,CAAC,IAAIC,EAAE2mE,GAAG,CAAC,OAAO,CAAC,MAAM5mE,CAAC,EAAE,QAAQxC,EAAE,MAAM,CAAC,IAAIG,CAAC,CAAC,CAAC,EAAE,OAAO0B,EAAE,KAAKY,CAAC,EAAEA,CAAC,CAAC,EAAEV,EAAE8jE,GAAG,CAAC,OAAO/jE,EAAE,QAAQ9B,EAAE,MAAM,CAAC,KAAKG,CAAC,CAAC,CAAC,EAAE,OAAO0B,EAAE,QAAQW,GAAGxC,EAAE,8BAA8BwC,CAAC,CAAC,EAAET,CAAC,CAAC,IAAI+sE,GAAG,CAAC,WAAWnnF,GAAG,YAAY,MAAM,WAAWknF,EAAE,EAAE,SAASE,GAAIjvE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,CAAC,EAAE,EAAE,CAAC,SAAS,EAAE,cAAc,CAAC,EAAED,EAAEu4D,GAAGt4D,EAAE,KAAK,EAAE,IAAI0B,EAAE,EAAE,IAAI,CAAC,EAAE0C,IAAI,EAAE,CAAC,EAAEpE,EAAE,MAAMoE,CAAC,EAAE,EAAE,CAAC,CAAC,EAAEzC,EAAE,EAAE,IAAI,GAAG,EAAE,CAAC,CAAC,EAAEC,EAAE/B,EAAE,KAAK,IAAIG,EAAE,MAAM,EAAE,OAAOqC,EAAEnE,EAAE,cAAc8B,EAAE,KAAK,EAAEsC,EAAEtC,EAAE,MAAM,OAAOuC,EAAErE,EAAE,eAAe8B,EAAE,KAAK,EAAEwC,EAAEtE,EAAE,cAAcwD,CAAC,EAAEe,EAAEf,EAAE,OAAOiC,EAAEzF,EAAE,eAAewD,CAAC,EAAE,EAAExD,EAAE,uBAAuB8B,EAAE,MAAMwC,CAAC,EAAE,IAAI,GAAG,EAAE,KAAK,CAAC,EAAE,QAAQ,EAAE,EAAE,EAAEH,EAAE,IAAI,CAAC,IAAIgC,EAAEnG,EAAE,WAAW,EAAEoE,EAAEC,CAAC,EAAE,IAAI,CAACgC,EAAEC,IAAID,EAAE5C,EAAE6C,CAAC,CAAC,EAAEF,EAAEpG,EAAE,WAAWmG,EAAE5B,EAAEkB,CAAC,EAAE,EAAEW,CAAC,EAAE1C,EAAE,CAAC,CAAC,CAAC,MAAM,CAAC,OAAO/B,EAAE,MAAM,EAAE6B,EAAE1B,EAAE,KAAK,EAAE,MAAM0B,EAAE,MAAM1B,EAAE,KAAK,CAAC,CAAC,IAAI6uE,GAAG,CAAC,WAAWpnF,GAAG,YAAY,MAAM,WAAWmnF,EAAG,EAAME,GAAIjT,GAAG,CAACl8D,EAAE,IAAI,KAAK,IAAIA,EAAE,CAAC,CAAC,EAAEovE,GAAIxS,GAAG50E,GAAGmnF,EAAG,EAAEE,GAAG,CAAC,WAAWrnF,GAAG,YAAY,MAAM,WAAWonF,EAAG,EAAE,SAASE,GAAItvE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,mBAAmBK,EAAE,kBAAkB,EAAE,QAAQ,CAAC,EAAE,EAAE,CAAC,iBAAiB0B,CAAC,EAAE3B,EAAE4B,EAAE3B,EAAE,IAAIiH,GAAGpH,EAAE,KAAK,IAAIoH,EAAE,MAAM,EAAE,MAAM,EAAErF,EAAE5B,EAAE,IAAIiH,GAAGA,EAAE,KAAK,EAAE5E,EAAExC,EAAE,KAAK,IAAI,EAAE,MAAM,EAAE,OAAOyC,EAAEzC,EAAE,KAAK,IAAI,EAAE,MAAM,EAAE,OAAO,CAAC0C,EAAEC,EAAEC,CAAC,EAAE03D,GAAGx4D,EAAEC,EAAES,EAAE,EAAE,MAAM,EAAE,MAAMC,EAAE,EAAE,MAAMZ,CAAC,EAAEiC,EAAEpB,EAAE,IAAI0E,GAAGpH,EAAE,eAAe,CAACoH,EAAE,MAAM,EAAE,QAAQA,CAAC,CAAC,EAAE,EAAEpH,EAAE,eAAe4C,EAAE,EAAE,MAAMD,CAAC,EAAE,OAAOmB,EAAE,OAAO,CAAC,CAAC,CAAC,CAAC,CAAC,IAAIurE,GAAG,CAAC,WAAWlnF,GAAG,YAAY,MAAM,WAAWinF,EAAG,EAAE,SAASE,GAAIxvE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,CAAC,EAAEF,EAAE,CAAC,OAAOI,EAAE,OAAOC,EAAE,OAAO,CAAC,EAAE,EAAE,EAAEH,EAAE,KAAK,IAAIE,EAAE,MAAM,EAAE,OAAO2B,EAAE7B,EAAE,KAAK,IAAIG,EAAE,MAAM,EAAE,OAAO2B,EAAE9B,EAAE,KAAK,IAAI,EAAE,MAAM,EAAE,OAAO,CAAC+B,EAAES,CAAC,EAAE+3D,GAAG,EAAEr6D,EAAE,MAAMA,EAAE,MAAM2B,EAAE1B,EAAE,MAAM2B,EAAE,EAAE,KAAK,EAAEW,EAAEzC,EAAE,eAAe,CAAC+B,EAAE,MAAM,EAAE,QAAQA,CAAC,EAAEW,EAAE1C,EAAE,eAAe,CAACwC,EAAE,MAAM,EAAEtC,EAAE,MAAMsC,CAAC,EAAE,MAAM,CAACC,EAAEC,CAAC,CAAC,CAAC,IAAI6sE,GAAG,CAAC,WAAWnnF,GAAG,YAAY,MAAM,WAAWknF,EAAG,EAAE,SAASE,GAAI1vE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,MAAMK,EAAE,OAAO,EAAE,aAAa,EAAE,oBAAoB0B,CAAC,EAAE,EAAE,CAAC,kBAAkBC,CAAC,EAAE5B,EAAE6B,EAAE/B,EAAE,KAAK,IAAIG,EAAE,MAAM,EAAE,OAAOqC,EAAExC,EAAE,KAAK,IAAI,EAAE,MAAM,EAAE,OAAOyC,EAAEzC,EAAE,KAAK,IAAI,EAAE,MAAM,EAAE,OAAO0C,EAAEb,EAAE,IAAI,GAAG7B,EAAE,KAAK,IAAI,EAAE,MAAM,EAAE,MAAM,EAAE2C,EAAEd,EAAE,IAAI,GAAG,EAAE,KAAK,EAAE,CAACe,EAAEkB,CAAC,EAAE02D,GAAGz4D,EAAE5B,EAAE,MAAMqC,EAAE,EAAE,MAAM,EAAE,MAAMC,EAAE,EAAE,MAAMC,EAAEC,EAAEb,CAAC,EAAE,OAAO9B,EAAE,eAAe4C,EAAE,EAAE,MAAMkB,CAAC,CAAC,CAAC,IAAI2rE,GAAG,CAAC,WAAWpnF,GAAG,YAAY,MAAM,WAAWmnF,EAAG,EAAE,SAASE,GAAI5vE,EAAE,CAAC,GAAG,CAAC,QAAQ,EAAE,MAAME,CAAC,EAAEF,EAAE,CAAC,MAAMI,EAAE,KAAKC,EAAE,MAAM,EAAE,KAAK,CAAC,EAAEH,EAAE6B,EAAE44D,GAAGv6D,EAAEC,EAAE,EAAE,CAAC,EAAE,OAAO,EAAE,eAAe,CAAC0B,EAAE,MAAM,EAAE,EAAEA,CAAC,CAAC,CAAC,IAAI8tE,GAAG,CAAC,WAAWrnF,GAAG,YAAY,MAAM,WAAWonF,EAAG,EAAME,GAAI1S,GAAGx0E,GAAGoX,GAAG,EAAEA,CAAC,EAAE+vE,GAAG,CAAC,WAAWnnF,GAAG,YAAY,MAAM,WAAWknF,EAAG,EAAE,SAASE,GAAIhwE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,OAAOK,CAAC,EAAE,EAAE,CAAC,aAAa,EAAE,iBAAiB,EAAE,KAAK0B,CAAC,EAAE3B,EAAEu4D,GAAGt4D,EAAE,gBAAgB,EAAE,IAAI2B,EAAEzD,EAAE,eAAe8B,EAAE,KAAK,EAAE,CAAC4B,EAAES,CAAC,EAAEX,EAAE,CAACY,EAAEC,EAAEC,EAAEC,CAAC,EAAEzC,EAAE,MAAM2D,EAAE9D,EAAE,KAAK,IAAIG,EAAE,MAAM,EAAE,OAAO,EAAE,IAAI,aAAa9B,EAAE,cAAc,CAACoE,EAAEV,EAAES,EAAEI,CAAC,CAAC,CAAC,EAAEwE,EAAE,CAAC,GAAGrF,EAAE,EAAEW,EAAE,EAAEA,EAAE,GAAGF,EAAE,EAAEG,EAAE,EAAEA,CAAC,EAAEiC,EAAE,CAAC,GAAG7C,EAAE,EAAEA,EAAE,EAAEA,EAAE,GAAGS,EAAE,EAAEA,EAAE,EAAEA,CAAC,EAAE+B,EAAE,EAAEC,EAAE4C,EAAE,CAAC,EAAExC,EAAE,CAAC,EAAEH,EAAE2C,EAAE,CAAC,EAAExC,EAAE,CAAC,EAAE,QAAQF,EAAE,EAAEA,EAAEjC,EAAEiC,IAAI,QAAQC,EAAE,EAAEA,EAAE5C,EAAE4C,IAAI,CAAC,IAAI0C,EAAE,EAAEA,EAAE7C,GAAGG,EAAE,IAAI,GAAG0C,EAAE7C,EAAEG,EAAE,IAAI,EAAE,KAAK,IAAI,EAAE,KAAK,MAAM0C,CAAC,CAAC,EAAEvC,EAAEuC,EAAE,EAAEtC,EAAE,KAAK,IAAIrC,EAAE,EAAE,KAAK,KAAK2E,CAAC,CAAC,EAAErC,EAAEN,EAAE5C,EAAE,CAAC,EAAE,EAAEA,EAAE,CAAC,EAAEmD,EAAEP,EAAE5C,EAAE,CAAC,EAAEiD,EAAEjD,EAAE,CAAC,EAAE,QAAQoD,EAAE,EAAEA,EAAE1C,EAAE0C,IAAI,CAAC,IAAIC,EAAE,EAAEA,EAAEV,GAAGS,EAAE,IAAI,GAAGC,EAAEV,EAAES,EAAE,IAAI4C,EAAE,KAAK,IAAI,EAAE,KAAK,MAAM3C,CAAC,CAAC,EAAEoC,EAAEpC,EAAE2C,EAAEC,EAAE,KAAK,IAAIpF,EAAE,EAAE,KAAK,KAAKwC,CAAC,CAAC,EAAE6C,EAAGhD,EAAE8C,EAAEhG,EAAE,CAAC,EAAEmG,EAAGhD,EAAE6C,EAAEhG,EAAE,CAAC,EAAEoG,GAAGlD,EAAE+C,EAAEjG,EAAE,CAAC,EAAEqG,GAAGlD,EAAE8C,EAAEjG,EAAE,CAAC,EAAE,QAAQsG,GAAG,EAAEA,GAAGxF,EAAEwF,KAAK,CAAC,IAAI5B,GAAG1C,EAAEkE,EAAGI,EAAE,EAAEE,GAAGxE,EAAEmE,EAAGG,EAAE,EAAEG,GAAGzE,EAAEoE,GAAGE,EAAE,EAAEI,GAAG1E,EAAEqE,GAAGC,EAAE,EAAEK,GAAGjC,IAAI+B,GAAG/B,IAAIe,EAAEmB,GAAGJ,IAAIE,GAAGF,IAAIf,EAAEoB,GAAGF,IAAIC,GAAGD,IAAI3D,EAAE,EAAEP,GAAG,EAAEoE,EAAE,CAAC,CAAC,CAAC,OAAO3I,EAAE,eAAe,CAACyC,EAAEV,EAAES,EAAEI,CAAC,EAAE,UAAU,CAAC,CAAC,CAAC,IAAImtE,GAAG,CAAC,WAAWhnF,GAAG,YAAY,MAAM,WAAW+mF,EAAG,EAAE,SAASE,GAAIlwE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,OAAOK,EAAE,GAAG,CAAC,EAAE,EAAE,CAAC,aAAa,CAAC,EAAED,EAAEu4D,GAAG,CAAC,EAAEt4D,CAAC,EAAE,oBAAoB,EAAE,IAAI0B,EAAExD,EAAE,eAAe8B,EAAE,KAAK,EAAE,CAAC2B,EAAEC,EAAES,EAAEC,CAAC,EAAEtC,EAAE,MAAM,CAAC,CAACuC,EAAEC,CAAC,EAAE,EAAE,MAAMC,EAAE,IAAI,aAAad,EAAEC,EAAES,EAAEC,CAAC,EAAEqB,EAAE,CAAC,GAAGpB,EAAE,EAAEX,EAAE,EAAEA,EAAE,GAAGY,EAAE,EAAEH,EAAE,EAAEA,CAAC,EAAE,EAAE,CAAC,GAAGE,EAAE,EAAEA,EAAE,EAAEA,EAAE,GAAGC,EAAE,EAAEA,EAAE,EAAEA,CAAC,EAAEyE,EAAEtD,EAAE,CAAC,EAAE,EAAE,CAAC,EAAEc,EAAEd,EAAE,CAAC,EAAE,EAAE,CAAC,EAAES,EAAEvE,EAAE,KAAK,IAAI,EAAE,MAAM,EAAE,OAAOwE,EAAE,EAAE,QAAQC,EAAE,EAAEA,EAAE3C,EAAE2C,IAAI,CAAC,IAAIC,EAAED,EAAE5C,EAAE,CAAC,EAAE,QAAQ8C,EAAE,EAAEA,EAAEjC,EAAEiC,IAAI,CAAC,IAAI0C,EAAE1C,EAAEyC,EAAE,EAAE,KAAK,MAAMC,CAAC,EAAEvC,EAAE,KAAK,IAAI,KAAK,KAAKuC,CAAC,EAAEtF,EAAE,CAAC,EAAEgD,EAAEL,EAAE,EAAE7C,EAAE,CAAC,EAAEmD,EAAEN,EAAEI,EAAEjD,EAAE,CAAC,EAAEoD,EAAEoC,EAAE,EAAEnC,EAAE,EAAED,EAAE,QAAQE,EAAE,EAAEA,EAAExC,EAAEwC,IAAI,CAAC,IAAI2C,EAAE3C,EAAEP,EAAE2C,EAAE,KAAK,MAAMO,CAAC,EAAEC,EAAE,KAAK,IAAI,KAAK,KAAKD,CAAC,EAAEtF,EAAE,CAAC,EAAEwF,EAAGF,EAAEP,EAAEU,EAAG,EAAED,EAAGE,GAAGnD,EAAEwC,EAAE1F,EAAE,CAAC,EAAEsG,GAAGpD,EAAEgD,EAAElG,EAAE,CAAC,EAAEuG,GAAGpD,EAAEuC,EAAE1F,EAAE,CAAC,EAAE2E,GAAGxB,EAAE+C,EAAElG,EAAE,CAAC,EAAEyG,GAAGpD,EAAE+C,EAAGM,GAAGrD,EAAE8C,EAAGQ,GAAGvD,EAAEgD,EAAGQ,GAAGxD,EAAE+C,EAAG,QAAQU,GAAG,EAAEA,GAAGjG,EAAEiG,KAAK,CAAC,IAAIC,GAAGpE,EAAEC,GAAG,EAAE5B,EAAEsF,GAAGQ,EAAE,GAAGC,GAAGL,GAAG1F,EAAEuF,GAAGO,EAAE,GAAGC,GAAGJ,GAAG3F,EAAEwF,GAAGM,EAAE,GAAGC,GAAGH,GAAG5F,EAAE4D,GAAGkC,EAAE,GAAGC,GAAGF,EAAE,CAAC,CAAC,CAAC,CAAC,OAAOzI,EAAE,eAAe,CAAC8B,EAAEU,EAAET,EAAEU,CAAC,EAAE,UAAUG,CAAC,CAAC,CAAC,IAAIqtE,GAAG,CAAC,WAAWjnF,GAAG,YAAY,MAAM,WAAWgnF,EAAG,EAAE,SAASE,GAAIpwE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,OAAOK,CAAC,EAAE,EAAE,CAAC,aAAa,EAAE,iBAAiB,EAAE,KAAK0B,CAAC,EAAE3B,EAAEu4D,GAAGt4D,EAAE,uBAAuB,EAAE,IAAI2B,EAAEzD,EAAE,eAAe8B,EAAE,KAAK,EAAE,CAAC4B,EAAES,CAAC,EAAEX,EAAE,CAACY,EAAEC,EAAEC,EAAEC,CAAC,EAAEzC,EAAE,MAAM2D,EAAE9D,EAAE,KAAK,IAAIG,EAAE,MAAM,EAAE,OAAO,EAAE,IAAI,aAAasC,EAAEV,EAAES,EAAEI,CAAC,EAAEwE,EAAE,CAAC,GAAGrF,EAAE,EAAEW,EAAE,EAAEA,EAAE,GAAGF,EAAE,EAAEG,EAAE,EAAEA,CAAC,EAAEiC,EAAE,CAAC,GAAG7C,EAAE,EAAEA,EAAE,EAAEA,EAAE,GAAGS,EAAE,EAAEA,EAAE,EAAEA,CAAC,EAAE+B,EAAE6C,EAAE,CAAC,EAAExC,EAAE,CAAC,EAAEJ,EAAE4C,EAAE,CAAC,EAAExC,EAAE,CAAC,EAAEH,EAAE,EAAE,QAAQC,EAAE,EAAEA,EAAEjC,EAAEiC,IAAI,CAAC,IAAIC,EAAED,EAAE5C,EAAE,CAAC,EAAE,QAAQuF,EAAE,EAAEA,EAAEtF,EAAEsF,IAAI,CAAC,IAAI,EAAE,EAAE9C,GAAG8C,EAAE,IAAI9C,EAAE8C,EAAEvC,EAAE,KAAK,IAAIpC,EAAE,EAAE,EAAE,KAAK,MAAM,CAAC,EAAE,KAAK,MAAM,CAAC,CAAC,EAAE,IAAIoC,EAAE,KAAK,IAAI,EAAEA,CAAC,GAAG,IAAIC,EAAEJ,EAAEG,EAAEhD,EAAE,CAAC,EAAE,QAAQkD,EAAE,EAAEA,EAAExC,EAAEwC,IAAI,CAAC,IAAIC,EAAE,EAAET,GAAGQ,EAAE,IAAIR,EAAEQ,EAAEE,EAAE,KAAK,IAAIvC,EAAE,EAAE,EAAE,KAAK,MAAMsC,CAAC,EAAE,KAAK,MAAMA,CAAC,CAAC,EAAE,IAAIC,EAAE,KAAK,IAAI,EAAEA,CAAC,GAAG,IAAIC,EAAEJ,EAAEG,EAAEpD,EAAE,CAAC,EAAE,QAAQgG,EAAE,EAAEA,EAAElF,EAAEkF,IAAI,CAAC,IAAIP,EAAEzD,EAAEqB,EAAE2C,CAAC,EAAE,EAAErD,GAAG,EAAE8C,CAAC,CAAC,CAAC,CAAC,CAAC,OAAOvH,EAAE,eAAe,CAACyC,EAAEV,EAAES,EAAEI,CAAC,EAAEzC,EAAE,MAAM,CAAC,CAAC,CAAC,IAAIgwE,GAAG,CAAC,WAAWlnF,GAAG,YAAY,MAAM,WAAWinF,EAAG,EAAE,SAASE,GAAItwE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,OAAOK,EAAE,GAAG,CAAC,EAAE,EAAE,CAAC,aAAa,CAAC,EAAED,EAAEu4D,GAAG,CAAC,EAAEt4D,CAAC,EAAE,2BAA2B,EAAE,IAAI0B,EAAExD,EAAE,eAAe8B,EAAE,KAAK,EAAE2B,EAAEzD,EAAE,eAAe,EAAE,KAAK,EAAE,CAAC0D,EAAES,EAAEC,EAAEC,CAAC,EAAEvC,EAAE,MAAM,CAAC,CAACwC,EAAEC,CAAC,EAAE,EAAE,MAAMkB,EAAE,IAAI,aAAa/B,EAAES,EAAEC,EAAEC,CAAC,EAAE,EAAE1C,EAAE,KAAK,IAAI,EAAE,MAAM,EAAE,OAAOoH,EAAE,CAAC,GAAGzE,EAAE,EAAEH,EAAE,EAAEA,EAAE,GAAGI,EAAE,EAAEH,EAAE,EAAEA,CAAC,EAAEmC,EAAE,CAAC,GAAGjC,EAAE,EAAEA,EAAE,EAAEA,EAAE,GAAGC,EAAE,EAAEA,EAAE,EAAEA,CAAC,EAAE2B,EAAE6C,EAAE,CAAC,EAAExC,EAAE,CAAC,EAAEJ,EAAE4C,EAAE,CAAC,EAAExC,EAAE,CAAC,EAAEH,EAAE,EAAEF,EAAEG,EAAE,EAAEF,EAAEG,EAAE,KAAK,KAAKF,CAAC,EAAE,EAAE,EAAE4C,EAAE,KAAK,KAAK3C,CAAC,EAAE,EAAE,EAAE,QAAQ,EAAE,EAAE,EAAE3C,EAAE,IAAI,CAAC,IAAI+C,EAAE,EAAEjD,EAAE,CAAC,EAAE,QAAQkD,EAAE,EAAEA,EAAEvC,EAAEuC,IAAI,CAAC,IAAIC,EAAEF,EAAEC,EAAElD,EAAE,CAAC,EAAEoD,EAAE,KAAK,MAAMF,EAAEN,CAAC,EAAES,EAAE,KAAK,MAAMD,EAAEN,EAAE,CAAC,EAAE,QAAQQ,EAAE,EAAEA,EAAE1C,EAAE0C,IAAI,CAAC,IAAI2C,EAAE9C,EAAEG,EAAEtD,EAAE,CAAC,EAAE0F,EAAE,KAAK,MAAMpC,EAAET,CAAC,EAAEqD,EAAE,KAAK,MAAMR,EAAEF,EAAE,CAAC,EAAE,QAAQW,EAAG,EAAEA,EAAGtF,EAAEsF,IAAK,CAAC,IAAIC,EAAG,EAAE,QAAQC,GAAG,EAAEA,GAAGvD,EAAEuD,KAAK,CAAC,IAAIC,GAAGD,GAAGhD,EAAE,GAAGiD,GAAG,GAAGA,IAAIxF,EAAE,SAAS,IAAIyF,GAAGtD,EAAEqD,GAAGrG,EAAE,CAAC,EAAE0E,GAAG2B,GAAG5D,EAAE+D,GAAG,KAAK,IAAI9F,EAAE,EAAE,EAAE,KAAK,MAAMgE,EAAE,EAAE,KAAK,MAAMA,EAAE,CAAC,EAAE,GAAGzB,IAAIuD,GAAG,QAAQC,GAAG,EAAEA,GAAGlB,EAAEkB,KAAK,CAAC,IAAIC,GAAGD,GAAGR,EAAE,GAAGS,GAAG,GAAGA,IAAI5F,EAAE,SAAS,IAAI6F,GAAGL,GAAGI,GAAG1G,EAAE,CAAC,EAAE4G,GAAGF,GAAGhE,EAAEmE,GAAG,KAAK,IAAIlG,EAAE,EAAE,EAAE,KAAK,MAAMiG,EAAE,EAAE,KAAK,MAAMA,EAAE,CAAC,EAAEvD,IAAIwD,KAAKV,GAAI,EAAEQ,GAAGT,CAAE,EAAE,CAAC,CAAClE,EAAEgE,EAAEE,CAAE,EAAEC,CAAE,CAAC,CAAC,CAAC,CAAC,OAAOjI,EAAE,eAAeG,EAAE,MAAMA,EAAE,MAAM2D,CAAC,CAAC,CAAC,IAAIusE,GAAG,CAAC,WAAWnnF,GAAG,YAAY,MAAM,WAAWknF,EAAG,EAAE,SAASE,GAAIxwE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,CAAC,EAAE,EAAE,CAAC,KAAK,CAAC,EAAED,EAAEu4D,GAAGt4D,EAAE,SAAS,EAAE,IAAI,EAAEA,EAAE,MAAM,OAAO0B,EAAExD,EAAE,eAAe,EAAE8B,EAAE,KAAK,EAAE,GAAG,IAAI,EAAE,OAAOi8D,GAAG,CAAC,OAAO,CAAC,EAAEj8D,CAAC,EAAE,QAAQH,CAAC,CAAC,EAAE,IAAI8B,EAAE,IAAIpW,GAAGyU,EAAE,MAAMA,EAAE,KAAK,EAAE4B,EAAE/B,EAAE,WAAWG,CAAC,EAAE,QAAQqC,EAAE,EAAEA,EAAEV,EAAE,KAAKU,IAAI,CAAC,IAAIC,EAAEX,EAAE,WAAWU,CAAC,EAAEE,EAAED,EAAE,MAAM,EAAEZ,EAAE,QAAQc,GAAGD,EAAEC,CAAC,EAAExC,EAAE,MAAMwC,CAAC,EAAE,EAAED,EAAEC,CAAC,CAAC,EAAEb,EAAE,IAAIC,EAAE,IAAI,GAAGW,CAAC,EAAE,GAAGD,CAAC,CAAC,CAAC,OAAOzC,EAAE,eAAe8B,EAAE,MAAMA,EAAE,MAAMA,EAAE,MAAM,CAAC,CAAC,IAAIyuE,GAAG,CAAC,WAAWpnF,GAAG,YAAY,MAAM,WAAWmnF,EAAG,EAAME,GAAG,CAAC,WAAWpnF,GAAG,YAAY,MAAM,WAAW,CAAC,CAAC,OAAO0W,EAAE,MAAM,EAAE,QAAQE,CAAC,IAAI,CAAC,GAAG,CAAC,MAAME,CAAC,EAAEJ,EAAE,CAAC,QAAQK,EAAE,UAAU,EAAE,OAAO,CAAC,EAAE,EAAE0B,EAAE7B,EAAE8B,EAAEzD,EAAE,uBAAuB6B,EAAE,MAAM7B,EAAE,cAAc6B,EAAE,KAAK,CAAC,EAAE,CAAC6B,EAAES,EAAEC,EAAEC,CAAC,EAAExC,EAAE,MAAM,CAACyC,EAAEC,CAAC,EAAEpV,EAAE,eAAe,EAAEgV,EAAEC,CAAC,EAAEqB,EAAE,IAAI,EAAE,KAAK,IAAI3D,CAAC,EAAEiH,EAAE,KAAK,IAAIjH,CAAC,EAAEyE,EAAE/C,EAAE,KAAK,IAAI3B,EAAE,MAAM,EAAE,OAAO,QAAQsE,EAAE,EAAEA,EAAEzC,EAAEyC,IAAI,CAAC,IAAIC,EAAED,EAAE/B,EAAED,EAAEE,EAAE,QAAQgC,EAAE,EAAEA,EAAElC,EAAEkC,IAAI,CAAC,IAAIC,EAAED,GAAGjC,EAAEC,GAAG,QAAQ2E,EAAE,EAAEA,EAAE5E,EAAE4E,IAAI,CAAC,IAAIxC,EAAEwC,EAAE3E,EAAE,QAAQoC,EAAE,EAAEA,EAAEpC,EAAEoC,IAAI,CAAC,IAAIC,EAAE,CAAChD,EAAE2C,EAAE2C,EAAEvC,CAAC,EAAEE,EAAED,EAAE,CAAC,EAAEE,EAAEF,EAAE,CAAC,EAAEG,GAAGF,EAAErC,GAAGyE,GAAGnC,EAAErC,GAAG,EAAEuC,GAAGH,EAAErC,GAAG,GAAGsC,EAAErC,GAAGwE,EAAElC,EAAE,KAAK,MAAMA,EAAEvC,CAAC,EAAEwC,EAAE,KAAK,MAAMA,EAAEvC,CAAC,EAAE,IAAIkF,EAAE,EAAE,GAAG,OAAO,GAAG,WAAWhD,IAAI,EAAEgD,EAAEhE,EAAEgE,EAAE,EAAEhD,CAAC,GAAGI,GAAG,GAAGA,EAAEzC,GAAG0C,GAAG,GAAGA,EAAE3C,EAAE,CAAC,IAAIuF,EAAE5C,GAAG1C,EAAEC,GAAGsF,EAAG9C,EAAExC,EAAEuF,EAAGxD,EAAEsD,EAAEC,EAAGlD,EAAEgD,EAAElD,EAAEqD,CAAE,CAAC,CAAC,IAAIV,EAAE9C,EAAEE,EAAEE,EAAEC,EAAEhD,EAAEyF,CAAC,EAAEO,CAAC,CAAC,CAAC,CAAC,CAAC,MAAM,CAAC,OAAOjG,EAAE,MAAMC,EAAE5B,EAAE,MAAMA,EAAE,KAAK,EAAE,MAAMA,EAAE,MAAM,MAAMA,EAAE,KAAK,CAAC,CAAC,EAAMuwE,GAAIvT,GAAG7zE,GAAGyW,GAAG,CAAC,IAAI,EAAE,KAAK,MAAMA,CAAC,EAAE,OAAOA,EAAE,EAAE,GAAG,KAAK,MAAMA,CAAC,EAAEA,EAAE,EAAE,GAAG,KAAK,KAAKA,CAAC,EAAE,EAAE,IAAI,EAAE,EAAE,EAAE,CAAC,CAAC,EAAE4wE,GAAG,CAAC,WAAWrnF,GAAG,YAAY,MAAM,WAAWonF,EAAG,EAAE,SAASE,GAAI7wE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,QAAQK,EAAE,QAAQ,CAAC,EAAE,EAAE,CAAC,MAAM,CAAC,EAAED,EAAE,CAAC,UAAU2B,EAAE,WAAWC,EAAE,UAAUC,EAAE,QAAQS,EAAE,WAAWC,CAAC,EAAEjV,EAAE,gBAAgB,EAAE2S,EAAE,CAAC,EAAEuC,EAAE,GAAGC,EAAE3C,EAAE,WAAWG,CAAC,EAAEyC,EAAE5C,EAAE,WAAW,CAAC,EAAE8D,EAAE62D,GAAGh4D,EAAEC,EAAE,EAAEH,EAAEV,EAAED,EAAED,EAAEW,EAAE,EAAEE,CAAC,EAAE,OAAO1C,EAAE,eAAe,EAAE8D,EAAE,MAAMA,EAAE,MAAM,CAAC,CAAC,IAAI8sE,GAAG,CAAC,WAAWpnF,GAAG,YAAY,MAAM,WAAWmnF,EAAG,EAAE,SAASE,GAAI/wE,EAAE,EAAE,CAAC,IAAIE,EAAE,EAAEE,EAAEJ,EAAE,OAAOK,EAAE,EAAE,KAAKH,EAAEE,GAAGC,EAAE,KAAK,OAAOH,EAAEE,GAAG,CAAC,EAAEJ,EAAEK,CAAC,EAAE,EAAEH,EAAEG,EAAE,EAAED,EAAEC,EAAE,OAAOD,CAAC,CAAC,SAAS4wE,GAAIhxE,EAAE,EAAE,CAAC,IAAIE,EAAE,EAAEE,EAAEJ,EAAE,OAAOK,EAAE,EAAE,KAAKH,EAAEE,GAAGC,EAAE,KAAK,OAAOH,EAAEE,GAAG,CAAC,EAAEJ,EAAEK,CAAC,GAAG,EAAEH,EAAEG,EAAE,EAAED,EAAEC,EAAE,OAAOD,CAAC,CAAC,SAAS6wE,GAAGjxE,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,CAAC,IAAI,EAAE9B,EAAE,kBAAkB,QAAQ2B,EAAEG,CAAC,EAAE,QAAQ0B,EAAE,EAAEA,EAAE7B,EAAE,EAAE6B,EAAE,CAAC,IAAIC,EAAEhC,EAAE,MAAM+B,EAAE3B,GAAG2B,EAAE,GAAG3B,CAAC,EAAE6B,EAAEF,EAAE1B,EAAE,QAAQqC,EAAE,EAAEA,EAAErC,EAAE,EAAEqC,EAAE,EAAET,EAAES,CAAC,EAAE,IAAI,OAAOquE,GAAI/uE,EAAE,EAAEU,EAAET,CAAC,CAAC,EAAE+uE,GAAIhvE,EAAE,EAAEU,EAAET,CAAC,CAAC,CAAC,CAAC,OAAO,CAAC,CAAC,SAASivE,GAAIlxE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,eAAeK,EAAE,OAAO,CAAC,EAAE,EAAE,CAAC,KAAK,CAAC,EAAED,EAAE2B,EAAE7B,EAAE,KAAK,IAAIG,EAAE,MAAM,EAAE,OAAO2B,EAAE9B,EAAE,KAAK,IAAI,EAAE,MAAM,EAAE,OAAO+B,EAAEgvE,GAAGlvE,EAAEC,EAAE3B,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAE,EAAE,MAAM,CAAC,EAAE,CAAC,EAAE,OAAOH,EAAE,eAAe,EAAE,MAAM,QAAQ+B,CAAC,CAAC,CAAC,IAAIkvE,GAAG,CAAC,WAAWxnF,GAAG,YAAY,MAAM,WAAWunF,EAAG,EAAE,SAASE,GAAIpxE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,CAAC,EAAEF,EAAE,CAAC,UAAUI,EAAE,EAAEC,EAAE,EAAE,CAAC,EAAE,EAAEs4D,GAAG,CAACv4D,EAAEC,EAAE,CAAC,EAAE,QAAQ,EAAE,IAAI,EAAED,EAAE,MAAM,OAAO2B,EAAE7B,EAAE,KAAK,IAAIE,EAAE,MAAM,EAAE,OAAO4B,EAAE9B,EAAE,KAAK,IAAIG,EAAE,MAAM,EAAE,OAAO4B,EAAE/B,EAAE,KAAK,IAAI,EAAE,MAAM,EAAE,OAAOwC,EAAErE,GAAGgC,EAAE,MAAM,EAAE,KAAK,EAAEsC,EAAEpE,EAAE,oBAAoBA,EAAE,cAAc8B,EAAE,KAAK,EAAEqC,CAAC,EAAEE,EAAE,EAAEC,EAAE,IAAI,GAAG,EAAE,GAAGxC,EAAE,MAAM,SAAS,EAAE,EAAE9B,EAAE,cAAc8B,EAAE,MAAM,MAAM,CAAC,CAAC,EAAE,QAAQyC,EAAE,EAAEA,EAAEf,EAAE,OAAOe,IAAI,QAAQkB,EAAE,EAAEA,EAAEnB,EAAEmB,IAAIjC,EAAEe,CAAC,IAAI,EAAEH,EAAEC,GAAG,EAAEZ,EAAEc,CAAC,EAAEH,EAAEC,GAAG,EAAEX,EAAEa,CAAC,EAAE,OAAO5C,EAAE,eAAeG,EAAE,MAAMqC,EAAEC,CAAC,CAAC,CAAC,IAAI0uE,GAAG,CAAC,WAAWznF,GAAG,YAAY,MAAM,WAAWwnF,EAAG,EAAME,GAAI5jF,EAAE,gBAAgB6jF,GAAI7jF,EAAE,WAAW8jF,GAAIpU,GAAGvzE,GAAGmW,GAAGA,GAAG,EAAEuxE,GAAIvxE,EAAEsxE,IAAK,KAAK,IAAItxE,CAAC,EAAE,EAAE,EAAEyxE,GAAG,CAAC,WAAW5nF,GAAG,YAAY,MAAM,WAAW2nF,EAAG,EAAME,GAAItU,GAAGpzE,GAAGgW,GAAGA,EAAE,EAAE,GAAGA,EAAE,EAAE,EAAE,CAAC,EAAE2xE,GAAG,CAAC,WAAW3nF,GAAG,YAAY,MAAM,WAAW0nF,EAAG,EAAME,GAAIxU,GAAGnzE,GAAG+V,GAAG,KAAK,IAAIA,CAAC,CAAC,EAAE6xE,GAAG,CAAC,WAAW5nF,GAAG,YAAY,MAAM,WAAW2nF,EAAG,EAAME,GAAI1U,GAAGlzE,GAAG8V,GAAG,KAAK,KAAKA,CAAC,CAAC,EAAE+xE,GAAG,CAAC,WAAW7nF,GAAG,YAAY,MAAM,WAAW4nF,EAAG,EAAME,GAAI,sBAAsBC,GAAG,KAAK,IAAID,EAAG,EAAE,EAAEE,GAAI9U,GAAG/yE,GAAG2V,GAAG,CAAC,IAAI,EAAEA,EAAE,CAACiyE,GAAG/xE,EAAEF,EAAEiyE,GAAG7xE,EAAE,KAAK,IAAIJ,CAAC,EAAEK,EAAE,OAAOH,EAAEG,EAAED,EAAE,EAAEC,EAAEL,EAAEK,EAAE,KAAK,IAAI,EAAED,CAAC,EAAEC,CAAC,CAAC,EAAE8xE,GAAG,CAAC,WAAW9nF,GAAG,YAAY,MAAM,WAAW6nF,EAAG,EAAE,SAASE,GAAIpyE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,CAAC,EAAE,EAAE,CAAC,WAAW,EAAE,SAAS,CAAC,EAAED,EAAEu4D,GAAG,CAACt4D,CAAC,EAAE,gBAAgB,EAAE,IAAI0B,EAAExD,EAAE,cAAc,CAAC,EAAEyD,EAAE,CAAC,CAAC,EAAE,CAAC,CAAC,EAAEA,EAAE,KAAK,GAAG,CAAC,EAAE,QAAQ4C,EAAE,EAAE,EAAE,OAAOA,EAAEvE,EAAE,MAAM,OAAO,EAAEuE,EAAE5C,EAAE,KAAK,CAAC,EAAE,CAAC,CAAC,EAAE,IAAIC,EAAEitE,GAAG,WAAW,CAAC,OAAO,CAAC,EAAE7uE,CAAC,EAAE,QAAQH,EAAE,MAAM,CAAC,SAAS8B,EAAE,cAAc,CAAC,CAAC,CAAC,EAAEU,EAAEhV,EAAE,YAAYuU,EAAE,MAAM,EAAEF,EAAE,EAAE,EAAEY,EAAEjV,EAAE,YAAYgV,EAAE,OAAO,EAAE,OAAO,EAAE,EAAEE,EAAElV,EAAE,oBAAoBuU,EAAE,MAAM,EAAEF,EAAE,EAAE,EAAE,EAAEugE,GAAG,CAAC,OAAO,CAAC,EAAErgE,CAAC,EAAE,QAAQ/B,EAAE,MAAM,CAAC,MAAMwC,CAAC,CAAC,CAAC,EAAEoC,EAAEy6D,GAAG,CAAC,OAAO,CAAC,EAAE,CAAC,EAAE,QAAQr/D,EAAE,MAAM,CAAC,KAAKyC,CAAC,CAAC,CAAC,EAAEgC,EAAE29D,GAAG,CAAC,OAAO,CAAC,EAAEx9D,CAAC,EAAE,QAAQ5E,EAAE,MAAM,CAAC,MAAM0C,CAAC,CAAC,CAAC,EAAE,OAAO1C,EAAE,8BAA8B+B,CAAC,EAAE/B,EAAE,8BAA8B,CAAC,EAAEA,EAAE,8BAA8B4E,CAAC,EAAEH,CAAC,CAAC,IAAI0tE,GAAG,CAAC,WAAW/nF,GAAG,YAAY,MAAM,WAAW8nF,EAAG,EAAE,SAASE,GAAItyE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,CAAC,EAAEF,EAAE,CAAC,QAAQI,EAAE,OAAOC,EAAE,WAAW,EAAE,aAAa,CAAC,EAAE,EAAE,GAAG,EAAE,MAAM,SAAS,EAAE,MAAM,IAAI,MAAM;AAAA,UAC3kyG,EAAE,KAAK,EAAE,EAAE,GAAGD,EAAE,MAAM,SAAS,EAAE,MAAM,IAAI,MAAM;AAAA,UACjDA,EAAE,KAAK,EAAE,EAAE,GAAGC,EAAE,MAAM,SAAS,EAAE,MAAM,IAAI,MAAM;AAAA,UACjDA,EAAE,KAAK,EAAE,EAAE,GAAG,EAAE,MAAM,SAAS,EAAE,MAAM,IAAI,MAAM;AAAA,UACjD,EAAE,KAAK,EAAE,EAAE,IAAI0B,EAAE7B,EAAE,KAAK,IAAIE,EAAE,MAAM,EAAE,OAAO4B,EAAE9B,EAAE,KAAK,IAAIG,EAAE,MAAM,EAAE,OAAO4B,EAAE/B,EAAE,KAAK,IAAI,EAAE,MAAM,EAAE,OAAOwC,EAAExC,EAAE,KAAK,IAAI,EAAE,MAAM,EAAE,OAAO,CAAC,EAAE,CAACyC,EAAEC,EAAEC,EAAEC,EAAEkB,CAAC,EAAEi3D,GAAGl5D,EAAE3B,EAAE,MAAMA,EAAE,MAAM4B,EAAE3B,EAAE,MAAM4B,EAAES,CAAC,EAAE,MAAM,CAACxC,EAAE,eAAe0C,EAAExC,EAAE,MAAMuC,CAAC,EAAEzC,EAAE,eAAe,CAAC0C,EAAE,CAAC,CAAC,EAAEvC,EAAE,MAAMwC,CAAC,EAAE3C,EAAE,eAAe,CAAC4C,EAAE,MAAM,EAAE,OAAO,IAAI,WAAWA,EAAE,IAAI,GAAG,OAAO,CAAC,CAAC,CAAC,CAAC,EAAE5C,EAAE,eAAe,CAAC8D,EAAE,MAAM,EAAE5D,EAAE,MAAM,IAAI,WAAW4D,CAAC,CAAC,CAAC,CAAC,CAAC,IAAIuuE,GAAG,CAAC,WAAWhoF,GAAG,YAAY,MAAM,WAAW+nF,EAAG,EAAE,SAASE,GAAIxyE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,CAAC,EAAEF,EAAE,CAAC,aAAaI,EAAE,WAAWC,EAAE,SAAS,CAAC,EAAE,EAAE,GAAGD,EAAE,MAAM,SAAS,EAAE,MAAM,IAAI,MAAM;AAAA,UACrjBA,EAAE,KAAK,EAAE,EAAE,GAAGC,EAAE,MAAM,SAAS,EAAE,MAAM,IAAI,MAAM;AAAA,UACjDA,EAAE,KAAK,EAAE,EAAE,GAAG,EAAE,MAAM,SAAS,EAAE,MAAM,IAAI,MAAM,sDAAsD,EAAE,KAAK,EAAE,EAAE,IAAI,EAAE,MAAM,KAAKH,EAAE,KAAK,IAAIG,EAAE,MAAM,EAAE,MAAM,EAAE0B,EAAE7B,EAAE,KAAK,IAAIE,EAAE,MAAM,EAAE,OAAO4B,EAAE,MAAM,KAAK9B,EAAE,KAAK,IAAI,EAAE,MAAM,EAAE,MAAM,EAAE,CAAC+B,EAAES,EAAEC,CAAC,EAAEu4D,GAAGn5D,EAAE3B,EAAE,MAAMA,EAAE,MAAM,EAAE4B,CAAC,EAAE,MAAM,CAAC9B,EAAE,eAAewC,EAAEtC,EAAE,MAAM6B,CAAC,EAAE/B,EAAE,eAAe,CAACyC,EAAE,MAAM,EAAE,EAAE,MAAM,IAAI,WAAWA,CAAC,CAAC,CAAC,CAAC,CAAC,IAAI8vE,GAAG,CAAC,WAAWjoF,GAAG,YAAY,MAAM,WAAWgoF,EAAG,EAAE,SAASE,GAAI1yE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,CAAC,EAAEF,EAAE,CAAC,KAAKI,EAAE,QAAQC,EAAE,WAAW,CAAC,EAAE,EAAE,GAAGD,EAAE,MAAM,OAAO,EAAE,MAAM,IAAI,MAAM,2DAA2D,EAAE,GAAGC,EAAE,MAAM,SAAS,EAAE,MAAM,IAAI,MAAM;AAAA,YAChnBA,EAAE,KAAK,EAAE,EAAE,GAAG,EAAE,MAAM,SAAS,EAAE,MAAM,IAAI,MAAM;AAAA,YACjD,EAAE,KAAK,EAAE,EAAE,GAAGA,EAAE,MAAM,CAAC,IAAI,EAAE,MAAM,CAAC,EAAE,MAAM,IAAI,MAAM,+CAA+C,EAAE,IAAI,EAAEH,EAAE,KAAK,IAAIE,EAAE,MAAM,EAAE,OAAO2B,EAAE7B,EAAE,KAAK,IAAIG,EAAE,MAAM,EAAE,OAAO2B,EAAE9B,EAAE,KAAK,IAAI,EAAE,MAAM,EAAE,OAAO,CAAC+B,EAAES,CAAC,EAAEy4D,GAAG,EAAE/6D,EAAE,MAAMA,EAAE,MAAM2B,EAAEC,EAAE,EAAE,EAAE,OAAO9B,EAAE,eAAewC,EAAEtC,EAAE,MAAM6B,CAAC,CAAC,CAAC,IAAI0wE,GAAG,CAAC,WAAWloF,GAAG,YAAY,MAAM,WAAWioF,EAAG,EAAE,SAASE,GAAI5yE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,CAAC,EAAEF,EAAE,CAAC,KAAKI,EAAE,QAAQC,EAAE,WAAW,CAAC,EAAE,EAAE,GAAGD,EAAE,MAAM,OAAO,EAAE,MAAM,IAAI,MAAM,2DAA2D,EAAE,GAAGC,EAAE,MAAM,SAAS,EAAE,MAAM,IAAI,MAAM;AAAA,WACzhBA,EAAE,KAAK,EAAE,EAAE,GAAG,EAAE,MAAM,SAAS,EAAE,MAAM,IAAI,MAAM;AAAA,WACjD,EAAE,KAAK,EAAE,EAAE,GAAGA,EAAE,MAAM,CAAC,IAAI,EAAE,MAAM,CAAC,EAAE,MAAM,IAAI,MAAM,+CAA+C,EAAE,IAAI,EAAEH,EAAE,KAAK,IAAIE,EAAE,MAAM,EAAE,OAAO2B,EAAE7B,EAAE,KAAK,IAAIG,EAAE,MAAM,EAAE,OAAO2B,EAAE9B,EAAE,KAAK,IAAI,EAAE,MAAM,EAAE,OAAO,CAAC+B,EAAES,CAAC,EAAEy4D,GAAG,EAAE/6D,EAAE,MAAMA,EAAE,MAAM2B,EAAEC,CAAC,EAAE,OAAO9B,EAAE,eAAewC,EAAEtC,EAAE,MAAM6B,CAAC,CAAC,CAAC,IAAI4wE,GAAG,CAAC,WAAWnoF,GAAG,YAAY,MAAM,WAAWkoF,EAAG,EAAE,SAASE,GAAI9yE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,cAAcK,EAAE,aAAa,EAAE,aAAa,CAAC,EAAE,EAAE,CAAC,YAAY0B,CAAC,EAAE3B,EAAE,CAAC,UAAU4B,EAAE,WAAWC,EAAE,UAAUS,EAAE,QAAQC,EAAE,WAAWC,CAAC,EAAElV,EAAE,gBAAgB,EAAE2S,EAAE0B,CAAC,EAAEc,EAAE,GAAGC,EAAE5C,EAAE,WAAWG,CAAC,EAAE2D,EAAE,OAAO,EAAE,MAAM,CAAC,IAAI,OAAO,CAAC,IAAI,EAAE9D,EAAE,WAAW,CAAC,EAAEoH,EAAE,CAAC,CAACpH,EAAE,KAAK,IAAI,EAAE,MAAM,EAAE,OAAO,CAAC,EAAE8D,EAAE62D,GAAG/3D,EAAE,EAAEf,EAAEa,EAAEF,EAAET,EAAED,EAAEW,EAAE2E,EAAEzE,CAAC,EAAE,KAAK,CAAC,IAAI,UAAU,CAAC,IAAI,EAAE3C,EAAE,WAAW,CAAC,EAAEoH,EAAEpH,EAAE,KAAK,IAAI,EAAE,MAAM,EAAE,OAAO,CAAC,EAAE8D,EAAE62D,GAAG/3D,EAAE,EAAEf,EAAEa,EAAEF,EAAET,EAAED,EAAEW,EAAE2E,EAAEzE,CAAC,EAAE,KAAK,CAAC,IAAI,QAAQ,CAAC,IAAI,EAAE3C,EAAE,WAAW,CAAC,EAAEoH,EAAEpH,EAAE,KAAK,IAAI,EAAE,MAAM,EAAE,OAAO,CAAC,EAAE8D,EAAE62D,GAAG/3D,EAAE,EAAEf,EAAEa,EAAEF,EAAET,EAAED,EAAEW,EAAE2E,EAAEzE,CAAC,EAAE,KAAK,CAAC,IAAI,SAAS,CAAC,IAAI,EAAE3C,EAAE,WAAW,CAAC,EAAEoH,EAAE/I,EAAE,aAAa2B,EAAE,KAAK,IAAI,EAAE,MAAM,EAAE,OAAO,CAAC,CAAC,EAAE8D,EAAE62D,GAAG/3D,EAAE,EAAEf,EAAEa,EAAEF,EAAET,EAAED,EAAEW,EAAE2E,EAAEzE,CAAC,EAAE,KAAK,CAAC,QAAQ,MAAM,IAAI,MAAM,oBAAoB,EAAE,KAAK,EAAE,CAAC,CAAC,OAAO3C,EAAE,eAAe6B,EAAEiC,EAAE,MAAMA,EAAE,MAAM,CAAC,CAAC,IAAI+uE,GAAG,CAAC,WAAWpoF,GAAG,YAAY,MAAM,WAAWmoF,EAAG,EAAE,SAASE,GAAIhzE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,CAAC,EAAE,EAAE,CAAC,gBAAgB,EAAE,KAAK,CAAC,EAAED,EAAE2B,EAAExD,EAAE,eAAe,EAAE8B,EAAE,KAAK,EAAE,CAAC,EAAE2B,EAAEtU,EAAE,iBAAiB2S,EAAE,EAAE0B,CAAC,EAAEE,EAAE,IAAI,MAAM5B,EAAE,MAAM,MAAM,EAAE,KAAK,CAAC,EAAEqC,EAAErC,EAAE,MAAM,MAAM,EAAE,OAAO2B,EAAE,IAAIW,GAAG,CAAC,IAAIC,EAAE,CAAC,GAAGF,CAAC,EAAEE,EAAEb,CAAC,EAAEY,EAAE,IAAIE,EAAE89D,GAAG,CAAC,OAAO,CAAC,EAAEtgE,CAAC,EAAE,QAAQH,EAAE,MAAM,CAAC,MAAM+B,EAAE,KAAKW,CAAC,CAAC,CAAC,EAAE,OAAOX,EAAEF,CAAC,GAAGY,EAAEE,CAAC,CAAC,CAAC,CAAC,IAAIowE,GAAG,CAAC,WAAWroF,GAAG,YAAY,MAAM,WAAWooF,EAAG,EAAME,GAAG,CAAC,WAAWpoF,GAAG,YAAY,MAAM,WAAW,CAAC,CAAC,OAAOkV,EAAE,QAAQ,CAAC,IAAI,CAAC,GAAG,CAAC,EAAEE,CAAC,EAAEF,EAAEI,EAAE,EAAEu4D,GAAGz4D,EAAE,QAAQ,EAAE,IAAIG,EAAED,EAAE,KAAK,IAAIF,EAAE,MAAM,EAAE,OAAO,EAAE,IAAI,aAAaG,EAAE,MAAM,EAAE,QAAQ0B,EAAE,EAAEA,EAAE1B,EAAE,OAAO,EAAE0B,EAAE,CAAC,IAAIC,EAAE3B,EAAE0B,CAAC,EAAE,EAAEA,CAAC,EAAEC,EAAEA,CAAC,CAAC,MAAM,CAAC,OAAO5B,EAAE,MAAM,EAAEF,EAAE,MAAMA,EAAE,KAAK,EAAE,MAAMA,EAAE,MAAM,MAAMA,EAAE,KAAK,CAAC,CAAC,EAAMizE,GAAI/V,GAAGnyE,GAAG,CAAC+U,EAAE,IAAI,CAAC,IAAIE,EAAE,EAAE,OAAO,MAAMF,CAAC,EAAE,IAAIA,EAAE,EAAE,EAAEE,EAAE,KAAK,CAAC,EAAEkzE,GAAG,CAAC,WAAWnoF,GAAG,YAAY,MAAM,WAAWkoF,EAAG,EAAE,SAASE,GAAIrzE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,CAAC,EAAE,EAAE,CAAC,MAAM,EAAE,IAAI,EAAE,QAAQ0B,EAAE,UAAUC,EAAE,QAAQC,EAAE,aAAaS,EAAE,YAAYC,EAAE,eAAeC,CAAC,EAAExC,EAAEu4D,GAAGt4D,EAAE,cAAc,EAAE,GAAG,CAAC,iBAAiBwC,EAAE,WAAWC,EAAE,WAAWkB,EAAE,UAAU,EAAE,cAAcsD,EAAE,MAAMxC,EAAE,IAAIL,EAAE,QAAQC,CAAC,EAAEhJ,GAAG,UAAU2E,EAAE,MAAM,EAAE,EAAE0B,EAAEC,EAAEC,EAAES,EAAEC,EAAEC,CAAC,EAAE+B,EAAE,GAAGX,EAAEW,EAAE29D,GAAG,CAAC,OAAO,CAAC,EAAEjiE,CAAC,EAAE,QAAQH,EAAE,MAAM,CAAC,MAAM4C,CAAC,CAAC,CAAC,UAAU,GAAGwE,EAAE,CAAC/I,EAAE,OAAO8B,EAAE,MAAM,QAAQ,EAAE,IAAI,yCAAyCA,EAAE,MAAM,MAAM,EAAE,EAAE,IAAIuE,EAAElJ,GAAG,gBAAgBoJ,EAAEL,EAAEC,CAAC,EAAEG,EAAE87D,GAAG,CAAC,OAAO,CAAC,EAAEtgE,CAAC,EAAE,QAAQH,EAAE,MAAM,CAAC,MAAM4E,EAAE,KAAKF,CAAC,CAAC,CAAC,EAAED,EAAE29D,GAAG,CAAC,OAAO,CAAC,EAAEz9D,CAAC,EAAE,QAAQ3E,EAAE,MAAM,CAAC,MAAM4C,CAAC,CAAC,CAAC,EAAE5C,EAAE,8BAA8B2E,CAAC,CAAC,KAAK,CAAC,IAAID,EAAE1E,EAAE,WAAWG,CAAC,EAAEwE,EAAE02D,GAAG14D,EAAE+B,EAAEF,EAAEI,CAAC,EAAEH,EAAEzE,EAAE,eAAe4C,EAAE+B,EAAE,MAAMA,EAAE,MAAM,CAAC,CAAC,OAAOF,CAAC,CAAC,IAAI2uE,GAAG,CAAC,WAAWpoF,GAAG,YAAY,MAAM,WAAWmoF,EAAG,EAAE,SAASE,GAAIvzE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,UAAUK,EAAE,YAAY,EAAE,QAAQ,EAAE,SAAS0B,EAAE,SAASC,EAAE,uBAAuBC,CAAC,EAAE7B,EAAE,CAAC,KAAKsC,EAAE,WAAWC,CAAC,EAAE,EAAEC,EAAE1C,EAAE,KAAK,IAAIwC,EAAE,MAAM,EAAE,OAAOG,EAAE3C,EAAE,KAAK,IAAIyC,EAAE,MAAM,EAAE,OAAO,CAACG,EAAEkB,CAAC,EAAEw3D,GAAG54D,EAAEC,EAAExC,EAAE,EAAE,EAAE0B,EAAEC,EAAEC,CAAC,EAAE,MAAM,CAAC/B,EAAE,eAAe,CAAC4C,EAAE,MAAM,EAAE,SAASA,CAAC,EAAE5C,EAAE,eAAeyC,EAAE,MAAM,QAAQqB,CAAC,CAAC,CAAC,CAAC,IAAIwvE,GAAG,CAAC,WAAWroF,GAAG,YAAY,MAAM,WAAWooF,EAAG,EAAE,SAASE,GAAIzzE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,UAAUK,CAAC,EAAED,EAAE,CAAC,MAAM,EAAE,UAAU,CAAC,EAAE,EAAE,GAAG,EAAE,QAAQ,SAAS,MAAM,IAAI,MAAM,kCAAkC,EAAE,GAAG,EAAE,MAAM,SAAS,EAAE,MAAM,IAAI,MAAM,sCAAsC,EAAE,KAAK,EAAE,EAAE,GAAG,EAAE,MAAM,SAAS,EAAE,MAAM,IAAI,MAAM,0CAA0C,EAAE,KAAK,EAAE,EAAE,IAAI2B,EAAE7B,EAAE,KAAK,IAAI,EAAE,MAAM,EAAE,OAAO8B,EAAE9B,EAAE,KAAK,IAAI,EAAE,MAAM,EAAE,OAAO,CAAC,EAAE,CAAC+B,EAAES,EAAEC,CAAC,EAAE84D,GAAG15D,EAAEC,EAAE3B,CAAC,EAAEuC,EAAEF,EAAE,OAAO,MAAM,CAACxC,EAAE,eAAe,CAAC0C,EAAE,CAAC,EAAE,QAAQX,CAAC,EAAE/B,EAAE,eAAe,CAAC0C,CAAC,EAAE,SAASF,CAAC,EAAExC,EAAE,eAAe,CAAC,CAAC,EAAE,QAAQ,IAAI,WAAWyC,CAAC,CAAC,CAAC,CAAC,CAAC,IAAI+wE,GAAG,CAAC,WAAWtoF,GAAG,YAAY,MAAM,WAAWqoF,EAAG,EAAE,SAASE,GAAI3zE,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,WAAWK,CAAC,EAAED,EAAE,CAAC,MAAM,CAAC,EAAE,EAAE,GAAG,EAAE,QAAQ,SAAS,MAAM,IAAI,MAAM,kCAAkC,EAAE,GAAGC,GAAG,EAAE,MAAM,IAAI,MAAM,sCAAsC,EAAE,IAAI,EAAEH,EAAE,KAAK,IAAI,EAAE,MAAM,EAAE,OAAO6B,EAAE25D,GAAG,EAAEr7D,CAAC,EAAE,OAAOH,EAAE,eAAe,EAAE,MAAM,QAAQ6B,CAAC,CAAC,CAAC,IAAI6xE,GAAG,CAAC,WAAWvoF,GAAG,YAAY,MAAM,WAAWsoF,EAAG,EAAME,GAAIzW,GAAG3xE,GAAGuU,GAAG,KAAK,IAAIA,CAAC,CAAC,EAAE8zE,GAAG,CAAC,WAAWroF,GAAG,YAAY,MAAM,WAAWooF,EAAG,EAAME,GAAI3W,GAAG1xE,GAAGsU,GAAG,KAAK,KAAKA,CAAC,CAAC,EAAEg0E,GAAG,CAAC,WAAWtoF,GAAG,YAAY,MAAM,WAAWqoF,EAAG,EAAE,SAASE,GAAIj0E,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,CAAC,EAAEF,EAAE,CAAC,OAAOI,EAAE,QAAQC,EAAE,QAAQ,CAAC,EAAE,EAAE,CAAC,UAAU,EAAE,WAAW0B,EAAE,UAAUC,EAAE,QAAQC,EAAE,WAAWS,CAAC,EAAEhV,EAAE,gBAAgB,EAAE2S,EAAED,EAAE,KAAK,EAAEuC,EAAE,GAAGC,EAAE1C,EAAE,WAAWG,CAAC,EAAEwC,EAAE3C,EAAE,WAAW,CAAC,EAAE4C,EAAE5C,EAAE,WAAWE,CAAC,EAAE4D,EAAE62D,GAAGj4D,EAAEC,EAAEzC,EAAE,MAAMsC,EAAEV,EAAED,EAAE,EAAEE,EAAEa,EAAEH,CAAC,EAAE,OAAOzC,EAAE,eAAeE,EAAE,MAAM4D,EAAE,MAAMA,EAAE,MAAM,CAAC,CAAC,IAAIkwE,GAAG,CAAC,WAAWroF,GAAG,YAAY,MAAM,WAAWooF,EAAG,EAAE,SAASE,GAAIn0E,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,CAAC,EAAE,EAAE,CAAC,KAAK,CAAC,EAAED,EAAEu4D,GAAGt4D,EAAE,MAAM,EAAE,IAAI,EAAEu7D,GAAG17D,EAAE,WAAWG,CAAC,EAAE,CAAC,EAAE,OAAOH,EAAE,eAAe,EAAE,MAAM,EAAE,MAAM,EAAE,MAAM,CAAC,CAAC,IAAIk0E,GAAG,CAAC,WAAWtoF,GAAG,YAAY,MAAM,WAAWqoF,EAAG,EAAE,SAASE,GAAIr0E,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,CAAC,EAAE,EAAE,CAAC,EAAE,EAAE,OAAO,CAAC,EAAED,EAAEu4D,GAAGt4D,EAAE,MAAM,EAAE,IAAI0B,EAAE7B,EAAE,KAAK,IAAIG,EAAE,MAAM,EAAE,OAAO,CAAC2B,EAAEC,CAAC,EAAE45D,GAAG95D,EAAE1B,EAAE,MAAMA,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,CAACH,EAAE,eAAe8B,EAAE,MAAMA,EAAE,MAAMA,EAAE,MAAM,EAAE9B,EAAE,eAAe+B,EAAE,MAAMA,EAAE,MAAMA,EAAE,MAAM,CAAC,CAAC,CAAC,IAAIqyE,GAAG,CAAC,WAAWvoF,GAAG,YAAY,MAAM,WAAWsoF,EAAG,EAAE,SAASE,GAAIv0E,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,MAAME,EAAE,QAAQE,CAAC,EAAEJ,EAAE,CAAC,MAAMK,EAAE,WAAW,CAAC,EAAE,EAAE,CAAC,cAAc,EAAE,SAAS0B,EAAE,UAAUC,EAAE,YAAYC,CAAC,EAAE/B,EAAE,CAACwC,EAAEC,EAAEC,EAAEC,CAAC,EAAExC,EAAE,MAAM,CAACyC,EAAEkB,CAAC,EAAE/B,GAAG,KAAKA,EAAE,CAACU,EAAEC,CAAC,EAAE,EAAE,CAACF,EAAEI,EAAEkB,EAAEnB,CAAC,EAAEyE,EAAE/I,EAAE,eAAe8B,EAAE,KAAK,EAAEyE,EAAEwC,EAAE,CAAC,EAAE7C,EAAE6C,EAAE,CAAC,EAAE5C,EAAE4C,EAAE,CAAC,EAAE3C,EAAEpG,EAAE,eAAe,CAAC,EAAEqG,EAAED,EAAE,CAAC,EAAEE,EAAEF,EAAE,CAAC,EAAE4C,EAAE5C,EAAE,CAAC,EAAE,EAAEpG,EAAE,uBAAuB8B,EAAE,MAAM9B,EAAE,cAAc,CAAC,CAAC,EAAE,EAAE,KAAKyD,CAAC,EAAE,IAAIgD,EAAE5E,EAAE,KAAK,IAAIC,EAAE,MAAM,EAAE,OAAO4E,EAAE7E,EAAE,KAAK,IAAI,EAAE,MAAM,EAAE,OAAO,QAAQ+E,EAAE,EAAEA,EAAEzC,EAAE,EAAEyC,EAAE,CAAC,IAAIC,EAAE,EAAE,MAAM,CAAC,IAAI,EAAEH,EAAEA,EAAE,SAASE,EAAE,EAAEA,EAAE,EAAE,CAAC,EAAE,QAAQE,EAAE,EAAEA,EAAEvC,EAAE,EAAEuC,EAAE,QAAQ2C,EAAE,EAAEA,EAAEhE,EAAE,EAAEgE,EAAE,QAAQP,EAAE,EAAEA,EAAE5E,EAAE,EAAE4E,EAAE,CAAC,IAAIQ,EAAEC,EAAG9C,EAAE,CAAC,EAAE4C,EAAE5C,EAAE,CAAC,EAAEC,EAAE,EAAE,GAAG6C,IAAK,EAAE,SAAS,IAAIC,GAAI/C,EAAE,CAAC,EAAE4C,EAAE5C,EAAE,CAAC,EAAEC,EAAED,EAAE,CAAC,GAAG8C,EAAGE,GAAIhD,EAAE,CAAC,EAAE4C,EAAE5C,EAAE,CAAC,EAAEC,EAAED,EAAE,CAAC,GAAG8C,EAAGG,GAAGmsE,GAAGrsE,EAAGvF,EAAEb,CAAC,EAAEuG,GAAGksE,GAAGpsE,EAAGzF,EAAEZ,CAAC,EAAE,OAAO,EAAE,CAAC,IAAI,UAAUkG,EAAEwsE,GAAIzvE,EAAErC,EAAEC,EAAEkC,EAAEL,EAAEC,EAAES,EAAEmD,GAAGD,GAAGZ,EAAEzF,CAAC,EAAE,MAAM,IAAI,WAAWiG,EAAEysE,GAAI1vE,EAAErC,EAAEC,EAAEkC,EAAEL,EAAEC,EAAES,EAAEmD,GAAGD,GAAGZ,EAAEzF,CAAC,EAAE,MAAM,QAAQ,MAAM,IAAI,MAAM,+DAA+D,CAAC,EAAE,CAAC,CAAC,IAAI0E,GAAGvB,EAAEP,EAAES,EAAER,EAAEmD,EAAET,EAAEE,EAAE,EAAEf,EAAE,EAAEuB,CAAC,CAAC,OAAO7H,EAAE,eAAe,EAAEC,EAAE,MAAM,CAAC,CAAC,CAAC,MAAM,CAAC,OAAOD,EAAE,MAAM,EAAE,EAAEC,EAAE,KAAK,EAAE,MAAMA,EAAE,MAAM,MAAMA,EAAE,KAAK,CAAC,CAAC,IAAIs0E,GAAG,CAAC,WAAW3oF,GAAG,YAAY,MAAM,WAAWuoF,EAAG,EAAE,SAASC,GAAGx0E,EAAE,EAAEE,EAAE,CAAC,OAAOA,EAAE,CAAC,IAAI,UAAU,OAAO00E,GAAI50E,EAAE,CAAC,EAAE,IAAI,OAAO,OAAO60E,GAAI70E,EAAE,CAAC,EAAE,IAAI,UAAU,OAAO80E,GAAI90E,EAAE,CAAC,EAAE,IAAI,WAAW,QAAQ,OAAO+0E,GAAI/0E,EAAE,CAAC,CAAC,CAAC,CAAC,SAAS40E,GAAI50E,EAAE,EAAE,CAAC,IAAIE,EAAEF,EAAE,GAAGE,EAAE,EAAE,GAAG,GAAG,EAAEA,EAAE,MAAM,CAAC,IAAIE,EAAE,EAAE,EAAEF,EAAEE,IAAIF,EAAEE,EAAE,KAAK,MAAM,CAACF,EAAEE,CAAC,EAAEF,GAAGA,EAAEA,EAAE,CAAC,EAAEA,EAAEE,EAAE,CAACF,EAAE,CAAC,SAASA,EAAE,EAAE,EAAE,GAAG,GAAG,EAAEA,EAAE,MAAM,CAAC,IAAIE,EAAE,EAAE,EAAEF,GAAGE,EAAE,KAAK,MAAMF,EAAEE,CAAC,EAAEF,GAAG,IAAIA,EAAEE,EAAEF,EAAE,EAAE,CAAC,OAAO3B,EAAE,MAAM,EAAE2B,EAAE,EAAE,CAAC,CAAC,CAAC,SAAS20E,GAAI70E,EAAE,EAAE,CAAC,IAAIE,EAAEF,EAAE,GAAGE,EAAE,EAAE,GAAG,GAAG,EAAEA,EAAE,MAAM,CAAC,IAAIE,EAAE,EAAE,EAAEF,GAAG,GAAG,KAAK,MAAM,CAACA,EAAEE,CAAC,EAAE,EAAE,SAASF,EAAE,EAAE,EAAE,GAAG,GAAG,EAAEA,EAAE,MAAM,CAAC,IAAIE,EAAE,EAAE,EAAEF,GAAG,EAAE,KAAK,MAAMA,EAAEE,CAAC,CAAC,CAAC,OAAO7B,EAAE,MAAM,EAAE2B,EAAE,EAAE,CAAC,CAAC,CAAC,SAAS60E,GAAI/0E,EAAE,EAAE,CAAC,OAAOA,CAAC,CAAC,SAAS80E,GAAI90E,EAAE,EAAE,CAAC,OAAOzB,EAAE,MAAM,EAAEyB,EAAE,EAAE,CAAC,CAAC,CAAC,SAASg1E,GAAGh1E,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,EAAE0B,EAAEC,EAAEC,EAAES,EAAE,CAAC,IAAIC,EAAE,EAAEvC,EAAE2B,EAAE1B,EAAE2B,EAAE,EAAEC,EAAE,MAAO,IAAGF,GAAGA,EAAE,GAAG,GAAGC,GAAGA,EAAE9B,EAAEF,EAAE2C,CAAC,EAAED,CAAC,CAAC,SAAS+xE,GAAIz0E,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,EAAE0B,EAAEC,EAAEC,EAAES,EAAE,CAAC,IAAIC,EAAE,KAAK,MAAMZ,CAAC,EAAEa,EAAE,KAAK,MAAMZ,CAAC,EAAE,OAAOgzE,GAAGh1E,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,EAAEsC,EAAEC,EAAEX,EAAES,CAAC,CAAC,CAAC,SAASgyE,GAAI10E,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,EAAE0B,EAAEC,EAAEC,EAAES,EAAE,CAAC,IAAIC,EAAE,KAAK,MAAMZ,CAAC,EAAEa,EAAE,KAAK,MAAMZ,CAAC,EAAEa,EAAEF,EAAE,EAAEG,EAAEF,EAAE,EAAEoB,GAAGlB,EAAEd,GAAGgzE,GAAGh1E,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,EAAEsC,EAAEC,EAAEX,EAAES,CAAC,GAAGV,EAAEY,GAAGoyE,GAAGh1E,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,EAAEsC,EAAEG,EAAEb,EAAES,CAAC,EAAE,GAAGI,EAAEd,GAAGgzE,GAAGh1E,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,EAAEwC,EAAED,EAAEX,EAAES,CAAC,GAAGV,EAAEY,GAAGoyE,GAAGh1E,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,EAAEwC,EAAEC,EAAEb,EAAES,CAAC,EAAE,OAAOG,EAAEd,GAAGiC,GAAGjC,EAAEY,GAAG,CAAC,CAAC,SAASsyE,GAAIj1E,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,MAAME,EAAE,QAAQE,CAAC,EAAEJ,EAAE,CAAC,KAAKK,CAAC,EAAEH,EAAE,CAAC,EAAE,CAAC,EAAE,EAAEy4D,GAAG,EAAE,QAAQ,EAAE,IAAI,EAAEv4D,EAAE,KAAK,IAAI,EAAE,MAAM,EAAE,OAAO,CAAC,aAAa2B,EAAE,YAAYC,EAAE,QAAQC,CAAC,EAAE85D,GAAG,EAAE17D,EAAE,EAAE,MAAM,EAAE,KAAK,EAAE,MAAM,CAACD,EAAE,eAAe4B,EAAE,EAAE,MAAMD,CAAC,EAAE3B,EAAE,eAAe,CAAC6B,EAAE,MAAM,EAAE,QAAQA,CAAC,CAAC,CAAC,CAAC,IAAIizE,GAAG,CAAC,WAAWhpF,GAAG,YAAY,MAAM,WAAW+oF,EAAG,EAAE,SAASE,GAAIn1E,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,MAAMK,CAAC,EAAE,EAAE,CAAC,KAAK,CAAC,EAAED,EAAE,EAAE,IAAI,GAAGC,EAAE,MAAM,QAAQ,IAAI,EAAEA,EAAE,MAAM,OAAO0B,EAAE1B,EAAE,MAAM,CAAC,EAAE2B,EAAE,IAAI,MAAM,EAAE,CAAC,EAAEC,EAAE,EAAE,QAAQY,EAAE,EAAEA,EAAE,EAAEA,IAAIA,IAAI,IAAIb,EAAEC,GAAG,EAAE5B,EAAE,MAAMwC,CAAC,GAAG,IAAIH,EAAE,IAAI,MAAM,CAAC,EAAE,KAAK,CAAC,EAAEC,EAAEtC,EAAE,MAAM,MAAM,EAAEsC,EAAE,CAAC,EAAE,EAAE,IAAIC,EAAE,IAAI,MAAMb,CAAC,EAAE,QAAQc,EAAE,EAAEA,EAAED,EAAE,OAAOC,IAAI,CAACH,EAAE,CAAC,EAAEG,EAAE,IAAIC,EAAE69D,GAAG,CAAC,OAAO,CAAC,EAAEtgE,CAAC,EAAE,QAAQH,EAAE,MAAM,CAAC,MAAMwC,EAAE,KAAKC,CAAC,CAAC,CAAC,EAAEC,EAAEC,CAAC,EAAEy/D,GAAG,CAAC,OAAO,CAAC,EAAEx/D,CAAC,EAAE,QAAQ5C,EAAE,MAAM,CAAC,MAAM8B,CAAC,CAAC,CAAC,EAAE9B,EAAE,8BAA8B4C,CAAC,CAAC,CAAC,OAAOF,CAAC,CAAC,IAAIwyE,GAAG,CAAC,WAAWjpF,GAAG,YAAY,MAAM,WAAWgpF,EAAG,EAAE,SAASE,GAAIr1E,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,EAAE,WAAW,CAAC,EAAE,EAAE,CAAC,YAAY,CAAC,EAAED,EAAEu4D,GAAGt4D,EAAE,oBAAoB,EAAE,IAAI0B,EAAE1B,EAAE,MAAM,OAAO2B,EAAE,EAAE,MAAM,OAAOC,EAAE,CAAC,EAAES,EAAE,CAAC,EAAEC,EAAEZ,EAAEC,EAAEY,EAAE,EAAE,QAAQE,EAAE,EAAEA,EAAEH,EAAE,EAAEG,EAAE,CAAC,IAAIkB,EAAEslE,GAAG,CAAC,OAAO,CAAC,MAAM1mE,CAAC,EAAE,QAAQ1C,EAAE,MAAM,CAAC,IAAI4C,EAAE,CAAC,CAAC,CAAC,EAAEF,EAAEoB,EAAEtB,EAAE,KAAKsB,CAAC,CAAC,CAAC,QAAQlB,EAAE,EAAEA,EAAE,EAAE,EAAEA,EAAE,CAAC,IAAIkB,EAAEzF,EAAE,kBAAkBuE,EAAE,OAAO,EAAE,EAAE5C,EAAE,eAAe,CAAC,EAAE,QAAQ8D,CAAC,EAAEsD,EAAEk2D,GAAG,CAAC,OAAO,CAAC,EAAE,EAAE,EAAE56D,CAAC,EAAE,QAAQ1C,CAAC,CAAC,EAAE4E,EAAE43D,GAAG,CAAC,OAAO,CAAC,EAAAp1D,CAAC,EAAE,QAAQpH,EAAE,MAAM,CAAC,MAAM,SAAS,CAAC,CAAC,EAAEuE,EAAEw6D,GAAG,CAAC,OAAO,CAAC,EAAEn6D,EAAE,EAAEzE,CAAC,EAAE,QAAQH,CAAC,CAAC,EAAEwE,EAAE8jE,GAAG,CAAC,OAAO,CAAC/jE,CAAG,EAAE,QAAQvE,EAAE,MAAM,CAAC,KAAK,EAAE,SAAS,EAAE,CAAC,CAAC,EAAE+B,EAAE,KAAKyC,CAAC,EAAEhC,EAAE,KAAK,CAAC,EAAEA,EAAE,KAAK4E,CAAC,EAAE5E,EAAE,KAAKoC,CAAC,EAAEpC,EAAE,KAAK+B,CAAC,EAAE/B,EAAE,KAAKgC,CAAC,CAAC,CAAC,IAAI7B,EAAEksE,GAAG,CAAC,OAAO9sE,EAAE,QAAQ/B,EAAE,MAAM,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,OAAOwC,EAAE,QAAQI,GAAG5C,EAAE,8BAA8B4C,CAAC,CAAC,EAAED,CAAC,CAAC,IAAIyyE,GAAG,CAAC,WAAWlpF,GAAG,YAAY,MAAM,WAAWipF,EAAG,EAAME,GAAI,CAAC5S,GAAG1G,GAAG4G,GAAGE,GAAG/F,GAAGiG,GAAGE,GAAGE,GAAGE,GAAGE,GAAGE,GAAGE,GAAGE,GAAGG,GAAGE,GAAGM,GAAGE,GAAGE,GAAGE,GAAGvC,GAAGyC,GAAGE,GAAGE,GAAGpI,GAAGsI,GAAG7I,GAAGY,GAAGmI,GAAGtJ,GAAGwJ,GAAGI,GAAGE,GAAGE,GAAGE,GAAGE,GAAGE,GAAGE,GAAGE,GAAGE,GAAGE,GAAGE,GAAGE,GAAGE,GAAGE,GAAGE,GAAGE,GAAGE,GAAGE,GAAGC,GAAGC,GAAGC,GAAGE,GAAGI,GAAGhH,GAAGkH,GAAGpL,GAAG4L,GAAG1L,GAAG4L,GAAG1L,GAAGoM,GAAGG,GAAGC,GAAGtM,GAAGE,GAAGsM,GAAGE,GAAGE,GAAGE,GAAG1M,GAAGE,GAAG9B,GAAGwO,GAAGjF,GAAGmF,GAAGE,GAAGE,GAAGxJ,GAAGtD,GAAGE,GAAG8M,GAAG5M,GAAG8M,GAAGG,GAAGE,GAAGG,GAAGE,GAAGE,GAAGE,GAAG1N,GAAG4N,GAAGE,GAAGE,GAAGE,GAAGE,GAAGE,GAAGE,GAAGtO,GAAGwO,GAAGG,GAAGK,GAAG7O,GAAGE,GAAG8O,GAAGG,GAAGG,GAAGlP,GAAGoP,GAAGI,GAAGE,GAAGE,GAAGG,GAAGrN,GAAGtC,GAAG6P,GAAGE,GAAGE,GAAGE,GAAGpT,GAAGiN,GAAGqG,GAAG7N,GAAGE,GAAGG,GAAG0N,GAAGE,GAAGE,GAAGE,GAAGE,GAAGC,GAAGE,GAAGpQ,GAAGsQ,GAAGK,GAAGE,GAAGI,GAAG/Q,GAAGiR,GAAGE,GAAGE,GAAGnR,GAAGiN,GAAGsE,GAAGE,GAAGE,GAAGE,GAAGE,GAAGE,GAAGE,GAAGE,GAAGnS,GAAGoS,GAAGlS,GAAGE,GAAGkS,GAAGE,GAAGE,GAAGE,GAAGE,GAAGrS,GAAGkH,GAAGqL,GAAGE,GAAGE,GAAGE,GAAGE,GAAGK,GAAGnV,GAAG0V,GAAGE,GAAGE,GAAG1G,EAAE,EAAE,QAAQ5uE,KAAKu1E,GAAIt8E,GAAG+G,CAAC,EAAE,IAAIZ,GAAG,CAAC,EAAEa,GAAGb,GAAG,CAAC,iBAAiB,IAAIo2E,GAAG,wBAAwB,IAAIC,GAAI,8BAA8B,IAAIC,GAAG,mCAAmC,IAAIC,GAAG,gBAAgB,IAAIC,GAAG,mCAAmC,IAAIC,GAAG,aAAa,IAAIC,GAAG,iBAAiB,IAAIC,GAAG,qBAAqB,IAAIC,GAAG,kBAAkB,IAAIC,GAAG,cAAc,IAAIC,GAAG,wBAAwB,IAAIC,GAAG,yBAAyB,IAAIC,GAAG,cAAc,IAAIC,GAAG,mBAAmB,IAAIC,GAAG,YAAY,IAAIC,GAAG,oBAAoB,IAAIC,GAAG,2BAA2B,IAAIC,GAAG,uBAAuB,IAAIC,GAAG,eAAe,IAAIC,GAAI,0BAA0B,IAAIC,GAAG,iCAAiC,IAAIC,GAAG,YAAY,IAAIC,GAAG,aAAa,IAAIC,GAAG,gCAAgC,IAAIC,GAAG,kCAAkC,IAAIC,GAAG,qBAAqB,IAAIC,GAAG,uBAAuB,IAAIC,GAAG,aAAa,IAAIC,GAAG,mCAAmC,IAAIC,GAAG,8BAA8B,IAAIC,GAAG,cAAc,IAAIC,GAAG,oBAAoB,IAAIC,GAAG,sBAAsB,IAAIC,GAAG,YAAY,IAAIC,GAAG,0BAA0B,IAAIC,GAAG,oBAAoB,IAAIC,GAAI,yBAAyB,IAAIC,GAAI,kCAAkC,IAAIC,GAAG,kBAAkB,IAAIC,GAAI,oBAAoB,IAAIC,GAAG,gBAAgB,IAAIC,GAAG,oBAAoB,IAAIC,EAAE,CAAC,EAAE,IAAIC,GAAG,CAAC,EAAEC,GAAG,CAAC,MAAM,GAAG,UAAU,GAAG,mBAAmB,GAAG,sBAAsB,GAAG,MAAM,GAAG,QAAQ,GAAG,6BAA6B,EAAE,EAAE,SAASv9E,GAAGmF,EAAE,EAAE,CAACm4E,GAAGn4E,CAAC,EAAE,CAAC,CAAC,SAASq4E,GAAGr4E,EAAE,EAAE,CAAC,GAAG,EAAEA,KAAKm4E,KAAK,GAAG,KAAK,CAAC,IAAI/3E,EAAEk4E,GAAIt4E,EAAE,CAAC,EAAE,GAAGI,IAAI,KAAK+3E,GAAGn4E,CAAC,EAAEI,MAAO,QAAO,QAAQ,IAAI,0CAA0CJ,CAAC,EAAE,IAAI,CAAC,IAAIE,EAAEi4E,GAAGn4E,CAAC,EAAE,OAAOE,GAAG,MAAMA,EAAE,cAAc,GAAG,OAAOi4E,GAAGn4E,CAAC,EAAEq4E,GAAGr4E,CAAC,IAAIE,EAAE,QAAQA,EAAE,UAAU,EAAEA,EAAE,QAAQA,EAAE,YAAY,EAAEA,EAAE,QAAQA,EAAE,KAAK,EAAEA,EAAE,QAAQA,EAAE,MAAM,EAAEA,EAAE,QAAQA,EAAE,mBAAmB,EAAEA,EAAE,QAAQA,EAAE,eAAe,EAAEA,EAAE,OAAOA,EAAE,YAAY,EAAEA,EAAE,OAAOA,EAAE,SAAS,EAAEA,EAAE,SAASA,EAAE,IAAI,EAAEi4E,GAAGn4E,CAAC,EAAE,CAAC,SAASu4E,GAAIv4E,EAAE,CAAC,GAAG,CAACxO,EAAE,EAAE,QAAQ,WAAW,GAAG,OAAO,iBAAiB,aAAawO,IAAI,EAAE,OAAO,IAAI,gBAAgB,IAAI,GAAG,EAAE,GAAG,OAAO,UAAU,YAAY,OAAO,SAAS,cAAc,QAAQ,EAAE,MAAM,IAAI,MAAM,wCAAwC,CAAC,CAAC,SAASs4E,GAAIt4E,EAAE,EAAE,CAAC,GAAGA,IAAI,GAAGA,IAAI,EAAE,MAAM,IAAI,MAAM,wDAAwD,EAAE,IAAIE,EAAE,GAAG,KAAKq4E,GAAIv4E,CAAC,EAAE,EAAE,OAAOE,EAAE,iBAAiB,mBAAmBE,GAAG,CAACA,EAAE,eAAe,EAAE,OAAO+3E,GAAGn4E,CAAC,CAAC,EAAE,EAAE,EAAExO,EAAE,EAAE,QAAQ,wBAAwB,IAAI4mF,GAAG,6BAA6B,IAAIp4E,IAAI,EAAEE,EAAE,WAAW,QAAQk4E,EAAE,GAAGl4E,EAAE,WAAW,qBAAqBk4E,EAAE,EAAEl4E,EAAE,WAAW,SAASk4E,EAAE,CAAC,CAAC,IAAII,IAAI,SAASx4E,EAAE,CAACA,EAAEA,EAAE,MAAM,CAAC,EAAE,QAAQA,EAAEA,EAAE,aAAa,CAAC,EAAE,cAAc,GAAGw4E,KAAKA,GAAG,CAAC,EAAE,EAAE,IAAIC,IAAI,SAASz4E,EAAE,CAACA,EAAEA,EAAE,OAAO,CAAC,EAAE,SAASA,EAAEA,EAAE,OAAO,CAAC,EAAE,SAASA,EAAEA,EAAE,OAAO,CAAC,EAAE,SAASA,EAAEA,EAAE,SAAS,CAAC,EAAE,UAAU,GAAGy4E,KAAKA,GAAG,CAAC,EAAE,EAAE,IAAIC,IAAI,SAAS14E,EAAE,CAACA,EAAEA,EAAE,iBAAiB,CAAC,EAAE,mBAAmBA,EAAEA,EAAE,iBAAiB,CAAC,EAAE,mBAAmBA,EAAEA,EAAE,yBAAyB,CAAC,EAAE,2BAA2BA,EAAEA,EAAE,mBAAmB,CAAC,EAAE,qBAAqBA,EAAEA,EAAE,mBAAmB,CAAC,EAAE,oBAAoB,GAAG04E,KAAKA,GAAG,CAAC,EAAE,EAAE,SAASC,GAAG34E,EAAE,EAAE,CAAC,MAAM,CAAC,EAAEA,CAAC,CAAC,CAAC,SAAS44E,GAAG54E,EAAE,EAAE,CAAC,OAAOA,EAAE,CAAC,CAAC,SAAS64E,GAAG74E,EAAE,CAAC,IAAI,EAAEzB,EAAE,cAAcyB,CAAC,EAAEE,EAAE,KAAK,KAAK,EAAE,CAAC,EAAE,OAAO3B,EAAE,oBAAoB2B,CAAC,CAAC,CAAC,SAAS44E,GAAG94E,EAAE,EAAE,CAAC,MAAM,CAAC,KAAK,IAAI,EAAE,KAAK,KAAK,EAAE,CAAC,CAAC,EAAE,KAAK,IAAI,EAAE,KAAK,KAAKA,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,SAAS+4E,GAAG/4E,EAAE,EAAE,CAAC,GAAG,CAACE,EAAEE,CAAC,EAAE04E,GAAG94E,EAAE,CAAC,EAAE,OAAOE,EAAEE,EAAE,CAAC,CAAC,SAAS44E,GAAGh5E,EAAE,EAAE,CAAC,IAAIE,EAAEF,EAAEI,EAAEC,EAAE,EAAE,EAAE0B,EAAEC,EAAEC,EAAES,EAAEC,EAAEC,EAAE,OAAOpR,EAAE,EAAE,UAAU,eAAe,IAAI,GAAG4O,EAAEF,EAAE,KAAKG,EAAEH,EAAE,KAAK,EAAEA,EAAE,QAAQ,EAAEA,EAAE,QAAQ6B,EAAE7B,EAAE,IAAI+B,EAAE,EAAES,EAAE,EAAEC,EAAEzC,EAAE,WAAW0C,EAAE1C,EAAE,MAAM8B,EAAE9B,EAAE,QAAQE,EAAEJ,EAAE,KAAKK,EAAEL,EAAE,KAAK,EAAEA,EAAE,KAAK,EAAEE,EAAE,KAAK6B,EAAE/B,EAAE,KAAKiC,EAAE,EAAES,EAAE,EAAEC,EAAE,GAAG,KAAK,EAAE,eAAe,KAAKC,EAAE5C,EAAE,MAAMgC,EAAEhC,EAAE,MAAM,CAAC,oBAAoBI,EAAE,wBAAwBC,EAAE,8BAA8B,EAAE,0BAA0B,EAAE,mBAAmB0B,EAAE,sBAAsBC,EAAE,0BAA0BC,EAAE,mBAAmBS,EAAE,qBAAqBC,EAAE,iBAAiBC,CAAC,CAAC,CAAC,SAASkzE,GAAG91E,EAAE,EAAE,CAAC,IAAIE,EAAE,EAAE,EAAE,OAAO1O,EAAE,EAAE,QAAQ,OAAO,GAAGynF,GAAIj5E,CAAC,EAAEE,CAAC,CAAC,SAAS+4E,GAAIj5E,EAAE,CAAC,IAAI,EAAEA,EAAE,SAAS,EAAE,GAAG,IAAIA,EAAE,SAAS,MAAM,IAAI,MAAM,gBAAgBk3E,GAAGl3E,EAAE,CAAC,CAAC,CAAC,CAAC,IAAIk5E,GAAI,QAAQC,GAAI,MAAM,SAASpD,GAAG/1E,EAAE,CAAC,MAAM,CAAC,EAAExO,EAAE,EAAE,QAAQ,8BAA8B,GAAGwO,IAAI,GAAGk5E,GAAI,KAAK,IAAIl5E,CAAC,GAAG,KAAK,IAAIA,CAAC,EAAEm5E,GAAI,CAAC,SAASjC,GAAGl3E,EAAE,EAAE,CAAC,OAAO,EAAE,CAAC,KAAKA,EAAE,SAAS,MAAM,WAAW,KAAKA,EAAE,aAAa,MAAM,eAAe,KAAKA,EAAE,cAAc,MAAM,gBAAgB,KAAKA,EAAE,kBAAkB,MAAM,oBAAoB,KAAKA,EAAE,8BAA8B,MAAM,gCAAgC,KAAKA,EAAE,cAAc,MAAM,gBAAgB,KAAKA,EAAE,mBAAmB,MAAM,qBAAqB,QAAQ,MAAM,sBAAsB,CAAC,EAAE,CAAC,CAAC,SAASw2E,GAAGx2E,EAAE,EAAE,CAAC,OAAOo5E,GAAGp5E,EAAE,IAAIA,EAAE,aAAa,CAAC,EAAE,cAAc,EAAE,kCAAkC,CAAC,CAAC,SAASs2E,GAAGt2E,EAAE,EAAE,CAAC,IAAIE,EAAEk5E,GAAGp5E,EAAE,IAAIA,EAAE,aAAaA,EAAE,aAAa,EAAE,sCAAsC,EAAE,GAAG81E,GAAG91E,EAAE,IAAIA,EAAE,aAAaE,EAAE,CAAC,CAAC,EAAE41E,GAAG91E,EAAE,IAAIA,EAAE,cAAcE,CAAC,CAAC,EAAEF,EAAE,mBAAmBE,EAAEF,EAAE,cAAc,IAAI,GAAG,MAAM,QAAQ,IAAIA,EAAE,iBAAiBE,CAAC,CAAC,EAAE,IAAI,MAAM,kCAAkC,EAAE,OAAOA,CAAC,CAAC,SAAS81E,GAAGh2E,EAAE,EAAE,CAAC,IAAIE,EAAEk5E,GAAGp5E,EAAE,IAAIA,EAAE,aAAaA,EAAE,eAAe,EAAE,wCAAwC,EAAE,GAAG81E,GAAG91E,EAAE,IAAIA,EAAE,aAAaE,EAAE,CAAC,CAAC,EAAE41E,GAAG91E,EAAE,IAAIA,EAAE,cAAcE,CAAC,CAAC,EAAE1O,EAAE,EAAE,IAAI,qBAAqB,EAAE,OAAO0O,EAAE,GAAGF,EAAE,mBAAmBE,EAAEF,EAAE,cAAc,IAAI,GAAG,MAAM23E,GAAG,EAAE33E,EAAE,iBAAiBE,CAAC,CAAC,EAAE,IAAI,MAAM,oCAAoC,EAAE,OAAOA,CAAC,CAAC,IAAIm5E,GAAI,2BAA2B,SAAS1B,GAAG33E,EAAE,EAAE,CAAC,IAAIE,EAAEm5E,GAAI,KAAK,CAAC,EAAE,GAAGn5E,GAAG,KAAK,CAAC,QAAQ,IAAI,wCAAwC,CAAC,EAAE,EAAE,QAAQ,IAAIF,CAAC,EAAE,MAAM,CAAC,IAAII,EAAE,CAACF,EAAE,CAAC,EAAEG,EAAEL,EAAE,MAAM;AAAA,CACh+c,EAAE,EAAEK,EAAE,OAAO,SAAS,EAAE,OAAO,EAAE,EAAEA,EAAE,IAAI,CAACsC,EAAEC,IAAIrE,EAAE,UAAUqE,EAAE,GAAG,SAAS,EAAE,CAAC,EAAED,CAAC,EAAEZ,EAAE,EAAE,QAAQY,EAAE,EAAEA,EAAE,EAAE,OAAOA,IAAIZ,EAAE,KAAK,IAAI,EAAEY,CAAC,EAAE,OAAOZ,CAAC,EAAE,IAAIC,EAAE,EAAE,MAAM,EAAE5B,EAAE,CAAC,EAAE6B,EAAE,EAAE,MAAM7B,EAAE,EAAEA,CAAC,EAAEsC,EAAE,EAAE,MAAMtC,CAAC,EAAE,QAAQ,IAAI4B,EAAE,KAAK;AAAA,CACjN,CAAC,EAAE,QAAQ,IAAI,EAAE,MAAM;AAAA,CACvB,EAAE,CAAC,CAAC,EAAE,QAAQ,IAAI,MAAMzD,EAAE,SAAS0D,EAAE,CAAC,EAAEF,CAAC,CAAC,GAAG,+DAA+D,EAAE,QAAQ,IAAIW,EAAE,KAAK;AAAA,CACjI,CAAC,CAAC,CAAC,SAASwzE,GAAGl2E,EAAE,CAAC,OAAOo5E,GAAGp5E,EAAE,IAAIA,EAAE,cAAc,EAAE,gCAAgC,CAAC,CAAC,SAAS03E,GAAG13E,EAAE,EAAE,CAAC,GAAG81E,GAAG91E,EAAE,IAAIA,EAAE,YAAY,CAAC,CAAC,EAAE,CAACxO,EAAE,EAAE,IAAI,qBAAqB,GAAGwO,EAAE,oBAAoB,EAAEA,EAAE,WAAW,IAAI,GAAG,MAAM,QAAQ,IAAIA,EAAE,kBAAkB,CAAC,CAAC,EAAE,IAAI,MAAM,6CAA6C,CAAC,CAAC,SAASi4E,GAAGj4E,EAAE,EAAE,CAAC,GAAG81E,GAAG91E,EAAE,IAAIA,EAAE,gBAAgB,CAAC,CAAC,EAAEA,EAAE,oBAAoB,EAAEA,EAAE,eAAe,IAAI,GAAG,MAAM,QAAQ,IAAIA,EAAE,kBAAkB,CAAC,CAAC,EAAE,IAAI,MAAM,mCAAmC,CAAC,CAAC,SAASo2E,GAAGp2E,EAAE,EAAE,CAAC,IAAIE,EAAEk5E,GAAGp5E,EAAE,IAAIA,EAAE,aAAa,EAAE,8BAA8B,EAAE,OAAO81E,GAAG91E,EAAE,IAAIA,EAAE,WAAWA,EAAE,aAAaE,CAAC,CAAC,EAAE41E,GAAG91E,EAAE,IAAIA,EAAE,WAAWA,EAAE,aAAa,EAAEA,EAAE,WAAW,CAAC,EAAEE,CAAC,CAAC,SAASi2E,GAAGn2E,EAAE,EAAE,CAAC,IAAIE,EAAEk5E,GAAGp5E,EAAE,IAAIA,EAAE,aAAa,EAAE,8BAA8B,EAAE,OAAO81E,GAAG91E,EAAE,IAAIA,EAAE,WAAWA,EAAE,qBAAqBE,CAAC,CAAC,EAAE41E,GAAG91E,EAAE,IAAIA,EAAE,WAAWA,EAAE,qBAAqB,EAAEA,EAAE,WAAW,CAAC,EAAEE,CAAC,CAAC,SAASy2E,IAAK,CAAC,OAAOnlF,EAAE,EAAE,UAAU,eAAe,IAAI,EAAE,EAAE,CAAC,CAAC,SAAS6kF,GAAGr2E,EAAE,CAAC,OAAOo5E,GAAGp5E,EAAE,IAAIA,EAAE,cAAc,EAAE,gCAAgC,CAAC,CAAC,SAASk4E,GAAGl4E,EAAE,EAAE,CAAC,IAAIE,EAAE1O,EAAE,EAAE,UAAU,wBAAwB,EAAE,GAAGwO,GAAG,GAAG,GAAG,EAAE,CAAC,IAAII,EAAE,IAAIJ,CAAC,IAAI,CAAC,IAAI,MAAM,IAAI,MAAM,0BAA0BI,EAAE,cAAc,CAAC,CAAC,GAAGJ,EAAEE,GAAG,EAAEA,EAAE,CAAC,IAAIE,EAAE,IAAIJ,CAAC,IAAI,CAAC,IAAIK,EAAE,IAAIH,CAAC,IAAIA,CAAC,IAAI,MAAM,IAAI,MAAM,0BAA0BE,EAAE,qDAAqDC,EAAE,GAAG,CAAC,CAAC,CAAC,SAAS41E,GAAGj2E,EAAE,CAAC,OAAOo5E,GAAGp5E,EAAE,IAAIA,EAAE,kBAAkB,EAAE,oCAAoC,CAAC,CAAC,SAAS61E,GAAG71E,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,EAAE,CAAC,IAAI0B,EAAE/B,EAAE,kBAAkB,EAAEE,CAAC,EAAE,OAAO6B,IAAI,GAAG,IAAI+zE,GAAG91E,EAAE,IAAIA,EAAE,WAAWA,EAAE,aAAaI,CAAC,CAAC,EAAE01E,GAAG91E,EAAE,IAAIA,EAAE,oBAAoB+B,EAAE1B,EAAEL,EAAE,MAAM,GAAG,EAAE,CAAC,CAAC,EAAE81E,GAAG91E,EAAE,IAAIA,EAAE,wBAAwB+B,CAAC,CAAC,EAAE,GAAG,CAAC,SAAS6zE,GAAG51E,EAAE,EAAEE,EAAE,CAACo5E,GAAGt5E,EAAEE,CAAC,EAAE41E,GAAG91E,EAAE,IAAIA,EAAE,cAAcA,EAAE,SAASE,CAAC,CAAC,EAAE41E,GAAG91E,EAAE,IAAIA,EAAE,YAAYA,EAAE,WAAW,CAAC,CAAC,CAAC,CAAC,SAAS+3E,GAAI/3E,EAAE,EAAE,CAACs5E,GAAGt5E,EAAE,CAAC,EAAE81E,GAAG91E,EAAE,IAAIA,EAAE,cAAcA,EAAE,SAAS,CAAC,CAAC,EAAE81E,GAAG91E,EAAE,IAAIA,EAAE,YAAYA,EAAE,WAAW,IAAI,CAAC,CAAC,CAAC,SAAS62E,GAAG72E,EAAE,EAAEE,EAAE,CAAC,OAAOk5E,GAAGp5E,EAAE,IAAIA,EAAE,mBAAmB,EAAEE,CAAC,EAAE,YAAYA,EAAE,2BAA2B,CAAC,CAAC,SAAS02E,GAAG52E,EAAE,EAAEE,EAAE,CAAC,OAAOF,EAAE,mBAAmB,EAAEE,CAAC,CAAC,CAAC,SAASy1E,GAAG31E,EAAE,EAAEE,EAAEE,EAAE,CAAC01E,GAAG91E,EAAE,IAAI41E,GAAG51E,EAAE,EAAEI,CAAC,CAAC,EAAE01E,GAAG91E,EAAE,IAAIA,EAAE,UAAUE,EAAEE,CAAC,CAAC,CAAC,CAAC,SAASq1E,GAAIz1E,EAAE,CAAC81E,GAAG91E,EAAE,IAAIA,EAAE,gBAAgBA,EAAE,YAAY,IAAI,CAAC,EAAE81E,GAAG91E,EAAE,IAAIA,EAAE,SAAS,EAAE,EAAEA,EAAE,OAAO,MAAMA,EAAE,OAAO,MAAM,CAAC,EAAE81E,GAAG91E,EAAE,IAAIA,EAAE,QAAQ,EAAE,EAAEA,EAAE,OAAO,MAAMA,EAAE,OAAO,MAAM,CAAC,CAAC,CAAC,SAAS01E,GAAG11E,EAAE,EAAEE,EAAE,CAAC41E,GAAG91E,EAAE,IAAIA,EAAE,gBAAgBA,EAAE,YAAYE,CAAC,CAAC,EAAE41E,GAAG91E,EAAE,IAAIA,EAAE,qBAAqBA,EAAE,YAAYA,EAAE,kBAAkBA,EAAE,WAAW,EAAE,CAAC,CAAC,CAAC,CAAC,SAAS83E,GAAG93E,EAAE,EAAE,CAAC81E,GAAG91E,EAAE,IAAIA,EAAE,gBAAgBA,EAAE,YAAY,CAAC,CAAC,EAAE81E,GAAG91E,EAAE,IAAIA,EAAE,qBAAqBA,EAAE,YAAYA,EAAE,kBAAkBA,EAAE,WAAW,KAAK,CAAC,CAAC,CAAC,CAAC,SAASg4E,GAAGh4E,EAAE,CAAC,IAAI,EAAEA,EAAE,uBAAuBA,EAAE,WAAW,EAAE,GAAG,IAAIA,EAAE,qBAAqB,MAAM,IAAI,MAAM,8BAA8By2E,GAAGz2E,EAAE,CAAC,CAAC,CAAC,CAAC,SAASy2E,GAAGz2E,EAAE,EAAE,CAAC,OAAO,EAAE,CAAC,KAAKA,EAAE,kCAAkC,MAAM,oCAAoC,KAAKA,EAAE,0CAA0C,MAAM,4CAA4C,KAAKA,EAAE,kCAAkC,MAAM,oCAAoC,KAAKA,EAAE,wBAAwB,MAAM,0BAA0B,QAAQ,MAAM,iBAAiB,CAAC,EAAE,CAAC,CAAC,SAASo5E,GAAGp5E,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAE01E,GAAG91E,EAAE,IAAI,EAAE,CAAC,EAAE,GAAGI,GAAG,KAAK,MAAM,IAAI,MAAMF,CAAC,EAAE,OAAOE,CAAC,CAAC,SAASk5E,GAAGt5E,EAAE,EAAE,CAAC,IAAIE,EAAEF,EAAE,iCAAiC,EAAEI,EAAE,EAAEJ,EAAE,SAAS,GAAGI,EAAEJ,EAAE,UAAUI,EAAEF,EAAE,CAAC,IAAIG,EAAE,2BAA2BH,CAAC,IAAI,MAAM,IAAI,MAAM,0BAA0BG,CAAC,GAAG,CAAC,CAAC,CAAC,SAASk2E,GAAGv2E,EAAE,EAAE,EAAE,CAAC,OAAOzB,EAAE,cAAcyB,EAAE,MAAM,EAAEA,EAAE,OAAO,CAAC,CAAC,CAAC,CAAC,SAAS82E,GAAG92E,EAAE,CAAC,GAAGA,EAAE,SAAS,EAAE,MAAM,MAAM,sDAAsD,EAAE,MAAM,CAACA,EAAE,OAAO,EAAEA,EAAEA,EAAE,OAAO,CAAC,EAAE,EAAEA,EAAEA,EAAE,OAAO,CAAC,CAAC,CAAC,CAAC,SAAS+2E,GAAG/2E,EAAE,CAAC,IAAI,EAAE,CAAC,EAAE,EAAE,CAAC,EAAE,OAAOA,EAAE,SAAS,GAAGA,EAAE,SAAS,GAAGA,EAAE,CAAC,IAAI,IAAI,EAAE,CAACu2E,GAAGv2E,CAAC,EAAE,GAAG82E,GAAG92E,CAAC,CAAC,GAAG,CAAC,CAAC,SAASg3E,GAAGh3E,EAAE,EAAE,GAAG,CAAC,IAAIE,EAAE1O,EAAE,EAAE,UAAU,wBAAwB,EAAE4O,EAAE5O,EAAE,EAAE,UAAU,mCAAmC,EAAE4O,IAAI,KAAK5O,EAAE,EAAE,QAAQ,0CAA0C,IAAI4O,EAAEF,EAAE,GAAG,IAAIA,EAAEA,EAAE,EAAEE,EAAEA,EAAE,EAAEJ,EAAEA,EAAE,IAAI,CAAC+B,EAAEC,IAAIA,GAAGhC,EAAE,OAAO,EAAEzB,EAAE,kBAAkByB,EAAEgC,CAAC,CAAC,EAAEhC,EAAEgC,CAAC,CAAC,EAAEhC,EAAE,SAAS,IAAIA,EAAE,CAAC,EAAEA,EAAE,CAAC,CAAC,IAAIA,EAAE,SAAS,IAAIA,EAAEzB,EAAE,aAAayB,CAAC,EAAE,UAAU,IAAIK,EAAE9B,EAAE,cAAcyB,CAAC,EAAE,EAAE,KAAKA,EAAE,QAAQ,GAAGK,GAAGH,EAAE,EAAE,CAAC,EAAEG,CAAC,EAAEL,EAAE,SAAS,GAAGA,EAAE,CAAC,GAAGE,GAAGF,EAAE,CAAC,GAAGE,EAAE,EAAEF,EAAEA,EAAE,SAAS,GAAGA,EAAE,CAAC,EAAEA,EAAE,CAAC,GAAGE,GAAGF,EAAE,CAAC,GAAGE,EAAE,EAAE,CAACF,EAAE,CAAC,EAAEA,EAAE,CAAC,EAAEA,EAAE,CAAC,CAAC,EAAEA,EAAE,SAAS,GAAGA,EAAE,CAAC,GAAGE,GAAGF,EAAE,CAAC,EAAEA,EAAE,CAAC,GAAGE,EAAE,EAAE,CAACF,EAAE,CAAC,EAAEA,EAAE,CAAC,EAAEA,EAAE,CAAC,CAAC,EAAEA,EAAE,SAAS,GAAGA,EAAE,CAAC,EAAEA,EAAE,CAAC,EAAEA,EAAE,CAAC,GAAGE,GAAGF,EAAE,CAAC,GAAGE,EAAE,EAAE,CAACF,EAAE,CAAC,EAAEA,EAAE,CAAC,EAAEA,EAAE,CAAC,EAAEA,EAAE,CAAC,CAAC,EAAEA,EAAE,SAAS,GAAGA,EAAE,CAAC,GAAGE,GAAGF,EAAE,CAAC,EAAEA,EAAE,CAAC,EAAEA,EAAE,CAAC,GAAGE,IAAI,EAAE,CAACF,EAAE,CAAC,EAAEA,EAAE,CAAC,EAAEA,EAAE,CAAC,EAAEA,EAAE,CAAC,CAAC,GAAG,IAAI,EAAE,GAAG,MAAM,KAAK,IAAI,GAAG,CAAC,EAAEI,GAAG,KAAK,IAAI,GAAG,CAAC,IAAI,EAAE,EAAE,IAAI,KAAK,IAAI,GAAG,CAAC,EAAE,EAAE,GAAG,GAAG,MAAM,EAAE,GAAG,EAAE,CAAC,IAAI2B,EAAEw0E,GAAGv2E,CAAC,EAAEgC,EAAE,EAAEC,EAAE,EAAEjC,EAAE,SAAS,CAACgC,EAAEC,CAAC,EAAE60E,GAAG92E,CAAC,GAAGK,EAAE0B,GAAGC,EAAE,IAAIC,EAAE,GAAG,EAAE1D,EAAE,oBAAoB8B,CAAC,EAAE,IAAIqC,GAAGA,EAAE,CAAC,CAAC,MAAM,EAAEnE,EAAE,oBAAoB8B,CAAC,EAAE,OAAO,CAAC,CAAC,SAASk5E,GAAGv5E,EAAE,CAAC,OAAOA,EAAE,IAAI,CAAC,CAAC,SAASu3E,GAAGv3E,EAAE,EAAE,CAAC,GAAGA,EAAEA,EAAE,MAAM,EAAE,EAAE,EAAE,EAAE,MAAM,EAAE,EAAEzB,EAAE,YAAYyB,EAAE,CAAC,GAAG,CAACA,EAAE,QAAQ,CAAC,EAAE,QAAQA,EAAE,CAAC,IAAI,GAAGA,EAAE,CAAC,IAAI,GAAG,EAAE,CAAC,IAAI,GAAG,EAAE,CAAC,IAAI,EAAE,MAAM,GAAG,GAAGA,EAAE,SAAS,EAAE,OAAO,CAAC,IAAIE,EAAEF,EAAEA,EAAE,OAAO,CAAC,EAAEI,EAAE,EAAE,EAAE,OAAO,CAAC,EAAE,GAAGF,IAAIE,GAAGm5E,GAAGr5E,CAAC,GAAGq5E,GAAGn5E,CAAC,IAAIJ,EAAE,CAAC,IAAI,GAAG,EAAE,CAAC,IAAI,GAAG,MAAM,EAAE,CAAC,OAAOA,EAAE,CAAC,IAAI,EAAE,CAAC,GAAGu5E,GAAGv5E,EAAE,CAAC,CAAC,GAAGu5E,GAAG,EAAE,CAAC,CAAC,CAAC,CAAC,IAAIC,GAAGC,GAAG,SAAStC,GAAGn3E,EAAE,CAAC,GAAGw5E,IAAI,KAAK,CAAC,IAAI,EAAEnB,GAAGr4E,CAAC,EAAEw5E,GAAG,EAAE,aAAa,EAAE,gBAAgB,CAAC,CAAC,OAAOA,EAAE,CAAC,SAAS5B,IAAK,CAAC4B,GAAG,IAAI,CAAC,SAAS3B,IAAK,CAAC4B,GAAG,IAAI,CAAC,SAAS/C,GAAG12E,EAAE,CAAC,GAAGy5E,IAAI,KAAK,CAAC,IAAI,EAAEpB,GAAGr4E,CAAC,EAAEy5E,GAAG,EAAE,aAAa,EAAE,uBAAuB,CAAC,CAAC,OAAO,KAAK,IAAI,GAAGA,EAAE,CAAC,CAAC,SAASxC,GAAGj3E,EAAE,CAAC,GAAGA,IAAI,EAAE,MAAO,GAAE,IAAI,EAAEE,EAAEm4E,GAAGr4E,CAAC,EAAE,OAAOo3E,GAAGl3E,EAAE,iCAAiC,GAAGF,IAAI,EAAE,EAAE,EAAEo3E,GAAGl3E,EAAE,0BAA0B,EAAE,EAAE,EAAE,EAAE,EAAE,CAAC,CAAC,SAASk3E,GAAGp3E,EAAE,EAAE,CAAC,OAAOA,EAAE,aAAa,CAAC,GAAG,IAAI,CAAC,SAASy3E,GAAGz3E,EAAE,CAAC,GAAG,CAAC,GAAGq4E,GAAGr4E,CAAC,GAAG,KAAK,MAAM,EAAE,OAAO,EAAE,CAAC,OAAO,QAAQ,IAAI,qCAAqC,CAAC,EAAE,EAAE,CAAC,MAAM,EAAE,CAAC,SAASq3E,GAAGr3E,EAAE,CAAC,GAAGA,IAAI,EAAE,MAAM,GAAG,IAAI,EAAEq4E,GAAGr4E,CAAC,EAAE,GAAGA,IAAI,GAAG,GAAG,CAACo3E,GAAG,EAAE,mBAAmB,EAAE,MAAM,WAAW,CAACA,GAAG,EAAE,wBAAwB,EAAE,MAAM,GAAG,OAAOsC,GAAG,CAAC,CAAC,CAAC,SAASpC,GAAGt3E,EAAE,CAAC,GAAGA,IAAI,EAAE,MAAM,GAAG,IAAI,EAAEq4E,GAAGr4E,CAAC,EAAE,GAAGA,IAAI,GAAG,GAAG,CAACo3E,GAAG,EAAE,mBAAmB,GAAG,CAACA,GAAG,EAAE,0BAA0B,EAAE,MAAM,OAAO,CAAC,GAAGA,GAAG,EAAE,wBAAwB,EAAE,OAAOsC,GAAG,CAAC,EAAE,IAAI,EAAE,8BAA8B,GAAGtC,GAAG,EAAE,CAAC,EAAE,CAAC,IAAI/2E,EAAE,EAAE,aAAa,CAAC,EAAE,OAAOs5E,GAAI,EAAEt5E,CAAC,CAAC,CAAC,MAAM,EAAE,CAAC,OAAOq5E,GAAG,CAAC,CAAC,CAAC,SAASA,GAAG15E,EAAE,CAAC,IAAI,EAAEg5E,GAAGh5E,CAAC,EAAEE,EAAEF,EAAE,cAAc,EAAEA,EAAE,YAAYA,EAAE,WAAWE,CAAC,EAAEF,EAAE,WAAWA,EAAE,WAAW,EAAE,EAAE,oBAAoB,EAAE,EAAE,EAAE,EAAE,mBAAmB,EAAE,iBAAiB,IAAI,EAAE,IAAI6B,EAAE7B,EAAE,kBAAkB,EAAEA,EAAE,gBAAgBA,EAAE,YAAY6B,CAAC,EAAE7B,EAAE,qBAAqBA,EAAE,YAAYA,EAAE,kBAAkBA,EAAE,WAAWE,EAAE,CAAC,EAAE,IAAI4B,EAAE9B,EAAE,uBAAuBA,EAAE,WAAW,IAAIA,EAAE,qBAAqB,OAAOA,EAAE,YAAYA,EAAE,WAAW,IAAI,EAAEA,EAAE,gBAAgBA,EAAE,YAAY,IAAI,EAAEA,EAAE,cAAcE,CAAC,EAAEF,EAAE,kBAAkB6B,CAAC,EAAEC,CAAC,CAAC,SAAS63E,GAAI35E,EAAE,EAAE,CAAC,IAAIE,EAAE84E,GAAGh5E,EAAE,CAAC,EAAEI,EAAEJ,EAAE,cAAc,EAAEA,EAAE,YAAYA,EAAE,WAAWI,CAAC,EAAEJ,EAAE,WAAWA,EAAE,WAAW,EAAEE,EAAE,wBAAwB,EAAE,EAAE,EAAEA,EAAE,mBAAmBA,EAAE,qBAAqB,IAAI,EAAE,IAAI4B,EAAE9B,EAAE,kBAAkB,EAAEA,EAAE,gBAAgBA,EAAE,YAAY8B,CAAC,EAAE9B,EAAE,qBAAqBA,EAAE,YAAYA,EAAE,kBAAkBA,EAAE,WAAWI,EAAE,CAAC,EAAE,IAAI2B,EAAE/B,EAAE,uBAAuBA,EAAE,WAAW,IAAIA,EAAE,qBAAqB,OAAOA,EAAE,YAAYA,EAAE,WAAW,IAAI,EAAEA,EAAE,gBAAgBA,EAAE,YAAY,IAAI,EAAEA,EAAE,cAAcI,CAAC,EAAEJ,EAAE,kBAAkB8B,CAAC,EAAEC,CAAC,CAAC,SAASy1E,GAAGx3E,EAAE,CAAC,OAAOA,IAAI,EAAE,GAAGq4E,GAAGr4E,CAAC,EAAE,WAAW,IAAI,CAAC,SAASw1E,GAAGx1E,EAAE,EAAE,CAAC,MAAM,QAAQA,CAAC,IAAIA,EAAE,CAACA,CAAC,GAAGA,EAAE,QAAQE,GAAG,CAACA,GAAG,MAAM3B,EAAE,OAAO2B,EAAE,QAAQ,YAAY,IAAI,GAAG,CAAC,2DAA2D,CAAC,CAAC,CAAC,CAAC,IAAI05E,GAAGpoF,EAAE,EAAEooF,GAAG,aAAa,YAAY,IAAIA,GAAG,UAAU,eAAe,EAAE,CAAC,EAAEA,GAAG,aAAa,gBAAgB,IAAInC,GAAG,CAAC,EAAE,EAAEA,GAAG,CAAC,EAAE,EAAE,CAAC,EAAEmC,GAAG,aAAa,iCAAiC,IAAI,EAAE,EAAEA,GAAG,aAAa,yBAAyB,IAAIA,GAAG,IAAI,eAAe,IAAI,CAAC,EAAEA,GAAG,aAAa,oBAAoB,IAAI,EAAE,EAAEA,GAAG,aAAa,2BAA2B,IAAI,EAAE,EAAEA,GAAG,aAAa,aAAa,IAAIA,GAAG,QAAQ,WAAW,CAAC,EAAEA,GAAG,aAAa,2BAA2B,IAAIA,GAAG,QAAQ,YAAY,CAAC,EAAEA,GAAG,aAAa,kBAAkB,IAAIA,GAAG,QAAQ,YAAY,CAAC,EAAEA,GAAG,aAAa,2BAA2B,IAAIA,GAAG,QAAQ,YAAY,CAAC,EAAEA,GAAG,aAAa,+BAA+B,IAAIA,GAAG,QAAQ,YAAY,CAAC,EAAEA,GAAG,aAAa,8BAA8B,IAAIA,GAAG,QAAQ,YAAY,CAAC,EAAEA,GAAG,aAAa,8BAA8B,IAAIA,GAAG,QAAQ,YAAY,CAAC,EAAEA,GAAG,aAAa,8BAA8B,IAAIA,GAAG,QAAQ,YAAY,CAAC,EAAEA,GAAG,aAAa,oBAAoB,IAAIA,GAAG,QAAQ,YAAY,CAAC,EAAEA,GAAG,aAAa,sBAAsB,IAAIA,GAAG,QAAQ,YAAY,CAAC,EAAEA,GAAG,aAAa,oBAAoB,IAAIA,GAAG,QAAQ,YAAY,CAAC,EAAEA,GAAG,aAAa,6BAA6B,IAAIA,GAAG,QAAQ,YAAY,CAAC,EAAEA,GAAG,aAAa,yBAAyB,IAAIzC,GAAGyC,GAAG,UAAU,eAAe,CAAC,CAAC,EAAEA,GAAG,aAAa,+BAA+B,IAAIlD,GAAGkD,GAAG,UAAU,eAAe,CAAC,CAAC,EAAEA,GAAG,aAAa,+CAA+C,IAAI,CAAC,IAAI55E,EAAE45E,GAAG,UAAU,eAAe,EAAE,OAAO55E,IAAI,EAAE,EAAEi3E,GAAGj3E,CAAC,CAAC,CAAC,EAAE45E,GAAG,aAAa,gDAAgD,IAAIA,GAAG,UAAU,8CAA8C,EAAE,GAAG,CAACrpF,GAAG,SAAS,CAAC,EAAEqpF,GAAG,aAAa,+BAA+B,IAAIvC,GAAGuC,GAAG,UAAU,eAAe,CAAC,CAAC,EAAEA,GAAG,aAAa,+BAA+B,IAAIA,GAAG,QAAQ,0BAA0B,EAAE,GAAGA,GAAG,QAAQ,8BAA8B,CAAC,EAAEA,GAAG,aAAa,+BAA+B,IAAItC,GAAGsC,GAAG,UAAU,eAAe,CAAC,CAAC,EAAEA,GAAG,aAAa,0BAA0B,IAAIpC,GAAGoC,GAAG,UAAU,eAAe,CAAC,CAAC,EAAEA,GAAG,aAAa,4BAA4B,IAAIA,GAAG,QAAQ,8BAA8B,EAAE,EAAE,CAAC,EAAEA,GAAG,aAAa,iCAAiC,IAAI,GAAG55E,GAAG,CAAC,GAAG,OAAOA,GAAG,SAAS,MAAM,IAAI,MAAM,2DAA2DA,CAAC,GAAG,EAAE,GAAGA,EAAE,GAAGA,IAAI,GAAG,MAAM,IAAI,MAAM,8FAA8FA,CAAC,GAAG,CAAC,CAAC,EAAE45E,GAAG,aAAa,wBAAwB,IAAIrpF,GAAG,SAAS,EAAE,EAAE,GAAGyP,GAAG,CAAC,GAAG,OAAOA,GAAG,SAAS,MAAM,IAAI,MAAM,kDAAkDA,CAAC,GAAG,EAAE,GAAGA,EAAE,GAAGA,IAAI,GAAG,MAAM,IAAI,MAAM,2FAA2FA,CAAC,GAAG,CAAC,CAAC,EAAE45E,GAAG,aAAa,6BAA6B,IAAI,GAAG,EAAEA,GAAG,aAAa,4BAA4B,IAAI,EAAE,EAAEA,GAAG,aAAa,2CAA2C,IAAI,GAAG,EAAEA,GAAG,aAAa,+BAA+B,IAAI,GAAG,EAAEA,GAAG,aAAa,iBAAiB,IAAI,EAAE,EAAEA,GAAG,aAAa,yBAAyB,IAAIA,GAAG,QAAQ,SAAS,CAAC,EAAEA,GAAG,aAAa,oCAAoC,IAAI,GAAG,EAAEA,GAAG,aAAa,2CAA2C,IAAI,EAAE,EAAEA,GAAG,aAAa,sBAAsB,IAAI,EAAE,EAAEA,GAAG,aAAa,sBAAsB,IAAI,EAAE,EAAE,SAASC,IAAI,CAAC,IAAI75E,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,EAAE0B,EAAEC,EAAEC,EAAE,OAAOzQ,EAAE,EAAE,UAAU,eAAe,IAAI,GAAGwO,EAAE,kBAAkB,EAAE,KAAKE,EAAE,MAAME,EAAE,KAAKC,EAAE,UAAU,EAAE,cAAc,EAAE,wBAAwB0B,EAAEvQ,EAAE,EAAE,QAAQ,qBAAqB,EAAE;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,MAYv6U,GAAGwQ,EAAE,GAAGC,EAAE;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,QASRjC,EAAE,GAAG,EAAE,YAAYE,EAAE,UAAUE,EAAE,UAAUC,EAAE,YAAY,EAAE,eAAe,EAAE,GAAG0B,EAAE;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,MAQnFC,EAAE;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,MASFC,EAAE;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,OAQD,CAAC,QAAQjC,EAAE,UAAU,EAAE,UAAUE,EAAE,UAAUE,EAAE,UAAUC,EAAE,OAAO,EAAE,aAAa,EAAE,iBAAiB0B,EAAE,iBAAiBC,EAAE,YAAYC,CAAC,CAAC,CAAC,SAAS63E,GAAG95E,EAAE,EAAEE,EAAE,QAAQ,CAAC,IAAIE,EAAE7B,EAAE,eAAe,CAAC,EAAE,OAAO6B,EAAE,IAAI,CAACC,EAAE,IAAI,CAAC,IAAI,EAAE,OAAOL,EAAE,CAAC,CAAC,MAAME,CAAC,MAAMG,CAAC,GAAG0B,EAAE,IAAI3B,EAAE,OAAO,EAAE,OAAOJ,EAAE,EAAE,CAAC,CAAC,MAAME,CAAC,MAAMF,EAAE,CAAC,CAAC,MAAMK,CAAC,GAAG,YAAYL,EAAE,CAAC,CAAC,MAAMK,CAAC,GAAG,MAAM,GAAG,CAAC,KAAK0B,CAAC,GAAG,CAAC,EAAE,KAAK,EAAE,CAAC,CAAC,SAASg4E,GAAG/5E,EAAE,EAAEE,EAAE,QAAQ,CAAC,IAAIE,EAAE7B,EAAE,eAAe,CAAC,EAAE,OAAO6B,EAAE,IAAI,CAACC,EAAE,IAAI,CAAC,IAAI,EAAE,OAAOL,EAAE,CAAC,CAAC,MAAME,CAAC,sBAAsB,CAAC,IAAI6B,EAAE,IAAI3B,EAAE,OAAO,EAAE,OAAOJ,EAAE,EAAE,CAAC,CAAC,MAAME,CAAC,MAAMF,EAAE,CAAC,CAAC,sBAAsB,CAAC,IAAI,YAAYA,EAAE,CAAC,CAAC,sBAAsB,CAAC,IAAI,MAAM,GAAG,CAAC,KAAK+B,CAAC,GAAG,CAAC,EAAE,KAAK,EAAE,CAAC,CAAC,SAASi4E,GAAIh6E,EAAE,EAAE,CAAC,IAAIE,EAAEF,EAAE,OAAOI,EAAEJ,EAAE,IAAI,GAAG,GAAG,CAAC,IAAI,CAAC,GAAG,EAAEK,EAAE,IAAI,MAAMH,EAAE,CAAC,EAAEG,EAAEH,EAAE,CAAC,EAAEE,EAAEF,EAAE,CAAC,EAAE,QAAQ,EAAEA,EAAE,EAAE,GAAG,EAAE,EAAE,EAAEG,EAAE,CAAC,EAAE,IAAIA,EAAE,EAAE,CAAC,CAAC,MAAMD,EAAE,EAAE,CAAC,CAAC,IAAI,OAAOC,CAAC,CAAC,SAAS45E,GAAGj6E,EAAE,EAAEE,EAAE,QAAQ,CAAC,IAAIE,EAAEJ,EAAE,IAAI,CAAC,EAAE,IAAI,CAAC,EAAEK,EAAE25E,GAAI55E,EAAE,CAAC,EAAE,OAAOC,EAAE,IAAI,CAAC,EAAE,IAAI,CAAC,IAAI0B,EAAE,OAAO/B,EAAE,CAAC,CAAC,MAAME,CAAC,MAAMG,EAAE,CAAC,CAAC,GAAG2B,EAAE,IAAI3B,EAAE,OAAO,EAAE,OAAOL,EAAE,EAAE,CAAC,CAAC,MAAME,CAAC,MAAMF,EAAE,CAAC,CAAC,MAAMK,EAAE,CAAC,CAAC,GAAG,YAAYL,EAAE,CAAC,CAAC,MAAMK,EAAE,CAAC,CAAC,GAAG,MAAM,GAAG0B,CAAC,KAAKC,CAAC,GAAG,CAAC,EAAE,KAAK,EAAE,CAAC,CAAC,SAASk4E,GAAGl6E,EAAE,CAAC,IAAI,EAAEzB,EAAE,eAAeyB,CAAC,EAAE,IAAIE,GAAGA,EAAE,SAAS,CAAC,EAAE,MAAM;AAAA;AAAA,wBAEhjC,EAAE,CAAC,CAAC,iBAAiB,EAAE,CAAC,CAAC;AAAA;AAAA,CAEhD,CAAC,SAASi6E,IAAI,CAAC,MAAM;AAAA;AAAA;AAAA;AAAA,CAIrB,CAAC,IAAIC,GAAG;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAuCJ,CAAC,iBAAiBC,EAAE,EAAE3sF,EAAE,SAAS4sF,GAAGt6E,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAE,CAAC,EAAE,GAAGJ,EAAE,QAAQ6C,GAAG,CAAC,IAAIC,EAAEvE,EAAE,cAAcsE,EAAE,UAAU,YAAY,EAAE,GAAGA,EAAE,UAAU,UAAUzC,EAAE,KAAK,iBAAiByC,EAAE,IAAI,GAAGC,EAAE,EAAE,IAAIA,CAAC,IAAI,EAAE,GAAG,GAAG1C,EAAE,KAAK,qBAAqByC,EAAE,IAAI,GAAG,EAAEzC,EAAE,KAAK,qBAAqByC,EAAE,IAAI,GAAG,GAAG3C,EAAE,oBAAoB,CAAC,GAAG,CAAC,aAAa8D,CAAC,EAAEu2E,GAAGr6E,EAAE,aAAa2C,EAAE,UAAU,aAAaA,EAAE,UAAU,QAAQ,EAAE,OAAOmB,EAAE,OAAO,CAAC,IAAK,GAAE5D,EAAE,KAAK,eAAeyC,EAAE,IAAI,QAAQ,EAAE,MAAM,IAAK,GAAEzC,EAAE,KAAK,iBAAiByC,EAAE,IAAI,QAAQ,EAAE,MAAM,IAAK,GAAEzC,EAAE,KAAK,iBAAiByC,EAAE,IAAI,QAAQ,EAAE,MAAM,IAAK,GAAEzC,EAAE,KAAK,iBAAiByC,EAAE,IAAI,QAAQ,EAAE,MAAM,QAAQ,KAAK,CAACzC,EAAE,KAAK,iBAAiByC,EAAE,IAAI,WAAW,CAAC,CAAC,CAAC,EAAE3C,EAAE,oBAAoB,CAAC,OAAO,EAAE,aAAa,OAAO,CAAC,IAAK,GAAEE,EAAE,KAAK,uBAAuB,EAAE,MAAM,IAAK,GAAEA,EAAE,KAAK,yBAAyB,EAAEA,EAAE,KAAK,8BAA8B,EAAE,MAAM,IAAK,GAAEA,EAAE,KAAK,yBAAyB,EAAEA,EAAE,KAAK,gCAAgC,EAAE,MAAM,IAAK,GAAEA,EAAE,KAAK,yBAAyB,EAAEA,EAAE,KAAK,gCAAgC,EAAE,MAAM,QAAQ,KAAK,CAACA,EAAE,KAAK,4BAA4B,CAAC,CAACF,EAAE,gBAAgBA,EAAE,eAAe,QAAQ2C,GAAG,CAACzC,EAAE,KAAK,WAAWyC,EAAE,IAAI,IAAIA,EAAE,IAAI,GAAGA,EAAE,WAAW,IAAIA,EAAE,UAAU,IAAI,EAAE,GAAG,CAAC,CAAC,EAAE,IAAIxC,EAAED,EAAE,KAAK;AAAA,CACxsC,EAAE,EAAEJ,EAAE,IAAI6C,GAAG23E,GAAI33E,EAAE,EAAE3C,EAAE,aAAaA,EAAE,mBAAmB,CAAC,EAAE,KAAK;AAAA,CACjE,EAAE,EAAE,EAAE,SAAS6B,EAAE83E,GAAG,EAAE73E,EAAEy4E,GAAI14E,CAAC,EAAEE,EAAES,EAAEC,EAAE+3E,GAAI34E,CAAC,EAAE,OAAO,EAAE,UAAUE,EAAE04E,GAAI,EAAE,aAAa,EAAEz6E,EAAE,mBAAmB,EAAEwC,EAAEk4E,GAAI74E,CAAC,IAAIE,EAAE44E,GAAI,EAAE,aAAa,EAAE36E,EAAE,mBAAmB,EAAEwC,EAAEo4E,GAAI/4E,CAAC,GAAG7B,EAAE,eAAeyC,GAAGo4E,IAAK,CAACp4E,EAAEX,EAAEU,EAAErC,EAAE4B,EAAE,EAAE/B,EAAE,QAAQ,EAAE,KAAK;AAAA,CACvO,CAAC,CAAC,SAAS86E,GAAGh7E,EAAE,EAAE,GAAG,CAAC,IAAIE,EAAEF,EAAE,UAAU,aAAa,OAAOE,EAAE,OAAO,CAAC,IAAK,GAAE,OAAO+6E,GAAIj7E,EAAE,CAAC,EAAE,IAAK,GAAE,OAAOk7E,GAAIl7E,EAAE,CAAC,EAAE,IAAK,GAAE,OAAOm7E,GAAIn7E,EAAE,CAAC,EAAE,IAAK,GAAE,OAAOo7E,GAAIp7E,EAAE,CAAC,EAAE,IAAK,GAAE,OAAOq7E,GAAIr7E,EAAE,CAAC,EAAE,IAAK,GAAE,OAAOs7E,GAAIt7E,CAAC,EAAE,IAAK,GAAE,OAAOu7E,GAAIv7E,CAAC,EAAE,QAAQ,MAAM,IAAI,MAAM,GAAGE,EAAE,MAAM,wCAAwC,CAAC,CAAC,CAAC,SAASs7E,GAAGx7E,EAAE,EAAE,CAAC,OAAOA,EAAE,UAAU,aAAa,OAAO,CAAC,IAAK,GAAE,OAAOy7E,GAAIz7E,CAAC,EAAE,IAAK,GAAE,OAAO07E,GAAI17E,EAAE,CAAC,EAAE,IAAK,GAAE,OAAO27E,GAAI37E,EAAE,CAAC,EAAE,IAAK,GAAE,OAAO47E,GAAI57E,EAAE,CAAC,EAAE,QAAQ,OAAO67E,GAAI77E,EAAE,CAAC,CAAC,CAAC,CAAC,SAASw6E,GAAIx6E,EAAE,EAAEE,EAAE,GAAGE,EAAE,CAAC,IAAIC,EAAE,GAAGH,EAAEG,GAAGm7E,GAAGx7E,EAAEI,CAAC,EAAEC,GAAG26E,GAAGh7E,EAAEI,CAAC,EAAE,IAAI,EAAEJ,EAAE,UAAU,aAAa,EAAE,EAAE,aAAa,OAAO,EAAE,QAAQ,EAAE,SAASE,EAAEG,GAAGy7E,GAAI97E,EAAE,CAAC,EAAEK,GAAG07E,GAAI/7E,EAAE,CAAC,GAAGK,CAAC,CAAC,SAASs6E,GAAI36E,EAAE,EAAEE,EAAE,CAAC,OAAOF,EAAE,OAAO,CAAC,IAAK,GAAE,OAAOg8E,GAAG,EAAE,IAAK,GAAE,OAAOC,GAAIj8E,EAAE,EAAEE,CAAC,EAAE,IAAK,GAAE,OAAOg8E,GAAIl8E,EAAE,EAAEE,CAAC,EAAE,IAAK,GAAE,OAAOi8E,GAAIn8E,EAAE,EAAEE,CAAC,EAAE,QAAQ,OAAOk8E,GAAIp8E,EAAE,EAAEE,CAAC,CAAC,CAAC,CAAC,SAAS26E,GAAI76E,EAAE,EAAEE,EAAE,CAAC,OAAOF,EAAE,OAAO,CAAC,IAAK,GAAE,OAAOg8E,GAAG,EAAE,IAAK,GAAE,OAAOK,GAAIr8E,EAAE,EAAEE,CAAC,EAAE,IAAK,GAAE,OAAOo8E,GAAIt8E,EAAE,EAAEE,CAAC,EAAE,IAAK,GAAE,OAAOq8E,GAAIv8E,EAAE,EAAEE,CAAC,EAAE,IAAK,GAAE,OAAOs8E,GAAIx8E,EAAE,EAAEE,CAAC,EAAE,IAAK,GAAE,OAAOu8E,GAAIz8E,EAAE,CAAC,EAAE,IAAK,GAAE,OAAO08E,GAAI18E,EAAE,CAAC,EAAE,QAAQ,MAAM,IAAI,MAAM,GAAGA,EAAE,MAAM,yCAAyC,CAAC,CAAC,CAAC,SAASy6E,GAAIz6E,EAAE,CAAC,MAAM;AAAA;AAAA,eAE/jCA,EAAE,SAAS;AAAA;AAAA,GAEvB,CAAC,SAAS86E,GAAI96E,EAAE,CAAC,MAAM;AAAA;AAAA,QAElBA,EAAE,MAAM;AAAA;AAAA,GAEb,CAAC,SAAS46E,GAAI56E,EAAE,CAAC,MAAM;AAAA;AAAA,QAElBA,EAAE,MAAM;AAAA;AAAA,GAEb,CAAC,SAAS06E,GAAI16E,EAAE,CAAC,MAAM,GAAGA,EAAE,OAAO;AAAA;AAAA;AAAA;AAAA,MAIhCA,EAAE,SAAS;AAAA,MACXA,EAAE,YAAY;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,MAuBdA,EAAE,gBAAgB;AAAA,MAClBA,EAAE,gBAAgB;AAAA,MAClBA,EAAE,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,MAyBb28E,EAAG;AAAA,MACHC,EAAG;AAAA,MACHC,EAAG;AAAA,GACN,CAAC,IAAIF,GAAI;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAYVC,GAAI;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAQJC,GAAI;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EASJ9B,GAAI;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAWJ,SAASiB,IAAI,CAAC,MAAM;AAAA;AAAA;AAAA;AAAA,GAInB,CAAC,SAASC,GAAIj8E,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAE,CAAC,KAAK,KAAK,EAAE,CAAC,EAAE,CAAC,EAAE,KAAK,KAAK,EAAE,CAAC,EAAE,CAAC,CAAC,EAAE,OAAOA,EAAE,CAAC,IAAI,EAAEF,EAAE;AAAA;AAAA;AAAA;AAAA,MAIhF;AAAA;AAAA,sCAEgCE,EAAE,CAAC,CAAC;AAAA;AAAA,MAEpCA,EAAE,CAAC,IAAI,EAAEF,EAAE;AAAA;AAAA;AAAA;AAAA,MAIX;AAAA;AAAA,sCAEgCE,EAAE,CAAC,CAAC;AAAA;AAAA,MAEpCF,EAAE;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,IAOJ;AAAA;AAAA;AAAA,oCAGgCE,EAAE,CAAC,CAAC,KAAKA,EAAE,CAAC,CAAC;AAAA,iCAChBA,EAAE,CAAC,CAAC;AAAA;AAAA,GAElC,CAAC,SAASi8E,GAAIr8E,EAAE,EAAEE,EAAE,CAAC,OAAO,EAAE,CAAC,IAAI,EAAEA,EAAE;AAAA;AAAA;AAAA;AAAA,MAIpC;AAAA;AAAA,kCAE4B,EAAE,CAAC,CAAC;AAAA;AAAA,MAEhC,EAAE,CAAC,IAAI,EAAEA,EAAE;AAAA;AAAA;AAAA;AAAA,MAIX;AAAA;AAAA,kCAE4B,EAAE,CAAC,CAAC;AAAA;AAAA,MAEhCA,EAAE;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,IAMJ;AAAA;AAAA;AAAA,oCAGgC,EAAE,CAAC,CAAC,KAAK,EAAE,CAAC,CAAC;AAAA,4BACrB,EAAE,CAAC,CAAC;AAAA;AAAA,GAE7B,CAAC,SAASi8E,GAAIn8E,EAAE,EAAEE,EAAE,CAAC,GAAGA,EAAE,MAAM;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,IAiB/B,IAAIE,EAAE,CAAC,KAAK,KAAK,EAAE,CAAC,EAAE,CAAC,EAAE,KAAK,KAAK,EAAE,CAAC,EAAE,CAAC,CAAC,EAAEC,EAAE,KAAK,KAAKL,EAAE,CAAC,EAAE,CAAC,EAAE,EAAEK,EAAE,KAAK,KAAKL,EAAE,CAAC,EAAE,CAAC,EAAE,MAAM;AAAA;AAAA;AAAA,oCAG5DI,EAAE,CAAC,CAAC,KAAKA,EAAE,CAAC,CAAC;AAAA,iCAChBA,EAAE,CAAC,CAAC;AAAA;AAAA,wBAEb,CAAC;AAAA,qBACJ,CAAC;AAAA;AAAA,6BAEOC,CAAC;AAAA,4BACFA,CAAC;AAAA;AAAA;AAAA;AAAA,GAI1B,CAAC,SAASk8E,GAAIv8E,EAAE,EAAEE,EAAE,CAAC,GAAGA,EAAE,MAAM;AAAA;AAAA;AAAA;AAAA;AAAA,MAK7B65E,GAAG,CAAC,IAAI,IAAI,GAAG,EAAE/5E,CAAC,CAAC;AAAA;AAAA;AAAA,EAGvB,IAAII,EAAE05E,GAAG,CAAC,IAAI,IAAI,GAAG,EAAE95E,CAAC,EAAE,MAAM;AAAA;AAAA;AAAA,oCAGE,EAAE,CAAC,CAAC,KAAK,EAAE,CAAC,CAAC;AAAA,iCAChB,EAAE,CAAC,CAAC;AAAA,QAC7BI,CAAC;AAAA;AAAA;AAAA,GAGN,CAAC,SAASg8E,GAAIp8E,EAAE,EAAEE,EAAE,CAAC,GAAGA,EAAE,MAAM;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,IAsB/B,IAAIE,EAAE,CAAC,KAAK,KAAK,EAAE,CAAC,EAAE,CAAC,EAAE,KAAK,KAAK,EAAE,CAAC,EAAE,CAAC,CAAC,EAAEC,EAAE,KAAK,KAAKL,EAAEA,EAAE,OAAO,CAAC,EAAE,CAAC,EAAE,EAAEK,EAAE,KAAK,KAAKL,EAAEA,EAAE,OAAO,CAAC,EAAE,CAAC,EAAE,EAAE,EAAE+B,EAAE,GAAGC,EAAE,UAAU,QAAQC,EAAE,EAAEA,EAAEjC,EAAE,OAAO,EAAEiC,IAAI,GAAGjC,EAAEA,EAAE,OAAOiC,EAAE,CAAC,EAAEF,EAAE;AAAA,aACtKE,CAAC,cAAc,CAAC;AAAA,kBACXA,CAAC,MAAM,CAAC;AAAA,MACpBF,EAAEC,EAAE,IAAIC,CAAC,KAAKD,EAAE,MAAM;AAAA,UAClBhC,EAAE,MAAM;AAAA;AAAA,oCAEkBI,EAAE,CAAC,CAAC,KAAKA,EAAE,CAAC,CAAC;AAAA,iCAChBA,EAAE,CAAC,CAAC;AAAA;AAAA,QAE7B2B,CAAC;AAAA;AAAA,wBAEe,CAAC;AAAA,qBACJ,CAAC;AAAA;AAAA,6BAEO1B,CAAC;AAAA,4BACFA,CAAC;AAAA;AAAA,mBAEVL,EAAE,MAAM,IAAIgC,CAAC;AAAA;AAAA,GAE7B,CAAC,SAASw6E,GAAIx8E,EAAE,EAAEE,EAAE,CAAC,GAAGA,EAAE,MAAM;AAAA;AAAA;AAAA;AAAA;AAAA,QAK3B65E,GAAG,CAAC,IAAI,IAAI,IAAI,IAAI,EAAE/5E,CAAC,CAAC;AAAA;AAAA;AAAA,IAG5B,IAAII,EAAE05E,GAAG,CAAC,IAAI,IAAI,IAAI,IAAI,EAAE95E,CAAC,EAAE,MAAM;AAAA;AAAA;AAAA,eAG1B,EAAE,CAAC,CAAC,KAAK,EAAE,CAAC,CAAC;AAAA,iCACK,EAAE,CAAC,CAAC;AAAA,QAC7BI,CAAC;AAAA;AAAA;AAAA,GAGN,CAAC,SAASq8E,GAAIz8E,EAAE,EAAE,CAAC,IAAIE,EAAE45E,GAAG,CAAC,IAAI,IAAI,IAAI,KAAK,IAAI,EAAE95E,CAAC,EAAE,MAAM;AAAA;AAAA,kDAEd,EAAE,CAAC,CAAC;AAAA,+BACvB,EAAE,CAAC,CAAC;AAAA;AAAA,iCAEF,EAAE,CAAC,CAAC;AAAA;AAAA,QAE7BE,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA,GAKN,CAAC,SAASw8E,GAAI18E,EAAE,EAAE,CAAC,IAAIE,EAAE45E,GAAG,CAAC,IAAI,IAAI,IAAI,KAAK,KAAK,IAAI,EAAE95E,CAAC,EAAE,MAAM;AAAA;AAAA;AAAA,eAGtD,EAAE,CAAC,CAAC,KAAK,EAAE,CAAC,CAAC;AAAA,iCACK,EAAE,CAAC,CAAC;AAAA;AAAA,QAE7BE,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA,GAKN,CAAC,SAASg8E,GAAIl8E,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAE,CAAC,KAAK,KAAK,EAAE,CAAC,EAAE,CAAC,EAAE,KAAK,KAAK,EAAE,CAAC,EAAE,CAAC,CAAC,EAAE,GAAG7B,EAAE,YAAYyB,EAAE,CAAC,EAAE,OAAOE,EAAE;AAAA;AAAA;AAAA;AAAA;AAAA,MAK7F;AAAA;AAAA,8CAEwCE,EAAE,CAAC,CAAC,KAAKA,EAAE,CAAC,CAAC;AAAA;AAAA,MAErD,IAAIC,EAAE,KAAK,KAAKL,EAAE,CAAC,EAAE,CAAC,EAAE,OAAOE,EAAE;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,IAanC;AAAA;AAAA;AAAA,oCAGgCE,EAAE,CAAC,CAAC,KAAKA,EAAE,CAAC,CAAC;AAAA;AAAA,iCAEhBA,EAAE,CAAC,CAAC;AAAA,6BACRC,CAAC;AAAA,4BACFA,CAAC;AAAA;AAAA;AAAA;AAAA,GAI1B,CAAC,SAASi8E,GAAIt8E,EAAE,EAAEE,EAAE,CAAC,OAAO3B,EAAE,YAAYyB,EAAE,CAAC,EAAEE,EAAE;AAAA;AAAA;AAAA;AAAA,MAI9C;AAAA;AAAA,0CAEoC,EAAE,CAAC,CAAC,KAAK,EAAE,CAAC,CAAC;AAAA;AAAA,MAEjDF,EAAE,CAAC,IAAI,EAAEE,EAAE;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,MAOX;AAAA;AAAA;AAAA,sCAGgC,EAAE,CAAC,CAAC,KAAK,EAAE,CAAC,CAAC;AAAA,mCAChB,EAAE,CAAC,CAAC;AAAA;AAAA;AAAA,MAGjCF,EAAE,CAAC,IAAI,EAAEE,EAAE;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,MAOX;AAAA;AAAA;AAAA,sCAGgC,EAAE,CAAC,CAAC,KAAK,EAAE,CAAC,CAAC;AAAA,mCAChB,EAAE,CAAC,CAAC;AAAA;AAAA;AAAA,MAGjCA,EAAE;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,IASJ;AAAA;AAAA;AAAA,oCAGgC,EAAE,CAAC,CAAC,KAAK,EAAE,CAAC,CAAC;AAAA,iCAChB,EAAE,CAAC,CAAC;AAAA,wBACbF,EAAE,CAAC,CAAC;AAAA,4BACAA,EAAE,CAAC,CAAC;AAAA;AAAA;AAAA,GAG7B,CAAC,SAAS88E,GAAG98E,EAAE,CAAC,MAAM,SAASA,CAAC,EAAE,CAAC,SAASy7E,GAAIz7E,EAAE,CAAC,IAAI,EAAEA,EAAE,KAAKE,EAAE,MAAM,EAAE,OAAO,CAAC,EAAE,YAAY,EAAE,EAAE,MAAM,CAAC,EAAEE,EAAEy5E,GAAG,EAAE,MAAM;AAAA,WAClH35E,CAAC;AAAA,eACGE,EAAE,SAAS,IAAI,CAAC;AAAA;AAAA,GAE5B,CAAC,SAAS66E,GAAIj7E,EAAE,EAAE,CAAC,IAAIE,EAAEF,EAAE,KAAKI,EAAE,MAAMF,EAAE,OAAO,CAAC,EAAE,YAAY,EAAEA,EAAE,MAAM,CAAC,EAAE,GAAGF,EAAE,UAAU,UAAU,MAAM,SAASI,CAAC,cAAcF,CAAC,KAAK,GAAG,CAACG,EAAE,CAAC,EAAEL,EAAE,UAAU,SAAS,GAAGK,IAAI,GAAG,IAAI,EAAE,MAAM;AAAA,cACnLD,CAAC;AAAA,+BACgBF,CAAC;AAAA;AAAA,MAE1B,IAAI,EAAE48E,GAAG58E,CAAC,EAAE,GAAG,EAAE,MAAM;AAAA,YACjBE,CAAC;AAAA,6BACgBF,CAAC,gBAAgBA,CAAC,gBAAgB,CAAC;AAAA,6BACnCA,CAAC;AAAA;AAAA,IAE1B,GAAG,CAAC6B,EAAEC,CAAC,EAAEhC,EAAE,UAAU,SAAS,MAAM;AAAA,YAC5BI,CAAC;AAAA,6BACgB2B,CAAC,KAAKC,CAAC,KAAK,CAAC;AAAA,6BACb9B,CAAC;AAAA;AAAA,GAE3B,CAAC,SAASw7E,GAAI17E,EAAE,EAAE,CAAC,IAAIE,EAAEF,EAAE,KAAKI,EAAE,MAAMF,EAAE,OAAO,CAAC,EAAE,YAAY,EAAEA,EAAE,MAAM,CAAC,EAAEG,EAAEL,EAAE,UAAU,SAAS,EAAE65E,GAAG,EAAE,GAAG,EAAE,MAAM;AAAA,WAC9Gz5E,CAAC;AAAA,gDACoCF,CAAC,mCAAmCA,CAAC;AAAA;AAAA;AAAA,eAGtE,EAAE,SAAS,IAAIA,CAAC;AAAA;AAAA,IAE3B,IAAI,EAAE,CAAC,KAAK,KAAKG,EAAE,CAAC,EAAE,CAAC,EAAE,KAAK,KAAKA,EAAE,CAAC,EAAE,CAAC,CAAC,EAAE,MAAM;AAAA,WAC3CD,CAAC;AAAA;AAAA,UAEF,EAAE,CAAC,CAAC,KAAK,EAAE,CAAC,CAAC;AAAA,eACR,EAAE,SAAS,IAAIF,CAAC;AAAA;AAAA,GAE5B,CAAC,SAASg7E,GAAIl7E,EAAE,EAAE,CAAC,IAAIE,EAAEF,EAAE,KAAKI,EAAE,MAAMF,EAAE,OAAO,CAAC,EAAE,YAAY,EAAEA,EAAE,MAAM,CAAC,EAAE,GAAGF,EAAE,UAAU,UAAU,MAAM;AAAA,cACjGI,CAAC;AAAA,UACL28E,GAAG/8E,CAAC,CAAC;AAAA;AAAA,MAET,IAAIK,EAAEL,EAAE,UAAU,SAAS,EAAEK,EAAE,CAAC,EAAE,EAAEA,EAAE,CAAC,EAAE,GAAG,IAAI,GAAG,IAAI,EAAE,MAAM;AAAA,cACvDD,CAAC;AAAA,+BACgBF,CAAC;AAAA;AAAA,MAE1B,IAAI6B,EAAE+6E,GAAG58E,CAAC,EAAE,OAAO,IAAI,EAAE,EAAE;AAAA,cACnBE,CAAC;AAAA,6CAC8B2B,CAAC,oBAAoB7B,CAAC;AAAA,+BACpCA,CAAC;AAAA;AAAA,MAE1B;AAAA,cACQE,CAAC;AAAA,6CAC8B2B,CAAC,cAAc,CAAC;AAAA,+BAC9B7B,CAAC;AAAA;AAAA,MAE1B,IAAI,EAAE,EAAE;AAAA,cACAE,CAAC;AAAA,wCACyB2B,CAAC,oBAAoB7B,CAAC;AAAA,+BAC/BA,CAAC;AAAA;AAAA,MAE1B;AAAA,cACQE,CAAC;AAAA,wCACyB2B,CAAC,cAAc,CAAC;AAAA,+BACzB7B,CAAC;AAAA;AAAA,MAE1B,EAAE;AAAA,YACIE,CAAC;AAAA,6BACgBF,CAAC,gBAAgBA,CAAC,wBAAwB6B,CAAC;AAAA,6BAC3C7B,CAAC;AAAA;AAAA,IAE1B;AAAA,YACQE,CAAC;AAAA,6BACgB,CAAC,KAAK,CAAC,aAAa2B,CAAC;AAAA,6BACrB7B,CAAC;AAAA;AAAA,GAE3B,CAAC,SAASy7E,GAAI37E,EAAE,EAAE,CAAC,IAAIE,EAAEF,EAAE,UAAU,aAAaI,EAAEJ,EAAE,KAAKK,EAAE,MAAMD,EAAE,OAAO,CAAC,EAAE,YAAY,EAAEA,EAAE,MAAM,CAAC,EAAE,EAAEJ,EAAE,UAAU,SAAS,EAAE,EAAE,CAAC,EAAE+B,EAAE,EAAE,CAAC,EAAEC,EAAE63E,GAAG,EAAE,GAAG,GAAG,MAAMt7E,EAAE,YAAY2B,EAAE,CAAC,EAAE,OAAO,EAAE;AAAA,aAClLG,CAAC;AAAA,qDACuCD,CAAC,gBAAgBA,CAAC;AAAA;AAAA,iBAEtD4B,EAAE,SAAS,IAAI5B,CAAC;AAAA;AAAA,MAE3B;AAAA,aACOC,CAAC;AAAA,qDACuC0B,CAAC,OAAO,CAAC;AAAA;AAAA,iBAE7CC,EAAE,SAAS,IAAI5B,CAAC;AAAA;AAAA,MAE3B,GAAG,EAAE,MAAM;AAAA,WACNC,CAAC;AAAA,gDACoCD,CAAC,mCAAmCA,CAAC;AAAA,0CAC3CA,CAAC;AAAA;AAAA,eAE5B4B,EAAE,SAAS,IAAI5B,CAAC;AAAA;AAAA,IAE3B,IAAI6B,EAAE,CAAC,KAAK,KAAK,EAAE,CAAC,EAAE,CAAC,EAAE,KAAK,KAAK,EAAE,CAAC,EAAE,CAAC,CAAC,EAAES,EAAE,KAAK,KAAKxC,EAAE,CAAC,EAAE,CAAC,EAAE,MAAM;AAAA,WAC/DG,CAAC;AAAA,iCACqBqC,CAAC,KAAKT,EAAE,CAAC,CAAC,KAAKA,EAAE,CAAC,CAAC;AAAA,eACrCD,EAAE,SAAS,IAAI5B,CAAC;AAAA;AAAA,GAE5B,CAAC,SAAS+6E,GAAIn7E,EAAE,EAAE,CAAC,IAAIE,EAAEF,EAAE,UAAU,aAAaI,EAAEJ,EAAE,KAAKK,EAAE,MAAMD,EAAE,OAAO,CAAC,EAAE,YAAY,EAAEA,EAAE,MAAM,CAAC,EAAE,EAAEJ,EAAE,UAAU,SAAS,GAAG,GAAG,MAAMzB,EAAE,YAAY2B,EAAE,CAAC,EAAE,CAAC,GAAG,EAAE,MAAM;AAAA,cAC/JG,CAAC;AAAA,qDACsCD,CAAC,gBAAgBA,CAAC;AAAA,+BACxCA,CAAC;AAAA;AAAA,MAE1B,IAAIwC,EAAE,EAAE,CAAC,EAAEC,EAAE,EAAE,CAAC,EAAE,MAAM;AAAA,YAClBxC,CAAC;AAAA,mDACsCwC,CAAC,OAAOD,CAAC;AAAA,6BAC/BxC,CAAC;AAAA;AAAA,GAE3B,CAAC,GAAG,CAAC,SAAS,EAAE,SAAS2B,CAAC,EAAExD,EAAE,aAAa2B,CAAC,EAAE8B,EAAE,EAAE,GAAGA,EAAE,OAAO9B,EAAE,OAAO,CAAC,IAAI0C,EAAEo6E,GAAGh9E,EAAEgC,CAAC,EAAEa,EAAE,CAAC,MAAM,KAAK,EAAE,MAAM;AAAA,QACvGm4E,GAAGp4E,EAAE,CAAC,CAAC;AAAA,cACDvC,CAAC;AAAA,iBACEA,CAAC,IAAI48E,GAAGp6E,EAAEd,CAAC,CAAC;AAAA;AAAA,KAExB,CAAC,GAAG/B,EAAE,UAAU,UAAU,MAAM;AAAA,cACvBK,CAAC;AAAA,qDACsCH,EAAE,CAAC,CAAC;AAAA,UAC/C68E,GAAG/8E,CAAC,CAAC;AAAA;AAAA,MAET,IAAIiC,EAAE,EAAE,CAAC,EAAES,EAAE,EAAE,CAAC,EAAEC,EAAEm6E,GAAG18E,CAAC,EAAE,OAAOsC,IAAI,EAAE,EAAE;AAAA,cACjCrC,CAAC;AAAA,2CAC4BsC,CAAC,WAAWvC,CAAC;AAAA,oDACJA,CAAC;AAAA,+BACtBA,CAAC;AAAA;AAAA,MAE1B;AAAA,YACMC,CAAC;AAAA,yCAC4BsC,CAAC,WAAWzC,EAAE,CAAC,CAAC;AAAA,4CACb+B,CAAC;AAAA,6BAChB7B,CAAC;AAAA;AAAA,IAE1B6B,IAAI,EAAE,EAAE;AAAA,cACE5B,CAAC;AAAA,2CAC4BsC,CAAC,WAAWvC,CAAC;AAAA,+CACTA,CAAC;AAAA,+BACjBA,CAAC;AAAA;AAAA,MAE1B;AAAA,YACMC,CAAC;AAAA,yCAC4BsC,CAAC,WAAWzC,EAAE,CAAC,CAAC;AAAA,uCAClBwC,CAAC;AAAA,6BACXtC,CAAC;AAAA;AAAA,IAE1B,EAAE;AAAA,cACQC,CAAC;AAAA;AAAA,4BAEaD,CAAC,oBAAoBuC,CAAC;AAAA,+BACnBvC,CAAC,gBAAgBA,CAAC;AAAA,+BAClBA,CAAC;AAAA;AAAA,MAE1B;AAAA,UACIC,CAAC;AAAA;AAAA,wBAEaH,EAAE,CAAC,CAAC,YAAYyC,CAAC;AAAA,2BACdV,CAAC,KAAKS,CAAC;AAAA,2BACPtC,CAAC;AAAA;AAAA,CAE3B,CAAC,SAASw7E,GAAI57E,EAAE,EAAE,CAAC,IAAIE,EAAEF,EAAE,UAAU,aAAaI,EAAEJ,EAAE,KAAKK,EAAE,MAAMD,EAAE,OAAO,CAAC,EAAE,YAAY,EAAEA,EAAE,MAAM,CAAC,EAAE,EAAEJ,EAAE,UAAU,SAAS,EAAE,CAAC,KAAK,KAAK,EAAE,CAAC,EAAE,CAAC,EAAE,KAAK,KAAK,EAAE,CAAC,EAAE,CAAC,CAAC,EAAE,GAAGE,EAAE,CAAC,IAAI,EAAE,CAAC,IAAI0C,EAAE1C,EAAE,MAAM,CAAC,EAAE2C,EAAE,CAAC,EAAE,CAAC,EAAEC,EAAEk6E,GAAGh9E,EAAE4C,CAAC,EAAEoB,EAAE,CAAC,IAAI,MAAM,KAAK,EAAE,MAAM;AAAA,UACxOw3E,GAAG14E,EAAE,CAAC,CAAC;AAAA,eACFzC,CAAC;AAAA,mBACGA,CAAC,IAAI48E,GAAGj5E,EAAEnB,CAAC,CAAC;AAAA;AAAA,OAExB,CAAC,IAAId,EAAE83E,GAAG,EAAE,GAAG,EAAE,MAAM;AAAA,WACnBx5E,CAAC;AAAA,gDACoCD,CAAC,mCAAmCA,CAAC;AAAA,0CAC3CA,CAAC;AAAA,0DACeA,CAAC;AAAA;AAAA;AAAA,eAG5C2B,EAAE,SAAS,IAAI3B,CAAC;AAAA;AAAA,IAE3B,IAAI4B,EAAE,EAAE,CAAC,EAAEC,EAAE,EAAE,CAAC,EAAES,EAAE,KAAK,KAAKxC,EAAE,CAAC,EAAE,CAAC,EAAEyC,EAAED,EAAE,KAAK,KAAKxC,EAAE,CAAC,EAAE,CAAC,EAAE,MAAM;AAAA,WAC3DG,CAAC;AAAA;AAAA,UAEF2B,CAAC,KAAKC,CAAC,KAAKU,CAAC,KAAKD,CAAC;AAAA,eACdX,EAAE,SAAS,IAAI3B,CAAC;AAAA;AAAA,GAE5B,CAAC,SAASg7E,GAAIp7E,EAAE,EAAE,CAAC,IAAIE,EAAEF,EAAE,UAAU,aAAaI,EAAEJ,EAAE,KAAKK,EAAE,MAAMD,EAAE,OAAO,CAAC,EAAE,YAAY,EAAEA,EAAE,MAAM,CAAC,EAAE,EAAEF,EAAE,CAAC,EAAEA,EAAE,CAAC,EAAE,EAAEA,EAAE,CAAC,EAAE,CAAC,SAAS6B,EAAE,SAASC,CAAC,EAAEzD,EAAE,aAAa2B,CAAC,EAAE+B,EAAEF,EAAE,GAAGE,EAAE,OAAO/B,EAAE,OAAO,CAAC,IAAI8D,EAAEg5E,GAAGh9E,EAAEiC,CAAC,EAAE,EAAE,CAAC,MAAM,MAAM,OAAO,EAAE,MAAM;AAAA,UACpO+4E,GAAGh3E,EAAE,CAAC,CAAC;AAAA,gBACD3D,CAAC;AAAA,mBACEA,CAAC,IAAI48E,GAAG,EAAEj7E,CAAC,CAAC;AAAA;AAAA,OAExB,CAAC,GAAGhC,EAAE,UAAU,UAAU,MAAM;AAAA,cACzBK,CAAC;AAAA;AAAA,iCAEkB,CAAC,KAAK,CAAC;AAAA,UAC9B08E,GAAG/8E,CAAC,CAAC;AAAA;AAAA,MAET,IAAI0C,EAAE1C,EAAE,UAAU,SAAS2C,EAAED,EAAE,CAAC,EAAEE,EAAEF,EAAE,CAAC,EAAEG,EAAE7C,EAAE,UAAU,WAAW,GAAG4C,IAAI,GAAGC,GAAG,KAAK,OAAO,EAAE;AAAA,cACrFxC,CAAC;AAAA,wBACSD,CAAC;AAAA;AAAA;AAAA;AAAA,0BAICA,CAAC,gBAAgBA,CAAC;AAAA,+BACbA,CAAC;AAAA;AAAA,MAE1B;AAAA,gBACUC,CAAC;AAAA;AAAA,oDAEmC,CAAC;AAAA;AAAA,4BAEzBuC,CAAC,OAAOD,CAAC;AAAA,iCACJvC,CAAC;AAAA;AAAA,QAE1B,GAAGwC,IAAI,GAAGC,GAAG,KAAK,OAAO,EAAE;AAAA,cACrBxC,CAAC;AAAA,gDACiCD,CAAC;AAAA;AAAA,uDAEMA,CAAC,gBAAgBA,CAAC;AAAA,+BAC1CA,CAAC;AAAA;AAAA,MAE1B;AAAA,YACMC,CAAC;AAAA,8CACiCH,EAAE,CAAC,CAAC;AAAA;AAAA,qDAEG0C,CAAC,OAAOD,CAAC;AAAA,6BACjCvC,CAAC;AAAA;AAAA,IAE1B,IAAI0C,EAAEg6E,GAAG18E,CAAC,EAAE,OAAO,EAAE;AAAA,YACbC,CAAC;AAAA;AAAA,sBAESD,CAAC,cAAcA,CAAC;AAAA,sBAChBA,CAAC;AAAA,4DACqC0C,CAAC;AAAA,6BAChC1C,CAAC,gBAAgBA,CAAC;AAAA,6BAClBA,CAAC;AAAA;AAAA,MAExB;AAAA,cACQC,CAAC;AAAA;AAAA,4BAEa,CAAC,YAAY,CAAC,cAAcyC,CAAC;AAAA,+BAC1BH,CAAC,KAAKC,CAAC;AAAA,+BACPxC,CAAC;AAAA;AAAA,GAE7B,CAAC,SAASy7E,GAAI77E,EAAE,EAAE,CAAC,IAAIE,EAAEF,EAAE,KAAKI,EAAE,MAAMF,EAAE,OAAO,CAAC,EAAE,YAAY,EAAEA,EAAE,MAAM,CAAC,EAAEG,EAAEw5E,GAAG,EAAE,GAAG,EAAE,MAAM;AAAA,WACvFz5E,CAAC;AAAA,0CAC8BF,CAAC;AAAA,0DACeA,CAAC;AAAA;AAAA,yBAElCA,CAAC;AAAA;AAAA,gDAEsBA,CAAC,mCAAmCA,CAAC;AAAA;AAAA;AAAA,mGAGcG,EAAE,SAAS,IAAIH,CAAC;AAAA;AAAA,IAE/G,IAAI,EAAEF,EAAE,UAAU,aAAa,EAAE,EAAE,OAAO+B,EAAE/B,EAAE,UAAU,SAASgC,EAAE,CAAC,KAAK,KAAKD,EAAE,CAAC,EAAE,CAAC,EAAE,KAAK,KAAKA,EAAE,CAAC,EAAE,CAAC,CAAC,EAAEE,EAAED,EAAE,CAAC,EAAEU,EAAEV,EAAE,CAAC,EAAEW,EAAE,KAAK,KAAK,EAAE,EAAE,CAAC,EAAE,CAAC,EAAEC,EAAED,EAAE,KAAK,KAAK,EAAE,EAAE,CAAC,EAAE,CAAC,EAAEE,EAAE,0BAA0BC,EAAE,OAAOF,CAAC,kBAAkBD,CAAC,eAAe,QAAQqB,EAAE,EAAEA,EAAE,EAAE,EAAEA,IAAInB,EAAE,QAAQmB,CAAC,KAAKnB,EAAED,GAAG,EAAE,EAAEoB,EAAE,CAAC,EAAElB,EAAE,IAAIkB,CAAC,MAAMpB,CAAC,MAAME,EAAE,MAAM;AAAA,WACtT1C,CAAC,IAAIyC,CAAC;AAAA,oBACGC,CAAC;AAAA,2BACMJ,CAAC;AAAA,kCACMA,CAAC;AAAA,qDACkBA,CAAC,KAAKT,CAAC;AAAA,eAC7C5B,EAAE,SAAS,IAAIH,CAAC;AAAA;AAAA,GAE5B,CAAC,SAASm7E,GAAIr7E,EAAE,EAAE,CAAC,IAAIE,EAAEF,EAAE,UAAU,aAAaI,EAAEJ,EAAE,KAAKK,EAAE,MAAMD,EAAE,OAAO,CAAC,EAAE,YAAY,EAAEA,EAAE,MAAM,CAAC,EAAE,EAAEF,EAAE,CAAC,EAAE,EAAEA,EAAE,CAAC,EAAE,EAAE6B,EAAE7B,EAAE,CAAC,EAAE,EAAE,CAAC,SAAS8B,EAAE,SAASC,CAAC,EAAE1D,EAAE,aAAa2B,CAAC,EAAE,GAAG8B,EAAE,OAAO9B,EAAE,OAAO,CAAC,IAAI4E,EAAEk4E,GAAGh9E,EAAEgC,CAAC,EAAEyC,EAAE,CAAC,MAAM,MAAM,QAAQ,QAAQ,EAAE,MAAM;AAAA,QACjPu2E,GAAGl2E,EAAE,CAAC,CAAC;AAAA,cACDzE,CAAC;AAAA,iBACEA,CAAC,IAAI48E,GAAGx4E,EAAExC,CAAC,CAAC;AAAA;AAAA,KAExB,CAAC,GAAGjC,EAAE,UAAU,UAAU,MAAM;AAAA,cACvBK,CAAC;AAAA;AAAA,iCAEkB0B,CAAC,KAAK,CAAC,KAAK,CAAC;AAAA,UACpCg7E,GAAG/8E,CAAC,CAAC;AAAA;AAAA,MAET,IAAI0C,EAAE1C,EAAE,UAAU,WAAW2C,EAAE3C,EAAE,UAAU,SAAS4C,EAAED,EAAE,CAAC,EAAEE,EAAEF,EAAE,CAAC,EAAEG,EAAE,iBAAiB1C,CAAC,YAAY4D,EAAE,iBAAiB5D,CAAC,sBAAsB,EAAE,iBAAiBA,CAAC,sBAAsB,GAAGyC,IAAId,GAAGW,GAAG,KAAK,OAAO,EAAE;AAAA,cACzMrC,CAAC;AAAA,UACLyC,CAAC;AAAA,UACDkB,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,0BAMe5D,CAAC,gBAAgBA,CAAC;AAAA,+BACbA,CAAC;AAAA;AAAA,MAE1B;AAAA,cACQC,CAAC;AAAA;AAAA;AAAA;AAAA,uBAIQ,CAAC,KAAK,CAAC;AAAA;AAAA,0BAEJwC,CAAC,OAAOD,CAAC;AAAA,+BACJxC,CAAC;AAAA;AAAA,MAE1B,GAAGyC,IAAI,GAAGH,GAAG,KAAK,OAAO,EAAE;AAAA,cACnBrC,CAAC;AAAA;AAAA,gCAEiBD,CAAC,cAAcA,CAAC,aAAaA,CAAC;AAAA;AAAA;AAAA,yBAGrCA,CAAC,gBAAgBA,CAAC;AAAA,+BACZA,CAAC;AAAA;AAAA,MAE1B;AAAA,cACQC,CAAC;AAAA;AAAA,gCAEiBH,EAAE,CAAC,EAAEA,EAAE,CAAC,CAAC,KAAKA,EAAE,CAAC,CAAC;AAAA;AAAA;AAAA,yBAGzB2C,CAAC,OAAOD,CAAC;AAAA,+BACHxC,CAAC;AAAA;AAAA,MAE1B,IAAIkH,EAAEw1E,GAAG18E,CAAC,EAAE,OAAO,EAAE;AAAA,YACfC,CAAC;AAAA;AAAA,QAELyC,CAAC;AAAA,QACDkB,CAAC;AAAA,QACD,CAAC;AAAA;AAAA;AAAA,6BAGoB5D,CAAC,gBAAgBA,CAAC,wBAAwBkH,CAAC;AAAA,6BAC3ClH,CAAC;AAAA;AAAA,IAE1B;AAAA,YACQC,CAAC;AAAA;AAAA,0BAEa0B,CAAC,YAAY,CAAC;AAAA,oBACpB,CAAC;AAAA,6BACQa,CAAC,KAAKC,CAAC,aAAayE,CAAC;AAAA,6BACrBlH,CAAC;AAAA;AAAA,GAE3B,CAAC,SAASk7E,GAAIt7E,EAAE,CAAC,IAAI,EAAEA,EAAE,UAAU,aAAaE,EAAEF,EAAE,KAAKI,EAAE,MAAMF,EAAE,OAAO,CAAC,EAAE,YAAY,EAAEA,EAAE,MAAM,CAAC,EAAEG,EAAE,EAAE,CAAC,EAAE,EAAE,EAAE,CAAC,EAAEA,EAAE,EAAE,EAAE,CAAC,EAAE,EAAE0B,EAAE,EAAE,CAAC,EAAE,EAAE,CAAC,SAASC,EAAE,SAASC,CAAC,EAAE1D,EAAE,aAAa,CAAC,EAAE,GAAGyD,EAAE,OAAO,EAAE,OAAO,CAAC,IAAIgC,EAAEg5E,GAAGh9E,EAAEgC,CAAC,EAAE,EAAE,CAAC,MAAM,MAAM,QAAQ,SAAS,QAAQ,EAAE,MAAM;AAAA,QACjQg5E,GAAGh3E,CAAC,CAAC;AAAA,cACC5D,CAAC;AAAA,iBACEA,CAAC,IAAI68E,GAAG,EAAEh7E,CAAC,CAAC;AAAA;AAAA,KAExB,CAAC,GAAGjC,EAAE,UAAU,UAAU,MAAM;AAAA,cACvBI,CAAC;AAAA;AAAA;AAAA,iBAGE2B,CAAC,KAAK,CAAC,KAAK,CAAC,KAAK1B,CAAC;AAAA;AAAA,UAE1B08E,GAAG/8E,CAAC,CAAC;AAAA;AAAA,MAET,IAAI0C,EAAE1C,EAAE,UAAU,WAAW2C,EAAE3C,EAAE,UAAU,SAAS4C,EAAED,EAAE,CAAC,EAAEE,EAAEF,EAAE,CAAC,EAAE,GAAGE,IAAId,GAAGW,GAAG,KAAK,MAAM;AAAA,cAClFtC,CAAC;AAAA;AAAA;AAAA,gCAGiB,CAAC,KAAK,CAAC,KAAKC,CAAC;AAAA;AAAA,0BAEnBwC,CAAC,OAAOD,CAAC;AAAA,+BACJ1C,CAAC;AAAA;AAAA,MAE1B,GAAG2C,IAAIxC,GAAGqC,GAAG,KAAK,MAAM;AAAA,cAChBtC,CAAC;AAAA;AAAA;AAAA,iBAGE,EAAE,CAAC,EAAE,EAAE,CAAC,EAAE,EAAE,CAAC,CAAC;AAAA,iBACd,EAAE,CAAC,EAAE,EAAE,CAAC,CAAC,KAAK,EAAE,CAAC,CAAC;AAAA;AAAA;AAAA,yBAGVyC,CAAC,OAAOD,CAAC;AAAA,+BACH1C,CAAC;AAAA;AAAA,MAE1B,IAAI4C,EAAEg6E,GAAG58E,CAAC,EAAE,MAAM;AAAA,YACZE,CAAC;AAAA;AAAA,0BAEa2B,CAAC,YAAY,CAAC,cAAc,CAAC;AAAA,qBAClC1B,CAAC,eAAeyC,CAAC;AAAA,6BACTF,CAAC,KAAKC,CAAC;AAAA,6BACP3C,CAAC;AAAA;AAAA,GAE3B,CAAC,SAASq7E,GAAIv7E,EAAE,CAAC,IAAI,EAAEA,EAAE,UAAU,aAAaE,EAAEF,EAAE,KAAKI,EAAE,MAAMF,EAAE,OAAO,CAAC,EAAE,YAAY,EAAEA,EAAE,MAAM,CAAC,EAAE,CAAC,SAASG,EAAE,SAAS,CAAC,EAAE9B,EAAE,aAAa,CAAC,EAAE,GAAG8B,EAAE,OAAO,EAAE,OAAO,CAAC,IAAI,EAAE28E,GAAGh9E,EAAEK,CAAC,EAAEiH,EAAE,CAAC,MAAM,MAAM,QAAQ,SAAS,SAAS,QAAQ,EAAE,MAAM;AAAA,QACxO0zE,GAAG,CAAC,CAAC;AAAA,cACC56E,CAAC;AAAA;AAAA,iBAEEA,CAAC,IAAI68E,GAAG31E,EAAE,CAAC,CAAC;AAAA;AAAA,KAExB,CAAC,IAAI,EAAE,EAAE,CAAC,EAAEvF,EAAE,EAAE,CAAC,EAAE,EAAEC,EAAE,EAAE,CAAC,EAAED,EAAEE,EAAE,EAAE,CAAC,EAAED,EAAEU,EAAE,EAAE,CAAC,EAAET,EAAE,GAAGjC,EAAE,UAAU,UAAU,MAAM;AAAA,cACtEI,CAAC;AAAA;AAAA;AAAA;AAAA,iBAIEsC,CAAC,KAAKT,CAAC,KAAKD,CAAC,KAAKD,CAAC;AAAA;AAAA;AAAA,mBAGjB,CAAC;AAAA,UACVg7E,GAAG/8E,CAAC,CAAC;AAAA;AAAA,MAET,IAAI2C,EAAE3C,EAAE,UAAU,WAAW4C,EAAE5C,EAAE,UAAU,SAAS6C,EAAED,EAAE,CAAC,EAAEE,EAAEF,EAAE,CAAC,EAAE,GAAGE,IAAIJ,GAAGC,GAAG,KAAK,MAAM;AAAA,cAClFvC,CAAC;AAAA;AAAA;AAAA;AAAA,iBAIE6B,CAAC,KAAKD,CAAC,KAAKD,CAAC,KAAK,CAAC;AAAA;AAAA;AAAA,0BAGVe,CAAC,OAAOD,CAAC;AAAA,+BACJ3C,CAAC;AAAA;AAAA,MAE1B,GAAG4C,IAAI,GAAGH,GAAG,KAAK,MAAM;AAAA,cAChBvC,CAAC;AAAA;AAAA;AAAA,iBAGE,EAAE,CAAC,EAAE,EAAE,CAAC,EAAE,EAAE,CAAC,EAAE,EAAE,CAAC,CAAC;AAAA,iBACnB,EAAE,CAAC,EAAE,EAAE,CAAC,EAAE,EAAE,CAAC,CAAC;AAAA,iBACd,EAAE,CAAC,EAAE,EAAE,CAAC,CAAC;AAAA,iBACT,EAAE,CAAC,CAAC;AAAA;AAAA;AAAA,yBAGI0C,CAAC,OAAOD,CAAC;AAAA,+BACH3C,CAAC;AAAA;AAAA,MAE1B,IAAI8D,EAAE84E,GAAG58E,CAAC,EAAE,MAAM;AAAA,YACZE,CAAC;AAAA;AAAA;AAAA,0BAGasC,CAAC,YAAYT,CAAC,cAAcD,CAAC;AAAA,qBAClCD,CAAC,eAAe,CAAC,eAAeiC,CAAC;AAAA,6BACzBnB,CAAC,KAAKC,CAAC;AAAA,6BACP5C,CAAC;AAAA;AAAA,GAE3B,CAAC,SAAS68E,GAAG/8E,EAAE,CAAC,IAAI,EAAEA,EAAE,KAAKE,EAAE3B,EAAE,cAAcyB,EAAE,UAAU,YAAY,EAAE,OAAOE,EAAE,EAAE,UAAU,CAAC,IAAI;AAAA,0BAC5EA,CAAC;AAAA;AAAA,iBAEV,CAAC;AAAA;AAAA;AAAA,GAGf,CAAC,SAAS47E,GAAI97E,EAAE,EAAE,CAAC,IAAIE,EAAEF,EAAE,KAAKI,EAAEF,EAAE,OAAO,CAAC,EAAE,YAAY,EAAEA,EAAE,MAAM,CAAC,EAAEG,EAAE,MAAMD,EAAE,cAAc,EAAEJ,EAAE,UAAU,aAAa,OAAO,EAAE,EAAE,aAAa,OAAO+B,EAAEs4E,GAAGr6E,EAAE,UAAU,aAAa,EAAE,YAAY,EAAEgC,EAAEk7E,GAAG,CAAC,EAAEj7E,EAAE,EAAE,EAAES,EAAEC,EAAE,CAAC,IAAI,IAAI,IAAI,IAAI,IAAI,GAAG,EAAE,IAAI,EAAED,EAAE,GAAG,EAAE,GAAGX,EAAE,QAAQ,EAAEW,EAAE,cAAcA,EAAEX,EAAE,IAAI+C,GAAG,UAAUnC,EAAEmC,EAAE7C,CAAC,CAAC,OAAO,EAAE,KAAK;AAAA,CAC1U,EAAE,IAAIW,EAAE,GAAG,EAAE,GAAG,EAAE,EAAEA,EAAE,SAASA,EAAE5C,EAAE,UAAU,aAAa,IAAI,CAAC8E,EAAEL,IAAI,UAAU9B,EAAE8B,EAAExC,CAAC,CAAC,EAAE,EAAE,KAAK,IAAI,EAAE,IAAIY,EAAE,sBAAsBmB,EAAEzF,EAAE,cAAcyB,EAAE,UAAU,YAAY,IAAI,EAAEsH,EAAE/I,EAAE,cAAc,EAAE,YAAY,IAAI,EAAE,GAAG,IAAI,GAAG,CAACyF,GAAG,CAACsD,EAAEzE,EAAE;AAAA;AAAA,cAE5NmB,GAAG,CAACsD,EAAE,IAAI,EAAEzE,EAAE;AAAA;AAAA,QAEpBA,EAAE;AAAA;AAAA,gBAEMd,EAAE,OAAO,CAAC,IAAI+C,EAAE,EAAE,EAAEL,EAAE,EAAE,EAAE1C,EAAE,QAAQ+C,CAAC,EAAE,IAAI/C,EAAE,QAAQ0C,CAAC,EAAE,GAAG5B,EAAE,8BAA8Bd,EAAE,QAAQ+C,CAAC,EAAE,GAAGjC,EAAE,2EAA2Ed,EAAE,QAAQ0C,CAAC,EAAE,KAAK5B,EAAE,+CAA+C,CAAC,MAAM;AAAA,WACvQxC,CAAC;AAAA,QACJ2B,CAAC;AAAA,QACDU,CAAC;AAAA,8BACqBtC,CAAC,IAAIwC,CAAC;AAAA,QAC5BC,CAAC;AAAA;AAAA,GAEN,CAAC,SAASk5E,GAAI/7E,EAAE,EAAE,CAAC,IAAIE,EAAEF,EAAE,KAAKI,EAAEF,EAAE,OAAO,CAAC,EAAE,YAAY,EAAEA,EAAE,MAAM,CAAC,EAAEG,EAAE,MAAMD,EAAE,cAAc,EAAE,EAAE,SAAS,EAAEJ,EAAE,UAAU,SAAS+B,EAAE/B,EAAE,UAAU,aAAa,OAAOgC,EAAE,EAAE,aAAa,OAAO,GAAG,CAAChC,EAAE,UAAU,WAAW+B,IAAIC,GAAGhC,EAAE,UAAU,YAAY,MAAMzB,EAAE,YAAY,EAAE,CAAC,EAAE,MAAM;AAAA,cAC3Q8B,CAAC;AAAA,+BACgBH,CAAC;AAAA;AAAA,MAE1B,IAAI+B,EAAEi7E,GAAGl7E,CAAC,EAAEU,EAAE23E,GAAGr6E,EAAE,UAAU,aAAa,EAAE,YAAY,EAAE2C,EAAEX,EAAED,EAAEa,EAAEC,EAAE,CAAC,IAAI,IAAI,IAAI,IAAI,IAAI,GAAG,EAAEd,IAAI,EAAEa,EAAE,GAAGZ,EAAE,GAAGU,EAAE,QAAQ,EAAEE,EAAE,cAAcA,EAAEF,EAAE,IAAIsB,GAAG,UAAUnB,EAAEmB,EAAErB,CAAC,CAAC,OAAO,EAAE,KAAK;AAAA,CACxL,EAAE,IAAIG,EAAE,GAAG,OAAOd,EAAE,GAAGD,EAAE,EAAEe,EAAE,SAASA,EAAE9C,EAAE,UAAU,aAAa,IAAI,CAACgE,EAAE,IAAI,UAAUnB,EAAE,EAAEF,CAAC,CAAC,EAAE,EAAE,KAAK,IAAI,EAAE;AAAA,YAChGtC,CAAC;AAAA,QACL4B,CAAC;AAAA,QACDW,CAAC;AAAA,kBACSxC,CAAC,IAAI0C,CAAC;AAAA;AAAA,GAErB,CAAC,SAASo6E,GAAGl9E,EAAE,CAAC,GAAGA,GAAG,EAAE,MAAM,MAAM,GAAGA,IAAI,EAAE,MAAM,QAAQ,GAAGA,IAAI,EAAE,MAAM,QAAQ,GAAGA,IAAI,EAAE,MAAM,QAAQ,GAAGA,IAAI,EAAE,MAAM,QAAQ,GAAGA,IAAI,EAAE,MAAM,QAAQ,MAAM,MAAM,gBAAgBA,CAAC,uBAAuB,CAAC,CAAC,SAASu6E,GAAGv6E,EAAE,EAAEE,EAAE,CAAC,GAAG,CAAC,SAASE,EAAE,SAASC,CAAC,EAAE9B,EAAE,aAAa,CAAC,EAAE,EAAE,EAAE,OAAO,EAAEyB,GAAG,IAAI,GAAG,EAAE,CAAC,IAAI,EAAE+B,EAAE,EAAE,EAAE,MAAM,CAAC,EAAE3B,EAAE4B,EAAE,CAAChC,GAAG,EAAE,GAAG,CAACzB,EAAE,YAAY,EAAE2B,CAAC,GAAGE,EAAE,OAAO,GAAG,EAAE,MAAM,CAAC,gBAAgB4B,EAAE,aAAaA,EAAED,EAAE,EAAE,SAAS1B,CAAC,CAAC,CAAC,SAAS28E,GAAGh9E,EAAE,EAAE,CAAC,IAAIE,EAAE,KAAK,MAAM,KAAK,UAAUF,CAAC,CAAC,EAAE,OAAOE,EAAE,UAAU,aAAa,EAAEA,CAAC,CAAC,SAAS+8E,GAAGj9E,EAAE,EAAE,CAAC,OAAO,EAAE,IAAIE,GAAGF,EAAEE,CAAC,CAAC,EAAE,KAAK,IAAI,CAAC,CAAC,SAASi9E,GAAGn9E,EAAE,EAAEE,EAAEE,EAAE,CAAC,IAAIC,EAAEH,EAAE,IAAI,CAACwC,EAAEC,IAAI,CAAC,IAAIC,EAAE,CAAC,aAAaF,EAAE,MAAM,SAASA,EAAE,UAAU,KAAKA,EAAE,QAAQ,SAAS,UAAUA,EAAE,UAAU,SAASA,EAAE,UAAU,GAAGA,EAAE,QAAQ,SAAS,WAAW,IAAI,EAAE,OAAOA,EAAE,SAAS,MAAMA,EAAE,QAAQ,OAAO,MAAMA,EAAE,QAAQ,MAAM,WAAW,IAAIE,EAAE,WAAWF,EAAE,QAAQ,MAAM,YAAY,CAAC,KAAK,EAAE,cAAcC,CAAC,EAAE,UAAUC,CAAC,CAAC,CAAC,EAAE,EAAEvC,EAAE,IAAIqC,GAAGA,EAAE,SAAS,EAAE,EAAE,CAAC,aAAatC,EAAE,MAAM,SAASA,EAAE,QAAQ,SAAS,UAAU,GAAG,SAASA,EAAE,QAAQ,SAAS,WAAW,IAAI,EAAE2B,EAAEu4E,GAAGj6E,EAAE,EAAE,CAAC,EAAE2B,EAAEg0E,GAAGh2E,EAAE,GAAG+B,CAAC,EAAEE,EAAEjC,EAAE,cAAcgC,CAAC,EAAE,OAAOxQ,EAAE,EAAE,IAAI,qBAAqB,EAAE,CAAC,QAAQ,EAAE,eAAewQ,EAAE,OAAOD,EAAE,aAAaE,EAAE,aAAa,EAAE,aAAa,EAAE,mBAAmB,KAAK,uBAAuB,KAAK,OAAO,KAAK,OAAO,KAAK,iBAAiB,KAAK,wBAAwB,KAAK,oBAAoB,IAAI,GAAGjC,EAAE,SAASiC,CAAC,EAAE,OAAO,OAAO,CAAC,QAAQ,EAAE,eAAeD,EAAE,OAAOD,EAAE,aAAaE,EAAE,aAAa,EAAE,aAAa,CAAC,EAAEm7E,GAAGp9E,EAAE,EAAEiC,CAAC,CAAC,EAAE,CAAC,SAASm7E,GAAGp9E,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAE,CAAC,EAAEC,EAAE,CAAC,EAAE,EAAE,EAAE0B,EAAEC,EAAE,KAAKC,EAAE,KAAKA,EAAEjC,EAAE,mBAAmBE,EAAE,MAAM,EAAE,EAAE1O,EAAE,EAAE,UAAU,eAAe,IAAI,IAAIwQ,EAAEhC,EAAE,mBAAmBE,EAAE,WAAW,EAAE,GAAG,IAAIwC,EAAE,GAAG,QAAQC,KAAK,EAAE,cAAc,CAAC,IAAIC,EAAE,CAAC,KAAKD,EAAE,QAAQ3C,EAAE,mBAAmBE,EAAEyC,EAAED,CAAC,EAAE,OAAO1C,EAAE,mBAAmBE,EAAE,SAASyC,CAAC,GAAGD,CAAC,CAAC,EAAE,EAAE,sBAAsBE,EAAE,MAAM5C,EAAE,mBAAmBE,EAAE,GAAGyC,CAAC,QAAQD,CAAC,EAAEE,EAAE,SAAS5C,EAAE,mBAAmBE,EAAE,GAAGyC,CAAC,WAAWD,CAAC,GAAGtC,EAAE,KAAKwC,CAAC,CAAC,CAAC,GAAG,EAAE,sBAAsB,EAAE5C,EAAE,mBAAmBE,EAAE,WAAWwC,CAAC,EAAEX,EAAE/B,EAAE,mBAAmBE,EAAE,kBAAkBwC,CAAC,EAAE,EAAE1C,EAAE,mBAAmBE,EAAE,cAAcwC,CAAC,GAAG,EAAE,eAAe,QAAQC,KAAK,EAAE,eAAetC,EAAE,KAAKL,EAAE,mBAAmBE,EAAEyC,EAAE,KAAKD,CAAC,CAAC,EAAE,MAAM,CAAC,mBAAmBtC,EAAE,uBAAuBC,EAAE,OAAO2B,EAAE,OAAOC,EAAE,iBAAiB,EAAE,wBAAwBF,EAAE,oBAAoB,CAAC,CAAC,CAAC,SAASs7E,GAAGr9E,EAAE,EAAE,CAAC,GAAGA,EAAE,SAAS,EAAE,OAAO,MAAM,MAAM,4BAA4BA,EAAE,MAAM,kCAAkC,EAAE,MAAM,SAAS,EAAEA,EAAE,QAAQ,CAACE,EAAEE,IAAI,CAAC,IAAIC,EAAEH,EAAE,aAAa,EAAE,EAAEE,CAAC,EAAE,EAAE,EAAE,MAAM,GAAG,CAAC7B,EAAE,YAAY8B,EAAE,CAAC,EAAE,MAAM,MAAM,2EAA2EA,CAAC,QAAQ,CAAC,aAAa,EAAE,GAAGH,EAAE,WAAW,EAAE,UAAU,OAAO,IAAI6B,EAAE7B,EAAE,SAAS8B,EAAE,EAAE,UAAU,KAAK,EAAE,QAAQ,SAAS,GAAG,CAACzD,EAAE,YAAYwD,EAAEC,CAAC,EAAE,MAAM,MAAM,kFAAkFD,CAAC,QAAQC,CAAC,aAAa,CAAC,CAAC,CAAC,CAAC,SAASs7E,GAAGt9E,EAAE,EAAEE,EAAEE,EAAEC,EAAE,CAAC,EAAE,QAAQ,sBAAsBg9E,GAAG,EAAE,aAAan9E,CAAC,EAAEm9E,GAAG,CAAC,EAAE,YAAY,EAAE,CAACj9E,CAAC,CAAC,GAAG,IAAI,EAAEA,EAAE,QAAQ,QAAQ,EAAEA,EAAE,QAAQ,SAASA,EAAE,QAAQ,SAASJ,EAAE,6BAA6B,EAAE,QAAQ,EAAE,CAAC,EAAE,EAAE,CAAC,CAAC,EAAEA,EAAE,uBAAuB,EAAE,QAAQ,EAAE,CAAC,EAAE,EAAE,CAAC,CAAC,EAAEA,EAAE,WAAW,EAAE,YAAY,EAAEA,EAAE,gBAAgB,EAAE,aAAa,GAAG,EAAExO,EAAE,EAAE,UAAU,eAAe,IAAI,GAAG,EAAE,SAAS,MAAMwO,EAAE,GAAG,UAAU,EAAE,OAAO,GAAG,EAAE,EAAE,SAAS,MAAMA,EAAE,GAAG,UAAU,EAAE,OAAO,GAAG,EAAE,QAAQgC,EAAE,EAAEA,EAAE9B,EAAE,OAAO,EAAE8B,EAAE,CAAC,IAAIC,EAAE/B,EAAE8B,CAAC,EAAE,CAAC,QAAQU,EAAE,OAAOC,EAAE,MAAMC,EAAE,SAASC,CAAC,EAAE,EAAE,mBAAmBb,CAAC,EAAE,GAAGY,EAAE,CAAC,GAAG,CAAC,aAAaE,CAAC,EAAEy3E,GAAG,EAAE,QAAQ,aAAat4E,EAAE,MAAMA,EAAE,QAAQ,QAAQ,EAAE,OAAOa,EAAE,OAAO,CAAC,IAAK,GAAE9C,EAAE,GAAG,WAAW4C,EAAE,IAAI,WAAWE,CAAC,CAAC,EAAE,MAAM,IAAK,GAAE9C,EAAE,GAAG,WAAW4C,EAAE,IAAI,WAAWE,CAAC,CAAC,EAAE,MAAM,IAAK,GAAE9C,EAAE,GAAG,WAAW4C,EAAE,IAAI,WAAWE,CAAC,CAAC,EAAE,MAAM,IAAK,GAAE9C,EAAE,GAAG,WAAW4C,EAAE,IAAI,WAAWE,CAAC,CAAC,EAAE,MAAM,QAAQ,KAAK,CAAC,CAAC,GAAGD,GAAG7C,EAAE,GAAG,UAAU6C,EAAEZ,EAAE,QAAQ,SAAS,CAAC,EAAEA,EAAE,QAAQ,SAAS,CAAC,CAAC,EAAES,GAAG,KAAK,CAAC,GAAGT,EAAE,UAAU,CAAC,GAAG1D,EAAE,cAAc0D,EAAE,KAAK,EAAE,EAAEjC,EAAE,GAAG,UAAU0C,EAAET,EAAE,cAAc,CAAC,CAAC,MAAM,CAAC,IAAIa,EAAEb,EAAE,cAAca,aAAa,eAAeA,EAAE,IAAI,aAAaA,CAAC,GAAG9C,EAAE,GAAG,WAAW0C,EAAEI,CAAC,CAAC,CAAC,QAAQ,CAACb,EAAE,QAAQ,OAAO,MAAMU,GAAG,MAAM3C,EAAE,GAAG,UAAU2C,EAAEV,EAAE,QAAQ,MAAM,UAAU,EAAEjC,EAAE,sBAAsBiC,EAAE,QAAQ,QAAQ,QAAQS,EAAEV,CAAC,CAAC,CAAC,CAAC,IAAID,EAAE,EAAE,iBAAiB,GAAGA,EAAE,OAAO3B,EAAE,MAAM,OAAO,CAAC,IAAK,GAAEJ,EAAE,GAAG,WAAW+B,EAAE,IAAI,WAAW3B,EAAE,KAAK,CAAC,EAAE,MAAM,IAAK,GAAEJ,EAAE,GAAG,WAAW+B,EAAE,IAAI,WAAW3B,EAAE,KAAK,CAAC,EAAE,MAAM,IAAK,GAAEJ,EAAE,GAAG,WAAW+B,EAAE,IAAI,WAAW3B,EAAE,KAAK,CAAC,EAAE,MAAM,IAAK,GAAEJ,EAAE,GAAG,WAAW+B,EAAE,IAAI,WAAW3B,EAAE,KAAK,CAAC,EAAE,MAAM,QAAQ,KAAK,CAAC,GAAG,EAAE,wBAAwB,CAAC,IAAI4B,EAAEzD,EAAE,eAAe6B,EAAE,KAAK,EAAE,OAAOA,EAAE,MAAM,OAAO,CAAC,IAAK,GAAEJ,EAAE,GAAG,WAAW,EAAE,wBAAwB,IAAI,WAAWgC,CAAC,CAAC,EAAE,MAAM,IAAK,GAAEhC,EAAE,GAAG,WAAW,EAAE,wBAAwB,IAAI,WAAWgC,CAAC,CAAC,EAAE,MAAM,IAAK,GAAEhC,EAAE,GAAG,WAAW,EAAE,wBAAwB,IAAI,WAAWgC,CAAC,CAAC,EAAE,MAAM,QAAQ,KAAK,CAAC,CAAC,GAAG,EAAE,qBAAqBhC,EAAE,GAAG,UAAU,EAAE,oBAAoBI,EAAE,QAAQ,SAAS,CAAC,EAAEA,EAAE,QAAQ,SAAS,CAAC,CAAC,EAAE,EAAE,QAAQ,gBAAgBC,EAAE,QAAQ2B,EAAE,EAAEA,EAAE,EAAE,QAAQ,eAAe,OAAO,EAAEA,EAAE,CAAC,IAAIC,EAAE,EAAE,QAAQ,eAAeD,CAAC,EAAEU,EAAE,EAAE,uBAAuBV,CAAC,EAAEW,EAAEtC,EAAE2B,CAAC,EAAE,GAAGC,EAAE,OAAO,QAAQjC,EAAE,GAAG,WAAW0C,EAAEC,CAAC,UAAUV,EAAE,OAAO,OAAOjC,EAAE,GAAG,WAAW0C,EAAEC,CAAC,UAAUV,EAAE,OAAO,OAAOjC,EAAE,GAAG,WAAW0C,EAAEC,CAAC,UAAUV,EAAE,OAAO,OAAOjC,EAAE,GAAG,WAAW0C,EAAEC,CAAC,UAAUV,EAAE,OAAO,MAAMjC,EAAE,GAAG,WAAW0C,EAAEC,CAAC,UAAUV,EAAE,OAAO,QAAQjC,EAAE,GAAG,WAAW0C,EAAEC,CAAC,UAAUV,EAAE,OAAO,QAAQjC,EAAE,GAAG,WAAW0C,EAAEC,CAAC,UAAUV,EAAE,OAAO,QAAQjC,EAAE,GAAG,WAAW0C,EAAEC,CAAC,MAAO,OAAM,MAAM,gBAAgBV,EAAE,IAAI,wBAAwB,CAAC,CAACjC,EAAE,eAAe,CAAC,CAAC,SAASu9E,GAAGv9E,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAE,GAAG,EAAE,OAAOF,CAAC,EAAE,QAAQ,GAAG,CAAC,IAAI6B,EAAE,EAAE,SAAS,MAAM,EAAE,QAAQ,OAAO,MAAM,EAAE,QAAQ,MAAM,WAAW,EAAE,GAAG/B,EAAE,qBAAqB,CAAC,EAAE,UAAU,CAAC,IAAIgC,EAAE,EAAE,QAAQ,SAAS,CAAC,gBAAgBC,EAAE,aAAaS,EAAE,SAASC,CAAC,EAAE43E,GAAGv6E,EAAE,aAAa,EAAE,MAAMgC,CAAC,EAAEY,EAAE,GAAGC,EAAE,GAAGC,EAAE,GAAG,GAAGJ,EAAE,SAAS,GAAG1C,EAAE,aAAa,CAAC,IAAI2E,EAAE,CAAC,KAAK,KAAK3C,EAAE,CAAC,EAAE,CAAC,EAAE,KAAK,KAAKA,EAAE,CAAC,EAAE,CAAC,CAAC,EAAEY,EAAE,GAAG+B,EAAE,CAAC,EAAE,CAAC,IAAIA,EAAE,CAAC,EAAE,CAAC,EAAE,SAASjC,EAAE,SAAS,GAAG,CAAC1C,EAAE,aAAa6C,EAAE,GAAGH,EAAE,CAAC,EAAE,CAAC,IAAIA,EAAE,CAAC,EAAE,CAAC,WAAWA,EAAE,OAAO,GAAG,CAAC1C,EAAE,aAAa,CAAC,IAAI2E,EAAEpG,EAAE,eAAemE,CAAC,EAAEI,EAAE,GAAG6B,EAAE,CAAC,IAAI3C,EAAE,CAAC,CAAC,IAAI2C,EAAEA,EAAE,OAAO,CAAC,IAAI3C,EAAE,CAAC,CAAC,EAAE,CAAC,IAAIgC,EAAE,EAAE,MAAM,OAAO,EAAEtB,EAAE,SAAS,GAAGnE,EAAE,YAAY,EAAE,MAAMyD,CAAC,EAAEsF,EAAE/I,EAAE,cAAc,EAAE,KAAK,IAAI,EAAEuG,EAAEpX,EAAE,iBAAiB,EAAE,MAAMwS,EAAE,KAAK,EAAEuE,EAAE,CAACzE,EAAE,cAAcgE,IAAI9D,EAAE,MAAM,QAAQ3B,EAAE,YAAYyD,EAAE9B,EAAE,QAAQ,QAAQ,EAAEwE,EAAE1E,EAAE,cAAc0C,EAAE,OAAO,EAAE,GAAG,GAAGV,EAAE,CAAC,EAAE,CAAC,IAAIA,EAAE,CAAC,EAAE,CAAC,GAAG5B,GAAG,GAAG4D,CAAC,IAAIS,CAAC,IAAIxC,EAAEU,EAAE,EAAE,IAAID,EAAE,MAAM,IAAI4E,CAAC,IAAIxC,CAAC,IAAI,CAAC,IAAIlC,CAAC,IAAIC,CAAC,IAAIC,CAAC,IAAI4B,CAAC,IAAI3C,CAAC,EAAE,KAAK,CAAC,IAAIC,EAAE,EAAE,UAAU,UAAU,EAAE,QAAQ,SAAS5B,GAAG,GAAG,EAAE,KAAK,IAAI4B,CAAC,IAAID,CAAC,EAAE,CAAC,CAAC,EAAE,IAAI1B,EAAEL,EAAE,SAAS,EAAEA,EAAE,YAAY,KAAK,OAAO,GAAG,IAAII,EAAE,IAAIC,EAAE,GAAG7O,EAAE,EAAE,UAAU,eAAe,CAAC,GAAG,CAAC,CAAC,SAASgsF,GAAGx9E,EAAE,CAAC,OAAOxO,EAAE,EAAE,QAAQ,2BAA2B,GAAGwO,GAAG,CAAC,CAAC,IAAIy9E,GAAG,KAAK,CAAC,YAAY78E,EAAE,CAAC,KAAK,cAAc,CAAC,GAAG,EAAE,KAAK,aAAa,GAAG,KAAK,aAAa,GAAG,KAAK,iBAAiB43E,GAAG,MAAM,KAAK,eAAe,CAAC,CAAC,KAAK,WAAW,KAAK,OAAO,CAAC,EAAE,IAAIt4E,EAAE25E,GAAG,EAAE,KAAK,YAAYj5E,EAAE,KAAK,oBAAoB48E,GAAG,KAAK,YAAY,MAAM,EAAE,KAAK,SAAS;AAAA;AAAA,UAEntN,KAAK,oBAAoBzD,GAAG,CAAC,IAAI,IAAI,GAAG,EAAEn5E,CAAC,EAAEk5E,GAAG,CAAC,IAAI,IAAI,GAAG,EAAEl5E,CAAC,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,UAgBhEV,EAAE,MAAM;AAAA;AAAA,KAEb,CAAC,EAAMw9E,GAAG,KAAK,CAAC,YAAY98E,EAAE,CAAC,KAAK,cAAc,CAAC,GAAG,EAAE,KAAK,aAAa,GAAG,KAAK,aAAa,GAAG,KAAK,iBAAiB43E,GAAG,MAAM,KAAK,eAAe,CAAC,CAAC,KAAK,WAAW,KAAK,OAAO,CAAC,EAAE,IAAIt4E,EAAE25E,GAAG,EAAE,KAAK,YAAYj5E,EAAE,KAAK,oBAAoB48E,GAAG,KAAK,YAAY,MAAM,EAAE,KAAK,SAAS;AAAA;AAAA,UAElR,KAAK,oBAAoBzD,GAAG,CAAC,IAAI,IAAI,GAAG,EAAEn5E,CAAC,EAAEk5E,GAAG,CAAC,IAAI,IAAI,GAAG,EAAEl5E,CAAC,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,UAgBhEV,EAAE,MAAM;AAAA;AAAA,KAEb,CAAC,EAAMy9E,GAAG,KAAK,CAAC,YAAY/8E,EAAE,CAAC,KAAK,cAAc,CAAC,GAAG,EAAE,KAAK,YAAY63E,GAAG,SAAS,IAAIv4E,EAAE25E,GAAG,EAAE,KAAK,YAAYj5E,EAAE,KAAK,SAAS;AAAA,QAC9Hw5E,EAAE;AAAA;AAAA;AAAA;AAAA,UAIAl6E,EAAE,MAAM;AAAA;AAAA,KAEb,CAAC,EAAM09E,GAAG,KAAK,CAAC,YAAYh9E,EAAE,CAAC,KAAK,cAAc,CAAC,GAAG,EAAE,KAAK,aAAa,GAAG,KAAK,aAAa,GAAG,KAAK,YAAY63E,GAAG,SAAS,IAAIv4E,EAAE25E,GAAG,EAAE,KAAK,YAAYj5E,EAAE,KAAK,SAAS;AAAA,QACxKw5E,EAAE;AAAA;AAAA;AAAA;AAAA;AAAA,UAKAl6E,EAAE,MAAM;AAAA;AAAA,KAEb,CAAC,EAAM29E,GAAI,CAAC,EAAE,EAAE,EAAE,EAAE,EAAE,EAAE,EAAE,CAAC,EAAEC,GAAG,KAAK,CAAC,YAAYl9E,EAAEV,EAAE,GAAG,EAAE,OAAO,CAAC,KAAK,cAAc,CAAC,GAAG,EAAE,KAAK,eAAe,CAAC,CAAC,KAAK,WAAW,KAAK,OAAO,CAAC,EAAE,IAAIG,EAAEw5E,GAAG,EAAE,KAAK,YAAYj5E,EAAE,KAAK,oBAAoB48E,GAAG,KAAK,YAAY,MAAM,EAAE,IAAI37E,EAAE,SAAS3B,IAAI2B,EAAE,8BAA8B,IAAIC,EAAE,GAAG,QAAQC,EAAE,EAAEA,EAAE,EAAE,OAAOA,IAAI,CAAC,IAAIC,EAAE,EAAED,CAAC,EAAED,GAAG;AAAA,yBACtTC,CAAC;AAAA,8BACI87E,GAAI77E,CAAC,CAAC;AAAA,YACxB,CAAC,KAAK,SAAS;AAAA,QACnB,KAAK,oBAAoBm4E,GAAG,EAAED,GAAGt5E,CAAC,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,uCAMJ,EAAE,MAAM;AAAA;AAAA,sCAET,EAAE,MAAM;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,0BAMpBP,EAAE,SAAS;AAAA,YACzByB,CAAC;AAAA;AAAA,UAEHzB,EAAE,MAAM,WAAWwB,CAAC;AAAA;AAAA,KAEzB,CAAC,EAAMk8E,GAAG,KAAK,CAAC,YAAYn9E,EAAEV,EAAE,GAAG,CAAC,KAAK,cAAc,CAAC,GAAG,EAAE,KAAK,aAAa,GAAG,KAAK,aAAa,GAAG,KAAK,eAAe,CAAC,CAAC,KAAK,WAAW,KAAK,OAAO,CAAC,EAAE,IAAI,EAAE25E,GAAG,EAAE,KAAK,YAAYj5E,EAAE,KAAK,oBAAoB48E,GAAG,KAAK,YAAY,MAAM,EAAE,IAAIn9E,EAAE,GAAGwB,EAAE,SAAS3B,IAAI2B,EAAE,8BAA8B,QAAQC,EAAE,EAAEA,GAAG,EAAEA,IAAI,QAAQC,EAAE,EAAEA,GAAG,EAAEA,IAAI,CAAC,IAAIC,EAAEF,EAAE,EAAEC,EAAE1B,GAAG;AAAA;AAAA,gCAEtU0B,CAAC,MAAM,KAAK,oBAAoB,cAAc,GAAGnB,EAAE,CAAC,CAAC,EAAE;AAAA,8BACzDmB,CAAC;AAAA,iCACED,CAAC,MAAM,KAAK,oBAAoB,cAAc,GAAGlB,EAAE,CAAC,CAAC,EAAE;AAAA,gCACxDkB,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,uBAUV,EAAE,SAAS;AAAA;AAAA;AAAA,uBAGXE,CAAC;AAAA;AAAA,uBAEDA,CAAC;AAAA;AAAA,uBAEDA,CAAC;AAAA;AAAA,uBAEDA,CAAC;AAAA;AAAA;AAAA;AAAA,SAIf,CAAC,KAAK,SAAS;AAAA,UACd,KAAK,oBAAoBm4E,GAAG,EAAED,GAAGt5E,CAAC,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,YAWjCP,CAAC;AAAA;AAAA,YAED,EAAE,MAAM,MAAMwB,CAAC;AAAA;AAAA,KAEtB,CAAC,EAAM7O,GAAG,CAAC,EAAEiN,GAAGjN,GAAG,CAAC,kCAAkC,IAAIgrF,GAAG,8BAA8B,IAAIC,GAAG,2BAA2B,IAAIC,GAAG,iCAAiC,IAAIC,GAAG,2BAA2B,IAAIC,GAAG,kBAAkB,IAAIC,GAAG,0BAA0B,IAAIC,GAAG,iCAAiC,IAAIC,GAAG,mBAAmB,IAAIC,GAAG,mBAAmB,IAAIC,GAAG,gDAAgD,IAAIC,GAAG,gCAAgC,IAAIC,GAAG,sCAAsC,IAAIC,GAAG,+BAA+B,IAAIC,GAAG,yCAAyC,IAAIC,GAAG,+CAA+C,IAAIC,GAAG,yCAAyC,IAAIC,GAAG,wCAAwC,IAAIC,GAAG,+CAA+C,IAAIC,GAAG,2BAA2B,IAAIC,GAAG,yBAAyB,IAAIC,EAAE,CAAC,EAAE,SAASX,GAAGz+E,EAAE,CAAC,IAAI,EAAE65E,GAAG,EAAE35E,EAAE,GAAG,EAAE,OAAO;AAAA;AAAA,MAE33B,EAAE,SAAS;AAAA,MACX,EAAE,SAAS;AAAA,MACX,EAAE,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA,OAKV,OAAOo2E,GAAGt2E,EAAEE,CAAC,CAAC,CAAC,SAASs+E,GAAGx+E,EAAE,CAAC,IAAI,EAAE,IAAI,aAAa,CAAC,GAAG,EAAE,EAAE,EAAE,EAAE,GAAG,GAAG,EAAE,EAAE,EAAE,EAAE,EAAE,EAAE,EAAE,EAAE,EAAE,GAAG,EAAE,EAAE,CAAC,CAAC,EAAE,OAAOo2E,GAAGp2E,EAAE,CAAC,CAAC,CAAC,SAASq+E,GAAGr+E,EAAE,CAAC,IAAI,EAAE,IAAI,YAAY,CAAC,EAAE,EAAE,EAAE,EAAE,EAAE,CAAC,CAAC,EAAE,OAAOm2E,GAAGn2E,EAAE,CAAC,CAAC,CAAC,SAASq/E,GAAGr/E,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,CAAC63E,GAAG,EAAEh4E,CAAC,EAAE,IAAI,EAAEm2E,GAAGr2E,CAAC,EAAE+B,EAAE/B,EAAE,WAAW,OAAO81E,GAAG91E,EAAE,IAAIA,EAAE,YAAY+B,EAAE,CAAC,CAAC,EAAE+zE,GAAG91E,EAAE,IAAIA,EAAE,cAAc+B,EAAE/B,EAAE,eAAeA,EAAE,aAAa,CAAC,EAAE81E,GAAG91E,EAAE,IAAIA,EAAE,cAAc+B,EAAE/B,EAAE,eAAeA,EAAE,aAAa,CAAC,EAAE81E,GAAG91E,EAAE,IAAIA,EAAE,cAAc+B,EAAE/B,EAAE,mBAAmBA,EAAE,OAAO,CAAC,EAAE81E,GAAG91E,EAAE,IAAIA,EAAE,cAAc+B,EAAE/B,EAAE,mBAAmBA,EAAE,OAAO,CAAC,EAAExO,EAAE,EAAE,UAAU,eAAe,IAAI,EAAEskF,GAAG91E,EAAE,IAAIA,EAAE,WAAW+B,EAAE,EAAE3B,EAAE,EAAEF,EAAE,EAAEG,EAAE,EAAE,IAAI,CAAC,EAAEy1E,GAAG91E,EAAE,IAAIA,EAAE,aAAa+B,EAAE,EAAE3B,EAAE,EAAEF,CAAC,CAAC,EAAE41E,GAAG91E,EAAE,IAAIA,EAAE,YAAYA,EAAE,WAAW,IAAI,CAAC,EAAE,CAAC,QAAQ,EAAE,SAAS,CAACE,EAAE,CAAC,CAAC,CAAC,CAAC,SAAS8+E,GAAGh/E,EAAE,CAAC,OAAOA,EAAE,mBAAmB,CAAC,SAASo+E,GAAGp+E,EAAE,EAAEE,EAAEE,EAAE,CAAC,GAAG,CAACC,EAAE,CAAC,EAAEs4E,GAAG,EAAEz4E,CAAC,EAAE,OAAOm/E,GAAGr/E,EAAEK,EAAE,EAAE2+E,GAAG5+E,CAAC,EAAEA,EAAE,mBAAmBJ,EAAE,KAAK,CAAC,CAAC,SAAS8+E,GAAG9+E,EAAE,CAAC,OAAOA,EAAE,uBAAuB,CAAC,SAASk+E,GAAGl+E,EAAE,EAAEE,EAAEE,EAAE,CAAC,GAAG,CAACC,EAAE,CAAC,EAAEs4E,GAAG,EAAEz4E,CAAC,EAAE,OAAOm/E,GAAGr/E,EAAEK,EAAE,EAAEy+E,GAAG1+E,CAAC,EAAEA,EAAE,mBAAmBA,EAAE,oBAAoB,CAAC,CAAC,SAAS8+E,GAAGl/E,EAAE,CAAC,OAAOA,EAAE,qBAAqB,CAAC,SAASu+E,GAAGv+E,EAAE,EAAEE,EAAEE,EAAE,CAAC,GAAG,CAACC,EAAE,CAAC,EAAEs4E,GAAG,EAAEz4E,CAAC,EAAE,OAAOm/E,GAAGr/E,EAAEK,EAAE,EAAE6+E,GAAG9+E,CAAC,EAAEJ,EAAE,KAAKA,EAAE,aAAa,CAAC,CAAC,SAASi/E,GAAGj/E,EAAE,CAAC,OAAOA,EAAE,yBAAyB,CAAC,SAASs+E,GAAGt+E,EAAE,EAAEE,EAAEE,EAAE,CAAC,GAAG,CAACC,EAAE,CAAC,EAAEy4E,GAAG,EAAE54E,CAAC,EAAE,OAAOm/E,GAAGr/E,EAAEK,EAAE,EAAE4+E,GAAG7+E,CAAC,EAAEJ,EAAE,KAAKA,EAAE,KAAK,CAAC,CAAC,SAAS++E,GAAG/+E,EAAE,CAAC,OAAOA,EAAE,6BAA6B,CAAC,SAASm+E,GAAGn+E,EAAE,EAAEE,EAAEE,EAAE,CAAC,GAAG,CAACC,EAAE,CAAC,EAAEy4E,GAAG,EAAE54E,CAAC,EAAE,OAAOm/E,GAAGr/E,EAAEK,EAAE,EAAE0+E,GAAG3+E,CAAC,EAAEJ,EAAE,KAAKI,EAAE,oBAAoB,CAAC,CAAC,SAAS49E,GAAGh+E,EAAE,EAAEE,EAAE,CAAC,OAAO41E,GAAG91E,EAAE,IAAIA,EAAE,WAAWA,EAAE,aAAaE,CAAC,CAAC,EAAE21E,GAAG71E,EAAE,EAAE,eAAeE,EAAE,EAAE,GAAG,CAAC,GAAG21E,GAAG71E,EAAE,EAAE,KAAKE,EAAE,EAAE,GAAG,EAAE,CAAC,CAAC,SAASi/E,GAAGn/E,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,CAACy1E,GAAG91E,EAAE,IAAIA,EAAE,YAAYA,EAAE,WAAW,CAAC,CAAC,EAAE,IAAI,EAAE+B,EAAEC,EAAE3B,aAAa,YAAY,EAAE,IAAI,WAAWH,EAAEE,EAAE,CAAC,EAAE2B,EAAE/B,EAAE,cAAcgC,EAAEhC,EAAE,OAAO,EAAE,IAAI,aAAaE,EAAEE,EAAE,CAAC,EAAE2B,EAAE/B,EAAE,MAAMgC,EAAE,EAAE,2BAA2B,EAAE,IAAI3B,CAAC,EAAE7O,EAAE,EAAE,UAAU,eAAe,IAAI,EAAEskF,GAAG91E,EAAE,IAAIA,EAAE,cAAcA,EAAE,WAAW,EAAE,EAAE,EAAEE,EAAEE,EAAEJ,EAAE,KAAK+B,EAAE,CAAC,CAAC,EAAE+zE,GAAG91E,EAAE,IAAIA,EAAE,WAAWA,EAAE,WAAW,EAAEgC,EAAE9B,EAAEE,EAAE,EAAEJ,EAAE,KAAK+B,EAAE,CAAC,CAAC,EAAE+zE,GAAG91E,EAAE,IAAIA,EAAE,YAAYA,EAAE,WAAW,IAAI,CAAC,CAAC,CAAC,SAASo/E,GAAGp/E,EAAE,EAAEE,EAAE,CAAC41E,GAAG91E,EAAE,IAAIA,EAAE,YAAYA,EAAE,WAAW,CAAC,CAAC,EAAEE,EAAE,gBAAgB,WAAW1O,EAAE,EAAE,UAAU,eAAe,IAAI,EAAEskF,GAAG91E,EAAE,IAAIA,EAAE,cAAcA,EAAE,WAAW,EAAE,EAAE,EAAEE,EAAE,MAAMA,EAAE,OAAOF,EAAE,KAAKA,EAAE,cAAcE,EAAE,IAAI,CAAC,EAAE41E,GAAG91E,EAAE,IAAIA,EAAE,WAAWA,EAAE,WAAW,EAAEA,EAAE,KAAKE,EAAE,MAAMA,EAAE,OAAO,EAAEF,EAAE,KAAKA,EAAE,cAAcE,EAAE,IAAI,CAAC,EAAE1O,EAAE,EAAE,UAAU,eAAe,IAAI,EAAEskF,GAAG91E,EAAE,IAAIA,EAAE,cAAcA,EAAE,WAAW,EAAE,EAAE,EAAEA,EAAE,KAAKA,EAAE,cAAcE,CAAC,CAAC,EAAE41E,GAAG91E,EAAE,IAAIA,EAAE,WAAWA,EAAE,WAAW,EAAEA,EAAE,KAAKA,EAAE,KAAKA,EAAE,cAAcE,CAAC,CAAC,EAAE41E,GAAG91E,EAAE,IAAIA,EAAE,YAAYA,EAAE,WAAW,IAAI,CAAC,CAAC,CAAC,SAASi+E,GAAGj+E,EAAE,EAAEE,EAAEE,EAAE,CAAC,IAAIC,EAAEL,EAAE,aAAa,EAAE81E,GAAG91E,EAAE,IAAIA,EAAE,WAAWA,EAAE,kBAAkBK,CAAC,CAAC,EAAE,IAAI0B,EAAE,EAAE,EAAE,EAAE7B,EAAE,OAAO41E,GAAG91E,EAAE,IAAIA,EAAE,WAAWA,EAAE,kBAAkB+B,EAAE/B,EAAE,WAAW,CAAC,EAAE81E,GAAG91E,EAAE,IAAIA,EAAE,WAAW,EAAE,EAAEE,EAAE,EAAEF,EAAE,KAAKA,EAAE,MAAM,CAAC,CAAC,EAAE81E,GAAG91E,EAAE,IAAIA,EAAE,WAAWA,EAAE,kBAAkB,IAAI,CAAC,EAAEK,CAAC,CAAC,SAASs+E,GAAG3+E,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAEJ,EAAEK,EAAE,IAAI,aAAaH,CAAC,EAAE,OAAOE,EAAE,WAAWA,EAAE,kBAAkB,CAAC,EAAEA,EAAE,iBAAiBA,EAAE,kBAAkB,EAAEC,CAAC,EAAED,EAAE,WAAWA,EAAE,kBAAkB,IAAI,EAAEC,CAAC,CAAC,SAASq+E,GAAG1+E,EAAE,EAAEE,EAAEE,EAAE,CAAC,GAAG,CAACC,EAAE,CAAC,EAAEs4E,GAAG,EAAEz4E,CAAC,EAAE,EAAE,EAAE6B,EAAE,IAAI,WAAW62E,GAAG,EAAE14E,EAAE,CAAC,CAAC,EAAE,OAAO41E,GAAG91E,EAAE,IAAIA,EAAE,WAAW,EAAE,EAAEK,EAAE,EAAED,EAAE,sBAAsBJ,EAAE,cAAc+B,CAAC,CAAC,EAAE,IAAI,aAAaA,EAAE,MAAM,CAAC,CAAC,SAAS88E,GAAG7+E,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,EAAE0B,EAAE,CAAC,IAAIC,EAAEhC,EAAEiC,EAAE,IAAI,aAAa82E,GAAG,EAAE,CAAC,CAAC,EAAE,OAAO/2E,EAAE,WAAWA,EAAE,kBAAkB,CAAC,EAAEA,EAAE,iBAAiBA,EAAE,kBAAkB,EAAEC,CAAC,EAAED,EAAE,WAAWA,EAAE,kBAAkB,IAAI,EAAEC,CAAC,CAAC,SAAS28E,GAAG5+E,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAE,IAAI,aAAa,EAAEF,EAAE,CAAC,EAAE,OAAO41E,GAAG91E,EAAE,IAAIA,EAAE,WAAW,EAAE,EAAEE,EAAE,EAAEF,EAAE,KAAKA,EAAE,MAAMI,CAAC,CAAC,EAAEA,CAAC,CAAC,IAAIlc,GAAG,KAAK,CAAC,YAAY0c,EAAE,CAAC,KAAK,cAAc,KAAK,KAAK,QAAQ,KAAK,KAAK,SAAS,GAAG,KAAK,YAAY,CAAC,EAAE,IAAIV,EAAE1O,EAAE,EAAE,UAAU,eAAe,EAAE,GAAGoP,GAAG,MAAM,KAAK,GAAGA,EAAE/F,GAAGqF,EAAEU,CAAC,GAAG,KAAK,GAAGy3E,GAAGn4E,CAAC,EAAEU,EAAE,KAAK,GAAGpP,EAAE,EAAE,UAAU,eAAe,IAAI,EAAE,CAAC,IAAIqQ,EAAEjB,EAAE,KAAK,kBAAkB,IAAIk1E,GAAGj0E,EAAE,IAAIA,EAAE,kBAAkB,CAAC,EAAE,KAAK,gBAAgBC,GAAGg0E,GAAGj0E,EAAE,IAAIA,EAAE,gBAAgBC,CAAC,CAAC,EAAE,KAAK,kBAAkBA,GAAGg0E,GAAGj0E,EAAE,IAAIA,EAAE,kBAAkBC,CAAC,CAAC,EAAE,KAAK,eAAe,IAAIg0E,GAAGj0E,EAAE,IAAIA,EAAE,aAAaA,EAAE,oBAAoB,CAAC,CAAC,SAASjB,GAAG,KAAK,CAAC,IAAIiB,EAAEjB,EAAE,aAAa,yBAAyB,EAAE,GAAGiB,GAAG,KAAK,MAAM,IAAI,MAAM,2EAA2E,EAAE,KAAK,kBAAkB,IAAIi0E,GAAGl1E,EAAE,IAAIiB,EAAE,qBAAqB,CAAC,EAAE,KAAK,gBAAgBC,GAAGg0E,GAAGl1E,EAAE,IAAIiB,EAAE,mBAAmBC,CAAC,CAAC,EAAE,KAAK,kBAAkBA,GAAGg0E,GAAGl1E,EAAE,IAAIiB,EAAE,qBAAqBC,CAAC,CAAC,EAAE,KAAK,eAAe,IAAIg0E,GAAGl1E,EAAE,IAAIA,EAAE,aAAaiB,EAAE,wBAAwB,CAAC,CAAC,CAAC,IAAI,EAAE,2BAA2BxB,EAAE,8BAA8B,GAAG,KAAK,6BAA6B,KAAK,GAAG,aAAa,6BAA6B,EAAE7O,EAAE,EAAE,UAAU,eAAe,IAAI,EAAE,CAAC,IAAIqQ,EAAE,oBAAoBC,EAAE,yBAAyB,GAAG,KAAK,sBAAsB00E,GAAG,KAAK,GAAG30E,CAAC,EAAEu1E,GAAG,KAAK,GAAGt1E,CAAC,EAAE,KAAK,0BAA0B00E,GAAG,KAAK,GAAG10E,CAAC,UAAUtQ,EAAE,EAAE,IAAI,0BAA0B,EAAE,MAAM,IAAI,MAAM,oHAAoH,EAAE,GAAG,KAAK,0BAA0B,KAAK,GAAG,aAAa,CAAC,EAAE4lF,GAAG,KAAK,GAAG/2E,CAAC,EAAE,KAAK,8BAA8Bm2E,GAAG,KAAK,GAAGn2E,CAAC,UAAU7O,EAAE,EAAE,IAAI,0BAA0B,EAAE,MAAM,IAAI,MAAM,6HAA6H,CAAC,SAAS,EAAE,yBAAyB4lF,GAAG,KAAK,GAAG,CAAC,EAAE,KAAK,0BAA0B,KAAK,GAAG,aAAa,CAAC,UAAUA,GAAG,KAAK,GAAG/2E,CAAC,EAAE,KAAK,8BAA8B,KAAK,GAAG,aAAaA,CAAC,MAAO,OAAM,IAAI,MAAM,qDAAqD,EAAE,KAAK,aAAam+E,GAAG,KAAK,EAAE,EAAE,KAAK,YAAYH,GAAG,KAAK,EAAE,EAAE,KAAK,YAAYpI,GAAG,KAAK,EAAE,EAAE,KAAK,cAAc+C,GAAG,KAAK,GAAG,KAAK,yBAAyB,CAAC,CAAC,IAAI,OAAO,CAAC,OAAOxnF,EAAE,EAAE,QAAQ,OAAO,CAAC,CAAC,SAAS,CAAC,GAAG,KAAK,SAAS,OAAO,KAAK,SAAS,MAAM,QAAQ,KAAK,sKAAsK,EAAE,KAAK,eAAe,MAAM,QAAQ,KAAK,oMAAoM,EAAE,IAAIoP,EAAE,KAAK,GAAGk1E,GAAGl1E,EAAE,IAAIA,EAAE,OAAO,CAAC,EAAEk1E,GAAGl1E,EAAE,IAAIA,EAAE,gBAAgBA,EAAE,YAAY,IAAI,CAAC,EAAEk1E,GAAGl1E,EAAE,IAAIA,EAAE,kBAAkB,KAAK,WAAW,CAAC,EAAEk1E,GAAGl1E,EAAE,IAAIA,EAAE,WAAWA,EAAE,aAAa,IAAI,CAAC,EAAEk1E,GAAGl1E,EAAE,IAAIA,EAAE,WAAWA,EAAE,qBAAqB,IAAI,CAAC,EAAEk1E,GAAGl1E,EAAE,IAAIA,EAAE,aAAa,KAAK,WAAW,CAAC,EAAE,KAAK,SAAS,EAAE,CAAC,2BAA2BA,EAAEV,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAEk+E,GAAG,KAAK,GAAGx9E,EAAEV,EAAE,KAAK,aAAa,CAAC,CAAC,2BAA2BU,EAAEV,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAEg+E,GAAG,KAAK,GAAGt9E,EAAEV,EAAE,KAAK,aAAa,CAAC,CAAC,iCAAiCU,EAAEV,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAEq+E,GAAG,KAAK,GAAG39E,EAAEV,EAAE,KAAK,aAAa,CAAC,CAAC,yBAAyBU,EAAEV,EAAE,CAAC,KAAK,gBAAgB,EAAEk/E,GAAG,KAAK,GAAGx+E,EAAEV,CAAC,CAAC,CAAC,2BAA2BU,EAAEV,EAAE,EAAEG,EAAE,CAAC,KAAK,gBAAgB,EAAE8+E,GAAG,KAAK,GAAGv+E,EAAEV,EAAE,EAAEG,EAAE,KAAK,aAAa,CAAC,CAAC,iCAAiCO,EAAEV,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAEi+E,GAAG,KAAK,GAAGv9E,EAAEV,EAAE,KAAK,aAAa,CAAC,CAAC,0BAA0BU,EAAEV,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAEo+E,GAAG,KAAK,GAAG19E,EAAEV,EAAE,KAAK,aAAa,CAAC,CAAC,oBAAoBU,EAAE,CAAC,KAAK,gBAAgB,EAAE,KAAK,gBAAgBA,IAAIk3E,GAAG,KAAK,GAAG,KAAK,WAAW,EAAE,KAAK,cAAc,MAAMhC,GAAG,KAAK,GAAG,IAAI,KAAK,GAAG,cAAcl1E,CAAC,CAAC,CAAC,CAAC,gDAAgDA,EAAEV,EAAE,EAAE,CAAC,OAAO,KAAK,qBAAqBU,EAAE,IAAI89E,GAAG,KAAK,GAAGx+E,EAAE,EAAE,KAAK,aAAa,CAAC,CAAC,CAAC,+BAA+BU,EAAEV,EAAE,EAAEG,EAAEwB,EAAEC,EAAE,CAAC,OAAO+8E,GAAG,KAAK,GAAGj+E,EAAEV,EAAE,EAAEG,EAAEwB,EAAEC,EAAE,KAAK,aAAa,CAAC,CAAC,gCAAgClB,EAAEV,EAAE,CAAC,OAAOy+E,GAAG,KAAK,GAAG/9E,EAAEV,CAAC,CAAC,CAAC,wBAAwBU,EAAEV,EAAE,EAAE,CAAC,KAAK,yBAAyBU,CAAC,EAAE,IAAIP,EAAE49E,GAAG,KAAK,GAAG/9E,EAAE,EAAE,KAAK,aAAa,EAAE,OAAO,KAAK,2BAA2B,EAAEG,CAAC,CAAC,uBAAuB,CAAC,IAAIO,EAAE,KAAK,YAAY,KAAK,EAAE,EAAE,OAAO,KAAK,UAAUA,CAAC,CAAC,CAAC,YAAYA,EAAE,CAAC,IAAIV,EAAE,EAAE,GAAG1O,EAAE,EAAE,QAAQ,yBAAyB,EAAE,CAAC,IAAI6O,EAAEO,EAAEiB,EAAExB,EAAE,UAAUA,EAAE,2BAA2B,CAAC,EAAEO,EAAE,MAAM,EAAE,EAAE,IAAI,CAAC,IAAIkB,EAAEzB,EAAE,eAAewB,EAAE,EAAE,CAAC,EAAE,OAAOC,IAAIzB,EAAE,kBAAkByB,IAAIzB,EAAE,mBAAmB,EAAEH,EAAE2B,CAAC,MAAMrQ,EAAE,EAAE,UAAU,8CAA8C,EAAE,GAAG0O,EAAE,KAAK,WAAW,EAAE,KAAK,SAAS,EAAE,EAAE,IAAI,KAAK,iBAAiBA,EAAE1O,EAAE,EAAE,UAAU,8CAA8C,CAAC,GAAG,EAAE,IAAI,GAAG,MAAM,CAAC,MAAM0O,EAAE,cAAc,CAAC,CAAC,CAAC,gCAAgCU,EAAEV,EAAE,EAAE,CAAC,OAAO,KAAK,qBAAqBU,EAAE,IAAIg+E,GAAG,KAAK,GAAG1+E,EAAE,CAAC,CAAC,CAAC,CAAC,cAAcU,EAAE,CAAC,KAAK,gBAAgB,EAAE,IAAIV,EAAE,KAAK,GAAG,KAAK,cAAc,OAAO,KAAK,aAAau+E,GAAGv+E,CAAC,GAAG,IAAI,EAAEg2E,GAAGh2E,CAAC,EAAE41E,GAAG51E,EAAE,IAAIA,EAAE,aAAa,EAAE,KAAK,YAAY,CAAC,EAAE41E,GAAG51E,EAAE,IAAIA,EAAE,aAAa,EAAEU,CAAC,CAAC,EAAE82E,GAAGx3E,EAAE,CAAC,EAAE,IAAIG,EAAE,OAAO,OAAO,EAAE,CAAC,IAAI,KAAK,kBAAkB,CAAC,CAAC,EAAE,OAAO,KAAK,OAAO43E,GAAG/3E,EAAEG,CAAC,EAAEA,CAAC,CAAC,SAASO,EAAE,CAAC,KAAK,WAAWA,CAAC,EAAE,KAAK,gBAAgBA,EAAE,GAAG,EAAE,IAAIV,EAAE,KAAK,GAAG41E,GAAG51E,EAAE,IAAIA,EAAE,WAAWA,EAAE,qBAAqB,KAAK,WAAW,CAAC,EAAE89E,GAAG99E,EAAEU,EAAE,KAAK,YAAY,CAAC,CAAC,cAAcA,EAAE,CAAC,KAAK,gBAAgB,EAAEA,IAAI,KAAK,UAAU,KAAK,QAAQ,MAAMA,GAAG,OAAOk1E,GAAG,KAAK,GAAG,IAAI,KAAK,GAAG,cAAcl1E,CAAC,CAAC,EAAE,KAAK,kBAAkBA,EAAE,GAAG,EAAE,CAAC,WAAWA,EAAE,CAAC,KAAK,gBAAgB,EAAE,KAAK,QAAQA,EAAE,KAAK,SAAS,MAAM,KAAK,OAAOq3E,GAAG,KAAK,GAAG,KAAK,OAAO,EAAEnC,GAAG,KAAK,GAAG,IAAI,KAAK,GAAG,WAAWl1E,CAAC,CAAC,CAAC,CAAC,mBAAmBA,EAAEV,EAAE,EAAE,GAAG,CAAC,OAAO,KAAK,gBAAgB,EAAE,EAAE22E,GAAG,KAAK,GAAGj2E,EAAEV,CAAC,EAAE02E,GAAG,KAAK,GAAGh2E,EAAEV,CAAC,CAAC,CAAC,qBAAqBU,EAAEV,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAE41E,GAAG,KAAK,GAAG,IAAI,KAAK,GAAG,kBAAkBl1E,EAAEV,CAAC,CAAC,CAAC,CAAC,0BAA0BU,EAAEV,EAAE,CAAC,OAAO,KAAK,gBAAgB,EAAE,KAAK,GAAG,mBAAmBU,EAAEV,CAAC,CAAC,CAAC,sBAAsBU,EAAEV,EAAE,EAAE,CAAC,KAAK,gBAAgB,EAAE,KAAK,iBAAiB,EAAEy1E,GAAG,KAAK,GAAG/0E,EAAEV,EAAE,CAAC,CAAC,CAAC,uBAAuBU,EAAEV,EAAE,EAAE,CAAC,KAAK,6BAA6BU,EAAE,EAAEV,CAAC,CAAC,CAAC,6BAA6BU,EAAEV,EAAE,EAAE,CAAC,KAAK,gBAAgB,EAAE,GAAG,CAACG,EAAEwB,CAAC,EAAEi3E,GAAG54E,EAAE,CAAC,EAAE,KAAK,6BAA6BU,EAAEP,EAAEwB,CAAC,CAAC,CAAC,2BAA2BjB,EAAEV,EAAE,EAAEG,EAAE,CAAC,KAAK,iCAAiC,EAAEO,EAAEP,EAAEH,CAAC,CAAC,CAAC,iCAAiCU,EAAEV,EAAE,EAAEG,EAAE,CAAC,MAAM,IAAI,MAAM,mDAAmD,CAAC,CAAC,eAAe,CAAC,KAAK,SAAS,MAAM43E,GAAG,KAAK,GAAG,KAAK,OAAO,EAAED,GAAG,KAAK,EAAE,CAAC,CAAC,gBAAgB,CAAC,KAAK,gBAAgB,EAAE,KAAK,iBAAiB,EAAE,IAAIp3E,EAAE,KAAK,GAAG,GAAG,KAAK,MAAM,CAAC,IAAIV,EAAE,KAAK,eAAe,EAAE,QAAQ,OAAOA,IAAI,KAAK,QAAQ,IAAI,oDAAoD,EAAE,KAAK,cAAc,CAAC,CAAC41E,GAAGl1E,EAAE,IAAIA,EAAE,aAAaA,EAAE,UAAU,EAAEA,EAAE,eAAe,CAAC,CAAC,CAAC,CAAC,gCAAgC,CAAC,KAAK,gBAAgB,EAAEk1E,GAAG,KAAK,GAAG,IAAI,KAAK,GAAG,OAAO,CAAC,CAAC,CAAC,wBAAwB,CAAC,OAAO,KAAK,6BAA6B,OAAO,KAAK,4BAA4BU,GAAG,KAAK,GAAGhlF,EAAE,EAAE,UAAU,8CAA8C,IAAI,EAAE,kCAAkC,0BAA0B,GAAG,KAAK,2BAA2B,CAAC,8BAA8B,CAAC,OAAO,KAAK,uBAAuB,CAAC,CAAC,8BAA8B,CAAC,OAAO,KAAK,uBAAuB,CAAC,CAAC,YAAY,CAAC,GAAGA,EAAE,EAAE,UAAU,8CAA8C,IAAI,EAAE,CAAC,IAAI,EAAE,KAAK,GAAG6O,EAAE,KAAK,6BAA6B,EAAEwB,EAAE,EAAE,YAAY,EAAE,OAAO,EAAE,WAAWxB,EAAE,iBAAiBwB,CAAC,EAAEA,CAAC,CAAC,IAAIjB,EAAE,KAAK,6BAA6B,EAAEV,EAAEU,EAAE,eAAe,EAAE,OAAOA,EAAE,cAAcA,EAAE,iBAAiBV,CAAC,EAAEA,CAAC,CAAC,UAAU,CAAC,GAAG1O,EAAE,EAAE,UAAU,8CAA8C,IAAI,EAAE,CAAC,IAAI0O,EAAE,KAAK,GAAG,EAAE,KAAK,6BAA6B,EAAEA,EAAE,SAAS,EAAE,gBAAgB,EAAE,MAAM,CAAC,IAAIU,EAAE,KAAK,6BAA6B,EAAEA,EAAE,YAAYA,EAAE,gBAAgB,CAAC,CAAC,MAAM,uBAAuBA,EAAE,CAAC,OAAO,MAAMrC,EAAE,YAAY,IAAI,KAAK,UAAU,KAAK,iBAAiBqC,EAAEpP,EAAE,EAAE,UAAU,8CAA8C,CAAC,CAAC,EAAE,KAAK,aAAaoP,EAAEpP,EAAE,EAAE,UAAU,8CAA8C,CAAC,CAAC,CAAC,aAAaoP,EAAEV,EAAE,CAAC,GAAGA,IAAI,EAAE,OAAO,KAAK,GAAGA,IAAI,EAAE,CAAC,IAAI,EAAE,KAAK,GAAG,OAAO,EAAE,kBAAkBU,EAAE,EAAE,YAAY,EAAE,GAAG,KAAK,CAAC,IAAI,EAAE,KAAK,6BAA6B,EAAE,OAAO,EAAE,kBAAkBA,EAAE,EAAE,gBAAgB,EAAE,GAAG,CAAC,CAAC,iBAAiBA,EAAEV,EAAE,CAAC,GAAGA,IAAI,EAAE,MAAM,GAAG,GAAGA,IAAI,EAAE,CAAC,IAAI,EAAE,KAAK,GAAGG,EAAE,KAAK,6BAA6B,EAAEwB,EAAE,EAAE,kBAAkBjB,EAAE,EAAE,sBAAsB,EAAE,OAAO,KAAK,UAAU,OAAO,KAAK,SAAS,KAAK,GAAG,aAAaP,EAAE,gBAAgB,GAAGwB,GAAG,CAAC,KAAK,QAAQ,KAAK,CAAC,IAAI,EAAE,KAAK,6BAA6B,EAAExB,EAAE,EAAE,kBAAkBO,EAAE,EAAE,0BAA0B,EAAE,OAAO,KAAK,UAAU,OAAO,KAAK,SAAS,KAAK,GAAG,aAAa,EAAE,gBAAgB,GAAGP,GAAG,CAAC,KAAK,QAAQ,CAAC,CAAC,UAAUO,EAAE,CAAC,OAAO,IAAI,QAAQV,GAAG,CAAC,KAAK,cAAc,IAAIU,EAAE,cAAc,EAAE,IAAIV,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,WAAW,CAAC,IAAIU,EAAE0+E,GAAI,KAAK,YAAY,IAAIp/E,GAAGA,EAAE,QAAQ,CAAC,EAAE,QAAQA,EAAE,EAAEA,GAAGU,EAAE,EAAEV,EAAE,CAAC,GAAG,CAAC,UAAU,CAAC,EAAE,KAAK,YAAYA,CAAC,EAAE,EAAE,CAAC,CAAC,KAAK,YAAY,KAAK,YAAY,MAAMU,EAAE,CAAC,CAAC,CAAC,cAAcA,EAAEV,EAAE,CAAC,GAAG,KAAK,YAAY,KAAK,CAAC,SAASU,EAAE,UAAUV,CAAC,CAAC,EAAE,KAAK,YAAY,OAAO,EAAE,OAAO,IAAI,EAAE,qBAAqB1O,EAAE,EAAE,WAAW,EAAEA,EAAE,EAAE,SAAS,iBAAiB,KAAKA,EAAE,EAAE,QAAQ,GAAG+M,EAAE,YAAY,KAAK,KAAK,UAAU,EAAE,KAAK,YAAY,SAAS,GAAG,IAAI,EAAE,KAAK,CAAC,CAAC,CAAC,yBAAyBqC,EAAE,CAAC,KAAK,gBAAgB,EAAE80E,GAAG,KAAK,GAAG90E,EAAE,KAAK,WAAW,EAAE,KAAK,OAAOo3E,GAAG,KAAK,EAAE,CAAC,CAAC,4BAA4B,CAAC,KAAK,eAAe,MAAMtC,GAAG,KAAK,GAAG,KAAK,cAAc,KAAK,WAAW,EAAE,KAAK,OAAOsC,GAAG,KAAK,EAAE,GAAGF,GAAG,KAAK,GAAG,KAAK,WAAW,CAAC,CAAC,qBAAqBl3E,EAAEV,EAAE,CAAC,KAAK,yBAAyBU,CAAC,EAAE,IAAI,EAAEV,EAAE,EAAE,OAAO,KAAK,2BAA2B,EAAE,CAAC,CAAC,6BAA6BU,EAAEV,EAAE,EAAE,CAAC,KAAK,gBAAgB,EAAE,IAAIG,EAAE,KAAK,GAAGq1E,GAAGr1E,EAAEO,EAAE,KAAK,WAAW,EAAE,KAAK,OAAOo3E,GAAG33E,CAAC,EAAE,KAAK,cAAcO,EAAEk1E,GAAGz1E,EAAE,IAAIA,EAAE,SAAS,EAAE,EAAEH,EAAE,CAAC,CAAC,EAAE41E,GAAGz1E,EAAE,IAAIA,EAAE,QAAQ,EAAE,EAAEH,EAAE,CAAC,CAAC,CAAC,CAAC,iCAAiCU,EAAEV,EAAE,EAAEG,EAAE,CAAC,KAAK,gBAAgB,EAAEy1E,GAAG,KAAK,GAAG,IAAI,KAAK,GAAG,QAAQl1E,EAAEV,EAAE,EAAEG,CAAC,CAAC,CAAC,CAAC,iBAAiB,CAAC,GAAG,KAAK,SAAS,MAAM,IAAI,MAAM,yCAAyC,CAAC,CAAC,kBAAkB,CAAC,GAAG,KAAK,SAAS,KAAK,MAAM,IAAI,MAAM,kCAAkC,CAAC,CAAC,EAAE,SAASi/E,GAAIt/E,EAAE,CAAC,IAAI,EAAE,EAAE,KAAK,EAAEA,EAAE,QAAQA,EAAE,CAAC,EAAE,EAAE,EAAE,EAAE,CAAC,OAAO,EAAE,CAAC,CAAC,GAAG,CAAC,QAAQu/E,GAAG,aAAaC,GAAG,mBAAmBC,GAAG,eAAeC,GAAG,SAASC,GAAG,SAASC,GAAG,WAAWC,GAAG,UAAUC,GAAG,QAAQC,GAAG,UAAUC,GAAG,UAAUC,GAAG,aAAaC,GAAG,aAAaC,GAAG,YAAYC,GAAG,iBAAiBC,GAAG,SAASC,GAAG,cAAcC,GAAG,aAAaC,GAAG,QAAQC,GAAG,QAAQC,GAAG,YAAYC,GAAG,YAAYC,GAAG,aAAaC,GAAG,QAAQC,GAAG,aAAaC,GAAG,SAASC,GAAG,iBAAiBC,GAAG,gBAAgBC,GAAG,yBAAyBC,GAAG,UAAUC,GAAG,UAAUC,GAAG,YAAYC,GAAG,YAAYC,GAAG,cAAcC,GAAG,UAAUC,GAAG,wBAAwBC,GAAG,kBAAkBC,GAAG,2BAA2BC,GAAG,SAASC,GAAG,uBAAuBC,GAAG,iBAAiBC,GAAG,iBAAiBC,GAAG,gBAAgBC,GAAG,2BAA2BC,GAAG,QAAQC,GAAG,SAASC,GAAG,SAASC,GAAG,cAAcC,GAAG,WAAWC,EAAE,EAAExnF,GAAG,SAASynF,GAAGxiF,EAAE,EAAE,CAAC,MAAM,CAAC,IAAI,IAAI,IAAI,IAAI,IAAI,GAAG,EAAE,MAAM,EAAE,CAAC,EAAE,IAAIE,GAAG,GAAGF,CAAC,IAAIE,CAAC,EAAE,CAAC,CAAC,SAASuiF,GAAGziF,EAAE,EAAE,CAAC,OAAO,IAAI,EAAE,CAACA,CAAC,EAAEwiF,GAAGxiF,EAAE,CAAC,CAAC,CAAC,SAAS0iF,GAAG1iF,EAAE,EAAE,CAAC,GAAGA,IAAI,EAAE,MAAM,KAAK,IAAIE,EAAE,GAAG,QAAQE,EAAE,EAAEA,EAAEJ,EAAEI,IAAIF,GAAG,EAAEE,CAAC,EAAEA,EAAEJ,EAAE,IAAIE,GAAG,KAAK,OAAOA,CAAC,CAAC,IAAIyiF,GAAG,KAAK,CAAC,YAAY/hF,EAAE,CAAC,GAAG,KAAK,cAAc,CAAC,GAAG,EAAE,KAAK,aAAa,GAAG,KAAK,aAAa,GAAG,KAAK,YAAYA,EAAE,KAAK,KAAKA,EAAE,OAAO,KAAK,oBAAoB48E,GAAG,KAAK,YAAY,MAAM,EAAE,KAAK,OAAO,EAAE,KAAK,SAAS;AAAA;AAAA;AAAA;AAAA,YAI/+c,CAAC,IAAIt9E,EAAEuiF,GAAG,KAAK,KAAK,IAAI,EAAE,EAAEvF,GAAG,KAAK,IAAI,EAAE78E,EAAE,KAAK,wBAAwBH,CAAC,EAAE2B,EAAE,KAAK,SAAS3B,CAAC,EAAE4B,EAAE,KAAK,UAAU5B,CAAC,EAAE,KAAK,SAAS;AAAA;AAAA,YAEjI,CAAC;AAAA;AAAA,eAEEG,CAAC;AAAA;AAAA;AAAA,cAGFwB,CAAC;AAAA;AAAA,6BAEcC,CAAC;AAAA;AAAA;AAAA,OAGvB,CAAC,CAAC,mBAAmBlB,EAAE,CAAC,IAAIV,EAAE,CAAC,EAAE,QAAQ,EAAE,EAAE,GAAG,EAAE,IAAI,QAAQG,EAAE,EAAEA,GAAG,EAAEA,IAAI,CAAC,IAAIwB,EAAE,GAAG,IAAI,EAAE,IAAI,KAAK,KAAKxB,IAAI,EAAE,IAAI,KAAK,GAAG,QAAQyB,EAAE,EAAEA,EAAE,KAAK,KAAKA,IAAID,EAAE,GAAGjB,EAAEA,EAAE,OAAO,EAAEkB,CAAC,CAAC,IAAID,EAAE3B,EAAE,KAAK2B,CAAC,CAAC,CAAC,OAAO3B,CAAC,CAAC,wBAAwBU,EAAE,CAAC,GAAG,KAAK,OAAO,EAAE,MAAM,QAAQ,KAAK,oBAAoB,WAAW,KAAK,YAAY,CAAC,CAAC,GAAG,IAAIV,EAAE,GAAG,QAAQ,EAAE,KAAK,KAAK,EAAE,EAAE,KAAK,KAAK,IAAIA,GAAG,GAAGU,EAAE,CAAC,CAAC,OAAO,KAAK,oBAAoB,YAAY,CAAC,IAAI,KAAK,YAAY,CAAC,CAAC,GAAG,EAAE,KAAK,KAAK,IAAIV,GAAG,MAAM,OAAOA,CAAC,CAAC,SAASU,EAAE,CAAC,GAAG,KAAK,OAAO,EAAE,MAAM,GAAG,IAAIV,EAAEU,EAAE,MAAM,EAAE,EAAE,EAAE,KAAK,oBAAoB,YAAY,KAAK,IAAI,QAAQ,KAAK,YAAY,KAAK,KAAK,CAAC,EAAEP,EAAE,KAAK,oBAAoB,YAAY,KAAK,IAAI,QAAQ,KAAK,YAAY,KAAK,KAAK,CAAC,EAAE,MAAM;AAAA,gBAC3rBH,EAAE,CAAC,CAAC;AAAA,gBACJA,EAAE,CAAC,CAAC;AAAA;AAAA;AAAA;AAAA,4BAIQ,CAAC;AAAA,4BACDG,CAAC;AAAA,KACxB,CAAC,UAAUO,EAAE,CAAC,IAAIV,EAAE,KAAK,mBAAmBU,CAAC,EAAE,OAAO,KAAK,OAAO,EAAE,wBAAwB,KAAK,oBAAoB,WAAW,KAAK,YAAY,CAAC,CAAC,8BAA8B,QAAQV,EAAE,CAAC,CAAC;AAAA,gCAClKA,EAAE,CAAC,CAAC;AAAA,gCACJA,EAAE,CAAC,CAAC;AAAA,yCACKA,EAAE,CAAC,CAAC,GAAG,CAAC,EAAM0iF,GAAG,KAAK,CAAC,YAAYhiF,EAAEV,EAAE,CAAC,KAAK,cAAc,CAAC,GAAG,EAAE,KAAK,aAAa,GAAG,KAAK,aAAa,GAAG,KAAK,eAAe,CAAC,CAAC,KAAK,aAAa,KAAK,OAAO,CAAC,EAAE,KAAK,YAAYU,EAAE,KAAK,oBAAoB48E,GAAG,KAAK,YAAY,MAAM,EAAE,IAAI,EAAE,GAAG,QAAQn9E,EAAE,EAAEA,EAAE,EAAEA,IAAI,CAAC,IAAIwB,EAAE,eAAexB,EAAE,IAAI,IAAIwB,GAAG,kBAAkBxB,EAAE,IAAIwB,GAAG,kBAAkB,GAAG;AAAA,UACzXA,CAAC;AAAA,UACDxB,EAAE,EAAE,0CAA0C,EAAE;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,mBAMvCA,CAAC;AAAA;AAAA,UAEVA,EAAE,EAAE,IAAI,EAAE;AAAA,OACb,CAAC,KAAK,SAAS;AAAA,QACdwiF,GAAI3iF,EAAE,KAAK,mBAAmB,CAAC;AAAA,QAC/B,KAAK,oBAAoBi6E,GAAG,EAAED,GAAGt5E,CAAC,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,qBAQtB,KAAK,oBAAoB,cAAcA,EAAE,CAAC,CAAC;AAAA,qBAC3C,KAAK,oBAAoB,cAAcA,EAAE,CAAC,CAAC;AAAA;AAAA,UAEtD,CAAC;AAAA;AAAA;AAAA;AAAA,KAIN,CAAC,EAAE,SAASiiF,GAAI7iF,EAAE,EAAE,CAAC,MAAM;AAAA;AAAA,QAExB,EAAEi6E,GAAG,CAAC,IAAI,IAAI,GAAG,EAAE,YAAY,EAAEH,GAAG,CAAC,IAAI,IAAI,GAAG,EAAE95E,CAAC,CAAC;AAAA;AAAA;AAAA,GAGzD,CAAC,IAAI8iF,GAAG,KAAK,CAAC,YAAYliF,EAAE,CAAC,KAAK,MAAMA,EAAE,KAAK,gBAAgB,EAAE,KAAK,gBAAgB,EAAE,KAAK,mBAAmB,EAAE,KAAK,cAAc,EAAE,KAAK,aAAa,CAAC,EAAE,KAAK,aAAa,CAAC,EAAE,KAAK,WAAW,EAAE,CAAC,eAAeA,EAAEV,EAAE,EAAE,CAAC,IAAIG,EAAE0iF,GAAG7iF,EAAE,CAAC,EAAE2B,EAAEmhF,GAAGpiF,EAAEP,EAAE,CAAC,EAAEwB,KAAK,KAAK,eAAe,KAAK,aAAaA,CAAC,EAAE,CAAC,GAAGA,KAAK,KAAK,eAAe,KAAK,aAAaA,CAAC,EAAE,CAAC,GAAG,IAAIC,EAAEmhF,GAAGriF,EAAEP,EAAE,KAAK,MAAM,GAAG,KAAK,MAAM,cAAc,CAAC,EAAE,GAAG,KAAK,aAAawB,CAAC,EAAE,OAAO,EAAE,CAAC,KAAK,kBAAkB,KAAK,kBAAkB,KAAK,eAAeC,EAAE,KAAK,IAAI,EAAE,IAAIE,EAAE,KAAK,aAAaH,CAAC,EAAE,IAAI,EAAE,OAAO,KAAK,aAAaA,CAAC,EAAE,KAAKG,CAAC,EAAEA,CAAC,CAAC,IAAID,EAAE,OAAO1B,IAAIq4E,GAAG,mBAAmB32E,EAAE,KAAK,MAAM,0BAA0BnB,EAAE,CAAC,EAAEA,EAAE,CAAC,CAAC,EAAEP,IAAIq4E,GAAG,mBAAmB32E,EAAE,KAAK,MAAM,iCAAiCnB,EAAE,CAAC,EAAEA,EAAE,CAAC,CAAC,EAAEP,IAAIq4E,GAAG,iBAAiB32E,EAAE,KAAK,MAAM,2BAA2BnB,EAAE,CAAC,EAAEA,EAAE,CAAC,CAAC,EAAEP,IAAIq4E,GAAG,iBAAiB32E,EAAE,KAAK,MAAM,2BAA2BnB,EAAE,CAAC,EAAEA,EAAE,CAAC,CAAC,EAAEP,IAAIq4E,GAAG,2BAA2B32E,EAAE,KAAK,MAAM,iCAAiCnB,EAAE,CAAC,EAAEA,EAAE,CAAC,CAAC,GAAG,KAAK,aAAaiB,CAAC,EAAE,KAAKE,CAAC,EAAE,KAAK,kBAAkB,KAAK,oBAAoBD,EAAE,KAAK,IAAI,EAAEC,CAAC,CAAC,eAAenB,EAAEV,EAAE,EAAEG,EAAE,CAAC,GAAG,KAAK,cAAc,KAAK,OAAO,IAAIwB,EAAEkhF,GAAG,EAAE1iF,CAAC,EAAEyB,EAAEkhF,GAAG9iF,EAAE2B,EAAExB,CAAC,EAAEyB,KAAK,KAAK,eAAe,KAAK,aAAaA,CAAC,EAAE,CAAC,GAAG,IAAIC,EAAEkhF,GAAG/iF,EAAE2B,EAAE,KAAK,MAAM,GAAG,KAAK,MAAM,cAAcxB,CAAC,EAAE2B,EAAExQ,EAAE,EAAE,UAAU,gCAAgC,EAAEwQ,IAAI,IAAI,KAAK,mBAAmBA,GAAG,KAAK,MAAM,oBAAoBpB,EAAE,OAAO,EAAE,KAAK,oBAAoBmB,IAAI,KAAK,aAAaD,CAAC,EAAE,KAAKlB,CAAC,EAAE,KAAK,kBAAkB,KAAK,eAAemB,GAAG,KAAK,kBAAkB,IAAI,EAAE,KAAK,aAAaD,CAAC,EAAEY,EAAE,GAAG,EAAE,QAAQ9B,CAAC,EAAE,GAAG8B,GAAG,MAAMA,EAAE,EAAE,MAAM,IAAI,MAAM,0EAA0E,EAAE,EAAEA,CAAC,EAAE,EAAE,EAAE,OAAO,CAAC,EAAE,EAAE,IAAI,EAAE,KAAK,IAAI,CAAC,CAAC,KAAK,CAAC,GAAG,CAAC,KAAK,WAAW,OAAO,IAAI9B,EAAE,KAAK,gBAAgB,KAAK,gBAAgB,QAAQ,IAAI,YAAY,GAAG,KAAK,eAAe,MAAM,KAAK,eAAe,GAAG,IAAIA,CAAC,GAAG,EAAE,IAAIV,EAAE,KAAK,cAAc,KAAK,mBAAmB,QAAQ,IAAI,oBAAoB,KAAK,kBAAkB,EAAE,EAAE,QAAQ,IAAI,iBAAiB,KAAK,aAAa,KAAK,KAAK,MAAM,IAAIA,CAAC,CAAC,IAAI,CAAC,CAAC,IAAI,mBAAmB,CAAC,OAAO,KAAK,kBAAkB,CAAC,IAAI,cAAc,CAAC,OAAO,KAAK,aAAa,CAAC,oBAAoB,CAAC,OAAO,KAAK,eAAe,CAAC,oBAAoB,CAAC,OAAO,KAAK,eAAe,CAAC,SAAS,CAAC,GAAG,KAAK,cAAc,KAAK,CAAC,QAAQU,KAAK,KAAK,aAAa,KAAK,aAAaA,CAAC,EAAE,QAAQV,GAAG,CAAC,KAAK,MAAM,oBAAoBA,EAAE,OAAO,CAAC,CAAC,EAAE,QAAQU,KAAK,KAAK,aAAa,KAAK,aAAaA,CAAC,EAAE,QAAQV,GAAG,CAAC,KAAK,MAAM,oBAAoBA,EAAE,OAAO,CAAC,CAAC,EAAE,KAAK,aAAa,KAAK,KAAK,aAAa,KAAK,KAAK,gBAAgB,EAAE,KAAK,gBAAgB,EAAE,KAAK,mBAAmB,EAAE,KAAK,cAAc,CAAC,CAAC,CAAC,EAAE,SAASgjF,GAAIljF,EAAE,EAAE,CAAC,IAAIE,EAAEF,EAAE,GAAG,IAAIE,EAAE,KAAK,MAAO,GAAE,GAAG,IAAIA,EAAE,KAAK,MAAO,GAA6B,GAAxB,IAAIA,EAAE,SAAqB,IAAIF,EAAE,KAAK,MAAO,IAAG,GAAG,IAAIE,EAAE,QAAQ,MAAO,GAAE,GAAG,IAAIA,EAAE,MAAM,MAAO,GAAE,MAAM,IAAI,MAAM,2BAA2B,CAAC,EAAE,CAAC,CAAC,SAAS+iF,GAAGjjF,EAAE,EAAEE,EAAEE,EAAEC,EAAE,CAAC,IAAI,EAAE8iF,GAAI,EAAE/iF,CAAC,EAAE,EAAE,GAAGC,EAAE,CAAC,GAAG,CAAC2B,EAAEC,CAAC,EAAE62E,GAAG94E,EAAE,CAAC,EAAEA,EAAE,CAAC,CAAC,EAAE,EAAEgC,EAAEC,CAAC,KAAK,CAAC,GAAG,CAACD,EAAEC,CAAC,EAAE02E,GAAG34E,EAAE,CAAC,EAAEA,EAAE,CAAC,CAAC,EAAE,EAAEgC,EAAEC,CAAC,CAAC,IAAIF,EAAEmhF,GAAIhjF,EAAE,CAAC,EAAE,OAAO,EAAE6B,CAAC,CAAC,SAASohF,GAAInjF,EAAE,EAAE,CAAC,OAAOA,EAAE,CAAC,KAAK04E,GAAG,mBAAmB,OAAOuG,GAAG,CAAC,EAAE,KAAKvG,GAAG,mBAAmB,OAAOqG,GAAG,CAAC,EAAE,KAAKrG,GAAG,iBAAiB,OAAOsG,GAAG,CAAC,EAAE,KAAKtG,GAAG,iBAAiB,OAAOoG,GAAG,CAAC,EAAE,KAAKpG,GAAG,yBAAyB,OAAOwG,GAAG,CAAC,EAAE,QAAQ,MAAM,IAAI,MAAM,iCAAiCl/E,CAAC,EAAE,CAAC,CAAC,CAAC,SAASojF,GAAIpjF,EAAE,CAAC,OAAOxO,EAAE,EAAE,QAAQ,8BAA8B,EAAEwO,EAAE04E,GAAG,mBAAmBA,GAAG,iBAAiB14E,EAAE04E,GAAG,mBAAmBA,GAAG,gBAAgB,CAAC,SAASqK,GAAG/iF,EAAE,EAAE,CAAC,GAAGA,IAAIy4E,GAAG,OAAO,OAAOC,GAAG,mBAAmB,GAAG14E,IAAIy4E,GAAG,QAAQz4E,GAAG,KAAK,OAAOojF,GAAI,CAAC,EAAE,GAAGpjF,IAAIy4E,GAAG,UAAUz4E,IAAIy4E,GAAG,OAAO,OAAOC,GAAG,yBAAyB,MAAM,IAAI,MAAM,gCAAgC14E,CAAC,EAAE,CAAC,CAAC,SAASgjF,GAAGhjF,EAAE,EAAEE,EAAE,CAAC,MAAM,GAAGF,EAAE,CAAC,CAAC,IAAIA,EAAE,CAAC,CAAC,IAAI,CAAC,IAAIE,CAAC,EAAE,CAAC,IAAImjF,GAAG,KAAK,CAAC,YAAYziF,EAAEV,EAAE,CAAC,KAAK,cAAc,CAAC,GAAG,EAAE,KAAK,YAAYU,EAAE,KAAK,oBAAoB48E,GAAG,KAAK,YAAY,MAAM,EAAE,KAAK,SAAS;AAAA;AAAA,UAE3yHt9E,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,KASN,CAAC,EAAEojF,GAAG,0BAA0BC,GAAG,YAAYC,GAAG,iBAAqBC,GAAG,0CAA0CC,GAAGJ,GAAG;AAAA;AAAA,EAE7HK,GAAGL,GAAG;AAAA;AAAA,EAENM,GAAG,YAAYC,GAAG,sCAA0CC,IAAG,YAAYC,IAAG;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAS9EC,IAAG;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAUHC,IAAG;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAUHC,IAAG,sCAAsCC,GAAG,KAAK,CAAC,YAAYvjF,EAAEV,EAAE,CAAC,KAAK,cAAc,CAAC,GAAG,EAAE,KAAK,aAAa,GAAG,KAAK,aAAa,GAAG,KAAK,YAAYU,EAAE,KAAK,oBAAoB48E,GAAG,KAAK,YAAY,MAAM,EAAE,KAAK,SAAS;AAAA;AAAA,UAEpNt9E,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,KASN,CAAC,EAAMkkF,IAAG,KAAK,CAAC,YAAYxjF,EAAE,CAAC,KAAK,cAAc,CAAC,GAAG,EAAE,KAAK,aAAa,GAAG,KAAK,aAAa,GAAG,KAAK,YAAYA,EAAE,KAAK,oBAAoB48E,GAAG,KAAK,YAAY,MAAM,EAAE,IAAIt9E,EAAEU,EAAE,OAAO,EAAE6hF,GAAG,KAAKviF,CAAC,EAAEG,EAAE68E,GAAGh9E,CAAC,EAAE2B,EAAE6gF,GAAGxiF,EAAE,CAAC,EAAE4B,EAAE,EAAE,MAAM,EAAE,EAAEC,EAAE7B,GAAG,EAAE,KAAK,QAAQ4B,EAAE,KAAK,GAAG,CAAC,IAAI,KAAK,SAAS;AAAA;AAAA,UAElRzB,CAAC;AAAA,kCACuBwB,CAAC;AAAA;AAAA,4CAESE,CAAC;AAAA;AAAA,KAExC,CAAC,EAAMsiF,IAAIpwF,GAAG,UAAUqwF,IAAI,KAAKC,IAAI,KAAKC,GAAG,CAAC,EAAE,SAASC,IAAIzkF,EAAE,CAAC,OAAOA,KAAKwkF,KAAKA,GAAGxkF,CAAC,EAAE,CAAC,GAAGwkF,GAAGxkF,CAAC,CAAC,CAAC,IAAI0kF,IAAIlzF,EAAE,EAAE,UAAU,4BAA4B,EAAEmzF,IAAI,IAAI,SAASC,KAAK,CAAC,OAAOpzF,EAAE,EAAE,OAAO,QAAQ,KAAK,KAAKA,EAAE,EAAE,OAAO,OAAO,OAAOA,EAAE,EAAE,OAAO,OAAO,MAAM,OAAO,iBAAiBmzF,IAAI,KAAK,IAAI,CAAC,IAAIz+F,GAAG,MAAM8Z,WAAUhb,EAAE,CAAC,YAAY,CAAC,OAAOgb,GAAE,YAAY,CAAC,YAAY,EAAE,CAAC,GAAG,MAAM,EAAE,KAAK,YAAY,IAAI,QAAQ,KAAK,gBAAgB,IAAI,QAAQ,KAAK,aAAa,IAAI,QAAQ,KAAK,cAAc,EAAE,KAAK,aAAa,EAAE,KAAK,eAAe,EAAE,KAAK,gBAAgB,EAAE,KAAK,kBAAkB,GAAG,KAAK,eAAe,EAAE,KAAK,SAAS,GAAG,CAACxO,EAAE,EAAE,QAAQ,WAAW,EAAE,MAAM,IAAI,MAAM,uCAAuC,EAAE,IAAI0O,EAAE,GAAG,GAAG,KAAK,CAAC,GAAG,aAAahc,GAAGgc,EAAE,MAAM,CAAC,IAAIE,EAAEi4E,GAAG7mF,EAAE,EAAE,UAAU,eAAe,EAAE,CAAC,EAAE0O,EAAE,IAAIhc,GAAGkc,CAAC,CAAC,CAAC,KAAK,YAAY,CAAC,EAAE,KAAK,oBAAoB,EAAE,KAAK,CAAC,IAAIA,EAAEi4E,GAAG7mF,EAAE,EAAE,UAAU,eAAe,CAAC,EAAE0O,EAAE,IAAIhc,GAAGkc,CAAC,EAAE,KAAK,YAAYqkF,IAAIjzF,EAAE,EAAE,UAAU,eAAe,CAAC,EAAE,KAAK,oBAAoB,EAAE,CAAC,KAAK,MAAM0O,EAAE,KAAK,OAAO,KAAK,MAAM,GAAG,OAAO,KAAK,eAAe,IAAI4iF,GAAG,KAAK,KAAK,EAAE,KAAK,mBAAmB8B,IAAI,EAAE,KAAK,QAAQ,IAAIziG,GAAG,KAAKmP,GAAG,CAAC,CAAC,CAAC,YAAY,CAAC,OAAO,KAAK,QAAQ,WAAW,EAAE,KAAK,cAAc,CAAC,aAAa,EAAE4O,EAAEE,EAAEC,EAAE,EAAE,EAAE,CAAC,IAAI0B,EAAE,KAAK,eAAe7B,EAAEE,CAAC,EAAE4B,EAAE,KAAK,QAAQ,IAAID,EAAE,MAAM,EAAEC,EAAE,SAAS,GAAGA,EAAE,QAAQ,CAAC,QAAQ,EAAE,SAAS,CAAC3B,EAAE,CAAC,CAAC,EAAE2B,EAAE,SAAS,CAAC3B,EAAE,CAAC,EAAE,IAAI4B,EAAE80E,GAAG72E,CAAC,EAAEwC,EAAE,IAAIo7E,GAAG77E,EAAE,GAAG,CAAC,EAAEU,EAAE,KAAK,gBAAgBD,EAAE,CAACX,CAAC,EAAE3B,EAAE,CAAC,CAACC,EAAE,CAAC,CAAC,CAAC,EAAE,OAAOsC,EAAE,MAAMzC,EAAE8B,EAAE,QAAQ,KAAK,KAAK,8BAA8BD,CAAC,EAAEY,EAAE,MAAM,CAAC,MAAM,EAAEzC,EAAEE,EAAE,CAAC,IAAI5O,EAAE,EAAE,QAAQ,gCAAgC,GAAGA,EAAE,EAAE,QAAQ,OAAO,IAAI,KAAK,uBAAuB,CAAC,EAAE4O,IAAI,aAAa,GAAG,KAAK,MAAM,IAAI,MAAM,uEAAuE,EAAE,IAAIC,EAAE,CAAC,GAAG,KAAK,WAAW,CAAC,EAAE,OAAO,KAAK,QAAQ,IAAIA,EAAE,CAAC,MAAMH,EAAE,MAAME,EAAE,OAAO,EAAE,MAAMq4E,GAAG,OAAO,SAAS,CAAC,CAAC,EAAEp4E,CAAC,CAAC,SAAS,EAAE,CAAC,OAAO,KAAK,QAAQ,IAAI,CAAC,EAAE,KAAK,QAAQ,IAAI,CAAC,EAAE,SAAS,CAAC,CAAC,OAAO,EAAE,CAAC,IAAIH,EAAE,KAAK,QAAQ,IAAI,CAAC,EAAEA,EAAE,UAAU,CAAC,OAAO,EAAE,CAAC,GAAG,KAAK,QAAQ,IAAI,CAAC,EAAE,CAAC,IAAIA,EAAE,KAAK,QAAQ,IAAI,CAAC,EAAEA,EAAE,UAAU,CAAC,CAAC,KAAK,EAAEA,EAAEE,EAAEC,EAAE,EAAE,CAAC,GAAG7O,EAAE,EAAE,QAAQ,OAAO,GAAG,KAAK,uBAAuB0O,CAAC,EAAEG,IAAI,YAAY,MAAM,IAAI,MAAM,uEAAuE,EAAE,KAAK,QAAQ,IAAI,EAAE,CAAC,MAAMD,EAAE,MAAMC,EAAE,OAAOH,EAAE,MAAMu4E,GAAG,OAAO,SAAS,CAAC,CAAC,CAAC,CAAC,8BAA8B,EAAE,CAAC,KAAK,YAAY,EAAE,MAAM,CAAC,CAAC,SAAS,EAAE,CAAC,IAAIv4E,EAAE,KAAK,QAAQ,IAAI,CAAC,EAAE,CAAC,OAAOE,EAAE,MAAMC,EAAE,mBAAmB,EAAE,MAAM,EAAE,MAAM0B,EAAE,SAASC,CAAC,EAAE9B,EAAE,GAAG,GAAG,KAAK,CAAC,IAAI0C,EAAEZ,EAAEY,EAAE,IAAIuhF,GAAGpiF,EAAE6hF,EAAE,EAAEhhF,EAAE,IAAIygF,GAAGthF,EAAE6hF,EAAE,EAAE,IAAI/gF,EAAE,KAAK,gBAAgBD,EAAE,CAAC,CAAC,OAAO,EAAE,MAAMb,EAAE,MAAM1B,CAAC,CAAC,EAAEA,CAAC,EAAEyC,EAAE,KAAK,SAASD,EAAE,MAAM,EAAE,OAAO,KAAK,8BAA8BA,CAAC,EAAEC,CAAC,CAAC,GAAG1C,GAAG,KAAK,OAAO,KAAK,qBAAqB,CAAC,EAAE,GAAGC,IAAI,SAAS,OAAOD,EAAE,IAAI6B,EAAE,KAAK,cAAc,KAAKS,EAAET,IAAIS,EAAEnE,EAAE,IAAI,GAAG,IAAIoE,EAAE,GAAGtC,IAAI,YAAY,CAAC,IAAIuC,EAAE,KAAK,SAAS,EAAE,KAAK,MAAM,EAAEC,EAAE,KAAK,SAAS,EAAE,KAAK,MAAM,EAAEF,EAAEjV,EAAE,uBAAuBkV,EAAEC,CAAC,CAAC,MAAMF,EAAE,KAAK,qBAAqB,CAAC,EAAE,OAAOV,IAAI,KAAK,gBAAgB1D,EAAE,IAAI,EAAEmE,GAAG,KAAK,qBAAqB,EAAEC,CAAC,CAAC,CAAC,MAAM,KAAK,EAAE,CAAC,GAAG,KAAK,YAAY,IAAI,CAAC,EAAE,CAAC,IAAIG,EAAE,KAAK,YAAY,IAAI,CAAC,EAAE,OAAO,IAAI,QAAQkB,GAAGlB,EAAE,KAAKkB,CAAC,CAAC,CAAC,CAAC,IAAI9D,EAAE,KAAK,QAAQ,IAAI,CAAC,EAAE,CAAC,OAAOE,EAAE,MAAMC,EAAE,MAAM,EAAE,MAAM,EAAE,mBAAmB0B,EAAE,SAASC,CAAC,EAAE9B,EAAE,GAAG,GAAG,KAAK,CAAC,IAAI4C,EAAEd,EAAEc,EAAE,IAAIqhF,GAAG9jF,EAAEujF,EAAE,EAAE9gF,EAAE,IAAIugF,GAAGhjF,EAAEujF,EAAE,EAAE,IAAI5/E,EAAE,KAAK,gBAAgBlB,EAAE,CAAC,CAAC,OAAO,EAAE,MAAMzC,EAAE,MAAM,CAAC,CAAC,EAAE,CAAC,EAAE,EAAE,KAAK,KAAK2D,EAAE,MAAM,EAAE,OAAO,KAAK,8BAA8BA,CAAC,EAAE,CAAC,CAAC,GAAG5D,GAAG,KAAK,OAAO,KAAK,qBAAqB,CAAC,EAAE,GAAG5O,EAAE,EAAE,QAAQ,OAAO,GAAG,CAACA,EAAE,EAAE,QAAQ,8BAA8B,GAAGA,EAAE,EAAE,UAAU,eAAe,IAAI,EAAE,MAAM,IAAI,MAAM,8FAA8F,EAAE,IAAIyQ,EAAE,KAAKS,EAAE,GAAG,IAAI,aAAalR,EAAE,EAAE,IAAI,wBAAwB,EAAE,CAACkR,EAAE,KAAK,OAAO,CAAC,EAAE,IAAII,EAAE,KAAK,QAAQ,IAAIJ,EAAE,MAAM,EAAET,EAAE,KAAK,MAAM,wBAAwBa,EAAE,QAAQ,QAAQ,GAAG+1E,GAAGx4E,CAAC,CAAC,CAAC,CAAC,KAAK,YAAY,IAAI,EAAE,CAAC,CAAC,EAAE,IAAI,aAAa,MAAM,KAAK,MAAM,sBAAsB,EAAE,IAAIsC,EAAE,GAAG,IAAI,YAAY,CAAC,IAAIG,EAAE,MAAM,QAAQ,IAAI,CAAC,KAAK,KAAKf,EAAE,KAAK,MAAM,EAAE,KAAK,KAAKA,EAAE,KAAK,MAAM,CAAC,CAAC,EAAEiC,EAAElB,EAAE,CAAC,EAAE,EAAEA,EAAE,CAAC,EAAEH,EAAEjV,EAAE,uBAAuBsW,EAAE,CAAC,CAAC,SAAS/B,GAAG,KAAKU,EAAE,KAAK,qBAAqB,CAAC,MAAM,CAAC,IAAIG,EAAEvE,EAAE,cAAc8B,CAAC,EAAEsC,EAAE,KAAK,MAAM,gCAAgCV,EAAEa,CAAC,CAAC,CAAC,GAAGJ,GAAG,MAAM,KAAK,8BAA8BA,CAAC,EAAET,GAAG,KAAK,CAAC,IAAIa,EAAE,KAAK,MAAM,GAAGgzE,GAAGhzE,EAAE,IAAIA,EAAE,aAAab,CAAC,CAAC,CAAC,CAAC,IAAIW,EAAE,KAAK,qBAAqB,EAAED,CAAC,EAAEE,EAAE,KAAK,YAAY,IAAI,CAAC,EAAE,OAAO,KAAK,YAAY,OAAO,CAAC,EAAEA,EAAE,QAAQC,GAAGA,EAAEF,CAAC,CAAC,EAAE,KAAK,gBAAgB,IAAI,CAAC,IAAI,KAAK,gBAAgB,OAAO,CAAC,EAAE,KAAK,YAAY,CAAC,GAAGtR,GAAG,EAAE,aAAa,EAAE,IAAI,EAAE,KAAK,kBAAkBsR,CAAC,CAAC,UAAU,EAAE1C,EAAE,CAAC,EAAE,CAAC,IAAIE,EAAE,KAAK,QAAQ,IAAI,CAAC,EAAE,CAAC,OAAOC,EAAE,MAAM,EAAE,MAAM,EAAE,MAAM0B,EAAE,SAASC,EAAE,QAAQC,CAAC,EAAE7B,EAAE,GAAG2B,IAAI,YAAY,MAAM,IAAI,MAAM,uDAAuD,EAAE,GAAG,GAAG,KAAK,CAAC,IAAIc,EAAEb,EAAEa,EAAE,IAAIshF,GAAG,EAAEP,EAAE,EAAE/gF,EAAE,IAAIwgF,GAAG,EAAEO,EAAE,EAAE,IAAI9gF,EAAE,KAAK,gBAAgBD,EAAE,CAAC,CAAC,OAAO,EAAE,MAAM,EAAE,MAAMd,CAAC,CAAC,EAAEA,CAAC,EAAEiC,EAAE,KAAK,UAAUlB,EAAE5C,CAAC,EAAE,OAAO,KAAK,8BAA8B4C,CAAC,EAAEkB,CAAC,CAAC,GAAG/B,GAAG,KAAK,MAAM5B,GAAG,KAAK,IAAI,MAAM,gCAAgC,EAAE,IAAI,MAAM,iCAAiC,EAAE,IAAIqC,EAAE,KAAK,OAAO,EAAExC,EAAE,cAAc,EAAEyC,EAAErR,GAAG,EAAE,yBAAyBoR,CAAC,EAAEE,EAAE,KAAK,QAAQ,IAAIF,EAAE,MAAM,EAAE,OAAO,OAAO,OAAO,CAAC,UAAUC,CAAC,EAAEC,EAAE,OAAO,CAAC,CAAC,WAAW,EAAE,CAAC,IAAI1C,EAAE,KAAK,SAAS,EAAE,MAAM,EAAE,GAAG,EAAE,QAAQ,SAAS,GAAG,CAAC,IAAIE,EAAEF,EAAE,IAAIG,GAAG9B,EAAE,aAAa8B,CAAC,CAAC,EAAE,OAAO7R,GAAG,EAAE,MAAM,EAAE,MAAM4R,CAAC,CAAC,OAAOA,EAAE,CAAC,MAAM,IAAI,MAAM,kDAAkD,CAAC,CAAC,OAAO5R,GAAG,EAAE,MAAM,EAAE,MAAM0R,CAAC,CAAC,CAAC,uBAAuB,EAAE,CAAC,GAAG,GAAG,KAAK,QAAQA,EAAE,EAAEA,EAAE,EAAE,OAAOA,IAAI,CAAC,IAAIE,EAAE,EAAEF,CAAC,EAAE,GAAG,CAAC61E,GAAG31E,CAAC,EAAE,MAAM5O,EAAE,EAAE,QAAQ,8BAA8B,EAAE,MAAM,aAAa4O,CAAC,+IAA+I,EAAE,MAAM,aAAaA,CAAC,wCAAwC,CAAC,CAAC,CAAC,qBAAqB,EAAE,CAAC,GAAG,CAAC,MAAMF,EAAE,MAAME,EAAE,SAASC,CAAC,EAAE,KAAK,QAAQ,IAAI,CAAC,EAAE,EAAE9B,EAAE,cAAc2B,CAAC,EAAE,GAAG1O,EAAE,EAAE,QAAQ,8BAA8B,EAAE,CAAC,IAAIoR,EAAE,KAAK,OAAO,CAAC,EAAEC,EAAE,KAAK,QAAQ,IAAID,EAAE,MAAM,EAAEE,EAAE,KAAK,MAAM,gCAAgCD,EAAE,QAAQ,QAAQ,GAAGg2E,GAAG34E,CAAC,CAAC,EAAE,SAAS,EAAE,CAAC,EAAE,OAAO,KAAK,8BAA8B0C,CAAC,EAAEE,CAAC,CAAC,IAAI,EAAEtR,EAAE,EAAE,QAAQ,YAAY,GAAG6O,IAAI,GAAG0B,EAAE,EAAEg1E,GAAG72E,CAAC,EAAEA,EAAE8B,EAAE,EAAE,IAAI47E,GAAG77E,CAAC,EAAE,IAAI47E,GAAG57E,CAAC,EAAEE,EAAE,KAAK,gBAAgBD,EAAE,CAAC,CAAC,MAAMD,EAAE,MAAM3B,EAAE,OAAO,CAAC,CAAC,EAAE,SAAS,EAAEsC,EAAE,KAAK,QAAQ,IAAIT,EAAE,MAAM,EAAEU,EAAE,KAAK,MAAM,gDAAgDD,EAAE,QAAQ,QAAQA,EAAE,SAAS,CAAC,EAAEA,EAAE,SAAS,CAAC,CAAC,EAAE,SAAS,EAAE,CAAC,EAAE,OAAO,KAAK,8BAA8BT,CAAC,EAAEU,CAAC,CAAC,gBAAgB,CAAC,OAAOnR,EAAE,EAAE,UAAU,+CAA+C,EAAE,CAAC,CAAC,KAAK,EAAE,CAAC,IAAI0O,EAAE,KAAK,aAAaE,EAAE,CAAC,EAAEC,EAAE,GAAG,KAAK,oBAAoB,MAAM,KAAK,mBAAmBD,EAAEC,EAAE,IAAI,KAAK,aAAa,KAAKD,CAAC,EAAE,KAAK,aAAaA,EAAE,EAAE,EAAE,IAAI,EAAE7B,EAAE,QAAQ,KAAK,aAAa,IAAIyD,GAAGA,EAAE,KAAK,CAAC,EAAE,OAAOA,GAAGA,GAAG,IAAI,EAAE,EAAEzD,EAAE,QAAQ,KAAK,aAAa,IAAIyD,GAAGA,EAAE,IAAI,CAAC,EAAE,OAAOA,GAAGA,GAAG,IAAI,EAAE,KAAK,aAAa9B,EAAEG,IAAI,KAAK,mBAAmB,MAAM,IAAI0B,EAAE,CAAC,aAAa,KAAK,aAAa,eAAe,KAAK,eAAe,SAAS,KAAK,OAAO,IAAI,EAAE,OAAO,SAAS,CAAC,GAAGvQ,EAAE,EAAE,UAAU,+CAA+C,EAAE,EAAE,CAAC,IAAIwQ,EAAE,MAAM,QAAQ,IAAI,CAAC,EAAED,EAAE,SAASxD,EAAE,IAAIyD,CAAC,EAAED,EAAE,oBAAoB,IAAIC,EAAE,IAAI,CAACC,EAAES,KAAK,CAAC,KAAK,EAAEA,CAAC,EAAE,GAAGT,CAAC,EAAE,EAAE,IAAIA,GAAG,GAAGA,EAAE,IAAI,KAAKA,EAAE,EAAE,EAAE,EAAE,KAAK,IAAI,CAAC,MAAMF,EAAE,SAAS,CAAC,MAAM,2DAA2D,EAAE,OAAO,KAAK,aAAa,EAAE,KAAK,eAAe,EAAEA,CAAC,GAAG,CAAC,CAAC,QAAQ,CAAC,MAAM,CAAC,WAAW,GAAG,cAAc,KAAK,cAAc,uBAAuB,KAAK,eAAe,kBAAkB,kBAAkB,KAAK,eAAe,YAAY,CAAC,CAAC,YAAY,CAAC,OAAOvQ,EAAE,EAAE,UAAU,+CAA+C,EAAE,EAAE,KAAK,MAAM,WAAW,EAAE,CAAC,QAAQ+M,EAAE,IAAI,EAAE,MAAM,IAAI,CAAC,CAAC,SAAS,EAAE,CAAC,OAAO/M,EAAE,EAAE,UAAU,+CAA+C,EAAE,GAAG,KAAK,MAAM,SAAS,EAAE,IAAI,EAAE,MAAM+M,EAAE,IAAI,EAAE,EAAE,CAAC,MAAM,aAAa,EAAE,CAAC,GAAG/M,EAAE,EAAE,UAAU,+CAA+C,EAAE,EAAE,OAAO,KAAK,MAAM,uBAAuB,CAAC,EAAE,IAAI0O,EAAE,EAAE,OAAOA,EAAE,MAAMA,EAAE,OAAO,CAAC,YAAY,EAAEA,EAAE,GAAG,CAAC,GAAG,KAAK,gBAAgB,IAAI,CAAC,EAAE,MAAM,GAAG,GAAG,CAAC,KAAK,QAAQ,IAAI,CAAC,EAAE,MAAM,GAAG,GAAGA,EAAE,KAAK,QAAQ,IAAI,CAAC,EAAE,SAAS,EAAE,KAAK,QAAQ,IAAI,CAAC,EAAE,WAAW,CAACA,GAAG,KAAK,QAAQ,IAAI,CAAC,EAAE,SAAS,EAAE,MAAM,GAAG,GAAG,KAAK,YAAY,IAAI,CAAC,EAAE,OAAO,KAAK,gBAAgB,IAAI,CAAC,EAAE,KAAK,iBAAiB,GAAG,KAAK,eAAe,CAAC,EAAE,GAAG,CAAC,mBAAmBE,CAAC,EAAE,KAAK,QAAQ,IAAI,CAAC,EAAE,OAAOA,GAAG,OAAO,KAAK,YAAYA,EAAE,KAAK,OAAOF,CAAC,EAAE,KAAK,YAAYE,EAAE,KAAK,OAAOF,CAAC,GAAG,KAAK,QAAQ,OAAO,CAAC,EAAE,EAAE,CAAC,eAAe,EAAE,CAAC,GAAG,CAAC,QAAQA,EAAE,MAAME,EAAE,SAASC,EAAE,MAAM,EAAE,SAAS,EAAE,MAAM0B,CAAC,EAAE,KAAK,QAAQ,IAAI,CAAC,EAAEC,EAAED,GAAGA,EAAE,YAAY,EAAEE,EAAE,KAAK,aAAa,IAAID,CAAC,EAAEC,EAAE,EAAE,KAAK,aAAa,IAAID,EAAEC,EAAE,CAAC,GAAG,KAAK,aAAa,OAAOD,CAAC,EAAE9B,GAAG,OAAO,KAAK,eAAe,KAAK,aAAaG,EAAED,CAAC,EAAE,KAAK,eAAe,eAAeF,EAAEG,EAAE,EAAE,CAAC,IAAI,IAAIqC,EAAE,KAAK,QAAQ,IAAI,CAAC,EAAEA,EAAE,QAAQ,KAAKA,EAAE,SAAS,KAAKA,EAAE,SAAS,GAAGA,EAAE,MAAM,IAAI,CAAC,WAAW,EAAE,CAAC,OAAO,KAAK,YAAY,CAAC,EAAE,KAAK,QAAQ,IAAI,CAAC,EAAE,QAAQ,OAAO,CAAC,YAAY,EAAE,CAAC,OAAO,KAAK,QAAQ,IAAI,CAAC,CAAC,CAAC,mBAAmB,EAAExC,EAAEwkF,IAAI,CAAC,OAAOlzF,EAAE,EAAE,QAAQ,mBAAmB,GAAG,EAAE,MAAM4O,GAAG,KAAK,QAAQ,IAAIA,EAAE,MAAM,EAAE,SAAS,MAAM7B,EAAE,cAAc6B,EAAE,KAAK,EAAEF,CAAC,CAAC,CAAC,iBAAiB,CAAC,OAAO,KAAK,KAAK,CAAC,MAAM,EAAE,CAACxS,EAAE,KAAK,uEAAuE,EAAE,IAAIwS,EAAE,EAAE,SAAS,EAAE,OAAOmkF,IAAI,EAAE,MAAMnkF,CAAC,CAAC,CAAC,cAAc,EAAEA,EAAEE,EAAE,CAAC,IAAIC,EAAE,IAAI8jF,GAAG,EAAE,MAAMjkF,CAAC,EAAE,EAAE,KAAK,cAAcG,EAAE,CAAC,CAAC,EAAED,CAAC,EAAE,OAAO9O,GAAG,EAAE,yBAAyB,CAAC,CAAC,CAAC,IAAI,EAAE,CAAC,GAAG,KAAK,mBAAmB,CAAC,CAAC,CAAC,GAAG,EAAE,QAAQ,YAAY,CAAC,IAAI+O,EAAEmhF,GAAG,KAAK,QAAQ,IAAI,EAAE,MAAM,EAAE,MAAM,EAAE,OAAO,KAAK,WAAW,EAAE,MAAM,EAAE,MAAMnhF,CAAC,CAAC,CAAC,GAAG7O,EAAE,EAAE,QAAQ,6BAA6B,EAAE,OAAO,KAAK,cAAc,EAAEgyF,GAAG,EAAE,KAAK,EAAE,IAAItjF,EAAE,IAAImjF,GAAG,EAAE,MAAMG,EAAE,EAAEpjF,EAAE,KAAK,cAAcF,EAAE,CAAC,CAAC,CAAC,EAAE,OAAO5O,GAAG,EAAE,yBAAyB8O,CAAC,CAAC,CAAC,eAAe,EAAEF,EAAEE,EAAE,CAAC,IAAIC,EAAE,GAAGH,IAAI,UAAUE,GAAG,MAAMA,EAAE,OAAO,GAAG7B,EAAE,SAAS6B,EAAE,CAAC,CAAC,EAAE,CAAC,IAAI,EAAEA,EAAE,IAAI,GAAG7B,EAAE,aAAa,CAAC,CAAC,EAAE8B,EAAE,KAAK,MAAM,EAAE,EAAEH,CAAC,CAAC,MAAMG,EAAE,KAAK,MAAMD,EAAE,EAAEF,CAAC,EAAE,OAAO,KAAK,QAAQ,IAAIG,CAAC,EAAE,MAAM,KAAK,CAAC,OAAOA,EAAE,MAAM,EAAE,MAAMH,CAAC,CAAC,CAAC,WAAW,EAAEA,EAAEE,EAAE,CAAC,OAAO9O,GAAG,EAAE,yBAAyB,KAAK,eAAe,EAAE4O,EAAEE,CAAC,EAAE,IAAI,CAAC,CAAC,aAAa,EAAE,CAAC,IAAIF,EAAE,IAAIkkF,IAAG,EAAE,KAAK,EAAE,OAAO,KAAK,gBAAgBlkF,EAAE,CAAC,CAAC,EAAE,EAAE,KAAK,CAAC,CAAC,WAAW,EAAE,CAAC,IAAIA,EAAE,IAAIyiF,GAAG,EAAE,KAAK,EAAE,OAAO,KAAK,gBAAgBziF,EAAE,CAAC,CAAC,EAAE,EAAE,MAAM,KAAK,EAAE,CAAC,CAAC,cAAc,EAAEA,EAAE,CAAC,IAAIE,EAAE,CAACm2E,GAAG,EAAE,KAAK,EAAE,GAAGO,GAAG,EAAE,KAAK,CAAC,EAAEz2E,EAAE,CAAC,MAAM,EAAE,MAAM,MAAMD,EAAE,OAAO,EAAE,MAAM,EAAE,EAAE,CAACm2E,GAAGr2E,CAAC,EAAE,GAAG42E,GAAG52E,CAAC,CAAC,EAAE,EAAE,IAAI0iF,GAAG,EAAExiF,CAAC,EAAE2B,EAAE,GAAGC,EAAE,CAAC5B,CAAC,EAAE6B,EAAE,KAAK,gBAAgB,EAAE,CAAC5B,CAAC,EAAE,EAAE,MAAM2B,EAAED,CAAC,EAAE,MAAM,CAAC,OAAOE,EAAE,OAAO,MAAM/B,EAAE,MAAM+B,EAAE,KAAK,CAAC,CAAC,OAAO,EAAE/B,EAAE,CAAC,IAAIE,EAAE,KAAK,QAAQ,IAAI,CAAC,EAAE,CAAC,SAASC,EAAE,MAAM,EAAE,MAAM,CAAC,EAAED,EAAE,GAAGF,GAAG,KAAK,CAAC,IAAI0C,EAAErE,EAAE,cAAc,CAAC,EAAEsE,EAAE3C,EAAE,CAAC,EAAEA,EAAE,CAAC,EAAE,EAAE3B,EAAE,OAAOqE,GAAGC,EAAE,IAAI,2GAA2G,CAAC,CAAC,IAAId,EAAEg1E,GAAG,CAAC,EAAE/0E,EAAE3B,EAAE2B,EAAE,IAAI07E,GAAG37E,CAAC,EAAEC,EAAE,IAAIy7E,GAAG17E,CAAC,EAAE,IAAIE,EAAE,GAAGS,EAAE,CAACxC,GAAG,KAAKA,EAAE24E,GAAG92E,CAAC,CAAC,EAAEY,EAAE,KAAK,gBAAgBX,EAAE,CAAC,CAAC,MAAMD,EAAE,MAAM,EAAE,OAAO,CAAC,CAAC,EAAE,EAAEW,EAAET,EAAE/B,CAAC,EAAE,MAAM,CAAC,MAAM,EAAE,MAAM,EAAE,OAAOyC,EAAE,MAAM,CAAC,CAAC,gBAAgB,EAAEzC,EAAEE,EAAEC,EAAE,EAAE,GAAG,EAAE,CAAC,IAAI0B,EAAE,KAAK,eAAe,EAAE,YAAY3B,CAAC,EAAE4B,EAAE,KAAK,QAAQ,IAAID,EAAE,MAAM,EAAE,GAAG,EAAE,eAAeC,EAAE,SAAS,IAAI,EAAE,mBAAmBw2E,GAAG,MAAM,CAAC,IAAIlxE,EAAE,GAAG,KAAK,EAAEuxE,GAAG,EAAE,WAAW,EAAE72E,EAAE,SAASsF,EAAE,IAAIxC,GAAGA,EAAE,CAAC,CAAC,CAAC,GAAG,EAAE,aAAa,OAAO9C,EAAE,MAAM,EAAE,aAAazD,EAAE,cAAcwD,EAAE,KAAK,IAAI,EAAE,OAAOC,EAAE,OAAOzD,EAAE,uBAAuBwD,EAAE,MAAM,CAAC,EAAEA,EAAE,IAAIE,EAAE,CAAC,EAAES,EAAExC,EAAE,IAAIoH,GAAG,CAAC,GAAGA,EAAE,QAAQ,YAAY,MAAM,IAAI,MAAM,iIAAiI,EAAE,IAAIxC,EAAE,KAAK,QAAQ,IAAIwC,EAAE,MAAM,EAAE,GAAGxC,EAAE,SAAS,KAAK,CAAC,GAAG,CAAC,EAAE,cAAcvG,EAAE,cAAc+I,EAAE,KAAK,GAAG9V,EAAE,EAAE,UAAU,2BAA2B,EAAE,MAAM,CAAC,MAAM8V,EAAE,MAAM,QAAQ,KAAK,UAAU,GAAG,cAAcxC,EAAE,MAAM,EAAE,EAAE,eAAeA,EAAE,SAAS,GAAGA,EAAE,MAAMwC,EAAE,MAAM,CAAC,GAAG,KAAK,YAAYA,EAAE,MAAM,EAAE,CAAC,CAACxC,EAAE,UAAU,CAAC,CAAC,EAAE,aAAawC,EAAExC,EAAE,SAAS,KAAK,aAAawC,CAAC,EAAE,KAAK,WAAWA,CAAC,EAAErF,EAAE,KAAKqF,CAAC,EAAExC,EAAE,KAAK,QAAQ,IAAIwC,EAAE,MAAM,UAAUxC,EAAE,UAAU,CAACyyE,GAAGzyE,EAAE,MAAMwC,EAAE,KAAK,EAAE,CAAC,IAAI7C,EAAE6C,EAAE5C,EAAE4C,EAAE,MAAMA,EAAE,MAAMxC,EAAE,MAAMwC,EAAE,KAAK,cAAcA,EAAE5C,CAAC,EAAEzC,EAAE,KAAKqF,CAAC,EAAExC,EAAE,KAAK,QAAQ,IAAIwC,EAAE,MAAM,EAAE7C,EAAE,MAAMC,CAAC,CAAC,MAAM,CAAC,MAAM4C,EAAE,MAAM,QAAQxC,EAAE,UAAU,EAAE,CAAC,CAAC,EAAE,KAAK,YAAY/C,EAAE,MAAM,EAAE,IAAIY,EAAE,CAAC,MAAMZ,EAAE,MAAM,QAAQC,EAAE,UAAU,EAAE,EAAEY,EAAE26E,GAAG,EAAE76E,EAAEC,CAAC,EAAEE,EAAE,KAAK,iBAAiBD,EAAE,IAAIu6E,GAAG,KAAK,MAAM,EAAEz6E,EAAEC,CAAC,CAAC,EAAEG,EAAE,KAAK,cAAc,KAAKkB,EAAElB,IAAIkB,EAAE,KAAK,WAAW,GAAGxS,EAAE,EAAE,IAAI,qBAAqB,GAAG8rF,GAAG,KAAK,MAAMz6E,EAAEH,EAAEC,EAAEtC,CAAC,EAAE4B,EAAE,QAAQqF,GAAG,KAAK,8BAA8BA,CAAC,CAAC,EAAExE,IAAIkB,EAAE,KAAK,SAASA,CAAC,EAAE,KAAK,aAAa,KAAK,CAAC,KAAK,EAAE,YAAY,KAAK,MAAM,KAAK,aAAaA,CAAC,CAAC,CAAC,GAAG,IAAI,EAAExS,EAAE,EAAE,UAAU,uBAAuB,EAAE,GAAG,EAAE,EAAE,CAAC,IAAI8V,EAAE/I,EAAE,IAAI,EAAE+I,EAAE,KAAK,gBAAgB,IAAI,KAAK,MAAM,GAAG,MAAM,EAAE,KAAK,gBAAgBA,EAAE,CAAC,GAAG,CAAC9V,EAAE,EAAE,QAAQ,qBAAqB,GAAGwQ,EAAE,UAAU,IAAI,GAAG,CAAC,IAAIsF,EAAE,KAAK,aAAavF,CAAC,EAAE,OAAO,KAAK,8BAA8BA,CAAC,EAAEuF,CAAC,CAAC,OAAOvF,CAAC,CAAC,cAAc,EAAE7B,EAAEE,EAAEC,EAAE,EAAE,GAAG,CAAC,OAAOD,EAAEA,GAAGF,EAAE,CAAC,EAAE,MAAM,KAAK,gBAAgB,EAAEA,EAAEE,EAAEC,EAAE,CAAC,CAAC,CAAC,iBAAiB,EAAEH,EAAE,CAAC,OAAO,KAAK,KAAK,cAAc,KAAK,YAAY,CAAC,EAAEA,EAAE,GAAG,KAAK,YAAY,CAAC,CAAC,CAAC,mBAAmB,CAAC,OAAO,KAAK,cAAc,CAAC,SAAS,CAAC,KAAK,WAAW1O,EAAE,EAAE,QAAQ,SAAS,GAAG,OAAO,KAAK,KAAK,WAAW,EAAE,QAAQ0O,GAAG,CAAC,KAAK,MAAM,cAAc,KAAK,YAAYA,CAAC,EAAE,YAAY,EAAE,OAAO,KAAK,YAAYA,CAAC,CAAC,CAAC,EAAE,KAAK,eAAe,QAAQ,EAAE,KAAK,QAAQ,MAAM,OAAO,mBAAmB,aAAa,KAAK,kBAAkB,kBAAkB,KAAK,OAAO,OAAO,EAAE,KAAK,OAAO,KAAK,KAAK,sBAAsB,KAAK,MAAM,QAAQ,KAAK,KAAK,MAAM,QAAQ,GAAG,KAAK,SAAS,GAAG,CAAC,gBAAgB,CAAC,OAAO,KAAK,qBAAqB,OAAO,KAAK,oBAAoBzC,EAAE,IAAI,CAAC,GAAG,CAACjM,EAAE,EAAE,IAAI,8BAA8B,EAAE,CAAC,IAAI,EAAEA,EAAE,EAAE,QAAQ,OAAO,EAAEA,EAAE,EAAE,IAAI,QAAQ,EAAE,EAAE,IAAI0O,EAAE,KAAK,IAAIlG,GAAG,IAAI,CAAC,EAAE,SAAS,EAAE,CAAC,EAAE,GAAGxI,EAAE,EAAE,IAAI,QAAQ,CAAC,EAAE0O,EAAE,EAAE,MAAO,GAAE,CAAC,MAAO,GAAE,CAAC,GAAG,KAAK,mBAAmB,CAAC,SAAS,CAAC,OAAO,KAAK,eAAe,IAAI,GAAGokF,IAAIC,GAAG,CAAC,YAAY,EAAE,CAAC,IAAIrkF,EAAE,KAAK,QAAQ,IAAI,CAAC,EAAE,CAAC,MAAME,EAAE,MAAMC,EAAE,OAAO,EAAE,QAAQ,EAAE,MAAM0B,EAAE,SAASC,CAAC,EAAE9B,EAAE,GAAG,GAAG,KAAK,OAAO,IAAI+B,EAAE,KAAK,cAAc,KAAKS,EAAET,IAAIS,EAAEnE,EAAE,IAAI,GAAG,IAAIoE,EAAEzC,EAAE,SAAS,GAAGyC,GAAG,OAAOA,EAAEq0E,GAAG52E,EAAE4B,CAAC,EAAE9B,EAAE,SAASyC,GAAG,GAAG,KAAK,CAAC,IAAIC,EAAEm0E,GAAG32E,CAAC,EAAEyC,EAAEC,EAAEH,EAAE,CAAC,EAAEqB,EAAErB,EAAE,CAAC,EAAE,EAAE,aAAa,YAAY,aAAa,mBAAmBX,GAAG,CAAC,KAAK,CAACc,EAAEkB,CAAC,EAAE80E,GAAGn2E,EAAE,CAAC,EAAEA,EAAE,CAAC,CAAC,GAAGX,EAAEa,EAAE,IAAIk7E,GAAGn7E,EAAE,CAAC,EAAEC,EAAE,IAAIi7E,GAAGl7E,EAAE,CAAC,EAAE,IAAI0E,EAAE,EAAE,CAACtD,EAAElB,CAAC,EAAEH,EAAEmC,EAAE,KAAK,eAAewC,EAAEjH,CAAC,EAAEoE,EAAE,KAAK,QAAQ,IAAIK,EAAE,MAAM,EAAE,EAAEL,EAAE,MAAMg0E,GAAG,OAAOh0E,EAAE,MAAMg0E,GAAG,OAAOh0E,EAAE,SAAS6C,EAAE,KAAK,MAAM,2BAA2B,KAAK,WAAWxC,EAAE,MAAM,EAAEhC,EAAEkB,EAAE,CAAC,EAAE,IAAIU,EAAE,CAAC,CAACV,EAAElB,CAAC,CAAC,EAAE8B,EAAE,KAAK,gBAAgB/B,EAAE,CAACiC,CAAC,EAAEzE,EAAEqE,EAAE,EAAE,EAAEG,EAAE,KAAK,QAAQ,IAAID,EAAE,MAAM,EAAE1E,EAAE,SAAS2E,EAAE,SAAS3E,EAAE,SAAS2E,EAAE,SAAS3E,EAAE,MAAM2E,EAAE,MAAMrT,EAAE,EAAE,IAAI,qBAAqB,EAAE,KAAK,YAAYoT,EAAE,MAAM,GAAG1E,EAAE,QAAQ2E,EAAE,QAAQ3E,EAAE,OAAO,KAAK,KAAK,QAAQ,OAAO0E,EAAE,MAAM,GAAG,KAAK,8BAA8BE,CAAC,EAAE7C,IAAI,KAAK,cAAc1D,EAAE,IAAI,EAAEmE,EAAE,KAAK,CAAC,IAAIE,EAAE,KAAK,eAAeD,EAAEZ,EAAE1B,EAAE2B,CAAC,EAAE9B,EAAE,QAAQ0C,CAAC,CAAC,CAAC,qBAAqB,EAAE1C,EAAE,CAAC,IAAIE,EAAE,KAAK,QAAQ,IAAI,CAAC,EAAE,CAAC,MAAMC,CAAC,EAAED,EAAE,OAAOF,GAAG,OAAOE,EAAE,OAAOykF,IAAI3kF,EAAEG,CAAC,GAAGD,EAAE,MAAM,CAAC,eAAe,EAAEF,EAAEE,EAAEC,EAAE,CAAC,GAAG,KAAK,eAAe,KAAK,aAAa,EAAED,CAAC,EAAE,CAAC,KAAK,mBAAmB,KAAK,cAAc,KAAK,mBAAmB,KAAK,KAAK,CAAC,IAAI,GAAG,KAAK,cAAc,KAAK,MAAM,QAAQ,CAAC,EAAE,KAAK,kBAAkB,GAAG,QAAQ,KAAK,6BAA6B,CAAC,uCAAuC,CAAC,CAAC,OAAO,KAAK,eAAe,eAAe,EAAEF,EAAEG,CAAC,CAAC,CAAC,aAAa,EAAEH,EAAE,CAAC,OAAO,EAAE,CAAC,EAAE,EAAE,CAAC,EAAE3B,EAAE,gBAAgB2B,CAAC,CAAC,CAAC,wBAAwB,CAAC,OAAO,CAAC,CAAC,CAAC,IAAI,OAAO,QAAQ,KAAK,WAAW,EAAE,KAAK,iBAAiB,CAAC,CAAC,CAAC,MAAM,6BAA6B,CAAC,IAAI,EAAE,CAAC,EAAE,GAAG,KAAK,MAAM,6BAA6B,CAAC,OAAO,CAAC,CAACA,CAAC,IAAI,OAAO,QAAQ,KAAK,WAAW,EAAE,EAAE,KAAK,KAAK,sBAAsBA,CAAC,CAAC,EAAE,OAAO,QAAQ,IAAI,CAAC,CAAC,KAAK,CAAC,OAAO,CAAC,CAACA,CAAC,IAAI,OAAO,QAAQ,KAAK,WAAW,EAAE,CAAC,IAAIE,EAAE,IAAI,QAAQC,GAAG,CAAC,GAAG,CAAC,KAAK,iBAAiBH,CAAC,EAAEG,EAAE,EAAE,CAAC,OAAO,EAAE,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,EAAE,KAAKD,CAAC,CAAC,CAAC,OAAO,QAAQ,IAAI,CAAC,CAAC,CAAC,CAAC,MAAM,sBAAsB,EAAE,CAAC,OAAO,KAAK,MAAM,GAAG,oBAAoB,EAAE,aAAa,KAAK,MAAM,6BAA6B,qBAAqB,EAAE,KAAK,iBAAiB,CAAC,GAAG,MAAMtJ,GAAG,EAAE,KAAK,sBAAsB,CAAC,EAAE,CAAC,iBAAiB,EAAE,CAAC,GAAG,KAAK,MAAM,GAAG,oBAAoB,EAAE,aAAa,KAAK,MAAM,GAAG,WAAW,IAAI,GAAG,MAAM,QAAQ,IAAI,KAAK,MAAM,GAAG,kBAAkB,EAAE,YAAY,CAAC,EAAE,KAAK,MAAM,GAAG,mBAAmB,EAAE,eAAe,KAAK,MAAM,GAAG,cAAc,IAAI,IAAI6gF,GAAG,EAAE,OAAO,KAAK,MAAM,GAAG,iBAAiB,EAAE,cAAc,CAAC,EAAE,IAAI,MAAM,oCAAoC,GAAG,IAAI,MAAM,6CAA6C,EAAE,MAAM,EAAE,CAAC,qBAAqB,CAAC,QAAQ,KAAK,OAAO,OAAO,KAAK,WAAW,EAAE,CAAC,KAAK,MAAM,SAAS,EAAE,YAAY,EAAE,GAAG,CAAC,mBAAmBz3E,EAAE,uBAAuBE,EAAE,OAAOC,EAAE,OAAO,EAAE,iBAAiB,EAAE,wBAAwB0B,EAAE,oBAAoBC,CAAC,EAAEo7E,GAAG,KAAK,MAAM,EAAE,QAAQ,EAAE,YAAY,EAAE,EAAE,mBAAmBl9E,EAAE,EAAE,uBAAuBE,EAAE,EAAE,OAAOC,EAAE,EAAE,OAAO,EAAE,EAAE,iBAAiB,EAAE,EAAE,wBAAwB0B,EAAE,EAAE,oBAAoBC,CAAC,CAAC,CAAC,wBAAwB,EAAE9B,EAAEE,EAAE,CAAC,EAAE,SAAS,EAAE,UAAU,OAAO,GAAG,CAAC,QAAQC,EAAE,OAAO,EAAE,MAAM,EAAE,SAAS0B,CAAC,EAAE,EAAEC,EAAE1Q,GAAG,EAAE,QAAQ,GAAG,CAAC0Q,EAAE,MAAM,GAAG,UAAU3B,CAAC,EAAE,MAAM,IAAI,MAAM,+RAA+R,EAAE,IAAI4B,EAAED,EAAE,aAAa3B,EAAEH,EAAEE,EAAE,EAAE,EAAE2B,CAAC,EAAE,OAAOzQ,GAAG,EAAE,qBAAqB2Q,EAAE/B,EAAEE,EAAE4B,CAAC,CAAC,CAAC,EAAE9b,GAAG,WAAW,EAAE,SAAS2+F,IAAI7kF,EAAE,EAAE,CAAC,GAAG,IAAI,WAAW,IAAI,YAAY,OAAOA,EAAE,GAAG,IAAI,SAAS,IAAI,OAAO,CAAC,IAAIE,EAAE,IAAI,QAAQ,IAAI,WAAWF,EAAE,MAAM,EAAE,IAAI,WAAWA,EAAE,MAAM,EAAE,QAAQI,EAAE,EAAEA,EAAEF,EAAE,OAAO,EAAEE,EAAEF,EAAEE,CAAC,EAAE,KAAK,MAAMJ,EAAEI,CAAC,CAAC,EAAE,OAAOF,CAAC,KAAM,OAAM,IAAI,MAAM,iBAAiB,CAAC,EAAE,CAAC,CAAC,IAAIhB,IAAG,SAAS,SAAS5M,IAAI,CAACd,EAAE,EAAE,IAAI,2BAA2B,EAAE,CAAC,CAACjB,GAAG,UAAU,GAAGuI,GAAG,QAAQ,IAAI,IAAI5S,GAAG,CAAC,EAAE,IAAIiZ,IAAI,CAAC,eAAe7M,EAAE,EAAMwyF,GAAG;AAAA;AAAA;AAAA,EAG7viBC,GAAG,KAAK,CAAC,YAAYnkF,EAAEV,EAAE,EAAE,CAAC,KAAK,cAAc,CAAC,IAAI,GAAG,EAAE,KAAK,YAAYxS,EAAE,2BAA2BwS,EAAE,CAAC,EAAE,KAAK,oBAAoBs9E,GAAG,KAAK,YAAY,MAAM,EAAE,KAAK,SAAS;AAAA;AAAA,UAE3K58E,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,KAQN,CAAC,EAAMokF,GAAG;AAAA;AAAA;AAAA;AAAA;AAAA,EAKTC,GAAG,KAAK,CAAC,YAAYrkF,EAAEV,EAAE,EAAEG,EAAE,GAAG,CAAC,KAAK,cAAc,CAAC,IAAI,GAAG,EAAE,KAAK,qBAAqB,GAAG,KAAK,aAAa,GAAG,KAAK,aAAa,GAAG,KAAK,YAAY3S,EAAE,2BAA2BwS,EAAE,CAAC,EAAE,IAAI2B,EAAE,KAAK,YAAY,OAAO,KAAK,oBAAoB27E,GAAG37E,CAAC,EAAE,IAAIC,EAAE,GAAG,GAAGzB,EAAE,GAAGwB,IAAI,GAAGtD,EAAE,cAAc,KAAK,WAAW,IAAI,EAAEuD,EAAE;AAAA;AAAA;AAAA;AAAA,kBAIzSA,EAAE;AAAA,YACRo7E,GAAGr7E,CAAC,CAAC;AAAA,UACPA,IAAI,EAAE,KAAK,oBAAoBC,GAAG;AAAA;AAAA;AAAA;AAAA,YAIhCA,GAAG;AAAA,yCAC0B,KAAK,YAAY,CAAC,CAAC;AAAA;AAAA;AAAA,gBAG5C,CAAC,IAAIE,EAAEygF,GAAG,SAAS5gF,CAAC,EAAE,KAAK,oBAAoBC,GAAG;AAAA;AAAA,iBAEjDE,EAAEH,EAAE,CAAC,CAAC,qBAAqBA,CAAC;AAAA;AAAA,iBAE5BG,EAAEH,EAAE,CAAC,CAAC,qBAAqBA,CAAC;AAAA;AAAA;AAAA;AAAA,YAIjCC,GAAG;AAAA;AAAA,iBAEEE,EAAEH,EAAE,CAAC,CAAC,YAAY,KAAK,YAAYA,EAAE,CAAC,CAAC;AAAA;AAAA,iBAEvCG,EAAEH,EAAE,CAAC,CAAC,YAAY,KAAK,YAAYA,EAAE,CAAC,CAAC;AAAA;AAAA;AAAA;AAAA,WAI7C,CAAC,KAAK,SAAS;AAAA;AAAA,UAEhBjB,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,UAQDkB,CAAC;AAAA;AAAA;AAAA;AAAA,KAIN,CAAC,EAAE,SAASojF,GAAGllF,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,CAAC,EAAEF,EAAE,CAAC,EAAEI,CAAC,EAAE,EAAE,OAAOF,EAAE,OAAOE,EAAE,MAAM,EAAE,CAAC,OAAOA,EAAE,OAAO,MAAMA,EAAE,MAAM,MAAMA,EAAE,KAAK,CAAC,CAAC,IAAI+kF,IAAG,CAAC,WAAWzgG,GAAG,YAAY,QAAQ,WAAWwgG,EAAE,EAAE,SAASE,GAAGplF,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,CAAC,EAAEF,EAAE,CAAC,KAAKI,EAAE,KAAKC,CAAC,EAAE,EAAE,EAAEH,EAAE,eAAeE,EAAE,MAAM,WAAW,EAAE,EAAEF,EAAE,QAAQ,IAAI,EAAE,MAAM,EAAE6B,EAAEmjF,GAAG,CAAC,OAAO,CAAC,EAAE9kF,CAAC,EAAE,QAAQF,CAAC,CAAC,EAAE8B,EAAEkjF,GAAG,CAAC,OAAO,CAAC,EAAE7kF,CAAC,EAAE,QAAQH,CAAC,CAAC,EAAE,OAAO,EAAE,mBAAmB,CAAC,KAAK6B,EAAE,KAAKC,CAAC,EAAE,CAAC,CAAC,IAAIqjF,IAAG,CAAC,WAAWjkG,GAAG,YAAY,QAAQ,WAAWgkG,EAAE,EAAME,GAAG,+BAA+BC,GAAG;AAAA;AAAA;AAAA,EAGngB,SAASC,IAAIxlF,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,CAAC,EAAE,EAAE,CAAC,MAAM,CAAC,EAAED,EAAE,EAAEF,EAAE,eAAe,CAAC,EAAE,UAAU3B,EAAE,kBAAkB,EAAE,SAAS,CAAC,EAAEwD,EAAEvQ,EAAE,EAAE,QAAQ,8BAA8B,EAAE,IAAIyzF,GAAGM,GAAGllF,EAAE,MAAM,EAAE,KAAK,EAAE,IAAI0kF,GAAGO,GAAGjlF,EAAE,MAAM,EAAE,KAAK,EAAE2B,EAAE9B,EAAE,gBAAgB6B,EAAE,CAAC1B,EAAE,CAAC,EAAE,SAAS,EAAE,OAAOH,EAAE,8BAA8B,CAAC,EAAE8B,CAAC,CAAC,IAAIyjF,IAAG,CAAC,WAAWpgG,GAAG,YAAY,QAAQ,WAAWmgG,GAAG,EAAME,GAAG,+BAA+BC,GAAG;AAAA;AAAA;AAAA,EAGla,SAASC,IAAI5lF,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,CAAC,EAAEF,EAAE,CAAC,EAAEI,EAAE,MAAMC,CAAC,EAAE,EAAE,EAAE7O,EAAE,EAAE,QAAQ,8BAA8B,EAAE,IAAIyzF,GAAGU,GAAGvlF,EAAE,MAAMC,EAAE,KAAK,EAAE,IAAI0kF,GAAGW,GAAGtlF,EAAE,MAAMC,EAAE,KAAK,EAAE,OAAOH,EAAE,gBAAgB,EAAE,CAACE,EAAEC,CAAC,EAAE,SAAS,CAAC,CAAC,IAAIwlF,IAAG,CAAC,WAAW59F,GAAG,YAAY,QAAQ,WAAW29F,GAAG,EAAME,GAAG,0BAA0B,SAASC,GAAG,CAAC,UAAU/lF,EAAE,gBAAgB,EAAE,cAAcE,EAAE,MAAME,CAAC,EAAE,CAAC,MAAM,CAAC,CAAC,OAAOC,EAAE,QAAQ,CAAC,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,EAAEA,EAAE0B,EAAE,EAAEC,EAAE5B,GAAG,EAAE,MAAM,GAAG2B,EAAE,mBAAmB,CAAC,CAAC,CAAC,GAAG7B,GAAG,KAAK,CAAC,IAAIyC,EAAEZ,EAAE,QAAQ,IAAI,EAAE,MAAM,EAAEa,EAAE1C,EAAEyC,EAAE,OAAOX,CAAC,EAAE,OAAOD,EAAE,eAAe,EAAE,MAAMC,EAAEY,CAAC,CAAC,CAAC,IAAIX,EAAEzQ,EAAE,EAAE,QAAQ,6BAA6B,GAAG,GAAG,KAAKkR,EAAE,OAAOT,EAAES,EAAE,IAAIyhF,GAAG,EAAE,MAAM,CAAC,EAAEzhF,EAAE,IAAI2gF,GAAG,EAAE,MAAMrjF,CAAC,EAAE+B,EAAE,gBAAgBW,EAAE,CAAC,CAAC,EAAEV,CAAC,CAAC,CAAC,CAAC,SAASgkF,GAAG,CAAC,UAAUhmF,EAAE,gBAAgB,EAAE,iBAAiBE,EAAE,GAAG,gBAAgBE,EAAE,GAAG,cAAcC,EAAE,MAAM,CAAC,EAAE,CAAC,MAAM,CAAC,CAAC,OAAO,EAAE,QAAQ0B,CAAC,IAAI,CAAC,GAAG,CAAC,EAAEC,EAAE,EAAEC,CAAC,EAAE,EAAES,EAAEX,EAAE,GAAG3B,GAAG4B,EAAE,QAAQ,YAAY,CAAC,IAAIc,EAAEJ,EAAE,QAAQ,IAAIV,EAAE,MAAM,EAAEgC,EAAEtB,EAAE,QAAQ,IAAIT,EAAE,MAAM,EAAE,CAAC,EAAEqF,CAAC,EAAE,CAAC,CAACxE,EAAE,mBAAmB,KAAKkB,EAAE,mBAAmB,IAAI,EAAE,CAAClB,EAAE,mBAAmB,KAAKkB,EAAE,mBAAmB,IAAI,CAAC,EAAE,IAAIS,GAAG,CAAC,GAAG,CAACC,EAAEC,CAAC,EAAEF,EAAEG,EAAE,CAAC,OAAOF,EAAE,OAAO,MAAMA,EAAE,MAAM,MAAM1C,EAAE,KAAK,EAAE6C,EAAE,CAAC,OAAOF,EAAE,OAAO,MAAMA,EAAE,MAAM,MAAM1C,EAAE,KAAK,EAAEsF,EAAE,IAAIw9E,GAAG/kF,EAAEgC,EAAE,MAAMC,EAAE,KAAK,EAAE,OAAOS,EAAE,gBAAgB6E,EAAE,CAAC3C,EAAEC,CAAC,EAAExG,GAAGqG,EAAE,MAAMC,EAAE,KAAK,CAAC,CAAC,CAAC,EAAEG,EAAEsgF,GAAG,CAAC,OAAO,CAAC,KAAK,EAAE,KAAK99E,CAAC,EAAE,QAAQ5E,CAAC,CAAC,EAAE,OAAOA,EAAE,8BAA8B,CAAC,EAAEA,EAAE,8BAA8B4E,CAAC,EAAExC,CAAC,CAAC,IAAInC,EAAE,GAAGtE,GAAG2D,EAAE,MAAMC,EAAE,KAAK,EAAE,IAAID,EAAE,QAAQ,UAAUC,EAAE,QAAQ,UAAUS,EAAE,mBAAmB,CAACV,EAAEC,CAAC,CAAC,IAAI5B,GAAG,KAAK,CAAC,IAAIyC,EAAEJ,EAAE,QAAQ,IAAIV,EAAE,MAAM,EAAE,OAAOgC,EAAEtB,EAAE,QAAQ,IAAIT,EAAE,MAAM,EAAE,OAAO,EAAED,EAAE,QAAQ,SAAStU,EAAE,uBAAuBoV,CAAC,EAAEA,EAAEwE,EAAEtF,EAAE,QAAQ,SAAStU,EAAE,uBAAuBsW,CAAC,EAAEA,EAAE,CAACc,EAAEL,CAAC,EAAEpE,EAAE2B,EAAE,MAAMC,EAAE,MAAM,EAAEqF,EAAE3E,CAAC,EAAE+B,EAAEhC,EAAE,eAAe+B,EAAE9B,CAAC,EAAEgC,EAAEjC,EAAE,QAAQ,IAAIgC,EAAE,MAAM,EAAE,OAAOC,EAAE,OAAOG,EAAEJ,CAAC,CAAC,IAAI9B,EAAEpR,EAAE,EAAE,QAAQ,8BAA8B,GAAG,GAAG,KAAKqR,EAAE,OAAOD,EAAEC,EAAE,IAAIoiF,GAAG,EAAEjjF,EAAE,MAAMC,EAAE,MAAM/B,CAAC,EAAE2C,EAAE,IAAIkiF,GAAG/kF,EAAEgC,EAAE,MAAMC,EAAE,KAAK,EAAES,EAAE,gBAAgBG,EAAE,CAACb,EAAEC,CAAC,EAAEU,CAAC,CAAC,CAAC,CAAC,SAASsjF,GAAGjmF,EAAE,EAAE,GAAG,CAAC,GAAGA,IAAI,SAAS,OAAO,EAAE8jF,IAAGP,GAAG,GAAGvjF,IAAI,OAAO,OAAO,EAAEgkF,IAAGN,GAAG,GAAG1jF,IAAI,MAAM,OAAO,EAAE+jF,IAAGN,GAAG,GAAGzjF,IAAI,QAAQ,OAAO,EAAEikF,IAAGN,GAAG,GAAG3jF,IAAI,QAAQ,OAAO,EAAE2lF,GAAGD,GAAG,GAAG1lF,IAAI,YAAY,OAAO,EAAEulF,GAAGD,GAAG,GAAGtlF,IAAI,UAAU,OAAO,EAAEkkF,IAAGL,GAAG,MAAM,IAAI,MAAM,cAAc7jF,CAAC,kDAAkD,CAAC,CAAC,IAAIkmF,GAAG,KAAK,CAAC,YAAYtlF,EAAEV,EAAE,EAAEG,EAAE,GAAGwB,EAAE,GAAGC,EAAE,GAAGC,EAAE,KAAKC,EAAE,GAAG,EAAE,GAAG,CAAC,KAAK,cAAc,CAAC,UAAU,SAAS,EAAE,KAAK,aAAa,GAAG,KAAK,aAAa,GAAG,KAAK,YAAY,EAAE,KAAK,oBAAoBw7E,GAAG,KAAK,YAAY,MAAM,EAAE,IAAI96E,EAAErC,EAAEO,EAAE,CAAC,EAAEA,EAAE,CAAC,EAAE,EAAE,KAAK,KAAK8B,EAAE,CAAC,EAAEE,EAAEvC,EAAE,cAAc,cAAcwC,EAAEhB,EAAE,cAAc,cAAciB,EAAEzC,EAAE,CAAC,SAAS,QAAQ,EAAE,CAAC,SAAS,QAAQ,EAAE2D,EAAEnC,EAAE,CAAC,SAAS,QAAQ,EAAE,CAAC,SAAS,QAAQ,EAAEoC,EAAE,GAAGqD,EAAE,GAAGvF,IAAIC,EAAEiC,EAAE;AAAA;AAAA,YAE5kFlC,CAAC;AAAA,WACF,EAAEkC,EAAE;AAAA;AAAA,YAEHlC,CAAC;AAAA,WACFkC,EAAE;AAAA,YACDlC,CAAC;AAAA,WACFuF,EAAE,gCAAgC,IAAI,EAAExF,EAAE,kCAAkC,GAAGA,GAAG,KAAK,cAAc,KAAK,MAAM,EAAEE,GAAG,KAAK,cAAc,KAAK,wBAAwB,EAAE,GAAG,KAAK,cAAc,KAAK,gBAAgB,EAAE,IAAIyC,EAAE,OAAOC,EAAE,OAAO9D,EAAE,CAAC,EAAEV,EAAE,CAAC,EAAEuE,EAAE,cAAc7D,EAAE,CAAC,CAAC,IAAIV,EAAE,CAAC,EAAEU,EAAE,CAAC,IAAI8D,EAAE,cAAcxE,EAAE,CAAC,CAAC,KAAK,KAAK,SAAS;AAAA,QAClU+D,CAAC;AAAA;AAAA,sCAE6B,CAAC;AAAA;AAAA;AAAA;AAAA,uBAIhBQ,CAAC;AAAA,uBACDC,CAAC;AAAA,8BACM,CAAC;AAAA,wCACS9B,CAAC;AAAA,wCACDC,CAAC;AAAA;AAAA;AAAA;AAAA,uBAIlBC,EAAE,CAAC,CAAC,MAAMkB,EAAE,CAAC,CAAC;AAAA,uBACdlB,EAAE,CAAC,CAAC,MAAMkB,EAAE,CAAC,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,UAS3B,CAAC;AAAA;AAAA,UAEDsD,CAAC;AAAA;AAAA;AAAA;AAAA,KAIN,CAAC,EAAM6+E,GAAG,CAAC,KAAK,wCAAwC,KAAK,uCAAuC,EAAEC,GAAG,KAAK,CAAC,YAAYxlF,EAAEV,EAAE,EAAE,CAAC,KAAK,cAAc,CAAC,QAAQ,QAAQ,QAAQ,OAAO,EAAE,KAAK,YAAYxS,EAAE,2BAA2BwS,EAAE,CAAC,EAAE,KAAK,SAAS;AAAA;AAAA;AAAA,UAGnPU,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,KAUN,CAAC,EAAMylF,GAAG,gBAAgB,SAASC,GAAGtmF,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,CAAC,EAAEF,EAAE,CAACI,EAAI,EAAEC,CAAC,EAAE,EAAE,EAAE3S,EAAE,WAAW0S,EAAE,MAAMC,EAAE,KAAK,EAAE,GAAGD,EAAE,QAAQ,YAAY,CAAC,IAAI2B,EAAE7B,EAAE,QAAQ,IAAIE,EAAE,MAAM,EAAE4B,EAAE9B,EAAE,QAAQ,IAAIG,EAAE,MAAM,EAAE4B,EAAE,IAAImkF,GAAGD,GAAG,KAAK/lF,EAAE,MAAMC,EAAE,KAAK,EAAEqC,EAAE,IAAI0jF,GAAGD,GAAG,KAAK/lF,EAAE,MAAMC,EAAE,KAAK,EAAEsC,EAAE,CAAC,CAAC,OAAOZ,EAAE,mBAAmB,KAAK,OAAO,MAAMA,EAAE,mBAAmB,KAAK,MAAM,MAAM3B,EAAE,KAAK,EAAE,CAAC,OAAO2B,EAAE,mBAAmB,KAAK,OAAO,MAAMA,EAAE,mBAAmB,KAAK,MAAM,MAAM3B,EAAE,KAAK,EAAE,CAAC,OAAO4B,EAAE,mBAAmB,KAAK,OAAO,MAAMA,EAAE,mBAAmB,KAAK,MAAM,MAAM3B,EAAE,KAAK,EAAE,CAAC,OAAO2B,EAAE,mBAAmB,KAAK,OAAO,MAAMA,EAAE,mBAAmB,KAAK,MAAM,MAAM3B,EAAE,KAAK,CAAC,EAAEuC,EAAE1C,EAAE,gBAAgB+B,EAAEU,EAAE,SAAS,EAAEE,EAAE3C,EAAE,gBAAgBwC,EAAEC,EAAE,SAAS,EAAEG,EAAEsiF,GAAG,CAAC,OAAO,CAAC,KAAKxiF,EAAE,KAAKC,CAAC,EAAE,QAAQ3C,CAAC,CAAC,EAAE,OAAOA,EAAE,8BAA8B0C,CAAC,EAAE1C,EAAE,8BAA8B2C,CAAC,EAAEC,CAAC,CAAC,GAAG5C,EAAE,mBAAmB,CAACE,EAAEC,CAAC,CAAC,EAAE,CAAC,IAAI0B,EAAE7B,EAAE,QAAQ,IAAIE,EAAE,MAAM,EAAE4B,EAAE9B,EAAE,QAAQ,IAAIG,EAAE,MAAM,EAAE,CAAC4B,EAAES,CAAC,EAAEm+E,GAAGzgF,EAAE,MAAMC,EAAE,MAAM0B,EAAE,OAAOC,EAAE,OAAO,CAAC,EAAEW,EAAEzC,EAAE,eAAewC,EAAE,CAAC,EAAEE,EAAE1C,EAAE,QAAQ,IAAIyC,EAAE,MAAM,EAAE,OAAOC,EAAE,OAAOX,EAAEU,CAAC,CAAC,IAAI,EAAE,OAAOnR,EAAE,EAAE,QAAQ,8BAA8B,EAAE,EAAE,IAAIyzF,GAAGoB,GAAGjmF,EAAE,MAAMC,EAAE,KAAK,EAAE,EAAE,IAAI0kF,GAAGsB,GAAGjmF,EAAE,MAAMC,EAAE,KAAK,EAAEH,EAAE,gBAAgB,EAAE,CAACE,EAAEC,CAAC,EAAE,CAAC,CAAC,CAAC,IAAIkmF,IAAG,CAAC,WAAWr/F,GAAG,YAAY,QAAQ,WAAWo/F,EAAE,EAAE,SAASE,IAAGxmF,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAE,CAACm2E,GAAGv2E,EAAE,KAAK,EAAE,GAAG82E,GAAG92E,EAAE,KAAK,CAAC,EAAEK,EAAE,CAAC,MAAML,EAAE,MAAM,MAAMI,EAAE,OAAOJ,EAAE,MAAM,EAAE,EAAE,CAACu2E,GAAG,CAAC,EAAE,GAAGO,GAAG,CAAC,CAAC,EAAE,EAAE,IAAI8L,GAAG,EAAExiF,CAAC,EAAE2B,EAAE,GAAGC,EAAE,CAAC5B,CAAC,EAAE6B,EAAE/B,EAAE,gBAAgB,EAAE,CAACG,CAAC,EAAEL,EAAE,MAAMgC,EAAED,CAAC,EAAE,MAAM,CAAC,OAAOE,EAAE,OAAO,MAAM,EAAE,MAAMA,EAAE,KAAK,CAAC,CAAC,SAASwkF,GAAGzmF,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,CAAC,EAAE,EAAE,CAAC,MAAM,CAAC,EAAED,EAAE,EAAEF,EAAE6B,EAAExD,EAAE,cAAc8B,EAAE,KAAK,EAAE2B,EAAEzD,EAAE,uBAAuB,EAAEwD,CAAC,EAAEE,EAAE1D,EAAE,cAAcyD,CAAC,EAAEzD,EAAE,OAAOwD,IAAIE,EAAE,IAAI,kBAAkBD,CAAC,SAASC,CAAC,gCAAgC5B,EAAE,KAAK,SAAS0B,CAAC,+EAA+E,EAAE,IAAIW,EAAE,EAAE,QAAQ,IAAIrC,EAAE,MAAM,EAAE,OAAOqC,EAAE,UAAU,CAAC60E,GAAGl3E,EAAE,MAAM2B,CAAC,GAAG,EAAEU,EAAE,UAAU,MAAM60E,GAAG70E,EAAE,MAAMV,CAAC,GAAGwkF,IAAGnmF,EAAE2B,EAAE,CAAC,GAAG,EAAE,OAAO3B,EAAE,MAAM,EAAE,CAAC,OAAOA,EAAE,OAAO,MAAM2B,EAAE,MAAM3B,EAAE,KAAK,EAAE,CAAC,IAAIqmF,IAAG,CAAC,WAAW19F,GAAG,YAAY,QAAQ,WAAWy9F,EAAE,EAAME,GAAG,KAAK,CAAC,YAAY/lF,EAAEV,EAAE,CAAC,KAAK,cAAc,CAAC,GAAG,EAAE,GAAG,CAAC,WAAW,EAAE,UAAUG,EAAE,OAAOwB,EAAE,QAAQC,CAAC,EAAElB,EAAE,KAAK,YAAY,CAACP,EAAEyB,CAAC,EAAE,IAAIC,EAAE,KAAK,MAAM,EAAE,CAAC,EAAE,EAAEC,EAAE,EAAE,EAAE,EAAE,iCAAiC,GAAG9B,GAAG,KAAK,CAAC,IAAI,EAAE,EAAEA,EAAE,EAAE,4BAA4B3B,EAAE,MAAM,CAAC,EAAE,EAAE,YAAY,CAAC,EAAE,CAAC,UAAU,CAAC,IAAImE,EAAE,GAAGb,EAAE,EAAE,IAAIa,EAAE;AAAA,oCACtvEb,CAAC;AAAA;AAAA;AAAA,SAG5B,KAAK,SAAS;AAAA;AAAA;AAAA;AAAA,UAIba,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,kCAQuB,CAAC;AAAA;AAAA;AAAA;AAAA,8BAILX,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,YASnB,CAAC;AAAA;AAAA;AAAA,iCAGoBA,CAAC;AAAA,cACpBC,IAAI,CAAC;AAAA;AAAA;AAAA,YAGP,CAAC;AAAA,qBACQA,IAAI,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA,YAKd,CAAC;AAAA,qBACQA,IAAI,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,YAMd,CAAC;AAAA;AAAA;AAAA;AAAA,KAIR,CAAC,EAAM4kF,IAAG,KAAK,CAAC,YAAYhmF,EAAEV,EAAE,CAAC,KAAK,cAAc,CAAC,GAAG,EAAE,GAAG,CAAC,WAAW,EAAE,UAAUG,EAAE,OAAOwB,EAAE,QAAQC,CAAC,EAAElB,EAAE,KAAK,YAAY,CAACP,EAAEyB,CAAC,EAAE,IAAIC,EAAE,MAAMC,EAAE,GAAG9B,IAAI,OAAO6B,EAAE,MAAM7B,IAAI,OAAO6B,EAAE,cAAcC,EAAE,OAAO9B,IAAI,QAAQ6B,EAAE,eAAeC,EAAE,OAAO,IAAI,EAAE,GAAG9B,CAAC,IAAIA,CAAC,IAAIA,CAAC,qEAAqEA,IAAI,MAAM,EAAE,WAAWA,IAAI,OAAO,EAAE,YAAYA,IAAI,MAAM,EAAE,WAAWA,IAAI,QAAQ,EAAE,YAAY,IAAIwC,EAAE,KAAK,MAAM,EAAE,CAAC,EAAE,EAAE,EAAE,EAAE,EAAEE,EAAE;AAAA,YACrc1C,IAAI,KAAK;AAAA;AAAA,mBAEFA,IAAI,MAAM;AAAA;AAAA;AAAA;AAAA,wBAIL8B,CAAC;AAAA,cACX9B,IAAI,KAAK,OAAOA,IAAI,KAAK;AAAA,0BACb8B,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,MAOrBa,EAAE,OAAO3C,IAAI,OAAO6B,EAAE,MAAMa,EAAE;AAAA;AAAA;AAAA;AAAA,QAI5BC,EAAE,SAAS3C,IAAI,QAAQ6B,EAAE,MAAMa,EAAE;AAAA;AAAA;AAAA;AAAA,QAIjCC,EAAE,SAAS,IAAIC,EAAE,GAAGjB,EAAE,EAAE,IAAIiB,EAAE;AAAA,oCACFjB,CAAC;AAAA;AAAA;AAAA,SAG5B,KAAK,SAAS;AAAA,0CACmBE,CAAC;AAAA;AAAA;AAAA;AAAA,UAIjCe,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,kCAQuB,CAAC;AAAA;AAAA,kCAEDf,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,8BAMLW,CAAC;AAAA;AAAA,YAEnBG,CAAC,aAAaA,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,YAOfD,CAAC;AAAA;AAAA;AAAA,iCAGoBF,CAAC;AAAA,cACpB,IAAI,CAAC;AAAA,YACPG,CAAC,aAAaA,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,YAOfD,CAAC;AAAA,qBACQ,IAAI,CAAC;AAAA,YACdC,CAAC,aAAaA,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,YAOfD,CAAC;AAAA,qBACQ,IAAI,CAAC;AAAA,YACdC,CAAC,aAAaA,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,YAOfD,CAAC;AAAA;AAAA,oBAEO,CAAC;AAAA;AAAA,KAEhB,CAAC,EAAE,SAASikF,IAAI7mF,EAAE,CAAC,IAAI,EAAE,CAAC,EAAE,KAAK,EAAE,SAAS,GAAG,EAAE,EAAE,OAAO,CAAC,EAAE,UAAU,GAAG,CAAC,IAAIE,EAAE,EAAE,OAAO,EAAE,EAAE,OAAO,CAAC,EAAE,QAAQF,EAAE,CAAC,EAAEI,EAAE1S,EAAE,yBAAyBwS,CAAC,EAAE,EAAE,KAAK,CAAC,OAAOA,EAAE,WAAWE,EAAE,QAAQ,KAAK,KAAKF,EAAEE,CAAC,CAAC,CAAC,CAAC,CAAC,OAAO,CAAC,CAAC,SAAS0mF,GAAG9mF,EAAE,EAAEE,EAAEE,EAAE,CAAC,IAAIC,EAAEwmF,IAAI7mF,EAAE,KAAK,EAAE,EAAEA,EAAE,QAAQ,EAAE,EAAE,EAAEK,EAAE,OAAO,IAAI,CAAC,GAAG,CAAC,OAAO0B,EAAE,WAAWC,EAAE,QAAQC,CAAC,EAAE5B,EAAE,CAAC,EAAEqC,EAAEC,EAAEzC,IAAI,OAAOwC,EAAE,IAAI,EAAE,IAAIikF,GAAG,CAAC,WAAW3kF,EAAE,OAAOD,EAAE,UAAU/B,EAAE,MAAM,CAAC,EAAE,QAAQiC,CAAC,EAAEF,CAAC,EAAE,IAAI4kF,GAAG,CAAC,WAAW3kF,EAAE,OAAOD,EAAE,UAAU/B,EAAE,MAAM,CAAC,EAAE,QAAQiC,CAAC,CAAC,EAAES,EAAE,IAAIkkF,IAAG,CAAC,WAAW5kF,EAAE,OAAOD,EAAE,UAAU/B,EAAE,MAAM,CAAC,EAAE,QAAQiC,CAAC,EAAE/B,CAAC,EAAEyC,EAAE,EAAE,EAAEvC,EAAE,gBAAgBsC,EAAE,CAAC,CAAC,EAAE,CAAC,EAAEC,EAAE,SAAS3C,EAAE,QAAQI,EAAE,8BAA8BuC,CAAC,CAAC,CAAC,OAAO,CAAC,CAAC,IAAIokF,IAAG,KAAK,CAAC,YAAYnmF,EAAEV,EAAE,CAAC,KAAK,cAAc,CAAC,GAAG,EAAE,IAAI,EAAE,IAAI,MAAMU,EAAE,MAAM,EAAE,QAAQkB,EAAE,EAAEA,EAAE,EAAE,OAAOA,IAAI,EAAEA,CAAC,EAAElB,EAAEV,EAAE4B,CAAC,CAAC,EAAE,KAAK,YAAY,EAAE,KAAK,KAAK,EAAE,OAAO,IAAIzB,EAAE68E,GAAG,KAAK,IAAI,EAAEr7E,EAAEmlF,IAAI9mF,CAAC,EAAE,KAAK,SAAS;AAAA;AAAA,QAE10BG,CAAC;AAAA,uBACcwB,CAAC;AAAA;AAAA,KAEnB,CAAC,EAAE,SAASmlF,IAAIhnF,EAAE,CAAC,IAAI,EAAEA,EAAE,OAAO,GAAG,EAAE,EAAE,MAAM,MAAM,sBAAsB,CAAC,uBAAuB,EAAE,IAAIE,EAAE,CAAC,UAAU,UAAU,UAAU,UAAU,UAAU,SAAS,EAAEE,EAAE,IAAI,MAAM,CAAC,EAAE,QAAQC,EAAE,EAAEA,EAAEL,EAAE,OAAOK,IAAID,EAAEJ,EAAEK,CAAC,CAAC,EAAEH,EAAEG,CAAC,EAAE,OAAOD,EAAE,KAAK,CAAC,CAAC,IAAI6mF,IAAG,KAAK,CAAC,YAAYrmF,EAAEV,EAAE,CAAC,KAAK,cAAc,CAAC,GAAG,EAAE,KAAK,aAAa,GAAG,KAAK,aAAa,GAAG,IAAI,EAAE,IAAI,MAAMU,EAAE,MAAM,EAAE,QAAQ8B,EAAE,EAAEA,EAAE,EAAE,OAAOA,IAAI,EAAEA,CAAC,EAAE9B,EAAEV,EAAEwC,CAAC,CAAC,EAAE,GAAG,KAAK,YAAY,EAAE,KAAK,KAAK,EAAE,OAAO,KAAK,KAAK,EAAE,MAAM,MAAM,6BAA6B,KAAK,IAAI,wBAAwB,EAAE,IAAIrC,EAAE68E,GAAG,KAAK,IAAI,EAAEr7E,EAAE2gF,GAAG,KAAK,KAAK,IAAI,EAAE1gF,EAAE,IAAI,MAAM,KAAK,IAAI,EAAE,QAAQY,EAAE,EAAEA,EAAExC,EAAE,OAAOwC,IAAIZ,EAAE5B,EAAEwC,CAAC,CAAC,EAAEb,EAAEa,CAAC,EAAE,IAAIX,EAAE,QAAQD,EAAE,MAAM,EAAE,EAAE,KAAK,CAAC,IAAIE,EAAE,KAAKH,EAAE,KAAK,KAAK,CAAC,CAAC,MAAM,EAAE,KAAK,KAAK,CAAC,CAAC,GAAG,EAAE,mBAAmBC,EAAE,KAAK,CAAC,MAAMC,CAAC,IAAI,KAAK,SAAS;AAAA;AAAA,QAE/vB1B,CAAC;AAAA;AAAA,oBAEW,CAAC;AAAA,WACV2B,CAAC;AAAA,sBACU,CAAC;AAAA;AAAA,UAEbH,EAAE,KAAK,KAAK,CAAC,CAAC;AAAA,aACXA,EAAE,KAAK,KAAK,CAAC,CAAC,MAAM,EAAE,KAAK,KAAK,CAAC,CAAC;AAAA,sBACzB,CAAC;AAAA,aACVG,CAAC;AAAA,wBACU,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA,KAKpB,CAAC,EAAE,SAASklF,GAAGlnF,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAE5O,EAAE,EAAE,QAAQ,6BAA6B,EAAE,IAAIy1F,IAAGjnF,EAAE,MAAM,CAAC,EAAE,IAAI+mF,IAAG/mF,EAAE,MAAM,CAAC,EAAE,OAAOE,EAAE,gBAAgBE,EAAE,CAACJ,CAAC,EAAEA,EAAE,KAAK,CAAC,CAAC,SAASmnF,IAAGnnF,EAAE,EAAEE,EAAEE,EAAE,CAAC,IAAIC,EAAE,EAAE,EAAEL,EAAE,MAAM,OAAO,EAAEzB,EAAE,eAAe8B,EAAEL,EAAE,KAAK,EAAE+B,EAAE,EAAEC,EAAEtU,EAAE,mBAAmBqU,EAAE,CAAC,EAAEE,EAAED,GAAG,KAAKU,EAAE1C,EAAEiC,IAAIS,EAAEwkF,GAAGlnF,EAAEgC,EAAE5B,CAAC,EAAE2B,EAAErU,EAAE,iBAAiBqU,EAAE,OAAO,CAAC,GAAGrU,EAAE,2BAA2B,MAAMqU,EAAE,CAAC,EAAE,GAAG,CAACY,EAAEC,CAAC,EAAElV,EAAE,0BAA0BgV,EAAE,MAAMX,CAAC,EAAEc,EAAEF,EAAEzC,IAAI2C,EAAEnV,EAAE,qBAAqBiV,EAAE,CAAC,GAAG,IAAIG,EAAEvE,EAAE,cAAcqE,CAAC,EAAEqB,EAAE1F,EAAE,cAAcyB,EAAE,KAAK,EAAE8C,EAAEwE,EAAEm/E,GAAG,CAAC,OAAO,CAAC,EAAE/jF,CAAC,EAAE,MAAM,CAAC,MAAM,CAACuB,EAAEnB,CAAC,CAAC,EAAE,QAAQ1C,CAAC,CAAC,EAAE,EAAExD,GAAGoD,EAAE,KAAK,EAAEyE,EAAEqiF,GAAGx/E,EAAE,EAAE,MAAMlH,CAAC,EAAEsE,EAAE+hF,GAAG,CAAC,OAAO,CAAC,EAAEhiF,CAAC,EAAE,MAAM,CAAC,MAAM5B,CAAC,EAAE,QAAQzC,CAAC,CAAC,EAAE,OAAOA,EAAE,8BAA8BkH,CAAC,EAAElH,EAAE,8BAA8BqE,CAAC,EAAExC,GAAG7B,EAAE,8BAA8BsC,CAAC,EAAEgC,CAAC,CAAC,SAAS0iF,GAAGpnF,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,CAAC,EAAE,EAAE,CAAC,KAAK,EAAE,SAAS,CAAC,EAAED,EAAE,OAAO+mF,IAAG9mF,EAAE,EAAE,EAAEH,CAAC,CAAC,CAAC,IAAImnF,IAAG,CAAC,WAAW97F,GAAG,YAAY,QAAQ,WAAW67F,EAAE,EAAE,SAASE,GAAGtnF,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,CAAC,EAAE,EAAE,CAAC,KAAK,CAAC,EAAED,EAAE,EAAEF,EAAE6B,EAAE1B,EAAE,MAAM,OAAO2B,EAAE,IAAI,MAAMD,CAAC,EAAE,QAAQW,EAAE,EAAEA,EAAEV,EAAE,OAAOU,IAAIV,EAAEU,CAAC,EAAErC,EAAE,MAAM,EAAEqC,CAAC,CAAC,EAAE,IAAIT,EAAE,GAAG,EAAE,mBAAmB,CAAC5B,CAAC,CAAC,EAAE,CAAC,IAAI,EAAE,EAAE,QAAQ,IAAIA,EAAE,MAAM,EAAE,OAAOuC,EAAE0/E,GAAG,EAAEjiF,EAAE,MAAMA,EAAE,MAAM,EAAE2B,CAAC,EAAEC,EAAE,EAAE,eAAeD,EAAE3B,EAAE,KAAK,EAAE,IAAIwC,EAAE,EAAE,QAAQ,IAAIZ,EAAE,MAAM,EAAEY,EAAE,OAAOD,CAAC,MAAMX,EAAEilF,GAAG7mF,EAAE,EAAE,CAAC,EAAE,OAAO4B,CAAC,CAAC,IAAIslF,IAAG,CAAC,WAAWt7F,GAAG,YAAY,QAAQ,WAAWq7F,EAAE,EAAME,GAAG,IAAI,SAASC,GAAG,CAAC,EAAEznF,EAAE,EAAE,EAAE,WAAWE,EAAE,WAAWE,EAAE,QAAQC,EAAE,KAAK,EAAE,KAAK,uBAAuB,EAAE,KAAK,eAAe0B,EAAE,EAAE,WAAWC,EAAE,IAAI,EAAE,CAAC,IAAIC,EAAEjC,EAAE,MAAM,OAAO0C,EAAE,EAAE,MAAM,OAAOC,EAAEzC,EAAEF,EAAE,MAAMiC,EAAE,CAAC,EAAEjC,EAAE,MAAMiC,EAAE,CAAC,EAAEW,EAAExC,EAAE,EAAE,MAAMsC,EAAE,CAAC,EAAE,EAAE,MAAMA,EAAE,CAAC,EAAEG,EAAE3C,EAAEF,EAAE,MAAMiC,EAAE,CAAC,EAAEjC,EAAE,MAAMiC,EAAE,CAAC,EAAEa,EAAE1C,EAAE,EAAE,MAAMsC,EAAE,CAAC,EAAE,EAAE,MAAMA,EAAE,CAAC,EAAEsB,EAAEhE,EAAE,MAAM,MAAM,EAAE,EAAE,EAAE,EAAE,EAAE,MAAM,MAAM,EAAE,EAAE,EAAEsH,EAAE/I,EAAE,cAAcyF,CAAC,EAAEc,EAAEvG,EAAE,cAAc,CAAC,EAAEmG,EAAEpW,GAAG,2BAA2B0R,EAAE,MAAM,MAAM,EAAE,EAAE,EAAE,EAAE,MAAM,MAAM,EAAE,EAAE,CAAC,EAAE,OAAO,CAAC6C,EAAEC,CAAC,CAAC,EAAEvE,EAAE,OAAOoE,IAAIC,EAAE,IAAI,kCAAkCD,CAAC,UAAUC,CAAC,4BAA4B5C,EAAE,KAAK,QAAQ,EAAE,KAAK,mBAAmBE,CAAC,mBAAmBE,CAAC,cAAc,EAAE,IAAIuE,EAAEzE,EAAE,CAACoH,EAAE3E,EAAEE,CAAC,EAAE,CAACyE,EAAEzE,EAAEF,CAAC,EAAEiC,EAAExE,EAAE,CAAC0E,EAAEhC,EAAEF,CAAC,EAAE,CAACkC,EAAElC,EAAEE,CAAC,EAAE+B,EAAE4hF,GAAG,CAAC,OAAO,CAAC,EAAEzmF,CAAC,EAAE,QAAQK,EAAE,MAAM,CAAC,MAAMsE,CAAC,CAAC,CAAC,EAAE4C,EAAEk/E,GAAG,CAAC,OAAO,CAAC,EAAE,CAAC,EAAE,QAAQpmF,EAAE,MAAM,CAAC,MAAMuE,CAAC,CAAC,CAAC,EAAEG,EAAE,CAACF,EAAE0C,CAAC,EAAEvC,EAAE,KAAK,IAAIsC,EAAExC,CAAC,EAAEG,EAAE/E,EAAE2E,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEK,EAAE,GAAG,KAAKC,EAAE,GAAG,KAAKC,EAAEpD,IAAI,YAAYqD,EAAErD,GAAG,KAAKikF,GAAGjkF,EAAE,EAAE,EAAE,KAAKgG,EAAE9C,GAAGC,GAAGC,GAAGC,GAAG,KAAKoC,EAAE,IAAI5E,IAAI,GAAGC,IAAI,IAAImC,EAAEuiF,IAAIx/E,IAAI,GAAG,CAAC,IAAIE,EAAGrD,EAAEsD,EAAGZ,EAAErH,IAAIgI,EAAGo/E,GAAG,CAAC,OAAO,CAAC,EAAEziF,CAAC,EAAE,QAAQxE,EAAE,MAAM,CAAC,KAAK,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC,CAAC,EAAE0E,EAAE,KAAKmD,CAAE,GAAG9H,IAAI+H,EAAGm/E,GAAG,CAAC,OAAO,CAAC,EAAE//E,CAAC,EAAE,QAAQlH,EAAE,MAAM,CAAC,KAAK,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC,CAAC,EAAE0E,EAAE,KAAKoD,CAAE,GAAG,IAAIC,EAAGtF,IAAI,EAAEuF,GAAGvF,IAAI,EAAEwF,GAAGJ,EAAGE,IAAKE,GAAGm+E,GAAG,CAAC,OAAO,CAAC,EAAEv+E,CAAE,EAAE,QAAQ7H,EAAE,MAAM,CAAC,MAAM,CAAC2E,EAAEC,EAAE,CAAC,CAAC,CAAC,CAAC,EAAEF,EAAE,KAAKuD,EAAE,GAAG,IAAI5B,GAAG5D,IAAI,EAAE,EAAE,EAAE0F,GAAGL,EAAGE,KAAKG,GAAGi+E,GAAG,CAAC,OAAO,CAAC,EAAEt+E,CAAE,EAAE,QAAQ9H,EAAE,MAAM,CAAC,MAAM,CAAC2E,EAAE,EAAEC,CAAC,CAAC,CAAC,CAAC,EAAEF,EAAE,KAAKyD,EAAE,GAAG,IAAIC,GAAG69E,GAAG,CAAC,OAAO,CAAC,EAAEh+E,GAAG,EAAEE,EAAE,EAAE,QAAQnI,CAAC,CAAC,EAAEoH,EAAE2/E,GAAG,CAAC,OAAO,CAAC,EAAE3+E,EAAE,EAAE,QAAQpI,EAAE,MAAM,CAAC,KAAKqG,GAAG,SAAS,EAAE,CAAC,CAAC,EAAE3B,EAAE,KAAK0D,EAAE,CAAC,KAAK,CAAC,IAAIP,EAAG7J,GAAG2B,EAAE,MAAM,EAAE,KAAK,EAAEmI,EAAG,IAAI+9E,GAAGvhF,EAAEC,EAAE,CAACI,EAAEnC,EAAEC,CAAC,EAAE5C,EAAEE,EAAE8E,EAAEG,EAAEF,EAAEC,CAAC,EAAEgD,EAAG,CAACvD,EAAE0C,CAAC,EAAE,GAAG,GAAG,MAAMa,EAAG,KAAK,CAAC,EAAEjD,GAAGiD,EAAG,KAAK,CAAC,EAAEhD,EAAE,CAAC,IAAIiD,GAAGhI,EAAE,eAAe,CAAC,EAAE,UAAU9B,EAAE,kBAAkBwD,EAAE,SAAS,CAAC,EAAEqG,EAAG,KAAKC,EAAE,EAAEtD,EAAE,KAAKsD,EAAE,CAAC,CAACZ,EAAEpH,EAAE,gBAAgB8H,EAAGC,EAAGF,CAAE,CAAC,CAAC,IAAID,EAAEw+E,GAAG,CAAC,OAAO,CAAC,EAAEh/E,CAAC,EAAE,QAAQpH,EAAE,MAAM,CAAC,MAAMqE,CAAC,CAAC,CAAC,EAAEK,EAAE,KAAK0C,CAAC,EAAE,QAAQS,KAAMnD,EAAE1E,EAAE,8BAA8B6H,CAAE,EAAE,OAAOD,CAAC,CAAC,SAASy/E,IAAI1nF,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,EAAE,EAAE,EAAE,KAAK,EAAE,uBAAuB0B,CAAC,EAAE,EAAE,CAAC,WAAWC,EAAE,WAAWC,EAAE,WAAWS,EAAE,eAAeC,CAAC,EAAEvC,EAAE,OAAOqnF,GAAG,CAAC,EAAEpnF,EAAE,EAAE,EAAE,WAAW2B,EAAE,WAAWC,EAAE,QAAQ/B,EAAE,KAAK,EAAE,uBAAuB6B,EAAE,eAAeY,EAAE,WAAWD,CAAC,CAAC,CAAC,CAAC,IAAIilF,IAAG,CAAC,WAAWn7F,GAAG,YAAY,QAAQ,WAAWk7F,GAAG,EAAME,GAAG,iBAAiB,SAASC,IAAI7nF,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,CAAC,EAAEF,EAAE,CAAC,EAAEI,CAAC,EAAE,EAAE,GAAGF,EAAE,mBAAmB,CAACE,CAAC,CAAC,GAAGA,EAAE,QAAQ,YAAY,CAAC,IAAI,EAAEF,EAAE,QAAQ,IAAIE,EAAE,MAAM,EAAE,EAAEohF,GAAG,EAAE,MAAM,EAAE,OAAOthF,EAAE,eAAeE,EAAE,MAAMA,EAAE,MAAM,CAAC,CAAC,CAAC,IAAIC,EAAE,OAAO7O,EAAE,EAAE,QAAQ,6BAA6B,EAAE6O,EAAE,IAAI8jF,GAAG/jF,EAAE,MAAMwnF,EAAE,EAAEvnF,EAAE,IAAIgjF,GAAGjjF,EAAE,MAAMwnF,EAAE,EAAE1nF,EAAE,gBAAgBG,EAAE,CAACD,CAAC,EAAEA,EAAE,KAAK,CAAC,CAAC,IAAI0nF,IAAG,CAAC,WAAW5oG,GAAG,YAAY,QAAQ,WAAW2oG,GAAG,EAAME,IAAIzE,GAAG;AAAA;AAAA;AAAA;AAAA;AAAA,EAKzvH0E,IAAIjC,GAAG,CAAC,UAAUgC,GAAG,CAAC,EAAEE,IAAG,CAAC,WAAW9oG,GAAG,YAAY,QAAQ,WAAW6oG,GAAG,EAAME,IAAI5E,GAAG;AAAA;AAAA,oCAEvD6E,IAAIpC,GAAG,CAAC,UAAUmC,GAAG,CAAC,EAAEE,IAAG,CAAC,WAAWhpG,GAAG,YAAY,QAAQ,WAAW+oG,GAAG,EAAME,GAAG,gBAAgBC,IAAItC,GAAG,CAAC,UAAUqC,GAAG,gBAAgBA,GAAG,gBAAgB,GAAG,cAAc9I,EAAE,CAAC,EAAEgJ,IAAG,CAAC,WAAW9oG,GAAG,YAAY,QAAQ,WAAW6oG,GAAG,EAAME,IAAG,KAAK,CAAC,YAAY5nF,EAAEV,EAAE,CAAC,KAAK,YAAY,CAAC,EAAE,KAAK,YAAYU,EAAE,KAAK,cAAcV,EAAE,IAAI,CAAC2B,EAAEC,IAAI,IAAIA,CAAC,EAAE,EAAE,IAAI,EAAE,CAAC,EAAE,KAAK,cAAc,QAAQD,GAAG,CAAC,EAAE,KAAK,UAAUA,CAAC,SAASA,CAAC,gBAAgB,CAAC,CAAC,EAAE,IAAIxB,EAAE,KAAK,cAAc,IAAIwB,GAAG,IAAIA,CAAC,EAAE,EAAE,KAAK,KAAK,EAAE,KAAK,SAAS;AAAA;AAAA,UAE5gB,EAAE,KAAK;AAAA,SACR,CAAC;AAAA;AAAA,yBAEexB,CAAC;AAAA;AAAA;AAAA,KAGrB,CAAC,EAAMooF,IAAG,KAAK,CAAC,YAAY7nF,EAAEV,EAAE,CAAC,KAAK,YAAY,CAAC,EAAE,KAAK,aAAa,GAAG,KAAK,aAAa,GAAG,KAAK,YAAYU,EAAE,KAAK,cAAcV,EAAE,IAAI,CAAC2B,EAAEC,IAAI,IAAIA,CAAC,EAAE,EAAE,IAAI,EAAE,CAAC,EAAE,KAAK,cAAc,QAAQD,GAAG,CAAC,EAAE,KAAK,SAASA,CAAC,SAASA,CAAC,gBAAgB,CAAC,CAAC,EAAE,IAAIxB,EAAE,KAAK,cAAc,IAAIwB,GAAG,IAAIA,CAAC,EAAE,EAAE,KAAK,KAAK,EAAE,KAAK,SAAS;AAAA;AAAA,UAEhT,EAAE,KAAK;AAAA,SACR,CAAC;AAAA;AAAA,wBAEcxB,CAAC;AAAA;AAAA;AAAA,KAGpB,CAAC,EAAE,SAASqoF,GAAG1oF,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,CAAC,EAAEF,EAAEI,EAAE,EAAE,GAAGA,EAAE,SAAS,EAAE,OAAO8kF,GAAG,CAAC,OAAO,CAAC,EAAE9kF,EAAE,CAAC,CAAC,EAAE,QAAQF,CAAC,CAAC,EAAE,GAAGE,EAAE,OAAO5O,EAAE,EAAE,UAAU,8BAA8B,EAAE,CAAC,IAAIwQ,EAAE,KAAK,MAAM5B,EAAE,OAAO,CAAC,EAAE,EAAEsoF,GAAG,CAAC,OAAOtoF,EAAE,MAAM,EAAE4B,CAAC,EAAE,QAAQ9B,CAAC,CAAC,EAAEwC,EAAEgmF,GAAG,CAAC,OAAOtoF,EAAE,MAAM4B,CAAC,EAAE,QAAQ9B,CAAC,CAAC,EAAE,OAAOwoF,GAAG,CAAC,OAAO,CAAC,EAAEhmF,CAAC,EAAE,QAAQxC,CAAC,CAAC,CAAC,CAAC,IAAIG,EAAED,EAAE,IAAI4B,GAAGA,EAAE,KAAK,EAAE,OAAO,CAACA,EAAE,IAAI3D,GAAG2D,EAAE,CAAC,CAAC,EAAE,EAAE5B,EAAE,IAAI4B,GAAGA,EAAE,KAAK,EAAED,EAAEvQ,EAAE,EAAE,QAAQ,YAAY,EAAE,IAAIi3F,IAAGroF,EAAE,CAAC,EAAE,MAAM,CAAC,EAAE,IAAIooF,IAAGpoF,EAAE,CAAC,EAAE,MAAM,CAAC,EAAE,OAAOF,EAAE,gBAAgB6B,EAAE3B,EAAEC,CAAC,CAAC,CAAC,IAAIsoF,IAAG,CAAC,WAAWjpG,GAAG,YAAY,QAAQ,WAAWgpG,EAAE,EAAE,SAASE,IAAI5oF,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,CAAC,EAAE,EAAE,CAAC,KAAK,EAAE,SAAS,CAAC,EAAED,EAAE2B,EAAE1B,EAAE,MAAM,OAAO2B,EAAEzD,EAAE,eAAe,EAAE8B,EAAE,KAAK,EAAE4B,EAAED,EAAEU,EAAEhV,EAAE,mBAAmBuU,EAAEF,CAAC,EAAEY,EAAEtC,EAAEqC,GAAG,OAAOC,EAAE2kF,GAAG,CAAC,OAAO,CAAC,EAAEjnF,CAAC,EAAE,QAAQH,EAAE,MAAM,CAAC,KAAKwC,CAAC,CAAC,CAAC,EAAET,EAAEvU,EAAE,iBAAiBuU,EAAE,OAAOF,CAAC,GAAGrU,EAAE,2BAA2B,MAAMuU,EAAEF,CAAC,EAAE,GAAG,CAACa,EAAEC,CAAC,EAAEnV,EAAE,0BAA0BiV,EAAE,MAAMV,CAAC,EAAEa,EAAEvE,EAAE,cAAcsE,CAAC,EAAEmB,EAAEyiF,GAAG,CAAC,OAAO,CAAC,EAAE9jF,CAAC,EAAE,QAAQzC,EAAE,MAAM,CAAC,MAAM,CAAC,GAAG4C,CAAC,CAAC,CAAC,CAAC,EAAE,EAAEgkF,GAAG9iF,EAAEA,EAAE,MAAM,MAAM9D,CAAC,EAAEoH,EAAE,GAAG,EAAE,CAAC,IAAIxC,EAAEpX,EAAE,qBAAqBkV,EAAEZ,CAAC,EAAEsF,EAAEm/E,GAAG,CAAC,OAAO,CAAC,EAAE,CAAC,EAAE,QAAQvmF,EAAE,MAAM,CAAC,MAAM4E,CAAC,CAAC,CAAC,CAAC,MAAMwC,EAAEm/E,GAAG,CAAC,OAAO,CAAC,EAAE,CAAC,EAAE,QAAQvmF,EAAE,MAAM,CAAC,MAAM0C,CAAC,CAAC,CAAC,EAAE,OAAO1C,EAAE,8BAA8B8D,CAAC,EAAE9D,EAAE,8BAA8B,CAAC,EAAEwC,GAAG,MAAMxC,EAAE,8BAA8ByC,CAAC,EAAE2E,CAAC,CAAC,IAAIuhF,IAAG,CAAC,WAAWlpG,GAAG,YAAY,QAAQ,WAAWipG,GAAG,EAAE,SAASE,IAAI9oF,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,CAAC,EAAE,EAAE,CAAC,KAAK,EAAE,SAAS,CAAC,EAAED,EAAE2B,EAAE1B,EAAE,MAAM,OAAO2B,EAAEzD,EAAE,eAAe,EAAE8B,EAAE,KAAK,EAAE4B,EAAED,EAAEU,EAAEhV,EAAE,mBAAmBuU,EAAEF,CAAC,EAAEY,EAAEtC,EAAEqC,GAAG,OAAOC,EAAE2kF,GAAG,CAAC,OAAO,CAAC,EAAEjnF,CAAC,EAAE,QAAQH,EAAE,MAAM,CAAC,KAAKwC,CAAC,CAAC,CAAC,EAAET,EAAEvU,EAAE,iBAAiBuU,EAAE,OAAOF,CAAC,GAAGrU,EAAE,2BAA2B,MAAMuU,EAAEF,CAAC,EAAE,GAAG,CAACa,EAAEC,CAAC,EAAEnV,EAAE,0BAA0BiV,EAAE,MAAMV,CAAC,EAAEa,EAAEvE,EAAE,cAAcsE,CAAC,EAAEmB,EAAEyiF,GAAG,CAAC,OAAO,CAAC,EAAE9jF,CAAC,EAAE,QAAQzC,EAAE,MAAM,CAAC,MAAM,CAAC,GAAG4C,CAAC,CAAC,CAAC,CAAC,EAAE,EAAEgkF,GAAG9iF,EAAEA,EAAE,MAAM,MAAM9D,CAAC,EAAEoH,EAAE,GAAG,EAAE,CAAC,IAAIxC,EAAEpX,EAAE,qBAAqBkV,EAAEZ,CAAC,EAAEsF,EAAEm/E,GAAG,CAAC,OAAO,CAAC,EAAE,CAAC,EAAE,QAAQvmF,EAAE,MAAM,CAAC,MAAM4E,CAAC,CAAC,CAAC,CAAC,MAAMwC,EAAEm/E,GAAG,CAAC,OAAO,CAAC,EAAE,CAAC,EAAE,QAAQvmF,EAAE,MAAM,CAAC,MAAM0C,CAAC,CAAC,CAAC,EAAE,OAAO1C,EAAE,8BAA8B8D,CAAC,EAAE9D,EAAE,8BAA8B,CAAC,EAAEwC,GAAG,MAAMxC,EAAE,8BAA8ByC,CAAC,EAAE2E,CAAC,CAAC,IAAIyhF,IAAG,CAAC,WAAWnpG,GAAG,YAAY,QAAQ,WAAWkpG,GAAG,EAAME,IAAG,KAAK,CAAC,YAAYpoF,EAAEV,EAAE,EAAE,CAAC,KAAK,cAAc,CAAC,GAAG,EAAE,GAAG,CAAC,WAAWG,EAAE,UAAUwB,EAAE,QAAQC,CAAC,EAAElB,EAAE,GAAG,KAAK,cAAc,KAAK,cAAc,EAAE,KAAK,YAAY,CAACiB,EAAEC,CAAC,EAAE,IAAIC,EAAE7B,IAAI,MAAM,IAAI,IAAI8B,EAAE,EAAE,gBAAgB,+CAA+C,KAAK,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA,kCAKhvE3B,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA,8BAKLA,CAAC;AAAA,wBACP2B,CAAC;AAAA;AAAA,0BAECD,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,KAOtB,CAAC,EAAMknF,IAAG,KAAK,CAAC,YAAYroF,EAAEV,EAAE,EAAEG,EAAE,CAAC,KAAK,cAAc,CAAC,GAAG,EAAE,KAAK,aAAa,GAAG,KAAK,aAAa,GAAG9B,EAAE,OAAOqC,EAAE,OAAO,EAAE,IAAI,aAAa,EAAE,OAAO,CAAC,EAAE,YAAY,EAAE,EAAE,MAAM,CAAC,CAAC,0CAA0C,EAAE,IAAIiB,EAAEjB,EAAEA,EAAE,OAAO,CAAC,EAAEkB,EAAE,KAAK,KAAKD,EAAE3B,CAAC,EAAE,KAAK,YAAYU,EAAE,MAAM,EAAE,EAAE,EAAEkB,EAAE,GAAG,KAAK,YAAY,KAAKA,CAAC,EAAEzB,GAAG,KAAK,cAAc,KAAK,cAAc,EAAE,IAAI0B,EAAE,KAAK,YAAYC,EAAED,EAAE,OAAO,EAAEm7E,GAAGl7E,CAAC,EAAEU,EAAE+/E,GAAG,SAASzgF,CAAC,EAAE,EAAEY,EAAE,GAAGd,IAAI,EAAE,CAACc,EAAEZ,EAAE,EAAE,IAAIuF,EAAE21E,GAAGt6E,CAAC,EAAE,EAAE;AAAA,UAClc2E,CAAC,iBAAiBA,CAAC,IAAI7E,EAAE,KAAK,CAAC;AAAA,YAC7BA,EAAEV,EAAE,CAAC,CAAC;AAAA,UACRuF,CAAC,iBAAiBA,CAAC,IAAI7E,EAAE,KAAK,CAAC;AAAA,YAC7BA,EAAEV,EAAE,CAAC,CAAC;AAAA,UACRuF,CAAC,iBAAiBA,CAAC,IAAI7E,EAAE,KAAK,CAAC;AAAA,YAC7BA,EAAEV,EAAE,CAAC,CAAC;AAAA,UACRuF,CAAC,iBAAiBA,CAAC,IAAI7E,EAAE,KAAK,CAAC;AAAA,YAC7BA,EAAEV,EAAE,CAAC,CAAC,GAAG,MAAMY,EAAEZ,EAAE,EAAE;AAAA,UACvB,CAAC;AAAA,YACCU,EAAEV,EAAE,CAAC,CAAC;AAAA,UACR,CAAC;AAAA,YACCU,EAAEV,EAAE,CAAC,CAAC;AAAA,UACR,CAAC;AAAA,YACCU,EAAEV,EAAE,CAAC,CAAC;AAAA,UACR,CAAC;AAAA,YACCU,EAAEV,EAAE,CAAC,CAAC,IAAI,IAAIa,EAAE,CAAC,IAAI,IAAI,IAAI,IAAI,IAAI,GAAG,EAAE,MAAM,EAAED,CAAC,EAAEE,EAAE,IAAID,EAAED,EAAE,CAAC,EAAEoB,EAAEnB,EAAE,IAAI0E,GAAG,OAAOA,CAAC,EAAEtD,EAAEw+E,GAAG,aAAa7/E,EAAE,CAAC,EAAE,OAAO,SAAS,EAAE0E,EAAEm7E,GAAG,aAAa7/E,EAAE,CAAC,EAAE,OAAO,SAAS,EAAE,EAAE6/E,GAAG,aAAa7/E,EAAE,CAAC,EAAE,OAAO,SAAS,EAAE6B,EAAEg+E,GAAG,aAAa7/E,EAAE,CAAC,EAAE,OAAO,SAAS,EAAE8B,EAAE,IAAI,MAAM,cAAc,WAAWC,EAAEtE,EAAE,GAAG;AAAA,sDAC7P4D,EAAE,KAAK,CAAC;AAAA,sDACRqD,EAAE,KAAK,CAAC;AAAA,sDACR,EAAE,KAAK,CAAC;AAAA,sDACR7C,EAAE,KAAK,CAAC,OAAOG,EAAE;AAAA,0BAC7CX,EAAE,KAAK,CAAC;AAAA,uCACKqD,EAAE,KAAK,CAAC;AAAA,uCACR,EAAE,KAAK,CAAC;AAAA,qDACM7C,EAAE,KAAK,CAAC,UAAUI,EAAExE,EAAE,GAAG;AAAA,qCACzC2D,EAAE,KAAK,CAAC;AAAA,4CACDnB,EAAE,KAAK,CAAC;AAAA,iDACHA,EAAE,MAAM,EAAE,EAAE,KAAK,CAAC;AAAA,SAC1D,KAAK,SAAS;AAAA,0BACGmB,EAAE,KAAK,CAAC;AAAA,iCACDnB,EAAE,KAAK,CAAC;AAAA,sCACHA,EAAE,MAAM,EAAE,EAAE,KAAK,CAAC;AAAA;AAAA,QAEhDgC,CAAC;AAAA;AAAA,UAEC,CAAC;AAAA,4BACiBnC,EAAEV,EAAE,CAAC,CAAC,MAAMD,EAAEC,EAAE,CAAC,EAAE,CAAC;AAAA,4BACpBU,EAAEV,EAAE,CAAC,CAAC,MAAMD,EAAEC,EAAE,CAAC,EAAE,CAAC;AAAA,UACtC,CAAC;AAAA,yCAC8Bc,CAAC,eAAeA,CAAC;AAAA,sBACpCA,CAAC,eAAeA,CAAC,OAAO5C,CAAC;AAAA;AAAA;AAAA,2BAGpB0E,CAAC;AAAA;AAAA,8BAEE1E,CAAC;AAAA;AAAA,YAEnByE,CAAC;AAAA,6BACgBC,CAAC;AAAA;AAAA;AAAA,mBAGXF,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,KAWf,CAAC,EAAE,SAASwkF,GAAGlpF,EAAE,EAAEE,EAAEE,EAAE,KAAK,CAAC,IAAIC,EAAE,EAAE,MAAM,CAAC,EAAE,EAAE,EAAE,MAAM,CAAC,EAAED,GAAG,OAAOC,EAAED,EAAE,MAAM,CAAC,EAAE,EAAEA,EAAE,MAAM,CAAC,GAAG,IAAI,EAAE1S,EAAE,yBAAyB,CAAC,EAAEqU,EAAE,CAAC,WAAW,EAAE,OAAO,EAAE,UAAU1B,EAAE,QAAQ,KAAK,KAAK,EAAE,CAAC,CAAC,EAAE2B,EAAE,IAAIgnF,IAAGjnF,EAAE7B,EAAEE,GAAG,IAAI,EAAE6B,EAAE,CAAC,CAAC,EAAE7B,GAAG,MAAM6B,EAAE,KAAK7B,CAAC,EAAE,IAAIsC,EAAE1C,EAAE,gBAAgBgC,EAAEC,EAAE,OAAO,EAAE,GAAGS,EAAE,MAAM,CAAC,IAAI,EAAE,OAAOA,EAAE,IAAIC,EAAEumF,GAAGlpF,EAAE,EAAEE,EAAEwC,CAAC,EAAE,OAAO1C,EAAE,8BAA8B0C,CAAC,EAAEC,CAAC,CAAC,SAASwmF,GAAGnpF,EAAE,EAAEE,EAAEE,EAAE,KAAK,CAAC,IAAIC,EAAED,GAAG,KAAKA,EAAE,MAAM,EAAE,MAAM,EAAEC,EAAEA,EAAE,OAAO,CAAC,EAAE,EAAE3S,EAAE,yBAAyB,CAAC,EAAEqU,EAAE,IAAIknF,IAAG5oF,EAAE,EAAEH,EAAEE,GAAG,IAAI,EAAE4B,EAAE5B,GAAG,KAAK,CAAC,CAAC,EAAE,CAAC,EAAEA,CAAC,EAAE6B,EAAEjC,EAAE,gBAAgB+B,EAAEC,EAAE,OAAO,EAAE,GAAGC,EAAE,MAAM,SAAS,EAAE,MAAM,OAAO,CAAC,IAAIS,EAAEymF,GAAGnpF,EAAE,EAAEE,EAAE+B,CAAC,EAAE,OAAOjC,EAAE,8BAA8BiC,CAAC,EAAES,CAAC,CAAC,OAAOT,CAAC,CAAC,SAASmnF,GAAGppF,EAAE,EAAEE,EAAEE,EAAE,CAAC,IAAIC,EAAE,CAACH,CAAC,EAAE,GAAGxS,EAAE,2BAA2B,MAAM0S,EAAE,OAAO,CAAC,EAAE,YAAY,EAAEA,EAAE,MAAM,CAAC,EAAEC,EAAE,EAAE,MAAM,MAAM,EAAE,CAAC7O,EAAE,EAAE,QAAQ,mBAAmB,GAAG,EAAE,MAAM,QAAQ,EAAE,CAAC,IAAI,EAAE,CAAC,EAAE,EAAEwO,EAAE,QAAQ,IAAI,EAAE,MAAM,EAAE+B,EAAE,IAAI,MAAM,EAAE,SAASC,EAAE,EAAED,IAAIC,EAAEhC,EAAE,aAAa,CAAC,EAAE,EAAE,KAAKgC,CAAC,GAAG,GAAG,CAACC,EAAES,CAAC,EAAEhV,EAAE,0BAA0BsU,EAAE,MAAM3B,CAAC,EAAEsC,EAAEpE,EAAE,cAAcmE,CAAC,EAAEE,EAAE6jF,GAAG,CAAC,OAAO,CAAC,EAAEzkF,CAAC,EAAE,QAAQhC,EAAE,MAAM,CAAC,MAAM,CAAC,GAAG2C,CAAC,CAAC,CAAC,CAAC,EAAE,EAAE,KAAKC,CAAC,EAAE,IAAIC,EAAEqmF,GAAGlpF,EAAE4C,EAAExC,CAAC,EAAE,EAAE,KAAKyC,CAAC,EAAE,IAAIC,EAAE2jF,GAAG,CAAC,OAAO,CAAC,EAAE5jF,CAAC,EAAE,QAAQ7C,EAAE,MAAM,CAAC,MAAMiC,CAAC,CAAC,CAAC,EAAE,OAAO,EAAE,QAAQ+B,GAAGhE,EAAE,8BAA8BgE,CAAC,CAAC,EAAElB,CAAC,CAAC,OAAOqmF,GAAGnpF,EAAE,EAAEI,CAAC,CAAC,CAAC,SAASipF,IAAIrpF,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,CAAC,EAAE,EAAE,CAAC,KAAK,CAAC,EAAED,EAAE,EAAE7B,EAAE,eAAe,EAAE8B,EAAE,KAAK,EAAE0B,EAAErU,EAAE,mBAAmB,EAAE2S,EAAE,MAAM,MAAM,EAAE2B,EAAE3B,EAAE4B,EAAE,CAAC,EAAEF,GAAG,OAAOC,EAAEslF,GAAG,CAAC,OAAO,CAAC,EAAEjnF,CAAC,EAAE,QAAQH,EAAE,MAAM,CAAC,KAAK6B,CAAC,CAAC,CAAC,EAAEE,EAAE,KAAKD,CAAC,EAAE,EAAEtU,EAAE,iBAAiB,EAAE,OAAOsU,EAAE,MAAM,MAAM,GAAGtU,EAAE,2BAA2B,SAAS,CAAC,EAAE,CAAC,CAAC,EAAEsU,EAAE,MAAM,MAAM,EAAE,IAAIU,EAAE0mF,GAAGlpF,EAAE8B,EAAE,EAAE,CAAC,EAAE,KAAK,EAAE,OAAOC,EAAE,QAAQU,GAAGzC,EAAE,8BAA8ByC,CAAC,CAAC,EAAED,CAAC,CAAC,IAAI4mF,IAAG,CAAC,WAAWzpG,GAAG,YAAY,QAAQ,WAAWwpG,GAAG,EAAE,SAASE,IAAIvpF,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,CAAC,EAAE,EAAE,CAAC,KAAK,CAAC,EAAED,EAAE,EAAE7B,EAAE,eAAe,EAAE8B,EAAE,KAAK,EAAE0B,EAAErU,EAAE,mBAAmB,EAAE2S,EAAE,MAAM,MAAM,EAAE2B,EAAE3B,EAAE4B,EAAE,CAAC,EAAEF,GAAG,OAAOC,EAAEslF,GAAG,CAAC,OAAO,CAAC,EAAEjnF,CAAC,EAAE,QAAQH,EAAE,MAAM,CAAC,KAAK6B,CAAC,CAAC,CAAC,EAAEE,EAAE,KAAKD,CAAC,EAAE,EAAEtU,EAAE,iBAAiB,EAAE,OAAOsU,EAAE,MAAM,MAAM,GAAGtU,EAAE,2BAA2B,SAAS,CAAC,EAAE,CAAC,CAAC,EAAEsU,EAAE,MAAM,MAAM,EAAE,IAAIU,EAAE0mF,GAAGlpF,EAAE8B,EAAE,EAAE,CAAC,EAAE,KAAK,EAAE,OAAOC,EAAE,QAAQU,GAAGzC,EAAE,8BAA8ByC,CAAC,CAAC,EAAED,CAAC,CAAC,IAAI8mF,IAAG,CAAC,WAAW1pG,GAAG,YAAY,QAAQ,WAAWypG,GAAG,EAAME,IAAInG,GAAG;AAAA;AAAA;AAAA;AAAA;AAAA,EAK1mEoG,IAAI3D,GAAG,CAAC,UAAU0D,GAAG,CAAC,EAAEE,IAAG,CAAC,WAAW5pG,GAAG,YAAY,QAAQ,WAAW2pG,GAAG,EAAME,IAAItG,GAAG,qCAAqCuG,IAAI9D,GAAG,CAAC,UAAU6D,GAAG,CAAC,EAAEE,IAAG,CAAC,WAAW9pG,GAAG,YAAY,QAAQ,WAAW6pG,GAAG,EAAME,IAAIzG,GAAG;AAAA;AAAA,EAEvN0G,IAAIjE,GAAG,CAAC,UAAUgE,GAAG,CAAC,EAAEE,IAAG,CAAC,WAAWhqG,GAAG,YAAY,QAAQ,WAAW+pG,GAAG,EAAME,IAAIpF,GAAG;AAAA;AAAA,EAEzFqF,IAAI;AAAA;AAAA;AAAA;AAAA;AAAA,IAKFnF,GAAG;AAAA;AAAA,EAELoF,IAAIpE,GAAG,CAAC,UAAUkE,IAAI,gBAAgBC,GAAG,CAAC,EAAEE,IAAG,CAAC,WAAWnqG,GAAG,YAAY,QAAQ,WAAWkqG,GAAG,EAAME,IAAIhH,GAAG;AAAA;AAAA,6CAElEiH,IAAIxE,GAAG,CAAC,UAAUuE,GAAG,CAAC,EAAEE,IAAG,CAAC,WAAWrqG,GAAG,YAAY,QAAQ,WAAWoqG,GAAG,EAAME,GAAG,KAAK,CAAC,YAAY7pF,EAAEV,EAAE,EAAEG,EAAE,GAAGwB,EAAE,GAAG,CAAC,GAAG,KAAK,cAAc,CAAC,GAAG,EAAE3B,IAAI,OAAO,EAAE,MAAM,IAAI,MAAM,4CAA4C,EAAE,IAAI4B,EAAElB,EAAE,YAAYmB,EAAEnB,EAAE,aAAaoB,EAAEpB,EAAE,YAAY,EAAEA,EAAE,eAAe8B,EAAE9B,EAAE,cAAc,EAAEA,EAAE,sBAAsBgC,EAAEhC,EAAE,qBAAqBiC,EAAEjC,EAAE,QAAQ,IAAIkC,EAAElC,EAAE,QAAQ,KAAK,KAAK,YAAYA,EAAE,SAAS,IAAIoD,EAAE9D,IAAI,MAAM+D,EAAE,cAAcrD,EAAE,QAAQ,YAAYA,EAAE,OAAO,YAAYA,EAAE,UAAU,OAAO0G,EAAE,SAAS1G,EAAE,OAAO,YAAYA,EAAE,UAAU,OAAO,EAAE,MAAM,GAAGoD,IAAI,EAAE,gBAAgB,EAAE,CAAC,IAAIuD,EAAE,KAAK,KAAK,SAAS;AAAA,sCAC9nBxF,CAAC,KAAKC,CAAC;AAAA,mCACVa,CAAC,KAAKC,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,kCAkBR,CAAC;AAAA,sBACb,CAAC;AAAA;AAAA;AAAA,kCAGWlC,EAAE,QAAQ;AAAA;AAAA;AAAA;AAAA,oCAIRgC,CAAC;AAAA,wBACbF,CAAC;AAAA;AAAA;AAAA,oCAGW9B,EAAE,OAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,0BAUnB2G,CAAC;AAAA;AAAA;AAAA,mCAGQlH,EAAEwB,EAAEoC,EAAEqD,EAAE,QAAQ1E,CAAC,OAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,QAMnD,MAAM,CAAC,IAAI6B,EAAE,MAAMC,EAAE,GAAGxE,CAAC,IAAIA,CAAC,IAAIA,CAAC,qEAAqEA,IAAI,QAAQwE,EAAE,8BAA8B,IAAIC,EAAE,KAAK,MAAM7C,EAAE,CAAC,EAAE,EAAE8C,EAAE9C,EAAE,EAAE+C,EAAE;AAAA,YAChLb,CAAC;AAAA;AAAA;AAAA,wBAGWS,CAAC;AAAA;AAAA,MAEnB,KAAK,SAAS;AAAA,oCACgB1C,CAAC,KAAKC,CAAC;AAAA,iCACVa,CAAC,KAAKC,CAAC;AAAA,0CACE,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,8BAMblC,EAAE,OAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,kCAkBL,CAAC;AAAA;AAAA;AAAA;AAAA,gCAIH,CAAC;AAAA,oBACb,CAAC;AAAA;AAAA;AAAA,gCAGWA,EAAE,QAAQ;AAAA;AAAA;AAAA;AAAA,kCAIR+D,CAAC;AAAA,uCACIjC,CAAC;AAAA;AAAA;AAAA;AAAA,yCAICA,CAAC;AAAA,6CACGA,CAAC;AAAA,6CACDA,CAAC;AAAA;AAAA;AAAA,cAGhCmC,CAAC;AAAA;AAAA;AAAA,gCAGiBF,CAAC;AAAA,gBACjBC,IAAI,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,cAQPC,CAAC;AAAA,uBACQD,IAAI,CAAC;AAAA;AAAA;AAAA,yCAGalC,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA,cAK5BmC,CAAC;AAAA,uBACQD,IAAI,CAAC;AAAA;AAAA;AAAA,yCAGalC,CAAC;AAAA,6CACGA,CAAC;AAAA;AAAA;AAAA;AAAA,cAIhCmC,CAAC;AAAA;AAAA;AAAA,oBAGKH,CAAC;AAAA;AAAA,KAEhB,CAAC,EAAEgmF,GAAG,KAAK,CAAC,YAAY9pF,EAAEV,EAAE,EAAEG,EAAE,GAAGwB,EAAE,GAAG,CAAC,GAAG,KAAK,cAAc,CAAC,GAAG,EAAE3B,IAAI,OAAO,EAAE,MAAM,IAAI,MAAM,4CAA4C,EAAE,IAAI4B,EAAElB,EAAE,YAAYmB,EAAEnB,EAAE,YAAYoB,EAAEpB,EAAE,aAAa,EAAEA,EAAE,YAAY8B,EAAE9B,EAAE,cAAc,EAAEA,EAAE,eAAegC,EAAEhC,EAAE,cAAciC,EAAEjC,EAAE,qBAAqBkC,EAAElC,EAAE,sBAAsBoD,EAAEpD,EAAE,qBAAqBqD,EAAErD,EAAE,QAAQ,MAAM0G,EAAE1G,EAAE,QAAQ,IAAI,EAAEA,EAAE,QAAQ,KAAK,KAAK,YAAYA,EAAE,SAAS,IAAI6D,EAAEvE,IAAI,MAAMwE,EAAE,MAAM,GAAGD,IAAIC,EAAE,gBAAgB,EAAE,CAAC,IAAIM,EAAE,KAAK,KAAK,SAAS;AAAA;AAAA,oBAErejD,CAAC,KAAKC,CAAC,KAAK,CAAC;AAAA,mCACEiC,CAAC,KAAKqD,CAAC,KAAK,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,kCAkBdzE,CAAC;AAAA,sBACbH,CAAC;AAAA;AAAA;AAAA,kCAGW9B,EAAE,OAAO;AAAA;AAAA;AAAA;AAAA,oCAIPkC,CAAC;AAAA,wBACb,CAAC;AAAA;AAAA;AAAA,oCAGWlC,EAAE,QAAQ;AAAA;AAAA;AAAA;AAAA,sCAIRoD,CAAC;AAAA,0BACbpB,CAAC;AAAA;AAAA;AAAA,sCAGWhC,EAAE,OAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,4BAUnBoE,CAAC;AAAA;AAAA;AAAA,qCAGQ3E,EAAEwB,EAAE,cAAcjB,EAAE,OAAO,YAAYA,EAAE,QAAQ,YAAYA,EAAE,OAAO,YAAYA,EAAE,UAAU,QAAQ,UAAUA,EAAE,QAAQ,YAAYA,EAAE,OAAO,YAAYA,EAAE,UAAU,QAAQ,QAAQkC,CAAC,MAAMkB,CAAC;AAAA,6BACvMA,CAAC,OAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,QAO7B,MAAM,CAAC,IAAIW,EAAE,MAAMC,EAAE,GAAG1E,CAAC,IAAIA,CAAC,IAAIA,CAAC,qEAAqEA,IAAI,QAAQ0E,EAAE,8BAA8B,IAAIC,EAAE,KAAK,MAAM/C,EAAE,CAAC,EAAE,EAAEyF,EAAEzF,EAAE,EAAEiD,EAAE;AAAA,YAChLN,CAAC;AAAA;AAAA;AAAA,wBAGWE,CAAC;AAAA;AAAA,MAEnB,KAAK,SAAS;AAAA;AAAA,gBAEJ5C,CAAC,KAAKC,CAAC,KAAK,CAAC;AAAA,iCACIiC,CAAC,KAAKqD,CAAC,KAAK,CAAC;AAAA,0CACJ5C,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,8BAMb9D,EAAE,OAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,kCAmBL8D,CAAC;AAAA;AAAA;AAAA;AAAA,gCAIH7B,CAAC;AAAA,oBACbH,CAAC;AAAA;AAAA;AAAA,gCAGW9B,EAAE,OAAO;AAAA;AAAA;AAAA;AAAA,kCAIPkC,CAAC;AAAA,oBACf,CAAC;AAAA;AAAA;AAAA,kCAGalC,EAAE,QAAQ;AAAA;AAAA;AAAA;AAAA,oCAIRiE,CAAC;AAAA,yCACIjC,CAAC;AAAA;AAAA;AAAA;AAAA,+CAIKA,CAAC;AAAA,mDACGA,CAAC;AAAA,mDACDA,CAAC;AAAA;AAAA;AAAA,gBAGpCmC,CAAC;AAAA;AAAA;AAAA,kCAGiBF,CAAC;AAAA,kBACjB0C,IAAI,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,gBAQPxC,CAAC;AAAA,yBACQwC,IAAI,CAAC;AAAA;AAAA;AAAA,+CAGiB3E,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA,gBAKhCmC,CAAC;AAAA,yBACQwC,IAAI,CAAC;AAAA;AAAA;AAAA,+CAGiB3E,CAAC;AAAA,mDACGA,CAAC;AAAA;AAAA;AAAA;AAAA,gBAIpCmC,CAAC;AAAA;AAAA;AAAA;AAAA,oBAIGH,CAAC;AAAA;AAAA,KAEhB,CAAC,EAAE,SAAS+lF,IAAI3qF,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,CAAC,EAAE,EAAEm1E,GAAGn1E,EAAE,SAAS,EAAE,GAAG,CAAC,WAAW,EAAE,QAAQ,EAAE,IAAI0B,EAAE,gBAAgBC,CAAC,EAAE5B,EAAE6B,EAAE,EAAE1D,EAAE,OAAO7Q,EAAE,+BAA+B,EAAEuU,CAAC,EAAE,IAAI,wEAAwE,CAAC,mBAAmBA,CAAC,GAAG,EAAE,IAAIS,EAAEhV,EAAE,kBAAkB2S,EAAE,MAAM,EAAE,EAAE4B,EAAEF,EAAEC,CAAC,EAAE,GAAGU,EAAE,cAAc,GAAGA,EAAE,eAAe,GAAGnE,EAAE,YAAYmE,EAAE,QAAQA,EAAE,QAAQ,EAAE,OAAOwiF,GAAG,CAAC,OAAO,CAAC,EAAE7kF,CAAC,EAAE,QAAQH,CAAC,CAAC,EAAE,IAAIyC,EAAE,IAAI8nF,GAAG/nF,EAAE,MAAM,EAAE,EAAE,OAAOxC,EAAE,gBAAgByC,EAAE,CAACtC,CAAC,EAAE,SAAS,CAAC,CAAC,IAAIuqF,IAAG,CAAC,WAAWxqG,GAAG,YAAY,QAAQ,WAAWuqG,GAAG,EAAE,SAASE,IAAI7qF,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,CAAC,EAAE,EAAE,CAAC,WAAW,EAAE,QAAQ,EAAE,IAAI0B,EAAE,gBAAgBC,EAAE,WAAWC,CAAC,EAAE7B,EAAEsC,EAAE,CAAC,EAAE,EAAE,CAAC,EAAEC,EAAEjV,EAAE,kBAAkB2S,EAAE,MAAM,EAAE,EAAEqC,EAAEX,EAAEC,EAAEC,CAAC,EAAEW,EAAE,IAAI8nF,GAAG/nF,EAAE,MAAM,EAAE,EAAE,OAAOzC,EAAE,gBAAgB0C,EAAE,CAACvC,CAAC,EAAE,SAAS,CAAC,CAAC,IAAIyqF,IAAG,CAAC,WAAWzqG,GAAG,YAAY,QAAQ,WAAWwqG,GAAG,EAAME,IAAG,KAAK,CAAC,YAAYnqF,EAAE,CAAC,KAAK,cAAc,CAAC,IAAI,EAAE,KAAK,YAAYA,EAAE,QAAQ,IAAIV,EAAEU,EAAE,aAAa,EAAEA,EAAE,YAAYP,EAAEO,EAAE,aAAaiB,EAAEjB,EAAE,YAAYkB,EAAElB,EAAE,eAAemB,EAAEnB,EAAE,cAAcoB,EAAEpB,EAAE,sBAAsB,EAAEA,EAAE,qBAAqB8B,EAAEV,EAAE,EAAEpB,EAAE,QAAQ,IAAI,EAAE,EAAE,EAAEA,EAAE,QAAQ,KAAKgC,EAAE,GAAG1C,EAAE,GAAG,KAAK,SAAS;AAAA,iCACpnCwC,CAAC,KAAK,CAAC;AAAA,0CACEE,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,gCAcXZ,CAAC;AAAA,oBACbF,CAAC;AAAA,gDAC2BzB,CAAC;AAAA;AAAA,oCAEbO,EAAE,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA,kCAKb,CAAC;AAAA,mBAChBmB,CAAC;AAAA,kDAC8BF,CAAC;AAAA;AAAA,sCAEbjB,EAAE,QAAQ;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,KAa3C,CAAC,EAAEoqF,IAAG,KAAK,CAAC,YAAYpqF,EAAE,CAAC,KAAK,cAAc,CAAC,IAAI,EAAE,KAAK,YAAYA,EAAE,QAAQ,IAAIV,EAAEU,EAAE,YAAY,EAAEA,EAAE,aAAaP,EAAEO,EAAE,YAAYiB,EAAEjB,EAAE,YAAYkB,EAAElB,EAAE,aAAamB,EAAEnB,EAAE,YAAYoB,EAAEpB,EAAE,cAAc,EAAEA,EAAE,eAAe8B,EAAE9B,EAAE,cAAc,EAAEA,EAAE,qBAAqBgC,EAAEhC,EAAE,sBAAsBiC,EAAEjC,EAAE,qBAAqBkC,EAAE,EAAE,EAAElC,EAAE,QAAQ,MAAMoD,EAAEpB,EAAE,EAAEhC,EAAE,QAAQ,IAAIqD,EAAEpB,EAAE,EAAEjC,EAAE,QAAQ,KAAK0G,EAAE,GAAGpH,EAAE,EAAEG,GAAG,KAAK,SAAS;AAAA,iCACtXyC,CAAC,KAAKkB,CAAC,KAAKC,CAAC;AAAA,0CACJqD,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,gCAiBX,CAAC;AAAA,oBACbtF,CAAC;AAAA,gDAC2BH,CAAC;AAAA;AAAA,oCAEbjB,EAAE,QAAQ;AAAA;AAAA;AAAA;AAAA;AAAA,kCAKZgC,CAAC;AAAA,sBACb,CAAC;AAAA,kDAC2Bd,CAAC;AAAA;AAAA,sCAEblB,EAAE,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,oCAMbiC,CAAC;AAAA,wBACbH,CAAC;AAAA,oDAC2BX,CAAC;AAAA;AAAA,wCAEbnB,EAAE,QAAQ;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,KAc7C,CAAC,EAAE,SAASqqF,IAAIjrF,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,GAAGK,EAAE,MAAM,CAAC,EAAE,EAAE,EAAE,EAAE,CAAC,WAAW0B,EAAE,QAAQC,EAAE,IAAIC,EAAE,gBAAgBS,CAAC,EAAEtC,EAAEuC,EAAE,CAAC,EAAE,EAAE,CAAC,EAAEC,EAAElV,EAAE,kBAAkB,EAAE,MAAMqU,EAAEC,EAAEW,EAAEV,EAAES,CAAC,EAAEG,EAAE,IAAImoF,IAAGpoF,CAAC,EAAE,OAAO1C,EAAE,gBAAgB2C,EAAE,CAACxC,CAAC,EAAE,EAAE,KAAK,CAAC,CAAC,IAAI6qF,IAAG,CAAC,WAAW5qG,GAAG,YAAY,QAAQ,WAAW2qG,GAAG,EAAE,SAASE,IAAInrF,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,GAAGK,EAAE,MAAM,CAAC,EAAE,EAAE,EAAE,EAAEm1E,GAAG,CAACn1E,EAAE,CAAC,EAAE,aAAa,EAAE,GAAG,CAAC,WAAW0B,EAAE,QAAQC,EAAE,IAAIC,CAAC,EAAE7B,EAAEsC,EAAEhV,EAAE,kBAAkB,EAAE,MAAMqU,EAAEC,EAAE,EAAEC,CAAC,EAAEU,EAAE,IAAIooF,IAAGroF,CAAC,EAAE,OAAOxC,EAAE,gBAAgByC,EAAE,CAACtC,CAAC,EAAE,EAAE,KAAK,CAAC,CAAC,IAAI+qF,IAAG,CAAC,WAAW7qG,GAAG,YAAY,QAAQ,WAAW4qG,GAAG,EAAE,SAASE,IAAIrrF,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,EAAE,EAAE,CAAC,EAAE,EAAE,CAAC,WAAW,EAAE,WAAW0B,CAAC,EAAE3B,EAAE,OAAOqnF,GAAG,CAAC,EAAEpnF,EAAE,EAAE,EAAE,WAAW,EAAE,WAAW0B,EAAE,QAAQ7B,CAAC,CAAC,CAAC,CAAC,IAAIorF,IAAG,CAAC,WAAW7qG,GAAG,YAAY,QAAQ,WAAW4qG,GAAG,EAAME,IAAG,KAAK,CAAC,YAAY3qF,EAAEV,EAAE,EAAEG,EAAEwB,EAAEC,EAAE,CAAC,KAAK,YAAY,CAAC,EAAE,KAAK,cAAc,CAAC,IAAI,OAAO,UAAU,EAAEpU,EAAE,2BAA2BkT,EAAEV,CAAC,EAAExS,EAAE,2BAA2BkT,EAAE,CAAC,EAAE,IAAImB,EAAE,MAAM1B,GAAG,OAAO3S,EAAE,2BAA2BkT,EAAEP,CAAC,EAAE,KAAK,cAAc,KAAK,QAAQ,EAAE0B,EAAE,0BAA0B,IAAIC,EAAE,MAAMH,GAAG,OAAOnU,EAAE,2BAA2BkT,EAAEiB,CAAC,EAAE,KAAK,cAAc,KAAK,OAAO,EAAEG,EAAE,yBAAyB,KAAK,YAAYpB,EAAE,KAAK,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA,yBAKrqCmB,CAAC;AAAA,wBACFC,CAAC;AAAA,2DACkCF,CAAC;AAAA;AAAA;AAAA,KAGvD,CAAC,EAAM0pF,IAAG,KAAK,CAAC,YAAY5qF,EAAEV,EAAE,EAAEG,EAAEwB,EAAEC,EAAE,CAAC,KAAK,aAAa,GAAG,KAAK,aAAa,GAAG,KAAK,cAAc,CAAC,IAAI,OAAO,UAAU,EAAEpU,EAAE,2BAA2BkT,EAAEV,CAAC,EAAExS,EAAE,2BAA2BkT,EAAE,CAAC,EAAE,IAAImB,EAAE,YAAY1B,GAAG,OAAO3S,EAAE,2BAA2BkT,EAAEP,CAAC,EAAE,KAAK,cAAc,KAAK,QAAQ,EAAE0B,EAAE,0BAA0B,IAAIC,EAAE,YAAYH,GAAG,OAAOnU,EAAE,2BAA2BkT,EAAEiB,CAAC,EAAE,KAAK,cAAc,KAAK,OAAO,EAAEG,EAAE,yBAAyB,KAAK,YAAYpB,EAAE,KAAK,SAAS;AAAA;AAAA,wBAEtcmB,CAAC;AAAA,uBACFC,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,yDAMiCF,CAAC;AAAA;AAAA;AAAA;AAAA,KAIrD,CAAC,EAAM2pF,IAAI,CAAC,CAAC,OAAOzrF,EAAE,QAAQ,EAAE,MAAME,CAAC,IAAI,CAAC,GAAG,CAAC,EAAEE,EAAE,KAAKC,EAAE,SAAS,EAAE,OAAO,EAAE,MAAM0B,CAAC,EAAE/B,EAAEzB,EAAE,OAAO8B,EAAE,MAAM,SAAS,EAAE,MAAM,OAAO,IAAI,8EAA8E,EAAE9B,EAAE,OAAO,GAAG,MAAM8B,EAAE,MAAM,SAAS,EAAE,MAAM,OAAO,IAAI,4EAA4E,EAAE9B,EAAE,OAAOwD,GAAG,MAAM1B,EAAE,MAAM,SAAS0B,EAAE,MAAM,OAAO,IAAI,2EAA2E,EAAE,GAAG,CAAC,gBAAgBC,CAAC,EAAE9B,EAAE8B,GAAG,OAAOA,EAAE,MAAM,IAAIC,EAAE,CAAC7B,EAAEC,EAAE,CAAC,EAAEqC,EAAE,KAAK,GAAG,OAAOA,EAAE,EAAE,MAAMT,EAAE,KAAK,CAAC,GAAG,IAAIU,EAAE,KAAKZ,GAAG,OAAOY,EAAEZ,EAAE,MAAME,EAAE,KAAKF,CAAC,GAAG,IAAIa,EAAEpR,EAAE,EAAE,QAAQ,0BAA0B,EAAE,IAAIg6F,IAAGprF,EAAE,MAAMC,EAAE,MAAM,EAAE,MAAMqC,EAAEC,EAAEX,CAAC,EAAE,IAAIupF,IAAGnrF,EAAE,MAAMC,EAAE,MAAM,EAAE,MAAMqC,EAAEC,EAAEX,CAAC,EAAE,OAAO,EAAE,gBAAgBY,EAAEX,EAAEA,EAAE,CAAC,EAAE,KAAK,CAAC,EAAEypF,IAAG,CAAC,WAAW3nG,GAAG,YAAY,QAAQ,WAAW0nG,GAAG,EAAME,IAAG,KAAK,CAAC,YAAY/qF,EAAE,CAAC,KAAK,cAAc,CAAC,QAAQ,EAAE,KAAK,YAAYA,EAAE,KAAK,KAAKA,EAAE,OAAO,IAAIV,EAAEg9E,GAAG,KAAK,IAAI,EAAE,KAAK,eAAe,CAAC,CAAC,KAAK,QAAQ,WAAW,KAAK,KAAK,KAAK,KAAK,CAAC,EAAE,IAAI,EAAE0O,IAAI,KAAK,IAAI,EAAEvrF,EAAEwB,EAAEjB,EAAE,IAAI,CAACkB,EAAEC,IAAI,aAAa8pF,GAAG9pF,CAAC,CAAC,YAAYA,CAAC,cAAc8pF,GAAG9pF,CAAC,CAAC,GAAG,EAAE1B,EAAE;AAAA,UACplCH,CAAC;AAAA,UACDA,CAAC;AAAA,UACD2B,EAAE,KAAK;AAAA,CAChB,CAAC;AAAA,QACM,KAAK,SAAS;AAAA;AAAA,UAEZxB,CAAC;AAAA,8BACmB,CAAC;AAAA;AAAA,KAE1B,CAAC,EAAEwrF,GAAG,CAAC,IAAI,IAAI,IAAI,IAAI,IAAI,GAAG,EAAE,SAASD,IAAI5rF,EAAE,CAAC,GAAGA,IAAI,EAAE,MAAM,YAAY,GAAGA,GAAG,EAAE,OAAO6rF,GAAG,MAAM,EAAE7rF,CAAC,EAAE,IAAI,GAAG,aAAa,CAAC,EAAE,KAAK,GAAG,EAAE,MAAM,MAAM,oBAAoBA,CAAC,uBAAuB,CAAC,CAAC,IAAI8rF,IAAG,KAAK,CAAC,YAAYlrF,EAAE,CAAC,KAAK,cAAc,CAAC,QAAQ,EAAE,KAAK,aAAa,GAAG,KAAK,aAAa,GAAG,KAAK,YAAYA,EAAE,KAAK,KAAKA,EAAE,OAAO,KAAK,eAAe,CAAC,CAAC,KAAK,QAAQ,WAAW,KAAK,KAAK,KAAK,KAAK,CAAC,EAAE,IAAIV,EAAEg9E,GAAG,KAAK,IAAI,EAAE,EAAEuF,GAAG,SAAS,KAAK,IAAI,EAAEpiF,EAAEoiF,GAAG,YAAY,KAAK,IAAI,EAAE5gF,EAAE,KAAK,OAAO,EAAE,YAAY,QAAQxB,EAAE,MAAM,EAAE,EAAE,KAAK,CAAC,IAAIyB,EAAE,wBAAwBzB,EAAE,KAAK,CAAC,MAAMwB,CAAC,IAAIE,EAAE;AAAA,mBACtjBD,CAAC;AAAA,cACN,EAAE,KAAK,KAAK,CAAC,CAAC,MAAMlB,EAAE,KAAK,KAAK,CAAC,CAAC;AAAA,YACpCP,EAAE,KAAK,KAAK,CAAC,CAAC;AAAA,qBACLyB,CAAC;AAAA,YACVzB,EAAE,KAAK,KAAK,CAAC,CAAC;AAAA;AAAA,MAEpB2B,EAAE,KAAK,OAAO,EAAE,GAAG;AAAA,UACf,EAAE,KAAK,KAAK,CAAC,CAAC;AAAA,cACV,EAAE,KAAK,KAAK,CAAC,CAAC,MAAMpB,EAAE,KAAK,KAAK,CAAC,CAAC;AAAA,YACpCP,EAAE,KAAK,KAAK,CAAC,CAAC;AAAA,qBACLyB,CAAC;AAAA,gBACN,EAAE,KAAK,KAAK,CAAC,CAAC,MAAMlB,EAAE,KAAK,KAAK,CAAC,CAAC;AAAA,cACpCP,EAAE,KAAK,KAAK,CAAC,CAAC;AAAA,uBACLyB,CAAC;AAAA;AAAA;AAAA,MAGlB,EAAE,KAAK,MAAM,EAAE;AAAA,cACP5B,CAAC,IAAIU,EAAE,IAAI,CAAC8B,EAAE,IAAI,SAAS,CAAC,GAAG,EAAE,KAAK,CAAC,KAAK9B,EAAE,IAAI,CAAC8B,EAAE,IAAI,GAAGrC,EAAE,CAAC,CAAC,MAAM,EAAE,CAAC,CAAC,YAAY,CAAC,IAAI,EAAE,KAAK;AAAA,CAC/G,EAAE,KAAK,SAAS;AAAA;AAAA,UAEPH,CAAC;AAAA,UACDA,CAAC;AAAA,UACD,CAAC;AAAA;AAAA,UAED6B,CAAC;AAAA,UACDC,CAAC;AAAA;AAAA;AAAA,KAGN,CAAC,EAAE,SAAS+pF,IAAI/rF,EAAE,EAAEE,EAAEE,EAAE,CAAC,IAAIC,EAAED,EAAE,QAAQ,IAAIJ,EAAE,MAAM,EAAE,EAAEI,EAAE,eAAeF,EAAEF,EAAE,KAAK,EAAE,EAAEI,EAAE,QAAQ,IAAI,EAAE,MAAM,EAAE,OAAO,OAAO,EAAEC,CAAC,EAAE,EAAE,SAAS,EAAE,EAAE,MAAMH,EAAE,EAAE,MAAMF,EAAE,MAAM,IAAI+B,EAAErG,GAAG,kBAAkB,EAAE6C,EAAE,eAAeyB,EAAE,KAAK,CAAC,EAAEK,EAAE,QAAQ0B,GAAG1B,EAAE,MAAM,YAAY,EAAE,MAAM,CAAC,WAAW0B,EAAE,WAAW1B,EAAE,OAAOA,EAAE,MAAM,YAAYL,EAAE,MAAM,EAAE,IAAIgC,EAAE5B,EAAE,aAAa,IAAI,EAAE,MAAM,UAAU,GAAG,EAAE,OAAOA,EAAE,aAAa,IAAI,EAAE,MAAM,WAAW4B,EAAE,CAAC,EAAE,CAAC,CAAC,SAASgqF,GAAGhsF,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,CAAC,EAAE,EAAE,CAAC,MAAM,EAAE,KAAK,CAAC,EAAED,EAAE,CAAC2B,EAAEC,CAAC,EAAEtG,GAAG,iBAAiB2E,EAAE,EAAE,CAAC,EAAE,GAAG3E,GAAG,kBAAkB2E,EAAE0B,EAAEC,CAAC,EAAEzD,EAAE,cAAcyD,CAAC,IAAI,EAAE,OAAO9B,EAAE,eAAe8B,EAAE3B,EAAE,MAAM,CAAC,CAAC,EAAE,GAAGH,EAAE,mBAAmB,CAACG,CAAC,CAAC,GAAGA,EAAE,QAAQ,SAAS,CAAC,IAAIsC,EAAEzC,EAAE,QAAQ,IAAIG,EAAE,MAAM,EAAEuC,EAAE6+E,GAAG9+E,EAAE,OAAOZ,EAAEC,EAAE3B,EAAE,MAAMA,EAAE,KAAK,EAAE,OAAOH,EAAE,eAAe8B,EAAE3B,EAAE,MAAMuC,CAAC,CAAC,CAAC,GAAG,CAAC,SAASX,CAAC,EAAE/B,EAAE,QAAQ,IAAIG,EAAE,MAAM,EAAEqC,EAAEhH,GAAG,iBAAiB2E,EAAE,MAAM0B,EAAEC,CAAC,EAAE,GAAGC,GAAG,CAACS,EAAE,CAAC,IAAIC,EAAEnR,EAAE,EAAE,QAAQ,6BAA6B,EAAE,IAAIs6F,IAAG9pF,CAAC,EAAE,IAAI2pF,IAAG3pF,CAAC,EAAEY,EAAE,CAACb,CAAC,EAAE,OAAO7B,EAAE,gBAAgByC,EAAE,CAACtC,CAAC,EAAEA,EAAE,MAAMuC,CAAC,CAAC,CAAC,OAAO1C,EAAE,YAAYG,EAAE,MAAM,EAAE0rF,IAAI1rF,EAAE0B,EAAEC,EAAE9B,CAAC,CAAC,CAAC,IAAI+rF,IAAG,CAAC,WAAW9hG,GAAG,YAAY,QAAQ,WAAW6hG,EAAE,EAAME,IAAIlsF,GAAG,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,CAAC,EAAE,EAAE,CAAC,WAAW,EAAE,MAAM,CAAC,EAAED,EAAE7B,EAAE,OAAO8B,EAAE,MAAM,QAAQ,EAAE,IAAI,sEAAsE,EAAE,IAAI0B,EAAE,EAAE,OAAO,CAAC+C,EAAEL,IAAIK,EAAEL,CAAC,EAAEzC,EAAEtU,EAAE,YAAY2S,EAAE,MAAM,EAAE0B,CAAC,EAAEE,EAAEvU,EAAE,YAAYsU,EAAE,OAAO,EAAE,MAAM,EAAEU,EAAEhV,EAAE,oBAAoB2S,EAAE,MAAM,EAAE0B,CAAC,EAAEY,EAAEjV,EAAE,oBAAoB,EAAE,EAAE,MAAM,EAAEkV,EAAElV,EAAE,aAAagV,EAAE,EAAE,EAAE,MAAM,EAAEG,EAAE,CAAC,EAAEC,EAAE2jF,GAAG,CAAC,OAAO,CAAC,EAAEpmF,CAAC,EAAE,QAAQH,EAAE,MAAM,CAAC,MAAM8B,CAAC,CAAC,CAAC,EAAEgC,EAAEsjF,GAAG,CAAC,OAAO,CAAC,EAAExkF,CAAC,EAAE,QAAQ5C,EAAE,MAAM,CAAC,KAAK+B,CAAC,CAAC,CAAC,EAAE,EAAEwkF,GAAG,CAAC,OAAO,CAAC,EAAEziF,CAAC,EAAE,QAAQ9D,EAAE,MAAM,CAAC,MAAMwC,CAAC,CAAC,CAAC,EAAE4E,EAAE0kF,GAAG,CAAC,OAAO,CAAC,EAAE,CAAC,EAAE,QAAQ9rF,EAAE,MAAM,CAAC,MAAMyC,EAAE,KAAKC,CAAC,CAAC,CAAC,EAAE,OAAOC,EAAE,KAAKC,CAAC,EAAED,EAAE,KAAKmB,CAAC,EAAEnB,EAAE,KAAK,CAAC,EAAEA,EAAE,QAAQiC,GAAG5E,EAAE,8BAA8B4E,CAAC,CAAC,EAAEwC,CAAC,EAAE6kF,IAAG,CAAC,WAAWzrG,GAAG,YAAY,QAAQ,WAAWwrG,GAAG,EAAE,SAASE,IAAIpsF,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,EAAE,QAAQ,CAAC,EAAE,EAAE,CAAC,KAAK,CAAC,EAAED,EAAE2B,EAAE7B,EAAE,SAASG,EAAE,MAAM,EAAE2B,EAAE9B,EAAE,SAAS,EAAE,MAAM,EAAE+B,EAAEu9E,GAAGz9E,EAAEC,EAAE,EAAE,MAAM,EAAE,MAAM,CAAC,EAAE,OAAO9B,EAAE,eAAe,CAAC,CAAC,EAAE,EAAE,MAAM+B,CAAC,CAAC,CAAC,IAAIoqF,IAAG,CAAC,WAAW1rG,GAAG,YAAY,QAAQ,WAAWyrG,GAAG,EAAME,IAAI;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAMlhEC,IAAI;AAAA;AAAA,EAEJ,SAASC,IAAIxsF,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,CAAC,EAAEF,EAAE,CAACI,EAAI,EAAEC,CAAC,EAAE,EAAE,EAAE7O,EAAE,EAAE,QAAQ,8BAA8B,EAAE,EAAEA,EAAE,EAAE,UAAU,eAAe,EAAE,GAAG0O,EAAE,mBAAmB,CAACE,EAAEC,CAAC,CAAC,GAAG,IAAI,EAAE,CAAC,IAAI2B,EAAE9B,EAAE,QAAQ,IAAIE,EAAE,MAAM,EAAE,OAAO6B,EAAE/B,EAAE,QAAQ,IAAIG,EAAE,MAAM,EAAE,OAAO,CAACqC,EAAEC,CAAC,EAAE+8E,GAAGt/E,EAAE,MAAMC,EAAE,MAAM2B,EAAEC,EAAE7B,EAAE,KAAK,EAAEwC,EAAE1C,EAAE,eAAeyC,EAAEvC,EAAE,KAAK,EAAEyC,EAAE3C,EAAE,QAAQ,IAAI0C,EAAE,MAAM,EAAE,OAAOC,EAAE,OAAOH,EAAEE,CAAC,CAAC,IAAIb,EAAE,OAAO,EAAEA,EAAE,IAAIkjF,GAAGqH,IAAIlsF,EAAE,MAAMC,EAAE,MAAM,EAAE,EAAE0B,EAAE,IAAIgjF,GAAGwH,IAAInsF,EAAE,MAAMC,EAAE,KAAK,EAAEH,EAAE,gBAAgB6B,EAAE,CAAC3B,EAAEC,CAAC,EAAED,EAAE,KAAK,CAAC,CAAC,IAAIqsF,IAAG,CAAC,WAAW7rG,GAAG,YAAY,QAAQ,WAAW4rG,GAAG,EAAE,SAASE,IAAI1sF,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,CAAC,EAAEF,EAAE,CAAC,GAAGI,EAAE,GAAGC,CAAC,EAAE,EAAE,EAAEH,EAAE,SAASE,EAAE,MAAM,EAAE,EAAEF,EAAE,SAASG,EAAE,MAAM,EAAE0B,EAAErU,EAAE,2BAA2B,MAAM,KAAK,CAAC,EAAE,MAAM,KAAK,CAAC,CAAC,EAAE,OAAOwS,EAAE,eAAe,CAAC6B,EAAE,MAAM,EAAE,QAAQ,WAAW,KAAKA,CAAC,CAAC,CAAC,CAAC,IAAI4qF,IAAG,CAAC,WAAW9rG,GAAG,YAAY,QAAQ,WAAW6rG,GAAG,EAAME,IAAI,wBAAwBC,GAAG7G,GAAG,CAAC,UAAU4G,IAAI,cAAc7L,GAAG,MAAM,MAAM,CAAC,EAAE+L,IAAG,CAAC,WAAWvlG,GAAG,YAAY,QAAQ,WAAWslG,EAAE,EAAE,SAASE,GAAG/sF,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,CAAC,EAAEF,EAAE,CAAC,MAAMI,CAAC,EAAE,EAAEC,EAAEH,EAAE,QAAQ,IAAIE,EAAE,MAAM,EAAE,OAAO8kF,GAAG,CAAC,OAAO,CAAC,EAAE7kF,EAAE,mBAAmB,IAAI,EAAE,QAAQH,CAAC,CAAC,CAAC,CAAC,IAAI8sF,IAAG,CAAC,WAAWtkG,GAAG,YAAY,QAAQ,WAAWqkG,EAAE,EAAME,IAAI,wBAAwB,SAASC,IAAGltF,EAAE,EAAE,CAAC,IAAIE,EAAE,IAAImjF,GAAGrjF,EAAE,MAAMitF,GAAG,EAAE7sF,EAAE,EAAE,gBAAgBF,EAAE,CAACF,CAAC,EAAE,OAAO,EAAE,MAAM,CAAC,OAAOI,EAAE,OAAO,MAAMA,EAAE,MAAM,MAAMA,EAAE,KAAK,CAAC,CAAC,SAAS+sF,GAAGntF,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,CAAC,EAAE,EAAE,CAAC,MAAM,CAAC,EAAED,EAAE,GAAG,IAAI,YAAY,CAAC,GAAGC,EAAE,QAAQ,YAAY,OAAO6kF,GAAG,CAAC,OAAO,CAAC,EAAE7kF,CAAC,EAAE,QAAQH,CAAC,CAAC,EAAE,IAAI,EAAEX,GAAGc,EAAE,KAAK,EAAE0B,EAAEorF,GAAG,CAAC,OAAO,CAAC,EAAE9sF,CAAC,EAAE,QAAQH,EAAE,MAAM,CAAC,MAAM,SAAS,CAAC,CAAC,EAAE8B,EAAEojF,GAAG,CAAC,OAAO,CAAC,KAAKrjF,EAAE,KAAK,CAAC,EAAE,QAAQ7B,CAAC,CAAC,EAAE,OAAO,EAAE,QAAQ,EAAEA,EAAE,8BAA8B6B,CAAC,EAAEC,CAAC,CAAC,GAAG3B,EAAE,QAAQ,YAAY,CAAC,IAAI,EAAE0sF,GAAG,CAAC,OAAO,CAAC,MAAM1sF,CAAC,EAAE,QAAQH,CAAC,CAAC,EAAE6B,EAAEorF,GAAG,CAAC,OAAO,CAAC,EAAE,CAAC,EAAE,QAAQjtF,EAAE,MAAM,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,OAAOA,EAAE,8BAA8B,CAAC,EAAE6B,CAAC,CAAC,GAAG,CAACxD,EAAE,gBAAgB8B,EAAE,MAAM,CAAC,EAAE,CAAC,IAAI,EAAE6kF,GAAG,CAAC,OAAO,CAAC,EAAE7kF,CAAC,EAAE,QAAQH,CAAC,CAAC,EAAE,MAAM,CAAC,OAAO,EAAE,OAAO,MAAM,EAAE,MAAM,MAAM,CAAC,CAAC,CAAC,GAAGA,EAAE,mBAAmB,CAACG,CAAC,CAAC,EAAE,CAAC,IAAI,EAAEH,EAAE,QAAQ,IAAIG,EAAE,MAAM,EAAE,OAAO,CAAC0B,EAAEC,EAAEC,CAAC,EAAE09E,GAAG,EAAEt/E,EAAE,MAAMA,EAAE,MAAM,CAAC,EAAE,OAAOH,EAAE,eAAe6B,EAAEC,EAAEC,CAAC,CAAC,CAAC,GAAG,IAAI,QAAQ,OAAOirF,IAAG7sF,EAAEH,CAAC,EAAE,GAAG,IAAI,OAAO,CAAC,IAAI,EAAEA,EAAE,eAAe,CAAC,EAAE,OAAO3B,EAAE,uBAAuB,OAAO,CAAC,CAAC,EAAEyD,EAAE6qF,GAAG,CAAC,OAAO,CAAC,EAAExsF,EAAE,EAAE,CAAC,EAAE,QAAQH,CAAC,CAAC,EAAE,OAAOA,EAAE,8BAA8B,CAAC,EAAE8B,CAAC,CAAC,MAAM,IAAI,MAAM,iCAAiC3B,EAAE,KAAK,OAAO,CAAC,EAAE,CAAC,CAAC,IAAI+sF,IAAG,CAAC,WAAWnsG,GAAG,YAAY,QAAQ,WAAWksG,EAAE,EAAME,GAAG,kBAAkBC,IAAIvH,GAAG,CAAC,UAAUsH,GAAG,gBAAgBA,GAAG,cAAczN,EAAE,CAAC,EAAE2N,IAAG,CAAC,WAAWrsG,GAAG,YAAY,QAAQ,WAAWosG,GAAG,EAAME,IAAG,KAAK,CAAC,YAAY5sF,EAAE,CAAC,KAAK,cAAc,CAAC,GAAG,EAAE,KAAK,eAAe,CAAC,CAAC,KAAK,SAAS,KAAK,OAAO,EAAE,CAAC,KAAK,SAAS,KAAK,OAAO,CAAC,EAAE,KAAK,YAAYA,EAAE,KAAK,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,KAWtlF,CAAC,EAAM6sF,IAAG,KAAK,CAAC,YAAY7sF,EAAE,CAAC,KAAK,cAAc,CAAC,GAAG,EAAE,KAAK,aAAa,GAAG,KAAK,aAAa,GAAG,KAAK,eAAe,CAAC,CAAC,KAAK,SAAS,KAAK,OAAO,EAAE,CAAC,KAAK,SAAS,KAAK,OAAO,CAAC,EAAE,KAAK,YAAYA,EAAE,KAAK,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,KAWnN,CAAC,EAAE,SAAS8sF,IAAI1tF,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,CAAC,EAAE,EAAE,CAAC,aAAa,EAAE,aAAa,CAAC,EAAED,EAAE2B,EAAEvQ,EAAE,EAAE,QAAQ,iBAAiB,EAAEuQ,EAAE,IAAI0rF,IAAGptF,EAAE,KAAK,EAAE0B,EAAE,IAAIyrF,IAAGntF,EAAE,KAAK,EAAE,IAAI2B,EAAE,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,EAAE,OAAO9B,EAAE,gBAAgB6B,EAAE,CAAC1B,CAAC,EAAEA,EAAE,MAAM2B,CAAC,CAAC,CAAC,IAAI2rF,IAAG,CAAC,WAAWxsG,GAAG,YAAY,QAAQ,WAAWusG,GAAG,EAAME,IAAG,KAAK,CAAC,YAAYhtF,EAAE,CAAC,KAAK,cAAc,CAAC,OAAO,MAAM,EAAE,KAAK,YAAYA,EAAE,KAAK,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,KAaxX,CAAC,EAAE,SAASitF,GAAG7tF,EAAE,EAAE,CAAC,MAAM,CAAC,OAAO,EAAE,OAAO,MAAM,EAAE,MAAM,MAAMA,EAAE,KAAK,CAAC,CAAC,SAAS8tF,IAAI9tF,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,CAAC,EAAEF,EAAE,CAAC,EAAEI,CAAC,EAAE,EAAEC,EAAEH,EAAE,QAAQ,IAAIE,EAAE,MAAM,EAAE,EAAE,IAAIwtF,IAAGxtF,EAAE,KAAK,EAAE,EAAE,CAACytF,GAAGztF,EAAEC,EAAE,mBAAmB,IAAI,EAAEwtF,GAAGztF,EAAEC,EAAE,mBAAmB,IAAI,CAAC,EAAE,OAAOH,EAAE,gBAAgB,EAAE,EAAE,EAAE,CAAC,EAAE,KAAK,CAAC,CAAC,IAAI6tF,IAAG,CAAC,WAAW1sG,GAAG,YAAY,QAAQ,WAAWysG,GAAG,EAAME,IAAG,KAAK,CAAC,YAAYptF,EAAE,CAAC,KAAK,YAAY,CAAC,EAAE,KAAK,YAAYlT,EAAE,gBAAgBkT,EAAE,CAAC,EAAE,KAAK,cAAcA,EAAE,IAAI,CAACkB,EAAEC,IAAI,IAAIA,CAAC,EAAE,EAAE,IAAI7B,EAAE,IAAI,MAAMU,EAAE,OAAO,CAAC,EAAEV,EAAE,CAAC,EAAEU,EAAE,CAAC,EAAE,CAAC,EAAE,QAAQkB,EAAE,EAAEA,EAAE5B,EAAE,OAAO4B,IAAI5B,EAAE4B,CAAC,EAAE5B,EAAE4B,EAAE,CAAC,EAAElB,EAAEkB,CAAC,EAAE,CAAC,EAAE,IAAI,EAAE,CAAC,YAAY5B,EAAE,CAAC,CAAC,6BAA6B,EAAE,QAAQ4B,EAAE,EAAEA,EAAE5B,EAAE,OAAO4B,IAAI,CAAC,IAAIC,EAAE7B,EAAE4B,EAAE,CAAC,EAAE,EAAE,KAAK,iBAAiB5B,EAAE4B,CAAC,CAAC,mBAAmBA,CAAC,WAAWC,CAAC,KAAK,CAAC,CAAC,IAAI1B,EAAEH,EAAE,OAAO2B,EAAE3B,EAAEA,EAAE,OAAO,CAAC,EAAE,EAAE,KAAK,sBAAsBG,CAAC,WAAWwB,CAAC,KAAK,EAAE,KAAK,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,UAMjyB,EAAE,KAAK;AAAA,SACR,CAAC;AAAA;AAAA,KAEL,CAAC,EAAMosF,IAAG,KAAK,CAAC,YAAYrtF,EAAEV,EAAE,CAAC,KAAK,aAAa,GAAG,KAAK,aAAa,GAAG,KAAK,YAAY,CAAC,EAAE,KAAK,YAAYxS,EAAE,gBAAgBkT,EAAEV,CAAC,EAAE,IAAI,EAAE,KAAK,YAAYG,EAAE,EAAE,OAAOwB,EAAEq7E,GAAG78E,CAAC,EAAEyB,EAAE2gF,GAAG,SAASpiF,CAAC,EAAE0B,EAAE,CAAC,IAAI,IAAI,IAAI,IAAI,IAAI,GAAG,EAAE,MAAM,EAAE1B,CAAC,EAAE,KAAK,cAAcO,EAAE,IAAI,CAACoD,EAAEC,IAAI,IAAIA,CAAC,EAAE,EAAE,IAAIjC,EAAE,IAAI,MAAMpB,EAAE,OAAO,CAAC,EAAEoB,EAAE,CAAC,EAAEpB,EAAE,CAAC,EAAEV,CAAC,EAAE,QAAQ8D,EAAE,EAAEA,EAAEhC,EAAE,OAAOgC,IAAIhC,EAAEgC,CAAC,EAAEhC,EAAEgC,EAAE,CAAC,EAAEpD,EAAEoD,CAAC,EAAE9D,CAAC,EAAE,IAAI,EAAE6B,EAAE7B,CAAC,EAAEwC,EAAEX,EAAE,MAAM,EAAE,EAAE,EAAEA,EAAE,KAAK,EAAEa,EAAE,OAAO,CAAC,MAAMZ,EAAE,CAAC,CAAC;AAAA;AAAA,oBAEnZ,CAAC,WAAWU,EAAE,KAAK,CAAC;AAAA,WAC7B,QAAQsB,EAAE,EAAEA,EAAEhC,EAAE,OAAOgC,IAAI,CAAC,IAAIC,EAAEjC,EAAEgC,EAAE,CAAC,EAAEpB,GAAG;AAAA,cACzC,CAAC,MAAMZ,EAAEgC,CAAC,CAAC,QAAQ,CAAC,OAAOhC,EAAEgC,EAAE,CAAC,CAAC;AAAA;AAAA,kBAE7BA,CAAC,IAAIkqF,GAAGnsF,EAAE,EAAEkC,CAAC,CAAC;AAAA,mBACbiqF,GAAGxrF,EAAE,EAAEuB,CAAC,CAAC;AAAA,UAClB,CAAC,IAAIpB,EAAEb,EAAE,OAAOc,EAAEd,EAAEA,EAAE,OAAO,CAAC,EAAEY,GAAG;AAAA;AAAA,gBAE7BC,CAAC,IAAIqrF,GAAGnsF,EAAE,EAAEe,CAAC,CAAC;AAAA,iBACborF,GAAGxrF,EAAE,EAAEI,CAAC,CAAC,MAAM,KAAK,SAAS;AAAA,uBACvBf,EAAE,IAAIiC,GAAG,OAAOA,CAAC,CAAC;AAAA,UAC/BpB,CAAC;AAAA;AAAA;AAAA;AAAA,UAIDf,CAAC;AAAA,sCAC2BC,CAAC;AAAA;AAAA,UAE7BA,EAAEzB,EAAE,CAAC,CAAC,MAAMyB,EAAEzB,EAAE,CAAC,CAAC;AAAA,cACdyB,EAAEzB,EAAE,CAAC,CAAC,MAAM,EAAEA,EAAE,CAAC,CAAC;AAAA,gCACAyB,CAAC;AAAA;AAAA;AAAA,UAGvBA,EAAEzB,EAAE,CAAC,CAAC,MAAMyB,EAAEzB,EAAE,CAAC,CAAC;AAAA,cACdyB,EAAEzB,EAAE,CAAC,CAAC,MAAM,EAAEA,EAAE,CAAC,CAAC;AAAA,gCACAyB,CAAC;AAAA;AAAA;AAAA,UAGvBA,EAAEzB,EAAE,CAAC,CAAC,MAAMyB,EAAEzB,EAAE,CAAC,CAAC;AAAA,cACdyB,EAAEzB,EAAE,CAAC,CAAC,MAAM,EAAEA,EAAE,CAAC,CAAC;AAAA,cAClByB,EAAEzB,EAAE,CAAC,CAAC,MAAM,EAAEA,EAAE,CAAC,CAAC;AAAA,gCACAyB,CAAC;AAAA;AAAA;AAAA;AAAA,KAI5B,CAAC,EAAE,SAASosF,GAAGluF,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAEJ,EAAE,QAAQ,CAAC,EAAE,OAAOA,EAAE,IAAI,CAAC6B,EAAEC,IAAIA,IAAI1B,EAAE,GAAGyB,CAAC,MAAM3B,CAAC,GAAG2B,CAAC,EAAE,KAAK,CAAC,CAAC,SAASssF,GAAGnuF,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,CAAC,EAAEF,EAAE,CAAC,MAAMI,CAAC,EAAE,EAAEC,EAAEH,EAAE,QAAQ,IAAIE,EAAE,MAAM,EAAE,OAAO8kF,GAAG,CAAC,OAAO,CAAC,EAAE7kF,EAAE,mBAAmB,IAAI,EAAE,QAAQH,CAAC,CAAC,CAAC,CAAC,IAAIkuF,IAAG,CAAC,WAAWzpG,GAAG,YAAY,QAAQ,WAAWwpG,EAAE,EAAE,SAASE,GAAGruF,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAEJ,EAAE,CAAC,EAAE,MAAM,GAAGI,IAAI,YAAY,CAAC,IAAIyC,EAAE7C,EAAE,IAAI8E,GAAGioF,GAAG,CAAC,OAAO,CAAC,MAAMjoF,CAAC,EAAE,QAAQ5E,CAAC,CAAC,CAAC,EAAE4C,EAAE9C,EAAE,IAAI8E,GAAGqpF,GAAG,CAAC,OAAO,CAAC,MAAMrpF,CAAC,EAAE,QAAQ5E,CAAC,CAAC,CAAC,EAAE8D,EAAEqqF,GAAGxrF,EAAE,EAAE3C,CAAC,EAAE,EAAEmuF,GAAGvrF,EAAE,EAAE5C,CAAC,EAAEoH,EAAE89E,GAAG,CAAC,OAAO,CAAC,KAAKphF,EAAE,KAAK,CAAC,EAAE,QAAQ9D,CAAC,CAAC,EAAE,OAAO2C,EAAE,QAAQiC,GAAG5E,EAAE,8BAA8B4E,CAAC,CAAC,EAAEhC,EAAE,QAAQgC,GAAG5E,EAAE,8BAA8B4E,CAAC,CAAC,EAAE5E,EAAE,8BAA8B8D,CAAC,EAAE9D,EAAE,8BAA8B,CAAC,EAAEoH,CAAC,CAAC,IAAIjH,EAAEH,EAAE,mBAAmBF,CAAC,EAAE,GAAGI,IAAI,WAAWC,EAAE,IAAIA,EAAE,CAAC,IAAIwC,EAAE7C,EAAE,IAAI0E,GAAG,CAAC,IAAIE,EAAE,CAAC,GAAGrG,EAAE,cAAcmG,EAAE,MAAM,MAAM,CAAC,CAAC,CAAC,EAAE,OAAO+hF,GAAG,CAAC,OAAO,CAAC,EAAE/hF,CAAC,EAAE,QAAQxE,EAAE,MAAM,CAAC,MAAM0E,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE9B,EAAED,EAAE,IAAI6B,IAAI,CAAC,KAAKxE,EAAE,SAASwE,EAAE,MAAM,EAAE,MAAMA,EAAE,KAAK,EAAE,EAAEV,EAAEtW,EAAE,gBAAgBmV,EAAE,IAAI6B,GAAGA,EAAE,KAAK,EAAE,CAAC,EAAE,EAAE7B,EAAE,CAAC,EAAE,MAAM,CAAC,IAAI,EAAEyE,EAAEu4E,GAAG/8E,EAAEkB,EAAE5D,EAAE,CAAC,EAAE0E,EAAEpX,EAAE,gBAAgBsS,EAAE,IAAI0E,GAAGA,EAAE,KAAK,EAAE,CAAC,EAAED,EAAEvE,EAAE,eAAe4E,EAAE1E,EAAEkH,CAAC,EAAE,OAAOzE,EAAE,QAAQ6B,GAAGxE,EAAE,8BAA8BwE,CAAC,CAAC,EAAED,CAAC,CAAC,IAAI,EAAEzE,EAAE,OAAO6C,GAAGtE,EAAE,cAAcsE,EAAE,KAAK,EAAE,CAAC,EAAE,EAAErR,EAAE,EAAE,QAAQ,6BAA6B,GAAG,EAAE,CAAC,EAAE,MAAM,OAAO,EAAE,GAAG,EAAE,SAAS,EAAE,CAAC,IAAIqR,EAAE,EAAE,IAAIwgF,GAAGrjF,EAAE,CAAC,EAAE,MAAM4jF,EAAE,EAAE,IAAIO,GAAGnkF,EAAE,CAAC,EAAE,MAAM4jF,EAAE,EAAE,OAAO1jF,EAAE,gBAAgB2C,EAAE7C,EAAEI,CAAC,CAAC,CAAC,IAAI2B,EAAEvQ,EAAE,EAAE,UAAU,8BAA8B,EAAE,GAAG,EAAE,OAAOuQ,EAAE,CAAC,IAAIc,EAAE,CAAC,EAAE,QAAQmB,EAAE,EAAEA,EAAE,EAAE,OAAOA,GAAGjC,EAAE,CAAC,IAAI,EAAE,EAAE,MAAMiC,EAAEA,EAAEjC,CAAC,EAAEc,EAAE,KAAKwrF,GAAG,EAAE,EAAEnuF,CAAC,CAAC,CAAC,CAAC,IAAI4C,EAAEurF,GAAGxrF,EAAE,EAAE3C,CAAC,EAAE,QAAQ8D,KAAKnB,EAAE3C,EAAE,8BAA8B8D,CAAC,EAAE,OAAOlB,CAAC,CAAC,GAAG,EAAE,CAAC,IAAID,EAAE,IAAIorF,IAAG,EAAE,IAAInrF,GAAGA,EAAE,KAAK,EAAE,CAAC,EAAE,OAAO5C,EAAE,gBAAgB2C,EAAE,EAAEzC,CAAC,CAAC,CAAC,GAAG,CAAC,UAAU4B,EAAE,SAASC,CAAC,EAAEqsF,IAAI,EAAE,EAAEpuF,CAAC,EAAEwC,EAAE,IAAIsrF,IAAGhsF,EAAE,IAAIa,GAAGA,EAAE,KAAK,CAAC,EAAEF,EAAEzC,EAAE,gBAAgBwC,EAAEV,EAAE5B,CAAC,EAAE4B,EAAE,QAAQa,GAAG3C,EAAE,8BAA8B2C,CAAC,CAAC,EAAE,IAAID,EAAE6jF,GAAG,CAAC,OAAO,CAAC,EAAE9jF,CAAC,EAAE,MAAM,CAAC,MAAMV,CAAC,EAAE,QAAQ/B,CAAC,CAAC,EAAE,OAAOA,EAAE,8BAA8ByC,CAAC,EAAEC,CAAC,CAAC,SAAS0rF,IAAItuF,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAE1S,EAAE,gBAAgBsS,EAAE,IAAI6B,GAAGA,EAAE,KAAK,EAAE,CAAC,EAAE,MAAM,CAAC,UAAU7B,EAAE,IAAI6B,GAAG4kF,GAAG,CAAC,OAAO,CAAC,EAAE5kF,CAAC,EAAE,MAAM,CAAC,MAAM,CAAC,GAAGtD,EAAE,cAAcsD,EAAE,MAAM,MAAM,CAAC,CAAC,CAAC,CAAC,EAAE,QAAQ3B,CAAC,CAAC,CAAC,EAAE,SAASE,CAAC,CAAC,CAAC,SAASmuF,GAAGvuF,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,KAAKK,CAAC,EAAED,EAAE,EAAE7B,EAAE,eAAe8B,EAAE,EAAE,CAAC,EAAE,KAAK,EAAE,CAAC,EAAE,EAAE,EAAE,IAAI4B,GAAGA,EAAE,KAAK,EAAEvU,EAAE,uBAAuB,EAAE,CAAC,EAAE,IAAIqU,EAAErU,EAAE,gBAAgB,EAAE,IAAIuU,GAAGA,EAAE,KAAK,EAAE,CAAC,EAAE,GAAG1D,EAAE,cAAcwD,CAAC,IAAI,EAAE,OAAO7B,EAAE,eAAe6B,EAAE,EAAE,CAAC,EAAE,MAAM,CAAC,CAAC,EAAE,IAAIC,EAAE,EAAE,OAAOC,GAAG1D,EAAE,cAAc0D,EAAE,KAAK,EAAE,CAAC,EAAE,OAAOD,EAAE,SAAS,EAAEkjF,GAAG,CAAC,OAAO,CAAC,EAAEljF,EAAE,CAAC,CAAC,EAAE,QAAQ9B,CAAC,CAAC,EAAEmuF,GAAGrsF,EAAE,EAAE9B,CAAC,CAAC,CAAC,IAAIsuF,IAAG,CAAC,WAAWltG,GAAG,YAAY,QAAQ,WAAWitG,EAAE,EAAME,GAAG,KAAK,CAAC,YAAY7tF,EAAEV,EAAE,GAAG,EAAE,KAAKG,EAAE,GAAGwB,EAAE,GAAG,CAAC,KAAK,cAAc,CAAC,IAAI,GAAG,EAAE,KAAK,YAAYjB,EAAE,SAAS,IAAIkB,EAAElB,EAAE,QAAQ,IAAImB,EAAEnB,EAAE,QAAQ,KAAKoB,EAAEpB,EAAE,aAAa,EAAEA,EAAE,YAAY8B,EAAE9B,EAAE,eAAe,EAAEA,EAAE,cAAcgC,EAAEhC,EAAE,aAAaiC,EAAEjC,EAAE,YAAYkC,EAAE,KAAK,MAAMlC,EAAE,WAAW,CAAC,EAAE,EAAEoD,EAAEpD,EAAE,WAAW,EAAEqD,EAAErD,EAAE,aAAa,eAAe0G,EAAErD,EAAE,EAAE,EAAE,EAAEA,EAAE,EAAE,EAAEQ,EAAER,EAAE,EAAE,EAAES,EAAE,GAAGC,EAAE,GAAG,IAAItE,EAAEqE,EAAE;AAAA;AAAA,YAEpwF,CAAC;AAAA,WACF7C,EAAE6C,EAAE;AAAA;AAAA,YAEH,CAAC;AAAA,WACFA,EAAE;AAAA;AAAA,cAEC,CAAC;AAAA;AAAA,UAELC,EAAE,gCAAgC,IAAIC,EAAE1E,EAAE,kCAAkC,GAAGA,GAAG,KAAK,cAAc,KAAK,MAAM,EAAEG,GAAG,KAAK,cAAc,KAAK,wBAAwB,EAAEwB,GAAG,KAAK,cAAc,KAAK,gBAAgB,EAAE,KAAK,SAAS;AAAA,QACpO6C,CAAC;AAAA;AAAA,oCAE2B1C,CAAC,KAAK,CAAC;AAAA,iCACVF,CAAC,KAAKC,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA,0BAKd0C,CAAC;AAAA;AAAA;AAAA,2BAGA6C,CAAC,aAAa,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,gCAOV1E,CAAC;AAAA,qCACIF,CAAC;AAAA;AAAA,gCAEN9B,EAAE,QAAQ;AAAA;AAAA;AAAA;AAAA,kCAIRiC,CAAC;AAAA,uCACI,CAAC;AAAA;AAAA,kCAENjC,EAAE,OAAO;AAAA;AAAA;AAAA;AAAA,oCAIPkC,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,oBAQjBmB,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,kBAmBHD,IAAI,CAAC;AAAA;AAAA,oBAEHC,CAAC;AAAA;AAAA,0CAEqBnB,CAAC;AAAA,mCACRA,CAAC;AAAA;AAAA;AAAA,kCAGFA,CAAC;AAAA,mCACAA,CAAC;AAAA;AAAA;AAAA,yBAGXkB,IAAI,CAAC;AAAA;AAAA,+BAEClB,CAAC;AAAA,+BACDA,CAAC;AAAA;AAAA;AAAA,oBAGZmB,CAAC;AAAA;AAAA,wCAEmBnB,CAAC;AAAA,wCACDA,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA,gCAKTA,CAAC;AAAA,gCACDA,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA,yBAKRkB,IAAI,CAAC;AAAA;AAAA,+BAEClB,CAAC;AAAA,+BACDA,CAAC;AAAA,+BACDA,CAAC;AAAA;AAAA;AAAA,oBAGZmB,CAAC;AAAA;AAAA,wCAEmBnB,CAAC;AAAA,wCACDA,CAAC;AAAA,wCACDA,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA,gCAKTA,CAAC;AAAA,gCACDA,CAAC;AAAA,gCACDA,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,UAUvB8B,CAAC;AAAA,UACDD,CAAC;AAAA;AAAA;AAAA,KAGN,CAAC,EAAE+pF,IAAG,KAAK,CAAC,YAAY9tF,EAAE,CAAC,KAAK,cAAc,CAAC,IAAI,GAAG,EAAE,KAAK,YAAYA,EAAE,SAAS,IAAIV,EAAEU,EAAE,QAAQ,MAAM,EAAEA,EAAE,QAAQ,IAAIP,EAAEO,EAAE,QAAQ,KAAKiB,EAAEjB,EAAE,YAAYkB,EAAElB,EAAE,aAAamB,EAAEnB,EAAE,YAAYoB,EAAEpB,EAAE,cAAc,EAAEA,EAAE,eAAe8B,EAAE9B,EAAE,cAAc,EAAEA,EAAE,YAAYgC,EAAEhC,EAAE,aAAaiC,EAAEjC,EAAE,YAAYkC,EAAE,KAAK,MAAMlC,EAAE,WAAW,CAAC,EAAE,EAAEoD,EAAEpD,EAAE,WAAW,EAAE,KAAK,SAAS;AAAA,oCACnUiB,CAAC,KAAKC,CAAC,KAAKC,CAAC;AAAA,iCAChB7B,CAAC,KAAK,CAAC,KAAKG,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,gCAgBd,CAAC;AAAA,qCACI2B,CAAC;AAAA;AAAA,gCAENpB,EAAE,OAAO;AAAA;AAAA;AAAA;AAAA,kCAIPgC,CAAC;AAAA,uCACI,CAAC;AAAA;AAAA,kCAENhC,EAAE,QAAQ;AAAA;AAAA;AAAA;AAAA,oCAIRiC,CAAC;AAAA,yCACIH,CAAC;AAAA;AAAA,oCAEN9B,EAAE,OAAO;AAAA;AAAA;AAAA;AAAA,sCAIPkC,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,oBAiBnBkB,IAAI,CAAC;AAAA;AAAA,4CAEmBlB,CAAC;AAAA,qCACRA,CAAC;AAAA,2BACXkB,IAAI,CAAC;AAAA;AAAA,4CAEYlB,CAAC;AAAA,4CACDA,CAAC;AAAA;AAAA;AAAA,qCAGRA,CAAC;AAAA,qCACDA,CAAC;AAAA;AAAA;AAAA,2BAGXkB,IAAI,CAAC;AAAA;AAAA,4CAEYlB,CAAC;AAAA,4CACDA,CAAC;AAAA,4CACDA,CAAC;AAAA;AAAA;AAAA,qCAGRA,CAAC;AAAA,qCACDA,CAAC;AAAA,qCACDA,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,KASjC,CAAC,EAAM6rF,GAAG,KAAK,CAAC,YAAY/tF,EAAEV,EAAE,GAAG,EAAE,KAAKG,EAAE,GAAGwB,EAAE,GAAG,CAAC,KAAK,cAAc,CAAC,IAAI,GAAG,EAAE,KAAK,aAAa,GAAG,KAAK,aAAa,GAAG,KAAK,eAAe,CAAC,CAAC,KAAK,OAAO,KAAK,OAAO,EAAE,CAAC,KAAK,UAAU,KAAK,OAAO,EAAE,CAAC,KAAK,YAAY,KAAK,OAAO,EAAE,CAAC,KAAK,SAAS,KAAK,OAAO,CAAC,EAAE,KAAK,YAAYjB,EAAE,SAAS,KAAK,oBAAoB48E,GAAG,KAAK,YAAY,MAAM,EAAE,IAAI17E,EAAElB,EAAE,QAAQ,KAAKmB,EAAEnB,EAAE,YAAYoB,EAAEpB,EAAE,cAAc,EAAEA,EAAE,aAAa8B,EAAE9B,EAAE,YAAY,EAAE8B,EAAEE,EAAE;AAAA;AAAA,gDAE5Y,QAAQqB,EAAE,EAAEA,EAAEvB,EAAEuB,IAAIrB,GAAG;AAAA,yBAC9CqB,EAAE,CAAC;AAAA,wBACJA,EAAE,CAAC;AAAA,yBACFA,EAAE,EAAE,CAAC;AAAA,wBACNA,EAAE,EAAE,CAAC;AAAA,oBACTA,CAAC,IAAIrB,GAAG;AAAA,2BACD,CAAC;AAAA,8BACEhC,EAAE,UAAU;AAAA,SACjC,QAAQqD,EAAE,EAAEA,EAAEvB,EAAEuB,IAAIrB,GAAG;AAAA,oBACZqB,EAAE,CAAC;AAAA,oBACHA,EAAE,CAAC;AAAA,oBACHA,EAAE,EAAE,CAAC;AAAA,oBACLA,EAAE,EAAE,CAAC;AAAA,eACVA,CAAC,gBAAgBrB,GAAG;AAAA;AAAA;AAAA,SAG1B,QAAQqB,EAAE,EAAEA,GAAG,EAAE,GAAG,EAAEA,IAAI,CAAC,IAAIqD,EAAErD,EAAE,EAAE,GAAGrB,GAAG;AAAA,6BACvB0E,EAAEtF,CAAC;AAAA,aACnBD,IAAI,GAAG,GAAGuF,EAAE5E,IAAIZ,EAAE,IAAI,GAAGc,GAAG;AAAA;AAAA,uEAE8B0E,CAAC;AAAA,4BAC5CA,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA,8BAKCA,CAAC;AAAA;AAAA,4BAEHA,CAAC;AAAA;AAAA,iBAEZtF,IAAI,GAAGsF,EAAE,EAAE1E,GAAG;AAAA,qBACV0E,CAAC,kBAAkBA,EAAE,CAAC,eAAeA,CAAC;AAAA,mBACxC1E,GAAG;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,yBAYG0E,CAAC,+BAA+BA,CAAC;AAAA;AAAA,yBAEjCA,CAAC,4BAA4BA,CAAC;AAAA;AAAA,sBAEjC1E,GAAG;AAAA,2DACkC0E,CAAC;AAAA,4BAChCA,CAAC;AAAA;AAAA,8BAECA,CAAC;AAAA;AAAA,4BAEHA,CAAC;AAAA;AAAA;AAAA,qBAGRA,CAAC,aAAaA,CAAC;AAAA,mBACjBA,EAAE,EAAE5E,GAAG,CAAC,IAAI,EAAEZ,EAAE,IAAI,EAAEvD,EAAE,kBAAkByD,CAAC,EAAEA,EAAEA,EAAE,IAAI,GAAGF,EAAE,IAAI,GAAGE,EAAE,IAAI,GAAGF,EAAE,IAAI,GAAGc,GAAG;AAAA,wDACjD,CAAC;AAAA;AAAA,yEAEgB0E,EAAE,CAAC;AAAA,8BAC9CA,EAAE,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA,gCAKDA,EAAE,CAAC;AAAA;AAAA,8BAELA,EAAE,CAAC;AAAA;AAAA,qBAEZtF,EAAE,EAAEY,GAAG;AAAA;AAAA;AAAA;AAAA,0BAIF0E,EAAE,CAAC,+BAA+BA,EAAE,CAAC;AAAA;AAAA,0BAErCA,EAAE,CAAC,4BAA4BA,EAAE,CAAC;AAAA;AAAA,uBAErC1E,GAAG;AAAA,yBACD0E,EAAE,CAAC,kBAAkBA,CAAC,eAAeA,EAAE,CAAC;AAAA,wBACzC,IAAI,EAAE1E,GAAG;AAAA,yBACR0E,EAAE,CAAC,aAAaA,CAAC;AAAA,uBACnB1E,GAAG;AAAA,uCACa,CAAC;AAAA;AAAA,2EAEmC0E,EAAE,CAAC;AAAA,gCAC9CA,EAAE,CAAC;AAAA;AAAA,kCAEDA,EAAE,CAAC;AAAA;AAAA,gCAELA,EAAE,CAAC;AAAA;AAAA;AAAA,yBAGVA,EAAE,CAAC,aAAaA,EAAE,CAAC;AAAA,sBACtB,OAAOA,EAAE5E,IAAIZ,EAAE,IAAI,GAAGc,GAAG;AAAA;AAAA,sEAEuB0E,CAAC;AAAA,4BAC3CA,CAAC;AAAA;AAAA;AAAA;AAAA,8BAICA,CAAC;AAAA;AAAA,4BAEHA,CAAC;AAAA;AAAA;AAAA,kEAGqCA,EAAE,CAAC;AAAA,4BACzCA,EAAE,CAAC;AAAA;AAAA;AAAA;AAAA,8BAIDA,EAAE,CAAC;AAAA;AAAA,4BAELA,EAAE,CAAC;AAAA;AAAA;AAAA,qBAGVA,CAAC,kBAAkBA,CAAC,eAAeA,EAAE,CAAC;AAAA,iBAC1CA,EAAE,EAAE5E,IAAIE,GAAG;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,uBAML0E,EAAE,CAAC,kBAAkBA,EAAE,CAAC;AAAA,sBACzB1E,GAAG;AAAA,0DACiC0E,CAAC;AAAA,4BAC/BA,CAAC;AAAA;AAAA,8BAECA,CAAC;AAAA;AAAA,4BAEHA,CAAC;AAAA;AAAA;AAAA;AAAA,sEAIyCA,EAAE,CAAC;AAAA,4BAC7CA,EAAE,CAAC;AAAA;AAAA,8BAEDA,EAAE,CAAC;AAAA;AAAA,4BAELA,EAAE,CAAC;AAAA;AAAA;AAAA,qBAGVA,CAAC;AAAA,4BACMA,CAAC,eAAeA,EAAE,CAAC;AAAA,iBAC9BA,EAAE,EAAE5E,IAAIE,GAAG;AAAA,uBACL0E,EAAE,CAAC,kBAAkBA,CAAC,eAAeA,EAAE,CAAC;AAAA,sBACzCA,EAAE5E,IAAIE,GAAG;AAAA,gCACC0E,CAAC;AAAA,4BACLA,CAAC;AAAA,2BACF1G,EAAE,UAAU;AAAA,8BACT0G,CAAC;AAAA;AAAA,aAElBA,EAAE,EAAE5E,IAAIE,GAAG;AAAA,kCACU0E,EAAE,CAAC;AAAA,8BACPA,EAAE,CAAC;AAAA,6BACJ1G,EAAE,UAAU;AAAA,gCACT0G,EAAE,CAAC;AAAA;AAAA,gBAEnB,CAAC1E,GAAG;AAAA;AAAA,KAEfA,GAAG;AAAA;AAAA,KAEHA,GAAG;AAAA;AAAA,KAEH,IAAIC,EAAE,GAAGC,EAAE,GAAG,IAAIzC,EAAEwC,EAAE;AAAA;AAAA,aAEd,CAAC;AAAA,YACFhB,EAAEgB,EAAE;AAAA;AAAA,aAEH,CAAC;AAAA,YACFA,EAAE;AAAA,aACD,CAAC;AAAA,YACFC,EAAE,gCAAgC,IAAIkB,EAAE9D,EAAE,kCAAkC,GAAGA,GAAG,KAAK,cAAc,KAAK,MAAM,EAAEG,GAAG,KAAK,cAAc,KAAK,wBAAwB,EAAEwB,GAAG,KAAK,cAAc,KAAK,gBAAgB,EAAE,KAAK,SAAS;AAAA,SACrOgB,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,WAaCD,CAAC;AAAA;AAAA;AAAA,WAGDoB,CAAC;AAAA,WACDlB,CAAC;AAAA;AAAA;AAAA,MAGN,CAAC,EAAM8rF,IAAG,KAAK,CAAC,YAAYhuF,EAAEV,EAAE,CAAC,KAAK,cAAc,CAAC,GAAG,EAAE,KAAK,aAAa,GAAG,KAAK,aAAa,GAAG,KAAK,eAAe,CAAC,CAAC,KAAK,aAAa,KAAK,OAAO,EAAE,CAAC,KAAK,MAAM,KAAK,OAAO,EAAE,CAAC,KAAK,SAAS,KAAK,OAAO,EAAE,CAAC,KAAK,WAAW,KAAK,OAAO,EAAE,CAAC,KAAK,aAAa,KAAK,KAAK,EAAE,CAAC,KAAK,mBAAmB,KAAK,KAAK,EAAE,CAAC,KAAK,WAAW,KAAK,KAAK,CAAC,EAAE,KAAK,YAAYU,EAAE,KAAK,oBAAoB48E,GAAG,KAAK,YAAY,MAAM,EAAE,GAAG,CAAC,WAAW,CAAC,EAAEt9E,EAAEG,EAAEw5E,GAAG,EAAEh4E,EAAE,IAAI,eAAeC,EAAED,EAAE,EAAE,EAAEE,EAAEF,EAAE,EAAE,EAAEG,EAAE,KAAK,oBAAoB,sDAAsD,mBAAmBpB,EAAE,CAAC,CAAC,aAAaA,EAAE,CAAC,CAAC,MAAM,EAAE,GAAG,QAAQ8B,EAAE,EAAEA,GAAG,EAAEA,IAAI,QAAQ,EAAE,EAAE,GAAG,EAAE,IAAI,GAAG;AAAA,gCACjnB,CAAC;AAAA,yBACRA,CAAC;AAAA;AAAA,YAEdV,CAAC;AAAA;AAAA;AAAA;AAAA,iCAIoBF,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,mCAQCC,CAAC;AAAA;AAAA;AAAA;AAAA,sBAIdF,CAAC;AAAA;AAAA,2BAEIa,EAAE,EAAE,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA,2BAKLA,EAAE,EAAE,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,UAOtB,KAAK,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,UASd,CAAC;AAAA;AAAA,UAEDrC,EAAE,MAAM;AAAA;AAAA,KAEb,CAAC,EAAE,SAASwuF,GAAG7uF,EAAE,EAAE,CAAC,IAAIE,EAAEF,EAAE,OAAO,OAAOE,GAAG,EAAE,EAAE,CAAC,GAAGF,EAAE,MAAM,EAAE,EAAE,EAAEA,EAAEE,EAAE,CAAC,EAAEF,EAAEE,EAAE,CAAC,EAAEF,EAAEE,EAAE,CAAC,CAAC,EAAE,CAAC,GAAGF,EAAE,MAAM,EAAE,EAAE,EAAEA,EAAEE,EAAE,CAAC,EAAEF,EAAEE,EAAE,CAAC,EAAEF,EAAEE,EAAE,CAAC,CAAC,EAAE,CAAC,GAAGA,IAAI,GAAGF,EAAE,CAAC,EAAE,EAAE,CAACA,EAAE,CAAC,EAAE,CAAC,EAAE,IAAI,CAAC,SAAS8uF,GAAG,CAAC,EAAE9uF,EAAE,OAAO,EAAE,SAASE,EAAE,QAAQE,EAAE,KAAKC,EAAE,KAAK,uBAAuB,EAAE,KAAK,eAAe,EAAE,EAAE,WAAW0B,EAAE,IAAI,EAAE,CAAC,IAAIC,EAAEhC,EAAE,MAAMiC,EAAE7B,EAAE,QAAQ,IAAIJ,EAAE,MAAM,EAAE0C,EAAExC,EAAE,WAAWyC,EAAEX,EAAE,CAAC,EAAEA,EAAE,CAAC,EAAEA,EAAE,CAAC,EAAEY,EAAE1C,EAAE,YAAY2C,EAAE3C,EAAE,aAAa,eAAe4C,EAAE,GAAGkB,EAAE,GAAG,EAAEsD,EAAE,CAAC,EAAE,GAAG,GAAG,KAAK,CAAC,IAAI5C,EAAEmqF,GAAG,EAAE,MAAMhsF,CAAC,EAAE6B,GAAG,OAAO,EAAE+hF,GAAG,CAAC,OAAO,CAAC,EAAE,CAAC,EAAE,QAAQrmF,EAAE,MAAM,CAAC,MAAMsE,CAAC,CAAC,CAAC,EAAE4C,EAAE,KAAK,CAAC,EAAE,CAAC,GAAGjH,GAAG,KAAK,CAAC,IAAIqE,EAAEmqF,GAAGxuF,EAAE,MAAMwC,CAAC,EAAE6B,GAAG,OAAOrE,EAAEomF,GAAG,CAAC,OAAO,CAAC,EAAEpmF,CAAC,EAAE,QAAQD,EAAE,MAAM,CAAC,MAAMsE,CAAC,CAAC,CAAC,EAAE4C,EAAE,KAAKjH,CAAC,EAAE,CAAC,GAAG,GAAGsC,IAAI,GAAGC,IAAI,IAAIF,EAAE8kF,KAAKvlF,EAAE,UAAUY,GAAGZ,EAAE,SAAS,MAAMD,EAAE,CAAC,EAAE,IAAI,GAAGzD,EAAE,YAAY0D,EAAE,MAAM,MAAM,EAAE,EAAED,EAAE,MAAM,EAAE,CAAC,EAAE,CAAC,IAAI0C,EAAE1C,EAAE,CAAC,EAAEA,EAAE,CAAC,GAAGA,EAAE,CAAC,EAAE,GAAG2C,EAAE,CAAC,OAAO3E,EAAE,OAAO,MAAM,CAAC,EAAE0E,EAAExE,EAAE,UAAU,EAAE,MAAMF,EAAE,KAAK,EAAE4E,EAAE3C,EAAE,MAAMA,EAAE,MAAMA,EAAE,MAAM,MAAM,EAAEA,EAAE,MAAMA,EAAE,MAAM,OAAO,CAAC,IAAI1D,EAAE,OAAOg5E,GAAGt1E,EAAE,MAAM0C,EAAE,KAAK,EAAE,IAAI,kBAAkB1C,EAAE,KAAK,OAAO0C,EAAE,KAAK,aAAa,EAAE,IAAIE,EAAE4hF,GAAG,CAAC,OAAO,CAAC,EAAE,CAAC,EAAE,QAAQrmF,EAAE,MAAM,CAAC,MAAM,CAAC,EAAEF,EAAE,WAAWA,EAAE,WAAW,CAAC,CAAC,CAAC,EAAEoH,EAAE,KAAKzC,CAAC,EAAE,IAAI0C,EAAEkgF,GAAG,CAAC,EAAE9iF,EAAE,EAAEE,EAAE,QAAQzE,EAAE,WAAW0C,EAAE,WAAWkB,EAAE,KAAK3D,EAAE,WAAW0B,EAAE,uBAAuB,EAAE,eAAe,CAAC,CAAC,EAAEgD,EAAE3E,EAAE,QAAQ,IAAImH,EAAE,MAAM,EAAEhJ,EAAE,OAAOwG,EAAE,SAAS,IAAI,6CAA6C,EAAE9C,EAAE,MAAM2C,EAAEG,EAAE,MAAM7E,EAAE,SAAS,EAAEglF,GAAG,CAAC,OAAO,CAAC,EAAE39E,CAAC,EAAE,QAAQnH,CAAC,CAAC,EAAE,EAAE,MAAMF,EAAE,SAASoH,EAAE,KAAKC,CAAC,CAAC,KAAK,CAAC,IAAI7C,EAAExE,EAAE,UAAUA,EAAE,SAASyE,EAAE8hF,GAAG,CAAC,OAAO,CAAC,EAAEzmF,CAAC,EAAE,QAAQI,EAAE,MAAM,CAAC,MAAMyC,EAAE,CAAC3C,EAAE,UAAUwE,EAAExE,EAAE,UAAU,EAAE,CAACA,EAAE,UAAUA,EAAE,WAAWwE,CAAC,CAAC,CAAC,CAAC,EAAEE,EAAE6hF,GAAG,CAAC,OAAO,CAAC,EAAE,CAAC,EAAE,QAAQrmF,EAAE,MAAM,CAAC,MAAM,CAAC,EAAEF,EAAE,WAAWA,EAAE,WAAW,CAAC,CAAC,CAAC,EAAE2E,EAAE4iF,GAAG,CAAC,EAAE5kF,EAAE8B,EAAEC,EAAE,EAAE/B,EAAE+B,EAAED,EAAE,WAAW,CAAC9B,EAAE,WAAWmB,EAAE,QAAQ5D,EAAE,KAAKC,EAAE,WAAW0B,EAAE,uBAAuB,EAAE,eAAe,CAAC,CAAC,EAAE,EAAE0kF,GAAG,CAAC,OAAO,CAAC,EAAE5hF,CAAC,EAAE,QAAQzE,EAAE,MAAM,CAAC,MAAMF,EAAE,QAAQ,CAAC,CAAC,EAAEoH,EAAE,KAAK3C,CAAC,EAAE2C,EAAE,KAAK1C,CAAC,EAAE0C,EAAE,KAAKzC,CAAC,CAAC,CAAC,QAAQH,KAAK4C,EAAElH,EAAE,8BAA8BsE,CAAC,EAAE,OAAO,CAAC,CAAC,SAASqqF,GAAG,CAAC,EAAE/uF,EAAE,OAAO,EAAE,SAASE,EAAE,QAAQE,EAAE,KAAKC,EAAE,KAAK,uBAAuB,EAAE,KAAK,eAAe,EAAE,EAAE,WAAW0B,EAAE,IAAI,EAAE,CAAC,GAAG,CAAC,YAAYC,EAAE,aAAaC,EAAE,WAAWS,EAAE,SAASC,EAAE,UAAUC,EAAE,WAAWC,CAAC,EAAE3C,EAAE4C,EAAED,IAAI,eAAemB,EAAEhC,EAAEC,EAAES,EAAE,EAAEE,EAAED,EAAE2E,EAAE,CAACpH,EAAE,UAAU8D,EAAE,CAAC,EAAEc,EAAE,GAAGL,EAAE,GAAGC,EAAE,CAAC,EAAE,GAAG,GAAG,KAAK,CAAC,IAAIuD,EAAE4mF,GAAG,EAAE,MAAM/rF,CAAC,EAAEmF,GAAG,OAAO,EAAEw+E,GAAG,CAAC,OAAO,CAAC,EAAE,CAAC,EAAE,QAAQrmF,EAAE,MAAM,CAAC,MAAM6H,CAAC,CAAC,CAAC,EAAEvD,EAAE,KAAK,CAAC,EAAE,CAAC,GAAGrE,GAAG,KAAK,CAAC,IAAI4H,EAAE4mF,GAAGxuF,EAAE,MAAMyC,CAAC,EAAEmF,GAAG,OAAO5H,EAAEomF,GAAG,CAAC,OAAO,CAAC,EAAEpmF,CAAC,EAAE,QAAQD,EAAE,MAAM,CAAC,MAAM6H,CAAC,CAAC,CAAC,EAAEvD,EAAE,KAAKrE,CAAC,EAAE,CAAC,IAAIsE,EAAE8hF,GAAG,CAAC,OAAO,CAAC,EAAE,CAAC,EAAE,QAAQrmF,EAAE,MAAM,CAAC,MAAM,CAAC,EAAE4D,EAAEzF,EAAE,cAAc,EAAE,KAAK,EAAEyF,CAAC,CAAC,CAAC,CAAC,EAAEU,EAAE,KAAKC,CAAC,EAAE,IAAIC,EAAE,IAAIgqF,IAAGtnF,EAAEpH,CAAC,EAAE2E,EAAE,CAAC7E,EAAE,MAAM,CAACE,EAAE,QAAQ,IAAIA,EAAE,QAAQ,IAAI,EAAE,CAACA,EAAE,aAAaA,EAAE,WAAW,EAAE,CAACA,EAAE,eAAeA,EAAE,aAAa,EAAE,CAACA,EAAE,UAAU,EAAE,CAACA,EAAE,YAAYA,EAAE,UAAU,EAAE,CAACA,EAAE,QAAQ,CAAC,EAAEqH,EAAEnH,EAAE,gBAAgBwE,EAAE,CAAC5E,CAAC,EAAE,UAAU6E,CAAC,EAAE,EAAE4hF,GAAG,CAAC,OAAO,CAAC,EAAEl/E,CAAC,EAAE,QAAQnH,EAAE,MAAM,CAAC,MAAMkH,CAAC,CAAC,CAAC,EAAE5C,EAAE,KAAK6C,CAAC,EAAE7C,EAAE,KAAK,CAAC,EAAE,IAAIM,EAAE3E,GAAG,KAAK4E,EAAE,GAAG,KAAKC,EAAEnD,IAAI,YAAYoD,EAAEpD,EAAEkkF,GAAGlkF,EAAE,EAAE,EAAE,KAAKqD,EAAE,IAAI8gF,GAAGpjF,EAAE,EAAE,MAAM6B,EAAE,MAAM7B,EAAE6B,EAAE,MAAM,EAAE,MAAM7B,EAAE,CAAC5C,EAAE,UAAU,EAAEA,EAAE,WAAW,EAAE,CAACA,EAAE,UAAUA,EAAE,YAAY,CAAC,EAAE4E,EAAEL,EAAEO,EAAEG,EAAEF,EAAEC,CAAC,EAAEG,EAAEvC,EAAE,CAAC,EAAE6B,CAAC,EAAE,CAACA,EAAE,CAAC,EAAE,GAAGtE,GAAGgF,EAAE,KAAKhF,CAAC,EAAE4E,GAAGI,EAAE,KAAK,CAAC,EAAEH,EAAE,CAAC,IAAI+C,EAAE7H,EAAE,eAAe,CAAC,EAAE,UAAU7B,EAAE,kBAAkB,EAAE,SAAS,CAAC,EAAE8G,EAAE,KAAK4C,CAAC,EAAEvD,EAAE,KAAKuD,CAAC,CAAC,CAAC,IAAID,EAAE5H,EAAE,gBAAgBgF,EAAEC,EAAE,SAAS,EAAEoC,EAAEg/E,GAAG,CAAC,OAAO,CAAC,EAAEz+E,CAAC,EAAE,QAAQ5H,EAAE,MAAM,CAAC,MAAMF,EAAE,QAAQ,CAAC,CAAC,EAAEwE,EAAE,KAAKsD,CAAC,EAAE,QAAQC,KAAKvD,EAAEtE,EAAE,8BAA8B6H,CAAC,EAAE,OAAOR,CAAC,CAAC,SAASunF,IAAIhvF,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,EAAE,OAAO,CAAC,EAAE,EAAE,CAAC,QAAQ,EAAE,IAAI0B,EAAE,WAAWC,EAAE,UAAUC,EAAE,gBAAgBS,CAAC,EAAEtC,EAAEuC,EAAEjV,EAAE,wBAAwBsU,CAAC,EAAEY,EAAElV,EAAE,kBAAkB2S,EAAE,MAAM,EAAE,MAAM,EAAE4B,EAAEF,EAAEW,EAAE,GAAGC,CAAC,EAAEE,EAAE,GAAGD,EAAE,eAAe,GAAGA,EAAE,cAAc,GAAGA,EAAE,iBAAiB,GAAGA,EAAE,gBAAgB,GAAGA,EAAE,eAAe,GAAGA,EAAE,cAAc,IAAIA,EAAE,QAAQ,OAAO,QAAQA,EAAE,QAAQ,OAAO,SAASC,EAAEisF,GAAG,CAAC,EAAEzuF,EAAE,OAAO,EAAE,SAASuC,EAAE,QAAQ1C,CAAC,CAAC,UAAU0C,EAAE,aAAa,GAAGD,IAAI,gBAAgBnR,EAAE,EAAE,QAAQ,gBAAgB,EAAE,CAAC,IAAIwS,EAAE,IAAI2qF,GAAG/rF,CAAC,EAAE,EAAE,CAAC,CAACA,EAAE,QAAQ,IAAIA,EAAE,QAAQ,IAAI,EAAE,CAACA,EAAE,aAAaA,EAAE,WAAW,EAAE,CAACA,EAAE,eAAeA,EAAE,aAAa,EAAE,CAACA,EAAE,SAASA,EAAE,OAAO,CAAC,EAAEC,EAAE3C,EAAE,gBAAgB8D,EAAE,CAAC3D,EAAE,CAAC,EAAE,UAAU,CAAC,CAAC,SAAS7O,EAAE,EAAE,QAAQ,mBAAmB,EAAEqR,EAAEksF,GAAG,CAAC,EAAE1uF,EAAE,OAAO,EAAE,SAASuC,EAAE,QAAQ1C,CAAC,CAAC,MAAM,CAAC,IAAI8D,EAAE,IAAIyqF,GAAG7rF,CAAC,EAAEC,EAAE3C,EAAE,gBAAgB8D,EAAE,CAAC3D,EAAE,CAAC,EAAE,SAAS,CAAC,CAAC,IAAIyC,EAAE2jF,GAAG,CAAC,OAAO,CAAC,EAAE5jF,CAAC,EAAE,QAAQ3C,EAAE,MAAM,CAAC,MAAM0C,EAAE,QAAQ,CAAC,CAAC,EAAE,OAAO1C,EAAE,8BAA8B2C,CAAC,EAAEC,CAAC,CAAC,IAAImsF,IAAG,CAAC,WAAW1tG,GAAG,YAAY,QAAQ,WAAWytG,GAAG,EAAME,IAAG,KAAK,CAAC,YAAYtuF,EAAE,CAAC,KAAK,cAAc,CAAC,IAAI,IAAI,EAAE,KAAK,YAAYA,EAAE,YAAY,IAAIV,EAAEU,EAAE,aAAa,EAAEA,EAAE,YAAYP,EAAEO,EAAE,QAAQ,IAAIiB,EAAEjB,EAAE,QAAQ,KAAKkB,EAAElB,EAAE,aAAa,eAAe,KAAK,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,8BAYzxIA,EAAE,SAAS;AAAA,kCACPA,EAAE,SAAS;AAAA,iCACZV,CAAC,MAAMG,CAAC;AAAA;AAAA,kCAEPO,EAAE,QAAQ;AAAA;AAAA;AAAA;AAAA,oCAIRA,EAAE,QAAQ;AAAA,mCACX,CAAC,MAAMiB,CAAC;AAAA;AAAA,oCAEPjB,EAAE,OAAO;AAAA;AAAA;AAAA;AAAA,gBAI7BkB,EAAE;AAAA;AAAA,8CAE4B;AAAA;AAAA,6CAED;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,KAMxC,CAAC,EAAEqtF,IAAG,KAAK,CAAC,YAAYvuF,EAAE,CAAC,KAAK,cAAc,CAAC,KAAK,GAAG,EAAE,KAAK,YAAYA,EAAE,QAAQ,IAAIV,EAAEU,EAAE,aAAa,EAAEA,EAAE,YAAYP,EAAEO,EAAE,aAAaiB,EAAEjB,EAAE,YAAYkB,EAAElB,EAAE,aAAa,eAAemB,EAAE7B,EAAE,EAAEU,EAAE,QAAQ,IAAIoB,EAAE,EAAE,EAAEpB,EAAE,QAAQ,KAAK,EAAEkB,EAAE,EAAE,EAAEY,EAAEZ,EAAE,EAAE,EAAE,EAAEA,EAAE,EAAE,EAAE,KAAK,SAAS;AAAA,iCAC7OC,CAAC,KAAKC,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA,0BAKd,CAAC;AAAA;AAAA,wCAEa,CAAC,aAAaU,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,gCAOvBxC,CAAC;AAAA,gDACeG,CAAC;AAAA;AAAA,oCAEbO,EAAE,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA,yBAKtBV,CAAC;AAAA;AAAA,kCAEQ,CAAC;AAAA,kDACe2B,CAAC;AAAA;AAAA,sCAEbjB,EAAE,QAAQ;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,2BAMrB,CAAC;AAAA;AAAA,oCAEQA,EAAE,WAAW;AAAA;AAAA,oBAE7BkB,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,KAehB,CAAC,EAAEstF,IAAG,KAAK,CAAC,YAAYxuF,EAAE,CAAC,KAAK,cAAc,CAAC,IAAI,IAAI,EAAE,KAAK,YAAYA,EAAE,YAAY,IAAIV,EAAEU,EAAE,YAAY,EAAEA,EAAE,aAAaP,EAAEO,EAAE,YAAYiB,EAAEjB,EAAE,QAAQ,MAAMkB,EAAElB,EAAE,QAAQ,IAAImB,EAAEnB,EAAE,QAAQ,KAAK,KAAK,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,8BAWrLA,EAAE,SAAS;AAAA,kCACPA,EAAE,QAAQ;AAAA,iCACXV,CAAC,MAAM2B,CAAC;AAAA;AAAA,kCAEPjB,EAAE,OAAO;AAAA;AAAA;AAAA;AAAA,oCAIPA,EAAE,SAAS;AAAA,mCACZ,CAAC,MAAMkB,CAAC;AAAA;AAAA,oCAEPlB,EAAE,QAAQ;AAAA;AAAA;AAAA;AAAA,sCAIRA,EAAE,QAAQ;AAAA,qCACXP,CAAC,MAAM0B,CAAC;AAAA;AAAA,sCAEPnB,EAAE,OAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,KAa1C,CAAC,EAAEyuF,IAAG,KAAK,CAAC,YAAYzuF,EAAE,CAAC,KAAK,cAAc,CAAC,KAAK,GAAG,EAAE,KAAK,YAAYA,EAAE,QAAQ,IAAIV,EAAEU,EAAE,YAAY,EAAEA,EAAE,aAAaP,EAAEO,EAAE,YAAYiB,EAAEjB,EAAE,YAAYkB,EAAElB,EAAE,aAAamB,EAAEnB,EAAE,YAAYoB,EAAE9B,EAAE,EAAEU,EAAE,QAAQ,MAAM,EAAE,EAAE,EAAEA,EAAE,QAAQ,IAAI8B,EAAErC,EAAE,EAAEO,EAAE,QAAQ,KAAK,KAAK,SAAS;AAAA,iCAC3OoB,CAAC,KAAK,CAAC,KAAKU,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,gCAcdxC,CAAC;AAAA,gDACe2B,CAAC;AAAA;AAAA,oCAEbjB,EAAE,QAAQ;AAAA;AAAA;AAAA;AAAA;AAAA,yBAKrBV,CAAC;AAAA;AAAA,kCAEQ,CAAC;AAAA,kDACe4B,CAAC;AAAA;AAAA,sCAEblB,EAAE,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,2BAMtB,CAAC;AAAA;AAAA,oCAEQP,CAAC;AAAA,oDACe0B,CAAC;AAAA;AAAA,wCAEbnB,EAAE,QAAQ;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,6BAMrBP,CAAC;AAAA;AAAA,sCAEQO,EAAE,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,KAU9C,CAAC,EAAE,SAAS0uF,IAAItvF,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,EAAE,GAAG,CAAC,EAAE,EAAE,CAAC,QAAQ,EAAE,IAAI0B,EAAE,WAAWC,EAAE,gBAAgBC,EAAE,YAAYS,CAAC,EAAEtC,EAAEuC,EAAEjV,EAAE,wBAAwBsU,CAAC,EAAEY,EAAElV,EAAE,kBAAkB2S,EAAE,MAAMqC,EAAE,EAAE,EAAEX,EAAEE,EAAE,GAAGU,CAAC,EAAEE,EAAE,IAAIqsF,IAAGtsF,CAAC,EAAE,OAAO1C,EAAE,gBAAgB2C,EAAE,CAACxC,EAAE,CAAC,EAAE,SAAS,CAAC,CAAC,IAAIkvF,IAAG,CAAC,WAAW/tG,GAAG,YAAY,QAAQ,WAAW8tG,GAAG,EAAME,IAAG,KAAK,CAAC,YAAY5uF,EAAE,CAAC,KAAK,cAAc,CAAC,KAAK,GAAG,EAAE,KAAK,aAAa,GAAG,KAAK,aAAa,GAAG,KAAK,eAAe,CAAC,CAAC,KAAK,UAAU,KAAK,MAAM,CAAC,EAAE,KAAK,YAAYA,EAAE,QAAQ,KAAK,oBAAoB48E,GAAG,KAAK,YAAY,MAAM,EAAE,IAAIt9E,EAAEU,EAAE,aAAa,EAAEA,EAAE,YAAYP,EAAEH,EAAE,EAAEU,EAAE,QAAQ,IAAIiB,EAAE,EAAE,EAAEjB,EAAE,QAAQ,KAAK,KAAK,SAAS;AAAA,iCACzmBP,CAAC,KAAKwB,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,gCAYR3B,CAAC;AAAA;AAAA,oCAEGU,EAAE,SAAS;AAAA;AAAA;AAAA;AAAA,yBAItBV,CAAC;AAAA;AAAA,kCAEQ,CAAC;AAAA,2BACR,CAAC;AAAA;AAAA;AAAA,oDAGwBU,EAAE,QAAQ;AAAA;AAAA;AAAA;AAAA;AAAA,uDAKPA,EAAE,QAAQ;AAAA;AAAA;AAAA;AAAA;AAAA,sCAK3BA,EAAE,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,sCAiBbA,EAAE,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,sCASbA,EAAE,WAAW;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,KAa9C,CAAC,EAAE,SAAS6uF,IAAIzvF,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,GAAGK,EAAE,OAAO,CAAC,EAAE,EAAE,CAAC,WAAW,EAAE,QAAQ0B,EAAE,IAAIC,EAAE,WAAWC,EAAE,gBAAgBS,CAAC,EAAEtC,EAAEuC,EAAEjV,EAAE,wBAAwBuU,CAAC,EAAEW,EAAElV,EAAE,kBAAkB,EAAE,EAAE,MAAMqU,EAAE,EAAEC,EAAEU,EAAE,GAAGC,CAAC,EAAE,GAAGnR,EAAE,EAAE,QAAQ,4BAA4B,GAAGmR,IAAI,eAAe,CAAC,IAAIE,EAAE,CAAC,CAACD,EAAE,aAAaA,EAAE,WAAW,CAAC,EAAEE,EAAE,IAAI0sF,IAAG5sF,CAAC,EAAE,OAAO1C,EAAE,gBAAgB4C,EAAE,CAACzC,EAAE,CAAC,EAAE,UAAUwC,CAAC,CAAC,KAAK,CAAC,IAAIA,EAAE,IAAIssF,IAAGvsF,CAAC,EAAE,OAAO1C,EAAE,gBAAgB2C,EAAE,CAACxC,EAAE,CAAC,EAAE,SAAS,CAAC,CAAC,CAAC,IAAIqvF,IAAG,CAAC,WAAWjuG,GAAG,YAAY,QAAQ,WAAWguG,GAAG,EAAE,SAASE,IAAI3vF,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,EAAE,OAAO,CAAC,EAAE,EAAE,CAAC,QAAQ,EAAE,IAAI0B,EAAE,UAAUC,CAAC,EAAE5B,EAAE6B,EAAEvU,EAAE,kBAAkB2S,EAAE,MAAM,EAAE,MAAM,EAAE2B,EAAED,CAAC,EAAEW,EAAE,IAAIgsF,IAAGzsF,CAAC,EAAE,OAAO/B,EAAE,gBAAgBwC,EAAE,CAACrC,EAAE,CAAC,EAAE,SAAS,CAAC,CAAC,IAAIuvF,IAAG,CAAC,WAAWluG,GAAG,YAAY,QAAQ,WAAWiuG,GAAG,EAAE,SAASE,IAAI7vF,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,EAAE,GAAG,CAAC,EAAE,EAAE,CAAC,QAAQ,EAAE,IAAI0B,EAAE,YAAYC,CAAC,EAAE5B,EAAE6B,EAAEvU,EAAE,kBAAkB2S,EAAE,MAAM2B,EAAE,EAAE,EAAED,CAAC,EAAEW,EAAE,IAAI0sF,IAAGntF,CAAC,EAAE,OAAO/B,EAAE,gBAAgBwC,EAAE,CAACrC,EAAE,CAAC,EAAE,SAAS,CAAC,CAAC,IAAIyvF,IAAG,CAAC,WAAWnuG,GAAG,YAAY,QAAQ,WAAWkuG,GAAG,EAAE,SAASE,IAAI/vF,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,GAAGK,EAAE,OAAO,CAAC,EAAE,EAAE,CAAC,IAAI,EAAE,QAAQ0B,EAAE,WAAWC,CAAC,EAAE5B,EAAE6B,EAAEvU,EAAE,kBAAkBsU,EAAE,EAAE,MAAMD,EAAE,EAAE,CAAC,EAAEW,EAAE,IAAI2sF,IAAGptF,CAAC,EAAE,OAAO/B,EAAE,gBAAgBwC,EAAE,CAACrC,EAAE,CAAC,EAAE,SAAS,CAAC,CAAC,IAAI2vF,IAAG,CAAC,WAAWpuG,GAAG,YAAY,QAAQ,WAAWmuG,GAAG,EAAME,IAAInK,GAAG;AAAA;AAAA,EAE3vCoK,IAAI;AAAA;AAAA;AAAA,IAGFlL,EAAE;AAAA;AAAA,EAEJmL,IAAIpK,GAAG,CAAC,UAAUkK,IAAI,gBAAgBC,GAAG,CAAC,EAAEE,IAAG,CAAC,WAAWvuG,GAAG,YAAY,QAAQ,WAAWsuG,GAAG,EAAME,IAAI;AAAA;AAAA;AAAA,EAG1GC,IAAIvK,GAAG,CAAC,UAAUsK,GAAG,CAAC,EAAEE,IAAG,CAAC,WAAWzuG,GAAG,YAAY,QAAQ,WAAWwuG,GAAG,EAAME,IAAG,KAAK,CAAC,YAAY5vF,EAAEV,EAAE,EAAEG,EAAEwB,EAAE,CAAC,KAAK,cAAc,CAAC,QAAQ,QAAQ,QAAQ,EAAE,KAAK,YAAY,CAAC,EAAE,GAAG,CAACC,EAAEC,EAAEC,EAAE,CAAC,EAAEpB,EAAE,CAAC8B,CAAC,EAAExC,EAAE,CAAC,EAAE0C,CAAC,EAAE,EAAE,KAAK,YAAY,CAACF,EAAE,EAAEE,EAAE,CAAC,EAAE,IAAIC,EAAExC,IAAI,WAAW,EAAE,EAAE,CAACyC,EAAEkB,CAAC,EAAE,CAAC,GAAGjC,EAAE,CAAC,KAAK,GAAGC,EAAE,CAAC,IAAI,EAAE,CAACiC,EAAEqD,EAAE,CAAC,EAAE,EAAE,EAAE,CAAC,IAAIvF,EAAE,IAAI,EAAE,EAAE,GAAG,yBAAyB,MAAMe,CAAC,4BAA4B,EAAE,CAAC,MAAM,MAAM,mBAAmBA,CAAC,EAAE,EAAE,CAAC2B,EAAEC,EAAEC,CAAC,EAAE/B,EAAE,EAAE,CAAC,IAAIZ,EAAE,IAAIY,EAAE,EAAE,GAAG,wBAAwB,MAAMoB,CAAC,2BAA2B,EAAE,CAAC,MAAM,MAAM,mBAAmBA,CAAC,EAAE,EAAE,KAAK,SAAS;AAAA,yCAC1gBC,CAAC;AAAA,wCACFQ,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,iCAgBR3C,CAAC;AAAA;AAAA;AAAA;AAAA,+BAIHwF,CAAC;AAAA,8BACF5C,CAAC;AAAA;AAAA,uBAER,CAAC;AAAA,mCACW5B,CAAC;AAAA,4BACRjB,CAAC;AAAA;AAAA;AAAA,uBAGN8C,CAAC;AAAA,mCACWX,CAAC;AAAA,4BACRnC,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA,aAKhBgB,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,KAwBT,CAAC,EAAM4tF,IAAIzwF,GAAG,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,MAAMK,EAAE,MAAM,EAAE,OAAO,CAAC,EAAE,EAAE,CAAC,SAAS0B,EAAE,OAAOC,EAAE,mBAAmBC,CAAC,EAAE7B,EAAEsC,EAAE,IAAI8tF,IAAGnwF,EAAE,MAAM,EAAE,MAAM0B,EAAEC,EAAEC,CAAC,EAAE,OAAO/B,EAAE,gBAAgBwC,EAAE,CAACrC,EAAE,EAAE,CAAC,EAAE,SAAS,CAAC,EAAEqwF,IAAG,CAAC,WAAW3uG,GAAG,YAAY,QAAQ,WAAW0uG,GAAG,EAAME,IAAI,SAAS3wF,EAAE,CAACA,EAAE,KAAK,IAAIA,EAAE,IAAI,GAAG,GAAG2wF,KAAKA,GAAG,CAAC,EAAE,EAAE,IAAIC,GAAG,KAAK,CAAC,YAAYhwF,EAAEV,EAAE,EAAEG,EAAE,CAAC,KAAK,GAAGO,EAAE,KAAK,YAAYV,EAAE,KAAK,cAAc,CAAC,GAAG,EAAE,KAAK,eAAe,CAAC,CAAC,KAAK,QAAQ,KAAK,OAAO,CAAC,EAAE,IAAI2B,EAAE,KAAK,YAAY,OAAOC,EAAE,KAAK,KAAK6uF,GAAG,KAAK,MAAM,MAAM5uF,EAAE,EAAED,EAAE,QAAQ+uF,GAAGhvF,EAAE,SAAS,KAAK,EAAE,CAAC,IAAIG,EAAE,KAAK,YAAY,KAAK,YAAY,OAAO,CAAC,EAAE,EAAE,GAAGU,EAAE,GAAG,GAAG,EAAErC,EAAE,UAAU2B,EAAE,CAAC,GAAG,WAAWU,EAAErC,EAAE,UAAU,YAAY,EAAEA,EAAE,gBAAgB2B,CAAC,GAAG,cAAcU,EAAErC,EAAE,aAAa,cAAc,KAAK,SAAS;AAAA;AAAA,UAE1uB68E,GAAGr7E,CAAC,CAAC;AAAA,oBACKivF,GAAGjvF,EAAE,SAAS,KAAK,EAAE,CAAC;AAAA,sBACpBE,CAAC;AAAA;AAAA,cAET,CAAC;AAAA,sBACOW,CAAC;AAAA,YACXouF,GAAGjvF,EAAE,SAAS,KAAK,EAAE,CAAC;AAAA,gBAClB,KAAK,EAAE,UAAUgvF,GAAGhvF,EAAE,SAAS,KAAK,EAAE,CAAC;AAAA;AAAA;AAAA;AAAA,KAIlD,CAAC,EAAE,SAASgvF,GAAG7wF,EAAE,EAAEE,EAAE,CAAC,GAAGF,IAAI,EAAE,MAAM,GAAG,CAAC,GAAG,GAAGA,IAAI,EAAE,MAAM,GAAG,CAAC,OAAO,CAAC,KAAK,GAAGA,IAAI,EAAE,MAAM,GAAG,CAAC,OAAO,CAAC,OAAO,CAAC,KAAK,GAAGA,IAAI,EAAE,MAAM,GAAG,CAAC,OAAO,CAAC,OAAO,CAAC,OAAO,CAAC,KAAK,MAAM,IAAI,MAAM,cAAcE,CAAC,aAAaF,CAAC,uBAAuB,CAAC,CAAC,SAAS8wF,GAAG9wF,EAAE,EAAEE,EAAE,CAAC,GAAGF,IAAI,EAAE,MAAM,GAAG,CAAC,GAAG,GAAGA,IAAI,EAAE,MAAM,GAAG,CAAC,KAAK,GAAGA,IAAI,EAAE,MAAM,GAAG,CAAC,KAAK,GAAGA,IAAI,EAAE,MAAM,GAAG,CAAC,KAAK,MAAM,IAAI,MAAM,cAAcE,CAAC,aAAaF,CAAC,uBAAuB,CAAC,CAAC,SAAS+wF,GAAG/wF,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,CAAC,IAAI,EAAE,EAAE,MAAM,OAAO0B,EAAErU,EAAE,mBAAmB,CAAC0S,CAAC,EAAE,CAAC,EAAE4B,EAAE,EAAED,GAAG,OAAOC,EAAEslF,GAAG,CAAC,OAAO,CAAC,EAAE,CAAC,EAAE,QAAQpnF,EAAE,MAAM,CAAC,KAAK6B,CAAC,CAAC,CAAC,GAAG,IAAIE,EAAEvU,EAAE,iBAAiB,EAAE,CAAC,EAAE,CAAC,EAAE,GAAGuU,IAAI,EAAE,EAAE,MAAM,IAAI,MAAM,mDAAmD,EAAE,MAAM,OAAO,CAAC,iBAAiB7B,CAAC,EAAE,EAAE,IAAIsC,EAAEV,EAAE,MAAMC,CAAC,EAAEU,EAAEuiF,GAAG,CAAC,OAAO,CAAC,EAAEljF,CAAC,EAAE,QAAQ9B,CAAC,CAAC,EAAE,QAAQ0C,EAAE,EAAEA,GAAG,KAAK,KAAK,KAAK,KAAKF,CAAC,CAAC,EAAE,EAAEE,IAAI,CAAC,IAAIC,EAAE,IAAI+tF,GAAG5wF,EAAEgC,EAAE,MAAM,GAAG,CAAC,EAAEc,EAAE,CAAC,CAACF,CAAC,CAAC,EAAEoB,EAAErB,EAAEA,EAAEzC,EAAE,gBAAgB2C,EAAE,CAACF,CAAC,EAAEA,EAAE,MAAMG,CAAC,EAAE5C,EAAE,8BAA8B8D,CAAC,CAAC,CAAC,GAAG3D,EAAE,CAAC,IAAIuC,EAAE,IAAIguF,GAAG5wF,EAAEgC,EAAE,MAAM3B,EAAE,CAAC,EAAEwC,EAAEF,EAAEA,EAAEzC,EAAE,gBAAgB0C,EAAE,CAACD,CAAC,EAAEA,EAAE,KAAK,EAAEzC,EAAE,8BAA8B2C,CAAC,CAAC,CAAC,GAAGd,GAAG,KAAK,CAAC,IAAIa,EAAElV,EAAE,uBAAuBqU,CAAC,EAAEc,EAAEykF,GAAG,CAAC,OAAO,CAAC,EAAE3kF,CAAC,EAAE,QAAQzC,EAAE,MAAM,CAAC,KAAK0C,CAAC,CAAC,CAAC,EAAE,OAAO1C,EAAE,8BAA8ByC,CAAC,EAAEzC,EAAE,8BAA8B8B,CAAC,EAAEa,CAAC,CAAC,OAAOF,CAAC,CAAC,SAASquF,IAAIhxF,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,CAAC,EAAE,EAAE,CAAC,KAAK,EAAE,UAAU,EAAE,QAAQ0B,CAAC,EAAE3B,EAAE,OAAO2wF,GAAGJ,GAAG,KAAKtwF,EAAEH,EAAE,EAAE,EAAE6B,CAAC,CAAC,CAAC,IAAIkvF,IAAG,CAAC,WAAWjvG,GAAG,YAAY,QAAQ,WAAWgvG,GAAG,EAAE,SAASE,IAAIlxF,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,CAAC,EAAE,EAAE,CAAC,KAAK,EAAE,UAAU,EAAE,QAAQ0B,CAAC,EAAE3B,EAAE,OAAO2wF,GAAGJ,GAAG,IAAItwF,EAAEH,EAAE,EAAE,EAAE6B,CAAC,CAAC,CAAC,IAAIovF,IAAG,CAAC,WAAWlvG,GAAG,YAAY,QAAQ,WAAWivG,GAAG,EAAE,SAASE,IAAIpxF,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,EAAE,QAAQ,CAAC,EAAE,EAAE,CAAC,KAAK,EAAE,aAAa0B,CAAC,EAAE3B,EAAE,GAAGC,EAAE,MAAM,SAAS,EAAE,CAAC,IAAI2B,EAAE9B,EAAE,SAASG,EAAE,MAAM,EAAE4B,EAAE/B,EAAE,SAAS,EAAE,MAAM,EAAEwC,EAAE88E,GAAGx9E,EAAEC,EAAE,EAAE,MAAM,EAAE,MAAM,CAAC,EAAE,OAAO/B,EAAE,eAAe,CAAC,CAAC,EAAE,EAAE,MAAMwC,CAAC,CAAC,SAASrC,EAAE,MAAM,SAAS,EAAE,CAAC,IAAI2B,EAAE9B,EAAE,WAAWG,CAAC,EAAE4B,EAAE/B,EAAE,WAAW,CAAC,EAAEwC,EAAE+8E,GAAGz9E,EAAEC,EAAE,EAAEF,CAAC,EAAE,OAAO7B,EAAE,eAAewC,EAAE,MAAM,EAAE,MAAMA,EAAE,MAAM,CAAC,CAAC,MAAM,IAAI,MAAM,qEAAqErC,EAAE,MAAM,MAAM,GAAG,CAAC,CAAC,IAAIgxF,IAAG,CAAC,WAAWjvG,GAAG,YAAY,QAAQ,WAAWgvG,GAAG,EAAME,IAAG,KAAK,CAAC,YAAY1wF,EAAEV,EAAE,EAAE,CAAC,KAAK,cAAc,CAAC,GAAG,EAAE,KAAK,YAAY,CAAC,EAAE,KAAK,YAAYU,EAAE,KAAK,UAAUV,EAAE,KAAK,WAAW,EAAE,KAAK,SAAS;AAAA;AAAA;AAAA;AAAA,gBAIvqE,KAAK,qBAAqB,CAAC;AAAA,gBAC3B,KAAK,oBAAoB,CAAC;AAAA,gBAC1B,KAAK,oBAAoB,CAAC;AAAA;AAAA,uBAEnBA,CAAC;AAAA,+BACOA,CAAC;AAAA,uBACTA,CAAC;AAAA,+BACOA,CAAC;AAAA,mCACGA,CAAC;AAAA,UAC1B,KAAK,mBAAmB,CAAC;AAAA;AAAA;AAAA,uBAGZ,KAAK,uBAAuB,CAAC;AAAA;AAAA;AAAA,GAGjD,CAAC,sBAAsB,CAAC,OAAO,KAAK,aAAa,OAAO,YAAY,WAAW,CAAC,qBAAqB,CAAC,OAAO,KAAK,aAAa,OAAO,YAAY,WAAW,CAAC,qBAAqB,CAAC,OAAO,KAAK,aAAa,OAAO,YAAY,WAAW,CAAC,oBAAoB,CAAC,OAAO,KAAK,aAAa,OAAO,KAAK,YAAY,CAAC,EAAE,KAAK,YAAY,CAAC,CAAC,CAAC,wBAAwB,CAAC,OAAO,KAAK,aAAa,OAAO,4BAA4B,2BAA2B,CAAC,EAAE,SAASqxF,IAAIvxF,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,CAAC,EAAE,EAAE,CAAC,UAAU,EAAE,WAAW,CAAC,EAAED,EAAE2B,EAAE1B,EAAE,MAAM,CAAC,EAAE2B,EAAE,IAAI,OAAO3B,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAE4B,EAAE,IAAI,OAAO5B,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEqC,EAAE,IAAI,OAAOrC,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEsC,EAAEX,EAAE,EAAEY,EAAEX,EAAE,EAAEY,EAAEH,GAAG,EAAE,GAAGI,EAAE,IAAI,OAAO,CAACf,EAAEY,EAAEC,EAAEC,CAAC,EAAE,CAACd,EAAEc,EAAEF,EAAEC,CAAC,EAAEoB,EAAE,IAAIstF,IAAGxuF,EAAE,EAAE,CAAC,EAAE,OAAO5C,EAAE,gBAAgB8D,EAAE,CAAC3D,CAAC,EAAEA,EAAE,KAAK,CAAC,CAAC,IAAImxF,IAAG,CAAC,WAAWnvG,GAAG,YAAY,QAAQ,WAAWkvG,GAAG,EAAME,GAAG,KAAK,CAAC,YAAY7wF,EAAEV,EAAE,GAAG,EAAE,KAAKG,EAAE,GAAGwB,EAAE,GAAG,CAAC,KAAK,cAAc,CAAC,IAAI,GAAG,EAAE,KAAK,eAAe,CAAC,CAAC,KAAK,OAAO,KAAK,OAAO,EAAE,CAAC,KAAK,UAAU,KAAK,OAAO,EAAE,CAAC,KAAK,YAAY,KAAK,OAAO,EAAE,CAAC,KAAK,SAAS,KAAK,OAAO,CAAC,EAAE,KAAK,YAAYjB,EAAE,SAAS,KAAK,oBAAoB48E,GAAG,KAAK,YAAY,MAAM,EAAE,IAAI17E,EAAElB,EAAE,aAAamB,EAAEnB,EAAE,YAAYoB,EAAEpB,EAAE,YAAYA,EAAE,WAAW,EAAE,GAAG8B,EAAE,GAAG,IAAIrC,EAAE,EAAE;AAAA;AAAA,YAEzqC,CAAC;AAAA,WACFwB,EAAE,EAAE;AAAA;AAAA,YAEH,CAAC;AAAA,WACF,EAAE;AAAA;AAAA,cAEC,CAAC;AAAA;AAAA,UAELa,EAAE,gCAAgC,IAAI,EAAExC,EAAE,kCAAkC,GAAGA,GAAG,KAAK,cAAc,KAAK,MAAM,EAAEG,GAAG,KAAK,cAAc,KAAK,wBAAwB,EAAEwB,GAAG,KAAK,cAAc,KAAK,gBAAgB,EAAE,KAAK,SAAS;AAAA,QACpO,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,wBAOeG,CAAC;AAAA,4BACGA,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,gCASGF,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,kCAOCC,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,UAczB,CAAC;AAAA,UACDW,CAAC;AAAA;AAAA;AAAA,KAGN,CAAC,EAAMgvF,GAAG,KAAK,CAAC,YAAY9wF,EAAEV,EAAE,GAAG,EAAE,KAAKG,EAAE,GAAGwB,EAAE,GAAG,CAAC,KAAK,cAAc,CAAC,IAAI,GAAG,EAAE,KAAK,aAAa,GAAG,KAAK,aAAa,GAAG,KAAK,eAAe,CAAC,CAAC,KAAK,OAAO,KAAK,OAAO,EAAE,CAAC,KAAK,UAAU,KAAK,OAAO,EAAE,CAAC,KAAK,YAAY,KAAK,OAAO,EAAE,CAAC,KAAK,SAAS,KAAK,OAAO,CAAC,EAAE,KAAK,YAAYjB,EAAE,SAAS,KAAK,oBAAoB48E,GAAG,KAAK,YAAY,MAAM,EAAE,IAAI17E,EAAElB,EAAE,YAAYA,EAAE,WAAWmB,EAAEnB,EAAE,QAAQ,KAAKoB,EAAEpB,EAAE,YAAY,EAAEA,EAAE,cAAc8B,EAAE9B,EAAE,aAAa,EAAEA,EAAE,YAAYgC,EAAE,EAAEC,EAAE;AAAA;AAAA,+CAE1a,QAAQyE,EAAE,EAAEA,EAAE,EAAEA,IAAIzE,GAAG;AAAA,wBAC9CyE,EAAE,CAAC;AAAA,uBACJA,EAAE,CAAC;AAAA,wBACFA,EAAE,EAAE,CAAC;AAAA,uBACNA,EAAE,EAAE,CAAC;AAAA,mBACTA,CAAC,IAAIzE,GAAG;AAAA,0BACDH,CAAC;AAAA,QACnB,QAAQ4E,EAAE,EAAEA,EAAE,EAAEA,IAAIzE,GAAG;AAAA,mBACZyE,EAAE,CAAC;AAAA,mBACHA,EAAE,CAAC;AAAA,mBACHA,EAAE,EAAE,CAAC;AAAA,mBACLA,EAAE,EAAE,CAAC;AAAA,cACVA,CAAC,gBAAgBzE,GAAG;AAAA;AAAA;AAAA,QAG1B,QAAQyE,EAAE,EAAEA,GAAG1E,EAAE,GAAG,EAAE0E,IAAI,CAAC,IAAI,EAAEA,EAAE,EAAE,GAAGzE,GAAG;AAAA,4BACvB,EAAE,CAAC;AAAA,YACnBb,IAAI,GAAG,GAAG,EAAE,IAAID,EAAE,IAAI,GAAGc,GAAG;AAAA;AAAA,sEAE8B,CAAC;AAAA,2BAC5C,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA,6BAKC,CAAC;AAAA;AAAA,2BAEH,CAAC;AAAA;AAAA,gBAEZ,IAAI,GAAG,EAAE,EAAEA,GAAG;AAAA,oBACV,CAAC,kBAAkB,EAAE,CAAC,eAAe,CAAC;AAAA,kBACxCA,GAAG;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,wBAYG,CAAC,+BAA+B,CAAC;AAAA;AAAA,wBAEjC,CAAC,4BAA4B,CAAC;AAAA;AAAA,qBAEjCA,GAAG;AAAA,0DACkC,CAAC;AAAA,2BAChC,CAAC;AAAA;AAAA,6BAEC,CAAC;AAAA;AAAA,2BAEH,CAAC;AAAA;AAAA;AAAA,oBAGR,CAAC,aAAa,CAAC;AAAA,kBACjB,EAAE,EAAE,GAAG,CAAC,IAAI4B,EAAE1C,EAAE,IAAI,EAAExD,EAAE,kBAAkB,CAAC,EAAE,EAAE,EAAE,IAAI,GAAGwD,EAAE,IAAI,GAAG,EAAE,IAAI,GAAGA,EAAE,IAAI,GAAGc,GAAG;AAAA,uDACjD4B,CAAC;AAAA;AAAA,wEAEgB,EAAE,CAAC;AAAA,6BAC9C,EAAE,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA,+BAKD,EAAE,CAAC;AAAA;AAAA,6BAEL,EAAE,CAAC;AAAA;AAAA,oBAEZ,EAAE,EAAE5B,GAAG;AAAA;AAAA;AAAA;AAAA,yBAIF,EAAE,CAAC,+BAA+B,EAAE,CAAC;AAAA;AAAA,yBAErC,EAAE,CAAC,4BAA4B,EAAE,CAAC;AAAA;AAAA,sBAErCA,GAAG;AAAA,wBACD,EAAE,CAAC,kBAAkB,CAAC,eAAe,EAAE,CAAC;AAAA,uBACzC4B,IAAI,EAAE5B,GAAG;AAAA,wBACR,EAAE,CAAC,aAAa,CAAC;AAAA,sBACnBA,GAAG;AAAA,sCACa4B,CAAC;AAAA;AAAA,0EAEmC,EAAE,CAAC;AAAA,+BAC9C,EAAE,CAAC;AAAA;AAAA,iCAED,EAAE,CAAC;AAAA;AAAA,+BAEL,EAAE,CAAC;AAAA;AAAA;AAAA,wBAGV,EAAE,CAAC,aAAa,EAAE,CAAC;AAAA,qBACtB,OAAO,EAAE,IAAI1C,EAAE,IAAI,GAAGc,GAAG;AAAA;AAAA,qEAEuB,CAAC;AAAA,2BAC3C,CAAC;AAAA;AAAA;AAAA;AAAA,6BAIC,CAAC;AAAA;AAAA,2BAEH,CAAC;AAAA;AAAA;AAAA,iEAGqC,EAAE,CAAC;AAAA,2BACzC,EAAE,CAAC;AAAA;AAAA;AAAA;AAAA,6BAID,EAAE,CAAC;AAAA;AAAA,2BAEL,EAAE,CAAC;AAAA;AAAA;AAAA,oBAGV,CAAC,kBAAkB,CAAC,eAAe,EAAE,CAAC;AAAA,gBAC1C,EAAE,EAAE,IAAIA,GAAG;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,sBAML,EAAE,CAAC,kBAAkB,EAAE,CAAC;AAAA,qBACzBA,GAAG;AAAA,yDACiC,CAAC;AAAA,2BAC/B,CAAC;AAAA;AAAA,6BAEC,CAAC;AAAA;AAAA,2BAEH,CAAC;AAAA;AAAA;AAAA;AAAA,qEAIyC,EAAE,CAAC;AAAA,2BAC7C,EAAE,CAAC;AAAA;AAAA,6BAED,EAAE,CAAC;AAAA;AAAA,2BAEL,EAAE,CAAC;AAAA;AAAA;AAAA,oBAGV,CAAC;AAAA,2BACM,CAAC,eAAe,EAAE,CAAC;AAAA,gBAC9B,EAAE,EAAE,IAAIA,GAAG;AAAA,sBACL,EAAE,CAAC,kBAAkB,CAAC,eAAe,EAAE,CAAC;AAAA,qBACzC,EAAE,IAAIA,GAAG;AAAA,+BACC,CAAC;AAAA,2BACL,CAAC;AAAA,YAChB,EAAE,EAAE,IAAIA,GAAG;AAAA,iCACU,EAAE,CAAC;AAAA,6BACP,EAAE,CAAC;AAAA,eACjB,CAACA,GAAG;AAAA;AAAA,IAEfA,GAAG;AAAA;AAAA,MAED,IAAIC,EAAE,GAAGkB,EAAE,GAAG,IAAI3D,EAAEyC,EAAE;AAAA;AAAA,YAEhB,CAAC;AAAA,WACFjB,EAAEiB,EAAE;AAAA;AAAA,YAEH,CAAC;AAAA,WACFA,EAAE;AAAA,YACD,CAAC;AAAA,WACFkB,EAAE,gCAAgC,IAAIC,EAAE/D,EAAE,kCAAkC,GAAGA,GAAG,KAAK,cAAc,KAAK,MAAM,EAAEG,GAAG,KAAK,cAAc,KAAK,wBAAwB,EAAEwB,GAAG,KAAK,cAAc,KAAK,gBAAgB,EAAE,KAAK,SAAS;AAAA,QACrOiB,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,wBAOehB,CAAC;AAAA,4BACGA,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,UAOnBe,CAAC;AAAA;AAAA;AAAA,UAGDoB,CAAC;AAAA,UACDD,CAAC;AAAA;AAAA;AAAA,KAGN,CAAC,EAAE,SAAS2tF,IAAI3xF,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,EAAE,OAAO,CAAC,EAAE,EAAE,CAAC,QAAQ,EAAE,IAAI0B,EAAE,UAAUC,EAAE,gBAAgBC,CAAC,EAAE7B,EAAEsC,EAAEV,EAAEU,GAAG,OAAOA,EAAE,CAAC,EAAE,CAAC,GAAGnE,EAAE,OAAO7Q,EAAE,+BAA+B,EAAEgV,CAAC,EAAE,IAAI,gFAAgF,CAAC,mBAAmBA,CAAC,GAAG,EAAE,IAAIC,EAAEjV,EAAE,kBAAkB2S,EAAE,MAAM,EAAE,MAAM,EAAEqC,EAAEX,EAAEE,EAAE,EAAE,EAAEW,EAAEpR,EAAE,EAAE,QAAQ,0BAA0B,GAAGmR,EAAE,aAAa,GAAGA,EAAE,YAAYA,EAAE,aAAa,EAAEC,EAAE,IAAI8uF,GAAG/uF,CAAC,EAAEC,EAAE,IAAI6uF,GAAG9uF,CAAC,EAAE,IAAIE,EAAE,CAAC,CAACF,EAAE,QAAQ,IAAIA,EAAE,QAAQ,IAAI,EAAE,CAACA,EAAE,aAAaA,EAAE,WAAW,EAAE,CAACA,EAAE,eAAeA,EAAE,aAAa,EAAE,CAACA,EAAE,SAASA,EAAE,OAAO,CAAC,EAAE,OAAOzC,EAAE,gBAAgB0C,EAAE,CAACvC,EAAE,CAAC,EAAE,UAAUwC,CAAC,CAAC,CAAC,IAAI+uF,IAAG,CAAC,WAAWtvG,GAAG,YAAY,QAAQ,WAAWqvG,GAAG,EAAME,IAAG,KAAK,CAAC,YAAYjxF,EAAE,CAAC,KAAK,cAAc,CAAC,IAAI,IAAI,EAAE,KAAK,YAAYA,EAAE,YAAY,IAAIV,EAAEU,EAAE,aAAa,EAAEA,EAAE,YAAYP,EAAEO,EAAE,QAAQ,IAAIiB,EAAEjB,EAAE,QAAQ,KAAKkB,EAAElB,EAAE,YAAYA,EAAE,WAAW,KAAK,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,wBAOr3BkB,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA,8BAKKlB,EAAE,SAAS;AAAA,kCACPA,EAAE,SAAS;AAAA,iCACZV,CAAC,MAAMG,CAAC;AAAA;AAAA,kCAEPO,EAAE,QAAQ;AAAA;AAAA;AAAA;AAAA,oCAIRA,EAAE,QAAQ;AAAA,mCACX,CAAC,MAAMiB,CAAC;AAAA;AAAA,oCAEPjB,EAAE,OAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,KAYxC,CAAC,EAAEkxF,IAAG,KAAK,CAAC,YAAYlxF,EAAE,CAAC,KAAK,cAAc,CAAC,KAAK,GAAG,EAAE,KAAK,YAAYA,EAAE,QAAQ,IAAIV,EAAEU,EAAE,aAAa,EAAEA,EAAE,YAAYP,EAAEO,EAAE,aAAaiB,EAAEjB,EAAE,YAAYkB,EAAE5B,EAAE,EAAEU,EAAE,QAAQ,IAAImB,EAAE,EAAE,EAAEnB,EAAE,QAAQ,KAAKoB,EAAEpB,EAAE,YAAYA,EAAE,WAAW,KAAK,SAAS;AAAA,iCAClNkB,CAAC,KAAKC,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,gCAYR7B,CAAC;AAAA,gDACeG,CAAC;AAAA;AAAA,oCAEbO,EAAE,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA,yBAKtBV,CAAC;AAAA;AAAA,kCAEQ,CAAC;AAAA,kDACe2B,CAAC;AAAA;AAAA,sCAEbjB,EAAE,QAAQ;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,2BAMrB,CAAC;AAAA;AAAA;AAAA,oCAGQoB,CAAC;AAAA,8BACPA,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,KAS1B,CAAC,EAAE,SAAS+vF,IAAI/xF,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,EAAE,GAAG,CAAC,EAAE,EAAE,CAAC,QAAQ,EAAE,UAAU0B,EAAE,IAAIC,EAAE,gBAAgBC,EAAE,YAAYS,CAAC,EAAEtC,EAAEuC,EAAEjV,EAAE,kBAAkB2S,EAAE,MAAMqC,EAAE,EAAEX,EAAEC,EAAEC,EAAE,EAAE,EAAEW,EAAE,IAAIivF,IAAGlvF,CAAC,EAAE,OAAOzC,EAAE,gBAAgB0C,EAAE,CAACvC,EAAE,CAAC,EAAE,SAAS,CAAC,CAAC,IAAI2xF,IAAG,CAAC,WAAWzvG,GAAG,YAAY,QAAQ,WAAWwvG,GAAG,EAAE,SAASE,IAAIjyF,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,GAAGK,EAAE,OAAO,CAAC,EAAE,EAAE,CAAC,QAAQ,EAAE,UAAU0B,EAAE,IAAIC,EAAE,gBAAgBC,EAAE,WAAWS,CAAC,EAAEtC,EAAEuC,EAAEjV,EAAE,kBAAkBgV,EAAE,EAAE,MAAM,EAAEX,EAAEC,EAAEC,EAAE,EAAE,EAAEW,EAAE,IAAIkvF,IAAGnvF,CAAC,EAAE,OAAOzC,EAAE,gBAAgB0C,EAAE,CAACvC,EAAE,CAAC,EAAE,SAAS,CAAC,CAAC,IAAI6xF,IAAG,CAAC,WAAW1vG,GAAG,YAAY,QAAQ,WAAWyvG,GAAG,EAAME,IAAG,KAAK,CAAC,YAAYvxF,EAAE,CAAC,KAAK,cAAc,CAAC,GAAG,EAAE,KAAK,YAAY,CAACA,EAAEA,CAAC,EAAE,KAAK,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,KAM3pB,CAAC,EAAE,SAASwxF,IAAIpyF,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,CAAC,EAAEF,EAAE,CAAC,EAAEI,CAAC,EAAE,EAAEC,EAAE,CAAC,GAAGD,EAAE,MAAM,GAAGA,EAAE,KAAK,EAAE,EAAE7B,EAAE,cAAc6B,EAAE,KAAK,EAAE,EAAEqmF,GAAG,CAAC,OAAO,CAAC,EAAErmF,CAAC,EAAE,QAAQF,EAAE,MAAM,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE6B,EAAE,IAAIowF,IAAG,CAAC,EAAEnwF,EAAE9B,EAAE,gBAAgB6B,EAAE,CAAC,CAAC,EAAE,EAAE,KAAK,EAAEE,EAAEwkF,GAAG,CAAC,OAAO,CAAC,EAAEzkF,CAAC,EAAE,QAAQ9B,EAAE,MAAM,CAAC,MAAMG,CAAC,CAAC,CAAC,EAAE,OAAOH,EAAE,8BAA8B,CAAC,EAAEA,EAAE,8BAA8B8B,CAAC,EAAEC,CAAC,CAAC,IAAIowF,IAAG,CAAC,WAAW5vG,GAAG,YAAY,QAAQ,WAAW2vG,GAAG,EAAME,IAAG,KAAK,CAAC,YAAY1xF,EAAE,CAAC,KAAK,cAAc,CAAC,IAAI,GAAG,EAAE,KAAK,YAAYA,EAAE,SAAS,GAAG,CAAC,SAASV,EAAE,QAAQ,EAAE,QAAQG,EAAE,aAAawB,EAAE,YAAYC,EAAE,aAAaC,EAAE,YAAYC,EAAE,eAAe,EAAE,cAAcU,CAAC,EAAE9B,EAAE,CAAC,IAAI,EAAE,KAAKgC,CAAC,EAAEvC,EAAE,KAAK,SAAS;AAAA,oCACxlBwB,CAAC,KAAKC,CAAC;AAAA,iCACV,CAAC,KAAKc,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,8BAaVb,CAAC;AAAA,iCACE,CAAC;AAAA;AAAA,kCAEA7B,CAAC;AAAA,kCACD8B,CAAC;AAAA,qCACEU,CAAC;AAAA;AAAA,sCAEA,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,KAgBlC,CAAC,EAAE,SAAS6vF,IAAIvyF,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,EAAE,OAAO,CAAC,EAAE,EAAE,CAAC,QAAQ,EAAE,IAAI0B,EAAE,UAAUC,CAAC,EAAE5B,EAAE6B,EAAEvU,EAAE,sBAAsB2S,EAAE,MAAM,EAAE,MAAM,EAAE0B,EAAE,OAAOC,CAAC,EAAEU,EAAEC,EAAE,IAAI2vF,IAAGrwF,CAAC,EAAES,EAAExC,EAAE,gBAAgByC,EAAE,CAACtC,EAAE,CAAC,EAAE,SAAS,EAAE,IAAIuC,EAAE6jF,GAAG,CAAC,OAAO,CAAC,EAAE/jF,CAAC,EAAE,QAAQxC,EAAE,MAAM,CAAC,MAAM+B,EAAE,QAAQ,CAAC,CAAC,EAAE,OAAO/B,EAAE,8BAA8BwC,CAAC,EAAEE,CAAC,CAAC,IAAI4vF,IAAG,CAAC,WAAW9vG,GAAG,YAAY,QAAQ,WAAW6vG,GAAG,EAAE,SAASE,IAAIzyF,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,SAASK,CAAC,EAAED,EAAE,EAAE,EAAE,CAAC,QAAQ,EAAE,WAAW2B,EAAE,OAAOC,CAAC,EAAEtU,EAAE,qBAAqB2S,EAAE,EAAE,MAAM,EAAE3S,EAAE,oBAAoB,EAAE,OAAOsU,EAAE,CAAC,EAAE,GAAG,CAAC,KAAKC,EAAE,MAAMS,CAAC,EAAEhV,EAAE,qBAAqBqU,EAAEC,CAAC,EAAEW,EAAED,EAAE,OAAOE,EAAE,KAAKC,EAAE,EAAE,OAAOC,EAAE,CAAC,EAAE,QAAQkB,EAAE,EAAEA,EAAErB,EAAE,EAAEqB,EAAE,CAAC,QAAQ,KAAKtB,EAAEsB,CAAC,EAAE,CAAC,GAAG,CAAC,mBAAmBsD,EAAE,WAAWxC,CAAC,EAAEpX,EAAE,qBAAqBmV,EAAEb,EAAE,CAAC,CAAC,EAAEyC,EAAE/W,EAAE,sBAAsB4Z,CAAC,EAAE7C,EAAE,EAAE,CAAC,GAAGA,EAAE6iF,GAAG,CAAC,OAAO,CAAC,EAAE,EAAE,CAAC,CAAC,EAAE,QAAQpnF,EAAE,MAAM,CAAC,KAAKoH,CAAC,CAAC,CAAC,EAAExE,EAAE,KAAK2B,CAAC,GAAG,IAAIC,EAAED,EAAE,MAAM,MAAM,EAAE,QAAQE,EAAE,EAAEA,EAAEG,EAAE,OAAO,EAAEH,EAAED,EAAE,OAAOI,EAAEH,CAAC,EAAE,EAAE,CAAC,EAAEpG,EAAE,YAAYkG,EAAE,MAAMC,CAAC,IAAID,EAAEgiF,GAAG,CAAC,OAAO,CAAChiF,CAAG,EAAE,QAAQvE,EAAE,MAAM,CAAC,MAAMwE,CAAC,CAAC,CAAC,EAAE5B,EAAE,KAAK2B,CAAC,GAAG7B,IAAI,KAAKA,EAAE6B,GAAG7B,EAAE0jF,GAAG,CAAC,OAAO,CAAC,EAAE7hF,EAAE,EAAE7B,CAAC,EAAE,QAAQ1C,CAAC,CAAC,EAAE4C,EAAE,KAAKF,CAAC,EAAE,CAACoB,EAAErB,EAAE,IAAIV,EAAE+B,CAAC,GAAG,IAAIpB,EAAEwkF,GAAG,CAAC,OAAO,CAAC,EAAExkF,CAAC,EAAE,QAAQ1C,EAAE,MAAM,CAAC,KAAK+B,EAAE+B,CAAC,GAAG,EAAE,OAAOnB,GAAG,SAAS,EAAE,CAAC,CAAC,EAAEC,EAAE,KAAKF,CAAC,GAAGC,IAAI,CAAC,QAAQmB,KAAKlB,EAAEkB,IAAIpB,GAAG1C,EAAE,8BAA8B8D,CAAC,EAAE,OAAOpB,CAAC,CAAC,IAAI8vF,IAAG,CAAC,WAAW1vG,GAAG,YAAY,QAAQ,WAAWyvG,GAAG,EAAME,IAAI,0CAA0CC,IAAI;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAS1zCC,IAAI9M,GAAG,CAAC,UAAU4M,IAAI,gBAAgBC,GAAG,CAAC,EAAEE,IAAG,CAAC,WAAW7vG,GAAG,YAAY,QAAQ,WAAW4vG,GAAG,EAAME,IAAI,yCAAyCC,IAAI;AAAA;AAAA;AAAA,EAGvJC,IAAIjzF,GAAG,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,CAAC,EAAEF,EAAE,CAAC,GAAGI,EAAE,EAAEC,CAAC,EAAE,EAAE,EAAE7O,EAAE,EAAE,QAAQ,8BAA8B,EAAE,IAAIyzF,GAAG+N,IAAI5yF,EAAE,MAAMC,EAAE,KAAK,EAAE,IAAI0kF,GAAGgO,IAAI3yF,EAAE,MAAMC,EAAE,KAAK,EAAE,OAAOH,EAAE,gBAAgB,EAAE,CAACE,EAAEC,CAAC,EAAED,EAAE,KAAK,CAAC,EAAE8yF,IAAG,CAAC,WAAWhwG,GAAG,YAAY,QAAQ,WAAW+vG,GAAG,EAAME,IAAI;AAAA;AAAA,EAE9PC,IAAI,wBAAwBC,IAAIrN,GAAG,CAAC,UAAUoN,IAAI,gBAAgBD,IAAI,MAAM,OAAO,cAAcrT,EAAE,CAAC,EAAEwT,IAAG,CAAC,WAAWlwG,GAAG,YAAY,QAAQ,WAAWiwG,GAAG,EAAME,IAAI;AAAA;AAAA;AAAA;AAAA,cAIxJ7lG,EAAE,KAAK;AAAA,eACNA,EAAE,MAAM;AAAA,eACRA,EAAE,MAAM;AAAA,eACRA,EAAE,MAAM;AAAA,eACRA,EAAE,MAAM;AAAA,eACRA,EAAE,MAAM;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAMrB8lG,IAAIzN,GAAG,CAAC,UAAUwN,GAAG,CAAC,EAAEE,IAAG,CAAC,WAAWpwG,GAAG,YAAY,QAAQ,WAAWmwG,GAAG,EAAME,IAAI5N,GAAG;AAAA;AAAA,EAEzF6N,IAAI;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EASJC,GAAG7N,GAAG,CAAC,UAAU2N,IAAI,gBAAgBC,IAAI,cAAc5T,GAAG,MAAM,SAAS,CAAC,EAAE8T,IAAG,CAAC,WAAWvwG,GAAG,YAAY,QAAQ,WAAWswG,EAAE,EAAE,SAASE,GAAG9zF,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,MAAME,EAAE,QAAQE,CAAC,EAAEJ,EAAE,CAAC,IAAIK,CAAC,EAAEH,EAAE,CAAC,MAAM,CAAC,EAAE,EAAE,EAAE,EAAE,MAAM,OAAO6B,EAAE,EAAE,MAAM,MAAM,EAAEC,EAAE3B,EAAE,OAAOA,EAAE,IAAI9B,EAAE,OAAO,EAAE,EAAE,IAAI8B,EAAE,IAAI,iCAAiC,EAAE,EAAE,EAAE,KAAK,CAAC,GAAG,EAAE2B,EAAE,EAAE3B,EAAE,GAAG0B,EAAE,OAAOC,EAAE,EAAE,CAAC,EAAEykF,GAAG,CAAC,OAAO,CAAC,EAAE,CAAC,EAAE,QAAQrmF,EAAE,MAAM,CAAC,MAAM2B,CAAC,CAAC,CAAC,CAAC,CAAC,IAAIgyF,IAAG,CAAC,WAAWxwG,GAAG,YAAY,QAAQ,WAAWuwG,EAAE,EAAME,GAAG,uBAAuBC,IAAIlO,GAAG,CAAC,UAAUiO,GAAG,gBAAgBA,GAAG,cAAchU,EAAE,CAAC,EAAEkU,IAAG,CAAC,WAAW1wG,GAAG,YAAY,QAAQ,WAAWywG,GAAG,EAAME,GAAG,KAAK,CAAC,YAAYvzF,EAAEV,EAAE,EAAE,CAAC,KAAK,cAAc,CAAC,OAAO,MAAM,EAAE,IAAIG,EAAEH,EAAE,CAAC,EAAE,KAAK,YAAYA,EAAE,IAAI2B,EAAE,EAAE,SAAS,KAAK,EAAE,GAAG,UAAU,KAAK,EAAE,GAAGC,EAAE,EAAE,GAAGzB,CAAC,KAAK,MAAM0B,EAAE,GAAGnB,IAAI,OAAOmB,EAAE,4CAA4CnB,IAAI,OAAOmB,EAAE,wCAAyC,OAAM,IAAI,MAAM,sDAAsDnB,CAAC,GAAG,EAAE,KAAK,SAAS;AAAA,yCAC75BiB,CAAC;AAAA;AAAA;AAAA,UAGhCE,CAAC;AAAA;AAAA;AAAA;AAAA,kDAIuC1B,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,8BAMrBA,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,yDAS0ByB,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,KAUrD,CAAC,EAAE,SAASsyF,GAAGp0F,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAEF,EAAE,QAAQ,IAAIF,EAAE,MAAM,EAAEK,EAAE9B,EAAE,cAAcyB,EAAE,KAAK,EAAE,EAAEA,EAAE,MAAMA,EAAE,MAAM,OAAO,CAAC,EAAE,EAAEK,EAAE,EAAE0B,EAAE0kF,GAAG,CAAC,OAAO,CAAC,EAAEzmF,CAAC,EAAE,QAAQE,EAAE,MAAM,CAAC,MAAM,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,EAAE8B,EAAED,EAAE,MAAME,EAAE,IAAIkyF,GAAG,OAAOnyF,EAAE,CAAC,EAAEU,EAAE,IAAIyxF,GAAG,OAAOnyF,EAAE,CAAC,EAAEW,EAAE,CAAC,CAAC,OAAOvC,EAAE,mBAAmB,KAAK,OAAO,MAAMA,EAAE,mBAAmB,KAAK,MAAM,MAAM4B,CAAC,EAAE,CAAC,OAAO5B,EAAE,mBAAmB,KAAK,OAAO,MAAMA,EAAE,mBAAmB,KAAK,MAAM,MAAM4B,CAAC,CAAC,EAAEY,EAAE1C,EAAE,gBAAgB+B,EAAEU,EAAE,SAAS,EAAEE,EAAE3C,EAAE,gBAAgBwC,EAAEC,EAAE,SAAS,EAAEG,EAAEsiF,GAAG,CAAC,OAAO,CAAC,KAAKxiF,EAAE,KAAKC,CAAC,EAAE,QAAQ3C,CAAC,CAAC,EAAEA,EAAE,8BAA8B0C,CAAC,EAAE1C,EAAE,8BAA8B2C,CAAC,EAAE,IAAImB,EAAEyiF,GAAG,CAAC,OAAO,CAAC,EAAE3jF,CAAC,EAAE,QAAQ5C,EAAE,MAAM,CAAC,MAAMF,EAAE,KAAK,CAAC,CAAC,EAAE,OAAOE,EAAE,8BAA8B6B,CAAC,EAAE7B,EAAE,8BAA8B4C,CAAC,EAAEkB,CAAC,CAAC,SAASqwF,IAAIr0F,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,CAAC,EAAEF,EAAE,CAAC,MAAMI,CAAC,EAAE,EAAE,OAAOg0F,GAAGh0F,EAAE,GAAGF,CAAC,CAAC,CAAC,IAAIo0F,IAAG,CAAC,WAAW7wG,GAAG,YAAY,QAAQ,WAAW4wG,GAAG,EAAME,IAAG,KAAK,CAAC,YAAY3zF,EAAEV,EAAE,CAAC,KAAK,YAAY,CAAC,EAAE,KAAK,eAAe,CAAC,CAAC,KAAK,QAAQ,KAAK,OAAO,CAAC,EAAE,KAAK,cAAc,CAAC,GAAG,EAAE,KAAK,YAAYU,EAAE,KAAK,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA,KAKz+B,CAAC,EAAE,SAAS4zF,GAAGx0F,EAAE,CAAC,GAAG,CAAC,QAAQ,EAAE,MAAME,CAAC,EAAEF,EAAE,CAAC,MAAMI,EAAE,MAAMC,CAAC,EAAEH,EAAE,CAAC,MAAM,CAAC,EAAEA,EAAE,GAAG,EAAE,GAAG3B,EAAE,WAAW8B,CAAC,EAAE,IAAI,SAAS,CAAC,IAAI,EAAE9B,EAAE,kBAAkB,EAAEA,EAAE,cAAc6B,CAAC,CAAC,EAAE,OAAO,EAAE,KAAKC,CAAC,EAAE,EAAE,eAAeD,EAAE,EAAE,CAAC,CAAC,KAAK,CAAC,IAAI,EAAE,IAAIm0F,IAAGn0F,EAAEC,CAAC,EAAE0B,EAAE,CAAC,CAAC1B,CAAC,CAAC,EAAE,OAAO,EAAE,gBAAgB,EAAE,CAAC,EAAE,EAAE0B,CAAC,CAAC,CAAC,CAAC,IAAI0yF,IAAG,CAAC,WAAW/wG,GAAG,YAAY,QAAQ,WAAW8wG,EAAE,EAAME,IAAG,KAAK,CAAC,YAAY9zF,EAAE,CAAC,KAAK,cAAc,CAAC,OAAO,EAAE,KAAK,YAAY,CAAC,EAAE,IAAIV,EAAEU,EAAE,CAAC,EAAE,KAAK,YAAYA,EAAE,KAAK,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA,yBAK3aV,CAAC;AAAA;AAAA,uCAEaA,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,KAOnC,CAAC,EAAMy0F,IAAG,CAAC,WAAWhxG,GAAG,YAAY,QAAQ,WAAW,CAAC,CAAC,OAAOqc,EAAE,QAAQ,CAAC,IAAI,CAAC,GAAG,CAAC,MAAME,CAAC,EAAEF,EAAEI,EAAE,EAAEC,EAAE,IAAIq0F,IAAGx0F,EAAE,KAAK,EAAE,OAAOE,EAAE,gBAAgBC,EAAE,CAACH,CAAC,EAAEA,EAAE,KAAK,CAAC,CAAC,EAAM00F,GAAG,mBAAmBC,IAAI9O,GAAG,CAAC,UAAU6O,GAAG,gBAAgBA,GAAG,cAAc3U,EAAE,CAAC,EAAE6U,IAAG,CAAC,WAAWlxG,GAAG,YAAY,QAAQ,WAAWixG,GAAG,EAAME,IAAI;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAUtTC,IAAI;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAqBJC,IAAIjP,GAAG,CAAC,UAAU+O,IAAI,gBAAgBC,IAAI,MAAM,OAAO,CAAC,EAAEE,IAAG,CAAC,WAAWrxG,GAAG,YAAY,QAAQ,WAAWoxG,GAAG,EAAME,IAAG,KAAK,CAAC,YAAYv0F,EAAE,CAAC,KAAK,cAAc,CAAC,GAAG,EAAE,IAAIV,EAAE25E,GAAG,EAAE,CAAC,EAAEx5E,CAAC,EAAEO,EAAE,KAAK,YAAYA,EAAE,KAAK,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,uDAMpKP,CAAC,OAAO,CAAC;AAAA;AAAA,wBAExCH,EAAE,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,KAc9B,CAAC,EAAMk1F,IAAG,KAAK,CAAC,YAAYx0F,EAAE,CAAC,KAAK,cAAc,CAAC,GAAG,EAAE,KAAK,aAAa,GAAG,KAAK,aAAa,GAAG,IAAIV,EAAE25E,GAAG,EAAE,CAAC,EAAEx5E,CAAC,EAAEO,EAAE,KAAK,YAAYA,EAAE,KAAK,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,8BAe7HP,CAAC,OAAO,CAAC;AAAA,4BACXH,EAAE,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,UAgB7BA,EAAE,MAAM;AAAA;AAAA,KAEb,CAAC,EAAMm1F,IAAG,CAAC,WAAWvxG,GAAG,YAAY,QAAQ,WAAWwxG,GAAG,EAAEC,GAAGC,GAAGhkG,EAAE,EAAE,QAAQ,uCAAuC,EAAE,SAAS8jG,IAAIt1F,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,OAAOK,CAAC,EAAE,EAAE,CAAC,YAAY,CAAC,EAAED,EAAE,EAAE,OAAO,kBAAkB,aAAaC,aAAa,iBAAiB0B,EAAE,OAAO,kBAAkB,aAAa1B,aAAa,iBAAiB,CAAC2B,EAAEC,CAAC,EAAE,EAAE,CAAC5B,EAAE,WAAWA,EAAE,WAAW,EAAE,CAACA,EAAE,MAAMA,EAAE,MAAM,EAAEqC,EAAE,CAACT,EAAED,CAAC,EAAEW,EAAE,CAACV,EAAED,EAAE,CAAC,EAAE,GAAGD,GAAG,EAAE,CAAC,IAAIiC,EAAExS,EAAE,EAAE,QAAQ,uCAAuC,GAAG+jG,IAAI,MAAMvxF,IAAIwxF,MAAMA,GAAGxxF,EAAEuxF,GAAG,SAAS,cAAc,QAAQ,EAAE,WAAW,KAAK,CAAC,mBAAmBC,EAAE,CAAC,GAAGD,GAAG,OAAO,MAAMvzF,EAAEuzF,GAAG,OAAO,OAAOtzF,EAAEszF,GAAG,UAAUl1F,EAAE,EAAE,EAAE2B,EAAEC,CAAC,EAAE5B,EAAEk1F,GAAG,MAAM,CAAC,IAAI3yF,EAAE1C,EAAE,eAAewC,EAAE,OAAO,EAAExC,EAAE,QAAQ,IAAI0C,EAAE,MAAM,EAAE,MAAM61E,GAAG,OAAOv4E,EAAE,MAAM,yBAAyBA,EAAE,WAAW0C,EAAE,MAAM,EAAEvC,CAAC,EAAE,IAAIwC,EAAErR,EAAE,EAAE,QAAQ,YAAY,EAAE,IAAI4jG,IAAGzyF,CAAC,EAAE,IAAIwyF,IAAGxyF,CAAC,EAAEG,EAAE5C,EAAE,gBAAgB2C,EAAE,CAACD,CAAC,EAAE,OAAO,EAAE,OAAO1C,EAAE,YAAY0C,EAAE,MAAM,EAAEE,CAAC,CAAC,SAAS2yF,IAAIz1F,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,EAAE,OAAO,EAAE,KAAK,EAAE,uBAAuB0B,CAAC,EAAE,EAAE,CAAC,QAAQC,EAAE,IAAIC,EAAE,WAAWS,EAAE,UAAUC,EAAE,gBAAgBC,EAAE,WAAWC,EAAE,eAAeC,CAAC,EAAE1C,EAAE4D,EAAEtW,EAAE,wBAAwBgV,CAAC,EAAE,EAAEhV,EAAE,kBAAkB2S,EAAE,MAAM,EAAE,MAAM2B,EAAEW,EAAEV,EAAEW,EAAE,GAAGoB,CAAC,EAAEsD,EAAExC,EAAE,CAAC,EAAEL,EAAE,GAAG,KAAKC,EAAE3C,GAAG,KAAK4C,EAAE9B,IAAI,YAAY+B,EAAE,IAAI,CAAC,IAAI2C,EAAE,CAAClH,EAAE,CAAC,EAAE,EAAE,CAAC2E,EAAEC,IAAI,CAAC,GAAGA,IAAI,QAAQD,EAAE,MAAM,SAAS,GAAGA,EAAE,MAAM,CAAC,IAAI,EAAE,CAAC,IAAIE,EAAEuhF,GAAG,CAAC,OAAO,CAAC,EAAEzhF,CAAC,EAAE,QAAQ9E,EAAE,MAAM,CAAC,MAAM,CAAC8E,EAAE,MAAM,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC,CAAC,EAAE,OAAOF,EAAE,KAAKI,CAAC,EAAEA,CAAC,CAAC,OAAOF,CAAC,EAAE,GAAGP,GAAG8C,EAAE,KAAK,EAAE,EAAE7E,CAAC,CAAC,EAAEgC,GAAG6C,EAAE,KAAK,EAAExF,EAAEW,CAAC,CAAC,EAAEiC,EAAE,CAAC,IAAIK,EAAE9E,EAAE,eAAe,CAAC,EAAE,UAAU3B,EAAE,kBAAkBuE,EAAE,SAAS,CAAC,EAAEyE,EAAE,KAAKvC,CAAC,EAAEF,EAAE,KAAKE,CAAC,CAAC,CAAC,OAAOuC,CAAC,EAAE,GAAG,EAAE,eAAe,GAAG,EAAE,cAAc,GAAG,EAAE,iBAAiB,GAAG,EAAE,gBAAgB,GAAG,EAAE,eAAe,GAAG,EAAE,cAAc,IAAI,EAAE,QAAQ,OAAO,QAAQ,EAAE,QAAQ,OAAO,SAASD,EAAEwnF,GAAG,CAAC,EAAEzuF,EAAE,OAAO,EAAE,SAAS,EAAE,QAAQH,EAAE,KAAK,EAAE,WAAW2C,EAAE,uBAAuBd,EAAE,eAAee,CAAC,CAAC,UAAU,EAAE,aAAa,GAAGkB,IAAI,gBAAgBxS,EAAE,EAAE,QAAQ,gBAAgB,EAAE,CAAC,IAAI+V,EAAE1E,EAAEojF,GAAGpjF,EAAE,EAAE,EAAE,KAAK,EAAE,IAAI8rF,GAAG,EAAElqF,EAAE8C,EAAE7C,EAAEC,CAAC,EAAEK,EAAE,CAAC,CAAC,EAAE,QAAQ,IAAI,EAAE,QAAQ,IAAI,EAAE,CAAC,EAAE,aAAa,EAAE,WAAW,EAAE,CAAC,EAAE,eAAe,EAAE,aAAa,EAAE,CAAC,EAAE,SAAS,EAAE,OAAO,CAAC,EAAEC,EAAEL,EAAE,EAAE0C,EAAEpH,EAAE,gBAAgB,EAAE+E,EAAE,UAAUD,CAAC,CAAC,SAASxT,EAAE,EAAE,QAAQ,mBAAmB,EAAE8V,EAAEynF,GAAG,CAAC,EAAE1uF,EAAE,OAAO,EAAE,SAAS,EAAE,QAAQH,EAAE,KAAK,EAAE,WAAW2C,EAAE,uBAAuBd,EAAE,eAAee,CAAC,CAAC,MAAM,CAAC,IAAIyE,EAAE1E,EAAEojF,GAAGpjF,EAAE,EAAE,EAAE,KAAK,EAAE,IAAI4rF,GAAG,EAAEhqF,EAAE8C,EAAE7C,EAAEC,CAAC,EAAEK,EAAEJ,EAAE,EAAE0C,EAAEpH,EAAE,gBAAgB,EAAE8E,EAAE,SAAS,CAAC,CAAC,IAAIH,EAAE4hF,GAAG,CAAC,OAAO,CAAC,EAAAn/E,CAAC,EAAE,QAAQpH,EAAE,MAAM,CAAC,MAAM,EAAE,QAAQ,CAAC,CAAC,EAAE,OAAO4E,EAAE,KAAKwC,CAAC,EAAExC,EAAE,QAAQyC,GAAGrH,EAAE,8BAA8BqH,CAAC,CAAC,EAAE1C,CAAC,CAAC,IAAI6wF,IAAG,CAAC,WAAW1xG,GAAG,YAAY,QAAQ,WAAWyxG,GAAG,EAAE,SAASE,IAAI31F,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,EAAE,OAAO,EAAE,KAAK,EAAE,uBAAuB0B,CAAC,EAAE,EAAE,CAAC,QAAQC,EAAE,IAAIC,EAAE,UAAUS,EAAE,gBAAgBC,EAAE,WAAWC,EAAE,eAAeC,CAAC,EAAEzC,EAAE0C,EAAE,CAAC,EAAEkB,EAAEtB,EAAEsB,GAAG,OAAOA,EAAE,CAAC,EAAE,CAAC,GAAGzF,EAAE,OAAO7Q,EAAE,+BAA+BsU,EAAEgC,CAAC,EAAE,IAAI,gFAAgFhC,CAAC,mBAAmBgC,CAAC,GAAG,EAAE,IAAI,EAAEtW,EAAE,kBAAkB2S,EAAE,MAAM,EAAE,MAAM2B,EAAEgC,EAAE/B,EAAEU,EAAE,EAAE,EAAE2E,EAAE9V,EAAE,EAAE,QAAQ,0BAA0B,GAAG,EAAE,aAAa,GAAG,EAAE,YAAY,EAAE,aAAa,EAAEsT,EAAElC,EAAEqjF,GAAGrjF,EAAE0E,CAAC,EAAE,KAAK7C,EAAE,CAACpE,EAAE,CAAC,EAAEqE,EAAE,GAAG,KAAKC,EAAE5C,GAAG,KAAK6C,EAAEhC,IAAI,YAAY,GAAG8B,GAAGD,EAAE,KAAK,CAAC,EAAEE,GAAGF,EAAE,KAAK1C,CAAC,EAAE6C,EAAE,CAAC,IAAII,EAAE9E,EAAE,eAAe,CAAC,EAAE,UAAU3B,EAAE,kBAAkBsE,EAAE,SAAS,CAAC,EAAE4B,EAAE,KAAKO,CAAC,EAAElC,EAAE,KAAKkC,CAAC,CAAC,CAAC,IAAIH,EAAEyC,EAAEzC,EAAE,IAAI6sF,GAAG,EAAEhtF,EAAEI,EAAEH,EAAEC,CAAC,EAAEC,EAAE,IAAI4sF,GAAG,EAAE/sF,EAAEI,EAAEH,EAAEC,CAAC,EAAE,IAAI2C,EAAE,CAAC,CAAC,EAAE,QAAQ,IAAI,EAAE,QAAQ,IAAI,EAAE,CAAC,EAAE,aAAa,EAAE,WAAW,EAAE,CAAC,EAAE,eAAe,EAAE,aAAa,EAAE,CAAC,EAAE,SAAS,EAAE,OAAO,CAAC,EAAE,EAAErH,EAAE,gBAAgB2E,EAAEJ,EAAE,UAAU8C,CAAC,EAAE,OAAOzE,EAAE,QAAQkC,GAAG9E,EAAE,8BAA8B8E,CAAC,CAAC,EAAE,CAAC,CAAC,IAAI4wF,IAAG,CAAC,WAAW3xG,GAAG,YAAY,QAAQ,WAAW0xG,GAAG,EAAME,IAAG,KAAK,CAAC,YAAYj1F,EAAEV,EAAE,EAAEG,EAAE,CAAC,KAAK,SAASO,EAAE,KAAK,QAAQV,EAAE,KAAK,YAAYG,EAAE,KAAK,cAAc,CAAC,IAAI,SAAS,EAAE,KAAK,YAAY,EAAE,IAAIwB,EAAEq7E,GAAG,EAAE,MAAM,EAAEp7E,EAAE;AAAA,gBACznH,QAAQC,EAAE,EAAEA,EAAE,KAAK,SAASA,IAAID,GAAG;AAAA,gDACHC,CAAC;AAAA;AAAA,sDAEK,KAAK,YAAYA,CAAC,CAAC;AAAA,oCACrC,KAAK,QAAQA,CAAC,CAAC,IAAI,KAAK,SAAS;AAAA;AAAA,YAEzDF,CAAC;AAAA;AAAA;AAAA;AAAA,YAIDC,CAAC;AAAA;AAAA;AAAA;AAAA,OAIN,CAAC,EAAE,SAASg0F,IAAI91F,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,CAAC,EAAEF,EAAE,CAAC,OAAOI,EAAE,QAAQC,CAAC,EAAE,EAAE,EAAEA,EAAE,MAAM,EAAE,EAAE,EAAE,OAAO,CAAC,EAAE0B,EAAExD,EAAE,cAAc6B,EAAE,KAAK,EAAE,CAAC4B,EAAEC,EAAES,EAAEC,CAAC,EAAEjV,EAAE,mBAAmB0S,EAAEC,CAAC,EAAEuC,EAAE6jF,GAAG,CAAC,OAAO,CAAC,EAAEpmF,CAAC,EAAE,QAAQH,EAAE,MAAM,CAAC,MAAM,CAAC+B,EAAE,CAAC,CAAC,CAAC,CAAC,EAAEY,EAAE4jF,GAAG,CAAC,OAAO,CAAC,EAAErmF,CAAC,EAAE,QAAQF,EAAE,MAAM,CAAC,MAAM,CAAC3B,EAAE,cAAc6B,EAAE,KAAK,EAAEsC,EAAEA,CAAC,CAAC,CAAC,CAAC,EAAE,GAAGxC,EAAE,mBAAmB,CAACE,EAAEC,CAAC,CAAC,GAAGD,EAAE,QAAQ,SAAS,CAAC,IAAIkH,EAAEpH,EAAE,SAASG,EAAE,MAAM,EAAEyE,EAAE5E,EAAE,WAAWE,CAAC,EAAEqE,EAAEy7E,GAAG54E,EAAExC,EAAE1E,EAAE,MAAM6B,EAAE,EAAES,EAAEC,EAAEvC,EAAE,MAAM2B,CAAC,EAAE,OAAO7B,EAAE,eAAe8B,EAAE5B,EAAE,MAAMqE,EAAE,MAAM,CAAC,CAAC,IAAI3B,EAAE,IAAI+yF,IAAG,EAAElzF,EAAE,CAACV,EAAES,CAAC,EAAEtC,EAAE,KAAK,EAAE4D,EAAE9D,EAAE,gBAAgB4C,EAAE,CAACD,EAAED,CAAC,EAAEC,EAAE,KAAK,EAAE,EAAE4jF,GAAG,CAAC,OAAO,CAAC,EAAEziF,CAAC,EAAE,QAAQ9D,EAAE,MAAM,CAAC,MAAM8B,CAAC,CAAC,CAAC,EAAE,OAAO9B,EAAE,8BAA8B0C,CAAC,EAAE1C,EAAE,8BAA8B2C,CAAC,EAAE3C,EAAE,8BAA8B8D,CAAC,EAAE,CAAC,CAAC,IAAI+xF,IAAG,CAAC,WAAW5xG,GAAG,YAAY,QAAQ,WAAW2xG,GAAG,EAAME,IAAG,KAAK,CAAC,YAAYp1F,EAAEV,EAAE,CAAC,KAAK,cAAc,CAAC,IAAI,SAAS,EAAE,KAAK,YAAYA,EAAE,KAAK,KAAKA,EAAE,OAAO,IAAI,EAAEg9E,GAAG,KAAK,IAAI,EAAE78E,EAAE41F,IAAIr1F,EAAE,CAAC,EAAE,KAAK,SAAS;AAAA;AAAA,UAE93B,CAAC;AAAA;AAAA,oDAEyCA,EAAE,CAAC,CAAC;AAAA,oCACpBP,CAAC;AAAA;AAAA,KAEhC,CAAC,EAAE,SAAS41F,IAAIj2F,EAAE,EAAE,CAAC,IAAIE,EAAE,CAAC,UAAU,UAAU,UAAU,SAAS,EAAEE,EAAE,CAAC,EAAE,QAAQC,EAAE,EAAEA,EAAEL,EAAE,OAAOK,IAAIA,IAAI,EAAED,EAAE,KAAK,OAAO,EAAEA,EAAE,KAAK,GAAGF,EAAEG,CAAC,CAAC,EAAE,EAAE,OAAOD,EAAE,KAAK,CAAC,CAAC,SAAS81F,GAAGl2F,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,EAAE,QAAQ,CAAC,EAAE,EAAE,CAAC,KAAK,EAAE,UAAU0B,CAAC,EAAE3B,EAAE4B,EAAEzD,EAAE,eAAe,EAAE8B,EAAE,KAAK,EAAE,CAAC,EAAE,GAAG7O,EAAE,EAAE,IAAI,OAAO,EAAE,CAAC,IAAIsT,EAAE5E,EAAE,SAAS,EAAE,MAAM,EAAEuE,EAAEpE,EAAE,MAAM2B,CAAC,EAAE,QAAQ0C,EAAE,EAAEA,EAAEI,EAAE,OAAO,EAAEJ,EAAE,CAAC,IAAIC,EAAEG,EAAEJ,CAAC,EAAEnG,EAAE,OAAOoG,GAAGF,EAAE,GAAGE,GAAG,EAAE,IAAI,6BAA6BA,CAAC,kBAAkBF,EAAE,CAAC,GAAG,CAAC,CAAC,CAAC,IAAIxC,EAAEvU,EAAE,aAAa,yBAAyB2S,EAAE,EAAE2B,EAAED,CAAC,EAAEW,EAAEnE,EAAE,cAAc,EAAE,KAAK,EAAEoE,EAAE,CAAC,EAAEC,EAAE6jF,GAAG,CAAC,OAAO,CAAC,EAAEpmF,CAAC,EAAE,QAAQH,EAAE,MAAM,CAAC,MAAM,CAAC+B,EAAE,UAAUA,EAAE,UAAUA,EAAE,QAAQA,EAAE,SAAS,CAAC,CAAC,CAAC,EAAEY,EAAE4jF,GAAG,CAAC,OAAO,CAAC,EAAE,CAAC,EAAE,QAAQvmF,EAAE,MAAM,CAAC,MAAM,CAAC+B,EAAE,UAAUS,EAAET,EAAE,SAAS,CAAC,CAAC,CAAC,EAAEU,EAAE,KAAKC,CAAC,EAAED,EAAE,KAAKE,CAAC,EAAE,IAAIC,EAAE,CAACb,EAAE,UAAUA,EAAE,UAAUS,EAAET,EAAE,UAAUA,EAAE,SAAS,EAAE,GAAG/B,EAAE,mBAAmB,CAACG,EAAE,CAAC,CAAC,GAAGA,EAAE,QAAQ,SAAS,CAAC,IAAIyE,EAAE5E,EAAE,WAAW2C,CAAC,EAAE4B,EAAEvE,EAAE,WAAW0C,CAAC,EAAE8B,EAAEy7E,GAAG17E,EAAEK,EAAEhC,CAAC,EAAE,OAAOH,EAAE,QAAQgC,GAAGzE,EAAE,8BAA8ByE,CAAC,CAAC,EAAEzE,EAAE,eAAe+B,EAAE,YAAYyC,EAAE,MAAMA,EAAE,MAAM,CAAC,CAAC,IAAIV,EAAE,IAAIgyF,IAAGpzF,EAAE,MAAME,CAAC,EAAE,EAAE5C,EAAE,gBAAgB8D,EAAE,CAACpB,EAAEC,CAAC,EAAED,EAAE,KAAK,EAAED,EAAE,KAAK,CAAC,EAAE,IAAI2E,EAAEm/E,GAAG,CAAC,OAAO,CAAC,EAAE,CAAC,EAAE,QAAQvmF,EAAE,MAAM,CAAC,MAAM+B,EAAE,WAAW,CAAC,CAAC,EAAE,OAAOU,EAAE,QAAQmC,GAAG5E,EAAE,8BAA8B4E,CAAC,CAAC,EAAEwC,CAAC,CAAC,IAAI6uF,IAAG,CAAC,WAAW/xG,GAAG,YAAY,QAAQ,WAAW8xG,EAAE,EAAME,IAAI,uBAAuBC,IAAI;AAAA;AAAA,EAE1wCC,IAAItQ,GAAG,CAAC,UAAUoQ,IAAI,gBAAgBC,IAAI,cAAcjW,GAAG,MAAM,MAAM,CAAC,EAAEmW,IAAG,CAAC,WAAWjyG,GAAG,YAAY,QAAQ,WAAWgyG,GAAG,EAAME,IAAI,wBAAwBC,IAAI;AAAA;AAAA,EAEpKC,IAAI1Q,GAAG,CAAC,UAAUwQ,IAAI,gBAAgBC,IAAI,MAAM,OAAO,cAAcpW,EAAE,CAAC,EAAEsW,IAAG,CAAC,WAAWpyG,GAAG,YAAY,QAAQ,WAAWmyG,GAAG,EAAE,SAASE,IAAI52F,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,CAAC,EAAEF,EAAE,CAAC,MAAMI,CAAC,EAAE,EAAE,OAAOg0F,GAAGh0F,EAAE,GAAGF,CAAC,CAAC,CAAC,IAAI22F,IAAG,CAAC,WAAWpyG,GAAG,YAAY,QAAQ,WAAWmyG,GAAG,EAAME,IAAI,wCAAwCC,IAAIhR,GAAG,CAAC,UAAU+Q,IAAI,MAAM,MAAM,CAAC,EAAEE,IAAG,CAAC,WAAWnyG,GAAG,YAAY,QAAQ,WAAWkyG,GAAG,EAAME,IAAI,0BAA0BC,IAAInR,GAAG,CAAC,UAAUkR,IAAI,MAAM,MAAM,CAAC,EAAEE,IAAG,CAAC,WAAWryG,GAAG,YAAY,QAAQ,WAAWoyG,GAAG,EAAME,IAAI,0BAA0BC,IAAItR,GAAG,CAAC,UAAUqR,IAAI,MAAM,MAAM,CAAC,EAAEE,IAAG,CAAC,WAAWvyG,GAAG,YAAY,QAAQ,WAAWsyG,GAAG,EAAME,IAAI,uBAAuBC,IAAI;AAAA;AAAA,EAE1qBC,IAAIzR,GAAG,CAAC,UAAUuR,IAAI,gBAAgBC,IAAI,cAAclX,GAAG,MAAM,MAAM,CAAC,EAAEoX,IAAG,CAAC,WAAWpyG,GAAG,YAAY,QAAQ,WAAWmyG,GAAG,EAAME,IAAI,wBAAwBC,IAAI;AAAA;AAAA,EAEpKC,IAAI7R,GAAG,CAAC,UAAU2R,IAAI,gBAAgBC,IAAI,cAAcrX,GAAG,MAAM,MAAM,CAAC,EAAEuX,IAAG,CAAC,WAAWvyG,GAAG,YAAY,QAAQ,WAAWsyG,GAAG,EAAE,SAASE,IAAI/3F,EAAE,CAAC,GAAG,CAAC,QAAQ,EAAE,MAAME,CAAC,EAAEF,EAAE,CAAC,MAAMI,EAAE,KAAKC,EAAE,IAAI,CAAC,EAAEH,EAAE,EAAEsgF,GAAGpgF,EAAEC,EAAE,CAAC,EAAE,OAAO,EAAE,eAAe,CAAC,EAAE,MAAM,EAAE,UAAU,CAAC,CAAC,CAAC,IAAI23F,IAAG,CAAC,WAAWxyG,GAAG,YAAY,QAAQ,WAAWuyG,GAAG,EAAME,IAAInS,GAAG;AAAA;AAAA,EAEnUoS,IAAI;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAQJC,IAAIpS,GAAG,CAAC,UAAUkS,IAAI,gBAAgBC,IAAI,cAAczX,EAAE,CAAC,EAAE2X,IAAG,CAAC,WAAW3yG,GAAG,YAAY,QAAQ,WAAW0yG,GAAG,EAAME,IAAIvS,GAAG;AAAA;AAAA,EAE9HwS,IAAIvS,GAAG,CAAC,UAAUsS,GAAG,CAAC,EAAEE,IAAG,CAAC,WAAW7yG,GAAG,YAAY,QAAQ,WAAW4yG,GAAG,EAAME,IAAI,sCAAsCC,IAAI;AAAA;AAAA;AAAA;AAAA,EAIhIC,IAAI1S,GAAG,CAAC,UAAUwS,IAAI,gBAAgBC,IAAI,MAAM,MAAM,CAAC,EAAEE,IAAG,CAAC,WAAW/yG,GAAG,YAAY,QAAQ,WAAW8yG,GAAG,EAAME,IAAI,6BAA6BC,IAAI9S,GAAG,CAAC,UAAU6S,GAAG,CAAC,EAAEE,IAAG,CAAC,WAAWjzG,GAAG,YAAY,QAAQ,WAAWgzG,GAAG,EAAME,IAAI,sCAAsCC,IAAI;AAAA;AAAA;AAAA;AAAA;AAAA,EAKpRC,IAAIjT,GAAG,CAAC,UAAU+S,IAAI,gBAAgBC,IAAI,MAAM,MAAM,CAAC,EAAEE,IAAG,CAAC,WAAWpzG,GAAG,YAAY,QAAQ,WAAWmzG,GAAG,EAAME,IAAG,KAAK,CAAC,YAAYv4F,EAAEV,EAAE,EAAEG,EAAEwB,EAAE,CAAC,KAAK,cAAc,CAAC,GAAG,EAAE,KAAK,YAAY,CAAC,EAAE,IAAIC,EAAE5B,EAAE6B,EAAEnB,EAAE,CAAC,EAAE,EAAE,KAAK,YAAYA,EAAE,IAAIoB,EAAE,EAAE,SAAS,CAAC,aAAa3B,CAAC,UAAUwB,IAAI,GAAGG,EAAE,eAAe,CAAC,IAAIH,IAAI,EAAEG,EAAE,QAAQ,CAAC,IAAIA,EAAE,WAAW,CAAC,cAAcH,CAAC,MAAM,KAAK,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,wBAS3VC,CAAC,UAAUA,CAAC;AAAA;AAAA,oCAEAC,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA,0BAKXC,CAAC;AAAA;AAAA;AAAA,KAGtB,CAAC,EAAMo3F,IAAG,KAAK,CAAC,YAAYx4F,EAAEV,EAAE,EAAEG,EAAEwB,EAAE,CAAC,KAAK,cAAc,CAAC,GAAG,EAAE,KAAK,YAAY,CAAC,EAAE,KAAK,aAAa,GAAG,KAAK,aAAa,GAAG,IAAIC,EAAE5B,EAAE6B,EAAEnB,EAAE,CAAC,EAAE,EAAE,KAAK,YAAYA,EAAE,IAAIoB,EAAE,EAAE,SAAS,CAAC,aAAa3B,CAAC,UAAUwB,IAAI,GAAGG,EAAE,eAAe,CAAC,IAAIH,IAAI,EAAEG,EAAE,QAAQ,CAAC,IAAIA,EAAE,WAAW,CAAC,cAAcH,CAAC,MAAM,KAAK,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,gCAQpR,KAAK,YAAY,CAAC,CAAC;AAAA,gCACnB,KAAK,YAAY,CAAC,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,iCAelBC,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,yBAWTA,CAAC,UAAUA,CAAC;AAAA;AAAA;AAAA,6DAGwBC,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,0CAqBpBC,CAAC;AAAA;AAAA;AAAA,KAGtC,CAAC,EAAMq3F,IAAIr5F,GAAG,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,CAAC,EAAE,EAAE,CAAC,YAAY,EAAE,KAAK,EAAE,MAAM0B,EAAE,KAAKC,CAAC,EAAE5B,EAAE6B,EAAEzQ,EAAE,EAAE,QAAQ,0BAA0B,EAAE,IAAI4nG,IAAG/4F,EAAE,MAAM,EAAE,EAAE0B,EAAEC,CAAC,EAAE,IAAIm3F,IAAG94F,EAAE,MAAM,EAAE,EAAE0B,EAAEC,CAAC,EAAE,OAAO9B,EAAE,gBAAgB+B,EAAE,CAAC5B,CAAC,EAAEA,EAAE,KAAK,CAAC,EAAEi5F,IAAG,CAAC,WAAWr0G,GAAG,YAAY,QAAQ,WAAWo0G,GAAG,EAAME,IAAG,KAAK,CAAC,YAAY34F,EAAEV,EAAE,EAAEG,EAAEwB,EAAE,CAAC,KAAK,cAAc,CAAC,aAAa,cAAc,IAAI,EAAE,KAAK,YAAY,CAAC,EAAE,KAAK,YAAYjB,EAAE,KAAK,MAAMA,EAAE,CAAC,EAAE,KAAK,YAAYV,EAAE,KAAK,KAAK,EAAE,KAAK,MAAMG,EAAE,KAAK,KAAKwB,EAAE,KAAK,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,8BAQvd,KAAK,KAAK;AAAA,oDACY3B,CAAC;AAAA,yCACZ,KAAK,KAAK;AAAA,0BACzBA,CAAC;AAAA;AAAA;AAAA,sCAGW,KAAK,KAAK;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,yBAevBG,CAAC,oBAAoB,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,yCAONA,CAAC;AAAA,0BAChBwB,CAAC;AAAA;AAAA;AAAA;AAAA,0CAIeA,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,KActC,CAAC,EAAM23F,IAAIx5F,GAAG,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,EAAE,EAAE,EAAE,GAAG,CAAC,EAAE,EAAE,CAAC,YAAY0B,EAAE,KAAKC,EAAE,MAAMC,EAAE,KAAKS,CAAC,EAAEtC,EAAEuC,EAAE,IAAI42F,IAAGl5F,EAAE,MAAM0B,EAAEC,EAAEC,EAAES,CAAC,EAAE,OAAOxC,EAAE,gBAAgByC,EAAE,CAACtC,EAAE,EAAE,CAAC,EAAEA,EAAE,KAAK,CAAC,EAAEo5F,IAAG,CAAC,WAAWv0G,GAAG,YAAY,QAAQ,WAAWs0G,GAAG,EAAE,SAASE,IAAG15F,EAAE,EAAEE,EAAEE,EAAE,CAAC,IAAIC,EAAE9B,EAAE,cAAc,CAAC,EAAEuD,EAAEvD,EAAE,cAAcyB,EAAE,KAAK,EAAEK,EAAE0B,EAAE0kF,GAAG,CAAC,OAAO,CAAC,EAAEzmF,CAAC,EAAE,MAAM,CAAC,MAAM,CAAC8B,EAAEzB,CAAC,CAAC,EAAE,QAAQD,CAAC,CAAC,EAAE4B,EAAE8kF,GAAG/kF,EAAE/B,EAAE,MAAM,MAAMI,CAAC,EAAE,EAAEqmF,GAAG,CAAC,OAAO,CAAC,EAAEzkF,CAAC,EAAE,MAAM,CAAC,MAAM9B,CAAC,EAAE,QAAQE,CAAC,CAAC,EAAE,OAAOA,EAAE,8BAA8B2B,CAAC,EAAE3B,EAAE,8BAA8B4B,CAAC,EAAE,CAAC,CAAC,SAAS23F,GAAG35F,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,CAAC,EAAE,EAAE,CAAC,iBAAiB,EAAE,SAAS,CAAC,EAAED,EAAE2B,EAAE1B,EAAE,MAAM,OAAO2B,EAAEzD,EAAE,eAAe,EAAE8B,EAAE,KAAK,EAAE4B,EAAED,EAAEU,EAAEhV,EAAE,mBAAmBuU,EAAEF,CAAC,EAAEY,EAAED,GAAG,KAAKE,EAAE1C,EAAE,mBAAmB,CAACG,CAAC,CAAC,EAAEwC,EAAExC,EAAE,GAAGsC,EAAE,CAAC,GAAGC,EAAE,CAAC,IAAI6B,EAAEvE,EAAE,QAAQ,IAAI2C,EAAE,MAAM,EAAE,OAAO6B,EAAE,IAAI,MAAM3C,CAAC,EAAE,QAAQ8C,EAAE,EAAEA,EAAEH,EAAE,OAAOG,IAAIH,EAAEG,CAAC,EAAExE,EAAE,MAAMqC,EAAEmC,CAAC,CAAC,EAAE,IAAIF,EAAE29E,GAAG79E,EAAEpE,EAAE,MAAMA,EAAE,MAAMqC,EAAEgC,CAAC,EAAE7B,EAAE3C,EAAE,eAAewE,EAAErE,EAAE,KAAK,EAAE,IAAIuE,EAAE1E,EAAE,QAAQ,IAAI2C,EAAE,MAAM,EAAE+B,EAAE,OAAOD,CAAC,MAAM9B,EAAEqkF,GAAG7mF,EAAEqC,EAAExC,CAAC,EAAE+B,EAAEvU,EAAE,iBAAiBuU,EAAE,OAAOF,CAAC,CAAC,CAACrU,EAAE,2BAA2B,MAAMuU,EAAEF,CAAC,EAAE,GAAG,CAACe,EAAEkB,CAAC,EAAEtW,EAAE,0BAA0BmV,EAAE,MAAMZ,CAAC,EAAE,EAAEa,EAAE,IAAI,EAAEpV,EAAE,qBAAqBoV,EAAEd,CAAC,GAAG,IAAIsF,EAAE,GAAG1E,EAAE,CAAC,IAAI6B,EAAEvE,EAAE,QAAQ,IAAI2C,EAAE,MAAM,EAAE,OAAO6B,EAAEg8E,GAAGj8E,EAAElG,EAAE,cAAcyF,CAAC,EAAE,EAAE3D,EAAE,KAAK,EAAEiH,EAAEpH,EAAE,eAAe,EAAEG,EAAE,KAAK,EAAE,IAAIsE,EAAEzE,EAAE,QAAQ,IAAIoH,EAAE,MAAM,EAAE3C,EAAE,OAAOD,CAAC,MAAM4C,EAAEoyF,IAAG72F,EAAEmB,EAAE,EAAE9D,CAAC,EAAE,OAAOyC,GAAGzC,EAAE,8BAA8B2C,CAAC,EAAEyE,CAAC,CAAC,IAAIsyF,IAAG,CAAC,WAAWxzG,GAAG,YAAY,QAAQ,WAAWuzG,EAAE,EAAME,IAAI/U,GAAG;AAAA;AAAA,EAE33CgV,IAAI;AAAA;AAAA;AAAA;AAAA;AAAA,IAKF9U,GAAG;AAAA;AAAA,EAEL+U,IAAI/T,GAAG,CAAC,UAAU6T,IAAI,gBAAgBC,IAAI,cAAcnZ,EAAE,CAAC,EAAEqZ,IAAG,CAAC,WAAWtzG,GAAG,YAAY,QAAQ,WAAWqzG,GAAG,EAAE,SAASE,IAAIj6F,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,CAAC,EAAE,EAAEm1E,GAAGn1E,EAAE,SAAS,EAAE,GAAG,CAAC,WAAW,EAAE,QAAQ,EAAE,IAAI0B,EAAE,gBAAgBC,CAAC,EAAE5B,EAAE6B,EAAE,EAAE1D,EAAE,OAAO7Q,EAAE,+BAA+B,EAAEuU,CAAC,EAAE,IAAI,wEAAwE,CAAC,mBAAmBA,CAAC,GAAG,EAAE,IAAIS,EAAEhV,EAAE,kBAAkB2S,EAAE,MAAM,EAAE,EAAE4B,EAAEF,EAAEC,CAAC,EAAE,GAAGU,EAAE,cAAc,GAAGA,EAAE,eAAe,GAAGnE,EAAE,YAAYmE,EAAE,QAAQA,EAAE,QAAQ,EAAE,OAAOwiF,GAAG,CAAC,OAAO,CAAC,EAAE7kF,CAAC,EAAE,QAAQH,CAAC,CAAC,EAAE,IAAIyC,EAAE,IAAI8nF,GAAG/nF,EAAE,MAAM,EAAE,EAAE,OAAOxC,EAAE,gBAAgByC,EAAE,CAACtC,CAAC,EAAEA,EAAE,KAAK,CAAC,CAAC,IAAI65F,IAAG,CAAC,WAAW7zG,GAAG,YAAY,QAAQ,WAAW4zG,GAAG,EAAE,SAASE,IAAIn6F,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,CAAC,EAAE,EAAE,CAAC,WAAW,EAAE,QAAQ,EAAE,IAAI0B,EAAE,WAAWC,EAAE,gBAAgBC,CAAC,EAAE7B,EAAEsC,EAAE,CAAC,EAAE,EAAE,CAAC,EAAEC,EAAEjV,EAAE,kBAAkB2S,EAAE,MAAM,EAAE,EAAEqC,EAAEX,EAAEE,EAAED,CAAC,EAAEY,EAAE,IAAI8nF,GAAG/nF,EAAE,MAAM,EAAE,EAAE,OAAOzC,EAAE,gBAAgB0C,EAAE,CAACvC,CAAC,EAAEA,EAAE,KAAK,CAAC,CAAC,IAAI+5F,IAAG,CAAC,WAAW9zG,GAAG,YAAY,QAAQ,WAAW6zG,GAAG,EAAME,IAAG,KAAK,CAAC,YAAYz5F,EAAE,CAAC,KAAK,cAAc,CAAC,KAAK,QAAQ,EAAE,KAAK,YAAYA,EAAE,QAAQ,IAAIV,EAAEU,EAAE,aAAa,EAAEA,EAAE,YAAYP,EAAEO,EAAE,eAAeiB,EAAEjB,EAAE,sBAAsBkB,EAAElB,EAAE,qBAAqBmB,EAAEF,EAAE,EAAEjB,EAAE,QAAQ,IAAIoB,EAAEF,EAAE,EAAElB,EAAE,QAAQ,KAAK,EAAEiB,EAAEC,EAAE,EAAE,KAAK,SAAS;AAAA,iCACjrCC,CAAC,KAAKC,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,gCAcRH,CAAC;AAAA,kBACfxB,CAAC;AAAA,gDAC6BH,CAAC;AAAA;AAAA,oCAEbU,EAAE,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA,kCAKbkB,CAAC;AAAA,kDACe,CAAC;AAAA;AAAA,sCAEblB,EAAE,QAAQ;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,gCAOhB,CAAC;AAAA;AAAA;AAAA;AAAA,qCAIIkB,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,KAQjC,CAAC,EAAEw4F,IAAG,KAAK,CAAC,YAAY15F,EAAE,CAAC,KAAK,cAAc,CAAC,KAAK,QAAQ,EAAE,KAAK,YAAYA,EAAE,QAAQ,IAAIV,EAAEU,EAAE,YAAY,EAAEA,EAAE,aAAaP,EAAEO,EAAE,YAAYiB,EAAEjB,EAAE,cAAckB,EAAElB,EAAE,eAAemB,EAAEnB,EAAE,cAAcoB,EAAEpB,EAAE,qBAAqB,EAAEA,EAAE,sBAAsB8B,EAAE9B,EAAE,qBAAqB,EAAEoB,EAAE,EAAEpB,EAAE,QAAQ,MAAMgC,EAAE,EAAE,EAAEhC,EAAE,QAAQ,IAAIiC,EAAEH,EAAE,EAAE9B,EAAE,QAAQ,KAAKkC,EAAEd,EAAE,EAAEU,EAAE,EAAE,KAAK,SAAS;AAAA,iCAC5U,CAAC,KAAKE,CAAC,KAAKC,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,gCAiBdb,CAAC;AAAA,mBACdH,CAAC;AAAA,gDAC4B3B,CAAC;AAAA;AAAA,oCAEbU,EAAE,QAAQ;AAAA;AAAA;AAAA;AAAA;AAAA,kCAKZ,CAAC;AAAA,sBACbkB,CAAC;AAAA,kDAC2B,CAAC;AAAA;AAAA,sCAEblB,EAAE,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,oCAMb8B,CAAC;AAAA,wBACbX,CAAC;AAAA,oDAC2B1B,CAAC;AAAA;AAAA,wCAEbO,EAAE,QAAQ;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,kCAOhBkC,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,yBAMV,CAAC,MAAMJ,CAAC;AAAA,yBACRA,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,KASrB,CAAC,EAAE,SAAS63F,IAAIv6F,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,GAAGK,EAAE,MAAM,CAAC,EAAE,EAAE,EAAE,EAAE,CAAC,WAAW0B,EAAE,QAAQC,EAAE,IAAIC,EAAE,gBAAgBS,CAAC,EAAEtC,EAAEuC,EAAE,CAAC,EAAE,EAAE,CAAC,EAAEC,EAAElV,EAAE,kBAAkB,EAAE,MAAMqU,EAAEC,EAAEW,EAAEV,EAAES,CAAC,EAAEG,EAAE,IAAI6nF,GAAG9nF,EAAE,MAAM,EAAE,EAAEE,EAAE5C,EAAE,gBAAgB2C,EAAE,CAAC,CAAC,EAAE,EAAE,KAAK,EAAEmB,EAAE,IAAIs2F,IAAG13F,CAAC,EAAE,EAAE1C,EAAE,gBAAgB8D,EAAE,CAAC3D,EAAEyC,CAAC,EAAE,EAAE,KAAK,EAAE,OAAO5C,EAAE,8BAA8B4C,CAAC,EAAE,CAAC,CAAC,IAAI03F,IAAG,CAAC,WAAWj0G,GAAG,YAAY,QAAQ,WAAWg0G,GAAG,EAAE,SAASE,IAAIz6F,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,GAAGK,EAAE,MAAM,EAAE,OAAO,CAAC,EAAE,EAAE0B,EAAE,EAAEyzE,GAAG,CAAC,EAAE,CAAC,EAAE,aAAa,EAAE,GAAG,CAAC,WAAWxzE,EAAE,QAAQC,EAAE,IAAIS,EAAE,gBAAgBC,CAAC,EAAEvC,EAAEwC,EAAElV,EAAE,kBAAkBqU,EAAE,MAAMC,EAAEC,EAAE,EAAES,EAAEC,CAAC,EAAEE,EAAE,GAAGC,EAAE,IAAI2nF,GAAG7nF,EAAE,MAAMC,CAAC,EAAEmB,EAAE9D,EAAE,gBAAgB4C,EAAE,CAACf,CAAC,EAAEA,EAAE,KAAK,EAAE,EAAE,IAAIs4F,IAAGz3F,CAAC,EAAE0E,EAAEpH,EAAE,gBAAgB,EAAE,CAACG,EAAE2D,CAAC,EAAEjC,EAAE,KAAK,EAAE,OAAO7B,EAAE,8BAA8B8D,CAAC,EAAEsD,CAAC,CAAC,IAAIozF,IAAG,CAAC,WAAWl0G,GAAG,YAAY,QAAQ,WAAWi0G,GAAG,EAAE,SAASE,IAAG36F,EAAE,EAAEE,EAAEE,EAAE,CAAC,IAAIC,EAAE,IAAIoqF,GAAGvqF,EAAE,MAAM,EAAE,EAAE,EAAEE,EAAE,gBAAgBC,EAAE,CAACL,CAAC,EAAE,SAAS,EAAEK,EAAE,IAAIoqF,GAAGvqF,EAAE,MAAM,GAAG,GAAG,CAAC,EAAE,IAAI,EAAEE,EAAE,gBAAgBC,EAAE,CAACL,CAAC,EAAE,SAAS,EAAE,MAAM,CAAC,EAAE,CAAC,CAAC,CAAC,IAAI46F,IAAG,CAAC,WAAWn0G,GAAG,YAAY,QAAQ,WAAW,CAAC,CAAC,OAAOuZ,EAAE,MAAM,EAAE,QAAQE,CAAC,IAAI,CAAC,GAAG,CAAC,EAAEE,CAAC,EAAEJ,EAAE,CAAC,WAAWK,EAAE,QAAQ,EAAE,IAAI,EAAE,oBAAoB0B,CAAC,EAAE,EAAEC,EAAE9B,EAAE3B,EAAE,OAAO6B,EAAE,MAAM,SAAS,EAAE,IAAI,uDAAuDA,EAAE,MAAM,MAAM,GAAG,EAAE,IAAI6B,EAAE,CAAC,EAAE,CAAC,EAAE1D,EAAE,OAAO7Q,EAAE,+BAA+B,EAAEuU,CAAC,EAAE,IAAI,wEAAwE,CAAC,mBAAmBA,CAAC,GAAG,EAAE,IAAIS,EAAEhV,EAAE,kBAAkB0S,EAAE,MAAMC,EAAE,EAAE4B,EAAE,CAAC,EAAE,CAACU,EAAEC,CAAC,EAAE+3F,IAAGv6F,EAAE2B,EAAEW,EAAEV,CAAC,EAAE,MAAM,CAACW,EAAEC,CAAC,CAAC,CAAC,EAAE,SAASi4F,IAAG76F,EAAE,EAAEE,EAAEE,EAAE,CAAC,IAAIC,EAAE9B,EAAE,cAAc,CAAC,EAAEuD,EAAEvD,EAAE,cAAcyB,EAAE,KAAK,EAAEK,EAAE0B,EAAE0kF,GAAG,CAAC,OAAO,CAAC,EAAEzmF,CAAC,EAAE,MAAM,CAAC,MAAM,CAAC8B,EAAEzB,CAAC,CAAC,EAAE,QAAQD,CAAC,CAAC,EAAE4B,EAAE8kF,GAAG/kF,EAAE,UAAU,OAAO3B,CAAC,EAAE,EAAEqmF,GAAG,CAAC,OAAO,CAAC,EAAEzkF,CAAC,EAAE,MAAM,CAAC,MAAM9B,CAAC,EAAE,QAAQE,CAAC,CAAC,EAAE,OAAOA,EAAE,8BAA8B2B,CAAC,EAAE3B,EAAE,8BAA8B4B,CAAC,EAAE,CAAC,CAAC,IAAI84F,IAAG,CAAC,WAAWn0G,GAAG,YAAY,QAAQ,WAAW,CAAC,CAAC,OAAOqZ,EAAE,MAAM,EAAE,QAAQE,CAAC,IAAI,CAAC,GAAG,CAAC,EAAEE,CAAC,EAAEJ,EAAE,CAAC,SAASK,EAAE,KAAK,CAAC,EAAE,EAAE,EAAEH,EAAE6B,EAAE3B,EAAE,MAAM,OAAO4B,EAAEzD,EAAE,eAAe,EAAE6B,EAAE,KAAK,EAAE6B,EAAED,EAAEU,EAAEhV,EAAE,mBAAmBuU,EAAEF,CAAC,EAAEY,EAAED,GAAG,KAAKE,EAAE,EAAE,mBAAmB,CAACxC,CAAC,CAAC,EAAEyC,EAAE,CAAC,EAAEC,EAAE1C,EAAE,GAAGuC,EAAE,CAAC,GAAGC,EAAE,CAAC,IAAI8B,EAAE,EAAE,QAAQ,IAAI5B,EAAE,MAAM,EAAE,OAAO6B,EAAE,IAAI,MAAM5C,CAAC,EAAE,QAAQwF,EAAE,EAAEA,EAAE5C,EAAE,OAAO4C,IAAI5C,EAAE4C,CAAC,EAAEnH,EAAE,MAAMsC,EAAE6E,CAAC,CAAC,EAAE,IAAI3C,EAAE09E,GAAG59E,EAAEtE,EAAE,MAAMA,EAAE,MAAMsC,EAAEiC,CAAC,EAAE7B,EAAE,EAAE,eAAe6B,EAAEvE,EAAE,KAAK,EAAE,IAAIyE,EAAE,EAAE,QAAQ,IAAI/B,EAAE,MAAM,EAAE+B,EAAE,OAAOD,CAAC,MAAM9B,EAAEokF,GAAG9mF,EAAEsC,EAAE,CAAC,EAAEG,EAAE,KAAKC,CAAC,EAAEb,EAAEvU,EAAE,iBAAiBuU,EAAE,OAAOF,CAAC,CAAC,CAACrU,EAAE,2BAA2B,MAAMuU,EAAEF,CAAC,EAAE,GAAG,CAACiC,EAAE,CAAC,EAAEtW,EAAE,0BAA0BoV,EAAE,MAAMb,CAAC,EAAEqF,EAAEtD,EAAE3D,IAAIiH,EAAE5Z,EAAE,qBAAqBsW,EAAEhC,CAAC,GAAG,IAAI8C,EAAE+1F,IAAG/3F,EAAE,EAAEwE,EAAE,CAAC,EAAE,QAAQ7C,KAAK5B,EAAE,EAAE,8BAA8B4B,CAAC,EAAE,OAAOK,CAAC,CAAC,EAAE,SAASi2F,IAAI/6F,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,CAAC,EAAE,EAAE,CAAC,KAAK,EAAE,SAAS,CAAC,EAAED,EAAE2B,EAAE1B,EAAE,MAAM,OAAO2B,EAAEzD,EAAE,eAAe,EAAE8B,EAAE,KAAK,EAAE4B,EAAED,EAAEU,EAAEhV,EAAE,mBAAmBuU,EAAEF,CAAC,EAAEY,EAAEtC,EAAEqC,GAAG,OAAOC,EAAE2kF,GAAG,CAAC,OAAO,CAAC,EAAEjnF,CAAC,EAAE,QAAQH,EAAE,MAAM,CAAC,KAAKwC,CAAC,CAAC,CAAC,EAAET,EAAEvU,EAAE,iBAAiBuU,EAAE,OAAO5B,EAAE,MAAM,MAAM,GAAG3S,EAAE,2BAA2B,MAAMuU,EAAEF,CAAC,EAAE,GAAG,CAACa,EAAEC,CAAC,EAAEnV,EAAE,0BAA0BiV,EAAE,MAAMV,CAAC,EAAEa,EAAEvE,EAAE,cAAcsE,CAAC,EAAEmB,EAAEyiF,GAAG,CAAC,OAAO,CAAC,EAAE9jF,CAAC,EAAE,QAAQzC,EAAE,MAAM,CAAC,MAAM,CAAC,GAAG4C,CAAC,CAAC,CAAC,CAAC,EAAE,EAAEgkF,GAAG9iF,EAAEA,EAAE,MAAM,MAAM9D,CAAC,EAAEoH,EAAE,GAAG,EAAE,CAAC,IAAIxC,EAAEpX,EAAE,qBAAqBkV,EAAEZ,CAAC,EAAEsF,EAAEm/E,GAAG,CAAC,OAAO,CAAC,EAAE,CAAC,EAAE,QAAQvmF,EAAE,MAAM,CAAC,MAAM4E,CAAC,CAAC,CAAC,CAAC,MAAMwC,EAAEm/E,GAAG,CAAC,OAAO,CAAC,EAAE,CAAC,EAAE,QAAQvmF,EAAE,MAAM,CAAC,MAAM0C,CAAC,CAAC,CAAC,EAAE,OAAO1C,EAAE,8BAA8B8D,CAAC,EAAE9D,EAAE,8BAA8B,CAAC,EAAEwC,GAAG,MAAMxC,EAAE,8BAA8ByC,CAAC,EAAE2E,CAAC,CAAC,IAAI0zF,IAAG,CAAC,WAAWp0G,GAAG,YAAY,QAAQ,WAAWm0G,GAAG,EAAME,IAAInW,GAAG;AAAA;AAAA,EAE/qGoW,IAAI;AAAA;AAAA;AAAA;AAAA;AAAA,IAKFlW,GAAG;AAAA;AAAA,EAELmW,IAAInV,GAAG,CAAC,UAAUiV,IAAI,gBAAgBC,IAAI,cAActa,EAAE,CAAC,EAAEwa,IAAG,CAAC,WAAWv0G,GAAG,YAAY,QAAQ,WAAWs0G,GAAG,EAAME,IAAG,KAAK,CAAC,YAAYz6F,EAAEV,EAAE,EAAE,CAAC,KAAK,cAAc,CAAC,GAAG,EAAE,KAAK,YAAYA,EAAE,IAAI,CAACwC,EAAE,IAAIA,EAAE,CAAC,EAAE9B,EAAE,CAAC,EAAE8B,EAAE,CAAC,CAAC,EAAE,IAAIrC,EAAEO,EAAE,OAAOiB,EAAEq7E,GAAG78E,CAAC,EAAEyB,EAAE5B,EAAE,IAAIwC,GAAGA,EAAE,CAAC,CAAC,EAAE,KAAK,GAAG,EAAEX,EAAE7B,EAAE,IAAI,CAACwC,EAAE,IAAIA,EAAE,CAAC,EAAE9B,EAAE,CAAC,CAAC,EAAE,KAAK,GAAG,EAAEoB,EAAE,CAAC,YAAY,YAAY,YAAY,WAAW,EAAE,MAAM,EAAE3B,CAAC,EAAE,EAAE,IAAI,UAAU,EAAE,EAAE,GAAGA,IAAI,EAAE,CAAC,KAAK,SAAS;AAAA,sBACvYyB,CAAC;AAAA,oBACHC,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA,wCAKmB,CAAC;AAAA;AAAA,4CAEG,CAAC;AAAA;AAAA;AAAA;AAAA,QAIrC,MAAM,CAAC,KAAK,SAAS;AAAA,QACrBF,CAAC,YAAYA,CAAC,IAAIC,CAAC;AAAA,QACnBD,CAAC,UAAUA,CAAC,IAAIE,CAAC;AAAA;AAAA;AAAA,UAGfF,CAAC;AAAA,8BACmBxB,CAAC;AAAA;AAAA,iDAEkB,CAAC;AAAA;AAAA,qDAEG,CAAC;AAAA;AAAA;AAAA,UAG5CwB,CAAC;AAAA,yBACcG,CAAC;AAAA;AAAA,KAErB,CAAC,EAAMs5F,IAAG,KAAK,CAAC,YAAY16F,EAAEV,EAAE,EAAE,CAAC,KAAK,cAAc,CAAC,GAAG,EAAE,KAAK,aAAa,GAAG,KAAK,aAAa,GAAG,KAAK,YAAYA,EAAE,IAAI,CAAC4C,EAAEkB,IAAIlB,EAAE,CAAC,EAAElC,EAAEoD,CAAC,EAAElB,EAAE,CAAC,CAAC,EAAE,IAAIzC,EAAEO,EAAE,OAAOiB,EAAEq7E,GAAG78E,CAAC,EAAEyB,EAAE5B,EAAE,IAAI4C,GAAGA,EAAE,CAAC,CAAC,EAAE,KAAK,GAAG,EAAEf,EAAE7B,EAAE,IAAI,CAAC4C,EAAEkB,IAAIlB,EAAE,CAAC,EAAElC,EAAEoD,CAAC,CAAC,EAAE,KAAK,GAAG,EAAEhC,EAAEygF,GAAG,KAAKpiF,CAAC,EAAE,EAAEoiF,GAAG,SAASpiF,CAAC,EAAEqC,EAAE,GAAGV,EAAE3B,EAAE,CAAC,CAAC,MAAM,KAAK,YAAYA,EAAE,CAAC,CAAC,GAAG,EAAEA,IAAI,EAAE,SAAS,QAAQ,EAAE,MAAM,EAAE,EAAE,KAAK,CAAC,IAAIuC,EAAE,IAAI,UAAU,EAAE,EAAEC,EAAE,GAAG,GAAGxC,IAAI,EAAE,CAAC,IAAIyC,EAAE;AAAA,UACpYjB,CAAC;AAAA;AAAA,0CAE+Be,CAAC;AAAA;AAAA,8CAEGA,CAAC;AAAA;AAAA;AAAA,QAGvCC,EAAE;AAAA,UACAhB,CAAC;AAAA,UACDiB,CAAC;AAAA,sCAC2B,EAAE,KAAK,CAAC,MAAM,CAAC;AAAA,UAC3Cd,EAAE3B,EAAE,CAAC,CAAC;AAAA,aACHqC,CAAC;AAAA,YACFI,CAAC;AAAA,wCAC2B,EAAE,KAAK,CAAC,MAAM,CAAC;AAAA;AAAA,OAEhD,KAAK,CAAC,IAAIA,EAAE;AAAA,UACTjB,CAAC;AAAA,UACDA,CAAC,SAASA,CAAC;AAAA,UACXA,CAAC,UAAUA,CAAC;AAAA,UACZA,CAAC;AAAA;AAAA,6CAEkCe,CAAC;AAAA,kDACIA,CAAC;AAAA;AAAA,QAE3CC,EAAE;AAAA,UACAhB,CAAC;AAAA,UACDiB,CAAC;AAAA,sCAC2B,EAAE,KAAK,CAAC,MAAM,CAAC;AAAA,UAC3Cd,EAAE3B,EAAE,CAAC,CAAC;AAAA,aACHqC,CAAC;AAAA,YACFI,CAAC;AAAA,wCAC2B,EAAE,KAAK,CAAC,MAAM,CAAC;AAAA;AAAA;AAAA,UAG7Cd,EAAE3B,EAAE,CAAC,CAAC;AAAA,aACH2B,EAAE3B,EAAE,CAAC,CAAC,MAAM,KAAK,YAAYA,EAAE,CAAC,CAAC;AAAA,YAClCyC,CAAC;AAAA,wCAC2B,EAAE,KAAK,CAAC,MAAM,CAAC;AAAA,YAC3Cd,EAAE3B,EAAE,CAAC,CAAC;AAAA,eACHqC,CAAC;AAAA,cACFI,CAAC;AAAA,0CAC2B,EAAE,KAAK,CAAC,MAAM,CAAC;AAAA;AAAA;AAAA,OAGlD,CAAC,KAAK,SAAS;AAAA,cACRjB,CAAC,YAAYA,CAAC,IAAIC,CAAC;AAAA,cACnBD,CAAC,UAAUA,CAAC,IAAIE,CAAC;AAAA;AAAA;AAAA,UAGrBF,CAAC;AAAA;AAAA,UAEDgB,CAAC;AAAA;AAAA;AAAA,KAGN,CAAC,EAAM04F,IAAI,CAAC,CAAC,OAAOv7F,EAAE,QAAQ,EAAE,MAAME,CAAC,IAAI,CAAC,GAAG,CAAC,EAAEE,CAAC,EAAEJ,EAAE,CAAC,SAASK,EAAE,KAAK,CAAC,EAAEH,EAAE,EAAE1O,EAAE,EAAE,QAAQ,6BAA6B,EAAE,IAAI8pG,IAAGl7F,EAAE,MAAMC,EAAE,CAAC,EAAE,IAAIg7F,IAAGj7F,EAAE,MAAMC,EAAE,CAAC,EAAE,OAAO,EAAE,gBAAgB,EAAE,CAACD,CAAC,EAAEA,EAAE,KAAK,CAAC,EAAEo7F,IAAG,CAAC,WAAW10G,GAAG,YAAY,QAAQ,WAAWy0G,GAAG,EAAME,IAAI;AAAA,qBACzPC,IAAI;AAAA;AAAA;AAAA,IAGrB1W,GAAG;AAAA;AAAA,EAEL2W,IAAI3V,GAAG,CAAC,UAAUyV,IAAI,gBAAgBC,GAAG,CAAC,EAAEE,IAAG,CAAC,WAAW70G,GAAG,YAAY,QAAQ,WAAW40G,GAAG,EAAME,IAAG,KAAK,CAAC,YAAYj7F,EAAEV,EAAE,EAAE,CAAC,KAAK,cAAc,CAAC,OAAO,EAAE,KAAK,eAAe,CAAC,CAAC,KAAK,OAAO,KAAK,OAAO,CAAC,EAAE,KAAK,YAAY,CAACU,EAAE,CAAC,EAAE,KAAK,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,8BAQzNV,EAAE,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,0BAUPA,EAAE,CAAC;AAAA;AAAA,KAExB,CAAC,EAAM47F,IAAI;AAAA;AAAA;AAAA;AAAA,eAIDC,IAAI;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAkBjBC,GAAGhW,GAAG,CAAC,UAAU8V,IAAI,gBAAgBC,IAAI,iBAAiB,EAAE,CAAC,EAAEE,IAAG,CAAC,WAAWtzG,GAAG,YAAY,QAAQ,WAAWqzG,EAAE,EAAME,GAAG,gBAAgBC,GAAGnW,GAAG,CAAC,UAAUkW,GAAG,gBAAgBA,GAAG,gBAAgB,GAAG,cAAc/Z,EAAE,CAAC,EAAEia,IAAG,CAAC,WAAW9wG,GAAG,YAAY,QAAQ,WAAW6wG,EAAE,EAAE,SAASE,GAAGr8F,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,OAAOK,CAAC,EAAE,EAAE,CAAC,IAAI,CAAC,EAAED,EAAE,EAAE7B,EAAE,eAAe,CAAC,CAAC,EAAE8B,EAAE,KAAK,EAAE0B,EAAE43F,GAAG,CAAC,OAAO,CAAC,EAAEt5F,CAAC,EAAE,QAAQH,EAAE,MAAM,CAAC,iBAAiB,EAAE,SAAS,EAAE,CAAC,CAAC,EAAE8B,EAAEtU,EAAE,qBAAqBqU,EAAE,MAAM,CAAC,EAAEE,EAAEwkF,GAAG,CAAC,OAAO,CAAC,EAAE1kF,CAAC,EAAE,QAAQ7B,EAAE,MAAM,CAAC,MAAM8B,CAAC,CAAC,CAAC,EAAEU,EAAEy5F,GAAG,CAAC,OAAO,CAAC,EAAE97F,EAAE,EAAE4B,CAAC,EAAE,QAAQ/B,CAAC,CAAC,EAAEyC,EAAEixF,GAAG,CAAC,OAAO,CAAC,EAAElxF,CAAC,EAAE,QAAQxC,CAAC,CAAC,EAAE0C,EAAEwkF,GAAG,CAAC,OAAO,CAAC,EAAEzkF,CAAC,EAAE,QAAQzC,EAAE,MAAM,CAAC,KAAK,EAAE,SAAS,EAAE,CAAC,CAAC,EAAE2C,EAAE4jF,GAAG,CAAC,OAAO,CAAC,EAAE7jF,CAAC,EAAE,QAAQ1C,EAAE,MAAM,CAAC,MAAM8B,CAAC,CAAC,CAAC,EAAEc,EAAEk5F,GAAG,CAAC,OAAO,CAAC,EAAEr5F,EAAE,EAAEE,CAAC,EAAE,QAAQ3C,CAAC,CAAC,EAAE,OAAOA,EAAE,8BAA8B6B,CAAC,EAAE7B,EAAE,8BAA8B+B,CAAC,EAAE/B,EAAE,8BAA8BwC,CAAC,EAAExC,EAAE,8BAA8ByC,CAAC,EAAEzC,EAAE,8BAA8B0C,CAAC,EAAE1C,EAAE,8BAA8B2C,CAAC,EAAEC,CAAC,CAAC,IAAIw5F,IAAG,CAAC,WAAWlyG,GAAG,YAAY,QAAQ,WAAWiyG,EAAE,EAAE,SAASE,IAAIv8F,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,OAAOK,CAAC,EAAE,EAAE,CAAC,WAAW,EAAE,KAAK,EAAE,WAAW0B,CAAC,EAAE3B,EAAE4B,EAAED,EAAE1B,EAAEg8F,GAAG,CAAC,OAAO,CAAC,OAAOh8F,CAAC,EAAE,QAAQH,EAAE,MAAM,CAAC,IAAIG,EAAE,MAAM,OAAO,CAAC,CAAC,CAAC,EAAE4B,EAAED,EAAE,MAAM,CAAC,EAAEU,EAAEV,EAAE,MAAM,CAAC,EAAEW,EAAE,IAAIk5F,IAAG55F,EAAES,EAAE,CAAC,EAAEE,EAAE,CAAC,CAAC,CAAC,CAAC,EAAEC,EAAE3C,EAAE,gBAAgByC,EAAE,CAACX,CAAC,EAAE,QAAQY,CAAC,EAAE,OAAOb,GAAG7B,EAAE,8BAA8B8B,CAAC,EAAEa,CAAC,CAAC,IAAI25F,IAAG,CAAC,WAAWv1G,GAAG,YAAY,QAAQ,WAAWs1G,GAAG,EAAME,IAAInZ,GAAG;AAAA;AAAA,EAEp2CoZ,IAAI;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAUJ,SAASC,IAAI38F,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,CAAC,EAAEF,EAAE,CAAC,EAAEI,CAAC,EAAE,EAAE,GAAGF,EAAE,mBAAmB,CAACE,CAAC,CAAC,EAAE,CAAC,IAAI,EAAEF,EAAE,QAAQ,IAAIE,EAAE,MAAM,EAAE,CAAC,EAAE2B,CAAC,EAAE++E,GAAG,EAAE,OAAO1gF,EAAE,MAAMA,EAAE,KAAK,EAAE,OAAOF,EAAE,eAAe6B,EAAE3B,EAAE,MAAM,CAAC,CAAC,CAAC,IAAIC,EAAE,OAAO7O,EAAE,EAAE,QAAQ,6BAA6B,EAAE6O,EAAE,IAAI8jF,GAAG/jF,EAAE,MAAMs8F,GAAG,EAAEr8F,EAAE,IAAIgjF,GAAGjjF,EAAE,MAAMq8F,GAAG,EAAEv8F,EAAE,gBAAgBG,EAAE,CAACD,CAAC,EAAEA,EAAE,KAAK,CAAC,CAAC,IAAIw8F,IAAG,CAAC,WAAWz1G,GAAG,YAAY,QAAQ,WAAWw1G,GAAG,EAAME,IAAI5oG,GAAG,wBAAwB,SAAS6oG,IAAI98F,EAAE,CAACtS,EAAE,KAAK,+FAA+F,EAAE,GAAG,CAAC,OAAO,EAAE,QAAQwS,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,MAAMK,EAAE,OAAO,CAAC,EAAE,EAAE,CAAC,cAAc,EAAE,aAAa0B,EAAE,eAAeC,CAAC,EAAE5B,EAAE6B,EAAE/B,EAAE,SAASG,EAAE,MAAM,EAAEqC,EAAExC,EAAE,SAAS,EAAE,MAAM,EAAE,CAAC,gBAAgByC,CAAC,EAAEk6F,IAAI56F,EAAES,EAAE,EAAEX,EAAEC,CAAC,EAAE,OAAO9B,EAAE,eAAe,CAACyC,EAAE,MAAM,EAAE,QAAQ,IAAI,WAAWA,CAAC,CAAC,CAAC,CAAC,IAAIo6F,IAAG,CAAC,WAAW31G,GAAG,YAAY,QAAQ,WAAW01G,GAAG,EAAME,IAAI/oG,GAAG,wBAAwB,SAASgpG,IAAIj9F,EAAE,CAACtS,EAAE,KAAK,+FAA+F,EAAE,GAAG,CAAC,OAAO,EAAE,QAAQwS,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,MAAMK,EAAE,OAAO,CAAC,EAAE,EAAE,CAAC,cAAc,EAAE,aAAa0B,EAAE,eAAeC,EAAE,mBAAmBC,CAAC,EAAE7B,EAAEsC,EAAExC,EAAE,SAASG,EAAE,MAAM,EAAEsC,EAAEzC,EAAE,SAAS,EAAE,MAAM,EAAE,CAAC,gBAAgB0C,EAAE,aAAaC,CAAC,EAAEm6F,IAAIt6F,EAAEC,EAAE,EAAEZ,EAAEC,EAAEC,CAAC,EAAE,MAAM,CAAC/B,EAAE,eAAe,CAAC0C,EAAE,MAAM,EAAE,QAAQ,IAAI,WAAWA,CAAC,CAAC,EAAE1C,EAAE,eAAe,CAAC,EAAE,QAAQ,IAAI,WAAW,CAAC2C,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,IAAIq6F,IAAG,CAAC,WAAW71G,GAAG,YAAY,QAAQ,WAAW41G,GAAG,EAAME,IAAIlpG,GAAG,wBAAwB,SAASmpG,IAAIp9F,EAAE,CAACtS,EAAE,KAAK,+FAA+F,EAAE,GAAG,CAAC,OAAO,EAAE,QAAQwS,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,MAAMK,EAAE,OAAO,CAAC,EAAE,EAAE,CAAC,cAAc,EAAE,aAAa0B,EAAE,eAAeC,EAAE,aAAaC,CAAC,EAAE7B,EAAEsC,EAAExC,EAAE,SAASG,EAAE,MAAM,EAAEsC,EAAEzC,EAAE,SAAS,EAAE,MAAM,EAAE0C,EAAE,EAAEC,EAAEd,EAAEe,EAAEd,EAAEgC,EAAE/B,EAAE,CAAC,gBAAgB,EAAE,eAAeqF,CAAC,EAAE61F,IAAIz6F,EAAEC,EAAEC,EAAEC,EAAEC,EAAEkB,CAAC,EAAE,MAAM,CAAC9D,EAAE,eAAe,CAAC,EAAE,MAAM,EAAE,QAAQ,IAAI,WAAW,CAAC,CAAC,EAAEA,EAAE,eAAe,CAACoH,EAAE,MAAM,EAAE,UAAU,IAAI,aAAaA,CAAC,CAAC,CAAC,CAAC,CAAC,IAAI+1F,IAAG,CAAC,WAAW/1G,GAAG,YAAY,QAAQ,WAAW81G,GAAG,EAAME,IAAG,KAAK,CAAC,YAAY18F,EAAEV,EAAE,EAAEG,EAAE,CAAC,KAAK,cAAc,CAAC,SAAS,EAAE,KAAK,YAAY,CAACO,EAAEV,CAAC,EAAE,KAAK,SAAS;AAAA;AAAA;AAAA;AAAA,8BAIl/DG,CAAC,YAAY,CAAC;AAAA;AAAA;AAAA,KAGvC,CAAC,EAAMk9F,IAAIv9F,GAAG,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,QAAQK,CAAC,EAAE,EAAE,CAAC,MAAM,EAAE,MAAM,EAAE,QAAQ0B,EAAE,SAASC,CAAC,EAAE5B,EAAE6B,EAAE1D,EAAE,cAAc8B,EAAE,KAAK,EAAEqC,EAAE,IAAI46F,IAAGr7F,EAAE,EAAEF,EAAEC,CAAC,EAAEW,EAAE8jF,GAAG,CAAC,OAAO,CAAC,EAAEpmF,CAAC,EAAE,QAAQH,EAAE,MAAM,CAAC,MAAM,CAAC+B,CAAC,CAAC,CAAC,CAAC,EAAEW,EAAE1C,EAAE,gBAAgBwC,EAAE,CAACC,CAAC,EAAE,CAAC,EAAEzC,EAAE,8BAA8ByC,CAAC,EAAE,IAAIE,EAAE,CAAC,GAAGxC,EAAE,MAAM,CAAC,EAAEyC,EAAE2jF,GAAG,CAAC,OAAO,CAAC,EAAE7jF,CAAC,EAAE,QAAQ1C,EAAE,MAAM,CAAC,MAAM2C,CAAC,CAAC,CAAC,EAAE,OAAO3C,EAAE,8BAA8B0C,CAAC,EAAEE,CAAC,EAAE06F,IAAG,CAAC,WAAW/1G,GAAG,YAAY,QAAQ,WAAW81G,GAAG,EAAE,SAASE,GAAGz9F,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,CAAC,EAAEF,EAAE,CAAC,EAAEI,CAAC,EAAE,EAAE,GAAGA,EAAE,QAAQ,YAAY,CAAC,IAAIC,EAAE0sF,GAAG,CAAC,OAAO,CAAC,MAAM3sF,CAAC,EAAE,QAAQF,CAAC,CAAC,EAAE,EAAEu9F,GAAG,CAAC,OAAO,CAAC,EAAEp9F,CAAC,EAAE,QAAQH,CAAC,CAAC,EAAE,EAAEiuF,GAAG,CAAC,OAAO,CAAC,MAAM/tF,CAAC,EAAE,QAAQF,CAAC,CAAC,EAAE6B,EAAE07F,GAAG,CAAC,OAAO,CAAC,EAAE,CAAC,EAAE,QAAQv9F,CAAC,CAAC,EAAE8B,EAAEojF,GAAG,CAAC,OAAO,CAAC,KAAK,EAAE,KAAKrjF,CAAC,EAAE,QAAQ7B,CAAC,CAAC,EAAE,OAAOA,EAAE,8BAA8BG,CAAC,EAAEH,EAAE,8BAA8B,CAAC,EAAEA,EAAE,8BAA8B,CAAC,EAAEA,EAAE,8BAA8B6B,CAAC,EAAEC,CAAC,KAAM,QAAOwyF,GAAG,CAAC,MAAM,CAAC,MAAMp0F,EAAE,MAAM,MAAMA,EAAE,MAAM,MAAMA,EAAE,QAAQ,SAAS,GAAG,CAAC,EAAE,QAAQF,CAAC,CAAC,CAAC,CAAC,IAAIw9F,IAAG,CAAC,WAAWnxG,GAAG,YAAY,QAAQ,WAAWkxG,EAAE,EAAE,SAASE,GAAG39F,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,CAAC,EAAEF,EAAE,CAAC,EAAEI,CAAC,EAAE,EAAE,GAAGA,EAAE,QAAQ,SAAS,MAAM,IAAI,MAAM,8CAA8C,EAAE,GAAGA,EAAE,QAAQ,YAAY,CAAC,IAAIC,EAAE0sF,GAAG,CAAC,OAAO,CAAC,MAAM3sF,CAAC,EAAE,QAAQF,CAAC,CAAC,EAAE,EAAEy9F,GAAG,CAAC,OAAO,CAAC,EAAEt9F,CAAC,EAAE,QAAQH,CAAC,CAAC,EAAE,EAAEiuF,GAAG,CAAC,OAAO,CAAC,MAAM/tF,CAAC,EAAE,QAAQF,CAAC,CAAC,EAAE6B,EAAE07F,GAAG,CAAC,OAAO,CAAC,EAAE,CAAC,EAAE,QAAQv9F,CAAC,CAAC,EAAE8B,EAAEojF,GAAG,CAAC,OAAO,CAAC,KAAK,EAAE,KAAKrjF,CAAC,EAAE,QAAQ7B,CAAC,CAAC,EAAE,OAAOA,EAAE,8BAA8BG,CAAC,EAAEH,EAAE,8BAA8B,CAAC,EAAEA,EAAE,8BAA8B,CAAC,EAAEA,EAAE,8BAA8B6B,CAAC,EAAEC,CAAC,KAAM,QAAOwyF,GAAG,CAAC,MAAM,CAAC,MAAMp0F,EAAE,MAAM,MAAMA,EAAE,MAAM,MAAM,CAAC,EAAE,QAAQF,CAAC,CAAC,CAAC,CAAC,IAAI09F,IAAG,CAAC,WAAWl2G,GAAG,YAAY,QAAQ,WAAWi2G,EAAE,EAAE,SAASE,IAAI79F,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,KAAKK,CAAC,EAAED,EAAE,GAAG,EAAE,SAAS,EAAE,OAAO0zF,GAAG,CAAC,OAAO,CAAC,MAAM,EAAE,CAAC,CAAC,EAAE,QAAQ5zF,EAAE,MAAM,CAAC,IAAIG,CAAC,CAAC,CAAC,EAAE,IAAI,EAAE,EAAE,CAAC,EAAE,MAAM,EAAE,EAAE,CAAC,EAAE,MAAM,EAAE,QAAQqC,GAAG,CAACnE,EAAE,kBAAkB,EAAEmE,EAAE,MAAM,uDAAuD,EAAEnE,EAAE,OAAO,IAAImE,EAAE,MAAM,IAAI,uDAAuD,CAAC,CAAC,EAAE,IAAIX,EAAE,CAAC,EAAEC,EAAE,EAAE,IAAIU,GAAG,CAAC,IAAIC,EAAEmxF,GAAG,CAAC,OAAO,CAAC,MAAMpxF,CAAC,EAAE,QAAQxC,EAAE,MAAM,CAAC,IAAIG,CAAC,CAAC,CAAC,EAAE,OAAO0B,EAAE,KAAKY,CAAC,EAAEA,CAAC,CAAC,EAAEV,EAAEssF,GAAG,CAAC,OAAOvsF,EAAE,QAAQ9B,EAAE,MAAM,CAAC,KAAKG,CAAC,CAAC,CAAC,EAAE,OAAO0B,EAAE,QAAQW,GAAGxC,EAAE,8BAA8BwC,CAAC,CAAC,EAAET,CAAC,CAAC,IAAI67F,IAAG,CAAC,WAAWj2G,GAAG,YAAY,QAAQ,WAAWg2G,GAAG,EAAME,IAAG,KAAK,CAAC,YAAYn9F,EAAEV,EAAE,EAAE,CAAC,KAAK,cAAc,CAAC,GAAG,EAAE,KAAK,eAAe,CAAC,CAAC,KAAK,QAAQ,KAAK,OAAO,CAAC,EAAE,KAAK,YAAYA,EAAE,IAAI,CAAC,EAAEwC,IAAI,EAAE,CAAC,EAAE9B,EAAE8B,CAAC,EAAE,EAAE,CAAC,CAAC,EAAE,IAAIrC,EAAEO,EAAE,OAAOiB,EAAEq7E,GAAG78E,CAAC,EAAEyB,EAAE5B,EAAE,IAAI,GAAG,EAAE,CAAC,CAAC,EAAE,KAAK,GAAG,EAAE6B,EAAE7B,EAAE,IAAI,CAAC,EAAEwC,IAAI,EAAE,CAAC,EAAE9B,EAAE8B,CAAC,CAAC,EAAE,KAAK,GAAG,EAAEV,EAAE,CAAC,YAAY,YAAY,YAAY,WAAW,EAAE,MAAM,EAAE3B,CAAC,EAAE,GAAGA,IAAI,EAAE,CAAC,KAAK,SAAS;AAAA,sBAC58EyB,CAAC;AAAA,oBACHC,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,QAUb,MAAM,CAAC,KAAK,SAAS;AAAA,QACrBF,CAAC,YAAYA,CAAC,IAAIC,CAAC;AAAA,QACnBD,CAAC,UAAUA,CAAC,IAAIE,CAAC;AAAA;AAAA;AAAA,UAGfF,CAAC;AAAA;AAAA;AAAA;AAAA,YAICA,CAAC;AAAA,2BACcG,CAAC;AAAA;AAAA;AAAA,KAGvB,CAAC,EAAMg8F,IAAG,KAAK,CAAC,YAAYp9F,EAAEV,EAAE,EAAE,CAAC,KAAK,cAAc,CAAC,GAAG,EAAE,KAAK,aAAa,GAAG,KAAK,aAAa,GAAG,KAAK,eAAe,CAAC,CAAC,KAAK,QAAQ,KAAK,OAAO,CAAC,EAAE,KAAK,YAAYA,EAAE,IAAI,CAAC8D,EAAEC,IAAID,EAAE,CAAC,EAAEpD,EAAEqD,CAAC,EAAED,EAAE,CAAC,CAAC,EAAE,IAAI3D,EAAEO,EAAE,OAAOiB,EAAEq7E,GAAG78E,CAAC,EAAEyB,EAAE5B,EAAE,IAAI8D,GAAGA,EAAE,CAAC,CAAC,EAAE,KAAK,GAAG,EAAEjC,EAAE7B,EAAE,IAAI,CAAC8D,EAAEC,IAAID,EAAE,CAAC,EAAEpD,EAAEqD,CAAC,CAAC,EAAE,KAAK,GAAG,EAAEjC,EAAEygF,GAAG,KAAKpiF,CAAC,EAAE,EAAEoiF,GAAG,SAASpiF,CAAC,EAAEqC,EAAE,GAAGV,EAAE3B,EAAE,CAAC,CAAC,MAAM,KAAK,YAAYA,EAAE,CAAC,CAAC,GAAG,EAAEA,IAAI,EAAE,SAAS,QAAQ,EAAE,MAAM,EAAE,EAAE,KAAK,CAAC,IAAIuC,EAAE,CAAC,GAAGf,CAAC,mBAAmB,GAAGG,EAAE3B,EAAE,CAAC,CAAC;AAAA,YAC9aqC,CAAC;AAAA,QACLrC,IAAI,EAAE,GAAG;AAAA;AAAA,SAER2B,EAAE3B,EAAE,CAAC,CAAC;AAAA,YACH2B,EAAE3B,EAAE,CAAC,CAAC,MAAM,KAAK,YAAYA,EAAE,CAAC,CAAC,MAAMA,IAAI,EAAE,GAAG,KAAK2B,EAAE3B,EAAE,CAAC,CAAC;AAAA,cACzDqC,CAAC,KAAK,EAAEG,EAAExC,IAAI,EAAE,0BAA0B,6DAA6DyC,EAAE,GAAG,QAAQkB,EAAE,EAAEC,EAAE5D,IAAI,EAAE,EAAE,EAAE2D,EAAEC,EAAED,IAAIlB,GAAG;AAAA,UACnJF,EAAEoB,CAAC,CAAC;AAAA,cACAnB,CAAC;AAAA,mBACImB,CAAC;AAAA;AAAA,YAERnC,CAAC;AAAA,mBACMmC,CAAC,uBAAuB,EAAE,KAAK,CAAC,MAAM,CAAC;AAAA;AAAA,QAElDlB,GAAGzC,IAAI,EAAE,KAAK,KAAK,KAAK,SAAS;AAAA,cAC3BwB,CAAC,YAAYA,CAAC,IAAIC,CAAC;AAAA,cACnBD,CAAC,UAAUA,CAAC,IAAIE,CAAC;AAAA;AAAA;AAAA,UAGrBF,CAAC;AAAA;AAAA,UAEDiB,CAAC;AAAA;AAAA;AAAA,KAGN,CAAC,EAAMm7F,GAAGj+F,GAAG,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,CAAC,EAAE,EAAE,CAAC,SAAS,EAAE,cAAc,CAAC,EAAED,EAAE,GAAG7B,EAAE,cAAc8B,EAAE,KAAK,IAAI,EAAE,CAAC,IAAI4B,EAAE,EAAE,IAAI,CAACS,EAAEC,IAAID,EAAE,CAAC,EAAErC,EAAE,MAAMsC,CAAC,EAAED,EAAE,CAAC,CAAC,EAAE,OAAO8xF,GAAG,CAAC,QAAQt0F,EAAE,MAAM,CAAC,MAAM+B,EAAE,MAAM,EAAE,MAAM5B,EAAE,KAAK,CAAC,CAAC,CAAC,CAAC,IAAI0B,EAAEvQ,EAAE,EAAE,QAAQ,6BAA6B,EAAE,IAAIwsG,IAAG39F,EAAE,MAAM,EAAE,CAAC,EAAE,IAAI09F,IAAG19F,EAAE,MAAM,EAAE,CAAC,EAAE2B,EAAE,CAAC,CAAC,CAAC,CAAC,EAAE,OAAO9B,EAAE,gBAAgB6B,EAAE,CAAC1B,CAAC,EAAEA,EAAE,MAAM2B,CAAC,CAAC,EAAEk8F,IAAG,CAAC,WAAWp2G,GAAG,YAAY,QAAQ,WAAWm2G,EAAE,EAAME,IAAI;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAS1aC,IAAI;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,IAgBFpZ,GAAG;AAAA;AAAA,EAELqZ,IAAIrY,GAAG,CAAC,UAAUmY,IAAI,gBAAgBC,GAAG,CAAC,EAAEE,IAAG,CAAC,WAAWt2G,GAAG,YAAY,QAAQ,WAAWq2G,GAAG,EAAE,SAASE,IAAIv+F,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,CAAC,EAAE,EAAE,CAAC,KAAK,EAAE,SAAS,CAAC,EAAED,EAAE2B,EAAE1B,EAAE,MAAM,OAAO2B,EAAE,CAAC,EAAEC,EAAE1D,EAAE,eAAe,EAAE8B,EAAE,KAAK,EAAEqC,EAAET,EAAEU,EAAEjV,EAAE,mBAAmBgV,EAAEX,CAAC,EAAEa,EAAEvC,EAAEsC,GAAG,OAAOC,EAAE0kF,GAAG,CAAC,OAAO,CAAC,EAAEjnF,CAAC,EAAE,QAAQH,EAAE,MAAM,CAAC,KAAKyC,CAAC,CAAC,CAAC,EAAED,EAAEhV,EAAE,iBAAiBgV,EAAE,OAAOX,CAAC,EAAEC,EAAE,KAAKY,CAAC,GAAGlV,EAAE,2BAA2B,OAAOgV,EAAEX,CAAC,EAAE,IAAIc,EAAE,GAAG3C,EAAE,mBAAmB,CAAC0C,CAAC,CAAC,EAAE,CAAC,IAAIE,EAAE5C,EAAE,QAAQ,IAAI0C,EAAE,MAAM,EAAE,OAAO,CAAC,QAAQoB,EAAE,SAAS,EAAE,SAASsD,CAAC,EAAE05E,GAAGp+E,EAAE,MAAMA,EAAE,MAAME,EAAEJ,CAAC,EAAEG,EAAE3C,EAAE,eAAe,EAAEoH,EAAEtD,CAAC,CAAC,KAAK,CAAC,GAAG,CAAClB,EAAEkB,CAAC,EAAEtW,EAAE,0BAA0BkV,EAAE,MAAMF,CAAC,EAAE,EAAEnE,EAAE,cAAcyF,CAAC,EAAEsD,EAAEm/E,GAAG,CAAC,OAAO,CAAC,EAAE7jF,CAAC,EAAE,QAAQ1C,EAAE,MAAM,CAAC,MAAM,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,EAAE4E,EAAElI,GAAGyD,EAAE,KAAK,EAAEoE,EAAEqiF,GAAGx/E,EAAExC,EAAE,OAAO5E,CAAC,EAAE2C,EAAE4jF,GAAG,CAAC,OAAO,CAAChiF,CAAG,EAAE,QAAQvE,EAAE,MAAM,CAAC,MAAM4C,CAAC,CAAC,CAAC,EAAEd,EAAE,KAAKsF,CAAC,EAAEtF,EAAE,KAAKyC,CAAC,CAAC,CAAC,GAAG,EAAE,CAACzC,EAAE,KAAKa,CAAC,EAAE,IAAIC,EAAEpV,EAAE,qBAAqBmV,EAAE,MAAMZ,CAAC,EAAEY,EAAE4jF,GAAG,CAAC,OAAO,CAAC,EAAE5jF,CAAC,EAAE,QAAQ3C,EAAE,MAAM,CAAC,MAAM4C,CAAC,CAAC,CAAC,CAAC,CAAC,OAAOd,EAAE,QAAQc,GAAG5C,EAAE,8BAA8B4C,CAAC,CAAC,EAAED,CAAC,CAAC,IAAI27F,IAAG,CAAC,WAAWt2G,GAAG,YAAY,QAAQ,WAAWq2G,GAAG,EAAE,SAASE,IAAIz+F,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,mBAAmBK,EAAE,kBAAkB,EAAE,QAAQ,CAAC,EAAE,EAAE,CAAC,iBAAiB0B,CAAC,EAAE3B,EAAE4B,EAAE3B,EAAE,IAAIiH,GAAGpH,EAAE,SAASoH,EAAE,MAAM,CAAC,EAAErF,EAAE5B,EAAE,IAAIiH,GAAGA,EAAE,KAAK,EAAE5E,EAAExC,EAAE,SAAS,EAAE,MAAM,EAAEyC,EAAEzC,EAAE,SAAS,EAAE,MAAM,EAAE,CAAC0C,EAAEC,EAAEC,CAAC,EAAEm+E,GAAGj/E,EAAEC,EAAES,EAAE,EAAE,MAAM,EAAE,MAAMC,EAAE,EAAE,MAAMZ,CAAC,EAAEiC,EAAEpB,EAAE,IAAI0E,GAAGpH,EAAE,eAAe,CAACoH,EAAE,MAAM,EAAE,QAAQA,CAAC,CAAC,EAAE,EAAEpH,EAAE,eAAe4C,EAAE,EAAE,MAAMD,CAAC,EAAE,OAAOmB,EAAE,OAAO,CAAC,CAAC,CAAC,CAAC,CAAC,IAAI06F,IAAG,CAAC,WAAWr2G,GAAG,YAAY,QAAQ,WAAWo2G,GAAG,EAAE,SAASE,IAAI3+F,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,CAAC,EAAEF,EAAE,CAAC,OAAOI,EAAE,OAAOC,EAAE,OAAO,CAAC,EAAE,EAAE,EAAEH,EAAE,SAASE,EAAE,MAAM,EAAE2B,EAAE7B,EAAE,SAASG,EAAE,MAAM,EAAE2B,EAAE9B,EAAE,SAAS,EAAE,MAAM,EAAE,CAAC+B,EAAES,CAAC,EAAEw+E,GAAG,EAAE9gF,EAAE,MAAMA,EAAE,MAAM2B,EAAE1B,EAAE,MAAM2B,EAAE,EAAE,KAAK,EAAEW,EAAEzC,EAAE,eAAe,CAAC+B,EAAE,MAAM,EAAE,QAAQA,CAAC,EAAEW,EAAE1C,EAAE,eAAe,CAACwC,EAAE,MAAM,EAAEtC,EAAE,MAAMsC,CAAC,EAAE,MAAM,CAACC,EAAEC,CAAC,CAAC,CAAC,IAAIg8F,IAAG,CAAC,WAAWt2G,GAAG,YAAY,QAAQ,WAAWq2G,GAAG,EAAE,SAASE,IAAI7+F,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,MAAMK,EAAE,OAAO,EAAE,aAAa,EAAE,oBAAoB0B,CAAC,EAAE,EAAE,CAAC,kBAAkBC,CAAC,EAAE5B,EAAE6B,EAAE/B,EAAE,SAASG,EAAE,MAAM,EAAEqC,EAAExC,EAAE,SAAS,EAAE,MAAM,EAAEyC,EAAEzC,EAAE,SAAS,EAAE,MAAM,EAAE0C,EAAEb,EAAE,IAAI,GAAG7B,EAAE,SAAS,EAAE,MAAM,CAAC,EAAE2C,EAAEd,EAAE,IAAI,GAAG,EAAE,KAAK,EAAE,CAACe,EAAEkB,CAAC,EAAEm9E,GAAGl/E,EAAE5B,EAAE,MAAMqC,EAAE,EAAE,MAAM,EAAE,MAAMC,EAAE,EAAE,MAAMC,EAAEC,EAAEb,CAAC,EAAE,OAAO9B,EAAE,eAAe4C,EAAE,EAAE,MAAMkB,CAAC,CAAC,CAAC,IAAI86F,IAAG,CAAC,WAAWv2G,GAAG,YAAY,QAAQ,WAAWs2G,GAAG,EAAME,GAAG/+F,GAAG,CAAC,GAAG,CAAC,QAAQ,EAAE,MAAME,CAAC,EAAEF,EAAE,CAAC,MAAMI,EAAE,KAAKC,EAAE,KAAK,EAAE,MAAM,CAAC,EAAEH,EAAE6B,EAAEq/E,GAAGhhF,EAAEC,EAAE,EAAE,CAAC,EAAE,OAAO,EAAE,eAAe,CAAC0B,EAAE,MAAM,EAAE,EAAEA,CAAC,CAAC,EAAEi9F,IAAG,CAAC,WAAWx2G,GAAG,YAAY,QAAQ,WAAWu2G,EAAE,EAAME,IAAI,kBAAkBC,IAAInZ,GAAG,CAAC,UAAUkZ,GAAG,CAAC,EAAEE,IAAG,CAAC,WAAWv2G,GAAG,YAAY,QAAQ,WAAWs2G,GAAG,EAAME,IAAI9b,GAAG;AAAA;AAAA,EAEl7E+b,IAAI;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAUJC,IAAIvZ,GAAG,CAAC,UAAUqZ,IAAI,gBAAgBC,GAAG,CAAC,EAAEE,IAAG,CAAC,WAAWz2G,GAAG,YAAY,QAAQ,WAAWw2G,GAAG,EAAME,IAAIlc,GAAG;AAAA;AAAA,EAE7Gmc,IAAI;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAUJC,IAAI3Z,GAAG,CAAC,UAAUyZ,IAAI,gBAAgBC,GAAG,CAAC,EAAEE,IAAG,CAAC,WAAW52G,GAAG,YAAY,QAAQ,WAAW22G,GAAG,EAAME,IAAG,KAAK,CAAC,YAAYh/F,EAAEV,EAAE,EAAEG,EAAEwB,EAAE,CAAC,KAAK,cAAc,CAAC,GAAG,EAAE,KAAK,YAAY,CAAC,EAAE,GAAG,CAACC,EAAEC,EAAEC,EAAE,CAAC,EAAEpB,EAAE,KAAK,YAAY,CAACkB,EAAE5B,EAAE,EAAE,CAAC,EAAE,IAAIwC,EAAE,CAACrC,GAAGH,EAAE,EAAE6B,EAAE,EAAEA,EAAE1B,GAAG,EAAE,EAAE2B,EAAE,EAAEA,CAAC,EAAE,EAAE,CAAC3B,GAAGH,EAAE,EAAEA,EAAE,EAAEA,EAAEG,GAAG,EAAE,EAAE,EAAE,EAAE,CAAC,EAAEuC,EAAEf,EAAEe,EAAE,wEAAwEA,EAAE,8CAA8C,KAAK,SAAS;AAAA;AAAA,YAE/ZF,EAAE,CAAC,EAAE,EAAE,CAAC,CAAC;AAAA,YACTA,EAAE,CAAC,EAAE,EAAE,CAAC,CAAC;AAAA,uCACkBX,CAAC,OAAOC,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,mCASbY,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,KAoB/B,CAAC,EAAMi9F,IAAG,KAAK,CAAC,YAAYj/F,EAAEV,EAAE,EAAEG,EAAEwB,EAAE,CAAC,KAAK,cAAc,CAAC,GAAG,EAAE,KAAK,aAAa,GAAG,KAAK,aAAa,GAAG,KAAK,YAAY,CAAC,EAAE,GAAG,CAACC,EAAEC,EAAEC,EAAE,CAAC,EAAEpB,EAAE,KAAK,YAAY,CAACkB,EAAE5B,EAAE,EAAE,CAAC,EAAE,IAAIwC,EAAE,CAACrC,GAAGH,EAAE,EAAE6B,EAAE,EAAEA,EAAE1B,GAAG,EAAE,EAAE2B,EAAE,EAAEA,CAAC,EAAE,EAAE,CAAC3B,GAAGH,EAAE,EAAEA,EAAE,EAAEA,EAAEG,GAAG,EAAE,EAAE,EAAE,EAAE,CAAC,EAAEuC,EAAEf,EAAEe,EAAE,wEAAwEA,EAAE,8CAA8C,KAAK,SAAS;AAAA;AAAA,YAE7WF,EAAE,CAAC,EAAE,EAAE,CAAC,CAAC;AAAA,YACTA,EAAE,CAAC,EAAE,EAAE,CAAC,CAAC;AAAA,YACTA,EAAE,CAAC,EAAE,EAAE,CAAC,CAAC;AAAA,uCACkBX,CAAC,OAAOC,CAAC;AAAA,uCACTA,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,mCAcLY,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,gCAQJ,EAAE,CAAC;AAAA,uCACI,EAAE,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,KAgDrC,CAAC,EAAE,SAASk9F,IAAI9/F,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,OAAOK,CAAC,EAAE,EAAE,CAAC,aAAa,EAAE,iBAAiB,EAAE,KAAK0B,CAAC,EAAE3B,EAAE,CAAC4B,EAAEC,CAAC,EAAEF,EAAEW,EAAElR,EAAE,EAAE,QAAQ,6BAA6B,EAAE,IAAIquG,IAAGx/F,EAAE,MAAM2B,EAAEC,EAAE,EAAE,CAAC,EAAE,IAAI29F,IAAGv/F,EAAE,MAAM2B,EAAEC,EAAE,EAAE,CAAC,EAAE,OAAO/B,EAAE,gBAAgBwC,EAAE,CAACrC,CAAC,EAAE,SAAS,CAAC,CAAC,IAAI0/F,IAAG,CAAC,WAAW92G,GAAG,YAAY,QAAQ,WAAW62G,GAAG,EAAME,IAAG,KAAK,CAAC,YAAYp/F,EAAEV,EAAE,EAAE,CAAC,KAAK,cAAc,CAAC,IAAI,EAAE,KAAK,YAAY,CAAC,EAAE,KAAK,YAAYA,EAAE,GAAG,CAAC,CAACG,EAAEwB,CAAC,EAAE3B,EAAE,CAAC,CAAC4B,EAAEC,CAAC,EAAEnB,EAAEoB,EAAE,CAAC,GAAGF,EAAE,EAAEzB,EAAE,EAAEA,EAAE,GAAG0B,EAAE,EAAEF,EAAE,EAAEA,CAAC,EAAE,EAAE,CAAC,GAAGC,EAAE,EAAEA,EAAE,EAAEA,EAAE,GAAGC,EAAE,EAAEA,EAAE,EAAEA,CAAC,EAAEW,EAAEV,EAAE,CAAC,EAAE,EAAE,CAAC,EAAE,EAAEA,EAAE,CAAC,EAAE,EAAE,CAAC,EAAEY,EAAE,EAAEF,EAAEG,EAAE,EAAE,EAAEC,EAAE,KAAK,KAAKF,CAAC,EAAE,EAAE,EAAEoB,EAAE,KAAK,KAAKnB,CAAC,EAAE,EAAE,EAAE,KAAK,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,0CAU7hBH,CAAC;AAAA,yCACF,CAAC;AAAA;AAAA,6CAEGE,CAAC;AAAA,4CACFC,CAAC;AAAA;AAAA,oCAETC,CAAC;AAAA,mCACFkB,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,kCAcFlC,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,oCAQCC,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,sDAMiB1B,EAAE,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,qDAMJwB,EAAE,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,KA8BnD,CAAC,EAAE,SAASo+F,IAAIjgG,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,OAAOK,EAAE,GAAG,CAAC,EAAE,EAAE,CAAC,aAAa,CAAC,EAAED,EAAE2B,EAAE,IAAIi+F,IAAG,EAAE,MAAM3/F,EAAE,MAAM,CAAC,EAAE,OAAOH,EAAE,gBAAgB6B,EAAE,CAAC,CAAC,EAAE,EAAE,KAAK,CAAC,CAAC,IAAIm+F,IAAG,CAAC,WAAWh3G,GAAG,YAAY,QAAQ,WAAW+2G,GAAG,EAAME,IAAG,KAAK,CAAC,YAAYv/F,EAAEV,EAAE,EAAEG,EAAEwB,EAAE,CAAC,KAAK,cAAc,CAAC,GAAG,EAAE,KAAK,YAAY,CAAC,EAAE,GAAG,CAACC,EAAEC,EAAEC,EAAE,CAAC,EAAEpB,EAAE,KAAK,YAAY,CAACkB,EAAE5B,EAAE,EAAE,CAAC,EAAE,IAAIwC,EAAE,CAACrC,GAAGH,EAAE,EAAE6B,EAAE,EAAEA,EAAE1B,GAAG,EAAE,EAAE2B,EAAE,EAAEA,CAAC,EAAE,EAAE,CAAC3B,GAAGH,EAAE,EAAEA,EAAE,EAAEA,EAAEG,GAAG,EAAE,EAAE,EAAE,EAAE,CAAC,EAAEuC,EAAEvC,EAAE,MAAM,MAAMwC,EAAEhB,EAAEgB,EAAE,4EAA4EA,EAAE,8CAA8C,KAAK,SAAS;AAAA;AAAA,YAE5iBH,EAAE,CAAC,EAAE,EAAE,CAAC,CAAC;AAAA,YACTA,EAAE,CAAC,EAAE,EAAE,CAAC,CAAC;AAAA,uCACkBX,CAAC,OAAOC,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,mCASba,CAAC;AAAA;AAAA;AAAA;AAAA,8DAI0BD,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA,KAK1D,CAAC,EAAMw9F,IAAG,KAAK,CAAC,YAAYx/F,EAAEV,EAAE,EAAEG,EAAEwB,EAAE,CAAC,KAAK,cAAc,CAAC,GAAG,EAAE,KAAK,aAAa,GAAG,KAAK,aAAa,GAAG,KAAK,YAAY,CAAC,EAAE,GAAG,CAACC,EAAEC,EAAEC,EAAE,CAAC,EAAEpB,EAAE,KAAK,YAAY,CAACkB,EAAE5B,EAAE,EAAE,CAAC,EAAE,IAAIwC,EAAE,CAACrC,GAAGH,EAAE,EAAE6B,EAAE,EAAEA,EAAE1B,GAAG,EAAE,EAAE2B,EAAE,EAAEA,CAAC,EAAE,EAAE,CAAC3B,GAAGH,EAAE,EAAEA,EAAE,EAAEA,EAAEG,GAAG,EAAE,EAAE,EAAE,EAAE,CAAC,EAAEuC,EAAEvC,EAAE,MAAM,MAAMwC,EAAEhB,EAAEgB,EAAE,4EAA4EA,EAAE,8CAA8C,KAAK,SAAS;AAAA;AAAA,YAEjYH,EAAE,CAAC,EAAE,EAAE,CAAC,CAAC;AAAA,YACTA,EAAE,CAAC,EAAE,EAAE,CAAC,CAAC;AAAA,YACTA,EAAE,CAAC,EAAE,EAAE,CAAC,CAAC;AAAA,uCACkBX,CAAC,OAAOC,CAAC;AAAA,uCACTA,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,mCAcLa,CAAC;AAAA;AAAA;AAAA;AAAA,8DAI0BD,CAAC;AAAA;AAAA;AAAA,gCAG/B,EAAE,CAAC;AAAA,uCACI,EAAE,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,KAarC,CAAC,EAAE,SAASy9F,IAAIrgG,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,OAAOK,CAAC,EAAE,EAAE,CAAC,aAAa,EAAE,iBAAiB,EAAE,KAAK0B,CAAC,EAAE3B,EAAE,CAAC4B,EAAEC,CAAC,EAAEF,EAAEW,EAAElR,EAAE,EAAE,QAAQ,6BAA6B,EAAE,IAAI4uG,IAAG//F,EAAE,MAAM2B,EAAEC,EAAE,EAAE,CAAC,EAAE,IAAIk+F,IAAG9/F,EAAE,MAAM2B,EAAEC,EAAE,EAAE,CAAC,EAAE,OAAO/B,EAAE,gBAAgBwC,EAAE,CAACrC,CAAC,EAAEA,EAAE,KAAK,CAAC,CAAC,IAAIigG,IAAG,CAAC,WAAWn3G,GAAG,YAAY,QAAQ,WAAWk3G,GAAG,EAAME,IAAG,KAAK,CAAC,YAAY3/F,EAAEV,EAAE,EAAE,CAAC,KAAK,cAAc,CAAC,IAAI,EAAE,KAAK,YAAY,CAAC,EAAE,KAAK,YAAYA,EAAE,GAAG,CAAC,CAACG,EAAEwB,CAAC,EAAE3B,EAAE,CAAC,CAAC4B,EAAEC,CAAC,EAAEnB,EAAEoB,EAAE,CAAC,GAAGF,EAAE,EAAEzB,EAAE,EAAEA,EAAE,GAAG0B,EAAE,EAAEF,EAAE,EAAEA,CAAC,EAAE,EAAE,CAAC,GAAGC,EAAE,EAAEA,EAAE,EAAEA,EAAE,GAAGC,EAAE,EAAEA,EAAE,EAAEA,CAAC,EAAEW,EAAEV,EAAE,CAAC,EAAE,EAAE,CAAC,EAAE,EAAEA,EAAE,CAAC,EAAE,EAAE,CAAC,EAAEY,EAAE,EAAEF,EAAEG,EAAE,EAAE,EAAEC,EAAE,KAAK,KAAKF,CAAC,EAAE,EAAE,EAAEoB,EAAE,KAAK,KAAKnB,CAAC,EAAE,EAAE,EAAE,KAAK,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,0CAU3hBH,CAAC;AAAA,yCACF,CAAC;AAAA;AAAA,6CAEGE,CAAC;AAAA,4CACFC,CAAC;AAAA;AAAA,oCAETC,CAAC;AAAA,mCACFkB,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,kCAcFlC,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,oCAQCC,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA,sBAKfC,EAAE,CAAC,CAAC;AAAA,sCACY,EAAE,CAAC,CAAC;AAAA;AAAA;AAAA,wBAGlBA,EAAE,CAAC,CAAC;AAAA,wCACY,EAAE,CAAC,CAAC;AAAA;AAAA;AAAA,4BAGhB3B,CAAC;AAAA,kBACX,CAAC;AAAA;AAAA;AAAA;AAAA,4BAISwB,CAAC;AAAA,kBACX,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,KAYd,CAAC,EAAE,SAAS2+F,IAAIxgG,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,OAAOK,EAAE,GAAG,CAAC,EAAE,EAAE,CAAC,aAAa,CAAC,EAAED,EAAE2B,EAAE,IAAIw+F,IAAG,EAAE,MAAMlgG,EAAE,MAAM,CAAC,EAAE,OAAOH,EAAE,gBAAgB6B,EAAE,CAAC,CAAC,EAAE,EAAE,KAAK,CAAC,CAAC,IAAI0+F,IAAG,CAAC,WAAWr3G,GAAG,YAAY,QAAQ,WAAWo3G,GAAG,EAAME,IAAG,KAAK,CAAC,YAAY9/F,EAAEV,EAAE,CAAC,KAAK,cAAc,CAAC,GAAG,EAAE,IAAI,EAAEU,EAAE,OAAO,GAAG,EAAE,EAAE,MAAM,IAAI,MAAM,kCAAkC,CAAC,8BAA8B,EAAE,GAAG,KAAK,YAAYA,EAAE,IAAI,EAAE,CAAC,KAAK,SAAS;AAAA;AAAA;AAAA,2BAG7YA,EAAE,CAAC,CAAC;AAAA;AAAA,QAEvB,MAAM,CAAC,IAAIP,EAAE0B,GAAG7B,EAAE,QAAQ6B,CAAC,IAAI,IAAInB,EAAEmB,CAAC,IAAI,EAAE,GAAGnB,EAAEmB,CAAC,CAAC,aAAaA,CAAC,QAAQ,UAAUA,CAAC,IAAIF,EAAEjB,EAAE,IAAI,CAACmB,EAAEC,IAAI3B,EAAE2B,CAAC,CAAC,EAAE,KAAK,GAAG,EAAEF,EAAEo7E,GAAG,CAAC,EAAE,KAAK,SAAS;AAAA;AAAA,UAE3Ip7E,CAAC;AAAA,yBACcD,CAAC;AAAA;AAAA,KAErB,CAAC,EAAM8+F,IAAG,KAAK,CAAC,YAAY//F,EAAEV,EAAE,CAAC,KAAK,cAAc,CAAC,GAAG,EAAE,KAAK,aAAa,GAAG,KAAK,aAAa,GAAG,IAAI,EAAEU,EAAE,OAAO,GAAG,EAAE,EAAE,MAAM,IAAI,MAAM,kCAAkC,CAAC,8BAA8B,EAAE,KAAK,YAAYA,EAAE,IAAIP,EAAEoiF,GAAG,KAAK,CAAC,EAAE5gF,EAAE,GAAGxB,EAAE,EAAE,CAAC,CAAC,UAAU,KAAK,YAAY,EAAE,CAAC,CAAC,GAAGyB,EAAE,GAAGzB,EAAE,EAAE,CAAC,CAAC,UAAU,KAAK,YAAY,EAAE,CAAC,CAAC,GAAG0B,EAAEm7E,GAAG,CAAC,EAAE,IAAI,EAAE,KAAK,SAAS;AAAA;AAAA;AAAA;AAAA,uCAIrUt8E,EAAE,CAAC,CAAC;AAAA,cAC7BA,EAAE,CAAC,CAAC;AAAA,eACHiB,CAAC;AAAA,2CAC2BjB,EAAE,CAAC,CAAC;AAAA,kBAC7BA,EAAE,CAAC,CAAC;AAAA;AAAA;AAAA;AAAA,QAId,KAAK,SAAS;AAAA;AAAA,YAEVmB,CAAC;AAAA;AAAA,uBAEUC,EAAE3B,EAAE,MAAM,CAAC,CAAC;AAAA,eACpBwB,CAAC;AAAA,yBACS,EAAExB,EAAE,MAAM,CAAC,CAAC;AAAA;AAAA,eAEtByB,CAAC;AAAA,yBACSY,EAAErC,EAAE,MAAM,CAAC,CAAC;AAAA,iBACpBwB,CAAC;AAAA,2BACS,EAAExB,EAAE,MAAM,CAAC,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA,MAKjC,SAAS2B,EAAEc,EAAE,CAAC,OAAOF,EAAEE,CAAC,CAAC,CAAC,SAAS,EAAEA,EAAE,CAAC,OAAOA,EAAE,EAAE,CAAC,EAAE,IAAIA,EAAE,EAAE,CAAC,EAAE,QAAQF,EAAEE,CAAC,CAAC,CAAC,SAASJ,EAAEI,EAAE,CAAC,OAAOA,EAAE,EAAE,CAAC,EAAE,IAAIA,EAAE,EAAE,CAAC,EAAE,QAAQF,EAAEE,CAAC,CAAC,CAAC,SAAS,EAAEA,EAAE,CAAC,OAAOA,EAAE,EAAE,CAAC,EAAE,IAAIA,EAAE,EAAE,CAAC,EAAE,QAAQA,EAAE,EAAE,CAAC,EAAE,IAAIA,EAAE,EAAE,CAAC,EAAE,QAAQF,EAAEE,CAAC,CAAC,CAAC,SAASF,EAAEE,EAAE,CAAC,IAAIkB,EAAEpD,EAAE,IAAI,CAAC,EAAE6D,IAAI5B,EAAE4B,EAAE3B,CAAC,CAAC,EAAEmB,EAAED,EAAE,KAAK,GAAG,EAAEsD,EAAEtD,EAAE,MAAM,EAAE,EAAE,KAAK,GAAG,EAAE,MAAM,mBAAmBC,CAAC,WAAWqD,CAAC,IAAI,CAAC,SAASzE,EAAEC,EAAEkB,EAAE,CAAC,OAAO9D,EAAE,QAAQ4C,CAAC,IAAI,IAAIlC,EAAEkC,CAAC,IAAI,EAAE,GAAGlC,EAAEkC,CAAC,CAAC,MAAMkB,EAAElB,CAAC,CAAC,OAAO,GAAGkB,EAAElB,CAAC,CAAC,EAAE,CAAC,CAAC,EAAE,SAAS89F,IAAI5gG,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,CAAC,EAAE,EAAE,CAAC,KAAK,CAAC,EAAED,EAAE,EAAEC,EAAE,MAAM,OAAO0B,EAAExD,EAAE,eAAe,EAAE8B,EAAE,KAAK,EAAE,GAAG,IAAI,EAAE,OAAO6kF,GAAG,CAAC,OAAO,CAAC,EAAE7kF,CAAC,EAAE,QAAQH,CAAC,CAAC,EAAE,IAAI8B,EAAExQ,EAAE,EAAE,QAAQ,6BAA6B,EAAE,IAAImvG,IAAGtgG,EAAE,MAAM0B,CAAC,EAAE,IAAI2+F,IAAGrgG,EAAE,MAAM0B,CAAC,EAAE,OAAO7B,EAAE,gBAAgB8B,EAAE,CAAC3B,CAAC,EAAEA,EAAE,KAAK,CAAC,CAAC,IAAIwgG,IAAG,CAAC,WAAWx3G,GAAG,YAAY,QAAQ,WAAWu3G,GAAG,EAAME,IAAG,KAAK,CAAC,YAAYlgG,EAAEV,EAAE,CAAC,KAAK,cAAc,CAAC,OAAO,EAAE,KAAK,YAAY,CAAC,EAAE,KAAK,eAAe,CAAC,CAAC,KAAK,SAAS,KAAK,MAAM,CAAC,EAAE,IAAI,EAAEU,EAAE,CAAC,EAAEP,EAAEO,EAAE,CAAC,EAAE,KAAK,YAAYA,EAAE,IAAIiB,EAAE,GAAG,OAAO3B,GAAG,SAAS2B,EAAE,uBAAuB3B,EAAE,QAAQ,CAAC,CAAC,IAAI2B,EAAE;AAAA,2BACl9B3B,EAAE,KAAK,GAAG,CAAC;AAAA,8CACQ,KAAK,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,YAWhD2B,CAAC;AAAA,uCAC0BxB,CAAC,+BAA+B,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA,KAKnE,CAAC,EAAM0gG,IAAG,CAAC,WAAWz3G,GAAG,YAAY,QAAQ,WAAW,CAAC,CAAC,OAAO0W,EAAE,MAAM,EAAE,QAAQE,CAAC,IAAI,CAAC,GAAG,CAAC,MAAME,CAAC,EAAEJ,EAAE,CAAC,QAAQK,EAAE,UAAU,EAAE,OAAO,CAAC,EAAE,EAAE0B,EAAE7B,EAAE8B,EAAE,IAAI8+F,IAAG1gG,EAAE,MAAM,CAAC,EAAE,CAAC6B,EAAES,CAAC,EAAEhV,EAAE,eAAe,EAAE0S,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,CAAC,EAAEuC,EAAE,CAAC,CAACV,EAAES,EAAE,KAAK,IAAIrC,CAAC,EAAE,KAAK,IAAIA,CAAC,CAAC,CAAC,EAAE,OAAO0B,EAAE,gBAAgBC,EAAE,CAAC5B,CAAC,EAAEA,EAAE,MAAMuC,CAAC,CAAC,CAAC,EAAMq+F,IAAI;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAe5SC,IAAIlb,GAAG,CAAC,UAAUib,GAAG,CAAC,EAAEE,IAAG,CAAC,WAAW33G,GAAG,YAAY,QAAQ,WAAW03G,GAAG,EAAME,IAAI,yBAAyBC,IAAIrb,GAAG,CAAC,UAAUob,IAAI,cAAc9f,EAAE,CAAC,EAAEggB,IAAG,CAAC,WAAW73G,GAAG,YAAY,QAAQ,WAAW43G,GAAG,EAAME,GAAG,KAAK,CAAC,YAAY1gG,EAAEV,EAAE,EAAEG,EAAEwB,EAAEC,EAAEC,EAAE,GAAGC,EAAE,GAAG,CAAC,KAAK,cAAc,CAAC,UAAU,UAAU,cAAc,EAAE,KAAK,YAAYF,EAAE,IAAI,EAAEo7E,GAAGr7E,EAAE,MAAM,EAAEa,EAAEw6E,GAAGp7E,EAAE,MAAM,EAAE,EAAE,GAAG,IAAI,EAAE,EAAE,IAAI,IAAI,IAAI,EAAE,QAAQ,IAAIc,EAAE,cAAc,CAAC,IAAIC,EAAE,GAAGxC,IAAI,EAAEwC,EAAE,IAAIxC,IAAI,IAAIwC,EAAE,gBAAgB,IAAIC,EAAE,cAAcD,CAAC,IAAImB,EAAE,GAAGhC,IAAIgC,EAAE,wBAAwB,IAAIC,EAAE,mBAAmBD,CAAC,IAAIsD,EAAEpH,EAAE,EAAE,aAAa,UAAU,KAAK,SAAS;AAAA,UAC/kB,CAAC,cAAc,CAAC,IAAI2B,CAAC;AAAA;AAAA;AAAA,YAGnBa,CAAC;AAAA;AAAA;AAAA,gCAGmB9B,CAAC;AAAA;AAAA,kCAECV,CAAC;AAAA,kCACD0C,CAAC;AAAA,0CACO0E,CAAC;AAAA;AAAA;AAAA,uBAGpBxE,CAAC;AAAA;AAAA;AAAA;AAAA,0BAIEmB,CAAC;AAAA;AAAA,OAEpB,CAAC,EAAMs9F,IAAG,KAAK,CAAC,YAAY3gG,EAAEV,EAAE,EAAEG,EAAEwB,EAAEC,EAAEC,EAAE,GAAGC,EAAE,GAAG,CAAC,KAAK,cAAc,CAAC,UAAU,UAAU,cAAc,EAAE,KAAK,aAAa,GAAG,KAAK,aAAa,GAAG,KAAK,YAAYF,EAAE,IAAI,EAAEo7E,GAAGr7E,EAAE,MAAM,EAAEa,EAAEw6E,GAAGp7E,EAAE,MAAM,EAAE,EAAE,GAAG,IAAI,EAAE,EAAE,IAAI,IAAI,IAAI,EAAE,QAAQ,IAAIc,EAAE,cAAc,CAAC,IAAIC,EAAE,GAAGxC,IAAI,EAAEwC,EAAE,IAAIxC,IAAI,IAAIwC,EAAE,gBAAgB,IAAIC,EAAE,cAAcD,CAAC,IAAImB,EAAE,GAAGhC,IAAIgC,EAAE,wBAAwB,IAAIC,EAAE,mBAAmBD,CAAC,IAAIsD,EAAEpH,EAAE,EAAE,aAAa,UAAU,EAAEA,EAAE,EAAE,iBAAiB,UAAU,KAAK,SAAS;AAAA,UACpd,CAAC,cAAc,CAAC,IAAI2B,CAAC;AAAA;AAAA;AAAA,YAGnBa,CAAC;AAAA;AAAA;AAAA,gCAGmB9B,CAAC;AAAA;AAAA,kCAECV,CAAC;AAAA,oCACC0C,CAAC;AAAA,6CACQ0E,CAAC;AAAA,4BAClBpH,CAAC;AAAA,+CACkB,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA,+BAKjB4C,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,0BAiBNmB,CAAC;AAAA;AAAA,OAEpB,CAAC,EAAE,SAASu9F,IAAIxhG,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,QAAQK,EAAE,QAAQ,CAAC,EAAE,EAAE,CAAC,MAAM,CAAC,EAAED,EAAE,CAAC,UAAU2B,EAAE,WAAWC,EAAE,UAAUC,EAAE,QAAQS,EAAE,WAAWC,CAAC,EAAEjV,EAAE,gBAAgB,EAAE2S,EAAE,CAAC,EAAEuC,EAAE,CAACD,EAAEV,EAAEA,CAAC,EAAE,GAAGU,IAAI,EAAE,OAAOzC,EAAE,eAAe,EAAEG,EAAE,KAAK,EAAE,IAAIwC,EAAE4jF,GAAG,CAAC,OAAO,CAAC,EAAEpmF,CAAC,EAAE,QAAQH,EAAE,MAAM,CAAC,MAAM,CAAC8B,EAAED,CAAC,CAAC,CAAC,CAAC,EAAEe,EAAE2jF,GAAG,CAAC,OAAO,CAAC,EAAE,CAAC,EAAE,QAAQvmF,EAAE,MAAM,CAAC,MAAM,CAAC8B,EAAEC,CAAC,CAAC,CAAC,CAAC,EAAE+B,EAAE9D,EAAE,eAAe,CAAC,EAAE,UAAU,IAAI,aAAa,CAAC,CAAC,CAAC,CAAC,EAAE,EAAE1O,EAAE,EAAE,QAAQ,YAAY,EAAE,EAAE,IAAI+vG,IAAGv/F,EAAED,EAAEc,EAAE,MAAM,OAAOC,EAAE,MAAM,OAAOJ,EAAEE,CAAC,EAAE,EAAE,IAAI0+F,GAAGt/F,EAAED,EAAEc,EAAE,MAAM,OAAOC,EAAE,MAAM,OAAOJ,EAAEE,CAAC,EAAE,IAAI0E,EAAEpH,EAAE,gBAAgB,EAAE,CAAC4C,EAAED,EAAEmB,CAAC,EAAElB,EAAE,KAAK,EAAEgC,EAAE2hF,GAAG,CAAC,OAAO,CAAC,EAAAn/E,CAAC,EAAE,QAAQpH,EAAE,MAAM,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,OAAOA,EAAE,8BAA8B2C,CAAC,EAAE3C,EAAE,8BAA8B4C,CAAC,EAAE5C,EAAE,8BAA8BoH,CAAC,EAAEpH,EAAE,8BAA8B8D,CAAC,EAAEc,CAAC,CAAC,IAAI28F,IAAG,CAAC,WAAW/3G,GAAG,YAAY,QAAQ,WAAW83G,GAAG,EAAME,IAAG,KAAK,CAAC,YAAY9gG,EAAEV,EAAE,EAAEG,EAAE,CAAC,KAAK,cAAc,CAAC,iBAAiB,QAAQ,EAAE,KAAK,eAAe,CAAC,CAAC,KAAK,YAAY,KAAK,KAAK,CAAC,EAAE,KAAK,YAAY,CAACO,EAAE,CAAC,EAAE,IAAIiB,EAAE,yBAAyBC,EAAE,uBAAuB,KAAK,KAAK,KAAK,KAAK5B,EAAE,CAAC,CAAC,CAAC,qCAAqC6B,EAAEvQ,EAAE,EAAE,UAAU,eAAe,IAAI,EAAEqQ,EAAEC,EAAEE,EAAE3B,IAAI,OAAO,IAAI,KAAK,KAAK,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA,WAKroC0B,CAAC;AAAA;AAAA,+CAEmCC,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,MAkB1C,CAAC,EAAE,SAAS2/F,IAAI3hG,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,eAAeK,EAAE,OAAO,CAAC,EAAE,EAAE,CAAC,KAAK,CAAC,EAAED,EAAE2B,EAAE,IAAI2/F,IAAGrhG,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAE,EAAE,MAAM,CAAC,EAAE,CAAC,EAAE2B,EAAE,CAAC,CAAC3B,EAAE,MAAM,CAAC,CAAC,CAAC,EAAE,OAAOH,EAAE,gBAAgB6B,EAAE,CAAC1B,EAAE,CAAC,EAAE,QAAQ2B,CAAC,CAAC,CAAC,IAAI4/F,IAAG,CAAC,WAAWj4G,GAAG,YAAY,QAAQ,WAAWg4G,GAAG,EAAME,IAAG,KAAK,CAAC,YAAYjhG,EAAEV,EAAE,EAAE,CAAC,KAAK,cAAc,CAAC,IAAI,IAAI,GAAG,EAAE,KAAK,YAAYA,EAAE,IAAIG,EAAEwB,EAAE,GAAG,EAAE,EAAE,MAAM,MAAM,kBAAkB,CAAC,uBAAuB,EAAE,GAAG,IAAI,EAAEA,EAAE,QAAQxB,EAAE,YAAY,CAAC,IAAI0B,EAAE,CAAC,UAAU,UAAU,UAAU,SAAS,EAAEC,EAAE,CAAC,EAAE,EAAE,CAAC,EAAE,QAAQU,EAAE,EAAEA,EAAExC,EAAE,OAAOwC,IAAI,EAAE,KAAK,GAAGX,EAAEW,CAAC,CAAC,EAAE,EAAEA,EAAE9B,GAAGoB,EAAE,KAAK,GAAGD,EAAEW,CAAC,CAAC,EAAE,EAAErC,EAAE2B,EAAE,KAAK,EAAEH,EAAE,EAAE,KAAK,CAAC,CAAC,IAAIC,EAAEo7E,GAAG,CAAC,EAAE,KAAK,SAAS;AAAA;AAAA,UAEzmBp7E,CAAC;AAAA,4BACiBzB,CAAC;AAAA;AAAA,2BAEFwB,CAAC;AAAA;AAAA,2BAEDA,CAAC;AAAA;AAAA;AAAA,KAGvB,CAAC,EAAE,SAASigG,IAAI9hG,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,CAAC,EAAEF,EAAE,CAAC,UAAUI,EAAE,EAAEC,EAAE,EAAE,CAAC,EAAE,EAAE,EAAE,IAAIwhG,IAAGzhG,EAAE,MAAM,OAAOC,EAAE,MAAMA,EAAE,MAAM,MAAM,EAAE,OAAOH,EAAE,gBAAgB,EAAE,CAACE,EAAEC,EAAE,CAAC,EAAEhC,GAAGgC,EAAE,MAAM,EAAE,KAAK,CAAC,CAAC,CAAC,IAAI0hG,IAAG,CAAC,WAAWn4G,GAAG,YAAY,QAAQ,WAAWk4G,GAAG,EAAME,IAAI;AAAA;AAAA;AAAA,uBAG7Nt0G,EAAE,eAAe;AAAA,kBACtBA,EAAE,UAAU;AAAA;AAAA,EAE5Bu0G,IAAIlc,GAAG,CAAC,UAAUic,GAAG,CAAC,EAAEE,IAAG,CAAC,WAAWr4G,GAAG,YAAY,QAAQ,WAAWo4G,GAAG,EAAME,IAAIrc,GAAG;AAAA;AAAA,EAEzFsc,IAAI;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAUJC,IAAItc,GAAG,CAAC,UAAUoc,IAAI,gBAAgBC,IAAI,cAAc7gB,EAAE,CAAC,EAAE+gB,IAAG,CAAC,WAAWv4G,GAAG,YAAY,QAAQ,WAAWs4G,GAAG,EAAME,IAAI;AAAA;AAAA;AAAA,EAG3HC,IAAIzc,GAAG,CAAC,UAAUwc,GAAG,CAAC,EAAEE,IAAG,CAAC,WAAWz4G,GAAG,YAAY,QAAQ,WAAWw4G,GAAG,EAAME,IAAI5c,GAAG;AAAA;AAAA,EAEzF6c,IAAI;AAAA;AAAA;AAAA,IAGF3d,EAAE;AAAA;AAAA,EAEJ4d,IAAI7c,GAAG,CAAC,UAAU2c,IAAI,gBAAgBC,GAAG,CAAC,EAAEE,IAAG,CAAC,WAAW54G,GAAG,YAAY,QAAQ,WAAW24G,GAAG,EAAME,IAAI;AAAA;AAAA;AAAA,EAG1GC,IAAIhd,GAAG,CAAC,UAAU+c,GAAG,CAAC,EAAEE,IAAG,CAAC,WAAW94G,GAAG,YAAY,QAAQ,WAAW64G,GAAG,EAAME,IAAI;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAoBtFC,IAAInd,GAAG,CAAC,UAAUkd,GAAG,CAAC,EAAEE,IAAG,CAAC,WAAW94G,GAAG,YAAY,QAAQ,WAAW64G,GAAG,EAAME,IAAIpjG,GAAG,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,CAAC,EAAE,EAAE,CAAC,WAAW,EAAE,SAAS,CAAC,EAAED,EAAE7B,EAAE,OAAO8B,EAAE,MAAM,QAAQ,EAAE,IAAI,sEAAsE,EAAE,IAAI0B,EAAE,EAAE,OAAO,CAACuF,EAAExC,IAAIwC,EAAExC,CAAC,EAAE9C,EAAE,CAAC,CAAC,EAAE,CAAC,CAAC,EAAEA,EAAE,KAAK,GAAG,CAAC,EAAE,QAAQsF,EAAE,EAAE,EAAE,OAAOA,EAAEjH,EAAE,MAAM,OAAO,EAAEiH,EAAEtF,EAAE,KAAK,CAAC,EAAE,CAAC,CAAC,EAAE,IAAIC,EAAE,CAAC,EAAES,EAAEu7F,GAAG,CAAC,OAAO,CAAC,EAAE59F,CAAC,EAAE,QAAQH,EAAE,MAAM,CAAC,SAAS8B,EAAE,cAAc,CAAC,CAAC,CAAC,EAAEW,EAAEjV,EAAE,YAAYgV,EAAE,MAAM,EAAEX,EAAE,EAAE,EAAEa,EAAElV,EAAE,YAAYiV,EAAE,OAAO,EAAE,OAAO,EAAE,EAAEE,EAAEnV,EAAE,oBAAoBgV,EAAE,MAAM,EAAEX,EAAE,EAAE,EAAEe,EAAE2jF,GAAG,CAAC,OAAO,CAAC,EAAE/jF,CAAC,EAAE,QAAQxC,EAAE,MAAM,CAAC,MAAMyC,CAAC,CAAC,CAAC,EAAEqB,EAAEsjF,GAAG,CAAC,OAAO,CAAC,EAAExkF,CAAC,EAAE,QAAQ5C,EAAE,MAAM,CAAC,KAAK0C,CAAC,CAAC,CAAC,EAAE,EAAE6jF,GAAG,CAAC,OAAO,CAAC,EAAEziF,CAAC,EAAE,QAAQ9D,EAAE,MAAM,CAAC,MAAM2C,CAAC,CAAC,CAAC,EAAE,OAAOZ,EAAE,KAAKS,CAAC,EAAET,EAAE,KAAKa,CAAC,EAAEb,EAAE,KAAK+B,CAAC,EAAE/B,EAAE,QAAQqF,GAAGpH,EAAE,8BAA8BoH,CAAC,CAAC,EAAE,CAAC,EAAE+7F,IAAG,CAAC,WAAW/4G,GAAG,YAAY,QAAQ,WAAW84G,GAAG,EAAE,SAASE,IAAItjG,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,CAAC,EAAEF,EAAE,CAAC,QAAQI,EAAE,OAAOC,EAAE,WAAW,EAAE,aAAa,CAAC,EAAE,EAAE,GAAG,EAAE,MAAM,SAAS,EAAE,MAAM,IAAI,MAAM;AAAA,WAC/7B,EAAE,KAAK,EAAE,EAAE,GAAGD,EAAE,MAAM,SAAS,EAAE,MAAM,IAAI,MAAM;AAAA,WACjDA,EAAE,KAAK,EAAE,EAAE,GAAGC,EAAE,MAAM,SAAS,EAAE,MAAM,IAAI,MAAM;AAAA,WACjDA,EAAE,KAAK,EAAE,EAAE,GAAG,EAAE,MAAM,SAAS,EAAE,MAAM,IAAI,MAAM;AAAA,UAClD,EAAE,KAAK,EAAE,EAAE,IAAI0B,EAAE7B,EAAE,SAASE,EAAE,MAAM,EAAE4B,EAAE9B,EAAE,SAASG,EAAE,MAAM,EAAE4B,EAAE/B,EAAE,SAAS,EAAE,MAAM,EAAEwC,EAAExC,EAAE,SAAS,EAAE,MAAM,EAAE,CAAC,EAAE,CAACyC,EAAEC,EAAEC,EAAEC,EAAEkB,CAAC,EAAE09E,GAAG3/E,EAAE3B,EAAE,MAAMA,EAAE,MAAM4B,EAAE3B,EAAE,MAAM4B,EAAES,CAAC,EAAE,MAAM,CAACxC,EAAE,eAAe0C,EAAExC,EAAE,MAAMuC,CAAC,EAAEzC,EAAE,eAAe,CAAC0C,EAAE,CAAC,CAAC,EAAEvC,EAAE,MAAMwC,CAAC,EAAE3C,EAAE,eAAe,CAAC4C,EAAE,MAAM,EAAE,OAAO,IAAI,WAAWA,EAAE,IAAI,GAAG,OAAO,CAAC,CAAC,CAAC,CAAC,EAAE5C,EAAE,eAAe,CAAC8D,EAAE,MAAM,EAAE5D,EAAE,MAAM,IAAI,WAAW4D,CAAC,CAAC,CAAC,CAAC,CAAC,IAAIu/F,IAAG,CAAC,WAAWh5G,GAAG,YAAY,QAAQ,WAAW+4G,GAAG,EAAE,SAASE,IAAIxjG,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,CAAC,EAAEF,EAAE,CAAC,aAAaI,EAAE,WAAWC,EAAE,SAAS,CAAC,EAAE,EAAE,GAAGD,EAAE,MAAM,SAAS,EAAE,MAAM,IAAI,MAAM,uDAAuDA,EAAE,KAAK,EAAE,EAAE,GAAGC,EAAE,MAAM,SAAS,EAAE,MAAM,IAAI,MAAM,qDAAqDA,EAAE,KAAK,EAAE,EAAE,GAAG,EAAE,MAAM,SAAS,EAAE,MAAM,IAAI,MAAM,sDAAsD,EAAE,KAAK,EAAE,EAAE,IAAI,EAAE,MAAM,KAAKH,EAAE,SAASG,EAAE,MAAM,CAAC,EAAE0B,EAAE7B,EAAE,SAASE,EAAE,MAAM,EAAE4B,EAAE,MAAM,KAAK9B,EAAE,SAAS,EAAE,MAAM,CAAC,EAAE,CAAC+B,EAAES,EAAEC,CAAC,EAAEg/E,GAAG5/E,EAAE3B,EAAE,MAAMA,EAAE,MAAM,EAAE4B,CAAC,EAAE,MAAM,CAAC9B,EAAE,eAAewC,EAAEtC,EAAE,MAAM6B,CAAC,EAAE/B,EAAE,eAAe,CAACyC,EAAE,MAAM,EAAE,EAAE,MAAM,IAAI,WAAWA,CAAC,CAAC,CAAC,CAAC,CAAC,IAAI8gG,IAAG,CAAC,WAAWj5G,GAAG,YAAY,QAAQ,WAAWg5G,GAAG,EAAE,SAASE,IAAI1jG,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,CAAC,EAAEF,EAAE,CAAC,KAAKI,EAAE,QAAQC,EAAE,WAAW,CAAC,EAAE,EAAE,GAAGD,EAAE,MAAM,OAAO,EAAE,MAAM,IAAI,MAAM,2DAA2D,EAAE,GAAGC,EAAE,MAAM,SAAS,EAAE,MAAM,IAAI,MAAM;AAAA,gBACjxCA,EAAE,KAAK,EAAE,EAAE,GAAG,EAAE,MAAM,SAAS,EAAE,MAAM,IAAI,MAAM;AAAA,gBACjD,EAAE,KAAK,EAAE,EAAE,IAAI,EAAEH,EAAE,SAASE,EAAE,MAAM,EAAE2B,EAAE7B,EAAE,SAASG,EAAE,MAAM,EAAE2B,EAAE9B,EAAE,SAAS,EAAE,MAAM,EAAE,CAAC+B,EAAES,CAAC,EAAEk/E,GAAG,EAAExhF,EAAE,MAAMA,EAAE,MAAM2B,EAAEC,EAAE,EAAE,EAAE,OAAO9B,EAAE,eAAewC,EAAEtC,EAAE,MAAM6B,CAAC,CAAC,CAAC,IAAI0hG,IAAG,CAAC,WAAWl5G,GAAG,YAAY,QAAQ,WAAWi5G,GAAG,EAAE,SAASE,IAAI5jG,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,CAAC,EAAEF,EAAE,CAAC,KAAKI,EAAE,QAAQC,EAAE,WAAW,CAAC,EAAE,EAAE,GAAGD,EAAE,MAAM,OAAO,EAAE,MAAM,IAAI,MAAM,2DAA2D,EAAE,GAAGC,EAAE,MAAM,SAAS,EAAE,MAAM,IAAI,MAAM;AAAA,eAC1aA,EAAE,KAAK,EAAE,EAAE,GAAG,EAAE,MAAM,SAAS,EAAE,MAAM,IAAI,MAAM;AAAA,eACjD,EAAE,KAAK,EAAE,EAAE,IAAI,EAAEH,EAAE,SAASE,EAAE,MAAM,EAAE2B,EAAE7B,EAAE,SAASG,EAAE,MAAM,EAAE2B,EAAE9B,EAAE,SAAS,EAAE,MAAM,EAAE,CAAC+B,EAAES,CAAC,EAAEk/E,GAAG,EAAExhF,EAAE,MAAMA,EAAE,MAAM2B,EAAEC,CAAC,EAAE,OAAO9B,EAAE,eAAewC,EAAEtC,EAAE,MAAM6B,CAAC,CAAC,CAAC,IAAI4hG,IAAG,CAAC,WAAWn5G,GAAG,YAAY,QAAQ,WAAWk5G,GAAG,EAAE,SAASE,IAAI9jG,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,cAAcK,EAAE,aAAa,EAAE,aAAa,CAAC,EAAE,EAAE,CAAC,YAAY0B,CAAC,EAAE3B,EAAE,CAAC,UAAU4B,EAAE,WAAWC,EAAE,UAAUS,EAAE,QAAQC,EAAE,WAAWC,CAAC,EAAElV,EAAE,gBAAgB,EAAE2S,EAAE0B,CAAC,EAAEc,EAAE,GAAG,GAAG,EAAE,QAAQ,SAAS,CAAC,IAAIyE,EAAEpH,EAAE,WAAWG,CAAC,EAAEyE,EAAE5E,EAAE,WAAW,CAAC,EAAEuE,EAAElG,EAAE,aAAa2B,EAAE,SAAS,EAAE,MAAM,EAAE,CAAC,CAAC,EAAEwE,EAAE48E,GAAGh6E,EAAExC,EAAE/C,EAAEa,EAAEF,EAAET,EAAED,EAAEW,EAAE8B,EAAE5B,CAAC,EAAE,OAAO3C,EAAE,eAAe6B,EAAE2C,EAAE,MAAMA,EAAE,MAAM,CAAC,CAAC,IAAI5B,EAAE,IAAIw+F,GAAGr/F,EAAED,EAAE3B,EAAE,MAAM,OAAO,EAAE,MAAM,OAAOsC,EAAE,CAACC,EAAE,CAAC,EAAEC,CAAC,EAAEmB,EAAE9D,EAAE,gBAAgB4C,EAAE,CAAC,EAAEzC,EAAE,CAAC,EAAE,EAAE,KAAK,EAAE,EAAEomF,GAAG,CAAC,OAAO,CAAC,EAAEziF,CAAC,EAAE,QAAQ9D,EAAE,MAAM,CAAC,MAAM6B,CAAC,CAAC,CAAC,EAAE,OAAO7B,EAAE,8BAA8B8D,CAAC,EAAE,CAAC,CAAC,IAAI+/F,IAAG,CAAC,WAAWp5G,GAAG,YAAY,QAAQ,WAAWm5G,GAAG,EAAE,SAASE,IAAIhkG,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,CAAC,EAAE,EAAE,CAAC,gBAAgB,EAAE,KAAK,CAAC,EAAED,EAAE2B,EAAExD,EAAE,eAAe,EAAE8B,EAAE,KAAK,EAAE,CAAC,EAAE2B,EAAEtU,EAAE,iBAAiB2S,EAAE,EAAE0B,CAAC,EAAEE,EAAE5B,EAAE,MAAM,OAAOqC,EAAE,IAAI,MAAMT,CAAC,EAAE,KAAK,CAAC,EAAEU,EAAEtC,EAAE,MAAM,MAAM,EAAE,OAAO2B,EAAE,IAAIY,GAAG,CAAC,IAAIC,EAAE,CAAC,GAAGF,CAAC,EAAEE,EAAEd,CAAC,EAAEa,EAAE,IAAIE,EAAEkpF,GAAG,CAAC,OAAO,CAAC,EAAE3rF,CAAC,EAAE,QAAQH,EAAE,MAAM,CAAC,MAAMwC,EAAE,KAAKG,CAAC,CAAC,CAAC,EAAE,OAAOH,EAAEX,CAAC,GAAGa,EAAEE,CAAC,CAAC,CAAC,CAAC,IAAImhG,IAAG,CAAC,WAAWr5G,GAAG,YAAY,QAAQ,WAAWo5G,GAAG,EAAME,GAAG,kBAAkBC,IAAIpe,GAAG,CAAC,UAAUme,GAAG,gBAAgBA,GAAG,cAAcriB,EAAE,CAAC,EAAEuiB,IAAG,CAAC,WAAWv5G,GAAG,YAAY,QAAQ,WAAWs5G,GAAG,EAAME,IAAI,gBAAgBC,IAAIve,GAAG,CAAC,UAAUse,GAAG,CAAC,EAAEE,IAAG,CAAC,WAAWz5G,GAAG,YAAY,QAAQ,WAAWw5G,GAAG,EAAME,GAAG,4BAA4BC,IAAIze,GAAG,CAAC,UAAUwe,GAAG,gBAAgBA,EAAE,CAAC,EAAEE,IAAG,CAAC,WAAW35G,GAAG,YAAY,QAAQ,WAAW05G,GAAG,EAAE,SAASE,IAAI3kG,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,CAAC,EAAE,EAAE,GAAGA,EAAE,QAAQ,SAAS,MAAM,IAAI,MAAM,kCAAkC,EAAE,IAAI,EAAEH,EAAE,SAASG,EAAE,MAAM,EAAE,EAAE3S,EAAE,uBAAuB,CAAC,EAAEqU,EAAE+/E,GAAG,EAAE,SAAS1hF,CAAC,EAAE,OAAOF,EAAE,eAAeG,EAAE,MAAM,SAAS0B,CAAC,CAAC,CAAC,IAAI6iG,IAAG,CAAC,WAAW55G,GAAG,YAAY,QAAQ,WAAW25G,GAAG,EAAE,SAASE,IAAI,CAAC,OAAO7kG,EAAE,MAAM,EAAE,QAAQE,CAAC,EAAE,CAAC,GAAG,CAAC,EAAEE,CAAC,EAAEJ,EAAEK,EAAEijF,GAAG;AAAA,mCACp5D,EAAE,KAAK;AAAA,IACtC,EAAE,IAAID,GAAGjjF,EAAE,MAAMC,CAAC,EAAE,OAAOH,EAAE,gBAAgB,EAAE,CAACE,CAAC,EAAEA,EAAE,KAAK,CAAC,CAAC,IAAI0kG,IAAG,CAAC,WAAW75G,GAAG,YAAY,QAAQ,WAAW45G,GAAG,EAAME,IAAG,KAAK,CAAC,YAAYnkG,EAAEV,EAAE,EAAE,CAAC,KAAK,cAAc,CAAC,GAAG,EAAE,KAAK,YAAY,EAAE,IAAIG,EAAE,EAAE,OAAOwB,EAAEq7E,GAAG,EAAE,MAAM,EAAEp7E,EAAEo7E,GAAG,EAAE,MAAM,EAAEn7E,EAAE,GAAG,GAAG1B,IAAI,EAAE0B,EAAE,+BAA+B,CAAC,IAAIC,EAAE,EAAED,EAAE,EAAE,IAAI,CAAC,EAAEW,KAAKV,IAAI,EAAE,SAAS,EAAE,oBAAoBU,CAAC,aAAaA,CAAC,IAAI,UAAUV,EAAE,CAAC,eAAeU,CAAC,aAAaA,CAAC,IAAI,EAAE,KAAK,GAAG,CAAC,CAAC,KAAK,SAAS;AAAA,QACpbb,CAAC,YAAYA,CAAC,IAAIjB,CAAC;AAAA,QACnBiB,CAAC,cAAcA,CAAC,IAAI3B,CAAC;AAAA;AAAA;AAAA,UAGnB4B,CAAC;AAAA,yBACcC,CAAC;AAAA;AAAA,KAErB,CAAC,EAAE,SAASijG,IAAIhlG,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,CAAC,EAAE,EAAE,CAAC,MAAM,EAAE,IAAI,EAAE,QAAQ0B,EAAE,UAAUC,EAAE,QAAQC,EAAE,aAAaS,EAAE,YAAYC,EAAE,eAAeC,CAAC,EAAExC,EAAE,CAAC,iBAAiByC,EAAE,WAAWC,EAAE,WAAWkB,EAAE,UAAU,EAAE,cAAcsD,EAAE,MAAMxC,EAAE,IAAIL,EAAE,QAAQC,CAAC,EAAEhJ,GAAG,UAAU2E,EAAE,MAAM,EAAE,EAAE0B,EAAEC,EAAEC,EAAES,EAAEC,EAAEC,CAAC,EAAE+B,EAAE,GAAGX,EAAEW,EAAE8hF,GAAG,CAAC,OAAO,CAAC,EAAEpmF,CAAC,EAAE,QAAQH,EAAE,MAAM,CAAC,MAAM4C,CAAC,CAAC,CAAC,UAAU,GAAGwE,EAAE,CAAC/I,EAAE,OAAO8B,EAAE,MAAM,QAAQ,EAAE,IAAI,yCAAyCA,EAAE,MAAM,MAAM,EAAE,EAAE,IAAIwE,EAAEnJ,GAAG,gBAAgBoJ,EAAEL,EAAEC,CAAC,EAAE6C,EAAEykF,GAAG,CAAC,OAAO,CAAC,EAAE3rF,CAAC,EAAE,QAAQH,EAAE,MAAM,CAAC,MAAM4E,EAAE,KAAKD,CAAC,CAAC,CAAC,EAAEF,EAAE8hF,GAAG,CAAC,OAAO,CAAC,EAAEl/E,CAAC,EAAE,QAAQrH,EAAE,MAAM,CAAC,MAAM4C,CAAC,CAAC,CAAC,EAAE5C,EAAE,8BAA8BqH,CAAC,CAAC,SAASrH,EAAE,mBAAmB,CAACG,CAAC,CAAC,EAAE,CAAC,IAAIkH,EAAErH,EAAE,SAASG,EAAE,MAAM,EAAE0E,EAAEvW,GAAG6R,EAAE,MAAMA,EAAE,MAAMkH,CAAC,EAAEvC,EAAE+8E,GAAGl/E,EAAEkC,EAAEL,EAAEI,CAAC,EAAEH,EAAEzE,EAAE,eAAe4C,EAAEzC,EAAE,MAAM2E,EAAE,MAAM,CAAC,KAAK,CAAC,IAAIuC,EAAE,IAAIw9F,IAAGjgG,EAAEJ,EAAE7B,CAAC,EAAE8B,EAAEzE,EAAE,gBAAgBqH,EAAE,CAAClH,CAAC,EAAEA,EAAE,KAAK,CAAC,CAAC,IAAIuE,EAAE6hF,GAAG,CAAC,OAAO,CAAC,EAAE9hF,CAAC,EAAE,QAAQzE,EAAE,MAAM,CAAC,MAAM4C,CAAC,CAAC,CAAC,EAAE,OAAO5C,EAAE,8BAA8ByE,CAAC,EAAEC,CAAC,CAAC,IAAIqgG,IAAG,CAAC,WAAW/5G,GAAG,YAAY,QAAQ,WAAW85G,GAAG,EAAE,SAASE,IAAIllG,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,UAAUK,EAAE,YAAY,EAAE,QAAQ,EAAE,SAAS0B,EAAE,SAASC,EAAE,uBAAuBC,CAAC,EAAE7B,EAAE,CAAC,KAAKsC,EAAE,WAAWC,CAAC,EAAE,EAAEC,EAAE1C,EAAE,SAASwC,EAAE,MAAM,EAAEG,EAAE3C,EAAE,SAASyC,EAAE,MAAM,EAAE,CAACG,EAAEkB,CAAC,EAAEg+E,GAAGp/E,EAAEC,EAAExC,EAAE,EAAE,EAAE0B,EAAEC,EAAEC,CAAC,EAAE,MAAM,CAAC/B,EAAE,eAAe,CAAC4C,EAAE,MAAM,EAAE,SAASA,CAAC,EAAE5C,EAAE,eAAeyC,EAAE,MAAM,QAAQqB,CAAC,CAAC,CAAC,CAAC,IAAImhG,IAAG,CAAC,WAAWh6G,GAAG,YAAY,QAAQ,WAAW+5G,GAAG,EAAE,SAASE,IAAIplG,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,UAAUK,CAAC,EAAED,EAAE,CAAC,MAAM,EAAE,UAAU,CAAC,EAAE,EAAE,GAAG,EAAE,QAAQ,SAAS,MAAM,IAAI,MAAM,kCAAkC,EAAE,GAAG,EAAE,MAAM,SAAS,EAAE,MAAM,IAAI,MAAM,sCAAsC,EAAE,KAAK,EAAE,EAAE,GAAG,EAAE,MAAM,SAAS,EAAE,MAAM,IAAI,MAAM,0CAA0C,EAAE,KAAK,EAAE,EAAE,IAAI2B,EAAE7B,EAAE,SAAS,EAAE,MAAM,EAAE8B,EAAE9B,EAAE,SAAS,EAAE,MAAM,EAAE,CAAC,EAAE,CAAC+B,EAAES,EAAEC,CAAC,EAAEs/E,GAAGlgF,EAAEC,EAAE3B,CAAC,EAAEuC,EAAEF,EAAE,OAAO,MAAM,CAACxC,EAAE,eAAe,CAAC0C,EAAE,CAAC,EAAE,QAAQX,CAAC,EAAE/B,EAAE,eAAe,CAAC0C,CAAC,EAAE,SAASF,CAAC,EAAExC,EAAE,eAAe,CAAC,CAAC,EAAE,QAAQ,IAAI,WAAWyC,CAAC,CAAC,CAAC,CAAC,CAAC,IAAI0iG,IAAG,CAAC,WAAWj6G,GAAG,YAAY,QAAQ,WAAWg6G,GAAG,EAAE,SAASE,IAAItlG,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,WAAWK,CAAC,EAAED,EAAE,CAAC,MAAM,CAAC,EAAE,EAAE,GAAG,EAAE,QAAQ,SAAS,MAAM,IAAI,MAAM,kCAAkC,EAAE,GAAGC,GAAG,EAAE,MAAM,IAAI,MAAM,sCAAsC,EAAE,IAAI,EAAEH,EAAE,SAAS,EAAE,MAAM,EAAE6B,EAAEmgF,GAAG,EAAE7hF,CAAC,EAAE,OAAOH,EAAE,eAAe,EAAE,MAAM,QAAQ6B,CAAC,CAAC,CAAC,IAAIwjG,IAAG,CAAC,WAAWl6G,GAAG,YAAY,QAAQ,WAAWi6G,GAAG,EAAME,IAAI,iBAAiBC,IAAI1f,GAAG,CAAC,UAAUyf,GAAG,CAAC,EAAEE,IAAG,CAAC,WAAWj6G,GAAG,YAAY,QAAQ,WAAWg6G,GAAG,EAAME,IAAI;AAAA;AAAA;AAAA,EAGr3EC,IAAI7f,GAAG,CAAC,UAAU4f,GAAG,CAAC,EAAEE,IAAG,CAAC,WAAWn6G,GAAG,YAAY,QAAQ,WAAWk6G,GAAG,EAAE,SAASE,IAAI9lG,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,OAAOK,EAAE,QAAQ,EAAE,QAAQ,CAAC,EAAE,EAAE,CAAC,EAAED,EAAE,CAAC,UAAU2B,EAAE,WAAWC,EAAE,UAAUC,EAAE,QAAQS,EAAE,WAAWC,CAAC,EAAEjV,EAAE,gBAAgB,EAAE,EAAE2S,EAAE,KAAK,EAAEuC,EAAE,CAACD,EAAEV,EAAEA,CAAC,EAAE,GAAGU,IAAI,EAAE,OAAOzC,EAAE,eAAeG,EAAE,MAAM,EAAE,KAAK,EAAE,IAAIwC,EAAE4jF,GAAG,CAAC,OAAO,CAAC,EAAE,CAAC,EAAE,QAAQvmF,EAAE,MAAM,CAAC,MAAM,CAAC8B,EAAED,CAAC,CAAC,CAAC,CAAC,EAAEe,EAAE2jF,GAAG,CAAC,OAAO,CAAC,EAAE,CAAC,EAAE,QAAQvmF,EAAE,MAAM,CAAC,MAAM,CAAC8B,EAAEC,CAAC,CAAC,CAAC,CAAC,EAAE+B,EAAEyiF,GAAG,CAAC,OAAO,CAAC,EAAEpmF,CAAC,EAAE,QAAQH,EAAE,MAAM,CAAC,MAAM0C,CAAC,CAAC,CAAC,EAAE,EAAE,IAAI0+F,GAAGt/F,EAAED,EAAEc,EAAE,MAAM,OAAOC,EAAE,MAAM,OAAOJ,EAAEE,EAAE,GAAG,EAAE,EAAE0E,EAAEpH,EAAE,gBAAgB,EAAE,CAAC4C,EAAED,EAAEmB,CAAC,EAAEA,EAAE,KAAK,EAAEc,EAAE2hF,GAAG,CAAC,OAAO,CAAC,EAAAn/E,CAAC,EAAE,QAAQpH,EAAE,MAAM,CAAC,MAAMG,EAAE,KAAK,CAAC,CAAC,EAAE,OAAOH,EAAE,8BAA8B2C,CAAC,EAAE3C,EAAE,8BAA8B4C,CAAC,EAAE5C,EAAE,8BAA8B8D,CAAC,EAAE9D,EAAE,8BAA8BoH,CAAC,EAAExC,CAAC,CAAC,IAAIihG,IAAG,CAAC,WAAWl6G,GAAG,YAAY,QAAQ,WAAWi6G,GAAG,EAAME,IAAG,KAAK,CAAC,YAAYplG,EAAEV,EAAE,CAAC,KAAK,cAAc,CAAC,GAAG,EAAE,IAAI,EAAE,IAAI,MAAMU,EAAE,MAAM,EAAE,QAAQkB,EAAE,EAAEA,EAAE,EAAE,OAAOA,IAAI,EAAEA,CAAC,EAAElB,EAAEkB,CAAC,EAAE5B,EAAE4B,CAAC,EAAE,KAAK,YAAY,EAAE,KAAK,KAAK,EAAE,OAAO,IAAIzB,EAAE68E,GAAG,KAAK,IAAI,EAAEr7E,EAAEokG,IAAIrlG,CAAC,EAAE,KAAK,SAAS;AAAA;AAAA,UAE3/BP,CAAC;AAAA,yBACcwB,CAAC;AAAA;AAAA,KAErB,CAAC,EAAE,SAASokG,IAAIjmG,EAAE,CAAC,IAAI,EAAEA,EAAE,OAAO,GAAG,EAAE,EAAE,MAAM,MAAM,iBAAiB,CAAC,uBAAuB,EAAE,GAAG,IAAI,EAAE,MAAM,eAAeA,EAAE,CAAC,CAAC,IAAI,IAAIE,EAAE,CAAC,UAAU,UAAU,UAAU,UAAU,SAAS,EAAEE,EAAE,CAAC,EAAE,QAAQC,EAAE,EAAEA,EAAEL,EAAE,OAAOK,IAAID,EAAE,KAAK,QAAQF,EAAEG,CAAC,CAAC,KAAKL,EAAEK,CAAC,CAAC,GAAG,EAAE,OAAOD,EAAE,KAAK,CAAC,CAAC,SAAS8lG,GAAGlmG,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,CAAC,EAAE,EAAE,CAAC,KAAK,CAAC,EAAED,EAAE,GAAGC,EAAE,QAAQ,UAAUA,EAAE,MAAM,OAAO,EAAE,CAAC,IAAI2B,EAAE9B,EAAE,SAASG,EAAE,MAAM,EAAE,EAAEA,EAAE,QAAQ,SAAS2B,EAAE,IAAIY,GAAGrE,EAAE,aAAaqE,CAAC,CAAC,EAAEZ,EAAEU,EAAElU,GAAG6R,EAAE,MAAMA,EAAE,MAAM,CAAC,EAAE,EAAE+hF,GAAG1/E,EAAE,CAAC,EAAE,OAAOxC,EAAE,eAAe,EAAE,MAAM,EAAE,MAAM,EAAE,MAAM,CAAC,CAAC,IAAI,EAAE,IAAI8lG,IAAG3lG,EAAE,MAAM,CAAC,EAAE,OAAOH,EAAE,gBAAgB,EAAE,CAACG,CAAC,EAAEA,EAAE,KAAK,CAAC,CAAC,IAAI8lG,IAAG,CAAC,WAAWr6G,GAAG,YAAY,QAAQ,WAAWo6G,EAAE,EAAME,IAAG,KAAK,CAAC,YAAYxlG,EAAE,CAAC,KAAK,cAAc,CAAC,IAAI,SAAS,EAAE,KAAK,eAAe,CAAC,CAAC,KAAK,IAAI,KAAK,KAAK,EAAE,CAAC,KAAK,YAAY,KAAK,KAAK,EAAE,CAAC,KAAK,cAAc,KAAK,OAAO,EAAE,CAAC,KAAK,MAAM,KAAK,KAAK,EAAE,CAAC,KAAK,MAAM,KAAK,KAAK,CAAC,EAAE,KAAK,YAAYA,EAAE,KAAK,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,MAwCp5B,CAAC,EAAEylG,IAAG,KAAK,CAAC,YAAYzlG,EAAE,CAAC,KAAK,cAAc,CAAC,IAAI,SAAS,EAAE,KAAK,eAAe,CAAC,CAAC,KAAK,IAAI,KAAK,KAAK,EAAE,CAAC,KAAK,YAAY,KAAK,KAAK,EAAE,CAAC,KAAK,IAAI,KAAK,KAAK,CAAC,EAAE,KAAK,YAAYA,EAAE,KAAK,SAAS;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,MAkC/L,CAAC,EAAE,SAAS0lG,GAAGtmG,EAAE,EAAE,CAAC,IAAI,MAAMA,EAAE,8BAA8B,CAAC,CAAC,CAAC,SAASumG,GAAGvmG,EAAE,CAAC,IAAI,EAAE,EAAE,KAAK,EAAEA,GAAG,GAAG,EAAE,OAAO,CAAC,CAAC,SAASwmG,IAAIxmG,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,CAAC,EAAE,EAAE,CAAC,EAAE,EAAE,OAAO,CAAC,EAAED,EAAE2B,EAAEvQ,EAAE,EAAE,UAAU,0CAA0C,EAAEwQ,EAAExQ,EAAE,EAAE,UAAU,8BAA8B,EAAEyQ,EAAE5B,EAAE,MAAMqC,EAAET,EAAEA,EAAE,OAAO,CAAC,EAAE,GAAG/B,EAAE,mBAAmB,CAACG,CAAC,CAAC,GAAGqC,EAAEX,GAAG,EAAEC,EAAE,CAAC,IAAIgD,EAAE9E,EAAE,SAASG,EAAE,MAAM,EAAE,CAAC4E,EAAEC,CAAC,EAAEm9E,GAAGr9E,EAAE/C,EAAE5B,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,CAACH,EAAE,eAAe+E,EAAE,MAAMA,EAAE,MAAMA,EAAE,MAAM,EAAE/E,EAAE,eAAegF,EAAE,MAAMA,EAAE,MAAMA,EAAE,MAAM,CAAC,CAAC,CAAC,GAAG,IAAI,EAAE,OAAOjD,EAAEA,EAAE,OAAO,CAAC,EAAE,EAAE,CAAC/B,EAAE,eAAe+B,EAAE5B,EAAE,MAAM,CAAC,CAAC,EAAEH,EAAE,eAAe+B,EAAE,QAAQ,CAAC,CAAC,CAAC,EAAE,GAAGS,IAAI,EAAE,MAAM,CAACrC,EAAEm0F,GAAG,CAAC,MAAM,CAAC,MAAMvyF,EAAE,MAAM,QAAQ,MAAM,CAAC,EAAE,QAAQ/B,CAAC,CAAC,CAAC,EAAE,IAAIyC,EAAEzC,EAAE,QAAQ,IAAIG,EAAE,MAAM,EAAEuC,EAAED,IAAI,MAAMA,EAAE,SAASE,EAAED,EAAE1C,EAAE,aAAaG,CAAC,EAAEA,EAAE2D,EAAEzF,EAAE,cAAc0D,CAAC,EAAES,EAAEuB,EAAEwiF,GAAG,CAAC,OAAO,CAAC,EAAE5jF,CAAC,EAAE,MAAM,CAAC,MAAM,CAACmB,EAAEtB,CAAC,CAAC,EAAE,QAAQxC,CAAC,CAAC,EAAE0C,GAAG0jG,GAAGpmG,EAAE2C,CAAC,EAAE,IAAIyE,EAAEi/F,GAAG,CAAC,EAAE,EAAEA,GAAG7jG,CAAC,EAAE+B,EAAE,KAAKC,EAAE,IAAID,IAAI,KAAK,CAACR,EAAEA,CAAC,EAAE,CAACA,EAAEQ,CAAC,EAAEE,EAAE,CAACK,EAAEC,EAAEC,IAAI,CAAC,IAAIC,EAAET,EAAE,EAAEU,EAAE,IAAIghG,IAAGlhG,CAAC,EAAE8C,EAAE,CAAC,CAACtF,CAAC,EAAE,CAAC+B,IAAI,KAAK,EAAE,CAAC,EAAE,CAAC,OAAO,iBAAiB,EAAE,CAACO,CAAC,EAAE,CAACC,CAAC,CAAC,EAAEwC,EAAEhD,EAAEA,EAAEvE,EAAE,gBAAgBkF,EAAED,EAAE,QAAQ6C,CAAC,EAAEs+F,GAAGpmG,EAAEuH,CAAC,CAAC,EAAE,QAAQzC,EAAE,EAAEA,EAAEsC,EAAEtC,GAAG,EAAE,CAAC,IAAIC,EAAED,EAAE,EAAE,QAAQE,EAAEF,EAAEE,GAAG,EAAEA,GAAG,EAAEP,EAAEM,EAAEC,EAAE,CAAClB,EAAE,CAAC,CAAC,CAAC,CAAC,QAAQgB,EAAE,EAAEA,EAAEsC,EAAEtC,GAAG,EAAE,CAAC,IAAIC,EAAEP,EAAE,EAAEQ,EAAE,IAAImhG,IAAG,CAACriG,EAAEgB,EAAE,CAAC,CAAC,EAAEI,EAAE,CAAC,CAAC1C,CAAC,EAAE,CAAC+B,IAAI,KAAK,EAAE,CAAC,EAAE,CAAC6C,CAAC,CAAC,EAAEjC,EAAEZ,EAAEA,EAAEvE,EAAE,gBAAgBgF,EAAED,EAAE,QAAQG,CAAC,EAAEkhG,GAAGpmG,EAAEmF,CAAC,EAAE,IAAI2C,EAAEV,EAAE,EAAEG,EAAEO,EAAE,EAAE,QAAQC,EAAED,EAAEC,GAAG,EAAEA,GAAG,EAAEtD,EAAE8C,EAAEQ,EAAExD,EAAE,KAAK,CAAC,CAAC,IAAIG,EAAEH,EAAEA,EAAEunF,GAAG,CAAC,OAAO,CAAC,EAAEvnF,CAAC,EAAE,QAAQvE,EAAE,MAAM,CAAC,MAAM,EAAE,KAAK,CAAC8D,EAAE,CAAC,CAAC,CAAC,CAAC,EAAEsiG,GAAGpmG,EAAE0E,CAAC,EAAE,IAAIC,EAAEqxF,GAAG,CAAC,OAAO,CAAC,EAAEjyF,EAAE,QAAQQ,CAAC,EAAE,QAAQvE,EAAE,MAAM,CAAC,KAAK,EAAE,UAAU,CAAC,CAAC,CAAC,EAAEomG,GAAGpmG,EAAE+D,CAAC,EAAE,IAAIsD,EAAEtF,EAAE,MAAM,EAAE,EAAE,EAAEsF,EAAE,KAAK,CAAC,EAAE3C,EAAEH,EAAEA,EAAEgiF,GAAG,CAAC,OAAO,CAAC,EAAEhiF,CAAC,EAAE,MAAM,CAAC,MAAM8C,CAAC,EAAE,QAAQrH,CAAC,CAAC,EAAEomG,GAAGpmG,EAAE0E,CAAC,EAAE,IAAIG,EAAEF,EAAE,OAAOA,EAAE4hF,GAAG,CAAC,OAAO,CAAC,EAAE5hF,CAAC,EAAE,MAAM,CAAC,MAAM0C,CAAC,EAAE,QAAQrH,CAAC,CAAC,EAAEomG,GAAGpmG,EAAE6E,CAAC,EAAE,CAACF,EAAEJ,CAAC,CAAC,CAAC,IAAIgiG,IAAG,CAAC,WAAW16G,GAAG,YAAY,QAAQ,WAAWy6G,GAAG,EAAME,IAAG,KAAK,CAAC,YAAY9lG,EAAEV,EAAE,EAAEG,EAAEwB,EAAEC,EAAE,CAAC,KAAK,cAAc,CAAC,QAAQ,YAAY,EAAE,KAAK,YAAYA,EAAE,IAAIC,EAAE,IAAI,UAAU,EAAE,EAAEC,EAAE,OAAO3B,EAAE,CAAC,IAAI,WAAW2B,EAAE,EAAE,MAAM,IAAI,UAAUA,EAAE,EAAE,MAAM,IAAI,OAAOA,EAAE,EAAE,MAAM,IAAI,UAAUA,EAAE,EAAE,MAAM,QAAQA,EAAE,EAAE,KAAK,CAAC,KAAK,SAAS;AAAA;AAAA;AAAA,mBAG92DA,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,2BAwBOA,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,2BAiBDA,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,4CAUgBpB,CAAC,+BAA+BV,CAAC;AAAA;AAAA;AAAA,sCAGvC2B,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,sCAwBDA,CAAC;AAAA;AAAA;AAAA;AAAA,mDAIY3B,CAAC;AAAA,mDACDU,CAAC;AAAA;AAAA,sBAE9BmB,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,SAwBd,CAAC,EAAE,SAAS4kG,IAAI3mG,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,MAAMK,EAAE,WAAW,CAAC,EAAE,EAAE,CAAC,cAAc,EAAE,SAAS0B,EAAE,UAAUC,EAAE,YAAYC,CAAC,EAAE7B,EAAE,CAACsC,EAAEC,EAAEC,EAAEC,CAAC,EAAExC,EAAE,MAAM,CAACyC,EAAEkB,CAAC,EAAE/B,GAAG,KAAKA,EAAE,CAACU,EAAEC,CAAC,EAAE,EAAE,CAACF,EAAEI,EAAEkB,EAAEnB,CAAC,EAAEyE,EAAE,IAAIo/F,IAAG/jG,EAAEC,EAAE,EAAEb,EAAEC,EAAE,CAAC,EAAE,OAAO9B,EAAE,gBAAgBoH,EAAE,CAACjH,EAAE,CAAC,EAAE,SAAS,CAAC,CAAC,IAAIumG,IAAG,CAAC,WAAW56G,GAAG,YAAY,QAAQ,WAAW26G,GAAG,EAAE,SAASE,IAAI7mG,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,MAAME,EAAE,QAAQE,CAAC,EAAEJ,EAAE,CAAC,KAAKK,CAAC,EAAEH,EAAE,CAAC,EAAE,CAAC,EAAE,EAAEs1E,GAAG,EAAE,QAAQ,EAAE,QAAQ,KAAK,YAAY,4DAA4D,EAAE,IAAI,EAAEp1E,EAAE,SAAS,EAAE,MAAM,EAAE,CAAC,aAAa2B,EAAE,YAAYC,EAAE,QAAQC,CAAC,EAAEsgF,GAAG,EAAEliF,EAAE,EAAE,MAAM,EAAE,KAAK,EAAE,MAAM,CAACD,EAAE,eAAe4B,EAAE,EAAE,MAAMD,CAAC,EAAE3B,EAAE,eAAe,CAAC6B,EAAE,MAAM,EAAE,QAAQA,CAAC,CAAC,CAAC,CAAC,IAAI6kG,IAAG,CAAC,WAAW56G,GAAG,YAAY,QAAQ,WAAW26G,GAAG,EAAE,SAASE,IAAI/mG,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,MAAMK,CAAC,EAAE,EAAE,CAAC,KAAK,CAAC,EAAED,EAAE,EAAE,IAAI,GAAGC,EAAE,MAAM,QAAQ,IAAI,EAAEA,EAAE0B,EAAE,EAAE,MAAM,OAAOC,EAAE3B,EAAE,MAAM,CAAC,EAAE4B,EAAE,IAAI,MAAMF,EAAE,CAAC,EAAEW,EAAE,EAAE,QAAQsB,EAAE,EAAEA,EAAEjC,EAAEiC,IAAIA,IAAI,IAAI/B,EAAES,GAAG,EAAE,EAAE,MAAMsB,CAAC,GAAG,IAAIrB,EAAE,CAAC,EAAEC,EAAE,IAAI,MAAMb,CAAC,EAAE,KAAK,CAAC,EAAEc,EAAE,EAAE,MAAM,MAAM,EAAEA,EAAE,CAAC,EAAE,EAAE,IAAIC,EAAE,IAAI,MAAMd,CAAC,EAAE,QAAQgC,EAAE,EAAEA,EAAElB,EAAE,OAAOkB,IAAI,CAACpB,EAAE,CAAC,EAAEoB,EAAE,IAAI,EAAEgoF,GAAG,CAAC,OAAO,CAAC,EAAE,CAAC,EAAE,QAAQ9rF,EAAE,MAAM,CAAC,MAAM0C,EAAE,KAAKC,CAAC,CAAC,CAAC,EAAEyE,EAAEm/E,GAAG,CAAC,OAAO,CAAC,EAAE,CAAC,EAAE,QAAQvmF,EAAE,MAAM,CAAC,MAAM+B,CAAC,CAAC,CAAC,EAAEa,EAAEkB,CAAC,EAAEsD,EAAE3E,EAAE,KAAK,CAAC,CAAC,CAAC,OAAOA,EAAE,QAAQqB,GAAG9D,EAAE,8BAA8B8D,CAAC,CAAC,EAAElB,CAAC,CAAC,IAAIkkG,IAAG,CAAC,WAAW76G,GAAG,YAAY,QAAQ,WAAW46G,GAAG,EAAME,IAAG,KAAK,CAAC,YAAYrmG,EAAEV,EAAE,CAAC,KAAK,cAAc,CAAC,IAAI,YAAY,EAAE,IAAI,EAAEU,EAAE,WAAWP,EAAEO,EAAE,UAAUiB,EAAEjB,EAAE,OAAOkB,EAAElB,EAAE,YAAYmB,EAAED,EAAE,KAAK,KAAKD,EAAE,CAAC,EAAE,KAAK,YAAY,CAACxB,EAAE0B,CAAC,EAAE,IAAIC,EAAE,MAAM,EAAE,WAAWU,EAAE,KAAK,MAAM,EAAE,CAAC,EAAE,EAAE,EAAE,EAAE,EAAEE,EAAE;AAAA;AAAA,MAEh9CC,EAAE,GAAGhB,EAAE,EAAE,IAAIgB,EAAE;AAAA,oCACehB,CAAC;AAAA;AAAA;AAAA,SAG5B,IAAIiB,EAAE,GAAGjB,EAAE,EAAE,IAAIiB,EAAE;AAAA,oCACQjB,CAAC;AAAA;AAAA;AAAA,SAG5B,KAAK,SAAS;AAAA,0CACmBG,CAAC;AAAA;AAAA;AAAA,UAGjCa,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA,UAKDC,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,YASChB,CAAC,cAAc,CAAC;AAAA,wDAC4BA,CAAC;AAAA;AAAA;AAAA;AAAA,8BAI3BY,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,YAgBnBE,CAAC;AAAA;AAAA;AAAA,iCAGoBF,CAAC;AAAA,cACpB,IAAI,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,YAiBPE,CAAC;AAAA,qBACQ,IAAI,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,YAedA,CAAC;AAAA,qBACQ,IAAI,CAAC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,YAedA,CAAC;AAAA;AAAA,oBAEO,CAAC;AAAA;AAAA,KAEhB,CAAC,EAAE,SAASskG,IAAIlnG,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,EAAE,WAAW,CAAC,EAAE,EAAE,CAAC,YAAY,CAAC,EAAED,EAAE2B,EAAE1B,EAAE,MAAM,OAAO2B,EAAE,CAAC,EAAEC,EAAE,EAAES,EAAEhV,EAAE,mBAAmB,CAACuU,CAAC,EAAEF,CAAC,EAAEY,EAAEtC,EAAEqC,GAAG,OAAOC,EAAE2kF,GAAG,CAAC,OAAO,CAAC,EAAEjnF,CAAC,EAAE,QAAQH,EAAE,MAAM,CAAC,KAAKwC,CAAC,CAAC,CAAC,EAAEV,EAAE,KAAKW,CAAC,EAAEV,EAAEvU,EAAE,iBAAiB,EAAEqU,CAAC,EAAE,CAAC,GAAG,IAAIa,EAAElV,EAAE,aAAa,gBAAgBiV,EAAE,MAAMV,EAAE,CAAC,EAAEY,EAAEtE,EAAE,cAAc,CAACoE,EAAE,MAAMV,CAAC,CAAC,CAAC,EAAEa,EAAE2jF,GAAG,CAAC,OAAO,CAAC,EAAE9jF,CAAC,EAAE,QAAQzC,EAAE,MAAM,CAAC,MAAM,CAAC,GAAG2C,CAAC,CAAC,CAAC,CAAC,EAAEb,EAAE,KAAKc,CAAC,EAAE,IAAIkB,EAAEpH,GAAGyD,EAAE,KAAK,EAAE,EAAE,CAACqE,EAAEC,EAAEC,EAAEC,EAAE0C,IAAI,CAAC,IAAI,EAAE7C,EAAE,MAAM,CAAC,EAAEM,EAAEN,EAAE,MAAM,CAAC,EAAEO,EAAEvX,EAAE,aAAa,8BAA8BsX,EAAEuC,CAAC,EAAErC,EAAE,CAAC,WAAWD,EAAE,OAAOD,EAAE,UAAU,EAAE,YAAYuC,CAAC,EAAEpC,EAAE,IAAI8hG,IAAG/hG,EAAEP,CAAC,EAAES,EAAElF,EAAE,cAAciF,EAAE,CAACT,EAAEE,CAAC,EAAEC,CAAC,EAAE,GAAG7C,EAAE,KAAKoD,CAAC,EAAEA,EAAE,MAAM,CAAC,IAAImC,EAAE,OAAOnC,EAAE,IAAIC,EAAE05F,GAAG,CAAC,QAAQ7+F,EAAE,MAAM,CAAC,MAAM,EAAE,KAAKqH,EAAE,KAAK,EAAE,MAAM,SAAS,CAAC,CAAC,EAAES,EAAEk+F,GAAG,CAAC,OAAO,CAAC,EAAE7gG,CAAC,EAAE,QAAQnF,EAAE,MAAM,CAAC,KAAK,CAAC8E,EAAEC,CAAC,CAAC,CAAC,CAAC,EAAE,OAAOjD,EAAE,KAAKqD,CAAC,EAAErD,EAAE,KAAKgG,CAAC,EAAE,EAAE5C,EAAET,EAAEqD,EAAEnD,EAAE0C,CAAC,CAAC,EAAED,EAAE,EAAExE,EAAE,qBAAqB,EAAEkB,EAAE,CAAC,EAAEc,EAAE2hF,GAAG,CAAC,OAAO,CAAC,EAAAn/E,CAAC,EAAE,QAAQpH,EAAE,MAAM,CAAC,MAAM0C,CAAC,CAAC,CAAC,EAAE6B,EAAEK,EAAE,GAAGpC,GAAG,KAAK,CAACV,EAAE,KAAK8C,CAAC,EAAE,IAAIJ,EAAEhX,EAAE,uBAAuBgV,CAAC,EAAE+B,EAAE6iF,GAAG,CAAC,OAAO,CAAC7iF,CAAG,EAAE,QAAQvE,EAAE,MAAM,CAAC,KAAKwE,CAAC,CAAC,CAAC,CAAC,CAAC,OAAO1C,EAAE,QAAQ0C,GAAGxE,EAAE,8BAA8BwE,CAAC,CAAC,EAAED,CAAC,CAAC,IAAI0iG,IAAG,CAAC,WAAW/6G,GAAG,YAAY,QAAQ,WAAW86G,GAAG,EAAME,IAAI,CAACzf,IAAGG,IAAGG,IAAGG,IAAGG,IAAGI,IAAGE,IAAGE,IAAGO,IAAGE,IAAGG,IAAGG,IAAGG,IAAGI,IAAGG,IAAGI,IAAGE,IAAGI,IAAGE,IAAGE,IAAGI,IAAGS,IAAGE,IAAGI,IAAGE,IAAGS,IAAGG,IAAGI,IAAGtI,IAAG0I,IAAGS,IAAGS,IAAGM,IAAGG,IAAGE,IAAGE,IAAGE,IAAGI,IAAGG,IAAGG,IAAGO,IAAGE,IAAGE,IAAGG,IAAGI,IAAGI,IAAGE,IAAGG,IAAGG,IAAGE,IAAGI,IAAGI,IAAGI,IAAGG,IAAGI,IAAGE,IAAGG,IAAGI,IAAGG,IAAGE,IAAGG,IAAGI,IAAGG,IAAGK,IAAGE,IAAGG,IAAGI,IAAGI,IAAGI,IAAGxR,IAAG0R,IAAGzI,IAAG4I,IAAGG,IAAGG,IAAG7R,IAAGiS,IAAGI,IAAGE,IAAGI,IAAGG,IAAGI,IAAGG,IAAGI,IAAGI,IAAGG,IAAGG,IAAGI,IAAGE,IAAGE,IAAGI,IAAGE,IAAGE,IAAGE,IAAGE,IAAGI,IAAGI,IAAGI,IAAGY,IAAGjW,IAAGqW,IAAGG,IAAGG,IAAGG,IAAGvQ,IAAG0Q,IAAGI,IAAGE,IAAGI,IAAGI,IAAGzY,IAAG2Y,IAAGE,IAAGE,IAAGE,IAAGE,IAAGhS,IAAGiP,IAAGkD,IAAGI,IAAGI,IAAGjZ,IAAGqZ,IAAGG,IAAGI,IAAGG,IAAGI,IAAGE,IAAGG,IAAGG,IAAGI,IAAGG,IAAGG,IAAGG,IAAGI,IAAGG,IAAGI,IAAGG,IAAG/W,IAAGqQ,IAAG6G,IAAGE,IAAGE,IAAGE,IAAGE,IAAGE,IAAGE,IAAGE,IAAGG,IAAGG,IAAGG,IAAGE,IAAGE,IAAGG,IAAGE,IAAGE,IAAGE,IAAGnJ,IAAG/U,IAAGqe,IAAGG,IAAGE,IAAGI,IAAGM,IAAGG,IAAGrf,IAAGuf,IAAGE,IAAGG,IAAGzJ,GAAE,EAAE,QAAQ19F,KAAKonG,IAAInuG,GAAG+G,CAAC,EAAE,IAAIqnG,IAAI,SAASrnG,EAAE,CAACA,EAAEA,EAAE,QAAQ,CAAC,EAAE,UAAUA,EAAEA,EAAE,MAAM,CAAC,EAAE,QAAQA,EAAEA,EAAE,KAAK,CAAC,EAAE,OAAOA,EAAEA,EAAE,OAAO,CAAC,EAAE,SAASA,EAAEA,EAAE,UAAU,CAAC,EAAE,WAAW,GAAGqnG,KAAKA,GAAG,CAAC,EAAE,EAAE,IAAIC,IAAI,SAAStnG,EAAE,CAACA,EAAEA,EAAE,OAAO,CAAC,EAAE,SAASA,EAAEA,EAAE,KAAK,CAAC,EAAE,OAAOA,EAAEA,EAAE,MAAM,CAAC,EAAE,QAAQA,EAAEA,EAAE,MAAM,CAAC,EAAE,QAAQA,EAAEA,EAAE,UAAU,CAAC,EAAE,YAAYA,EAAEA,EAAE,QAAQ,CAAC,EAAE,UAAUA,EAAEA,EAAE,IAAI,CAAC,EAAE,KAAK,GAAGsnG,KAAKA,GAAG,CAAC,EAAE,EAAE,IAAIC,GAAG,SAASC,IAAIxnG,EAAE,CAACunG,GAAGvnG,EAAE,KAAK,MAAMxT,GAAG,KAAK,CAAC,SAAS,QAAQ,SAAS,SAAS,QAAQ,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,QAAQ,CAAC,CAAC,CAAC,SAASi7G,IAAIznG,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,EAAE,EAAE,EAAE,KAAK,EAAE,uBAAuB0B,CAAC,EAAE,EAAE,GAAG1B,EAAE,QAAQ,WAAW,EAAE,QAAQ,UAAU,MAAM,IAAI,MAAM,6DAA6D,EAAE,GAAG,CAAC,WAAW2B,EAAE,WAAWC,EAAE,WAAWS,EAAE,eAAeC,CAAC,EAAEvC,EAAEwC,EAAE1C,EAAE,UAAU,IAAIG,EAAE,MAAM,EAAE,GAAGwC,EAAE3C,EAAE,UAAU,IAAI,EAAE,MAAM,EAAE,GAAG4C,EAAE,EAAE,GAAG,GAAG,KAAK,CAAC,IAAIyE,EAAErH,EAAE,UAAU,IAAI,EAAE,MAAM,EAAE,GAAGqH,EAAE,MAAM,SAAS,EAAE,MAAM,IAAI,MAAM,uDAAuDA,EAAE,MAAM,MAAM,GAAG,EAAEzE,EAAEyE,EAAE,EAAE,CAAC,IAAIvD,EAAEjC,GAAG,KAAK,EAAE7B,EAAE,UAAU,IAAI6B,EAAE,MAAM,EAAE,GAAG,EAAEulG,GAAG5kG,CAAC,EAAE,GAAG,GAAG,KAAK,MAAM,IAAI,MAAM,GAAGA,CAAC,oEAAoE,EAAE,IAAI4E,EAAEtF,EAAE3B,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEyE,EAAE7C,EAAE,EAAE,MAAM,CAAC,EAAE,EAAE,MAAM,CAAC,EAAEwC,EAAEnW,GAAG,2BAA2B+R,EAAE,MAAM,MAAM,EAAE,EAAE,EAAE,EAAE,MAAM,MAAM,EAAE,EAAE,CAAC,EAAEqE,EAAExE,EAAE,WAAW,CAAC,GAAGuE,EAAE6C,EAAExC,CAAC,EAAEzE,EAAE,KAAK,EAAEsE,EAAEzE,EAAE,UAAU,IAAIwE,EAAE,MAAM,EAAE,GAAGE,EAAE,IAAI,WAAW,IAAI,WAAWvE,EAAE,KAAK,EAAE,MAAM,EAAEwE,EAAE,IAAI,WAAW,IAAI,WAAW,EAAE,KAAK,EAAE,MAAM,EAAE,OAAO0iG,GAAG3kG,EAAEgC,EAAEvE,EAAE,MAAM,OAAOwC,EAAEgC,EAAE,EAAE,MAAM,OAAO7C,EAAEC,EAAE,EAAEa,EAAEkB,EAAErB,GAAG,EAAEgC,CAAC,EAAED,CAAC,CAAC,IAAIgjG,IAAG,CAAC,WAAWl7G,GAAG,YAAY,OAAO,UAAUg7G,IAAI,WAAWC,GAAG,EAAE,SAASE,GAAG3nG,EAAE,EAAE,CAAC,IAAIE,EAAE,SAASE,EAAE,EAAE,CAACF,EAAE,EAAE,KAAK,MAAMF,EAAE,KAAK,CAAC,SAAS,SAAS,QAAQ,CAAC,CAAC,CAAC,SAASK,EAAE,EAAE,CAAC,GAAG,CAAC,QAAQ,EAAE,OAAO,CAAC,EAAE0B,CAAC,CAAC,EAAE,EAAEC,EAAE,EAAE,UAAU,IAAID,EAAE,MAAM,EAAE,GAAGE,EAAE,EAAE,WAAWF,EAAE,MAAM,GAAGA,EAAE,KAAK,EAAEW,EAAE,EAAE,UAAU,IAAIT,EAAE,MAAM,EAAE,GAAG,OAAO1D,EAAE,cAAc0D,EAAE,KAAK,IAAI,GAAG/B,EAAE8B,EAAEqlG,GAAGtlG,EAAE,KAAK,EAAEW,CAAC,EAAET,CAAC,CAAC,MAAM,CAAC,WAAWjC,EAAE,YAAY,OAAO,UAAUI,EAAE,WAAWC,CAAC,CAAC,CAAC,IAAIunG,IAAGD,GAAGzoH,EAAE,EAAM2oH,IAAGF,GAAGxoH,EAAE,EAAM2oH,IAAGH,GAAGvoH,EAAE,EAAE,SAAS2oH,GAAG/nG,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAE,SAASC,EAAE,EAAE,CAACD,EAAE,EAAE,KAAK,MAAMJ,EAAE,KAAK,CAAC,SAAS,QAAQ,SAAS,SAAS,QAAQ,SAAS,SAAS,QAAQ,CAAC,CAAC,CAAC,SAAS,EAAE,EAAE,CAAC,GAAG,CAAC,QAAQ+B,EAAE,OAAOC,CAAC,EAAE,EAAE,CAAC,EAAEC,EAAE,EAAES,CAAC,EAAEV,EAAEW,EAAEZ,EAAE,UAAU,IAAIE,EAAE,MAAM,EAAE,GAAGW,EAAEb,EAAE,UAAU,IAAIW,EAAE,MAAM,EAAE,GAAGG,EAAE3C,GAAG,KAAKA,EAAE+B,EAAE,MAAMa,EAAEpV,EAAE,2BAA2BuU,EAAE,MAAMS,EAAE,KAAK,EAAEsB,EAAEjC,EAAE,WAAWe,EAAED,CAAC,EAAE,GAAGtE,EAAE,cAAcuE,CAAC,IAAI,EAAE,OAAOkB,EAAE,IAAI,EAAE,IAAI,WAAW,IAAI,WAAW/B,EAAE,KAAK,EAAE,MAAM,EAAEqF,EAAE,IAAI,WAAW,IAAI,WAAW5E,EAAE,KAAK,EAAE,MAAM,EAAEoC,EAAE/C,EAAE,UAAU,IAAIiC,EAAE,MAAM,EAAE,GAAG,OAAO5D,EAAEuC,EAAE,EAAEV,EAAE,MAAM,OAAOW,EAAE0E,EAAE5E,EAAE,MAAM,OAAO2kG,GAAGplG,EAAE,KAAK,EAAE6C,CAAC,EAAEd,CAAC,CAAC,MAAM,CAAC,WAAWhE,EAAE,YAAY,OAAO,UAAUK,EAAE,WAAW,CAAC,CAAC,CAAC,IAAI2nG,IAAI,GAAGC,IAAGF,GAAGtoH,GAAGuoH,GAAG,EAAME,GAAG,SAASC,IAAInoG,EAAE,CAACkoG,GAAGloG,EAAE,KAAK,MAAMtgB,GAAG,KAAK,CAAC,QAAQ,SAAS,SAAS,QAAQ,CAAC,CAAC,CAAC,SAAS0oH,IAAIpoG,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,CAAC,EAAEF,EAAEI,EAAEF,EAAE,WAAW,EAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,KAAK,EAAE,GAAG3B,EAAE,cAAc6B,EAAE,KAAK,IAAI,EAAE,OAAOA,EAAE,IAAIC,EAAE,EAAE,IAAI0B,GAAG7B,EAAE,UAAU,IAAI6B,EAAE,MAAM,EAAE,EAAE,EAAE,EAAE,IAAI,WAAW,IAAI,WAAW1B,CAAC,EAAE,MAAM,EAAE,EAAEH,EAAE,UAAU,IAAIE,EAAE,MAAM,EAAE,GAAG,OAAO8nG,GAAG,EAAE7nG,EAAE,OAAOgnG,GAAGjnG,EAAE,KAAK,EAAE,CAAC,EAAEA,CAAC,CAAC,IAAIioG,IAAG,CAAC,WAAW3oH,GAAG,YAAY,OAAO,UAAUyoH,IAAI,WAAWC,GAAG,EAAE,SAASE,GAAGtoG,EAAE,CAAC,GAAG,CAAC,OAAO,CAAC,EAAE,CAAC,EAAE,QAAQE,CAAC,EAAEF,EAAE,GAAG,EAAE,QAAQ,SAAS,OAAOjD,GAAGmD,EAAE,SAAS,EAAE,MAAM,EAAE,EAAE,MAAM,EAAE,KAAK,EAAE,IAAIE,EAAEF,EAAE,WAAW,EAAE,MAAM,EAAE,KAAK,EAAEG,EAAEH,EAAE,mBAAmB,CAAC,EAAE,OAAOA,EAAE,mBAAmBE,CAAC,EAAE,IAAIC,CAAC,EAAED,CAAC,CAAC,IAAImoG,IAAG,CAAC,WAAW7jH,GAAG,YAAY,OAAO,WAAW4jH,EAAE,EAAME,GAAG,SAASC,IAAIzoG,EAAE,CAACwoG,GAAGxoG,EAAE,KAAK,MAAM/T,GAAG,KAAK,CAAC,SAAS,QAAQ,SAAS,SAAS,SAAS,QAAQ,QAAQ,CAAC,CAAC,CAAC,SAASy8G,GAAG1oG,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAACK,EAAE,CAAC,EAAEsoG,IAAI,EAAE,EAAE,MAAMvoG,EAAE,IAAI,EAAE,EAAE,GAAG,QAAQ0C,EAAE,EAAEA,EAAE,EAAE,OAAOA,IAAI,EAAEA,CAAC,IAAIA,IAAI,EAAE,IAAI,IAAIf,EAAE6mG,IAAI,EAAE,EAAE,MAAMxoG,EAAE,IAAI,EAAE4B,EAAE,CAAC,OAAO,EAAE,EAAE,OAAO,MAAM3B,EAAE,MAAM,EAAE,EAAE,KAAK,EAAE,GAAG,EAAE,CAAC,IAAIyC,EAAEwlG,GAAG,CAAC,OAAO,EAAE,QAAQpoG,CAAC,CAAC,EAAE,OAAO4C,EAAE,MAAMf,EAAEe,CAAC,CAAC,IAAIb,EAAE/B,EAAE,WAAW6B,EAAEC,EAAE,KAAK,EAAEU,EAAExC,EAAE,UAAU,IAAI8B,EAAE,MAAM,EAAE,GAAGW,EAAEzC,EAAE,UAAU,IAAI+B,EAAE,MAAM,EAAE,GAAGW,EAAE,IAAI,WAAW,IAAI,WAAW,CAAC,EAAE,MAAM,EAAEC,EAAE,IAAI,WAAW,IAAI,WAAWb,EAAE,KAAK,EAAE,MAAM,EAAE,OAAOwmG,GAAG9lG,EAAEG,EAAEb,EAAE,MAAM,OAAOqlG,GAAGrlG,EAAE,KAAK,EAAEW,EAAEC,EAAE,EAAE,MAAM,EAAEX,CAAC,CAAC,SAAS2mG,IAAI5oG,EAAE,EAAE,CAAC,IAAIE,EAAE,IAAI,MAAMF,EAAE,MAAM,EAAE,QAAQI,EAAE,EAAEA,EAAEF,EAAE,OAAOE,IAAIF,EAAEE,CAAC,EAAEJ,EAAE,EAAEI,CAAC,CAAC,EAAE,OAAOF,CAAC,CAAC,SAASyoG,IAAI3oG,EAAE,EAAE,CAAC,IAAIE,EAAE,CAAC,EAAEE,EAAE,CAAC,EAAE,QAAQC,EAAE,EAAEA,EAAEL,EAAE,OAAO,EAAEK,EAAEL,EAAEK,CAAC,IAAI,GAAGH,EAAE,KAAKF,EAAEK,CAAC,CAAC,EAAEL,EAAE,EAAEK,CAAC,CAAC,IAAI,GAAGD,EAAE,KAAK,EAAEC,CAAC,CAAC,EAAE,QAAQA,EAAE,EAAEA,EAAED,EAAE,OAAO,EAAEC,EAAE,CAAC,IAAI,EAAE,GAAG,QAAQ,EAAE,EAAE,EAAED,EAAE,OAAO,EAAE,EAAEA,EAAE,CAAC,GAAGC,IAAI,IAAI,IAAID,EAAE,CAAC,EAAEA,EAAE,CAAC,KAAK,EAAE,GAAGA,EAAE,CAAC,EAAEC,CAAC,CAAC,MAAM,CAACH,EAAEE,CAAC,CAAC,CAAC,IAAIyoG,IAAG,CAAC,WAAW58G,GAAG,YAAY,OAAO,WAAWy8G,GAAG,UAAUD,GAAG,EAAE,SAASK,GAAG9oG,EAAE,EAAEE,EAAE,CAAC,IAAIE,EAAEJ,EAAE,MAAMK,EAAEL,EAAE,MAAM,OAAO,EAAEzB,EAAE,eAAe,EAAE6B,CAAC,EAAE,EAAE,EAAE2B,EAAErU,EAAE,mBAAmB,EAAE2S,CAAC,EAAE2B,EAAE,KAAKC,EAAE,GAAG,GAAGF,GAAG,KAAK,CAAC,IAAIW,EAAE,IAAI,MAAMrC,CAAC,EAAE,QAAQwC,EAAE,EAAEA,EAAEH,EAAE,OAAOG,IAAIH,EAAEG,CAAC,EAAEzC,EAAE2B,EAAEc,CAAC,CAAC,EAAE,EAAEnV,EAAE,iBAAiB,EAAE,OAAO2S,CAAC,EAAE2B,EAAE0mG,GAAG,CAAC,OAAO,CAAC,EAAE1oG,CAAC,EAAE,MAAM,CAAC,KAAK+B,CAAC,EAAE,QAAQ7B,CAAC,CAAC,EAAE,IAAIyC,EAAEzC,EAAE,UAAU,IAAIF,EAAE,MAAM,EAAE,GAAGE,EAAE,UAAU,IAAI8B,EAAE,MAAM,EAAE,KAAKW,IAAIV,EAAE,GAAG,CAAC,MAAM,CAAC,WAAWD,EAAE,aAAa,EAAE,KAAK,EAAE,mBAAmBC,CAAC,CAAC,CAAC,IAAI8mG,GAAG,SAASC,IAAIhpG,EAAE,CAAC+oG,GAAG/oG,EAAE,KAAK,MAAMrgB,GAAG,KAAK,CAAC,wBAAwB,CAAC,CAAC,CAAC,SAASspH,IAAIjpG,EAAE,CAAC,GAAG,CAAC,QAAQ,EAAE,OAAOE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,KAAKK,EAAE,SAAS,CAAC,EAAED,EAAE,CAAC,EAAE,CAAC,EAAEF,EAAE8B,EAAE,EAAE,UAAU,IAAI,EAAE,MAAM,EAAE,GAAG,EAAE,EAAE,CAAC,WAAWU,EAAE,KAAK,EAAE,aAAaE,EAAE,mBAAmBC,CAAC,EAAEimG,GAAG,EAAEzoG,EAAE,CAAC,EAAE,GAAGwC,EAAE,CAAC,IAAI4B,EAAE,EAAE,UAAU,IAAI/B,EAAE,MAAM,EAAE,GAAG,EAAEA,EAAEV,EAAEyC,CAAC,CAAC,IAAI3B,EAAE,EAAE,MAAM,OAAOpV,EAAE,2BAA2B,MAAM,EAAEoV,CAAC,EAAE,GAAG,CAACkB,EAAEC,CAAC,EAAEvW,EAAE,0BAA0B,EAAE,MAAM,CAAC,EAAE4Z,EAAE/I,EAAE,cAAc0F,CAAC,EAAE,EAAE,EAAE,WAAWD,EAAE,EAAE,KAAK,EAAE,GAAGzF,EAAE,cAAc,EAAE,KAAK,IAAI,EAAE,CAAC,IAAIkG,EAAE,EAAE,UAAU,IAAI,EAAE,MAAM,EAAE,GAAGskG,GAAG/mG,EAAEsF,EAAE7C,CAAC,CAAC,CAAC,GAAG5B,GAAG,EAAE,YAAYH,EAAE,MAAM,EAAE,EAAE,CAAC,IAAI+B,EAAE/W,EAAE,qBAAqB,EAAE,MAAMkV,CAAC,EAAE,EAAE,MAAM6B,CAAC,CAAC,OAAO,CAAC,CAAC,IAAIykG,IAAG,CAAC,WAAWvpH,GAAG,YAAY,OAAO,UAAUqpH,IAAI,WAAWC,GAAG,EAAME,GAAG,SAASC,IAAIppG,EAAE,CAACmpG,GAAGnpG,EAAE,KAAK,MAAMpgB,GAAG,KAAK,CAAC,wBAAwB,CAAC,CAAC,CAAC,SAASypH,IAAIrpG,EAAE,CAAC,GAAG,CAAC,QAAQ,EAAE,OAAOE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,KAAKK,EAAE,SAAS,CAAC,EAAED,EAAE,CAAC,EAAE,CAAC,EAAEF,EAAE8B,EAAE,EAAE,UAAU,IAAI,EAAE,MAAM,EAAE,GAAG,EAAE,EAAE,CAAC,WAAWU,EAAE,KAAK,EAAE,aAAaE,EAAE,mBAAmBC,CAAC,EAAEimG,GAAG,EAAEzoG,EAAE,CAAC,EAAE,GAAGwC,EAAE,CAAC,IAAI4B,EAAE,EAAE,UAAU,IAAI/B,EAAE,MAAM,EAAE,GAAG,EAAEA,EAAEV,EAAEyC,CAAC,CAAC,IAAI3B,EAAE,EAAE,MAAM,OAAOpV,EAAE,2BAA2B,MAAM,EAAEoV,CAAC,EAAE,GAAG,CAACkB,EAAEC,CAAC,EAAEvW,EAAE,0BAA0B,EAAE,MAAM,CAAC,EAAE4Z,EAAE/I,EAAE,cAAc0F,CAAC,EAAE,EAAE,EAAE,WAAWD,EAAE,EAAE,KAAK,EAAE,GAAGzF,EAAE,cAAc,EAAE,KAAK,IAAI,EAAE,CAAC,IAAIkG,EAAE,EAAE,UAAU,IAAI,EAAE,MAAM,EAAE,GAAG0kG,GAAGnnG,EAAEsF,EAAE7C,CAAC,CAAC,CAAC,GAAG5B,GAAG,EAAE,YAAYH,EAAE,MAAM,EAAE,EAAE,CAAC,IAAI+B,EAAE/W,EAAE,qBAAqB,EAAE,MAAMkV,CAAC,EAAE,EAAE,MAAM6B,CAAC,CAAC,OAAO,CAAC,CAAC,IAAI6kG,IAAG,CAAC,WAAW1pH,GAAG,YAAY,OAAO,UAAUwpH,IAAI,WAAWC,GAAG,EAAE,SAASE,GAAGvpG,EAAE,CAAC,IAAI,EAAE,SAASE,EAAEG,EAAE,CAAC,EAAEA,EAAE,KAAK,MAAML,EAAE,KAAK,CAAC,SAAS,SAAS,SAAS,SAAS,QAAQ,CAAC,CAAC,CAAC,SAASI,EAAEC,EAAE,CAAC,GAAG,CAAC,QAAQ,EAAE,OAAO,EAAE,MAAM0B,CAAC,EAAE1B,EAAE,CAAC,KAAK2B,CAAC,EAAED,EAAE,CAAC,EAAEE,CAAC,EAAE,EAAES,EAAE,EAAE,UAAU,IAAIT,EAAE,MAAM,EAAE,GAAGU,EAAED,EAAEE,EAAEX,EAAE,CAAC,WAAWY,EAAE,KAAKC,EAAE,mBAAmBkB,CAAC,EAAE8kG,GAAG7mG,EAAED,EAAE,CAAC,EAAE,GAAGgC,EAAE,CAAC,IAAIW,EAAE,EAAE,UAAU,IAAI9B,EAAE,MAAM,EAAE,GAAG8B,IAAIjC,IAAIE,EAAEC,EAAEF,EAAEgC,EAAE,CAAC,IAAI,EAAE/B,EAAE,MAAM,MAAM,EAAE,EAAE,EAAE0E,EAAE,EAAE,WAAW,EAAE,OAAO,EAAExC,EAAE,EAAE,UAAU,IAAIwC,EAAE,MAAM,EAAE,GAAG7C,EAAElG,EAAE,cAAc+I,EAAE,KAAK,EAAE5C,EAAE9B,EAAE,MAAME,EAAE,CAAC,CAAC,EAAE,OAAO,EAAEH,EAAE0kG,GAAGzkG,EAAE,KAAK,EAAE6B,EAAEC,EAAEI,CAAC,EAAEd,GAAG,EAAE,YAAYnB,EAAE,MAAM,EAAEyE,CAAC,CAAC,MAAM,CAAC,WAAWtH,EAAE,YAAY,OAAO,UAAUE,EAAE,WAAWE,CAAC,CAAC,CAAC,IAAIopG,IAAGD,GAAG1pH,EAAE,EAAM4pH,IAAGF,GAAGzpH,EAAE,EAAM4pH,IAAG/B,GAAG5nH,EAAE,EAAM4pH,IAAGhC,GAAG3nH,EAAE,EAAM4pH,IAAGjC,GAAG1nH,EAAE,EAAM4pH,IAAG9B,GAAG7nH,GAAG,EAAE,EAAM4pH,IAAGnC,GAAGxnH,EAAE,EAAM4pH,GAAG,SAASC,IAAIhqG,EAAE,CAAC+pG,GAAG/pG,EAAE,KAAK,MAAM5f,GAAG,KAAK,CAAC,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,QAAQ,CAAC,CAAC,CAAC,SAAS6pH,IAAIjqG,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,MAAME,EAAE,QAAQE,CAAC,EAAEJ,EAAEK,EAAE,EAAE,EAAE,EAAED,EAAE,UAAU,IAAIC,EAAE,MAAM,EAAE,GAAG,CAAC,WAAW,EAAE,QAAQ0B,EAAE,IAAIC,EAAE,gBAAgBC,CAAC,EAAE/B,EAAEwC,EAAEhV,EAAE,kBAAkB2S,EAAE,MAAM,EAAE0B,EAAE,EAAEC,EAAEC,CAAC,EAAEU,EAAED,EAAE,aAAaE,EAAEF,EAAE,YAAYG,EAAEH,EAAE,QAAQ,IAAII,EAAEJ,EAAE,QAAQ,MAAMsB,EAAEtB,EAAE,QAAQ,OAAO,EAAEA,EAAE,QAAQ,KAAK4E,EAAE5E,EAAE,aAAaoC,EAAEpC,EAAE,YAAY+B,EAAE/B,EAAE,WAAW,GAAGA,EAAE,aAAa,eAAe,MAAM,IAAI,MAAM,6CAA6CA,EAAE,UAAU,+BAA+B,EAAE,GAAGA,EAAE,gBAAgB,GAAGA,EAAE,iBAAiB,EAAE,MAAM,IAAI,MAAM,0EAA0EA,EAAE,cAAc,KAAKA,EAAE,aAAa,IAAI,EAAE,IAAIgC,EAAEtE,EAAE,WAAWsC,EAAE,SAAS,SAAS,EAAEiC,EAAEvE,EAAE,UAAU,IAAIsE,EAAE,MAAM,EAAE,GAAG,OAAOqlG,GAAG,EAAE1pG,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEsC,EAAEC,EAAEC,EAAEC,EAAEkB,EAAE,EAAEsD,EAAExC,EAAEL,EAAEE,CAAC,EAAED,CAAC,CAAC,IAAIwlG,IAAG,CAAC,WAAW9pH,GAAG,YAAY,OAAO,UAAU4pH,IAAI,WAAWC,GAAG,EAAME,GAAG,SAASC,IAAIpqG,EAAE,CAACmqG,GAAGnqG,EAAE,KAAK,MAAM,YAAY,KAAK,CAAC,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,QAAQ,CAAC,CAAC,CAAC,SAASqqG,IAAIrqG,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,CAAC,EAAE,EAAE,CAAC,WAAW,EAAE,QAAQ,EAAE,IAAI0B,EAAE,gBAAgBC,EAAE,WAAWC,CAAC,EAAE7B,EAAEsC,EAAEhV,EAAE,kBAAkB2S,EAAE,MAAM,EAAE,EAAE,EAAE0B,EAAEC,EAAEC,CAAC,EAAEU,EAAEzC,EAAE,WAAWwC,EAAE,SAASrC,EAAE,KAAK,EAAE,OAAO8pG,GAAGjqG,EAAE,UAAU,IAAIG,EAAE,MAAM,EAAE,GAAGH,EAAE,UAAU,IAAIyC,EAAE,MAAM,EAAE,GAAGD,EAAE,UAAUA,EAAE,WAAWA,EAAE,QAAQA,EAAE,SAASA,EAAE,QAAQA,EAAE,SAASA,EAAE,UAAUA,EAAE,SAASA,EAAE,YAAYA,EAAE,aAAaA,EAAE,YAAYA,EAAE,cAAcA,EAAE,eAAeA,EAAE,cAAcA,EAAE,qBAAqBA,EAAE,sBAAsBA,EAAE,qBAAqBA,EAAE,QAAQ,MAAMA,EAAE,QAAQ,IAAIA,EAAE,QAAQ,IAAI,EAAEC,CAAC,CAAC,IAAI2nG,IAAG,CAAC,WAAWjqH,GAAG,YAAY,OAAO,UAAU+pH,IAAI,WAAWC,GAAG,EAAME,GAAG,SAASC,IAAIxqG,EAAE,CAACuqG,GAAGvqG,EAAE,KAAK,MAAM,gBAAgB,KAAK,CAAC,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,QAAQ,CAAC,CAAC,CAAC,SAASyqG,IAAIzqG,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,GAAGK,EAAE,MAAM,CAAC,EAAE,EAAE,CAAC,WAAW,EAAE,QAAQ0B,EAAE,IAAIC,EAAE,gBAAgBC,CAAC,EAAE7B,EAAEsC,EAAEhV,EAAE,kBAAkB,EAAE,MAAM,EAAEqU,EAAE,EAAEC,EAAEC,CAAC,EAAEU,EAAEzC,EAAE,WAAW,EAAE,MAAM,EAAE,KAAK,EAAE,OAAOqqG,GAAGrqG,EAAE,UAAU,IAAIG,EAAE,MAAM,EAAE,GAAGH,EAAE,UAAU,IAAIyC,EAAE,MAAM,EAAE,GAAGD,EAAE,UAAUA,EAAE,WAAWA,EAAE,QAAQA,EAAE,SAASA,EAAE,QAAQA,EAAE,SAASA,EAAE,UAAUA,EAAE,SAASA,EAAE,YAAYA,EAAE,aAAaA,EAAE,YAAYA,EAAE,cAAcA,EAAE,eAAeA,EAAE,cAAcA,EAAE,qBAAqBA,EAAE,sBAAsBA,EAAE,qBAAqBA,EAAE,QAAQ,MAAMA,EAAE,QAAQ,IAAIA,EAAE,QAAQ,KAAKA,EAAE,YAAYA,EAAE,aAAaA,EAAE,WAAW,EAAEC,CAAC,CAAC,IAAI+nG,IAAG,CAAC,WAAWpqH,GAAG,YAAY,OAAO,UAAUkqH,IAAI,WAAWC,GAAG,EAAME,GAAG,SAASC,IAAI5qG,EAAE,CAAC2qG,GAAG3qG,EAAE,KAAK,MAAM,cAAc,KAAK,CAAC,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,QAAQ,CAAC,CAAC,CAAC,SAAS6qG,IAAI7qG,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,GAAGK,EAAE,MAAM,CAAC,EAAE,EAAE,CAAC,WAAW,EAAE,QAAQ0B,EAAE,IAAIC,CAAC,EAAE5B,EAAE6B,EAAEvU,EAAE,kBAAkB,EAAE,MAAM,EAAEqU,EAAE,EAAEC,CAAC,EAAEU,EAAExC,EAAE,WAAW,EAAE,MAAM,EAAE,KAAK,EAAE,OAAOyqG,GAAGzqG,EAAE,UAAU,IAAIG,EAAE,MAAM,EAAE,GAAGH,EAAE,UAAU,IAAIwC,EAAE,MAAM,EAAE,GAAGT,EAAE,UAAUA,EAAE,WAAWA,EAAE,SAASA,EAAE,QAAQA,EAAE,UAAUA,EAAE,SAASA,EAAE,aAAaA,EAAE,YAAYA,EAAE,eAAeA,EAAE,cAAcA,EAAE,sBAAsBA,EAAE,qBAAqBA,EAAE,QAAQ,IAAIA,EAAE,QAAQ,KAAKA,EAAE,aAAaA,EAAE,WAAW,EAAES,CAAC,CAAC,IAAIooG,IAAG,CAAC,WAAWvqH,GAAG,YAAY,OAAO,UAAUqqH,IAAI,WAAWC,GAAG,EAAE,SAASE,GAAG/qG,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,MAAME,CAAC,EAAEF,EAAE,CAAC,EAAEI,CAAC,EAAE,EAAE,CAAC,MAAMC,CAAC,EAAEH,EAAE,EAAE3B,EAAE,cAAc6B,EAAE,KAAK,EAAE,EAAE7B,EAAE,uBAAuB8B,EAAE,CAAC,EAAE,OAAO9B,EAAE,OAAO,IAAIA,EAAE,cAAc,CAAC,EAAE,IAAI,cAAc,CAAC,gBAAgB6B,EAAE,KAAK,kEAAkE,EAAEJ,EAAE,QAAQ,OAAOI,EAAE,MAAM,EAAE,CAAC,OAAOA,EAAE,OAAO,MAAM,EAAE,MAAMA,EAAE,KAAK,CAAC,CAAC,IAAI4qG,IAAG,CAAC,WAAWhiH,GAAG,YAAY,OAAO,WAAW+hH,EAAE,EAAME,GAAG,SAASC,IAAIlrG,EAAE,CAACirG,GAAGjrG,EAAE,KAAK,MAAMvf,GAAG,KAAK,CAAC,SAAS,QAAQ,SAAS,SAAS,QAAQ,SAAS,SAAS,SAAS,QAAQ,CAAC,CAAC,CAAC,SAAS0qH,IAAInrG,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,EAAE,EAAE,CAAC,EAAE,EAAE,CAAC,WAAW,EAAE,WAAW0B,CAAC,EAAE3B,EAAE,GAAGC,EAAE,QAAQ,WAAW,EAAE,QAAQ,UAAU,MAAM,IAAI,MAAM,4DAA4D,EAAE,IAAI2B,EAAE3B,EAAE,MAAM,OAAO4B,EAAE,EAAE,MAAM,OAAOS,EAAE,EAAErC,EAAE,MAAM2B,EAAE,CAAC,EAAE3B,EAAE,MAAM2B,EAAE,CAAC,EAAEW,EAAEZ,EAAE,EAAE,MAAME,EAAE,CAAC,EAAE,EAAE,MAAMA,EAAE,CAAC,EAAEW,EAAE,EAAEvC,EAAE,MAAM2B,EAAE,CAAC,EAAE3B,EAAE,MAAM2B,EAAE,CAAC,EAAEa,EAAEd,EAAE,EAAE,MAAME,EAAE,CAAC,EAAE,EAAE,MAAMA,EAAE,CAAC,EAAEa,EAAEzC,EAAE,MAAM,MAAM,EAAE,EAAE,EAAE2D,EAAE,EAAE,MAAM,MAAM,EAAE,EAAE,EAAE,EAAEzF,EAAE,cAAcuE,CAAC,EAAEwE,EAAE/I,EAAE,cAAcyF,CAAC,EAAES,EAAEnW,GAAG,2BAA2B+R,EAAE,MAAM,MAAM,EAAE,EAAE,EAAE,EAAE,MAAM,MAAM,EAAE,EAAE,CAAC,EAAE,OAAO,CAACuC,EAAEC,CAAC,CAAC,EAAEtE,EAAE,OAAOmE,IAAIC,EAAE,IAAI,kCAAkCD,CAAC,UAAUC,CAAC,4BAA4BtC,EAAE,KAAK,QAAQ,EAAE,KAAK,mBAAmB,CAAC,mBAAmB0B,CAAC,cAAc,EAAE,IAAI2C,EAAE,EAAE,CAAC,EAAEhC,EAAEE,CAAC,EAAE,CAAC,EAAEA,EAAEF,CAAC,EAAEiC,EAAE5C,EAAE,CAACuF,EAAEzE,EAAEF,CAAC,EAAE,CAAC2E,EAAE3E,EAAEE,CAAC,EAAE+B,EAAEmmG,GAAG,CAAC,OAAO,CAAC,EAAE1qG,CAAC,EAAE,QAAQH,EAAE,MAAM,CAAC,MAAMwE,CAAC,CAAC,CAAC,EAAEG,EAAEkmG,GAAG,CAAC,OAAO,CAAC,EAAE,CAAC,EAAE,QAAQ7qG,EAAE,MAAM,CAAC,MAAMyE,CAAC,CAAC,CAAC,EAAE4C,EAAErH,EAAE,UAAU,IAAI0E,EAAE,MAAM,EAAE,GAAGG,EAAE7E,EAAE,UAAU,IAAI2E,EAAE,MAAM,EAAE,GAAGG,EAAE,EAAEJ,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEK,EAAElD,EAAE8C,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEK,EAAE,KAAK,IAAI,EAAEoC,CAAC,EAAEnC,EAAEjF,EAAE,WAAW,CAACgF,EAAEF,EAAEC,CAAC,EAAEL,EAAE,KAAK,EAAEQ,EAAElF,EAAE,UAAU,IAAIiF,EAAE,MAAM,EAAE,GAAGE,EAAE,IAAI,WAAW,IAAI,WAAWT,EAAE,KAAK,EAAE,MAAM,EAAEoD,EAAE,IAAI,WAAW,IAAI,WAAWnD,EAAE,KAAK,EAAE,MAAM,EAAE,OAAOomG,GAAG1jG,EAAElC,EAAET,EAAE,MAAM,OAAOG,EAAEiD,EAAEnD,EAAE,MAAM,OAAO,EAAE9C,EAAEqD,CAAC,EAAElF,EAAE,YAAY0E,EAAE,MAAM,EAAE1E,EAAE,YAAY2E,EAAE,MAAM,EAAEM,EAAE,MAAMV,EAAEU,CAAC,CAAC,IAAIimG,IAAG,CAAC,WAAW3qH,GAAG,YAAY,OAAO,UAAUyqH,IAAI,WAAWC,GAAG,EAAE,SAASE,GAAGrrG,EAAE,CAAC,GAAG,CAAC,OAAO,CAAC,EAAE,CAAC,EAAE,MAAM,CAAC,MAAME,EAAE,KAAKE,CAAC,EAAE,QAAQC,CAAC,EAAEL,EAAE,CAAC,EAAE,CAAC,EAAEtE,GAAG,iBAAiB,EAAEwE,EAAEE,CAAC,EAAE2B,EAAErG,GAAG,iBAAiB,EAAE,MAAM,EAAE,CAAC,EAAEsG,EAAE3B,EAAE,SAAS,EAAE,MAAM,EAAE4B,EAAE5B,EAAE,WAAW,EAAE,EAAE,KAAK,EAAEqC,EAAEnE,EAAE,eAAe,EAAE,KAAK,EAAEoE,EAAEtC,EAAE,UAAU,IAAI4B,EAAE,MAAM,EAAE,GAAGF,EAAE,CAAC,IAAIe,EAAEpH,GAAG,kBAAkB,EAAEgH,CAAC,EAAE,OAAO,EAAE,QAAQ,SAASC,EAAE,YAAYX,EAAE,MAAMc,EAAEA,EAAEvE,EAAE,cAAc,CAAC,CAAC,EAAE8B,EAAE,mBAAmB4B,CAAC,EAAE,IAAID,EAAE,SAASc,EAAEA,EAAEvE,EAAE,cAAc,CAAC,CAAC,CAAC,EAAE0D,CAAC,CAAC,GAAG,EAAE,QAAQ,SAAS,CAAC,IAAIa,EAAEk4D,GAAGh5D,EAAE,EAAE,EAAE,EAAE,MAAM,EAAE,KAAK,EAAE,OAAOW,EAAE,YAAYG,EAAEb,CAAC,CAAC,IAAIW,EAAEvC,EAAE,mBAAmB4B,CAAC,EAAEY,EAAE,EAAE,MAAM,OAAO,GAAGA,IAAI,EAAEyoG,IAAItpG,EAAEU,EAAE,CAAC,EAAEE,EAAE,EAAE,CAAC,UAAUC,IAAI,EAAE0oG,IAAIvpG,EAAEU,EAAE,CAAC,EAAEA,EAAE,CAAC,EAAEE,EAAE,EAAE,CAAC,UAAUC,IAAI,EAAE2oG,IAAIxpG,EAAEU,EAAE,CAAC,EAAEA,EAAE,CAAC,EAAEA,EAAE,CAAC,EAAEE,EAAE,EAAE,CAAC,MAAM,CAAC,IAAIE,EAAEk4D,GAAGh5D,EAAE,EAAE,EAAE,EAAE,MAAM,EAAE,KAAK,EAAEY,EAAE,IAAIE,CAAC,CAAC,CAAC,OAAOb,CAAC,CAAC,SAASqpG,IAAItrG,EAAE,EAAEE,EAAEE,EAAEC,EAAE,CAAC,IAAI,EAAE,EAAE,EAAED,EAAE,CAAC,EAAE2B,EAAE3B,EAAE,CAAC,EAAE4B,EAAE,EAAE3B,EAAE,CAAC,EAAE,QAAQ4B,EAAE,EAAEA,EAAED,EAAEC,IAAI,CAAC,IAAIS,EAAET,EAAE,EAAEF,EAAE7B,EAAE,IAAIF,EAAE,SAAS0C,EAAEA,EAAErC,EAAE,CAAC,CAAC,EAAE,CAAC,EAAE,GAAGA,EAAE,CAAC,CAAC,CAAC,CAAC,SAASkrG,IAAIvrG,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,CAAC,IAAI,EAAE,EAAE0B,EAAE1B,EAAE,CAAC,EAAE2B,EAAE3B,EAAE,CAAC,EAAE4B,EAAE5B,EAAE,CAAC,EAAEqC,EAAEX,EAAE,EAAE,CAAC,EAAEY,EAAEX,EAAE,EAAE,CAAC,EAAE,QAAQY,EAAEb,EAAEa,EAAEF,EAAEE,IAAI,QAAQC,EAAEb,EAAEa,EAAEF,EAAEE,IAAI,CAAC,IAAIC,EAAEF,EAAE,EAAEC,EAAE3C,EAAE+B,EAAE7B,EAAE,IAAIJ,EAAE,SAAS8C,EAAEA,EAAE,EAAE,CAAC,CAAC,EAAE,CAAC,EAAE,GAAG,EAAE,CAAC,CAAC,CAAC,CAAC,SAAS0oG,IAAIxrG,EAAE,EAAEE,EAAEE,EAAEC,EAAE,EAAE,EAAE,CAAC,IAAI0B,EAAE,EAAEC,EAAE,EAAE,CAAC,EAAEC,EAAE,EAAE,CAAC,EAAES,EAAE,EAAE,CAAC,EAAEC,EAAEX,EAAE,EAAE,CAAC,EAAEY,EAAEX,EAAE,EAAE,CAAC,EAAEY,EAAEH,EAAE,EAAE,CAAC,EAAEI,EAAE,EAAE,CAAC,EAAE,QAAQkB,EAAEhC,EAAEgC,EAAErB,EAAEqB,IAAI,QAAQ,EAAE/B,EAAE,EAAEW,EAAE,IAAI,QAAQ0E,EAAE5E,EAAE4E,EAAEzE,EAAEyE,IAAI,CAAC,IAAIxC,EAAEd,EAAE,EAAE,EAAE9D,EAAEoH,EAAElH,EAAE0C,EAAEzC,EAAE,IAAIL,EAAE,SAAS8E,EAAEA,EAAE,EAAE,CAAC,CAAC,EAAE/C,CAAC,EAAEA,GAAG,EAAE,CAAC,CAAC,CAAC,CAAC,IAAI0pG,IAAG,CAAC,WAAWthH,GAAG,YAAY,OAAO,WAAWkhH,EAAE,EAAE,SAASK,IAAI1rG,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,CAAC,EAAE,EAAE,CAAC,WAAW,EAAE,MAAM,CAAC,EAAED,EAAE2B,EAAE,EAAE,OAAO,CAACuF,EAAExC,IAAIwC,EAAExC,CAAC,EAAE9C,EAAEtU,EAAE,YAAY2S,EAAE,MAAM,EAAE0B,CAAC,EAAEE,EAAEvU,EAAE,YAAYsU,EAAE,OAAO,EAAE,MAAM,EAAEU,EAAEhV,EAAE,oBAAoB2S,EAAE,MAAM,EAAE0B,CAAC,EAAEY,EAAEjV,EAAE,oBAAoB,EAAE,EAAE,MAAM,EAAEkV,EAAElV,EAAE,aAAagV,EAAE,EAAE,EAAE,MAAM,EAAEG,EAAEkoG,GAAG,CAAC,OAAO,CAAC,EAAE1qG,CAAC,EAAE,QAAQH,EAAE,MAAM,CAAC,MAAM8B,CAAC,CAAC,CAAC,EAAEc,EAAE4lG,GAAG,CAAC,OAAO,CAAC,EAAE7lG,CAAC,EAAE,QAAQ3C,EAAE,MAAM,CAAC,KAAK+B,CAAC,CAAC,CAAC,EAAE+B,EAAE+mG,GAAG,CAAC,OAAO,CAAC,EAAEjoG,CAAC,EAAE,QAAQ5C,EAAE,MAAM,CAAC,MAAMwC,CAAC,CAAC,CAAC,EAAE,EAAE2oG,GAAG,CAAC,OAAO,CAAC,EAAErnG,CAAC,EAAE,QAAQ9D,EAAE,MAAM,CAAC,MAAMyC,EAAE,KAAKC,CAAC,CAAC,CAAC,EAAE,OAAO1C,EAAE,YAAY2C,EAAE,MAAM,EAAE3C,EAAE,YAAY4C,EAAE,MAAM,EAAE5C,EAAE,YAAY8D,EAAE,MAAM,EAAE,CAAC,CAAC,IAAI2nG,IAAG,CAAC,WAAWjrH,GAAG,YAAY,OAAO,WAAWgrH,GAAG,EAAME,GAAG,SAASC,IAAI7rG,EAAE,CAAC4rG,GAAG5rG,EAAE,KAAK,MAAMrf,GAAG,KAAK,CAAC,SAAS,SAAS,UAAU,SAAS,SAAS,QAAQ,CAAC,CAAC,CAAC,SAASmrH,IAAI9rG,EAAE,CAAC,GAAG,CAAC,QAAQ,EAAE,OAAOE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,EAAE,QAAQ,CAAC,EAAEH,EAAE,CAAC,KAAK,CAAC,EAAEE,EAAE2B,EAAE,EAAE,MAAM,OAAO,CAACY,EAAEC,IAAID,EAAEC,EAAE,CAAC,IAAI,EAAEZ,EAAE3B,EAAE,MAAM,SAAS,EAAE,CAAC,CAAC,EAAE,CAACA,EAAE,MAAM,CAAC,EAAE,CAAC,EAAE4B,EAAE,EAAE,WAAWD,EAAE,EAAE,KAAK,EAAE,SAASU,EAAEC,EAAE,CAAC,OAAO,EAAE,UAAU,IAAIA,EAAE,MAAM,EAAE,EAAE,CAAC,OAAOipG,GAAGlpG,EAAErC,CAAC,EAAE,EAAE0B,EAAEW,EAAE,CAAC,EAAE2kG,GAAG,EAAE,KAAK,EAAE3kG,EAAET,CAAC,CAAC,EAAEA,CAAC,CAAC,IAAI8pG,IAAG,CAAC,WAAWprH,GAAG,YAAY,OAAO,UAAUkrH,IAAI,WAAWC,GAAG,EAAME,IAAI,GAAGC,IAAGlE,GAAGnnH,GAAGorH,GAAG,EAAE,SAASE,IAAIlsG,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,CAAC,EAAEF,EAAE,CAAC,GAAGI,EAAE,GAAGC,CAAC,EAAE,EAAE,EAAEH,EAAE,mBAAmBE,CAAC,EAAE,EAAEF,EAAE,mBAAmBG,CAAC,EAAE0B,EAAErU,EAAE,2BAA2B,MAAM,KAAK,CAAC,EAAE,MAAM,KAAK,CAAC,CAAC,EAAE,OAAOwS,EAAE,WAAW,CAAC6B,EAAE,MAAM,EAAE,QAAQ,OAAO,IAAI,WAAWA,CAAC,CAAC,CAAC,CAAC,IAAIoqG,IAAG,CAAC,WAAWtrH,GAAG,YAAY,OAAO,WAAWqrH,GAAG,EAAE,SAASE,GAAGpsG,EAAE,CAAC,GAAG,CAAC,OAAO,CAAC,EAAE,CAAC,EAAE,MAAM,CAAC,MAAME,CAAC,EAAE,QAAQE,CAAC,EAAEJ,EAAEK,EAAED,EAAE,WAAW,EAAE,MAAMF,CAAC,EAAE,EAAEE,EAAE,mBAAmB,CAAC,EAAE,OAAOA,EAAE,mBAAmBC,CAAC,EAAE,IAAI,CAAC,EAAEA,CAAC,CAAC,IAAIgsG,IAAG,CAAC,WAAWprH,GAAG,YAAY,OAAO,WAAWmrH,EAAE,EAAME,IAAG3E,GAAGzmH,EAAE,EAAMqrH,GAAG,SAASC,IAAIxsG,EAAE,CAACusG,GAAGvsG,EAAE,KAAK,MAAM7e,GAAG,KAAK,CAAC,SAAS,SAAS,SAAS,QAAQ,CAAC,CAAC,CAAC,SAASsrH,IAAIzsG,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,CAAC,EAAE,EAAE,CAAC,aAAa,EAAE,aAAa,CAAC,EAAED,EAAE2B,EAAE7B,EAAE,UAAU,IAAIG,EAAE,MAAM,EAAE,GAAG2B,EAAE9B,EAAE,WAAWG,EAAE,MAAMA,EAAE,KAAK,EAAE4B,EAAE/B,EAAE,UAAU,IAAI8B,EAAE,MAAM,EAAE,GAAG,OAAOuqG,GAAGxqG,EAAE,EAAE,EAAEE,CAAC,EAAED,CAAC,CAAC,IAAI0qG,IAAG,CAAC,WAAWvrH,GAAG,YAAY,OAAO,UAAUqrH,IAAI,WAAWC,GAAG,EAAE,SAASE,GAAG3sG,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,CAAC,EAAEF,EAAEI,EAAE7B,EAAE,eAAeyB,EAAE,MAAM,KAAK,EAAE,CAAC,EAAE,KAAK,EAAE,CAAC,EAAEK,EAAE,EAAE,IAAIwC,GAAGA,EAAE,KAAK,EAAEnV,EAAE,uBAAuB2S,EAAED,CAAC,EAAE,IAAI,EAAE1S,EAAE,gBAAgB,EAAE,IAAImV,GAAGA,EAAE,KAAK,EAAEzC,CAAC,EAAE,EAAE,EAAE,OAAOyC,GAAGtE,EAAE,cAAcsE,EAAE,KAAK,EAAE,CAAC,EAAE,GAAG,EAAE,SAAS,EAAE,OAAOylG,GAAG,CAAC,OAAO,CAAC,EAAE,EAAE,CAAC,CAAC,EAAE,QAAQpoG,CAAC,CAAC,EAAE,IAAI6B,EAAE7B,EAAE,WAAW,EAAE,EAAE,CAAC,EAAE,KAAK,EAAE,GAAG3B,EAAE,cAAc,CAAC,IAAI,EAAE,OAAOwD,EAAE,GAAG,EAAE,CAAC,EAAE,QAAQ,SAAS,CAAC,IAAIc,EAAE,EAAE,IAAI4B,GAAG,CAAC,IAAIE,EAAE,CAAC,GAAGpG,EAAE,cAAckG,EAAE,MAAM,MAAMrE,CAAC,CAAC,CAAC,EAAE,OAAO2qG,GAAG,CAAC,OAAO,CAACtmG,CAAG,EAAE,QAAQvE,EAAE,MAAM,CAAC,MAAMyE,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE7B,EAAED,EAAE,IAAI4B,IAAI,CAAC,KAAKvE,EAAE,SAASuE,EAAE,MAAM,EAAE,MAAMA,EAAE,KAAK,EAAE,EAAE,EAAE/W,EAAE,gBAAgBmV,EAAE,IAAI4B,GAAGA,EAAE,KAAK,EAAE,CAAC,EAAE,IAAIT,EAAEnB,EAAE,CAAC,EAAE,MAAM,CAAC,IAAI,EAAE,EAAEs2D,GAAGr2D,EAAE,EAAE,EAAE,CAAC,EAAE,MAAMkB,CAAC,EAAEsD,EAAE5Z,EAAE,gBAAgB,EAAE,IAAI+W,GAAGA,EAAE,KAAK,EAAErE,CAAC,EAAE2B,EAAE,MAAMuF,EAAE,IAAIxC,EAAE5E,EAAE,UAAU,IAAI6B,EAAE,MAAM,EAAE,OAAO+C,EAAE,YAAYpX,EAAE,uBAAuB,CAAC,EAAEmV,EAAE,QAAQ4B,GAAGvE,EAAE,YAAYuE,EAAE,MAAM,CAAC,EAAE1C,CAAC,CAAC,IAAIC,EAAEzD,EAAE,cAAc,EAAE,CAAC,EAAE,MAAM,MAAM,EAAE6B,CAAC,CAAC,EAAE6B,EAAE,EAAES,EAAE,EAAE,IAAIG,GAAG,CAAC,IAAIC,EAAEvE,EAAE,cAAcsE,EAAE,MAAM,MAAMzC,CAAC,CAAC,EAAE,OAAO6B,GAAGa,EAAEA,CAAC,CAAC,EAAEH,EAAE,EAAE,IAAIE,GAAG3C,EAAE,mBAAmB2C,CAAC,CAAC,EAAED,EAAE1C,EAAE,mBAAmB6B,CAAC,EAAE,QAAQc,EAAE,EAAEA,EAAEb,EAAEa,IAAI,CAAC,IAAIC,EAAED,EAAEZ,EAAE,QAAQ+B,EAAE,EAAEA,EAAErB,EAAE,OAAOqB,IAAI,CAAC,IAAI,EAAEtB,EAAEsB,CAAC,EAAEsD,EAAEzE,EAAE,EAAEiC,EAAEnC,EAAEqB,CAAC,EAAE,SAASsD,EAAEA,EAAE,CAAC,EAAE1E,EAAE,IAAIkC,EAAEhC,CAAC,EAAEA,GAAG,CAAC,CAAC,CAAC,OAAOf,CAAC,CAAC,IAAI6qG,IAAG,CAAC,WAAWtrH,GAAG,YAAY,OAAO,WAAWqrH,EAAE,EAAME,GAAG,SAASC,IAAI9sG,EAAE,CAAC6sG,GAAG7sG,EAAE,KAAK,MAAMze,GAAG,KAAK,CAAC,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,QAAQ,CAAC,CAAC,CAAC,SAASwrH,IAAI/sG,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,MAAME,EAAE,QAAQE,CAAC,EAAEJ,EAAE,CAAC,EAAEK,EAAE,OAAO,CAAC,EAAE,EAAE,EAAED,EAAE,UAAU,IAAIC,EAAE,MAAM,EAAE,GAAG0B,EAAE3B,EAAE,UAAU,IAAI,EAAE,MAAM,EAAE,GAAG,CAAC,QAAQ4B,EAAE,UAAUC,EAAE,IAAIS,EAAE,gBAAgBC,EAAE,WAAWC,CAAC,EAAE1C,EAAE2C,EAAEnV,EAAE,wBAAwBkV,CAAC,EAAEE,EAAEpV,EAAE,kBAAkB2S,EAAE,MAAM,EAAE,MAAM2B,EAAEC,EAAES,EAAEC,EAAE,GAAGE,CAAC,EAAEmB,EAAElB,EAAE,aAAa,EAAEA,EAAE,YAAYwE,EAAExE,EAAE,QAAQ,IAAIgC,EAAEhC,EAAE,QAAQ,MAAM2B,EAAE3B,EAAE,QAAQ,OAAO4B,EAAE5B,EAAE,QAAQ,KAAK6B,EAAE7B,EAAE,eAAe8B,EAAE9B,EAAE,cAAc+B,EAAE/B,EAAE,aAAayE,EAAEzE,EAAE,YAAY,EAAEA,EAAE,WAAWkC,EAAElC,EAAE,YAAYmC,EAAEnC,EAAE,QAAQ,OAAO,OAAO,EAAE,EAAE,GAAGA,EAAE,aAAa,eAAe,MAAM,IAAI,MAAM,oDAAoDA,EAAE,UAAU,+BAA+B,EAAE,IAAIoC,EAAE9E,EAAE,WAAW0C,EAAE,SAAS,SAAS,EAAEqC,EAAE/E,EAAE,UAAU,IAAI8E,EAAE,MAAM,EAAE,GAAG,OAAO2nG,GAAG,EAAExsG,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAE0B,EAAEiC,EAAE,EAAEsD,EAAExC,EAAEL,EAAEC,EAAEO,EAAEN,EAAEC,EAAEC,EAAE0C,EAAE,EAAEvC,EAAEG,CAAC,EAAED,CAAC,CAAC,IAAI8nG,IAAG,CAAC,WAAWzrH,GAAG,YAAY,OAAO,UAAUurH,IAAI,WAAWC,GAAG,EAAME,GAAG,SAASC,IAAIltG,EAAE,CAACitG,GAAGjtG,EAAE,KAAK,MAAMve,GAAG,KAAK,CAAC,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,QAAQ,CAAC,CAAC,CAAC,SAAS0rH,IAAIntG,EAAE,CAAC,GAAG,CAAC,QAAQ,EAAE,OAAOE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,GAAGK,EAAE,OAAO,CAAC,EAAEH,EAAE,CAAC,QAAQ,EAAE,IAAI6B,EAAE,WAAWC,EAAE,gBAAgBC,EAAE,WAAWS,CAAC,EAAEtC,EAAEuC,EAAE,EAAEC,EAAElV,EAAE,wBAAwBsU,CAAC,EAAEa,EAAEnV,EAAE,kBAAkBgV,EAAE,EAAE,MAAM,EAAEC,EAAEZ,EAAEE,EAAE,GAAGW,CAAC,EAAE,CAAC,UAAUE,EAAE,aAAakB,EAAE,YAAY,EAAE,WAAWsD,EAAE,SAASxC,EAAE,QAAQL,EAAE,YAAYC,EAAE,UAAUC,EAAE,SAASC,EAAE,aAAaC,EAAE,YAAY0C,CAAC,EAAE1E,EAAE,EAAEmB,EAAE,EAAEnB,EAAE,QAAQ,IAAImC,EAAE,EAAE,EAAEnC,EAAE,QAAQ,KAAKoC,EAAEpC,EAAE,aAAa,eAAeqC,EAAE3G,EAAE,eAAesE,EAAE,OAAO,EAAEsC,EAAE5G,EAAE,eAAe8B,EAAE,KAAK,EAAE,CAAC+E,EAAEC,EAAE2C,CAAC,EAAEzJ,EAAE,eAAe,EAAE,KAAK,EAAEkJ,EAAEvC,EAAE,CAAC,EAAE+C,EAAEhD,EAAEC,EAAE,CAAC,EAAEA,EAAE,CAAC,EAAEgD,EAAGjD,EAAEC,EAAE,CAAC,EAAE,EAAEiD,EAAGlD,EAAE,EAAEC,EAAE,CAAC,EAAEkD,GAAGjD,EAAE,CAAC,EAAEkD,GAAGpD,EAAEE,EAAE,CAAC,EAAEA,EAAE,CAAC,EAAEmD,GAAGrD,EAAEE,EAAE,CAAC,EAAE,EAAEuB,GAAGzB,EAAE,EAAEE,EAAE,CAAC,EAAEqD,GAAG,EAAE,WAAW3F,EAAE,QAAQ,SAAS,EAAE4F,GAAG,EAAE,UAAU,IAAID,GAAG,MAAM,EAAE,GAAGE,GAAG,EAAE,UAAU,IAAIrI,EAAE,MAAM,EAAE,GAAGsI,GAAG,EAAE,UAAU,IAAI,EAAE,MAAM,EAAE,GAAG,OAAOskG,GAAGvkG,GAAGC,GAAG7F,EAAEkB,EAAE,EAAEc,EAAEL,EAAE6C,EAAE3C,EAAEC,EAAEF,EAAEG,EAAE0C,EAAE,EAAEvC,EAAEI,EAAEC,EAAE2C,EAAEP,EAAEQ,EAAEC,EAAGC,EAAGC,GAAGC,GAAGC,GAAG5B,GAAG+B,EAAE,EAAED,EAAE,CAAC,IAAI4kG,IAAG,CAAC,WAAW3rH,GAAG,YAAY,OAAO,UAAUyrH,IAAI,WAAWC,GAAG,EAAME,GAAG,SAASC,IAAIttG,EAAE,CAACqtG,GAAGrtG,EAAE,KAAK,MAAMte,GAAG,KAAK,CAAC,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,QAAQ,CAAC,CAAC,CAAC,SAAS6rH,IAAIvtG,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,EAAE,OAAO,CAAC,EAAE,EAAE,CAAC,QAAQ,EAAE,IAAI0B,EAAE,UAAUC,CAAC,EAAE5B,EAAE,GAAGC,EAAE,QAAQ,UAAU,MAAM,IAAI,MAAM,yCAAyCA,EAAE,KAAK,EAAE,EAAE,GAAG,EAAE,QAAQ,UAAU,MAAM,IAAI,MAAM,8CAA8C,EAAE,KAAK,EAAE,EAAE,IAAI4B,EAAEvU,EAAE,kBAAkB2S,EAAE,MAAM,EAAE,MAAM,EAAE2B,EAAED,CAAC,EAAEW,EAAExC,EAAE,WAAW+B,EAAE,SAAS5B,EAAE,KAAK,EAAE,OAAOgtG,GAAGntG,EAAE,UAAU,IAAIG,EAAE,MAAM,EAAE,GAAGH,EAAE,UAAU,IAAI,EAAE,MAAM,EAAE,GAAGA,EAAE,UAAU,IAAIwC,EAAE,MAAM,EAAE,GAAGT,EAAE,UAAUA,EAAE,QAAQA,EAAE,SAASA,EAAE,QAAQA,EAAE,WAAWA,EAAE,SAASA,EAAE,UAAUA,EAAE,SAASA,EAAE,YAAYA,EAAE,YAAYA,EAAE,aAAaA,EAAE,YAAYA,EAAE,cAAcA,EAAE,eAAeA,EAAE,cAAcA,EAAE,YAAYA,EAAE,aAAaA,EAAE,YAAYA,EAAE,QAAQ,MAAMA,EAAE,QAAQ,IAAIA,EAAE,QAAQ,IAAI,EAAES,CAAC,CAAC,IAAI8qG,IAAG,CAAC,WAAW9rH,GAAG,YAAY,OAAO,UAAU4rH,IAAI,WAAWC,GAAG,EAAME,GAAG,SAASC,IAAI1tG,EAAE,CAACytG,GAAGztG,EAAE,KAAK,MAAMre,GAAG,KAAK,CAAC,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,QAAQ,CAAC,CAAC,CAAC,SAASgsH,IAAI3tG,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,EAAE,GAAG,CAAC,EAAE,EAAE,CAAC,QAAQ,EAAE,IAAI0B,EAAE,YAAYC,CAAC,EAAE5B,EAAE,GAAGC,EAAE,QAAQ,UAAU,MAAM,IAAI,MAAM,0CAA0CA,EAAE,KAAK,EAAE,EAAE,GAAG,EAAE,QAAQ,UAAU,MAAM,IAAI,MAAM,8CAA8C,EAAE,KAAK,EAAE,EAAE,IAAI4B,EAAEvU,EAAE,kBAAkB2S,EAAE,MAAM2B,EAAE,EAAE,EAAED,CAAC,EAAEW,EAAExC,EAAE,WAAW+B,EAAE,YAAY,EAAE,KAAK,EAAE,OAAOwrG,GAAGvtG,EAAE,UAAU,IAAIG,EAAE,MAAM,EAAE,GAAGH,EAAE,UAAU,IAAI,EAAE,MAAM,EAAE,GAAGA,EAAE,UAAU,IAAIwC,EAAE,MAAM,EAAE,GAAGT,EAAE,UAAUA,EAAE,QAAQA,EAAE,SAASA,EAAE,QAAQA,EAAE,WAAWA,EAAE,SAASA,EAAE,UAAUA,EAAE,SAASA,EAAE,YAAYA,EAAE,YAAYA,EAAE,aAAaA,EAAE,YAAYA,EAAE,cAAcA,EAAE,eAAeA,EAAE,cAAcA,EAAE,YAAYA,EAAE,aAAaA,EAAE,YAAYA,EAAE,QAAQ,MAAMA,EAAE,QAAQ,IAAIA,EAAE,QAAQ,IAAI,EAAES,CAAC,CAAC,IAAIkrG,IAAG,CAAC,WAAWjsH,GAAG,YAAY,OAAO,UAAU+rH,IAAI,WAAWC,GAAG,EAAME,GAAG,SAASC,IAAI9tG,EAAE,CAAC6tG,GAAG7tG,EAAE,KAAK,MAAMpe,GAAG,KAAK,CAAC,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,QAAQ,CAAC,CAAC,CAAC,SAASmsH,IAAI/tG,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,GAAGK,EAAE,OAAO,CAAC,EAAE,EAAE,CAAC,IAAI,EAAE,QAAQ0B,EAAE,WAAWC,CAAC,EAAE5B,EAAE,GAAGC,EAAE,QAAQ,UAAU,MAAM,IAAI,MAAM,0CAA0CA,EAAE,KAAK,EAAE,EAAE,GAAG,EAAE,QAAQ,UAAU,MAAM,IAAI,MAAM,8CAA8C,EAAE,KAAK,EAAE,EAAE,IAAI4B,EAAEvU,EAAE,kBAAkBsU,EAAE,EAAE,MAAMD,EAAE,EAAE,CAAC,EAAEW,EAAExC,EAAE,WAAW+B,EAAE,QAAQ5B,EAAE,KAAK,EAAE,OAAOwtG,GAAG3tG,EAAE,UAAU,IAAI,EAAE,MAAM,EAAE,GAAGA,EAAE,UAAU,IAAIG,EAAE,MAAM,EAAE,GAAGH,EAAE,UAAU,IAAIwC,EAAE,MAAM,EAAE,GAAGT,EAAE,UAAUA,EAAE,QAAQA,EAAE,SAASA,EAAE,QAAQA,EAAE,WAAWA,EAAE,SAASA,EAAE,UAAUA,EAAE,SAASA,EAAE,YAAYA,EAAE,YAAYA,EAAE,aAAaA,EAAE,YAAYA,EAAE,cAAcA,EAAE,eAAeA,EAAE,cAAcA,EAAE,YAAYA,EAAE,aAAaA,EAAE,YAAYA,EAAE,QAAQ,MAAMA,EAAE,QAAQ,IAAIA,EAAE,QAAQ,IAAI,EAAES,CAAC,CAAC,IAAIsrG,IAAG,CAAC,WAAWpsH,GAAG,YAAY,OAAO,UAAUksH,IAAI,WAAWC,GAAG,EAAME,IAAGtG,GAAG9lH,EAAE,EAAMqsH,IAAGvG,GAAG7lH,EAAE,EAAMqsH,IAAI,SAASnuG,EAAE,CAACA,EAAEA,EAAE,SAAS,CAAC,EAAE,WAAWA,EAAEA,EAAE,QAAQ,CAAC,EAAE,SAAS,GAAGmuG,KAAKA,GAAG,CAAC,EAAE,EAAE,IAAIC,GAAG,SAASC,IAAIruG,EAAE,CAACouG,GAAGpuG,EAAE,KAAK,MAAMje,GAAG,KAAK,CAAC,SAAS,SAAS,SAAS,SAAS,QAAQ,SAAS,SAAS,SAAS,SAAS,QAAQ,CAAC,CAAC,CAAC,SAASusH,IAAItuG,EAAE,CAAC,GAAG,CAAC,QAAQ,EAAE,OAAOE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,OAAOK,EAAE,mBAAmB,EAAE,SAAS,CAAC,EAAED,EAAE,CAAC,MAAM2B,EAAE,MAAMC,EAAE,OAAOC,CAAC,EAAE/B,EAAEwC,EAAEV,EAAE,MAAM,CAAC,EAAE,CAACW,EAAEC,CAAC,EAAE,EAAEC,EAAE,CAACH,EAAEC,EAAEC,EAAEb,EAAE,MAAM,CAAC,CAAC,EAAEe,EAAE,EAAE,UAAU,IAAIf,EAAE,MAAM,EAAEiC,EAAEjC,EAAE,QAAQ,YAAYiC,EAAEooG,GAAG,CAAC,QAAQ,EAAE,OAAO,CAAC,EAAErqG,CAAC,EAAE,MAAM,CAAC,MAAM,SAAS,CAAC,CAAC,EAAEe,EAAE,EAAE,UAAU,IAAIkB,EAAE,MAAM,GAAG,IAAI,EAAElB,EAAE,GAAGwE,EAAE,EAAE,UAAU,IAAItF,EAAE,MAAM,EAAE,GAAG8C,EAAE,EAAE,UAAU,IAAI7C,EAAE,MAAM,EAAE,GAAGwC,EAAE,EAAE,WAAW5B,EAAE,SAAS,EAAE6B,EAAE,EAAE,UAAU,IAAID,EAAE,MAAM,EAAE,GAAGE,EAAE,IAAI,WAAW,IAAI,WAAW5C,EAAE,KAAK,EAAE,MAAM,EAAE,OAAOqsG,GAAG,EAAE9mG,EAAExC,EAAEpC,EAAEiC,EAAEhC,EAAEC,EAAEurG,GAAG9tG,CAAC,EAAE,EAAEqE,CAAC,EAAEV,GAAG,MAAM,EAAE,YAAYA,EAAE,MAAM,EAAES,CAAC,CAAC,IAAI8pG,IAAG,CAAC,WAAWxsH,GAAG,YAAY,OAAO,UAAUssH,IAAI,WAAWC,GAAG,EAAME,GAAG,SAASC,IAAIzuG,EAAE,CAACwuG,GAAGxuG,EAAE,KAAK,MAAMhe,GAAG,KAAK,CAAC,SAAS,SAAS,SAAS,SAAS,SAAS,QAAQ,CAAC,CAAC,CAAC,SAAS0sH,IAAI1uG,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,CAAC,EAAE,EAAE,CAAC,KAAK,EAAE,UAAU,EAAE,QAAQ0B,CAAC,EAAE3B,EAAE4B,EAAE3B,EAAE,MAAM,OAAO9B,EAAE,OAAO8B,EAAE,QAAQ,WAAWA,EAAE,QAAQ,QAAQ,IAAI,4BAA4BA,EAAE,KAAK,8BAA8B,EAAE,IAAI4B,EAAEvU,EAAE,mBAAmB,CAAC,CAAC,EAAEsU,CAAC,EAAEU,EAAErC,EAAE4B,IAAI,OAAOS,EAAEgmG,GAAG,CAAC,OAAO,CAAC,EAAEroG,CAAC,EAAE,MAAM,CAAC,KAAK4B,CAAC,EAAE,QAAQ/B,CAAC,CAAC,GAAG,IAAIyC,EAAEjV,EAAE,iBAAiB,EAAEsU,CAAC,EAAE,CAAC,EAAEtU,EAAE,2BAA2B,UAAU,CAACiV,CAAC,EAAEX,CAAC,EAAE,IAAIY,EAAE1C,EAAE,WAAWwC,EAAE,MAAMA,EAAE,KAAK,EAAEG,EAAEH,EAAE,MAAMC,CAAC,EAAEG,EAAE5C,EAAE,UAAU,IAAIwC,EAAE,MAAM,EAAE,GAAGsB,EAAE9D,EAAE,UAAU,IAAI0C,EAAE,MAAM,EAAE,GAAG4rG,GAAG1rG,EAAE,EAAE,EAAE,EAAEf,EAAE,EAAE,EAAEc,EAAEmB,EAAEqjG,GAAGhnG,EAAE,KAAK,CAAC,EAAE,IAAI,EAAEuC,EAAE,GAAGX,IAAI,KAAK,CAAC,IAAIqF,EAAE5Z,EAAE,uBAAuBuU,CAAC,EAAE,EAAEymG,GAAG,CAAC,OAAO,CAAC,EAAE9lG,CAAC,EAAE,MAAM,CAAC,KAAK0E,CAAC,EAAE,QAAQpH,CAAC,CAAC,EAAEA,EAAE,YAAYwC,EAAE,MAAM,EAAExC,EAAE,YAAY0C,EAAE,MAAM,CAAC,CAAC,OAAO,CAAC,CAAC,IAAI+rG,IAAG,CAAC,WAAW3sH,GAAG,YAAY,OAAO,UAAUysH,IAAI,WAAWC,GAAG,EAAME,GAAG,SAASC,IAAI7uG,EAAE,CAAC4uG,GAAG5uG,EAAE,KAAK,MAAM/d,GAAG,KAAK,CAAC,SAAS,SAAS,SAAS,SAAS,SAAS,QAAQ,CAAC,CAAC,CAAC,SAAS6sH,IAAI9uG,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,CAAC,EAAE,EAAE,CAAC,KAAK,EAAE,UAAU,EAAE,QAAQ0B,CAAC,EAAE3B,EAAE4B,EAAE3B,EAAE,MAAM,OAAO9B,EAAE,OAAO8B,EAAE,QAAQ,WAAWA,EAAE,QAAQ,QAAQ,IAAI,2BAA2BA,EAAE,KAAK,8BAA8B,EAAE,IAAI4B,EAAEvU,EAAE,mBAAmB,CAAC,CAAC,EAAEsU,CAAC,EAAEU,EAAErC,EAAE4B,IAAI,OAAOS,EAAEgmG,GAAG,CAAC,OAAO,CAAC,EAAEroG,CAAC,EAAE,MAAM,CAAC,KAAK4B,CAAC,EAAE,QAAQ/B,CAAC,CAAC,GAAG,IAAIyC,EAAEjV,EAAE,iBAAiB,EAAEsU,CAAC,EAAE,CAAC,EAAEtU,EAAE,2BAA2B,SAAS,CAACiV,CAAC,EAAEX,CAAC,EAAE,IAAIY,EAAE1C,EAAE,WAAWwC,EAAE,MAAMA,EAAE,KAAK,EAAEG,EAAEH,EAAE,MAAMC,CAAC,EAAEG,EAAE5C,EAAE,UAAU,IAAIwC,EAAE,MAAM,EAAE,GAAGsB,EAAE9D,EAAE,UAAU,IAAI0C,EAAE,MAAM,EAAE,GAAGgsG,GAAG9rG,EAAE,EAAE,EAAE,EAAEf,EAAE,EAAE,EAAEc,EAAEmB,EAAEqjG,GAAGhnG,EAAE,KAAK,CAAC,EAAE,IAAI,EAAEuC,EAAE,GAAGX,IAAI,KAAK,CAAC,IAAIqF,EAAE5Z,EAAE,uBAAuBuU,CAAC,EAAE,EAAEymG,GAAG,CAAC,OAAO,CAAC,EAAE9lG,CAAC,EAAE,MAAM,CAAC,KAAK0E,CAAC,EAAE,QAAQpH,CAAC,CAAC,EAAEA,EAAE,YAAYwC,EAAE,MAAM,EAAExC,EAAE,YAAY0C,EAAE,MAAM,CAAC,CAAC,OAAO,CAAC,CAAC,IAAImsG,IAAG,CAAC,WAAW9sH,GAAG,YAAY,OAAO,UAAU4sH,IAAI,WAAWC,GAAG,EAAME,GAAG,SAASC,IAAIjvG,EAAE,CAACgvG,GAAGhvG,EAAE,KAAK,MAAM,gBAAgB,KAAK,CAAC,SAAS,QAAQ,SAAS,SAAS,UAAU,SAAS,SAAS,UAAU,QAAQ,CAAC,CAAC,CAAC,SAASkvG,IAAIlvG,EAAE,CAAC,GAAG,CAAC,QAAQ,EAAE,OAAOE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,EAAE,QAAQ,CAAC,EAAEH,EAAE,CAAC,KAAK,EAAE,aAAa6B,CAAC,EAAE3B,EAAE4B,EAAE,EAAE,MAAM,OAAO,CAACY,EAAEC,IAAID,EAAEC,EAAE,CAAC,IAAI,EAAEZ,EAAE5B,EAAE,MAAM,SAAS,EAAE,CAAC,CAAC,EAAE,CAACA,EAAE,MAAM,CAAC,EAAE,CAAC,EAAEqC,EAAE,EAAE,WAAWT,EAAE,EAAE,KAAK,EAAE,SAASU,EAAEC,EAAE,CAAC,OAAO,EAAE,UAAU,IAAIA,EAAE,MAAM,EAAE,EAAE,CAAC,OAAOosG,GAAGrsG,EAAEtC,CAAC,EAAE,IAAI,WAAW,IAAI,WAAWA,EAAE,KAAK,EAAE,MAAM,EAAEA,EAAE,MAAM,OAAO,EAAE2B,EAAEW,EAAE,CAAC,EAAE0kG,GAAG,EAAE,KAAK,EAAEtlG,EAAEY,EAAED,CAAC,CAAC,EAAEA,CAAC,CAAC,IAAIysG,IAAG,CAAC,WAAW/sH,GAAG,YAAY,OAAO,UAAU6sH,IAAI,WAAWC,GAAG,EAAME,GAAG,SAASC,IAAIrvG,EAAE,CAACovG,GAAGpvG,EAAE,KAAK,MAAM3d,GAAG,KAAK,CAAC,SAAS,SAAS,SAAS,QAAQ,SAAS,QAAQ,QAAQ,SAAS,QAAQ,CAAC,CAAC,CAAC,SAASitH,IAAItvG,EAAE,CAAC,GAAG,CAAC,QAAQ,EAAE,OAAOE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,CAAC,EAAEH,EAAE,CAAC,UAAU,EAAE,WAAW,CAAC,EAAEE,EAAE2B,EAAE1B,EAAE,MAAM,CAAC,EAAE2B,EAAE,IAAI,OAAO3B,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAE4B,EAAE,IAAI,OAAO5B,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEqC,EAAE,IAAI,OAAOrC,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEsC,EAAEX,EAAE,EAAEY,EAAEX,EAAE,EAAEY,EAAEH,GAAG,EAAE,GAAGI,EAAE,IAAI,OAAO,CAACf,EAAEY,EAAEC,EAAEC,CAAC,EAAE,CAACd,EAAEc,EAAEF,EAAEC,CAAC,EAAEoB,EAAE,EAAE,WAAWlB,EAAE,SAAS,EAAEwE,EAAE,EAAE,UAAU,IAAIjH,EAAE,MAAM,EAAE,GAAG,EAAE,IAAI,WAAW,IAAI,WAAW9B,EAAE,eAAe8B,EAAE,KAAK,CAAC,EAAE,MAAM,EAAEoE,EAAE,IAAI,WAAW,IAAI,WAAW3B,CAAC,EAAE,MAAM,EAAE4B,EAAE,IAAI,WAAW,IAAI,WAAWnG,EAAE,eAAeuE,CAAC,CAAC,EAAE,MAAM,EAAE6B,EAAE,EAAE,UAAU,IAAIX,EAAE,MAAM,EAAE,GAAG,OAAOorG,GAAG9nG,EAAE,EAAE,IAAI,OAAO,EAAE,EAAE,EAAEjH,EAAE,MAAM,OAAO,EAAEoE,EAAEC,EAAE5B,EAAE,OAAO6B,CAAC,EAAEX,CAAC,CAAC,IAAIurG,IAAG,CAAC,WAAWltH,GAAG,YAAY,OAAO,UAAUgtH,IAAI,WAAWC,GAAG,EAAME,GAAG,SAASC,IAAIzvG,EAAE,CAACwvG,GAAGxvG,EAAE,KAAK,MAAM1d,GAAG,KAAK,CAAC,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,QAAQ,CAAC,CAAC,CAAC,SAASotH,IAAI1vG,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,MAAME,EAAE,QAAQE,CAAC,EAAEJ,EAAE,CAAC,EAAEK,EAAE,OAAO,CAAC,EAAE,EAAE,EAAED,EAAE,UAAU,IAAIC,EAAE,MAAM,EAAE,GAAG0B,EAAE3B,EAAE,UAAU,IAAI,EAAE,MAAM,EAAE,GAAG,CAAC,QAAQ4B,EAAE,UAAUC,EAAE,IAAIS,EAAE,gBAAgBC,CAAC,EAAEzC,EAAE0C,EAAEX,GAAG,KAAK,CAAC,EAAE,CAAC,EAAEA,EAAEY,EAAEnV,EAAE,kBAAkB2S,EAAE,MAAM,EAAE,MAAM2B,EAAEY,EAAEF,EAAEC,EAAE,EAAE,EAAEG,EAAED,EAAE,aAAamB,EAAEnB,EAAE,YAAY,EAAEA,EAAE,QAAQ,IAAIyE,EAAEzE,EAAE,QAAQ,MAAMiC,EAAEjC,EAAE,QAAQ,OAAO4B,EAAE5B,EAAE,QAAQ,KAAK6B,EAAE7B,EAAE,eAAe8B,EAAE9B,EAAE,cAAc+B,EAAE/B,EAAE,aAAagC,EAAEhC,EAAE,YAAY0E,EAAE1E,EAAE,WAAW,EAAEA,EAAE,YAAYmC,EAAEnC,EAAE,QAAQ,OAAO,OAAO,EAAE,EAAE,GAAGA,EAAE,aAAa,eAAe,MAAM,IAAI,MAAM,mEAAmEA,EAAE,UAAU,+BAA+B,EAAE,IAAIoC,EAAE7E,EAAE,WAAWyC,EAAE,SAAS,SAAS,EAAEqC,EAAE9E,EAAE,UAAU,IAAI6E,EAAE,MAAM,EAAE,GAAG,OAAOuqG,GAAG,EAAEnvG,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAE0B,EAAEe,EAAEkB,EAAE,EAAEsD,EAAExC,EAAEL,EAAEO,EAAEN,EAAEC,EAAEC,EAAEC,EAAE0C,EAAE,EAAErC,CAAC,EAAED,CAAC,CAAC,IAAI0qG,IAAG,CAAC,WAAWrtH,GAAG,YAAY,OAAO,UAAUmtH,IAAI,WAAWC,GAAG,EAAME,GAAG,SAASC,IAAI7vG,EAAE,CAAC4vG,GAAG5vG,EAAE,KAAK,MAAM,OAAO,KAAK,CAAC,SAAS,SAAS,SAAS,QAAQ,CAAC,CAAC,CAAC,SAAS8vG,IAAI9vG,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,CAAC,EAAEF,EAAE,CAAC,EAAEI,CAAC,EAAE,EAAEC,EAAE9B,EAAE,cAAc6B,EAAE,KAAK,EAAE,EAAEF,EAAE,WAAW,CAAC,GAAGE,EAAE,MAAM,GAAGA,EAAE,KAAK,EAAEA,EAAE,KAAK,EAAE,OAAOwvG,GAAG1vG,EAAE,UAAU,IAAIE,EAAE,MAAM,EAAE,GAAGinG,GAAGjnG,EAAE,KAAK,EAAEC,EAAEH,EAAE,UAAU,IAAI,EAAE,MAAM,EAAE,EAAE,EAAE,CAAC,CAAC,IAAI6vG,IAAG,CAAC,WAAWttH,GAAG,YAAY,OAAO,UAAUotH,IAAI,WAAWC,GAAG,EAAME,GAAG,SAASC,IAAIjwG,EAAE,CAACgwG,GAAGhwG,EAAE,KAAK,MAAMtd,GAAG,KAAK,CAAC,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,QAAQ,CAAC,CAAC,CAAC,SAASwtH,IAAIlwG,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,EAAE,OAAO,CAAC,EAAE,EAAE,CAAC,QAAQ,EAAE,IAAI0B,EAAE,UAAUC,CAAC,EAAE5B,EAAE,GAAGC,EAAE,QAAQ,EAAE,MAAM,MAAM,IAAI,MAAM,+DAA+DA,EAAE,KAAK,QAAQ,EAAE,KAAK,EAAE,EAAE,IAAI4B,EAAEvU,EAAE,sBAAsB2S,EAAE,MAAM,EAAE,MAAM,EAAE0B,EAAE,OAAOC,CAAC,EAAEU,EAAExC,EAAE,WAAW+B,EAAE,SAAS5B,EAAE,KAAK,EAAE,OAAO2vG,GAAG9vG,EAAE,UAAU,IAAIG,EAAE,MAAM,EAAE,GAAGH,EAAE,UAAU,IAAI,EAAE,MAAM,EAAE,GAAGA,EAAE,UAAU,IAAIwC,EAAE,MAAM,EAAE,GAAG2kG,GAAGhnG,EAAE,KAAK,EAAE4B,EAAE,UAAUA,EAAE,WAAWA,EAAE,SAASA,EAAE,QAAQA,EAAE,UAAUA,EAAE,SAASA,EAAE,aAAaA,EAAE,YAAYA,EAAE,eAAeA,EAAE,cAAcA,EAAE,aAAaA,EAAE,YAAYA,EAAE,QAAQ,IAAIA,EAAE,QAAQ,IAAI,EAAES,CAAC,CAAC,IAAIytG,IAAG,CAAC,WAAWztH,GAAG,YAAY,OAAO,UAAUutH,IAAI,WAAWC,GAAG,EAAME,GAAG,SAASC,IAAIrwG,EAAE,CAACowG,GAAGpwG,EAAE,KAAK,MAAMrd,GAAG,KAAK,CAAC,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,QAAQ,CAAC,CAAC,CAAC,SAAS2tH,IAAItwG,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,EAAE,OAAO,EAAE,GAAG,CAAC,EAAE,EAAE,CAAC,QAAQ0B,EAAE,IAAIC,EAAE,UAAUC,CAAC,EAAE7B,EAAE,GAAGC,EAAE,QAAQ,EAAE,OAAOA,EAAE,QAAQ,EAAE,MAAM,MAAM,IAAI,MAAM,oFAAoFA,EAAE,KAAK,KAAK,EAAE,KAAK,SAAS,EAAE,KAAK,EAAE,EAAE,IAAIqC,EAAEhV,EAAE,sBAAsB2S,EAAE,MAAM,EAAE,MAAM0B,EAAEC,EAAE,OAAOC,CAAC,EAAEU,EAAEzC,EAAE,WAAW,EAAE,MAAM,EAAE,KAAK,EAAE,OAAOkwG,GAAGlwG,EAAE,UAAU,IAAIG,EAAE,MAAM,EAAE,GAAGH,EAAE,UAAU,IAAI,EAAE,MAAM,EAAE,GAAGA,EAAE,UAAU,IAAI,EAAE,MAAM,EAAE,GAAGA,EAAE,UAAU,IAAIyC,EAAE,MAAM,EAAE,GAAG0kG,GAAGhnG,EAAE,KAAK,EAAEqC,EAAE,UAAUA,EAAE,WAAWA,EAAE,SAASA,EAAE,QAAQA,EAAE,UAAUA,EAAE,SAASA,EAAE,aAAaA,EAAE,YAAYA,EAAE,eAAeA,EAAE,cAAcA,EAAE,aAAaA,EAAE,YAAYA,EAAE,QAAQ,IAAIA,EAAE,QAAQ,IAAI,EAAEC,CAAC,CAAC,IAAI4tG,IAAG,CAAC,WAAW5tH,GAAG,YAAY,OAAO,UAAU0tH,IAAI,WAAWC,GAAG,EAAME,GAAG,SAASC,IAAIzwG,EAAE,CAACwwG,GAAGxwG,EAAE,KAAK,MAAMpd,GAAG,KAAK,CAAC,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,QAAQ,CAAC,CAAC,CAAC,SAAS8tH,IAAI1wG,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,EAAE,OAAO,EAAE,GAAG,CAAC,EAAE,EAAE,CAAC,QAAQ0B,EAAE,IAAIC,EAAE,UAAUC,CAAC,EAAE7B,EAAE,GAAGC,EAAE,QAAQ,EAAE,OAAOA,EAAE,QAAQ,EAAE,MAAM,MAAM,IAAI,MAAM,mFAAmFA,EAAE,KAAK,KAAK,EAAE,KAAK,SAAS,EAAE,KAAK,EAAE,EAAE,IAAIqC,EAAEhV,EAAE,sBAAsB2S,EAAE,MAAM,EAAE,MAAM0B,EAAEC,EAAE,OAAOC,CAAC,EAAEU,EAAEzC,EAAE,WAAWG,EAAE,MAAMA,EAAE,KAAK,EAAE,OAAOmwG,GAAGtwG,EAAE,UAAU,IAAIG,EAAE,MAAM,EAAE,GAAGH,EAAE,UAAU,IAAI,EAAE,MAAM,EAAE,GAAGA,EAAE,UAAU,IAAI,EAAE,MAAM,EAAE,GAAGA,EAAE,UAAU,IAAIyC,EAAE,MAAM,EAAE,GAAG0kG,GAAGhnG,EAAE,KAAK,EAAEqC,EAAE,UAAUA,EAAE,WAAWA,EAAE,SAASA,EAAE,QAAQA,EAAE,UAAUA,EAAE,SAASA,EAAE,aAAaA,EAAE,YAAYA,EAAE,eAAeA,EAAE,cAAcA,EAAE,aAAaA,EAAE,YAAYA,EAAE,QAAQ,IAAIA,EAAE,QAAQ,IAAI,EAAEC,CAAC,CAAC,IAAIguG,IAAG,CAAC,WAAW/tH,GAAG,YAAY,OAAO,UAAU6tH,IAAI,WAAWC,GAAG,EAAME,IAAGjJ,GAAG1kH,EAAE,EAAM4tH,GAAG,SAASC,IAAI9wG,EAAE,CAAC6wG,GAAG7wG,EAAE,KAAK,MAAM9c,GAAG,KAAK,CAAC,SAAS,SAAS,QAAQ,CAAC,CAAC,CAAC,SAAS6tH,IAAI/wG,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,CAAC,EAAEF,EAAE,CAAC,GAAGI,EAAE,EAAEC,CAAC,EAAE,EAAE,EAAEH,EAAE,WAAWG,EAAE,MAAM,SAAS,EAAE,EAAE0B,GAAG7B,EAAE,UAAU,IAAI6B,EAAE,MAAM,EAAE,GAAG,OAAO8uG,GAAG,EAAExwG,CAAC,EAAE,EAAED,CAAC,EAAE,EAAE,CAAC,CAAC,EAAE,CAAC,CAAC,IAAI4wG,IAAG,CAAC,WAAW9tH,GAAG,YAAY,OAAO,UAAU4tH,IAAI,WAAWC,GAAG,EAAME,IAAI,GAAGC,IAAGnJ,GAAG3kH,GAAG6tH,IAAI,MAAM,EAAME,IAAGxJ,GAAGtkH,EAAE,EAAM+tH,IAAGzJ,GAAGrkH,GAAG,SAAS,EAAE,SAAS+tH,GAAGrxG,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,MAAME,EAAE,QAAQE,CAAC,EAAEJ,EAAE,CAAC,MAAMK,CAAC,EAAE,EAAE,CAAC,IAAI,CAAC,EAAEH,EAAE,EAAEG,EAAE,MAAM,OAAO0B,EAAE1B,EAAE,MAAM,MAAM,EAAE2B,EAAE,EAAE,OAAO,EAAE,IAAIzD,EAAE,OAAO,EAAE,EAAE,IAAI,EAAE,IAAI,iCAAiC,EAAE,EAAE,EAAE,KAAK,CAAC,GAAG,EAAEyD,EAAE,EAAE,EAAE,GAAGD,EAAE,OAAOC,EAAE,EAAE,CAAC,EAAE+oG,GAAG,CAAC,OAAO,CAAC,EAAE1qG,CAAC,EAAE,QAAQD,EAAE,MAAM,CAAC,MAAM2B,CAAC,CAAC,CAAC,CAAC,CAAC,IAAIuvG,IAAG,CAAC,WAAW/tH,GAAG,YAAY,OAAO,WAAW8tH,EAAE,EAAME,IAAG5J,GAAGnkH,GAAG,SAAS,EAAE,SAASguH,GAAGxxG,EAAE,CAAC,GAAG,CAAC,MAAM,CAAC,MAAM,EAAE,MAAME,CAAC,EAAE,QAAQE,CAAC,EAAEJ,EAAE,CAAC,MAAM,CAAC,MAAMK,CAAC,CAAC,EAAEL,EAAEK,EAAEA,GAAG9B,EAAE,WAAW2B,CAAC,EAAE,IAAI,EAAEE,EAAE,WAAW,EAAEC,CAAC,EAAE,OAAOD,EAAE,mBAAmB,CAAC,EAAE,KAAKF,CAAC,EAAE,CAAC,CAAC,IAAIuxG,IAAG,CAAC,WAAW/tH,GAAG,YAAY,OAAO,WAAW8tH,EAAE,EAAME,GAAG,SAASC,IAAI3xG,EAAE,CAAC0xG,GAAG1xG,EAAE,KAAK,MAAMrc,GAAG,KAAK,CAAC,SAAS,SAAS,SAAS,SAAS,SAAS,QAAQ,CAAC,CAAC,CAAC,SAASiuH,IAAI5xG,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,CAAC,EAAEF,EAAE,CAAC,MAAMI,CAAC,EAAE,EAAEC,EAAEH,EAAE,WAAWE,EAAE,MAAMA,EAAE,KAAK,EAAE,EAAEF,EAAE,UAAU,IAAIE,EAAE,MAAM,EAAE,GAAG,EAAEF,EAAE,UAAU,IAAIG,EAAE,MAAM,EAAE,GAAG,CAAC0B,EAAEC,EAAEC,EAAES,CAAC,EAAEtC,EAAE,MAAM,OAAOsxG,GAAG,EAAE3vG,EAAEC,EAAEC,EAAES,EAAE,CAAC,EAAErC,CAAC,CAAC,IAAIwxG,IAAG,CAAC,WAAWluH,GAAG,YAAY,OAAO,WAAWiuH,IAAI,UAAUD,GAAG,EAAMG,IAAGnK,GAAG/jH,EAAE,EAAMmuH,IAAI,GAAGC,IAAGjK,GAAGlkH,GAAGkuH,GAAG,EAAME,GAAG,SAASC,IAAIlyG,EAAE,CAACiyG,GAAGjyG,EAAE,KAAK,MAAMjc,GAAG,KAAK,CAAC,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,QAAQ,CAAC,CAAC,CAAC,SAASouH,IAAInyG,EAAE,CAAC,GAAG,CAAC,QAAQ,EAAE,OAAOE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,gBAAgBK,CAAC,EAAED,EAAE,CAAC,EAAE,EAAE,KAAK,EAAE,SAAS2B,EAAE,OAAOC,EAAE,MAAMC,CAAC,EAAE/B,EAAEwC,EAAE,EAAE,UAAU,IAAI,EAAE,MAAM,EAAE,GAAGC,EAAE,EAAE,UAAU,IAAI,EAAE,MAAM,EAAE,GAAGC,EAAE,EAAE,UAAU,IAAIb,EAAE,MAAM,EAAE,GAAGc,EAAEb,GAAG,KAAK,EAAE,UAAU,IAAIA,EAAE,MAAM,EAAE,GAAG,EAAEc,EAAEb,GAAG,KAAK,EAAE,UAAU,IAAIA,EAAE,MAAM,EAAE,GAAG,EAAE+B,EAAE,EAAE,WAAW,EAAE,MAAM,EAAE,KAAK,EAAE,GAAGzF,EAAE,cAAc,EAAE,KAAK,IAAI,EAAE,OAAOyF,EAAE,IAAI,EAAE,EAAE,UAAU,IAAIA,EAAE,MAAM,EAAE,GAAG,OAAOiuG,GAAGvvG,EAAEC,EAAEC,EAAEC,EAAEC,EAAEzC,EAAE,CAAC,EAAE2D,CAAC,CAAC,IAAIouG,IAAG,CAAC,WAAWruH,GAAG,YAAY,OAAO,UAAUmuH,IAAI,WAAWC,GAAG,EAAME,GAAG,SAASC,IAAItyG,EAAE,CAACqyG,GAAGryG,EAAE,KAAK,MAAMhc,GAAG,KAAK,CAAC,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,QAAQ,CAAC,CAAC,CAAC,SAASuuH,IAAIvyG,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,MAAME,EAAE,QAAQE,CAAC,EAAEJ,EAAE,CAAC,EAAEK,EAAE,OAAO,EAAE,KAAK,EAAE,uBAAuB0B,CAAC,EAAE,EAAE,CAAC,QAAQC,EAAE,IAAIC,EAAE,UAAUS,EAAE,WAAWC,EAAE,gBAAgBC,EAAE,WAAWC,EAAE,eAAeC,CAAC,EAAE5C,EAAE8D,EAAEtW,EAAE,kBAAkB2S,EAAE,MAAM,EAAE,MAAM2B,EAAEU,EAAET,EAAEW,CAAC,EAAE,EAAE0kG,GAAGzkG,CAAC,EAAE,GAAG,GAAG,KAAK,MAAM,IAAI,MAAM,GAAGA,CAAC,oEAAoE,EAAE,IAAIyE,EAAElH,EAAE,UAAU,IAAIC,EAAE,MAAM,EAAE,GAAGyE,EAAE1E,EAAE,UAAU,IAAI,EAAE,MAAM,EAAE,GAAGqE,EAAET,EAAE,YAAYU,EAAE,EAAE,GAAG,GAAG,KAAK,CAAC,IAAI4D,GAAGlI,EAAE,UAAU,IAAI,EAAE,MAAM,EAAE,GAAGkI,GAAG,MAAM,SAAS,EAAE,MAAM,IAAI,MAAM,sDAAsDA,GAAG,MAAM,MAAM,GAAG,EAAE,GAAGA,GAAG,MAAM,CAAC,IAAI7D,EAAE,MAAM,IAAI,MAAM,2BAA2B6D,GAAG,KAAK,mDAAmD7D,CAAC,GAAG,EAAEC,EAAE4D,GAAG,EAAE,CAAC,IAAI3D,EAAEX,EAAE,aAAaY,EAAEZ,EAAE,YAAYa,EAAEb,EAAE,QAAQ,IAAIuD,EAAEvD,EAAE,QAAQ,MAAM,EAAEA,EAAE,QAAQ,OAAOgB,EAAEhB,EAAE,QAAQ,KAAKiB,EAAEjB,EAAE,eAAekB,EAAElB,EAAE,cAAcmB,EAAEnB,EAAE,aAAaoB,EAAEpB,EAAE,YAAYqB,EAAErB,EAAE,WAAWgE,EAAEhE,EAAE,QAAQ,OAAO,OAAO,EAAE,EAAEyD,EAAEzD,EAAE,UAAUiE,EAAEjE,EAAE,SAASkE,EAAGlE,EAAE,QAAQ,GAAGrB,IAAI,OAAO,MAAM,IAAI,MAAM,yDAAyDA,CAAC,uBAAuB,EAAE,IAAIwF,EAAG/H,EAAE,WAAW4D,EAAE,SAAS,SAAS,EAAEoE,GAAGhI,EAAE,UAAU,IAAI+H,EAAG,MAAM,EAAE,GAAGE,GAAGtG,GAAG,KAAK,EAAE3B,EAAE,UAAU,IAAI2B,EAAE,MAAM,EAAE,GAAG,OAAOswG,GAAG/qG,EAAEG,EAAEQ,EAAEC,EAAGpD,EAAEH,EAAEC,EAAEF,EAAEG,EAAE0C,EAAE,EAAEvC,EAAEgD,EAAE/C,EAAEC,EAAEC,EAAEC,EAAEC,EAAEZ,EAAE,EAAE4D,GAAGvF,GAAG,EAAEsF,EAAE,EAAED,CAAE,CAAC,IAAIqqG,IAAG,CAAC,WAAWxuH,GAAG,YAAY,OAAO,UAAUsuH,IAAI,WAAWC,GAAG,EAAME,GAAG,SAASC,IAAI1yG,EAAE,CAACyyG,GAAGzyG,EAAE,KAAK,MAAM/b,GAAG,KAAK,CAAC,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,QAAQ,CAAC,CAAC,CAAC,SAAS0uH,IAAI3yG,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,MAAME,EAAE,QAAQE,CAAC,EAAEJ,EAAE,CAAC,EAAEK,EAAE,OAAO,EAAE,KAAK,EAAE,uBAAuB0B,CAAC,EAAE,EAAE,CAAC,QAAQC,EAAE,IAAIC,EAAE,UAAUS,EAAE,WAAWC,EAAE,gBAAgBC,EAAE,WAAWC,EAAE,eAAeC,CAAC,EAAE5C,EAAE8D,EAAEtW,EAAE,kBAAkB2S,EAAE,MAAM,EAAE,MAAM2B,EAAEU,EAAET,EAAEW,EAAE,EAAE,EAAE,EAAE0kG,GAAGzkG,CAAC,EAAE,GAAG,GAAG,KAAK,MAAM,IAAI,MAAM,GAAGA,CAAC,6EAA6E,EAAE,IAAIyE,EAAElH,EAAE,UAAU,IAAIC,EAAE,MAAM,EAAE,GAAGyE,EAAE1E,EAAE,UAAU,IAAI,EAAE,MAAM,EAAE,GAAGqE,EAAET,EAAE,YAAYU,EAAE,EAAE,GAAG,GAAG,KAAK,CAAC,IAAI4D,GAAGlI,EAAE,UAAU,IAAI,EAAE,MAAM,EAAE,GAAGkI,GAAG,MAAM,SAAS,EAAE,MAAM,IAAI,MAAM,+DAA+DA,GAAG,MAAM,MAAM,GAAG,EAAE,GAAGA,GAAG,MAAM,CAAC,IAAI7D,EAAE,MAAM,IAAI,MAAM,oCAAoC6D,GAAG,KAAK,mDAAmD7D,CAAC,GAAG,EAAEC,EAAE4D,GAAG,EAAE,CAAC,IAAI3D,EAAEX,EAAE,aAAaY,EAAEZ,EAAE,YAAYa,EAAEb,EAAE,QAAQ,IAAIuD,EAAEvD,EAAE,QAAQ,MAAM,EAAEA,EAAE,QAAQ,OAAOgB,EAAEhB,EAAE,QAAQ,KAAKiB,EAAEjB,EAAE,eAAekB,EAAElB,EAAE,cAAcmB,EAAEnB,EAAE,aAAaoB,EAAEpB,EAAE,YAAYqB,EAAErB,EAAE,WAAWgE,EAAEhE,EAAE,QAAQ,OAAO,OAAO,EAAE,EAAEyD,EAAEzD,EAAE,UAAUiE,EAAEjE,EAAE,SAASkE,EAAGlE,EAAE,QAAQ,GAAGrB,IAAI,OAAO,MAAM,IAAI,MAAM,kEAAkEA,CAAC,uBAAuB,EAAE,IAAIwF,EAAG/H,EAAE,WAAW4D,EAAE,SAAS,SAAS,EAAEoE,GAAGhI,EAAE,UAAU,IAAI+H,EAAG,MAAM,EAAE,GAAGE,GAAGtG,GAAG,KAAK,EAAE3B,EAAE,UAAU,IAAI2B,EAAE,MAAM,EAAE,GAAG,OAAO0wG,GAAGnrG,EAAEG,EAAEQ,EAAEC,EAAGpD,EAAEH,EAAEC,EAAEF,EAAEG,EAAE0C,EAAE,EAAEvC,EAAEgD,EAAE/C,EAAEC,EAAEC,EAAEC,EAAEC,EAAEZ,EAAE,EAAE4D,GAAGvF,GAAG,EAAEsF,EAAE,EAAED,CAAE,CAAC,IAAIyqG,IAAG,CAAC,WAAW3uH,GAAG,YAAY,OAAO,UAAUyuH,IAAI,WAAWC,GAAG,EAAME,GAAG,SAASC,IAAI9yG,EAAE,CAAC6yG,GAAG7yG,EAAE,KAAK,MAAM7b,GAAG,KAAK,CAAC,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,QAAQ,QAAQ,CAAC,CAAC,CAAC,SAAS4uH,IAAI/yG,EAAE,CAAC,GAAG,CAAC,QAAQ,EAAE,OAAOE,CAAC,EAAEF,EAAE,CAAC,OAAOI,EAAE,QAAQC,CAAC,EAAEH,EAAE,CAAC,EAAE,EAAE6B,EAAEC,CAAC,EAAEtP,GAAG,mBAAmB0N,EAAEC,CAAC,EAAE4B,EAAE,EAAE,WAAW,EAAE7B,EAAE,KAAK,EAAE,GAAG,IAAI,EAAE,OAAO6B,EAAE,IAAIS,EAAErC,EAAE,MAAMsC,EAAED,EAAEA,EAAE,OAAO,CAAC,EAAEG,EAAE,EAAE,UAAU,IAAIzC,EAAE,MAAM,EAAE,GAAG,EAAE,EAAE,UAAU,IAAIC,EAAE,MAAM,EAAE,GAAG4D,EAAE,IAAI,WAAW,IAAI,WAAWjC,CAAC,EAAE,MAAM,EAAEsF,EAAE,EAAE,UAAU,IAAIrF,EAAE,MAAM,EAAE,GAAG,OAAO4wG,GAAGhwG,EAAEwkG,GAAGjnG,EAAE,KAAK,EAAE,EAAE,EAAEuC,EAAEZ,EAAEkC,EAAEqD,CAAC,EAAErF,CAAC,CAAC,IAAI+wG,IAAG,CAAC,WAAW7uH,GAAG,YAAY,OAAO,UAAU2uH,IAAI,WAAWC,GAAG,EAAME,GAAG,SAASC,IAAIlzG,EAAE,CAACizG,GAAGjzG,EAAE,KAAK,MAAM,SAAS,KAAK,CAAC,SAAS,SAAS,QAAQ,SAAS,SAAS,SAAS,QAAQ,QAAQ,CAAC,CAAC,CAAC,SAASmzG,IAAInzG,EAAE,CAAC,GAAG,CAAC,QAAQ,EAAE,OAAOE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,EAAE,QAAQ,CAAC,EAAEH,EAAE,CAAC,KAAK,EAAE,UAAU6B,CAAC,EAAE3B,EAAE4B,EAAEzD,EAAE,eAAe,EAAE8B,EAAE,KAAK,EAAE,CAAC,EAAE4B,EAAE,EAAE,SAAS,EAAE,MAAM,EAAES,EAAErC,EAAE,MAAM2B,CAAC,EAAE,QAAQ+C,EAAE,EAAEA,EAAE9C,EAAE,OAAO,EAAE8C,EAAE,CAAC,IAAIC,EAAE/C,EAAE8C,CAAC,EAAExG,EAAE,OAAOyG,GAAGtC,EAAE,GAAGsC,GAAG,EAAE,IAAI,6BAA6BA,CAAC,kBAAkBtC,EAAE,CAAC,GAAG,CAAC,CAAC,IAAIC,EAAEjV,EAAE,aAAa,yBAAyB2S,EAAE,EAAE2B,EAAED,CAAC,EAAEa,EAAEmoG,GAAG,CAAC,OAAO,CAAC,EAAE1qG,CAAC,EAAE,MAAM,CAAC,MAAM,CAACsC,EAAE,UAAUA,EAAE,UAAUA,EAAE,QAAQA,EAAE,SAAS,CAAC,EAAE,QAAQ,CAAC,CAAC,EAAEE,EAAEtE,EAAE,cAAc,EAAE,KAAK,EAAEuE,EAAEioG,GAAG,CAAC,OAAO,CAAC,EAAE,CAAC,EAAE,MAAM,CAAC,MAAM,CAACpoG,EAAE,UAAUE,EAAEF,EAAE,SAAS,CAAC,EAAE,QAAQ,CAAC,CAAC,EAAEqB,EAAE,CAACrB,EAAE,UAAUA,EAAE,UAAUE,EAAEF,EAAE,UAAUA,EAAE,SAAS,EAAE,EAAE,EAAE,WAAWqB,EAAE3D,EAAE,KAAK,EAAE,GAAG9B,EAAE,cAAc8B,EAAE,KAAK,IAAI,EAAE,OAAO,EAAE,IAAIiH,EAAE1E,EAAE,MAAM,OAAO,EAAE6B,EAAE,EAAE,UAAU,IAAI7B,EAAE,MAAM,EAAE,GAAG+B,EAAE,EAAE,UAAU,IAAI7B,EAAE,MAAM,EAAE,GAAG8B,EAAE,EAAE,UAAU,IAAI,EAAE,MAAM,EAAE,GAAGC,EAAE,IAAI,WAAW,IAAI,WAAWtG,EAAE,eAAeqE,EAAE,KAAK,CAAC,EAAE,MAAM,EAAE2E,EAAE,IAAI,WAAW,IAAI,WAAWhJ,EAAE,eAAeyF,CAAC,CAAC,EAAE,MAAM,EAAE,OAAOivG,GAAGxuG,EAAE4iG,GAAGhnG,EAAE,KAAK,EAAEwE,EAAEyC,EAAE3C,EAAEhC,EAAE,UAAU4E,EAAE3C,CAAC,EAAE,EAAE,YAAYhC,EAAE,MAAM,EAAE,EAAE,YAAYE,EAAE,MAAM,EAAE,EAAE,MAAMH,EAAE,YAAY,CAAC,CAAC,IAAIywG,IAAG,CAAC,WAAWhvH,GAAG,YAAY,OAAO,UAAU8uH,IAAI,WAAWC,GAAG,EAAME,IAAI,GAAGC,IAAGvL,GAAGzjH,GAAG+uH,IAAI,MAAM,EAAME,IAAI,GAAGC,IAAGzL,GAAGxjH,GAAGgvH,IAAI,MAAM,EAAME,IAAG9L,GAAG9iH,GAAG,MAAM,EAAM6uH,IAAG/L,GAAG7iH,GAAG,MAAM,EAAM6uH,IAAGhM,GAAG5iH,GAAG,MAAM,EAAM6uH,GAAG,SAASC,IAAI7zG,EAAE,CAAC4zG,GAAG5zG,EAAE,KAAK,MAAM3a,GAAG,KAAK,CAAC,SAAS,SAAS,SAAS,QAAQ,CAAC,CAAC,CAAC,SAASyuH,IAAI9zG,EAAE,CAAC,GAAG,CAAC,OAAO,CAAC,EAAE,CAAC,EAAE,MAAM,CAAC,MAAME,CAAC,EAAE,QAAQE,CAAC,EAAEJ,EAAEK,EAAED,EAAE,UAAU,IAAI,EAAE,MAAM,EAAE,GAAG,EAAEA,EAAE,WAAW,EAAE,MAAM,SAAS,EAAE,GAAG7B,EAAE,cAAc,EAAE,KAAK,IAAI,EAAE,CAAC,IAAI,EAAE6B,EAAE,UAAU,IAAI,EAAE,MAAM,EAAE,GAAGwzG,GAAGvzG,EAAEgnG,GAAG,EAAE,KAAK,EAAEnnG,EAAE,CAAC,CAAC,CAAC,OAAO,CAAC,CAAC,IAAI6zG,IAAG,CAAC,WAAW1uH,GAAG,YAAY,OAAO,UAAUwuH,IAAI,WAAWC,GAAG,EAAME,IAAI,GAAGC,IAAGlM,GAAGziH,GAAG0uH,IAAI,MAAM,EAAME,IAAI,GAAGC,IAAGpM,GAAGxiH,GAAG2uH,IAAI,MAAM,EAAME,GAAG,SAASC,IAAIr0G,EAAE,CAACo0G,GAAGp0G,EAAE,KAAK,MAAMxa,GAAG,KAAK,CAAC,SAAS,SAAS,SAAS,QAAQ,CAAC,CAAC,CAAC,SAAS8uH,IAAIt0G,EAAE,CAAC,GAAG,CAAC,MAAM,EAAE,QAAQE,CAAC,EAAEF,EAAE,CAAC,MAAMI,EAAE,KAAKC,EAAE,IAAI,CAAC,EAAE,EAAE,EAAE,KAAK,MAAM,CAAC,EAAE0B,EAAE7B,EAAE,WAAW,CAAC,CAAC,EAAE,SAAS,EAAE,OAAOk0G,GAAGl0G,EAAE,UAAU,IAAI6B,EAAE,MAAM,EAAE,GAAG3B,EAAEC,EAAE,CAAC,EAAE0B,CAAC,CAAC,IAAIwyG,IAAG,CAAC,WAAW/uH,GAAG,YAAY,OAAO,UAAU6uH,IAAI,WAAWC,GAAG,EAAME,IAAG7M,GAAGliH,EAAE,EAAMgvH,IAAG9M,GAAGjiH,EAAE,EAAMgvH,IAAI,GAAGC,IAAG5M,GAAGniH,GAAG8uH,IAAI,MAAM,EAAME,IAAGjN,GAAG9hH,EAAE,EAAMgvH,IAAI,GAAGC,IAAG/M,GAAGjiH,GAAG+uH,IAAI,MAAM,EAAME,IAAI,GAAGC,IAAGjN,GAAGhiH,GAAGgvH,IAAI,MAAM,EAAME,GAAG,SAASC,IAAIl1G,EAAE,CAACi1G,GAAGj1G,EAAE,KAAK,MAAM/a,GAAG,KAAK,CAAC,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,QAAQ,CAAC,CAAC,CAAC,SAASkwH,IAAIn1G,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,CAAC,EAAE,EAAE,CAAC,YAAY,EAAE,KAAK,EAAE,MAAM0B,EAAE,KAAKC,CAAC,EAAE5B,EAAE,GAAGC,EAAE,QAAQ,UAAU,MAAM,IAAI,MAAM,sCAAsC,EAAE,IAAI4B,EAAE/B,EAAE,WAAWG,EAAE,MAAMA,EAAE,KAAK,EAAE,OAAO40G,GAAG/0G,EAAE,UAAU,IAAIG,EAAE,MAAM,EAAE,GAAGH,EAAE,UAAU,IAAI+B,EAAE,MAAM,EAAE,GAAG5B,EAAE,MAAM,CAAC,EAAE,EAAE,EAAE0B,EAAEC,CAAC,EAAEC,CAAC,CAAC,IAAImzG,IAAG,CAAC,WAAWnwH,GAAG,YAAY,OAAO,UAAUiwH,IAAI,WAAWC,GAAG,EAAME,GAAG,SAASC,IAAIt1G,EAAE,CAACq1G,GAAGr1G,EAAE,KAAK,MAAM9a,GAAG,KAAK,CAAC,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,QAAQ,CAAC,CAAC,CAAC,SAASqwH,IAAIv1G,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,EAAE,EAAE,EAAE,GAAG,CAAC,EAAE,EAAE,CAAC,YAAY0B,EAAE,KAAKC,EAAE,MAAMC,EAAE,KAAKS,CAAC,EAAEtC,EAAE,GAAGC,EAAE,QAAQ,WAAW,EAAE,QAAQ,WAAW,EAAE,QAAQ,UAAU,MAAM,IAAI,MAAM,qDAAqD,EAAE,IAAIsC,EAAEzC,EAAE,WAAWG,EAAE,MAAMA,EAAE,KAAK,EAAE,OAAOg1G,GAAGn1G,EAAE,UAAU,IAAIG,EAAE,MAAM,EAAE,GAAGH,EAAE,UAAU,IAAI,EAAE,MAAM,EAAE,GAAGA,EAAE,UAAU,IAAI,EAAE,MAAM,EAAE,GAAGA,EAAE,UAAU,IAAIyC,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,CAAC,EAAEZ,EAAEC,EAAEC,EAAES,CAAC,EAAEC,CAAC,CAAC,IAAI6yG,IAAG,CAAC,WAAWtwH,GAAG,YAAY,OAAO,UAAUowH,IAAI,WAAWC,GAAG,EAAME,GAAG,SAASC,IAAI11G,EAAE,CAACy1G,GAAGz1G,EAAE,KAAK,MAAM5Z,GAAG,KAAK,CAAC,SAAS,SAAS,SAAS,QAAQ,CAAC,CAAC,CAAC,SAASuvH,IAAI31G,EAAE,CAAC,GAAG,CAAC,QAAQ,EAAE,OAAOE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,iBAAiBK,EAAE,SAAS,CAAC,EAAED,EAAE,CAAC,EAAE,CAAC,EAAEF,EAAE8B,EAAE,EAAE,UAAU,IAAI,EAAE,MAAM,EAAE,GAAG,EAAE,EAAE,CAAC,WAAWU,EAAE,KAAK,EAAE,aAAaE,EAAE,mBAAmBC,CAAC,EAAEimG,GAAG,EAAEzoG,EAAE,CAAC,EAAE,GAAGwC,EAAE,CAAC,IAAI4B,EAAE,EAAE,UAAU,IAAI/B,EAAE,MAAM,EAAE,GAAG,EAAEA,EAAEV,EAAEyC,CAAC,CAAC,IAAI3B,EAAE,EAAE,MAAM,OAAOpV,EAAE,2BAA2B,MAAM,EAAEoV,CAAC,EAAE,GAAG,CAACkB,EAAEC,CAAC,EAAEvW,EAAE,0BAA0B,EAAE,MAAM,CAAC,EAAE4Z,EAAE/I,EAAE,cAAc0F,CAAC,EAAE,EAAE,EAAE,WAAWD,EAAE,EAAE,KAAK,EAAE,GAAGzF,EAAE,cAAc,EAAE,KAAK,IAAI,EAAE,CAAC,IAAIkG,EAAE,EAAE,UAAU,IAAI,EAAE,MAAM,EAAE,GAAGgxG,GAAGzzG,EAAEqlG,GAAG,EAAE,KAAK,EAAE//F,EAAE7C,CAAC,CAAC,CAAC,GAAG5B,GAAG,EAAE,YAAYH,EAAE,MAAM,EAAE,EAAE,CAAC,IAAI+B,EAAE/W,EAAE,qBAAqB,EAAE,MAAMkV,CAAC,EAAE,EAAE,MAAM6B,CAAC,CAAC,OAAO,CAAC,CAAC,IAAImxG,IAAG,CAAC,WAAWxvH,GAAG,YAAY,OAAO,UAAUsvH,IAAI,WAAWC,GAAG,EAAME,IAAI,GAAGC,IAAG/N,GAAGrhH,GAAGmvH,GAAG,EAAME,GAAG,SAASC,IAAIh2G,EAAE,CAAC+1G,GAAG/1G,EAAE,KAAK,MAAM3Z,GAAG,KAAK,CAAC,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,QAAQ,CAAC,CAAC,CAAC,SAAS4vH,IAAIj2G,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,MAAME,EAAE,QAAQE,CAAC,EAAEJ,EAAEK,EAAE,EAAE,EAAE,EAAED,EAAE,UAAU,IAAIC,EAAE,MAAM,EAAE,GAAG9B,EAAE,OAAO8B,EAAE,QAAQ,UAAU,IAAI,0DAA0DA,EAAE,KAAK,GAAG,EAAE,GAAG,CAAC,WAAW,EAAE,QAAQ0B,EAAE,IAAIC,EAAE,gBAAgBC,CAAC,EAAE/B,EAAEwC,EAAEhV,EAAE,kBAAkB2S,EAAE,MAAM,EAAE0B,EAAE,EAAEC,EAAEC,CAAC,EAAEU,EAAED,EAAE,aAAaE,EAAEF,EAAE,YAAYG,EAAEH,EAAE,QAAQ,IAAII,EAAEJ,EAAE,QAAQ,MAAMsB,EAAEtB,EAAE,QAAQ,OAAO,EAAEA,EAAE,QAAQ,KAAK4E,EAAE5E,EAAE,eAAeoC,EAAEpC,EAAE,cAAc+B,EAAE/B,EAAE,aAAagC,EAAEhC,EAAE,YAAYiC,EAAEjC,EAAE,WAAWkC,EAAElC,EAAE,YAAY,GAAGA,EAAE,aAAa,eAAe,MAAM,IAAI,MAAM,6CAA6CA,EAAE,UAAU,+BAA+B,EAAE,IAAImC,EAAEzE,EAAE,WAAWsC,EAAE,SAAS,SAAS,EAAE6E,EAAEnH,EAAE,UAAU,IAAIyE,EAAE,MAAM,EAAE,GAAG,OAAOkxG,GAAG,EAAE11G,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAEsC,EAAEC,EAAEC,EAAEC,EAAEkB,EAAE,EAAEsD,EAAExC,EAAEL,EAAEC,EAAEC,EAAEC,EAAE2C,CAAC,EAAE1C,CAAC,CAAC,IAAIqxG,IAAG,CAAC,WAAW7vH,GAAG,YAAY,OAAO,UAAU2vH,IAAI,WAAWC,GAAG,EAAME,GAAG,SAASC,IAAIp2G,EAAE,CAACm2G,GAAGn2G,EAAE,KAAK,MAAM,YAAY,KAAK,CAAC,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,QAAQ,CAAC,CAAC,CAAC,SAASq2G,IAAIr2G,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,CAAC,EAAE,EAAE,CAAC,WAAW,EAAE,QAAQ,EAAE,IAAI0B,EAAE,gBAAgBC,EAAE,WAAWC,CAAC,EAAE7B,EAAEsC,EAAEhV,EAAE,kBAAkB2S,EAAE,MAAM,EAAE,EAAE,EAAE0B,EAAEC,EAAEC,CAAC,EAAEU,EAAEzC,EAAE,WAAWwC,EAAE,SAASrC,EAAE,KAAK,EAAE,OAAO81G,GAAGj2G,EAAE,UAAU,IAAIG,EAAE,MAAM,EAAE,GAAGH,EAAE,UAAU,IAAIyC,EAAE,MAAM,EAAE,GAAGD,EAAE,UAAUA,EAAE,WAAWA,EAAE,QAAQA,EAAE,SAASA,EAAE,QAAQA,EAAE,SAASA,EAAE,UAAUA,EAAE,SAASA,EAAE,YAAYA,EAAE,aAAaA,EAAE,YAAYA,EAAE,cAAcA,EAAE,eAAeA,EAAE,cAAcA,EAAE,qBAAqBA,EAAE,sBAAsBA,EAAE,qBAAqBA,EAAE,QAAQ,MAAMA,EAAE,QAAQ,IAAIA,EAAE,QAAQ,IAAI,EAAEC,CAAC,CAAC,IAAI2zG,IAAG,CAAC,WAAWhwH,GAAG,YAAY,OAAO,UAAU8vH,IAAI,WAAWC,GAAG,EAAME,GAAG,SAASC,IAAIx2G,EAAE,CAACu2G,GAAGv2G,EAAE,KAAK,MAAM,gBAAgB,KAAK,CAAC,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,QAAQ,CAAC,CAAC,CAAC,SAASy2G,IAAIz2G,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,GAAGK,EAAE,MAAM,CAAC,EAAE,EAAE,CAAC,WAAW,EAAE,QAAQ0B,EAAE,IAAIC,EAAE,gBAAgBC,CAAC,EAAE7B,EAAEsC,EAAEhV,EAAE,kBAAkB,EAAE,MAAM,EAAEqU,EAAE,EAAEC,EAAEC,CAAC,EAAEU,EAAEzC,EAAE,WAAW,EAAE,MAAM,EAAE,KAAK,EAAE,OAAOq2G,GAAGr2G,EAAE,UAAU,IAAI,EAAE,MAAM,EAAE,GAAGA,EAAE,UAAU,IAAIG,EAAE,MAAM,EAAE,GAAGH,EAAE,UAAU,IAAIyC,EAAE,MAAM,EAAE,GAAGD,EAAE,UAAUA,EAAE,WAAWA,EAAE,QAAQA,EAAE,SAASA,EAAE,QAAQA,EAAE,SAASA,EAAE,UAAUA,EAAE,SAASA,EAAE,YAAYA,EAAE,aAAaA,EAAE,YAAYA,EAAE,cAAcA,EAAE,eAAeA,EAAE,cAAcA,EAAE,qBAAqBA,EAAE,sBAAsBA,EAAE,qBAAqBA,EAAE,QAAQ,MAAMA,EAAE,QAAQ,IAAIA,EAAE,QAAQ,IAAI,EAAEC,CAAC,CAAC,IAAI+zG,IAAG,CAAC,WAAWnwH,GAAG,YAAY,OAAO,UAAUiwH,IAAI,WAAWC,GAAG,EAAME,GAAG,SAASC,IAAI52G,EAAE,CAAC22G,GAAG32G,EAAE,KAAK,MAAM,cAAc,KAAK,CAAC,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,QAAQ,CAAC,CAAC,CAAC,SAAS62G,IAAI72G,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,GAAGK,EAAE,MAAM,CAAC,EAAE,EAAE,CAAC,WAAW,EAAE,QAAQ0B,EAAE,IAAIC,EAAE,gBAAgBC,CAAC,EAAE7B,EAAEsC,EAAEhV,EAAE,kBAAkB,EAAE,MAAM,EAAEqU,EAAE,EAAEC,EAAEC,CAAC,EAAEU,EAAEzC,EAAE,WAAW,EAAE,MAAM,EAAE,KAAK,EAAE,OAAOy2G,GAAGz2G,EAAE,UAAU,IAAI,EAAE,MAAM,EAAE,GAAGA,EAAE,UAAU,IAAIG,EAAE,MAAM,EAAE,GAAGH,EAAE,UAAU,IAAIyC,EAAE,MAAM,EAAE,GAAGD,EAAE,UAAUA,EAAE,WAAWA,EAAE,SAASA,EAAE,QAAQA,EAAE,UAAUA,EAAE,SAASA,EAAE,aAAaA,EAAE,YAAYA,EAAE,eAAeA,EAAE,cAAcA,EAAE,sBAAsBA,EAAE,qBAAqBA,EAAE,QAAQ,IAAIA,EAAE,QAAQ,IAAI,EAAEC,CAAC,CAAC,IAAIm0G,IAAG,CAAC,WAAWtwH,GAAG,YAAY,OAAO,UAAUowH,IAAI,WAAWC,GAAG,EAAME,GAAG,SAASC,IAAIh3G,EAAE,CAAC+2G,GAAG/2G,EAAE,KAAK,MAAM,oBAAoB,KAAK,CAAC,SAAS,SAAS,SAAS,SAAS,UAAU,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,QAAQ,CAAC,CAAC,CAAC,SAASi3G,IAAIj3G,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,CAAC,EAAE,EAAE,CAAC,WAAW,EAAE,QAAQ,EAAE,IAAI0B,EAAE,oBAAoBC,CAAC,EAAE5B,EAAE7B,EAAE,OAAO8B,EAAE,MAAM,SAAS,EAAE,IAAI,uDAAuDA,EAAE,MAAM,MAAM,GAAG,EAAE,IAAI4B,EAAE,CAAC,EAAE,CAAC,EAAE1D,EAAE,OAAO7Q,EAAE,+BAA+B,EAAEuU,CAAC,EAAE,IAAI,wEAAwE,CAAC,mBAAmBA,CAAC,GAAG,EAAE,IAAIS,EAAEhV,EAAE,kBAAkB2S,EAAE,MAAM,EAAE,EAAE,CAAC,EAAE,CAAC,EAAE0B,CAAC,EAAEY,EAAEzC,EAAE,WAAWwC,EAAE,SAASrC,EAAE,KAAK,EAAEuC,EAAE1C,EAAE,WAAWwC,EAAE,SAAS,OAAO,EAAE,OAAOq0G,GAAG72G,EAAE,UAAU,IAAIG,EAAE,MAAM,EAAE,GAAGH,EAAE,UAAU,IAAIyC,EAAE,MAAM,EAAE,GAAGzC,EAAE,UAAU,IAAI0C,EAAE,MAAM,EAAE,GAAGykG,GAAGhnG,EAAE,KAAK,EAAE2B,EAAEU,EAAE,UAAUA,EAAE,WAAWA,EAAE,SAASA,EAAE,QAAQA,EAAE,UAAUA,EAAE,SAASA,EAAE,aAAaA,EAAE,YAAYA,EAAE,eAAeA,EAAE,cAAcA,EAAE,sBAAsBA,EAAE,qBAAqBA,EAAE,QAAQ,IAAIA,EAAE,QAAQ,IAAI,EAAE,CAACC,EAAEC,CAAC,CAAC,CAAC,IAAIs0G,IAAG,CAAC,WAAWzwH,GAAG,YAAY,OAAO,UAAUuwH,IAAI,WAAWC,GAAG,EAAME,GAAG,SAASC,IAAIp3G,EAAE,CAACm3G,GAAGn3G,EAAE,KAAK,MAAMrZ,GAAG,KAAK,CAAC,wBAAwB,CAAC,CAAC,CAAC,SAAS0wH,IAAIr3G,EAAE,CAAC,GAAG,CAAC,QAAQ,EAAE,OAAOE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,KAAKK,EAAE,SAAS,CAAC,EAAED,EAAE,CAAC,EAAE,CAAC,EAAEF,EAAE6B,EAAE,EAAE,UAAU,IAAI,EAAE,MAAM,EAAE,GAAGC,EAAED,EAAEE,EAAE,EAAE,CAAC,WAAWS,EAAE,KAAKC,EAAE,aAAaC,EAAE,mBAAmBC,CAAC,EAAEimG,GAAG,EAAEzoG,EAAE,CAAC,EAAEyC,EAAEH,EAAE,GAAGE,EAAE,CAAC,IAAI6B,EAAE,EAAE,UAAU,IAAIhC,EAAE,MAAM,EAAE,GAAGgC,IAAI3C,IAAIE,EAAES,EAAEV,EAAE0C,EAAE5B,EAAEpV,EAAE,iBAAiBoV,EAAE,OAAOb,EAAE,MAAM,MAAM,EAAE,CAACvU,EAAE,2BAA2B,OAAOoV,EAAEb,EAAE,MAAM,MAAM,EAAE,GAAG,CAAC+B,EAAE,CAAC,EAAEtW,EAAE,0BAA0BuU,EAAE,MAAMa,CAAC,EAAEwE,EAAE/I,EAAE,cAAc,CAAC,EAAEuG,EAAE7C,EAAEA,EAAE,QAAQ,YAAY6C,EAAEsnG,GAAG,CAAC,QAAQ,EAAE,OAAO,CAAC,EAAEnqG,CAAC,EAAE,MAAM,CAAC,MAAM,SAAS,CAAC,CAAC,EAAED,EAAE,EAAE,UAAU,IAAI8C,EAAE,MAAM,EAAE,IAAI,IAAIL,EAAE,EAAE,WAAWT,EAAE,SAAS,EAAE,GAAGzF,EAAE,cAAc0D,EAAE,KAAK,IAAI,EAAE,CAAC,IAAIyC,EAAE,EAAE,UAAU,IAAID,EAAE,MAAM,EAAE,GAAG0yG,GAAGn1G,EAAEsF,EAAE5C,CAAC,CAAC,CAAC,GAAG7B,GAAG,EAAE,YAAYH,EAAE,MAAM,EAAE,EAAE,CAAC,IAAIgC,EAAEhX,EAAE,qBAAqB+W,EAAE,MAAM7B,CAAC,EAAE6B,EAAE,MAAMC,CAAC,CAAC,OAAOzC,EAAE,QAAQ,WAAW,EAAE,YAAY6C,EAAE,MAAM,EAAEL,CAAC,CAAC,IAAI6yG,IAAG,CAAC,WAAW3wH,GAAG,YAAY,OAAO,UAAUywH,IAAI,WAAWC,GAAG,EAAME,GAAG,SAASC,IAAIx3G,EAAE,CAACu3G,GAAGv3G,EAAE,KAAK,MAAMpZ,GAAG,KAAK,CAAC,SAAS,SAAS,SAAS,QAAQ,CAAC,CAAC,CAAC,SAAS6wH,IAAIz3G,EAAE,CAAC,GAAG,CAAC,QAAQ,EAAE,OAAOE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,KAAKK,EAAE,SAAS,CAAC,EAAED,EAAE,CAAC,EAAE,CAAC,EAAEF,EAAE6B,EAAE,EAAE,UAAU,IAAI,EAAE,MAAM,EAAE,GAAGC,EAAED,EAAEE,EAAE,EAAE,CAAC,WAAWS,EAAE,KAAKC,EAAE,aAAaC,EAAE,mBAAmBC,CAAC,EAAEimG,GAAG,EAAEzoG,EAAE,CAAC,EAAE,GAAGwC,EAAE,CAAC,IAAI4B,EAAE,EAAE,UAAU,IAAI/B,EAAE,MAAM,EAAE,GAAG+B,IAAI1C,IAAIE,EAAES,EAAEV,EAAEyC,EAAE,CAAC,IAAI3B,EAAEb,EAAE,MAAM,OAAOvU,EAAE,2BAA2B,MAAMiV,EAAEG,CAAC,EAAE,GAAG,CAACkB,EAAE,CAAC,EAAEtW,EAAE,0BAA0BuU,EAAE,MAAMU,CAAC,EAAE2E,EAAE/I,EAAE,cAAc,CAAC,EAAEuG,EAAE,EAAE,WAAWd,EAAE/B,EAAE,KAAK,EAAE,GAAG1D,EAAE,cAAc0D,EAAE,KAAK,IAAI,EAAE,CAAC,IAAIwC,EAAE,EAAE,UAAU,IAAIK,EAAE,MAAM,EAAE,GAAGyyG,GAAGv1G,EAAEqlG,GAAG,EAAE,KAAK,EAAE//F,EAAE7C,CAAC,CAAC,CAAC,GAAG5B,GAAG,EAAE,YAAYH,EAAE,MAAM,EAAE,EAAE,CAAC,IAAI+B,EAAE/W,EAAE,qBAAqBoX,EAAE,MAAMlC,CAAC,EAAEkC,EAAE,MAAML,CAAC,CAAC,OAAOK,CAAC,CAAC,IAAI4yG,IAAG,CAAC,WAAW9wH,GAAG,YAAY,OAAO,UAAU4wH,IAAI,WAAWC,GAAG,EAAME,IAAI,GAAGC,IAAG7P,GAAGlhH,GAAG8wH,GAAG,EAAME,IAAI,SAAS73G,EAAE,CAACA,EAAEA,EAAE,QAAQ,CAAC,EAAE,UAAUA,EAAEA,EAAE,UAAU,CAAC,EAAE,WAAW,GAAG63G,KAAKA,GAAG,CAAC,EAAE,EAAE,IAAIC,GAAG,SAASC,IAAI/3G,EAAE,CAAC83G,GAAG93G,EAAE,KAAK,MAAMlZ,GAAG,KAAK,CAAC,SAAS,QAAQ,SAAS,SAAS,QAAQ,QAAQ,SAAS,QAAQ,CAAC,CAAC,CAAC,SAASkxH,IAAIh4G,EAAE,CAAC,GAAG,CAAC,OAAO,CAAC,EAAE,CAAC,EAAE,QAAQE,EAAE,MAAM,CAAC,SAASE,EAAE,KAAKC,CAAC,CAAC,EAAEL,EAAE,EAAEI,EAAE,IAAI,CAAC0C,EAAEkB,IAAIlB,EAAE,CAAC,EAAE,EAAE,MAAMkB,CAAC,EAAElB,EAAE,CAAC,CAAC,EAAE,EAAE5C,EAAE,UAAU,IAAI,EAAE,MAAM,EAAE,GAAG6B,EAAE7B,EAAE,WAAW,EAAE,EAAE,KAAK,EAAE8B,EAAE9B,EAAE,UAAU,IAAI6B,EAAE,MAAM,EAAE,GAAGE,EAAE,IAAI,WAAW,IAAI,WAAW,EAAE,KAAK,EAAE,MAAM,EAAES,EAAEtC,EAAE,IAAI0C,GAAGA,EAAE,CAAC,CAAC,EAAEH,EAAEvC,EAAE,IAAI0C,GAAGA,EAAE,CAAC,CAAC,EAAEF,EAAE,IAAI,WAAW,IAAI,WAAWF,CAAC,EAAE,MAAM,EAAEG,EAAE,IAAI,WAAW,IAAI,WAAWF,CAAC,EAAE,MAAM,EAAE,OAAOm1G,GAAG,EAAE71G,EAAE,EAAE,MAAM,OAAOolG,GAAG,EAAE,KAAK,EAAEzkG,EAAEC,EAAEg1G,GAAGx3G,CAAC,EAAE2B,CAAC,EAAED,CAAC,CAAC,IAAIk2G,IAAG,CAAC,WAAWnxH,GAAG,YAAY,OAAO,WAAWkxH,IAAI,UAAUD,GAAG,EAAMG,GAAG,SAASC,IAAIn4G,EAAE,CAACk4G,GAAGl4G,EAAE,KAAK,MAAM5V,GAAG,KAAK,CAAC,SAAS,SAAS,SAAS,QAAQ,CAAC,CAAC,CAAC,SAASguH,GAAGp4G,EAAE,CAAC,GAAG,CAAC,QAAQ,EAAE,OAAO,CAAC,OAAOE,CAAC,EAAE,MAAM,CAAC,IAAIE,CAAC,CAAC,EAAEJ,EAAEK,EAAE,EAAE,UAAU,IAAIH,EAAE,MAAM,EAAE,GAAG,EAAE,EAAE,WAAWA,EAAE,MAAMA,EAAE,KAAK,EAAE,EAAE,EAAE,UAAU,IAAI,EAAE,MAAM,EAAE,GAAG6B,EAAE7B,EAAE,MAAME,CAAC,EAAE4B,EAAEzD,EAAE,cAAc2B,EAAE,KAAK,EAAE6B,EAAE,OAAOxD,EAAE,cAAc,EAAE,KAAK,IAAI,GAAG25G,GAAG73G,EAAE,EAAE0B,EAAEC,CAAC,EAAE,CAAC,CAAC,IAAIq2G,IAAG,CAAC,WAAWjuH,GAAG,YAAY,OAAO,UAAU+tH,IAAI,WAAWC,EAAE,EAAME,GAAG,SAASC,IAAIv4G,EAAE,CAACs4G,GAAGt4G,EAAE,KAAK,MAAM/Y,GAAG,KAAK,CAAC,SAAS,SAAS,SAAS,SAAS,SAAS,QAAQ,CAAC,CAAC,CAAC,SAASuxH,IAAIx4G,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,OAAOK,CAAC,EAAE,EAAE,CAAC,WAAW,EAAE,KAAK,EAAE,WAAW0B,CAAC,EAAE3B,EAAE,GAAGC,EAAE,QAAQ,UAAU,MAAM,IAAI,MAAM,8CAA8CA,EAAE,KAAK,EAAE,EAAE,IAAI2B,EAAED,EAAE1B,EAAE+3G,GAAG,CAAC,OAAO,CAAC,OAAO/3G,CAAC,EAAE,QAAQH,EAAE,MAAM,CAAC,IAAIG,EAAE,MAAM,OAAO,CAAC,CAAC,CAAC,EAAE,CAAC4B,EAAES,CAAC,EAAEV,EAAE,MAAMW,EAAEzC,EAAE,WAAW,CAAC+B,EAAE,CAAC,EAAE,OAAO,EAAE,OAAOq2G,GAAGp4G,EAAE,UAAU,IAAI8B,EAAE,MAAM,EAAE,GAAGC,EAAES,EAAE,EAAE,EAAExC,EAAE,UAAU,IAAIyC,EAAE,MAAM,EAAE,EAAE,EAAEZ,GAAG7B,EAAE,YAAY8B,EAAE,MAAM,EAAEW,CAAC,CAAC,IAAI81G,IAAG,CAAC,WAAWxxH,GAAG,YAAY,OAAO,UAAUsxH,IAAI,WAAWC,GAAG,EAAME,IAAG3Q,GAAGhhH,GAAG,EAAE,EAAM4xH,IAAI,GAAGC,IAAG7Q,GAAG7gH,GAAGyxH,GAAG,EAAME,IAAGlR,GAAGxgH,EAAE,EAAE,SAAS2xH,GAAG94G,EAAE,EAAE,CAAC,IAAIE,EAAE,IAAI,WAAWF,EAAE,KAAK,OAAO,OAAO,EAAE,CAAC,EAAEI,EAAEF,EAAE,CAAC,EAAEG,EAAEH,EAAE,CAAC,EAAE,EAAEA,EAAE,CAAC,EAAE,EAAEA,EAAE,CAAC,EAAE,OAAOF,EAAE,KAAK,MAAM,CAAC,EAAE,CAAC,iBAAiBI,EAAE,aAAaC,EAAE,gBAAgB,EAAE,cAAc,CAAC,CAAC,CAAC,IAAI04G,GAAG,SAASC,IAAIh5G,EAAE,CAAC+4G,GAAG/4G,EAAE,KAAK,MAAM5Y,GAAG,SAAS,CAAC,SAAS,SAAS,SAAS,SAAS,QAAQ,CAAC,CAAC,CAAC,SAAS6xH,IAAIj5G,EAAE,CAAC,GAAG,CAAC,QAAQ,EAAE,OAAOE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,aAAaK,EAAE,cAAc,EAAE,eAAe,CAAC,EAAED,EAAE,CAAC,MAAM2B,EAAE,OAAOC,CAAC,EAAE9B,EAAE+B,EAAE,EAAE,UAAU,IAAIF,EAAE,MAAM,EAAE,GAAGW,EAAE,EAAE,UAAU,IAAIV,EAAE,MAAM,EAAE,GAAGW,EAAEo2G,GAAG92G,EAAES,EAAE,EAAErC,EAAE,CAAC,EAAE,CAAC,iBAAiBuC,EAAE,aAAaC,EAAE,gBAAgBC,EAAE,cAAckB,CAAC,EAAE80G,GAAG,EAAEn2G,CAAC,EAAE,OAAO,EAAE,KAAK,MAAMG,CAAC,EAAE,EAAE,KAAK,MAAMkB,CAAC,EAAE,EAAE,WAAW,CAACnB,CAAC,EAAE,QAAQD,CAAC,CAAC,CAAC,IAAIs2G,IAAG,CAAC,WAAW9xH,GAAG,YAAY,OAAO,UAAU4xH,IAAI,WAAWC,GAAG,EAAME,GAAG,SAASC,IAAIp5G,EAAE,CAACm5G,GAAGn5G,EAAE,KAAK,MAAM3Y,GAAG,SAAS,CAAC,SAAS,SAAS,SAAS,SAAS,SAAS,MAAM,CAAC,CAAC,CAAC,SAASgyH,IAAIr5G,EAAE,CAAC,GAAG,CAAC,QAAQ,EAAE,OAAOE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,aAAaK,EAAE,cAAc,EAAE,eAAe,EAAE,mBAAmB0B,CAAC,EAAE3B,EAAE,CAAC,MAAM4B,EAAE,OAAOC,CAAC,EAAE/B,EAAEwC,EAAE,EAAE,UAAU,IAAIV,EAAE,MAAM,EAAE,GAAGW,EAAE,EAAE,UAAU,IAAIV,EAAE,MAAM,EAAE,GAAGW,EAAEu2G,GAAGz2G,EAAEC,EAAE,EAAEtC,EAAE,EAAE0B,CAAC,EAAE,CAAC,iBAAiBc,EAAE,aAAaC,EAAE,gBAAgBkB,EAAE,cAAc,CAAC,EAAE80G,GAAG,EAAEl2G,CAAC,EAAE,EAAE,KAAK,MAAMoB,CAAC,EAAE,IAAIsD,EAAE,EAAE,WAAW,CAACxE,CAAC,EAAE,QAAQD,CAAC,EAAEiC,EAAE,EAAE,WAAW,CAAC,EAAE,QAAQ,CAAC,EAAE,MAAM,CAACwC,EAAExC,CAAC,CAAC,CAAC,IAAIw0G,IAAG,CAAC,WAAWjyH,GAAG,YAAY,OAAO,UAAU+xH,IAAI,WAAWC,GAAG,EAAME,GAAG,SAASC,IAAIx5G,EAAE,CAACu5G,GAAGv5G,EAAE,KAAK,MAAM1Y,GAAG,SAAS,CAAC,SAAS,SAAS,SAAS,SAAS,SAAS,QAAQ,CAAC,CAAC,CAAC,SAASmyH,IAAIz5G,EAAE,CAAC,GAAG,CAAC,QAAQ,EAAE,OAAOE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,aAAaK,EAAE,cAAc,EAAE,eAAe,EAAE,aAAa0B,CAAC,EAAE3B,EAAE,CAAC,MAAM4B,EAAE,OAAOC,CAAC,EAAE/B,EAAEwC,EAAE,EAAE,UAAU,IAAIV,EAAE,MAAM,EAAE,GAAGW,EAAE,EAAE,UAAU,IAAIV,EAAE,MAAM,EAAE,GAAGW,EAAE22G,GAAG72G,EAAEC,EAAE,EAAEtC,EAAE,EAAE0B,CAAC,EAAE,CAAC,iBAAiBc,EAAE,aAAaC,EAAE,gBAAgBkB,EAAE,cAAc,CAAC,EAAE80G,GAAG,EAAEl2G,CAAC,EAAE,EAAE,KAAK,MAAM,CAAC,EAAE,IAAI0E,EAAE,EAAE,WAAW,CAACxE,CAAC,EAAE,QAAQD,CAAC,EAAEiC,EAAE,EAAE,WAAW,CAAChC,CAAC,EAAE,UAAUkB,CAAC,EAAE,MAAM,CAACsD,EAAExC,CAAC,CAAC,CAAC,IAAI40G,IAAG,CAAC,WAAWpyH,GAAG,YAAY,OAAO,UAAUkyH,IAAI,WAAWC,GAAG,EAAME,IAAI,GAAGC,IAAG7R,GAAGxgH,GAAGoyH,IAAI,MAAM,EAAME,GAAG,SAASC,IAAI95G,EAAE,CAAC65G,GAAG75G,EAAE,KAAK,MAAMvY,GAAG,KAAK,CAAC,SAAS,SAAS,SAAS,SAAS,QAAQ,CAAC,CAAC,CAAC,SAASsyH,IAAI/5G,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,QAAQK,CAAC,EAAE,EAAE,CAAC,MAAM,EAAE,MAAM,EAAE,QAAQ0B,EAAE,SAASC,CAAC,EAAE5B,EAAE6B,EAAE/B,EAAE,WAAW,CAAC,GAAGG,EAAE,MAAM,CAAC,EAAE,CAAC,EAAEqC,EAAExC,EAAE,UAAU,IAAI+B,EAAE,MAAM,EAAE,GAAGW,EAAE1C,EAAE,UAAU,IAAIG,EAAE,MAAM,EAAE,GAAG,OAAOw5G,GAAGj3G,EAAE,EAAEb,EAAEC,EAAEU,CAAC,EAAET,CAAC,CAAC,IAAI+3G,IAAG,CAAC,WAAWvyH,GAAG,YAAY,OAAO,UAAUqyH,IAAI,WAAWC,GAAG,EAAE,SAASE,IAAIj6G,EAAE,CAAC,GAAG,CAAC,OAAO,CAAC,EAAE,CAAC,EAAE,QAAQE,CAAC,EAAEF,EAAEI,EAAEF,EAAE,WAAW,EAAE,MAAM,EAAE,KAAK,EAAE,OAAOA,EAAE,mBAAmBE,CAAC,EAAE,KAAK,CAAC,EAAEA,CAAC,CAAC,IAAI85G,IAAG,CAAC,WAAWxyH,GAAG,YAAY,OAAO,WAAWuyH,GAAG,EAAE,SAASE,IAAIn6G,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,KAAKK,CAAC,EAAED,EAAE,GAAG,EAAE,SAAS,EAAE,OAAOixG,GAAG,CAAC,OAAO,CAAC,MAAM,EAAE,CAAC,CAAC,EAAE,QAAQnxG,EAAE,MAAM,CAAC,IAAIG,CAAC,CAAC,CAAC,EAAE,IAAI,EAAE,EAAE,CAAC,EAAE,MAAM,EAAE,EAAE,CAAC,EAAE,MAAM,EAAE,QAAQqC,GAAG,CAACnE,EAAE,kBAAkB,EAAEmE,EAAE,MAAM,uDAAuD,EAAEnE,EAAE,OAAO,IAAImE,EAAE,MAAM,IAAI,uDAAuD,CAAC,CAAC,EAAE,IAAIX,EAAE,CAAC,EAAEC,EAAE,EAAE,IAAIU,GAAG,CAAC,IAAIC,EAAE0uG,GAAG,CAAC,OAAO,CAAC,MAAM3uG,CAAC,EAAE,QAAQxC,EAAE,MAAM,CAAC,IAAIG,CAAC,CAAC,CAAC,EAAE,OAAO0B,EAAE,KAAKY,CAAC,EAAEA,CAAC,CAAC,EAAEV,EAAE0qG,GAAG,CAAC,OAAO3qG,EAAE,QAAQ9B,EAAE,MAAM,CAAC,KAAKG,CAAC,CAAC,CAAC,EAAE,OAAO0B,EAAE,QAAQW,GAAGxC,EAAE,YAAYwC,EAAE,MAAM,CAAC,EAAET,CAAC,CAAC,IAAIm4G,IAAG,CAAC,WAAWvyH,GAAG,YAAY,OAAO,WAAWsyH,GAAG,EAAME,GAAG,SAASC,IAAIt6G,EAAE,CAACq6G,GAAGr6G,EAAE,KAAK,MAAMlY,GAAG,KAAK,CAAC,SAAS,QAAQ,SAAS,SAAS,QAAQ,QAAQ,SAAS,QAAQ,CAAC,CAAC,CAAC,SAASyyH,IAAIv6G,EAAE,CAAC,GAAG,CAAC,OAAO,CAAC,EAAE,CAAC,EAAE,QAAQE,EAAE,MAAM,CAAC,SAASE,EAAE,cAAcC,CAAC,CAAC,EAAEL,EAAE,EAAEI,EAAE,IAAI,CAAC4D,EAAEC,IAAID,EAAE,CAAC,EAAE,EAAE,MAAMC,CAAC,EAAED,EAAE,CAAC,CAAC,EAAE,GAAGzF,EAAE,cAAc,EAAE,KAAK,IAAI,EAAE,OAAOizG,GAAG,CAAC,QAAQtxG,EAAE,MAAM,CAAC,MAAM,EAAE,MAAMG,EAAE,MAAM,EAAE,KAAK,CAAC,CAAC,EAAE,IAAI,EAAEH,EAAE,UAAU,IAAI,EAAE,MAAM,EAAE,GAAG6B,EAAE7B,EAAE,WAAW,EAAE,EAAE,KAAK,EAAE,EAAEA,EAAE,UAAU,IAAI6B,EAAE,MAAM,EAAE,GAAGW,EAAE,IAAI,WAAW,IAAI,WAAW,EAAE,KAAK,EAAE,MAAM,EAAE,EAAEtC,EAAE,IAAI4D,GAAGA,EAAE,CAAC,CAAC,EAAEpB,EAAExC,EAAE,IAAI4D,GAAGA,EAAE,CAAC,CAAC,EAAEnB,EAAE,IAAI,WAAW,IAAI,WAAW,CAAC,EAAE,MAAM,EAAEC,EAAE,IAAI,WAAW,IAAI,WAAWF,CAAC,EAAE,MAAM,EAAE,OAAOy3G,GAAG,EAAE33G,EAAE,EAAE,MAAM,OAAO2kG,GAAG,EAAE,KAAK,EAAExkG,EAAEC,EAAEzC,EAAE,CAAC,EAAE0B,CAAC,CAAC,IAAIy4G,GAAG,CAAC,WAAW1yH,GAAG,YAAY,OAAO,WAAWyyH,IAAI,UAAUD,GAAG,EAAMG,IAAI,GAAGC,IAAG3S,GAAG//G,GAAGyyH,GAAG,EAAME,GAAG,SAASC,IAAI56G,EAAE,CAAC26G,GAAG36G,EAAE,KAAK,MAAM/X,GAAG,KAAK,CAAC,SAAS,SAAS,QAAQ,CAAC,CAAC,CAAC,SAAS4yH,IAAI76G,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,CAAC,EAAEF,EAAE,CAAC,EAAEI,EAAE,MAAMC,CAAC,EAAE,EAAE,EAAEH,EAAE,UAAU,IAAIE,EAAE,MAAM,EAAE,GAAG,EAAEF,EAAE,UAAU,IAAIG,EAAE,MAAM,EAAE,GAAG0B,EAAE,EAAEC,EAAE5B,EAAE6B,EAAED,EAAEA,EAAE,QAAQ,YAAYC,EAAEmqG,GAAG,CAAC,QAAQlsG,EAAE,OAAO,CAAC,EAAEE,CAAC,EAAE,MAAM,CAAC,MAAM,SAAS,CAAC,CAAC,EAAE2B,EAAE7B,EAAE,UAAU,IAAI+B,EAAE,MAAM,EAAE,IAAI,IAAIS,EAAExC,EAAE,WAAWE,EAAE,MAAM,SAAS,EAAEuC,EAAEzC,EAAE,UAAU,IAAIwC,EAAE,MAAM,EAAE,GAAG,OAAOi4G,GAAG54G,EAAE,EAAEY,CAAC,EAAEX,EAAE,QAAQ,WAAW9B,EAAE,YAAY+B,EAAE,MAAM,EAAES,CAAC,CAAC,IAAIo4G,IAAG,CAAC,WAAW7yH,GAAG,YAAY,OAAO,UAAU2yH,IAAI,WAAWC,GAAG,EAAME,GAAG,SAASC,IAAIh7G,EAAE,CAAC+6G,GAAG/6G,EAAE,KAAK,MAAM9X,GAAG,KAAK,CAAC,SAAS,SAAS,SAAS,QAAQ,CAAC,CAAC,CAAC,SAAS+yH,IAAIj7G,EAAE,CAAC,GAAG,CAAC,QAAQ,EAAE,OAAOE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,KAAKK,EAAE,SAAS,CAAC,EAAED,EAAE,CAAC,EAAE,CAAC,EAAEF,EAAE6B,EAAE,EAAE,UAAU,IAAI,EAAE,MAAM,EAAE,GAAGC,EAAED,EAAEE,EAAE,EAAE,CAAC,WAAWS,EAAE,KAAKC,EAAE,aAAaC,EAAE,mBAAmBC,CAAC,EAAEimG,GAAG,EAAEzoG,EAAE,CAAC,EAAEyC,EAAEH,EAAE,GAAGE,EAAE,CAAC,IAAI4B,EAAE,EAAE,UAAU,IAAI/B,EAAE,MAAM,EAAE,GAAG+B,IAAI1C,IAAIE,EAAES,EAAEV,EAAEyC,EAAE3B,EAAEpV,EAAE,iBAAiBoV,EAAE,OAAOb,EAAE,MAAM,MAAM,EAAE,CAACvU,EAAE,2BAA2B,OAAOoV,EAAEb,EAAE,MAAM,MAAM,EAAE,GAAG,CAAC+B,EAAE,CAAC,EAAEtW,EAAE,0BAA0BuU,EAAE,MAAMa,CAAC,EAAEwE,EAAE/I,EAAE,cAAc,CAAC,EAAEuG,EAAE,EAAE,WAAWd,EAAE/B,EAAE,KAAK,EAAE,GAAG1D,EAAE,cAAc0D,EAAE,KAAK,IAAI,EAAE,CAAC,IAAIwC,EAAE,EAAE,UAAU,IAAIK,EAAE,MAAM,EAAE,GAAGi2G,GAAG/4G,EAAEsF,EAAE+/F,GAAGviG,EAAE,KAAK,EAAEL,CAAC,CAAC,CAAC,GAAG5B,GAAG,EAAE,YAAYH,EAAE,MAAM,EAAE,EAAE,CAAC,IAAI+B,EAAE/W,EAAE,qBAAqBoX,EAAE,MAAMlC,CAAC,EAAEkC,EAAE,MAAML,CAAC,CAAC,OAAOK,CAAC,CAAC,IAAIo2G,IAAG,CAAC,WAAWhzH,GAAG,YAAY,OAAO,UAAU8yH,IAAI,WAAWC,GAAG,EAAME,IAAIn7G,GAAG,CAAC,GAAG,CAAC,QAAQ,EAAE,MAAME,CAAC,EAAEF,EAAE,CAAC,MAAMI,EAAE,KAAKC,EAAE,KAAK,EAAE,MAAM,CAAC,EAAEH,EAAE6B,EAAE44D,GAAGv6D,EAAEC,EAAE,EAAE,CAAC,EAAE2B,EAAE,EAAE,WAAW,CAACD,EAAE,MAAM,EAAE,CAAC,EAAE,OAAO,EAAE,mBAAmBC,CAAC,EAAE,IAAID,CAAC,EAAEC,CAAC,EAAEo5G,IAAG,CAAC,WAAW5yH,GAAG,YAAY,OAAO,WAAW2yH,GAAG,EAAME,IAAI,GAAGC,IAAGvT,GAAGp/G,GAAG0yH,GAAG,EAAME,IAAG5T,GAAG/+G,EAAE,EAAM4yH,IAAG7T,GAAG7+G,EAAE,EAAM2yH,IAAG9T,GAAG5+G,EAAE,EAAM2yH,GAAG,SAASC,IAAI37G,EAAE,CAAC07G,GAAG17G,EAAE,KAAK,MAAM/W,GAAG,KAAK,CAAC,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,QAAQ,CAAC,CAAC,CAAC,SAAS2yH,IAAI57G,EAAE,CAAC,GAAG,CAAC,QAAQ,EAAE,OAAOE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,OAAOK,CAAC,EAAEH,EAAE,CAAC,aAAa,EAAE,iBAAiB,EAAE,KAAK6B,CAAC,EAAE3B,EAAE,CAAC4B,EAAEC,CAAC,EAAEF,EAAE,CAACW,EAAEC,EAAEC,EAAEC,CAAC,EAAExC,EAAE,MAAMyC,EAAE,CAACJ,EAAEV,EAAEC,EAAEY,CAAC,EAAEmB,EAAE,EAAE,UAAU,IAAI3D,EAAE,MAAM,EAAE,EAAE2D,EAAE,QAAQ,YAAY,EAAEooG,GAAG,CAAC,QAAQ,EAAE,OAAO,CAAC,EAAE/rG,CAAC,EAAE,MAAM,CAAC,MAAM,SAAS,CAAC,CAAC,EAAE2D,EAAE,EAAE,UAAU,IAAI,EAAE,MAAM,GAAG,IAAIsD,EAAEtD,EAAE,GAAGc,EAAE,EAAE,WAAWhC,EAAE,SAAS,EAAE,GAAGvE,EAAE,cAAc8B,EAAE,KAAK,IAAI,EAAE,OAAOyE,EAAE,IAAIL,EAAE,EAAE,UAAU,IAAIK,EAAE,MAAM,EAAE,GAAG,OAAO42G,GAAGp0G,EAAE5E,EAAEC,EAAEC,EAAEC,EAAEb,EAAEC,EAAE,EAAE,EAAE,EAAE,EAAE,EAAE,EAAEwC,CAAC,EAAE,GAAG,MAAM,EAAE,YAAY,EAAE,MAAM,EAAEK,CAAC,CAAC,IAAI+2G,IAAG,CAAC,WAAW5yH,GAAG,YAAY,OAAO,UAAU0yH,IAAI,WAAWC,GAAG,EAAME,GAAG,SAASC,IAAI/7G,EAAE,CAAC87G,GAAG97G,EAAE,KAAK,MAAM9W,GAAG,KAAK,CAAC,SAAS,SAAS,SAAS,QAAQ,QAAQ,SAAS,CAAC,CAAC,CAAC,SAAS8yH,IAAIh8G,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,OAAOK,EAAE,GAAG,CAAC,EAAE,EAAE,CAAC,aAAa,CAAC,EAAED,EAAE2B,EAAE7B,EAAE,WAAWG,EAAE,MAAM,SAAS,EAAE2B,EAAE9B,EAAE,UAAU,IAAIG,EAAE,MAAM,EAAE4B,EAAE,OAAOD,EAAE,QAAQ,YAAYC,EAAEmqG,GAAG,CAAC,QAAQlsG,EAAE,OAAO,CAAC,EAAEG,CAAC,EAAE,MAAM,CAAC,MAAM,SAAS,CAAC,CAAC,EAAE2B,EAAE9B,EAAE,UAAU,IAAI+B,EAAE,MAAM,GAAG65G,GAAG57G,EAAE,UAAU,IAAIG,EAAE,MAAM,EAAE,GAAGH,EAAE,UAAU,IAAI,EAAE,MAAM,EAAE,GAAGA,EAAE,UAAU,IAAI6B,EAAE,MAAM,EAAE,GAAG,IAAI,WAAW,IAAI,WAAW1B,EAAE,KAAK,EAAE,MAAM,EAAE,IAAI,WAAW,IAAI,WAAW,EAAE,KAAK,EAAE,MAAM,EAAE,CAAC,EAAE4B,GAAG,MAAM/B,EAAE,YAAY+B,EAAE,MAAM,EAAEF,CAAC,CAAC,IAAIk6G,IAAG,CAAC,WAAW/yH,GAAG,YAAY,OAAO,UAAU6yH,IAAI,WAAWC,GAAG,EAAME,GAAG,SAASC,IAAIn8G,EAAE,CAACk8G,GAAGl8G,EAAE,KAAK,MAAM7W,GAAG,KAAK,CAAC,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,QAAQ,CAAC,CAAC,CAAC,SAASizH,IAAIp8G,EAAE,CAAC,GAAG,CAAC,QAAQ,EAAE,OAAOE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,OAAOK,CAAC,EAAEH,EAAE,CAAC,aAAa,EAAE,iBAAiB,EAAE,KAAK6B,CAAC,EAAE3B,EAAE,CAAC4B,EAAEC,CAAC,EAAEF,EAAE,CAACW,EAAEC,EAAEC,EAAEC,CAAC,EAAExC,EAAE,MAAMyC,EAAE,CAACJ,EAAEV,EAAEC,EAAEY,CAAC,EAAEmB,EAAE,EAAE,WAAWlB,EAAE,SAAS,EAAE,GAAGvE,EAAE,cAAc8B,EAAE,KAAK,IAAI,EAAE,OAAO2D,EAAE,IAAI,EAAE,EAAE,UAAU,IAAI3D,EAAE,MAAM,EAAEiH,EAAE,EAAE,QAAQ,YAAYA,EAAE8kG,GAAG,CAAC,QAAQ,EAAE,OAAO,CAAC,EAAE/rG,CAAC,EAAE,MAAM,CAAC,MAAM,SAAS,CAAC,CAAC,EAAE,EAAE,EAAE,UAAU,IAAIiH,EAAE,MAAM,GAAG,IAAIxC,EAAE,EAAE,GAAGL,EAAE,EAAE,UAAU,IAAIT,EAAE,MAAM,EAAE,GAAG,OAAOk4G,GAAGp3G,EAAEpC,EAAEC,EAAEC,EAAEC,EAAEb,EAAEC,EAAE,EAAE,EAAE,EAAE,EAAE,EAAE,EAAEwC,CAAC,EAAE6C,GAAG,MAAM,EAAE,YAAYA,EAAE,MAAM,EAAEtD,CAAC,CAAC,IAAIq4G,IAAG,CAAC,WAAWlzH,GAAG,YAAY,OAAO,UAAUgzH,IAAI,WAAWC,GAAG,EAAME,GAAG,SAASC,IAAIv8G,EAAE,CAACs8G,GAAGt8G,EAAE,KAAK,MAAM5W,GAAG,KAAK,CAAC,SAAS,SAAS,SAAS,QAAQ,QAAQ,SAAS,CAAC,CAAC,CAAC,SAASozH,IAAIx8G,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,OAAOK,EAAE,GAAG,CAAC,EAAE,EAAE,CAAC,aAAa,CAAC,EAAED,EAAE2B,EAAE7B,EAAE,WAAWG,EAAE,MAAM,SAAS,EAAE2B,EAAE9B,EAAE,UAAU,IAAIG,EAAE,MAAM,EAAE4B,EAAE,OAAOD,EAAE,QAAQ,YAAYC,EAAEmqG,GAAG,CAAC,QAAQlsG,EAAE,OAAO,CAAC,EAAEG,CAAC,EAAE,MAAM,CAAC,MAAM,SAAS,CAAC,CAAC,EAAE2B,EAAE9B,EAAE,UAAU,IAAI+B,EAAE,MAAM,GAAGq6G,GAAGp8G,EAAE,UAAU,IAAIG,EAAE,MAAM,EAAE,GAAGH,EAAE,UAAU,IAAI,EAAE,MAAM,EAAE,GAAGA,EAAE,UAAU,IAAI6B,EAAE,MAAM,EAAE,GAAG,IAAI,WAAW,IAAI,WAAW1B,EAAE,KAAK,EAAE,MAAM,EAAE,IAAI,WAAW,IAAI,WAAW,EAAE,KAAK,EAAE,MAAM,EAAE,CAAC,EAAE4B,GAAG,MAAM/B,EAAE,YAAY+B,EAAE,MAAM,EAAEF,CAAC,CAAC,IAAI06G,IAAG,CAAC,WAAWrzH,GAAG,YAAY,OAAO,UAAUmzH,IAAI,WAAWC,GAAG,EAAME,GAAG,SAASC,IAAI38G,EAAE,CAAC08G,GAAG18G,EAAE,KAAK,MAAM3W,GAAG,KAAK,CAAC,SAAS,QAAQ,SAAS,QAAQ,SAAS,QAAQ,CAAC,CAAC,CAAC,SAASuzH,IAAI58G,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,CAAC,EAAE,EAAE,CAAC,KAAK,CAAC,EAAED,EAAE,EAAE7B,EAAE,eAAe,EAAE8B,EAAE,KAAK,EAAE,GAAGA,EAAE,MAAM,SAAS,EAAE,OAAOioG,GAAG,CAAC,OAAO,CAAC,EAAEjoG,CAAC,EAAE,QAAQH,CAAC,CAAC,EAAE,IAAI6B,EAAE7B,EAAE,WAAWG,EAAE,MAAMA,EAAE,KAAK,EAAE2B,EAAE9B,EAAE,UAAU,IAAIG,EAAE,MAAM,EAAE,GAAG4B,EAAE/B,EAAE,UAAU,IAAI6B,EAAE,MAAM,EAAE,GAAGW,EAAE,IAAI,WAAW,IAAI,WAAW,CAAC,EAAE,MAAM,EAAEC,EAAE,IAAI,WAAW,IAAI,WAAWtC,EAAE,KAAK,EAAE,MAAM,EAAEq8G,GAAG16G,EAAEU,EAAE,EAAE,OAAOC,EAAEtC,EAAE,MAAM,OAAO4B,CAAC,EAAE,IAAIW,EAAEmoG,GAAG,CAAC,OAAO,CAAC,EAAEhpG,CAAC,EAAE,MAAM,CAAC,MAAM1B,EAAE,KAAK,EAAE,QAAQH,CAAC,CAAC,EAAE,OAAOA,EAAE,YAAY6B,EAAE,MAAM,EAAEa,CAAC,CAAC,IAAIi6G,IAAG,CAAC,WAAWxzH,GAAG,YAAY,OAAO,WAAWuzH,IAAI,UAAUD,GAAG,EAAMG,GAAG,SAASC,IAAI/8G,EAAE,CAAC88G,GAAG98G,EAAE,KAAK,MAAM1W,GAAG,KAAK,CAAC,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,QAAQ,SAAS,QAAQ,CAAC,CAAC,CAAC,SAAS0zH,IAAIh9G,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,MAAMK,CAAC,EAAE,EAAE,CAAC,QAAQ,EAAE,UAAU,EAAE,OAAO0B,CAAC,EAAE3B,EAAE4B,EAAE9B,EAAE,WAAWG,EAAE,MAAMA,EAAE,KAAK,EAAE4B,EAAE/B,EAAE,UAAU,IAAIG,EAAE,MAAM,EAAE,GAAGqC,EAAExC,EAAE,UAAU,IAAI8B,EAAE,MAAM,EAAE,GAAG,CAACW,EAAEC,EAAEC,EAAEC,CAAC,EAAEzC,EAAE,MAAM,CAAC2D,EAAE,CAAC,EAAEtW,EAAE,eAAeqU,EAAEa,EAAEC,CAAC,EAAEyE,EAAE,IAAI,EAAExC,EAAE,IAAIL,EAAE,OAAO,GAAG,SAAS,CAAC,EAAE,EAAE,EAAE6C,EAAE,EAAExC,CAAC,EAAE,CAAC,GAAG,EAAEA,CAAC,EAAEJ,EAAE,IAAI,WAAW,IAAI,WAAWD,CAAC,EAAE,MAAM,EAAE,OAAOq4G,GAAG76G,EAAEU,EAAEC,EAAEC,EAAEC,EAAE,EAAEkB,EAAE,EAAEU,EAAED,EAAE,OAAO/B,CAAC,EAAEV,CAAC,CAAC,IAAIi7G,IAAG,CAAC,WAAW3zH,GAAG,YAAY,OAAO,WAAW0zH,IAAI,UAAUD,GAAG,EAAMG,IAAGvV,GAAGp+G,EAAE,EAAM4zH,IAAGxV,GAAGn+G,EAAE,EAAM4zH,GAAG,SAASC,IAAIr9G,EAAE,CAACo9G,GAAGp9G,EAAE,KAAK,MAAMtW,GAAG,KAAK,CAAC,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,QAAQ,SAAS,QAAQ,CAAC,CAAC,CAAC,SAAS4zH,IAAIt9G,EAAE,CAAC,GAAG,CAAC,QAAQ,EAAE,OAAOE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,QAAQK,EAAE,QAAQ,CAAC,EAAEH,EAAE,CAAC,MAAM,CAAC,EAAEE,EAAE2B,EAAE,EAAE,WAAW,EAAE,EAAE,KAAK,EAAE,GAAGxD,EAAE,cAAc,CAAC,IAAI,EAAE,OAAOwD,EAAE,GAAG,CAAC,UAAUC,EAAE,WAAWC,EAAE,UAAUS,EAAE,QAAQC,EAAE,WAAWC,CAAC,EAAE1I,GAAG,gBAAgB,EAAEmG,EAAE,CAAC,EAAEyC,EAAE,EAAE,UAAU,IAAIzC,EAAE,MAAM,EAAE,GAAG4D,EAAE,EAAE,UAAU,IAAI,EAAE,MAAM,EAAE,GAAGqD,EAAE,IAAI,WAAW,IAAI,WAAW3E,CAAC,EAAE,MAAM,EAAEmC,EAAE,EAAE,UAAU,IAAI/C,EAAE,MAAM,EAAE,GAAG,OAAOq7G,GAAGt6G,EAAEmB,EAAEojG,GAAG,EAAE,KAAK,EAAErlG,EAAEC,EAAES,EAAE4E,EAAE1E,EAAEkC,CAAC,EAAE/C,CAAC,CAAC,IAAIw7G,IAAG,CAAC,WAAW7zH,GAAG,YAAY,OAAO,UAAU2zH,IAAI,WAAWC,GAAG,EAAME,GAAG,SAASC,IAAIz9G,EAAE,CAACw9G,GAAGx9G,EAAE,KAAK,MAAMrW,GAAG,KAAK,CAAC,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,OAAO,QAAQ,CAAC,CAAC,CAAC,SAAS+zH,IAAI19G,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,eAAeK,EAAE,OAAO,CAAC,EAAE,EAAE,CAAC,KAAK,CAAC,EAAED,EAAE,GAAGC,EAAE,QAAQ,EAAE,MAAM,MAAM,IAAI,MAAM,+EAA+EA,EAAE,KAAK,QAAQ,EAAE,KAAK,EAAE,EAAE,IAAI0B,EAAE7B,EAAE,WAAW,EAAE,MAAM,OAAO,EAAE,SAAS8B,EAAEC,EAAE,CAAC,OAAO/B,EAAE,UAAU,IAAI+B,EAAE,MAAM,EAAE,EAAE,CAAC,OAAOu7G,GAAGx7G,EAAE3B,CAAC,EAAE2B,EAAE,CAAC,EAAE3B,EAAE,MAAM,CAAC,EAAEA,EAAE,MAAM,CAAC,EAAE,EAAE,MAAM,CAAC,EAAEgnG,GAAGhnG,EAAE,KAAK,EAAE,IAAI,OAAO2B,EAAED,CAAC,CAAC,EAAEA,CAAC,CAAC,IAAI47G,IAAG,CAAC,WAAWh0H,GAAG,YAAY,OAAO,UAAU8zH,IAAI,WAAWC,GAAG,EAAME,GAAG,SAASC,IAAI79G,EAAE,CAAC49G,GAAG59G,EAAE,KAAK,MAAM,WAAW,KAAK,CAAC,SAAS,SAAS,SAAS,SAAS,QAAQ,CAAC,CAAC,CAAC,SAAS89G,IAAI99G,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,CAAC,EAAEF,EAAE,CAAC,UAAUI,EAAE,EAAEC,EAAE,EAAE,CAAC,EAAE,EAAE,EAAEH,EAAE,UAAU,IAAIE,EAAE,MAAM,EAAE,GAAG2B,EAAE7B,EAAE,UAAU,IAAIG,EAAE,MAAM,EAAE,GAAG2B,EAAE9B,EAAE,UAAU,IAAI,EAAE,MAAM,EAAE,GAAG+B,EAAE/B,EAAE,WAAWG,EAAE,MAAMA,EAAE,KAAK,EAAEqC,EAAExC,EAAE,UAAU,IAAI+B,EAAE,MAAM,EAAE,GAAGU,EAAEvC,EAAE,MAAM,OAAOwC,EAAEvC,EAAE,MAAM,OAAOwC,EAAEF,IAAI,GAAGA,EAAE,GAAGC,IAAI,EAAE,EAAErE,EAAE,cAAc8B,EAAE,MAAM,MAAM,CAAC,CAAC,EAAE,OAAOu9G,GAAG,EAAE77G,EAAEC,EAAEa,EAAEH,CAAC,EAAET,CAAC,CAAC,IAAI87G,IAAG,CAAC,WAAWn0H,GAAG,YAAY,OAAO,WAAWk0H,IAAI,UAAUD,GAAG,EAAMG,IAAGrW,GAAG99G,EAAE,EAAMo0H,GAAG,SAASC,IAAIl+G,EAAE,CAACi+G,GAAGj+G,EAAE,KAAK,MAAMjW,GAAG,KAAK,CAAC,SAAS,QAAQ,CAAC,CAAC,CAAC,SAASo0H,IAAIn+G,EAAE,CAAC,GAAG,CAAC,QAAQ,EAAE,OAAO,CAAC,EAAEE,CAAC,CAAC,EAAEF,EAAEI,EAAE,EAAE,UAAU,IAAIF,EAAE,MAAM,EAAE,GAAGG,EAAE,EAAE,WAAWH,EAAE,MAAMA,EAAE,KAAK,EAAE,EAAE,EAAE,UAAU,IAAIG,EAAE,MAAM,EAAE,GAAG,OAAO9B,EAAE,cAAc8B,EAAE,KAAK,IAAI,GAAG49G,GAAG79G,EAAE,CAAC,EAAEC,CAAC,CAAC,IAAI+9G,IAAG,CAAC,WAAW,UAAU,YAAY,OAAO,UAAUF,IAAI,WAAWC,GAAG,EAAME,IAAG1W,GAAG39G,EAAE,EAAMs0H,IAAG3W,GAAG19G,EAAE,EAAMs0H,IAAG5W,GAAGz9G,EAAE,EAAMs0H,IAAG7W,GAAGt9G,EAAE,EAAE,SAASo0H,IAAIz+G,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,CAAC,EAAE,EAAE,CAAC,WAAW,EAAE,SAAS,CAAC,EAAED,EAAE2B,EAAExD,EAAE,cAAc,CAAC,EAAEyD,EAAE,CAAC,CAAC,EAAE,CAAC,CAAC,EAAEA,EAAE,KAAK,GAAG,CAAC,EAAE,QAAQ4C,EAAE,EAAE,EAAE,OAAOA,EAAEvE,EAAE,MAAM,OAAO,EAAEuE,EAAE5C,EAAE,KAAK,CAAC,EAAE,CAAC,CAAC,EAAE,IAAIC,EAAEu4G,GAAG,WAAW,CAAC,OAAO,CAAC,EAAEn6G,CAAC,EAAE,QAAQH,EAAE,MAAM,CAAC,SAAS8B,EAAE,cAAc,CAAC,CAAC,CAAC,EAAEU,EAAEhV,EAAE,YAAYuU,EAAE,MAAM,EAAEF,EAAE,EAAE,EAAEY,EAAEjV,EAAE,YAAYgV,EAAE,OAAO,EAAE,OAAO,EAAE,EAAEE,EAAElV,EAAE,oBAAoBuU,EAAE,MAAM,EAAEF,EAAE,EAAE,EAAE,EAAEgpG,GAAG,CAAC,OAAO,CAAC,EAAE9oG,CAAC,EAAE,QAAQ/B,EAAE,MAAM,CAAC,MAAMwC,CAAC,CAAC,CAAC,EAAEoC,EAAE4jG,GAAG,CAAC,OAAO,CAAC,EAAE,CAAC,EAAE,QAAQxoG,EAAE,MAAM,CAAC,KAAKyC,CAAC,CAAC,CAAC,EAAEgC,EAAEomG,GAAG,CAAC,OAAO,CAAC,EAAEjmG,CAAC,EAAE,QAAQ5E,EAAE,MAAM,CAAC,MAAM0C,CAAC,CAAC,CAAC,EAAE,OAAO1C,EAAE,YAAY+B,EAAE,MAAM,EAAE/B,EAAE,YAAY,EAAE,MAAM,EAAEA,EAAE,YAAY4E,EAAE,MAAM,EAAEH,CAAC,CAAC,IAAI+5G,IAAG,CAAC,WAAWp0H,GAAG,YAAY,OAAO,WAAWm0H,GAAG,EAAME,GAAG,SAASC,IAAI5+G,EAAE,CAAC2+G,GAAG3+G,EAAE,KAAK,MAAM,sBAAsB,SAAS,CAAC,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,QAAQ,CAAC,CAAC,CAAC,SAAS6+G,IAAI7+G,EAAE,CAAC,GAAG,CAAC,QAAQ,EAAE,OAAOE,CAAC,EAAEF,EAAE,CAAC,QAAQI,EAAE,OAAOC,EAAE,WAAW,EAAE,aAAa,CAAC,EAAEH,EAAE6B,EAAE3B,EAAE,MAAM,CAAC,EAAE4B,EAAE5B,EAAE,MAAM,CAAC,EAAE6B,EAAE,EAAE,SAAS,EAAE,MAAM,EAAE,CAAC,EAAES,EAAE,CAACX,EAAEE,EAAED,CAAC,EAAEW,EAAE,EAAE,UAAU,IAAIvC,EAAE,MAAM,EAAE,GAAGwC,EAAE,EAAE,UAAU,IAAIvC,EAAE,MAAM,EAAE,GAAGwC,EAAE,EAAE,UAAU,IAAI,EAAE,MAAM,EAAE,GAAGC,EAAE,EAAE,WAAWJ,EAAEtC,EAAE,KAAK,EAAE4D,EAAE,EAAE,UAAU,IAAIlB,EAAE,MAAM,EAAE,GAAG,EAAE,EAAE,WAAWJ,EAAE,MAAM,EAAE,CAAC,EAAErC,EAAE,KAAK,EAAEiH,EAAE,EAAE,UAAU,IAAI,EAAE,MAAM,EAAE,GAAGxC,EAAE,EAAE,WAAW,CAAC7C,CAAC,EAAE,MAAM,EAAEwC,EAAE,EAAE,UAAU,IAAIK,EAAE,MAAM,EAAE,GAAGJ,EAAE,EAAE,WAAW,CAAC3C,CAAC,EAAE3B,EAAE,KAAK,EAAEuE,EAAE,EAAE,UAAU,IAAID,EAAE,MAAM,EAAE,GAAGE,EAAE,EAAE,WAAW,CAAC,CAAC,EAAE,OAAO,EAAEC,EAAE,EAAE,UAAU,IAAID,EAAE,MAAM,EAAE,GAAG2C,EAAEo3G,GAAGh8G,EAAEC,EAAEykG,GAAGhnG,EAAE,KAAK,EAAE0B,EAAEE,EAAED,EAAEa,EAAEmB,EAAEsD,EAAE7C,EAAEE,EAAEE,CAAC,EAAE,EAAE,EAAE,SAASD,EAAE,MAAM,EAAEI,EAAE,OAAO,EAAE,CAAC,EAAE,CAAC,IAAK,GAAE,CAACA,EAAEtX,EAAE,gDAAgD,EAAE,CAAC,CAAC,EAAE,KAAK,CAAC,IAAK,GAAE,CAACsX,EAAEtX,EAAE,gDAAgD,EAAE,CAAC,EAAE,EAAE,CAAC,CAAC,EAAE,KAAK,CAAC,IAAK,GAAEsX,EAAEtX,EAAE,kDAAkD,EAAE,CAAC,EAAE,EAAE,CAAC,EAAE,EAAE,CAAC,CAAC,EAAE,MAAM,QAAQsX,EAAE,EAAE,CAAC,GAAG,EAAE,YAAYJ,EAAE,MAAM,EAAEI,EAAE,MAAM,EAAE,YAAYlC,EAAE,MAAM,EAAE,EAAE,YAAY,EAAE,MAAM,EAAE,EAAE,YAAYgC,EAAE,MAAM,EAAE,EAAE,YAAYJ,EAAE,MAAM,EAAE,IAAI,MAAMM,CAAC,EAAE,IAAIC,EAAEnC,EAAEoC,EAAE,EAAE,OAAOqC,IAAI7E,EAAE,CAAC,IAAIuC,EAAEomG,GAAG,CAAC,OAAO,CAAC,EAAEvoG,CAAC,EAAE,MAAM,CAAC,MAAM,EAAE,KAAK,CAACyE,EAAEvF,CAAC,CAAC,EAAE,QAAQ,CAAC,CAAC,EAAEkD,EAAEmmG,GAAG,CAAC,OAAO,CAAC,EAAE,CAAC,EAAE,MAAM,CAAC,MAAM,EAAE,KAAK9jG,CAAC,EAAE,QAAQ,CAAC,CAAC,EAAE,EAAE,YAAYzE,EAAE,MAAM,EAAE,EAAE,YAAY,EAAE,MAAM,GAAG,CAACmC,EAAEC,EAAEJ,EAAEJ,CAAC,CAAC,CAAC,IAAIo6G,IAAG,CAAC,WAAWv0H,GAAG,YAAY,OAAO,UAAUq0H,IAAI,WAAWC,GAAG,EAAME,GAAG,SAASC,IAAIh/G,EAAE,CAAC++G,GAAG/+G,EAAE,KAAK,MAAMxV,GAAG,KAAK,CAAC,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,QAAQ,CAAC,CAAC,CAAC,SAASy0H,IAAIj/G,EAAE,CAAC,GAAG,CAAC,QAAQ,EAAE,OAAOE,CAAC,EAAEF,EAAE,CAAC,aAAaI,EAAE,WAAWC,EAAE,SAAS,CAAC,EAAEH,EAAE,GAAGE,EAAE,MAAM,SAAS,EAAE,MAAM,IAAI,MAAM;AAAA,UACns9DA,EAAE,KAAK,EAAE,EAAE,GAAGC,EAAE,MAAM,SAAS,EAAE,MAAM,IAAI,MAAM;AAAA,UACjDA,EAAE,KAAK,EAAE,EAAE,GAAG,EAAE,MAAM,SAAS,EAAE,MAAM,IAAI,MAAM,sDAAsD,EAAE,KAAK,EAAE,EAAE,IAAI,EAAE,EAAE,UAAU,IAAID,EAAE,MAAM,EAAE,GAAG2B,EAAE,EAAE,UAAU,IAAI1B,EAAE,MAAM,EAAE,GAAG2B,EAAE,EAAE,UAAU,IAAI,EAAE,MAAM,EAAE,GAAGC,EAAE7B,EAAE,MAAM,CAAC,EAAEsC,EAAEnE,EAAE,cAAc,EAAE,KAAK,EAAEoE,EAAE,EAAE,WAAW,CAACV,EAAES,CAAC,EAAEtC,EAAE,KAAK,EAAEwC,EAAE,EAAE,UAAU,IAAID,EAAE,MAAM,EAAE,GAAGE,EAAE,EAAE,WAAW,CAACH,CAAC,EAAE,EAAE,KAAK,EAAEI,EAAE,EAAE,UAAU,IAAID,EAAE,MAAM,EAAE,GAAGmB,EAAE,EAAE,WAAW,CAAC,CAAC,EAAE,OAAO,EAAE,EAAE,EAAE,UAAU,IAAIA,EAAE,MAAM,EAAE,GAAG+6G,GAAG,EAAEh9G,EAAEC,EAAEC,EAAEW,EAAEE,EAAE,CAAC,EAAE,IAAIwE,EAAE,EAAE,SAAStD,EAAE,MAAM,EAAEc,EAAE,OAAOwC,EAAE,CAAC,EAAE,CAAC,IAAK,GAAE,CAACxC,EAAEpX,EAAE,yDAAyD4Z,EAAE,CAAC,EAAEA,EAAE,CAAC,CAAC,EAAE,KAAK,CAAC,IAAK,GAAE,CAACxC,EAAEpX,EAAE,8CAA8C4Z,EAAE,CAAC,EAAEA,EAAE,CAAC,CAAC,EAAE,KAAK,CAAC,IAAK,GAAExC,EAAEpX,EAAE,qDAAqD,EAAE,MAAM,IAAK,GAAE,CAAC,IAAI+W,EAAE,MAAM,KAAK,EAAE,SAASpE,EAAE,MAAM,CAAC,EAAEqE,EAAE,MAAM,KAAK,EAAE,SAAS7B,EAAE,MAAM,CAAC,EAAEiC,EAAEpX,EAAE,gDAAgD+W,EAAEC,CAAC,EAAE,KAAK,CAAC,IAAK,GAAE,CAAC,IAAID,EAAE,MAAM,KAAK,EAAE,SAASpE,EAAE,MAAM,CAAC,EAAEqE,EAAE,MAAM,KAAK,EAAE,SAAS7B,EAAE,MAAM,CAAC,EAAEiC,EAAEpX,EAAE,gDAAgD+W,EAAEC,CAAC,EAAE,KAAK,CAAC,QAAQI,EAAE,EAAE,CAAC,GAAG,EAAE,YAAYd,EAAE,MAAM,EAAEc,EAAE,MAAM,EAAE,YAAYnC,EAAE,MAAM,EAAE,EAAE,YAAYE,EAAE,MAAM,EAAE,IAAI,MAAMiC,CAAC,EAAE,MAAM,CAACnC,EAAEE,CAAC,CAAC,CAAC,IAAIq8G,IAAG,CAAC,WAAW10H,GAAG,YAAY,OAAO,UAAUw0H,IAAI,WAAWC,GAAG,EAAME,GAAG,SAASC,GAAGp/G,EAAE,CAACm/G,GAAGn/G,EAAE,KAAK,MAAM,yBAAyB,KAAK,CAAC,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,QAAQ,CAAC,CAAC,CAAC,SAASq/G,GAAGr/G,EAAE,EAAE,CAAC,GAAG,CAAC,QAAQE,EAAE,OAAOE,CAAC,EAAEJ,EAAE,CAAC,KAAKK,EAAE,QAAQ,EAAE,WAAW,CAAC,EAAED,EAAE2B,EAAE,EAAE,MAAM,CAAC,EAAEC,EAAE9B,EAAE,SAAS,EAAE,OAAO6B,EAAE,EAAEA,CAAC,EAAE,CAAC,EAAEW,EAAEX,EAAE,EAAEC,EAAE,EAAE,EAAE,GAAGU,EAAE,EAAE,MAAM,IAAI,MAAMhV,EAAE,wDAAwD,CAAC,EAAE,IAAI,EAAE2S,EAAE,MAAM,MAAM,EAAE,EAAE,CAAC,EAAEqC,EAAE,IAAIE,EAAE1C,EAAE,UAAU,IAAIG,EAAE,MAAM,EAAE,GAAGwC,EAAE3C,EAAE,UAAU,IAAI,EAAE,MAAM,EAAE,GAAG4C,EAAE5C,EAAE,UAAU,IAAI,EAAE,MAAM,EAAE,GAAG8D,EAAE9D,EAAE,WAAW,EAAEG,EAAE,KAAK,EAAE4D,EAAE/D,EAAE,UAAU,IAAI8D,EAAE,MAAM,EAAE,GAAGsD,EAAEpH,EAAE,WAAW,CAAC,CAAC,EAAE,OAAO,EAAE,EAAEA,EAAE,UAAU,IAAIoH,EAAE,MAAM,EAAE,GAAG63G,GAAGv8G,EAAEykG,GAAGhnG,EAAE,KAAK,EAAEA,EAAE,MAAM,CAAC,EAAEwC,EAAEC,EAAEmB,EAAE,EAAE,EAAE,CAAC,EAAE,IAAIQ,EAAEvE,EAAE,SAASoH,EAAE,MAAM,EAAE5C,EAAE,OAAOD,EAAE,CAAC,EAAE,CAAC,IAAK,GAAE,CAACC,EAAEhX,EAAE,wDAAwD,EAAE,KAAK,CAAC,IAAK,GAAE,CAACgX,EAAEhX,EAAE,6DAA6D,EAAE,KAAK,CAAC,IAAK,GAAEgX,EAAEhX,EAAE,yDAAyD+W,EAAE,CAAC,EAAEA,EAAE,CAAC,CAAC,EAAE,MAAM,IAAK,GAAEC,EAAEhX,EAAE,uDAAuD+W,EAAE,CAAC,EAAEA,EAAE,CAAC,EAAEA,EAAE,CAAC,CAAC,EAAE,MAAM,QAAQC,EAAE,EAAE,CAAC,GAAGxE,EAAE,YAAYoH,EAAE,MAAM,EAAE5C,EAAE,MAAMxE,EAAE,YAAY8D,EAAE,MAAM,EAAE,IAAI,MAAMU,CAAC,EAAE,OAAOV,CAAC,CAAC,SAASs7G,IAAIt/G,EAAE,CAAC,OAAOq/G,GAAGr/G,EAAE,EAAE,CAAC,CAAC,IAAIu/G,IAAG,CAAC,WAAW90H,GAAG,YAAY,OAAO,UAAU20H,GAAG,WAAWE,GAAG,EAAE,SAASE,IAAIx/G,EAAE,CAAC,OAAOq/G,GAAGr/G,EAAE,EAAE,CAAC,CAAC,IAAIy/G,IAAG,CAAC,WAAW/0H,GAAG,YAAY,OAAO,UAAU00H,GAAG,WAAWI,GAAG,EAAME,GAAG,SAASC,IAAI3/G,EAAE,CAAC0/G,GAAG1/G,EAAE,KAAK,MAAMrV,GAAG,KAAK,CAAC,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,QAAQ,SAAS,QAAQ,CAAC,CAAC,CAAC,SAASi1H,IAAI5/G,EAAE,CAAC,GAAG,CAAC,QAAQ,EAAE,OAAOE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,cAAcK,EAAE,aAAa,EAAE,aAAa,CAAC,EAAEH,EAAE,CAAC,YAAY6B,CAAC,EAAE3B,EAAE4B,EAAE,EAAE,WAAWD,EAAE,EAAE,KAAK,EAAE,GAAGxD,EAAE,cAAcwD,CAAC,IAAI,EAAE,OAAOC,EAAE,GAAG,CAAC,UAAUC,EAAE,WAAWS,EAAE,UAAUC,EAAE,QAAQC,EAAE,WAAWC,CAAC,EAAEnV,EAAE,gBAAgB,EAAE2S,EAAE0B,CAAC,EAAEe,EAAE,EAAE,UAAU,IAAIzC,EAAE,MAAM,EAAE,GAAG2D,EAAE,EAAE,UAAU,IAAI,EAAE,MAAM,EAAE,GAAG,EAAE,EAAE,UAAU,IAAI,EAAE,MAAM,EAAE,GAAGsD,EAAE,IAAI,WAAW,IAAI,WAAW1E,CAAC,EAAE,MAAM,EAAEkC,EAAE,EAAE,UAAU,IAAI9C,EAAE,MAAM,EAAE,GAAG,OAAO09G,GAAG58G,EAAEkB,EAAE,EAAE,MAAM,OAAO,EAAEqjG,GAAG,EAAE,KAAK,EAAEplG,EAAES,EAAEC,EAAE2E,EAAEzE,EAAEiC,CAAC,EAAE9C,CAAC,CAAC,IAAI69G,IAAG,CAAC,WAAWl1H,GAAG,YAAY,OAAO,UAAUg1H,IAAI,WAAWC,GAAG,EAAE,SAASE,IAAI9/G,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,MAAME,EAAE,QAAQE,CAAC,EAAEJ,EAAE,CAAC,EAAEK,CAAC,EAAE,EAAE,CAAC,gBAAgB,EAAE,KAAK,CAAC,EAAEH,EAAE6B,EAAExD,EAAE,eAAe,EAAE8B,EAAE,KAAK,EAAE,CAAC,EAAE2B,EAAEtU,EAAE,iBAAiB2S,EAAE,EAAE0B,CAAC,EAAEE,EAAE,IAAI,MAAM5B,EAAE,MAAM,MAAM,EAAE,KAAK,CAAC,EAAEqC,EAAErC,EAAE,MAAM,MAAM,EAAE,OAAO2B,EAAE,IAAIW,GAAG,CAAC,IAAIC,EAAE,CAAC,GAAGF,CAAC,EAAEE,EAAEb,CAAC,EAAEY,EAAE,IAAIE,EAAEwoG,GAAG,CAAC,OAAO,CAAC,EAAEhrG,CAAC,EAAE,MAAM,CAAC,MAAM4B,EAAE,KAAKW,CAAC,EAAE,QAAQxC,CAAC,CAAC,EAAE,OAAO6B,EAAEF,CAAC,GAAGY,EAAEE,CAAC,CAAC,CAAC,CAAC,IAAIk9G,IAAG,CAAC,WAAWn1H,GAAG,YAAY,OAAO,WAAWk1H,GAAG,EAAME,IAAGrY,GAAG98G,EAAE,EAAMo1H,IAAGtY,GAAG78G,EAAE,EAAMo1H,IAAI,GAAGC,IAAGpY,GAAGh9G,GAAGm1H,GAAG,EAAME,GAAG,SAASC,IAAIrgH,EAAE,CAACogH,GAAGpgH,EAAE,KAAK,MAAM/U,GAAG,KAAK,CAAC,SAAS,SAAS,SAAS,QAAQ,CAAC,CAAC,CAAC,SAASq1H,IAAItgH,EAAE,CAAC,GAAG,CAAC,QAAQ,EAAE,OAAOE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,MAAMK,CAAC,EAAED,EAAE,CAAC,EAAE,CAAC,EAAEF,EAAE,EAAE,EAAE,UAAU,IAAI,EAAE,MAAM,EAAE,GAAG6B,EAAE,EAAE,WAAW,EAAE,MAAM,EAAE,KAAK,EAAEC,EAAE,EAAE,UAAU,IAAID,EAAE,MAAM,EAAE,GAAG,OAAOq+G,GAAG,EAAE//G,EAAEgnG,GAAG,EAAE,KAAK,EAAErlG,CAAC,EAAED,CAAC,CAAC,IAAIw+G,IAAG,CAAC,WAAWt1H,GAAG,YAAY,OAAO,UAAUo1H,IAAI,WAAWC,GAAG,EAAME,GAAG,SAASC,IAAIzgH,EAAE,CAACwgH,GAAGxgH,EAAE,KAAK,MAAM9U,GAAG,KAAK,CAAC,SAAS,QAAQ,SAAS,QAAQ,QAAQ,QAAQ,QAAQ,QAAQ,SAAS,QAAQ,CAAC,CAAC,CAAC,SAASw1H,IAAI1gH,EAAE,CAAC,GAAG,CAAC,QAAQ,EAAE,OAAOE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,CAAC,EAAEH,EAAE,CAAC,MAAM,EAAE,IAAI,EAAE,QAAQ6B,EAAE,UAAUC,EAAE,QAAQC,EAAE,aAAaS,EAAE,YAAYC,EAAE,eAAeC,CAAC,EAAExC,EAAE,CAAC,iBAAiByC,EAAE,WAAWC,EAAE,WAAWkB,EAAE,UAAU,EAAE,cAAcsD,EAAE,MAAMxC,EAAE,IAAIL,EAAE,QAAQC,CAAC,EAAEhJ,GAAG,UAAU2E,EAAE,MAAM,EAAE,EAAE0B,EAAEC,EAAEC,EAAES,EAAEC,EAAEC,CAAC,EAAE+B,EAAE,GAAGX,EAAEW,EAAEomG,GAAG,CAAC,OAAO,CAAC,EAAE1qG,CAAC,EAAE,QAAQ,EAAE,MAAM,CAAC,MAAMyC,CAAC,CAAC,CAAC,UAAU,GAAGwE,EAAE,CAAC/I,EAAE,OAAO8B,EAAE,MAAM,QAAQ,EAAE,IAAI,yCAAyCA,EAAE,MAAM,MAAM,EAAE,EAAE,IAAIuE,EAAElJ,GAAG,gBAAgBoJ,EAAEL,EAAEC,CAAC,EAAEG,EAAEwmG,GAAG,CAAC,OAAO,CAAC,EAAEhrG,CAAC,EAAE,QAAQ,EAAE,MAAM,CAAC,MAAMyE,EAAE,KAAKF,CAAC,CAAC,CAAC,EAAED,EAAEomG,GAAG,CAAC,OAAO,CAAC,EAAElmG,CAAC,EAAE,QAAQ,EAAE,MAAM,CAAC,MAAM/B,CAAC,CAAC,CAAC,EAAE,EAAE,YAAY+B,EAAE,MAAM,CAAC,KAAK,CAAC,IAAID,EAAE,EAAE,WAAW/B,EAAE,SAAS,EAAEgC,EAAE,EAAE,UAAU,IAAIxE,EAAE,MAAM,EAAE,GAAGkH,EAAE,IAAI,WAAW,IAAI,WAAWhJ,EAAE,eAAe8B,EAAE,KAAK,CAAC,EAAE,MAAM,EAAE,EAAE,IAAI,WAAW,IAAI,WAAWyE,CAAC,EAAE,MAAM,EAAEE,EAAE,IAAI,WAAW,IAAI,WAAWP,CAAC,EAAE,MAAM,EAAEQ,EAAE,IAAI,WAAW,IAAI,WAAWP,CAAC,EAAE,MAAM,EAAEQ,EAAE,IAAI,WAAW,IAAI,WAAWrC,CAAC,EAAE,MAAM,EAAEsC,EAAE,IAAI,WAAW,IAAI,WAAW5G,EAAE,eAAesE,CAAC,CAAC,EAAE,MAAM,EAAEuC,EAAE,EAAE,UAAU,IAAIR,EAAE,MAAM,EAAE,GAAG47G,GAAG37G,EAAE0C,EAAElH,EAAE,MAAM,OAAO,EAAE2E,EAAEC,EAAEC,EAAEC,EAAEtC,EAAE,OAAOuC,CAAC,EAAET,EAAEomG,GAAG,CAAC,OAAO,CAAC,EAAEnmG,CAAC,EAAE,QAAQ,EAAE,MAAM,CAAC,MAAM9B,CAAC,CAAC,CAAC,EAAE,EAAE,YAAY8B,EAAE,MAAM,CAAC,CAAC,OAAOD,CAAC,CAAC,IAAIg8G,IAAG,CAAC,WAAWz1H,GAAG,YAAY,OAAO,UAAUu1H,IAAI,WAAWC,GAAG,EAAE,SAASE,IAAI5gH,EAAE,CAAC,GAAG,CAAC,QAAQ,EAAE,OAAOE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,KAAKK,EAAE,WAAW,CAAC,EAAEH,EAAE,CAAC,UAAU,EAAE,YAAY6B,EAAE,QAAQC,EAAE,SAASC,EAAE,SAASS,EAAE,uBAAuBC,CAAC,EAAEvC,EAAEwC,EAAE,EAAE,SAASvC,EAAE,MAAM,EAAEwC,EAAE,EAAE,SAAS,EAAE,MAAM,EAAE,CAACC,EAAEkB,CAAC,EAAEw3D,GAAG54D,EAAEC,EAAE,EAAEd,EAAEC,EAAEC,EAAES,EAAEC,CAAC,EAAE,EAAE,EAAE,WAAW,CAACG,EAAE,MAAM,EAAE,QAAQ,EAAEwE,EAAE,EAAE,UAAU,IAAI,EAAE,MAAM,EAAEA,EAAE,YAAYxE,EAAE,IAAIgC,EAAE,EAAE,WAAW,EAAE,MAAM,OAAO,EAAE,OAAO,EAAE,mBAAmBA,CAAC,EAAE,IAAId,CAAC,EAAE,CAAC,EAAEc,CAAC,CAAC,CAAC,IAAI+7G,IAAG,CAAC,WAAW11H,GAAG,YAAY,OAAO,WAAWy1H,GAAG,EAAE,SAASE,IAAI9gH,EAAE,CAAC,GAAG,CAAC,QAAQ,EAAE,OAAOE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,MAAMK,EAAE,UAAU,CAAC,EAAEH,EAAE,CAAC,UAAU,CAAC,EAAEE,EAAE2B,EAAE,EAAE,SAAS1B,EAAE,MAAM,EAAE2B,EAAE,EAAE,SAAS,EAAE,MAAM,EAAE,CAACC,EAAES,EAAEC,CAAC,EAAE84D,GAAG15D,EAAEC,EAAE,CAAC,EAAE,CAAC,EAAEY,EAAEF,EAAE,OAAOG,EAAE,EAAE,WAAW,CAACD,EAAE,CAAC,EAAE,OAAO,EAAE,EAAE,mBAAmBC,CAAC,EAAE,IAAIZ,CAAC,EAAE,IAAI+B,EAAE,EAAE,WAAW,CAACpB,CAAC,EAAE,QAAQ,EAAEqB,EAAE,EAAE,UAAU,IAAID,EAAE,MAAM,EAAEC,EAAE,YAAYvB,EAAE,IAAI4E,EAAE,EAAE,WAAW,CAAC,CAAC,EAAE,OAAO,EAAE,OAAO,EAAE,mBAAmBA,CAAC,EAAE,IAAI3E,CAAC,EAAE,CAACE,EAAEmB,EAAEsD,CAAC,CAAC,CAAC,IAAIy5G,IAAG,CAAC,WAAW31H,GAAG,YAAY,OAAO,WAAW01H,GAAG,EAAE,SAASE,IAAIhhH,EAAE,CAAC,GAAG,CAAC,QAAQ,EAAE,OAAOE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,MAAMK,CAAC,EAAEH,EAAE,CAAC,WAAW,CAAC,EAAEE,EAAE,EAAE,EAAE,SAASC,EAAE,MAAM,EAAE0B,EAAE25D,GAAG,EAAE,CAAC,EAAE15D,EAAE,EAAE,WAAW3B,EAAE,MAAM,OAAO,EAAE,OAAO,EAAE,mBAAmB2B,CAAC,EAAE,IAAID,CAAC,EAAEC,CAAC,CAAC,IAAIi/G,IAAG,CAAC,WAAW51H,GAAG,YAAY,OAAO,WAAW21H,GAAG,EAAME,IAAI,GAAGC,IAAGpZ,GAAGz8G,GAAG41H,GAAG,EAAME,GAAG,SAASC,IAAIrhH,EAAE,CAACohH,GAAGphH,EAAE,KAAK,MAAMzU,GAAG,KAAK,CAAC,SAAS,SAAS,SAAS,QAAQ,CAAC,CAAC,CAAC,SAAS+1H,IAAIthH,EAAE,CAAC,GAAG,CAAC,QAAQ,EAAE,OAAOE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,KAAKK,EAAE,SAAS,CAAC,EAAED,EAAE,CAAC,EAAE,CAAC,EAAEF,EAAE6B,EAAE,EAAE,UAAU,IAAI,EAAE,MAAM,EAAE,GAAGC,EAAED,EAAEE,EAAE,EAAE,CAAC,WAAWS,EAAE,KAAKC,EAAE,aAAaC,EAAE,mBAAmBC,CAAC,EAAEimG,GAAG,EAAEzoG,EAAE,CAAC,EAAEyC,EAAEH,EAAE,GAAGE,EAAE,CAAC,IAAI4B,EAAE,EAAE,UAAU,IAAI/B,EAAE,MAAM,EAAE,GAAG+B,IAAI1C,IAAIE,EAAES,EAAEV,EAAEyC,EAAE3B,EAAEpV,EAAE,iBAAiBoV,EAAE,OAAOb,EAAE,MAAM,MAAM,EAAE,CAACvU,EAAE,2BAA2B,MAAMoV,EAAEb,EAAE,MAAM,MAAM,EAAE,GAAG,CAAC+B,EAAE,CAAC,EAAEtW,EAAE,0BAA0BuU,EAAE,MAAMa,CAAC,EAAEwE,EAAE/I,EAAE,cAAc,CAAC,EAAEuG,EAAE,EAAE,WAAWd,EAAE/B,EAAE,KAAK,EAAE,GAAG1D,EAAE,cAAc0D,EAAE,KAAK,IAAI,EAAE,CAAC,IAAIwC,EAAE,EAAE,UAAU,IAAIK,EAAE,MAAM,EAAE,GAAGs8G,GAAGp/G,EAAEsF,EAAE+/F,GAAGviG,EAAE,KAAK,EAAEL,CAAC,CAAC,CAAC,GAAG5B,GAAG,EAAE,YAAYH,EAAE,MAAM,EAAE,EAAE,CAAC,IAAI+B,EAAE/W,EAAE,qBAAqBoX,EAAE,MAAMlC,CAAC,EAAEkC,EAAE,MAAML,CAAC,CAAC,OAAOK,CAAC,CAAC,IAAIy8G,IAAG,CAAC,WAAWh2H,GAAG,YAAY,OAAO,UAAU81H,IAAI,WAAWC,GAAG,EAAME,IAAG7Z,GAAGl8G,EAAE,EAAMg2H,IAAG9Z,GAAGj8G,EAAE,EAAMg2H,GAAG,SAASC,IAAI3hH,EAAE,CAAC0hH,GAAG1hH,EAAE,KAAK,MAAMnU,GAAG,KAAK,CAAC,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,QAAQ,SAAS,SAAS,QAAQ,CAAC,CAAC,CAAC,SAAS+1H,IAAI5hH,EAAE,CAAC,GAAG,CAAC,QAAQ,EAAE,OAAOE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,OAAOK,EAAE,QAAQ,EAAE,QAAQ,CAAC,EAAEH,EAAE,CAAC,EAAEE,EAAE2B,EAAE,EAAE,WAAW1B,EAAE,MAAMA,EAAE,KAAK,EAAE,GAAG9B,EAAE,cAAc8B,EAAE,KAAK,IAAI,EAAE,OAAO0B,EAAE,GAAG,CAAC,UAAUC,EAAE,WAAWC,EAAE,UAAUS,EAAE,QAAQC,EAAE,WAAWC,CAAC,EAAE1I,GAAG,gBAAgB,EAAE,EAAEmG,EAAE,KAAK,EAAEyC,EAAE,EAAE,UAAU,IAAI,EAAE,MAAM,EAAE,GAAGmB,EAAE,EAAE,UAAU,IAAI,EAAE,MAAM,EAAE,GAAGa,EAAE,EAAE,UAAU,IAAIzE,EAAE,MAAM,EAAE,GAAGoE,EAAE,IAAI,WAAW,IAAI,WAAW9B,CAAC,EAAE,MAAM,EAAE+B,EAAE,EAAE,UAAU,IAAI3C,EAAE,MAAM,EAAE,GAAG,OAAO2/G,GAAG5+G,EAAEmB,EAAEojG,GAAG,EAAE,KAAK,EAAErlG,EAAEC,EAAES,EAAE+B,EAAE7B,EAAE8B,EAAEI,CAAC,EAAE/C,CAAC,CAAC,IAAI8/G,IAAG,CAAC,WAAWh2H,GAAG,YAAY,OAAO,UAAU81H,IAAI,WAAWC,GAAG,EAAME,GAAG,SAASC,IAAI/hH,EAAE,CAAC8hH,GAAG9hH,EAAE,KAAK,MAAMlU,GAAG,KAAK,CAAC,SAAS,QAAQ,SAAS,QAAQ,SAAS,QAAQ,CAAC,CAAC,CAAC,SAASk2H,IAAIhiH,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,EAAEK,CAAC,EAAE,EAAE,EAAEH,EAAE,UAAU,IAAIG,EAAE,MAAM,EAAE,GAAG,CAAC,KAAK,CAAC,EAAED,EAAE2B,EAAE,IAAI,MAAM1B,EAAE,MAAM,MAAM,EAAE,QAAQuC,EAAE,EAAEA,EAAEb,EAAE,OAAOa,IAAIb,EAAEa,CAAC,EAAEvC,EAAE,MAAMuC,CAAC,EAAE,EAAEA,CAAC,EAAE,IAAIZ,EAAE,IAAI,WAAW,IAAI,WAAW3B,EAAE,KAAK,EAAE,MAAM,EAAE4B,EAAE,IAAI,WAAW,IAAI,WAAWF,CAAC,EAAE,MAAM,EAAEW,EAAExC,EAAE,WAAW6B,EAAE1B,EAAE,KAAK,EAAEsC,EAAEzC,EAAE,UAAU,IAAIwC,EAAE,MAAM,EAAE,GAAG,OAAOo/G,GAAG,EAAE9/G,EAAE3B,EAAE,MAAM,OAAO4B,EAAEF,EAAE,OAAOslG,GAAG3kG,EAAE,KAAK,EAAEC,CAAC,EAAED,CAAC,CAAC,IAAIu/G,IAAG,CAAC,WAAWn2H,GAAG,YAAY,OAAO,UAAUi2H,IAAI,WAAWC,GAAG,EAAME,GAAG,SAASC,IAAIniH,EAAE,CAACkiH,GAAGliH,EAAE,KAAK,MAAMjU,GAAG,KAAK,CAAC,SAAS,QAAQ,SAAS,SAAS,SAAS,OAAO,SAAS,QAAQ,CAAC,CAAC,CAAC,IAAIq2H,IAAI,CAAC,CAAC,OAAOpiH,EAAE,QAAQ,EAAE,MAAME,CAAC,IAAI,CAAC,GAAG,CAAC,EAAEE,CAAC,EAAEJ,EAAE,CAAC,EAAEK,EAAE,OAAO,CAAC,EAAEH,EAAE,EAAE,EAAE,UAAU,IAAIE,EAAE,MAAM,EAAE,GAAG2B,EAAE,IAAI,WAAW,IAAI,WAAW3B,EAAE,KAAK,EAAE,MAAM,EAAE4B,EAAE5B,EAAE,MAAM,MAAM,EAAE4B,EAAEA,EAAE,OAAO,CAAC,EAAE3B,EAAE,IAAI4B,EAAE,EAAE,WAAWD,EAAE5B,EAAE,KAAK,EAAEsC,EAAE,EAAE,UAAU,IAAIT,EAAE,MAAM,EAAE,GAAGU,EAAE,EAAE,WAAWX,EAAE,OAAO,EAAEY,EAAE,EAAE,UAAU,IAAID,EAAE,MAAM,EAAE,GAAG,OAAOu/G,GAAG,EAAEngH,EAAE3B,EAAE,MAAM,OAAOinG,GAAGjnG,EAAE,KAAK,EAAEC,EAAE,EAAEqC,EAAEE,CAAC,EAAE,CAACX,EAAEU,CAAC,CAAC,EAAE0/G,IAAG,CAAC,WAAWt2H,GAAG,YAAY,OAAO,UAAUo2H,IAAI,WAAWC,GAAG,EAAME,GAAG,SAASC,IAAIviH,EAAE,CAACsiH,GAAGtiH,EAAE,KAAK,MAAMhU,GAAG,KAAK,CAAC,SAAS,SAAS,OAAO,SAAS,SAAS,SAAS,SAAS,SAAS,SAAS,QAAQ,SAAS,QAAQ,SAAS,SAAS,SAAS,SAAS,QAAQ,CAAC,CAAC,CAAC,SAASw2H,IAAIxiH,EAAE,CAAC,GAAG,CAAC,QAAQ,EAAE,OAAOE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,MAAMK,EAAE,WAAW,CAAC,EAAEH,EAAE,CAAC,cAAc,EAAE,SAAS6B,EAAE,UAAUC,EAAE,YAAYC,CAAC,EAAE7B,EAAE,CAACsC,EAAEC,EAAEC,EAAEC,CAAC,EAAExC,EAAE,MAAM,CAACyC,EAAEkB,CAAC,EAAE/B,GAAG,KAAKA,EAAE,CAACU,EAAEC,CAAC,EAAE,EAAE,CAACF,EAAEI,EAAEkB,EAAEnB,CAAC,EAAEyE,EAAE,IAAI,WAAW,IAAI,WAAW/I,EAAE,eAAe8B,EAAE,KAAK,CAAC,EAAE,MAAM,EAAEyE,EAAE,IAAI,WAAW,IAAI,WAAWvG,EAAE,eAAe,CAAC,CAAC,EAAE,MAAM,EAAEkG,EAAE,EAAE,WAAW,EAAEpE,EAAE,KAAK,EAAEqE,EAAE,EAAE,UAAU,IAAID,EAAE,MAAM,EAAE,GAAGG,EAAE,EAAE,UAAU,IAAIvE,EAAE,MAAM,EAAE,GAAGkH,EAAE,EAAE,UAAU,IAAI,EAAE,MAAM,EAAE,GAAGxC,EAAE,IAAI,UAAU,EAAE,EAAEC,EAAE,OAAOjD,EAAE,CAAC,IAAI,WAAWiD,EAAE,EAAE,MAAM,IAAI,UAAUA,EAAE,EAAE,MAAM,IAAI,OAAOA,EAAE,EAAE,MAAM,IAAI,UAAUA,EAAE,EAAE,MAAM,QAAQA,EAAE,EAAE,KAAK,CAAC,OAAOs9G,GAAG19G,EAAE2C,EAAE,EAAE,MAAM,CAAC,EAAE,EAAE7E,EAAEI,EAAEkB,EAAEnB,EAAED,EAAED,EAAE2E,EAAEjH,EAAE,MAAM,OAAO,EAAEyE,EAAE,EAAE,OAAO,EAAEC,EAAEC,EAAEhD,EAAE0C,CAAC,EAAED,CAAC,CAAC,IAAIg+G,IAAG,CAAC,WAAWz2H,GAAG,YAAY,OAAO,UAAUu2H,IAAI,WAAWC,GAAG,EAAE,SAASE,IAAI1iH,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,MAAME,EAAE,QAAQE,CAAC,EAAEJ,EAAE,CAAC,KAAKK,CAAC,EAAEH,EAAE,CAAC,EAAE,CAAC,EAAE,EAAE,CAAC,aAAa,EAAE,YAAY6B,EAAE,QAAQC,CAAC,EAAE+5D,GAAG37D,EAAE,SAAS,EAAE,MAAM,EAAEC,EAAE,EAAE,MAAM,EAAE,KAAK,EAAE,MAAM,CAACD,EAAE,WAAW2B,EAAE,EAAE,MAAM,OAAO,CAAC,EAAE3B,EAAE,WAAW,CAAC4B,EAAE,MAAM,EAAE,QAAQ,OAAOA,CAAC,CAAC,CAAC,CAAC,IAAI2gH,IAAG,CAAC,WAAWz2H,GAAG,YAAY,OAAO,WAAWw2H,GAAG,EAAE,SAASE,IAAI5iH,EAAE,CAAC,GAAG,CAAC,OAAO,EAAE,QAAQE,EAAE,MAAME,CAAC,EAAEJ,EAAE,CAAC,MAAMK,CAAC,EAAE,EAAE,CAAC,KAAK,CAAC,EAAED,EAAE,EAAE,IAAI,GAAGC,EAAE,MAAM,QAAQ,IAAI,EAAEA,EAAE,MAAM,CAAC,EAAE0B,EAAE1B,EAAE,MAAM,OAAO2B,EAAE,IAAI,MAAMD,EAAE,CAAC,EAAEE,EAAE,EAAE,QAAQY,EAAE,EAAEA,EAAEd,EAAEc,IAAIA,IAAI,IAAIb,EAAEC,GAAG,EAAE5B,EAAE,MAAMwC,CAAC,GAAG,IAAIH,EAAE,IAAI,MAAM,CAAC,EAAEC,EAAE,IAAI,MAAMZ,CAAC,EAAE,KAAK,CAAC,EAAEa,EAAEvC,EAAE,MAAM,MAAM,EAAEuC,EAAE,CAAC,EAAE,EAAE,QAAQC,EAAE,EAAEA,EAAEH,EAAE,OAAOG,IAAIF,EAAE,CAAC,EAAEE,EAAEH,EAAEG,CAAC,EAAEwoG,GAAG,CAAC,OAAO,CAAC,EAAEhrG,CAAC,EAAE,MAAM,CAAC,MAAMsC,EAAE,KAAKC,CAAC,EAAE,QAAQ1C,CAAC,CAAC,EAAE,OAAOwC,EAAE,IAAI,CAAC,CAAC,OAAOG,EAAE,MAAMC,CAAC,KAAK,CAAC,OAAOD,EAAE,MAAMC,EAAE,MAAMd,CAAC,EAAE,CAAC,CAAC,IAAI6gH,IAAG,CAAC,WAAW12H,GAAG,YAAY,OAAO,WAAWy2H,GAAG,EAAE,SAASE,IAAI9iH,EAAE,CAAC,GAAG,CAAC,OAAO,CAAC,EAAE,CAAC,EAAE,QAAQE,CAAC,EAAEF,EAAEI,EAAEF,EAAE,WAAW,EAAE,MAAM,EAAE,KAAK,EAAE,OAAOA,EAAE,mBAAmBE,CAAC,EAAE,KAAK,CAAC,EAAEA,CAAC,CAAC,IAAI2iH,IAAG,CAAC,WAAWx2H,GAAG,YAAY,OAAO,WAAWu2H,GAAG,EAAME,IAAI,CAACtb,IAAGE,IAAGC,IAAGC,IAAGG,IAAGI,IAAGa,IAAGI,IAAGE,IAAGC,IAAGC,IAAGC,IAAGC,IAAGC,IAAGC,IAAGI,IAAGY,IAAGR,IAAGI,IAAGU,IAAGO,IAAGI,IAAGE,IAAGE,IAAGE,IAAGC,IAAGI,IAAGE,IAAGI,IAAGI,IAAGI,IAAGI,IAAGI,IAAGC,IAAGC,IAAGK,IAAGI,IAAGI,IAAGI,IAAGI,IAAGI,IAAGI,IAAGI,IAAGI,IAAGI,IAAGC,IAAGI,IAAGE,IAAGC,IAAGC,IAAGE,IAAGC,IAAGE,IAAGI,IAAGC,IAAGE,IAAGI,IAAGI,IAAGI,IAAGI,IAAGI,IAAGE,IAAGE,IAAGjL,IAAGkL,IAAGC,IAAGC,IAAGI,IAAGE,IAAGE,IAAGI,IAAGE,IAAGD,IAAGG,IAAGC,IAAGE,IAAGE,IAAGI,IAAGI,IAAGI,IAAGE,IAAGI,IAAGI,IAAGI,IAAGI,IAAGI,IAAGI,IAAGI,IAAGE,IAAGK,IAAGQ,IAAGC,IAAGE,IAAGC,IAAGK,IAAGI,IAAGI,IAAGE,IAAGI,IAAGE,IAAGE,IAAGI,GAAGE,IAAGI,IAAGI,IAAGE,IAAGE,IAAGC,IAAGC,IAAGC,IAAGzQ,IAAG6Q,IAAGI,IAAGI,IAAGI,IAAGI,IAAGI,IAAGC,IAAGC,IAAGI,IAAGI,IAAGI,IAAGC,IAAGI,IAAGC,IAAGC,IAAGC,IAAG9S,IAAG4M,IAAGmG,IAAGE,IAAGI,IAAGI,IAAGK,IAAGE,IAAGI,IAAGE,IAAGC,IAAGC,IAAGE,IAAGI,IAAGI,IAAGE,IAAGE,IAAGE,IAAGE,IAAGI,IAAGC,IAAGC,IAAGI,IAAGI,IAAGI,IAAGI,IAAG5Z,IAAG8Z,IAAGE,IAAGE,GAAE,EAAE,QAAQ/iH,KAAKgjH,IAAI/pH,GAAG+G,CAAC,EAAE,IAAIijH,GAAGzxH,EAAE,EAAEyxH,GAAG,aAAa,wBAAwB,SAAS,CAAC,GAAG,CAAC,OAAO,YAAY,SAAS,IAAI,WAAW,CAAC,EAAE,GAAG,IAAI,IAAI,EAAE,EAAE,EAAE,EAAE,EAAE,EAAE,EAAE,GAAG,EAAE,EAAE,EAAE,EAAE,EAAE,EAAE,GAAG,EAAE,EAAE,EAAE,EAAE,GAAG,EAAE,IAAI,GAAG,GAAG,EAAE,CAAC,CAAC,CAAC,OAAOjjH,EAAE,CAAC,MAAM,EAAE,CAAC,CAAC,EAAEijH,GAAG,aAAa,+BAA+B,SAAS,CAAC,GAAGA,GAAG,IAAI,SAAS,EAAE,MAAM,GAAG,GAAG,CAAC,OAAO,IAAI,eAAe,EAAE,MAAM,YAAY,IAAI,kBAAkB,CAAC,CAAC,EAAE,YAAY,SAAS,IAAI,WAAW,CAAC,EAAE,GAAG,IAAI,IAAI,EAAE,EAAE,EAAE,EAAE,EAAE,EAAE,EAAE,GAAG,EAAE,EAAE,EAAE,EAAE,EAAE,EAAE,EAAE,EAAE,EAAE,EAAE,EAAE,EAAE,GAAG,GAAG,EAAE,EAAE,EAAE,GAAG,EAAE,IAAI,GAAG,EAAE,EAAE,GAAG,EAAE,CAAC,CAAC,CAAC,OAAOjjH,EAAE,CAAC,MAAM,EAAE,CAAC,CAAC,EAAE,IAAIkjH,GAAG5iH,GAAGgG,GAAG,CAAC,EAAE68G,IAAG7iH,GAAGgZ,GAAG,CAAC,EAAE8pG,GAAG9iH,GAAGmZ,GAAG,CAAC,EAAM4pG,GAAGH,GAAG,SAASA,GAAGI,IAAIF,GAAG,SAASA,GAAG5iI,GAAG,cAAcwE,EAAE,CAAC,YAAY4b,EAAE,CAAC,MAAM,EAAE,KAAK,KAAKA,EAAE,KAAK,iBAAiB,EAAE,KAAK,KAAK,KAAK,qBAAqB2iH,EAAE,EAAEC,GAAG,KAAK,KAAK,KAAK,gBAAgB,EAAE,KAAK,UAAU,IAAIrhI,GAAG,KAAKmP,GAAG,CAAC,CAAC,CAAC,MAAMsP,EAAEV,EAAE,EAAE,CAAC,IAAIG,EAAE,CAAC,GAAG,KAAK,kBAAkB,EAAE,OAAO,KAAK,KAAKA,EAAEO,EAAEV,EAAE,EAAE,CAAC,EAAEG,CAAC,CAAC,YAAY,CAAC,OAAO,KAAK,UAAU,WAAW,CAAC,CAAC,MAAM,KAAKO,EAAE,CAAC,IAAIV,EAAE3B,EAAE,IAAI,EAAE,OAAOqC,EAAE,EAAE,CAAC,SAASrC,EAAE,IAAI,EAAE2B,CAAC,CAAC,CAAC,KAAKU,EAAEV,EAAE,EAAEG,EAAEwB,EAAE,CAAC,IAAIC,EAAE,KAAK,mBAAmB,GAAGzB,IAAI,SAAS,CAAC,IAAIqC,EAAExC,EAAE,KAAK,UAAU,IAAIU,EAAE,CAAC,GAAGkB,EAAE,YAAYY,EAAE,MAAM,EAAE,MAAMrC,EAAE,aAAa,KAAK,SAASwB,CAAC,CAAC,EAAE,MAAM,CAAC,IAAIE,EAAExD,EAAE,cAAc,CAAC,EAAEyD,EAAED,EAAExD,EAAE,gBAAgB8B,CAAC,EAAE,EAAE,KAAK,KAAK,QAAQ2B,CAAC,IAAI,EAAE,KAAK,UAAU,IAAIpB,EAAE,CAAC,GAAGkB,EAAE,aAAa,EAAE,MAAM,EAAE,MAAMzB,EAAE,SAASwB,CAAC,CAAC,EAAE,KAAK,KAAK,KAAK,eAAeC,EAAEC,EAAE,CAAC,EAAE7B,GAAG,MAAM,KAAK,KAAK,OAAO,IAAI,IAAI,WAAWA,EAAE,OAAOA,EAAE,WAAW8B,CAAC,EAAE,CAAC,CAAC,CAAC,MAAM,KAAKpB,EAAE,CAAC,OAAO,KAAK,SAASA,CAAC,CAAC,CAAC,SAASA,EAAEV,EAAE,EAAE,CAAC,GAAG,CAAC,aAAaG,EAAE,MAAMwB,EAAE,MAAMC,EAAE,YAAYC,CAAC,EAAE,KAAK,UAAU,IAAInB,CAAC,EAAE,GAAGiB,IAAI,SAAS,OAAO3B,GAAG,MAAMA,IAAI,KAAK,GAAG,MAAM,GAAG6B,EAAE,QAAQA,EAAEA,EAAE,MAAM7B,EAAE,CAAC,EAAEA,EAAEA,GAAG,EAAE,EAAE,GAAG3B,EAAE,cAAcuD,CAAC,EAAE,IAAIE,EAAEzD,EAAE,gBAAgBsD,CAAC,EAAE,EAAE,KAAK,KAAK,OAAO,MAAMxB,EAAEH,EAAE8B,EAAE3B,EAAE,EAAE2B,CAAC,EAAE,OAAOyhH,IAAI,EAAE,OAAO5hH,CAAC,CAAC,CAAC,YAAYjB,EAAEV,EAAE,GAAG,CAAC,GAAG,KAAK,UAAU,IAAIU,CAAC,EAAE,CAAC,IAAI,EAAE,KAAK,UAAU,IAAIA,CAAC,EAAE,GAAG,EAAE,WAAW,CAACV,GAAG,EAAE,SAAS,EAAE,MAAM,GAAG,KAAK,KAAK,MAAM,EAAE,YAAY,EAAE,KAAK,KAAK,KAAK,YAAY,EAAE,EAAE,EAAE,KAAK,UAAU,OAAOU,CAAC,CAAC,CAAC,MAAM,EAAE,CAAC,SAASA,EAAE,CAAC,OAAO,KAAK,UAAU,IAAIA,CAAC,EAAE,KAAK,UAAU,IAAIA,CAAC,EAAE,SAAS,CAAC,CAAC,OAAOA,EAAE,CAAC,IAAIV,EAAE,KAAK,UAAU,IAAIU,CAAC,EAAEV,GAAG,MAAMA,EAAE,UAAU,CAAC,gBAAgB,CAAC,MAAO,GAAE,CAAC,gBAAgBU,EAAE,CAAC,OAAO,KAAK,UAAU,IAAIA,CAAC,EAAE,YAAY,CAAC,SAAS,CAAC,KAAK,KAAK,KAAK,QAAQ,EAAE,YAAY,KAAK,MAAM,KAAK,KAAK,QAAQ,oBAAoB,EAAE,KAAK,KAAK,IAAI,CAAC,QAAQ,CAAC,MAAM,CAAC,WAAW,EAAE,CAAC,CAAC,WAAWA,EAAEV,EAAE,EAAEG,EAAE,CAAC,IAAIwB,EAAE,GAAG,GAAG,KAAKA,EAAE,KAAK,MAAMxB,GAAG,KAAKA,EAAE,KAAKO,EAAEV,CAAC,MAAM,CAAC,IAAI4B,EAAE,KAAK,mBAAmBD,EAAE,CAAC,GAAGC,CAAC,EAAE,KAAK,UAAU,IAAID,EAAE,CAAC,GAAGC,EAAE,aAAa,EAAE,MAAMlB,EAAE,MAAMV,EAAE,SAAS,CAAC,CAAC,EAAE,IAAI6B,EAAExD,EAAE,cAAcqC,CAAC,EAAE,KAAK,KAAK,KAAK,eAAekB,EAAEC,EAAE,CAAC,CAAC,CAAC,MAAM,CAAC,OAAOF,EAAE,MAAMjB,EAAE,MAAMV,CAAC,CAAC,CAAC,mBAAmB,CAAC,MAAMU,EAAE,MAAMV,EAAE,OAAO,CAAC,EAAE,CAAC,IAAIG,EAAE,KAAK,KAAK,OAAO,OAAO,CAAC,aAAawB,CAAC,EAAE,KAAK,UAAU,IAAI,CAAC,EAAEC,EAAEvD,EAAE,cAAcqC,CAAC,EAAE,OAAOV,EAAE,CAAC,IAAI,UAAU,OAAO,IAAI,aAAaG,EAAEwB,EAAEC,CAAC,EAAE,IAAI,QAAQ,OAAO,IAAI,WAAWzB,EAAEwB,EAAEC,CAAC,EAAE,IAAI,OAAO,OAAO,IAAI,WAAWzB,EAAEwB,EAAEC,CAAC,EAAE,QAAQ,MAAM,IAAI,MAAM,iBAAiB5B,CAAC,EAAE,CAAC,CAAC,CAAC,EAAE,SAASwjH,IAAI1jH,EAAE,CAAC,MAAM,CAAC,EAAEE,KAAK3B,EAAE,MAAMyB,EAAE,CAAC,YAAY,aAAa,CAAC,EAAE,KAAKI,GAAG,CAACA,EAAE,IAAI,EAAE,IAAI,EAAE,uCAAuCJ,CAAC,GAAG,EAAEI,EAAE,YAAY,EAAE,KAAKC,GAAG,CAAC,YAAY,YAAYA,EAAE,CAAC,EAAE,KAAK,GAAG,CAACH,EAAE,EAAE,SAAS,EAAE,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,SAASyjH,GAAG3jH,EAAE,EAAEE,EAAE,CAAC,GAAG0jH,IAAI,KAAK,OAAOA,GAAG,IAAIxjH,EAAE,yBAAyB,OAAOJ,GAAG,EAAEI,EAAE,uCAAuCJ,IAAII,EAAE,+BAA+ByjH,IAAI,MAAMA,GAAGzjH,CAAC,GAAG,KAAKyjH,GAAGzjH,CAAC,EAAEF,EAAEE,CAAC,CAAC,eAAe0jH,KAAI,CAAC,GAAG,CAAC9jH,EAAE,CAAC,EAAE,MAAM,QAAQ,IAAI,CAACxO,EAAE,EAAE,SAAS,uBAAuB,EAAEA,EAAE,EAAE,SAAS,8BAA8B,CAAC,CAAC,EAAE,OAAO,IAAI,QAAQ,CAAC0O,EAAEE,IAAI,CAAC,IAAIC,EAAE,CAAC,EAAEA,EAAE,WAAW,CAAC0B,EAAEC,IAAI,CAAC,GAAGD,EAAE,SAAS,YAAY,EAAE,CAAC,IAAIE,EAAEkhH,IAAG,mBAAmB,QAAQ,MAAM,KAAK,EAAEzgH,EAAE,IAAI,KAAK,CAACT,CAAC,EAAE,CAAC,KAAK,wBAAwB,CAAC,EAAE,OAAO,IAAI,gBAAgBS,CAAC,CAAC,CAAC,OAAOX,EAAE,SAAS,OAAO,EAAE4hH,GAAG3jH,EAAE,EAAE+jH,IAAI,KAAKA,GAAG/hH,CAAC,EAAEA,EAAED,CAAC,EAAEiiH,KAAK3jH,EAAE,gBAAgBqjH,IAAIC,GAAG3jH,EAAE,EAAE+jH,IAAI,KAAKA,GAAG,EAAE,CAAC,GAAG,IAAI,EAAE,GAAG1jH,EAAE,QAAQ,IAAI,CAAI,GAAG4jH,KAAUA,GAAG,GAAG7jH,EAAE,CAAC,QAAQ,iMAAiM,CAAC,EAAC,EAAE,IAAI,EAAE,GAAGJ,GAAG4jH,IAAI,MAAMvjH,EAAE,oBAAoB,IAAI,KAAK,CAAC,uCAAuCgjH,GAAG,SAAS,CAAC,EAAE,CAAC,KAAK,iBAAiB,CAAC,EAAE,EAAEA,GAAGhjH,CAAC,GAAG,EAAEijH,IAAIjjH,CAAC,EAAE,EAAE,KAAK0B,GAAG,CAAC,EAAE,GAAGkiH,GAAG,GAAG,IAAIjiH,EAAE,KAAKD,EAAE,KAAK,CAAC,KAAKA,EAAE,MAAM,OAAO,KAAK,CAAC,CAAC,EAAE,qBAAqBA,EAAE,MAAM,0BAA0B,KAAK,CAAC,QAAQ,CAAC,EAAE,gBAAgBA,EAAE,MAAM,oBAAoB,SAAS,CAAC,CAAC,EAAE,eAAeA,EAAE,MAAM,kBAAkB,KAAK,CAAC,SAAS,SAAS,QAAQ,CAAC,EAAE,YAAYA,EAAE,MAAM,eAAeC,EAAE,CAAC,QAAQ,CAAC,EAAE,QAAQD,EAAE,MAAM,UAAUC,EAAE,CAAC,CAAC,CAAC,EAAE9B,EAAE,CAAC,KAAK6B,CAAC,CAAC,CAAC,CAAC,EAAE,MAAM3B,CAAC,CAAC,CAAC,CAAC,CAAC,SAASqjH,IAAIzjH,EAAE,EAAE,CAAC,OAAO,EAAE,CAAC,IAAI,UAAU,OAAO,IAAI,aAAaA,CAAC,EAAE,IAAI,QAAQ,OAAO,IAAI,WAAWA,CAAC,EAAE,IAAI,OAAO,OAAO,IAAI,WAAWA,CAAC,EAAE,QAAQ,MAAM,IAAI,MAAM,iBAAiB,CAAC,EAAE,CAAC,CAAC,CAAC,IAAIkkH,IAAI,CAAC,yBAAyB,8BAA8B,sCAAsC,EAAEN,GAAG,KAAKG,GAAG,KAAKF,GAAG,CAAC,EAAEI,GAAG,GAAGD,GAAG,GAAG,SAASrpH,IAAIqF,EAAE,EAAE,GAAG,CAAC,GAAG7P,GAAG,mGAAmG,EAAE8zH,GAAG,MAAM,IAAI,MAAM,gIAAgI,EAAEL,GAAG5jH,EAAEgkH,GAAG,CAAC,CAAC,SAASppH,IAAIoF,EAAE,EAAE,GAAG,CAAC,GAAGikH,GAAG,MAAM,IAAI,MAAM,iIAAiI,EAAE,GAAG,OAAOjkH,GAAG,SAAS+jH,GAAG/jH,MAAM,CAAC6jH,GAAG7jH,EAAE,IAAIE,EAAEgkH,IAAI,OAAO9jH,GAAGyjH,GAAGzjH,CAAC,GAAG,IAAI,EAAE,GAAGF,EAAE,OAAO,EAAE,MAAM,IAAI,MAAM,2DAA2DA,EAAE,KAAK,GAAG,CAAC,+JAA+J,CAAC,CAAC8jH,GAAG,CAAC,CAAC,IAAIT,GAAG,GAAGC,GAAG,GAAG,SAAS9oH,IAAIsF,EAAE,CAACujH,GAAGvjH,CAAC,CAAC,SAASjN,KAAK,CAAC,GAAGywH,KAAK,GAAG,MAAM,IAAI,MAAM,+BAA+B,EAAE,OAAOA,EAAE,CAAC,IAAIvkH,IAAI,SAAaklH,IAAI,EAAErrH,GAAG,OAAO,SAAS,CAAC,GAAG,CAAC,KAAKkH,CAAC,EAAE,MAAM8jH,IAAG,EAAE,OAAO,IAAItjI,GAAGwf,CAAC,CAAC,EAAEmkH,GAAG,EAAE,IAAIC,GAAG,SAASC,IAAI,SAASC,IAAI,SAASC,IAAI,SAASC,IAAI,SAAS5lH,IAAI,CAAC,KAAKwlH,GAAG,YAAYA,GAAG,iBAAiBC,IAAI,mBAAmBC,IAAI,qBAAqBC,IAAI,oBAAoBC,GAAG,ECh5JlriB,IAAAC,GAAA,GAAAC,GAAAD,GAAA,oBAAAE,GAAA,YAAAC,GAAA,mBAAAC,GAAA,sBAAAC,GAAA,6BAAAC,GAAA,kBAAAC,GAAA,yBAAAC,GAAA,gBAAAC,GAAA,mBAAAC,IAAA,wBAAAC,IAAA,sBAAAC,MCEO,SAASC,GACdC,EACAC,EACAC,EAAW,GACX,CASA,GARAF,EAAI,UAAU,EAEdC,EAAO,MAAM,CAAC,EAAE,QAAQ,CAAC,CAAE,EAAAE,EAAG,EAAAC,CAAE,EAAGC,IAAY,CAC7C,IAAMC,EAAOL,EAAOI,CAAO,EAC3BL,EAAI,OAAOM,EAAK,EAAGA,EAAK,CAAC,EACzBN,EAAI,OAAOG,EAAGC,CAAC,CACjB,CAAC,EAEGF,EAAU,CACZ,IAAMI,EAAOL,EAAOA,EAAO,OAAS,CAAC,EAC/BM,EAAKN,EAAO,CAAC,EACnB,GAAI,CAACK,GAAQ,CAACC,EACZ,OAGFP,EAAI,OAAOM,EAAK,EAAGA,EAAK,CAAC,EACzBN,EAAI,OAAOO,EAAG,EAAGA,EAAG,CAAC,CACvB,CAEAP,EAAI,OAAO,CACb,CC3BA,IAAAQ,GAAA,GAAAC,GAAAD,GAAA,+BAAAE,GAAA,mBAAAC,GAAA,iBAAAC,GAAA,WAAAC,GAAA,YAAAC,GAAA,aAAAC,GAAA,eAAAC,IAAA,eAAAC,GAAA,eAAAC,GAAA,eAAAC,GAAA,kBAAAC,GAAA,uBAAAC,GAAA,UAAAC,GAAA,UAAAC,KCOO,IAAMC,GAAN,MAAMC,CAAkC,CAK7C,YAAYC,EAAeC,EAAgB,CACzC,GAAI,CAACC,GAAcF,CAAK,GAAK,CAACE,GAAcD,CAAM,EAChD,MAAM,IAAI,MAAM,wFAAwF,KAAK,UAAU,CAAE,MAAAD,EAAO,OAAAC,CAAO,CAAC,CAAC,EAAE,EAG7I,KAAK,OAASD,EACd,KAAK,QAAUC,CACjB,CAEA,IAAW,OAAgB,CAAE,OAAO,KAAK,MAAQ,CAEjD,IAAW,QAAiB,CAAE,OAAO,KAAK,OAAS,CAE5C,SAAsB,CAC3B,OAAO,IAAIF,EAAW,EAAI,KAAK,MAAO,EAAI,KAAK,MAAM,CACvD,CACF,EDvBO,SAASI,GAASC,EAAaC,EAAa,CACjD,OAAOD,aAAqBE,IAAUF,EAAO,MAAM,SAAWC,CAChE,CAEO,SAASE,IAAWH,EAAoC,CAC7D,OAAOD,GAASC,EAAQ,CAAC,CAC3B,CAEO,SAASI,GAAWJ,EAAoC,CAC7D,OAAOD,GAASC,EAAQ,CAAC,CAC3B,CAEO,SAASK,GAAWL,EAAoC,CAC7D,OAAOD,GAASC,EAAQ,CAAC,CAC3B,CAEO,SAASM,GAAWN,EAAoC,CAC7D,OAAOD,GAASC,EAAQ,CAAC,CAC3B,CAEO,SAASO,GAAQC,EAAa,CACnC,OAAOA,EAAM,IAAM,CACrB,CAEO,SAASC,GAAOD,EAAa,CAClC,OAAOA,EAAM,IAAM,CACrB,CAEO,SAASE,GAAMF,EAAaG,EAAO,EAAG,CAC3C,IAAMC,EAAI,IAAMD,EAChB,OAAO,KAAK,MAAMH,EAAMI,CAAC,EAAIA,CAC/B,CAEO,SAASC,GAAaC,EAAmB,CAC9C,OAAOA,GAAOA,EAAI,OAASA,EAAI,MACjC,CAEO,SAASC,GAA0B,CAAE,MAAAC,EAAO,OAAAC,CAAO,EAAgBC,EAAmB,CAC3F,IAAMC,EAAQD,EAAY,KAAK,IAAID,EAAQD,CAAK,EAChD,OAAO,IAAII,GAAW,KAAK,MAAMJ,EAAQG,CAAK,EAAG,KAAK,MAAMF,EAASE,CAAK,CAAC,CAC7E,CAEO,SAASE,GAAeC,EAAqB,CAClD,OAAOA,EAAI,OAAO,CAACC,EAAKC,IAAOD,EAAI,IAAIC,CAAE,EAAG,IAAIC,GAAM,EAAG,CAAC,CAAC,EACxD,IAAI,IAAIA,GAAMH,EAAI,OAAQA,EAAI,MAAM,CAAC,CAC1C,CAEO,SAASI,GAAMlB,EAAamB,EAAeC,EAAwB,CACxE,OAAO,MAAMpB,CAAG,EAAE,KAAK,CAAC,EAAE,IAAI,CAACqB,EAAGC,IAAMH,EAASG,EAAIF,CAAK,CAC5D,CAEO,SAASG,GAAcvB,EAAU,CACtC,MAAO,CAAC,CAACA,GAAQA,IAAQ,KAAcA,IAAQ,MAAc,CAAC,OAAO,MAAMA,CAAG,GAAKA,IAAQ,CAC7F,CAEO,SAASwB,GAAmBxB,EAAU,CAC3C,OAAOuB,GAAcvB,CAAG,GAAKA,GAAO,GAAKA,GAAO,CAClD,CEzDO,IAAMyB,GAAN,MAAMC,CAAwB,CAKnC,YAAYC,EAAWC,EAAW,CAChC,KAAK,GAAKD,EACV,KAAK,GAAKC,CACZ,CAEA,IAAI,GAAY,CAAE,OAAO,KAAK,EAAI,CAElC,IAAI,GAAY,CAAE,OAAO,KAAK,EAAI,CAE3B,IAAIC,EAAmB,CAC5B,OAAO,IAAIH,EAAM,KAAK,EAAIG,EAAG,EAAG,KAAK,EAAIA,EAAG,CAAC,CAC/C,CAEO,IAAIA,EAAmB,CAC5B,OAAO,IAAIH,EAAM,KAAK,EAAIG,EAAG,EAAG,KAAK,EAAIA,EAAG,CAAC,CAC/C,CAEO,IAAIA,EAAmB,CAC5B,OAAO,IAAIH,EAAM,KAAK,EAAIG,EAAG,EAAG,KAAK,EAAIA,EAAG,CAAC,CAC/C,CAEO,IAAIA,EAAmB,CAC5B,OAAO,IAAIH,EAAM,KAAK,EAAIG,EAAG,EAAG,KAAK,EAAIA,EAAG,CAAC,CAC/C,CAEO,KAAa,CAClB,OAAO,IAAIH,EAAM,KAAK,IAAI,KAAK,CAAC,EAAG,KAAK,IAAI,KAAK,CAAC,CAAC,CACrD,CAEO,WAAoB,CACzB,OAAO,KAAK,KAAM,KAAK,GAAK,EAAM,KAAK,GAAK,CAAE,CAChD,CAEO,OAAe,CACpB,OAAO,IAAIA,EAAM,KAAK,MAAM,KAAK,CAAC,EAAG,KAAK,MAAM,KAAK,CAAC,CAAC,CACzD,CACF,ECxCO,IAAMI,GAAN,MAAMC,CAAkD,CAC7D,OAAc,OAAOC,EAAoB,CACvC,MAAO,CAAC,CAACA,GAAQ,CAACA,EAAK,EAAGA,EAAK,EAAGA,EAAK,MAAOA,EAAK,MAAM,EAAE,MAAMC,EAAa,CAChF,CAEA,OAAc,iBAAiBC,EAAUC,EAAgBC,EAA0B,GAAO,CACxF,GAAI,CAACL,EAAI,OAAOG,CAAG,EACjB,MAAM,IAAI,MAAM,GAAGC,CAAM,mBAAmB,KAAK,UAAUD,CAAG,CAAC,uDAAuD,EAGxH,GAAI,CAACE,IAA4BF,EAAI,MAAQ,GAAKA,EAAI,OAAS,GAC7D,MAAM,IAAI,MAAM,GAAGC,CAAM,aAAaD,EAAI,KAAK,iBAAiBA,EAAI,MAAM,4BAA4B,CAE1G,CAUA,YAAYG,EAA4BD,EAA0B,GAAM,CACtE,IAAMF,EAAOG,GAAQ,CAAC,EAEhBC,EAAS,CAACJ,EAAI,KAAMA,EAAI,IAAKA,EAAI,MAAOA,EAAI,MAAM,EAAE,MAAMD,EAAa,EACvEM,EAAS,CAACL,EAAI,EAAGA,EAAI,EAAGA,EAAI,MAAOA,EAAI,MAAM,EAAE,MAAMD,EAAa,EAExE,GAAI,CAACM,GAAU,CAACD,EACd,MAAM,IAAI,MAAM,2EAA2E,KAAK,UAAUJ,CAAG,CAAC,EAAE,EAGlH,GAAM,CAACM,EAAGC,EAAGC,EAAOC,CAAM,EAAIJ,EAC1B,CAACL,EAAI,EAAGA,EAAI,EAAGA,EAAI,MAAOA,EAAI,MAAM,EACpC,CAACA,EAAI,KAAMA,EAAI,IAAKA,EAAI,MAAQA,EAAI,KAAMA,EAAI,OAASA,EAAI,GAAG,EAElEH,EAAI,iBAAiB,CACnB,EAAAS,EAAG,EAAAC,EAAG,MAAAC,EAAO,OAAAC,CACf,EAAG,kBAAmBP,CAAuB,EAE7C,KAAK,GAAKI,EACV,KAAK,GAAKC,EACV,KAAK,OAASC,EACd,KAAK,QAAUC,CACjB,CAEA,IAAW,GAAY,CAAE,OAAO,KAAK,EAAI,CAEzC,IAAW,GAAY,CAAE,OAAO,KAAK,EAAI,CAEzC,IAAW,OAAgB,CAAE,OAAO,KAAK,MAAQ,CAEjD,IAAW,QAAiB,CAAE,OAAO,KAAK,OAAS,CAEnD,IAAW,MAAe,CAAE,OAAO,KAAK,CAAG,CAE3C,IAAW,KAAc,CAAE,OAAO,KAAK,CAAG,CAE1C,IAAW,OAAgB,CAAE,OAAO,KAAK,EAAI,KAAK,KAAO,CAEzD,IAAW,QAAiB,CAAE,OAAO,KAAK,EAAI,KAAK,MAAQ,CAE3D,IAAW,MAAe,CAAE,OAAO,KAAK,MAAQ,KAAK,MAAQ,CAE7D,IAAW,SAAiB,CAAE,OAAO,IAAIC,GAAM,KAAK,KAAM,KAAK,GAAG,CAAG,CAErE,IAAW,UAAkB,CAAE,OAAO,IAAIA,GAAM,KAAK,MAAO,KAAK,GAAG,CAAG,CAEvE,IAAW,YAAoB,CAAE,OAAO,IAAIA,GAAM,KAAK,KAAM,KAAK,MAAM,CAAG,CAE3E,IAAW,aAAqB,CAAE,OAAO,IAAIA,GAAM,KAAK,MAAO,KAAK,MAAM,CAAG,CAEtE,OAAsB,CAC3B,GAAM,CAACJ,EAAGC,EAAGC,EAAOC,CAAM,EAAI,CAAC,KAAK,EAAG,KAAK,EAAG,KAAK,MAAO,KAAK,MAAM,EACnE,IAAKE,GAAQ,KAAK,MAAMA,CAAG,CAAC,EAC/B,OAAO,IAAId,EAAI,CACb,EAAAS,EAAG,EAAAC,EAAG,MAAAC,EAAO,OAAAC,CACf,CAAC,CACH,CAEO,OAAsB,CAC3B,GAAM,CAACH,EAAGC,EAAGC,EAAOC,CAAM,EAAI,CAAC,KAAK,EAAG,KAAK,EAAG,KAAK,MAAO,KAAK,MAAM,EACnE,IAAKE,GAAQ,KAAK,MAAMA,CAAG,CAAC,EAC/B,OAAO,IAAId,EAAI,CACb,EAAAS,EAAG,EAAAC,EAAG,MAAAC,EAAO,OAAAC,CACf,CAAC,CACH,CAEO,UAAyB,CAC9B,GAAI,CACF,EAAAH,EAAG,EAAAC,EAAG,MAAAC,EAAO,OAAAC,CACf,EAAI,KACEG,EAAO,KAAK,IAAIJ,EAAQC,CAAM,EACpC,OAAID,EAAQC,IACVH,GAAMM,EAAO,EACbJ,GAASI,GAEPH,EAASD,IACXD,GAAMK,EAAO,EACbH,GAAUG,GAGL,IAAIf,EAAI,CAAE,EAAAS,EAAG,EAAAC,EAAG,MAAAC,EAAO,OAAAC,CAAO,CAAC,CACxC,CAEO,QAAQI,EAAuC,CACpD,IAAMC,EAASC,GAAaF,CAAC,EAAKA,EAAkB,MAAQA,EACtDG,EAASD,GAAaF,CAAC,EAAKA,EAAkB,OAASA,EAC7D,OAAO,IAAIhB,EAAI,CACb,EAAG,KAAK,EAAIiB,EACZ,EAAG,KAAK,EAAIE,EACZ,MAAO,KAAK,MAAQF,EACpB,OAAQ,KAAK,OAASE,CACxB,CAAC,CACH,CAEO,IAAIC,EAAcC,EAA4B,CACnD,GAAM,CAACZ,EAAGC,EAAGC,EAAOC,CAAM,EAAI,CAC5B,KAAK,EAAKQ,EAAO,EACjB,KAAK,EAAKC,EAAO,EACjB,KAAK,MAAQD,EACb,KAAK,OAASC,CAChB,EACA,OAAO,IAAIrB,EAAI,CAAE,EAAAS,EAAG,EAAAC,EAAG,MAAAC,EAAO,OAAAC,CAAO,CAAC,CACxC,CAEO,mBAAmBU,EAAkBC,EAAiC,CAC3E,GAAM,CAAE,EAAAd,EAAG,EAAAC,EAAG,MAAAc,EAAO,OAAAC,CAAO,EAAI,KAC1BC,EAAW,KAAK,IAAIjB,EAAG,CAAC,EACxBkB,EAAW,KAAK,IAAIjB,EAAG,CAAC,EAExBkB,EAAWJ,EAAQE,EACnBG,EAAYJ,EAASE,EACrBG,EAAe,KAAK,IAAIF,EAAUN,EAAWI,CAAQ,EACrDK,EAAgB,KAAK,IAAIF,EAAWN,EAAYI,CAAQ,EAE9D,OAAQ,IAAI3B,EAAI,CAAE,EAAG0B,EAAU,EAAGC,EAAU,MAAOG,EAAc,OAAQC,CAAc,CAAC,EAAG,MAAM,CACnG,CAEO,MAAMC,EAAYC,EAA0B,CACjD,GAAM,CAAE,MAAAtB,EAAO,OAAAC,CAAO,EAAI,KACpBH,EAAI,KAAK,EAAIuB,EACbtB,EAAI,KAAK,EAAIuB,EAEnB,OAAO,IAAIjC,EAAI,CAAE,EAAAS,EAAG,EAAAC,EAAG,MAAAC,EAAO,OAAAC,CAAO,CAAC,CACxC,CAEO,aAAasB,EAAqBC,EAAoB,CAC3D,IAAMC,EAAI,KAAK,MAAQ,EACjBC,EAAI,KAAK,OAAS,EAElBC,EAAK,EACLC,EAAK,EACPC,EAAMJ,EACNK,EAAMJ,EAEN5B,EAAI,KAAK,KACTC,EAAI,KAAK,IACTgC,EAAK,KAAK,MACVC,EAAK,KAAK,OAEd,OAAID,EAAKP,IACPK,EAAM,CAACE,EAAKP,EAAaC,EACzBM,EAAKP,GAEHQ,EAAKT,IACPO,EAAM,CAACE,EAAKT,EAAcG,EAC1BM,EAAKT,GAEHzB,EAAI,IACNgC,EAAM,EAAIhC,EACVA,EAAI,GAEFC,EAAI,IACN+B,EAAM,EAAI/B,EACVA,EAAI,GAGC,CAAE,GAAA6B,EAAI,IAAAE,EAAK,GAAAH,EAAI,IAAAE,EAAK,EAAA9B,EAAG,GAAAiC,EAAI,EAAAlC,EAAG,GAAAiC,EAAI,EAAAN,EAAG,EAAAC,CAAE,CAChD,CAEO,UAAUO,EAAa,CAC5B,OAAO,IAAI5C,EAAI,CACb,KAAM,KAAK,KAAQ4C,EAAO,KAAO,KAAK,MACtC,IAAK,KAAK,IAAOA,EAAO,IAAM,KAAK,OACnC,MAAO,KAAK,MAASA,EAAO,MAAQ,KAAK,MACzC,OAAQ,KAAK,OAAUA,EAAO,OAAS,KAAK,MAC9C,CAAC,EAAE,SAAS,EAAE,MAAM,CACtB,CACF,EC3LO,IAAMC,GAAN,cAA0BC,EAA4B,CAC3D,YAAYC,EAAcC,EAAaC,EAAeC,EAAgBC,EAA0B,GAAO,CACrG,MAAM,CAAE,KAAAJ,EAAM,IAAAC,EAAK,MAAAC,EAAO,OAAAC,CAAO,EAAGC,CAAuB,CAC7D,CACF,ECTO,IAAMC,GAAN,MAAMC,CAAgB,CAW3B,YACEC,EACAC,EACAC,EACAC,EACAC,EACA,CACA,KAAK,WAAa,IAAIC,GAAWD,EAAU,MAAOA,EAAU,MAAM,EAClE,KAAK,OAASJ,EACd,KAAK,YAAcC,EACnB,KAAK,WAAaC,EAClB,KAAK,KAAO,IAAII,GAAIH,CAAW,EAAE,QAAQ,KAAK,UAAU,CAC1D,CAEA,IAAW,OAAgB,CAAE,OAAO,KAAK,MAAQ,CAEjD,IAAW,YAAqB,CAAE,OAAO,KAAK,WAAa,CAE3D,IAAW,WAAoB,CAAE,OAAO,KAAK,UAAY,CAEzD,IAAW,KAAW,CAAE,OAAO,KAAK,IAAM,CAE1C,IAAW,WAAwB,CAAE,OAAO,KAAK,UAAY,CAE7D,IAAW,YAAqB,CAAE,OAAO,KAAK,UAAU,KAAO,CAE/D,IAAW,aAAsB,CAAE,OAAO,KAAK,UAAU,MAAQ,CAEjE,IAAW,aAAmB,CAAE,OAAO,IAAIG,GAAI,KAAK,IAAI,EAAE,QAAQ,KAAK,UAAU,QAAQ,CAAC,CAAG,CAEtF,QAAQC,EAAeC,EAAiC,CAC7D,OAAO,IAAIT,EACT,KAAK,MACL,KAAK,WACL,KAAK,UACL,KAAK,YACL,CAAE,MAAAQ,EAAO,OAAAC,CAAO,CAClB,CACF,CACF,EC5CO,IAAMC,GAAN,MAAMC,UAAsBC,EAAyC,CAC1E,YACEC,EACAC,EACAC,EACA,CACA,MAAMF,EAAOA,EAAO,GAAIC,EAAaC,CAAS,CAChD,CAEgB,QAAQC,EAAeC,EAA+B,CACpE,GAAM,CAAE,MAAAJ,EAAO,YAAAC,EAAa,UAAAC,CAAU,EAAI,MAAM,QAAQC,EAAOC,CAAM,EACrE,OAAO,IAAIN,EAAcE,EAAOC,EAAaC,CAAS,CACxD,CACF,ECrBO,SAASG,GAAIC,EAAWC,EAAWC,EAAQ,GAAM,CACtD,IAAMC,EAAQ,KAAK,IAAI,EAAK,KAAK,IAAIH,EAAK,MAAOC,EAAK,KAAK,EAAI,KAAK,IAAID,EAAK,KAAMC,EAAK,IAAI,CAAC,EACvFG,EAAS,KAAK,IAAI,EAAK,KAAK,IAAIJ,EAAK,OAAQC,EAAK,MAAM,EAAI,KAAK,IAAID,EAAK,IAAKC,EAAK,GAAG,CAAC,EACxFI,EAAeF,EAAQC,EAE7B,OAAOF,EACHG,GAAgBL,EAAK,KAAOC,EAAK,KAAOI,GACxCA,EAAe,KAAK,IAAIL,EAAK,KAAMC,EAAK,IAAI,CAClD,CCRO,SAASK,GAAQC,EAA4B,CAClD,IAAMC,EAAKD,EAAI,IAAKE,GAAOA,EAAG,CAAC,EACzBC,EAAKH,EAAI,IAAKE,GAAOA,EAAG,CAAC,EACzBE,EAAOH,EAAG,OAAO,CAACI,EAAKC,IAAOA,EAAID,EAAMC,EAAID,EAAM,GAAQ,EAC1DE,EAAOJ,EAAG,OAAO,CAACE,EAAKG,IAAOA,EAAIH,EAAMG,EAAIH,EAAM,GAAQ,EAC1DI,EAAOR,EAAG,OAAO,CAACS,EAAKJ,IAAOI,EAAMJ,EAAIA,EAAII,EAAM,CAAC,EACnDC,EAAOR,EAAG,OAAO,CAACO,EAAKF,IAAOE,EAAMF,EAAIA,EAAIE,EAAM,CAAC,EAEzD,OAAO,IAAIE,GAAYR,EAAMG,EAAME,EAAME,CAAI,CAC/C,CCRO,SAASE,GACdC,EACAC,EACAC,EACAC,EAAQ,GACE,CACV,IAAIC,EAAuBH,EACxB,IAAI,CAACI,EAAOC,KAAc,CAAE,MAAAD,EAAO,SAAAC,CAAS,EAAE,EAC9C,KAAK,CAACC,EAAIC,IAAOD,EAAG,MAAQC,EAAG,KAAK,EACpC,IAAKC,GAAMA,EAAE,QAAQ,EAElBC,EAAiB,CAAC,EAExB,KAAON,EAAqB,OAAS,GAAG,CACtC,IAAMO,EAAOP,EAAqB,IAAI,EACtCM,EAAK,KAAKC,CAAI,EAEd,IAAMC,EAAUR,EAEVS,EAAoB,CAAC,EAC3B,QAASC,EAAI,EAAGA,EAAIF,EAAQ,OAAQE,IAAK,CACvC,IAAMC,EAAMH,EAAQE,CAAC,EAEfE,EAAUhB,EAAMW,CAAI,EACpBM,EAASjB,EAAMe,CAAG,EAExBF,EAAQ,KAAKK,GAAIF,EAASC,EAAQd,CAAK,CAAC,CAC1C,CAEAC,EAAuBA,EAAqB,OAC1C,CAACe,EAAGC,IAAMP,EAAQO,CAAC,GAAKlB,CAC1B,CACF,CAEA,OAAOQ,CACT,CCpCO,SAASW,GAAUC,EAAgBC,EAAgC,CACxE,OAAUC,EAAK,IAAM,CACnB,GAAM,CAACC,EAAGC,EAAGC,CAAC,EAAIJ,EACZK,EAAWC,GAAK,CAAC,GAAGP,EAAE,MAAM,MAAM,EAAG,CAAC,EAAG,CAAC,EAAGG,EAAG,SAAS,EACzDK,EAAWD,GAAK,CAAC,GAAGP,EAAE,MAAM,MAAM,EAAG,CAAC,EAAG,CAAC,EAAGI,EAAG,SAAS,EACzDK,EAAWF,GAAK,CAAC,GAAGP,EAAE,MAAM,MAAM,EAAG,CAAC,EAAG,CAAC,EAAGK,EAAG,SAAS,EACzDK,EAAaC,GAAO,CAACL,EAAOE,EAAOC,CAAK,EAAG,CAAC,EAElD,OAAUG,GAAIZ,EAAGU,CAAO,CAC1B,CAAC,CACH,CCFO,SAASG,GAAYC,EAAwBC,EAAgB,GAAoB,CACtF,OAAUC,EAAK,IAAM,CACnB,GAAM,CAACC,EAAQC,CAAK,EAAIJ,EAAU,MAAM,MAAM,CAAC,EAC/C,GAAIG,IAAWC,EAAO,OAAOJ,EAC7B,IAAMK,EAAU,KAAK,IAAIF,EAASC,CAAK,EACjCE,EAAgB,KAAK,MAAMD,GAAWJ,EAAgB,GAAM,EAAE,EAC9DM,EAAcJ,EAASC,EAAQ,EAAI,EACnCI,EAAuBC,GAA0C,CACrE,IAAMC,EAAqBV,EAAU,MAAM,MAAM,EACjD,OAAAU,EAAmBH,CAAW,EAAIE,EACxBE,GAAKD,EAAoB,EAAG,SAAS,CACjD,EACME,EAAsBJ,EAAoBF,CAAa,EACvDO,EAAyBR,EAAWO,EAAoB,MAAML,CAAW,EAEzEO,EAAiB,CADMb,GAAiBY,EAAyBL,EAAoBK,CAAsB,EAAI,KACvEb,EAAWY,CAAmB,EACzE,OAAQG,GAAM,CAAC,CAACA,CAAC,EACjB,IAAKA,GAASC,GAAKD,EAAkB,SAAS,CAAC,EAClD,OAAUE,GAAOH,EAAgBP,CAAW,CAC9C,CAAC,CACH,CC9BO,SAASW,IAAaC,EAAmB,CAC9C,IAAMC,EAAQD,EAAW,MAAM,EAC/B,QAASE,EAAID,EAAM,OAAS,EAAGC,EAAI,EAAGA,IAAK,CACzC,IAAMC,EAAI,KAAK,MAAM,KAAK,OAAO,GAAKD,EAAI,EAAE,EACtCE,EAAIH,EAAMC,CAAC,EACjBD,EAAMC,CAAC,EAAID,EAAME,CAAC,EAClBF,EAAME,CAAC,EAAIC,CACb,CACA,OAAOH,CACT,CCFO,SAASI,GAAQC,EAAW,CACjC,MAAO,IAAK,EAAI,KAAK,IAAI,CAACA,CAAC,EAC7B,CAEO,SAASC,IAAeD,EAAW,CACxC,OAAO,KAAK,IAAIA,GAAK,EAAIA,EAAE,CAC7B,CCJO,IAAME,GAAN,cAAmBC,EAAqB,CAC7C,YAAYC,EAAWC,EAAWC,EAAeC,EAAgBC,EAA0B,GAAO,CAChG,MAAM,CAAE,EAAAJ,EAAG,EAAAC,EAAG,MAAAC,EAAO,OAAAC,CAAO,EAAGC,CAAuB,CACxD,CACF,ECHA,IAAMC,IAAO,GACPC,IAAO,IACPC,IAAW,IAOJC,GAAN,KAA8C,CAOnD,YACEC,EACAC,EACAC,EAAe,IAAIC,GAAM,EAAG,CAAC,EAC7B,CACA,GAAM,CAAE,MAAAC,EAAO,OAAAC,CAAO,EAAIJ,EAC1B,KAAK,SAAW,IAAIK,GAAWF,EAAOC,CAAM,EAC5C,KAAK,OAASH,EACd,KAAK,WAAaF,EAA8B,IAC7CO,GAAOA,EAAG,IAAI,IAAIJ,GAAMC,EAAOC,CAAM,CAAC,EAAE,IAAIH,CAAK,CACpD,CACF,CAEA,IAAW,OAAe,CAAE,OAAO,IAAIC,GAAM,KAAK,OAAO,EAAG,KAAK,OAAO,CAAC,CAAG,CAE5E,IAAW,YAAqB,CAAE,OAAO,KAAK,SAAS,KAAO,CAE9D,IAAW,aAAsB,CAAE,OAAO,KAAK,SAAS,MAAQ,CAEhE,IAAW,WAAqB,CAAE,OAAO,KAAK,UAAY,CAE1D,IAAW,mBAA6B,CACtC,OAAO,KAAK,WAAW,IACpBI,GAAOA,EAAG,IAAI,KAAK,MAAM,EAAE,IAAI,IAAIJ,GAAM,KAAK,WAAY,KAAK,WAAW,CAAC,CAC9E,CACF,CAEO,QAAiCC,EAAeC,EAAmB,CACxE,OAAO,IAAK,KAAK,YACf,KAAK,kBACL,CAAE,MAAAD,EAAO,OAAAC,CAAO,CAClB,CACF,CAEO,QAAiCG,EAAWC,EAAc,CAC/D,OAAO,IAAK,KAAK,YACf,KAAK,kBACL,KAAK,SACL,IAAIN,GAAMK,EAAGC,CAAC,CAChB,CACF,CAEO,aAAsCF,EAAc,CACzD,OAAO,KAAK,QAAQA,EAAG,EAAGA,EAAG,CAAC,CAChC,CAaO,MACLG,EACAC,EAAkE,CAAE,EAC/D,CACL,GAAID,EAAW,CACb,IAAME,EAAMF,aAAqBG,GAC7BH,EAAU,IAAI,MAAM,EACpB,IAAII,GAAIJ,CAAS,EAErB,OAAO,KAAK,QAAQE,EAAI,EAAGA,EAAI,CAAC,EAAE,MAAM,KAAMD,CAAO,CACvD,CAEA,GAAM,CAAE,iBAAAI,EAAkB,cAAAC,CAAc,EAAI,CAAE,iBAAkB,GAAO,cAAe,GAAK,GAAGL,CAAQ,EAEtG,OAAII,EACK,KAAK,UAAU,EAGjB,KAAK,aAAaC,CAAa,CACxC,CAEQ,WAAiB,CACvB,IAAMC,EAAU,KAAK,yBAAyB,EAExC,CAACC,EAAeC,EAAgBC,CAAW,EAAIH,EAC/CI,EAAed,GAAca,EAAY,IAAIb,CAAE,EAAE,UAAU,EAC3De,GAAkBD,EAAYH,CAAa,EAAIG,EAAYF,CAAc,GAAK,EAE9EI,EAAO,KAAK,MAAMD,EAAiBxB,GAAQ,EAE3C0B,EAAWC,GAAeR,CAAO,EAEjCT,EAAI,KAAK,MAAM,KAAK,IAAI,EAAGgB,EAAS,EAAK5B,IAAO2B,CAAK,CAAC,EACtDd,EAAI,KAAK,MAAM,KAAK,IAAI,EAAGe,EAAS,EAAK3B,IAAO0B,CAAK,CAAC,EAE5D,OAAO,IAAIG,GAAKlB,EAAGC,EAAG,KAAK,IAAIc,EAAM,KAAK,WAAaf,CAAC,EAAG,KAAK,IAAIe,EAAM,KAAK,YAAcd,CAAC,CAAC,CACjG,CAEQ,aAAakB,EAAsB,CACzC,IAAMf,EAAMgB,GAAQ,KAAK,SAAS,EAClC,OAAOhB,EAAI,IAAIA,EAAI,MAAQe,EAASf,EAAI,OAASe,CAAO,CAC1D,CAEU,0BAAoC,CAC5C,MAAM,IAAI,MAAM,wDAAwD,CAC1E,CACF,EC7HO,IAAME,GAAN,cAA6BC,EAAc,CAC7B,0BAAoC,CACrD,IAAMC,EAAM,KAAK,UACjB,MAAO,CACLA,EAAI,CAAC,EACLA,EAAI,CAAC,EACLC,GAAe,CAACD,EAAI,CAAC,EAAGA,EAAI,CAAC,CAAC,CAAC,CACjC,CACF,CACF,ECTO,IAAME,GAAN,cAA8BC,EAAc,CAC1C,eAAyB,CAC9B,OAAO,KAAK,UAAU,MAAM,EAAG,EAAE,CACnC,CAEO,gBAA0B,CAC/B,OAAO,KAAK,UAAU,MAAM,GAAI,EAAE,CACpC,CAEO,iBAA2B,CAChC,OAAO,KAAK,UAAU,MAAM,GAAI,EAAE,CACpC,CAEO,SAAmB,CACxB,OAAO,KAAK,UAAU,MAAM,GAAI,EAAE,CACpC,CAEO,YAAsB,CAC3B,OAAO,KAAK,UAAU,MAAM,GAAI,EAAE,CACpC,CAEO,aAAuB,CAC5B,OAAO,KAAK,UAAU,MAAM,GAAI,EAAE,CACpC,CAEO,UAAoB,CACzB,OAAO,KAAK,UAAU,MAAM,GAAI,EAAE,CACpC,CAEmB,0BAAoC,CACrD,MAAO,CACL,KAAK,WAAW,EAChB,KAAK,YAAY,EACjB,KAAK,SAAS,CAChB,EAAE,IAAIC,EAAc,CACtB,CACF,ECjCO,IAAMC,GAAN,KAAsC,CAI3C,YAAYC,EAAeC,EAAkB,CAC3C,KAAK,OAASD,EACd,KAAK,UAAYC,CACnB,CAEA,IAAW,OAAgB,CAAE,OAAO,KAAK,MAAQ,CAEjD,IAAW,UAAmB,CAAE,OAAO,KAAK,SAAW,CAEhD,SAASC,EAAe,GAAc,CAC3C,MAAO,GAAG,KAAK,KAAK,GAAGA,EAAe,KAAKC,GAAM,KAAK,QAAQ,CAAC,IAAM,EAAE,EACzE,CACF,EClBO,IAAMC,GAAN,cAAyBC,EAAI,CAClC,OAAc,wBAAwBC,EAAUC,EAAgB,CAE9D,GADAF,GAAI,iBAAiBC,EAAKC,CAAM,EAC5B,CAACC,GAAcF,EAAI,KAAK,EAC1B,MAAM,IAAI,MAAM,GAAGC,CAAM,+BAA+BD,EAAI,KAAK,kBAAkB,CAEvF,CAIA,YAAYA,EAAiCG,EAAe,CAC1D,MAAMH,CAAG,EACT,KAAK,OAASG,CAChB,CAEA,IAAW,OAAgB,CAAE,OAAO,KAAK,MAAQ,CACnD,ECrBO,IAAMC,GAAN,MAAMC,CAAuB,CAKlC,YAAYC,EAAeC,EAA6B,CACtD,GAAM,OAAOD,GAAU,SACrB,MAAM,IAAI,MAAM,oEAAoE,EAGtF,GAAI,CAAC,MAAM,QAAQC,CAAW,GAAKA,EAAY,KAAMC,GAAS,EAAEA,aAAgB,aAAa,EAC3F,MAAM,IAAI,MAAM,0FAA0F,EAG5G,KAAK,OAASF,EACd,KAAK,aAAeC,CACtB,CAEA,IAAW,OAAgB,CAAE,OAAO,KAAK,MAAQ,CAEjD,IAAW,aAA8B,CAAE,OAAO,KAAK,YAAc,CAE9D,QAAc,CACnB,MAAO,CACL,MAAO,KAAK,MACZ,YAAa,KAAK,YAAY,IAAKE,GAAM,MAAM,KAAKA,CAAC,CAAC,CACxD,CACF,CAEA,OAAc,SAASC,EAAmC,CACxD,IAAMH,EAAcG,EAAK,YAAY,IAAKD,GAAW,IAAI,aAAaA,CAAC,CAAC,EACxE,OAAO,IAAIJ,EAAuBK,EAAK,MAAOH,CAAW,CAC3D,CACF,EC5BO,IAAMI,GAAN,cAA2BC,EAAW,CAC3C,OAAc,0BAA0BC,EAAUC,EAAgB,CAGhE,GAFAF,GAAW,wBAAwBC,EAAKC,CAAM,EAG5C,CAACC,GAAmBF,EAAI,KAAK,GAC1B,CAACE,GAAmBF,EAAI,UAAU,EAErC,MAAM,IAAI,MAAM,GAAGC,CAAM,iCAAiCD,EAAI,KAAK,UAAUA,EAAI,UAAU,iCAAiC,CAEhI,CAMA,YAAYA,EAAiCG,EAAeC,EAAeC,EAAoB,CAC7F,MAAML,EAAKG,CAAK,EAChB,KAAK,OAASC,EACd,KAAK,YAAcC,CACrB,CAEA,IAAW,OAAgB,CAAE,OAAO,KAAK,MAAQ,CAEjD,IAAW,YAAqB,CAAE,OAAO,KAAK,WAAa,CAC7D,ECxBO,SAASC,GAAoBC,EAAwC,CAC1E,OAAOA,EAAI,qBAAqBC,EAClC,CAEO,SAASC,GAAiCC,EAAoBC,EAAsD,CAEzH,MAAO,CAAE,GAAGD,EAAW,GADL,CAAE,UAAAC,CAAU,CACM,CACtC,CCXO,SAASC,IAAgC,CAC9C,IAAMC,EAAQ,OAAO,MACrB,GAAI,CAACA,EAAO,MAAM,IAAI,MAAM,8DAA8D,EAM1F,MAAO,CACL,OAAQ,kBACR,yBACA,MAAO,iBACP,UACA,MAAO,iBACP,oBAAqB,IAAM,SAAS,cAAc,QAAQ,EAC1D,mBAAoB,IAAM,SAAS,cAAc,KAAK,EACtD,mBAAoB,IAAM,SAAS,cAAc,OAAO,EACxD,MAAAA,EACA,SAde,IAAM,CACrB,MAAM,IAAI,MAAM,6DAA6D,CAC/E,CAaA,CACF,CCtBO,SAASC,IAAoB,CAClC,OAAO,OAAO,QAAW,UACpB,OAAO,SAAY,aACnB,QAAQ,UAAY,MACpB,QAAQ,SAAS,MAAQ,IAChC,CCFO,SAASC,GAAiBC,EAAsB,CACrD,IAAIC,EAAiB,GACrB,GAAI,CAACD,GAAME,GAAS,EAClB,GAAI,CAEFF,EAAK,GAAQ,IAAI,CACnB,OAASG,EAAK,CACZF,EAAkBE,EAAY,SAAS,CACzC,CAOF,MAAO,CAAE,SAJQH,EAEZI,GAAqB,IAAI,QAAyB,CAACC,EAASC,IAAW,CAAEN,EAAG,SAASI,EAAU,CAACD,EAAmCI,IAA6BJ,EAAMG,EAAOH,CAAG,EAAIE,EAAQE,CAAM,CAAE,CAAG,CAAC,EACzM,IAAM,CAAE,MAAM,IAAI,MAAM,qEAAqEN,CAAc,EAAE,CAAG,CAClG,CACpB,CCfO,SAASO,IAA+B,CAC7C,IAAMC,EAAyC,OAAe,QAAa,OAAO,kBAC5EC,EAAQ,OAAO,OAAS,OAAO,iBAC/BC,EAAuC,OAAe,OAAY,OAAO,iBAEzEC,EAAsB,IAAM,CAChC,GAAIH,EAAQ,OAAO,IAAIA,EACvB,MAAM,IAAI,MAAM,4EAA4E,CAC9F,EAEMI,EAAqB,IAAM,CAC/B,GAAIH,EAAO,OAAO,IAAIA,EACtB,MAAM,IAAI,MAAM,0EAA0E,CAC5F,EAEMI,EAAqB,IAAM,CAC/B,GAAIH,EAAO,OAAO,IAAIA,EACtB,MAAM,IAAI,MAAM,0EAA0E,CAC5F,EAEMI,EAAQ,OAAO,MAGfC,EAAaC,GAAiB,EAEpC,MAAO,CACL,OAAQR,GAAU,KAAM,CAAC,EACzB,yBAA0B,OAAO,0BAA4B,KAAM,CAAC,EACpE,MAAOC,GAAS,KAAM,CAAC,EACvB,UAAW,OAAO,WAAa,KAAM,CAAC,EACtC,MAAO,OAAO,kBAAoB,KAAM,CAAC,EACzC,oBAAAE,EACA,mBAAAC,EACA,mBAAAC,EACA,MAAAC,EACA,GAAGC,CACL,CACF,CCzCO,SAASE,IAAqB,CACnC,OAAO,OAAO,QAAW,UACpB,OAAO,UAAa,aACpB,OAAO,kBAAqB,aAC5B,OAAO,mBAAsB,aAC7B,OAAO,kBAAqB,aAC5B,OAAO,WAAc,aACrB,OAAO,0BAA6B,WAC3C,CCDA,IAAIC,GAEJ,SAASC,KAAsB,CAC7B,GAAI,CAACD,GACH,MAAM,IAAI,MAAM,uEAAuE,EAEzF,OAAOA,EACT,CAEA,SAASE,GAAOC,EAAkB,CAChCH,GAAcG,CAChB,CAEA,SAASC,IAAa,CAGpB,OAAIC,GAAU,EAAUH,GAAOI,GAAiB,CAAC,EAC7CC,GAAS,EAAUL,GAAOM,GAAgB,CAAC,EACxC,IACT,CAEA,SAASC,IAAYN,EAA2B,CAK9C,GAJKH,IACHI,GAAW,EAGT,CAACJ,GACH,MAAM,IAAI,MAAM,4EAA4E,EAG9F,GAAM,CAAE,OAAAU,EAASV,GAAY,OAAQ,MAAAW,EAAQX,GAAY,KAAM,EAAIG,EACnEH,GAAY,OAASU,EACrBV,GAAY,MAAQW,EACpBX,GAAY,oBAAsBG,EAAI,sBAAwB,IAAM,IAAIO,GACxEV,GAAY,mBAAqBG,EAAI,qBAAuB,IAAM,IAAIQ,GAEtEX,GAAY,UAAYG,EAAI,WAAaH,GAAY,UACrDA,GAAY,MAAQG,EAAI,OAASH,GAAY,MAC7CA,GAAY,MAAQG,EAAI,OAASH,GAAY,MAC7CA,GAAY,SAAWG,EAAI,UAAYH,GAAY,QACrD,CAEO,IAAMG,GAAM,CACjB,OAAAF,IACA,OAAAC,GACA,WAAAE,GACA,iBAAAE,GACA,iBAAAM,GACA,gBAAAJ,GACA,YAAAC,IACA,UAAAJ,GACA,SAAAE,EACF,EAEAH,GAAW,EC3DJ,SAASS,GAAaC,EAAmB,CAC9C,MAAI,CAACC,GAAI,SAAS,GAAK,OAAOD,GAAQ,SAC7B,SAAS,eAAeA,CAAG,EAE7BA,CACT,CCJO,SAASE,GAAoBC,EAA4F,CAC9H,GAAM,CAAE,OAAAC,EAAQ,yBAAAC,CAAyB,EAAIC,GAAI,OAAO,EACxD,GAAIH,aAAqBE,EAA0B,OAAOF,EAC1D,IAAMI,EAASC,GAAaL,CAAS,EACrC,GAAI,EAAEI,aAAkBH,GAAS,MAAM,IAAI,MAAM,gEAAgE,EACjH,IAAMK,EAAMF,EAAO,WAAW,KAAM,CAAE,mBAAoB,EAAK,CAAC,EAChE,GAAI,CAACE,EAAK,MAAM,IAAI,MAAM,8CAA8C,EACxE,OAAOA,CACT,CCLO,IAAKC,QAEVA,EAAA,SAAW,WAEXA,EAAA,UAAY,YAEZA,EAAA,YAAc,cAEdA,EAAA,aAAe,eARLA,QAAA,IAoBCC,GAAN,KAA4D,CAajE,YAAYC,EAAiC,CAAC,EAAG,CAC/C,GAAM,CACJ,eAAAC,EAAgB,gBAAAC,EAAiB,UAAAC,EAAW,SAAAC,EAAU,UAAAC,EAAW,QAAAC,CACnE,EAAIN,EACJ,KAAK,eAAiBC,GAAkB,WACxC,KAAK,gBAAkBC,GAAmB,qBAC1C,KAAK,UAAYC,GAAa,yBAC9B,KAAK,SAAWC,GAAY,GAC5B,KAAK,UAAYC,GAAa,UAC9B,KAAK,QAAUC,GAAW,CAC5B,CACF,EAEaC,GAAN,MAAMC,CAAc,CAOzB,YACEC,EACAC,EACAV,EAAiC,CAAC,EAClC,CAEA,KAAK,KAAO,OAAOS,GAAS,SACxB,CAACA,CAAI,EACJA,aAAgBD,EAAgBC,EAAK,KAAOA,EACjD,KAAK,OAASC,EACd,KAAK,QAAU,IAAIX,GAAqBC,CAAO,CACjD,CAEA,aAAaW,EAAuC,CAClD,GAAM,CAAE,QAAAL,CAAQ,EAAI,KAAK,QACzB,OAAO,KAAK,KAAK,IAAKM,GAAMD,EAAI,YAAYC,CAAC,EAAE,KAAK,EAAE,OAAO,CAACC,EAAIC,IAAQD,EAAKC,EAAKA,EAAKD,EAAK,CAAC,EAAK,EAAIP,CAC1G,CAEA,eAAwB,CACtB,GAAM,CAAE,SAAAF,EAAU,QAAAE,CAAQ,EAAI,KAAK,QACnC,OAAO,KAAK,KAAK,OAASF,EAAY,EAAIE,CAC5C,CAEA,aAAaK,EAA+BI,EAAkC,CAC5E,GAAM,CAAE,eAAAd,CAAe,EAAI,KAAK,QAC1Be,EAAcf,IAAmB,gBAA+BA,IAAmB,YACnFgB,EAAahB,IAAmB,eAA8BA,IAAmB,eAEjFiB,EAAiB,KAAK,aAAaP,CAAG,EACtCQ,EAAkB,KAAK,cAAc,EACrCC,EAAKJ,EAAc,KAAK,OAAO,EAAIE,EAAiB,KAAK,OAAO,EAChEG,EAAIJ,EAAa,KAAK,OAAO,EAAIE,EAAkB,KAAK,OAAO,EAGrE,GAAIJ,EAAY,CACd,GAAM,CAAE,MAAAO,EAAO,OAAAC,CAAO,EAAIR,EACpBS,EAAO,KAAK,IAAI,KAAK,IAAIJ,EAAGE,EAAQJ,CAAc,EAAG,CAAC,EACtDO,EAAO,KAAK,IAAI,KAAK,IAAIJ,EAAGE,EAASJ,CAAe,EAAG,CAAC,EAC9D,MAAO,CAAE,EAAGK,EAAM,EAAGC,CAAK,CAC5B,CACA,MAAO,CAAE,EAAAL,EAAG,EAAAC,CAAE,CAChB,CAEA,KAAKK,EAAkE,CACrE,IAAMC,EAASC,GAAaF,CAAS,EAC/Bf,EAAMkB,GAAoBF,CAAM,EAEhC,CACJ,gBAAAzB,EAAiB,UAAAC,EAAW,SAAAC,EAAU,UAAAC,EAAW,QAAAC,CACnD,EAAI,KAAK,QAETK,EAAI,KAAO,GAAGP,CAAQ,MAAMC,CAAS,GACrC,IAAMyB,EAAe,KAAK,aAAanB,CAAG,EACpCoB,EAAa,KAAK,cAAc,EAEtCpB,EAAI,UAAYT,EAChB,IAAM8B,EAAY,KAAK,aAAarB,EAAKgB,CAAM,EAC/ChB,EAAI,SAASqB,EAAU,EAAGA,EAAU,EAAGF,EAAcC,CAAU,EAE/DpB,EAAI,UAAYR,EAChB,KAAK,KAAK,QAAQ,CAAC8B,EAAUC,IAAM,CACjC,IAAMd,EAAId,EAAU0B,EAAU,EACxBX,EAAIf,EAAU0B,EAAU,GAAME,EAAI,GAAK9B,EAC7CO,EAAI,SAASsB,EAAUb,EAAGC,CAAC,CAC7B,CAAC,CACH,CACF,ECjHO,IAAMc,GAAN,KAAqB,CAS1B,YAAYC,EAA2B,CAAC,EAAG,CACzC,GAAM,CACJ,SAAAC,EAAU,UAAAC,EAAW,MAAAC,EAAO,iBAAAC,CAC9B,EAAIJ,EACJ,KAAK,SAAWC,GAAY,qBAC5B,KAAK,UAAYC,GAAa,EAC9B,KAAK,MAAQC,EAEb,IAAME,EAA0B,CAC9B,6BACA,gBAAiB,KAAK,QACxB,EACA,KAAK,iBAAmB,IAAIC,GAAqB,CAAE,GAAGD,EAAyB,GAAGD,CAAiB,CAAC,CACtG,CACF,EAEaG,GAAN,KAAc,CAKnB,YACEC,EACAR,EAA2B,CAAC,EAC5B,CACA,KAAK,IAAM,IAAIS,GAAID,CAAG,EACtB,KAAK,QAAU,IAAIT,GAAeC,CAAO,CAC3C,CAEA,KAAKU,EAAkE,CACrE,IAAMC,EAAMC,GAAoBF,CAAS,EAEnC,CAAE,SAAAT,EAAU,UAAAC,CAAU,EAAI,KAAK,QAE/B,CACJ,EAAAW,EAAG,EAAAC,EAAG,MAAAC,EAAO,OAAAC,CACf,EAAI,KAAK,IACTL,EAAI,YAAcV,EAClBU,EAAI,UAAYT,EAChBS,EAAI,WAAWE,EAAGC,EAAGC,EAAOC,CAAM,EAElC,GAAM,CAAE,MAAAb,CAAM,EAAI,KAAK,QACnBA,GACF,IAAIc,GAAc,CAACd,CAAK,EAAG,CAAE,EAAGU,EAAKX,EAAY,EAAI,EAAAY,CAAE,EAAG,KAAK,QAAQ,gBAAgB,EAAE,KAAKJ,CAAS,CAE3G,CACF,EC3DO,SAASQ,IACdC,EACAC,EACA,EACwB,MAAM,QAAQA,CAAU,EAAIA,EAAa,CAACA,CAAU,GAE5D,QAASC,GAAQ,CAE/B,IAAMC,EAAQD,aAAeE,GACzBF,EAAI,MACHG,GAAoBH,CAAG,EAAIA,EAAI,UAAU,MAAQ,OAGhDI,EAAMJ,aAAeE,GACvBF,EAAI,IACHG,GAAoBH,CAAG,EAAIA,EAAI,UAAU,IAAM,IAAIK,GAAIL,CAAG,EAEzDM,EAAQL,EAAQ,GAAGM,GAAMN,CAAK,CAAC,GAAK,OAC1C,IAAIO,GAAQJ,EAAK,CAAE,MAAAE,CAAM,CAAC,EAAE,KAAKR,CAAS,CAC5C,CAAC,CACH,CC1BO,SAASW,GAAcC,EAAsD,CAClF,GAAM,CAAE,MAAAC,EAAO,MAAAC,CAAM,EAAIC,GAAI,OAAO,EAEpC,OAAQH,aAAiBC,GAASD,EAAM,UAClCA,aAAiBE,GAASF,EAAM,YAAc,CACtD,CCJO,SAASI,GAAiBC,EAAgE,CAE/F,OAAO,IAAI,QAAQ,CAACC,EAASC,IAAW,CACtC,GAAIF,aAAiBG,GAAI,OAAO,EAAE,QAAUC,GAAcJ,CAAK,EAAG,CAChEC,EAAQ,IAAI,EACZ,MACF,CAEA,SAASI,EAAQC,EAAU,CACpBA,EAAE,gBAEPA,EAAE,cAAc,oBAAoB,OAAQC,CAAM,EAClDD,EAAE,cAAc,oBAAoB,QAASD,CAAO,EACpDH,EAAOI,CAAC,EACV,CAEA,SAASC,EAAOD,EAAU,CACnBA,EAAE,gBACPA,EAAE,cAAc,oBAAoB,OAAQC,CAAM,EAClDD,EAAE,cAAc,oBAAoB,QAASD,CAAO,EACpDJ,EAAQK,CAAC,EACX,CAEAN,EAAM,iBAAiB,OAAQO,CAAM,EACrCP,EAAM,iBAAiB,QAASK,CAAO,CACzC,CAAC,CACH,CC3BO,SAASG,GAAcC,EAAsC,CAClE,OAAO,IAAI,QAAQ,CAACC,EAASC,IAAW,CAChCF,aAAe,MAAOE,EAAO,IAAI,MAAM,kDAAkD,CAAC,EAChG,IAAMC,EAAS,IAAI,WACnBA,EAAO,OAAS,IAAM,CAChB,OAAOA,EAAO,QAAW,UAAUD,EAAO,IAAI,MAAM,kEAAkE,CAAC,EAC3H,IAAME,EAAMC,GAAI,OAAO,EAAE,mBAAmB,EAC5CD,EAAI,OAAS,IAAMH,EAAQG,CAAG,EAC9BA,EAAI,QAAUF,EACdE,EAAI,IAAMD,EAAO,MACnB,EACAA,EAAO,QAAUD,EACjBC,EAAO,cAAcH,CAAG,CAC1B,CAAC,CACH,CCbO,SAASM,GAAmBC,EAA0F,CAC3H,GAAM,CAAE,MAAAC,EAAO,MAAAC,CAAM,EAAIC,GAAI,OAAO,EAEpC,OAAIH,aAAiBC,EACZ,IAAIG,GAAWJ,EAAM,aAAcA,EAAM,aAAa,EAE3DA,aAAiBE,EACZ,IAAIE,GAAWJ,EAAM,WAAYA,EAAM,WAAW,EAEpD,IAAII,GAAWJ,EAAM,MAAOA,EAAM,MAAM,CACjD,CCPO,SAASK,GAAa,CAAE,MAAAC,EAAO,OAAAC,CAAO,EAAmC,CAC9E,GAAM,CAAE,oBAAAC,CAAoB,EAAIC,GAAI,OAAO,EACrCC,EAASF,EAAoB,EACnC,OAAAE,EAAO,MAAQJ,EACfI,EAAO,OAASH,EACTG,CACT,CAEO,SAASC,GAAsBC,EAAwDC,EAAuC,CACnI,GAAM,CAAE,UAAAC,CAAU,EAAIL,GAAI,OAAO,EAEjC,GAAI,EAAEG,aAAiBE,IAAc,CAACC,GAAcH,CAAK,EACvD,MAAM,IAAI,MAAM,4DAA4D,EAG9E,GAAM,CAAE,MAAAN,EAAO,OAAAC,CAAO,EAAIM,GAAQG,GAAmBJ,CAAK,EACpDF,EAASL,GAAa,CAAE,MAAAC,EAAO,OAAAC,CAAO,CAAC,EAE7C,OAAIK,aAAiBE,EACnBG,GAAoBP,CAAM,EAAE,aAAaE,EAAO,EAAG,CAAC,EAEpDK,GAAoBP,CAAM,EAAE,UAAUE,EAAO,EAAG,EAAGN,EAAOC,CAAM,EAE3DG,CACT,CCzBA,eAAsBQ,GACpBC,EACAC,EAC4B,CAC5B,IAAMC,EAAeD,GAAUE,GAAI,OAAO,EAAE,oBAAoB,EAE1D,CAACC,EAAQC,EAAOC,CAAW,EAAIN,EAAU,MAAM,MAAMO,GAAWP,CAAS,EAAI,EAAI,CAAC,EAClFQ,EAAiBC,EAAK,IAAMT,EAAU,KAAKI,EAAQC,EAAOC,CAAW,EAAE,MAAM,CAAC,EACpF,aAASI,GAAW,SAASF,EAAaN,CAAY,EAEtDM,EAAY,QAAQ,EAEbN,CACT,CChBO,SAASS,GAAeC,EAAY,CACzC,GAAM,CAAE,MAAAC,EAAO,OAAAC,EAAQ,MAAAC,CAAM,EAAIC,GAAI,OAAO,EAE5C,OAAOJ,aAAiBC,GACnBD,aAAiBE,GACjBF,aAAiBG,CACxB,CCHO,SAASE,GAAcC,EAA6CC,EAAmBC,EAAc,GAAO,CACjH,GAAM,CAAE,MAAAC,EAAO,OAAAC,CAAO,EAAIC,GAAI,OAAO,EAErC,GAAI,EAAEL,aAAiBG,GAASH,aAAiBI,GAC/C,MAAM,IAAI,MAAM,0EAA0E,EAG5F,GAAIH,GAAa,EAAG,OAAOK,GAAa,CAAE,MAAO,EAAG,OAAQ,CAAE,CAAC,EAC/D,IAAMC,EAAOC,GAAmBR,CAAK,EAC/BS,EAAQR,EAAY,KAAK,IAAIM,EAAK,OAAQA,EAAK,KAAK,EACpDG,EAAQD,EAAQF,EAAK,MACrBI,EAASF,EAAQF,EAAK,OAEtBK,EAAeN,GAAa,CAAE,MAAOL,EAAW,OAAQA,CAAU,CAAC,EACnEY,EAAcb,aAAiBI,EAASJ,EAAQc,GAAsBd,CAAK,EAE3Ee,EAAS,KAAK,IAAIL,EAAQC,CAAM,EAAI,EACpCK,EAAKd,GAAeQ,EAAQC,EAASI,EAAS,EAC9CE,EAAKf,GAAeS,EAASD,EAAQK,EAAS,EACpD,OAAIF,EAAY,MAAQ,GAAKA,EAAY,OAAS,GAAGK,GAAoBN,CAAY,EAAE,UAAUC,EAAaG,EAAIC,EAAIP,EAAOC,CAAM,EAE5HC,CACT,CCjBO,IAAMO,GAAN,KAAe,CAapB,YAAYC,EAAkCC,EAAoB,GAAO,CAZzE,KAAQ,cAAkD,CAAC,EAE3D,KAAQ,UAAiC,CAAC,EAI1C,KAAQ,mBAAqB,GAE7B,KAAQ,iBAA+B,CAAC,EAExC,KAAQ,WAAa,EAGnB,GAAI,CAAC,MAAM,QAAQD,CAAM,EACvB,MAAM,IAAI,MAAM,4HAA4HA,CAAM,EAAE,EAGtJ,KAAK,mBAAqBC,EAC1B,KAAK,WAAaD,EAAO,OAEzBA,EAAO,QAAQ,CAACE,EAAOC,IAAQ,CAC7B,GAAIC,GAAWF,CAAK,EAAG,CACrB,KAAK,cAAcC,CAAG,EAAID,EAC1B,KAAK,iBAAiBC,CAAG,EAAID,EAAM,MACnC,MACF,CAEA,GAAIG,GAAWH,CAAK,EAAG,CACrB,IAAMI,EAAaJ,EAAc,MAAM,CAAC,EACxC,GAAII,IAAc,EAChB,MAAM,IAAI,MAAM,yCAAyCA,CAAS,2CAA2C,EAG/G,KAAK,cAAcH,CAAG,EAAID,EAC1B,KAAK,iBAAiBC,CAAG,EAAKD,EAAc,MAAM,MAAM,CAAC,EACzD,MACF,CAGA,IAAMK,EAAUL,aAAyBM,GAAI,OAAO,EAAE,OAASN,EAAQO,GAAsBP,CAAK,EAClG,KAAK,UAAUC,CAAG,EAAII,EACtB,KAAK,iBAAiBJ,CAAG,EAAI,CAACI,EAAO,OAAQA,EAAO,MAAO,CAAC,CAC9D,CAAC,CACH,CAEA,IAAW,cAAiD,CAC1D,OAAO,KAAK,aACd,CAEA,IAAW,UAAgC,CACzC,OAAO,KAAK,SACd,CAEA,IAAW,cAAwB,CACjC,OAAO,KAAK,UAAY,GAAK,KAAK,kBACpC,CAEA,IAAW,WAAoB,CAC7B,OAAO,KAAK,UACd,CAEA,IAAW,iBAA8B,CACvC,OAAO,KAAK,gBACd,CAEA,IAAW,WAAgC,CACzC,OAAO,KAAK,UACd,CAEA,IAAW,yBAAwC,CACjD,OAAOG,GAAM,KAAK,UAAW,EAAG,CAAC,EAAE,IACjC,CAACC,EAAGC,IAAa,KAAK,2BAA2BA,CAAQ,CAC3D,CACF,CAEO,SAASA,EAAiE,CAC/E,OAAO,KAAK,SAASA,CAAQ,GAAK,KAAK,aAAaA,CAAQ,CAC9D,CAEO,mBAAmBA,EAA4B,CACpD,OAAO,KAAK,iBAAiBA,CAAQ,CACvC,CAEO,eAAeA,EAA0B,CAC9C,OAAO,KAAK,iBAAiBA,CAAQ,EAAE,CAAC,CAC1C,CAEO,cAAcA,EAA0B,CAC7C,OAAO,KAAK,iBAAiBA,CAAQ,EAAE,CAAC,CAC1C,CAEO,2BAA2BA,EAA8B,CAC9D,GAAI,OAAO,KAAK,WAAc,SAC5B,MAAM,IAAI,MAAM,uFAAuF,EAGzG,IAAMC,EAAQ,KAAK,cAAcD,CAAQ,EACnCE,EAAS,KAAK,eAAeF,CAAQ,EAC3C,OAAOG,GAA0B,CAAE,MAAAF,EAAO,OAAAC,CAAO,EAAG,KAAK,SAAS,CACpE,CAWO,cAAcE,EAAmBC,EAAiB,GAAmB,CAC1E,YAAK,WAAaD,EAERE,EAAK,IAAM,CACnB,IAAMC,EAAeT,GAAM,KAAK,UAAW,EAAG,CAAC,EAAE,IAAKE,GAAa,CACjE,IAAMV,EAAQ,KAAK,SAASU,CAAQ,EAEpC,GAAIV,aAAoBkB,GAAQ,CAC9B,IAAIC,EAAYhB,GAAWH,CAAK,EAAIA,EAAWoB,GAAWpB,CAAK,EAC/D,OAAAmB,EAAYE,GAAYF,EAA0BJ,CAAc,GAE5DI,EAAU,MAAM,CAAC,IAAML,GAAaK,EAAU,MAAM,CAAC,IAAML,KAC7DK,EAAeG,GAAS,eAAeH,EAA0B,CAACL,EAAWA,CAAS,EAAG,GAAO,EAAK,GAGhGK,EAAU,KAAKL,EAAWA,EAAW,CAAC,CAC/C,CAEA,GAAId,aAAiBM,GAAI,OAAO,EAAE,OAChC,OAAUiB,GAAW,WAAWC,GAAcxB,EAAOc,EAAWC,CAAc,CAAC,EAGjF,MAAM,IAAI,MAAM,+BAA+BL,CAAQ,6FAA6FV,CAAK,EAAE,CAC7J,CAAC,EAKD,OAHuByB,GAAMR,EAAa,IAAKS,GAASC,GAAKD,EAAG,SAAS,CAAC,CAAC,EAAE,KAAK,KAAK,UAAWZ,EAAWA,EAAW,CAAC,CAI3H,CAAC,CACH,CACF,EC1IA,eAAsBc,GAAWC,EAAsC,CACrE,GAAIA,aAAkBC,GAAU,OAAOD,EACvC,IAAME,EAAgB,MAAM,QAAQF,CAAM,EAAIA,EAAS,CAACA,CAAM,EAC9D,GAAI,CAACE,EAAc,OAAQ,MAAM,IAAI,MAAM,0CAA0C,EACrF,IAAMC,EAAcC,GAAiB,MAAM,QAAQJ,CAAM,EAAI,mBAAmBI,CAAG,IAAM,GACnFC,EAAaH,EAAc,IAAII,EAAY,EACjD,OAAAD,EAAW,QAAQ,CAACE,EAAOC,IAAM,CAC/B,GAAI,CAACC,GAAeF,CAAK,GAAK,CAACG,GAAWH,CAAK,GAAK,CAACI,GAAWJ,CAAK,EACnE,MAAI,OAAOL,EAAcM,CAAC,GAAM,SAAgB,IAAI,MAAM,eAAeL,EAAWK,CAAC,CAAC,oEAAoEN,EAAcM,CAAC,CAAC,EAAE,EACtK,IAAI,MAAM,eAAeL,EAAWK,CAAC,CAAC,6HAA6H,EAE3K,GAAIG,GAAWJ,CAAK,EAAG,CAErB,IAAMK,EAAYL,EAAM,MAAM,CAAC,EAC/B,GAAIK,IAAc,EAAG,MAAM,IAAI,MAAM,eAAeT,EAAWK,CAAC,CAAC,+BAA+BI,CAAS,2CAA2C,CACtJ,CACF,CAAC,EAED,MAAM,QAAQ,IAAIP,EAAW,IAAKE,GAAUE,GAAeF,CAAK,GAAKM,GAAiBN,CAAK,CAAC,CAAC,EACtF,IAAIN,GAASI,EAAY,MAAM,QAAQL,CAAM,CAAC,CACvD,CClBA,eAAsBc,GAAaC,EAAkBC,EAAuE,CAC1H,GAAM,CAAE,OAAAC,CAAO,EAAIC,GAAI,OAAO,EAC1BC,EAASJ,EACb,GAAI,EAAEA,aAAiBE,GAAS,CAC9B,IAAMG,EAAW,MAAMC,GAAWN,CAAK,EACvC,GAAIK,EAAS,UAAY,EAAG,MAAM,IAAI,MAAM,4CAA4C,EACxF,IAAME,EAAiBF,EAAS,SAAS,CAAC,EAC1CD,EAASG,aAA0BL,EAASK,EAAiB,MAAMC,GAAoBD,CAAc,CACvG,CACA,IAAME,EAAMC,GAAoBN,CAAM,EAItC,OAHcH,EACX,IAAKU,GAASA,aAAeC,GAAgBD,EAAI,QAAQP,EAAO,MAAOA,EAAO,MAAM,EAAE,IAAI,MAAM,EAAIO,CAAI,EACxG,IAAKE,GAAQA,EAAI,mBAAmBT,EAAO,MAAOA,EAAO,MAAM,CAAC,EACtD,IAAI,CAAC,CAAE,EAAAU,EAAG,EAAAC,EAAG,MAAAC,EAAO,OAAAC,CAAO,IAAM,CAC5C,IAAMC,EAAUC,GAAa,CAAE,MAAAH,EAAO,OAAAC,CAAO,CAAC,EAC9C,OAAID,EAAQ,GAAKC,EAAS,GAAGP,GAAoBQ,CAAO,EAAE,aAAaT,EAAI,aAAaK,EAAGC,EAAGC,EAAOC,CAAM,EAAG,EAAG,CAAC,EAC3GC,CACT,CAAC,CACH,CClBA,eAAsBE,GAAmBC,EAAwCC,EAAiE,CAChJ,GAAI,CAACC,GAAWF,CAAW,GAAK,CAACG,GAAWH,CAAW,EACrD,MAAM,IAAI,MAAM,2DAA2D,EAG7E,GAAIG,GAAWH,CAAW,GAAKA,EAAY,MAAM,CAAC,EAAI,EACpD,MAAM,IAAI,MAAM,kDAAkD,EAGpE,OAAUI,EAAK,IAAM,CACnB,GAAM,CAACC,EAAWC,EAAUC,CAAW,EAAIP,EAAY,MAAM,MAAMG,GAAWH,CAAW,EAAI,EAAI,CAAC,EAMlG,OALcC,EAAW,IAAKO,GAASA,aAAeC,GAAgBD,EAAI,QAAQF,EAAUD,CAAS,EAAE,IAAMG,CAAI,EAC9G,IAAKE,GAAQA,EAAI,mBAAmBJ,EAAUD,CAAS,CAAC,EAExD,OAAQK,GAAQA,EAAI,MAAQ,GAAKA,EAAI,OAAS,CAAC,EAC/C,IAAI,CAAC,CAAE,EAAAC,EAAG,EAAAC,EAAG,MAAAC,EAAO,OAAAC,CAAO,IAASC,GAAQf,EAAY,KAAKK,EAAWC,EAAUC,CAAW,EAAG,CAACK,EAAGD,EAAG,CAAC,EAAG,CAACG,EAAQD,EAAON,CAAW,CAAC,CAAC,CAE7I,CAAC,CACH,CChCA,eAAsBS,GACpBC,EAEAC,EACmB,CACnB,GAAM,CAAE,MAAAC,CAAM,EAAIC,GAAI,OAAO,EACvBC,EAAM,MAAMF,EAAMF,EAAKC,CAAI,EACjC,GAAI,EAAEG,EAAI,OAAS,KACjB,MAAM,IAAI,MAAM,qBAAqBA,EAAI,MAAM,KAAKA,EAAI,UAAU,eAAeA,EAAI,GAAG,EAAE,EAE5F,OAAOA,CACT,CCVA,eAAsBC,IAAWC,EAAwC,CACvE,IAAMC,EAAM,MAAMC,GAAaF,CAAG,EAC5BG,EAAO,MAAOF,EAAK,KAAK,EAE9B,GAAI,CAACE,EAAK,KAAK,WAAW,QAAQ,EAChC,MAAM,IAAI,MAAM,wEAAwEA,EAAK,IAAI,cAAcF,EAAI,GAAG,EAAE,EAE1H,OAAOG,GAAcD,CAAI,CAC3B,CCTA,eAAsBE,GAAaC,EAAyB,CAC1D,OAAQ,MAAMC,GAAaD,CAAG,GAAG,KAAK,CACxC,CCFA,eAAsBE,IAAgBC,EAAoC,CACxE,OAAO,IAAI,aAAa,MAAO,MAAMC,GAAaD,CAAG,GAAG,YAAY,CAAC,CACvE,CCFO,SAASE,GAAcC,EAAsC,CAClE,OAAO,IAAI,QAAQ,CAACC,EAASC,IAAW,CAChCF,aAAe,MAAOE,EAAO,IAAI,MAAM,kDAAkD,CAAC,EAEhG,IAAMC,EAAQC,GAAI,OAAO,EAAE,mBAAmB,EAC9CD,EAAM,UAAY,IAAMF,EAAQE,CAAK,EACrCA,EAAM,QAAUD,EAChBC,EAAM,YAAc,GACpBA,EAAM,MAAQ,GACdA,EAAM,IAAM,IAAI,gBAAgBH,CAAG,EACnCG,EAAM,KAAK,CACb,CAAC,CACH,CCXA,eAAsBE,IAAWC,EAAwC,CACvE,IAAMC,EAAM,MAAMC,GAAaF,CAAG,EAC5BG,EAAO,MAAOF,EAAK,KAAK,EAE9B,GAAI,CAACE,EAAK,KAAK,WAAW,QAAQ,EAChC,MAAM,IAAI,MAAM,wEAAwEA,EAAK,IAAI,cAAcF,EAAI,GAAG,EAAE,EAE1H,OAAOG,GAAcD,CAAI,CAC3B,CCXO,SAASE,GAAaC,EAAyBC,EAA0B,CAC9E,IAAMC,EAA0B,GAAGD,CAAgB,yBAEnD,GAAI,CAACD,EACH,MAAO,CACL,aAAc,GACd,YAAaE,CACf,EAGF,GAAIF,IAAQ,IACV,MAAO,CACL,aAAc,IACd,YAAa,IAAIE,CAAuB,EAC1C,EAGF,IAAMC,EAAWH,EAAI,WAAW,SAAS,EAAI,UAAYA,EAAI,WAAW,UAAU,EAAI,WAAa,GACnGA,EAAMA,EAAI,QAAQG,EAAU,EAAE,EAE9B,IAAMC,EAAQJ,EAAI,MAAM,GAAG,EAAE,OAAQK,GAAMA,CAAC,EAEtCC,EAAeN,EAAI,SAAS,OAAO,EACrCI,EAAMA,EAAM,OAAS,CAAC,EACtBF,EAEAK,EAAeJ,GAAYH,EAAI,SAAS,OAAO,EAAII,EAAM,MAAM,EAAGA,EAAM,OAAS,CAAC,EAAIA,GAAO,KAAK,GAAG,EACzG,OAAAG,EAAeP,EAAI,WAAW,GAAG,EAAI,IAAIO,CAAY,GAAKA,EAEnD,CACL,aAAAA,EACA,YAAaA,IAAiB,IAAM,IAAID,CAAY,GAAK,GAAGC,CAAY,IAAID,CAAY,EAC1F,CACF,CC5BA,eAAsBE,GACpBC,EACAC,EAC4B,CAC5B,GAAM,CAAE,YAAAC,EAAa,aAAAC,CAAa,EAAIC,GAAaJ,EAAKC,CAAgB,EAElEI,EAAW,MAAMC,GAAuCJ,CAAW,EAEzE,OAAUK,GAAM,YAAYF,EAAUF,CAAY,CACpD,CCXO,SAASK,IAAgBC,EAAoBC,EAAwBC,EAAqB,GAAO,CACtG,GAAM,CAAE,MAAAC,EAAO,OAAAC,CAAO,EAAIF,EACtBG,GAAmBJ,CAAS,EAC5BA,EACJ,OAAAD,EAAM,MAAQG,EACdH,EAAM,OAASI,EACR,CAAE,MAAAD,EAAO,OAAAC,CAAO,CACzB,CCHO,IAAeE,GAAf,KAAyC,CAC9C,YAAYC,EAAc,CAI1B,KAAU,QAAkC,OAE5C,KAAU,eAAiC,CAAC,EAL1C,KAAK,MAAQA,CACf,CAQA,IAAW,QAAiC,CAAE,OAAO,KAAK,OAAS,CAEnE,IAAW,eAAgC,CAAE,OAAO,KAAK,cAAgB,CAEzE,IAAW,UAAoB,CAAE,MAAO,CAAC,CAAC,KAAK,MAAQ,CAEhD,iBAAiBC,EAA8B,CACpD,GAAM,CAAE,IAAAC,EAAK,QAAAC,CAAQ,EAAI,KAAK,qBAAqBF,CAAS,EAC5D,OAAOC,EAAIC,CAAO,CACpB,CAEO,sBAAsBF,EAAmBG,EAAmB,CACjE,GAAM,CAAE,IAAAF,EAAK,QAAAC,CAAQ,EAAI,KAAK,qBAAqBF,CAAS,EAC5DC,EAAIC,CAAO,EAAE,QAAQ,EACrBD,EAAIC,CAAO,EAAIC,CACjB,CAEO,cAAe,CACpB,OAAO,KAAK,eAAe,IAAI,CAAC,CAAE,UAAAH,CAAU,KAAO,CACjD,KAAMA,EACN,OAAQ,KAAK,iBAAiBA,CAAS,CACzC,EAAE,CACJ,CAEO,oBAAqB,CAC1B,OAAO,KAAK,aAAa,EAAE,OAAQI,GAAUA,EAAM,kBAAqBC,EAAQ,CAClF,CAEO,iBAAkB,CACvB,OAAO,KAAK,aAAa,EAAE,OAAQD,GAAU,EAAEA,EAAM,kBAAqBC,GAAS,CACrF,CAEO,UAAW,CAChB,KAAK,gBAAgB,EAAE,QAAQ,CAAC,CAAE,KAAAC,EAAM,OAAAH,CAAO,IAAM,CACnD,KAAK,sBAAsBG,EAAMH,EAAO,SAAS,CAAC,CACpD,CAAC,CACH,CAEO,QAAS,CACd,KAAK,mBAAmB,EAAE,QAAQ,CAAC,CAAE,KAAAG,EAAM,OAAQC,CAAS,IAAM,CAChE,IAAMJ,EAAYK,GAAOD,EAAS,SAAS,CAAC,EAC5CA,EAAS,QAAQ,EACjB,KAAK,sBAAsBD,EAAMH,CAAM,CACzC,CAAC,CACH,CAEO,QAAQM,EAAmB,GAAM,CACtC,KAAK,aAAa,EAAE,QAASL,GAAU,CACrC,GAAIK,GAAoBL,EAAM,OAAO,WACnC,MAAM,IAAI,MAAM,mDAAmDA,EAAM,IAAI,EAAE,EAEjFA,EAAM,OAAO,QAAQ,CACvB,CAAC,EACD,KAAK,QAAU,MACjB,CAEO,iBAAgC,CACrC,OAAO,IAAI,aACT,KAAK,aAAa,EACf,IAAI,CAAC,CAAE,OAAAD,CAAO,IAAM,MAAM,KAAKA,EAAO,SAAS,CAAC,CAAa,EAC7D,OAAO,CAACO,EAAMC,IAAQD,EAAK,OAAOC,CAAG,CAAC,CAC3C,CACF,CAEA,MAAa,KAAKC,EAAgE,CAChF,GAAIA,aAAwB,aAAc,CACxC,KAAK,eAAeA,CAAY,EAChC,MACF,CACA,MAAM,KAAK,YAAYA,CAAY,CACrC,CAEA,MAAa,YAAYC,EAAyB,CAChD,GAAIA,GAAO,OAAOA,GAAQ,SACxB,MAAM,IAAI,MAAM,GAAG,KAAK,KAAK,mCAAmC,EAElE,IAAMC,EAAY,MAAMC,GAAcF,EAAK,KAAK,oBAAoB,CAAC,EACrE,KAAK,kBAAkBC,CAAS,CAClC,CAEA,MAAa,aAAaE,EAA8B,CACtD,GAAIA,GAAY,OAAOA,GAAa,SAClC,MAAM,IAAI,MAAM,GAAG,KAAK,KAAK,0CAA0C,EAEzE,GAAM,CAAE,SAAAC,CAAS,EAAIC,GAAI,OAAO,EAC1B,CAAE,YAAAC,EAAa,aAAAC,CAAa,EAAIC,GAAaL,EAAU,KAAK,oBAAoB,CAAC,EACjFM,EAAwBC,GAAwB,QAAQ,IAAIA,EAAU,IAAKC,GAAOP,EAASO,CAAE,EAAE,KAAMC,GAAS,OAAOA,GAAQ,SAAW,OAAO,KAAKA,CAAG,EAAIA,EAAI,MAAO,CAAC,CAAC,EAExKC,EAAiBC,GAAM,qBAAqBL,CAAoB,EAChEM,EAAW,KAAK,OAAO,MAAMX,EAASE,CAAW,GAAG,SAAS,CAAC,EAC9DL,EAAY,MAAMY,EAAYE,EAAUR,CAAY,EAC1D,KAAK,kBAAkBN,CAAS,CAClC,CAEO,kBAAkBA,EAA8B,CACrD,GAAM,CAAE,cAAAe,EAAe,OAAAC,CAAO,EAAI,KAAK,2BAA2BhB,CAAS,EAC3E,KAAK,eAAiBe,EACtB,KAAK,QAAUC,CACjB,CAEO,eAAeC,EAAuB,CAC3C,GAAM,CAAE,cAAAF,EAAe,OAAAC,CAAO,EAAI,KAAK,cAAcC,CAAO,EAC5D,KAAK,eAAiBF,EACtB,KAAK,QAAUC,CACjB,CAEQ,qBAAqB9B,EAAmB,CAC9C,GAAI,CAAC,KAAK,OACR,MAAM,IAAI,MAAM,mDAAmD,EAGrE,IAAMgC,EAAShC,EAAU,MAAM,GAAG,EAAE,OAAO,CAACiC,EAAoD/B,IAAY,CAE1G,GAAI,CAAC+B,EAAI,QAAQ,eAAe/B,CAAO,EACrC,MAAM,IAAI,MAAM,wDAAwDA,CAAO,cAAcF,CAAS,EAAE,EAE1G,MAAO,CAAE,IAAKiC,EAAI,QAAS,QAAA/B,EAAS,QAAS+B,EAAI,QAAQ/B,CAAO,CAAE,CACpE,EAAG,CAAE,QAAS,KAAK,MAAO,CAAC,EAErB,CAAE,IAAAD,EAAK,QAAAC,CAAQ,EAAI8B,EACzB,GAAI,CAAC/B,GAAO,CAACC,GAAW,EAAED,EAAIC,CAAO,YAAgBgC,IACnD,MAAM,IAAI,MAAM,8DAA8DlC,CAAS,EAAE,EAG3F,MAAO,CAAE,IAAAC,EAAK,QAAAC,CAAQ,CACxB,CASF,ECpJO,SAASiC,GACdC,EACAC,EACAC,EACa,CACb,OAAUC,EAAK,IAAM,CACnB,IAAIC,EAASC,GAAgBL,EAAGC,EAAO,iBAAkBA,EAAO,iBAAkBC,EAAQ,MAAM,EAChG,OAAAE,EAASE,EAAIF,EAAKH,EAAO,IAAI,EACtBG,CACT,CAAC,CACH,CCRO,SAASG,GACdC,EACAC,EACAC,EAAe,GACF,CACb,OAAUC,EAAK,IAAM,CACnB,IAAMC,EAAUC,GACdH,EACOI,EACAC,GAAOP,EAAIC,EAAiB,MAAqB,QAAS,CAAC,EAAG,CAAC,EAAG,MAAM,EAC3EA,EAAiB,MAAM,IACzB,EACEO,GAAuBR,EAAGC,EAAiB,MAA8B,CAAC,EAAG,CAAC,CAAC,CACrF,EACMQ,EAAOD,GAAuBJ,EAAMH,EAAiB,MAAO,CAAC,EAAG,CAAC,CAAC,EAElES,EAASL,GAAQC,EAAIF,EAAMK,CAAI,CAAC,EAChCE,EAAOH,GAAuBE,EAAKT,EAAiB,MAAO,CAAC,EAAG,CAAC,CAAC,EAEvE,OAAUI,GAAQC,EAAIF,EAASE,EAAIG,EAAME,CAAI,CAAC,CAAC,CACjD,CAAC,CACH,CAEO,SAASC,GACdZ,EACAC,EACAC,EAAe,GACfW,EAAc,GACD,CACb,OAAUV,EAAK,IAAM,CACnB,IAAMC,EAAUC,GACdH,EACOI,EACAC,GAAOP,EAAIC,EAAiB,MAAqB,QAASY,EAAc,CAAC,EAAG,CAAC,EAAI,CAAC,EAAG,CAAC,EAAG,MAAM,EAClGZ,EAAiB,MAAM,IACzB,EACEO,GAAuBR,EAAGC,EAAiB,MAA8BY,EAAc,CAAC,EAAG,CAAC,EAAI,CAAC,EAAG,CAAC,CAAC,CAC5G,EACMJ,EAAOD,GAAuBJ,EAAMH,EAAiB,MAAO,CAAC,EAAG,CAAC,CAAC,EAElES,EAASL,GAAQC,EAAIF,EAAMK,CAAI,CAAC,EAChCE,EAAOH,GAAuBE,EAAKT,EAAiB,MAAO,CAAC,EAAG,CAAC,CAAC,EAEjEa,EAAST,GAAQC,EAAIF,EAASE,EAAIG,EAAME,CAAI,CAAC,CAAC,EAC9CI,EAAOP,GAAuBM,EAAKb,EAAiB,MAAO,CAAC,EAAG,CAAC,CAAC,EAEvE,OAAUI,GAAQC,EAAIF,EAASE,EAAIG,EAASH,EAAIK,EAAMI,CAAI,CAAC,CAAC,CAAC,CAC/D,CAAC,CACH,CClDO,SAASC,GACdC,EACAC,EACAC,EAA4B,OAC5BC,EAAW,GACE,CACb,OAAUC,EAAK,IAAM,CACnB,IAAMC,EAASC,EACVC,GAAOP,EAAGC,EAAO,QAAS,CAAC,EAAG,CAAC,EAAGC,CAAO,EAC5CD,EAAO,IACT,EAEA,OAAOE,EAAcK,GAAKH,CAAG,EAAIA,CACnC,CAAC,CACH,CChBO,SAASI,GAA2BC,EAAgBC,EAA+B,CACxF,OAAO,KAAKD,CAAS,EAAE,QAASE,GAAS,CAClCD,EAAc,KAAME,GAAOA,EAAG,eAAiBD,CAAI,GACtDF,EAAUE,CAAI,EAAE,QAAQ,CAE5B,CAAC,CACH,CCJO,SAASE,GACdC,EACAC,EACA,CACA,MAAO,CACLC,EACAC,EACAC,EACAC,IACe,CACf,IAAMC,EAAaC,GACjBP,EAAeE,EAAaC,EAAcC,EAAaA,CAAU,EACjE,CAACA,EAAYA,EAAYF,EAAYC,CAAW,CAClD,EACMK,EAAUC,GAAST,EAAeG,CAAW,CAAC,EAEpD,OAAAF,EAAc,KACZ,CAAE,UAAW,GAAGI,CAAY,UAAW,EACvC,CAAE,UAAW,GAAGA,CAAY,OAAQ,CACtC,EAEO,CAAE,QAAAC,EAAS,KAAAE,CAAK,CACzB,CACF,CCvBO,SAASE,GACdC,EACAC,EACA,CACA,MAAO,CACLC,EACAC,EACAC,IACa,CACb,IAAMC,EAAgBC,GAASN,EAAeE,EAAaC,CAAW,EAAG,CAACD,EAAYC,CAAW,CAAC,EAC5FI,EAAaC,GAASR,EAAeG,CAAW,CAAC,EAEvD,OAAAF,EAAc,KACZ,CAAE,UAAW,GAAGG,CAAY,UAAW,EACvC,CAAE,UAAW,GAAGA,CAAY,OAAQ,CACtC,EAEO,CACL,QAASC,EACT,KAAME,CACR,CACF,CACF,CCNO,IAAME,GAAN,KAA0B,CAE/B,YAESC,EAEAC,EAEAC,EAEP,CANO,sBAAAF,EAEA,sBAAAC,EAEA,UAAAC,CAEN,CACL,EC3BO,SAASC,GACdC,EACAC,EACA,CACA,MAAO,CAACC,EAAoBC,EAAqBC,IAA8C,CAC7F,IAAMC,EAAsBC,GAASN,EAAe,EAAQE,CAAU,EAAG,CAAC,EAAG,EAAGA,EAAY,CAAC,CAAC,EACxFK,EAAsBD,GAASN,EAAeE,EAAaC,CAAW,EAAG,CAAC,EAAG,EAAGD,EAAYC,CAAW,CAAC,EACxGK,EAAUC,GAAST,EAAeG,CAAW,CAAC,EAEpD,OAAAF,EAAc,KACZ,CAAE,UAAW,GAAGG,CAAY,mBAAoB,EAChD,CAAE,UAAW,GAAGA,CAAY,mBAAoB,EAChD,CAAE,UAAW,GAAGA,CAAY,OAAQ,CACtC,EAEO,IAAIM,GACTL,EACAE,EACAC,CACF,CACF,CACF,CAEO,SAASG,GAEdC,EACA,CACA,OAAQC,GAAwC,CAC9C,IAAMR,EAAmBO,EAAgC,GAAGC,CAAM,oBAAqB,CAAC,EAClFN,EAAmBK,EAAgC,GAAGC,CAAM,oBAAqB,CAAC,EAClFL,EAAOI,EAAgC,GAAGC,CAAM,QAAS,CAAC,EAEhE,OAAO,IAAIH,GACTL,EACAE,EACAC,CACF,CACF,CACF,CCvCO,SAASM,GAA0BC,EAAgBC,EAA+B,CACvF,MAAO,CAACC,EAAsBC,EAAmBC,IAAwB,CACvE,IAAMC,EAASL,EAAUE,CAAY,EAErC,GAAI,CAACI,GAASD,EAAQF,CAAS,EAC7B,MAAM,IAAI,MAAM,sBAAsBD,CAAY,mBAAmBC,CAAS,mBAAmBE,CAAM,EAAE,EAG3G,OAAAJ,EAAc,KACZ,CAAE,aAAAC,EAAc,UAAWE,GAAcF,CAAa,CACxD,EAEOG,CACT,CACF,CCjBO,SAASE,GAAsBC,EAAuB,CAC3D,IAAIC,EAAmBD,EAEvB,SAASE,EAAeC,EAAkC,CACxD,IAAMC,EAAMH,EAAiB,MAAM,EAAGE,CAAU,EAChD,OAAAF,EAAmBA,EAAiB,MAAME,CAAU,EAC7CC,CACT,CAEA,SAASC,GAAoC,CAC3C,OAAOJ,CACT,CAEA,MAAO,CACL,eAAAC,EACA,oBAAAG,CACF,CACF,CCdO,SAASC,GAAkBC,EAAwCC,EAA+B,CACvG,IAAMC,EAAoBC,GAAyBH,EAAgBC,CAAa,EAC1EG,EAA6BC,GAAkCL,EAAgBC,CAAa,EAElG,SAASK,EAAyBC,EAAoBC,EAAqBC,EAAsBC,EAAe,GAA0B,CACxI,IAAMC,EAAQD,EACVR,EAAkBK,EAAYC,EAAa,EAAG,GAAGC,CAAY,QAAQ,EACrEL,EAA2BG,EAAYC,EAAa,GAAGC,CAAY,QAAQ,EACzEG,EAAQR,EAA2BI,EAAaA,EAAa,GAAGC,CAAY,QAAQ,EACpFI,EAAQT,EAA2BI,EAAaA,EAAa,GAAGC,CAAY,QAAQ,EAE1F,MAAO,CAAE,MAAAE,EAAO,MAAAC,EAAO,MAAAC,CAAM,CAC/B,CAEA,SAASC,EAAyBP,EAAoBC,EAAqBC,EAAsBC,EAAe,GAA0B,CACxI,GAAM,CAAE,MAAAC,EAAO,MAAAC,EAAO,MAAAC,CAAM,EAAIP,EAAyBC,EAAYC,EAAaC,EAAcC,CAAY,EACtGK,EAAQX,EAA2BI,EAAaA,EAAa,GAAGC,CAAY,QAAQ,EAE1F,MAAO,CACL,MAAAE,EAAO,MAAAC,EAAO,MAAAC,EAAO,MAAAE,CACvB,CACF,CAEA,MAAO,CACL,yBAAAT,EACA,yBAAAQ,CACF,CACF,CC1BO,SAASE,GAAcC,EAA8F,CAC1H,IAAMC,EAAgC,CAAC,EAEjC,CACJ,eAAAC,EACA,oBAAAC,CACF,EAAIC,GAAsBJ,CAAO,EAE3B,CACJ,yBAAAK,CACF,EAAIC,GAAkBJ,EAAgBD,CAAa,EAE7CM,EAASF,EAAyB,EAAG,GAAI,SAAU,EAAI,EACvDG,EAASH,EAAyB,GAAI,GAAI,QAAQ,EAClDI,EAASJ,EAAyB,GAAI,IAAK,QAAQ,EACnDK,EAASL,EAAyB,IAAK,IAAK,QAAQ,EAE1D,GAAIF,EAAoB,EAAE,SAAW,EACnC,MAAM,IAAI,MAAM,kCAAkCA,EAAoB,EAAE,MAAM,EAAE,EAGlF,MAAO,CACL,cAAAF,EACA,OAAQ,CACN,OAAAM,EAAQ,OAAAC,EAAQ,OAAAC,EAAQ,OAAAC,CAC1B,CACF,CACF,CC1BO,SAASC,GAAsBC,EAAuE,CAC3G,OAAQC,GAA+B,CACrC,IAAMC,EAAUF,EAAgC,GAAGC,CAAM,WAAY,CAAC,EAChEE,EAAOH,EAAgC,GAAGC,CAAM,QAAS,CAAC,EAEhE,MAAO,CAAE,QAAAC,EAAS,KAAAC,CAAK,CACzB,CACF,CCRO,SAASC,GAAkBC,EAAgBC,EAA+B,CAC/E,IAAMC,EAAqBC,GAA0BH,EAAWC,CAAa,EAEvEG,EAAoBC,GAAsBH,CAAkB,EAC5DI,EAA6BC,GAA+BL,CAAkB,EAEpF,SAASM,EAAyBC,EAAgBC,EAAe,GAA0B,CACzF,IAAMC,EAAQD,EACVN,EAAkB,GAAGK,CAAM,QAAQ,EACnCH,EAA2B,GAAGG,CAAM,QAAQ,EAC1CG,EAAQN,EAA2B,GAAGG,CAAM,QAAQ,EACpDI,EAAQP,EAA2B,GAAGG,CAAM,QAAQ,EAE1D,MAAO,CAAE,MAAAE,EAAO,MAAAC,EAAO,MAAAC,CAAM,CAC/B,CAEA,SAASC,EAAyBL,EAAgBC,EAAe,GAA0B,CACzF,IAAMC,EAAQD,EACVN,EAAkB,GAAGK,CAAM,QAAQ,EACnCH,EAA2B,GAAGG,CAAM,QAAQ,EAC1CG,EAAQN,EAA2B,GAAGG,CAAM,QAAQ,EACpDI,EAAQP,EAA2B,GAAGG,CAAM,QAAQ,EACpDM,EAAQT,EAA2B,GAAGG,CAAM,QAAQ,EAE1D,MAAO,CACL,MAAAE,EAAO,MAAAC,EAAO,MAAAC,EAAO,MAAAE,CACvB,CACF,CAEA,MAAO,CACL,yBAAAP,EACA,yBAAAM,CACF,CACF,CC/BO,SAASE,GACdC,EACuE,CACvE,IAAMC,EAAgC,CAAC,EAEjC,CACJ,yBAAAC,CACF,EAAIC,GAAkBH,EAAWC,CAAa,EAExCG,EAAS,CACb,OAAQF,EAAyB,SAAU,EAAI,EAC/C,OAAQA,EAAyB,QAAQ,EACzC,OAAQA,EAAyB,QAAQ,EACzC,OAAQA,EAAyB,QAAQ,CAC3C,EAEA,OAAAG,GAA2BL,EAAWC,CAAa,EAE5C,CAAE,OAAAG,EAAQ,cAAAH,CAAc,CACjC,CCfO,IAAMK,GAAN,cAAmCC,EAAuG,CAC/I,aAAc,CACZ,MAAM,sBAAsB,CAC9B,CAEO,aAAaC,EAA8B,CAChD,GAAM,CAAE,OAAAC,CAAO,EAAI,KAEnB,GAAI,CAACA,EACH,MAAM,IAAI,MAAM,oDAAoD,EAGtE,OAAUC,EAAK,IAAM,CACnB,IAAMC,EAAiBC,GAAKJ,EAAM,cAAc,IAAK,EAAI,EAAG,SAAS,EAE/DK,EAAaC,GAAUH,EADb,CAAC,QAAS,QAAS,OAAO,CACO,EAAE,IAAI,GAAG,EAEtDI,EAAMC,GAAYH,EAAYJ,EAAO,OAAQ,EAAI,EACrD,OAAAM,EAAMC,GAAYD,EAAKN,EAAO,MAAM,EACpCM,EAAMC,GAAYD,EAAKN,EAAO,MAAM,EACpCM,EAAMC,GAAYD,EAAKN,EAAO,MAAM,EACpCM,EAASE,GAAQF,EAAK,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,OAAO,EAEtCA,CACT,CAAC,CACH,CAEA,MAAa,QAAQP,EAAwC,CAC3D,OAAO,KAAK,aAAa,MAAMU,GAAWV,CAAK,CAAC,CAClD,CAEU,qBAA8B,CACtC,MAAO,8BACT,CAEU,2BAA2BW,EAA8B,CACjE,OAAOC,GAA2BD,CAAS,CAC7C,CAEU,cAAcE,EAAuB,CAC7C,OAAOC,GAAcD,CAAO,CAC9B,CACF,EChDO,SAASE,GACdC,EACAC,EACa,CACb,OAAUC,EAAK,IAASC,EACnBC,GAAOJ,EAAGC,EAAO,OAAO,EAC3BA,EAAO,IACT,CAAC,CACH,CCTO,SAASI,GAAcC,EAAuBC,EAAoBC,EAA2E,CAClJ,IAAMC,EAAgC,CAAC,EAEjC,CACJ,eAAAC,EACA,oBAAAC,CACF,EAAIC,GAAsBN,CAAO,EAI3BO,EAFkBC,GAAuBJ,EAAgBD,CAAa,EAEjDF,EAAYC,EAAa,IAAI,EAExD,GAAIG,EAAoB,EAAE,SAAW,EACnC,MAAM,IAAI,MAAM,kCAAkCA,EAAoB,EAAE,MAAM,EAAE,EAGlF,MAAO,CACL,cAAAF,EACA,OAAQ,CAAE,GAAAI,CAAG,CACf,CACF,CClBO,SAASE,GACdC,EACsD,CACtD,IAAMC,EAAgC,CAAC,EAEjCC,EAAqBC,GAA0BH,EAAWC,CAAa,EAE7E,SAASG,EAAgBC,EAA0B,CACjD,IAAMC,EAAUJ,EAAmB,GAAGG,CAAM,WAAY,CAAC,EACnDE,EAAOL,EAAmB,GAAGG,CAAM,QAAS,CAAC,EACnD,MAAO,CAAE,QAAAC,EAAS,KAAAC,CAAK,CACzB,CAEA,IAAMC,EAAS,CACb,GAAIJ,EAAgB,IAAI,CAC1B,EAEA,OAAAK,GAA2BT,EAAWC,CAAa,EAE5C,CAAE,OAAAO,EAAQ,cAAAP,CAAc,CACjC,CCvBO,SAASS,GAAmBC,EAA8B,CAC/D,IAAMC,EAAyC,CAAC,EAC1CC,EAAmC,CAAC,EAE1C,cAAO,KAAKF,CAAS,EAAE,QAASG,GAAQ,CACtC,IAAMC,EAAMD,EAAI,WAAW,IAAI,EAAID,EAAgBD,EACnDG,EAAID,CAAG,EAAIH,EAAUG,CAAG,CAC1B,CAAC,EAEM,CAAE,oBAAAF,EAAqB,cAAAC,CAAc,CAC9C,CCDO,IAAeG,GAAf,cAGGC,EAAyB,CAGjC,YAAYC,EAAeC,EAA+D,CACxF,MAAMD,CAAK,EACX,KAAK,sBAAwBC,CAC/B,CAEA,IAAW,sBAAgE,CACzE,OAAO,KAAK,qBACd,CAQO,OAAOC,EAA4C,CACxD,GAAM,CAAE,OAAAC,CAAO,EAAI,KAEnB,GAAI,CAACA,EACH,MAAM,IAAI,MAAM,GAAG,KAAK,KAAK,gCAAgC,EAG/D,OAAUC,EAAK,IAAM,CACnB,IAAMC,EAAqBH,aAAiBI,GACxC,KAAK,qBAAqB,aAAaJ,CAAK,EAC5CA,EACJ,OAAOK,GAAoBF,EAAmB,KAAKA,EAAmB,MAAM,CAAC,EAAG,EAAE,EAAGF,EAAO,EAAE,CAChG,CAAC,CACH,CAEgB,QAAQK,EAAmB,GAAM,CAC/C,KAAK,qBAAqB,QAAQA,CAAgB,EAClD,MAAM,QAAQA,CAAgB,CAChC,CAEO,qBAAqBC,EAAuB,CACjD,GAAM,CAAE,OAAAN,EAAQ,cAAAO,CAAc,EAAI,KAAK,wBAAwBD,CAAO,EACtE,KAAK,QAAUN,EACf,KAAK,eAAiBO,CACxB,CAEO,wBAAwBD,EAAuB,CACpD,OAAOE,GAAcF,EAAS,KAAK,wBAAwB,EAAG,KAAK,yBAAyB,CAAC,CAC/F,CAEU,2BAA2BG,EAA8B,CACjE,GAAM,CAAE,oBAAAC,EAAqB,cAAAC,CAAc,EAAIC,GAAmBH,CAAS,EAE3E,YAAK,qBAAqB,kBAAkBC,CAAmB,EAExDG,GAA2BF,CAAa,CACjD,CAEU,cAAcL,EAAuB,CAC7C,IAAMQ,EAAM,KAAK,wBAAwB,EACnCC,EAAO,KAAK,yBAAyB,EACrCC,EAAwBD,EAAOD,EAAOC,EAEtCE,EAA0BX,EAAQ,MAAM,EAAGA,EAAQ,OAASU,CAAoB,EAChFE,EAAoBZ,EAAQ,MAAMA,EAAQ,OAASU,CAAoB,EAE7E,YAAK,qBAAqB,eAAeC,CAAuB,EACzD,KAAK,wBAAwBC,CAAiB,CACvD,CACF,ECjFO,IAAMC,GAAyB,CAAC,UAAW,QAAS,MAAO,QAAS,UAAW,YAAa,WAAW,EAEjGC,GAAN,KAAsB,CAS3B,YAAYC,EAAwC,CARpD,KAAO,QAAU,EACjB,KAAO,MAAQ,EACf,KAAO,IAAM,EACb,KAAO,MAAQ,EACf,KAAO,QAAU,EACjB,KAAO,UAAY,EACnB,KAAO,UAAY,EAGjB,GAAIA,EAAc,SAAW,EAC3B,MAAM,IAAI,MAAM,8EAA8EA,EAAc,MAAM,EAAE,EAGtHF,GAAuB,QAAQ,CAACG,EAAYC,IAAQ,CAClD,KAAKD,CAAU,EAAID,EAAcE,CAAG,CACtC,CAAC,CACH,CAEA,eAAgB,CACd,OAAOJ,GACJ,IAAKG,IAAgB,CAAE,WAAAA,EAAY,YAAa,KAAKA,CAAU,CAAY,EAAE,EAC7E,KAAK,CAACE,EAAIC,IAAOA,EAAG,YAAcD,EAAG,WAAW,CACrD,CACF,EClBO,IAAME,GAAN,cAAgCC,EAA0C,CAC/E,YAAYC,EAA6C,IAAIC,GAAwB,CACnF,MAAM,oBAAqBD,CAAoB,CACjD,CAEO,aAAaE,EAA4C,CAC9D,OAAUC,EAAK,IAASC,GAAQ,KAAK,OAAOF,CAAK,CAAC,CAAC,CACrD,CAEA,MAAa,QAAQA,EAAwC,CAC3D,OAAO,KAAK,aAAa,MAAMG,GAAWH,CAAK,CAAC,CAClD,CAEA,MAAa,mBAAmBA,EAAkB,CAChD,IAAMI,EAAW,MAAMD,GAAWH,CAAK,EACjCK,EAAM,MAAM,KAAK,aAAaD,CAAQ,EACtCE,EAAsB,MAAM,QAAQ,IAAOC,GAAQF,CAAG,EAAE,IAAI,MAAOG,GAAM,CAC7E,IAAMC,EAAOD,EAAE,SAAS,EACxB,OAAAA,EAAE,QAAQ,EACHC,CACT,CAAC,CAAC,EACFJ,EAAI,QAAQ,EAEZ,IAAMK,EAAqBJ,EACxB,IAAKK,GAAiB,IAAIC,GAAgBD,CAA4B,CAAC,EAE1E,OAAOP,EAAS,aACZM,EACAA,EAAmB,CAAC,CAC1B,CAEU,qBAA8B,CACtC,MAAO,uBACT,CAEU,yBAAkC,CAC1C,MAAO,IACT,CAEU,0BAAmC,CAC3C,MAAO,EACT,CACF,EC9CO,SAASG,GAAsBC,EAA0C,CAC9E,OAAOA,EAAI,uBAAuBC,EACpC,CAEO,SAASC,GAAmCC,EAAoBC,EAA4D,CAEjI,MAAO,CAAE,GAAGD,EAAW,GADL,CAAE,YAAAC,CAAY,CACI,CACtC,CCFO,SAASC,IAAoBC,EAAuCC,EAA6EC,EAAgB,GAAKC,EAA0B,EACxK,MAAM,QAAQF,CAAe,EAAIA,EAAkB,CAACA,CAAe,GAE3E,QAASG,GAAM,CAElC,IAAMC,EAAOD,aAAaE,GACtBF,EACCG,GAAsBH,CAAC,EAAIA,EAAE,YAAc,OAChD,GAAI,CAACC,EACH,MAAM,IAAI,MAAM,iHAAiH,EAInI,IAAMG,EADSH,EAAK,cAAc,EACF,OAAQI,GAAcA,EAAU,YAAcP,CAAa,EAErFQ,EAASC,GAAoBP,CAAC,EAChCA,EAAE,UAAU,IAAI,WACfD,GAAmB,IAAIS,GAAM,EAAG,CAAC,EAEhB,IAAIC,GACxBL,EAAiB,IAAKC,GAAc,GAAGA,EAAU,UAAU,KAAKK,GAAML,EAAU,WAAW,CAAC,GAAG,EAC/FC,CACF,EACc,KAAKV,CAAS,CAC9B,CAAC,CACH,CCdO,SAASe,GACdC,EACgE,CAChE,OACEC,GAAoBD,CAAG,GACnBA,EAAY,qBAAwBE,IACpCF,EAAY,8BAAiCE,IAC7CF,EAAY,uBAA0BG,EAE9C,CAEA,SAASC,IAAmBC,EAAqB,CAG/C,IAAMC,EAAWC,GAAqBA,EAAU,IAAO,KAAK,GACtDC,EAA6B,CAACC,EAAUC,IAAa,KAAK,MAAMD,EAAE,EAAIC,EAAE,IAAM,GAAKD,EAAE,EAAIC,EAAE,IAAM,CAAC,EAElGC,EAAQ,CACZ,KAA0B,OAC1B,MAA2B,OAC3B,IAAyB,MAC3B,EAEMC,EAAU,CAACC,EAAkBC,EAAiBC,IAAsB,CAExE,IAAMC,EAAiB,KAAK,MAAMH,EAAU,EAAIC,EAAS,CAAC,EAEpDG,EAAkB,KAAK,MAAMH,EAAS,EAAIC,EAAW,CAAC,EAE5D,OAAOC,EAAiBC,CAC1B,EAEMC,EAAW,CAACC,EAAcC,IAAiB,CAI/C,IAAMC,EAAa,KAAK,MAAMD,EAAM,EAAID,EAAM,EAAGC,EAAM,EAAID,EAAM,CAAC,EAC5DG,EAAWF,EAAM,EAAID,EAAM,EAC3BI,EAAiB,KAAK,KAAKD,EAAWD,CAAU,EAChDG,EAAiBlB,EAAQiB,CAAc,EACvCE,EAAiB,KAAK,MAAM,GAAKD,CAAc,EAG/CE,EAAgBN,EAAM,EAAID,EAAM,EAAI,EAAI,GAAK,EAEnD,OADeM,EAAiBC,CAElC,EAEMC,EAAY,CAACd,EAAkBC,EAAiBC,IAAsB,CAK1E,IAAMa,EAAOpB,EAA2BK,EAAWE,CAAU,EAEvDc,EAAa,IAAIC,IAAOjB,EAAU,EAAIE,EAAW,GAAK,GAAIF,EAAU,EAAIE,EAAW,GAAK,CAAC,EACzFgB,EAAkBvB,EAA2BM,EAAUe,CAAU,EACjEN,EAAiB,KAAK,KAAKQ,EAAkBH,CAAI,EACjDJ,EAAiB,KAAK,MAAMlB,EAAQiB,CAAc,CAAC,EAGnDS,EAAYH,EAAW,EAAIf,EAAS,EAAI,EAAI,GAAK,EAEvD,OADeU,EAAiBQ,CAElC,EAEA,GAAI,CAAC3B,GAAQ,CAACA,EAAK,WAAaA,EAAK,UAAU,SAAW,GAAI,OAAOM,EACrE,IAAMsB,EAAK5B,EAAK,UAChB,OAAAM,EAAM,KAAOO,EAASe,EAAG,EAAE,EAAGA,EAAG,EAAE,CAAC,EACpCtB,EAAM,MAAQgB,EAAUM,EAAG,EAAE,EAAGA,EAAG,EAAE,EAAGA,EAAG,CAAC,CAAC,EAC7CtB,EAAM,IAAMC,EAAQqB,EAAG,EAAE,EAAGA,EAAG,EAAE,EAAGA,EAAG,CAAC,CAAC,EAClCtB,CACT,CAEO,SAASuB,GACdC,EACAC,EAC4C,CAC5C,GAAM,CAAE,IAAKC,CAAM,EAAIF,EAAU,UAC3BG,EAAYF,EAAmB,QAAwBC,EAAM,EAAGA,EAAM,CAAC,EACvEE,EAAOD,EAAU,MAAM,EACvB,CAAE,UAAAE,CAAU,EAAIL,EAAU,UAC1BM,EAAc,IAAItC,GACtBgC,EAAU,UAAU,MACpBI,EAAK,QAAQC,EAAU,QAAQ,CAAC,EAChCA,CACF,EACM7B,EAAQP,IAAmBgC,CAAkB,EAEnD,MAAO,CAAE,GAAGD,EAAW,GADL,CAAE,UAAAG,EAAW,mBAAAF,EAAoB,YAAAK,EAAa,MAAA9B,CAAM,CAClC,CACtC,CC5FO,IAAM+B,GAAN,KAA+B,CAapC,YAAYC,EAAqC,CAAC,EAAG,CACnD,GAAM,CACJ,UAAAC,EAAY,GAAM,WAAAC,EAAa,GAAM,UAAAC,EAAW,UAAAC,EAAW,UAAAC,EAAW,WAAAC,CACxE,EAAIN,EACJ,KAAK,UAAYC,EACjB,KAAK,WAAaC,EAClB,KAAK,UAAYC,GAAa,EAC9B,KAAK,UAAYE,GAAa,EAC9B,KAAK,UAAYD,GAAa,uBAC9B,KAAK,WAAaE,GAAc,sBAClC,CACF,EAEaC,GAAN,KAAwB,CAK7B,YACEC,EACAR,EAAqC,CAAC,EACtC,CACA,KAAK,cAAgBQ,EACrB,KAAK,QAAU,IAAIT,GAAyBC,CAAO,CACrD,CAEA,KAAKS,EAAkE,CACrE,IAAMC,EAAMC,GAAoBF,CAAS,EAEnC,CACJ,UAAAR,EAAW,WAAAC,EAAY,UAAAC,EAAW,UAAAC,EAAW,UAAAC,EAAW,WAAAC,CAC1D,EAAI,KAAK,QAcT,GAZIL,GAAa,KAAK,yBAAyBW,KAC7CF,EAAI,YAAcN,EAClBM,EAAI,UAAYP,EAChBU,GAAYH,EAAK,KAAK,cAAc,cAAc,CAAC,EACnDG,GAAYH,EAAK,KAAK,cAAc,eAAe,CAAC,EACpDG,GAAYH,EAAK,KAAK,cAAc,gBAAgB,CAAC,EACrDG,GAAYH,EAAK,KAAK,cAAc,QAAQ,CAAC,EAC7CG,GAAYH,EAAK,KAAK,cAAc,WAAW,EAAG,EAAI,EACtDG,GAAYH,EAAK,KAAK,cAAc,YAAY,EAAG,EAAI,EACvDG,GAAYH,EAAK,KAAK,cAAc,SAAS,EAAG,EAAI,GAGlDR,EAAY,CACdQ,EAAI,YAAcJ,EAClBI,EAAI,UAAYJ,EAEhB,IAAMQ,EAAaC,GAAe,CAChCL,EAAI,UAAU,EACdA,EAAI,IAAIK,EAAG,EAAGA,EAAG,EAAGV,EAAW,EAAG,EAAI,KAAK,EAAE,EAC7CK,EAAI,KAAK,CACX,EACA,KAAK,cAAc,UAAU,QAAQI,CAAS,CAChD,CACF,CACF,EAIO,SAASE,IACdP,EACAD,EACA,EAC2B,MAAM,QAAQA,CAAa,EAAIA,EAAgB,CAACA,CAAa,GACrE,QAASS,GAAM,CAEhC,IAAMC,EAAYD,aAAaE,GAC3BF,EACCG,GAAoBH,CAAC,EAAIA,EAAE,UAAY,OAC5C,GAAI,CAACC,EACH,MAAM,IAAI,MAAM,8HAA8H,EAGhJ,IAAIX,GAAkBW,CAAS,EAAE,KAAKT,CAAS,CACjD,CAAC,CACH,CC1GE,IAAAY,GAAW,SCGb,SAASC,IAAkBC,EAAwCC,EAA+B,CAChG,IAAMC,EAAoBC,GAAyBH,EAAgBC,CAAa,EAC1EG,EAA6BC,GAAkCL,EAAgBC,CAAa,EAElG,SAASK,EAA4BC,EAAoBC,EAAqBC,EAA4C,CACxH,IAAMC,EAAkBN,EAA2BG,EAAYC,EAAa,GAAGC,CAAY,kBAAkB,EACvGE,EAAkBP,EAA2BI,EAAaA,EAAa,GAAGC,CAAY,kBAAkB,EACxGG,EAAiBV,EAAkBK,EAAYC,EAAa,EAAG,GAAGC,CAAY,iBAAiB,EAErG,MAAO,CAAE,gBAAAC,EAAiB,gBAAAC,EAAiB,eAAAC,CAAe,CAC5D,CAEA,SAASC,EAAuBC,EAAkBL,EAAuC,CACvF,IAAMC,EAAkBN,EAA2BU,EAAUA,EAAU,GAAGL,CAAY,kBAAkB,EAClGE,EAAkBP,EAA2BU,EAAUA,EAAU,GAAGL,CAAY,kBAAkB,EAClGM,EAAkBX,EAA2BU,EAAUA,EAAU,GAAGL,CAAY,kBAAkB,EAExG,MAAO,CAAE,gBAAAC,EAAiB,gBAAAC,EAAiB,gBAAAI,CAAgB,CAC7D,CAEA,MAAO,CACL,kBAAAb,EACA,2BAAAE,EACA,4BAAAE,EACA,uBAAAO,CACF,CACF,CAEO,SAASG,GAAcC,EAAuBC,EAAsF,CACzI,IAAMjB,EAAgC,CAAC,EAEjC,CACJ,eAAAD,EACA,oBAAAmB,CACF,EAAIC,GAAsBH,CAAO,EAE3B,CACJ,kBAAAf,EACA,2BAAAE,EACA,4BAAAE,EACA,uBAAAO,CACF,EAAId,IAAkBC,EAAgBC,CAAa,EAE7CoB,EAAqBnB,EAAkB,EAAG,GAAI,EAAG,oBAAoB,EACrEoB,EAA+BhB,EAA4B,GAAI,GAAI,8BAA8B,EACjGiB,EAA+BjB,EAA4B,GAAI,IAAK,8BAA8B,EAElGkB,EAAa,CACjB,QAASH,EACT,kBAAmBC,EACnB,kBAAmBC,CACrB,EAEME,EAA+D,CAAC,EACtEC,GAAMR,EAAe,EAAG,CAAC,EAAE,QAASS,GAAQ,CAC1CF,EAAY,cAAcE,CAAG,EAAE,EAAId,EAAuB,IAAK,0BAA0Bc,CAAG,EAAE,CAChG,CAAC,EAED,IAAMC,EAA4BtB,EAA4B,IAAK,IAAK,2BAA2B,EAC7FuB,EAA2BzB,EAA2B,IAAK,IAAK,0BAA0B,EAE1F0B,EAAY,CAChB,gBAAiBF,EACjB,eAAgBC,CAClB,EAEA,GAAIV,EAAoB,EAAE,SAAW,EACnC,MAAM,IAAI,MAAM,kCAAkCA,EAAoB,EAAE,MAAM,EAAE,EAGlF,MAAO,CACL,cAAAlB,EACA,OAAQ,CAAE,WAAAuB,EAAY,YAAAC,EAAa,UAAAK,CAAU,CAC/C,CACF,CCxEA,SAASC,IAAkBC,EAAgBC,EAA+B,CACxE,IAAMC,EAAqBC,GAA0BH,EAAWC,CAAa,EAEvEG,EAAoBC,GAAsBH,CAAkB,EAC5DI,EAA6BC,GAA+BL,CAAkB,EAEpF,SAASM,EAA4BC,EAA4C,CAC/E,IAAMC,EAAkBJ,EAA2B,GAAGG,CAAY,kBAAkB,EAC9EE,EAAkBL,EAA2B,GAAGG,CAAY,kBAAkB,EAC9EG,EAAiBR,EAAkB,GAAGK,CAAY,iBAAiB,EAEzE,MAAO,CAAE,gBAAAC,EAAiB,gBAAAC,EAAiB,eAAAC,CAAe,CAC5D,CAEA,SAASC,EAAuBJ,EAAuC,CACrE,IAAMC,EAAkBJ,EAA2B,GAAGG,CAAY,kBAAkB,EAC9EE,EAAkBL,EAA2B,GAAGG,CAAY,kBAAkB,EAC9EK,EAAkBR,EAA2B,GAAGG,CAAY,kBAAkB,EAEpF,MAAO,CAAE,gBAAAC,EAAiB,gBAAAC,EAAiB,gBAAAG,CAAgB,CAC7D,CAEA,MAAO,CACL,kBAAAV,EACA,2BAAAE,EACA,4BAAAE,EACA,uBAAAK,CACF,CACF,CAEO,SAASE,GACdf,EACAgB,EAC+D,CAC/D,IAAMf,EAAgC,CAAC,EAEjC,CACJ,kBAAAG,EACA,2BAAAE,EACA,4BAAAE,EACA,uBAAAK,CACF,EAAId,IAAkBC,EAAWC,CAAa,EAExCgB,EAAqBb,EAAkB,oBAAoB,EAC3Dc,EAA+BV,EAA4B,8BAA8B,EACzFW,EAA+BX,EAA4B,8BAA8B,EAEzFY,EAAa,CACjB,QAASH,EACT,kBAAmBC,EACnB,kBAAmBC,CACrB,EAEME,EAA+D,CAAC,EACtEC,GAAMN,EAAe,EAAG,CAAC,EAAE,QAASO,GAAQ,CAC1CF,EAAY,cAAcE,CAAG,EAAE,EAAIV,EAAuB,0BAA0BU,CAAG,EAAE,CAC3F,CAAC,EAED,IAAMC,EAA4BhB,EAA4B,2BAA2B,EACnFiB,EAA2BnB,EAA2B,0BAA0B,EAEhFoB,EAAY,CAChB,gBAAiBF,EACjB,eAAgBC,CAClB,EAEA,OAAAE,GAA2B3B,EAAWC,CAAa,EAE5C,CAAE,OAAQ,CAAE,WAAAmB,EAAY,YAAAC,EAAa,UAAAK,CAAU,EAAG,cAAAzB,CAAc,CACzE,CCjEA,SAAS2B,GAAKC,EAAgBC,EAAoBC,EAAuC,CACvF,OAAUC,EAAOC,GAAOJ,EAAGC,EAAO,QAASC,EAAQ,MAAM,EAAGD,EAAO,IAAI,CACzE,CAEA,SAASI,GAAeL,EAAgBC,EAA8BK,EAAkB,GAAmB,CACzG,IAAIC,EAAMD,EAAqBE,GAAKR,CAAC,EAAIA,EACzC,OAAAO,EAAME,GAAuBF,EAAKN,EAAO,gBAAiB,CAAC,EAAG,CAAC,CAAC,EAChEM,EAAME,GAA0BD,GAAKD,CAAG,EAAGN,EAAO,gBAAiB,CAAC,EAAG,CAAC,CAAC,EACzEM,EAASG,GAAQH,EAAK,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,MAAM,EAC5CA,EAASJ,EAAII,EAAKR,GAAKC,EAAGC,EAAO,eAAgB,CAAC,EAAG,CAAC,CAAC,CAAC,EACjDM,CACT,CAEA,SAASI,IAAUX,EAAgBC,EAAsC,CACvE,IAAIM,EAAME,GAA0BD,GAAKR,CAAC,EAAGC,EAAO,gBAAiB,CAAC,EAAG,CAAC,CAAC,EAC3E,OAAAM,EAAME,GAA0BD,GAAKD,CAAG,EAAGN,EAAO,gBAAiB,CAAC,EAAG,CAAC,CAAC,EACzEM,EAAME,GAA0BD,GAAKD,CAAG,EAAGN,EAAO,gBAAiB,CAAC,EAAG,CAAC,CAAC,EACzEM,EAASJ,EAAII,EAAKP,CAAC,EACZO,CACT,CAEO,IAAMK,GAAN,cAA2BC,EAAkC,CAGlE,YAAYC,EAAuB,CACjC,MAAM,cAAc,EACpB,KAAK,eAAiBA,CACxB,CAEO,aAAaC,EAA8B,CAChD,GAAM,CAAE,OAAAd,CAAO,EAAI,KACnB,GAAI,CAACA,EACH,MAAM,IAAI,MAAM,4CAA4C,EAE9D,OAAUe,EAAK,IAAM,CACnB,IAAMC,EAAiBC,GAAKH,EAAM,cAAc,IAAK,EAAI,EAAG,SAAS,EAE/DI,EAAaC,GAAUH,EADb,CAAC,QAAS,QAAS,OAAO,CACO,EAAE,IAAI,GAAG,EACtDV,EAASC,GAAKT,GAAKoB,EAAYlB,EAAO,WAAW,QAAS,CAAC,EAAG,CAAC,CAAC,CAAC,EACrE,OAAAM,EAAMF,GAAeE,EAAKN,EAAO,WAAW,kBAAmB,EAAK,EACpEM,EAAMF,GAAeE,EAAKN,EAAO,WAAW,iBAAiB,EAC7DoB,GAAM,KAAK,eAAgB,EAAG,CAAC,EAAE,QAASC,GAAQ,CAChDf,EAAMI,IAAUJ,EAAKN,EAAO,YAAY,cAAcqB,CAAG,EAAE,CAAC,CAC9D,CAAC,EACDf,EAAMF,GAAeE,EAAKN,EAAO,UAAU,eAAe,EAC1DM,EAASC,GAAKC,GAAuBF,EAAKN,EAAO,UAAU,eAAgB,CAAC,EAAG,CAAC,CAAC,CAAC,EAC3EM,CACT,CAAC,CACH,CAEA,MAAa,QAAQQ,EAAwC,CAC3D,OAAO,KAAK,aAAa,MAAMQ,GAAWR,CAAK,CAAC,CAClD,CAEU,qBAA8B,CACtC,MAAO,qBACT,CAEU,2BAA2BS,EAA8B,CACjE,OAAOC,GAA2BD,EAAW,KAAK,cAAc,CAClE,CAEU,cAAcE,EAAuB,CAC7C,OAAOC,GAAcD,EAAS,KAAK,cAAc,CACnD,CACF,ECzEO,SAASE,GAAcC,EAA6E,CACzG,IAAMC,EAAgC,CAAC,EAEjC,CACJ,eAAAC,EACA,oBAAAC,CACF,EAAIC,GAAsBJ,CAAO,EAE3BK,EAAkBC,GAAuBJ,EAAgBD,CAAa,EAEtEM,EAAMF,EAAgB,IAAK,EAAG,QAAQ,EACtCG,EAASH,EAAgB,IAAK,EAAG,WAAW,EAElD,GAAIF,EAAoB,EAAE,SAAW,EACnC,MAAM,IAAI,MAAM,kCAAkCA,EAAoB,EAAE,MAAM,EAAE,EAGlF,MAAO,CACL,cAAAF,EACA,OAAQ,CAAE,GAAI,CAAE,IAAAM,EAAK,OAAAC,CAAO,CAAE,CAChC,CACF,CCnBO,SAASC,GACdC,EACsD,CACtD,IAAMC,EAAgC,CAAC,EAEjCC,EAAqBC,GAA0BH,EAAWC,CAAa,EAE7E,SAASG,EAAgBC,EAA0B,CACjD,IAAMC,EAAUJ,EAAmB,GAAGG,CAAM,WAAY,CAAC,EACnDE,EAAOL,EAAmB,GAAGG,CAAM,QAAS,CAAC,EACnD,MAAO,CAAE,QAAAC,EAAS,KAAAC,CAAK,CACzB,CAEA,IAAMC,EAAS,CACb,GAAI,CACF,IAAKJ,EAAgB,QAAQ,EAC7B,OAAQA,EAAgB,WAAW,CACrC,CACF,EAEA,OAAAK,GAA2BT,EAAWC,CAAa,EAE5C,CAAE,OAAAO,EAAQ,cAAAP,CAAc,CACjC,CCvBO,IAAKS,QAEVA,EAAA,OAAS,SAETA,EAAA,KAAO,OAJGA,QAAA,ICKL,IAAMC,GAAN,cAA2BC,EAAyB,CAGzD,YAAYC,EAAqC,IAAIC,GAAa,CAAC,EAAG,CACpE,MAAM,cAAc,EACpB,KAAK,sBAAwBD,CAC/B,CAEA,IAAW,sBAAqC,CAC9C,OAAO,KAAK,qBACd,CAEO,OAAOE,EAA0C,CACtD,GAAM,CAAE,OAAAC,CAAO,EAAI,KAEnB,GAAI,CAACA,EACH,MAAM,IAAI,MAAM,GAAG,KAAK,KAAK,gCAAgC,EAG/D,OAAUC,EAAK,IAAM,CACnB,IAAMC,EAAqBH,aAAiBI,GACxC,KAAK,qBAAqB,aAAaJ,CAAK,EAC5CA,EAEEK,EAAYC,GAAQH,EAAoB,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,OAAO,EAAE,KAAKA,EAAmB,MAAM,CAAC,EAAG,EAAE,EACrGI,EAAMC,GAAoBH,EAAQJ,EAAO,GAAG,GAAG,EAAE,KAAK,EACtDQ,EAASD,GAAoBH,EAAQJ,EAAO,GAAG,MAAM,EAC3D,MAAO,CAAE,IAAAM,EAAK,OAAAE,CAAO,CACvB,CAAC,CACH,CAEO,aAAaT,EAA0C,CAC5D,OAAUE,EAAK,IAAM,CACnB,GAAM,CAAE,IAAAK,EAAK,OAAAE,CAAO,EAAI,KAAK,OAAOT,CAAK,EACzC,MAAO,CAAE,IAAAO,EAAK,OAAWG,GAAQD,CAAM,CAAE,CAC3C,CAAC,CACH,CAEA,MAAa,QAAQT,EAAsC,CACzD,OAAO,KAAK,aAAa,MAAMW,GAAWX,CAAK,CAAC,CAClD,CAEA,MAAa,oBAAoBA,EAA8E,CAC7G,IAAMY,EAAW,MAAMD,GAAWX,CAAK,EACjCa,EAAM,MAAM,KAAK,aAAaD,CAAQ,EAEtCE,EAAUC,GAAQF,EAAI,GAAG,EACzBG,EAAaD,GAAQF,EAAI,MAAM,EAC/BI,EAAsBH,EAAK,IAAI,CAACI,EAAWC,KAAO,CACtD,UAAAD,EACA,aAAcF,EAAQG,CAAC,CACzB,EAAE,EAEIC,EAAqB,MAAM,QAAQ,IACvCH,EAAoB,IAAI,MAAO,CAAE,UAAAC,EAAW,aAAAG,CAAa,IAAM,CAC7D,IAAMd,EAAOW,EAAU,SAAS,EAAG,CAAC,EAC9BI,EAAYD,EAAa,SAAS,EAAG,CAAC,EACtCE,EAASD,EAAW,GACpBb,EAASc,kBACTC,EAAoBD,EAASD,EAAY,EAAIA,EAEnD,OAAAJ,EAAU,QAAQ,EAClBG,EAAa,QAAQ,EACd,CAAE,IAAAd,EAAK,OAAAE,EAAQ,kBAAAe,CAAkB,CAC1C,CAAC,CACH,EACA,OAAAX,EAAI,IAAI,QAAQ,EAChBA,EAAI,OAAO,QAAQ,EAEZD,EAAS,aAAeQ,EAAiDA,EAAmB,CAAC,CACtG,CAEU,qBAA8B,CACtC,MAAO,kBACT,CAEgB,QAAQK,EAAmB,GAAM,CAC/C,KAAK,qBAAqB,QAAQA,CAAgB,EAClD,MAAM,QAAQA,CAAgB,CAChC,CAEO,qBAAqBC,EAAuB,CACjD,GAAM,CAAE,OAAAzB,EAAQ,cAAA0B,CAAc,EAAI,KAAK,wBAAwBD,CAAO,EACtE,KAAK,QAAUzB,EACf,KAAK,eAAiB0B,CACxB,CAEO,wBAAwBD,EAAuB,CACpD,OAAOE,GAAcF,CAAO,CAC9B,CAEU,2BAA2BG,EAA8B,CACjE,GAAM,CAAE,oBAAAC,EAAqB,cAAAC,CAAc,EAAIC,GAAmBH,CAAS,EAE3E,YAAK,qBAAqB,kBAAkBC,CAAmB,EAExDG,GAA2BF,CAAa,CACjD,CAEU,cAAcL,EAAuB,CAG7C,IAAMQ,EAA0BR,EAAQ,MAAM,EAAGA,EAAQ,OAAS,IAAoB,EAChFS,EAAoBT,EAAQ,MAAMA,EAAQ,OAAS,IAAoB,EAE7E,YAAK,qBAAqB,eAAeQ,CAAuB,EACzD,KAAK,wBAAwBC,CAAiB,CACvD,CACF,EC7GO,IAAeC,GAAf,cAGGC,EAAgC,CACjC,YAAYC,EAAqBC,EAAmBC,EAAgD,CACzG,IAAMC,EAAkBD,EAAmB,IAAI,CAAC,CAAE,MAAAE,EAAO,OAAAC,CAAO,IAAM,CACpE,IAAMC,EAAQL,EAAY,KAAK,IAAII,EAAQD,CAAK,EAChD,MAAO,CACL,MAAOA,EAAQE,EACf,OAAQD,EAASC,CACnB,CACF,CAAC,EAEKC,EAAYJ,EAAgB,OAElC,OAAUK,EAAK,IAAM,CACnB,IAAMC,EAA0B,CAACC,EAAeC,IAAqBC,GAAM,CAAIC,GAAK,CAAC,EAAE,EAAGH,EAAO,SAAS,EAAMG,GAAK,CAAC,EAAE,EAAGF,EAAO,SAAS,CAAC,EAAG,CAAC,EAAE,KAAK,EAAG,GAAG,EAAE,KAAK,EAG9JG,EAAa,CAACC,EAAkBC,IAAoD,CACxF,GAAM,CAAE,MAAAZ,EAAO,OAAAC,CAAO,EAAIF,EAAgBY,CAAQ,EAClD,OAAOC,EAAKZ,EAAOC,CAAM,EAAI,KAAK,IAAID,EAAQC,CAAM,EAAI,EAAI,CAC9D,EAEMY,EAAeF,GAAqBD,EAAWC,EAAU,CAACG,EAAG,IAAMA,EAAI,CAAC,EACxEC,EAAeJ,GAAqBD,EAAWC,EAAU,CAACG,EAAG,IAAM,EAAIA,CAAC,EAa9E,OAXwBlB,EACrB,IAAOa,GAAK,CAACN,EAAW,GAAG,EAAGN,EAAW,SAAS,CAAC,EACnD,IAAOW,GAAM,MAAM,KAAK,MAAML,CAAS,EAAG,CAACa,EAAGL,IAAaN,EAC1DQ,EAAYF,CAAQ,EACpBI,EAAYJ,CAAQ,CACtB,CAAC,CAAC,CAAC,EACF,IAAOH,GAAM,MAAM,KAAK,MAAML,CAAS,EAAG,CAACa,EAAGL,IAAaN,EAC1DN,EAAgBY,CAAQ,EAAE,MAC1BZ,EAAgBY,CAAQ,EAAE,MAC5B,CAAC,CAAC,CAAC,CAGP,CAAC,CACH,CAEO,aAAaM,EAA8B,CAChD,OAAUb,EAAK,IAAM,CACnB,IAAMc,EAAM,KAAK,OAAOD,CAAK,EAC7B,OAAO,KAAK,YACVC,EACAD,EAAM,UACNA,EAAM,gBAAgB,IAAI,CAAC,CAAChB,EAAQD,CAAK,KAAO,CAAE,OAAAC,EAAQ,MAAAD,CAAM,EAAE,CACpE,CACF,CAAC,CACH,CAEA,MAAa,QAAQiB,EAAwC,CAC3D,OAAO,KAAK,aAAa,MAAME,GAAWF,CAAK,CAAC,CAClD,CAEA,MAAa,gBAAgBA,EAAgE,CAC3F,IAAMG,EAAW,MAAMD,GAAWF,CAAK,EACjCI,EAAqBjB,EACzB,IAASkB,GAAQ,KAAK,aAAaF,CAAQ,CAAC,CAC9C,EAEMG,EAAoB,MAAM,QAAQ,IAAIF,EAAgB,IAC1D,MAAOG,EAAgBb,IAAa,CAClC,IAAMc,EAAiB,MAAM,KAAKD,EAAe,SAAS,CAAC,EACrDE,EAAUD,EAAe,OAAO,CAACT,EAAGW,IAAMC,GAAOD,CAAC,CAAC,EACnDE,EAAUJ,EAAe,OAAO,CAACT,EAAGW,IAAM,CAACC,GAAOD,CAAC,CAAC,EAE1D,OAAO,IAAIG,GACT,MAAM,EAAE,EAAE,KAAK,CAAC,EAAE,IAAI,CAACd,EAAGW,IAAM,IAAII,GAAML,EAAQC,CAAC,EAAaE,EAAQF,CAAC,CAAW,CAAC,EACrF,CACE,OAAQP,EAAS,eAAeT,CAAQ,EACxC,MAAOS,EAAS,cAAcT,CAAQ,CACxC,CACF,CACF,CACF,CAAC,EAED,OAAAU,EAAgB,QAASW,GAAMA,EAAE,QAAQ,CAAC,EAEnCZ,EAAS,aAAeG,EAAyCA,EAAkB,CAAC,CAC7F,CAEU,0BAAmC,CAC3C,MAAO,IACT,CACF,EC5FO,IAAMU,GAAN,cAAgCC,EAAkD,CACvF,YAAYC,EAA6C,IAAIC,GAAwB,CACnF,MAAM,oBAAqBD,CAAoB,CACjD,CAEU,qBAA8B,CACtC,MAAO,wBACT,CAEU,yBAAkC,CAC1C,MAAO,IACT,CACF,ECVO,SAASE,GACdC,EAC2E,CAC3E,IAAMC,EAAgC,CAAC,EAEjC,CACJ,yBAAAC,CACF,EAAIC,GAAkBH,EAAWC,CAAa,EAExCG,EAAS,CACb,OAAQF,EAAyB,SAAU,EAAI,EAC/C,OAAQA,EAAyB,QAAQ,EACzC,OAAQA,EAAyB,QAAQ,CAC3C,EAEA,OAAAG,GAA2BL,EAAWC,CAAa,EAE5C,CAAE,OAAAG,EAAQ,cAAAH,CAAc,CACjC,CCpBO,SAASK,GAAkBC,EAAkG,CAClI,IAAMC,EAAgC,CAAC,EAEjC,CACJ,eAAAC,EACA,oBAAAC,CACF,EAAIC,GAAsBJ,CAAO,EAE3B,CACJ,yBAAAK,CACF,EAAIC,GAAkBJ,EAAgBD,CAAa,EAE7CM,EAASF,EAAyB,EAAG,GAAI,SAAU,EAAI,EACvDG,EAASH,EAAyB,GAAI,GAAI,QAAQ,EAClDI,EAASJ,EAAyB,GAAI,IAAK,QAAQ,EAEzD,GAAIF,EAAoB,EAAE,SAAW,EACnC,MAAM,IAAI,MAAM,kCAAkCA,EAAoB,EAAE,MAAM,EAAE,EAGlF,MAAO,CACL,cAAAF,EACA,OAAQ,CAAE,OAAAM,EAAQ,OAAAC,EAAQ,OAAAC,CAAO,CACnC,CACF,CClBO,IAAMC,GAAN,cAAuCC,EAA+G,CAC3J,aAAc,CACZ,MAAM,0BAA0B,CAClC,CAEO,aAAaC,EAA8B,CAChD,GAAM,CAAE,OAAAC,CAAO,EAAI,KAEnB,GAAI,CAACA,EACH,MAAM,IAAI,MAAM,wDAAwD,EAG1E,OAAUC,EAAK,IAAM,CACnB,IAAMC,EAAiBC,GAAKJ,EAAM,cAAc,IAAK,EAAI,EAAG,SAAS,EAE/DK,EAAaC,GAAUH,EADb,CAAC,QAAS,QAAS,OAAO,CACO,EAAE,IAAI,GAAG,EAEtDI,EAAMC,GAAYH,EAAYJ,EAAO,OAAQ,EAAI,EACrD,OAAAM,EAAMC,GAAYD,EAAKN,EAAO,MAAM,EACpCM,EAAMC,GAAYD,EAAKN,EAAO,MAAM,EACpCM,EAASE,GAAQF,EAAK,CAAC,GAAI,EAAE,EAAG,CAAC,EAAG,CAAC,EAAG,OAAO,EAExCA,CACT,CAAC,CACH,CAEA,MAAa,QAAQP,EAAwC,CAC3D,OAAO,KAAK,aAAa,MAAMU,GAAWV,CAAK,CAAC,CAClD,CAEU,qBAA8B,CACtC,MAAO,mCACT,CAEU,2BAA2BW,EAA8B,CACjE,OAAOC,GAA+BD,CAAS,CACjD,CAEU,cAAcE,EAAuB,CAC7C,OAAOC,GAAkBD,CAAO,CAClC,CACF,EC/CO,IAAME,GAAN,cAAoCC,EAAsD,CAC/F,YAAYC,EAAiD,IAAIC,GAA4B,CAC3F,MAAM,wBAAyBD,CAAoB,CACrD,CAEU,qBAA8B,CACtC,MAAO,6BACT,CAEU,yBAAkC,CAC1C,MAAO,IACT,CACF,ECZO,IAAME,GAAN,cAA8BC,EAAkB,CAAC,ECAjD,SAASC,GAAMC,EAAgBC,EAAuC,CAC3E,OAAUC,EAAOC,EAAIH,EAAGC,EAAO,OAAO,EAAGA,EAAO,MAAM,CACxD,CCDA,SAASG,GACPC,EACAC,EACAC,EACAC,EACAC,EAA4B,OACf,CACb,GAAM,CAAE,QAAAC,EAAS,KAAAC,CAAK,EAAIL,EAAO,KAE7BM,EAASC,GAAOR,EAAGK,EAASH,EAASE,CAAO,EAChD,OAAAG,EAASE,EAAIF,EAAKD,CAAI,EACtBC,EAAMG,GAAMH,EAAKN,EAAO,KAAK,EACtBE,EAAcQ,GAAKJ,CAAG,EAAIA,CACnC,CAEO,SAASK,GAAKZ,EAAgBC,EAAyB,CAC5D,OAAOF,GAAUC,EAAGC,EAAQ,CAAC,EAAG,CAAC,EAAG,EAAI,CAC1C,CAEO,SAASY,GAAWb,EAAgBC,EAAyB,CAClE,OAAOF,GAAUC,EAAGC,EAAQ,CAAC,EAAG,CAAC,EAAG,EAAK,CAC3C,CAEO,SAASa,GAASd,EAAgBC,EAAyB,CAChE,OAAOF,GAAUC,EAAGC,EAAQ,CAAC,EAAG,CAAC,EAAG,GAAM,OAAO,CACnD,CCxBA,SAASc,IAAkBC,EAAwCC,EAA+B,CAChG,SAASC,EAAoBC,EAAyBC,EAAoBC,EAAiC,CACzG,IAAMC,EAAUN,EAAeG,CAAe,EACxCI,EAAQD,EAAQ,QAAUF,EAAaC,EAAaA,GAE1D,GAAIG,GAAQD,CAAK,EACf,MAAM,IAAI,MAAM,+BAA+BA,CAAK,qBAAqBD,EAAQ,MAAM,iBAAiBF,CAAU,iBAAiBC,CAAU,EAAE,EAGjJ,OAAUI,EACR,IAASC,GACJC,GAASL,EAAS,CAACF,EAAYG,EAAOF,EAAYA,CAAU,CAAC,EAChE,CAAC,EAAG,EAAG,EAAG,CAAC,CACb,CACF,CACF,CAEA,SAASO,EACPT,EACAC,EACAC,EACAQ,EACY,CACZ,IAAMC,EAAUZ,EAAoBC,EAAiBC,EAAYC,CAAU,EACrEU,EAAUC,GAAShB,EAAeI,CAAU,CAAC,EAEnD,OAAAH,EAAc,KACZ,CAAE,UAAW,GAAGY,CAAY,UAAW,EACvC,CAAE,UAAW,GAAGA,CAAY,OAAQ,CACtC,EAEO,CAAE,QAAAC,EAAS,KAAAC,CAAK,CACzB,CAEA,SAASE,EAAwBC,EAAoBL,EAAwC,CAC3F,IAAMP,EAAaU,GAAShB,EAAekB,CAAU,CAAC,EAChDC,EAAYH,GAAShB,EAAekB,CAAU,CAAC,EAErD,OAAAjB,EAAc,KACZ,CAAE,UAAW,GAAGY,CAAY,UAAW,EACvC,CAAE,UAAW,GAAGA,CAAY,SAAU,CACxC,EAEO,CACL,QAAAP,EACA,OAAAa,CACF,CACF,CAEA,SAASC,EACPjB,EACAC,EACAC,EACAQ,EACiB,CACjB,IAAMQ,EAAOT,EAAkBT,EAAiBC,EAAYC,EAAY,GAAGQ,CAAY,OAAO,EACxFS,EAAQL,EAAwBb,EAAY,GAAGS,CAAY,QAAQ,EAEzE,MAAO,CAAE,KAAAQ,EAAM,MAAAC,CAAM,CACvB,CAEA,SAASC,EACPpB,EACAC,EACAC,EACAQ,EACAW,EAAS,GACY,CACrB,IAAMC,EAAQL,GAAwBI,EAAS,GAAM,GAAKrB,EAAiBC,EAAYC,EAAY,GAAGQ,CAAY,QAAQ,EACpHa,EAAQN,EAAuBjB,EAAiBC,EAAYC,EAAY,GAAGQ,CAAY,QAAQ,EAErG,MAAO,CAAE,MAAAY,EAAO,MAAAC,CAAM,CACxB,CAEA,MAAO,CACL,uBAAAN,EACA,2BAAAG,CACF,CACF,CAEO,SAASI,GAAcrB,EAA6E,CACzG,GAAM,CACJ,eAAAN,EACA,oBAAA4B,CACF,EAAIC,GAAsBvB,CAAO,EAE3BL,EAAgC,CAAC,EAEjC,CACJ,uBAAAmB,EACA,2BAAAG,CACF,EAAIxB,IAAkBC,EAAgBC,CAAa,EAE7C6B,EAAcV,EAAuB,KAAM,GAAI,EAAG,aAAa,EAC/DW,EAAWR,EAA2B,KAAM,GAAI,EAAG,UAAU,EAC7DS,EAAWT,EAA2B,KAAM,GAAI,EAAG,UAAU,EAC7DU,EAAWV,EAA2B,KAAM,GAAI,EAAG,UAAU,EAE7DW,EAAcX,EAA2B,MAAO,GAAI,EAAG,cAAe,EAAI,EAC1EY,EAAWZ,EAA2B,MAAO,GAAI,EAAG,UAAU,EAC9Da,EAAWb,EAA2B,MAAO,GAAI,EAAG,UAAU,EAC9Dc,EAAWd,EAA2B,MAAO,GAAI,EAAG,UAAU,EAE9De,EAAef,EAA2B,OAAQ,IAAK,EAAG,eAAgB,EAAI,EAC9EgB,EAAYhB,EAA2B,OAAQ,IAAK,EAAG,WAAW,EAClEiB,EAAYjB,EAA2B,OAAQ,IAAK,EAAG,WAAW,EAElEkB,EAAelB,EAA2B,OAAQ,IAAK,EAAG,eAAgB,EAAI,EAC9EmB,EAAYnB,EAA2B,OAAQ,IAAK,EAAG,WAAW,EAClEoB,EAAYpB,EAA2B,OAAQ,IAAK,EAAG,WAAW,EAClEqB,EAAmBrB,EAA2B,OAAQ,IAAK,EAAG,kBAAkB,EAEhFsB,EAAQpC,EACZ,IAASC,GAAaoC,GAAS9C,EAAe,IAAM,GAAG,EAAG,CAAC,IAAK,GAAG,CAAC,EAAG,CAAC,EAAG,CAAC,CAAC,CAC/E,EAGA,GAFAC,EAAc,KAAK,CAAE,UAAW,IAAK,CAAC,EAElC2B,EAAoB,EAAE,SAAW,EACnC,MAAM,IAAI,MAAM,kCAAkCA,EAAoB,EAAE,MAAM,EAAE,EAsBlF,MAAO,CAAE,OAnBM,CACb,YAAAE,EACA,SAAAC,EACA,SAAAC,EACA,SAAAC,EACA,YAAAC,EACA,SAAAC,EACA,SAAAC,EACA,SAAAC,EACA,aAAAC,EACA,UAAAC,EACA,UAAAC,EACA,aAAAC,EACA,UAAAC,EACA,UAAAC,EACA,iBAAAC,EACA,GAAAC,CACF,EAEiB,cAAA5C,CAAc,CACjC,CC7IA,SAAS8C,IAAkBC,EAAgBC,EAA+B,CACxE,IAAMC,EAAqBC,GAA0BH,EAAWC,CAAa,EAE7E,SAASG,EAAwBC,EAAkC,CACjE,IAAMC,EAAUJ,EAAmB,GAAGG,CAAM,iBAAkB,CAAC,EACzDE,EAASL,EAAmB,GAAGG,CAAM,gBAAiB,CAAC,EAE7D,MAAO,CAAE,QAAAC,EAAS,OAAAC,CAAO,CAC3B,CAEA,SAASC,EAAuBH,EAAiC,CAC/D,IAAMI,EAAUP,EAAmB,GAAGG,CAAM,gBAAiB,CAAC,EACxDK,EAAOR,EAAmB,GAAGG,CAAM,aAAc,CAAC,EAClDM,EAAQP,EAAwBC,CAAM,EAE5C,MAAO,CAAE,KAAM,CAAE,QAAAI,EAAS,KAAAC,CAAK,EAAG,MAAAC,CAAM,CAC1C,CAEA,SAASC,EAA2BP,EAAqC,CACvE,MAAO,CACL,MAAOG,EAAuB,GAAGH,CAAM,QAAQ,EAC/C,MAAOG,EAAuB,GAAGH,CAAM,QAAQ,CACjD,CACF,CAEA,MAAO,CACL,uBAAAG,EACA,2BAAAI,CACF,CACF,CAEO,SAASC,GACdb,EACsD,CACtD,IAAMC,EAAgC,CAAC,EAEjC,CACJ,uBAAAO,EACA,2BAAAI,CACF,EAAIb,IAAkBC,EAAWC,CAAa,EAExCa,EAAcN,EAAuB,aAAa,EAClDO,EAAWH,EAA2B,UAAU,EAChDI,EAAWJ,EAA2B,UAAU,EAChDK,EAAWL,EAA2B,UAAU,EAEhDM,EAAcN,EAA2B,aAAa,EACtDO,EAAWP,EAA2B,UAAU,EAChDQ,EAAWR,EAA2B,UAAU,EAChDS,EAAWT,EAA2B,UAAU,EAEhDU,EAAeV,EAA2B,cAAc,EACxDW,EAAYX,EAA2B,WAAW,EAClDY,EAAYZ,EAA2B,WAAW,EAElDa,EAAeb,EAA2B,cAAc,EACxDc,EAAYd,EAA2B,WAAW,EAClDe,EAAYf,EAA2B,WAAW,EAClDgB,EAAmBhB,EAA2B,kBAAkB,EAEhE,CAAE,GAAAiB,CAAG,EAAI7B,EAGf,GAFAC,EAAc,KAAK,CAAE,aAAc,KAAM,UAAW,IAAK,CAAC,EAEtD,CAAC6B,GAAWD,CAAE,EAChB,MAAM,IAAI,MAAM,yDAAyDA,CAAE,EAAE,EAG/E,IAAME,EAAS,CACb,YAAAjB,EACA,SAAAC,EACA,SAAAC,EACA,SAAAC,EACA,YAAAC,EACA,SAAAC,EACA,SAAAC,EACA,SAAAC,EACA,aAAAC,EACA,UAAAC,EACA,UAAAC,EACA,aAAAC,EACA,UAAAC,EACA,UAAAC,EACA,iBAAAC,EACA,GAAAC,CACF,EAEA,OAAAG,GAA2BhC,EAAWC,CAAa,EAE5C,CAAE,OAAA8B,EAAQ,cAAA9B,CAAc,CACjC,CC1FO,SAASgC,GAASC,EAAgBC,EAA0C,CACjF,IAAIC,EAAMC,GAAKH,EAAGC,EAAO,KAAK,EAC9B,OAAAC,EAAME,GAAWF,EAAKD,EAAO,KAAK,EAClCC,EAASG,EAAIH,EAAKF,CAAC,EACnBE,EAASI,GAAKJ,CAAG,EACVA,CACT,CAEO,SAASK,GAAaP,EAAgBC,EAA0C,CACrF,IAAIC,EAAMM,GAASR,EAAGC,EAAO,KAAK,EAClCC,EAAME,GAAWF,EAAKD,EAAO,KAAK,EAElC,IAAIQ,EAAYC,GAAQV,EAAG,EAAG,EAAG,OAAO,EAClCW,EAAWC,GAAkBH,EAAO,KAAK,EACzCI,EAAQJ,EAAO,MAAM,CAAC,IAAMP,EAAI,MAAM,CAAC,EAG7C,GAFsBO,EAAO,MAAM,CAAC,IAAMP,EAAI,MAAM,CAAC,GAAKO,EAAO,MAAM,CAAC,IAAMP,EAAI,MAAM,CAAC,EAEtE,CACjB,IAAMY,EAAY,CAAC,GAAGZ,EAAI,KAAK,EAC/BY,EAAU,CAAC,EAAI,EACf,IAAMC,EAAYH,GAAkBE,CAAS,EAC7CZ,EAASc,GAAO,CAACd,EAAKa,CAAM,EAAG,CAAC,EAEhC,IAAME,EAAY,CAAC,GAAGf,EAAI,KAAK,EAC/Be,EAAU,CAAC,EAAI,EACf,IAAMC,EAAYN,GAAkBK,CAAS,EAC7Cf,EAASc,GAAO,CAACd,EAAKgB,CAAM,EAAG,CAAC,CAClC,CAEA,OAAAT,EAASI,EAAWG,GAAO,CAACP,EAAQE,CAAK,EAAG,CAAC,EAAIF,EACjDP,EAASG,EAAII,EAAQP,CAAG,EAExBA,EAASI,GAAKJ,CAAG,EACVA,CACT,CC5BO,IAAMiB,GAAN,cAAiCC,EAAyB,CAC/D,aAAc,CACZ,MAAM,oBAAoB,CAC5B,CAEO,aAAaC,EAA8B,CAChD,GAAM,CAAE,OAAAC,CAAO,EAAI,KAEnB,GAAI,CAACA,EACH,MAAM,IAAI,MAAM,kDAAkD,EAGpE,OAAUC,EAAK,IAAM,CACnB,IAAMC,EAAiBC,GAAKJ,EAAM,cAAc,IAAK,EAAI,EAAG,SAAS,EAG/DK,EAAaC,GAAUH,EADb,CAAC,QAAS,QAAS,OAAO,CACO,EAAE,IAAI,GAAG,EAEtDI,EAAMC,GAASH,EAAYJ,EAAO,WAAW,EACjDM,EAASE,GAAQF,EAAK,EAAG,EAAG,OAAO,EAEnCA,EAAMG,GAASH,EAAKN,EAAO,QAAQ,EACnCM,EAAMG,GAASH,EAAKN,EAAO,QAAQ,EACnCM,EAAMG,GAASH,EAAKN,EAAO,QAAQ,EAEnCM,EAAMI,GAAaJ,EAAKN,EAAO,WAAW,EAC1CM,EAAMG,GAASH,EAAKN,EAAO,QAAQ,EACnCM,EAAMG,GAASH,EAAKN,EAAO,QAAQ,EACnCM,EAAMG,GAASH,EAAKN,EAAO,QAAQ,EAEnCM,EAAMI,GAAaJ,EAAKN,EAAO,YAAY,EAC3CM,EAAMG,GAASH,EAAKN,EAAO,SAAS,EACpCM,EAAMG,GAASH,EAAKN,EAAO,SAAS,EAEpCM,EAAMI,GAAaJ,EAAKN,EAAO,YAAY,EAC3CM,EAAMG,GAASH,EAAKN,EAAO,SAAS,EACpCM,EAAMG,GAASH,EAAKN,EAAO,SAAS,EACpCM,EAAMI,GAAaJ,EAAKN,EAAO,gBAAgB,EAE/C,IAAMW,EAAYL,EAAI,KAAK,CAAC,EAAG,CAAC,CAAC,EAGjC,OAF0BM,GAAOD,EAAWX,EAAO,EAAE,CAGvD,CAAC,CACH,CAEA,MAAa,QAAQD,EAAwC,CAC3D,OAAO,KAAK,aAAa,MAAMc,GAAWd,CAAK,CAAC,CAClD,CAEA,MAAa,sBAAsBA,EAAwD,CA7D7F,IAAAe,EA+DI,IAAIA,EAAAf,GAAA,YAAAA,EAAO,QAAP,MAAAe,EAAc,KAAMC,GAAQA,GAAO,GAAI,OAAO,IAAI,aAAa,GAAG,EACtE,IAAMC,EAAW,MAAMH,GAAWd,CAAK,EACjCkB,EAA2BhB,EAAK,IAASiB,GAAQ,KAAK,aAAaF,CAAQ,CAAC,CAAC,EAC7EG,EAA0B,MAAM,QAAQ,IAAIF,EAAsB,IAAKG,GAAMA,EAAE,KAAK,CAAC,CAAC,EAC5F,OAAAH,EAAsB,QAASG,GAAMA,EAAE,QAAQ,CAAC,EACzCJ,EAAS,aAAeG,EAA0BA,EAAwB,CAAC,CACpF,CAEU,qBAA8B,CACtC,MAAO,wBACT,CAEU,2BAA2BE,EAA8B,CACjE,OAAOC,GAA2BD,CAAS,CAC7C,CAEU,cAAcE,EAAuB,CAC7C,OAAOC,GAAcD,CAAO,CAC9B,CACF,EC9EO,SAASE,IAAyBC,EAAuB,CAC9D,IAAMC,EAAM,IAAIC,GAChB,OAAAD,EAAI,eAAeD,CAAO,EACnBC,CACT,CCJO,SAASE,GAGdC,EACAC,EAC6B,CAE7B,MAAO,CAAE,GAAGD,EAAW,GADL,CAAE,WAAAC,CAAW,CACK,CACtC,CCRO,SAASC,IAAUC,EAA8B,CACtD,OAAO,OAAOA,EAAI,KAAQ,QAC5B,CAEO,SAASC,GAGdC,EACAC,EACkB,CAElB,MAAO,CAAE,GAAGD,EAAW,GADL,CAAE,IAAAC,CAAI,CACY,CACtC,CCRO,SAASC,IAAaC,EAAiC,CAC5D,OAAQA,EAAI,SAAW,QAAeA,EAAI,SAAW,WAChDC,GAAmBD,EAAI,iBAAiB,CAC/C,CAEO,SAASE,GAGdC,EACAC,EACAC,EACqB,CAErB,MAAO,CAAE,GAAGF,EAAW,GADL,CAAE,OAAAC,EAAQ,kBAAAC,CAAkB,CACV,CACtC,CCjBA,SAASC,IAAkBC,EAAwCC,EAA+B,CAChG,SAASC,EAA2BC,EAAqBC,EAAuD,CAC9G,IAAMC,EAAaC,GAASN,EAAe,EAAQG,CAAW,EAAG,CAAC,EAAG,EAAGA,EAAa,CAAC,CAAC,EACjFI,EAAsBC,GAASR,EAAeG,CAAW,CAAC,EAC1DM,EAAuBD,GAASR,EAAeG,CAAW,CAAC,EAC3DO,EAAqBF,GAASR,EAAeG,CAAW,CAAC,EACzDQ,EAAyBH,GAASR,EAAeG,CAAW,CAAC,EAEnE,OAAAF,EAAc,KACZ,CAAE,UAAW,GAAGG,CAAY,UAAW,EACvC,CAAE,UAAW,GAAGA,CAAY,mBAAoB,EAChD,CAAE,UAAW,GAAGA,CAAY,oBAAqB,EACjD,CAAE,UAAW,GAAGA,CAAY,kBAAmB,EAC/C,CAAE,UAAW,GAAGA,CAAY,sBAAuB,CACrD,EAEO,CACL,QAAAC,EACA,iBAAAE,EACA,kBAAAE,EACA,gBAAAC,EACA,oBAAAC,CACF,CACF,CAEA,SAASC,EACPC,EACAC,EACAC,EACAX,EACAY,EACY,CACZ,IAAMX,EAAaC,GACjBN,EAAea,EAAaC,EAAcC,EAAaA,CAAU,EACjE,CAACA,EAAYA,EAAYF,EAAYC,CAAW,CAClD,EACMG,EAAUT,GAASR,EAAec,CAAW,CAAC,EAEpD,OAAAb,EAAc,KACZ,CAAE,UAAW,GAAGG,CAAY,UAAW,EACvC,CAAE,UAAW,GAAGA,CAAY,IAAIY,EAAkB,oBAAsB,MAAM,EAAG,CACnF,EAEO,CAAE,QAAAX,EAAS,KAAAY,CAAK,CACzB,CAEA,SAASC,EACPL,EACAC,EACAC,EACAX,EACqB,CACrB,GAAM,CACJ,QAAAC,EACA,KAAAY,CACF,EAAIL,EAAkBC,EAAYC,EAAaC,EAAYX,EAAc,EAAI,EAE7E,MAAO,CACL,QAAAC,EACA,kBAAmBY,CACrB,CACF,CAEA,SAASE,EACPN,EACAC,EACAV,EAC4B,CAC5B,IAAMgB,EAAiBlB,EAA2BW,EAAY,GAAGT,CAAY,iBAAiB,EACxFiB,EAAiBH,EAA2BL,EAAYC,EAAa,EAAG,GAAGV,CAAY,iBAAiB,EAE9G,MAAO,CAAE,eAAAgB,EAAgB,eAAAC,CAAe,CAC1C,CAEA,SAASC,GAA+C,CACtD,IAAMC,EAASL,EAA2B,EAAG,GAAI,EAAG,oBAAoB,EAClEM,EAASL,EAAsB,GAAI,GAAI,oBAAoB,EAC3DM,EAASN,EAAsB,GAAI,IAAK,oBAAoB,EAC5DO,EAASP,EAAsB,IAAK,IAAK,oBAAoB,EAC7DQ,EAASR,EAAsB,IAAK,IAAK,oBAAoB,EAC7DS,EAAST,EAAsB,IAAK,IAAK,oBAAoB,EAC7DU,EAASV,EAAsB,IAAK,IAAK,oBAAoB,EAC7DW,EAASX,EAAsB,IAAK,IAAK,oBAAoB,EAC7DY,EAASZ,EAAsB,IAAK,IAAK,oBAAoB,EAC7Da,EAASb,EAAsB,IAAK,IAAK,oBAAoB,EAC7Dc,EAAUd,EAAsB,IAAK,IAAK,qBAAqB,EAC/De,EAAUf,EAAsB,IAAK,IAAK,qBAAqB,EAC/DgB,EAAUhB,EAAsB,IAAK,KAAM,qBAAqB,EAChEiB,EAAUjB,EAAsB,KAAM,KAAM,qBAAqB,EACvE,MAAO,CACL,OAAAI,EACA,OAAAC,EACA,OAAAC,EACA,OAAAC,EACA,OAAAC,EACA,OAAAC,EACA,OAAAC,EACA,OAAAC,EACA,OAAAC,EACA,OAAAC,EACA,QAAAC,EACA,QAAAC,EACA,QAAAC,EACA,QAAAC,CACF,CACF,CAEA,SAASC,GAAsD,CAC7D,IAAMd,EAASL,EAA2B,KAAM,IAAK,EAAG,yBAAyB,EAC3EM,EAASN,EAA2B,IAAK,IAAK,EAAG,yBAAyB,EAC1EO,EAASP,EAA2B,IAAK,IAAK,EAAG,yBAAyB,EAC1EQ,EAASR,EAA2B,IAAK,IAAK,EAAG,yBAAyB,EAC1ES,EAAST,EAA2B,IAAK,IAAK,EAAG,yBAAyB,EAC1EU,EAASV,EAA2B,IAAK,IAAK,EAAG,yBAAyB,EAC1EW,EAASX,EAA2B,IAAK,GAAI,EAAG,yBAAyB,EACzEY,EAASZ,EAA2B,GAAI,IAAK,EAAG,yBAAyB,EACzEoB,EAA2B1B,EAAkB,IAAK,GAAI,EAAG,yDAAyD,EAClH2B,EAAoB3B,EAAkB,IAAK,EAAG,EAAG,kDAAkD,EACnG4B,EAA2B5B,EAAkB,KAAM,GAAI,EAAG,yDAAyD,EACnH6B,EAAoB7B,EAAkB,KAAM,GAAI,EAAG,kDAAkD,EACrG8B,EAA2B9B,EAAkB,IAAK,GAAI,EAAG,yDAAyD,EAClH+B,EAAoB/B,EAAkB,IAAK,GAAI,EAAG,kDAAkD,EACpGgC,EAA2BhC,EAAkB,IAAK,GAAI,EAAG,yDAAyD,EAClHiC,EAAoBjC,EAAkB,IAAK,GAAI,EAAG,kDAAkD,EACpGkC,EAA2BlC,EAAkB,IAAK,GAAI,EAAG,yDAAyD,EAClHmC,EAAoBnC,EAAkB,IAAK,GAAI,EAAG,kDAAkD,EACpGoC,EAA2BpC,EAAkB,IAAK,GAAI,EAAG,yDAAyD,EAClHqC,EAAoBrC,EAAkB,IAAK,GAAI,EAAG,kDAAkD,EA0B1G,MAAO,CACL,OAAAW,EACA,OAAAC,EACA,OAAAC,EACA,OAAAC,EACA,OAAAC,EACA,OAAAC,EACA,OAAAC,EACA,OAAAC,EACA,gBAjCsB,CACtB,uBAAwBQ,EACxB,gBAAiBC,CACnB,EA+BE,gBA9BsB,CACtB,uBAAwBC,EACxB,gBAAiBC,CACnB,EA4BE,gBA3BsB,CACtB,uBAAwBC,EACxB,gBAAiBC,CACnB,EAyBE,gBAxBsB,CACtB,uBAAwBC,EACxB,gBAAiBC,CACnB,EAsBE,gBArBsB,CACtB,uBAAwBC,EACxB,gBAAiBC,CACnB,EAmBE,gBAlBsB,CACtB,uBAAwBC,EACxB,gBAAiBC,CACnB,CAgBA,CACF,CAEA,MAAO,CACL,yBAAA3B,EACA,6BAAAe,CACF,CACF,CAEO,SAASa,GAAcC,EAA6E,CACzG,IAAMlD,EAAgC,CAAC,EACjC,CACJ,eAAAD,EACA,oBAAAoD,CACF,EAAIC,GAAsBF,CAAO,EAC3B,CACJ,yBAAA7B,EACA,6BAAAe,CACF,EAAItC,IAAkBC,EAAgBC,CAAa,EAC7CqD,EAAchC,EAAyB,EACvCiC,EAAmBlB,EAA6B,EAKhDmB,EAAe,CACnB,UALmBC,GACnBzD,EAAe,KAAO,CAAC,EACvB,CAAC,EAAG,KAAM,CAAC,CACb,CAGA,EAEA,GADAC,EAAc,KAAK,CAAE,UAAW,wBAAyB,CAAC,EACtDmD,EAAoB,EAAE,SAAW,EACnC,MAAM,IAAI,MAAM,kCAAkCA,EAAoB,EAAE,MAAM,EAAE,EAGlF,MAAO,CACL,OAAQ,CACN,YAAAE,EACA,iBAAAC,EACA,aAAAC,CACF,EACA,cAAAvD,CACF,CACF,CChNA,SAASyD,IAAkBC,EAAgBC,EAA+B,CACxE,IAAMC,EAAqBC,GAA0BH,EAAWC,CAAa,EAE7E,SAASG,EAA2BC,EAAgBC,EAAaC,EAA2C,CAC1G,IAAMC,EAAUN,EAAmB,GAAGG,CAAM,WAAWC,CAAG,qBAAsB,EAAG,GAAGC,CAAY,UAAU,EACtGE,EAAoBP,EAAmB,GAAGG,CAAM,WAAWC,CAAG,mCAAoC,EAAG,GAAGC,CAAY,oBAAoB,EAC9I,MAAO,CAAE,QAAAC,EAAS,kBAAAC,CAAkB,CACtC,CAEA,SAASC,EAAsBJ,EAAyC,CACtE,IAAMC,EAAe,oBAAoBD,CAAG,GACtCK,EAAsB,sBAAsBL,CAAG,aAC/CM,EAA4B,GAAGL,CAAY,kBAC3CM,EAA4B,GAAGN,CAAY,kBAE3CC,EAAUN,EAAmB,GAAGS,CAAmB,qBAAsB,EAAG,GAAGC,CAAyB,UAAU,EAClHE,EAAmBZ,EAAmB,GAAGS,CAAmB,mBAAoB,EAAG,GAAGC,CAAyB,mBAAmB,EAClIH,EAAoBP,EAAmB,GAAGS,CAAmB,kBAAmB,EAAG,GAAGC,CAAyB,oBAAoB,EACnIG,EAAkBb,EAAmB,GAAGS,CAAmB,yBAA0B,EAAG,GAAGC,CAAyB,kBAAkB,EACtII,EAAsBd,EAAmB,GAAGS,CAAmB,6BAA8B,EAAG,GAAGC,CAAyB,sBAAsB,EAExJ,MAAO,CACL,eAAgB,CACd,QAAAJ,EACA,iBAAAM,EACA,kBAAAL,EACA,gBAAAM,EACA,oBAAAC,CACF,EACA,eAAgBZ,EAA2B,cAAeE,EAAKO,CAAyB,CAC1F,CACF,CAEA,SAASI,GAA+C,CACtD,MAAO,CACL,OAAQb,EAA2B,cAAe,EAAG,oBAAoB,EACzE,OAAQM,EAAsB,CAAC,EAC/B,OAAQA,EAAsB,CAAC,EAC/B,OAAQA,EAAsB,CAAC,EAC/B,OAAQA,EAAsB,CAAC,EAC/B,OAAQA,EAAsB,CAAC,EAC/B,OAAQA,EAAsB,CAAC,EAC/B,OAAQA,EAAsB,CAAC,EAC/B,OAAQA,EAAsB,CAAC,EAC/B,OAAQA,EAAsB,CAAC,EAC/B,QAASA,EAAsB,EAAE,EACjC,QAASA,EAAsB,EAAE,EACjC,QAASA,EAAsB,EAAE,EACjC,QAASA,EAAsB,EAAE,CACnC,CACF,CAEA,SAASQ,EAAkBb,EAAgBE,EAAkC,CAC3E,IAAMC,EAAUN,EAAmB,GAAGG,CAAM,WAAY,EAAG,GAAGE,CAAY,UAAU,EAC9EY,EAAOjB,EAAmB,GAAGG,CAAM,UAAW,EAAG,GAAGE,CAAY,OAAO,EAC7E,MAAO,CAAE,QAAAC,EAAS,KAAAW,CAAK,CACzB,CAEA,SAASC,EAA0Bd,EAAkC,CACnE,IAAMe,EAAyBH,EAC7B,2BAA2BZ,CAAG,wBAC9B,kCAAkCA,CAAG,yBACvC,EACMgB,EAAkBJ,EACtB,2BAA2BZ,CAAG,kBAC9B,kCAAkCA,CAAG,kBACvC,EACA,MAAO,CAAE,uBAAAe,EAAwB,gBAAAC,CAAgB,CACnD,CAEA,SAASC,GAAsD,CAC7D,MAAO,CACL,OAAQnB,EAA2B,aAAc,EAAG,yBAAyB,EAC7E,OAAQA,EAA2B,aAAc,EAAG,yBAAyB,EAC7E,OAAQA,EAA2B,aAAc,EAAG,yBAAyB,EAC7E,OAAQA,EAA2B,aAAc,EAAG,yBAAyB,EAC7E,OAAQA,EAA2B,aAAc,EAAG,yBAAyB,EAC7E,OAAQA,EAA2B,aAAc,EAAG,yBAAyB,EAC7E,OAAQA,EAA2B,aAAc,EAAG,yBAAyB,EAC7E,OAAQA,EAA2B,aAAc,EAAG,yBAAyB,EAC7E,gBAAiBgB,EAA0B,CAAC,EAC5C,gBAAiBA,EAA0B,CAAC,EAC5C,gBAAiBA,EAA0B,CAAC,EAC5C,gBAAiBA,EAA0B,CAAC,EAC5C,gBAAiBA,EAA0B,CAAC,EAC5C,gBAAiBA,EAA0B,CAAC,CAC9C,CACF,CAEA,MAAO,CACL,yBAAAH,EACA,6BAAAM,CACF,CACF,CAEO,SAASC,GACdxB,EACsD,CACtD,IAAMC,EAAgC,CAAC,EACjC,CACJ,yBAAAgB,EACA,6BAAAM,CACF,EAAIxB,IAAkBC,EAAWC,CAAa,EACxCwB,EAAYzB,EAAU,kBAAkB,EAE9C,GADAC,EAAc,KAAK,CAAE,aAAc,mBAAoB,UAAW,wBAAyB,CAAC,EACxF,CAACyB,GAAWD,CAAS,EACvB,MAAM,IAAI,MAAM,yEAAyEA,CAAS,EAAE,EAGtG,IAAME,EAAS,CACb,YAAaV,EAAyB,EACtC,iBAAkBM,EAA6B,EAC/C,aAAc,CACZ,UAAAE,CACF,CACF,EAEA,OAAAG,GAA2B5B,EAAWC,CAAa,EAC5C,CAAE,OAAA0B,EAAQ,cAAA1B,CAAc,CACjC,CCzHO,SAAS4B,GAAmBC,EAAgBC,EAA6BC,EAA2B,CACzG,OAAUC,EAAK,IAAM,CACnB,IAAIC,EAASC,GAAOL,EAAGC,EAAO,QAASC,EAAS,MAAM,EACtD,OAAAE,EAASE,EAAIF,EAAKH,EAAO,iBAAiB,EAChCM,GAAYH,EAAK,EAAG,CAAC,CACjC,CAAC,CACH,CCLA,IAAMI,IAAU,qBAEhB,SAASC,IAAmBC,EAAgBC,EAAyCC,EAA2B,CAC9G,OAAUC,EAAK,IAAM,CACnB,IAAIC,EAASC,GAAgBL,EAAGC,EAAO,QAASC,EAAS,MAAM,EAC/D,OAAAE,EAASE,GACPF,EACAH,EAAO,gBACPA,EAAO,oBACPA,EAAO,kBACPA,EAAO,iBACPH,GACF,EACUS,GAAYH,EAAK,EAAG,CAAC,CACjC,CAAC,CACH,CAEA,SAASI,IAAsBC,EAAoC,CACjE,MAAO,CAAC,EAAG,EAAG,EAAG,EAAE,EAAE,KAAMC,GAAQA,IAAQD,CAAQ,EAAI,CAAC,EAAG,CAAC,EAAI,CAAC,EAAG,CAAC,CACvE,CAEO,SAASE,GAAYX,EAAgBC,EAA4B,CACtE,OAAUE,EAAK,IAAM,CACnB,IAAIS,EACAR,EAAMS,GAAmBb,EAAGC,EAAO,OAAQ,CAAC,EAAG,CAAC,CAAC,EA0BrD,GAxBuB,CACrBA,EAAO,OACPA,EAAO,OACPA,EAAO,OACPA,EAAO,OACPA,EAAO,OACPA,EAAO,OACPA,EAAO,OACPA,EAAO,OACPA,EAAO,OACPA,EAAO,QACPA,EAAO,QACPA,EAAO,QACPA,EAAO,OACT,EAEe,QAAQ,CAACa,EAAO,IAAM,CACnC,IAAML,EAAW,EAAI,EACfM,EAAuBP,IAAsBC,CAAQ,EAC3DL,EAAML,IAAmBK,EAAKU,EAAM,eAAgBC,CAAoB,EACxEX,EAAMS,GAAmBT,EAAKU,EAAM,eAAgB,CAAC,EAAG,CAAC,CAAC,EACtDL,IAAa,KAAIG,EAASR,EAChC,CAAC,EAEGQ,IAAW,KACb,MAAM,IAAI,MAAM,+CAA+C,EAGjE,MAAO,CACL,IAAAR,EACA,OAAQQ,CACV,CACF,CAAC,CACH,CC9DA,SAASI,IAAIC,EAAoBC,EAAWC,EAAW,CACrD,IAAMC,EAAYH,EAAM,UAAU,EAC5BI,EAAQ,KAAK,IAAID,EAAUF,CAAC,EAAE,CAAC,EAAGE,EAAUF,CAAC,EAAE,CAAC,CAAC,EACjDI,EAAQ,KAAK,IAAIF,EAAUF,CAAC,EAAE,CAAC,EAAGE,EAAUF,CAAC,EAAE,CAAC,CAAC,EACjDK,EAAQ,KAAK,IAAIH,EAAUF,CAAC,EAAE,CAAC,EAAGE,EAAUF,CAAC,EAAE,CAAC,CAAC,EACjDM,EAAQ,KAAK,IAAIJ,EAAUF,CAAC,EAAE,CAAC,EAAGE,EAAUF,CAAC,EAAE,CAAC,CAAC,EACjDO,EAAQ,KAAK,IAAIL,EAAUD,CAAC,EAAE,CAAC,EAAGC,EAAUD,CAAC,EAAE,CAAC,CAAC,EACjDO,EAAQ,KAAK,IAAIN,EAAUD,CAAC,EAAE,CAAC,EAAGC,EAAUD,CAAC,EAAE,CAAC,CAAC,EACjDQ,EAAQ,KAAK,IAAIP,EAAUD,CAAC,EAAE,CAAC,EAAGC,EAAUD,CAAC,EAAE,CAAC,CAAC,EACjDS,EAAQ,KAAK,IAAIR,EAAUD,CAAC,EAAE,CAAC,EAAGC,EAAUD,CAAC,EAAE,CAAC,CAAC,EACjDU,GAASN,EAAQF,IAAUG,EAAQF,GACnCQ,GAASH,EAAQF,IAAUG,EAAQF,GACzC,GAAIG,GAAS,GAAKC,GAAS,EAAG,MAAO,GACrC,IAAMC,EAAmB,KAAK,IAAIV,EAAOI,CAAK,EACxCO,EAAmB,KAAK,IAAIV,EAAOI,CAAK,EACxCO,EAAmB,KAAK,IAAIV,EAAOI,CAAK,EACxCO,EAAmB,KAAK,IAAIV,EAAOI,CAAK,EACxCO,EAAmB,KAAK,IAAIF,EAAmBF,EAAkB,CAAG,EAAI,KAAK,IAAIG,EAAmBF,EAAkB,CAAG,EAC/H,OAAOG,GAAoBN,EAAQC,EAAQK,EAC7C,CAEO,SAASC,GACdnB,EACAoB,EACAC,EACAC,EACAC,EACU,CACV,IAAMC,EAAWxB,EAAM,MAAM,CAAC,EACxByB,EAAa,KAAK,IAAIJ,EAAeG,CAAQ,EAE7CE,EAAaN,EAChB,IAAI,CAACO,EAAOC,KAAc,CAAE,MAAAD,EAAO,SAAAC,CAAS,EAAE,EAC9C,OAAQC,GAAMA,EAAE,MAAQN,CAAc,EACtC,KAAK,CAACO,EAAIC,IAAOA,EAAG,MAAQD,EAAG,KAAK,EAEjCE,EAAgBC,GAAeA,GAAKX,EAAe,EAAI,EACvDY,EAAqB,CAAC,EAE5B,OAAAR,EAAW,QAASG,GAAM,CACxB,GAAIK,EAAS,QAAUT,EAAY,OACnC,IAAMU,EAAgBN,EAAE,MACxB,QAAS3B,EAAIgC,EAAS,OAAS,EAAGhC,GAAK,EAAG,EAAEA,EAAG,CAC7C,IAAMkC,EAAMrC,IAAIC,EAAO6B,EAAE,SAAUK,EAAShC,CAAC,CAAC,EAC9C,GAAIkC,IAAQ,IACZP,EAAE,OAASG,EAAaI,CAAG,EACvBP,EAAE,OAASN,GAAgB,KACjC,CACIY,IAAkBN,EAAE,OACtBK,EAAS,KAAKL,EAAE,QAAQ,CAE5B,CAAC,EACMK,CACT,CCnDA,SAASG,IAAkCC,EAAgB,CACzD,IAAMC,EAASC,GAAWC,GAAUH,EAAG,CAAC,EAAG,CAAC,CAAC,CAAC,EAExCI,EAAQ,CACTC,GAAIJ,EAAI,CAAC,EAAGA,EAAI,CAAC,CAAC,EAClBI,GAAIJ,EAAI,CAAC,EAAGA,EAAI,CAAC,CAAC,CACvB,EACMK,EAAU,CACXC,EAAIN,EAAI,CAAC,EAAMO,GAAIJ,EAAM,CAAC,EAAG,CAAC,CAAC,EAC/BG,EAAIN,EAAI,CAAC,EAAMO,GAAIJ,EAAM,CAAC,EAAG,CAAC,CAAC,CACpC,EACA,MAAO,CAAE,MAAAA,EAAO,QAAAE,CAAQ,CAC1B,CAEA,SAASG,IAAiBC,EAAiBC,EAAiB,CAC1D,GAAM,CAAE,MAAAP,EAAO,QAAAE,CAAQ,EAAIP,IAAkCW,CAAE,EAEzDT,EAASC,GAAWC,GAAUQ,EAAI,CAAC,EAAG,CAAC,CAAC,CAAC,EACzCC,EAAcJ,GAAOK,EAAOC,GAAON,GAAIP,EAAI,CAAC,EAAG,CAAC,CAAC,EAAGG,EAAM,CAAC,CAAC,EAAG,CAAC,EAChEW,EAAcR,EAAOM,EAAOL,GAAIP,EAAI,CAAC,EAAG,EAAE,EAAGG,EAAM,CAAC,CAAC,EAAGE,EAAQ,CAAC,CAAC,EAClEU,EAAcR,GAAOK,EAAOC,GAAON,GAAIP,EAAI,CAAC,EAAG,CAAC,CAAC,EAAGG,EAAM,CAAC,CAAC,EAAG,CAAC,EAChEa,EAAcV,EAAOM,EAAOL,GAAIP,EAAI,CAAC,EAAG,EAAE,EAAGG,EAAM,CAAC,CAAC,EAAGE,EAAQ,CAAC,CAAC,EAExE,OAAUH,GACLe,GAAM,CACJb,GAAIU,EAAUH,CAAQ,EACtBP,GAAIY,EAAUD,CAAQ,EACtBT,EAAIQ,EAAUH,CAAQ,EACtBL,EAAIU,EAAUD,CAAQ,CAC3B,CAAC,EACD,CAAC,EAAG,CAAC,CACP,CACF,CAEO,SAASG,GAAYC,EAA6BC,EAA+BC,EAA2B,CACjH,OAAUC,EAAK,IAAM,CACnB,IAAMC,EAAYJ,EAAe,MAAM,CAAC,EAEpCK,EAAQhB,IACPiB,EAAWC,GAAKL,EAAO,UAAW,CAACE,EAAW,EAAG,CAAC,CAAC,EAAG,CAAC,GAAI,CAAC,CAAC,EAC7DE,EAAQN,EAAgB,CAAC,GAAI,CAAC,CAAC,CACpC,EACAK,EAAWC,EAAQD,EAAO,CAACD,EAAYC,EAAM,MAAM,CAAC,EAAID,EAAY,CAAC,CAAC,EAEtE,IAAMI,EAAsBC,GAAWC,GAAMT,EAAkB,CAAC,EAAG,EAAG,CAAC,EAAG,CAAC,GAAI,GAAI,EAAE,CAAC,CAAC,EACnFU,EAAYD,GAAMF,EAAkB,CAAC,EAAG,EAAG,CAAC,EAAG,CAAC,GAAI,GAAI,CAAC,CAAC,EAE9DG,EAAYL,EAAQK,EAAQ,CAACP,EAAWO,EAAO,MAAM,CAAC,CAAW,CAAC,EAElE,IAAMC,EAAkB9B,GAAQuB,CAAK,EAC/BQ,EAAmB/B,GAAQ6B,CAAM,EAEvC,MAAO,CAAE,MAAOC,EAAc,OAAQC,CAAc,CACtD,CAAC,CACH,CCrDO,SAASC,GACdC,EACAC,EACA,CACA,OAAUC,EAAK,IAAM,CACnB,IAAMC,EAAYH,EAAE,MAAM,CAAC,EACrBI,EAA2BC,EAC/BC,GAAUN,EAAGC,EAAO,sBAAsB,EAC1C,CAACE,EAAW,GAAI,EAAG,CAAC,CACtB,EACMI,EAAqBF,EACzBC,GAAUN,EAAGC,EAAO,eAAe,EACnC,CAACE,EAAW,GAAI,CAAC,CACnB,EACA,MAAO,CAAE,sBAAAC,EAAuB,gBAAAG,CAAgB,CAClD,CAAC,CACH,CCfO,SAASC,GACdC,EACAC,EACAC,EACA,CACA,OAAUC,EAAK,IAAM,CACnB,IAAMC,EAAQC,GAAmBL,EAAGE,EAAO,OAAQ,CAAC,EAAG,CAAC,CAAC,EACnDI,EAAQD,GAAmBD,EAAOF,EAAO,OAAQ,CAAC,EAAG,CAAC,CAAC,EACvDK,EAAQF,GAAmBC,EAAOJ,EAAO,OAAQ,CAAC,EAAG,CAAC,CAAC,EACvDM,EAAQH,GAAmBE,EAAOL,EAAO,OAAQ,CAAC,EAAG,CAAC,CAAC,EACvDO,EAAQJ,GAAmBG,EAAON,EAAO,OAAQ,CAAC,EAAG,CAAC,CAAC,EACvDQ,EAAQL,GAAmBI,EAAOP,EAAO,OAAQ,CAAC,EAAG,CAAC,CAAC,EACvDS,EAAQN,GAAmBK,EAAOR,EAAO,OAAQ,CAAC,EAAG,CAAC,CAAC,EACvDU,EAAQP,GAAmBM,EAAOT,EAAO,OAAQ,CAAC,EAAG,CAAC,CAAC,EAEvDW,EAAiBC,GAAmBb,EAAQC,EAAO,eAAe,EAClEa,EAAiBD,GAAmBd,EAAGE,EAAO,eAAe,EAC7Dc,EAAiBF,GAAmBR,EAAOJ,EAAO,eAAe,EACjEe,EAAiBH,GAAmBN,EAAON,EAAO,eAAe,EACjEgB,EAAiBJ,GAAmBJ,EAAOR,EAAO,eAAe,EACjEiB,EAAiBL,GAAmBF,EAAOV,EAAO,eAAe,EAEjEkB,EAAoBC,GAAO,CAC/BR,EAAe,sBACfE,EAAe,sBACfC,EAAe,sBACfC,EAAe,sBACfC,EAAe,sBACfC,EAAe,qBACjB,EAAG,CAAC,EAEEG,EAAsBD,GAAO,CACjCR,EAAe,gBACfE,EAAe,gBACfC,EAAe,gBACfC,EAAe,gBACfC,EAAe,gBACfC,EAAe,eACjB,EAAG,CAAC,EAEJ,MAAO,CACL,eAAAC,EACA,iBAAAE,CACF,CACF,CAAC,CACH,CC9CO,IAAMC,GAAN,KAA4B,CAOjC,YAAY,CAAE,cAAAC,EAAe,WAAAC,CAAW,EAA4B,CAAC,EAAG,CANxE,KAAU,MAAQ,wBAUhB,GAHA,KAAK,eAAiBD,GAAiB,GACvC,KAAK,YAAcC,GAAc,IAE7B,OAAO,KAAK,gBAAmB,UAAY,KAAK,gBAAkB,GAAK,KAAK,gBAAkB,EAChG,MAAM,IAAI,MAAM,GAAG,KAAK,KAAK,0DAA0D,EAGzF,GAAI,OAAO,KAAK,aAAgB,SAC9B,MAAM,IAAI,MAAM,GAAG,KAAK,KAAK,uCAAuC,CAExE,CAEA,IAAI,eAAwB,CAAE,OAAO,KAAK,cAAgB,CAE1D,IAAI,YAAqB,CAAE,OAAO,KAAK,WAAa,CACtD,ECbO,IAAMC,GAAN,cAA6BC,EAAyB,CAC3D,aAAc,CACZ,MAAM,gBAAgB,CACxB,CAEO,aAAaC,EAAiB,CACnC,GAAM,CAAE,OAAAC,CAAO,EAAI,KACnB,GAAI,CAACA,EAAQ,MAAM,IAAI,MAAM,8CAA8C,EAC3E,OAAUC,EAAK,IAAM,CACnB,IAAMC,EAAiBC,GAAKJ,EAAM,cAAc,IAAK,EAAK,EAAG,SAAS,EAChEK,EAAOC,GAAOC,GAAIJ,EAAa,KAAK,EAAG,CAAC,EACxCK,EAAWC,GAAYJ,EAAGJ,EAAO,WAAW,EAC5C,CAAE,eAAAS,EAAgB,iBAAAC,CAAiB,EAAIC,GAAgBJ,EAAS,IAAKA,EAAS,OAAQP,EAAO,gBAAgB,EACnH,OAAOY,GAAYH,EAAgBC,EAAkBV,EAAO,YAAY,CAC1E,CAAC,CACH,CAEA,MAAa,QAAQD,EAAkB,CACrC,OAAO,KAAK,aAAa,MAAMc,GAAWd,CAAK,CAAC,CAClD,CAEA,MAAa,YAAYA,EAAkBe,EAAkC,CAAC,EAA6B,CACzG,GAAM,CAAE,WAAAC,EAAY,cAAAC,CAAc,EAAI,IAAIC,GAAsBH,CAAO,EACjEI,EAAW,MAAML,GAAWd,CAAK,EACjC,CAAE,MAAOoB,EAAQ,OAAQC,CAAQ,EAAI,KAAK,aAAaF,CAAQ,EAC/DG,EAAQF,EAAO,CAAC,EAChBG,EAASF,EAAQ,CAAC,EACxB,QAASG,EAAI,EAAGA,EAAIJ,EAAO,OAAQI,IACjCJ,EAAOI,CAAC,EAAE,QAAQ,EAClBH,EAAQG,CAAC,EAAE,QAAQ,EAErB,IAAMC,EAAa,MAAM,KAAKF,EAAO,SAAS,CAAC,EAEzCG,EAAUC,GAAkBL,EAAOG,EAAwBT,EAD5C,GACsEC,CAAa,EAClGW,EAAeT,EAAS,2BAA2B,CAAC,EACpDU,EAAYV,EAAS,UACrBW,EAAOD,EAAYD,EAAa,MAChCG,EAAOF,EAAYD,EAAa,OAChCI,EAAYV,EAAM,UAAU,EAC5BW,EAAUP,EACb,IAAKQ,GAAQ,CACZ,GAAM,CAACC,EAAKC,CAAM,EAAI,CACpB,KAAK,IAAI,EAAGJ,EAAUE,CAAG,EAAE,CAAC,CAAC,EAC7B,KAAK,IAAI,EAAKF,EAAUE,CAAG,EAAE,CAAC,CAAC,CACjC,EAAE,IAAKG,GAAQA,EAAMN,CAAI,EACnB,CAACO,EAAMC,CAAK,EAAI,CACpB,KAAK,IAAI,EAAGP,EAAUE,CAAG,EAAE,CAAC,CAAC,EAC7B,KAAK,IAAI,EAAKF,EAAUE,CAAG,EAAE,CAAC,CAAC,CACjC,EAAE,IAAKG,GAAQA,EAAMP,CAAI,EACzB,OAAO,IAAIU,GACTf,EAAWS,CAAG,EACd,IAAIO,GAAKH,EAAMH,EAAKI,EAAQD,EAAMF,EAASD,CAAG,EAC9C,CAAE,OAAQhB,EAAS,eAAe,CAAC,EAAG,MAAOA,EAAS,cAAc,CAAC,CAAE,CACzE,CACF,CAAC,EACH,OAAAG,EAAM,QAAQ,EACdC,EAAO,QAAQ,EACRU,CACT,CAEU,qBAA8B,CACtC,MAAO,uBACT,CAEU,2BAA2BS,EAA8B,CACjE,OAAOC,GAA2BD,CAAS,CAC7C,CAEU,cAAcE,EAAuB,CAC7C,OAAOC,GAAcD,CAAO,CAC9B,CACF,ECjFO,SAASE,IAAqBC,EAAuB,CAC1D,IAAMC,EAAM,IAAIC,GAChB,OAAAD,EAAI,eAAeD,CAAO,EACnBC,CACT,CAEO,SAASE,IAAuBH,EAAuB,CAC5D,OAAOD,IAAqBC,CAAO,CACrC,CAGO,IAAMI,GAAN,cAA+BF,EAAe,CAAC,ECd/C,IAAMG,GAAgB,GAEhBC,GAAc,CACzB,IAAIC,GAAM,QAAU,OAAQ,EAC5B,IAAIA,GAAM,QAAS,OAAO,EAC1B,IAAIA,GAAM,QAAS,OAAO,EAC1B,IAAIA,GAAM,OAAQ,OAAO,EACzB,IAAIA,GAAM,QAAS,OAAO,CAC5B,EAEaC,GAAwB,CACnC,IAAID,GAAM,SAAU,QAAQ,EAC5B,IAAIA,GAAM,SAAU,QAAQ,EAC5B,IAAIA,GAAM,SAAU,QAAQ,EAC5B,IAAIA,GAAM,SAAU,QAAQ,EAC5B,IAAIA,GAAM,SAAU,QAAQ,CAC9B,EAEaE,GAA+C,CAAC,QAAS,QAAS,MAAM,EAExEC,GAAqB,oBACrBC,GAAoC,mCCVjD,IAAMC,GAAYC,GAAa,OAAOA,GAAQ,SAEvC,SAASC,GAAeC,EAAa,CAC1C,GAAI,CAACA,EACH,MAAM,IAAI,MAAM,mBAAmBA,CAAM,EAAE,EAG7C,GAAI,OAAOA,EAAO,oBAAuB,UACvC,MAAM,IAAI,MAAM,wDAAwDA,EAAO,kBAAkB,EAAE,EAGrG,GAAI,CAACH,GAASG,EAAO,YAAY,GAAKA,EAAO,aAAe,GAAKA,EAAO,aAAe,EACrF,MAAM,IAAI,MAAM,gEAAgEA,EAAO,YAAY,EAAE,EAGvG,GACE,CAAC,MAAM,QAAQA,EAAO,OAAO,GAC1B,CAACA,EAAO,QAAQ,QAChB,CAACA,EAAO,QAAQ,MAAOC,GAAW,OAAOA,GAAM,QAAQ,EAE1D,MAAM,IAAI,MAAM,kEAAkE,KAAK,UAAUD,EAAO,OAAO,CAAC,EAAE,EAGpH,GACE,CAAC,MAAM,QAAQA,EAAO,OAAO,GAC1B,CAACA,EAAO,QAAQ,QAChB,CAACA,EAAO,QAAQ,IAAKE,GAAWA,GAAK,CAAC,CAAC,EAAE,MAAOA,GAAWL,GAASK,EAAE,CAAC,GAAKL,GAASK,EAAE,CAAC,CAAC,EAE5F,MAAM,IAAI,MAAM,wEAAwE,KAAK,UAAUF,EAAO,OAAO,CAAC,EAAE,EAG1H,GAAIA,EAAO,UACT,CAAC,MAAM,QAAQA,EAAO,OAAO,GAC1BA,EAAO,QAAQ,SAAW,GAC1B,CAACA,EAAO,QAAQ,MAAMH,EAAQ,GAEjC,MAAM,IAAI,MAAM,8EAA8E,KAAK,UAAUG,EAAO,OAAO,CAAC,EAAE,CAElI,CCjDO,SAASG,GAAMC,EAA6B,CACjD,OAAUC,EAAK,IAAM,CACnB,IAAMC,EAASC,EAAIH,EAAMI,GAAO,kBAAmB,CAAC,EACpD,OAAUC,EAAOC,GAAQC,GAAIP,EAAGE,CAAG,CAAC,EAAGA,CAAG,CAC5C,CAAC,CACH,CCFO,SAASM,GAAkBC,EAAgBC,EAAwC,CACxF,OAAUC,EAAK,IAAM,CACnB,IAAIC,EAASC,GAAIJ,EAAG,CAAC,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,CAAC,CAAC,EACpD,OAAAG,EAASE,GAAOF,EAAKF,EAAO,KAAK,QAAS,CAAC,EAAG,CAAC,EAAG,OAAO,EACzDE,EAASG,GAAIH,EAAKF,EAAO,GAAG,GAAG,EAC/BE,EAASI,EAAIJ,EAAKF,EAAO,GAAG,OAAO,EACnCE,EAASK,EAAIL,EAAKF,EAAO,KAAK,IAAI,EAC3BQ,GAAMN,CAAG,CAClB,CAAC,CACH,CCTO,SAASO,GAAuBC,EAAgBC,EAA0C,CAC/F,OAAUC,EAAK,IAAM,CACnB,IAAIC,EAASC,GAAIJ,EAAG,CAAC,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,CAAC,CAAC,EACpD,OAAAG,EAASE,GAAgBF,EAAKF,EAAO,iBAAkBA,EAAO,iBAAkB,CAAC,EAAG,CAAC,EAAG,OAAO,EAC/FE,EAASG,EAAIH,EAAKF,EAAO,IAAI,EACtBM,GAAMJ,CAAG,CAClB,CAAC,CACH,CCHA,SAASK,IAAkBC,EAAwCC,EAA+B,CAChG,IAAMC,EAAoBC,GAAyBH,EAAgBC,CAAa,EAEhF,SAASG,EAAuBC,EAAcC,EAAiC,CAC7E,IAAMC,EAASC,GAASR,EAAeK,CAAI,CAAC,EACtCI,EAAaD,GAASR,EAAeK,CAAI,CAAC,EAEhD,OAAAJ,EAAc,KACZ,CAAE,UAAW,GAAGK,CAAY,MAAO,EACnC,CAAE,UAAW,GAAGA,CAAY,UAAW,CACzC,EACO,CAAE,IAAAC,EAAK,QAAAE,CAAQ,CACxB,CAEA,SAASC,EAA+BC,EAAoBC,EAAqBN,EAAyC,CACxH,IAAMO,EAAOX,EAAkBS,EAAYC,EAAa,EAAG,GAAGN,CAAY,OAAO,EAC3EQ,EAAKV,EAAuBQ,EAAa,GAAGN,CAAY,KAAK,EACnE,MAAO,CAAE,KAAAO,EAAM,GAAAC,CAAG,CACpB,CACA,IAAMC,EAA6BC,GAAkChB,EAAgBC,CAAa,EAElG,MAAO,CACL,kBAAAC,EACA,+BAAAQ,EACA,2BAAAK,CACF,CACF,CAEO,SAASE,GACdC,EACAC,EACAC,EACAC,EACgE,CAChE,GAAM,CACJ,eAAArB,EACA,oBAAAsB,CACF,EAAIC,GAAsBL,CAAO,EAE3BjB,EAAgC,CAAC,EACjC,CACJ,kBAAAC,EACA,+BAAAQ,EACA,2BAAAK,CACF,EAAIhB,IAAkBC,EAAgBC,CAAa,EAC/CuB,EAEJ,GAAIL,EAAO,mBAAoB,CAC7B,GAAM,CAACM,EAAIC,EAAIC,EAAIC,EAAIC,EAAIC,EAAIC,EAAIC,EAAIC,CAAE,EAAIZ,EACvCa,EAAQf,EAAO,mBACjBjB,EAAkBuB,EAAIC,EAAI,EAAG,OAAO,EACpCX,EAA2BU,EAAIC,EAAI,OAAO,EACxCS,EAAQpB,EAA2BW,EAAIC,EAAI,OAAO,EAClDS,EAAQrB,EAA2BY,EAAIC,EAAI,OAAO,EAClDS,EAAQtB,EAA2Ba,EAAIC,EAAI,OAAO,EAClDS,EAAQvB,EAA2Bc,EAAIC,EAAI,OAAO,EAClDS,EAAQxB,EAA2Be,EAAIC,EAAI,OAAO,EAClDS,EAAQR,EAAKjB,EAA2BgB,EAAIC,EAAI,OAAO,EAAI,OAC3DS,EAAQR,EAAKlB,EAA2BiB,EAAIC,EAAI,OAAO,EAAI,OAC3DS,EAAQxC,EAAkB+B,GAAMD,GAAMD,EAAI,EAAIX,EAAiB,EAAG,OAAO,EAC/EI,EAAS,CACP,MAAAU,EAAO,MAAAC,EAAO,MAAAC,EAAO,MAAAC,EAAO,MAAAC,EAAO,MAAAC,EAAO,MAAAC,EAAO,MAAAC,EAAO,MAAAC,CAC1D,CACF,KAAO,CACL,GAAM,CAACjB,EAAIC,EAAIC,EAAIC,EAAIC,EAAIC,EAAIC,EAAIC,EAAIC,CAAE,EAAIZ,EACvCa,EAAQxB,EAA+Be,EAAIC,EAAI,OAAO,EACtDS,EAAQzB,EAA+BgB,EAAIC,EAAI,OAAO,EACtDS,EAAQ1B,EAA+BiB,EAAIC,EAAI,OAAO,EACtDS,EAAQ3B,EAA+BkB,EAAIC,EAAI,OAAO,EACtDS,EAAQ5B,EAA+BmB,EAAIC,EAAI,OAAO,EACtDS,EAAQ7B,EAA+BoB,EAAIC,EAAI,OAAO,EACtDS,EAAQ9B,EAA+BqB,EAAIC,EAAI,OAAO,EACtDS,EAAQ/B,EAA+BsB,EAAIC,EAAI,OAAO,EACtDS,EAAQxC,EAAkB+B,EAAI,EAAIb,EAAiB,EAAG,OAAO,EACnEI,EAAS,CACP,MAAAU,EAAO,MAAAC,EAAO,MAAAC,EAAO,MAAAC,EAAO,MAAAC,EAAO,MAAAC,EAAO,MAAAC,EAAO,MAAAC,EAAO,MAAAC,CAC1D,CACF,CACA,GAAIpB,EAAoB,EAAE,SAAW,EACnC,MAAM,IAAI,MAAM,kCAAkCA,EAAoB,EAAE,MAAM,EAAE,EAElF,MAAO,CAAE,OAAAE,EAAQ,cAAAvB,CAAc,CACjC,CCjFA,SAAS0C,IAAkBC,EAAgBC,EAA+B,CACxE,IAAMC,EAAqBC,GAA0BH,EAAWC,CAAa,EAE7E,SAASG,EAAuBC,EAA2B,CACzD,IAAMC,EAAMJ,EAAmB,GAAGG,CAAM,OAAQ,CAAC,EAC3CE,EAAUL,EAAmB,GAAGG,CAAM,WAAY,CAAC,EACzD,MAAO,CAAE,IAAAC,EAAK,QAAAC,CAAQ,CACxB,CAEA,SAASC,EAAkBH,EAA4B,CACrD,IAAMI,EAAUP,EAAmB,GAAGG,CAAM,WAAY,CAAC,EACnDK,EAAOR,EAAmB,GAAGG,CAAM,QAAS,CAAC,EACnD,MAAO,CAAE,QAAAI,EAAS,KAAAC,CAAK,CACzB,CAEA,SAASC,EAA+BN,EAAmC,CACzE,IAAMO,EAAOJ,EAAkB,GAAGH,CAAM,OAAO,EACzCQ,EAAKT,EAAuB,GAAGC,CAAM,KAAK,EAChD,MAAO,CAAE,KAAAO,EAAM,GAAAC,CAAG,CACpB,CAEA,IAAMC,EAA6BC,GAA+Bb,CAAkB,EACpF,MAAO,CACL,kBAAAM,EACA,+BAAAG,EACA,2BAAAG,CACF,CACF,CAEO,SAASE,GACdhB,EACAiB,EACgE,CAChE,IAAMhB,EAAgC,CAAC,EAEjC,CACJ,kBAAAO,EACA,+BAAAG,EACA,2BAAAG,CACF,EAAIf,IAAkBC,EAAWC,CAAa,EAE1CiB,EAEJ,GAAID,EAAO,mBAAoB,CAE7B,IAAME,EAAcF,EAAO,aAAeA,EAAO,YAAY,QAAU,EACvEC,EAAS,CACP,MAAOD,EAAO,mBAAqBT,EAAkB,OAAO,EAAIM,EAA2B,OAAO,EAClG,MAAOA,EAA2B,OAAO,EACzC,MAAOA,EAA2B,OAAO,EACzC,MAAOA,EAA2B,OAAO,EACzC,MAAOA,EAA2B,OAAO,EACzC,MAAOA,EAA2B,OAAO,EACzC,MAAOK,EAAa,EAAIL,EAA2B,OAAO,EAAI,OAC9D,MAAOK,EAAa,EAAIL,EAA2B,OAAO,EAAI,OAC9D,MAAON,EAAkB,OAAO,CAClC,CACF,MACEU,EAAS,CACP,MAAOP,EAA+B,OAAO,EAC7C,MAAOA,EAA+B,OAAO,EAC7C,MAAOA,EAA+B,OAAO,EAC7C,MAAOA,EAA+B,OAAO,EAC7C,MAAOA,EAA+B,OAAO,EAC7C,MAAOA,EAA+B,OAAO,EAC7C,MAAOA,EAA+B,OAAO,EAC7C,MAAOA,EAA+B,OAAO,EAC7C,MAAOH,EAAkB,OAAO,CAClC,EAGF,OAAAY,GAA2BpB,EAAWC,CAAa,EAC5C,CAAE,OAAAiB,EAAQ,cAAAjB,CAAc,CACjC,CC9EO,IAAMoB,GAAN,KAAwB,CAO7B,YAAY,CAAE,UAAAC,EAAW,eAAAC,CAAe,EAAwB,CAAC,EAAG,CANpE,KAAU,MAAQ,oBAUhB,GAHA,KAAK,WAAaD,GAAa,IAC/B,KAAK,gBAAkBC,GAAkB,GAErC,OAAO,KAAK,YAAe,UAAY,KAAK,WAAa,KAAO,EAClE,MAAM,IAAI,MAAM,GAAG,KAAK,KAAK,sDAAsD,EAGrF,GAAI,OAAO,KAAK,iBAAoB,UAAY,KAAK,iBAAmB,GAAK,KAAK,iBAAmB,EACnG,MAAM,IAAI,MAAM,GAAG,KAAK,KAAK,2DAA2D,CAE5F,CAEA,IAAI,WAAoB,CAAE,OAAO,KAAK,UAAY,CAElD,IAAI,gBAAyB,CAAE,OAAO,KAAK,eAAiB,CAC9D,ECLO,IAAMC,GAAN,MAAMA,WAAuBC,EAAmC,CAKrE,YAAYC,EAA0B,CACpC,MAAM,YAAY,EAClBC,GAAeD,CAAM,EACrB,KAAK,QAAUA,CACjB,CAEA,IAAW,QAA2B,CACpC,OAAO,KAAK,OACd,CAEA,IAAW,iBAA2B,CACpC,OAAO,KAAK,OAAO,iBAAmB,KAAK,OAAO,QAAQ,OAAS,CACrE,CAEA,IAAW,iBAA0B,CACnC,MAAO,IAAK,KAAK,gBAAkB,KAAK,OAAO,QAAQ,OAAS,EAClE,CAEO,cAAcE,EAAgBC,EAAiD,CACpF,IAAIC,EAAMC,GAAkBH,EAAGC,EAAO,KAAK,EAC3C,OAAAC,EAASE,GAAQF,EAAK,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,MAAM,EAC5CA,EAAMC,GAAkBD,EAAKD,EAAO,KAAK,EACzCC,EAASE,GAAQF,EAAK,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,MAAM,EAC5CA,EAAMC,GAAkBD,EAAKD,EAAO,KAAK,EACzCC,EAASE,GAAQF,EAAK,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,MAAM,EAC5CA,EAAMC,GAAkBD,EAAKD,EAAO,KAAK,EACzCC,EAASE,GAAQF,EAAK,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,MAAM,EAC5CA,EAAMC,GAAkBD,EAAKD,EAAO,KAAK,EACzCC,EAASE,GAAQF,EAAK,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,MAAM,EAC5CA,EAAMC,GAAkBD,EAAKD,EAAO,KAAK,EACzCC,EAASE,GAAQF,EAAK,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,MAAM,EAC5CA,EAAMC,GAAkBD,EAAKD,EAAO,KAAK,EACzCC,EAAMC,GAAkBD,EAAKD,EAAO,KAAK,EAClCI,GAAUH,EAAKD,EAAO,MAAO,QAAS,EAAK,CACpD,CAEO,aAAaD,EAAgBC,EAAsC,CACxE,IAAIC,EAAM,KAAK,OAAO,mBAClBI,GAAMD,GAAUL,EAAGC,EAAO,MAAqB,QAAS,EAAK,CAAC,EAC9DM,GAAuBP,EAAGC,EAAO,KAA4B,EACjE,OAAAC,EAASE,GAAQF,EAAK,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,MAAM,EAC5CA,EAAMK,GAAuBL,EAAKD,EAAO,KAAK,EAC9CC,EAASE,GAAQF,EAAK,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,MAAM,EAC5CA,EAAMK,GAAuBL,EAAKD,EAAO,KAAK,EAC9CC,EAASE,GAAQF,EAAK,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,MAAM,EAC5CA,EAAMK,GAAuBL,EAAKD,EAAO,KAAK,EAC9CC,EAASE,GAAQF,EAAK,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,MAAM,EAC5CA,EAAMK,GAAuBL,EAAKD,EAAO,KAAK,EAC9CC,EAASE,GAAQF,EAAK,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,MAAM,EAC5CA,EAAMK,GAAuBL,EAAKD,EAAO,KAAK,EAC9CC,EAASE,GAAQF,EAAK,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,CAAC,EAAG,MAAM,EAC5CA,EAAMD,EAAO,MAAQM,GAAuBL,EAAKD,EAAO,KAAK,EAAIC,EACjEA,EAAMD,EAAO,MAAQM,GAAuBL,EAAKD,EAAO,KAAK,EAAIC,EAC1DG,GAAUH,EAAKD,EAAO,MAAO,QAAS,EAAK,CACpD,CAEO,aAAaO,EAAiBC,EAAgC,CACnE,GAAM,CAAE,OAAAR,CAAO,EAAI,KAEnB,GAAI,CAACA,EACH,MAAM,IAAI,MAAM,0CAA0C,EAG5D,OAAUS,EAAK,IAAM,CACnB,IAAIC,EAAiBC,GAAKJ,EAAM,cAAcC,EAAW,EAAK,EAAG,SAAS,EAC1E,OAAAE,EAAc,KAAK,OAAO,QACtBE,GAAUF,EAAa,KAAK,OAAO,OAAO,EAC1CA,EACJA,EAAcA,EAAY,IAAI,GAAG,EAC1B,KAAK,OAAO,mBACf,KAAK,aAAaA,EAAaV,CAAyB,EACxD,KAAK,cAAcU,EAAaV,CAAoC,CAC1E,CAAC,CACH,CAEA,MAAa,QAAQO,EAAkBC,EAAyC,CAC9E,OAAO,KAAK,aAAa,MAAMK,GAAWN,CAAK,EAAGC,CAAS,CAC7D,CAEA,MAAa,OAAOD,EAAkBO,EAAoC,CAAC,EAA+B,CACxG,GAAM,CAAE,UAAAN,EAAW,eAAAO,CAAe,EAAI,IAAIC,GAAkBF,CAAa,EACnEG,EAAW,MAAMJ,GAAWN,CAAK,EACjCN,EAAM,MAAM,KAAK,aAAagB,EAAUT,CAAS,EACjDU,EAAUT,EAAK,IAASU,GAAQlB,CAAG,EAAE,CAAC,EAAE,WAAW,CAAC,EACpDmB,EAAkB,CACtB,MAAOH,EAAS,cAAc,CAAC,EAC/B,OAAQA,EAAS,eAAe,CAAC,CACnC,EAEMI,EAAU,MAAM,KAAK,aAAaH,EAAMD,EAAS,2BAA2B,CAAC,EAAGF,CAAc,EACpGd,EAAI,QAAQ,EACZiB,EAAK,QAAQ,EAEb,IAAMI,EAAQD,EAAQ,IAAKE,GAAQA,EAAI,GAAG,EACpCC,EAASH,EAAQ,IAAKE,GAAQA,EAAI,KAAK,EACvCE,EAAcJ,EAAQ,IAAKE,GAAQA,EAAI,UAAU,EACjDG,EAAaL,EAAQ,IAAKE,GAAQ,KAAK,OAAO,QAAQA,EAAI,KAAK,CAAC,EAgBtE,OAdgBI,GACdL,EAAM,IAAKM,GAAQA,EAAI,QAAQpB,CAAS,CAAC,EACzCgB,EACA,KAAK,OAAO,aACZ,EACF,EAE2B,IAAKK,GAAQ,IAAIC,GAC1CN,EAAOK,CAAG,EACVJ,EAAYI,CAAG,EACfH,EAAWG,CAAG,EACdP,EAAMO,CAAG,EACTT,CACF,CAAC,CAEH,CAEU,qBAA8B,CACtC,MAAO,EACT,CAEU,2BAA2BW,EAA8B,CACjE,OAAOC,GAA2BD,EAAW,KAAK,MAAM,CAC1D,CAEU,cAAcE,EAAuB,CAC7C,IAAMC,EAAc,KAAK,OAAO,aAAevC,GAAe,qBAExDwC,EAAaD,EAAcA,EAAY,OAAS,OACtD,GAAIC,IAAe,GAAKA,IAAe,GAAKA,IAAe,EACzD,MAAM,IAAI,MAAM,oEAAoEA,CAAU,wBAAwB,EAExH,OAAOC,GAAcH,EAAS,KAAK,OAAQ,KAAK,gBAAiBC,CAAW,CAC9E,CAEA,MAAgB,aACdG,EACAC,EACAvB,EACA,CACA,GAAM,CAAE,MAAAwB,EAAO,OAAAC,CAAO,EAAIF,EACpB9B,EAAY,KAAK,IAAI+B,EAAOC,CAAM,EAClCC,EAAoBjC,EAAY+B,EAChCG,EAAoBlC,EAAYgC,EAEhCG,EAAWN,EAAa,MAAM,CAAC,EAC/BO,EAAW,KAAK,OAAO,QAAQ,OAE/B,CAACC,EAAaC,EAAcC,CAAiB,EAAOtC,EAAK,IAAM,CACnE,IAAMuC,EAAWX,EAAa,QAAQ,CAACM,EAAUA,EAAUC,EAAU,KAAK,eAAe,CAAC,EAEpFtB,EAAQ0B,EAAS,MAAM,CAAC,EAAG,EAAG,EAAG,CAAC,EAAG,CAACL,EAAUA,EAAUC,EAAU,CAAC,CAAC,EACtEpB,EAASwB,EAAS,MAAM,CAAC,EAAG,EAAG,EAAG,CAAC,EAAG,CAACL,EAAUA,EAAUC,EAAU,CAAC,CAAC,EACvEnB,EAAc,KAAK,gBAClBwB,GAAQD,EAAS,MAAM,CAAC,EAAG,EAAG,EAAG,CAAC,EAAG,CAACL,EAAUA,EAAUC,EAAU,KAAK,OAAO,QAAQ,MAAM,CAAC,EAAG,CAAC,EACnGM,GAAO,CAAC,EACf,MAAO,CAAC5B,EAAOE,EAAQC,CAAW,CACpC,CAAC,EAEKJ,EAA0C,CAAC,EAC3C8B,EAAa,MAAML,EAAa,MAAM,EACtCM,EAAY,MAAMP,EAAY,MAAM,EAC1C,QAASQ,EAAM,EAAGA,EAAMV,EAAUU,IAChC,QAASC,EAAM,EAAGA,EAAMX,EAAUW,IAChC,QAASC,EAAS,EAAGA,EAASX,EAAUW,IAAU,CAChD,IAAMC,EAAQC,GAAQN,EAAWE,CAAG,EAAEC,CAAG,EAAEC,CAAM,EAAE,CAAC,CAAC,EACrD,GAAI,CAACxC,GAAkByC,EAAQzC,EAAgB,CAC7C,IAAM2C,GAAQJ,EAAMG,GAAQL,EAAUC,CAAG,EAAEC,CAAG,EAAEC,CAAM,EAAE,CAAC,CAAC,GAAKZ,EAAYF,EACrEkB,GAAQN,EAAMI,GAAQL,EAAUC,CAAG,EAAEC,CAAG,EAAEC,CAAM,EAAE,CAAC,CAAC,GAAKZ,EAAYD,EACrEkB,EAAe,KAAK,IAAIR,EAAUC,CAAG,EAAEC,CAAG,EAAEC,CAAM,EAAE,CAAC,CAAC,EAAI,KAAK,OAAO,QAAQA,CAAM,EAAE,EAAKZ,EAAYF,EACvGoB,EAAgB,KAAK,IAAIT,EAAUC,CAAG,EAAEC,CAAG,EAAEC,CAAM,EAAE,CAAC,CAAC,EAAI,KAAK,OAAO,QAAQA,CAAM,EAAE,EAAKZ,EAAYD,EACxG3C,EAAK2D,EAAOE,EAAa,EACzBE,EAAKH,EAAOE,EAAc,EAC1BE,EAAM,CAAE,IAAAV,EAAK,IAAAC,EAAK,OAAAC,CAAO,EACzB,CAAE,WAAAS,EAAY,MAAAC,CAAM,EAAI,KAAK,gBAC/B,MAAM,KAAK,sBAAsBlB,EAAkCgB,CAAG,EACtE,CAAE,WAAY,EAAG,MAAO,CAAE,EAC9B1C,EAAQ,KAAK,CACX,IAAK,IAAI6C,GAAYnE,EAAG+D,EAAG/D,EAAI6D,EAAYE,EAAID,CAAW,EAC1D,MAAAL,EACA,WAAYA,EAAQQ,EACpB,MAAAC,EACA,GAAGF,CACL,CAAC,CACH,CACF,CAIJ,OAAAlB,EAAY,QAAQ,EACpBC,EAAa,QAAQ,EACrBC,EAAkB,QAAQ,EACnB1B,CACT,CAEA,MAAc,sBAAsB8C,EAA4BJ,EAAmD,CACjH,GAAM,CAAE,IAAAV,EAAK,IAAAC,EAAK,OAAAC,CAAO,EAAIQ,EACvBK,EAAc,MAAMD,EAAc,MAAM,EAC9C,OAAO,MAAM,KAAK,OAAO,QAAQ,MAAM,EAAE,KAAK,CAAC,EAC5C,IAAI,CAACE,EAAGC,IAAMF,EAAYf,CAAG,EAAEC,CAAG,EAAEC,CAAM,EAAEe,CAAC,CAAC,EAC9C,IAAI,CAACN,EAAYC,KAAW,CAC3B,WAAAD,EACA,MAAAC,CACF,EAAE,EACD,OAAO,CAACM,EAAKC,IAAUD,EAAI,WAAaC,EAAK,WAAaD,EAAMC,CAAK,CAC1E,CACF,EAjNa7E,GACG,qBAAuB,CAAC,EAAG,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,KAAM,IAAI,EADzE,IAAM8E,GAAN9E,GCNA,IAAM+E,GAAN,cAAyBC,EAAe,CAC7C,YAAYC,EAAqB,GAAM,CACrC,IAAMC,EAAS,CACb,mBAAAD,EACA,aAAcE,GACd,QAAS,CAAC,MAAM,EAChB,GAAIF,EACA,CACA,QAASG,GACT,QAASC,EACX,EACE,CACA,QAASC,GACT,gBAAiB,EACnB,CACJ,EAEA,MAAMJ,CAAM,CACd,CAEA,IAAW,oBAA8B,CACvC,OAAO,KAAK,OAAO,kBACrB,CAEA,IAAW,SAAmB,CAC5B,OAAO,KAAK,OAAO,OACrB,CAEA,MAAa,YAAYK,EAAkBC,EAA6D,CAEtG,OADyB,MAAM,KAAK,OAAOD,EAAOC,CAAa,GACvC,IAAKC,GAAQ,IAAIC,GAAcD,EAAI,MAAOA,EAAI,YAAa,CAAE,MAAOA,EAAI,WAAY,OAAQA,EAAI,WAAY,CAAC,CAAC,CACxI,CAEmB,qBAA8B,CAC/C,OAAO,KAAK,mBAAqBE,GAAoCC,EACvE,CAEmB,2BAA2BC,EAA8F,CAC1I,OAAO,MAAM,2BAA2BA,CAAS,CACnD,CACF,EClDO,SAASC,IAAiBC,EAAuBC,EAAqB,GAAM,CACjF,IAAMC,EAAM,IAAIC,GAAWF,CAAkB,EAC7C,OAAAC,EAAI,eAAeF,CAAO,EACnBE,CACT,CCPO,IAAME,GAAN,cAAsCC,EAAkB,CAAxD,kCACL,KAAmB,MAAQ,0BAC7B,ECNO,IAAMC,GAAN,KAAwB,CAE7B,MAAa,KAAKC,EAA2D,CAC3E,OAAOA,EAAY,MAAM,KAAK,IAAI,CAAC,CACrC,CAEA,MAAa,KAAkB,CAC7B,MAAM,IAAI,MAAM,yCAAyC,CAC3D,CACF,ECFA,eAAsBC,GACpBC,EACAC,EAEAC,EACAC,EAEAC,EAAwF,CAAC,CAAE,YAAAC,CAAY,IAAMA,EAC7G,CACA,IAAMC,EAAYN,EAAc,IAAKO,GAAkBC,GAAoBD,CAAY,EACnFH,EAAoBG,CAAY,EAChCA,EAAa,SAAU,EACrBE,EAAgDN,IACpDF,aAAoBS,GAChB,MAAMC,GAAmBV,EAAOK,CAAS,EACzC,MAAMM,GAAaX,EAAOK,CAAS,GAEnCO,EAAU,MAAMX,EAAeO,CAAK,EAC1C,OAAAA,EAAM,QAASK,GAAMA,aAAgBJ,IAAUI,EAAE,QAAQ,CAAC,EACnDD,CACT,CAEA,eAAsBE,GACpBR,EACAN,EAEAe,EACAb,EAEAC,EACA,CACA,OAAOL,GACL,CAACQ,CAAY,EACbN,EACA,MAAOQ,GAAUO,EAAcP,EAAM,CAAC,CAAC,EACvCN,EACAC,CACF,CACF,CC3CO,IAAMa,GAAgB,GAEhBC,GAAc,CACzB,IAAIC,GAAM,SAAU,QAAQ,EAC5B,IAAIA,GAAM,SAAU,QAAQ,EAC5B,IAAIA,GAAM,SAAU,QAAQ,EAC5B,IAAIA,GAAM,SAAU,QAAQ,EAC5B,IAAIA,GAAM,SAAU,QAAQ,CAC9B,EAEaC,GAAqC,CAAC,QAAS,QAAS,MAAM,ECFpE,IAAMC,GAAN,cAA+BC,EAAe,CACnD,aAAc,CACZ,IAAMC,EAAS,CACb,mBAAoB,GACpB,aAAcC,GACd,QAAS,CAAC,MAAM,EAChB,QAASC,GACT,QAASC,GACT,mBAAoB,GACpB,YAAa,CAAC,EAAG,GAAI,GAAI,GAAI,IAAK,IAAK,GAAG,CAC5C,EAEA,MAAMH,CAAM,CACd,CAEA,IAAW,SAAmB,CAC5B,OAAO,KAAK,OAAO,OACrB,CAEA,MAAa,YAAYI,EAAkBC,EAA6D,CAEtG,OADyB,MAAM,KAAK,OAAOD,EAAOC,CAAa,GACvC,IAAKC,GAAQ,IAAIC,GAAcD,EAAI,MAAOA,EAAI,YAAa,CAAE,MAAOA,EAAI,WAAY,OAAQA,EAAI,WAAY,CAAC,CAAC,CACxI,CAEmB,qBAA8B,CAC/C,MAAO,0BACT,CAEmB,2BAA2BE,EAA8F,CAC1I,OAAO,MAAM,2BAA2BA,CAAS,CACnD,CACF,ECzBO,IAAMC,GAAO,CAClB,eAAgB,IAAIC,GACpB,iBAAkB,IAAIC,GACtB,WAAY,IAAIC,GAChB,kBAAmB,IAAIC,GACvB,sBAAuB,IAAIC,GAC3B,mBAAoB,IAAIC,GACxB,kBAAmB,IAAIC,GACvB,aAAc,IAAIC,EACpB,EASaC,IAAiB,CAACC,EAAkBC,IAA6DX,GAAK,eAAe,YAAYU,EAAOC,CAAO,EAS/IC,IAAmB,CAACF,EAAkBC,IAA+DX,GAAK,iBAAiB,YAAYU,EAAOC,CAAO,EASrJE,IAAa,CAACH,EAAkBC,IAA0DX,GAAK,WAAW,YAAYU,EAAOC,CAAO,EASpIG,IAAuBJ,GAAmEV,GAAK,kBAAkB,gBAAgBU,CAAK,EAWtIK,IAA2BL,GAAmEV,GAAK,sBAAsB,gBAAgBU,CAAK,EAY9IM,IAAyBN,GAA6DV,GAAK,mBAAmB,sBAAsBU,CAAK,EASzIO,IAA4BP,GAAmEV,GAAK,kBAAkB,mBAAmBU,CAAK,EAS9IQ,IAAuBR,GAAiFV,GAAK,aAAa,oBAAoBU,CAAK,EAEnJS,IAA2BC,GAAgBpB,GAAK,eAAe,KAAKoB,CAAG,EACvEC,IAA6BD,GAAgBpB,GAAK,iBAAiB,KAAKoB,CAAG,EAC3EE,IAAuBF,GAAgBpB,GAAK,WAAW,KAAKoB,CAAG,EAC/DG,IAAyBH,GAAgBpB,GAAK,kBAAkB,KAAKoB,CAAG,EACxEI,IAA6BJ,GAAgBpB,GAAK,sBAAsB,KAAKoB,CAAG,EAChFK,IAA4BL,GAAgBpB,GAAK,mBAAmB,KAAKoB,CAAG,EAC5EM,IAA2BN,GAAgBpB,GAAK,kBAAkB,KAAKoB,CAAG,EAC1EO,IAAsBP,GAAgBpB,GAAK,aAAa,KAAKoB,CAAG,EAGhEQ,IAAyBT,IACzBU,IAAcpB,IACdqB,IAAkBhB,ICtGxB,IAAMiB,GAAN,cAAqEC,EAAwB,CAClG,YAEYC,EAEAC,EAEAC,EACV,CACA,MAAM,EANI,gBAAAF,EAEA,WAAAC,EAEA,oBAAAC,CAGZ,CACF,EAEaC,GAAN,cAAmFL,EAA0E,CAClK,MAAsB,KAA+C,CACnE,IAAMM,EAAgB,MAAM,KAAK,WAE3BC,EAAwB,MAAMC,GAClCF,EACA,KAAK,MACL,MAAOG,GAAU,QAAQ,IACvBA,EAAM,IAAKC,GAASC,GAAK,kBAAkB,mBAAmBD,CAAI,CAA6B,CACjG,EACA,KAAK,cACP,EAEA,OAAOJ,EAAc,IACnB,CAACM,EAAcC,IAAMC,GAAmCF,EAAcL,EAAsBM,CAAC,CAAC,CAChG,CACF,CAEA,kBAAmB,CACjB,OAAO,IAAIE,GAA2B,KAAM,KAAK,KAAK,CACxD,CACF,EAEaC,GAAN,cAAsFhB,EAA8F,CACzL,MAAsB,KAAyD,CAC7E,IAAMY,EAAe,MAAM,KAAK,WAChC,GAAI,CAACA,EACH,OAGF,IAAMK,EAAkB,MAAMC,GAC5BN,EACA,KAAK,MACJF,GAASC,GAAK,kBAAkB,mBAAmBD,CAAI,EACxD,KAAK,cACP,EAEA,OAAOI,GAA0BF,EAAcK,CAAe,CAChE,CAEA,kBAAmB,CACjB,OAAO,IAAIE,GAA8B,KAAM,KAAK,KAAK,CAC3D,CACF,EAEaC,GAAN,cAAuHf,EAAuC,CAC1J,kBAAmB,CAC1B,OAAO,IAAIgB,GAA4C,KAAM,KAAK,KAAK,CACzE,CAEA,qBAAsB,CACpB,OAAO,IAAIC,GAA8B,KAAM,KAAK,KAAK,CAC3D,CACF,EAEaC,GAAN,cAA0HP,EAA0C,CAChK,kBAAmB,CAC1B,OAAO,IAAIQ,GAA+C,KAAM,KAAK,KAAK,CAC5E,CAEA,oBAAqB,CACnB,OAAO,IAAIC,GAAgC,KAAM,KAAK,KAAK,CAC7D,CACF,EC3EO,IAAMC,GAAN,cAAkEC,EAAwB,CAC/F,YAEYC,EAEAC,EAEAC,EACV,CACA,MAAM,EANI,gBAAAF,EAEA,WAAAC,EAEA,oBAAAC,CAGZ,CACF,EAEaC,GAAN,cAAgFL,EAAuE,CAC5J,MAAsB,KAA+C,CACnE,IAAMM,EAAgB,MAAM,KAAK,WAC3BC,EAAqB,MAAMC,GAC/BF,EACA,KAAK,MACL,MAAOG,GAAU,QAAQ,IAAIA,EAAM,IAAKC,GAASC,GAAK,aAAa,oBAAoBD,CAAI,CAAoC,CAAC,EAChI,KAAK,cACP,EACA,OAAOJ,EAAc,IAAI,CAACM,EAAcC,IAAM,CAC5C,GAAM,CAAE,IAAAC,EAAK,OAAAC,EAAQ,kBAAAC,CAAkB,EAAIT,EAAmBM,CAAC,EAC/D,OAAOI,GAAcC,GAAiBN,EAAcG,EAAQC,CAAiB,EAAGF,CAAG,CACrF,CAAC,CACH,CAEA,qBAAsB,CACpB,OAAO,IAAIK,GAA8B,KAAM,KAAK,KAAK,CAC3D,CACF,EAEaC,GAAN,cAAmFpB,EAA2F,CACnL,MAAsB,KAAyD,CAC7E,IAAMY,EAAe,MAAM,KAAK,WAChC,GAAI,CAACA,EAAc,OACnB,GAAM,CAAE,IAAAE,EAAK,OAAAC,EAAQ,kBAAAC,CAAkB,EAAI,MAAMK,GAC/CT,EACA,KAAK,MACJF,GAASC,GAAK,aAAa,oBAAoBD,CAAI,EACpD,KAAK,cACP,EACA,OAAOO,GAAcC,GAAiBN,EAAcG,EAAQC,CAAiB,EAAGF,CAAG,CACrF,CAEA,qBAAsB,CACpB,OAAO,IAAIQ,GAAiC,KAAM,KAAK,KAAK,CAC9D,CACF,EAEaC,GAAN,cAAoHlB,EAAoC,CACpJ,qBAAsB,CAC7B,OAAO,IAAImB,GAA+C,KAAM,KAAK,KAAK,CAC5E,CAEA,qBAAsB,CACpB,OAAO,IAAIC,GAA8B,KAAM,KAAK,KAAK,CAC3D,CACF,EAEaC,GAAN,cAAuHN,EAAuC,CAC1J,qBAAsB,CAC7B,OAAO,IAAIO,GAAkD,KAAM,KAAK,KAAK,CAC/E,CAEA,oBAAqB,CACnB,OAAO,IAAIC,GAAgC,KAAM,KAAK,KAAK,CAC7D,CACF,ECzEO,IAAMC,GAAN,cAAqEC,EAAwB,CAClG,YAEYC,EAEAC,EACV,CACA,MAAM,EAJI,gBAAAD,EAEA,WAAAC,CAGZ,CACF,EAEaC,GAAN,cAAsGJ,EAAyE,CACpL,MAAsB,KAA8C,CAClE,IAAMK,EAAgB,MAAM,KAAK,WAQjC,OAPoB,MAAMC,GACxBD,EACA,KAAK,MACJE,GAAU,QAAQ,IAAIA,EAAM,IAAKC,GAASC,GAAK,mBAAmB,sBAAsBD,CAAI,CAA0B,CAAC,EACxH,KACCE,GAAiBA,EAAa,UAAU,MAAM,KAAM,CAAE,iBAAkB,EAAK,CAAC,CACjF,GACmB,IAAI,CAACC,EAAYC,IAAMC,GAAkCR,EAAcO,CAAC,EAAGD,CAAU,CAAC,CAC3G,CAEA,qBAAsB,CACpB,OAAO,IAAIG,GAA+C,KAAM,KAAK,KAAK,CAC5E,CAEA,kBAAmB,CACjB,OAAO,IAAIC,GAA4C,KAAM,KAAK,KAAK,CACzE,CACF,EAEaC,GAAN,cAAwGhB,EAA6F,CAC1M,MAAsB,KAAwD,CAC5E,IAAMU,EAAe,MAAM,KAAK,WAChC,GAAI,CAACA,EAAc,OACnB,IAAMC,EAAa,MAAMM,GACvBP,EACA,KAAK,MACJF,GAASC,GAAK,mBAAmB,sBAAsBD,CAAI,EAC5D,KAECE,GAAiBA,EAAa,UAAU,MAAM,KAAM,CAAE,iBAAkB,EAAK,CAAC,CACjF,EACA,OAAOG,GAAyBH,EAAcC,CAAU,CAC1D,CAEA,qBAAsB,CACpB,OAAO,IAAIO,GAAkD,KAAM,KAAK,KAAK,CAC/E,CAEA,kBAAmB,CACjB,OAAO,IAAIC,GAA+C,KAAM,KAAK,KAAK,CAC5E,CACF,ECnDO,IAAMC,GAAN,cAAkEC,EAAwB,CAC/F,YAEYC,EAEAC,EAEAC,EACV,CACA,MAAM,EANI,gBAAAF,EAEA,WAAAC,EAEA,wBAAAC,CAGZ,CAEA,IAAc,aAAyD,CACrE,OAAO,KAAK,mBACRC,GAAK,sBACLA,GAAK,iBACX,CACF,EAEaC,GAAN,cAAgFN,EAAqE,CAC1J,MAAsB,KAA6C,CACjE,IAAMO,EAAgB,MAAM,KAAK,WAC3BC,EAAaD,EAAc,IAAKE,GAAQA,EAAI,SAAS,EACrDC,EAAgD,KAAK,iBAAoBC,GAC3E,MAAMC,GAAmB,KAAK,MAAOJ,CAAU,EAC/C,MAAMK,GAAa,KAAK,MAAOL,CAAU,EACvCM,EAAsB,MAAM,QAAQ,IAAIJ,EAAM,IAAKK,GAAS,KAAK,YAAY,gBAAgBA,CAAI,CAAC,CAAC,EACzG,OAAAL,EAAM,QAASM,GAAMA,aAAgBL,IAAUK,EAAE,QAAQ,CAAC,EAC3CT,EACZ,OAAO,CAACU,EAAeC,IAAMJ,EAAoBI,CAAC,CAAC,EACnD,IAAI,CAACC,EAAcD,IAAME,GAAiCD,EAAcL,EAAoBI,CAAC,CAAC,CAAC,CAEpG,CAEA,qBAAsB,CACpB,OAAO,IAAIG,GAA+C,KAAM,KAAK,KAAK,CAC5E,CAEA,kBAAmB,CACjB,OAAO,IAAIC,GAA4C,KAAM,KAAK,KAAK,CACzE,CAEA,qBAAsB,CACpB,OAAO,IAAIC,GAA8B,KAAM,KAAK,KAAK,CAC3D,CACF,EAEaC,GAAN,cAAmFxB,EAAyF,CACjL,MAAsB,KAAuD,CAC3E,IAAMmB,EAAe,MAAM,KAAK,WAChC,GAAI,CAACA,EACH,OAEF,GAAM,CAAE,UAAAM,CAAU,EAAIN,EAChBT,EAAgD,KAAK,iBAAoBC,GAC3E,MAAMC,GAAmB,KAAK,MAAO,CAACa,CAAS,CAAC,EAChD,MAAMZ,GAAa,KAAK,MAAO,CAACY,CAAS,CAAC,EACxCC,EAAY,MAAM,KAAK,YAAY,gBAAgBhB,EAAM,CAAC,CAAC,EACjE,OAAAA,EAAM,QAASM,GAAMA,aAAgBL,IAAUK,EAAE,QAAQ,CAAC,EACnDI,GAAiCD,EAAcO,CAAS,CACjE,CAEA,qBAAsB,CACpB,OAAO,IAAIC,GAAkD,KAAM,KAAK,KAAK,CAC/E,CAEA,kBAAmB,CACjB,OAAO,IAAIC,GAA+C,KAAM,KAAK,KAAK,CAC5E,CAEA,oBAAqB,CACnB,OAAO,IAAIC,GAAgC,KAAM,KAAK,KAAK,CAC7D,CACF,EC1EO,IAAMC,GAAN,cAA2CC,EAAwB,CAExE,YAAsBC,EAA4BC,EAAgC,IAAIC,GAAyB,CAC7G,MAAM,EADc,WAAAF,EAA4B,aAAAC,CAElD,CACF,EAEaE,GAAN,cAAiCL,EAAqC,CAC3E,MAAsB,KAAgC,CACpD,GAAM,CAAE,MAAAE,EAAO,QAAAC,CAAQ,EAAI,KACvBG,EACJ,GAAIH,aAAmBI,GAAyBD,EAASE,GAAK,iBAAiB,YAAYN,EAAOC,CAAO,UAChGA,aAAmBC,GAAuBE,EAASE,GAAK,eAAe,YAAYN,EAAOC,CAAO,UACjGA,aAAmBM,GAAmBH,EAASE,GAAK,WAAW,YAAYN,EAAOC,CAAO,MAC7F,OAAM,IAAI,MAAM,sHAAsH,EAC3I,OAAOG,CACT,CAEQ,gCAAmE,CACzE,OAAO,IAAI,QAAiC,CAACI,EAASC,IAAW,CAC/D,KAAK,IAAI,EACN,KAAMC,GAAeF,EAAQE,EAAW,IAAKC,GAAcC,GAAwB,CAAC,EAAGD,CAAS,CAAC,CAAC,CAAC,EACnG,MAAOE,GAAQJ,EAAOI,CAAG,CAAC,CAC/B,CAAC,CACH,CAEA,kBAAkBC,EAAqB,GAAO,CAC5C,OAAO,IAAIC,GACT,KAAK,+BAA+B,EACpC,KAAK,MACLD,CACF,CACF,CAEA,qBAAsB,CACpB,OAAO,IAAIE,GACT,KAAK,+BAA+B,EACpC,KAAK,KACP,CACF,CAEA,kBAAmB,CACjB,OAAO,IAAIC,GACT,KAAK,+BAA+B,EACpC,KAAK,KACP,CACF,CACF,EAEaC,GAAN,cAAmCpB,EAA+C,CACvF,MAAsB,KAA0C,CAC9D,IAAMqB,EAAiB,MAAM,IAAIhB,GAAmB,KAAK,MAAO,KAAK,OAAO,EACxEiB,EAAgCD,EAAe,CAAC,EACpD,OAAAA,EAAe,QAASE,GAAkB,CACpCA,EAAc,MAAQD,EAA8B,QAAOA,EAAgCC,EACjG,CAAC,EACMD,CACT,CAEQ,+BAA4E,CAElF,OAAO,IAAI,QAA2C,MAAOZ,GAAY,CACvE,IAAMG,EAAY,MAAM,KAAK,IAAI,EACjCH,EAAQG,EAAYC,GAA4B,CAAC,EAAGD,CAAS,EAAI,MAAS,CAC5E,CAAC,CACH,CAEA,kBAAkBG,EAAqB,GAAO,CAC5C,OAAO,IAAIQ,GACT,KAAK,8BAA8B,EACnC,KAAK,MACLR,CACF,CACF,CAEA,qBAAsB,CACpB,OAAO,IAAIS,GACT,KAAK,8BAA8B,EACnC,KAAK,KACP,CACF,CAEA,kBAAmB,CACjB,OAAO,IAAIC,GACT,KAAK,8BAA8B,EACnC,KAAK,KACP,CACF,CACF,ECjGO,SAASC,IAAiBC,EAAkBC,EAAgC,IAAIC,GAA+C,CACpI,OAAO,IAAIC,GAAqBH,EAAOC,CAAO,CAChD,CAEO,SAASG,GAAeJ,EAAkBC,EAAgC,IAAIC,GAA6C,CAChI,OAAO,IAAIG,GAAmBL,EAAOC,CAAO,CAC9C,CCLA,eAAsBK,IAAuBC,EAAkBC,EAAiG,CAC9J,OAAOC,GAAeF,EAAO,IAAIG,GAAsBF,EAAgB,CAAE,cAAAA,CAAc,EAAI,CAAC,CAAC,CAAC,EAC3F,kBAAkB,EAClB,oBAAoB,CACzB,CAEA,eAAsBG,IAAmBJ,EAAkBK,EAAoC,CAAC,EAA4E,CAC1K,OAAOH,GAAeF,EAAO,IAAIM,GAAkBD,CAAa,CAAC,EAC9D,kBAAkB,EAClB,oBAAoB,CACzB,CAEO,IAAME,IAAWR,IClBjB,SAASS,GAAkBC,EAA+BC,EAA+B,CAC9F,GAAID,EAAK,SAAWC,EAAK,OAAQ,MAAM,IAAI,MAAM,gDAAgD,EACjG,IAAMC,EAAQ,MAAM,KAAKF,CAAI,EACvBG,EAAQ,MAAM,KAAKF,CAAI,EAC7B,OAAO,KAAK,KACVC,EACG,IAAI,CAACE,EAAKC,IAAMD,EAAMD,EAAME,CAAC,CAAC,EAC9B,OAAO,CAACC,EAAKC,IAASD,EAAOC,EAAOA,EAAO,CAAC,CACjD,CACF,CCJO,IAAMC,GAAN,MAAMC,CAAY,CAIvB,YAAYC,EAAkJC,EAAoB,GAAK,CACrL,KAAK,mBAAqBA,EAC1B,IAAMC,EAAa,MAAM,QAAQF,CAAM,EAAIA,EAAS,CAACA,CAAM,EAC3D,GAAI,CAACE,EAAW,OAAQ,MAAM,IAAI,MAAM,yDAAyD,EACjG,IAAIC,EAAQ,EACNC,EAAoB,IAAM,UAAUD,GAAO,GACjD,KAAK,oBAAsBD,EAAW,IAAKG,GAAS,CAClD,GAAIA,aAAgBC,GAAwB,OAAOD,EACnD,GAAIA,aAAgB,aAAc,OAAO,IAAIC,GAAuBF,EAAkB,EAAG,CAACC,CAAI,CAAC,EAC/F,GAAIA,EAAK,YAAcA,EAAK,sBAAsB,aAAc,OAAO,IAAIC,GAAuBF,EAAkB,EAAG,CAACC,EAAK,UAAU,CAAC,EACxI,MAAM,IAAI,MAAM,qMAAqM,CACvN,CAAC,CACH,CAEA,IAAW,oBAA+C,CAAE,OAAO,KAAK,mBAAqB,CAE7F,IAAW,mBAA4B,CAAE,OAAO,KAAK,kBAAoB,CAElE,oBAAoBE,EAA+BC,EAAqC,CAC7F,OAAOA,EACJ,IAAKC,GAAMC,GAAkBD,EAAGF,CAAe,CAAC,EAChD,OAAO,CAACI,EAAIC,IAAOD,EAAKC,EAAI,CAAC,GAAKJ,EAAY,QAAU,EAC7D,CAEO,gBAAgBD,EAA0C,CAC/D,OAAO,KAAK,mBACT,IAAI,CAAC,CAAE,YAAAC,EAAa,MAAAK,CAAM,IAAM,IAAIC,GAAUD,EAAO,KAAK,oBAAoBN,EAAiBC,CAAW,CAAC,CAAC,EAC5G,OAAO,CAACO,EAAMC,IAAUD,EAAK,SAAWC,EAAK,SAAWD,EAAOC,CAAK,CACzE,CAEO,cAAcT,EAA0C,CAC7D,IAAMU,EAAY,KAAK,gBAAgBV,CAAe,EACtD,OAAQU,EAAU,SAAW,KAAK,mBAAsBA,EAAY,IAAIH,GAAU,UAAWG,EAAU,QAAQ,CACjH,CAEO,QAAc,CACnB,MAAO,CACL,kBAAmB,KAAK,mBACxB,mBAAoB,KAAK,oBAAoB,IAAKC,GAAOA,EAAG,OAAO,CAAC,CACtE,CACF,CAEA,OAAc,SAASC,EAAwB,CAC7C,IAAMC,EAAqBD,EAAK,mBAAmB,IAAKD,GAAYZ,GAAuB,SAASY,CAAE,CAAC,EACvG,OAAO,IAAInB,EAAYqB,EAAoBD,EAAK,iBAAiB,CACnE,CACF,EClDO,SAASE,IAAuBC,EAAuB,CAC5D,IAAMC,EAAM,IAAIC,GAChB,OAAAD,EAAI,eAAeD,CAAO,EACnBC,CACT,CCHO,SAASE,IAAiBC,EAAYC,EAA4B,CACvE,GAAM,CAAE,MAAAC,EAAO,OAAAC,CAAO,EAAI,IAAIC,GAAWH,EAAW,MAAOA,EAAW,MAAM,EAE5E,GAAIC,GAAS,GAAKC,GAAU,EAC1B,MAAM,IAAI,MAAM,uCAAuC,KAAK,UAAU,CAAE,MAAAD,EAAO,OAAAC,CAAO,CAAC,CAAC,EAAE,EAG5F,GAAI,MAAM,QAAQH,CAAO,EAEvB,OAAQA,EAAuB,IAAKK,GAAQN,IAAcM,EAAK,CAAE,MAAAH,EAAO,OAAAC,CAAO,CAAgB,CAAC,EAGlG,GAAIG,GAAoBN,CAAO,EAAG,CAChC,IAAMO,EAAmBP,EAAQ,UAAU,QAAQE,EAAOC,CAAM,EAC1DK,EAAmBR,EAAQ,mBAAmB,QAAQO,EAAiB,IAAI,MAAOA,EAAiB,IAAI,MAAM,EACnH,OAAOE,GAAwBC,GAAwBV,EAASO,CAAgB,EAAGC,CAAgB,CACrG,CAEA,OAAIG,GAAoBX,CAAO,EACtBU,GAAwBV,EAASA,EAAQ,UAAU,QAAQE,EAAOC,CAAM,CAAC,EAG9EH,aAAmBY,IAAiBZ,aAAmBa,GACjDb,EAAgB,QAAQE,EAAOC,CAAM,EAGxCH,CACT,CCTO,IAAMc,IAAcA", "names": ["tfjs_esm_exports", "__export", "Ai", "Go", "Wo", "vc", "Sc", "Nc", "kc", "no", "Uo", "Ea", "Aa", "Di", "$i", "Ho", "qo", "Ko", "Xo", "jo", "Yo", "Ri", "Hl", "Ul", "wg", "Zo", "Fi", "Da", "$a", "ql", "__", "zb", "Xy", "fo", "Jo", "ho", "Ap", "Kl", "Oi", "Qo", "Dp", "ts", "es", "Ra", "Fa", "rs", "ns", "Ma", "Oa", "os", "Zy", "Ta", "jl", "Pa", "ss", "$p", "Rp", "Xl", "is", "Zl", "Yl", "Qd", "w0", "Bb", "Fp", "ls", "La", "Zd", "za", "us", "cs", "Mi", "ps", "Op", "Jl", "Ba", "ms", "fs", "th", "ds", "Yi", "Zi", "pp", "Va", "Pi", "qh", "Ga", "hs", "Yy", "Mp", "go", "Pp", "Ce", "gs", "xs", "ys", "Bo", "Cs", "Xa", "Th", "Un", "bs", "Wa", "Ua", "Ha", "ws", "Is", "A_", "qa", "Ka", "ja", "E_", "nft", "pd", "Dd", "oft", "vs", "Ns", "Li", "tu", "Ql", "eu", "Ss", "ks", "Ts", "_s", "Es", "As", "Tc", "Ya", "Ds", "zi", "Ja", "Qa", "tl", "Za", "V0", "$s", "Bi", "jr", "Ih", "Vi", "Rs", "sft", "Fs", "Os", "Ms", "_c", "po", "Lp", "zp", "Bp", "ru", "D0", "Vp", "as", "Ps", "Je", "Ls", "Vs", "Gi", "Bs", "rl", "zs", "el", "Gs", "pl", "Ws", "Us", "Il", "nl", "sl", "Wi", "Hs", "Wc", "Xs", "js", "qs", "Ks", "Ui", "Qs", "Ys", "Hi", "nu", "il", "ou", "su", "al", "qi", "Zs", "iu", "ti", "ec", "xo", "ll", "au", "lu", "uu", "ei", "Js", "nn", "ri", "ni", "Lt", "le", "ol", "oo", "ul", "cl", "so", "cu", "Ki", "pu", "ift", "ml", "ji", "Xi", "_e", "fx", "dx", "K", "EE", "tm", "cc", "ra", "hx", "gx", "xx", "yx", "bx", "wx", "xu", "Ix", "sx", "S", "$E", "oa", "Cx", "vx", "Sx", "yu", "Nx", "FE", "q5", "OE", "sa", "Hr", "_y", "wt", "xQ", "J", "kx", "vr", "un", "Sn", "ie", "Tx", "_x", "Ex", "Ax", "CR", "rm", "Nn", "om", "Dx", "Rx", "fft", "bu", "sm", "xh", "mc", "im", "pn", "aO", "mh", "G0", "Fx", "ia", "IQ", "du", "ME", "Ox", "Sdt", "Tt", "Ndt", "ut", "Mx", "Px", "dN", "wu", "aa", "vdt", "Cdt", "hN", "Bn", "LE", "L", "$r", "am", "Lx", "Ke", "je", "zx", "fc", "Au", "Co", "Adt", "Ddt", "la", "Qp", "Qz", "Ru", "ua", "r8", "Ey", "oE", "v0", "Wp", "Yg", "Umt", "k1", "X6", "Y6", "Re", "cn", "wl", "Iu", "fn", "s8", "vR", "JN", "Mr", "bm", "Bx", "Vx", "Gx", "De", "Xr", "oF", "Cu", "yl", "Vn", "xN", "VE", "xtt", "ytt", "UR", "Wx", "Nr", "vu", "qx", "lm", "Su", "Fr", "Nu", "um", "Kx", "aY", "GE", "Bt", "O2", "Sr", "ku", "Xx", "WE", "kn", "Ne", "lh", "UE", "sF", "gl", "lo", "Yx", "Zx", "gJ", "iF", "dc", "X5", "$", "HE", "qE", "Ut", "Ch", "xl", "ci", "ca", "ar", "wr", "k", "KE", "mn", "jE", "XE", "YE", "ZE", "Jx", "qr", "_u", "mx", "Qx", "kdt", "JE", "QE", "tA", "eA", "CA", "xc", "vA", "Gn", "SA", "pa", "_dt", "bl", "sy", "Xp", "yJ", "$_", "rc", "wQ", "aF", "Or", "cm", "Edt", "R", "dr", "NA", "kA", "TA", "_A", "Du", "pm", "mm", "pt", "Z5", "$u", "dh", "fm", "dm", "xJ", "Q", "OK", "$dt", "Wmt", "Vmt", "Gmt", "BT", "EA", "Ew", "en", "iy", "iY", "hm", "gm", "Ot", "xm", "gh", "ym", "yc", "Be", "Eu", "ui", "Tu", "lY", "t8", "sY", "hr", "ge", "Wt", "wm", "Wn", "Fe", "So", "ay", "uY", "at", "mt", "lc", "ly", "li", "ir", "Oe", "pi", "uy", "AA", "DA", "$A", "FA", "Io", "IA", "B", "Rr", "Tdt", "cy", "Ac", "Vt", "Cm", "py", "mft", "pft", "vm", "gr", "ur", "OA", "y", "Z6", "J6", "my", "Ux", "Zmt", "VF", "X2", "KO", "jm", "Hmt", "Jz", "T$e", "Cd", "Ie", "dy", "ke", "vt", "zq", "f0", "Bq", "Vq", "Gq", "Wq", "br", "r", "Kt", "e", "Uq", "n", "o", "Gl", "W_", "gft", "G_", "He", "yo", "t", "zn", "R_", "F_", "oc", "qe", "bo", "nc", "wo", "L_", "V_", "M_", "Ln", "B_", "Hp", "Jg", "k0", "s", "i", "a", "u", "l", "oi", "O_", "fK", "P_", "Up", "z_", "N0", "xt", "c", "p", "m", "f", "d", "TE", "_E", "nA", "rA", "sN", "sA", "oA", "iN", "aA", "iA", "aN", "uA", "lA", "lN", "pA", "cA", "uN", "h", "g", "fA", "mA", "cN", "dA", "gA", "hA", "ty", "w", "I", "N", "E", "A", "b", "F", "M", "V", "G", "W", "q", "H", "hh", "c_t", "xA", "BX", "VX", "GX", "WX", "UX", "HX", "hc", "$k", "hw", "e_", "KH", "jH", "XH", "YH", "RC", "n_", "r_", "it", "re", "Xe", "be", "de", "Ee", "On", "lr", "Zn", "Br", "P", "U", "x", "D", "Yu", "Y", "dt", "wp", "Pt", "Jt", "Zt", "zo", "j", "Z", "et", "nt", "st", "lt", "ot", "Xu", "ft", "gt", "Ct", "Rt", "Dt", "Ht", "bt", "$t", "or", "eo", "qt", "pe", "ye", "Ae", "Vr", "Gr", "Jn", "Qn", "Qr", "Ca", "Ti", "Vd", "Ud", "Er", "va", "c_", "Gd", "zl", "bp", "Sa", "MC", "Ig", "PC", "Cg", "tn", "vg", "LC", "zC", "Mg", "jC", "Yt", "ka", "p_", "m_", "Sg", "BC", "c0", "VC", "Wd", "GC", "Ng", "kg", "Bl", "WC", "_g", "Tg", "UC", "Gg", "Hd", "HC", "y_", "Wg", "Ip", "qC", "KC", "x_", "XC", "d_", "YC", "Eg", "Ag", "ZC", "JC", "QC", "g_", "tv", "ev", "rv", "Zu", "nv", "ov", "Dg", "sv", "qd", "iv", "av", "lv", "p0", "Ug", "h_", "Kd", "uv", "yv", "cv", "pv", "mv", "$g", "Rg", "fv", "dv", "Fg", "Og", "hv", "gv", "Mn", "Np", "I_", "w_", "m0", "Lq", "xv", "f_", "bv", "wv", "Iv", "Cv", "vv", "Sv", "Nv", "kv", "Tv", "_v", "Ev", "Av", "Dv", "$v", "Rv", "Fv", "Ov", "Mv", "Pv", "Lv", "zv", "Bv", "Vv", "Gv", "Wv", "Uv", "Hv", "qv", "Kv", "jv", "Xv", "Yv", "Zv", "Jv", "Qv", "tS", "eS", "rS", "nS", "oS", "sS", "iS", "aS", "lS", "uS", "cS", "pS", "mS", "fS", "dS", "hS", "gS", "xS", "yS", "bS", "wS", "IS", "CS", "vS", "SS", "NS", "kS", "TS", "_S", "ES", "AS", "DS", "$S", "RS", "FS", "OS", "MS", "PS", "LS", "zS", "BS", "VS", "GS", "WS", "US", "HS", "qS", "KS", "jS", "XS", "YS", "ZS", "JS", "QS", "t0", "e0", "r0", "n0", "o0", "s0", "Pg", "Lg", "jd", "i0", "a0", "Cp", "zg", "vp", "Sp", "l0", "X", "ct", "Ft", "me", "Ye", "Ze", "se", "ne", "yr", "to", "Na", "Bg", "Xd", "u0", "on", "Vl", "Vg", "iq", "aq", "lq", "uq", "cq", "pq", "mq", "fq", "dq", "hq", "gq", "xq", "yq", "bq", "wq", "Iq", "Cq", "vq", "Sq", "Nq", "kq", "Tq", "_q", "Eq", "Aq", "Dq", "$q", "Rq", "Fq", "Oq", "Mq", "Hg", "b_", "qg", "Kg", "Pq", "JH", "fnr", "ZH", "QH", "FC", "s_", "o_", "Pn", "C_", "jg", "Hq", "kp", "qq", "Kq", "jq", "Xq", "_", "$e", "sn", "ro", "jt", "Yq", "d0", "_a", "Zq", "Jq", "Qq", "Qu", "tK", "eK", "fr", "h0", "g0", "Xg", "x0", "y0", "rK", "Tp", "b0", "Vo", "v_", "S_", "Wl", "_i", "_p", "Ei", "N_", "Ju", "nK", "Yd", "Ep", "oK", "Le", "sK", "iK", "tc", "k_", "lK", "cK", "uK", "T_", "I0", "C0", "pK", "Jd", "Ji", "mK", "Gp", "eh", "S0", "bK", "Kp", "fu", "IK", "yK", "si", "rh", "sr", "ac", "qp", "Zg", "_0", "ic", "H_", "sc", "an", "T0", "q_", "ze", "U_", "Ar", "mu", "dK", "Qg", "hK", "gK", "xK", "wK", "tx", "E0", "CK", "K_", "j_", "X_", "nh", "A0", "Y_", "vK", "ex", "sh", "oh", "Z_", "ii", "jp", "SK", "J_", "Q_", "tE", "O", "M0", "ih", "kK", "Xt", "$0", "R0", "F0", "O0", "NK", "rx", "nx", "eE", "TK", "P0", "ox", "ah", "T", "_K", "EK", "L0", "B0", "$K", "DK", "AK", "z0", "vn", "Wr", "nE", "rE", "C", "fl", "RK", "ln", "dl", "Ur", "FK", "hu", "aE", "LK", "ix", "MK", "lE", "PK", "GK", "sE", "ax", "W0", "iE", "uE", "cE", "pE", "U0", "lx", "H0", "Yp", "Qi", "uh", "zK", "BK", "VK", "Cr", "mE", "fE", "dE", "hE", "q0", "K0", "uc", "gu", "gE", "j0", "ta", "xE", "WK", "UK", "ux", "hl", "Zp", "yE", "HK", "qK", "KK", "jK", "bE", "wE", "XK", "YK", "ea", "IE", "ZK", "cx", "Jp", "ai", "px", "CE", "vE", "SE", "NE", "kE", "X0", "JK", "Y0", "Z0", "QK", "tj", "ej", "rj", "nj", "oj", "sj", "ij", "aj", "lj", "uj", "cj", "pj", "mj", "fj", "dj", "hj", "gj", "xj", "yj", "bj", "DE", "pc", "Q0", "ch", "wj", "J0", "AE", "em", "vj", "Sj", "Ij", "tN", "ph", "Cj", "io", "Dr", "na", "Se", "Nj", "kj", "Tj", "_j", "Ej", "Aj", "Dj", "$j", "Rj", "Fj", "RE", "Oj", "Mj", "Pj", "Lj", "zj", "Bj", "Vj", "Gj", "Wj", "Uj", "Hj", "qj", "Kj", "jj", "Xj", "Yj", "Zj", "nm", "Jj", "Qj", "t6", "$x", "e6", "r6", "n6", "o6", "s6", "i6", "a6", "l6", "u6", "c6", "Mt", "PE", "we", "p6", "m6", "f6", "d6", "h6", "g6", "x6", "y6", "b6", "eN", "zE", "rN", "vo", "w6", "nN", "fh", "I6", "C6", "v6", "S6", "N6", "k6", "T6", "_6", "BE", "E6", "A6", "D6", "$6", "R6", "F6", "O6", "M6", "P6", "L6", "z6", "B6", "V6", "G6", "W6", "U6", "H6", "q6", "K6", "j6", "Hx", "Q6", "tX", "eX", "rX", "nX", "oX", "sX", "iX", "aX", "lX", "jx", "uX", "cX", "pX", "mX", "fX", "dX", "hX", "gX", "xX", "yX", "bX", "wX", "IX", "CX", "vX", "SX", "NX", "kX", "TX", "_X", "EX", "AX", "DX", "RX", "$X", "FX", "OX", "MX", "PX", "LX", "zX", "oy", "yA", "JX", "wA", "ZX", "KX", "XX", "bA", "jX", "YX", "QX", "ey", "qX", "pN", "mN", "gc", "ry", "ny", "t5", "e5", "r5", "n5", "o5", "s5", "i5", "a5", "l5", "u5", "c5", "p5", "m5", "f5", "d5", "h5", "g5", "x5", "y5", "b5", "w5", "I5", "C5", "v5", "S5", "N5", "k5", "T5", "_5", "E5", "A5", "D5", "$5", "R5", "F5", "O5", "M5", "P5", "RA", "Im", "fN", "L5", "z5", "B5", "V5", "G5", "W5", "fy", "U5", "H5", "K5", "j5", "Y5", "MA", "Q5", "e8", "PA", "n8", "o8", "LA", "zA", "BA", "i8", "Sm", "bc", "wc", "Ic", "Cc", "a8", "l8", "hy", "u8", "gy", "c8", "p8", "m8", "VA", "f8", "xy", "d8", "yy", "h8", "GA", "g8", "WA", "x8", "UA", "y8", "HA", "b8", "qA", "w8", "KA", "No", "I8", "jA", "XA", "C8", "S8", "v8", "by", "gN", "wy", "Iy", "YA", "N8", "k8", "T8", "ZA", "_8", "JA", "E8", "QA", "A8", "t2", "D8", "e2", "$8", "Cy", "R8", "vy", "F8", "O8", "r2", "M8", "n2", "P8", "o2", "L8", "s2", "z8", "i2", "a2", "B8", "Kr", "V8", "l2", "G8", "u2", "W8", "c2", "U8", "p2", "H8", "m2", "q8", "f2", "K8", "j8", "d2", "X8", "Y8", "h2", "Z8", "g2", "J8", "x2", "Q8", "y2", "tY", "b2", "eY", "w2", "rY", "I2", "nY", "C2", "oY", "v2", "yh", "Sy", "pY", "bN", "cY", "yN", "mY", "S2", "k2", "A2", "D2", "NN", "ky", "Ny", "_2", "vN", "$2", "R2", "fY", "dY", "hY", "N2", "Nm", "wN", "gY", "xY", "IN", "CN", "T2", "yY", "bY", "bh", "wY", "E2", "wh", "Ty", "SN", "F2", "IY", "EY", "AY", "kY", "_Y", "Ec", "M2", "P2", "CY", "vY", "SY", "NY", "L2", "TY", "z2", "$Y", "PY", "FY", "OY", "MY", "RY", "TN", "LY", "K2", "U2", "j2", "H2", "q2", "V2", "kN", "DY", "G2", "W2", "zY", "B2", "BY", "eZ", "rZ", "nZ", "oZ", "sZ", "tZ", "Ay", "ma", "EN", "_N", "VY", "pZ", "xZ", "WY", "lZ", "uZ", "KY", "GY", "hZ", "fZ", "mZ", "LZ", "PZ", "cZ", "yZ", "gZ", "jY", "YY", "HY", "XY", "ZY", "UY", "JY", "QY", "CZ", "vZ", "SZ", "TZ", "EZ", "_Z", "NZ", "kZ", "RZ", "AZ", "DZ", "$Z", "bZ", "iZ", "IZ", "DN", "aZ", "qY", "AN", "dZ", "Y2", "Z2", "wZ", "MZ", "OZ", "FZ", "Dy", "J2", "Q2", "tD", "eD", "rD", "nD", "oD", "sD", "iD", "aD", "lD", "zZ", "uD", "cD", "BZ", "pD", "mD", "fD", "dD", "hD", "gD", "xD", "yD", "bD", "wD", "ID", "CD", "VZ", "vD", "SD", "ND", "kD", "TD", "_D", "ED", "AD", "DD", "$D", "RD", "FD", "OD", "MD", "PD", "BD", "LD", "zD", "VD", "GD", "WD", "UD", "HD", "qD", "KD", "jD", "XD", "GZ", "YD", "ZD", "$y", "$N", "JD", "WZ", "QD", "t$", "UZ", "e$", "r$", "n$", "o$", "s$", "i$", "a$", "l$", "u$", "c$", "p$", "m$", "RN", "f$", "d$", "HZ", "qZ", "h$", "g$", "x$", "y$", "b$", "w$", "I$", "C$", "v$", "S$", "N$", "k$", "T$", "_$", "E$", "A$", "D$", "$$", "R$", "F$", "FN", "ON", "O$", "M$", "P$", "L$", "z$", "B$", "V$", "G$", "W$", "U$", "H$", "q$", "KZ", "K$", "jZ", "uo", "dn", "z", "_t", "Ry", "vh", "To", "co", "PN", "kr", "ue", "_o", "Cl", "ko", "km", "MN", "fa", "XZ", "Sh", "Eo", "j$", "da", "Fy", "tr", "X$", "Y$", "Oy", "YZ", "Py", "My", "Fu", "Z$", "J$", "Q$", "tR", "eR", "Tm", "Me", "nR", "hn", "LN", "Nh", "rR", "fi", "ZZ", "Ly", "oR", "zy", "JZ", "sR", "Ao", "Dc", "di", "gn", "zN", "cr", "xn", "rn", "Sl", "iR", "Vy", "aR", "lR", "vl", "BN", "kh", "_m", "GN", "Em", "Do", "VN", "Gy", "$c", "yn", "uR", "cR", "Wy", "pR", "Ou", "mR", "fR", "QZ", "t7", "bn", "Am", "Mu", "Dm", "$m", "Rm", "Fm", "Om", "e7", "Yr", "Rc", "Fc", "Oc", "Mc", "Pc", "Lc", "Mm", "dR", "hR", "Te", "xe", "Uy", "Pm", "St", "Gt", "Lm", "xR", "n7", "_h", "zm", "o7", "Nl", "s7", "Et", "l7", "u7", "i7", "a7", "WN", "hi", "Hy", "c7", "ha", "qy", "Ky", "bR", "zc", "p7", "f7", "yR", "m7", "d7", "h7", "y7", "x7", "g7", "UN", "Bc", "Bm", "Vm", "Gm", "Wm", "wR", "Ve", "IR", "Ge", "I7", "_7", "T7", "E7", "A7", "N7", "D7", "$7", "w7", "R7", "v7", "C7", "S7", "k7", "b7", "Tl", "JJ", "a9", "U9", "l9", "ok", "sk", "ik", "x9", "b9", "I9", "y9", "w9", "C9", "d9", "M9", "X9", "K9", "u9", "WJ", "UJ", "HJ", "qJ", "KJ", "$9", "R9", "XJ", "QJ", "ZJ", "f9", "t9", "PJ", "i9", "r9", "W9", "G9", "v9", "S9", "L9", "z9", "tF", "eF", "k9", "T9", "MJ", "h9", "zJ", "_9", "E9", "H9", "B9", "V9", "rF", "nF", "N9", "c9", "p9", "m9", "s9", "BJ", "Y9", "LJ", "n9", "q9", "o9", "j9", "F9", "jJ", "A9", "D9", "VJ", "e9", "O9", "GJ", "P9", "YJ", "g9", "ga", "jy", "SR", "F7", "kl", "HN", "Jy", "Um", "Qy", "wn", "Eh", "xa", "Hm", "Pu", "O7", "M7", "P7", "L7", "z7", "Vc", "qm", "B7", "Km", "V7", "G7", "Dh", "Ah", "tb", "$h", "Rh", "kR", "W7", "U7", "qN", "TR", "rb", "nb", "_R", "H7", "q7", "K7", "j7", "X7", "Y7", "Fh", "Z7", "KN", "eb", "ER", "Oh", "DR", "XN", "jN", "$R", "tJ", "ob", "eJ", "rJ", "Q7", "RR", "Gc", "sb", "nJ", "ib", "oJ", "ab", "lb", "FR", "sJ", "PR", "OR", "iJ", "LR", "MR", "aJ", "lJ", "zR", "ub", "Xm", "cb", "pb", "YN", "$o", "uJ", "ZN", "BR", "VR", "cJ", "pJ", "GR", "mJ", "fJ", "mb", "WR", "dJ", "hJ", "Pr", "fb", "db", "hb", "gb", "xb", "yb", "bb", "wb", "Ib", "Cb", "Ym", "vb", "Sb", "Nb", "kb", "Tb", "gi", "QN", "xi", "tk", "_b", "Lu", "KR", "jR", "HR", "fe", "qR", "ve", "Zm", "Jm", "Qm", "tf", "ef", "rf", "zu", "Tn", "yi", "Ph", "ek", "wJ", "XR", "IJ", "Mh", "nf", "Uc", "Hc", "of", "sf", "Eb", "af", "lf", "uf", "cf", "CJ", "pf", "rk", "nk", "jc", "qc", "El", "mf", "Kc", "ff", "_l", "df", "vJ", "Ab", "Xc", "hf", "Yc", "gf", "xf", "yf", "bf", "wf", "If", "Cf", "vf", "Sf", "Al", "Nf", "kf", "Tf", "_f", "Ef", "Af", "Lh", "SJ", "Df", "$f", "Rf", "Ff", "zh", "NJ", "kJ", "TJ", "Of", "Mf", "_J", "Pf", "Mb", "YR", "Db", "Lf", "zf", "$b", "Bf", "Vf", "Rb", "Gf", "Wf", "Fb", "Uf", "Hf", "Ob", "qf", "Kf", "Pb", "jf", "EJ", "AJ", "Xf", "Yf", "DJ", "$J", "Zf", "ZR", "Jf", "FJ", "JR", "Qf", "Bh", "Vh", "OJ", "QR", "td", "aQ", "cQ", "Z9", "J9", "tQ", "eQ", "oQ", "lQ", "sQ", "iQ", "uQ", "pQ", "rQ", "mQ", "nQ", "Q9", "dQ", "fQ", "hQ", "Lb", "lF", "gQ", "yQ", "_n", "uF", "ak", "Vb", "v", "pr", "In", "Gb", "lk", "bi", "Gh", "wi", "uk", "CQ", "ck", "vQ", "pk", "SQ", "mk", "NQ", "fk", "kQ", "dk", "TQ", "hk", "_Q", "gk", "EQ", "xk", "AQ", "yk", "DQ", "bk", "$Q", "wk", "RQ", "Ik", "FQ", "Ck", "OQ", "vk", "MQ", "Sk", "PQ", "Nk", "LQ", "kk", "zQ", "Tk", "BQ", "Wh", "Wb", "Yb", "Hb", "Xb", "Ub", "Jb", "jb", "Zb", "qb", "Kb", "cF", "_k", "VQ", "pF", "mF", "Qb", "ae", "fF", "dF", "Hn", "hF", "ed", "tw", "ew", "rd", "gF", "xF", "yF", "bF", "wF", "IF", "CF", "vF", "Ek", "SF", "NF", "kF", "rw", "TF", "_F", "EF", "AF", "DF", "$F", "RF", "FF", "OF", "MF", "PF", "LF", "Ak", "Uh", "Dk", "Bu", "ftt", "dtt", "zF", "ltt", "utt", "nd", "BF", "ctt", "ptt", "mtt", "Hh", "nw", "htt", "gtt", "btt", "id", "Ii", "ud", "sd", "cd", "ZF", "rO", "nO", "oO", "iO", "Jk", "sO", "JF", "YF", "KF", "GF", "ow", "Vu", "WF", "Rk", "UF", "sw", "HF", "wtt", "qF", "Itt", "od", "Kh", "qk", "Fk", "jh", "Ok", "jF", "aw", "XF", "Dl", "Uk", "er", "Gk", "Bk", "Vk", "iw", "Wk", "zk", "Lk", "Pk", "lw", "Hk", "Mk", "Zc", "En", "Ctt", "vtt", "uw", "Xh", "QF", "cw", "Kk", "tO", "pw", "mw", "ad", "Yh", "jk", "Xk", "fw", "Yk", "Zk", "ld", "eO", "Stt", "dw", "tt", "Ntt", "eT", "dd", "gw", "rT", "tT", "nT", "Jc", "oT", "iT", "lT", "cT", "uT", "xw", "yw", "mT", "pT", "dT", "fT", "bw", "hT", "ww", "gT", "xT", "Zh", "yT", "bT", "wT", "Iw", "Cw", "vw", "tp", "CT", "Ci", "LO", "Qk", "ep", "Sw", "Nw", "gd", "VO", "ST", "NT", "kw", "rp", "np", "op", "TT", "Tw", "_w", "hd", "sp", "ktt", "lO", "Qt", "Ir", "uO", "md", "Zr", "cO", "Ro", "pO", "Fo", "mO", "oe", "fd", "Ttt", "ya", "fO", "_tt", "dO", "_r", "At", "An", "Ett", "hO", "sT", "gO", "aT", "xO", "Att", "yO", "Dtt", "bO", "$tt", "wO", "Rtt", "IO", "Ftt", "CO", "Ott", "vO", "Mtt", "SO", "Ptt", "NO", "Ltt", "kO", "ztt", "TO", "Btt", "Qc", "_O", "Vtt", "EO", "Gtt", "AO", "We", "DO", "Wtt", "$O", "Utt", "Htt", "qtt", "Ktt", "RO", "jtt", "Xtt", "FO", "Oo", "IT", "MO", "OO", "Ytt", "PO", "vT", "zO", "Mo", "BO", "Ztt", "GO", "Jtt", "WO", "Qtt", "UO", "kT", "tet", "eet", "Jh", "HO", "Qh", "qO", "_T", "jO", "ET", "XO", "ret", "AT", "YO", "DT", "ZO", "$T", "JO", "ip", "te", "QO", "RT", "tM", "net", "eM", "oet", "rM", "set", "nM", "iet", "oM", "aet", "sM", "uet", "iM", "cet", "aM", "pet", "lM", "met", "uM", "fet", "cM", "det", "pM", "het", "get", "mM", "xet", "fM", "xd", "Aw", "Dw", "dM", "yet", "hM", "bet", "gM", "wet", "xM", "Iet", "yM", "Cet", "bM", "vet", "wM", "Net", "IM", "ket", "CM", "Tet", "vM", "_et", "SM", "ba", "NM", "Gu", "kM", "FT", "TM", "Eet", "_M", "Aet", "EM", "Det", "AM", "$et", "DM", "Ret", "$M", "Fet", "RM", "Oet", "FM", "Met", "OM", "Pet", "MM", "Let", "PM", "zet", "LM", "Bet", "zM", "OT", "BM", "Vet", "VM", "Get", "GM", "Wet", "WM", "UM", "HM", "qM", "Uet", "KM", "$l", "jM", "Het", "XM", "qet", "YM", "Ket", "jet", "Xet", "Yet", "Zet", "Jet", "Qet", "ZM", "yd", "JM", "trt", "tg", "eg", "$w", "ert", "rrt", "MT", "nrt", "ort", "QM", "rg", "srt", "tP", "eP", "irt", "rP", "art", "nP", "lrt", "oP", "urt", "sP", "crt", "iP", "prt", "aP", "mrt", "lP", "frt", "uP", "drt", "cP", "hrt", "pP", "grt", "xrt", "mP", "yrt", "fP", "brt", "wrt", "dP", "Irt", "hP", "Crt", "gP", "PT", "xP", "vrt", "yP", "Srt", "bP", "Nrt", "wP", "krt", "IP", "CP", "vP", "Trt", "SP", "_rt", "NP", "Ert", "kP", "Art", "Drt", "TP", "EP", "LT", "_P", "$rt", "AP", "Rrt", "Frt", "DP", "Ort", "Mrt", "$P", "Prt", "Lrt", "RP", "zrt", "FP", "ng", "OP", "MP", "PP", "zT", "LP", "Brt", "Rw", "Vrt", "Grt", "zP", "Wrt", "BP", "Urt", "VP", "Hrt", "GP", "qrt", "WP", "Krt", "UP", "jrt", "HP", "Xrt", "qP", "Yrt", "KP", "Zrt", "jP", "Jrt", "XP", "YP", "Qrt", "ZP", "tnt", "JP", "ent", "rnt", "QP", "nnt", "tL", "ont", "eL", "snt", "int", "ant", "rL", "lnt", "nL", "unt", "oL", "cnt", "sL", "pnt", "iL", "mnt", "aL", "fnt", "lL", "dnt", "uL", "hnt", "cL", "gnt", "pL", "xnt", "mL", "ynt", "fL", "bnt", "dL", "hL", "wnt", "gL", "Int", "xL", "Cnt", "yL", "vnt", "bL", "Snt", "wL", "Nnt", "IL", "knt", "CL", "Tnt", "vL", "_nt", "SL", "Ent", "NL", "Ant", "kL", "Ont", "Mnt", "TL", "Dnt", "$nt", "Fnt", "Rnt", "og", "Pnt", "_L", "Lnt", "EL", "znt", "AL", "Bnt", "vi", "Xnt", "lg", "e1", "FL", "zw", "ht", "WT", "HT", "JT", "qT", "XT", "jT", "YT", "UT", "Fl", "bd", "OL", "o1", "Knt", "t1", "QT", "Ol", "Id", "r1", "s1", "RL", "n1", "Kn", "i1", "a1", "Uu", "l1", "Vw", "KT", "Lw", "Ynt", "Znt", "Bw", "jnt", "wd", "ag", "ZT", "ap", "Fw", "qn", "Gnt", "Vnt", "Wu", "Jr", "Lr", "lp", "DL", "sg", "wa", "$L", "ig", "Wnt", "Unt", "Hnt", "Rl", "qnt", "ML", "Ow", "Mw", "Pw", "GT", "Jnt", "kt", "Ue", "Si", "up", "Qnt", "PL", "vd", "Sd", "Gw", "LL", "zL", "Ww", "tot", "not", "iot", "eot", "sot", "rot", "oot", "cot", "kd", "Cot", "Sot", "kot", "_ot", "Aot", "Dot", "$ot", "BL", "Iot", "vot", "Not", "Tot", "Eot", "Rot", "Fot", "VL", "pot", "bot", "fot", "hot", "mot", "wot", "dot", "got", "xot", "yot", "aot", "lot", "uot", "cp", "Td", "_d", "Ed", "zt", "WL", "u1", "GL", "UL", "HL", "he", "Uw", "Hw", "qw", "Kw", "Pot", "ug", "jw", "y1", "I1", "d1", "x1", "f1", "m1", "g1", "h1", "p1", "c1", "v1", "C1", "N1", "S1", "Yw", "Qw", "Xw", "Jw", "Zw", "b1", "w1", "cg", "Lot", "qL", "tI", "KL", "jL", "XL", "YL", "ZL", "JL", "QL", "tz", "ez", "rz", "nz", "oz", "sz", "iz", "az", "lz", "uz", "cz", "pz", "mz", "fz", "dz", "hz", "gz", "xz", "yz", "bz", "wz", "Iz", "Cz", "vz", "eI", "Sz", "Nz", "kz", "rI", "Tz", "_z", "Ez", "Az", "Dz", "$z", "Rz", "Fz", "Oz", "mp", "Mz", "T1", "rr", "Pz", "nI", "Ad", "zot", "oI", "zz", "Bz", "Lz", "Bot", "Vot", "Got", "zr", "xr", "Vz", "_1", "Gz", "Wz", "Uz", "Ia", "Hz", "Kz", "jz", "Xz", "Yz", "Zz", "Dn", "sI", "Uot", "Hot", "qot", "iI", "Kot", "jot", "Xot", "Yot", "Zot", "$d", "$n", "Xn", "jn", "nr", "t3", "Rn", "e3", "E1", "A1", "Jot", "r3", "D1", "$1", "Qot", "n3", "Po", "It", "ce", "Ml", "Rd", "R1", "pg", "o3", "mg", "s3", "i3", "rt", "a3", "fg", "aI", "est", "Yn", "lI", "rst", "uI", "Hu", "l3", "fp", "u3", "Pe", "c3", "F1", "dp", "nst", "p3", "m3", "ost", "f3", "sst", "ist", "d3", "ast", "lst", "h3", "g3", "ust", "x3", "cI", "pI", "mI", "y3", "cst", "b3", "pst", "w3", "fI", "dI", "I3", "C3", "hI", "mst", "v3", "fst", "S3", "dst", "hst", "N3", "gst", "xst", "k3", "yst", "bst", "T3", "wst", "Ist", "Cst", "_3", "vst", "Sst", "E3", "Ni", "qu", "Nst", "A3", "kst", "D3", "gI", "xI", "Tst", "$3", "_st", "R3", "Est", "F3", "yI", "bI", "Ast", "O3", "wI", "Dst", "O1", "II", "$st", "ki", "M3", "Rst", "P3", "Fst", "L3", "Ost", "Mst", "Pst", "z3", "Lst", "B3", "zst", "M1", "V3", "Pl", "G3", "Bst", "W3", "P1", "U3", "H3", "Vst", "q3", "CI", "vI", "Gst", "K3", "SI", "j3", "Wst", "X3", "NI", "TI", "kI", "hp", "Y3", "Fd", "Ust", "L1", "Z3", "Od", "_I", "Md", "EI", "AI", "DI", "$I", "Hst", "J3", "RI", "FI", "OI", "MI", "qst", "Q3", "PI", "Kst", "tB", "jst", "eB", "Xst", "rB", "Yst", "nB", "Zst", "Jst", "Qst", "oB", "tit", "eit", "sB", "LI", "rit", "iB", "gp", "dg", "aB", "lB", "zI", "nit", "uB", "oit", "cB", "sit", "pB", "BI", "iit", "mB", "Pd", "Ld", "ait", "fB", "VI", "GI", "lit", "dB", "uit", "hB", "WI", "cit", "gB", "UI", "pit", "xB", "mit", "yB", "fit", "dit", "hit", "bB", "git", "xit", "yit", "wB", "bit", "wit", "Iit", "IB", "Cit", "vit", "CB", "Sit", "Nit", "z1", "vB", "HI", "SB", "NB", "kit", "kB", "hg", "qI", "Tit", "TB", "KI", "Ll", "_B", "jI", "EB", "AB", "_it", "DB", "Eit", "Ait", "Dit", "$B", "XI", "YI", "RB", "$it", "zd", "B1", "Rit", "FB", "Fit", "OB", "ZI", "Oit", "MB", "JI", "Mit", "V1", "PB", "Pit", "Lit", "zit", "LB", "Bit", "Vit", "Git", "zB", "Wit", "BB", "Uit", "Hit", "VB", "qit", "Kit", "GB", "jit", "Xit", "WB", "Yit", "Zit", "Jit", "UB", "Qit", "tat", "eat", "HB", "rat", "qB", "nat", "oat", "sat", "KB", "iat", "aat", "jB", "lat", "uat", "cat", "XB", "pat", "mat", "YB", "fat", "dat", "hat", "ZB", "QI", "tC", "gat", "JB", "eC", "xat", "QB", "tV", "G1", "eV", "yat", "bat", "wat", "rV", "Iat", "nV", "Cat", "oV", "rC", "nC", "vat", "sV", "Sat", "iV", "aV", "lV", "uV", "cV", "Nat", "pV", "kat", "Tat", "_at", "mV", "oC", "sC", "Eat", "fV", "Aat", "Dat", "$at", "dV", "iC", "Rat", "Fat", "W1", "hV", "gV", "U1", "xV", "H1", "yV", "Oat", "bV", "Mat", "Pat", "Lat", "wV", "zat", "Bat", "IV", "Vat", "Gat", "CV", "Wat", "Uat", "vV", "aC", "Hat", "SV", "gg", "NV", "kV", "TV", "qat", "_V", "lC", "uC", "q1", "EV", "Kat", "jat", "Xat", "AV", "Yat", "DV", "Zat", "$V", "Jat", "RV", "Qat", "FV", "K1", "OV", "tlt", "elt", "MV", "rlt", "nlt", "olt", "PV", "slt", "ilt", "alt", "LV", "cC", "pC", "llt", "zV", "mC", "ult", "BV", "fC", "dC", "clt", "VV", "hC", "plt", "GV", "gC", "xC", "mlt", "WV", "yC", "UV", "flt", "dlt", "HV", "hlt", "glt", "qV", "Ku", "bC", "xlt", "KV", "wC", "ylt", "jV", "IC", "blt", "XV", "wlt", "Ilt", "YV", "Clt", "vlt", "Slt", "ZV", "Nlt", "klt", "JV", "Tlt", "_lt", "Elt", "QV", "Alt", "Dlt", "tG", "$lt", "Rlt", "eG", "Flt", "rG", "Olt", "nG", "Mlt", "oG", "Plt", "sG", "Llt", "iG", "zlt", "aG", "Blt", "lG", "uG", "Vlt", "cG", "Glt", "Wlt", "pG", "mG", "Ult", "fG", "Hlt", "dG", "qlt", "hG", "CC", "Klt", "gG", "jlt", "xG", "Xlt", "yG", "Ylt", "bG", "Zlt", "Jlt", "wG", "Qlt", "tut", "IG", "eut", "CG", "vC", "rut", "j1", "vG", "SC", "NC", "xp", "SG", "nut", "NG", "kC", "out", "kG", "sut", "TG", "iut", "_G", "TC", "aut", "EG", "lut", "Nt", "ju", "AG", "uut", "cut", "DG", "yt", "$G", "RG", "FG", "ee", "put", "OG", "MG", "mut", "fut", "PG", "yp", "LG", "zG", "dut", "mo", "gut", "hut", "BG", "Cn", "VG", "xut", "yut", "GG", "WG", "but", "wut", "UG", "_C", "HG", "qG", "KG", "jG", "XG", "YG", "ZG", "JG", "Iut", "Cut", "QG", "tW", "vut", "Sut", "eW", "rW", "Nut", "kut", "nW", "oW", "Tut", "_ut", "sW", "mr", "iW", "aW", "Eut", "Aut", "lW", "Lo", "Dut", "$ut", "Rut", "uW", "Fut", "cW", "pW", "Out", "Mut", "mW", "Put", "fW", "Lut", "dW", "Fn", "hW", "gW", "xW", "zut", "But", "yW", "X1", "bW", "wW", "Vut", "Gut", "IW", "CW", "Wut", "Uut", "vW", "SW", "Hut", "qut", "NW", "kW", "Kut", "jut", "TW", "_W", "Xut", "Yut", "EW", "AW", "DW", "Y1", "$W", "Zut", "Jut", "RW", "FW", "Qut", "tct", "OW", "MW", "ect", "rct", "PW", "LW", "nct", "oct", "zW", "BW", "sct", "ict", "VW", "GW", "act", "lct", "WW", "UW", "uct", "cct", "HW", "qW", "pct", "mct", "KW", "jW", "fct", "dct", "XW", "YW", "hct", "gct", "ZW", "JW", "QW", "xct", "yct", "tU", "bct", "eU", "rU", "nU", "EC", "oU", "sU", "Z1", "iU", "aU", "wct", "Ict", "lU", "uU", "Cct", "cU", "pU", "vct", "Sct", "mU", "fU", "Nct", "kct", "dU", "hU", "Tct", "_ct", "gU", "xU", "Ect", "Act", "yU", "bU", "Dct", "$ct", "wU", "Rct", "IU", "Fct", "CU", "vU", "SU", "NU", "kU", "Oct", "Mct", "TU", "Pct", "_U", "Lct", "EU", "AU", "zct", "Bct", "DU", "$U", "RU", "Vct", "FU", "OU", "Gct", "MU", "Wct", "PU", "LU", "Uct", "Hct", "zU", "BU", "qct", "Kct", "VU", "GU", "jct", "Xct", "WU", "Yct", "UU", "HU", "Zct", "Jct", "qU", "KU", "Qct", "tpt", "jU", "XU", "ept", "rpt", "YU", "ZU", "npt", "opt", "JU", "QU", "spt", "ipt", "t4", "e4", "apt", "lpt", "r4", "n4", "upt", "cpt", "o4", "ppt", "s4", "J1", "i4", "mpt", "fpt", "a4", "l4", "dpt", "Q1", "u4", "c4", "hpt", "gpt", "p4", "m4", "xpt", "f4", "d4", "Bd", "h4", "ypt", "bpt", "g4", "x4", "wpt", "Ipt", "y4", "b4", "Cpt", "vpt", "w4", "Spt", "I4", "C4", "Npt", "kpt", "v4", "Tpt", "S4", "_pt", "N4", "k4", "Ept", "Apt", "AC", "Dpt", "T4", "_4", "$pt", "Rpt", "E4", "A4", "Fpt", "Opt", "D4", "Mpt", "$4", "Ppt", "R4", "F4", "O4", "M4", "P4", "Lpt", "zpt", "L4", "z4", "Bpt", "Vpt", "B4", "V4", "Gpt", "Wpt", "G4", "W4", "Upt", "Hpt", "U4", "H4", "qpt", "Kpt", "q4", "K4", "jpt", "Xpt", "j4", "X4", "Y4", "Z4", "Ypt", "Zpt", "J4", "Q4", "Jpt", "Qpt", "tH", "eH", "tmt", "emt", "rH", "nH", "oH", "rmt", "nmt", "sH", "iH", "aH", "lH", "uH", "omt", "cH", "pH", "smt", "imt", "mH", "fH", "amt", "lmt", "dH", "hH", "DC", "$C", "umt", "gH", "cmt", "xH", "yH", "pmt", "mmt", "bH", "fmt", "wH", "IH", "CH", "dmt", "vH", "SH", "hmt", "gmt", "NH", "kH", "xmt", "ymt", "TH", "bmt", "_H", "wmt", "EH", "Imt", "AH", "Cmt", "DH", "$H", "vmt", "Smt", "RH", "FH", "OH", "MH", "Nmt", "kmt", "PH", "LH", "Tmt", "_mt", "zH", "BH", "Emt", "Amt", "VH", "GH", "Dmt", "$mt", "WH", "Rmt", "UH", "Fmt", "HH", "Omt", "qH", "Mmt", "t_", "a_", "rq", "l_", "tq", "Pmt", "oq", "i_", "zmt", "Lmt", "eq", "OC", "yg", "nq", "xg", "u_", "bg", "Bmt", "qmt", "sq", "Kmt", "jmt", "Xmt", "Ymt", "draw_exports", "__export", "AnchorPosition", "DrawBox", "DrawBoxOptions", "DrawFaceLandmarks", "DrawFaceLandmarksOptions", "DrawTextField", "DrawTextFieldOptions", "drawContour", "drawDetections", "drawFaceExpressions", "drawFaceLandmarks", "drawContour", "ctx", "points", "isClosed", "x", "y", "prevIdx", "from", "to", "utils_exports", "__export", "computeReshapedDimensions", "getCenterPoint", "isDimensions", "isEven", "isFloat", "isTensor", "isTensor1D", "isTensor2D", "isTensor3D", "isTensor4D", "isValidNumber", "isValidProbablitiy", "range", "round", "Dimensions", "_Dimensions", "width", "height", "isValidNumber", "isTensor", "tensor", "dim", "Lt", "isTensor1D", "isTensor2D", "isTensor3D", "isTensor4D", "isFloat", "num", "isEven", "round", "prec", "f", "isDimensions", "obj", "computeReshapedDimensions", "width", "height", "inputSize", "scale", "Dimensions", "getCenterPoint", "pts", "sum", "pt", "Point", "range", "start", "step", "_", "i", "isValidNumber", "isValidProbablitiy", "Point", "_Point", "x", "y", "pt", "Box", "_Box", "rect", "isValidNumber", "box", "callee", "allowNegativeDimensions", "_box", "isBbox", "isRect", "x", "y", "width", "height", "Point", "val", "diff", "s", "scaleX", "isDimensions", "scaleY", "padX", "padY", "imgWidth", "imgHeight", "right", "bottom", "clippedX", "clippedY", "newWidth", "newHeight", "clippedWidth", "clippedHeight", "sx", "sy", "imageHeight", "imageWidth", "w", "h", "dx", "dy", "edx", "edy", "ex", "ey", "region", "BoundingBox", "Box", "left", "top", "right", "bottom", "allowNegativeDimensions", "ObjectDetection", "_ObjectDetection", "score", "classScore", "className", "relativeBox", "imageDims", "Dimensions", "Box", "width", "height", "FaceDetection", "_FaceDetection", "ObjectDetection", "score", "relativeBox", "imageDims", "width", "height", "iou", "box1", "box2", "isIOU", "width", "height", "interSection", "minBbox", "pts", "xs", "pt", "ys", "minX", "min", "x", "minY", "y", "maxX", "max", "maxY", "BoundingBox", "nonMaxSuppression", "boxes", "scores", "iouThreshold", "isIOU", "indicesSortedByScore", "score", "boxIndex", "c1", "c2", "c", "pick", "curr", "indices", "outputs", "i", "idx", "currBox", "idxBox", "iou", "_", "j", "normalize", "x", "meanRgb", "B", "r", "g", "b", "avg_r", "Co", "avg_g", "avg_b", "avg_rgb", "ie", "at", "padToSquare", "imgTensor", "isCenterImage", "B", "height", "width", "dimDiff", "paddingAmount", "paddingAxis", "createPaddingTensor", "paddingAmountLocal", "paddingTensorShape", "Co", "paddingTensorAppend", "remainingPaddingAmount", "tensorsToStack", "t", "J", "ie", "shuffleArray", "inputArray", "array", "i", "j", "x", "sigmoid", "x", "inverseSigmoid", "Rect", "Box", "x", "y", "width", "height", "allowNegativeDimensions", "relX", "relY", "relScale", "FaceLandmarks", "relativeFaceLandmarkPositions", "imgDims", "shift", "Point", "width", "height", "Dimensions", "pt", "x", "y", "detection", "options", "box", "FaceDetection", "Box", "useDlibAlignment", "minBoxPadding", "centers", "leftEyeCenter", "rightEyeCenter", "mouthCenter", "distToMouth", "eyeToMouthDist", "size", "refPoint", "getCenterPoint", "Rect", "padding", "minBbox", "FaceLandmarks5", "FaceLandmarks", "pts", "getCenterPoint", "FaceLandmarks68", "FaceLandmarks", "getCenterPoint", "FaceMatch", "label", "distance", "withDistance", "round", "LabeledBox", "Box", "box", "callee", "isValidNumber", "label", "LabeledFaceDescriptors", "_LabeledFaceDescriptors", "label", "descriptors", "desc", "d", "json", "PredictedBox", "LabeledBox", "box", "callee", "isValidProbablitiy", "label", "score", "classScore", "isWithFaceDetection", "obj", "FaceDetection", "extendWithFaceDetection", "sourceObj", "detection", "createBrowserEnv", "fetch", "isNodejs", "createFileSystem", "fs", "requireFsError", "isNodejs", "err", "filePath", "resolve", "reject", "buffer", "createNodejsEnv", "Canvas", "Image", "Video", "createCanvasElement", "createImageElement", "createVideoElement", "fetch", "fileSystem", "createFileSystem", "isBrowser", "environment", "getEnv", "setEnv", "env", "initialize", "isBrowser", "createBrowserEnv", "isNodejs", "createNodejsEnv", "monkeyPatch", "Canvas", "Image", "createFileSystem", "resolveInput", "arg", "env", "getContext2dOrThrow", "canvasArg", "Canvas", "CanvasRenderingContext2D", "env", "canvas", "resolveInput", "ctx", "AnchorPosition", "DrawTextFieldOptions", "options", "anchorPosition", "backgroundColor", "fontColor", "fontSize", "fontStyle", "padding", "DrawTextField", "_DrawTextField", "text", "anchor", "ctx", "l", "w0", "w1", "canvasDims", "isShiftLeft", "isShiftTop", "textFieldWidth", "textFieldHeight", "x", "y", "width", "height", "newX", "newY", "canvasArg", "canvas", "resolveInput", "getContext2dOrThrow", "maxTextWidth", "textHeight", "upperLeft", "textLine", "i", "DrawBoxOptions", "options", "boxColor", "lineWidth", "label", "drawLabelOptions", "defaultDrawLabelOptions", "DrawTextFieldOptions", "DrawBox", "box", "Box", "canvasArg", "ctx", "getContext2dOrThrow", "x", "y", "width", "height", "DrawTextField", "drawDetections", "canvasArg", "detections", "det", "score", "FaceDetection", "isWithFaceDetection", "box", "Box", "label", "round", "DrawBox", "isMediaLoaded", "media", "Image", "Video", "env", "awaitMediaLoaded", "media", "resolve", "reject", "env", "isMediaLoaded", "onError", "e", "onLoad", "bufferToImage", "buf", "resolve", "reject", "reader", "img", "env", "getMediaDimensions", "input", "Image", "Video", "env", "Dimensions", "createCanvas", "width", "height", "createCanvasElement", "env", "canvas", "createCanvasFromMedia", "media", "dims", "ImageData", "isMediaLoaded", "getMediaDimensions", "getContext2dOrThrow", "imageTensorToCanvas", "imgTensor", "canvas", "targetCanvas", "env", "height", "width", "numChannels", "isTensor4D", "imgTensor3D", "B", "_y", "isMediaElement", "input", "Image", "Canvas", "Video", "env", "imageToSquare", "input", "inputSize", "centerImage", "Image", "Canvas", "env", "createCanvas", "dims", "getMediaDimensions", "scale", "width", "height", "targetCanvas", "inputCanvas", "createCanvasFromMedia", "offset", "dx", "dy", "getContext2dOrThrow", "NetInput", "inputs", "treatAsBatchInput", "input", "idx", "isTensor3D", "isTensor4D", "batchSize", "canvas", "env", "createCanvasFromMedia", "range", "_", "batchIdx", "width", "height", "computeReshapedDimensions", "inputSize", "isCenterInputs", "B", "inputTensors", "Lt", "imgTensor", "je", "padToSquare", "fn", "_y", "imageToSquare", "Fe", "t", "J", "toNetInput", "inputs", "NetInput", "inputArgArray", "getIdxHint", "idx", "inputArray", "resolveInput", "input", "i", "isMediaElement", "isTensor3D", "isTensor4D", "batchSize", "awaitMediaLoaded", "extractFaces", "input", "detections", "Canvas", "env", "canvas", "netInput", "toNetInput", "tensorOrCanvas", "imageTensorToCanvas", "ctx", "getContext2dOrThrow", "det", "FaceDetection", "box", "x", "y", "width", "height", "faceImg", "createCanvas", "extractFaceTensors", "imageTensor", "detections", "isTensor3D", "isTensor4D", "B", "imgHeight", "imgWidth", "numChannels", "det", "FaceDetection", "box", "x", "y", "width", "height", "ym", "fetchOrThrow", "url", "init", "fetch", "env", "res", "fetchImage", "uri", "res", "fetchOrThrow", "blob", "bufferToImage", "fetchJson", "uri", "fetchOrThrow", "fetchNetWeights", "uri", "fetchOrThrow", "bufferToVideo", "buf", "resolve", "reject", "video", "env", "fetchVideo", "uri", "res", "fetchOrThrow", "blob", "bufferToVideo", "getModelUris", "uri", "defaultModelName", "defaultManifestFilename", "protocol", "parts", "s", "manifestFile", "modelBaseUri", "loadWeightMap", "uri", "defaultModelName", "manifestUri", "modelBaseUri", "getModelUris", "manifest", "fetchJson", "Mr", "matchDimensions", "input", "reference", "useMediaDimensions", "width", "height", "getMediaDimensions", "NeuralNetwork", "name", "paramPath", "obj", "objProp", "tensor", "param", "ml", "path", "variable", "ir", "throwOnRedispose", "flat", "arr", "weightsOrUrl", "uri", "weightMap", "loadWeightMap", "filePath", "readFile", "env", "manifestUri", "modelBaseUri", "getModelUris", "fetchWeightsFromDisk", "filePaths", "fp", "buf", "loadWeights", "Mr", "manifest", "paramMappings", "params", "weights", "result", "res", "Lt", "depthwiseSeparableConv", "x", "params", "stride", "B", "out", "dm", "K", "denseBlock3", "x", "denseBlockParams", "isFirstLayer", "B", "out1", "Or", "K", "Nn", "depthwiseSeparableConv", "out2", "in3", "out3", "denseBlock4", "isScaleDown", "in4", "out4", "convLayer", "x", "params", "padding", "withRelu", "B", "out", "K", "Nn", "Or", "disposeUnusedWeightTensors", "weightMap", "paramMappings", "path", "pm", "extractConvParamsFactory", "extractWeights", "paramMappings", "channelsIn", "channelsOut", "filterSize", "mappedPrefix", "filters", "AA", "bias", "Oe", "extractFCParamsFactory", "extractWeights", "paramMappings", "channelsIn", "channelsOut", "mappedPrefix", "fc_weights", "pi", "fc_bias", "Oe", "SeparableConvParams", "depthwise_filter", "pointwise_filter", "bias", "extractSeparableConvParamsFactory", "extractWeights", "paramMappings", "channelsIn", "channelsOut", "mappedPrefix", "depthwise_filter", "AA", "pointwise_filter", "bias", "Oe", "SeparableConvParams", "loadSeparableConvParamsFactory", "extractWeightEntry", "prefix", "extractWeightEntryFactory", "weightMap", "paramMappings", "originalPath", "paramRank", "mappedPath", "tensor", "isTensor", "extractWeightsFactory", "weights", "remainingWeights", "extractWeights", "numWeights", "ret", "getRemainingWeights", "extractorsFactory", "extractWeights", "paramMappings", "extractConvParams", "extractConvParamsFactory", "extractSeparableConvParams", "extractSeparableConvParamsFactory", "extractDenseBlock3Params", "channelsIn", "channelsOut", "mappedPrefix", "isFirstLayer", "conv0", "conv1", "conv2", "extractDenseBlock4Params", "conv3", "extractParams", "weights", "paramMappings", "extractWeights", "getRemainingWeights", "extractWeightsFactory", "extractDenseBlock4Params", "extractorsFactory", "dense0", "dense1", "dense2", "dense3", "loadConvParamsFactory", "extractWeightEntry", "prefix", "filters", "bias", "loadParamsFactory", "weightMap", "paramMappings", "extractWeightEntry", "extractWeightEntryFactory", "extractConvParams", "loadConvParamsFactory", "extractSeparableConvParams", "loadSeparableConvParamsFactory", "extractDenseBlock3Params", "prefix", "isFirstLayer", "conv0", "conv1", "conv2", "extractDenseBlock4Params", "conv3", "extractParamsFromWeightMap", "weightMap", "paramMappings", "extractDenseBlock4Params", "loadParamsFactory", "params", "disposeUnusedWeightTensors", "FaceFeatureExtractor", "NeuralNetwork", "input", "params", "B", "batchTensor", "J", "normalized", "normalize", "out", "denseBlock4", "xu", "toNetInput", "weightMap", "extractParamsFromWeightMap", "weights", "extractParams", "fullyConnectedLayer", "x", "params", "B", "K", "Bt", "extractParams", "weights", "channelsIn", "channelsOut", "paramMappings", "extractWeights", "getRemainingWeights", "extractWeightsFactory", "fc", "extractFCParamsFactory", "extractParamsFromWeightMap", "weightMap", "paramMappings", "extractWeightEntry", "extractWeightEntryFactory", "extractFcParams", "prefix", "weights", "bias", "params", "disposeUnusedWeightTensors", "seperateWeightMaps", "weightMap", "featureExtractorMap", "classifierMap", "key", "map", "FaceProcessor", "NeuralNetwork", "_name", "faceFeatureExtractor", "input", "params", "B", "bottleneckFeatures", "NetInput", "fullyConnectedLayer", "throwOnRedispose", "weights", "paramMappings", "extractParams", "weightMap", "featureExtractorMap", "classifierMap", "seperateWeightMaps", "extractParamsFromWeightMap", "cIn", "cOut", "classifierWeightSize", "featureExtractorWeights", "classifierWeights", "FACE_EXPRESSION_LABELS", "FaceExpressions", "probabilities", "expression", "idx", "e0", "e1", "FaceExpressionNet", "FaceProcessor", "faceFeatureExtractor", "FaceFeatureExtractor", "input", "B", "Eu", "toNetInput", "netInput", "out", "probabilitesByBatch", "gr", "t", "data", "predictionsByBatch", "probabilites", "FaceExpressions", "isWithFaceExpressions", "obj", "FaceExpressions", "extendWithFaceExpressions", "sourceObj", "expressions", "drawFaceExpressions", "canvasArg", "faceExpressions", "minConfidence", "textFieldAnchor", "e", "expr", "FaceExpressions", "isWithFaceExpressions", "resultsToDisplay", "exprLocal", "anchor", "isWithFaceDetection", "Point", "DrawTextField", "round", "isWithFaceLandmarks", "obj", "isWithFaceDetection", "FaceLandmarks", "FaceDetection", "calculateFaceAngle", "mesh", "degrees", "radians", "calcLengthBetweenTwoPoints", "a", "b", "angle", "calcYaw", "leftPoint", "midPoint", "rightPoint", "leftToMidpoint", "rightToMidpoint", "calcRoll", "lever", "pivot", "hypotenuse", "opposite", "angleInRadians", "angleInDegrees", "normalizeAngle", "tiltDirection", "calcPitch", "base", "baseCoords", "Point", "midToBaseLength", "direction", "pt", "extendWithFaceLandmarks", "sourceObj", "unshiftedLandmarks", "shift", "landmarks", "rect", "imageDims", "alignedRect", "DrawFaceLandmarksOptions", "options", "drawLines", "drawPoints", "lineWidth", "lineColor", "pointSize", "pointColor", "DrawFaceLandmarks", "faceLandmarks", "canvasArg", "ctx", "getContext2dOrThrow", "FaceLandmarks68", "drawContour", "drawPoint", "pt", "drawFaceLandmarks", "f", "landmarks", "FaceLandmarks", "isWithFaceLandmarks", "version", "extractorsFactory", "extractWeights", "paramMappings", "extractConvParams", "extractConvParamsFactory", "extractSeparableConvParams", "extractSeparableConvParamsFactory", "extractReductionBlockParams", "channelsIn", "channelsOut", "mappedPrefix", "separable_conv0", "separable_conv1", "expansion_conv", "extractMainBlockParams", "channels", "separable_conv2", "extractParams", "weights", "numMainBlocks", "getRemainingWeights", "extractWeightsFactory", "entry_flow_conv_in", "entry_flow_reduction_block_0", "entry_flow_reduction_block_1", "entry_flow", "middle_flow", "range", "idx", "exit_flow_reduction_block", "exit_flow_separable_conv", "exit_flow", "loadParamsFactory", "weightMap", "paramMappings", "extractWeightEntry", "extractWeightEntryFactory", "extractConvParams", "loadConvParamsFactory", "extractSeparableConvParams", "loadSeparableConvParamsFactory", "extractReductionBlockParams", "mappedPrefix", "separable_conv0", "separable_conv1", "expansion_conv", "extractMainBlockParams", "separable_conv2", "extractParamsFromWeightMap", "numMainBlocks", "entry_flow_conv_in", "entry_flow_reduction_block_0", "entry_flow_reduction_block_1", "entry_flow", "middle_flow", "range", "idx", "exit_flow_reduction_block", "exit_flow_separable_conv", "exit_flow", "disposeUnusedWeightTensors", "conv", "x", "params", "stride", "K", "Nn", "reductionBlock", "isActivateInput", "out", "Or", "depthwiseSeparableConv", "ku", "mainBlock", "TinyXception", "NeuralNetwork", "numMainBlocks", "input", "B", "batchTensor", "J", "normalized", "normalize", "range", "idx", "toNetInput", "weightMap", "extractParamsFromWeightMap", "weights", "extractParams", "extractParams", "weights", "paramMappings", "extractWeights", "getRemainingWeights", "extractWeightsFactory", "extractFCParams", "extractFCParamsFactory", "age", "gender", "extractParamsFromWeightMap", "weightMap", "paramMappings", "extractWeightEntry", "extractWeightEntryFactory", "extractFcParams", "prefix", "weights", "bias", "params", "disposeUnusedWeightTensors", "Gender", "AgeGenderNet", "NeuralNetwork", "faceFeatureExtractor", "TinyXception", "input", "params", "B", "bottleneckFeatures", "NetInput", "pooled", "xu", "age", "fullyConnectedLayer", "gender", "Eu", "toNetInput", "netInput", "out", "ages", "gr", "genders", "ageAndGenderTensors", "ageTensor", "i", "predictionsByBatch", "genderTensor", "probMale", "isMale", "genderProbability", "throwOnRedispose", "weights", "paramMappings", "extractParams", "weightMap", "featureExtractorMap", "classifierMap", "seperateWeightMaps", "extractParamsFromWeightMap", "featureExtractorWeights", "classifierWeights", "FaceLandmark68NetBase", "FaceProcessor", "output", "inputSize", "originalDimensions", "inputDimensions", "width", "height", "scale", "batchSize", "B", "createInterleavedTensor", "fillX", "fillY", "Fe", "Co", "getPadding", "batchIdx", "cond", "getPaddingX", "w", "getPaddingY", "_", "input", "out", "toNetInput", "netInput", "landmarkTensors", "gr", "landmarksForBatch", "landmarkTensor", "landmarksArray", "xCoords", "i", "isEven", "yCoords", "FaceLandmarks68", "Point", "t", "FaceLandmark68Net", "FaceLandmark68NetBase", "faceFeatureExtractor", "FaceFeatureExtractor", "extractParamsFromWeightMapTiny", "weightMap", "paramMappings", "extractDenseBlock3Params", "loadParamsFactory", "params", "disposeUnusedWeightTensors", "extractParamsTiny", "weights", "paramMappings", "extractWeights", "getRemainingWeights", "extractWeightsFactory", "extractDenseBlock3Params", "extractorsFactory", "dense0", "dense1", "dense2", "TinyFaceFeatureExtractor", "NeuralNetwork", "input", "params", "B", "batchTensor", "J", "normalized", "normalize", "out", "denseBlock3", "xu", "toNetInput", "weightMap", "extractParamsFromWeightMapTiny", "weights", "extractParamsTiny", "FaceLandmark68TinyNet", "FaceLandmark68NetBase", "faceFeatureExtractor", "TinyFaceFeatureExtractor", "FaceLandmarkNet", "FaceLandmark68Net", "scale", "x", "params", "K", "$", "convLayer", "x", "params", "strides", "withRelu", "padding", "filters", "bias", "out", "Nn", "K", "scale", "Or", "conv", "convNoRelu", "convDown", "extractorsFactory", "extractWeights", "paramMappings", "extractFilterValues", "numFilterValues", "numFilters", "filterSize", "weights", "depth", "isFloat", "B", "Vt", "AA", "extractConvParams", "mappedPrefix", "filters", "bias", "Oe", "extractScaleLayerParams", "numWeights", "biases", "extractConvLayerParams", "conv", "scale", "extractResidualLayerParams", "isDown", "conv1", "conv2", "extractParams", "getRemainingWeights", "extractWeightsFactory", "conv32_down", "conv32_1", "conv32_2", "conv32_3", "conv64_down", "conv64_1", "conv64_2", "conv64_3", "conv128_down", "conv128_1", "conv128_2", "conv256_down", "conv256_1", "conv256_2", "conv256_down_out", "fc", "pi", "extractorsFactory", "weightMap", "paramMappings", "extractWeightEntry", "extractWeightEntryFactory", "extractScaleLayerParams", "prefix", "weights", "biases", "extractConvLayerParams", "filters", "bias", "scale", "extractResidualLayerParams", "extractParamsFromWeightMap", "conv32_down", "conv32_1", "conv32_2", "conv32_3", "conv64_down", "conv64_1", "conv64_2", "conv64_3", "conv128_down", "conv128_1", "conv128_2", "conv256_down", "conv256_1", "conv256_2", "conv256_down_out", "fc", "isTensor2D", "params", "disposeUnusedWeightTensors", "residual", "x", "params", "out", "conv", "convNoRelu", "K", "Or", "residualDown", "convDown", "pooled", "xu", "zeros", "ke", "isPad", "padShapeX", "zerosW", "ie", "padShapeY", "zerosH", "FaceRecognitionNet", "NeuralNetwork", "input", "params", "B", "batchTensor", "J", "normalized", "normalize", "out", "convDown", "ku", "residual", "residualDown", "globalAvg", "Bt", "toNetInput", "_a", "dim", "netInput", "faceDescriptorTensors", "gr", "faceDescriptorsForBatch", "t", "weightMap", "extractParamsFromWeightMap", "weights", "extractParams", "createFaceRecognitionNet", "weights", "net", "FaceRecognitionNet", "extendWithFaceDescriptor", "sourceObj", "descriptor", "isWithAge", "obj", "extendWithAge", "sourceObj", "age", "isWithGender", "obj", "isValidProbablitiy", "extendWithGender", "sourceObj", "gender", "genderProbability", "extractorsFactory", "extractWeights", "paramMappings", "extractDepthwiseConvParams", "numChannels", "mappedPrefix", "filters", "AA", "batch_norm_scale", "Oe", "batch_norm_offset", "batch_norm_mean", "batch_norm_variance", "extractConvParams", "channelsIn", "channelsOut", "filterSize", "isPointwiseConv", "bias", "extractPointwiseConvParams", "extractConvPairParams", "depthwise_conv", "pointwise_conv", "extractMobilenetV1Params", "conv_0", "conv_1", "conv_2", "conv_3", "conv_4", "conv_5", "conv_6", "conv_7", "conv_8", "conv_9", "conv_10", "conv_11", "conv_12", "conv_13", "extractPredictionLayerParams", "box_encoding_0_predictor", "class_predictor_0", "box_encoding_1_predictor", "class_predictor_1", "box_encoding_2_predictor", "class_predictor_2", "box_encoding_3_predictor", "class_predictor_3", "box_encoding_4_predictor", "class_predictor_4", "box_encoding_5_predictor", "class_predictor_5", "extractParams", "weights", "getRemainingWeights", "extractWeightsFactory", "mobilenetv1", "prediction_layer", "output_layer", "uy", "extractorsFactory", "weightMap", "paramMappings", "extractWeightEntry", "extractWeightEntryFactory", "extractPointwiseConvParams", "prefix", "idx", "mappedPrefix", "filters", "batch_norm_offset", "extractConvPairParams", "prefixDepthwiseConv", "mappedPrefixDepthwiseConv", "mappedPrefixPointwiseConv", "batch_norm_scale", "batch_norm_mean", "batch_norm_variance", "extractMobilenetV1Params", "extractConvParams", "bias", "extractBoxPredictorParams", "box_encoding_predictor", "class_predictor", "extractPredictionLayerParams", "extractParamsFromWeightMap", "extra_dim", "isTensor3D", "params", "disposeUnusedWeightTensors", "pointwiseConvLayer", "x", "params", "strides", "B", "out", "Nn", "K", "vr", "epsilon", "depthwiseConvLayer", "x", "params", "strides", "B", "out", "ia", "oa", "vr", "getStridesForLayerIdx", "layerIdx", "idx", "mobileNetV1", "conv11", "pointwiseConvLayer", "param", "depthwiseConvStrides", "IOU", "boxes", "i", "j", "boxesData", "yminI", "xminI", "ymaxI", "xmaxI", "yminJ", "xminJ", "ymaxJ", "xmaxJ", "areaI", "areaJ", "intersectionYmin", "intersectionXmin", "intersectionYmax", "intersectionXmax", "intersectionArea", "nonMaxSuppression", "scores", "maxOutputSize", "iouThreshold", "scoreThreshold", "numBoxes", "outputSize", "candidates", "score", "boxIndex", "c", "c1", "c2", "suppressFunc", "x", "selected", "originalScore", "iou", "getCenterCoordinatesAndSizesLayer", "x", "vec", "gr", "Vt", "sizes", "at", "centers", "K", "ut", "decodeBoxesLayer", "x0", "x1", "div0_out", "$", "Ke", "add0_out", "div1_out", "add1_out", "Fe", "outputLayer", "boxPredictions", "classPredictions", "params", "B", "batchSize", "boxes", "R", "Rr", "scoresAndClasses", "en", "Ot", "scores", "boxesByBatch", "scoresByBatch", "boxPredictionLayer", "x", "params", "B", "batchSize", "boxPredictionEncoding", "R", "convLayer", "classPrediction", "predictionLayer", "x", "conv11", "params", "B", "conv0", "pointwiseConvLayer", "conv1", "conv2", "conv3", "conv4", "conv5", "conv6", "conv7", "boxPrediction0", "boxPredictionLayer", "boxPrediction1", "boxPrediction2", "boxPrediction3", "boxPrediction4", "boxPrediction5", "boxPredictions", "ie", "classPredictions", "SsdMobilenetv1Options", "minConfidence", "maxResults", "SsdMobilenetv1", "NeuralNetwork", "input", "params", "B", "batchTensor", "J", "x", "at", "ut", "features", "mobileNetV1", "boxPredictions", "classPredictions", "predictionLayer", "outputLayer", "toNetInput", "options", "maxResults", "minConfidence", "SsdMobilenetv1Options", "netInput", "_boxes", "_scores", "boxes", "scores", "i", "scoresData", "indices", "nonMaxSuppression", "reshapedDims", "inputSize", "padX", "padY", "boxesData", "results", "idx", "top", "bottom", "val", "left", "right", "FaceDetection", "Rect", "weightMap", "extractParamsFromWeightMap", "weights", "extractParams", "createSsdMobilenetv1", "weights", "net", "SsdMobilenetv1", "createFaceDetectionNet", "FaceDetectionNet", "IOU_THRESHOLD", "BOX_ANCHORS", "Point", "BOX_ANCHORS_SEPARABLE", "MEAN_RGB_SEPARABLE", "DEFAULT_MODEL_NAME", "DEFAULT_MODEL_NAME_SEPARABLE_CONV", "isNumber", "arg", "validateConfig", "config", "c", "a", "leaky", "x", "B", "min", "$", "pt", "K", "Or", "at", "convWithBatchNorm", "x", "params", "B", "out", "mn", "Nn", "at", "$", "K", "leaky", "depthwiseSeparableConv", "x", "params", "B", "out", "mn", "dm", "K", "leaky", "extractorsFactory", "extractWeights", "paramMappings", "extractConvParams", "extractConvParamsFactory", "extractBatchNormParams", "size", "mappedPrefix", "sub", "Oe", "truediv", "extractConvWithBatchNormParams", "channelsIn", "channelsOut", "conv", "bn", "extractSeparableConvParams", "extractSeparableConvParamsFactory", "extractParams", "weights", "config", "boxEncodingSize", "filterSizes", "getRemainingWeights", "extractWeightsFactory", "params", "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", "s8", "conv0", "conv1", "conv2", "conv3", "conv4", "conv5", "conv6", "conv7", "conv8", "extractorsFactory", "weightMap", "paramMappings", "extractWeightEntry", "extractWeightEntryFactory", "extractBatchNormParams", "prefix", "sub", "truediv", "extractConvParams", "filters", "bias", "extractConvWithBatchNormParams", "conv", "bn", "extractSeparableConvParams", "loadSeparableConvParamsFactory", "extractParamsFromWeightMap", "config", "params", "numFilters", "disposeUnusedWeightTensors", "TinyYolov2Options", "inputSize", "scoreThreshold", "_TinyYolov2Base", "NeuralNetwork", "config", "validateConfig", "x", "params", "out", "convWithBatchNorm", "ku", "convLayer", "leaky", "depthwiseSeparableConv", "input", "inputSize", "B", "batchTensor", "J", "normalize", "toNetInput", "forwardParams", "scoreThreshold", "TinyYolov2Options", "netInput", "out0", "gr", "inputDimensions", "results", "boxes", "res", "scores", "classScores", "classNames", "nonMaxSuppression", "box", "idx", "ObjectDetection", "weightMap", "extractParamsFromWeightMap", "weights", "filterSizes", "numFilters", "extractParams", "outputTensor", "inputBlobDimensions", "width", "height", "correctionFactorX", "correctionFactorY", "numCells", "numBoxes", "boxesTensor", "scoresTensor", "classScoresTensor", "reshaped", "Eu", "pt", "scoresData", "boxesData", "row", "col", "anchor", "score", "sigmoid", "ctX", "ctY", "widthLocal", "heightLocal", "y", "pos", "classScore", "label", "BoundingBox", "classesTensor", "classesData", "_", "i", "max", "curr", "TinyYolov2Base", "TinyYolov2", "TinyYolov2Base", "withSeparableConvs", "config", "IOU_THRESHOLD", "BOX_ANCHORS_SEPARABLE", "MEAN_RGB_SEPARABLE", "BOX_ANCHORS", "input", "forwardParams", "det", "FaceDetection", "DEFAULT_MODEL_NAME_SEPARABLE_CONV", "DEFAULT_MODEL_NAME", "weightMap", "createTinyYolov2", "weights", "withSeparableConvs", "net", "TinyYolov2", "TinyFaceDetectorOptions", "TinyYolov2Options", "ComposableTask", "onfulfilled", "extractAllFacesAndComputeResults", "parentResults", "input", "computeResults", "extractedFaces", "getRectForAlignment", "alignedRect", "faceBoxes", "parentResult", "isWithFaceLandmarks", "faces", "Lt", "extractFaceTensors", "extractFaces", "results", "f", "extractSingleFaceAndComputeResult", "computeResult", "IOU_THRESHOLD", "BOX_ANCHORS", "Point", "MEAN_RGB", "TinyFaceDetector", "TinyYolov2Base", "config", "IOU_THRESHOLD", "BOX_ANCHORS", "MEAN_RGB", "input", "forwardParams", "det", "FaceDetection", "weightMap", "nets", "SsdMobilenetv1", "TinyFaceDetector", "TinyYolov2", "FaceLandmark68Net", "FaceLandmark68TinyNet", "FaceRecognitionNet", "FaceExpressionNet", "AgeGenderNet", "ssdMobilenetv1", "input", "options", "tinyFaceDetector", "tinyYolov2", "detectFaceLandmarks", "detectFaceLandmarksTiny", "computeFaceDescriptor", "recognizeFaceExpressions", "predictAgeAndGender", "loadSsdMobilenetv1Model", "url", "loadTinyFaceDetectorModel", "loadTinyYolov2Model", "loadFaceLandmarkModel", "loadFaceLandmarkTinyModel", "loadFaceRecognitionModel", "loadFaceExpressionModel", "loadAgeGenderModel", "loadFaceDetectionModel", "locateFaces", "detectLandmarks", "PredictFaceExpressionsTaskBase", "ComposableTask", "parentTask", "input", "extractedFaces", "PredictAllFaceExpressionsTask", "parentResults", "faceExpressionsByFace", "extractAllFacesAndComputeResults", "faces", "face", "nets", "parentResult", "i", "extendWithFaceExpressions", "PredictAllAgeAndGenderTask", "PredictSingleFaceExpressionsTask", "faceExpressions", "extractSingleFaceAndComputeResult", "PredictSingleAgeAndGenderTask", "PredictAllFaceExpressionsWithFaceAlignmentTask", "PredictAllAgeAndGenderWithFaceAlignmentTask", "ComputeAllFaceDescriptorsTask", "PredictSingleFaceExpressionsWithFaceAlignmentTask", "PredictSingleAgeAndGenderWithFaceAlignmentTask", "ComputeSingleFaceDescriptorTask", "PredictAgeAndGenderTaskBase", "ComposableTask", "parentTask", "input", "extractedFaces", "PredictAllAgeAndGenderTask", "parentResults", "ageAndGenderByFace", "extractAllFacesAndComputeResults", "faces", "face", "nets", "parentResult", "i", "age", "gender", "genderProbability", "extendWithAge", "extendWithGender", "PredictAllFaceExpressionsTask", "PredictSingleAgeAndGenderTask", "extractSingleFaceAndComputeResult", "PredictSingleFaceExpressionsTask", "PredictAllAgeAndGenderWithFaceAlignmentTask", "PredictAllFaceExpressionsWithFaceAlignmentTask", "ComputeAllFaceDescriptorsTask", "PredictSingleAgeAndGenderWithFaceAlignmentTask", "PredictSingleFaceExpressionsWithFaceAlignmentTask", "ComputeSingleFaceDescriptorTask", "ComputeFaceDescriptorsTaskBase", "ComposableTask", "parentTask", "input", "ComputeAllFaceDescriptorsTask", "parentResults", "extractAllFacesAndComputeResults", "faces", "face", "nets", "parentResult", "descriptor", "i", "extendWithFaceDescriptor", "PredictAllFaceExpressionsWithFaceAlignmentTask", "PredictAllAgeAndGenderWithFaceAlignmentTask", "ComputeSingleFaceDescriptorTask", "extractSingleFaceAndComputeResult", "PredictSingleFaceExpressionsWithFaceAlignmentTask", "PredictSingleAgeAndGenderWithFaceAlignmentTask", "DetectFaceLandmarksTaskBase", "ComposableTask", "parentTask", "input", "useTinyLandmarkNet", "nets", "DetectAllFaceLandmarksTask", "parentResults", "detections", "res", "faces", "Lt", "extractFaceTensors", "extractFaces", "faceLandmarksByFace", "face", "f", "_parentResult", "i", "parentResult", "extendWithFaceLandmarks", "PredictAllFaceExpressionsWithFaceAlignmentTask", "PredictAllAgeAndGenderWithFaceAlignmentTask", "ComputeAllFaceDescriptorsTask", "DetectSingleFaceLandmarksTask", "detection", "landmarks", "PredictSingleFaceExpressionsWithFaceAlignmentTask", "PredictSingleAgeAndGenderWithFaceAlignmentTask", "ComputeSingleFaceDescriptorTask", "DetectFacesTaskBase", "ComposableTask", "input", "options", "SsdMobilenetv1Options", "DetectAllFacesTask", "result", "TinyFaceDetectorOptions", "nets", "TinyYolov2Options", "resolve", "reject", "detections", "detection", "extendWithFaceDetection", "err", "useTinyLandmarkNet", "DetectAllFaceLandmarksTask", "PredictAllFaceExpressionsTask", "PredictAllAgeAndGenderTask", "DetectSingleFaceTask", "faceDetections", "faceDetectionWithHighestScore", "faceDetection", "DetectSingleFaceLandmarksTask", "PredictSingleFaceExpressionsTask", "PredictSingleAgeAndGenderTask", "detectSingleFace", "input", "options", "SsdMobilenetv1Options", "DetectSingleFaceTask", "detectAllFaces", "DetectAllFacesTask", "allFacesSsdMobilenetv1", "input", "minConfidence", "detectAllFaces", "SsdMobilenetv1Options", "allFacesTinyYolov2", "forwardParams", "TinyYolov2Options", "allFaces", "euclideanDistance", "arr1", "arr2", "desc1", "desc2", "val", "i", "res", "diff", "FaceMatcher", "_FaceMatcher", "inputs", "distanceThreshold", "inputArray", "count", "createUniqueLabel", "desc", "LabeledFaceDescriptors", "queryDescriptor", "descriptors", "d", "euclideanDistance", "d1", "d2", "label", "FaceMatch", "best", "curr", "bestMatch", "ld", "json", "labeledDescriptors", "createTinyFaceDetector", "weights", "net", "TinyFaceDetector", "resizeResults", "results", "dimensions", "width", "height", "Dimensions", "obj", "isWithFaceLandmarks", "resizedDetection", "resizedLandmarks", "extendWithFaceLandmarks", "extendWithFaceDetection", "isWithFaceDetection", "FaceLandmarks", "FaceDetection", "version"] } diff --git a/dist/face-api.js b/dist/face-api.js index ec9962f..d6b8b03 100644 --- a/dist/face-api.js +++ b/dist/face-api.js @@ -5006,4 +5006,4 @@ return a / b;`,aie=` } `}};function iue(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,segmentIds:s}=t,{numSegments:i}=a,o=r.shape.length,l=[],u=0,p=T.getAxesPermutation([u],o),d=r;p!=null&&(d=Sn({inputs:{x:r},backend:n,attrs:{perm:p}}),l.push(d),u=T.getInnerMostAxes(1,o)[0]);let c=T.segment_util.computeOutShape(d.shape,u,i),h=w.sizeFromShape([d.shape[u]]),m=ce({inputs:{x:d},backend:n,attrs:{shape:[-1,h]}});l.push(m);let f=Xm(r.dtype),g=(v,I,N,C,_)=>{let F=v.shape[0],D=v.shape[1],$=T.segment_util.segOpComputeOptimalWindowSize(D,_),S={windowSize:$,inSize:D,batchSize:F,numSegments:_},M=new sue(S,I),B=n.compileAndRun(M,[v,N],C);if(l.push(B),B.shape[1]===_)return B;let U=EF({backend:n,attrs:{start:0,stop:_,step:1,dtype:"float32"}}),H=_F({inputs:{x:U},backend:n,attrs:{reps:[D/$]}});return l.push(U),l.push(H),g(B,I,H,C,_)},b=g(m,"unsortedSegmentSum",s,f,i),y=ce({inputs:{x:b},backend:n,attrs:{shape:c}}),x=y;if(p!=null){l.push(y);let v=T.getUndoAxesPermutation(p);x=Sn({inputs:{x},backend:n,attrs:{perm:v}})}return l.forEach(v=>n.disposeIntermediateTensorInfo(v)),x}var oue={kernelName:sd,backendName:"webgl",kernelFunc:iue},lue=[Hee,qee,Yee,Qee,tte,rte,ite,lte,dte,mte,bte,vte,Ite,Cte,Ate,$te,Rte,Lte,Wte,Vte,jte,Qte,tne,sne,one,hne,fne,xne,Eee,kne,Cne,Fne,Pne,Wne,Vne,Gne,jne,Yne,Qne,nae,rae,iae,lae,cae,hae,bae,xae,kae,Nae,Cae,Fae,Mae,zae,Vae,Hae,jae,Kae,Yae,Jae,ere,nre,ire,ure,dre,mre,bre,vre,Sre,Ere,Cee,Are,Nne,Dre,Ore,zre,Aee,Ure,qre,Xre,Qre,nse,ise,use,hse,bse,vse,kse,Tse,Ese,Ase,Rse,Ose,Lse,Wse,Vse,jse,Yse,eie,lie,Dee,die,fie,yie,wie,une,Sie,Tie,Eie,Fie,Mie,$ee,Pie,zie,Bie,Uie,Gie,pne,rie,qie,Zie,toe,Mee,soe,loe,doe,foe,xoe,woe,Soe,Coe,Aoe,Doe,Ooe,zoe,Uoe,joe,Yoe,Qoe,Zte,iie,nle,rle,ile,lle,ple,dle,mle,gle,yle,wle,Ile,Nle,Cle,Ale,$le,Rle,Ole,sie,Vee,zle,Vle,Gle,qle,Zle,eue,Uee,nue,rue,oue,Nie];for(let e of lue)id(e);var Qe;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(Qe||(Qe={}));var Oc;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu",e[e.sigmoid=5]="sigmoid",e[e.elu=6]="elu"})(Oc||(Oc={}));var AF;function uue(e){AF=e.wasm.cwrap(li,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function pue(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t;if(r.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:u,activation:p,leakyreluAlpha:d}=a,c=n.dataIdMap.get(r.dataId).id,h=n.dataIdMap.get(s.dataId).id,m=0;if(i!=null){let _=n.dataIdMap.get(i.dataId);if(_.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${_.shape.length}.`);m=_.id}let f=o==null?0:n.dataIdMap.get(o.dataId).id,g=Oc[p];if(g==null)throw new Error(`${p} activation not yet supported for FusedConv2D in the wasm backend.`);let b=l?r.shape[2]:r.shape[1],y=u?s.shape[1]:s.shape[2],x=cp.assertAndGetBroadcastShape(r.shape.slice(0,-2),s.shape.slice(0,-2)),v=n.makeOutput([...x,b,y],r.dtype),I=n.dataIdMap.get(v.dataId).id,N=new Uint8Array(new Int32Array(r.shape).buffer),C=new Uint8Array(new Int32Array(s.shape).buffer);return AF(c,N,r.shape.length,h,C,s.shape.length,l,u,g,m,f,d||0,I),v}var cue={kernelName:li,backendName:"wasm",setupFunc:uue,kernelFunc:pue};function Xe(e,t){let n;function a(s){n=s.wasm.cwrap(e,null,["number","number","number"])}function r(s){let{backend:i,inputs:{x:o}}=s,l=i.dataIdMap.get(o.dataId).id,u=i.makeOutput(o.shape,t||o.dtype),p=i.dataIdMap.get(u.dataId).id;return w.sizeFromShape(u.shape)===0||n(l,Qe[o.dtype],p),u}return{kernelName:e,backendName:"wasm",setupFunc:a,kernelFunc:r}}var due=Xe(uu),hue=Xe(Ci),mue=Xe(Ei);function Ut(e,t,n){let a;function r(i){a=i.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function s(i){let{backend:o,inputs:l}=i,{a:u,b:p}=l,d=o.dataIdMap.get(u.dataId).id,c=o.dataIdMap.get(p.dataId).id,h=n!=null?n:u.dtype,m=T.assertAndGetBroadcastShape(u.shape,p.shape),f=o.makeOutput(m,h);if(w.sizeFromShape(m)===0)return f;let g=new Uint8Array(new Int32Array(u.shape).buffer),b=new Uint8Array(new Int32Array(p.shape).buffer),y=o.dataIdMap.get(f.dataId).id;return a(d,g,u.shape.length,c,b,p.shape.length,Qe[u.dtype],y),f}return{kernelName:e,backendName:"wasm",setupFunc:r,kernelFunc:s}}var fue=!0,gue=Ut(Ss,fue),FF;function bue(e){FF=e.wasm.cwrap(_i,null,["array","number","number","number"])}function yue(e){let{inputs:t,backend:n}=e,a=n.makeOutput(t[0].shape,t[0].dtype);if(w.sizeFromShape(a.shape)===0)return a;let r=t.map(o=>n.dataIdMap.get(o.dataId).id),s=new Uint8Array(new Int32Array(r).buffer),i=n.dataIdMap.get(a.dataId).id;return FF(s,r.length,Qe[a.dtype],i),a}var xue={kernelName:_i,backendName:"wasm",setupFunc:bue,kernelFunc:yue};function rg(e){let{inputs:{x:t},backend:n}=e;if(t.dtype==="string")return bn(n.readSync(t.dataId),t.shape,t.dtype);let a=n.makeOutput(t.shape,t.dtype),r=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(a).set(r),a}var vue={kernelName:no,backendName:"wasm",kernelFunc:rg},$F;function wue(e){$F=e.wasm.cwrap(_r,null,["number","array","number","number","number","array","number"])}function ks(e){let{inputs:t,backend:n,attrs:a}=e,[r,s]=Iue(t.x.shape,a.perm),i=!0;for(let m=0;m=r&&(s===-1||a[s]>a[i])&&(s=i);a[s]=r}return[n,a]}var Sue={kernelName:_r,backendName:"wasm",kernelFunc:ks,setupFunc:wue};function Ps(e,t,n){let a=e.shape,r=e.shape.length,s=w.parseAxisParam(t,a),i=s,o=T.getAxesPermutation(i,r),l=null,u=!1;if(o!=null){let p=new Array(r);for(let c=0;c`new shape: ${i}, old shape: ${a.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(a.dataId),{dataId:a.dataId,shape:i,dtype:a.dtype}}var Yue={kernelName:qu,backendName:"wasm",kernelFunc:zn},WF;function Zue(e){WF=e.wasm.cwrap(Oi,null,["number","array","number","number","array","number","number","number","number"])}function Jue(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;if(r.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=r.shape.length,u=s.shape.length,p=i?r.shape[l-2]:r.shape[l-1],d=o?s.shape[u-1]:s.shape[u-2],c=i?r.shape[l-1]:r.shape[l-2],h=o?s.shape[u-2]:s.shape[u-1],m=r.shape.slice(0,-2),f=s.shape.slice(0,-2),g=w.sizeFromShape(m),b=w.sizeFromShape(f),y=cp.assertAndGetBroadcastShape(r.shape.slice(0,-2),s.shape.slice(0,-2)).concat([c,h]);w.assert(p===d,()=>`Error in matMul: inner shapes (${p}) and (${d}) of Tensors with shapes ${r.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let x=i?[g,p,c]:[g,c,p],v=o?[b,h,d]:[b,d,h],I=zn({inputs:{x:r},backend:n,attrs:{shape:x}}),N=zn({inputs:{x:s},backend:n,attrs:{shape:v}}),C=n.dataIdMap.get(I.dataId).id,_=n.dataIdMap.get(N.dataId).id,F=i?I.shape[2]:I.shape[1],D=o?N.shape[1]:N.shape[2],$=Math.max(g,b),S=n.makeOutput([$,F,D],I.dtype),M=n.dataIdMap.get(S.dataId).id,B=new Uint8Array(new Int32Array(I.shape).buffer),U=new Uint8Array(new Int32Array(N.shape).buffer);return WF(C,B,I.shape.length,_,U,N.shape.length,i,o,M),n.disposeData(I.dataId),n.disposeData(N.dataId),S.shape=y,S}var Que={kernelName:Oi,backendName:"wasm",setupFunc:Zue,kernelFunc:Jue};function Ni(e){let{inputs:{x:t},attrs:{begin:n,size:a},backend:r}=e,[s,i]=Kt.parseSliceParams(t,n,a),o=Kt.isSliceContinous(t.shape,s,i),l=r.readSync(t.dataId),u=r.makeOutput(i,t.dtype),p=w.computeStrides(t.shape),d=r.dataIdMap.get(u.dataId);if(o){let m=Kt.computeFlatOffset(s,p);return t.dtype==="string"?d.stringBytes=l.slice(m,m+w.sizeFromShape(i)):r.typedArrayFromHeap(u).set(l.subarray(m,m+w.sizeFromShape(i))),u}if(t.dtype==="string"){let m=Im(l,s,i,t.shape,t.dtype);return d.stringBytes=m,u}let c=r.typedArrayFromHeap(u),h=t.shape.length;if(h===2)epe(l,p[0],c,s,i);else if(h===3)tpe(l,p[0],p[1],c,s,i);else if(h===4)npe(l,p[0],p[1],p[2],c,s,i);else{let m=Im(l,s,i,t.shape,t.dtype);c.set(m)}return u}function epe(e,t,n,a,r){let s=0,i=a[0],o=a[1],l=i+r[0];for(let u=i;ub*y),l=T.getReshaped(r.shape,s,o),u=T.getPermuted(l.length,s.length),p=T.getReshapedPermuted(r.shape,s,o),d=T.getSliceBeginCoords(i,s.length),c=T.getSliceSize(p,i,s.length),h=zn({inputs:{x:r},backend:n,attrs:{shape:l}}),m=ks({inputs:{x:h},backend:n,attrs:{perm:u}}),f=zn({inputs:{x:m},backend:n,attrs:{shape:p}}),g=Ni({inputs:{x:f},backend:n,attrs:{begin:d,size:c}});return n.disposeData(h.dataId),n.disposeData(m.dataId),n.disposeData(f.dataId),g}var spe={kernelName:fu,backendName:"wasm",kernelFunc:rpe},BF;function ipe(e){BF=e.wasm.cwrap(gu,null,["number","number","boolean","number","number","number"])}function ope(e){let{backend:t,inputs:n,attrs:a}=e,{x:r,weights:s}=n,{size:i}=a,o=s.shape.reduce((d,c)=>d*c,1)!==0,l=r.shape.length===1?[i]:[r.shape[0],i],u=t.makeOutput(l,s.dtype);function p(d){return t.dataIdMap.get(d.dataId).id}return BF(p(r),i,o,p(s),Qe[s.dtype],p(u)),u}var lpe={kernelName:gu,backendName:"wasm",setupFunc:ipe,kernelFunc:ope},upe=!0,ppe=Ut(bu,upe);function cpe(e){let{inputs:t,backend:n}=e,{s0:a,s1:r}=t,s=n.typedArrayFromHeap(a),i=n.typedArrayFromHeap(r),o=T.assertAndGetBroadcastShape(Array.from(s),Array.from(i));return n.makeOutput([o.length],"int32",void 0,new Int32Array(o))}var dpe={kernelName:Bc,backendName:"wasm",kernelFunc:cpe};function Ls(e){let{inputs:{x:t},attrs:{dtype:n},backend:a}=e,r=a.makeOutput(t.shape,n),s=a.typedArrayFromHeap(t);return a.typedArrayFromHeap(r).set(s),r}var hpe={kernelName:Pi,backendName:"wasm",kernelFunc:Ls},mpe=Xe(Li),VF;function fpe(e){VF=e.wasm.cwrap(Ns,null,["number","number","number","number"])}function gpe(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{clipValueMin:s,clipValueMax:i}=a,o=n.dataIdMap.get(r.dataId).id,l=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(l.dataId).id;return VF(o,s,i,u),l}var bpe={kernelName:Ns,backendName:"wasm",setupFunc:fpe,kernelFunc:gpe};function UF(e){let{inputs:t,backend:n}=e,a=w.parseAxisParam(e.attrs.axis,t[0].shape)[0],r=t.map(h=>h.shape);T.assertParamsConsistent(r,a);let s=T.computeOutShape(t.map(h=>h.shape),a),i=t.filter(h=>w.sizeFromShape(h.shape)>0);if(i.length===1)return rg({inputs:{x:i[0]},backend:n});let o=n.makeOutput(s,t[0].dtype);if(w.sizeFromShape(s)===0)return o;if(i[0].dtype==="string"){let h=i.map(x=>{let v=[-1,w.sizeFromShape(x.shape.slice(a))];return zn({inputs:{x},backend:n,attrs:{shape:v}})}),m=h.map(x=>({vals:n.readSync(x.dataId),shape:x.shape}));s=T.computeOutShape(h.map(x=>x.shape),1);let f=h[0].shape[0]===1,g=j1(m,s,t[0].dtype,f),b=T.computeOutShape(i.map(x=>x.shape),a);o.shape=b;let y=n.dataIdMap.get(o.dataId);return y.stringBytes=T.fromStringArrayToUint8(g),h.forEach(x=>n.disposeData(x.dataId)),o}let l=w.sizeFromShape(i[0].shape.slice(0,a)),u=0,p=i.map(h=>{let m=w.sizeFromShape(h.shape.slice(a));return u+=m,m}),d=i.map(h=>n.typedArrayFromHeap(h)),c=n.typedArrayFromHeap(o);for(let h=0;h`cumprod does not support ${r.dtype} tensors in the WASM backend`);let u=T.getAxesPermutation([s],l),p=r;u!==null&&(p=ks({inputs:{x:r},attrs:{perm:u},backend:n}));let d=T.getInnerMostAxes(1,l)[0];T.assertAxesAreInnerMostDims("cumprod",[d],l);let c=n.makeOutput(p.shape,p.dtype),h=p.shape[d],m=n.dataIdMap.get(p.dataId).id,f=n.dataIdMap.get(c.dataId).id;YF(m,i?1:0,o?1:0,h,f,Qe[r.dtype]);let g=c;if(u!==null){let b=T.getUndoAxesPermutation(u);g=ks({inputs:{x:c},attrs:{perm:b},backend:n}),n.disposeData(p.dataId),n.disposeData(c.dataId)}return g}var Bpe={kernelName:wu,backendName:"wasm",setupFunc:zpe,kernelFunc:Wpe},ZF;function Vpe(e){ZF=e.wasm.cwrap(Gi,null,["number","number","number","number","number","number"])}function Upe(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a,l=r.shape.length;w.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumsum does not support ${r.dtype} tensors in the WASM backend`);let u=T.getAxesPermutation([s],l),p=r;u!==null&&(p=ks({inputs:{x:r},attrs:{perm:u},backend:n}));let d=T.getInnerMostAxes(1,l)[0];T.assertAxesAreInnerMostDims("cumsum",[d],l);let c=n.makeOutput(p.shape,p.dtype),h=p.shape[d],m=n.dataIdMap.get(p.dataId).id,f=n.dataIdMap.get(c.dataId).id;ZF(m,i?1:0,o?1:0,h,f,Qe[r.dtype]);let g=c;if(u!==null){let b=T.getUndoAxesPermutation(u);g=ks({inputs:{x:c},attrs:{perm:b},backend:n}),n.disposeData(p.dataId),n.disposeData(c.dataId)}return g}var Gpe={kernelName:Gi,backendName:"wasm",setupFunc:Vpe,kernelFunc:Upe},JF;function Hpe(e){JF=e.wasm.cwrap("DenseBincount",null,["number","array","number","number","boolean","number","number","boolean","number"])}function jpe(e){let{backend:t,inputs:n,attrs:a}=e,{x:r,weights:s}=n,{size:i,binaryOutput:o}=a,l=s.shape.reduce((c,h)=>c*h,1)!==0,u=r.shape.length===1?[i]:[r.shape[0],i],p=t.makeOutput(u,s.dtype);function d(c){return t.dataIdMap.get(c.dataId).id}return JF(d(r),new Uint8Array(new Int32Array(r.shape).buffer),r.shape.length,i,l,d(s),Qe[s.dtype],o,d(p)),p}var qpe={kernelName:Uc,backendName:"wasm",setupFunc:Hpe,kernelFunc:jpe},QF;function Kpe(e){QF=e.wasm.cwrap(Iu,null,["number","number","number","array","number","array","array","number","number"])}function Xpe(e){let{backend:t,inputs:n,attrs:a}=e,{x:r}=n,{blockSize:s,dataFormat:i}=a,o=r.shape[0],l=i==="NHWC"?r.shape[1]:r.shape[2],u=i==="NHWC"?r.shape[2]:r.shape[3],p=i==="NHWC"?r.shape[3]:r.shape[1],d=l*s,c=u*s,h=p/(s*s),m=i==="NHWC"?[o,d,c,h]:[o,h,d,c],f=t.makeOutput(m,"float32"),g=t.dataIdMap.get(r.dataId).id,b=new Uint8Array(new Int32Array(w.computeStrides(r.shape)).buffer),y=new Uint8Array(new Int32Array(m).buffer),x=new Uint8Array(new Int32Array(w.computeStrides(m)).buffer),v=t.dataIdMap.get(f.dataId).id;return QF(g,s,i==="NHWC"?1:0,b,r.shape.length-1,y,x,m.length,v),f}var Ype={kernelName:Iu,backendName:"wasm",setupFunc:Kpe,kernelFunc:Xpe},e$;function Zpe(e){e$=e.wasm.cwrap(Hi,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Jpe(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s}=t,i=a.dataIdMap.get(r.dataId).id,o=a.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:p,dimRoundingMode:d}=n,c=u==null?[1,1]:u,h=T.computeConv2DInfo(r.shape,s.shape,l,c,p,d,!0),m=h.filterHeight,f=h.filterWidth,g=h.padInfo.top,b=h.padInfo.right,y=h.padInfo.bottom,x=h.padInfo.left,v=h.dilationHeight,I=h.dilationWidth,N=h.strideHeight,C=h.strideWidth,_=h.inChannels,F=h.outChannels,D=h.padInfo.type==="SAME"?1:0;if(h.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${h.dataFormat}'. Please use 'channelsLast'.`);let $=a.makeOutput(h.outShape,"float32"),S=a.dataIdMap.get($.dataId).id;return e$(i,r.shape[0],r.shape[1],r.shape[2],o,m,f,g,b,y,x,D,v,I,N,C,_,F,S),$}var Qpe={kernelName:Hi,backendName:"wasm",setupFunc:Zpe,kernelFunc:Jpe},t$;function ece(e){t$=e.wasm.cwrap("Diag",null,["number","number","number","number"])}function tce(e){let{inputs:t,backend:n}=e,{x:a}=t,r=w.sizeFromShape(a.shape),s=n.makeOutput([...a.shape,...a.shape],a.dtype);return t$(n.dataIdMap.get(a.dataId).id,Qe[a.dtype],r,n.dataIdMap.get(s.dataId).id),s}var nce={kernelName:Gc,backendName:"wasm",setupFunc:ece,kernelFunc:tce},n$;function ace(e){n$=e.wasm.cwrap(ji,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function rce(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a;if(r.dtype!==s.dtype)throw new Error(`Dilation2D error: x must have the same dtype as filter. Got ${r.dtype} and ${s.dtype}`);let u=T.computeDilation2DInfo(r.shape,s.shape,i,o,"NHWC",l),p=n.makeOutput(u.outShape,r.dtype);return n$(n.dataIdMap.get(r.dataId).id,n.dataIdMap.get(s.dataId).id,n.dataIdMap.get(p.dataId).id,Qe[r.dtype],u.batchSize,u.inChannels,u.inHeight,u.inWidth,u.outHeight,u.outWidth,u.strideHeight,u.strideWidth,u.dilationHeight,u.dilationWidth,u.filterHeight,u.filterWidth,u.padInfo.top,u.padInfo.left),p}var sce={kernelName:ji,backendName:"wasm",setupFunc:ace,kernelFunc:rce},a$;function ice(e){a$=e.wasm.cwrap(ql,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function oce(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,dy:i}=t,{strides:o,pad:l,dilations:u}=a;if(r.dtype!==s.dtype||r.dtype!==i.dtype)throw new Error(`Dilation2DBackpropFilter error: x must have the same dtype as filter and dy. Got ${r.dtype}, ${s.dtype}, and ${i.dtype}`);let p=T.computeDilation2DInfo(r.shape,s.shape,o,l,"NHWC",u),d=n.makeOutput(s.shape,s.dtype);return a$(n.dataIdMap.get(r.dataId).id,n.dataIdMap.get(s.dataId).id,n.dataIdMap.get(i.dataId).id,n.dataIdMap.get(d.dataId).id,Qe[r.dtype],p.batchSize,p.inChannels,p.inHeight,p.inWidth,p.outHeight,p.outWidth,p.strideHeight,p.strideWidth,p.dilationHeight,p.dilationWidth,p.filterHeight,p.filterWidth,p.padInfo.top,p.padInfo.left),d}var lce={kernelName:ql,backendName:"wasm",setupFunc:ice,kernelFunc:oce},r$;function uce(e){r$=e.wasm.cwrap(jl,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function pce(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,dy:i}=t,{strides:o,pad:l,dilations:u}=a;if(r.dtype!==s.dtype||r.dtype!==i.dtype)throw new Error(`Dilation2DBackpropInput error: x must have the same dtype as filter and dy. Got ${r.dtype}, ${s.dtype}, and ${i.dtype}`);let p=T.computeDilation2DInfo(r.shape,s.shape,o,l,"NHWC",u),d=n.makeOutput(r.shape,r.dtype);return r$(n.dataIdMap.get(r.dataId).id,n.dataIdMap.get(s.dataId).id,n.dataIdMap.get(i.dataId).id,n.dataIdMap.get(d.dataId).id,Qe[r.dtype],p.batchSize,p.inChannels,p.inHeight,p.inWidth,p.outHeight,p.outWidth,p.strideHeight,p.strideWidth,p.dilationHeight,p.dilationWidth,p.filterHeight,p.filterWidth,p.padInfo.top,p.padInfo.left),d}var cce={kernelName:jl,backendName:"wasm",setupFunc:uce,kernelFunc:pce},dce=Xe(Ki),s$;function hce(e){s$=e.wasm.cwrap(Su,null,["number","number","number"])}function mce(e){let{inputs:t,backend:n}=e,{dy:a,y:r}=t,s=n.makeOutput(r.shape,"float32"),i=o=>n.dataIdMap.get(o.dataId).id;return s$(i(r),i(a),i(s)),s}var fce={kernelName:Su,backendName:"wasm",setupFunc:hce,kernelFunc:mce},gce=!1,bce=Ut(Nu,gce,"bool"),yce=Xe(Xi),xce=Xe(Yi,"float32");function Tv(e){let{inputs:t,attrs:n,backend:a}=e,{input:r}=t,{dim:s}=n,i=r.shape.length,o=r.shape.slice(),l=s;return s<0&&(w.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),zn({inputs:{x:r},backend:a,attrs:{shape:o}})}var vce={kernelName:Tu,backendName:"wasm",kernelFunc:Tv},wce=Xe(Zi,"float32");function i$(e){let{attrs:{shape:t,value:n},backend:a}=e,{attrs:{dtype:r}}=e;r=r||w.inferDtype(n);let s=a.makeOutput(t,r);return a.typedArrayFromHeap(s).fill(n),s}var kce={kernelName:Hc,backendName:"wasm",kernelFunc:i$},o$;function Ice(e){o$=e.wasm.cwrap(Cu,null,["number","number","number","number","number","number"])}function Sce(e){let{inputs:t,backend:n}=e,{image:a}=t,r=n.makeOutput(a.shape,a.dtype),s=n.dataIdMap.get(a.dataId).id,i=n.dataIdMap.get(r.dataId).id,[o,l,u,p]=a.shape;return o$(s,o,l,u,p,i),r}var Nce={kernelName:Cu,backendName:"wasm",kernelFunc:Sce,setupFunc:Ice},Tce=Xe(Ji),Cce=!1,Ece=Ut(Qi,Cce),l$;function _ce(e){l$=e.wasm.cwrap(eo,null,["number","number","number","number","number","number","number"])}function Ace(e){let{backend:t,inputs:n,attrs:a}=e,{varianceEpsilon:r}=a,{x:s,mean:i,variance:o,offset:l,scale:u}=n,p=t.dataIdMap.get(s.dataId).id,d=t.dataIdMap.get(i.dataId).id,c=t.dataIdMap.get(o.dataId).id,h=l!=null?t.dataIdMap.get(l.dataId).id:0,m=u!=null?t.dataIdMap.get(u.dataId).id:0,f=t.makeOutput(s.shape,s.dtype);if(w.sizeFromShape(s.shape)===0)return f;let g=t.dataIdMap.get(f.dataId).id;return l$(p,d,c,h,m,r,g),f}var Fce={kernelName:eo,backendName:"wasm",setupFunc:_ce,kernelFunc:Ace},u$;function $ce(e){u$=e.wasm.cwrap(ui,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Dce(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:p,dataFormat:d,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=n,f=T.computeConv2DInfo(r.shape,s.shape,l,p,u,c),g=Oc[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedConv2D in the wasm backend.`);let b=a.dataIdMap.get(r.dataId).id,y=a.dataIdMap.get(s.dataId).id,x=f.outChannels,v=0;if(i!=null){let te=a.dataIdMap.get(i.dataId);if(te.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${te.shape.length}.`);if(te.shape[0]!==x)throw new Error(`FusedConv2D bias shape (${te.shape}) does not match the number of output channels (${x})`);v=te.id}let I=f.filterHeight,N=f.filterWidth,C=f.padInfo.top,_=f.padInfo.right,F=f.padInfo.bottom,D=f.padInfo.left,$=f.dilationHeight,S=f.dilationWidth,M=f.strideHeight,B=f.strideWidth,U=f.inChannels,H=f.padInfo.type==="SAME"?1:0,q=f.batchSize,K=f.inHeight,Z=f.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let J=a.makeOutput(f.outShape,"float32"),ee=a.dataIdMap.get(J.dataId).id,ae=o==null?0:a.dataIdMap.get(o.dataId).id;return u$(b,q,K,Z,y,I,N,v,C,_,F,D,H,$,S,M,B,U,x,g,ae,m||0,ee),J}var Rce={kernelName:ui,backendName:"wasm",setupFunc:$ce,kernelFunc:Dce},p$;function Mce(e){p$=e.wasm.cwrap(pi,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Oce(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:p,dataFormat:d,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=n,f=T.computeConv2DInfo(r.shape,s.shape,l,p,u,c,!0),g=Oc[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let b=a.dataIdMap.get(r.dataId).id,y=a.dataIdMap.get(s.dataId).id,x=f.outChannels,v=0;if(i!=null){let te=a.dataIdMap.get(i.dataId);if(te.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${te.shape.length}.`);if(te.shape[0]!==x)throw new Error(`FusedDepthwiseConv2D bias shape (${te.shape}) does not match the number of output channels (${x})`);v=te.id}let I=f.filterHeight,N=f.filterWidth,C=f.padInfo.top,_=f.padInfo.right,F=f.padInfo.bottom,D=f.padInfo.left,$=f.dilationHeight,S=f.dilationWidth,M=f.strideHeight,B=f.strideWidth,U=f.inChannels,H=f.padInfo.type==="SAME"?1:0,q=f.batchSize,K=f.inHeight,Z=f.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let J=a.makeOutput(f.outShape,"float32"),ee=a.dataIdMap.get(J.dataId).id,ae=o==null?0:a.dataIdMap.get(o.dataId).id;return p$(b,q,K,Z,y,I,N,v,C,_,F,D,H,$,S,M,B,U,x,g,ae,m||0,ee),J}var Pce={kernelName:pi,backendName:"wasm",setupFunc:Mce,kernelFunc:Oce},c$;function Lce(e){c$=e.wasm.cwrap(_u,null,["number","number","number","number","number","number","array","number"])}function zce(e){let{backend:t,inputs:n}=e,{params:a,indices:r}=n,[s,i,o,l]=r0.prepareAndValidate(a,r),u=t.makeOutput(s,a.dtype);if(i===0)return u;let p=r.shape,d=p[p.length-1],c=t.dataIdMap.get(a.dataId).id,h=t.dataIdMap.get(r.dataId).id,m=new Uint8Array(new Int32Array(l).buffer),f=t.dataIdMap.get(u.dataId).id;return c$(c,Qe[a.dtype],h,i,d,o,m,f),u}var Wce={kernelName:_u,backendName:"wasm",setupFunc:Lce,kernelFunc:zce},d$;function Bce(e){d$=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function Vce(e){let{backend:t,inputs:n,attrs:a}=e,{x:r,indices:s}=n,{axis:i,batchDims:o}=a,l=w.parseAxisParam(i,r.shape)[0],u=t.readSync(s.dataId),p=r.shape[l];for(let C=0;C=0,()=>`GatherV2: the index value ${_} is not in [0, ${p-1}]`)}let d=T.segment_util.collectGatherOpShapeInfo(r,s,l,o),c=zn({inputs:{x:r},attrs:{shape:[d.batchSize,d.outerSize,d.dimSize,d.sliceSize]},backend:t}),h=w.sizeFromShape(s.shape),m=zn({inputs:{x:s},attrs:{shape:[d.batchSize,h/d.batchSize]},backend:t}),f=[d.batchSize,d.outerSize,h/d.batchSize,d.sliceSize],g=t.makeOutput(f,r.dtype);if(w.sizeFromShape(r.shape)===0)return g;let b=c.shape.length-1,y=t.dataIdMap.get(c.dataId).id,x=t.dataIdMap.get(m.dataId).id,v=t.dataIdMap.get(g.dataId).id,I=new Uint8Array(new Int32Array(w.computeStrides(c.shape)).buffer),N=new Uint8Array(new Int32Array(w.computeStrides(f)).buffer);return d$(y,Qe[r.dtype],I,b,x,d.batchSize,N,v),t.disposeData(c.dataId),t.disposeData(m.dataId),g.shape=d.outputShape,g}var Uce={kernelName:Eu,backendName:"wasm",setupFunc:Bce,kernelFunc:Vce},Gce=!1,Hce=Ut(Au,Gce,"bool"),jce=!1,qce=Ut(to,jce,"bool"),Kce=Xe(ao,"bool"),Xce=Xe(ro,"bool"),Yce=Xe(so,"bool"),h$;function Zce(e){h$=e.wasm.cwrap(io,null,["number","number","number","number"])}function Jce(e){let{inputs:{x:t},attrs:{alpha:n},backend:a}=e,r=a.dataIdMap.get(t.dataId).id,s=a.makeOutput(t.shape,"float32");if(w.sizeFromShape(t.shape)!==0){let i=a.dataIdMap.get(s.dataId).id;h$(r,Qe[t.dtype],n,i)}return s}var Qce={kernelName:io,backendName:"wasm",setupFunc:Zce,kernelFunc:Jce},ede=!1,tde=Ut(Fu,ede,"bool"),nde=!1,ade=Ut($u,nde,"bool"),m$;function rde(e){m$=e.wasm.cwrap(Du,null,["number","number","number","number"])}function sde(e){let{attrs:t,backend:n}=e,{start:a,stop:r,num:s}=t,i=Math.floor(s),o=n.makeOutput([i],"float32");return m$(n.dataIdMap.get(o.dataId).id,a,r,i),o}var ide={kernelName:Du,backendName:"wasm",setupFunc:rde,kernelFunc:sde},ode=Xe(oo),lde=Xe(lo),ude=!1,pde=Ut(Ru,ude,"bool"),cde=Xe(Mu),dde=!1,hde=Ut(Ou,dde,"bool"),mde=!1,fde=Ut(mN,mde,"bool"),f$;function gde(e){f$=e.wasm.cwrap(uo,null,["number","number","number","number","number","number","number"])}function bde(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=a;if(r.dtype!=="float32")throw new Error("LRN error: x must have dtype float32");let u=n.makeOutput(r.shape,r.dtype);return f$(n.dataIdMap.get(r.dataId).id,n.dataIdMap.get(u.dataId).id,r.shape[3],s,i,o,l),u}var yde={kernelName:uo,backendName:"wasm",setupFunc:gde,kernelFunc:bde},g$;function xde(e){g$=e.wasm.cwrap(Pu,null,["number","number","number","number","number","number","number","number","number"])}function vde(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:u,beta:p}=a;if(r.dtype!=="float32"||s.dtype!=="float32"||i.dtype!=="float32")throw new Error("LRNGrad error: x, y, and dy must have dtype float32");let d=n.makeOutput(r.shape,r.dtype);return g$(n.dataIdMap.get(r.dataId).id,n.dataIdMap.get(s.dataId).id,n.dataIdMap.get(i.dataId).id,n.dataIdMap.get(d.dataId).id,i.shape[3],o,l,u,p),d}var wde={kernelName:Pu,backendName:"wasm",setupFunc:xde,kernelFunc:vde},b$;function kde(e){b$=e.wasm.cwrap(po,null,["number","number","number","number"])}function Ide(e){let{backend:t,inputs:n,attrs:a}=e,{reductionIndices:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:c}=Ps(i,r,t);if(c){let y=t.dataIdMap.get(u.dataId).id;l=u,o=y}let h=l.shape.length;T.assertAxesAreInnerMostDims("max",p,h);let[m,f]=T.computeOutAndReduceShapes(l.shape,p),g=w.sizeFromShape(f),b=t.makeOutput(m,i.dtype);if(w.sizeFromShape(l.shape)!==0){let y=t.dataIdMap.get(b.dataId).id;b$(o,Qe[i.dtype],g,y)}if(c&&t.disposeData(u.dataId),s){let y=T.expandShapeToKeepDim(b.shape,d);b.shape=y}return b}var Sde={kernelName:po,backendName:"wasm",setupFunc:kde,kernelFunc:Ide},Nde=!1,Tde=Ut(co,Nde),y$;function Cde(e){y$=e.wasm.cwrap(ho,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Ede(e){let{inputs:t,attrs:n,backend:a}=e,r=t.x,s=a.dataIdMap.get(r.dataId).id;w.assert(r.dtype==="float32",()=>`Error in MaxPool: only float32 input is supported. Got ${r.dtype}.`);let{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=n,p=T.computePool2DInfo(r.shape,i,o,1,l,u),d=p.filterHeight,c=p.filterWidth,h=p.padInfo.top,m=p.padInfo.right,f=p.padInfo.bottom,g=p.padInfo.left,b=p.dilationHeight,y=p.dilationWidth,x=p.strideHeight,v=p.strideWidth,I=p.inChannels,N=p.outChannels;if(p.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${p.dataFormat}'. Please use 'channelsLast'.`);let C=a.makeOutput(p.outShape,"float32"),_=a.dataIdMap.get(C.dataId).id;return y$(s,r.shape[0],r.shape[1],r.shape[2],d,c,h,m,f,g,b,y,x,v,I,N,_),C}var _de={kernelName:ho,backendName:"wasm",setupFunc:Cde,kernelFunc:Ede},x$;function Ade(e){x$=e.wasm.cwrap("MaxPool3D",null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Fde(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=a,p=T.computePool3DInfo(r.shape,s,i,1,o,l,u),d=n.makeOutput(p.outShape,r.dtype);return x$(n.dataIdMap.get(r.dataId).id,n.dataIdMap.get(d.dataId).id,p.batchSize,p.inChannels,p.inDepth,p.inHeight,p.inWidth,p.outDepth,p.outHeight,p.outWidth,p.strideDepth,p.strideHeight,p.strideWidth,p.dilationDepth,p.dilationHeight,p.dilationWidth,p.effectiveFilterDepth,p.effectiveFilterHeight,p.effectiveFilterWidth,p.padInfo.front,p.padInfo.top,p.padInfo.left),d}var $de={kernelName:Lu,backendName:"wasm",setupFunc:Ade,kernelFunc:Fde},v$;function Dde(e){v$=e.wasm.cwrap("MaxPool3DGrad",null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Rde(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=a,p=T.computePool3DInfo(s.shape,i,o,1,l,u),d=n.makeOutput(s.shape,s.dtype);return v$(n.dataIdMap.get(s.dataId).id,n.dataIdMap.get(r.dataId).id,n.dataIdMap.get(d.dataId).id,p.batchSize,p.inChannels,p.inDepth,p.inHeight,p.inWidth,p.outDepth,p.outHeight,p.outWidth,p.strideDepth,p.strideHeight,p.strideWidth,p.dilationDepth,p.dilationHeight,p.dilationWidth,p.effectiveFilterDepth,p.effectiveFilterHeight,p.effectiveFilterWidth,p.padInfo.front,p.padInfo.top,p.padInfo.left),d}var Mde={kernelName:qc,backendName:"wasm",setupFunc:Dde,kernelFunc:Rde},w$;function Ode(e){w$=e.wasm.cwrap("MaxPoolGrad",null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Pde(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=a,p=T.computePool2DInfo(s.shape,i,o,1,l,u),d=n.makeOutput(s.shape,s.dtype);return w$(n.dataIdMap.get(s.dataId).id,n.dataIdMap.get(r.dataId).id,n.dataIdMap.get(d.dataId).id,p.batchSize,p.inChannels,p.inHeight,p.inWidth,p.outHeight,p.outWidth,p.strideHeight,p.strideWidth,p.dilationHeight,p.dilationWidth,p.effectiveFilterHeight,p.effectiveFilterWidth,p.padInfo.top,p.padInfo.left),d}var Lde={kernelName:jc,backendName:"wasm",setupFunc:Ode,kernelFunc:Pde},k$;function zde(e){k$=e.wasm.cwrap("MaxPoolWithArgmax",null,["number","number","number","number","boolean","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Wde(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,includeBatchInIndex:l}=a;w.assert(r.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${r.shape.length}.`);let u=[1,1];w.assert(T.eitherStridesOrDilationsAreOne(i,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let p=T.computePool2DInfo(r.shape,s,i,[1,1],o),d=n.makeOutput(p.outShape,r.dtype),c=n.makeOutput(p.outShape,"int32");return k$(n.dataIdMap.get(r.dataId).id,n.dataIdMap.get(d.dataId).id,n.dataIdMap.get(c.dataId).id,Qe[r.dtype],l,p.batchSize,p.inChannels,p.inHeight,p.inWidth,p.outHeight,p.outWidth,p.strideHeight,p.strideWidth,p.dilationHeight,p.dilationWidth,p.effectiveFilterHeight,p.effectiveFilterWidth,p.padInfo.top,p.padInfo.left),[d,c]}var Bde={kernelName:Kc,backendName:"wasm",setupFunc:zde,kernelFunc:Wde},I$;function Vde(e){I$=e.wasm.cwrap(mo,null,["number, number, number"])}function Ude(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:p,axes:d,originalAxes:c,inputWasTransposed:h}=Ps(i,r,t),m=d;if(h){let v=t.dataIdMap.get(p.dataId).id;v!==o&&(u=p,l=v,m=T.getInnerMostAxes(m.length,u.shape.length))}T.assertAxesAreInnerMostDims("mean",m,u.shape.length);let[f,g]=T.computeOutAndReduceShapes(u.shape,m),b=w.sizeFromShape(g),y=u;u.dtype!=="float32"&&(y=Ls({backend:t,inputs:{x:u},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(y.dataId).id);let x=t.makeOutput(f,"float32");if(w.sizeFromShape(u.shape)!==0){let v=t.dataIdMap.get(x.dataId).id;I$(l,b,v)}if(h&&t.disposeData(p.dataId),s){let v=T.expandShapeToKeepDim(x.shape,c);x.shape=v}return u.dtype!=="float32"&&t.disposeData(y.dataId),x}var Gde={kernelName:mo,backendName:"wasm",setupFunc:Vde,kernelFunc:Ude},S$;function Hde(e){S$=e.wasm.cwrap(fo,null,["number","number","number","number"])}function jde(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:p,axes:d,originalAxes:c,inputWasTransposed:h}=Ps(i,r,t);if(h){let x=t.dataIdMap.get(p.dataId).id;x!==o&&(u=p,l=x)}let m=u.shape.length;T.assertAxesAreInnerMostDims("min",d,m);let[f,g]=T.computeOutAndReduceShapes(u.shape,d),b=w.sizeFromShape(g),y=t.makeOutput(f,u.dtype);if(w.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;S$(l,Qe[i.dtype],b,x)}if(h&&t.disposeData(p.dataId),s){let x=T.expandShapeToKeepDim(y.shape,c);y.shape=x}return y}var qde={kernelName:fo,backendName:"wasm",setupFunc:Hde,kernelFunc:jde},Kde=!1,Xde=Ut(go,Kde),Cv;(function(e){e[e.reflect=0]="reflect",e[e.symmetric=1]="symmetric"})(Cv||(Cv={}));var N$;function Yde(e){N$=e.wasm.cwrap(bo,null,["number","array","number","number","array","array","number","number"])}function Zde(e){let{inputs:{x:t},backend:n,attrs:{paddings:a,mode:r}}=e,s=a.map((m,f)=>m[0]+t.shape[f]+m[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),p=a.map(m=>m[0]),d=a.map(m=>m[1]),c=new Uint8Array(new Int32Array(p).buffer),h=new Uint8Array(new Int32Array(d).buffer);return N$(i,u,t.shape.length,Qe[t.dtype],c,h,Cv[r],l),o}var Jde={kernelName:bo,backendName:"wasm",kernelFunc:Zde,setupFunc:Yde},T$;function Qde(e){T$=e.wasm.cwrap(Bo,null,["number","number","number","number"])}function C$(e){let{backend:t,inputs:{logits:n},attrs:{dim:a}}=e,r=t.dataIdMap.get(n.dataId).id,s=t.makeOutput(n.shape,n.dtype),i=t.dataIdMap.get(s.dataId).id,o=n.shape[a],l=w.sizeFromShape(n.shape)/o;return w.sizeFromShape(s.shape)===0||T$(r,i,o,l),s}var ehe={kernelName:Bo,backendName:"wasm",setupFunc:Qde,kernelFunc:C$},E$;function the(e){E$=e.wasm.cwrap(zu,null,["number","number","number","number","number","number"])}function nhe(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{numSamples:s,seed:i,normalized:o}=a;if(r.dtype!=="float32")throw new Error(`Tensor logits must have dtype float32, got ${r.dtype}`);let l=o?r:C$({inputs:{logits:r},backend:n,attrs:{dim:r.shape.length-1}}),[u,p]=l.shape,d=n.makeOutput([u,s],"int32");return E$(n.dataIdMap.get(l.dataId).id,u,p,s,i,n.dataIdMap.get(d.dataId).id),o||n.disposeData(l.dataId),d}var ahe={kernelName:zu,backendName:"wasm",setupFunc:the,kernelFunc:nhe},rhe=Ut(yo,!0),she=!0,ihe=Ut(xo,she),ohe=Xe(Wu);function wk(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),a=n[0],r=n[1],s=n[2],i=n[3];return e.wasm._free(t),{pSelectedIndices:a,selectedSize:r,pSelectedScores:s,pValidOutputs:i}}var _$;function lhe(e){_$=e.wasm.cwrap(Vu,"number",["number","number","number","number","number"])}function uhe(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i}=a,{boxes:o,scores:l}=n,u=t.dataIdMap.get(o.dataId).id,p=t.dataIdMap.get(l.dataId).id,d=_$(u,p,s,r,i),{pSelectedIndices:c,selectedSize:h,pSelectedScores:m,pValidOutputs:f}=wk(t,d);return t.wasm._free(m),t.wasm._free(f),t.makeOutput([h],"int32",c)}var phe={kernelName:Vu,backendName:"wasm",setupFunc:lhe,kernelFunc:uhe},A$;function che(e){A$=e.wasm.cwrap(Uu,"number",["number","number","number","number","number","bool"])}function dhe(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i,padToMaxOutputSize:o}=a,{boxes:l,scores:u}=n,p=t.dataIdMap.get(l.dataId).id,d=t.dataIdMap.get(u.dataId).id,c=A$(p,d,s,r,i,o),{pSelectedIndices:h,selectedSize:m,pSelectedScores:f,pValidOutputs:g}=wk(t,c);t.wasm._free(f);let b=t.makeOutput([m],"int32",h),y=t.makeOutput([],"int32",g);return[b,y]}var hhe={kernelName:Uu,backendName:"wasm",setupFunc:che,kernelFunc:dhe},F$;function mhe(e){F$=e.wasm.cwrap(Gu,"number",["number","number","number","number","number","number"])}function fhe(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i,softNmsSigma:o}=a,{boxes:l,scores:u}=n,p=t.dataIdMap.get(l.dataId).id,d=t.dataIdMap.get(u.dataId).id,c=F$(p,d,s,r,i,o),{pSelectedIndices:h,selectedSize:m,pSelectedScores:f,pValidOutputs:g}=wk(t,c);t.wasm._free(g);let b=t.makeOutput([m],"int32",h),y=t.makeOutput([m],"float32",f);return[b,y]}var ghe={kernelName:Gu,backendName:"wasm",setupFunc:mhe,kernelFunc:fhe},bhe=!1,yhe=Ut(Bu,bhe,"bool"),$$;function xhe(e){$$=e.wasm.cwrap(vo,null,["number","number","number","number","number"])}function vhe(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{dtype:s,depth:i,onValue:o,offValue:l}=a,u=n.makeOutput([...r.shape,i],s),p=n.dataIdMap.get(u.dataId).id,d=n.dataIdMap.get(r.dataId).id;return $$(d,i,o,l,p),u}var whe={kernelName:vo,backendName:"wasm",setupFunc:xhe,kernelFunc:vhe};function khe(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(a).fill(1),a}var Ihe={kernelName:Hu,backendName:"wasm",kernelFunc:khe};function She(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return Tv({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(p=>{w.assertShapesMatch(s,p.shape,"All tensors passed to stack must have matching shapes"),w.assert(i===p.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(p=>{let d=Tv({inputs:{input:p},backend:n,attrs:{dim:r}});return o.push(d),d}),u=UF({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(p=>n.disposeData(p.dataId)),u}var Nhe={kernelName:ju,backendName:"wasm",kernelFunc:She},D$;function The(e){D$=e.wasm.cwrap(wo,null,["number","array","number","number","array","array","number","number"])}function Che(e){let{inputs:{x:t},backend:n,attrs:{paddings:a,constantValue:r}}=e,s=a.map((m,f)=>m[0]+t.shape[f]+m[1]);if(w.sizeFromShape(t.shape)===0)return i$({backend:n,attrs:{shape:s,value:r,dtype:t.dtype}});let i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),p=a.map(m=>m[0]),d=a.map(m=>m[1]),c=new Uint8Array(new Int32Array(p).buffer),h=new Uint8Array(new Int32Array(d).buffer);return D$(i,u,t.shape.length,Qe[t.dtype],c,h,r,l),o}var R$={kernelName:wo,backendName:"wasm",kernelFunc:Che,setupFunc:The},Ehe=!1,_he=Ut(ko,Ehe),M$;function Ahe(e){M$=e.wasm.cwrap(Io,null,["number","number","number"])}function Fhe(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t,s=n.dataIdMap.get(a.dataId).id,i=n.dataIdMap.get(r.dataId).id,o=s,l=a,u=l;l.dtype!=="float32"&&(u=Ls({backend:n,inputs:{x:a},attrs:{dtype:"float32"}}),o=n.dataIdMap.get(u.dataId).id);let p=n.makeOutput(a.shape,"float32"),d=n.dataIdMap.get(p.dataId).id;return M$(o,i,d),l.dtype!=="float32"&&n.disposeData(u.dataId),p}var $he={kernelName:Io,backendName:"wasm",setupFunc:Ahe,kernelFunc:Fhe},O$;function Dhe(e){O$=e.wasm.cwrap(So,null,["number","number","number","number"])}function Rhe(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:p,axes:d,originalAxes:c,inputWasTransposed:h}=Ps(i,r,t),m=d;if(h){let x=t.dataIdMap.get(p.dataId).id;x!==o&&(u=p,l=x,m=T.getInnerMostAxes(m.length,u.shape.length))}T.assertAxesAreInnerMostDims("prod",m,u.shape.length);let[f,g]=T.computeOutAndReduceShapes(u.shape,m),b=w.sizeFromShape(g),y=t.makeOutput(f,u.dtype);if(w.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;O$(l,b,Qe[y.dtype],x)}if(h&&t.disposeData(p.dataId),s){let x=T.expandShapeToKeepDim(y.shape,c);y.shape=x}return y}var Mhe={kernelName:So,backendName:"wasm",setupFunc:Dhe,kernelFunc:Rhe},Ohe=e=>{let{backend:t,attrs:n}=e,{start:a,stop:r,step:s,dtype:i}=n,o=X1(a,r,s,i),l=t.makeOutput([o.length],i);return t.typedArrayFromHeap(l).set(o),l},Phe={kernelName:Xc,backendName:"wasm",kernelFunc:Ohe},Lhe=!0,zhe=Ut(qi,Lhe),Whe=Xe(No),Bhe=Xe(To),Vhe=Xe(_o),P$;function Uhe(e){P$=e.wasm.cwrap(Eo,null,["number","number","number","number","number","number","number","number","number","number"])}function Ghe(e){let{backend:t,inputs:n,attrs:a}=e,{images:r}=n,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,u]=o,[p,d,c,h]=r.shape,m=[p,l,u,h],f=t.dataIdMap.get(r.dataId),g;f.dtype!=="float32"&&(g=Ls({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(g.dataId));let b=f.id,y=t.makeOutput(m,"float32");if(w.sizeFromShape(r.shape)===0)return y;let x=t.dataIdMap.get(y.dataId).id;return P$(b,p,d,c,h,l,u,s?1:0,i?1:0,x),g!=null&&t.disposeData(g.dataId),y}var Hhe={kernelName:Eo,backendName:"wasm",setupFunc:Uhe,kernelFunc:Ghe},L$;function jhe(e){L$=e.wasm.cwrap(Xu,null,["number","number","number","array","array","boolean"])}function qhe(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a,o=n.makeOutput(r.shape,"float32"),l=n.dataIdMap.get(r.dataId),u;return l.dtype!=="float32"&&(u=Ls({backend:n,inputs:{x:r},attrs:{dtype:"float32"}}),l=n.dataIdMap.get(u.dataId)),L$(n.dataIdMap.get(r.dataId).id,n.dataIdMap.get(s.dataId).id,n.dataIdMap.get(o.dataId).id,new Uint8Array(new Int32Array(r.shape).buffer),new Uint8Array(new Int32Array(s.shape).buffer),i),u!=null&&n.disposeData(u.dataId),o}var Khe={kernelName:Xu,backendName:"wasm",setupFunc:jhe,kernelFunc:qhe},z$;function Xhe(e){z$=e.wasm.cwrap(Co,null,["number","number","number","number","number","number","number","number","number","number"])}function Yhe(e){let{backend:t,inputs:n,attrs:a}=e,{images:r}=n,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,u]=o,[p,d,c,h]=r.shape,m=[p,l,u,h],f=t.makeOutput(m,"float32");if(w.sizeFromShape(r.shape)===0)return f;let g=t.dataIdMap.get(r.dataId),b;g.dtype!=="float32"&&(b=Ls({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),g=t.dataIdMap.get(b.dataId));let y=g.id,x=t.dataIdMap.get(f.dataId).id;return z$(y,p,d,c,h,l,u,s?1:0,i?1:0,x),b!=null&&t.disposeData(b.dataId),f}var Zhe={kernelName:Co,backendName:"wasm",setupFunc:Xhe,kernelFunc:Yhe},W$;function Jhe(e){W$=e.wasm.cwrap(Ku,null,["number","number","number","array","array","boolean"])}function Qhe(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a,o=n.makeOutput(r.shape,"float32"),l=n.dataIdMap.get(r.dataId),u;return l.dtype!=="float32"&&(u=Ls({backend:n,inputs:{x:r},attrs:{dtype:"float32"}}),l=n.dataIdMap.get(u.dataId)),W$(n.dataIdMap.get(r.dataId).id,n.dataIdMap.get(s.dataId).id,n.dataIdMap.get(o.dataId).id,new Uint8Array(new Int32Array(r.shape).buffer),new Uint8Array(new Int32Array(s.shape).buffer),i),u!=null&&n.disposeData(u.dataId),o}var eme={kernelName:Ku,backendName:"wasm",setupFunc:Jhe,kernelFunc:Qhe},B$;function tme(e){B$=e.wasm.cwrap(Ao,null,["number","array","number","array","number","number"])}function nme(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a,i=w.parseAxisParam(s,r.shape);if(r.shape.length===0)return rg({inputs:{x:r},backend:n});let o=n.makeOutput(r.shape,r.dtype),l=n.dataIdMap.get(r.dataId).id,u=n.dataIdMap.get(o.dataId).id,p=new Uint8Array(new Int32Array(i).buffer),d=new Uint8Array(new Int32Array(r.shape).buffer);B$(l,p,i.length,d,r.shape.length,u);let c=zn({inputs:{x:o},attrs:{shape:r.shape},backend:n});return n.disposeData(o.dataId),c}var ame={kernelName:Ao,backendName:"wasm",kernelFunc:nme,setupFunc:tme},V$;function rme(e){V$=e.wasm.cwrap(pp,null,["number","number","number","number","number","number","number","number","array","number","number"])}function sme(e){let{inputs:t,backend:n,attrs:a}=e,{image:r}=t,{radians:s,fillValue:i,center:o}=a,l=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(r.dataId).id,p=n.dataIdMap.get(l.dataId).id,[d,c,h,m]=r.shape,[f,g]=T.getImageCenter(o,c,h),b=i===0,y=255,x=typeof i=="number"?[i,i,i,b?0:y]:[...i,y],v=new Uint8Array(new Int32Array(x).buffer);return V$(u,d,c,h,m,s,f,g,v,x.length,p),l}var ime={kernelName:pp,backendName:"wasm",kernelFunc:sme,setupFunc:rme},ome=Xe(Fo),lme=Xe($o),U$;function ume(e){U$=e.wasm.cwrap(Yu,null,["number","number","number","number","number","number","array","number","number"])}function pme(e){let{backend:t,inputs:n,attrs:a}=e,{indices:r,updates:s}=n,{shape:i}=a,o=t.makeOutput(i,s.dtype);if(w.sizeFromShape(i)===0)return o;let{sliceRank:l,numUpdates:u,sliceSize:p,strides:d,outputSize:c}=vf.calculateShapes(s,r,i),h=t.dataIdMap.get(r.dataId).id,m=t.dataIdMap.get(s.dataId).id,f=new Uint8Array(new Int32Array(d).buffer),g=t.dataIdMap.get(o.dataId).id;return U$(h,m,Qe[s.dtype],l,u,p,f,c,g),o}var cme={kernelName:Yu,backendName:"wasm",setupFunc:ume,kernelFunc:pme},G$;function dme(e){G$=e.wasm.cwrap(Ju,null,["number","number","number","number","number","number","bool","number"])}function hme(e){let{inputs:t,backend:n,attrs:a}=e,{sortedSequence:r,values:s}=t,{side:i}=a;if(r.dtype!==s.dtype)throw new Error(`SearchSorted error: sorted_sequence must have the same dtype as values. Got ${r.dtype} and ${s.dtype}`);let o=n.makeOutput(s.shape,"int32");function l(u){return n.dataIdMap.get(u.dataId).id}return G$(l(r),l(s),r.shape[0],r.shape[1],s.shape[1],Qe[r.dtype],i==="left",l(o)),o}var mme={kernelName:Ju,backendName:"wasm",setupFunc:dme,kernelFunc:hme},H$;function fme(e){H$=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function gme(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t,i=n.dataIdMap.get(a.dataId).id,o=n.dataIdMap.get(r.dataId).id,l=n.dataIdMap.get(s.dataId).id,u=n.makeOutput(r.shape,r.dtype),p=n.dataIdMap.get(u.dataId).id,d=a.shape.length,c=r.shape.length,h=d===0||d>1||c===1?1:w.sizeFromShape(r.shape.slice(1));return H$(i,o,l,h,p),u}var bme={kernelName:Qu,backendName:"wasm",kernelFunc:gme,setupFunc:fme},yme=Xe(Do),j$;function xme(e){j$=e.wasm.cwrap(Po,null,["number","number"])}function vme(e){let{backend:t,inputs:{x:n}}=e,a=t.dataIdMap.get(n.dataId).id,r=t.makeOutput(n.shape,n.dtype),s=t.dataIdMap.get(r.dataId).id;return w.sizeFromShape(r.shape)===0||j$(a,s),r}var wme={kernelName:"Sigmoid",backendName:"wasm",setupFunc:xme,kernelFunc:vme},kme=Xe(Oo),Ime=Xe(Ro),Sme=Xe(Mo),Nme=Xe(Lo);function Tme(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,paddings:i}=a,o=w.sizeFromShape(s),l=[[0,0]];l.push(...i);for(let g=1+s.length;g0?l+1:0;if(u<0)throw new Error(T.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let p=r.shape.slice();p[0]=u;let d=n.dataIdMap.get(r.dataId).id,c=n.dataIdMap.get(s.dataId).id,h=n.dataIdMap.get(i.dataId).id,m=n.makeOutput(p,r.dtype),f=n.dataIdMap.get(m.dataId).id,g=n.makeOutput([4],"int32"),b=n.dataIdMap.get(g.dataId).id;X$(d,Qe[r.dtype],r.shape[0],c,h,f,b,t,0);let y=n.readSync(g.dataId),x;switch(y[0]){case 0:{x=T.getSparseSegmentReductionNegativeSegmentIdsErrorMessage();break}case 1:{x=T.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage();break}case 2:x=T.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(y[1],y[2]);break;case 3:x=T.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(y[1],y[2],y[3]);break;default:x=""}if(n.disposeData(g.dataId),x)throw n.disposeData(m.dataId),new Error(x);return m}function Rme(e){return Z$(e,!0)}var Mme={kernelName:Zc,backendName:"wasm",setupFunc:Y$,kernelFunc:Rme};function Ome(e){return Z$(e,!1)}var Pme={kernelName:Jc,backendName:"wasm",setupFunc:Y$,kernelFunc:Ome},J$;function Lme(e){J$=e.wasm.cwrap(rp,null,["number","number","number","number","number","number","number","number","array","number","number"])}function zme(e){let{backend:t,inputs:n,attrs:a}=e,{sparseIndices:r,sparseValues:s,defaultValue:i}=n,{outputShape:o}=a,l=t.makeOutput(o,i.dtype);if(w.sizeFromShape(o)===0)return l;let{sliceRank:u,numUpdates:p,sliceSize:d,strides:c,outputSize:h}=T.calculateShapes(s,r,o),m=t.dataIdMap.get(r.dataId).id,f=t.dataIdMap.get(s.dataId).id,g=t.dataIdMap.get(i.dataId).id,b=new Uint8Array(new Int32Array(c).buffer),y=t.dataIdMap.get(l.dataId).id;return J$(m,f,s.shape.length,g,Qe[i.dtype],u,p,d,b,h,y),l}var Wme={kernelName:rp,backendName:"wasm",setupFunc:Lme,kernelFunc:zme};function Bme(e){let{inputs:t,attrs:n,backend:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=n,o=w.parseAxisParam(i,r.shape)[0],l=T.prepareSplitSize(r,s,o),u=new Array(r.shape.length).fill(0),p=r.shape.slice();return l.map(d=>{let c=[...p];c[o]=d;let h=Ni({inputs:{x:r},attrs:{begin:u,size:c},backend:a});return u[o]+=d,h})}var Vme={kernelName:np,backendName:"wasm",kernelFunc:Bme},Ume=Xe(zo),Gme=Xe(Qc),Hme=!0,jme=Ut(Vo,Hme),Q$;function qme(e){Q$=e.wasm.cwrap(Cs,null,["number","number","number","number"])}function Kme(e){let{backend:t,inputs:n,attrs:a}=e,{alpha:r}=a,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=t.makeOutput(s.shape,s.dtype),l=t.dataIdMap.get(o.dataId).id;return Q$(i,r,Qe[s.dtype],l),o}var Xme={kernelName:Cs,backendName:"wasm",setupFunc:qme,kernelFunc:Kme},eD;function Yme(e){eD=e.wasm.cwrap(sp,null,["number","array","number","array","array","array","array","array","number","number"])}function Zme(e){let{backend:t,inputs:n,attrs:a}=e,{x:r}=n,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:p,newAxisMask:d,shrinkAxisMask:c}=a,{finalShapeSparse:h,finalShape:m,isIdentity:f,sliceDim0:g,isSimpleSlice:b,begin:y,end:x,strides:v}=Kt.sliceInfo(r.shape,s,i,o,l,u,p,d,c),I;if(f)I=zn({inputs:{x:r},backend:t,attrs:{shape:m}});else if(g||b){w.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let N=Kt.computeOutShape(y,x,v),C=Ni({inputs:{x:r},backend:t,attrs:{begin:y,size:N}});I=zn({inputs:{x:C},backend:t,attrs:{shape:m}}),t.disposeData(C.dataId)}else{let N=t.makeOutput(h,"float32"),C=t.dataIdMap.get(r.dataId).id,_=new Uint8Array(new Int32Array(w.computeStrides(r.shape)).buffer),F=new Uint8Array(new Int32Array(y).buffer),D=new Uint8Array(new Int32Array(x).buffer),$=new Uint8Array(new Int32Array(v).buffer),S=new Uint8Array(new Int32Array(h).buffer),M=new Uint8Array(new Int32Array(w.computeStrides(h)).buffer),B=t.dataIdMap.get(N.dataId).id;eD(C,_,r.shape.length,F,D,$,S,M,h.length,B),I=zn({inputs:{x:N},backend:t,attrs:{shape:m}}),t.disposeData(N.dataId)}return I}var Jme={kernelName:sp,backendName:"wasm",setupFunc:Yme,kernelFunc:Zme};function Qme(e){let{backend:t,inputs:n,attrs:a}=e,{data:r,dataSplits:s}=n,{separator:i,nGramWidths:o,leftPad:l,rightPad:u,padWidth:p,preserveShortSequences:d}=a,c=t.readSync(r.dataId),h=t.readSync(s.dataId),[m,f]=Z1(c,h,i,o,l,u,p,d),g=t.makeOutput([m.length],"string"),b=t.dataIdMap.get(g.dataId);b.stringBytes=m;let y=t.makeOutput(s.shape,"int32");return t.typedArrayFromHeap(y).set(f),[g,y]}var efe={kernelName:td,backendName:"wasm",kernelFunc:Qme};function tfe(e){let{backend:t,inputs:n,attrs:a}=e,{input:r,delimiter:s}=n,{skipEmpty:i}=a,o=t.readSync(r.dataId),l=t.readSync(s.dataId),[u,p,d]=J1(o,l[0],i),c=p.length,h=t.makeOutput([c,2],"int32");t.typedArrayFromHeap(h).set(u);let m=t.makeOutput([c],"string"),f=t.dataIdMap.get(m.dataId);f.stringBytes=p;let g=t.makeOutput([2],"int32");return t.typedArrayFromHeap(g).set(d),[h,m,g]}var nfe={kernelName:nd,backendName:"wasm",kernelFunc:tfe};function afe(e){let{backend:t,inputs:n,attrs:a}=e,{input:r}=n,{numBuckets:s}=a,i=t.readSync(r.dataId),o=Q1(i,s),l=t.makeOutput(r.shape,"int32");return t.typedArrayFromHeap(l).set(o),l}var rfe={kernelName:ad,backendName:"wasm",kernelFunc:afe},sfe=!0,ife=Ut(Uo,sfe),tD;function ofe(e){tD=e.wasm.cwrap(Wo,null,["number","number","number","number"])}function lfe(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:p,axes:d,originalAxes:c,inputWasTransposed:h}=Ps(i,r,t),m=d;if(h){let x=t.dataIdMap.get(p.dataId).id;x!==o&&(u=p,l=x,m=T.getInnerMostAxes(m.length,u.shape.length))}T.assertAxesAreInnerMostDims("sum",m,u.shape.length);let[f,g]=T.computeOutAndReduceShapes(u.shape,m),b=w.sizeFromShape(g),y=t.makeOutput(f,u.dtype);if(w.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;tD(l,b,Qe[y.dtype],x)}if(h&&t.disposeData(p.dataId),s){let x=T.expandShapeToKeepDim(y.shape,c);y.shape=x}return y}var ufe={kernelName:Wo,backendName:"wasm",setupFunc:ofe,kernelFunc:lfe},pfe=Xe(Go),cfe=Xe(Ho),nD;function dfe(e){nD=e.wasm.cwrap(Zu,null,["number","number","number","number","number","number","array","number","number","number"])}function hfe(e){let{backend:t,inputs:n,attrs:a}=e,{tensor:r,indices:s,updates:i}=n,{}=a,o=t.makeOutput(r.shape,r.dtype);if(w.sizeFromShape(r.shape)===0)return o;let{sliceRank:l,numUpdates:u,sliceSize:p,strides:d,outputSize:c}=vf.calculateShapes(i,s,r.shape),h=t.dataIdMap.get(s.dataId).id,m=t.dataIdMap.get(i.dataId).id,f=t.dataIdMap.get(r.dataId).id,g=new Uint8Array(new Int32Array(d).buffer),b=t.dataIdMap.get(o.dataId).id;return nD(h,m,Qe[i.dtype],l,u,p,g,c,b,f),o}var mfe={kernelName:Zu,backendName:"wasm",setupFunc:dfe,kernelFunc:hfe},aD;function ffe(e){aD=e.wasm.cwrap(Ts,null,["number","array","number","array","number","number"])}function gfe(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,s=n.dataIdMap.get(r.dataId).id,{reps:i}=a,o=new Array(r.shape.length);for(let c=0;c{let{x:a}=e,{k:r,sorted:s}=n,i=t.dataIdMap.get(a.dataId).id,o=new Uint8Array(new Int32Array(a.shape).buffer),l=a.shape.slice();l[l.length-1]=r;let u=t.makeOutput(l,a.dtype),p=t.dataIdMap.get(u.dataId).id,d=t.makeOutput(l,"int32"),c=t.dataIdMap.get(d.dataId).id;return rD(i,o,a.shape.length,Qe[a.dtype],r,s,p,c),[u,d]},vfe={kernelName:ip,backendName:"wasm",setupFunc:yfe,kernelFunc:xfe},sD;function wfe(e){sD=e.wasm.cwrap(op,null,["number","number","bool","number","number","number","number","number","number","array","number","array","number","number","number","number","number"])}function kfe(e){let{backend:t,inputs:n,attrs:a}=e,{image:r,transforms:s}=n,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=a,[p,d,c,h]=r.shape,[m,f]=u!=null?u:[d,c],g=[p,m,f,h],b=new Uint8Array(new Int32Array(w.computeStrides(r.shape)).buffer),y=new Uint8Array(new Int32Array(w.computeStrides(g)).buffer),x=t.makeOutput(g,r.dtype),v=t.dataIdMap.get(x.dataId).id,I=t.dataIdMap.get(r.dataId).id,N=t.dataIdMap.get(s.dataId).id,C=i==="nearest"?1:2,_;switch(o){case"constant":_=1;break;case"reflect":_=2;break;case"wrap":_=3;break;case"nearest":_=4;break;default:_=1;break}return sD(I,N,s.shape[0]>1,p,m,f,h,c,d,b,r.shape.length-1,y,g.length-1,C,_,l,v),x}var Ife={kernelName:op,backendName:"wasm",setupFunc:wfe,kernelFunc:kfe};function Sfe(e){let{inputs:t,attrs:n,backend:a}=e,{axis:r}=n,{x:s}=t,{outputValues:i,outputShape:o,indices:l}=tk(a.readSync(s.dataId),r,s.shape,s.dtype);return[a.makeOutput(o,s.dtype,void 0,i),a.makeOutput([l.length],"int32",void 0,l)]}var Nfe={kernelName:rd,backendName:"wasm",kernelFunc:Sfe};function Tfe(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r.shape[s],o=r.shape.length,l=new Array(o-1),u=0;for(let h=0;h({dataId:h,dtype:m,shape:l}))}var Cfe={kernelName:lp,backendName:"wasm",kernelFunc:Tfe};function Efe(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(a).fill(0),a}var _fe={kernelName:up,backendName:"wasm",kernelFunc:Efe},Afe=[cue,due,hue,mue,gue,xue,Cue,Aue,Fue,$ue,Due,Rue,Mue,Oue,Pue,Wue,Xue,Uue,jue,Que,spe,lpe,ppe,dpe,hpe,mpe,bpe,ype,wpe,Spe,Cpe,Ape,Dpe,Rpe,Mpe,Lpe,Bpe,Gpe,qpe,Ype,Qpe,nce,sce,lce,cce,dce,fce,bce,yce,xce,vce,wce,kce,Nce,Tce,Ece,Fce,Rce,Pce,Wce,Uce,Hce,qce,vue,Kce,Xce,Yce,Qce,tde,ade,ide,lde,ode,pde,cde,hde,fde,yde,wde,Sde,Tde,_de,$de,Mde,Lde,Bde,Gde,qde,Xde,Jde,ahe,rhe,ihe,ohe,phe,hhe,ghe,yhe,whe,Ihe,Nhe,R$,_he,$he,Mhe,Phe,zhe,Whe,Bhe,Vhe,Yue,Hhe,Khe,Zhe,eme,ame,ime,ome,lme,cme,mme,bme,yme,wme,kme,Ime,Sme,ape,ehe,Nme,Cme,Ame,Dme,Mme,Pme,Wme,Vme,Ume,Gme,jme,Xme,Jme,efe,nfe,rfe,ife,ufe,pfe,cfe,mfe,bfe,vfe,Ife,Sue,Nfe,Cfe,_fe];for(let e of Afe)id(e);var Ev=G();Ev.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>{try{return WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11]))}catch(e){return!1}});Ev.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(Ev.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var KS=Is(QR()),Ffe=Is(eM()),XS=Is(tM()),YS=KS.default||KS,$fe=XS.default||XS,iD=class extends Pc{constructor(e){super(),this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.initWithThreadsCount(oD),_v=this.wasm.tfjs.getThreadsCount(),this.dataIdMap=new $m(this,Ea())}write(e,t,n){let a={id:this.dataIdNextNumber++};return this.move(a,e,t,n,1),a}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=w.now();return e(),{kernelMs:w.now()-t}}move(e,t,n,a,r){let s=this.dataIdNextNumber++;if(a==="string"){let u=t;this.dataIdMap.set(e,{id:s,stringBytes:u,shape:n,dtype:a,memoryOffset:null,refCount:r});return}let i=w.sizeFromShape(n),o=i*w.bytesPerElement(a),l=this.wasm._malloc(o)>>>0;this.dataIdMap.set(e,{id:s,memoryOffset:l,shape:n,dtype:a,refCount:r}),this.wasm.tfjs.registerTensor(s,i,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,o),l)}async read(e){return this.readSync(e)}readSync(e,t,n){let{memoryOffset:a,dtype:r,shape:s,stringBytes:i}=this.dataIdMap.get(e);if(r==="string")return(t==null||t===0)&&(n==null||n>=i.length)?i:i.slice(t,n);t=t||0,n=n||w.sizeFromShape(s);let o=w.bytesPerElement(r),l=this.wasm.HEAPU8.slice(a+t*o,a+n*o);return Mfe(l.buffer,r)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n,a){let r;if(n==null)r=this.write(a!=null?a:null,e,t);else{let s=this.dataIdNextNumber++;r={id:s},this.dataIdMap.set(r,{id:s,memoryOffset:n,shape:e,dtype:t,refCount:1});let i=w.sizeFromShape(e);this.wasm.tfjs.registerTensor(s,i,n)}return{dataId:r,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let a=this.wasm.HEAPU8.buffer,{memoryOffset:r}=this.dataIdMap.get(n),s=w.sizeFromShape(e);switch(t){case"float32":return new Float32Array(a,r,s);case"int32":return new Int32Array(a,r,s);case"bool":return new Uint8Array(a,r,s);default:throw new Error(`Unknown dtype ${t}`)}}};function Dfe(e){return(t,n)=>(w.fetch(e,{credentials:"same-origin"}).then(a=>{a.ok||t.env.a(`failed to load wasm binary file at '${e}'`),a.arrayBuffer().then(r=>{WebAssembly.instantiate(r,t).then(s=>{n(s.instance,s.module)})})}),{})}function ZS(e,t,n){if(Am!=null)return Am;let a="tfjs-backend-wasm.wasm";return e&&t?a="tfjs-backend-wasm-threaded-simd.wasm":e&&(a="tfjs-backend-wasm-simd.wasm"),bc!=null&&bc[a]!=null?bc[a]:n+a}async function Rfe(){let[e,t]=await Promise.all([G().getAsync("WASM_HAS_SIMD_SUPPORT"),G().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,a)=>{let r={};r.locateFile=(o,l)=>{if(o.endsWith(".worker.js")){let u=Ffe.wasmWorkerContents.replace(/\n/g,"\\n"),p=new Blob([u],{type:"application/javascript"});return URL.createObjectURL(p)}return o.endsWith(".wasm")?ZS(e,t,mc!=null?mc:l):l+o},kk&&(r.instantiateWasm=Dfe(ZS(e,t,mc!=null?mc:"")));let s=!1;r.onAbort=()=>{s||yc||(yc=!0,a({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"}))};let i;t&&e&&Am==null?(r.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+YS.toString()],{type:"text/javascript"}),i=YS(r)):i=$fe(r),i.then(o=>{s=!0,yc=!1;let l=null;o.tfjs={init:o.cwrap("init",null,[]),initWithThreadsCount:o.cwrap("init_with_threads_count",null,["number"]),getThreadsCount:o.cwrap("get_threads_count","number",[]),registerTensor:o.cwrap("register_tensor",null,["number","number","number"]),disposeData:o.cwrap("dispose_data",l,["number"]),dispose:o.cwrap("dispose",l,[])},n({wasm:o})}).catch(a)})}function Mfe(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var Ofe=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],Am=null,mc=null,bc={},yc=!1,kk=!1;function Pfe(e,t=!1){if(Wv("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),yc)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");Am=e,kk=t}function Lfe(e,t=!1){if(yc)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")mc=e;else{bc=e;let n=Ofe.filter(a=>bc[a]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}kk=t}var oD=-1,_v=-1;function zfe(e){oD=e}function Wfe(){if(_v===-1)throw new Error("WASM backend not initialized.");return _v}var Bfe="4.22.0",Vfe=2;Ym("wasm",async()=>{let{wasm:e}=await Rfe();return new iD(e)},Vfe);var JS="4.22.0",Ufe="4.22.0",Gfe="4.22.0",Hfe="4.22.0",jfe="4.22.0",qfe={tfjs:JS,"tfjs-core":JS,"tfjs-converter":Ufe,"tfjs-backend-cpu":Gfe,"tfjs-backend-webgl":Hfe,"tfjs-backend-wasm":jfe};var qk={};$h(qk,{AnchorPosition:()=>Lk,DrawBox:()=>Bd,DrawBoxOptions:()=>lg,DrawFaceLandmarks:()=>xg,DrawFaceLandmarksOptions:()=>yg,DrawTextField:()=>dl,DrawTextFieldOptions:()=>$p,drawContour:()=>zr,drawDetections:()=>nge,drawFaceExpressions:()=>oge,drawFaceLandmarks:()=>uge});function zr(e,t,n=!1){if(e.beginPath(),t.slice(1).forEach(({x:a,y:r},s)=>{let i=t[s];e.moveTo(i.x,i.y),e.lineTo(a,r)}),n){let a=t[t.length-1],r=t[0];if(!a||!r)return;e.moveTo(a.x,a.y),e.lineTo(r.x,r.y)}e.stroke()}var Tk={};$h(Tk,{computeReshapedDimensions:()=>Nk,getCenterPoint:()=>sl,isDimensions:()=>ig,isEven:()=>sg,isFloat:()=>Sk,isTensor:()=>al,isTensor1D:()=>Kfe,isTensor2D:()=>Ik,isTensor3D:()=>Wr,isTensor4D:()=>ka,isValidNumber:()=>Xa,isValidProbablitiy:()=>_p,range:()=>yr,round:()=>rl});var Un=class e{constructor(t,n){if(!Xa(t)||!Xa(n))throw new Error(`Dimensions.constructor - expected width and height to be valid numbers, instead have ${JSON.stringify({width:t,height:n})}`);this._width=t,this._height=n}get width(){return this._width}get height(){return this._height}reverse(){return new e(1/this.width,1/this.height)}};function al(e,t){return e instanceof Ce&&e.shape.length===t}function Kfe(e){return al(e,1)}function Ik(e){return al(e,2)}function Wr(e){return al(e,3)}function ka(e){return al(e,4)}function Sk(e){return e%1!==0}function sg(e){return e%2===0}function rl(e,t=2){let n=10**t;return Math.floor(e*n)/n}function ig(e){return e&&e.width&&e.height}function Nk({width:e,height:t},n){let a=n/Math.max(t,e);return new Un(Math.round(e*a),Math.round(t*a))}function sl(e){return e.reduce((t,n)=>t.add(n),new Ue(0,0)).div(new Ue(e.length,e.length))}function yr(e,t,n){return Array(e).fill(0).map((a,r)=>t+r*n)}function Xa(e){return!!e&&e!==1/0&&e!==-1/0&&!Number.isNaN(e)||e===0}function _p(e){return Xa(e)&&e>=0&&e<=1}var Ue=class e{constructor(t,n){this._x=t,this._y=n}get x(){return this._x}get y(){return this._y}add(t){return new e(this.x+t.x,this.y+t.y)}sub(t){return new e(this.x-t.x,this.y-t.y)}mul(t){return new e(this.x*t.x,this.y*t.y)}div(t){return new e(this.x/t.x,this.y/t.y)}abs(){return new e(Math.abs(this.x),Math.abs(this.y))}magnitude(){return Math.sqrt(this.x**2+this.y**2)}floor(){return new e(Math.floor(this.x),Math.floor(this.y))}};var ln=class e{static isRect(t){return!!t&&[t.x,t.y,t.width,t.height].every(Xa)}static assertIsValidBox(t,n,a=!1){if(!e.isRect(t))throw new Error(`${n} - invalid box: ${JSON.stringify(t)}, expected object with properties x, y, width, height`);if(!a&&(t.width<0||t.height<0))throw new Error(`${n} - width (${t.width}) and height (${t.height}) must be positive numbers`)}constructor(t,n=!0){let a=t||{},r=[a.left,a.top,a.right,a.bottom].every(Xa),s=[a.x,a.y,a.width,a.height].every(Xa);if(!s&&!r)throw new Error(`Box.constructor - expected box to be IBoundingBox | IRect, instead have ${JSON.stringify(a)}`);let[i,o,l,u]=s?[a.x,a.y,a.width,a.height]:[a.left,a.top,a.right-a.left,a.bottom-a.top];e.assertIsValidBox({x:i,y:o,width:l,height:u},"Box.constructor",n),this._x=i,this._y=o,this._width=l,this._height=u}get x(){return this._x}get y(){return this._y}get width(){return this._width}get height(){return this._height}get left(){return this.x}get top(){return this.y}get right(){return this.x+this.width}get bottom(){return this.y+this.height}get area(){return this.width*this.height}get topLeft(){return new Ue(this.left,this.top)}get topRight(){return new Ue(this.right,this.top)}get bottomLeft(){return new Ue(this.left,this.bottom)}get bottomRight(){return new Ue(this.right,this.bottom)}round(){let[t,n,a,r]=[this.x,this.y,this.width,this.height].map(s=>Math.round(s));return new e({x:t,y:n,width:a,height:r})}floor(){let[t,n,a,r]=[this.x,this.y,this.width,this.height].map(s=>Math.floor(s));return new e({x:t,y:n,width:a,height:r})}toSquare(){let{x:t,y:n,width:a,height:r}=this,s=Math.abs(a-r);return an&&(o=-d+n+a,d=n),c>t&&(l=-c+t+r,c=t),u<1&&(l=2-u,u=1),p<1&&(l=2-p,p=1),{dy:i,edy:l,dx:s,edx:o,y:p,ey:c,x:u,ex:d,w:a,h:r}}calibrate(t){return new e({left:this.left+t.left*this.width,top:this.top+t.top*this.height,right:this.right+t.right*this.width,bottom:this.bottom+t.bottom*this.height}).toSquare().round()}};var il=class extends ln{constructor(t,n,a,r,s=!1){super({left:t,top:n,right:a,bottom:r},s)}};var ol=class e{constructor(t,n,a,r,s){this._imageDims=new Un(s.width,s.height),this._score=t,this._classScore=n,this._className=a,this._box=new ln(r).rescale(this._imageDims)}get score(){return this._score}get classScore(){return this._classScore}get className(){return this._className}get box(){return this._box}get imageDims(){return this._imageDims}get imageWidth(){return this.imageDims.width}get imageHeight(){return this.imageDims.height}get relativeBox(){return new ln(this._box).rescale(this.imageDims.reverse())}forSize(t,n){return new e(this.score,this.classScore,this.className,this.relativeBox,{width:t,height:n})}};var Tt=class e extends ol{constructor(t,n,a){super(t,t,"",n,a)}forSize(t,n){let{score:a,relativeBox:r,imageDims:s}=super.forSize(t,n);return new e(a,r,s)}};function Ck(e,t,n=!0){let a=Math.max(0,Math.min(e.right,t.right)-Math.max(e.left,t.left)),r=Math.max(0,Math.min(e.bottom,t.bottom)-Math.max(e.top,t.top)),s=a*r;return n?s/(e.area+t.area-s):s/Math.min(e.area,t.area)}function Ek(e){let t=e.map(o=>o.x),n=e.map(o=>o.y),a=t.reduce((o,l)=>lloo({score:i,boxIndex:o})).sort((i,o)=>i.score-o.score).map(i=>i.boxIndex),s=[];for(;r.length>0;){let i=r.pop();s.push(i);let o=r,l=[];for(let u=0;ul[p]<=n)}return s}function Ya(e,t){return O(()=>{let[n,a,r]=t,s=yn([...e.shape.slice(0,3),1],n,"float32"),i=yn([...e.shape.slice(0,3),1],a,"float32"),o=yn([...e.shape.slice(0,3),1],r,"float32"),l=et([s,i,o],3);return pe(e,l)})}function Ak(e,t=!1){return O(()=>{let[n,a]=e.shape.slice(1);if(n===a)return e;let r=Math.abs(n-a),s=Math.round(r*(t?.5:1)),i=n>a?2:1,o=c=>{let h=e.shape.slice();return h[i]=c,yn(h,0,"float32")},l=o(s),u=r-l.shape[i],d=[t&&u?o(u):null,e,l].filter(c=>!!c).map(c=>re(c,"float32"));return et(d,i)})}function Xfe(e){let t=e.slice();for(let n=t.length-1;n>0;n--){let a=Math.floor(Math.random()*(n+1)),r=t[n];t[n]=t[a],t[a]=r}return t}function zd(e){return 1/(1+Math.exp(-e))}function Yfe(e){return Math.log(e/(1-e))}var ll=class extends ln{constructor(t,n,a,r,s=!1){super({x:t,y:n,width:a,height:r},s)}};var Zfe=.5,Jfe=.43,Qfe=.45,sa=class{constructor(t,n,a=new Ue(0,0)){let{width:r,height:s}=n;this._imgDims=new Un(r,s),this._shift=a,this._positions=t.map(i=>i.mul(new Ue(r,s)).add(a))}get shift(){return new Ue(this._shift.x,this._shift.y)}get imageWidth(){return this._imgDims.width}get imageHeight(){return this._imgDims.height}get positions(){return this._positions}get relativePositions(){return this._positions.map(t=>t.sub(this._shift).div(new Ue(this.imageWidth,this.imageHeight)))}forSize(t,n){return new this.constructor(this.relativePositions,{width:t,height:n})}shiftBy(t,n){return new this.constructor(this.relativePositions,this._imgDims,new Ue(t,n))}shiftByPoint(t){return this.shiftBy(t.x,t.y)}align(t,n={}){if(t){let s=t instanceof Tt?t.box.floor():new ln(t);return this.shiftBy(s.x,s.y).align(null,n)}let{useDlibAlignment:a,minBoxPadding:r}={useDlibAlignment:!1,minBoxPadding:.2,...n};return a?this.alignDlib():this.alignMinBbox(r)}alignDlib(){let t=this.getRefPointsForAlignment(),[n,a,r]=t,s=d=>r.sub(d).magnitude(),i=(s(n)+s(a))/2,o=Math.floor(i/Qfe),l=sl(t),u=Math.floor(Math.max(0,l.x-Zfe*o)),p=Math.floor(Math.max(0,l.y-Jfe*o));return new ll(u,p,Math.min(o,this.imageWidth+u),Math.min(o,this.imageHeight+p))}alignMinBbox(t){let n=Ek(this.positions);return n.pad(n.width*t,n.height*t)}getRefPointsForAlignment(){throw new Error("getRefPointsForAlignment not implemented by base class")}};var Fk=class extends sa{getRefPointsForAlignment(){let t=this.positions;return[t[0],t[1],sl([t[3],t[4]])]}};var ul=class extends sa{getJawOutline(){return this.positions.slice(0,17)}getLeftEyeBrow(){return this.positions.slice(17,22)}getRightEyeBrow(){return this.positions.slice(22,27)}getNose(){return this.positions.slice(27,36)}getLeftEye(){return this.positions.slice(36,42)}getRightEye(){return this.positions.slice(42,48)}getMouth(){return this.positions.slice(48,68)}getRefPointsForAlignment(){return[this.getLeftEye(),this.getRightEye(),this.getMouth()].map(sl)}};var Ap=class{constructor(t,n){this._label=t,this._distance=n}get label(){return this._label}get distance(){return this._distance}toString(t=!0){return`${this.label}${t?` (${rl(this.distance)})`:""}`}};var Fp=class extends ln{static assertIsValidLabeledBox(t,n){if(ln.assertIsValidBox(t,n),!Xa(t.label))throw new Error(`${n} - expected property label (${t.label}) to be a number`)}constructor(t,n){super(t),this._label=n}get label(){return this._label}};var zs=class e{constructor(t,n){if(typeof t!="string")throw new Error("LabeledFaceDescriptors - constructor expected label to be a string");if(!Array.isArray(n)||n.some(a=>!(a instanceof Float32Array)))throw new Error("LabeledFaceDescriptors - constructor expected descriptors to be an array of Float32Array");this._label=t,this._descriptors=n}get label(){return this._label}get descriptors(){return this._descriptors}toJSON(){return{label:this.label,descriptors:this.descriptors.map(t=>Array.from(t))}}static fromJSON(t){let n=t.descriptors.map(a=>new Float32Array(a));return new e(t.label,n)}};var $k=class extends Fp{static assertIsValidPredictedBox(t,n){if(Fp.assertIsValidLabeledBox(t,n),!_p(t.score)||!_p(t.classScore))throw new Error(`${n} - expected properties score (${t.score}) and (${t.classScore}) to be a number between [0, 1]`)}constructor(t,n,a,r){super(t,n),this._score=a,this._classScore=r}get score(){return this._score}get classScore(){return this._classScore}};function xr(e){return e.detection instanceof Tt}function pl(e,t){return{...e,...{detection:t}}}function Dk(){let e=window.fetch;if(!e)throw new Error("fetch - missing fetch implementation for browser environment");return{Canvas:HTMLCanvasElement,CanvasRenderingContext2D,Image:HTMLImageElement,ImageData,Video:HTMLVideoElement,createCanvasElement:()=>document.createElement("canvas"),createImageElement:()=>document.createElement("img"),createVideoElement:()=>document.createElement("video"),fetch:e,readFile:()=>{throw new Error("readFile - filesystem not available for browser environment")}}}function Wd(){return typeof global=="object"&&typeof process!="undefined"&&process.versions!=null&&process.versions.node!=null}function og(e){let t="";if(!e&&Wd())try{e=AR("fs")}catch(a){t=a.toString()}return{readFile:e?a=>new Promise((r,s)=>{e.readFile(a,(i,o)=>i?s(i):r(o))}):()=>{throw new Error(`readFile - failed to require fs in nodejs environment with error: ${t}`)}}}function Rk(){let e=global.Canvas||global.HTMLCanvasElement,t=global.Image||global.HTMLImageElement,n=global.Video||global.HTMLVideoElement,a=()=>{if(e)return new e;throw new Error("createCanvasElement - missing Canvas implementation for nodejs environment")},r=()=>{if(t)return new t;throw new Error("createImageElement - missing Image implementation for nodejs environment")},s=()=>{if(n)return new n;throw new Error("createVideoElement - missing Video implementation for nodejs environment")},i=global.fetch,o=og();return{Canvas:e||class{},CanvasRenderingContext2D:global.CanvasRenderingContext2D||class{},Image:t||class{},ImageData:global.ImageData||class{},Video:global.HTMLVideoElement||class{},createCanvasElement:a,createImageElement:r,createVideoElement:s,fetch:i,...o}}function Mk(){return typeof window=="object"&&typeof document!="undefined"&&typeof HTMLImageElement!="undefined"&&typeof HTMLCanvasElement!="undefined"&&typeof HTMLVideoElement!="undefined"&&typeof ImageData!="undefined"&&typeof CanvasRenderingContext2D!="undefined"}var un;function ege(){if(!un)throw new Error("getEnv - environment is not defined, check isNodejs() and isBrowser()");return un}function Ok(e){un=e}function Pk(){return Mk()?Ok(Dk()):Wd()?Ok(Rk()):null}function tge(e){if(un||Pk(),!un)throw new Error("monkeyPatch - environment is not defined, check isNodejs() and isBrowser()");let{Canvas:t=un.Canvas,Image:n=un.Image}=e;un.Canvas=t,un.Image=n,un.createCanvasElement=e.createCanvasElement||(()=>new t),un.createImageElement=e.createImageElement||(()=>new n),un.ImageData=e.ImageData||un.ImageData,un.Video=e.Video||un.Video,un.fetch=e.fetch||un.fetch,un.readFile=e.readFile||un.readFile}var tt={getEnv:ege,setEnv:Ok,initialize:Pk,createBrowserEnv:Dk,createFileSystem:og,createNodejsEnv:Rk,monkeyPatch:tge,isBrowser:Mk,isNodejs:Wd};Pk();function cl(e){return!tt.isNodejs()&&typeof e=="string"?document.getElementById(e):e}function Gn(e){let{Canvas:t,CanvasRenderingContext2D:n}=tt.getEnv();if(e instanceof n)return e;let a=cl(e);if(!(a instanceof t))throw new Error("resolveContext2d - expected canvas to be of instance of Canvas");let r=a.getContext("2d",{willReadFrequently:!0});if(!r)throw new Error("resolveContext2d - canvas 2d context is null");return r}var Lk=(r=>(r.TOP_LEFT="TOP_LEFT",r.TOP_RIGHT="TOP_RIGHT",r.BOTTOM_LEFT="BOTTOM_LEFT",r.BOTTOM_RIGHT="BOTTOM_RIGHT",r))(Lk||{}),$p=class{constructor(t={}){let{anchorPosition:n,backgroundColor:a,fontColor:r,fontSize:s,fontStyle:i,padding:o}=t;this.anchorPosition=n||"TOP_LEFT",this.backgroundColor=a||"rgba(0, 0, 0, 0.5)",this.fontColor=r||"rgba(255, 255, 255, 1)",this.fontSize=s||14,this.fontStyle=i||"Georgia",this.padding=o||4}},dl=class e{constructor(t,n,a={}){this.text=typeof t=="string"?[t]:t instanceof e?t.text:t,this.anchor=n,this.options=new $p(a)}measureWidth(t){let{padding:n}=this.options;return this.text.map(a=>t.measureText(a).width).reduce((a,r)=>a{let m=l+d.x,f=l+d.y+(h+1)*i;a.fillText(c,m,f)})}};var lg=class{constructor(t={}){let{boxColor:n,lineWidth:a,label:r,drawLabelOptions:s}=t;this.boxColor=n||"rgba(0, 0, 255, 1)",this.lineWidth=a||2,this.label=r;let i={anchorPosition:"BOTTOM_LEFT",backgroundColor:this.boxColor};this.drawLabelOptions=new $p({...i,...s})}},Bd=class{constructor(t,n={}){this.box=new ln(t),this.options=new lg(n)}draw(t){let n=Gn(t),{boxColor:a,lineWidth:r}=this.options,{x:s,y:i,width:o,height:l}=this.box;n.strokeStyle=a,n.lineWidth=r,n.strokeRect(s,i,o,l);let{label:u}=this.options;u&&new dl([u],{x:s-r/2,y:i},this.options.drawLabelOptions).draw(t)}};function nge(e,t){(Array.isArray(t)?t:[t]).forEach(a=>{let r=a instanceof Tt?a.score:xr(a)?a.detection.score:void 0,s=a instanceof Tt?a.box:xr(a)?a.detection.box:new ln(a),i=r?`${rl(r)}`:void 0;new Bd(s,{label:i}).draw(e)})}function Vd(e){let{Image:t,Video:n}=tt.getEnv();return e instanceof t&&e.complete||e instanceof n&&e.readyState>=3}function zk(e){return new Promise((t,n)=>{if(e instanceof tt.getEnv().Canvas||Vd(e)){t(null);return}function a(s){s.currentTarget&&(s.currentTarget.removeEventListener("load",r),s.currentTarget.removeEventListener("error",a),n(s))}function r(s){s.currentTarget&&(s.currentTarget.removeEventListener("load",r),s.currentTarget.removeEventListener("error",a),t(s))}e.addEventListener("load",r),e.addEventListener("error",a)})}function Wk(e){return new Promise((t,n)=>{e instanceof Blob||n(new Error("bufferToImage - expected buf to be of type: Blob"));let a=new FileReader;a.onload=()=>{typeof a.result!="string"&&n(new Error("bufferToImage - expected reader.result to be a string, in onload"));let r=tt.getEnv().createImageElement();r.onload=()=>t(r),r.onerror=n,r.src=a.result},a.onerror=n,a.readAsDataURL(e)})}function hl(e){let{Image:t,Video:n}=tt.getEnv();return e instanceof t?new Un(e.naturalWidth,e.naturalHeight):e instanceof n?new Un(e.videoWidth,e.videoHeight):new Un(e.width,e.height)}function ml({width:e,height:t}){let{createCanvasElement:n}=tt.getEnv(),a=n();return a.width=e,a.height=t,a}function Ud(e,t){let{ImageData:n}=tt.getEnv();if(!(e instanceof n)&&!Vd(e))throw new Error("createCanvasFromMedia - media has not finished loading yet");let{width:a,height:r}=t||hl(e),s=ml({width:a,height:r});return e instanceof n?Gn(s).putImageData(e,0,0):Gn(s).drawImage(e,0,0,a,r),s}async function Bk(e,t){let n=t||tt.getEnv().createCanvasElement(),[a,r,s]=e.shape.slice(ka(e)?1:0),i=O(()=>e.as3D(a,r,s).toInt());return await Xo.toPixels(i,n),i.dispose(),n}function ug(e){let{Image:t,Canvas:n,Video:a}=tt.getEnv();return e instanceof t||e instanceof n||e instanceof a}function Vk(e,t,n=!1){let{Image:a,Canvas:r}=tt.getEnv();if(!(e instanceof a||e instanceof r))throw new Error("imageToSquare - expected arg0 to be HTMLImageElement | HTMLCanvasElement");if(t<=0)return ml({width:1,height:1});let s=hl(e),i=t/Math.max(s.height,s.width),o=i*s.width,l=i*s.height,u=ml({width:t,height:t}),p=e instanceof r?e:Ud(e),d=Math.abs(o-l)/2,c=n&&o0&&p.height>0&&Gn(u).drawImage(p,c,h,o,l),u}var vr=class{constructor(t,n=!1){this._imageTensors=[];this._canvases=[];this._treatAsBatchInput=!1;this._inputDimensions=[];this._inputSize=0;if(!Array.isArray(t))throw new Error(`NetInput.constructor - expected inputs to be an Array of TResolvedNetInput or to be instanceof tf.Tensor4D, instead have ${t}`);this._treatAsBatchInput=n,this._batchSize=t.length,t.forEach((a,r)=>{if(Wr(a)){this._imageTensors[r]=a,this._inputDimensions[r]=a.shape;return}if(ka(a)){let i=a.shape[0];if(i!==1)throw new Error(`NetInput - tf.Tensor4D with batchSize ${i} passed, but not supported in input array`);this._imageTensors[r]=a,this._inputDimensions[r]=a.shape.slice(1);return}let s=a instanceof tt.getEnv().Canvas?a:Ud(a);this._canvases[r]=s,this._inputDimensions[r]=[s.height,s.width,3]})}get imageTensors(){return this._imageTensors}get canvases(){return this._canvases}get isBatchInput(){return this.batchSize>1||this._treatAsBatchInput}get batchSize(){return this._batchSize}get inputDimensions(){return this._inputDimensions}get inputSize(){return this._inputSize}get reshapedInputDimensions(){return yr(this.batchSize,0,1).map((t,n)=>this.getReshapedInputDimensions(n))}getInput(t){return this.canvases[t]||this.imageTensors[t]}getInputDimensions(t){return this._inputDimensions[t]}getInputHeight(t){return this._inputDimensions[t][0]}getInputWidth(t){return this._inputDimensions[t][1]}getReshapedInputDimensions(t){if(typeof this.inputSize!="number")throw new Error("getReshapedInputDimensions - inputSize not set, toBatchTensor has not been called yet");let n=this.getInputWidth(t),a=this.getInputHeight(t);return Nk({width:n,height:a},this.inputSize)}toBatchTensor(t,n=!0){return this._inputSize=t,O(()=>{let a=yr(this.batchSize,0,1).map(s=>{let i=this.getInput(s);if(i instanceof Ce){let o=ka(i)?i:Gt(i);return o=Ak(o,n),(o.shape[1]!==t||o.shape[2]!==t)&&(o=Qn.resizeBilinear(o,[t,t],!1,!1)),o.as3D(t,t,3)}if(i instanceof tt.getEnv().Canvas)return Xo.fromPixels(Vk(i,t,n));throw new Error(`toBatchTensor - at batchIdx ${s}, expected input to be instanceof tf.Tensor or instanceof HTMLCanvasElement, instead have ${i}`)});return Ft(a.map(s=>re(s,"float32"))).as4D(this.batchSize,t,t,3)})}};async function vt(e){if(e instanceof vr)return e;let t=Array.isArray(e)?e:[e];if(!t.length)throw new Error("toNetInput - empty array passed as input");let n=r=>Array.isArray(e)?` at input index ${r}:`:"",a=t.map(cl);return a.forEach((r,s)=>{if(!ug(r)&&!Wr(r)&&!ka(r))throw typeof t[s]=="string"?new Error(`toNetInput -${n(s)} string passed, but could not resolve HTMLElement for element id ${t[s]}`):new Error(`toNetInput -${n(s)} expected media to be of type HTMLImageElement | HTMLVideoElement | HTMLCanvasElement | tf.Tensor3D, or to be an element id`);if(ka(r)){let i=r.shape[0];if(i!==1)throw new Error(`toNetInput -${n(s)} tf.Tensor4D with batchSize ${i} passed, but not supported in input array`)}}),await Promise.all(a.map(r=>ug(r)&&zk(r))),new vr(a,Array.isArray(e))}async function Dp(e,t){let{Canvas:n}=tt.getEnv(),a=e;if(!(e instanceof n)){let i=await vt(e);if(i.batchSize>1)throw new Error("extractFaces - batchSize > 1 not supported");let o=i.getInput(0);a=o instanceof n?o:await Bk(o)}let r=Gn(a);return t.map(i=>i instanceof Tt?i.forSize(a.width,a.height).box.floor():i).map(i=>i.clipAtImageBorders(a.width,a.height)).map(({x:i,y:o,width:l,height:u})=>{let p=ml({width:l,height:u});return l>0&&u>0&&Gn(p).putImageData(r.getImageData(i,o,l,u),0,0),p})}async function Rp(e,t){if(!Wr(e)&&!ka(e))throw new Error("extractFaceTensors - expected image tensor to be 3D or 4D");if(ka(e)&&e.shape[0]>1)throw new Error("extractFaceTensors - batchSize > 1 not supported");return O(()=>{let[n,a,r]=e.shape.slice(ka(e)?1:0);return t.map(o=>o instanceof Tt?o.forSize(a,n).box:o).map(o=>o.clipAtImageBorders(a,n)).filter(o=>o.width>0&&o.height>0).map(({x:o,y:l,width:u,height:p})=>qo(e.as3D(n,a,r),[l,o,0],[p,u,r]))})}async function Br(e,t){let{fetch:n}=tt.getEnv(),a=await n(e,t);if(!(a.status<400))throw new Error(`failed to fetch: (${a.status}) ${a.statusText}, from url: ${a.url}`);return a}async function age(e){let t=await Br(e),n=await t.blob();if(!n.type.startsWith("image/"))throw new Error(`fetchImage - expected blob type to be of type image/*, instead have: ${n.type}, for url: ${t.url}`);return Wk(n)}async function Uk(e){return(await Br(e)).json()}async function rge(e){return new Float32Array(await(await Br(e)).arrayBuffer())}function lD(e){return new Promise((t,n)=>{e instanceof Blob||n(new Error("bufferToVideo - expected buf to be of type: Blob"));let a=tt.getEnv().createVideoElement();a.oncanplay=()=>t(a),a.onerror=n,a.playsInline=!0,a.muted=!0,a.src=URL.createObjectURL(e),a.play()})}async function sge(e){let t=await Br(e),n=await t.blob();if(!n.type.startsWith("video/"))throw new Error(`fetchVideo - expected blob type to be of type video/*, instead have: ${n.type}, for url: ${t.url}`);return lD(n)}function pg(e,t){let n=`${t}-weights_manifest.json`;if(!e)return{modelBaseUri:"",manifestUri:n};if(e==="/")return{modelBaseUri:"/",manifestUri:`/${n}`};let a=e.startsWith("http://")?"http://":e.startsWith("https://")?"https://":"";e=e.replace(a,"");let r=e.split("/").filter(o=>o),s=e.endsWith(".json")?r[r.length-1]:n,i=a+(e.endsWith(".json")?r.slice(0,r.length-1):r).join("/");return i=e.startsWith("/")?`/${i}`:i,{modelBaseUri:i,manifestUri:i==="/"?`/${s}`:`${i}/${s}`}}async function Gk(e,t){let{manifestUri:n,modelBaseUri:a}=pg(e,t),r=await Uk(n);return jt.loadWeights(r,a)}function ige(e,t,n=!1){let{width:a,height:r}=n?hl(t):t;return e.width=a,e.height=r,{width:a,height:r}}var pn=class{constructor(t){this._params=void 0;this._paramMappings=[];this._name=t}get params(){return this._params}get paramMappings(){return this._paramMappings}get isLoaded(){return!!this.params}getParamFromPath(t){let{obj:n,objProp:a}=this.traversePropertyPath(t);return n[a]}reassignParamFromPath(t,n){let{obj:a,objProp:r}=this.traversePropertyPath(t);a[r].dispose(),a[r]=n}getParamList(){return this._paramMappings.map(({paramPath:t})=>({path:t,tensor:this.getParamFromPath(t)}))}getTrainableParams(){return this.getParamList().filter(t=>t.tensor instanceof cs)}getFrozenParams(){return this.getParamList().filter(t=>!(t.tensor instanceof cs))}variable(){this.getFrozenParams().forEach(({path:t,tensor:n})=>{this.reassignParamFromPath(t,n.variable())})}freeze(){this.getTrainableParams().forEach(({path:t,tensor:n})=>{let a=bn(n.dataSync());n.dispose(),this.reassignParamFromPath(t,a)})}dispose(t=!0){this.getParamList().forEach(n=>{if(t&&n.tensor.isDisposed)throw new Error(`param tensor has already been disposed for path ${n.path}`);n.tensor.dispose()}),this._params=void 0}serializeParams(){return new Float32Array(this.getParamList().map(({tensor:t})=>Array.from(t.dataSync())).reduce((t,n)=>t.concat(n)))}async load(t){if(t instanceof Float32Array){this.extractWeights(t);return}await this.loadFromUri(t)}async loadFromUri(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromUri - expected model uri`);let n=await Gk(t,this.getDefaultModelName());this.loadFromWeightMap(n)}async loadFromDisk(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromDisk - expected model file path`);let{readFile:n}=tt.getEnv(),{manifestUri:a,modelBaseUri:r}=pg(t,this.getDefaultModelName()),s=u=>Promise.all(u.map(p=>n(p).then(d=>typeof d=="string"?Buffer.from(d):d.buffer))),i=jt.weightsLoaderFactory(s),o=JSON.parse((await n(a)).toString()),l=await i(o,r);this.loadFromWeightMap(l)}loadFromWeightMap(t){let{paramMappings:n,params:a}=this.extractParamsFromWeightMap(t);this._paramMappings=n,this._params=a}extractWeights(t){let{paramMappings:n,params:a}=this.extractParams(t);this._paramMappings=n,this._params=a}traversePropertyPath(t){if(!this.params)throw new Error("traversePropertyPath - model has no loaded params");let n=t.split("/").reduce((s,i)=>{if(!s.nextObj.hasOwnProperty(i))throw new Error(`traversePropertyPath - object does not have property ${i}, for path ${t}`);return{obj:s.nextObj,objProp:i,nextObj:s.nextObj[i]}},{nextObj:this.params}),{obj:a,objProp:r}=n;if(!a||!r||!(a[r]instanceof Ce))throw new Error(`traversePropertyPath - parameter is not a tensor, for path ${t}`);return{obj:a,objProp:r}}};function Hn(e,t,n){return O(()=>{let a=Ds(e,t.depthwise_filter,t.pointwise_filter,n,"same");return a=X(a,t.bias),a})}function cg(e,t,n=!1){return O(()=>{let a=Ke(n?X($t(e,t.conv0.filters,[2,2],"same"),t.conv0.bias):Hn(e,t.conv0,[2,2])),r=Hn(a,t.conv1,[1,1]),s=Ke(X(a,r)),i=Hn(s,t.conv2,[1,1]);return Ke(X(a,X(r,i)))})}function Gd(e,t,n=!1,a=!0){return O(()=>{let r=Ke(n?X($t(e,t.conv0.filters,a?[2,2]:[1,1],"same"),t.conv0.bias):Hn(e,t.conv0,a?[2,2]:[1,1])),s=Hn(r,t.conv1,[1,1]),i=Ke(X(r,s)),o=Hn(i,t.conv2,[1,1]),l=Ke(X(r,X(s,o))),u=Hn(l,t.conv3,[1,1]);return Ke(X(r,X(s,X(o,u))))})}function fl(e,t,n="same",a=!1){return O(()=>{let r=X($t(e,t.filters,[1,1],n),t.bias);return a?Ke(r):r})}function _n(e,t){Object.keys(e).forEach(n=>{t.some(a=>a.originalPath===n)||e[n].dispose()})}function Mp(e,t){return(n,a,r,s)=>{let i=Da(e(n*a*r*r),[r,r,n,a]),o=je(e(a));return t.push({paramPath:`${s}/filters`},{paramPath:`${s}/bias`}),{filters:i,bias:o}}}function dg(e,t){return(n,a,r)=>{let s=Aa(e(n*a),[n,a]),i=je(e(a));return t.push({paramPath:`${r}/weights`},{paramPath:`${r}/bias`}),{weights:s,bias:i}}}var Hd=class{constructor(t,n,a){this.depthwise_filter=t;this.pointwise_filter=n;this.bias=a}};function Op(e,t){return(n,a,r)=>{let s=Da(e(9*n),[3,3,n,1]),i=Da(e(n*a),[1,1,n,a]),o=je(e(a));return t.push({paramPath:`${r}/depthwise_filter`},{paramPath:`${r}/pointwise_filter`},{paramPath:`${r}/bias`}),new Hd(s,i,o)}}function Pp(e){return t=>{let n=e(`${t}/depthwise_filter`,4),a=e(`${t}/pointwise_filter`,4),r=e(`${t}/bias`,1);return new Hd(n,a,r)}}function ia(e,t){return(n,a,r)=>{let s=e[n];if(!al(s,a))throw new Error(`expected weightMap[${n}] to be a Tensor${a}D, instead have ${s}`);return t.push({originalPath:n,paramPath:r||n}),s}}function An(e){let t=e;function n(r){let s=t.slice(0,r);return t=t.slice(r),s}function a(){return t}return{extractWeights:n,getRemainingWeights:a}}function hg(e,t){let n=Mp(e,t),a=Op(e,t);function r(i,o,l,u=!1){let p=u?n(i,o,3,`${l}/conv0`):a(i,o,`${l}/conv0`),d=a(o,o,`${l}/conv1`),c=a(o,o,`${l}/conv2`);return{conv0:p,conv1:d,conv2:c}}function s(i,o,l,u=!1){let{conv0:p,conv1:d,conv2:c}=r(i,o,l,u),h=a(o,o,`${l}/conv3`);return{conv0:p,conv1:d,conv2:c,conv3:h}}return{extractDenseBlock3Params:r,extractDenseBlock4Params:s}}function uD(e){let t=[],{extractWeights:n,getRemainingWeights:a}=An(e),{extractDenseBlock4Params:r}=hg(n,t),s=r(3,32,"dense0",!0),i=r(32,64,"dense1"),o=r(64,128,"dense2"),l=r(128,256,"dense3");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{dense0:s,dense1:i,dense2:o,dense3:l}}}function mg(e){return t=>{let n=e(`${t}/filters`,4),a=e(`${t}/bias`,1);return{filters:n,bias:a}}}function fg(e,t){let n=ia(e,t),a=mg(n),r=Pp(n);function s(o,l=!1){let u=l?a(`${o}/conv0`):r(`${o}/conv0`),p=r(`${o}/conv1`),d=r(`${o}/conv2`);return{conv0:u,conv1:p,conv2:d}}function i(o,l=!1){let u=l?a(`${o}/conv0`):r(`${o}/conv0`),p=r(`${o}/conv1`),d=r(`${o}/conv2`),c=r(`${o}/conv3`);return{conv0:u,conv1:p,conv2:d,conv3:c}}return{extractDenseBlock3Params:s,extractDenseBlock4Params:i}}function pD(e){let t=[],{extractDenseBlock4Params:n}=fg(e,t),a={dense0:n("dense0",!0),dense1:n("dense1"),dense2:n("dense2"),dense3:n("dense3")};return _n(e,t),{params:a,paramMappings:t}}var Lp=class extends pn{constructor(){super("FaceFeatureExtractor")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("FaceFeatureExtractor - load model before inference");return O(()=>{let a=re(t.toBatchTensor(112,!0),"float32"),s=Ya(a,[122.782,117.001,104.298]).div(255),i=Gd(s,n.dense0,!0);return i=Gd(i,n.dense1),i=Gd(i,n.dense2),i=Gd(i,n.dense3),i=xa(i,[7,7],[2,2],"valid"),i})}async forward(t){return this.forwardInput(await vt(t))}getDefaultModelName(){return"face_feature_extractor_model"}extractParamsFromWeightMap(t){return pD(t)}extractParams(t){return uD(t)}};function jd(e,t){return O(()=>X($e(e,t.weights),t.bias))}function cD(e,t,n){let a=[],{extractWeights:r,getRemainingWeights:s}=An(e),o=dg(r,a)(t,n,"fc");if(s().length!==0)throw new Error(`weights remaing after extract: ${s().length}`);return{paramMappings:a,params:{fc:o}}}function dD(e){let t=[],n=ia(e,t);function a(s){let i=n(`${s}/weights`,2),o=n(`${s}/bias`,1);return{weights:i,bias:o}}let r={fc:a("fc")};return _n(e,t),{params:r,paramMappings:t}}function gg(e){let t={},n={};return Object.keys(e).forEach(a=>{let r=a.startsWith("fc")?n:t;r[a]=e[a]}),{featureExtractorMap:t,classifierMap:n}}var zp=class extends pn{constructor(t,n){super(t),this._faceFeatureExtractor=n}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(t){let{params:n}=this;if(!n)throw new Error(`${this._name} - load model before inference`);return O(()=>{let a=t instanceof vr?this.faceFeatureExtractor.forwardInput(t):t;return jd(a.as2D(a.shape[0],-1),n.fc)})}dispose(t=!0){this.faceFeatureExtractor.dispose(t),super.dispose(t)}loadClassifierParams(t){let{params:n,paramMappings:a}=this.extractClassifierParams(t);this._params=n,this._paramMappings=a}extractClassifierParams(t){return cD(t,this.getClassifierChannelsIn(),this.getClassifierChannelsOut())}extractParamsFromWeightMap(t){let{featureExtractorMap:n,classifierMap:a}=gg(t);return this.faceFeatureExtractor.loadFromWeightMap(n),dD(a)}extractParams(t){let n=this.getClassifierChannelsIn(),a=this.getClassifierChannelsOut(),r=a*n+a,s=t.slice(0,t.length-r),i=t.slice(t.length-r);return this.faceFeatureExtractor.extractWeights(s),this.extractClassifierParams(i)}};var Hk=["neutral","happy","sad","angry","fearful","disgusted","surprised"],Vr=class{constructor(t){this.neutral=0;this.happy=0;this.sad=0;this.angry=0;this.fearful=0;this.disgusted=0;this.surprised=0;if(t.length!==7)throw new Error(`FaceExpressions.constructor - expected probabilities.length to be 7, have: ${t.length}`);Hk.forEach((n,a)=>{this[n]=t[a]})}asSortedArray(){return Hk.map(t=>({expression:t,probability:this[t]})).sort((t,n)=>n.probability-t.probability)}};var qd=class extends zp{constructor(t=new Lp){super("FaceExpressionNet",t)}forwardInput(t){return O(()=>qa(this.runNet(t)))}async forward(t){return this.forwardInput(await vt(t))}async predictExpressions(t){let n=await vt(t),a=await this.forwardInput(n),r=await Promise.all(dt(a).map(async i=>{let o=i.dataSync();return i.dispose(),o}));a.dispose();let s=r.map(i=>new Vr(i));return n.isBatchInput?s:s[0]}getDefaultModelName(){return"face_expression_model"}getClassifierChannelsIn(){return 256}getClassifierChannelsOut(){return 7}};function jk(e){return e.expressions instanceof Vr}function bg(e,t){return{...e,...{expressions:t}}}function oge(e,t,n=.1,a){(Array.isArray(t)?t:[t]).forEach(s=>{let i=s instanceof Vr?s:jk(s)?s.expressions:void 0;if(!i)throw new Error("drawFaceExpressions - expected faceExpressions to be FaceExpressions | WithFaceExpressions<{}> or array thereof");let l=i.asSortedArray().filter(d=>d.probability>n),u=xr(s)?s.detection.box.bottomLeft:a||new Ue(0,0);new dl(l.map(d=>`${d.expression} (${rl(d.probability)})`),u).draw(e)})}function gl(e){return xr(e)&&e.landmarks instanceof sa&&e.unshiftedLandmarks instanceof sa&&e.alignedRect instanceof Tt}function lge(e){let t=l=>l*180/Math.PI,n=(l,u)=>Math.sqrt((l.x-u.x)**2+(l.y-u.y)**2),a={roll:void 0,pitch:void 0,yaw:void 0},r=(l,u,p)=>{let d=Math.floor(l.x-u.x),c=Math.floor(u.x-p.x);return d-c},s=(l,u)=>{let p=Math.hypot(u.x-l.x,u.y-l.y),d=u.y-l.y,c=Math.asin(d/p),h=t(c),m=Math.floor(90-h),f=u.x-l.x<0?-1:1;return m*f},i=(l,u,p)=>{let d=n(l,p),c=new Ue((l.x+p.x)/2,(l.y+p.y)/2),h=n(u,c),m=Math.atan(h/d),f=Math.floor(t(m)),g=c.y-u.y<0?-1:1;return f*g};if(!e||!e.positions||e.positions.length!==68)return a;let o=e.positions;return a.roll=s(o[27],o[66]),a.pitch=i(o[14],o[30],o[2]),a.yaw=r(o[14],o[33],o[2]),a}function Wp(e,t){let{box:n}=e.detection,a=t.shiftBy(n.x,n.y),r=a.align(),{imageDims:s}=e.detection,i=new Tt(e.detection.score,r.rescale(s.reverse()),s),o=lge(t);return{...e,...{landmarks:a,unshiftedLandmarks:t,alignedRect:i,angle:o}}}var yg=class{constructor(t={}){let{drawLines:n=!0,drawPoints:a=!0,lineWidth:r,lineColor:s,pointSize:i,pointColor:o}=t;this.drawLines=n,this.drawPoints=a,this.lineWidth=r||1,this.pointSize=i||2,this.lineColor=s||"rgba(0, 255, 255, 1)",this.pointColor=o||"rgba(255, 0, 255, 1)"}},xg=class{constructor(t,n={}){this.faceLandmarks=t,this.options=new yg(n)}draw(t){let n=Gn(t),{drawLines:a,drawPoints:r,lineWidth:s,lineColor:i,pointSize:o,pointColor:l}=this.options;if(a&&this.faceLandmarks instanceof ul&&(n.strokeStyle=i,n.lineWidth=s,zr(n,this.faceLandmarks.getJawOutline()),zr(n,this.faceLandmarks.getLeftEyeBrow()),zr(n,this.faceLandmarks.getRightEyeBrow()),zr(n,this.faceLandmarks.getNose()),zr(n,this.faceLandmarks.getLeftEye(),!0),zr(n,this.faceLandmarks.getRightEye(),!0),zr(n,this.faceLandmarks.getMouth(),!0)),r){n.strokeStyle=l,n.fillStyle=l;let u=p=>{n.beginPath(),n.arc(p.x,p.y,o,0,2*Math.PI),n.fill()};this.faceLandmarks.positions.forEach(u)}}};function uge(e,t){(Array.isArray(t)?t:[t]).forEach(a=>{let r=a instanceof sa?a:gl(a)?a.landmarks:void 0;if(!r)throw new Error("drawFaceLandmarks - expected faceExpressions to be FaceLandmarks | WithFaceLandmarks> or array thereof");new xg(r).draw(e)})}var hD="1.7.14";function dge(e,t){let n=Mp(e,t),a=Op(e,t);function r(i,o,l){let u=a(i,o,`${l}/separable_conv0`),p=a(o,o,`${l}/separable_conv1`),d=n(i,o,1,`${l}/expansion_conv`);return{separable_conv0:u,separable_conv1:p,expansion_conv:d}}function s(i,o){let l=a(i,i,`${o}/separable_conv0`),u=a(i,i,`${o}/separable_conv1`),p=a(i,i,`${o}/separable_conv2`);return{separable_conv0:l,separable_conv1:u,separable_conv2:p}}return{extractConvParams:n,extractSeparableConvParams:a,extractReductionBlockParams:r,extractMainBlockParams:s}}function mD(e,t){let n=[],{extractWeights:a,getRemainingWeights:r}=An(e),{extractConvParams:s,extractSeparableConvParams:i,extractReductionBlockParams:o,extractMainBlockParams:l}=dge(a,n),u=s(3,32,3,"entry_flow/conv_in"),p=o(32,64,"entry_flow/reduction_block_0"),d=o(64,128,"entry_flow/reduction_block_1"),c={conv_in:u,reduction_block_0:p,reduction_block_1:d},h={};yr(t,0,1).forEach(b=>{h[`main_block_${b}`]=l(128,`middle_flow/main_block_${b}`)});let m=o(128,256,"exit_flow/reduction_block"),f=i(256,512,"exit_flow/separable_conv"),g={reduction_block:m,separable_conv:f};if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:n,params:{entry_flow:c,middle_flow:h,exit_flow:g}}}function hge(e,t){let n=ia(e,t),a=mg(n),r=Pp(n);function s(o){let l=r(`${o}/separable_conv0`),u=r(`${o}/separable_conv1`),p=a(`${o}/expansion_conv`);return{separable_conv0:l,separable_conv1:u,expansion_conv:p}}function i(o){let l=r(`${o}/separable_conv0`),u=r(`${o}/separable_conv1`),p=r(`${o}/separable_conv2`);return{separable_conv0:l,separable_conv1:u,separable_conv2:p}}return{extractConvParams:a,extractSeparableConvParams:r,extractReductionBlockParams:s,extractMainBlockParams:i}}function fD(e,t){let n=[],{extractConvParams:a,extractSeparableConvParams:r,extractReductionBlockParams:s,extractMainBlockParams:i}=hge(e,n),o=a("entry_flow/conv_in"),l=s("entry_flow/reduction_block_0"),u=s("entry_flow/reduction_block_1"),p={conv_in:o,reduction_block_0:l,reduction_block_1:u},d={};yr(t,0,1).forEach(f=>{d[`main_block_${f}`]=i(`middle_flow/main_block_${f}`)});let c=s("exit_flow/reduction_block"),h=r("exit_flow/separable_conv"),m={reduction_block:c,separable_conv:h};return _n(e,n),{params:{entry_flow:p,middle_flow:d,exit_flow:m},paramMappings:n}}function gD(e,t,n){return X($t(e,t.filters,n,"same"),t.bias)}function Kk(e,t,n=!0){let a=n?Ke(e):e;return a=Hn(a,t.separable_conv0,[1,1]),a=Hn(Ke(a),t.separable_conv1,[1,1]),a=Dt(a,[3,3],[2,2],"same"),a=X(a,gD(e,t.expansion_conv,[2,2])),a}function mge(e,t){let n=Hn(Ke(e),t.separable_conv0,[1,1]);return n=Hn(Ke(n),t.separable_conv1,[1,1]),n=Hn(Ke(n),t.separable_conv2,[1,1]),n=X(n,e),n}var vg=class extends pn{constructor(t){super("TinyXception"),this._numMainBlocks=t}forwardInput(t){let{params:n}=this;if(!n)throw new Error("TinyXception - load model before inference");return O(()=>{let a=re(t.toBatchTensor(112,!0),"float32"),s=Ya(a,[122.782,117.001,104.298]).div(255),i=Ke(gD(s,n.entry_flow.conv_in,[2,2]));return i=Kk(i,n.entry_flow.reduction_block_0,!1),i=Kk(i,n.entry_flow.reduction_block_1),yr(this._numMainBlocks,0,1).forEach(o=>{i=mge(i,n.middle_flow[`main_block_${o}`])}),i=Kk(i,n.exit_flow.reduction_block),i=Ke(Hn(i,n.exit_flow.separable_conv,[1,1])),i})}async forward(t){return this.forwardInput(await vt(t))}getDefaultModelName(){return"tiny_xception_model"}extractParamsFromWeightMap(t){return fD(t,this._numMainBlocks)}extractParams(t){return mD(t,this._numMainBlocks)}};function bD(e){let t=[],{extractWeights:n,getRemainingWeights:a}=An(e),r=dg(n,t),s=r(512,1,"fc/age"),i=r(512,2,"fc/gender");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{fc:{age:s,gender:i}}}}function yD(e){let t=[],n=ia(e,t);function a(s){let i=n(`${s}/weights`,2),o=n(`${s}/bias`,1);return{weights:i,bias:o}}let r={fc:{age:a("fc/age"),gender:a("fc/gender")}};return _n(e,t),{params:r,paramMappings:t}}var wg=(n=>(n.FEMALE="female",n.MALE="male",n))(wg||{});var Kd=class extends pn{constructor(t=new vg(2)){super("AgeGenderNet"),this._faceFeatureExtractor=t}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(t){let{params:n}=this;if(!n)throw new Error(`${this._name} - load model before inference`);return O(()=>{let a=t instanceof vr?this.faceFeatureExtractor.forwardInput(t):t,r=xa(a,[7,7],[2,2],"valid").as2D(a.shape[0],-1),s=jd(r,n.fc.age).as1D(),i=jd(r,n.fc.gender);return{age:s,gender:i}})}forwardInput(t){return O(()=>{let{age:n,gender:a}=this.runNet(t);return{age:n,gender:qa(a)}})}async forward(t){return this.forwardInput(await vt(t))}async predictAgeAndGender(t){let n=await vt(t),a=await this.forwardInput(n),r=dt(a.age),s=dt(a.gender),i=r.map((l,u)=>({ageTensor:l,genderTensor:s[u]})),o=await Promise.all(i.map(async({ageTensor:l,genderTensor:u})=>{let p=l.dataSync()[0],d=u.dataSync()[0],c=d>.5,h=c?"male":"female",m=c?d:1-d;return l.dispose(),u.dispose(),{age:p,gender:h,genderProbability:m}}));return a.age.dispose(),a.gender.dispose(),n.isBatchInput?o:o[0]}getDefaultModelName(){return"age_gender_model"}dispose(t=!0){this.faceFeatureExtractor.dispose(t),super.dispose(t)}loadClassifierParams(t){let{params:n,paramMappings:a}=this.extractClassifierParams(t);this._params=n,this._paramMappings=a}extractClassifierParams(t){return bD(t)}extractParamsFromWeightMap(t){let{featureExtractorMap:n,classifierMap:a}=gg(t);return this.faceFeatureExtractor.loadFromWeightMap(n),yD(a)}extractParams(t){let a=t.slice(0,t.length-1539),r=t.slice(t.length-1539);return this.faceFeatureExtractor.extractWeights(a),this.extractClassifierParams(r)}};var Bp=class extends zp{postProcess(t,n,a){let r=a.map(({width:i,height:o})=>{let l=n/Math.max(o,i);return{width:i*l,height:o*l}}),s=r.length;return O(()=>{let i=(d,c)=>Ft([yn([68],d,"float32"),yn([68],c,"float32")],1).as2D(1,136).as1D(),o=(d,c)=>{let{width:h,height:m}=r[d];return c(h,m)?Math.abs(h-m)/2:0},l=d=>o(d,(c,h)=>co(d,(c,h)=>hi(l(c),u(c))))).div(Ft(Array.from(Array(s),(d,c)=>i(r[c].width,r[c].height))))})}forwardInput(t){return O(()=>{let n=this.runNet(t);return this.postProcess(n,t.inputSize,t.inputDimensions.map(([a,r])=>({height:a,width:r})))})}async forward(t){return this.forwardInput(await vt(t))}async detectLandmarks(t){let n=await vt(t),a=O(()=>dt(this.forwardInput(n))),r=await Promise.all(a.map(async(s,i)=>{let o=Array.from(s.dataSync()),l=o.filter((p,d)=>sg(d)),u=o.filter((p,d)=>!sg(d));return new ul(Array(68).fill(0).map((p,d)=>new Ue(l[d],u[d])),{height:n.getInputHeight(i),width:n.getInputWidth(i)})}));return a.forEach(s=>s.dispose()),n.isBatchInput?r:r[0]}getClassifierChannelsOut(){return 136}};var bl=class extends Bp{constructor(t=new Lp){super("FaceLandmark68Net",t)}getDefaultModelName(){return"face_landmark_68_model"}getClassifierChannelsIn(){return 256}};function xD(e){let t=[],{extractDenseBlock3Params:n}=fg(e,t),a={dense0:n("dense0",!0),dense1:n("dense1"),dense2:n("dense2")};return _n(e,t),{params:a,paramMappings:t}}function vD(e){let t=[],{extractWeights:n,getRemainingWeights:a}=An(e),{extractDenseBlock3Params:r}=hg(n,t),s=r(3,32,"dense0",!0),i=r(32,64,"dense1"),o=r(64,128,"dense2");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{dense0:s,dense1:i,dense2:o}}}var kg=class extends pn{constructor(){super("TinyFaceFeatureExtractor")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("TinyFaceFeatureExtractor - load model before inference");return O(()=>{let a=re(t.toBatchTensor(112,!0),"float32"),s=Ya(a,[122.782,117.001,104.298]).div(255),i=cg(s,n.dense0,!0);return i=cg(i,n.dense1),i=cg(i,n.dense2),i=xa(i,[14,14],[2,2],"valid"),i})}async forward(t){return this.forwardInput(await vt(t))}getDefaultModelName(){return"face_feature_extractor_tiny_model"}extractParamsFromWeightMap(t){return xD(t)}extractParams(t){return vD(t)}};var Xd=class extends Bp{constructor(t=new kg){super("FaceLandmark68TinyNet",t)}getDefaultModelName(){return"face_landmark_68_tiny_model"}getClassifierChannelsIn(){return 128}};var Xk=class extends bl{};function wD(e,t){return X(z(e,t.weights),t.biases)}function Yk(e,t,n,a,r="same"){let{filters:s,bias:i}=t.conv,o=$t(e,s,n,r);return o=X(o,i),o=wD(o,t.scale),a?Ke(o):o}function kD(e,t){return Yk(e,t,[1,1],!0)}function Zk(e,t){return Yk(e,t,[1,1],!1)}function Ig(e,t){return Yk(e,t,[2,2],!0,"valid")}function fge(e,t){function n(o,l,u){let p=e(o),d=p.length/(l*u*u);if(Sk(d))throw new Error(`depth has to be an integer: ${d}, weights.length: ${p.length}, numFilters: ${l}, filterSize: ${u}`);return O(()=>De(Da(p,[l,d,u,u]),[2,3,1,0]))}function a(o,l,u,p){let d=n(o,l,u),c=je(e(l));return t.push({paramPath:`${p}/filters`},{paramPath:`${p}/bias`}),{filters:d,bias:c}}function r(o,l){let u=je(e(o)),p=je(e(o));return t.push({paramPath:`${l}/weights`},{paramPath:`${l}/biases`}),{weights:u,biases:p}}function s(o,l,u,p){let d=a(o,l,u,`${p}/conv`),c=r(l,`${p}/scale`);return{conv:d,scale:c}}function i(o,l,u,p,d=!1){let c=s((d?.5:1)*o,l,u,`${p}/conv1`),h=s(o,l,u,`${p}/conv2`);return{conv1:c,conv2:h}}return{extractConvLayerParams:s,extractResidualLayerParams:i}}function ID(e){let{extractWeights:t,getRemainingWeights:n}=An(e),a=[],{extractConvLayerParams:r,extractResidualLayerParams:s}=fge(t,a),i=r(4704,32,7,"conv32_down"),o=s(9216,32,3,"conv32_1"),l=s(9216,32,3,"conv32_2"),u=s(9216,32,3,"conv32_3"),p=s(36864,64,3,"conv64_down",!0),d=s(36864,64,3,"conv64_1"),c=s(36864,64,3,"conv64_2"),h=s(36864,64,3,"conv64_3"),m=s(147456,128,3,"conv128_down",!0),f=s(147456,128,3,"conv128_1"),g=s(147456,128,3,"conv128_2"),b=s(589824,256,3,"conv256_down",!0),y=s(589824,256,3,"conv256_1"),x=s(589824,256,3,"conv256_2"),v=s(589824,256,3,"conv256_down_out"),I=O(()=>De(Aa(t(256*128),[128,256]),[1,0]));if(a.push({paramPath:"fc"}),n().length!==0)throw new Error(`weights remaing after extract: ${n().length}`);return{params:{conv32_down:i,conv32_1:o,conv32_2:l,conv32_3:u,conv64_down:p,conv64_1:d,conv64_2:c,conv64_3:h,conv128_down:m,conv128_1:f,conv128_2:g,conv256_down:b,conv256_1:y,conv256_2:x,conv256_down_out:v,fc:I},paramMappings:a}}function gge(e,t){let n=ia(e,t);function a(i){let o=n(`${i}/scale/weights`,1),l=n(`${i}/scale/biases`,1);return{weights:o,biases:l}}function r(i){let o=n(`${i}/conv/filters`,4),l=n(`${i}/conv/bias`,1),u=a(i);return{conv:{filters:o,bias:l},scale:u}}function s(i){return{conv1:r(`${i}/conv1`),conv2:r(`${i}/conv2`)}}return{extractConvLayerParams:r,extractResidualLayerParams:s}}function SD(e){let t=[],{extractConvLayerParams:n,extractResidualLayerParams:a}=gge(e,t),r=n("conv32_down"),s=a("conv32_1"),i=a("conv32_2"),o=a("conv32_3"),l=a("conv64_down"),u=a("conv64_1"),p=a("conv64_2"),d=a("conv64_3"),c=a("conv128_down"),h=a("conv128_1"),m=a("conv128_2"),f=a("conv256_down"),g=a("conv256_1"),b=a("conv256_2"),y=a("conv256_down_out"),{fc:x}=e;if(t.push({originalPath:"fc",paramPath:"fc"}),!Ik(x))throw new Error(`expected weightMap[fc] to be a Tensor2D, instead have ${x}`);let v={conv32_down:r,conv32_1:s,conv32_2:i,conv32_3:o,conv64_down:l,conv64_1:u,conv64_2:p,conv64_3:d,conv128_down:c,conv128_1:h,conv128_2:m,conv256_down:f,conv256_1:g,conv256_2:b,conv256_down_out:y,fc:x};return _n(e,t),{params:v,paramMappings:t}}function Za(e,t){let n=kD(e,t.conv1);return n=Zk(n,t.conv2),n=X(n,e),n=Ke(n),n}function Yd(e,t){let n=Ig(e,t.conv1);n=Zk(n,t.conv2);let a=xa(e,2,2,"valid"),r=It(a.shape),s=a.shape[3]!==n.shape[3];if(a.shape[1]!==n.shape[1]||a.shape[2]!==n.shape[2]){let o=[...n.shape];o[1]=1;let l=It(o);n=et([n,l],1);let u=[...n.shape];u[2]=1;let p=It(u);n=et([n,p],2)}return a=s?et([a,r],3):a,n=X(a,n),n=Ke(n),n}var yl=class extends pn{constructor(){super("FaceRecognitionNet")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("FaceRecognitionNet - load model before inference");return O(()=>{let a=re(t.toBatchTensor(150,!0),"float32"),s=Ya(a,[122.782,117.001,104.298]).div(255),i=Ig(s,n.conv32_down);i=Dt(i,3,2,"valid"),i=Za(i,n.conv32_1),i=Za(i,n.conv32_2),i=Za(i,n.conv32_3),i=Yd(i,n.conv64_down),i=Za(i,n.conv64_1),i=Za(i,n.conv64_2),i=Za(i,n.conv64_3),i=Yd(i,n.conv128_down),i=Za(i,n.conv128_1),i=Za(i,n.conv128_2),i=Yd(i,n.conv256_down),i=Za(i,n.conv256_1),i=Za(i,n.conv256_2),i=Yd(i,n.conv256_down_out);let o=i.mean([1,2]);return $e(o,n.fc)})}async forward(t){return this.forwardInput(await vt(t))}async computeFaceDescriptor(t){var s;if((s=t==null?void 0:t.shape)!=null&&s.some(i=>i<=0))return new Float32Array(128);let n=await vt(t),a=O(()=>dt(this.forwardInput(n))),r=await Promise.all(a.map(i=>i.data()));return a.forEach(i=>i.dispose()),n.isBatchInput?r:r[0]}getDefaultModelName(){return"face_recognition_model"}extractParamsFromWeightMap(t){return SD(t)}extractParams(t){return ID(t)}};function bge(e){let t=new yl;return t.extractWeights(e),t}function Sg(e,t){return{...e,...{descriptor:t}}}function yge(e){return typeof e.age=="number"}function Ng(e,t){return{...e,...{age:t}}}function xge(e){return(e.gender==="male"||e.gender==="female")&&_p(e.genderProbability)}function Tg(e,t,n){return{...e,...{gender:t,genderProbability:n}}}function vge(e,t){function n(l,u){let p=Da(e(9*l),[3,3,l,1]),d=je(e(l)),c=je(e(l)),h=je(e(l)),m=je(e(l));return t.push({paramPath:`${u}/filters`},{paramPath:`${u}/batch_norm_scale`},{paramPath:`${u}/batch_norm_offset`},{paramPath:`${u}/batch_norm_mean`},{paramPath:`${u}/batch_norm_variance`}),{filters:p,batch_norm_scale:d,batch_norm_offset:c,batch_norm_mean:h,batch_norm_variance:m}}function a(l,u,p,d,c){let h=Da(e(l*u*p*p),[p,p,l,u]),m=je(e(u));return t.push({paramPath:`${d}/filters`},{paramPath:`${d}/${c?"batch_norm_offset":"bias"}`}),{filters:h,bias:m}}function r(l,u,p,d){let{filters:c,bias:h}=a(l,u,p,d,!0);return{filters:c,batch_norm_offset:h}}function s(l,u,p){let d=n(l,`${p}/depthwise_conv`),c=r(l,u,1,`${p}/pointwise_conv`);return{depthwise_conv:d,pointwise_conv:c}}function i(){let l=r(3,32,3,"mobilenetv1/conv_0"),u=s(32,64,"mobilenetv1/conv_1"),p=s(64,128,"mobilenetv1/conv_2"),d=s(128,128,"mobilenetv1/conv_3"),c=s(128,256,"mobilenetv1/conv_4"),h=s(256,256,"mobilenetv1/conv_5"),m=s(256,512,"mobilenetv1/conv_6"),f=s(512,512,"mobilenetv1/conv_7"),g=s(512,512,"mobilenetv1/conv_8"),b=s(512,512,"mobilenetv1/conv_9"),y=s(512,512,"mobilenetv1/conv_10"),x=s(512,512,"mobilenetv1/conv_11"),v=s(512,1024,"mobilenetv1/conv_12"),I=s(1024,1024,"mobilenetv1/conv_13");return{conv_0:l,conv_1:u,conv_2:p,conv_3:d,conv_4:c,conv_5:h,conv_6:m,conv_7:f,conv_8:g,conv_9:b,conv_10:y,conv_11:x,conv_12:v,conv_13:I}}function o(){let l=r(1024,256,1,"prediction_layer/conv_0"),u=r(256,512,3,"prediction_layer/conv_1"),p=r(512,128,1,"prediction_layer/conv_2"),d=r(128,256,3,"prediction_layer/conv_3"),c=r(256,128,1,"prediction_layer/conv_4"),h=r(128,256,3,"prediction_layer/conv_5"),m=r(256,64,1,"prediction_layer/conv_6"),f=r(64,128,3,"prediction_layer/conv_7"),g=a(512,12,1,"prediction_layer/box_predictor_0/box_encoding_predictor"),b=a(512,9,1,"prediction_layer/box_predictor_0/class_predictor"),y=a(1024,24,1,"prediction_layer/box_predictor_1/box_encoding_predictor"),x=a(1024,18,1,"prediction_layer/box_predictor_1/class_predictor"),v=a(512,24,1,"prediction_layer/box_predictor_2/box_encoding_predictor"),I=a(512,18,1,"prediction_layer/box_predictor_2/class_predictor"),N=a(256,24,1,"prediction_layer/box_predictor_3/box_encoding_predictor"),C=a(256,18,1,"prediction_layer/box_predictor_3/class_predictor"),_=a(256,24,1,"prediction_layer/box_predictor_4/box_encoding_predictor"),F=a(256,18,1,"prediction_layer/box_predictor_4/class_predictor"),D=a(128,24,1,"prediction_layer/box_predictor_5/box_encoding_predictor"),$=a(128,18,1,"prediction_layer/box_predictor_5/class_predictor");return{conv_0:l,conv_1:u,conv_2:p,conv_3:d,conv_4:c,conv_5:h,conv_6:m,conv_7:f,box_predictor_0:{box_encoding_predictor:g,class_predictor:b},box_predictor_1:{box_encoding_predictor:y,class_predictor:x},box_predictor_2:{box_encoding_predictor:v,class_predictor:I},box_predictor_3:{box_encoding_predictor:N,class_predictor:C},box_predictor_4:{box_encoding_predictor:_,class_predictor:F},box_predictor_5:{box_encoding_predictor:D,class_predictor:$}}}return{extractMobilenetV1Params:i,extractPredictionLayerParams:o}}function ND(e){let t=[],{extractWeights:n,getRemainingWeights:a}=An(e),{extractMobilenetV1Params:r,extractPredictionLayerParams:s}=vge(n,t),i=r(),o=s(),u={extra_dim:Nd(n(5118*4),[1,5118,4])};if(t.push({paramPath:"output_layer/extra_dim"}),a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{params:{mobilenetv1:i,prediction_layer:o,output_layer:u},paramMappings:t}}function wge(e,t){let n=ia(e,t);function a(u,p,d){let c=n(`${u}/Conv2d_${p}_pointwise/weights`,4,`${d}/filters`),h=n(`${u}/Conv2d_${p}_pointwise/convolution_bn_offset`,1,`${d}/batch_norm_offset`);return{filters:c,batch_norm_offset:h}}function r(u){let p=`mobilenetv1/conv_${u}`,d=`MobilenetV1/Conv2d_${u}_depthwise`,c=`${p}/depthwise_conv`,h=`${p}/pointwise_conv`,m=n(`${d}/depthwise_weights`,4,`${c}/filters`),f=n(`${d}/BatchNorm/gamma`,1,`${c}/batch_norm_scale`),g=n(`${d}/BatchNorm/beta`,1,`${c}/batch_norm_offset`),b=n(`${d}/BatchNorm/moving_mean`,1,`${c}/batch_norm_mean`),y=n(`${d}/BatchNorm/moving_variance`,1,`${c}/batch_norm_variance`);return{depthwise_conv:{filters:m,batch_norm_scale:f,batch_norm_offset:g,batch_norm_mean:b,batch_norm_variance:y},pointwise_conv:a("MobilenetV1",u,h)}}function s(){return{conv_0:a("MobilenetV1",0,"mobilenetv1/conv_0"),conv_1:r(1),conv_2:r(2),conv_3:r(3),conv_4:r(4),conv_5:r(5),conv_6:r(6),conv_7:r(7),conv_8:r(8),conv_9:r(9),conv_10:r(10),conv_11:r(11),conv_12:r(12),conv_13:r(13)}}function i(u,p){let d=n(`${u}/weights`,4,`${p}/filters`),c=n(`${u}/biases`,1,`${p}/bias`);return{filters:d,bias:c}}function o(u){let p=i(`Prediction/BoxPredictor_${u}/BoxEncodingPredictor`,`prediction_layer/box_predictor_${u}/box_encoding_predictor`),d=i(`Prediction/BoxPredictor_${u}/ClassPredictor`,`prediction_layer/box_predictor_${u}/class_predictor`);return{box_encoding_predictor:p,class_predictor:d}}function l(){return{conv_0:a("Prediction",0,"prediction_layer/conv_0"),conv_1:a("Prediction",1,"prediction_layer/conv_1"),conv_2:a("Prediction",2,"prediction_layer/conv_2"),conv_3:a("Prediction",3,"prediction_layer/conv_3"),conv_4:a("Prediction",4,"prediction_layer/conv_4"),conv_5:a("Prediction",5,"prediction_layer/conv_5"),conv_6:a("Prediction",6,"prediction_layer/conv_6"),conv_7:a("Prediction",7,"prediction_layer/conv_7"),box_predictor_0:o(0),box_predictor_1:o(1),box_predictor_2:o(2),box_predictor_3:o(3),box_predictor_4:o(4),box_predictor_5:o(5)}}return{extractMobilenetV1Params:s,extractPredictionLayerParams:l}}function TD(e){let t=[],{extractMobilenetV1Params:n,extractPredictionLayerParams:a}=wge(e,t),r=e["Output/extra_dim"];if(t.push({originalPath:"Output/extra_dim",paramPath:"output_layer/extra_dim"}),!Wr(r))throw new Error(`expected weightMap['Output/extra_dim'] to be a Tensor3D, instead have ${r}`);let s={mobilenetv1:n(),prediction_layer:a(),output_layer:{extra_dim:r}};return _n(e,t),{params:s,paramMappings:t}}function Oa(e,t,n){return O(()=>{let a=$t(e,t.filters,n,"same");return a=X(a,t.batch_norm_offset),an(a,0,6)})}var kge=.0010000000474974513;function Ige(e,t,n){return O(()=>{let a=As(e,t.filters,n,"same");return a=_s(a,t.batch_norm_mean,t.batch_norm_variance,t.batch_norm_offset,t.batch_norm_scale,kge),an(a,0,6)})}function Sge(e){return[2,4,6,12].some(t=>t===e)?[2,2]:[1,1]}function CD(e,t){return O(()=>{let n,a=Oa(e,t.conv_0,[2,2]);if([t.conv_1,t.conv_2,t.conv_3,t.conv_4,t.conv_5,t.conv_6,t.conv_7,t.conv_8,t.conv_9,t.conv_10,t.conv_11,t.conv_12,t.conv_13].forEach((s,i)=>{let o=i+1,l=Sge(o);a=Ige(a,s.depthwise_conv,l),a=Oa(a,s.pointwise_conv,[1,1]),o===11&&(n=a)}),n===null)throw new Error("mobileNetV1 - output of conv layer 11 is null");return{out:a,conv11:n}})}function Nge(e,t,n){let a=e.arraySync(),r=Math.min(a[t][0],a[t][2]),s=Math.min(a[t][1],a[t][3]),i=Math.max(a[t][0],a[t][2]),o=Math.max(a[t][1],a[t][3]),l=Math.min(a[n][0],a[n][2]),u=Math.min(a[n][1],a[n][3]),p=Math.max(a[n][0],a[n][2]),d=Math.max(a[n][1],a[n][3]),c=(i-r)*(o-s),h=(p-l)*(d-u);if(c<=0||h<=0)return 0;let m=Math.max(r,l),f=Math.max(s,u),g=Math.min(i,p),b=Math.min(o,d),y=Math.max(g-m,0)*Math.max(b-f,0);return y/(c+h-y)}function ED(e,t,n,a,r){let s=e.shape[0],i=Math.min(n,s),o=t.map((p,d)=>({score:p,boxIndex:d})).filter(p=>p.score>r).sort((p,d)=>d.score-p.score),l=p=>p<=a?1:0,u=[];return o.forEach(p=>{if(u.length>=i)return;let d=p.score;for(let c=u.length-1;c>=0;--c){let h=Nge(e,p.boxIndex,u[c]);if(h!==0&&(p.score*=l(h),p.score<=r))break}d===p.score&&u.push(p.boxIndex)}),u}function Tge(e){let t=dt(De(e,[1,0])),n=[pe(t[2],t[0]),pe(t[3],t[1])],a=[X(t[0],he(n[0],2)),X(t[1],he(n[1],2))];return{sizes:n,centers:a}}function Cge(e,t){let{sizes:n,centers:a}=Tge(e),r=dt(De(t,[1,0])),s=he(z(mn(he(r[2],5)),n[0]),2),i=X(z(he(r[0],10),n[0]),a[0]),o=he(z(mn(he(r[3],5)),n[1]),2),l=X(z(he(r[1],10),n[1]),a[1]);return De(Ft([pe(i,s),pe(l,o),X(i,s),X(l,o)]),[1,0])}function _D(e,t,n){return O(()=>{let a=e.shape[0],r=Cge(W(On(n.extra_dim,[a,1,1]),[-1,4]),W(e,[-1,4]));r=W(r,[a,r.shape[0]/a,4]);let s=ma(Ve(t,[0,0,1],[-1,-1,-1])),i=Ve(s,[0,0,0],[-1,-1,1]);i=W(i,[a,i.shape[1]]);let o=dt(r),l=dt(i);return{boxes:o,scores:l}})}function xl(e,t){return O(()=>{let n=e.shape[0],a=W(fl(e,t.box_encoding_predictor),[n,-1,1,4]),r=W(fl(e,t.class_predictor),[n,-1,3]);return{boxPredictionEncoding:a,classPrediction:r}})}function AD(e,t,n){return O(()=>{let a=Oa(e,n.conv_0,[1,1]),r=Oa(a,n.conv_1,[2,2]),s=Oa(r,n.conv_2,[1,1]),i=Oa(s,n.conv_3,[2,2]),o=Oa(i,n.conv_4,[1,1]),l=Oa(o,n.conv_5,[2,2]),u=Oa(l,n.conv_6,[1,1]),p=Oa(u,n.conv_7,[2,2]),d=xl(t,n.box_predictor_0),c=xl(e,n.box_predictor_1),h=xl(r,n.box_predictor_2),m=xl(i,n.box_predictor_3),f=xl(l,n.box_predictor_4),g=xl(p,n.box_predictor_5),b=et([d.boxPredictionEncoding,c.boxPredictionEncoding,h.boxPredictionEncoding,m.boxPredictionEncoding,f.boxPredictionEncoding,g.boxPredictionEncoding],1),y=et([d.classPrediction,c.classPrediction,h.classPrediction,m.classPrediction,f.classPrediction,g.classPrediction],1);return{boxPredictions:b,classPredictions:y}})}var Ia=class{constructor({minConfidence:t,maxResults:n}={}){this._name="SsdMobilenetv1Options";if(this._minConfidence=t||.5,this._maxResults=n||100,typeof this._minConfidence!="number"||this._minConfidence<=0||this._minConfidence>=1)throw new Error(`${this._name} - expected minConfidence to be a number between 0 and 1`);if(typeof this._maxResults!="number")throw new Error(`${this._name} - expected maxResults to be a number`)}get minConfidence(){return this._minConfidence}get maxResults(){return this._maxResults}};var Ws=class extends pn{constructor(){super("SsdMobilenetv1")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("SsdMobilenetv1 - load model before inference");return O(()=>{let a=re(t.toBatchTensor(512,!1),"float32"),r=pe(he(a,127.5),1),s=CD(r,n.mobilenetv1),{boxPredictions:i,classPredictions:o}=AD(s.out,s.conv11,n.prediction_layer);return _D(i,o,n.output_layer)})}async forward(t){return this.forwardInput(await vt(t))}async locateFaces(t,n={}){let{maxResults:a,minConfidence:r}=new Ia(n),s=await vt(t),{boxes:i,scores:o}=this.forwardInput(s),l=i[0],u=o[0];for(let x=1;x{let[v,I]=[Math.max(0,b[x][0]),Math.min(1,b[x][2])].map(_=>_*g),[N,C]=[Math.max(0,b[x][1]),Math.min(1,b[x][3])].map(_=>_*f);return new Tt(p[x],new ll(N,v,C-N,I-v),{height:s.getInputHeight(0),width:s.getInputWidth(0)})});return l.dispose(),u.dispose(),y}getDefaultModelName(){return"ssd_mobilenetv1_model"}extractParamsFromWeightMap(t){return TD(t)}extractParams(t){return ND(t)}};function FD(e){let t=new Ws;return t.extractWeights(e),t}function Ege(e){return FD(e)}var Jk=class extends Ws{};var $D=.4,DD=[new Ue(.738768,.874946),new Ue(2.42204,2.65704),new Ue(4.30971,7.04493),new Ue(10.246,4.59428),new Ue(12.6868,11.8741)],RD=[new Ue(1.603231,2.094468),new Ue(6.041143,7.080126),new Ue(2.882459,3.518061),new Ue(4.266906,5.178857),new Ue(9.041765,10.66308)],MD=[117.001,114.697,97.404],OD="tiny_yolov2_model",PD="tiny_yolov2_separable_conv_model";var Cg=e=>typeof e=="number";function Qk(e){if(!e)throw new Error(`invalid config: ${e}`);if(typeof e.withSeparableConvs!="boolean")throw new Error(`config.withSeparableConvs has to be a boolean, have: ${e.withSeparableConvs}`);if(!Cg(e.iouThreshold)||e.iouThreshold<0||e.iouThreshold>1)throw new Error(`config.iouThreshold has to be a number between [0, 1], have: ${e.iouThreshold}`);if(!Array.isArray(e.classes)||!e.classes.length||!e.classes.every(t=>typeof t=="string"))throw new Error(`config.classes has to be an array class names: string[], have: ${JSON.stringify(e.classes)}`);if(!Array.isArray(e.anchors)||!e.anchors.length||!e.anchors.map(t=>t||{}).every(t=>Cg(t.x)&&Cg(t.y)))throw new Error(`config.anchors has to be an array of { x: number, y: number }, have: ${JSON.stringify(e.anchors)}`);if(e.meanRgb&&(!Array.isArray(e.meanRgb)||e.meanRgb.length!==3||!e.meanRgb.every(Cg)))throw new Error(`config.meanRgb has to be an array of shape [number, number, number], have: ${JSON.stringify(e.meanRgb)}`)}function Vp(e){return O(()=>{let t=z(e,xe(.10000000149011612));return X(Ke(pe(e,t)),t)})}function Ur(e,t){return O(()=>{let n=va(e,[[0,0],[1,1],[1,1],[0,0]]);return n=$t(n,t.conv.filters,[1,1],"valid"),n=pe(n,t.bn.sub),n=z(n,t.bn.truediv),n=X(n,t.conv.bias),Vp(n)})}function Gr(e,t){return O(()=>{let n=va(e,[[0,0],[1,1],[1,1],[0,0]]);return n=Ds(n,t.depthwise_filter,t.pointwise_filter,[1,1],"valid"),n=X(n,t.bias),Vp(n)})}function _ge(e,t){let n=Mp(e,t);function a(i,o){let l=je(e(i)),u=je(e(i));return t.push({paramPath:`${o}/sub`},{paramPath:`${o}/truediv`}),{sub:l,truediv:u}}function r(i,o,l){let u=n(i,o,3,`${l}/conv`),p=a(o,`${l}/bn`);return{conv:u,bn:p}}let s=Op(e,t);return{extractConvParams:n,extractConvWithBatchNormParams:r,extractSeparableConvParams:s}}function LD(e,t,n,a){let{extractWeights:r,getRemainingWeights:s}=An(e),i=[],{extractConvParams:o,extractConvWithBatchNormParams:l,extractSeparableConvParams:u}=_ge(r,i),p;if(t.withSeparableConvs){let[d,c,h,m,f,g,b,y,x]=a,v=t.isFirstLayerConv2d?o(d,c,3,"conv0"):u(d,c,"conv0"),I=u(c,h,"conv1"),N=u(h,m,"conv2"),C=u(m,f,"conv3"),_=u(f,g,"conv4"),F=u(g,b,"conv5"),D=y?u(b,y,"conv6"):void 0,$=x?u(y,x,"conv7"):void 0,S=o(x||y||b,5*n,1,"conv8");p={conv0:v,conv1:I,conv2:N,conv3:C,conv4:_,conv5:F,conv6:D,conv7:$,conv8:S}}else{let[d,c,h,m,f,g,b,y,x]=a,v=l(d,c,"conv0"),I=l(c,h,"conv1"),N=l(h,m,"conv2"),C=l(m,f,"conv3"),_=l(f,g,"conv4"),F=l(g,b,"conv5"),D=l(b,y,"conv6"),$=l(y,x,"conv7"),S=o(x,5*n,1,"conv8");p={conv0:v,conv1:I,conv2:N,conv3:C,conv4:_,conv5:F,conv6:D,conv7:$,conv8:S}}if(s().length!==0)throw new Error(`weights remaing after extract: ${s().length}`);return{params:p,paramMappings:i}}function Age(e,t){let n=ia(e,t);function a(o){let l=n(`${o}/sub`,1),u=n(`${o}/truediv`,1);return{sub:l,truediv:u}}function r(o){let l=n(`${o}/filters`,4),u=n(`${o}/bias`,1);return{filters:l,bias:u}}function s(o){let l=r(`${o}/conv`),u=a(`${o}/bn`);return{conv:l,bn:u}}let i=Pp(n);return{extractConvParams:r,extractConvWithBatchNormParams:s,extractSeparableConvParams:i}}function zD(e,t){let n=[],{extractConvParams:a,extractConvWithBatchNormParams:r,extractSeparableConvParams:s}=Age(e,n),i;if(t.withSeparableConvs){let o=t.filterSizes&&t.filterSizes.length||9;i={conv0:t.isFirstLayerConv2d?a("conv0"):s("conv0"),conv1:s("conv1"),conv2:s("conv2"),conv3:s("conv3"),conv4:s("conv4"),conv5:s("conv5"),conv6:o>7?s("conv6"):void 0,conv7:o>8?s("conv7"):void 0,conv8:a("conv8")}}else i={conv0:r("conv0"),conv1:r("conv1"),conv2:r("conv2"),conv3:r("conv3"),conv4:r("conv4"),conv5:r("conv5"),conv6:r("conv6"),conv7:r("conv7"),conv8:a("conv8")};return _n(e,n),{params:i,paramMappings:n}}var Ja=class{constructor({inputSize:t,scoreThreshold:n}={}){this._name="TinyYolov2Options";if(this._inputSize=t||416,this._scoreThreshold=n||.5,typeof this._inputSize!="number"||this._inputSize%32!==0)throw new Error(`${this._name} - expected inputSize to be a number divisible by 32`);if(typeof this._scoreThreshold!="number"||this._scoreThreshold<=0||this._scoreThreshold>=1)throw new Error(`${this._name} - expected scoreThreshold to be a number between 0 and 1`)}get inputSize(){return this._inputSize}get scoreThreshold(){return this._scoreThreshold}};var Eg=class Eg extends pn{constructor(t){super("TinyYolov2"),Qk(t),this._config=t}get config(){return this._config}get withClassScores(){return this.config.withClassScores||this.config.classes.length>1}get boxEncodingSize(){return 5+(this.withClassScores?this.config.classes.length:0)}runTinyYolov2(t,n){let a=Ur(t,n.conv0);return a=Dt(a,[2,2],[2,2],"same"),a=Ur(a,n.conv1),a=Dt(a,[2,2],[2,2],"same"),a=Ur(a,n.conv2),a=Dt(a,[2,2],[2,2],"same"),a=Ur(a,n.conv3),a=Dt(a,[2,2],[2,2],"same"),a=Ur(a,n.conv4),a=Dt(a,[2,2],[2,2],"same"),a=Ur(a,n.conv5),a=Dt(a,[2,2],[1,1],"same"),a=Ur(a,n.conv6),a=Ur(a,n.conv7),fl(a,n.conv8,"valid",!1)}runMobilenet(t,n){let a=this.config.isFirstLayerConv2d?Vp(fl(t,n.conv0,"valid",!1)):Gr(t,n.conv0);return a=Dt(a,[2,2],[2,2],"same"),a=Gr(a,n.conv1),a=Dt(a,[2,2],[2,2],"same"),a=Gr(a,n.conv2),a=Dt(a,[2,2],[2,2],"same"),a=Gr(a,n.conv3),a=Dt(a,[2,2],[2,2],"same"),a=Gr(a,n.conv4),a=Dt(a,[2,2],[2,2],"same"),a=Gr(a,n.conv5),a=Dt(a,[2,2],[1,1],"same"),a=n.conv6?Gr(a,n.conv6):a,a=n.conv7?Gr(a,n.conv7):a,fl(a,n.conv8,"valid",!1)}forwardInput(t,n){let{params:a}=this;if(!a)throw new Error("TinyYolov2 - load model before inference");return O(()=>{let r=re(t.toBatchTensor(n,!1),"float32");return r=this.config.meanRgb?Ya(r,this.config.meanRgb):r,r=r.div(255),this.config.withSeparableConvs?this.runMobilenet(r,a):this.runTinyYolov2(r,a)})}async forward(t,n){return this.forwardInput(await vt(t),n)}async detect(t,n={}){let{inputSize:a,scoreThreshold:r}=new Ja(n),s=await vt(t),i=await this.forwardInput(s,a),o=O(()=>dt(i)[0].expandDims()),l={width:s.getInputWidth(0),height:s.getInputHeight(0)},u=await this.extractBoxes(o,s.getReshapedInputDimensions(0),r);i.dispose(),o.dispose();let p=u.map(g=>g.box),d=u.map(g=>g.score),c=u.map(g=>g.classScore),h=u.map(g=>this.config.classes[g.label]);return _k(p.map(g=>g.rescale(a)),d,this.config.iouThreshold,!0).map(g=>new ol(d[g],c[g],h[g],p[g],l))}getDefaultModelName(){return""}extractParamsFromWeightMap(t){return zD(t,this.config)}extractParams(t){let n=this.config.filterSizes||Eg.DEFAULT_FILTER_SIZES,a=n?n.length:void 0;if(a!==7&&a!==8&&a!==9)throw new Error(`TinyYolov2 - expected 7 | 8 | 9 convolutional filters, but found ${a} filterSizes in config`);return LD(t,this.config,this.boxEncodingSize,n)}async extractBoxes(t,n,a){let{width:r,height:s}=n,i=Math.max(r,s),o=i/r,l=i/s,u=t.shape[1],p=this.config.anchors.length,[d,c,h]=O(()=>{let b=t.reshape([u,u,p,this.boxEncodingSize]),y=b.slice([0,0,0,0],[u,u,p,4]),x=b.slice([0,0,0,4],[u,u,p,1]),v=this.withClassScores?qa(b.slice([0,0,0,5],[u,u,p,this.config.classes.length]),3):xe(0);return[y,x,v]}),m=[],f=await c.array(),g=await d.array();for(let b=0;ba){let I=(y+zd(g[b][y][x][0]))/u*o,N=(b+zd(g[b][y][x][1]))/u*l,C=Math.exp(g[b][y][x][2])*this.config.anchors[x].x/u*o,_=Math.exp(g[b][y][x][3])*this.config.anchors[x].y/u*l,F=I-C/2,D=N-_/2,$={row:b,col:y,anchor:x},{classScore:S,label:M}=this.withClassScores?await this.extractPredictedClass(h,$):{classScore:1,label:0};m.push({box:new il(F,D,F+C,D+_),score:v,classScore:v*S,label:M,...$})}}return d.dispose(),c.dispose(),h.dispose(),m}async extractPredictedClass(t,n){let{row:a,col:r,anchor:s}=n,i=await t.array();return Array(this.config.classes.length).fill(0).map((o,l)=>i[a][r][s][l]).map((o,l)=>({classScore:o,label:l})).reduce((o,l)=>o.classScore>l.classScore?o:l)}};Eg.DEFAULT_FILTER_SIZES=[3,16,32,64,128,256,512,1024,1024];var Up=Eg;var vl=class extends Up{constructor(t=!0){let n={withSeparableConvs:t,iouThreshold:$D,classes:["face"],...t?{anchors:RD,meanRgb:MD}:{anchors:DD,withClassScores:!0}};super(n)}get withSeparableConvs(){return this.config.withSeparableConvs}get anchors(){return this.config.anchors}async locateFaces(t,n){return(await this.detect(t,n)).map(r=>new Tt(r.score,r.relativeBox,{width:r.imageWidth,height:r.imageHeight}))}getDefaultModelName(){return this.withSeparableConvs?PD:OD}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};function Fge(e,t=!0){let n=new vl(t);return n.extractWeights(e),n}var Zd=class extends Ja{constructor(){super(...arguments);this._name="TinyFaceDetectorOptions"}};var Sa=class{async then(t){return t(await this.run())}async run(){throw new Error("ComposableTask - run is not implemented")}};async function wl(e,t,n,a,r=({alignedRect:s})=>s){let s=e.map(l=>gl(l)?r(l):l.detection),i=a||(t instanceof Ce?await Rp(t,s):await Dp(t,s)),o=await n(i);return i.forEach(l=>l instanceof Ce&&l.dispose()),o}async function Gp(e,t,n,a,r){return wl([e],t,async s=>n(s[0]),a,r)}var WD=.4,BD=[new Ue(1.603231,2.094468),new Ue(6.041143,7.080126),new Ue(2.882459,3.518061),new Ue(4.266906,5.178857),new Ue(9.041765,10.66308)],VD=[117.001,114.697,97.404];var kl=class extends Up{constructor(){let t={withSeparableConvs:!0,iouThreshold:WD,classes:["face"],anchors:BD,meanRgb:VD,isFirstLayerConv2d:!0,filterSizes:[3,16,32,64,128,256,512]};super(t)}get anchors(){return this.config.anchors}async locateFaces(t,n){return(await this.detect(t,n)).map(r=>new Tt(r.score,r.relativeBox,{width:r.imageWidth,height:r.imageHeight}))}getDefaultModelName(){return"tiny_face_detector_model"}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};var nt={ssdMobilenetv1:new Ws,tinyFaceDetector:new kl,tinyYolov2:new vl,faceLandmark68Net:new bl,faceLandmark68TinyNet:new Xd,faceRecognitionNet:new yl,faceExpressionNet:new qd,ageGenderNet:new Kd},UD=(e,t)=>nt.ssdMobilenetv1.locateFaces(e,t),$ge=(e,t)=>nt.tinyFaceDetector.locateFaces(e,t),Dge=(e,t)=>nt.tinyYolov2.locateFaces(e,t),GD=e=>nt.faceLandmark68Net.detectLandmarks(e),Rge=e=>nt.faceLandmark68TinyNet.detectLandmarks(e),Mge=e=>nt.faceRecognitionNet.computeFaceDescriptor(e),Oge=e=>nt.faceExpressionNet.predictExpressions(e),Pge=e=>nt.ageGenderNet.predictAgeAndGender(e),HD=e=>nt.ssdMobilenetv1.load(e),Lge=e=>nt.tinyFaceDetector.load(e),zge=e=>nt.tinyYolov2.load(e),Wge=e=>nt.faceLandmark68Net.load(e),Bge=e=>nt.faceLandmark68TinyNet.load(e),Vge=e=>nt.faceRecognitionNet.load(e),Uge=e=>nt.faceExpressionNet.load(e),Gge=e=>nt.ageGenderNet.load(e),Hge=HD,jge=UD,qge=GD;var _g=class extends Sa{constructor(n,a,r){super();this.parentTask=n;this.input=a;this.extractedFaces=r}},Il=class extends _g{async run(){let t=await this.parentTask,n=await wl(t,this.input,async a=>Promise.all(a.map(r=>nt.faceExpressionNet.predictExpressions(r))),this.extractedFaces);return t.map((a,r)=>bg(a,n[r]))}withAgeAndGender(){return new Nl(this,this.input)}},Sl=class extends _g{async run(){let t=await this.parentTask;if(!t)return;let n=await Gp(t,this.input,a=>nt.faceExpressionNet.predictExpressions(a),this.extractedFaces);return bg(t,n)}withAgeAndGender(){return new Tl(this,this.input)}},Bs=class extends Il{withAgeAndGender(){return new Us(this,this.input)}withFaceDescriptors(){return new Hr(this,this.input)}},Vs=class extends Sl{withAgeAndGender(){return new Gs(this,this.input)}withFaceDescriptor(){return new jr(this,this.input)}};var Ag=class extends Sa{constructor(n,a,r){super();this.parentTask=n;this.input=a;this.extractedFaces=r}},Nl=class extends Ag{async run(){let t=await this.parentTask,n=await wl(t,this.input,async a=>Promise.all(a.map(r=>nt.ageGenderNet.predictAgeAndGender(r))),this.extractedFaces);return t.map((a,r)=>{let{age:s,gender:i,genderProbability:o}=n[r];return Ng(Tg(a,i,o),s)})}withFaceExpressions(){return new Il(this,this.input)}},Tl=class extends Ag{async run(){let t=await this.parentTask;if(!t)return;let{age:n,gender:a,genderProbability:r}=await Gp(t,this.input,s=>nt.ageGenderNet.predictAgeAndGender(s),this.extractedFaces);return Ng(Tg(t,a,r),n)}withFaceExpressions(){return new Sl(this,this.input)}},Us=class extends Nl{withFaceExpressions(){return new Bs(this,this.input)}withFaceDescriptors(){return new Hr(this,this.input)}},Gs=class extends Tl{withFaceExpressions(){return new Vs(this,this.input)}withFaceDescriptor(){return new jr(this,this.input)}};var Jd=class extends Sa{constructor(n,a){super();this.parentTask=n;this.input=a}},Hr=class extends Jd{async run(){let t=await this.parentTask;return(await wl(t,this.input,a=>Promise.all(a.map(r=>nt.faceRecognitionNet.computeFaceDescriptor(r))),null,a=>a.landmarks.align(null,{useDlibAlignment:!0}))).map((a,r)=>Sg(t[r],a))}withFaceExpressions(){return new Bs(this,this.input)}withAgeAndGender(){return new Us(this,this.input)}},jr=class extends Jd{async run(){let t=await this.parentTask;if(!t)return;let n=await Gp(t,this.input,a=>nt.faceRecognitionNet.computeFaceDescriptor(a),null,a=>a.landmarks.align(null,{useDlibAlignment:!0}));return Sg(t,n)}withFaceExpressions(){return new Vs(this,this.input)}withAgeAndGender(){return new Gs(this,this.input)}};var Qd=class extends Sa{constructor(n,a,r){super();this.parentTask=n;this.input=a;this.useTinyLandmarkNet=r}get landmarkNet(){return this.useTinyLandmarkNet?nt.faceLandmark68TinyNet:nt.faceLandmark68Net}},eh=class extends Qd{async run(){let t=await this.parentTask,n=t.map(i=>i.detection),a=this.input instanceof Ce?await Rp(this.input,n):await Dp(this.input,n),r=await Promise.all(a.map(i=>this.landmarkNet.detectLandmarks(i)));return a.forEach(i=>i instanceof Ce&&i.dispose()),t.filter((i,o)=>r[o]).map((i,o)=>Wp(i,r[o]))}withFaceExpressions(){return new Bs(this,this.input)}withAgeAndGender(){return new Us(this,this.input)}withFaceDescriptors(){return new Hr(this,this.input)}},th=class extends Qd{async run(){let t=await this.parentTask;if(!t)return;let{detection:n}=t,a=this.input instanceof Ce?await Rp(this.input,[n]):await Dp(this.input,[n]),r=await this.landmarkNet.detectLandmarks(a[0]);return a.forEach(s=>s instanceof Ce&&s.dispose()),Wp(t,r)}withFaceExpressions(){return new Vs(this,this.input)}withAgeAndGender(){return new Gs(this,this.input)}withFaceDescriptor(){return new jr(this,this.input)}};var nh=class extends Sa{constructor(n,a=new Ia){super();this.input=n;this.options=a}},Hp=class extends nh{async run(){let{input:t,options:n}=this,a;if(n instanceof Zd)a=nt.tinyFaceDetector.locateFaces(t,n);else if(n instanceof Ia)a=nt.ssdMobilenetv1.locateFaces(t,n);else if(n instanceof Ja)a=nt.tinyYolov2.locateFaces(t,n);else throw new Error("detectFaces - expected options to be instance of TinyFaceDetectorOptions | SsdMobilenetv1Options | TinyYolov2Options");return a}runAndExtendWithFaceDetections(){return new Promise((t,n)=>{this.run().then(a=>t(a.map(r=>pl({},r)))).catch(a=>n(a))})}withFaceLandmarks(t=!1){return new eh(this.runAndExtendWithFaceDetections(),this.input,t)}withFaceExpressions(){return new Il(this.runAndExtendWithFaceDetections(),this.input)}withAgeAndGender(){return new Nl(this.runAndExtendWithFaceDetections(),this.input)}},ah=class extends nh{async run(){let t=await new Hp(this.input,this.options),n=t[0];return t.forEach(a=>{a.score>n.score&&(n=a)}),n}runAndExtendWithFaceDetection(){return new Promise(async t=>{let n=await this.run();t(n?pl({},n):void 0)})}withFaceLandmarks(t=!1){return new th(this.runAndExtendWithFaceDetection(),this.input,t)}withFaceExpressions(){return new Sl(this.runAndExtendWithFaceDetection(),this.input)}withAgeAndGender(){return new Tl(this.runAndExtendWithFaceDetection(),this.input)}};function Kge(e,t=new Ia){return new ah(e,t)}function Fg(e,t=new Ia){return new Hp(e,t)}async function jD(e,t){return Fg(e,new Ia(t?{minConfidence:t}:{})).withFaceLandmarks().withFaceDescriptors()}async function Xge(e,t={}){return Fg(e,new Ja(t)).withFaceLandmarks().withFaceDescriptors()}var Yge=jD;function eI(e,t){if(e.length!==t.length)throw new Error("euclideanDistance: arr1.length !== arr2.length");let n=Array.from(e),a=Array.from(t);return Math.sqrt(n.map((r,s)=>r-a[s]).reduce((r,s)=>r+s*s,0))}var tI=class e{constructor(t,n=.6){this._distanceThreshold=n;let a=Array.isArray(t)?t:[t];if(!a.length)throw new Error("FaceRecognizer.constructor - expected atleast one input");let r=1,s=()=>`person ${r++}`;this._labeledDescriptors=a.map(i=>{if(i instanceof zs)return i;if(i instanceof Float32Array)return new zs(s(),[i]);if(i.descriptor&&i.descriptor instanceof Float32Array)return new zs(s(),[i.descriptor]);throw new Error("FaceRecognizer.constructor - expected inputs to be of type LabeledFaceDescriptors | WithFaceDescriptor | Float32Array | Array | Float32Array>")})}get labeledDescriptors(){return this._labeledDescriptors}get distanceThreshold(){return this._distanceThreshold}computeMeanDistance(t,n){return n.map(a=>eI(a,t)).reduce((a,r)=>a+r,0)/(n.length||1)}matchDescriptor(t){return this.labeledDescriptors.map(({descriptors:n,label:a})=>new Ap(a,this.computeMeanDistance(t,n))).reduce((n,a)=>n.distancet.toJSON())}}static fromJSON(t){let n=t.labeledDescriptors.map(a=>zs.fromJSON(a));return new e(n,t.distanceThreshold)}};function Zge(e){let t=new kl;return t.extractWeights(e),t}function qD(e,t){let{width:n,height:a}=new Un(t.width,t.height);if(n<=0||a<=0)throw new Error(`resizeResults - invalid dimensions: ${JSON.stringify({width:n,height:a})}`);if(Array.isArray(e))return e.map(r=>qD(r,{width:n,height:a}));if(gl(e)){let r=e.detection.forSize(n,a),s=e.unshiftedLandmarks.forSize(r.box.width,r.box.height);return Wp(pl(e,r),s)}return xr(e)?pl(e,e.detection.forSize(n,a)):e instanceof sa||e instanceof Tt?e.forSize(n,a):e}var Jge=hD;return $R(Qge);})(); + ${r.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=t.dataIdMap.get(a.dataId).id,o=t.dataIdMap.get(r.dataId).id,l=t.dataIdMap.get(s.dataId).id,u=a.shape[0],p=w.sizeFromShape(s.shape),d=t.makeOutput([u,p],a.dtype),c=t.dataIdMap.get(d.dataId).id,h=t.makeOutput([p],s.dtype),m=t.dataIdMap.get(h.dataId).id,f=t.makeOutput([3],"int32"),g=t.dataIdMap.get(f.dataId).id;K$(i,o,l,u,c,m,g);let b=t.readSync(f.dataId),y;switch(b[0]){case 0:{y=T.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(b[1],b[2]);break}case 1:{y=T.getSparseReshapeNegativeOutputDimErrorMessage(b[1],b[2]);break}case 2:y=T.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage();break;case 3:{let x=Array.from(t.readSync(r.dataId)),v=Array.from(t.readSync(h.dataId));y=T.getSparseReshapeInputOutputMultipleErrorMessage(x,v);break}case 4:{let x=Array.from(t.readSync(r.dataId)),v=Array.from(t.readSync(h.dataId));y=T.getSparseReshapeInputOutputMismatchErrorMessage(x,v);break}default:y=""}if(t.disposeData(f.dataId),y)throw t.disposeData(d.dataId),t.disposeData(h.dataId),new Error(y);return[d,h]}var Dme={kernelName:ap,backendName:"wasm",setupFunc:Fme,kernelFunc:$me},X$;function Y$(e){X$=e.wasm.cwrap("SparseSegmentReduction",null,["number","number","number","number","number","number","number","number","number"])}function Z$(e,t){let{backend:n,inputs:a}=e,{data:r,indices:s,segmentIds:i}=a,o=s.shape[0],l=n.readSync(i.dataId,o-1,o)[0],u=o>0?l+1:0;if(u<0)throw new Error(T.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let p=r.shape.slice();p[0]=u;let d=n.dataIdMap.get(r.dataId).id,c=n.dataIdMap.get(s.dataId).id,h=n.dataIdMap.get(i.dataId).id,m=n.makeOutput(p,r.dtype),f=n.dataIdMap.get(m.dataId).id,g=n.makeOutput([4],"int32"),b=n.dataIdMap.get(g.dataId).id;X$(d,Qe[r.dtype],r.shape[0],c,h,f,b,t,0);let y=n.readSync(g.dataId),x;switch(y[0]){case 0:{x=T.getSparseSegmentReductionNegativeSegmentIdsErrorMessage();break}case 1:{x=T.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage();break}case 2:x=T.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(y[1],y[2]);break;case 3:x=T.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(y[1],y[2],y[3]);break;default:x=""}if(n.disposeData(g.dataId),x)throw n.disposeData(m.dataId),new Error(x);return m}function Rme(e){return Z$(e,!0)}var Mme={kernelName:Zc,backendName:"wasm",setupFunc:Y$,kernelFunc:Rme};function Ome(e){return Z$(e,!1)}var Pme={kernelName:Jc,backendName:"wasm",setupFunc:Y$,kernelFunc:Ome},J$;function Lme(e){J$=e.wasm.cwrap(rp,null,["number","number","number","number","number","number","number","number","array","number","number"])}function zme(e){let{backend:t,inputs:n,attrs:a}=e,{sparseIndices:r,sparseValues:s,defaultValue:i}=n,{outputShape:o}=a,l=t.makeOutput(o,i.dtype);if(w.sizeFromShape(o)===0)return l;let{sliceRank:u,numUpdates:p,sliceSize:d,strides:c,outputSize:h}=T.calculateShapes(s,r,o),m=t.dataIdMap.get(r.dataId).id,f=t.dataIdMap.get(s.dataId).id,g=t.dataIdMap.get(i.dataId).id,b=new Uint8Array(new Int32Array(c).buffer),y=t.dataIdMap.get(l.dataId).id;return J$(m,f,s.shape.length,g,Qe[i.dtype],u,p,d,b,h,y),l}var Wme={kernelName:rp,backendName:"wasm",setupFunc:Lme,kernelFunc:zme};function Bme(e){let{inputs:t,attrs:n,backend:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=n,o=w.parseAxisParam(i,r.shape)[0],l=T.prepareSplitSize(r,s,o),u=new Array(r.shape.length).fill(0),p=r.shape.slice();return l.map(d=>{let c=[...p];c[o]=d;let h=Ni({inputs:{x:r},attrs:{begin:u,size:c},backend:a});return u[o]+=d,h})}var Vme={kernelName:np,backendName:"wasm",kernelFunc:Bme},Ume=Xe(zo),Gme=Xe(Qc),Hme=!0,jme=Ut(Vo,Hme),Q$;function qme(e){Q$=e.wasm.cwrap(Cs,null,["number","number","number","number"])}function Kme(e){let{backend:t,inputs:n,attrs:a}=e,{alpha:r}=a,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=t.makeOutput(s.shape,s.dtype),l=t.dataIdMap.get(o.dataId).id;return Q$(i,r,Qe[s.dtype],l),o}var Xme={kernelName:Cs,backendName:"wasm",setupFunc:qme,kernelFunc:Kme},eD;function Yme(e){eD=e.wasm.cwrap(sp,null,["number","array","number","array","array","array","array","array","number","number"])}function Zme(e){let{backend:t,inputs:n,attrs:a}=e,{x:r}=n,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:p,newAxisMask:d,shrinkAxisMask:c}=a,{finalShapeSparse:h,finalShape:m,isIdentity:f,sliceDim0:g,isSimpleSlice:b,begin:y,end:x,strides:v}=Kt.sliceInfo(r.shape,s,i,o,l,u,p,d,c),I;if(f)I=zn({inputs:{x:r},backend:t,attrs:{shape:m}});else if(g||b){w.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let N=Kt.computeOutShape(y,x,v),C=Ni({inputs:{x:r},backend:t,attrs:{begin:y,size:N}});I=zn({inputs:{x:C},backend:t,attrs:{shape:m}}),t.disposeData(C.dataId)}else{let N=t.makeOutput(h,"float32"),C=t.dataIdMap.get(r.dataId).id,_=new Uint8Array(new Int32Array(w.computeStrides(r.shape)).buffer),F=new Uint8Array(new Int32Array(y).buffer),D=new Uint8Array(new Int32Array(x).buffer),$=new Uint8Array(new Int32Array(v).buffer),S=new Uint8Array(new Int32Array(h).buffer),M=new Uint8Array(new Int32Array(w.computeStrides(h)).buffer),B=t.dataIdMap.get(N.dataId).id;eD(C,_,r.shape.length,F,D,$,S,M,h.length,B),I=zn({inputs:{x:N},backend:t,attrs:{shape:m}}),t.disposeData(N.dataId)}return I}var Jme={kernelName:sp,backendName:"wasm",setupFunc:Yme,kernelFunc:Zme};function Qme(e){let{backend:t,inputs:n,attrs:a}=e,{data:r,dataSplits:s}=n,{separator:i,nGramWidths:o,leftPad:l,rightPad:u,padWidth:p,preserveShortSequences:d}=a,c=t.readSync(r.dataId),h=t.readSync(s.dataId),[m,f]=Z1(c,h,i,o,l,u,p,d),g=t.makeOutput([m.length],"string"),b=t.dataIdMap.get(g.dataId);b.stringBytes=m;let y=t.makeOutput(s.shape,"int32");return t.typedArrayFromHeap(y).set(f),[g,y]}var efe={kernelName:td,backendName:"wasm",kernelFunc:Qme};function tfe(e){let{backend:t,inputs:n,attrs:a}=e,{input:r,delimiter:s}=n,{skipEmpty:i}=a,o=t.readSync(r.dataId),l=t.readSync(s.dataId),[u,p,d]=J1(o,l[0],i),c=p.length,h=t.makeOutput([c,2],"int32");t.typedArrayFromHeap(h).set(u);let m=t.makeOutput([c],"string"),f=t.dataIdMap.get(m.dataId);f.stringBytes=p;let g=t.makeOutput([2],"int32");return t.typedArrayFromHeap(g).set(d),[h,m,g]}var nfe={kernelName:nd,backendName:"wasm",kernelFunc:tfe};function afe(e){let{backend:t,inputs:n,attrs:a}=e,{input:r}=n,{numBuckets:s}=a,i=t.readSync(r.dataId),o=Q1(i,s),l=t.makeOutput(r.shape,"int32");return t.typedArrayFromHeap(l).set(o),l}var rfe={kernelName:ad,backendName:"wasm",kernelFunc:afe},sfe=!0,ife=Ut(Uo,sfe),tD;function ofe(e){tD=e.wasm.cwrap(Wo,null,["number","number","number","number"])}function lfe(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:p,axes:d,originalAxes:c,inputWasTransposed:h}=Ps(i,r,t),m=d;if(h){let x=t.dataIdMap.get(p.dataId).id;x!==o&&(u=p,l=x,m=T.getInnerMostAxes(m.length,u.shape.length))}T.assertAxesAreInnerMostDims("sum",m,u.shape.length);let[f,g]=T.computeOutAndReduceShapes(u.shape,m),b=w.sizeFromShape(g),y=t.makeOutput(f,u.dtype);if(w.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;tD(l,b,Qe[y.dtype],x)}if(h&&t.disposeData(p.dataId),s){let x=T.expandShapeToKeepDim(y.shape,c);y.shape=x}return y}var ufe={kernelName:Wo,backendName:"wasm",setupFunc:ofe,kernelFunc:lfe},pfe=Xe(Go),cfe=Xe(Ho),nD;function dfe(e){nD=e.wasm.cwrap(Zu,null,["number","number","number","number","number","number","array","number","number","number"])}function hfe(e){let{backend:t,inputs:n,attrs:a}=e,{tensor:r,indices:s,updates:i}=n,{}=a,o=t.makeOutput(r.shape,r.dtype);if(w.sizeFromShape(r.shape)===0)return o;let{sliceRank:l,numUpdates:u,sliceSize:p,strides:d,outputSize:c}=vf.calculateShapes(i,s,r.shape),h=t.dataIdMap.get(s.dataId).id,m=t.dataIdMap.get(i.dataId).id,f=t.dataIdMap.get(r.dataId).id,g=new Uint8Array(new Int32Array(d).buffer),b=t.dataIdMap.get(o.dataId).id;return nD(h,m,Qe[i.dtype],l,u,p,g,c,b,f),o}var mfe={kernelName:Zu,backendName:"wasm",setupFunc:dfe,kernelFunc:hfe},aD;function ffe(e){aD=e.wasm.cwrap(Ts,null,["number","array","number","array","number","number"])}function gfe(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,s=n.dataIdMap.get(r.dataId).id,{reps:i}=a,o=new Array(r.shape.length);for(let c=0;c{let{x:a}=e,{k:r,sorted:s}=n,i=t.dataIdMap.get(a.dataId).id,o=new Uint8Array(new Int32Array(a.shape).buffer),l=a.shape.slice();l[l.length-1]=r;let u=t.makeOutput(l,a.dtype),p=t.dataIdMap.get(u.dataId).id,d=t.makeOutput(l,"int32"),c=t.dataIdMap.get(d.dataId).id;return rD(i,o,a.shape.length,Qe[a.dtype],r,s,p,c),[u,d]},vfe={kernelName:ip,backendName:"wasm",setupFunc:yfe,kernelFunc:xfe},sD;function wfe(e){sD=e.wasm.cwrap(op,null,["number","number","bool","number","number","number","number","number","number","array","number","array","number","number","number","number","number"])}function kfe(e){let{backend:t,inputs:n,attrs:a}=e,{image:r,transforms:s}=n,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=a,[p,d,c,h]=r.shape,[m,f]=u!=null?u:[d,c],g=[p,m,f,h],b=new Uint8Array(new Int32Array(w.computeStrides(r.shape)).buffer),y=new Uint8Array(new Int32Array(w.computeStrides(g)).buffer),x=t.makeOutput(g,r.dtype),v=t.dataIdMap.get(x.dataId).id,I=t.dataIdMap.get(r.dataId).id,N=t.dataIdMap.get(s.dataId).id,C=i==="nearest"?1:2,_;switch(o){case"constant":_=1;break;case"reflect":_=2;break;case"wrap":_=3;break;case"nearest":_=4;break;default:_=1;break}return sD(I,N,s.shape[0]>1,p,m,f,h,c,d,b,r.shape.length-1,y,g.length-1,C,_,l,v),x}var Ife={kernelName:op,backendName:"wasm",setupFunc:wfe,kernelFunc:kfe};function Sfe(e){let{inputs:t,attrs:n,backend:a}=e,{axis:r}=n,{x:s}=t,{outputValues:i,outputShape:o,indices:l}=tk(a.readSync(s.dataId),r,s.shape,s.dtype);return[a.makeOutput(o,s.dtype,void 0,i),a.makeOutput([l.length],"int32",void 0,l)]}var Nfe={kernelName:rd,backendName:"wasm",kernelFunc:Sfe};function Tfe(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r.shape[s],o=r.shape.length,l=new Array(o-1),u=0;for(let h=0;h({dataId:h,dtype:m,shape:l}))}var Cfe={kernelName:lp,backendName:"wasm",kernelFunc:Tfe};function Efe(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(a).fill(0),a}var _fe={kernelName:up,backendName:"wasm",kernelFunc:Efe},Afe=[cue,due,hue,mue,gue,xue,Cue,Aue,Fue,$ue,Due,Rue,Mue,Oue,Pue,Wue,Xue,Uue,jue,Que,spe,lpe,ppe,dpe,hpe,mpe,bpe,ype,wpe,Spe,Cpe,Ape,Dpe,Rpe,Mpe,Lpe,Bpe,Gpe,qpe,Ype,Qpe,nce,sce,lce,cce,dce,fce,bce,yce,xce,vce,wce,kce,Nce,Tce,Ece,Fce,Rce,Pce,Wce,Uce,Hce,qce,vue,Kce,Xce,Yce,Qce,tde,ade,ide,lde,ode,pde,cde,hde,fde,yde,wde,Sde,Tde,_de,$de,Mde,Lde,Bde,Gde,qde,Xde,Jde,ahe,rhe,ihe,ohe,phe,hhe,ghe,yhe,whe,Ihe,Nhe,R$,_he,$he,Mhe,Phe,zhe,Whe,Bhe,Vhe,Yue,Hhe,Khe,Zhe,eme,ame,ime,ome,lme,cme,mme,bme,yme,wme,kme,Ime,Sme,ape,ehe,Nme,Cme,Ame,Dme,Mme,Pme,Wme,Vme,Ume,Gme,jme,Xme,Jme,efe,nfe,rfe,ife,ufe,pfe,cfe,mfe,bfe,vfe,Ife,Sue,Nfe,Cfe,_fe];for(let e of Afe)id(e);var Ev=G();Ev.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>{try{return WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11]))}catch(e){return!1}});Ev.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(Ev.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var KS=Is(QR()),Ffe=Is(eM()),XS=Is(tM()),YS=KS.default||KS,$fe=XS.default||XS,iD=class extends Pc{constructor(e){super(),this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.initWithThreadsCount(oD),_v=this.wasm.tfjs.getThreadsCount(),this.dataIdMap=new $m(this,Ea())}write(e,t,n){let a={id:this.dataIdNextNumber++};return this.move(a,e,t,n,1),a}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=w.now();return e(),{kernelMs:w.now()-t}}move(e,t,n,a,r){let s=this.dataIdNextNumber++;if(a==="string"){let u=t;this.dataIdMap.set(e,{id:s,stringBytes:u,shape:n,dtype:a,memoryOffset:null,refCount:r});return}let i=w.sizeFromShape(n),o=i*w.bytesPerElement(a),l=this.wasm._malloc(o)>>>0;this.dataIdMap.set(e,{id:s,memoryOffset:l,shape:n,dtype:a,refCount:r}),this.wasm.tfjs.registerTensor(s,i,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,o),l)}async read(e){return this.readSync(e)}readSync(e,t,n){let{memoryOffset:a,dtype:r,shape:s,stringBytes:i}=this.dataIdMap.get(e);if(r==="string")return(t==null||t===0)&&(n==null||n>=i.length)?i:i.slice(t,n);t=t||0,n=n||w.sizeFromShape(s);let o=w.bytesPerElement(r),l=this.wasm.HEAPU8.slice(a+t*o,a+n*o);return Mfe(l.buffer,r)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n,a){let r;if(n==null)r=this.write(a!=null?a:null,e,t);else{let s=this.dataIdNextNumber++;r={id:s},this.dataIdMap.set(r,{id:s,memoryOffset:n,shape:e,dtype:t,refCount:1});let i=w.sizeFromShape(e);this.wasm.tfjs.registerTensor(s,i,n)}return{dataId:r,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let a=this.wasm.HEAPU8.buffer,{memoryOffset:r}=this.dataIdMap.get(n),s=w.sizeFromShape(e);switch(t){case"float32":return new Float32Array(a,r,s);case"int32":return new Int32Array(a,r,s);case"bool":return new Uint8Array(a,r,s);default:throw new Error(`Unknown dtype ${t}`)}}};function Dfe(e){return(t,n)=>(w.fetch(e,{credentials:"same-origin"}).then(a=>{a.ok||t.env.a(`failed to load wasm binary file at '${e}'`),a.arrayBuffer().then(r=>{WebAssembly.instantiate(r,t).then(s=>{n(s.instance,s.module)})})}),{})}function ZS(e,t,n){if(Am!=null)return Am;let a="tfjs-backend-wasm.wasm";return e&&t?a="tfjs-backend-wasm-threaded-simd.wasm":e&&(a="tfjs-backend-wasm-simd.wasm"),bc!=null&&bc[a]!=null?bc[a]:n+a}async function Rfe(){let[e,t]=await Promise.all([G().getAsync("WASM_HAS_SIMD_SUPPORT"),G().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,a)=>{let r={};r.locateFile=(o,l)=>{if(o.endsWith(".worker.js")){let u=Ffe.wasmWorkerContents.replace(/\n/g,"\\n"),p=new Blob([u],{type:"application/javascript"});return URL.createObjectURL(p)}return o.endsWith(".wasm")?ZS(e,t,mc!=null?mc:l):l+o},kk&&(r.instantiateWasm=Dfe(ZS(e,t,mc!=null?mc:"")));let s=!1;r.onAbort=()=>{s||yc||(yc=!0,a({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"}))};let i;t&&e&&Am==null?(r.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+YS.toString()],{type:"text/javascript"}),i=YS(r)):i=$fe(r),i.then(o=>{s=!0,yc=!1;let l=null;o.tfjs={init:o.cwrap("init",null,[]),initWithThreadsCount:o.cwrap("init_with_threads_count",null,["number"]),getThreadsCount:o.cwrap("get_threads_count","number",[]),registerTensor:o.cwrap("register_tensor",null,["number","number","number"]),disposeData:o.cwrap("dispose_data",l,["number"]),dispose:o.cwrap("dispose",l,[])},n({wasm:o})}).catch(a)})}function Mfe(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var Ofe=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],Am=null,mc=null,bc={},yc=!1,kk=!1;function Pfe(e,t=!1){if(Wv("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),yc)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");Am=e,kk=t}function Lfe(e,t=!1){if(yc)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")mc=e;else{bc=e;let n=Ofe.filter(a=>bc[a]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}kk=t}var oD=-1,_v=-1;function zfe(e){oD=e}function Wfe(){if(_v===-1)throw new Error("WASM backend not initialized.");return _v}var Bfe="4.22.0",Vfe=2;Ym("wasm",async()=>{let{wasm:e}=await Rfe();return new iD(e)},Vfe);var JS="4.22.0",Ufe="4.22.0",Gfe="4.22.0",Hfe="4.22.0",jfe="4.22.0",qfe={tfjs:JS,"tfjs-core":JS,"tfjs-converter":Ufe,"tfjs-backend-cpu":Gfe,"tfjs-backend-webgl":Hfe,"tfjs-backend-wasm":jfe};var qk={};$h(qk,{AnchorPosition:()=>Lk,DrawBox:()=>Bd,DrawBoxOptions:()=>lg,DrawFaceLandmarks:()=>xg,DrawFaceLandmarksOptions:()=>yg,DrawTextField:()=>dl,DrawTextFieldOptions:()=>$p,drawContour:()=>zr,drawDetections:()=>nge,drawFaceExpressions:()=>oge,drawFaceLandmarks:()=>uge});function zr(e,t,n=!1){if(e.beginPath(),t.slice(1).forEach(({x:a,y:r},s)=>{let i=t[s];e.moveTo(i.x,i.y),e.lineTo(a,r)}),n){let a=t[t.length-1],r=t[0];if(!a||!r)return;e.moveTo(a.x,a.y),e.lineTo(r.x,r.y)}e.stroke()}var Tk={};$h(Tk,{computeReshapedDimensions:()=>Nk,getCenterPoint:()=>sl,isDimensions:()=>ig,isEven:()=>sg,isFloat:()=>Sk,isTensor:()=>al,isTensor1D:()=>Kfe,isTensor2D:()=>Ik,isTensor3D:()=>Wr,isTensor4D:()=>ka,isValidNumber:()=>Xa,isValidProbablitiy:()=>_p,range:()=>yr,round:()=>rl});var Un=class e{constructor(t,n){if(!Xa(t)||!Xa(n))throw new Error(`Dimensions.constructor - expected width and height to be valid numbers, instead have ${JSON.stringify({width:t,height:n})}`);this._width=t,this._height=n}get width(){return this._width}get height(){return this._height}reverse(){return new e(1/this.width,1/this.height)}};function al(e,t){return e instanceof Ce&&e.shape.length===t}function Kfe(e){return al(e,1)}function Ik(e){return al(e,2)}function Wr(e){return al(e,3)}function ka(e){return al(e,4)}function Sk(e){return e%1!==0}function sg(e){return e%2===0}function rl(e,t=2){let n=10**t;return Math.floor(e*n)/n}function ig(e){return e&&e.width&&e.height}function Nk({width:e,height:t},n){let a=n/Math.max(t,e);return new Un(Math.round(e*a),Math.round(t*a))}function sl(e){return e.reduce((t,n)=>t.add(n),new Ue(0,0)).div(new Ue(e.length,e.length))}function yr(e,t,n){return Array(e).fill(0).map((a,r)=>t+r*n)}function Xa(e){return!!e&&e!==1/0&&e!==-1/0&&!Number.isNaN(e)||e===0}function _p(e){return Xa(e)&&e>=0&&e<=1}var Ue=class e{constructor(t,n){this._x=t,this._y=n}get x(){return this._x}get y(){return this._y}add(t){return new e(this.x+t.x,this.y+t.y)}sub(t){return new e(this.x-t.x,this.y-t.y)}mul(t){return new e(this.x*t.x,this.y*t.y)}div(t){return new e(this.x/t.x,this.y/t.y)}abs(){return new e(Math.abs(this.x),Math.abs(this.y))}magnitude(){return Math.sqrt(this.x**2+this.y**2)}floor(){return new e(Math.floor(this.x),Math.floor(this.y))}};var ln=class e{static isRect(t){return!!t&&[t.x,t.y,t.width,t.height].every(Xa)}static assertIsValidBox(t,n,a=!1){if(!e.isRect(t))throw new Error(`${n} - invalid box: ${JSON.stringify(t)}, expected object with properties x, y, width, height`);if(!a&&(t.width<0||t.height<0))throw new Error(`${n} - width (${t.width}) and height (${t.height}) must be positive numbers`)}constructor(t,n=!0){let a=t||{},r=[a.left,a.top,a.right,a.bottom].every(Xa),s=[a.x,a.y,a.width,a.height].every(Xa);if(!s&&!r)throw new Error(`Box.constructor - expected box to be IBoundingBox | IRect, instead have ${JSON.stringify(a)}`);let[i,o,l,u]=s?[a.x,a.y,a.width,a.height]:[a.left,a.top,a.right-a.left,a.bottom-a.top];e.assertIsValidBox({x:i,y:o,width:l,height:u},"Box.constructor",n),this._x=i,this._y=o,this._width=l,this._height=u}get x(){return this._x}get y(){return this._y}get width(){return this._width}get height(){return this._height}get left(){return this.x}get top(){return this.y}get right(){return this.x+this.width}get bottom(){return this.y+this.height}get area(){return this.width*this.height}get topLeft(){return new Ue(this.left,this.top)}get topRight(){return new Ue(this.right,this.top)}get bottomLeft(){return new Ue(this.left,this.bottom)}get bottomRight(){return new Ue(this.right,this.bottom)}round(){let[t,n,a,r]=[this.x,this.y,this.width,this.height].map(s=>Math.round(s));return new e({x:t,y:n,width:a,height:r})}floor(){let[t,n,a,r]=[this.x,this.y,this.width,this.height].map(s=>Math.floor(s));return new e({x:t,y:n,width:a,height:r})}toSquare(){let{x:t,y:n,width:a,height:r}=this,s=Math.abs(a-r);return an&&(o=-d+n+a,d=n),c>t&&(l=-c+t+r,c=t),u<1&&(l=2-u,u=1),p<1&&(l=2-p,p=1),{dy:i,edy:l,dx:s,edx:o,y:p,ey:c,x:u,ex:d,w:a,h:r}}calibrate(t){return new e({left:this.left+t.left*this.width,top:this.top+t.top*this.height,right:this.right+t.right*this.width,bottom:this.bottom+t.bottom*this.height}).toSquare().round()}};var il=class extends ln{constructor(t,n,a,r,s=!1){super({left:t,top:n,right:a,bottom:r},s)}};var ol=class e{constructor(t,n,a,r,s){this._imageDims=new Un(s.width,s.height),this._score=t,this._classScore=n,this._className=a,this._box=new ln(r).rescale(this._imageDims)}get score(){return this._score}get classScore(){return this._classScore}get className(){return this._className}get box(){return this._box}get imageDims(){return this._imageDims}get imageWidth(){return this.imageDims.width}get imageHeight(){return this.imageDims.height}get relativeBox(){return new ln(this._box).rescale(this.imageDims.reverse())}forSize(t,n){return new e(this.score,this.classScore,this.className,this.relativeBox,{width:t,height:n})}};var Tt=class e extends ol{constructor(t,n,a){super(t,t,"",n,a)}forSize(t,n){let{score:a,relativeBox:r,imageDims:s}=super.forSize(t,n);return new e(a,r,s)}};function Ck(e,t,n=!0){let a=Math.max(0,Math.min(e.right,t.right)-Math.max(e.left,t.left)),r=Math.max(0,Math.min(e.bottom,t.bottom)-Math.max(e.top,t.top)),s=a*r;return n?s/(e.area+t.area-s):s/Math.min(e.area,t.area)}function Ek(e){let t=e.map(o=>o.x),n=e.map(o=>o.y),a=t.reduce((o,l)=>lloo({score:i,boxIndex:o})).sort((i,o)=>i.score-o.score).map(i=>i.boxIndex),s=[];for(;r.length>0;){let i=r.pop();s.push(i);let o=r,l=[];for(let u=0;ul[p]<=n)}return s}function Ya(e,t){return O(()=>{let[n,a,r]=t,s=yn([...e.shape.slice(0,3),1],n,"float32"),i=yn([...e.shape.slice(0,3),1],a,"float32"),o=yn([...e.shape.slice(0,3),1],r,"float32"),l=et([s,i,o],3);return pe(e,l)})}function Ak(e,t=!1){return O(()=>{let[n,a]=e.shape.slice(1);if(n===a)return e;let r=Math.abs(n-a),s=Math.round(r*(t?.5:1)),i=n>a?2:1,o=c=>{let h=e.shape.slice();return h[i]=c,yn(h,0,"float32")},l=o(s),u=r-l.shape[i],d=[t&&u?o(u):null,e,l].filter(c=>!!c).map(c=>re(c,"float32"));return et(d,i)})}function Xfe(e){let t=e.slice();for(let n=t.length-1;n>0;n--){let a=Math.floor(Math.random()*(n+1)),r=t[n];t[n]=t[a],t[a]=r}return t}function zd(e){return 1/(1+Math.exp(-e))}function Yfe(e){return Math.log(e/(1-e))}var ll=class extends ln{constructor(t,n,a,r,s=!1){super({x:t,y:n,width:a,height:r},s)}};var Zfe=.5,Jfe=.43,Qfe=.45,sa=class{constructor(t,n,a=new Ue(0,0)){let{width:r,height:s}=n;this._imgDims=new Un(r,s),this._shift=a,this._positions=t.map(i=>i.mul(new Ue(r,s)).add(a))}get shift(){return new Ue(this._shift.x,this._shift.y)}get imageWidth(){return this._imgDims.width}get imageHeight(){return this._imgDims.height}get positions(){return this._positions}get relativePositions(){return this._positions.map(t=>t.sub(this._shift).div(new Ue(this.imageWidth,this.imageHeight)))}forSize(t,n){return new this.constructor(this.relativePositions,{width:t,height:n})}shiftBy(t,n){return new this.constructor(this.relativePositions,this._imgDims,new Ue(t,n))}shiftByPoint(t){return this.shiftBy(t.x,t.y)}align(t,n={}){if(t){let s=t instanceof Tt?t.box.floor():new ln(t);return this.shiftBy(s.x,s.y).align(null,n)}let{useDlibAlignment:a,minBoxPadding:r}={useDlibAlignment:!1,minBoxPadding:.2,...n};return a?this.alignDlib():this.alignMinBbox(r)}alignDlib(){let t=this.getRefPointsForAlignment(),[n,a,r]=t,s=d=>r.sub(d).magnitude(),i=(s(n)+s(a))/2,o=Math.floor(i/Qfe),l=sl(t),u=Math.floor(Math.max(0,l.x-Zfe*o)),p=Math.floor(Math.max(0,l.y-Jfe*o));return new ll(u,p,Math.min(o,this.imageWidth+u),Math.min(o,this.imageHeight+p))}alignMinBbox(t){let n=Ek(this.positions);return n.pad(n.width*t,n.height*t)}getRefPointsForAlignment(){throw new Error("getRefPointsForAlignment not implemented by base class")}};var Fk=class extends sa{getRefPointsForAlignment(){let t=this.positions;return[t[0],t[1],sl([t[3],t[4]])]}};var ul=class extends sa{getJawOutline(){return this.positions.slice(0,17)}getLeftEyeBrow(){return this.positions.slice(17,22)}getRightEyeBrow(){return this.positions.slice(22,27)}getNose(){return this.positions.slice(27,36)}getLeftEye(){return this.positions.slice(36,42)}getRightEye(){return this.positions.slice(42,48)}getMouth(){return this.positions.slice(48,68)}getRefPointsForAlignment(){return[this.getLeftEye(),this.getRightEye(),this.getMouth()].map(sl)}};var Ap=class{constructor(t,n){this._label=t,this._distance=n}get label(){return this._label}get distance(){return this._distance}toString(t=!0){return`${this.label}${t?` (${rl(this.distance)})`:""}`}};var Fp=class extends ln{static assertIsValidLabeledBox(t,n){if(ln.assertIsValidBox(t,n),!Xa(t.label))throw new Error(`${n} - expected property label (${t.label}) to be a number`)}constructor(t,n){super(t),this._label=n}get label(){return this._label}};var zs=class e{constructor(t,n){if(typeof t!="string")throw new Error("LabeledFaceDescriptors - constructor expected label to be a string");if(!Array.isArray(n)||n.some(a=>!(a instanceof Float32Array)))throw new Error("LabeledFaceDescriptors - constructor expected descriptors to be an array of Float32Array");this._label=t,this._descriptors=n}get label(){return this._label}get descriptors(){return this._descriptors}toJSON(){return{label:this.label,descriptors:this.descriptors.map(t=>Array.from(t))}}static fromJSON(t){let n=t.descriptors.map(a=>new Float32Array(a));return new e(t.label,n)}};var $k=class extends Fp{static assertIsValidPredictedBox(t,n){if(Fp.assertIsValidLabeledBox(t,n),!_p(t.score)||!_p(t.classScore))throw new Error(`${n} - expected properties score (${t.score}) and (${t.classScore}) to be a number between [0, 1]`)}constructor(t,n,a,r){super(t,n),this._score=a,this._classScore=r}get score(){return this._score}get classScore(){return this._classScore}};function xr(e){return e.detection instanceof Tt}function pl(e,t){return{...e,...{detection:t}}}function Dk(){let e=window.fetch;if(!e)throw new Error("fetch - missing fetch implementation for browser environment");return{Canvas:HTMLCanvasElement,CanvasRenderingContext2D,Image:HTMLImageElement,ImageData,Video:HTMLVideoElement,createCanvasElement:()=>document.createElement("canvas"),createImageElement:()=>document.createElement("img"),createVideoElement:()=>document.createElement("video"),fetch:e,readFile:()=>{throw new Error("readFile - filesystem not available for browser environment")}}}function Wd(){return typeof global=="object"&&typeof process!="undefined"&&process.versions!=null&&process.versions.node!=null}function og(e){let t="";if(!e&&Wd())try{e=AR("fs")}catch(a){t=a.toString()}return{readFile:e?a=>new Promise((r,s)=>{e.readFile(a,(i,o)=>i?s(i):r(o))}):()=>{throw new Error(`readFile - failed to require fs in nodejs environment with error: ${t}`)}}}function Rk(){let e=global.Canvas||global.HTMLCanvasElement,t=global.Image||global.HTMLImageElement,n=global.Video||global.HTMLVideoElement,a=()=>{if(e)return new e;throw new Error("createCanvasElement - missing Canvas implementation for nodejs environment")},r=()=>{if(t)return new t;throw new Error("createImageElement - missing Image implementation for nodejs environment")},s=()=>{if(n)return new n;throw new Error("createVideoElement - missing Video implementation for nodejs environment")},i=global.fetch,o=og();return{Canvas:e||class{},CanvasRenderingContext2D:global.CanvasRenderingContext2D||class{},Image:t||class{},ImageData:global.ImageData||class{},Video:global.HTMLVideoElement||class{},createCanvasElement:a,createImageElement:r,createVideoElement:s,fetch:i,...o}}function Mk(){return typeof window=="object"&&typeof document!="undefined"&&typeof HTMLImageElement!="undefined"&&typeof HTMLCanvasElement!="undefined"&&typeof HTMLVideoElement!="undefined"&&typeof ImageData!="undefined"&&typeof CanvasRenderingContext2D!="undefined"}var un;function ege(){if(!un)throw new Error("getEnv - environment is not defined, check isNodejs() and isBrowser()");return un}function Ok(e){un=e}function Pk(){return Mk()?Ok(Dk()):Wd()?Ok(Rk()):null}function tge(e){if(un||Pk(),!un)throw new Error("monkeyPatch - environment is not defined, check isNodejs() and isBrowser()");let{Canvas:t=un.Canvas,Image:n=un.Image}=e;un.Canvas=t,un.Image=n,un.createCanvasElement=e.createCanvasElement||(()=>new t),un.createImageElement=e.createImageElement||(()=>new n),un.ImageData=e.ImageData||un.ImageData,un.Video=e.Video||un.Video,un.fetch=e.fetch||un.fetch,un.readFile=e.readFile||un.readFile}var tt={getEnv:ege,setEnv:Ok,initialize:Pk,createBrowserEnv:Dk,createFileSystem:og,createNodejsEnv:Rk,monkeyPatch:tge,isBrowser:Mk,isNodejs:Wd};Pk();function cl(e){return!tt.isNodejs()&&typeof e=="string"?document.getElementById(e):e}function Gn(e){let{Canvas:t,CanvasRenderingContext2D:n}=tt.getEnv();if(e instanceof n)return e;let a=cl(e);if(!(a instanceof t))throw new Error("resolveContext2d - expected canvas to be of instance of Canvas");let r=a.getContext("2d",{willReadFrequently:!0});if(!r)throw new Error("resolveContext2d - canvas 2d context is null");return r}var Lk=(r=>(r.TOP_LEFT="TOP_LEFT",r.TOP_RIGHT="TOP_RIGHT",r.BOTTOM_LEFT="BOTTOM_LEFT",r.BOTTOM_RIGHT="BOTTOM_RIGHT",r))(Lk||{}),$p=class{constructor(t={}){let{anchorPosition:n,backgroundColor:a,fontColor:r,fontSize:s,fontStyle:i,padding:o}=t;this.anchorPosition=n||"TOP_LEFT",this.backgroundColor=a||"rgba(0, 0, 0, 0.5)",this.fontColor=r||"rgba(255, 255, 255, 1)",this.fontSize=s||14,this.fontStyle=i||"Georgia",this.padding=o||4}},dl=class e{constructor(t,n,a={}){this.text=typeof t=="string"?[t]:t instanceof e?t.text:t,this.anchor=n,this.options=new $p(a)}measureWidth(t){let{padding:n}=this.options;return this.text.map(a=>t.measureText(a).width).reduce((a,r)=>a{let m=l+d.x,f=l+d.y+(h+1)*i;a.fillText(c,m,f)})}};var lg=class{constructor(t={}){let{boxColor:n,lineWidth:a,label:r,drawLabelOptions:s}=t;this.boxColor=n||"rgba(0, 0, 255, 1)",this.lineWidth=a||2,this.label=r;let i={anchorPosition:"BOTTOM_LEFT",backgroundColor:this.boxColor};this.drawLabelOptions=new $p({...i,...s})}},Bd=class{constructor(t,n={}){this.box=new ln(t),this.options=new lg(n)}draw(t){let n=Gn(t),{boxColor:a,lineWidth:r}=this.options,{x:s,y:i,width:o,height:l}=this.box;n.strokeStyle=a,n.lineWidth=r,n.strokeRect(s,i,o,l);let{label:u}=this.options;u&&new dl([u],{x:s-r/2,y:i},this.options.drawLabelOptions).draw(t)}};function nge(e,t){(Array.isArray(t)?t:[t]).forEach(a=>{let r=a instanceof Tt?a.score:xr(a)?a.detection.score:void 0,s=a instanceof Tt?a.box:xr(a)?a.detection.box:new ln(a),i=r?`${rl(r)}`:void 0;new Bd(s,{label:i}).draw(e)})}function Vd(e){let{Image:t,Video:n}=tt.getEnv();return e instanceof t&&e.complete||e instanceof n&&e.readyState>=3}function zk(e){return new Promise((t,n)=>{if(e instanceof tt.getEnv().Canvas||Vd(e)){t(null);return}function a(s){s.currentTarget&&(s.currentTarget.removeEventListener("load",r),s.currentTarget.removeEventListener("error",a),n(s))}function r(s){s.currentTarget&&(s.currentTarget.removeEventListener("load",r),s.currentTarget.removeEventListener("error",a),t(s))}e.addEventListener("load",r),e.addEventListener("error",a)})}function Wk(e){return new Promise((t,n)=>{e instanceof Blob||n(new Error("bufferToImage - expected buf to be of type: Blob"));let a=new FileReader;a.onload=()=>{typeof a.result!="string"&&n(new Error("bufferToImage - expected reader.result to be a string, in onload"));let r=tt.getEnv().createImageElement();r.onload=()=>t(r),r.onerror=n,r.src=a.result},a.onerror=n,a.readAsDataURL(e)})}function hl(e){let{Image:t,Video:n}=tt.getEnv();return e instanceof t?new Un(e.naturalWidth,e.naturalHeight):e instanceof n?new Un(e.videoWidth,e.videoHeight):new Un(e.width,e.height)}function ml({width:e,height:t}){let{createCanvasElement:n}=tt.getEnv(),a=n();return a.width=e,a.height=t,a}function Ud(e,t){let{ImageData:n}=tt.getEnv();if(!(e instanceof n)&&!Vd(e))throw new Error("createCanvasFromMedia - media has not finished loading yet");let{width:a,height:r}=t||hl(e),s=ml({width:a,height:r});return e instanceof n?Gn(s).putImageData(e,0,0):Gn(s).drawImage(e,0,0,a,r),s}async function Bk(e,t){let n=t||tt.getEnv().createCanvasElement(),[a,r,s]=e.shape.slice(ka(e)?1:0),i=O(()=>e.as3D(a,r,s).toInt());return await Xo.toPixels(i,n),i.dispose(),n}function ug(e){let{Image:t,Canvas:n,Video:a}=tt.getEnv();return e instanceof t||e instanceof n||e instanceof a}function Vk(e,t,n=!1){let{Image:a,Canvas:r}=tt.getEnv();if(!(e instanceof a||e instanceof r))throw new Error("imageToSquare - expected arg0 to be HTMLImageElement | HTMLCanvasElement");if(t<=0)return ml({width:1,height:1});let s=hl(e),i=t/Math.max(s.height,s.width),o=i*s.width,l=i*s.height,u=ml({width:t,height:t}),p=e instanceof r?e:Ud(e),d=Math.abs(o-l)/2,c=n&&o0&&p.height>0&&Gn(u).drawImage(p,c,h,o,l),u}var vr=class{constructor(t,n=!1){this._imageTensors=[];this._canvases=[];this._treatAsBatchInput=!1;this._inputDimensions=[];this._inputSize=0;if(!Array.isArray(t))throw new Error(`NetInput.constructor - expected inputs to be an Array of TResolvedNetInput or to be instanceof tf.Tensor4D, instead have ${t}`);this._treatAsBatchInput=n,this._batchSize=t.length,t.forEach((a,r)=>{if(Wr(a)){this._imageTensors[r]=a,this._inputDimensions[r]=a.shape;return}if(ka(a)){let i=a.shape[0];if(i!==1)throw new Error(`NetInput - tf.Tensor4D with batchSize ${i} passed, but not supported in input array`);this._imageTensors[r]=a,this._inputDimensions[r]=a.shape.slice(1);return}let s=a instanceof tt.getEnv().Canvas?a:Ud(a);this._canvases[r]=s,this._inputDimensions[r]=[s.height,s.width,3]})}get imageTensors(){return this._imageTensors}get canvases(){return this._canvases}get isBatchInput(){return this.batchSize>1||this._treatAsBatchInput}get batchSize(){return this._batchSize}get inputDimensions(){return this._inputDimensions}get inputSize(){return this._inputSize}get reshapedInputDimensions(){return yr(this.batchSize,0,1).map((t,n)=>this.getReshapedInputDimensions(n))}getInput(t){return this.canvases[t]||this.imageTensors[t]}getInputDimensions(t){return this._inputDimensions[t]}getInputHeight(t){return this._inputDimensions[t][0]}getInputWidth(t){return this._inputDimensions[t][1]}getReshapedInputDimensions(t){if(typeof this.inputSize!="number")throw new Error("getReshapedInputDimensions - inputSize not set, toBatchTensor has not been called yet");let n=this.getInputWidth(t),a=this.getInputHeight(t);return Nk({width:n,height:a},this.inputSize)}toBatchTensor(t,n=!0){return this._inputSize=t,O(()=>{let a=yr(this.batchSize,0,1).map(s=>{let i=this.getInput(s);if(i instanceof Ce){let o=ka(i)?i:Gt(i);return o=Ak(o,n),(o.shape[1]!==t||o.shape[2]!==t)&&(o=Qn.resizeBilinear(o,[t,t],!1,!1)),o.as3D(t,t,3)}if(i instanceof tt.getEnv().Canvas)return Xo.fromPixels(Vk(i,t,n));throw new Error(`toBatchTensor - at batchIdx ${s}, expected input to be instanceof tf.Tensor or instanceof HTMLCanvasElement, instead have ${i}`)});return Ft(a.map(s=>re(s,"float32"))).as4D(this.batchSize,t,t,3)})}};async function vt(e){if(e instanceof vr)return e;let t=Array.isArray(e)?e:[e];if(!t.length)throw new Error("toNetInput - empty array passed as input");let n=r=>Array.isArray(e)?` at input index ${r}:`:"",a=t.map(cl);return a.forEach((r,s)=>{if(!ug(r)&&!Wr(r)&&!ka(r))throw typeof t[s]=="string"?new Error(`toNetInput -${n(s)} string passed, but could not resolve HTMLElement for element id ${t[s]}`):new Error(`toNetInput -${n(s)} expected media to be of type HTMLImageElement | HTMLVideoElement | HTMLCanvasElement | tf.Tensor3D, or to be an element id`);if(ka(r)){let i=r.shape[0];if(i!==1)throw new Error(`toNetInput -${n(s)} tf.Tensor4D with batchSize ${i} passed, but not supported in input array`)}}),await Promise.all(a.map(r=>ug(r)&&zk(r))),new vr(a,Array.isArray(e))}async function Dp(e,t){let{Canvas:n}=tt.getEnv(),a=e;if(!(e instanceof n)){let i=await vt(e);if(i.batchSize>1)throw new Error("extractFaces - batchSize > 1 not supported");let o=i.getInput(0);a=o instanceof n?o:await Bk(o)}let r=Gn(a);return t.map(i=>i instanceof Tt?i.forSize(a.width,a.height).box.floor():i).map(i=>i.clipAtImageBorders(a.width,a.height)).map(({x:i,y:o,width:l,height:u})=>{let p=ml({width:l,height:u});return l>0&&u>0&&Gn(p).putImageData(r.getImageData(i,o,l,u),0,0),p})}async function Rp(e,t){if(!Wr(e)&&!ka(e))throw new Error("extractFaceTensors - expected image tensor to be 3D or 4D");if(ka(e)&&e.shape[0]>1)throw new Error("extractFaceTensors - batchSize > 1 not supported");return O(()=>{let[n,a,r]=e.shape.slice(ka(e)?1:0);return t.map(o=>o instanceof Tt?o.forSize(a,n).box:o).map(o=>o.clipAtImageBorders(a,n)).filter(o=>o.width>0&&o.height>0).map(({x:o,y:l,width:u,height:p})=>qo(e.as3D(n,a,r),[l,o,0],[p,u,r]))})}async function Br(e,t){let{fetch:n}=tt.getEnv(),a=await n(e,t);if(!(a.status<400))throw new Error(`failed to fetch: (${a.status}) ${a.statusText}, from url: ${a.url}`);return a}async function age(e){let t=await Br(e),n=await t.blob();if(!n.type.startsWith("image/"))throw new Error(`fetchImage - expected blob type to be of type image/*, instead have: ${n.type}, for url: ${t.url}`);return Wk(n)}async function Uk(e){return(await Br(e)).json()}async function rge(e){return new Float32Array(await(await Br(e)).arrayBuffer())}function lD(e){return new Promise((t,n)=>{e instanceof Blob||n(new Error("bufferToVideo - expected buf to be of type: Blob"));let a=tt.getEnv().createVideoElement();a.oncanplay=()=>t(a),a.onerror=n,a.playsInline=!0,a.muted=!0,a.src=URL.createObjectURL(e),a.play()})}async function sge(e){let t=await Br(e),n=await t.blob();if(!n.type.startsWith("video/"))throw new Error(`fetchVideo - expected blob type to be of type video/*, instead have: ${n.type}, for url: ${t.url}`);return lD(n)}function pg(e,t){let n=`${t}-weights_manifest.json`;if(!e)return{modelBaseUri:"",manifestUri:n};if(e==="/")return{modelBaseUri:"/",manifestUri:`/${n}`};let a=e.startsWith("http://")?"http://":e.startsWith("https://")?"https://":"";e=e.replace(a,"");let r=e.split("/").filter(o=>o),s=e.endsWith(".json")?r[r.length-1]:n,i=a+(e.endsWith(".json")?r.slice(0,r.length-1):r).join("/");return i=e.startsWith("/")?`/${i}`:i,{modelBaseUri:i,manifestUri:i==="/"?`/${s}`:`${i}/${s}`}}async function Gk(e,t){let{manifestUri:n,modelBaseUri:a}=pg(e,t),r=await Uk(n);return jt.loadWeights(r,a)}function ige(e,t,n=!1){let{width:a,height:r}=n?hl(t):t;return e.width=a,e.height=r,{width:a,height:r}}var pn=class{constructor(t){this._params=void 0;this._paramMappings=[];this._name=t}get params(){return this._params}get paramMappings(){return this._paramMappings}get isLoaded(){return!!this.params}getParamFromPath(t){let{obj:n,objProp:a}=this.traversePropertyPath(t);return n[a]}reassignParamFromPath(t,n){let{obj:a,objProp:r}=this.traversePropertyPath(t);a[r].dispose(),a[r]=n}getParamList(){return this._paramMappings.map(({paramPath:t})=>({path:t,tensor:this.getParamFromPath(t)}))}getTrainableParams(){return this.getParamList().filter(t=>t.tensor instanceof cs)}getFrozenParams(){return this.getParamList().filter(t=>!(t.tensor instanceof cs))}variable(){this.getFrozenParams().forEach(({path:t,tensor:n})=>{this.reassignParamFromPath(t,n.variable())})}freeze(){this.getTrainableParams().forEach(({path:t,tensor:n})=>{let a=bn(n.dataSync());n.dispose(),this.reassignParamFromPath(t,a)})}dispose(t=!0){this.getParamList().forEach(n=>{if(t&&n.tensor.isDisposed)throw new Error(`param tensor has already been disposed for path ${n.path}`);n.tensor.dispose()}),this._params=void 0}serializeParams(){return new Float32Array(this.getParamList().map(({tensor:t})=>Array.from(t.dataSync())).reduce((t,n)=>t.concat(n)))}async load(t){if(t instanceof Float32Array){this.extractWeights(t);return}await this.loadFromUri(t)}async loadFromUri(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromUri - expected model uri`);let n=await Gk(t,this.getDefaultModelName());this.loadFromWeightMap(n)}async loadFromDisk(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromDisk - expected model file path`);let{readFile:n}=tt.getEnv(),{manifestUri:a,modelBaseUri:r}=pg(t,this.getDefaultModelName()),s=u=>Promise.all(u.map(p=>n(p).then(d=>typeof d=="string"?Buffer.from(d):d.buffer))),i=jt.weightsLoaderFactory(s),o=JSON.parse((await n(a)).toString()),l=await i(o,r);this.loadFromWeightMap(l)}loadFromWeightMap(t){let{paramMappings:n,params:a}=this.extractParamsFromWeightMap(t);this._paramMappings=n,this._params=a}extractWeights(t){let{paramMappings:n,params:a}=this.extractParams(t);this._paramMappings=n,this._params=a}traversePropertyPath(t){if(!this.params)throw new Error("traversePropertyPath - model has no loaded params");let n=t.split("/").reduce((s,i)=>{if(!s.nextObj.hasOwnProperty(i))throw new Error(`traversePropertyPath - object does not have property ${i}, for path ${t}`);return{obj:s.nextObj,objProp:i,nextObj:s.nextObj[i]}},{nextObj:this.params}),{obj:a,objProp:r}=n;if(!a||!r||!(a[r]instanceof Ce))throw new Error(`traversePropertyPath - parameter is not a tensor, for path ${t}`);return{obj:a,objProp:r}}};function Hn(e,t,n){return O(()=>{let a=Ds(e,t.depthwise_filter,t.pointwise_filter,n,"same");return a=X(a,t.bias),a})}function cg(e,t,n=!1){return O(()=>{let a=Ke(n?X($t(e,t.conv0.filters,[2,2],"same"),t.conv0.bias):Hn(e,t.conv0,[2,2])),r=Hn(a,t.conv1,[1,1]),s=Ke(X(a,r)),i=Hn(s,t.conv2,[1,1]);return Ke(X(a,X(r,i)))})}function Gd(e,t,n=!1,a=!0){return O(()=>{let r=Ke(n?X($t(e,t.conv0.filters,a?[2,2]:[1,1],"same"),t.conv0.bias):Hn(e,t.conv0,a?[2,2]:[1,1])),s=Hn(r,t.conv1,[1,1]),i=Ke(X(r,s)),o=Hn(i,t.conv2,[1,1]),l=Ke(X(r,X(s,o))),u=Hn(l,t.conv3,[1,1]);return Ke(X(r,X(s,X(o,u))))})}function fl(e,t,n="same",a=!1){return O(()=>{let r=X($t(e,t.filters,[1,1],n),t.bias);return a?Ke(r):r})}function _n(e,t){Object.keys(e).forEach(n=>{t.some(a=>a.originalPath===n)||e[n].dispose()})}function Mp(e,t){return(n,a,r,s)=>{let i=Da(e(n*a*r*r),[r,r,n,a]),o=je(e(a));return t.push({paramPath:`${s}/filters`},{paramPath:`${s}/bias`}),{filters:i,bias:o}}}function dg(e,t){return(n,a,r)=>{let s=Aa(e(n*a),[n,a]),i=je(e(a));return t.push({paramPath:`${r}/weights`},{paramPath:`${r}/bias`}),{weights:s,bias:i}}}var Hd=class{constructor(t,n,a){this.depthwise_filter=t;this.pointwise_filter=n;this.bias=a}};function Op(e,t){return(n,a,r)=>{let s=Da(e(9*n),[3,3,n,1]),i=Da(e(n*a),[1,1,n,a]),o=je(e(a));return t.push({paramPath:`${r}/depthwise_filter`},{paramPath:`${r}/pointwise_filter`},{paramPath:`${r}/bias`}),new Hd(s,i,o)}}function Pp(e){return t=>{let n=e(`${t}/depthwise_filter`,4),a=e(`${t}/pointwise_filter`,4),r=e(`${t}/bias`,1);return new Hd(n,a,r)}}function ia(e,t){return(n,a,r)=>{let s=e[n];if(!al(s,a))throw new Error(`expected weightMap[${n}] to be a Tensor${a}D, instead have ${s}`);return t.push({originalPath:n,paramPath:r||n}),s}}function An(e){let t=e;function n(r){let s=t.slice(0,r);return t=t.slice(r),s}function a(){return t}return{extractWeights:n,getRemainingWeights:a}}function hg(e,t){let n=Mp(e,t),a=Op(e,t);function r(i,o,l,u=!1){let p=u?n(i,o,3,`${l}/conv0`):a(i,o,`${l}/conv0`),d=a(o,o,`${l}/conv1`),c=a(o,o,`${l}/conv2`);return{conv0:p,conv1:d,conv2:c}}function s(i,o,l,u=!1){let{conv0:p,conv1:d,conv2:c}=r(i,o,l,u),h=a(o,o,`${l}/conv3`);return{conv0:p,conv1:d,conv2:c,conv3:h}}return{extractDenseBlock3Params:r,extractDenseBlock4Params:s}}function uD(e){let t=[],{extractWeights:n,getRemainingWeights:a}=An(e),{extractDenseBlock4Params:r}=hg(n,t),s=r(3,32,"dense0",!0),i=r(32,64,"dense1"),o=r(64,128,"dense2"),l=r(128,256,"dense3");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{dense0:s,dense1:i,dense2:o,dense3:l}}}function mg(e){return t=>{let n=e(`${t}/filters`,4),a=e(`${t}/bias`,1);return{filters:n,bias:a}}}function fg(e,t){let n=ia(e,t),a=mg(n),r=Pp(n);function s(o,l=!1){let u=l?a(`${o}/conv0`):r(`${o}/conv0`),p=r(`${o}/conv1`),d=r(`${o}/conv2`);return{conv0:u,conv1:p,conv2:d}}function i(o,l=!1){let u=l?a(`${o}/conv0`):r(`${o}/conv0`),p=r(`${o}/conv1`),d=r(`${o}/conv2`),c=r(`${o}/conv3`);return{conv0:u,conv1:p,conv2:d,conv3:c}}return{extractDenseBlock3Params:s,extractDenseBlock4Params:i}}function pD(e){let t=[],{extractDenseBlock4Params:n}=fg(e,t),a={dense0:n("dense0",!0),dense1:n("dense1"),dense2:n("dense2"),dense3:n("dense3")};return _n(e,t),{params:a,paramMappings:t}}var Lp=class extends pn{constructor(){super("FaceFeatureExtractor")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("FaceFeatureExtractor - load model before inference");return O(()=>{let a=re(t.toBatchTensor(112,!0),"float32"),s=Ya(a,[122.782,117.001,104.298]).div(255),i=Gd(s,n.dense0,!0);return i=Gd(i,n.dense1),i=Gd(i,n.dense2),i=Gd(i,n.dense3),i=xa(i,[7,7],[2,2],"valid"),i})}async forward(t){return this.forwardInput(await vt(t))}getDefaultModelName(){return"face_feature_extractor_model"}extractParamsFromWeightMap(t){return pD(t)}extractParams(t){return uD(t)}};function jd(e,t){return O(()=>X($e(e,t.weights),t.bias))}function cD(e,t,n){let a=[],{extractWeights:r,getRemainingWeights:s}=An(e),o=dg(r,a)(t,n,"fc");if(s().length!==0)throw new Error(`weights remaing after extract: ${s().length}`);return{paramMappings:a,params:{fc:o}}}function dD(e){let t=[],n=ia(e,t);function a(s){let i=n(`${s}/weights`,2),o=n(`${s}/bias`,1);return{weights:i,bias:o}}let r={fc:a("fc")};return _n(e,t),{params:r,paramMappings:t}}function gg(e){let t={},n={};return Object.keys(e).forEach(a=>{let r=a.startsWith("fc")?n:t;r[a]=e[a]}),{featureExtractorMap:t,classifierMap:n}}var zp=class extends pn{constructor(t,n){super(t),this._faceFeatureExtractor=n}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(t){let{params:n}=this;if(!n)throw new Error(`${this._name} - load model before inference`);return O(()=>{let a=t instanceof vr?this.faceFeatureExtractor.forwardInput(t):t;return jd(a.as2D(a.shape[0],-1),n.fc)})}dispose(t=!0){this.faceFeatureExtractor.dispose(t),super.dispose(t)}loadClassifierParams(t){let{params:n,paramMappings:a}=this.extractClassifierParams(t);this._params=n,this._paramMappings=a}extractClassifierParams(t){return cD(t,this.getClassifierChannelsIn(),this.getClassifierChannelsOut())}extractParamsFromWeightMap(t){let{featureExtractorMap:n,classifierMap:a}=gg(t);return this.faceFeatureExtractor.loadFromWeightMap(n),dD(a)}extractParams(t){let n=this.getClassifierChannelsIn(),a=this.getClassifierChannelsOut(),r=a*n+a,s=t.slice(0,t.length-r),i=t.slice(t.length-r);return this.faceFeatureExtractor.extractWeights(s),this.extractClassifierParams(i)}};var Hk=["neutral","happy","sad","angry","fearful","disgusted","surprised"],Vr=class{constructor(t){this.neutral=0;this.happy=0;this.sad=0;this.angry=0;this.fearful=0;this.disgusted=0;this.surprised=0;if(t.length!==7)throw new Error(`FaceExpressions.constructor - expected probabilities.length to be 7, have: ${t.length}`);Hk.forEach((n,a)=>{this[n]=t[a]})}asSortedArray(){return Hk.map(t=>({expression:t,probability:this[t]})).sort((t,n)=>n.probability-t.probability)}};var qd=class extends zp{constructor(t=new Lp){super("FaceExpressionNet",t)}forwardInput(t){return O(()=>qa(this.runNet(t)))}async forward(t){return this.forwardInput(await vt(t))}async predictExpressions(t){let n=await vt(t),a=await this.forwardInput(n),r=await Promise.all(dt(a).map(async i=>{let o=i.dataSync();return i.dispose(),o}));a.dispose();let s=r.map(i=>new Vr(i));return n.isBatchInput?s:s[0]}getDefaultModelName(){return"face_expression_model"}getClassifierChannelsIn(){return 256}getClassifierChannelsOut(){return 7}};function jk(e){return e.expressions instanceof Vr}function bg(e,t){return{...e,...{expressions:t}}}function oge(e,t,n=.1,a){(Array.isArray(t)?t:[t]).forEach(s=>{let i=s instanceof Vr?s:jk(s)?s.expressions:void 0;if(!i)throw new Error("drawFaceExpressions - expected faceExpressions to be FaceExpressions | WithFaceExpressions<{}> or array thereof");let l=i.asSortedArray().filter(d=>d.probability>n),u=xr(s)?s.detection.box.bottomLeft:a||new Ue(0,0);new dl(l.map(d=>`${d.expression} (${rl(d.probability)})`),u).draw(e)})}function gl(e){return xr(e)&&e.landmarks instanceof sa&&e.unshiftedLandmarks instanceof sa&&e.alignedRect instanceof Tt}function lge(e){let t=l=>l*180/Math.PI,n=(l,u)=>Math.sqrt((l.x-u.x)**2+(l.y-u.y)**2),a={roll:void 0,pitch:void 0,yaw:void 0},r=(l,u,p)=>{let d=Math.floor(l.x-u.x),c=Math.floor(u.x-p.x);return d-c},s=(l,u)=>{let p=Math.hypot(u.x-l.x,u.y-l.y),d=u.y-l.y,c=Math.asin(d/p),h=t(c),m=Math.floor(90-h),f=u.x-l.x<0?-1:1;return m*f},i=(l,u,p)=>{let d=n(l,p),c=new Ue((l.x+p.x)/2,(l.y+p.y)/2),h=n(u,c),m=Math.atan(h/d),f=Math.floor(t(m)),g=c.y-u.y<0?-1:1;return f*g};if(!e||!e.positions||e.positions.length!==68)return a;let o=e.positions;return a.roll=s(o[27],o[66]),a.pitch=i(o[14],o[30],o[2]),a.yaw=r(o[14],o[33],o[2]),a}function Wp(e,t){let{box:n}=e.detection,a=t.shiftBy(n.x,n.y),r=a.align(),{imageDims:s}=e.detection,i=new Tt(e.detection.score,r.rescale(s.reverse()),s),o=lge(t);return{...e,...{landmarks:a,unshiftedLandmarks:t,alignedRect:i,angle:o}}}var yg=class{constructor(t={}){let{drawLines:n=!0,drawPoints:a=!0,lineWidth:r,lineColor:s,pointSize:i,pointColor:o}=t;this.drawLines=n,this.drawPoints=a,this.lineWidth=r||1,this.pointSize=i||2,this.lineColor=s||"rgba(0, 255, 255, 1)",this.pointColor=o||"rgba(255, 0, 255, 1)"}},xg=class{constructor(t,n={}){this.faceLandmarks=t,this.options=new yg(n)}draw(t){let n=Gn(t),{drawLines:a,drawPoints:r,lineWidth:s,lineColor:i,pointSize:o,pointColor:l}=this.options;if(a&&this.faceLandmarks instanceof ul&&(n.strokeStyle=i,n.lineWidth=s,zr(n,this.faceLandmarks.getJawOutline()),zr(n,this.faceLandmarks.getLeftEyeBrow()),zr(n,this.faceLandmarks.getRightEyeBrow()),zr(n,this.faceLandmarks.getNose()),zr(n,this.faceLandmarks.getLeftEye(),!0),zr(n,this.faceLandmarks.getRightEye(),!0),zr(n,this.faceLandmarks.getMouth(),!0)),r){n.strokeStyle=l,n.fillStyle=l;let u=p=>{n.beginPath(),n.arc(p.x,p.y,o,0,2*Math.PI),n.fill()};this.faceLandmarks.positions.forEach(u)}}};function uge(e,t){(Array.isArray(t)?t:[t]).forEach(a=>{let r=a instanceof sa?a:gl(a)?a.landmarks:void 0;if(!r)throw new Error("drawFaceLandmarks - expected faceExpressions to be FaceLandmarks | WithFaceLandmarks> or array thereof");new xg(r).draw(e)})}var hD="1.7.15";function dge(e,t){let n=Mp(e,t),a=Op(e,t);function r(i,o,l){let u=a(i,o,`${l}/separable_conv0`),p=a(o,o,`${l}/separable_conv1`),d=n(i,o,1,`${l}/expansion_conv`);return{separable_conv0:u,separable_conv1:p,expansion_conv:d}}function s(i,o){let l=a(i,i,`${o}/separable_conv0`),u=a(i,i,`${o}/separable_conv1`),p=a(i,i,`${o}/separable_conv2`);return{separable_conv0:l,separable_conv1:u,separable_conv2:p}}return{extractConvParams:n,extractSeparableConvParams:a,extractReductionBlockParams:r,extractMainBlockParams:s}}function mD(e,t){let n=[],{extractWeights:a,getRemainingWeights:r}=An(e),{extractConvParams:s,extractSeparableConvParams:i,extractReductionBlockParams:o,extractMainBlockParams:l}=dge(a,n),u=s(3,32,3,"entry_flow/conv_in"),p=o(32,64,"entry_flow/reduction_block_0"),d=o(64,128,"entry_flow/reduction_block_1"),c={conv_in:u,reduction_block_0:p,reduction_block_1:d},h={};yr(t,0,1).forEach(b=>{h[`main_block_${b}`]=l(128,`middle_flow/main_block_${b}`)});let m=o(128,256,"exit_flow/reduction_block"),f=i(256,512,"exit_flow/separable_conv"),g={reduction_block:m,separable_conv:f};if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:n,params:{entry_flow:c,middle_flow:h,exit_flow:g}}}function hge(e,t){let n=ia(e,t),a=mg(n),r=Pp(n);function s(o){let l=r(`${o}/separable_conv0`),u=r(`${o}/separable_conv1`),p=a(`${o}/expansion_conv`);return{separable_conv0:l,separable_conv1:u,expansion_conv:p}}function i(o){let l=r(`${o}/separable_conv0`),u=r(`${o}/separable_conv1`),p=r(`${o}/separable_conv2`);return{separable_conv0:l,separable_conv1:u,separable_conv2:p}}return{extractConvParams:a,extractSeparableConvParams:r,extractReductionBlockParams:s,extractMainBlockParams:i}}function fD(e,t){let n=[],{extractConvParams:a,extractSeparableConvParams:r,extractReductionBlockParams:s,extractMainBlockParams:i}=hge(e,n),o=a("entry_flow/conv_in"),l=s("entry_flow/reduction_block_0"),u=s("entry_flow/reduction_block_1"),p={conv_in:o,reduction_block_0:l,reduction_block_1:u},d={};yr(t,0,1).forEach(f=>{d[`main_block_${f}`]=i(`middle_flow/main_block_${f}`)});let c=s("exit_flow/reduction_block"),h=r("exit_flow/separable_conv"),m={reduction_block:c,separable_conv:h};return _n(e,n),{params:{entry_flow:p,middle_flow:d,exit_flow:m},paramMappings:n}}function gD(e,t,n){return X($t(e,t.filters,n,"same"),t.bias)}function Kk(e,t,n=!0){let a=n?Ke(e):e;return a=Hn(a,t.separable_conv0,[1,1]),a=Hn(Ke(a),t.separable_conv1,[1,1]),a=Dt(a,[3,3],[2,2],"same"),a=X(a,gD(e,t.expansion_conv,[2,2])),a}function mge(e,t){let n=Hn(Ke(e),t.separable_conv0,[1,1]);return n=Hn(Ke(n),t.separable_conv1,[1,1]),n=Hn(Ke(n),t.separable_conv2,[1,1]),n=X(n,e),n}var vg=class extends pn{constructor(t){super("TinyXception"),this._numMainBlocks=t}forwardInput(t){let{params:n}=this;if(!n)throw new Error("TinyXception - load model before inference");return O(()=>{let a=re(t.toBatchTensor(112,!0),"float32"),s=Ya(a,[122.782,117.001,104.298]).div(255),i=Ke(gD(s,n.entry_flow.conv_in,[2,2]));return i=Kk(i,n.entry_flow.reduction_block_0,!1),i=Kk(i,n.entry_flow.reduction_block_1),yr(this._numMainBlocks,0,1).forEach(o=>{i=mge(i,n.middle_flow[`main_block_${o}`])}),i=Kk(i,n.exit_flow.reduction_block),i=Ke(Hn(i,n.exit_flow.separable_conv,[1,1])),i})}async forward(t){return this.forwardInput(await vt(t))}getDefaultModelName(){return"tiny_xception_model"}extractParamsFromWeightMap(t){return fD(t,this._numMainBlocks)}extractParams(t){return mD(t,this._numMainBlocks)}};function bD(e){let t=[],{extractWeights:n,getRemainingWeights:a}=An(e),r=dg(n,t),s=r(512,1,"fc/age"),i=r(512,2,"fc/gender");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{fc:{age:s,gender:i}}}}function yD(e){let t=[],n=ia(e,t);function a(s){let i=n(`${s}/weights`,2),o=n(`${s}/bias`,1);return{weights:i,bias:o}}let r={fc:{age:a("fc/age"),gender:a("fc/gender")}};return _n(e,t),{params:r,paramMappings:t}}var wg=(n=>(n.FEMALE="female",n.MALE="male",n))(wg||{});var Kd=class extends pn{constructor(t=new vg(2)){super("AgeGenderNet"),this._faceFeatureExtractor=t}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(t){let{params:n}=this;if(!n)throw new Error(`${this._name} - load model before inference`);return O(()=>{let a=t instanceof vr?this.faceFeatureExtractor.forwardInput(t):t,r=xa(a,[7,7],[2,2],"valid").as2D(a.shape[0],-1),s=jd(r,n.fc.age).as1D(),i=jd(r,n.fc.gender);return{age:s,gender:i}})}forwardInput(t){return O(()=>{let{age:n,gender:a}=this.runNet(t);return{age:n,gender:qa(a)}})}async forward(t){return this.forwardInput(await vt(t))}async predictAgeAndGender(t){let n=await vt(t),a=await this.forwardInput(n),r=dt(a.age),s=dt(a.gender),i=r.map((l,u)=>({ageTensor:l,genderTensor:s[u]})),o=await Promise.all(i.map(async({ageTensor:l,genderTensor:u})=>{let p=l.dataSync()[0],d=u.dataSync()[0],c=d>.5,h=c?"male":"female",m=c?d:1-d;return l.dispose(),u.dispose(),{age:p,gender:h,genderProbability:m}}));return a.age.dispose(),a.gender.dispose(),n.isBatchInput?o:o[0]}getDefaultModelName(){return"age_gender_model"}dispose(t=!0){this.faceFeatureExtractor.dispose(t),super.dispose(t)}loadClassifierParams(t){let{params:n,paramMappings:a}=this.extractClassifierParams(t);this._params=n,this._paramMappings=a}extractClassifierParams(t){return bD(t)}extractParamsFromWeightMap(t){let{featureExtractorMap:n,classifierMap:a}=gg(t);return this.faceFeatureExtractor.loadFromWeightMap(n),yD(a)}extractParams(t){let a=t.slice(0,t.length-1539),r=t.slice(t.length-1539);return this.faceFeatureExtractor.extractWeights(a),this.extractClassifierParams(r)}};var Bp=class extends zp{postProcess(t,n,a){let r=a.map(({width:i,height:o})=>{let l=n/Math.max(o,i);return{width:i*l,height:o*l}}),s=r.length;return O(()=>{let i=(d,c)=>Ft([yn([68],d,"float32"),yn([68],c,"float32")],1).as2D(1,136).as1D(),o=(d,c)=>{let{width:h,height:m}=r[d];return c(h,m)?Math.abs(h-m)/2:0},l=d=>o(d,(c,h)=>co(d,(c,h)=>hi(l(c),u(c))))).div(Ft(Array.from(Array(s),(d,c)=>i(r[c].width,r[c].height))))})}forwardInput(t){return O(()=>{let n=this.runNet(t);return this.postProcess(n,t.inputSize,t.inputDimensions.map(([a,r])=>({height:a,width:r})))})}async forward(t){return this.forwardInput(await vt(t))}async detectLandmarks(t){let n=await vt(t),a=O(()=>dt(this.forwardInput(n))),r=await Promise.all(a.map(async(s,i)=>{let o=Array.from(s.dataSync()),l=o.filter((p,d)=>sg(d)),u=o.filter((p,d)=>!sg(d));return new ul(Array(68).fill(0).map((p,d)=>new Ue(l[d],u[d])),{height:n.getInputHeight(i),width:n.getInputWidth(i)})}));return a.forEach(s=>s.dispose()),n.isBatchInput?r:r[0]}getClassifierChannelsOut(){return 136}};var bl=class extends Bp{constructor(t=new Lp){super("FaceLandmark68Net",t)}getDefaultModelName(){return"face_landmark_68_model"}getClassifierChannelsIn(){return 256}};function xD(e){let t=[],{extractDenseBlock3Params:n}=fg(e,t),a={dense0:n("dense0",!0),dense1:n("dense1"),dense2:n("dense2")};return _n(e,t),{params:a,paramMappings:t}}function vD(e){let t=[],{extractWeights:n,getRemainingWeights:a}=An(e),{extractDenseBlock3Params:r}=hg(n,t),s=r(3,32,"dense0",!0),i=r(32,64,"dense1"),o=r(64,128,"dense2");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{dense0:s,dense1:i,dense2:o}}}var kg=class extends pn{constructor(){super("TinyFaceFeatureExtractor")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("TinyFaceFeatureExtractor - load model before inference");return O(()=>{let a=re(t.toBatchTensor(112,!0),"float32"),s=Ya(a,[122.782,117.001,104.298]).div(255),i=cg(s,n.dense0,!0);return i=cg(i,n.dense1),i=cg(i,n.dense2),i=xa(i,[14,14],[2,2],"valid"),i})}async forward(t){return this.forwardInput(await vt(t))}getDefaultModelName(){return"face_feature_extractor_tiny_model"}extractParamsFromWeightMap(t){return xD(t)}extractParams(t){return vD(t)}};var Xd=class extends Bp{constructor(t=new kg){super("FaceLandmark68TinyNet",t)}getDefaultModelName(){return"face_landmark_68_tiny_model"}getClassifierChannelsIn(){return 128}};var Xk=class extends bl{};function wD(e,t){return X(z(e,t.weights),t.biases)}function Yk(e,t,n,a,r="same"){let{filters:s,bias:i}=t.conv,o=$t(e,s,n,r);return o=X(o,i),o=wD(o,t.scale),a?Ke(o):o}function kD(e,t){return Yk(e,t,[1,1],!0)}function Zk(e,t){return Yk(e,t,[1,1],!1)}function Ig(e,t){return Yk(e,t,[2,2],!0,"valid")}function fge(e,t){function n(o,l,u){let p=e(o),d=p.length/(l*u*u);if(Sk(d))throw new Error(`depth has to be an integer: ${d}, weights.length: ${p.length}, numFilters: ${l}, filterSize: ${u}`);return O(()=>De(Da(p,[l,d,u,u]),[2,3,1,0]))}function a(o,l,u,p){let d=n(o,l,u),c=je(e(l));return t.push({paramPath:`${p}/filters`},{paramPath:`${p}/bias`}),{filters:d,bias:c}}function r(o,l){let u=je(e(o)),p=je(e(o));return t.push({paramPath:`${l}/weights`},{paramPath:`${l}/biases`}),{weights:u,biases:p}}function s(o,l,u,p){let d=a(o,l,u,`${p}/conv`),c=r(l,`${p}/scale`);return{conv:d,scale:c}}function i(o,l,u,p,d=!1){let c=s((d?.5:1)*o,l,u,`${p}/conv1`),h=s(o,l,u,`${p}/conv2`);return{conv1:c,conv2:h}}return{extractConvLayerParams:s,extractResidualLayerParams:i}}function ID(e){let{extractWeights:t,getRemainingWeights:n}=An(e),a=[],{extractConvLayerParams:r,extractResidualLayerParams:s}=fge(t,a),i=r(4704,32,7,"conv32_down"),o=s(9216,32,3,"conv32_1"),l=s(9216,32,3,"conv32_2"),u=s(9216,32,3,"conv32_3"),p=s(36864,64,3,"conv64_down",!0),d=s(36864,64,3,"conv64_1"),c=s(36864,64,3,"conv64_2"),h=s(36864,64,3,"conv64_3"),m=s(147456,128,3,"conv128_down",!0),f=s(147456,128,3,"conv128_1"),g=s(147456,128,3,"conv128_2"),b=s(589824,256,3,"conv256_down",!0),y=s(589824,256,3,"conv256_1"),x=s(589824,256,3,"conv256_2"),v=s(589824,256,3,"conv256_down_out"),I=O(()=>De(Aa(t(256*128),[128,256]),[1,0]));if(a.push({paramPath:"fc"}),n().length!==0)throw new Error(`weights remaing after extract: ${n().length}`);return{params:{conv32_down:i,conv32_1:o,conv32_2:l,conv32_3:u,conv64_down:p,conv64_1:d,conv64_2:c,conv64_3:h,conv128_down:m,conv128_1:f,conv128_2:g,conv256_down:b,conv256_1:y,conv256_2:x,conv256_down_out:v,fc:I},paramMappings:a}}function gge(e,t){let n=ia(e,t);function a(i){let o=n(`${i}/scale/weights`,1),l=n(`${i}/scale/biases`,1);return{weights:o,biases:l}}function r(i){let o=n(`${i}/conv/filters`,4),l=n(`${i}/conv/bias`,1),u=a(i);return{conv:{filters:o,bias:l},scale:u}}function s(i){return{conv1:r(`${i}/conv1`),conv2:r(`${i}/conv2`)}}return{extractConvLayerParams:r,extractResidualLayerParams:s}}function SD(e){let t=[],{extractConvLayerParams:n,extractResidualLayerParams:a}=gge(e,t),r=n("conv32_down"),s=a("conv32_1"),i=a("conv32_2"),o=a("conv32_3"),l=a("conv64_down"),u=a("conv64_1"),p=a("conv64_2"),d=a("conv64_3"),c=a("conv128_down"),h=a("conv128_1"),m=a("conv128_2"),f=a("conv256_down"),g=a("conv256_1"),b=a("conv256_2"),y=a("conv256_down_out"),{fc:x}=e;if(t.push({originalPath:"fc",paramPath:"fc"}),!Ik(x))throw new Error(`expected weightMap[fc] to be a Tensor2D, instead have ${x}`);let v={conv32_down:r,conv32_1:s,conv32_2:i,conv32_3:o,conv64_down:l,conv64_1:u,conv64_2:p,conv64_3:d,conv128_down:c,conv128_1:h,conv128_2:m,conv256_down:f,conv256_1:g,conv256_2:b,conv256_down_out:y,fc:x};return _n(e,t),{params:v,paramMappings:t}}function Za(e,t){let n=kD(e,t.conv1);return n=Zk(n,t.conv2),n=X(n,e),n=Ke(n),n}function Yd(e,t){let n=Ig(e,t.conv1);n=Zk(n,t.conv2);let a=xa(e,2,2,"valid"),r=It(a.shape),s=a.shape[3]!==n.shape[3];if(a.shape[1]!==n.shape[1]||a.shape[2]!==n.shape[2]){let o=[...n.shape];o[1]=1;let l=It(o);n=et([n,l],1);let u=[...n.shape];u[2]=1;let p=It(u);n=et([n,p],2)}return a=s?et([a,r],3):a,n=X(a,n),n=Ke(n),n}var yl=class extends pn{constructor(){super("FaceRecognitionNet")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("FaceRecognitionNet - load model before inference");return O(()=>{let a=re(t.toBatchTensor(150,!0),"float32"),s=Ya(a,[122.782,117.001,104.298]).div(255),i=Ig(s,n.conv32_down);i=Dt(i,3,2,"valid"),i=Za(i,n.conv32_1),i=Za(i,n.conv32_2),i=Za(i,n.conv32_3),i=Yd(i,n.conv64_down),i=Za(i,n.conv64_1),i=Za(i,n.conv64_2),i=Za(i,n.conv64_3),i=Yd(i,n.conv128_down),i=Za(i,n.conv128_1),i=Za(i,n.conv128_2),i=Yd(i,n.conv256_down),i=Za(i,n.conv256_1),i=Za(i,n.conv256_2),i=Yd(i,n.conv256_down_out);let o=i.mean([1,2]);return $e(o,n.fc)})}async forward(t){return this.forwardInput(await vt(t))}async computeFaceDescriptor(t){var s;if((s=t==null?void 0:t.shape)!=null&&s.some(i=>i<=0))return new Float32Array(128);let n=await vt(t),a=O(()=>dt(this.forwardInput(n))),r=await Promise.all(a.map(i=>i.data()));return a.forEach(i=>i.dispose()),n.isBatchInput?r:r[0]}getDefaultModelName(){return"face_recognition_model"}extractParamsFromWeightMap(t){return SD(t)}extractParams(t){return ID(t)}};function bge(e){let t=new yl;return t.extractWeights(e),t}function Sg(e,t){return{...e,...{descriptor:t}}}function yge(e){return typeof e.age=="number"}function Ng(e,t){return{...e,...{age:t}}}function xge(e){return(e.gender==="male"||e.gender==="female")&&_p(e.genderProbability)}function Tg(e,t,n){return{...e,...{gender:t,genderProbability:n}}}function vge(e,t){function n(l,u){let p=Da(e(9*l),[3,3,l,1]),d=je(e(l)),c=je(e(l)),h=je(e(l)),m=je(e(l));return t.push({paramPath:`${u}/filters`},{paramPath:`${u}/batch_norm_scale`},{paramPath:`${u}/batch_norm_offset`},{paramPath:`${u}/batch_norm_mean`},{paramPath:`${u}/batch_norm_variance`}),{filters:p,batch_norm_scale:d,batch_norm_offset:c,batch_norm_mean:h,batch_norm_variance:m}}function a(l,u,p,d,c){let h=Da(e(l*u*p*p),[p,p,l,u]),m=je(e(u));return t.push({paramPath:`${d}/filters`},{paramPath:`${d}/${c?"batch_norm_offset":"bias"}`}),{filters:h,bias:m}}function r(l,u,p,d){let{filters:c,bias:h}=a(l,u,p,d,!0);return{filters:c,batch_norm_offset:h}}function s(l,u,p){let d=n(l,`${p}/depthwise_conv`),c=r(l,u,1,`${p}/pointwise_conv`);return{depthwise_conv:d,pointwise_conv:c}}function i(){let l=r(3,32,3,"mobilenetv1/conv_0"),u=s(32,64,"mobilenetv1/conv_1"),p=s(64,128,"mobilenetv1/conv_2"),d=s(128,128,"mobilenetv1/conv_3"),c=s(128,256,"mobilenetv1/conv_4"),h=s(256,256,"mobilenetv1/conv_5"),m=s(256,512,"mobilenetv1/conv_6"),f=s(512,512,"mobilenetv1/conv_7"),g=s(512,512,"mobilenetv1/conv_8"),b=s(512,512,"mobilenetv1/conv_9"),y=s(512,512,"mobilenetv1/conv_10"),x=s(512,512,"mobilenetv1/conv_11"),v=s(512,1024,"mobilenetv1/conv_12"),I=s(1024,1024,"mobilenetv1/conv_13");return{conv_0:l,conv_1:u,conv_2:p,conv_3:d,conv_4:c,conv_5:h,conv_6:m,conv_7:f,conv_8:g,conv_9:b,conv_10:y,conv_11:x,conv_12:v,conv_13:I}}function o(){let l=r(1024,256,1,"prediction_layer/conv_0"),u=r(256,512,3,"prediction_layer/conv_1"),p=r(512,128,1,"prediction_layer/conv_2"),d=r(128,256,3,"prediction_layer/conv_3"),c=r(256,128,1,"prediction_layer/conv_4"),h=r(128,256,3,"prediction_layer/conv_5"),m=r(256,64,1,"prediction_layer/conv_6"),f=r(64,128,3,"prediction_layer/conv_7"),g=a(512,12,1,"prediction_layer/box_predictor_0/box_encoding_predictor"),b=a(512,9,1,"prediction_layer/box_predictor_0/class_predictor"),y=a(1024,24,1,"prediction_layer/box_predictor_1/box_encoding_predictor"),x=a(1024,18,1,"prediction_layer/box_predictor_1/class_predictor"),v=a(512,24,1,"prediction_layer/box_predictor_2/box_encoding_predictor"),I=a(512,18,1,"prediction_layer/box_predictor_2/class_predictor"),N=a(256,24,1,"prediction_layer/box_predictor_3/box_encoding_predictor"),C=a(256,18,1,"prediction_layer/box_predictor_3/class_predictor"),_=a(256,24,1,"prediction_layer/box_predictor_4/box_encoding_predictor"),F=a(256,18,1,"prediction_layer/box_predictor_4/class_predictor"),D=a(128,24,1,"prediction_layer/box_predictor_5/box_encoding_predictor"),$=a(128,18,1,"prediction_layer/box_predictor_5/class_predictor");return{conv_0:l,conv_1:u,conv_2:p,conv_3:d,conv_4:c,conv_5:h,conv_6:m,conv_7:f,box_predictor_0:{box_encoding_predictor:g,class_predictor:b},box_predictor_1:{box_encoding_predictor:y,class_predictor:x},box_predictor_2:{box_encoding_predictor:v,class_predictor:I},box_predictor_3:{box_encoding_predictor:N,class_predictor:C},box_predictor_4:{box_encoding_predictor:_,class_predictor:F},box_predictor_5:{box_encoding_predictor:D,class_predictor:$}}}return{extractMobilenetV1Params:i,extractPredictionLayerParams:o}}function ND(e){let t=[],{extractWeights:n,getRemainingWeights:a}=An(e),{extractMobilenetV1Params:r,extractPredictionLayerParams:s}=vge(n,t),i=r(),o=s(),u={extra_dim:Nd(n(5118*4),[1,5118,4])};if(t.push({paramPath:"output_layer/extra_dim"}),a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{params:{mobilenetv1:i,prediction_layer:o,output_layer:u},paramMappings:t}}function wge(e,t){let n=ia(e,t);function a(u,p,d){let c=n(`${u}/Conv2d_${p}_pointwise/weights`,4,`${d}/filters`),h=n(`${u}/Conv2d_${p}_pointwise/convolution_bn_offset`,1,`${d}/batch_norm_offset`);return{filters:c,batch_norm_offset:h}}function r(u){let p=`mobilenetv1/conv_${u}`,d=`MobilenetV1/Conv2d_${u}_depthwise`,c=`${p}/depthwise_conv`,h=`${p}/pointwise_conv`,m=n(`${d}/depthwise_weights`,4,`${c}/filters`),f=n(`${d}/BatchNorm/gamma`,1,`${c}/batch_norm_scale`),g=n(`${d}/BatchNorm/beta`,1,`${c}/batch_norm_offset`),b=n(`${d}/BatchNorm/moving_mean`,1,`${c}/batch_norm_mean`),y=n(`${d}/BatchNorm/moving_variance`,1,`${c}/batch_norm_variance`);return{depthwise_conv:{filters:m,batch_norm_scale:f,batch_norm_offset:g,batch_norm_mean:b,batch_norm_variance:y},pointwise_conv:a("MobilenetV1",u,h)}}function s(){return{conv_0:a("MobilenetV1",0,"mobilenetv1/conv_0"),conv_1:r(1),conv_2:r(2),conv_3:r(3),conv_4:r(4),conv_5:r(5),conv_6:r(6),conv_7:r(7),conv_8:r(8),conv_9:r(9),conv_10:r(10),conv_11:r(11),conv_12:r(12),conv_13:r(13)}}function i(u,p){let d=n(`${u}/weights`,4,`${p}/filters`),c=n(`${u}/biases`,1,`${p}/bias`);return{filters:d,bias:c}}function o(u){let p=i(`Prediction/BoxPredictor_${u}/BoxEncodingPredictor`,`prediction_layer/box_predictor_${u}/box_encoding_predictor`),d=i(`Prediction/BoxPredictor_${u}/ClassPredictor`,`prediction_layer/box_predictor_${u}/class_predictor`);return{box_encoding_predictor:p,class_predictor:d}}function l(){return{conv_0:a("Prediction",0,"prediction_layer/conv_0"),conv_1:a("Prediction",1,"prediction_layer/conv_1"),conv_2:a("Prediction",2,"prediction_layer/conv_2"),conv_3:a("Prediction",3,"prediction_layer/conv_3"),conv_4:a("Prediction",4,"prediction_layer/conv_4"),conv_5:a("Prediction",5,"prediction_layer/conv_5"),conv_6:a("Prediction",6,"prediction_layer/conv_6"),conv_7:a("Prediction",7,"prediction_layer/conv_7"),box_predictor_0:o(0),box_predictor_1:o(1),box_predictor_2:o(2),box_predictor_3:o(3),box_predictor_4:o(4),box_predictor_5:o(5)}}return{extractMobilenetV1Params:s,extractPredictionLayerParams:l}}function TD(e){let t=[],{extractMobilenetV1Params:n,extractPredictionLayerParams:a}=wge(e,t),r=e["Output/extra_dim"];if(t.push({originalPath:"Output/extra_dim",paramPath:"output_layer/extra_dim"}),!Wr(r))throw new Error(`expected weightMap['Output/extra_dim'] to be a Tensor3D, instead have ${r}`);let s={mobilenetv1:n(),prediction_layer:a(),output_layer:{extra_dim:r}};return _n(e,t),{params:s,paramMappings:t}}function Oa(e,t,n){return O(()=>{let a=$t(e,t.filters,n,"same");return a=X(a,t.batch_norm_offset),an(a,0,6)})}var kge=.0010000000474974513;function Ige(e,t,n){return O(()=>{let a=As(e,t.filters,n,"same");return a=_s(a,t.batch_norm_mean,t.batch_norm_variance,t.batch_norm_offset,t.batch_norm_scale,kge),an(a,0,6)})}function Sge(e){return[2,4,6,12].some(t=>t===e)?[2,2]:[1,1]}function CD(e,t){return O(()=>{let n,a=Oa(e,t.conv_0,[2,2]);if([t.conv_1,t.conv_2,t.conv_3,t.conv_4,t.conv_5,t.conv_6,t.conv_7,t.conv_8,t.conv_9,t.conv_10,t.conv_11,t.conv_12,t.conv_13].forEach((s,i)=>{let o=i+1,l=Sge(o);a=Ige(a,s.depthwise_conv,l),a=Oa(a,s.pointwise_conv,[1,1]),o===11&&(n=a)}),n===null)throw new Error("mobileNetV1 - output of conv layer 11 is null");return{out:a,conv11:n}})}function Nge(e,t,n){let a=e.arraySync(),r=Math.min(a[t][0],a[t][2]),s=Math.min(a[t][1],a[t][3]),i=Math.max(a[t][0],a[t][2]),o=Math.max(a[t][1],a[t][3]),l=Math.min(a[n][0],a[n][2]),u=Math.min(a[n][1],a[n][3]),p=Math.max(a[n][0],a[n][2]),d=Math.max(a[n][1],a[n][3]),c=(i-r)*(o-s),h=(p-l)*(d-u);if(c<=0||h<=0)return 0;let m=Math.max(r,l),f=Math.max(s,u),g=Math.min(i,p),b=Math.min(o,d),y=Math.max(g-m,0)*Math.max(b-f,0);return y/(c+h-y)}function ED(e,t,n,a,r){let s=e.shape[0],i=Math.min(n,s),o=t.map((p,d)=>({score:p,boxIndex:d})).filter(p=>p.score>r).sort((p,d)=>d.score-p.score),l=p=>p<=a?1:0,u=[];return o.forEach(p=>{if(u.length>=i)return;let d=p.score;for(let c=u.length-1;c>=0;--c){let h=Nge(e,p.boxIndex,u[c]);if(h!==0&&(p.score*=l(h),p.score<=r))break}d===p.score&&u.push(p.boxIndex)}),u}function Tge(e){let t=dt(De(e,[1,0])),n=[pe(t[2],t[0]),pe(t[3],t[1])],a=[X(t[0],he(n[0],2)),X(t[1],he(n[1],2))];return{sizes:n,centers:a}}function Cge(e,t){let{sizes:n,centers:a}=Tge(e),r=dt(De(t,[1,0])),s=he(z(mn(he(r[2],5)),n[0]),2),i=X(z(he(r[0],10),n[0]),a[0]),o=he(z(mn(he(r[3],5)),n[1]),2),l=X(z(he(r[1],10),n[1]),a[1]);return De(Ft([pe(i,s),pe(l,o),X(i,s),X(l,o)]),[1,0])}function _D(e,t,n){return O(()=>{let a=e.shape[0],r=Cge(W(On(n.extra_dim,[a,1,1]),[-1,4]),W(e,[-1,4]));r=W(r,[a,r.shape[0]/a,4]);let s=ma(Ve(t,[0,0,1],[-1,-1,-1])),i=Ve(s,[0,0,0],[-1,-1,1]);i=W(i,[a,i.shape[1]]);let o=dt(r),l=dt(i);return{boxes:o,scores:l}})}function xl(e,t){return O(()=>{let n=e.shape[0],a=W(fl(e,t.box_encoding_predictor),[n,-1,1,4]),r=W(fl(e,t.class_predictor),[n,-1,3]);return{boxPredictionEncoding:a,classPrediction:r}})}function AD(e,t,n){return O(()=>{let a=Oa(e,n.conv_0,[1,1]),r=Oa(a,n.conv_1,[2,2]),s=Oa(r,n.conv_2,[1,1]),i=Oa(s,n.conv_3,[2,2]),o=Oa(i,n.conv_4,[1,1]),l=Oa(o,n.conv_5,[2,2]),u=Oa(l,n.conv_6,[1,1]),p=Oa(u,n.conv_7,[2,2]),d=xl(t,n.box_predictor_0),c=xl(e,n.box_predictor_1),h=xl(r,n.box_predictor_2),m=xl(i,n.box_predictor_3),f=xl(l,n.box_predictor_4),g=xl(p,n.box_predictor_5),b=et([d.boxPredictionEncoding,c.boxPredictionEncoding,h.boxPredictionEncoding,m.boxPredictionEncoding,f.boxPredictionEncoding,g.boxPredictionEncoding],1),y=et([d.classPrediction,c.classPrediction,h.classPrediction,m.classPrediction,f.classPrediction,g.classPrediction],1);return{boxPredictions:b,classPredictions:y}})}var Ia=class{constructor({minConfidence:t,maxResults:n}={}){this._name="SsdMobilenetv1Options";if(this._minConfidence=t||.5,this._maxResults=n||100,typeof this._minConfidence!="number"||this._minConfidence<=0||this._minConfidence>=1)throw new Error(`${this._name} - expected minConfidence to be a number between 0 and 1`);if(typeof this._maxResults!="number")throw new Error(`${this._name} - expected maxResults to be a number`)}get minConfidence(){return this._minConfidence}get maxResults(){return this._maxResults}};var Ws=class extends pn{constructor(){super("SsdMobilenetv1")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("SsdMobilenetv1 - load model before inference");return O(()=>{let a=re(t.toBatchTensor(512,!1),"float32"),r=pe(he(a,127.5),1),s=CD(r,n.mobilenetv1),{boxPredictions:i,classPredictions:o}=AD(s.out,s.conv11,n.prediction_layer);return _D(i,o,n.output_layer)})}async forward(t){return this.forwardInput(await vt(t))}async locateFaces(t,n={}){let{maxResults:a,minConfidence:r}=new Ia(n),s=await vt(t),{boxes:i,scores:o}=this.forwardInput(s),l=i[0],u=o[0];for(let x=1;x{let[v,I]=[Math.max(0,b[x][0]),Math.min(1,b[x][2])].map(_=>_*g),[N,C]=[Math.max(0,b[x][1]),Math.min(1,b[x][3])].map(_=>_*f);return new Tt(p[x],new ll(N,v,C-N,I-v),{height:s.getInputHeight(0),width:s.getInputWidth(0)})});return l.dispose(),u.dispose(),y}getDefaultModelName(){return"ssd_mobilenetv1_model"}extractParamsFromWeightMap(t){return TD(t)}extractParams(t){return ND(t)}};function FD(e){let t=new Ws;return t.extractWeights(e),t}function Ege(e){return FD(e)}var Jk=class extends Ws{};var $D=.4,DD=[new Ue(.738768,.874946),new Ue(2.42204,2.65704),new Ue(4.30971,7.04493),new Ue(10.246,4.59428),new Ue(12.6868,11.8741)],RD=[new Ue(1.603231,2.094468),new Ue(6.041143,7.080126),new Ue(2.882459,3.518061),new Ue(4.266906,5.178857),new Ue(9.041765,10.66308)],MD=[117.001,114.697,97.404],OD="tiny_yolov2_model",PD="tiny_yolov2_separable_conv_model";var Cg=e=>typeof e=="number";function Qk(e){if(!e)throw new Error(`invalid config: ${e}`);if(typeof e.withSeparableConvs!="boolean")throw new Error(`config.withSeparableConvs has to be a boolean, have: ${e.withSeparableConvs}`);if(!Cg(e.iouThreshold)||e.iouThreshold<0||e.iouThreshold>1)throw new Error(`config.iouThreshold has to be a number between [0, 1], have: ${e.iouThreshold}`);if(!Array.isArray(e.classes)||!e.classes.length||!e.classes.every(t=>typeof t=="string"))throw new Error(`config.classes has to be an array class names: string[], have: ${JSON.stringify(e.classes)}`);if(!Array.isArray(e.anchors)||!e.anchors.length||!e.anchors.map(t=>t||{}).every(t=>Cg(t.x)&&Cg(t.y)))throw new Error(`config.anchors has to be an array of { x: number, y: number }, have: ${JSON.stringify(e.anchors)}`);if(e.meanRgb&&(!Array.isArray(e.meanRgb)||e.meanRgb.length!==3||!e.meanRgb.every(Cg)))throw new Error(`config.meanRgb has to be an array of shape [number, number, number], have: ${JSON.stringify(e.meanRgb)}`)}function Vp(e){return O(()=>{let t=z(e,xe(.10000000149011612));return X(Ke(pe(e,t)),t)})}function Ur(e,t){return O(()=>{let n=va(e,[[0,0],[1,1],[1,1],[0,0]]);return n=$t(n,t.conv.filters,[1,1],"valid"),n=pe(n,t.bn.sub),n=z(n,t.bn.truediv),n=X(n,t.conv.bias),Vp(n)})}function Gr(e,t){return O(()=>{let n=va(e,[[0,0],[1,1],[1,1],[0,0]]);return n=Ds(n,t.depthwise_filter,t.pointwise_filter,[1,1],"valid"),n=X(n,t.bias),Vp(n)})}function _ge(e,t){let n=Mp(e,t);function a(i,o){let l=je(e(i)),u=je(e(i));return t.push({paramPath:`${o}/sub`},{paramPath:`${o}/truediv`}),{sub:l,truediv:u}}function r(i,o,l){let u=n(i,o,3,`${l}/conv`),p=a(o,`${l}/bn`);return{conv:u,bn:p}}let s=Op(e,t);return{extractConvParams:n,extractConvWithBatchNormParams:r,extractSeparableConvParams:s}}function LD(e,t,n,a){let{extractWeights:r,getRemainingWeights:s}=An(e),i=[],{extractConvParams:o,extractConvWithBatchNormParams:l,extractSeparableConvParams:u}=_ge(r,i),p;if(t.withSeparableConvs){let[d,c,h,m,f,g,b,y,x]=a,v=t.isFirstLayerConv2d?o(d,c,3,"conv0"):u(d,c,"conv0"),I=u(c,h,"conv1"),N=u(h,m,"conv2"),C=u(m,f,"conv3"),_=u(f,g,"conv4"),F=u(g,b,"conv5"),D=y?u(b,y,"conv6"):void 0,$=x?u(y,x,"conv7"):void 0,S=o(x||y||b,5*n,1,"conv8");p={conv0:v,conv1:I,conv2:N,conv3:C,conv4:_,conv5:F,conv6:D,conv7:$,conv8:S}}else{let[d,c,h,m,f,g,b,y,x]=a,v=l(d,c,"conv0"),I=l(c,h,"conv1"),N=l(h,m,"conv2"),C=l(m,f,"conv3"),_=l(f,g,"conv4"),F=l(g,b,"conv5"),D=l(b,y,"conv6"),$=l(y,x,"conv7"),S=o(x,5*n,1,"conv8");p={conv0:v,conv1:I,conv2:N,conv3:C,conv4:_,conv5:F,conv6:D,conv7:$,conv8:S}}if(s().length!==0)throw new Error(`weights remaing after extract: ${s().length}`);return{params:p,paramMappings:i}}function Age(e,t){let n=ia(e,t);function a(o){let l=n(`${o}/sub`,1),u=n(`${o}/truediv`,1);return{sub:l,truediv:u}}function r(o){let l=n(`${o}/filters`,4),u=n(`${o}/bias`,1);return{filters:l,bias:u}}function s(o){let l=r(`${o}/conv`),u=a(`${o}/bn`);return{conv:l,bn:u}}let i=Pp(n);return{extractConvParams:r,extractConvWithBatchNormParams:s,extractSeparableConvParams:i}}function zD(e,t){let n=[],{extractConvParams:a,extractConvWithBatchNormParams:r,extractSeparableConvParams:s}=Age(e,n),i;if(t.withSeparableConvs){let o=t.filterSizes&&t.filterSizes.length||9;i={conv0:t.isFirstLayerConv2d?a("conv0"):s("conv0"),conv1:s("conv1"),conv2:s("conv2"),conv3:s("conv3"),conv4:s("conv4"),conv5:s("conv5"),conv6:o>7?s("conv6"):void 0,conv7:o>8?s("conv7"):void 0,conv8:a("conv8")}}else i={conv0:r("conv0"),conv1:r("conv1"),conv2:r("conv2"),conv3:r("conv3"),conv4:r("conv4"),conv5:r("conv5"),conv6:r("conv6"),conv7:r("conv7"),conv8:a("conv8")};return _n(e,n),{params:i,paramMappings:n}}var Ja=class{constructor({inputSize:t,scoreThreshold:n}={}){this._name="TinyYolov2Options";if(this._inputSize=t||416,this._scoreThreshold=n||.5,typeof this._inputSize!="number"||this._inputSize%32!==0)throw new Error(`${this._name} - expected inputSize to be a number divisible by 32`);if(typeof this._scoreThreshold!="number"||this._scoreThreshold<=0||this._scoreThreshold>=1)throw new Error(`${this._name} - expected scoreThreshold to be a number between 0 and 1`)}get inputSize(){return this._inputSize}get scoreThreshold(){return this._scoreThreshold}};var Eg=class Eg extends pn{constructor(t){super("TinyYolov2"),Qk(t),this._config=t}get config(){return this._config}get withClassScores(){return this.config.withClassScores||this.config.classes.length>1}get boxEncodingSize(){return 5+(this.withClassScores?this.config.classes.length:0)}runTinyYolov2(t,n){let a=Ur(t,n.conv0);return a=Dt(a,[2,2],[2,2],"same"),a=Ur(a,n.conv1),a=Dt(a,[2,2],[2,2],"same"),a=Ur(a,n.conv2),a=Dt(a,[2,2],[2,2],"same"),a=Ur(a,n.conv3),a=Dt(a,[2,2],[2,2],"same"),a=Ur(a,n.conv4),a=Dt(a,[2,2],[2,2],"same"),a=Ur(a,n.conv5),a=Dt(a,[2,2],[1,1],"same"),a=Ur(a,n.conv6),a=Ur(a,n.conv7),fl(a,n.conv8,"valid",!1)}runMobilenet(t,n){let a=this.config.isFirstLayerConv2d?Vp(fl(t,n.conv0,"valid",!1)):Gr(t,n.conv0);return a=Dt(a,[2,2],[2,2],"same"),a=Gr(a,n.conv1),a=Dt(a,[2,2],[2,2],"same"),a=Gr(a,n.conv2),a=Dt(a,[2,2],[2,2],"same"),a=Gr(a,n.conv3),a=Dt(a,[2,2],[2,2],"same"),a=Gr(a,n.conv4),a=Dt(a,[2,2],[2,2],"same"),a=Gr(a,n.conv5),a=Dt(a,[2,2],[1,1],"same"),a=n.conv6?Gr(a,n.conv6):a,a=n.conv7?Gr(a,n.conv7):a,fl(a,n.conv8,"valid",!1)}forwardInput(t,n){let{params:a}=this;if(!a)throw new Error("TinyYolov2 - load model before inference");return O(()=>{let r=re(t.toBatchTensor(n,!1),"float32");return r=this.config.meanRgb?Ya(r,this.config.meanRgb):r,r=r.div(255),this.config.withSeparableConvs?this.runMobilenet(r,a):this.runTinyYolov2(r,a)})}async forward(t,n){return this.forwardInput(await vt(t),n)}async detect(t,n={}){let{inputSize:a,scoreThreshold:r}=new Ja(n),s=await vt(t),i=await this.forwardInput(s,a),o=O(()=>dt(i)[0].expandDims()),l={width:s.getInputWidth(0),height:s.getInputHeight(0)},u=await this.extractBoxes(o,s.getReshapedInputDimensions(0),r);i.dispose(),o.dispose();let p=u.map(g=>g.box),d=u.map(g=>g.score),c=u.map(g=>g.classScore),h=u.map(g=>this.config.classes[g.label]);return _k(p.map(g=>g.rescale(a)),d,this.config.iouThreshold,!0).map(g=>new ol(d[g],c[g],h[g],p[g],l))}getDefaultModelName(){return""}extractParamsFromWeightMap(t){return zD(t,this.config)}extractParams(t){let n=this.config.filterSizes||Eg.DEFAULT_FILTER_SIZES,a=n?n.length:void 0;if(a!==7&&a!==8&&a!==9)throw new Error(`TinyYolov2 - expected 7 | 8 | 9 convolutional filters, but found ${a} filterSizes in config`);return LD(t,this.config,this.boxEncodingSize,n)}async extractBoxes(t,n,a){let{width:r,height:s}=n,i=Math.max(r,s),o=i/r,l=i/s,u=t.shape[1],p=this.config.anchors.length,[d,c,h]=O(()=>{let b=t.reshape([u,u,p,this.boxEncodingSize]),y=b.slice([0,0,0,0],[u,u,p,4]),x=b.slice([0,0,0,4],[u,u,p,1]),v=this.withClassScores?qa(b.slice([0,0,0,5],[u,u,p,this.config.classes.length]),3):xe(0);return[y,x,v]}),m=[],f=await c.array(),g=await d.array();for(let b=0;ba){let I=(y+zd(g[b][y][x][0]))/u*o,N=(b+zd(g[b][y][x][1]))/u*l,C=Math.exp(g[b][y][x][2])*this.config.anchors[x].x/u*o,_=Math.exp(g[b][y][x][3])*this.config.anchors[x].y/u*l,F=I-C/2,D=N-_/2,$={row:b,col:y,anchor:x},{classScore:S,label:M}=this.withClassScores?await this.extractPredictedClass(h,$):{classScore:1,label:0};m.push({box:new il(F,D,F+C,D+_),score:v,classScore:v*S,label:M,...$})}}return d.dispose(),c.dispose(),h.dispose(),m}async extractPredictedClass(t,n){let{row:a,col:r,anchor:s}=n,i=await t.array();return Array(this.config.classes.length).fill(0).map((o,l)=>i[a][r][s][l]).map((o,l)=>({classScore:o,label:l})).reduce((o,l)=>o.classScore>l.classScore?o:l)}};Eg.DEFAULT_FILTER_SIZES=[3,16,32,64,128,256,512,1024,1024];var Up=Eg;var vl=class extends Up{constructor(t=!0){let n={withSeparableConvs:t,iouThreshold:$D,classes:["face"],...t?{anchors:RD,meanRgb:MD}:{anchors:DD,withClassScores:!0}};super(n)}get withSeparableConvs(){return this.config.withSeparableConvs}get anchors(){return this.config.anchors}async locateFaces(t,n){return(await this.detect(t,n)).map(r=>new Tt(r.score,r.relativeBox,{width:r.imageWidth,height:r.imageHeight}))}getDefaultModelName(){return this.withSeparableConvs?PD:OD}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};function Fge(e,t=!0){let n=new vl(t);return n.extractWeights(e),n}var Zd=class extends Ja{constructor(){super(...arguments);this._name="TinyFaceDetectorOptions"}};var Sa=class{async then(t){return t(await this.run())}async run(){throw new Error("ComposableTask - run is not implemented")}};async function wl(e,t,n,a,r=({alignedRect:s})=>s){let s=e.map(l=>gl(l)?r(l):l.detection),i=a||(t instanceof Ce?await Rp(t,s):await Dp(t,s)),o=await n(i);return i.forEach(l=>l instanceof Ce&&l.dispose()),o}async function Gp(e,t,n,a,r){return wl([e],t,async s=>n(s[0]),a,r)}var WD=.4,BD=[new Ue(1.603231,2.094468),new Ue(6.041143,7.080126),new Ue(2.882459,3.518061),new Ue(4.266906,5.178857),new Ue(9.041765,10.66308)],VD=[117.001,114.697,97.404];var kl=class extends Up{constructor(){let t={withSeparableConvs:!0,iouThreshold:WD,classes:["face"],anchors:BD,meanRgb:VD,isFirstLayerConv2d:!0,filterSizes:[3,16,32,64,128,256,512]};super(t)}get anchors(){return this.config.anchors}async locateFaces(t,n){return(await this.detect(t,n)).map(r=>new Tt(r.score,r.relativeBox,{width:r.imageWidth,height:r.imageHeight}))}getDefaultModelName(){return"tiny_face_detector_model"}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};var nt={ssdMobilenetv1:new Ws,tinyFaceDetector:new kl,tinyYolov2:new vl,faceLandmark68Net:new bl,faceLandmark68TinyNet:new Xd,faceRecognitionNet:new yl,faceExpressionNet:new qd,ageGenderNet:new Kd},UD=(e,t)=>nt.ssdMobilenetv1.locateFaces(e,t),$ge=(e,t)=>nt.tinyFaceDetector.locateFaces(e,t),Dge=(e,t)=>nt.tinyYolov2.locateFaces(e,t),GD=e=>nt.faceLandmark68Net.detectLandmarks(e),Rge=e=>nt.faceLandmark68TinyNet.detectLandmarks(e),Mge=e=>nt.faceRecognitionNet.computeFaceDescriptor(e),Oge=e=>nt.faceExpressionNet.predictExpressions(e),Pge=e=>nt.ageGenderNet.predictAgeAndGender(e),HD=e=>nt.ssdMobilenetv1.load(e),Lge=e=>nt.tinyFaceDetector.load(e),zge=e=>nt.tinyYolov2.load(e),Wge=e=>nt.faceLandmark68Net.load(e),Bge=e=>nt.faceLandmark68TinyNet.load(e),Vge=e=>nt.faceRecognitionNet.load(e),Uge=e=>nt.faceExpressionNet.load(e),Gge=e=>nt.ageGenderNet.load(e),Hge=HD,jge=UD,qge=GD;var _g=class extends Sa{constructor(n,a,r){super();this.parentTask=n;this.input=a;this.extractedFaces=r}},Il=class extends _g{async run(){let t=await this.parentTask,n=await wl(t,this.input,async a=>Promise.all(a.map(r=>nt.faceExpressionNet.predictExpressions(r))),this.extractedFaces);return t.map((a,r)=>bg(a,n[r]))}withAgeAndGender(){return new Nl(this,this.input)}},Sl=class extends _g{async run(){let t=await this.parentTask;if(!t)return;let n=await Gp(t,this.input,a=>nt.faceExpressionNet.predictExpressions(a),this.extractedFaces);return bg(t,n)}withAgeAndGender(){return new Tl(this,this.input)}},Bs=class extends Il{withAgeAndGender(){return new Us(this,this.input)}withFaceDescriptors(){return new Hr(this,this.input)}},Vs=class extends Sl{withAgeAndGender(){return new Gs(this,this.input)}withFaceDescriptor(){return new jr(this,this.input)}};var Ag=class extends Sa{constructor(n,a,r){super();this.parentTask=n;this.input=a;this.extractedFaces=r}},Nl=class extends Ag{async run(){let t=await this.parentTask,n=await wl(t,this.input,async a=>Promise.all(a.map(r=>nt.ageGenderNet.predictAgeAndGender(r))),this.extractedFaces);return t.map((a,r)=>{let{age:s,gender:i,genderProbability:o}=n[r];return Ng(Tg(a,i,o),s)})}withFaceExpressions(){return new Il(this,this.input)}},Tl=class extends Ag{async run(){let t=await this.parentTask;if(!t)return;let{age:n,gender:a,genderProbability:r}=await Gp(t,this.input,s=>nt.ageGenderNet.predictAgeAndGender(s),this.extractedFaces);return Ng(Tg(t,a,r),n)}withFaceExpressions(){return new Sl(this,this.input)}},Us=class extends Nl{withFaceExpressions(){return new Bs(this,this.input)}withFaceDescriptors(){return new Hr(this,this.input)}},Gs=class extends Tl{withFaceExpressions(){return new Vs(this,this.input)}withFaceDescriptor(){return new jr(this,this.input)}};var Jd=class extends Sa{constructor(n,a){super();this.parentTask=n;this.input=a}},Hr=class extends Jd{async run(){let t=await this.parentTask;return(await wl(t,this.input,a=>Promise.all(a.map(r=>nt.faceRecognitionNet.computeFaceDescriptor(r))),null,a=>a.landmarks.align(null,{useDlibAlignment:!0}))).map((a,r)=>Sg(t[r],a))}withFaceExpressions(){return new Bs(this,this.input)}withAgeAndGender(){return new Us(this,this.input)}},jr=class extends Jd{async run(){let t=await this.parentTask;if(!t)return;let n=await Gp(t,this.input,a=>nt.faceRecognitionNet.computeFaceDescriptor(a),null,a=>a.landmarks.align(null,{useDlibAlignment:!0}));return Sg(t,n)}withFaceExpressions(){return new Vs(this,this.input)}withAgeAndGender(){return new Gs(this,this.input)}};var Qd=class extends Sa{constructor(n,a,r){super();this.parentTask=n;this.input=a;this.useTinyLandmarkNet=r}get landmarkNet(){return this.useTinyLandmarkNet?nt.faceLandmark68TinyNet:nt.faceLandmark68Net}},eh=class extends Qd{async run(){let t=await this.parentTask,n=t.map(i=>i.detection),a=this.input instanceof Ce?await Rp(this.input,n):await Dp(this.input,n),r=await Promise.all(a.map(i=>this.landmarkNet.detectLandmarks(i)));return a.forEach(i=>i instanceof Ce&&i.dispose()),t.filter((i,o)=>r[o]).map((i,o)=>Wp(i,r[o]))}withFaceExpressions(){return new Bs(this,this.input)}withAgeAndGender(){return new Us(this,this.input)}withFaceDescriptors(){return new Hr(this,this.input)}},th=class extends Qd{async run(){let t=await this.parentTask;if(!t)return;let{detection:n}=t,a=this.input instanceof Ce?await Rp(this.input,[n]):await Dp(this.input,[n]),r=await this.landmarkNet.detectLandmarks(a[0]);return a.forEach(s=>s instanceof Ce&&s.dispose()),Wp(t,r)}withFaceExpressions(){return new Vs(this,this.input)}withAgeAndGender(){return new Gs(this,this.input)}withFaceDescriptor(){return new jr(this,this.input)}};var nh=class extends Sa{constructor(n,a=new Ia){super();this.input=n;this.options=a}},Hp=class extends nh{async run(){let{input:t,options:n}=this,a;if(n instanceof Zd)a=nt.tinyFaceDetector.locateFaces(t,n);else if(n instanceof Ia)a=nt.ssdMobilenetv1.locateFaces(t,n);else if(n instanceof Ja)a=nt.tinyYolov2.locateFaces(t,n);else throw new Error("detectFaces - expected options to be instance of TinyFaceDetectorOptions | SsdMobilenetv1Options | TinyYolov2Options");return a}runAndExtendWithFaceDetections(){return new Promise((t,n)=>{this.run().then(a=>t(a.map(r=>pl({},r)))).catch(a=>n(a))})}withFaceLandmarks(t=!1){return new eh(this.runAndExtendWithFaceDetections(),this.input,t)}withFaceExpressions(){return new Il(this.runAndExtendWithFaceDetections(),this.input)}withAgeAndGender(){return new Nl(this.runAndExtendWithFaceDetections(),this.input)}},ah=class extends nh{async run(){let t=await new Hp(this.input,this.options),n=t[0];return t.forEach(a=>{a.score>n.score&&(n=a)}),n}runAndExtendWithFaceDetection(){return new Promise(async t=>{let n=await this.run();t(n?pl({},n):void 0)})}withFaceLandmarks(t=!1){return new th(this.runAndExtendWithFaceDetection(),this.input,t)}withFaceExpressions(){return new Sl(this.runAndExtendWithFaceDetection(),this.input)}withAgeAndGender(){return new Tl(this.runAndExtendWithFaceDetection(),this.input)}};function Kge(e,t=new Ia){return new ah(e,t)}function Fg(e,t=new Ia){return new Hp(e,t)}async function jD(e,t){return Fg(e,new Ia(t?{minConfidence:t}:{})).withFaceLandmarks().withFaceDescriptors()}async function Xge(e,t={}){return Fg(e,new Ja(t)).withFaceLandmarks().withFaceDescriptors()}var Yge=jD;function eI(e,t){if(e.length!==t.length)throw new Error("euclideanDistance: arr1.length !== arr2.length");let n=Array.from(e),a=Array.from(t);return Math.sqrt(n.map((r,s)=>r-a[s]).reduce((r,s)=>r+s*s,0))}var tI=class e{constructor(t,n=.6){this._distanceThreshold=n;let a=Array.isArray(t)?t:[t];if(!a.length)throw new Error("FaceRecognizer.constructor - expected atleast one input");let r=1,s=()=>`person ${r++}`;this._labeledDescriptors=a.map(i=>{if(i instanceof zs)return i;if(i instanceof Float32Array)return new zs(s(),[i]);if(i.descriptor&&i.descriptor instanceof Float32Array)return new zs(s(),[i.descriptor]);throw new Error("FaceRecognizer.constructor - expected inputs to be of type LabeledFaceDescriptors | WithFaceDescriptor | Float32Array | Array | Float32Array>")})}get labeledDescriptors(){return this._labeledDescriptors}get distanceThreshold(){return this._distanceThreshold}computeMeanDistance(t,n){return n.map(a=>eI(a,t)).reduce((a,r)=>a+r,0)/(n.length||1)}matchDescriptor(t){return this.labeledDescriptors.map(({descriptors:n,label:a})=>new Ap(a,this.computeMeanDistance(t,n))).reduce((n,a)=>n.distancet.toJSON())}}static fromJSON(t){let n=t.labeledDescriptors.map(a=>zs.fromJSON(a));return new e(n,t.distanceThreshold)}};function Zge(e){let t=new kl;return t.extractWeights(e),t}function qD(e,t){let{width:n,height:a}=new Un(t.width,t.height);if(n<=0||a<=0)throw new Error(`resizeResults - invalid dimensions: ${JSON.stringify({width:n,height:a})}`);if(Array.isArray(e))return e.map(r=>qD(r,{width:n,height:a}));if(gl(e)){let r=e.detection.forSize(n,a),s=e.unshiftedLandmarks.forSize(r.box.width,r.box.height);return Wp(pl(e,r),s)}return xr(e)?pl(e,e.detection.forSize(n,a)):e instanceof sa||e instanceof Tt?e.forSize(n,a):e}var Jge=hD;return $R(Qge);})(); diff --git a/dist/face-api.node-gpu.js b/dist/face-api.node-gpu.js index c980ee0..af6b173 100644 --- a/dist/face-api.node-gpu.js +++ b/dist/face-api.node-gpu.js @@ -4,4 +4,4 @@ author: ' */ -"use strict";var ln=Object.create;var tr=Object.defineProperty;var dn=Object.getOwnPropertyDescriptor;var hn=Object.getOwnPropertyNames;var bn=Object.getPrototypeOf,gn=Object.prototype.hasOwnProperty;var xn=(o,t)=>()=>(t||o((t={exports:{}}).exports,t),t.exports),Sr=(o,t)=>{for(var e in t)tr(o,e,{get:t[e],enumerable:!0})},_o=(o,t,e,r)=>{if(t&&typeof t=="object"||typeof t=="function")for(let n of hn(t))!gn.call(o,n)&&n!==e&&tr(o,n,{get:()=>t[n],enumerable:!(r=dn(t,n))||r.enumerable});return o};var v=(o,t,e)=>(e=o!=null?ln(bn(o)):{},_o(t||!o||!o.__esModule?tr(e,"default",{value:o,enumerable:!0}):e,o)),vn=o=>_o(tr({},"__esModule",{value:!0}),o);var x=xn((Ya,Br)=>{"use strict";var Wr=Object.defineProperty,yn=Object.getOwnPropertyDescriptor,_n=Object.getOwnPropertyNames,Tn=Object.prototype.hasOwnProperty,Pn=(o,t)=>{for(var e in t)Wr(o,e,{get:t[e],enumerable:!0})},Ar=(o,t,e,r)=>{if(t&&typeof t=="object"||typeof t=="function")for(let n of _n(t))!Tn.call(o,n)&&n!==e&&Wr(o,n,{get:()=>t[n],enumerable:!(r=yn(t,n))||r.enumerable});return o},wn=(o,t,e)=>(Ar(o,t,"default"),e&&Ar(e,t,"default")),Fn=o=>Ar(Wr({},"__esModule",{value:!0}),o),kr={};Pn(kr,{version:()=>In});Br.exports=Fn(kr);wn(kr,require("@tensorflow/tfjs-node-gpu"),Br.exports);var To="4.22.0",Dn="4.22.0",En="4.22.0",Mn="4.22.0",Cn="4.22.0",In={tfjs:To,"tfjs-core":To,"tfjs-converter":Dn,"tfjs-backend-cpu":En,"tfjs-backend-webgl":Mn,"tfjs-backend-wasm":Cn}});var Ba={};Sr(Ba,{AgeGenderNet:()=>He,BoundingBox:()=>Ot,Box:()=>L,ComposableTask:()=>J,ComputeAllFaceDescriptorsTask:()=>_t,ComputeFaceDescriptorsTaskBase:()=>Ue,ComputeSingleFaceDescriptorTask:()=>Tt,DetectAllFaceLandmarksTask:()=>qe,DetectAllFacesTask:()=>Ie,DetectFaceLandmarksTaskBase:()=>Je,DetectFacesTaskBase:()=>Ke,DetectSingleFaceLandmarksTask:()=>Ze,DetectSingleFaceTask:()=>Qe,Dimensions:()=>R,FACE_EXPRESSION_LABELS:()=>so,FaceDetection:()=>M,FaceDetectionNet:()=>lo,FaceExpressionNet:()=>Oe,FaceExpressions:()=>gt,FaceLandmark68Net:()=>Zt,FaceLandmark68TinyNet:()=>ze,FaceLandmarkNet:()=>po,FaceLandmarks:()=>H,FaceLandmarks5:()=>jr,FaceLandmarks68:()=>Yt,FaceMatch:()=>me,FaceMatcher:()=>vo,FaceRecognitionNet:()=>Kt,Gender:()=>_r,LabeledBox:()=>pe,LabeledFaceDescriptors:()=>Et,NetInput:()=>ut,NeuralNetwork:()=>A,ObjectDetection:()=>Ht,Point:()=>_,PredictedBox:()=>Ur,Rect:()=>zt,SsdMobilenetv1:()=>It,SsdMobilenetv1Options:()=>X,TinyFaceDetector:()=>re,TinyFaceDetectorOptions:()=>je,TinyYolov2:()=>te,TinyYolov2Options:()=>st,allFaces:()=>Sa,allFacesSsdMobilenetv1:()=>un,allFacesTinyYolov2:()=>La,awaitMediaLoaded:()=>to,bufferToImage:()=>eo,computeFaceDescriptor:()=>xa,createCanvas:()=>Xt,createCanvasFromMedia:()=>We,createFaceDetectionNet:()=>ua,createFaceRecognitionNet:()=>ta,createSsdMobilenetv1:()=>Jo,createTinyFaceDetector:()=>Aa,createTinyYolov2:()=>da,detectAllFaces:()=>Lr,detectFaceLandmarks:()=>mn,detectFaceLandmarksTiny:()=>ga,detectLandmarks:()=>Ia,detectSingleFace:()=>Na,draw:()=>co,env:()=>w,euclideanDistance:()=>xo,extendWithAge:()=>Dr,extendWithFaceDescriptor:()=>Fr,extendWithFaceDetection:()=>Vt,extendWithFaceExpressions:()=>gr,extendWithFaceLandmarks:()=>Pe,extendWithGender:()=>Er,extractFaceTensors:()=>le,extractFaces:()=>fe,fetchImage:()=>On,fetchJson:()=>no,fetchNetWeights:()=>Hn,fetchOrThrow:()=>ht,fetchVideo:()=>zn,getContext2dOrThrow:()=>$,getMediaDimensions:()=>Ut,imageTensorToCanvas:()=>ro,imageToSquare:()=>oo,inverseSigmoid:()=>Sn,iou:()=>zr,isMediaElement:()=>sr,isMediaLoaded:()=>Ae,isWithAge:()=>ea,isWithFaceDetection:()=>pt,isWithFaceExpressions:()=>io,isWithFaceLandmarks:()=>qt,isWithGender:()=>ra,loadAgeGenderModel:()=>Ea,loadFaceDetectionModel:()=>Ma,loadFaceExpressionModel:()=>Da,loadFaceLandmarkModel:()=>Pa,loadFaceLandmarkTinyModel:()=>wa,loadFaceRecognitionModel:()=>Fa,loadSsdMobilenetv1Model:()=>pn,loadTinyFaceDetectorModel:()=>_a,loadTinyYolov2Model:()=>Ta,loadWeightMap:()=>ao,locateFaces:()=>Ca,matchDimensions:()=>Yn,minBbox:()=>Yr,nets:()=>F,nonMaxSuppression:()=>Vr,normalize:()=>rt,padToSquare:()=>Gr,predictAgeAndGender:()=>ya,recognizeFaceExpressions:()=>va,resizeResults:()=>fn,resolveInput:()=>Gt,shuffleArray:()=>Ln,sigmoid:()=>Ne,ssdMobilenetv1:()=>cn,tf:()=>Wa,tinyFaceDetector:()=>ha,tinyYolov2:()=>ba,toNetInput:()=>D,utils:()=>Hr,validateConfig:()=>ho,version:()=>ka});module.exports=vn(Ba);var Wa=v(x());var co={};Sr(co,{AnchorPosition:()=>Qr,DrawBox:()=>Se,DrawBoxOptions:()=>nr,DrawFaceLandmarks:()=>vr,DrawFaceLandmarksOptions:()=>xr,DrawTextField:()=>jt,DrawTextFieldOptions:()=>ue,drawContour:()=>lt,drawDetections:()=>$n,drawFaceExpressions:()=>Vn,drawFaceLandmarks:()=>jn});function lt(o,t,e=!1){if(o.beginPath(),t.slice(1).forEach(({x:r,y:n},s)=>{let a=t[s];o.moveTo(a.x,a.y),o.lineTo(r,n)}),e){let r=t[t.length-1],n=t[0];if(!r||!n)return;o.moveTo(r.x,r.y),o.lineTo(n.x,n.y)}o.stroke()}var Hr={};Sr(Hr,{computeReshapedDimensions:()=>Or,getCenterPoint:()=>$t,isDimensions:()=>rr,isEven:()=>er,isFloat:()=>$r,isTensor:()=>Bt,isTensor1D:()=>Nn,isTensor2D:()=>Rr,isTensor3D:()=>dt,isTensor4D:()=>U,isValidNumber:()=>et,isValidProbablitiy:()=>ce,range:()=>ct,round:()=>Rt});var Po=v(x());var R=class o{constructor(t,e){if(!et(t)||!et(e))throw new Error(`Dimensions.constructor - expected width and height to be valid numbers, instead have ${JSON.stringify({width:t,height:e})}`);this._width=t,this._height=e}get width(){return this._width}get height(){return this._height}reverse(){return new o(1/this.width,1/this.height)}};function Bt(o,t){return o instanceof Po.Tensor&&o.shape.length===t}function Nn(o){return Bt(o,1)}function Rr(o){return Bt(o,2)}function dt(o){return Bt(o,3)}function U(o){return Bt(o,4)}function $r(o){return o%1!==0}function er(o){return o%2===0}function Rt(o,t=2){let e=10**t;return Math.floor(o*e)/e}function rr(o){return o&&o.width&&o.height}function Or({width:o,height:t},e){let r=e/Math.max(t,o);return new R(Math.round(o*r),Math.round(t*r))}function $t(o){return o.reduce((t,e)=>t.add(e),new _(0,0)).div(new _(o.length,o.length))}function ct(o,t,e){return Array(o).fill(0).map((r,n)=>t+n*e)}function et(o){return!!o&&o!==1/0&&o!==-1/0&&!Number.isNaN(o)||o===0}function ce(o){return et(o)&&o>=0&&o<=1}var _=class o{constructor(t,e){this._x=t,this._y=e}get x(){return this._x}get y(){return this._y}add(t){return new o(this.x+t.x,this.y+t.y)}sub(t){return new o(this.x-t.x,this.y-t.y)}mul(t){return new o(this.x*t.x,this.y*t.y)}div(t){return new o(this.x/t.x,this.y/t.y)}abs(){return new o(Math.abs(this.x),Math.abs(this.y))}magnitude(){return Math.sqrt(this.x**2+this.y**2)}floor(){return new o(Math.floor(this.x),Math.floor(this.y))}};var L=class o{static isRect(t){return!!t&&[t.x,t.y,t.width,t.height].every(et)}static assertIsValidBox(t,e,r=!1){if(!o.isRect(t))throw new Error(`${e} - invalid box: ${JSON.stringify(t)}, expected object with properties x, y, width, height`);if(!r&&(t.width<0||t.height<0))throw new Error(`${e} - width (${t.width}) and height (${t.height}) must be positive numbers`)}constructor(t,e=!0){let r=t||{},n=[r.left,r.top,r.right,r.bottom].every(et),s=[r.x,r.y,r.width,r.height].every(et);if(!s&&!n)throw new Error(`Box.constructor - expected box to be IBoundingBox | IRect, instead have ${JSON.stringify(r)}`);let[a,i,c,m]=s?[r.x,r.y,r.width,r.height]:[r.left,r.top,r.right-r.left,r.bottom-r.top];o.assertIsValidBox({x:a,y:i,width:c,height:m},"Box.constructor",e),this._x=a,this._y=i,this._width=c,this._height=m}get x(){return this._x}get y(){return this._y}get width(){return this._width}get height(){return this._height}get left(){return this.x}get top(){return this.y}get right(){return this.x+this.width}get bottom(){return this.y+this.height}get area(){return this.width*this.height}get topLeft(){return new _(this.left,this.top)}get topRight(){return new _(this.right,this.top)}get bottomLeft(){return new _(this.left,this.bottom)}get bottomRight(){return new _(this.right,this.bottom)}round(){let[t,e,r,n]=[this.x,this.y,this.width,this.height].map(s=>Math.round(s));return new o({x:t,y:e,width:r,height:n})}floor(){let[t,e,r,n]=[this.x,this.y,this.width,this.height].map(s=>Math.floor(s));return new o({x:t,y:e,width:r,height:n})}toSquare(){let{x:t,y:e,width:r,height:n}=this,s=Math.abs(r-n);return re&&(i=-u+e+r,u=e),f>t&&(c=-f+t+n,f=t),m<1&&(c=2-m,m=1),p<1&&(c=2-p,p=1),{dy:a,edy:c,dx:s,edx:i,y:p,ey:f,x:m,ex:u,w:r,h:n}}calibrate(t){return new o({left:this.left+t.left*this.width,top:this.top+t.top*this.height,right:this.right+t.right*this.width,bottom:this.bottom+t.bottom*this.height}).toSquare().round()}};var Ot=class extends L{constructor(t,e,r,n,s=!1){super({left:t,top:e,right:r,bottom:n},s)}};var Ht=class o{constructor(t,e,r,n,s){this._imageDims=new R(s.width,s.height),this._score=t,this._classScore=e,this._className=r,this._box=new L(n).rescale(this._imageDims)}get score(){return this._score}get classScore(){return this._classScore}get className(){return this._className}get box(){return this._box}get imageDims(){return this._imageDims}get imageWidth(){return this.imageDims.width}get imageHeight(){return this.imageDims.height}get relativeBox(){return new L(this._box).rescale(this.imageDims.reverse())}forSize(t,e){return new o(this.score,this.classScore,this.className,this.relativeBox,{width:t,height:e})}};var M=class o extends Ht{constructor(t,e,r){super(t,t,"",e,r)}forSize(t,e){let{score:r,relativeBox:n,imageDims:s}=super.forSize(t,e);return new o(r,n,s)}};function zr(o,t,e=!0){let r=Math.max(0,Math.min(o.right,t.right)-Math.max(o.left,t.left)),n=Math.max(0,Math.min(o.bottom,t.bottom)-Math.max(o.top,t.top)),s=r*n;return e?s/(o.area+t.area-s):s/Math.min(o.area,t.area)}function Yr(o){let t=o.map(i=>i.x),e=o.map(i=>i.y),r=t.reduce((i,c)=>ccii({score:a,boxIndex:i})).sort((a,i)=>a.score-i.score).map(a=>a.boxIndex),s=[];for(;n.length>0;){let a=n.pop();s.push(a);let i=n,c=[];for(let m=0;mc[p]<=e)}return s}var mt=v(x());function rt(o,t){return mt.tidy(()=>{let[e,r,n]=t,s=mt.fill([...o.shape.slice(0,3),1],e,"float32"),a=mt.fill([...o.shape.slice(0,3),1],r,"float32"),i=mt.fill([...o.shape.slice(0,3),1],n,"float32"),c=mt.concat([s,a,i],3);return mt.sub(o,c)})}var Dt=v(x());function Gr(o,t=!1){return Dt.tidy(()=>{let[e,r]=o.shape.slice(1);if(e===r)return o;let n=Math.abs(e-r),s=Math.round(n*(t?.5:1)),a=e>r?2:1,i=f=>{let l=o.shape.slice();return l[a]=f,Dt.fill(l,0,"float32")},c=i(s),m=n-c.shape[a],u=[t&&m?i(m):null,o,c].filter(f=>!!f).map(f=>Dt.cast(f,"float32"));return Dt.concat(u,a)})}function Ln(o){let t=o.slice();for(let e=t.length-1;e>0;e--){let r=Math.floor(Math.random()*(e+1)),n=t[e];t[e]=t[r],t[r]=n}return t}function Ne(o){return 1/(1+Math.exp(-o))}function Sn(o){return Math.log(o/(1-o))}var zt=class extends L{constructor(t,e,r,n,s=!1){super({x:t,y:e,width:r,height:n},s)}};var An=.5,Wn=.43,kn=.45,H=class{constructor(t,e,r=new _(0,0)){let{width:n,height:s}=e;this._imgDims=new R(n,s),this._shift=r,this._positions=t.map(a=>a.mul(new _(n,s)).add(r))}get shift(){return new _(this._shift.x,this._shift.y)}get imageWidth(){return this._imgDims.width}get imageHeight(){return this._imgDims.height}get positions(){return this._positions}get relativePositions(){return this._positions.map(t=>t.sub(this._shift).div(new _(this.imageWidth,this.imageHeight)))}forSize(t,e){return new this.constructor(this.relativePositions,{width:t,height:e})}shiftBy(t,e){return new this.constructor(this.relativePositions,this._imgDims,new _(t,e))}shiftByPoint(t){return this.shiftBy(t.x,t.y)}align(t,e={}){if(t){let s=t instanceof M?t.box.floor():new L(t);return this.shiftBy(s.x,s.y).align(null,e)}let{useDlibAlignment:r,minBoxPadding:n}={useDlibAlignment:!1,minBoxPadding:.2,...e};return r?this.alignDlib():this.alignMinBbox(n)}alignDlib(){let t=this.getRefPointsForAlignment(),[e,r,n]=t,s=u=>n.sub(u).magnitude(),a=(s(e)+s(r))/2,i=Math.floor(a/kn),c=$t(t),m=Math.floor(Math.max(0,c.x-An*i)),p=Math.floor(Math.max(0,c.y-Wn*i));return new zt(m,p,Math.min(i,this.imageWidth+m),Math.min(i,this.imageHeight+p))}alignMinBbox(t){let e=Yr(this.positions);return e.pad(e.width*t,e.height*t)}getRefPointsForAlignment(){throw new Error("getRefPointsForAlignment not implemented by base class")}};var jr=class extends H{getRefPointsForAlignment(){let t=this.positions;return[t[0],t[1],$t([t[3],t[4]])]}};var Yt=class extends H{getJawOutline(){return this.positions.slice(0,17)}getLeftEyeBrow(){return this.positions.slice(17,22)}getRightEyeBrow(){return this.positions.slice(22,27)}getNose(){return this.positions.slice(27,36)}getLeftEye(){return this.positions.slice(36,42)}getRightEye(){return this.positions.slice(42,48)}getMouth(){return this.positions.slice(48,68)}getRefPointsForAlignment(){return[this.getLeftEye(),this.getRightEye(),this.getMouth()].map($t)}};var me=class{constructor(t,e){this._label=t,this._distance=e}get label(){return this._label}get distance(){return this._distance}toString(t=!0){return`${this.label}${t?` (${Rt(this.distance)})`:""}`}};var pe=class extends L{static assertIsValidLabeledBox(t,e){if(L.assertIsValidBox(t,e),!et(t.label))throw new Error(`${e} - expected property label (${t.label}) to be a number`)}constructor(t,e){super(t),this._label=e}get label(){return this._label}};var Et=class o{constructor(t,e){if(typeof t!="string")throw new Error("LabeledFaceDescriptors - constructor expected label to be a string");if(!Array.isArray(e)||e.some(r=>!(r instanceof Float32Array)))throw new Error("LabeledFaceDescriptors - constructor expected descriptors to be an array of Float32Array");this._label=t,this._descriptors=e}get label(){return this._label}get descriptors(){return this._descriptors}toJSON(){return{label:this.label,descriptors:this.descriptors.map(t=>Array.from(t))}}static fromJSON(t){let e=t.descriptors.map(r=>new Float32Array(r));return new o(t.label,e)}};var Ur=class extends pe{static assertIsValidPredictedBox(t,e){if(pe.assertIsValidLabeledBox(t,e),!ce(t.score)||!ce(t.classScore))throw new Error(`${e} - expected properties score (${t.score}) and (${t.classScore}) to be a number between [0, 1]`)}constructor(t,e,r,n){super(t,e),this._score=r,this._classScore=n}get score(){return this._score}get classScore(){return this._classScore}};function pt(o){return o.detection instanceof M}function Vt(o,t){return{...o,...{detection:t}}}function Xr(){let o=window.fetch;if(!o)throw new Error("fetch - missing fetch implementation for browser environment");return{Canvas:HTMLCanvasElement,CanvasRenderingContext2D,Image:HTMLImageElement,ImageData,Video:HTMLVideoElement,createCanvasElement:()=>document.createElement("canvas"),createImageElement:()=>document.createElement("img"),createVideoElement:()=>document.createElement("video"),fetch:o,readFile:()=>{throw new Error("readFile - filesystem not available for browser environment")}}}function Le(){return typeof global=="object"&&typeof process!="undefined"&&process.versions!=null&&process.versions.node!=null}function or(o){let t="";if(!o&&Le())try{o=require("fs")}catch(r){t=r.toString()}return{readFile:o?r=>new Promise((n,s)=>{o.readFile(r,(a,i)=>a?s(a):n(i))}):()=>{throw new Error(`readFile - failed to require fs in nodejs environment with error: ${t}`)}}}function Jr(){let o=global.Canvas||global.HTMLCanvasElement,t=global.Image||global.HTMLImageElement,e=global.Video||global.HTMLVideoElement,r=()=>{if(o)return new o;throw new Error("createCanvasElement - missing Canvas implementation for nodejs environment")},n=()=>{if(t)return new t;throw new Error("createImageElement - missing Image implementation for nodejs environment")},s=()=>{if(e)return new e;throw new Error("createVideoElement - missing Video implementation for nodejs environment")},a=global.fetch,i=or();return{Canvas:o||class{},CanvasRenderingContext2D:global.CanvasRenderingContext2D||class{},Image:t||class{},ImageData:global.ImageData||class{},Video:global.HTMLVideoElement||class{},createCanvasElement:r,createImageElement:n,createVideoElement:s,fetch:a,...i}}function qr(){return typeof window=="object"&&typeof document!="undefined"&&typeof HTMLImageElement!="undefined"&&typeof HTMLCanvasElement!="undefined"&&typeof HTMLVideoElement!="undefined"&&typeof ImageData!="undefined"&&typeof CanvasRenderingContext2D!="undefined"}var S;function Bn(){if(!S)throw new Error("getEnv - environment is not defined, check isNodejs() and isBrowser()");return S}function Zr(o){S=o}function Kr(){return qr()?Zr(Xr()):Le()?Zr(Jr()):null}function Rn(o){if(S||Kr(),!S)throw new Error("monkeyPatch - environment is not defined, check isNodejs() and isBrowser()");let{Canvas:t=S.Canvas,Image:e=S.Image}=o;S.Canvas=t,S.Image=e,S.createCanvasElement=o.createCanvasElement||(()=>new t),S.createImageElement=o.createImageElement||(()=>new e),S.ImageData=o.ImageData||S.ImageData,S.Video=o.Video||S.Video,S.fetch=o.fetch||S.fetch,S.readFile=o.readFile||S.readFile}var w={getEnv:Bn,setEnv:Zr,initialize:Kr,createBrowserEnv:Xr,createFileSystem:or,createNodejsEnv:Jr,monkeyPatch:Rn,isBrowser:qr,isNodejs:Le};Kr();function Gt(o){return!w.isNodejs()&&typeof o=="string"?document.getElementById(o):o}function $(o){let{Canvas:t,CanvasRenderingContext2D:e}=w.getEnv();if(o instanceof e)return o;let r=Gt(o);if(!(r instanceof t))throw new Error("resolveContext2d - expected canvas to be of instance of Canvas");let n=r.getContext("2d",{willReadFrequently:!0});if(!n)throw new Error("resolveContext2d - canvas 2d context is null");return n}var Qr=(n=>(n.TOP_LEFT="TOP_LEFT",n.TOP_RIGHT="TOP_RIGHT",n.BOTTOM_LEFT="BOTTOM_LEFT",n.BOTTOM_RIGHT="BOTTOM_RIGHT",n))(Qr||{}),ue=class{constructor(t={}){let{anchorPosition:e,backgroundColor:r,fontColor:n,fontSize:s,fontStyle:a,padding:i}=t;this.anchorPosition=e||"TOP_LEFT",this.backgroundColor=r||"rgba(0, 0, 0, 0.5)",this.fontColor=n||"rgba(255, 255, 255, 1)",this.fontSize=s||14,this.fontStyle=a||"Georgia",this.padding=i||4}},jt=class o{constructor(t,e,r={}){this.text=typeof t=="string"?[t]:t instanceof o?t.text:t,this.anchor=e,this.options=new ue(r)}measureWidth(t){let{padding:e}=this.options;return this.text.map(r=>t.measureText(r).width).reduce((r,n)=>r{let b=c+u.x,T=c+u.y+(l+1)*a;r.fillText(f,b,T)})}};var nr=class{constructor(t={}){let{boxColor:e,lineWidth:r,label:n,drawLabelOptions:s}=t;this.boxColor=e||"rgba(0, 0, 255, 1)",this.lineWidth=r||2,this.label=n;let a={anchorPosition:"BOTTOM_LEFT",backgroundColor:this.boxColor};this.drawLabelOptions=new ue({...a,...s})}},Se=class{constructor(t,e={}){this.box=new L(t),this.options=new nr(e)}draw(t){let e=$(t),{boxColor:r,lineWidth:n}=this.options,{x:s,y:a,width:i,height:c}=this.box;e.strokeStyle=r,e.lineWidth=n,e.strokeRect(s,a,i,c);let{label:m}=this.options;m&&new jt([m],{x:s-n/2,y:a},this.options.drawLabelOptions).draw(t)}};function $n(o,t){(Array.isArray(t)?t:[t]).forEach(r=>{let n=r instanceof M?r.score:pt(r)?r.detection.score:void 0,s=r instanceof M?r.box:pt(r)?r.detection.box:new L(r),a=n?`${Rt(n)}`:void 0;new Se(s,{label:a}).draw(o)})}var Te=v(x());function Ae(o){let{Image:t,Video:e}=w.getEnv();return o instanceof t&&o.complete||o instanceof e&&o.readyState>=3}function to(o){return new Promise((t,e)=>{if(o instanceof w.getEnv().Canvas||Ae(o)){t(null);return}function r(s){s.currentTarget&&(s.currentTarget.removeEventListener("load",n),s.currentTarget.removeEventListener("error",r),e(s))}function n(s){s.currentTarget&&(s.currentTarget.removeEventListener("load",n),s.currentTarget.removeEventListener("error",r),t(s))}o.addEventListener("load",n),o.addEventListener("error",r)})}function eo(o){return new Promise((t,e)=>{o instanceof Blob||e(new Error("bufferToImage - expected buf to be of type: Blob"));let r=new FileReader;r.onload=()=>{typeof r.result!="string"&&e(new Error("bufferToImage - expected reader.result to be a string, in onload"));let n=w.getEnv().createImageElement();n.onload=()=>t(n),n.onerror=e,n.src=r.result},r.onerror=e,r.readAsDataURL(o)})}function Ut(o){let{Image:t,Video:e}=w.getEnv();return o instanceof t?new R(o.naturalWidth,o.naturalHeight):o instanceof e?new R(o.videoWidth,o.videoHeight):new R(o.width,o.height)}function Xt({width:o,height:t}){let{createCanvasElement:e}=w.getEnv(),r=e();return r.width=o,r.height=t,r}function We(o,t){let{ImageData:e}=w.getEnv();if(!(o instanceof e)&&!Ae(o))throw new Error("createCanvasFromMedia - media has not finished loading yet");let{width:r,height:n}=t||Ut(o),s=Xt({width:r,height:n});return o instanceof e?$(s).putImageData(o,0,0):$(s).drawImage(o,0,0,r,n),s}var ar=v(x());async function ro(o,t){let e=t||w.getEnv().createCanvasElement(),[r,n,s]=o.shape.slice(U(o)?1:0),a=ar.tidy(()=>o.as3D(r,n,s).toInt());return await ar.browser.toPixels(a,e),a.dispose(),e}function sr(o){let{Image:t,Canvas:e,Video:r}=w.getEnv();return o instanceof t||o instanceof e||o instanceof r}var z=v(x());function oo(o,t,e=!1){let{Image:r,Canvas:n}=w.getEnv();if(!(o instanceof r||o instanceof n))throw new Error("imageToSquare - expected arg0 to be HTMLImageElement | HTMLCanvasElement");if(t<=0)return Xt({width:1,height:1});let s=Ut(o),a=t/Math.max(s.height,s.width),i=a*s.width,c=a*s.height,m=Xt({width:t,height:t}),p=o instanceof n?o:We(o),u=Math.abs(i-c)/2,f=e&&i0&&p.height>0&&$(m).drawImage(p,f,l,i,c),m}var ut=class{constructor(t,e=!1){this._imageTensors=[];this._canvases=[];this._treatAsBatchInput=!1;this._inputDimensions=[];this._inputSize=0;if(!Array.isArray(t))throw new Error(`NetInput.constructor - expected inputs to be an Array of TResolvedNetInput or to be instanceof tf.Tensor4D, instead have ${t}`);this._treatAsBatchInput=e,this._batchSize=t.length,t.forEach((r,n)=>{if(dt(r)){this._imageTensors[n]=r,this._inputDimensions[n]=r.shape;return}if(U(r)){let a=r.shape[0];if(a!==1)throw new Error(`NetInput - tf.Tensor4D with batchSize ${a} passed, but not supported in input array`);this._imageTensors[n]=r,this._inputDimensions[n]=r.shape.slice(1);return}let s=r instanceof w.getEnv().Canvas?r:We(r);this._canvases[n]=s,this._inputDimensions[n]=[s.height,s.width,3]})}get imageTensors(){return this._imageTensors}get canvases(){return this._canvases}get isBatchInput(){return this.batchSize>1||this._treatAsBatchInput}get batchSize(){return this._batchSize}get inputDimensions(){return this._inputDimensions}get inputSize(){return this._inputSize}get reshapedInputDimensions(){return ct(this.batchSize,0,1).map((t,e)=>this.getReshapedInputDimensions(e))}getInput(t){return this.canvases[t]||this.imageTensors[t]}getInputDimensions(t){return this._inputDimensions[t]}getInputHeight(t){return this._inputDimensions[t][0]}getInputWidth(t){return this._inputDimensions[t][1]}getReshapedInputDimensions(t){if(typeof this.inputSize!="number")throw new Error("getReshapedInputDimensions - inputSize not set, toBatchTensor has not been called yet");let e=this.getInputWidth(t),r=this.getInputHeight(t);return Or({width:e,height:r},this.inputSize)}toBatchTensor(t,e=!0){return this._inputSize=t,z.tidy(()=>{let r=ct(this.batchSize,0,1).map(s=>{let a=this.getInput(s);if(a instanceof z.Tensor){let i=U(a)?a:z.expandDims(a);return i=Gr(i,e),(i.shape[1]!==t||i.shape[2]!==t)&&(i=z.image.resizeBilinear(i,[t,t],!1,!1)),i.as3D(t,t,3)}if(a instanceof w.getEnv().Canvas)return z.browser.fromPixels(oo(a,t,e));throw new Error(`toBatchTensor - at batchIdx ${s}, expected input to be instanceof tf.Tensor or instanceof HTMLCanvasElement, instead have ${a}`)});return z.stack(r.map(s=>z.cast(s,"float32"))).as4D(this.batchSize,t,t,3)})}};async function D(o){if(o instanceof ut)return o;let t=Array.isArray(o)?o:[o];if(!t.length)throw new Error("toNetInput - empty array passed as input");let e=n=>Array.isArray(o)?` at input index ${n}:`:"",r=t.map(Gt);return r.forEach((n,s)=>{if(!sr(n)&&!dt(n)&&!U(n))throw typeof t[s]=="string"?new Error(`toNetInput -${e(s)} string passed, but could not resolve HTMLElement for element id ${t[s]}`):new Error(`toNetInput -${e(s)} expected media to be of type HTMLImageElement | HTMLVideoElement | HTMLCanvasElement | tf.Tensor3D, or to be an element id`);if(U(n)){let a=n.shape[0];if(a!==1)throw new Error(`toNetInput -${e(s)} tf.Tensor4D with batchSize ${a} passed, but not supported in input array`)}}),await Promise.all(r.map(n=>sr(n)&&to(n))),new ut(r,Array.isArray(o))}async function fe(o,t){let{Canvas:e}=w.getEnv(),r=o;if(!(o instanceof e)){let a=await D(o);if(a.batchSize>1)throw new Error("extractFaces - batchSize > 1 not supported");let i=a.getInput(0);r=i instanceof e?i:await ro(i)}let n=$(r);return t.map(a=>a instanceof M?a.forSize(r.width,r.height).box.floor():a).map(a=>a.clipAtImageBorders(r.width,r.height)).map(({x:a,y:i,width:c,height:m})=>{let p=Xt({width:c,height:m});return c>0&&m>0&&$(p).putImageData(n.getImageData(a,i,c,m),0,0),p})}var ir=v(x());async function le(o,t){if(!dt(o)&&!U(o))throw new Error("extractFaceTensors - expected image tensor to be 3D or 4D");if(U(o)&&o.shape[0]>1)throw new Error("extractFaceTensors - batchSize > 1 not supported");return ir.tidy(()=>{let[e,r,n]=o.shape.slice(U(o)?1:0);return t.map(i=>i instanceof M?i.forSize(r,e).box:i).map(i=>i.clipAtImageBorders(r,e)).filter(i=>i.width>0&&i.height>0).map(({x:i,y:c,width:m,height:p})=>ir.slice3d(o.as3D(e,r,n),[c,i,0],[p,m,n]))})}async function ht(o,t){let{fetch:e}=w.getEnv(),r=await e(o,t);if(!(r.status<400))throw new Error(`failed to fetch: (${r.status}) ${r.statusText}, from url: ${r.url}`);return r}async function On(o){let t=await ht(o),e=await t.blob();if(!e.type.startsWith("image/"))throw new Error(`fetchImage - expected blob type to be of type image/*, instead have: ${e.type}, for url: ${t.url}`);return eo(e)}async function no(o){return(await ht(o)).json()}async function Hn(o){return new Float32Array(await(await ht(o)).arrayBuffer())}function wo(o){return new Promise((t,e)=>{o instanceof Blob||e(new Error("bufferToVideo - expected buf to be of type: Blob"));let r=w.getEnv().createVideoElement();r.oncanplay=()=>t(r),r.onerror=e,r.playsInline=!0,r.muted=!0,r.src=URL.createObjectURL(o),r.play()})}async function zn(o){let t=await ht(o),e=await t.blob();if(!e.type.startsWith("video/"))throw new Error(`fetchVideo - expected blob type to be of type video/*, instead have: ${e.type}, for url: ${t.url}`);return wo(e)}var Fo=v(x());function cr(o,t){let e=`${t}-weights_manifest.json`;if(!o)return{modelBaseUri:"",manifestUri:e};if(o==="/")return{modelBaseUri:"/",manifestUri:`/${e}`};let r=o.startsWith("http://")?"http://":o.startsWith("https://")?"https://":"";o=o.replace(r,"");let n=o.split("/").filter(i=>i),s=o.endsWith(".json")?n[n.length-1]:e,a=r+(o.endsWith(".json")?n.slice(0,n.length-1):n).join("/");return a=o.startsWith("/")?`/${a}`:a,{modelBaseUri:a,manifestUri:a==="/"?`/${s}`:`${a}/${s}`}}async function ao(o,t){let{manifestUri:e,modelBaseUri:r}=cr(o,t),n=await no(e);return Fo.io.loadWeights(n,r)}function Yn(o,t,e=!1){let{width:r,height:n}=e?Ut(t):t;return o.width=r,o.height=n,{width:r,height:n}}var ve=v(x());var bt=v(x());var A=class{constructor(t){this._params=void 0;this._paramMappings=[];this._name=t}get params(){return this._params}get paramMappings(){return this._paramMappings}get isLoaded(){return!!this.params}getParamFromPath(t){let{obj:e,objProp:r}=this.traversePropertyPath(t);return e[r]}reassignParamFromPath(t,e){let{obj:r,objProp:n}=this.traversePropertyPath(t);r[n].dispose(),r[n]=e}getParamList(){return this._paramMappings.map(({paramPath:t})=>({path:t,tensor:this.getParamFromPath(t)}))}getTrainableParams(){return this.getParamList().filter(t=>t.tensor instanceof bt.Variable)}getFrozenParams(){return this.getParamList().filter(t=>!(t.tensor instanceof bt.Variable))}variable(){this.getFrozenParams().forEach(({path:t,tensor:e})=>{this.reassignParamFromPath(t,e.variable())})}freeze(){this.getTrainableParams().forEach(({path:t,tensor:e})=>{let r=bt.tensor(e.dataSync());e.dispose(),this.reassignParamFromPath(t,r)})}dispose(t=!0){this.getParamList().forEach(e=>{if(t&&e.tensor.isDisposed)throw new Error(`param tensor has already been disposed for path ${e.path}`);e.tensor.dispose()}),this._params=void 0}serializeParams(){return new Float32Array(this.getParamList().map(({tensor:t})=>Array.from(t.dataSync())).reduce((t,e)=>t.concat(e)))}async load(t){if(t instanceof Float32Array){this.extractWeights(t);return}await this.loadFromUri(t)}async loadFromUri(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromUri - expected model uri`);let e=await ao(t,this.getDefaultModelName());this.loadFromWeightMap(e)}async loadFromDisk(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromDisk - expected model file path`);let{readFile:e}=w.getEnv(),{manifestUri:r,modelBaseUri:n}=cr(t,this.getDefaultModelName()),s=m=>Promise.all(m.map(p=>e(p).then(u=>typeof u=="string"?Buffer.from(u):u.buffer))),a=bt.io.weightsLoaderFactory(s),i=JSON.parse((await e(r)).toString()),c=await a(i,n);this.loadFromWeightMap(c)}loadFromWeightMap(t){let{paramMappings:e,params:r}=this.extractParamsFromWeightMap(t);this._paramMappings=e,this._params=r}extractWeights(t){let{paramMappings:e,params:r}=this.extractParams(t);this._paramMappings=e,this._params=r}traversePropertyPath(t){if(!this.params)throw new Error("traversePropertyPath - model has no loaded params");let e=t.split("/").reduce((s,a)=>{if(!s.nextObj.hasOwnProperty(a))throw new Error(`traversePropertyPath - object does not have property ${a}, for path ${t}`);return{obj:s.nextObj,objProp:a,nextObj:s.nextObj[a]}},{nextObj:this.params}),{obj:r,objProp:n}=e;if(!r||!n||!(r[n]instanceof bt.Tensor))throw new Error(`traversePropertyPath - parameter is not a tensor, for path ${t}`);return{obj:r,objProp:n}}};var E=v(x());var de=v(x());function O(o,t,e){return de.tidy(()=>{let r=de.separableConv2d(o,t.depthwise_filter,t.pointwise_filter,e,"same");return r=de.add(r,t.bias),r})}function mr(o,t,e=!1){return E.tidy(()=>{let r=E.relu(e?E.add(E.conv2d(o,t.conv0.filters,[2,2],"same"),t.conv0.bias):O(o,t.conv0,[2,2])),n=O(r,t.conv1,[1,1]),s=E.relu(E.add(r,n)),a=O(s,t.conv2,[1,1]);return E.relu(E.add(r,E.add(n,a)))})}function ke(o,t,e=!1,r=!0){return E.tidy(()=>{let n=E.relu(e?E.add(E.conv2d(o,t.conv0.filters,r?[2,2]:[1,1],"same"),t.conv0.bias):O(o,t.conv0,r?[2,2]:[1,1])),s=O(n,t.conv1,[1,1]),a=E.relu(E.add(n,s)),i=O(a,t.conv2,[1,1]),c=E.relu(E.add(n,E.add(s,i))),m=O(c,t.conv3,[1,1]);return E.relu(E.add(n,E.add(s,E.add(i,m))))})}var Mt=v(x());function Jt(o,t,e="same",r=!1){return Mt.tidy(()=>{let n=Mt.add(Mt.conv2d(o,t.filters,[1,1],e),t.bias);return r?Mt.relu(n):n})}function W(o,t){Object.keys(o).forEach(e=>{t.some(r=>r.originalPath===e)||o[e].dispose()})}var pr=v(x());function he(o,t){return(e,r,n,s)=>{let a=pr.tensor4d(o(e*r*n*n),[n,n,e,r]),i=pr.tensor1d(o(r));return t.push({paramPath:`${s}/filters`},{paramPath:`${s}/bias`}),{filters:a,bias:i}}}var ur=v(x());function fr(o,t){return(e,r,n)=>{let s=ur.tensor2d(o(e*r),[e,r]),a=ur.tensor1d(o(r));return t.push({paramPath:`${n}/weights`},{paramPath:`${n}/bias`}),{weights:s,bias:a}}}var Re=v(x());var Be=class{constructor(t,e,r){this.depthwise_filter=t;this.pointwise_filter=e;this.bias=r}};function be(o,t){return(e,r,n)=>{let s=Re.tensor4d(o(9*e),[3,3,e,1]),a=Re.tensor4d(o(e*r),[1,1,e,r]),i=Re.tensor1d(o(r));return t.push({paramPath:`${n}/depthwise_filter`},{paramPath:`${n}/pointwise_filter`},{paramPath:`${n}/bias`}),new Be(s,a,i)}}function ge(o){return t=>{let e=o(`${t}/depthwise_filter`,4),r=o(`${t}/pointwise_filter`,4),n=o(`${t}/bias`,1);return new Be(e,r,n)}}function Y(o,t){return(e,r,n)=>{let s=o[e];if(!Bt(s,r))throw new Error(`expected weightMap[${e}] to be a Tensor${r}D, instead have ${s}`);return t.push({originalPath:e,paramPath:n||e}),s}}function k(o){let t=o;function e(n){let s=t.slice(0,n);return t=t.slice(n),s}function r(){return t}return{extractWeights:e,getRemainingWeights:r}}function lr(o,t){let e=he(o,t),r=be(o,t);function n(a,i,c,m=!1){let p=m?e(a,i,3,`${c}/conv0`):r(a,i,`${c}/conv0`),u=r(i,i,`${c}/conv1`),f=r(i,i,`${c}/conv2`);return{conv0:p,conv1:u,conv2:f}}function s(a,i,c,m=!1){let{conv0:p,conv1:u,conv2:f}=n(a,i,c,m),l=r(i,i,`${c}/conv3`);return{conv0:p,conv1:u,conv2:f,conv3:l}}return{extractDenseBlock3Params:n,extractDenseBlock4Params:s}}function Do(o){let t=[],{extractWeights:e,getRemainingWeights:r}=k(o),{extractDenseBlock4Params:n}=lr(e,t),s=n(3,32,"dense0",!0),a=n(32,64,"dense1"),i=n(64,128,"dense2"),c=n(128,256,"dense3");if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:t,params:{dense0:s,dense1:a,dense2:i,dense3:c}}}function dr(o){return t=>{let e=o(`${t}/filters`,4),r=o(`${t}/bias`,1);return{filters:e,bias:r}}}function hr(o,t){let e=Y(o,t),r=dr(e),n=ge(e);function s(i,c=!1){let m=c?r(`${i}/conv0`):n(`${i}/conv0`),p=n(`${i}/conv1`),u=n(`${i}/conv2`);return{conv0:m,conv1:p,conv2:u}}function a(i,c=!1){let m=c?r(`${i}/conv0`):n(`${i}/conv0`),p=n(`${i}/conv1`),u=n(`${i}/conv2`),f=n(`${i}/conv3`);return{conv0:m,conv1:p,conv2:u,conv3:f}}return{extractDenseBlock3Params:s,extractDenseBlock4Params:a}}function Eo(o){let t=[],{extractDenseBlock4Params:e}=hr(o,t),r={dense0:e("dense0",!0),dense1:e("dense1"),dense2:e("dense2"),dense3:e("dense3")};return W(o,t),{params:r,paramMappings:t}}var xe=class extends A{constructor(){super("FaceFeatureExtractor")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("FaceFeatureExtractor - load model before inference");return ve.tidy(()=>{let r=ve.cast(t.toBatchTensor(112,!0),"float32"),s=rt(r,[122.782,117.001,104.298]).div(255),a=ke(s,e.dense0,!0);return a=ke(a,e.dense1),a=ke(a,e.dense2),a=ke(a,e.dense3),a=ve.avgPool(a,[7,7],[2,2],"valid"),a})}async forward(t){return this.forwardInput(await D(t))}getDefaultModelName(){return"face_feature_extractor_model"}extractParamsFromWeightMap(t){return Eo(t)}extractParams(t){return Do(t)}};var Io=v(x());var ye=v(x());function $e(o,t){return ye.tidy(()=>ye.add(ye.matMul(o,t.weights),t.bias))}function Mo(o,t,e){let r=[],{extractWeights:n,getRemainingWeights:s}=k(o),i=fr(n,r)(t,e,"fc");if(s().length!==0)throw new Error(`weights remaing after extract: ${s().length}`);return{paramMappings:r,params:{fc:i}}}function Co(o){let t=[],e=Y(o,t);function r(s){let a=e(`${s}/weights`,2),i=e(`${s}/bias`,1);return{weights:a,bias:i}}let n={fc:r("fc")};return W(o,t),{params:n,paramMappings:t}}function br(o){let t={},e={};return Object.keys(o).forEach(r=>{let n=r.startsWith("fc")?e:t;n[r]=o[r]}),{featureExtractorMap:t,classifierMap:e}}var _e=class extends A{constructor(t,e){super(t),this._faceFeatureExtractor=e}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(t){let{params:e}=this;if(!e)throw new Error(`${this._name} - load model before inference`);return Io.tidy(()=>{let r=t instanceof ut?this.faceFeatureExtractor.forwardInput(t):t;return $e(r.as2D(r.shape[0],-1),e.fc)})}dispose(t=!0){this.faceFeatureExtractor.dispose(t),super.dispose(t)}loadClassifierParams(t){let{params:e,paramMappings:r}=this.extractClassifierParams(t);this._params=e,this._paramMappings=r}extractClassifierParams(t){return Mo(t,this.getClassifierChannelsIn(),this.getClassifierChannelsOut())}extractParamsFromWeightMap(t){let{featureExtractorMap:e,classifierMap:r}=br(t);return this.faceFeatureExtractor.loadFromWeightMap(e),Co(r)}extractParams(t){let e=this.getClassifierChannelsIn(),r=this.getClassifierChannelsOut(),n=r*e+r,s=t.slice(0,t.length-n),a=t.slice(t.length-n);return this.faceFeatureExtractor.extractWeights(s),this.extractClassifierParams(a)}};var so=["neutral","happy","sad","angry","fearful","disgusted","surprised"],gt=class{constructor(t){this.neutral=0;this.happy=0;this.sad=0;this.angry=0;this.fearful=0;this.disgusted=0;this.surprised=0;if(t.length!==7)throw new Error(`FaceExpressions.constructor - expected probabilities.length to be 7, have: ${t.length}`);so.forEach((e,r)=>{this[e]=t[r]})}asSortedArray(){return so.map(t=>({expression:t,probability:this[t]})).sort((t,e)=>e.probability-t.probability)}};var Oe=class extends _e{constructor(t=new xe){super("FaceExpressionNet",t)}forwardInput(t){return Te.tidy(()=>Te.softmax(this.runNet(t)))}async forward(t){return this.forwardInput(await D(t))}async predictExpressions(t){let e=await D(t),r=await this.forwardInput(e),n=await Promise.all(Te.unstack(r).map(async a=>{let i=a.dataSync();return a.dispose(),i}));r.dispose();let s=n.map(a=>new gt(a));return e.isBatchInput?s:s[0]}getDefaultModelName(){return"face_expression_model"}getClassifierChannelsIn(){return 256}getClassifierChannelsOut(){return 7}};function io(o){return o.expressions instanceof gt}function gr(o,t){return{...o,...{expressions:t}}}function Vn(o,t,e=.1,r){(Array.isArray(t)?t:[t]).forEach(s=>{let a=s instanceof gt?s:io(s)?s.expressions:void 0;if(!a)throw new Error("drawFaceExpressions - expected faceExpressions to be FaceExpressions | WithFaceExpressions<{}> or array thereof");let c=a.asSortedArray().filter(u=>u.probability>e),m=pt(s)?s.detection.box.bottomLeft:r||new _(0,0);new jt(c.map(u=>`${u.expression} (${Rt(u.probability)})`),m).draw(o)})}function qt(o){return pt(o)&&o.landmarks instanceof H&&o.unshiftedLandmarks instanceof H&&o.alignedRect instanceof M}function Gn(o){let t=c=>c*180/Math.PI,e=(c,m)=>Math.sqrt((c.x-m.x)**2+(c.y-m.y)**2),r={roll:void 0,pitch:void 0,yaw:void 0},n=(c,m,p)=>{let u=Math.floor(c.x-m.x),f=Math.floor(m.x-p.x);return u-f},s=(c,m)=>{let p=Math.hypot(m.x-c.x,m.y-c.y),u=m.y-c.y,f=Math.asin(u/p),l=t(f),b=Math.floor(90-l),T=m.x-c.x<0?-1:1;return b*T},a=(c,m,p)=>{let u=e(c,p),f=new _((c.x+p.x)/2,(c.y+p.y)/2),l=e(m,f),b=Math.atan(l/u),T=Math.floor(t(b)),h=f.y-m.y<0?-1:1;return T*h};if(!o||!o.positions||o.positions.length!==68)return r;let i=o.positions;return r.roll=s(i[27],i[66]),r.pitch=a(i[14],i[30],i[2]),r.yaw=n(i[14],i[33],i[2]),r}function Pe(o,t){let{box:e}=o.detection,r=t.shiftBy(e.x,e.y),n=r.align(),{imageDims:s}=o.detection,a=new M(o.detection.score,n.rescale(s.reverse()),s),i=Gn(t);return{...o,...{landmarks:r,unshiftedLandmarks:t,alignedRect:a,angle:i}}}var xr=class{constructor(t={}){let{drawLines:e=!0,drawPoints:r=!0,lineWidth:n,lineColor:s,pointSize:a,pointColor:i}=t;this.drawLines=e,this.drawPoints=r,this.lineWidth=n||1,this.pointSize=a||2,this.lineColor=s||"rgba(0, 255, 255, 1)",this.pointColor=i||"rgba(255, 0, 255, 1)"}},vr=class{constructor(t,e={}){this.faceLandmarks=t,this.options=new xr(e)}draw(t){let e=$(t),{drawLines:r,drawPoints:n,lineWidth:s,lineColor:a,pointSize:i,pointColor:c}=this.options;if(r&&this.faceLandmarks instanceof Yt&&(e.strokeStyle=a,e.lineWidth=s,lt(e,this.faceLandmarks.getJawOutline()),lt(e,this.faceLandmarks.getLeftEyeBrow()),lt(e,this.faceLandmarks.getRightEyeBrow()),lt(e,this.faceLandmarks.getNose()),lt(e,this.faceLandmarks.getLeftEye(),!0),lt(e,this.faceLandmarks.getRightEye(),!0),lt(e,this.faceLandmarks.getMouth(),!0)),n){e.strokeStyle=c,e.fillStyle=c;let m=p=>{e.beginPath(),e.arc(p.x,p.y,i,0,2*Math.PI),e.fill()};this.faceLandmarks.positions.forEach(m)}}};function jn(o,t){(Array.isArray(t)?t:[t]).forEach(r=>{let n=r instanceof H?r:qt(r)?r.landmarks:void 0;if(!n)throw new Error("drawFaceLandmarks - expected faceExpressions to be FaceLandmarks | WithFaceLandmarks> or array thereof");new vr(n).draw(o)})}var No="1.7.14";var ft=v(x());var N=v(x());function Jn(o,t){let e=he(o,t),r=be(o,t);function n(a,i,c){let m=r(a,i,`${c}/separable_conv0`),p=r(i,i,`${c}/separable_conv1`),u=e(a,i,1,`${c}/expansion_conv`);return{separable_conv0:m,separable_conv1:p,expansion_conv:u}}function s(a,i){let c=r(a,a,`${i}/separable_conv0`),m=r(a,a,`${i}/separable_conv1`),p=r(a,a,`${i}/separable_conv2`);return{separable_conv0:c,separable_conv1:m,separable_conv2:p}}return{extractConvParams:e,extractSeparableConvParams:r,extractReductionBlockParams:n,extractMainBlockParams:s}}function Lo(o,t){let e=[],{extractWeights:r,getRemainingWeights:n}=k(o),{extractConvParams:s,extractSeparableConvParams:a,extractReductionBlockParams:i,extractMainBlockParams:c}=Jn(r,e),m=s(3,32,3,"entry_flow/conv_in"),p=i(32,64,"entry_flow/reduction_block_0"),u=i(64,128,"entry_flow/reduction_block_1"),f={conv_in:m,reduction_block_0:p,reduction_block_1:u},l={};ct(t,0,1).forEach(g=>{l[`main_block_${g}`]=c(128,`middle_flow/main_block_${g}`)});let b=i(128,256,"exit_flow/reduction_block"),T=a(256,512,"exit_flow/separable_conv"),h={reduction_block:b,separable_conv:T};if(n().length!==0)throw new Error(`weights remaing after extract: ${n().length}`);return{paramMappings:e,params:{entry_flow:f,middle_flow:l,exit_flow:h}}}function qn(o,t){let e=Y(o,t),r=dr(e),n=ge(e);function s(i){let c=n(`${i}/separable_conv0`),m=n(`${i}/separable_conv1`),p=r(`${i}/expansion_conv`);return{separable_conv0:c,separable_conv1:m,expansion_conv:p}}function a(i){let c=n(`${i}/separable_conv0`),m=n(`${i}/separable_conv1`),p=n(`${i}/separable_conv2`);return{separable_conv0:c,separable_conv1:m,separable_conv2:p}}return{extractConvParams:r,extractSeparableConvParams:n,extractReductionBlockParams:s,extractMainBlockParams:a}}function So(o,t){let e=[],{extractConvParams:r,extractSeparableConvParams:n,extractReductionBlockParams:s,extractMainBlockParams:a}=qn(o,e),i=r("entry_flow/conv_in"),c=s("entry_flow/reduction_block_0"),m=s("entry_flow/reduction_block_1"),p={conv_in:i,reduction_block_0:c,reduction_block_1:m},u={};ct(t,0,1).forEach(T=>{u[`main_block_${T}`]=a(`middle_flow/main_block_${T}`)});let f=s("exit_flow/reduction_block"),l=n("exit_flow/separable_conv"),b={reduction_block:f,separable_conv:l};return W(o,e),{params:{entry_flow:p,middle_flow:u,exit_flow:b},paramMappings:e}}function Ao(o,t,e){return N.add(N.conv2d(o,t.filters,e,"same"),t.bias)}function mo(o,t,e=!0){let r=e?N.relu(o):o;return r=O(r,t.separable_conv0,[1,1]),r=O(N.relu(r),t.separable_conv1,[1,1]),r=N.maxPool(r,[3,3],[2,2],"same"),r=N.add(r,Ao(o,t.expansion_conv,[2,2])),r}function Zn(o,t){let e=O(N.relu(o),t.separable_conv0,[1,1]);return e=O(N.relu(e),t.separable_conv1,[1,1]),e=O(N.relu(e),t.separable_conv2,[1,1]),e=N.add(e,o),e}var yr=class extends A{constructor(t){super("TinyXception"),this._numMainBlocks=t}forwardInput(t){let{params:e}=this;if(!e)throw new Error("TinyXception - load model before inference");return N.tidy(()=>{let r=N.cast(t.toBatchTensor(112,!0),"float32"),s=rt(r,[122.782,117.001,104.298]).div(255),a=N.relu(Ao(s,e.entry_flow.conv_in,[2,2]));return a=mo(a,e.entry_flow.reduction_block_0,!1),a=mo(a,e.entry_flow.reduction_block_1),ct(this._numMainBlocks,0,1).forEach(i=>{a=Zn(a,e.middle_flow[`main_block_${i}`])}),a=mo(a,e.exit_flow.reduction_block),a=N.relu(O(a,e.exit_flow.separable_conv,[1,1])),a})}async forward(t){return this.forwardInput(await D(t))}getDefaultModelName(){return"tiny_xception_model"}extractParamsFromWeightMap(t){return So(t,this._numMainBlocks)}extractParams(t){return Lo(t,this._numMainBlocks)}};function Wo(o){let t=[],{extractWeights:e,getRemainingWeights:r}=k(o),n=fr(e,t),s=n(512,1,"fc/age"),a=n(512,2,"fc/gender");if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:t,params:{fc:{age:s,gender:a}}}}function ko(o){let t=[],e=Y(o,t);function r(s){let a=e(`${s}/weights`,2),i=e(`${s}/bias`,1);return{weights:a,bias:i}}let n={fc:{age:r("fc/age"),gender:r("fc/gender")}};return W(o,t),{params:n,paramMappings:t}}var _r=(e=>(e.FEMALE="female",e.MALE="male",e))(_r||{});var He=class extends A{constructor(t=new yr(2)){super("AgeGenderNet"),this._faceFeatureExtractor=t}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(t){let{params:e}=this;if(!e)throw new Error(`${this._name} - load model before inference`);return ft.tidy(()=>{let r=t instanceof ut?this.faceFeatureExtractor.forwardInput(t):t,n=ft.avgPool(r,[7,7],[2,2],"valid").as2D(r.shape[0],-1),s=$e(n,e.fc.age).as1D(),a=$e(n,e.fc.gender);return{age:s,gender:a}})}forwardInput(t){return ft.tidy(()=>{let{age:e,gender:r}=this.runNet(t);return{age:e,gender:ft.softmax(r)}})}async forward(t){return this.forwardInput(await D(t))}async predictAgeAndGender(t){let e=await D(t),r=await this.forwardInput(e),n=ft.unstack(r.age),s=ft.unstack(r.gender),a=n.map((c,m)=>({ageTensor:c,genderTensor:s[m]})),i=await Promise.all(a.map(async({ageTensor:c,genderTensor:m})=>{let p=c.dataSync()[0],u=m.dataSync()[0],f=u>.5,l=f?"male":"female",b=f?u:1-u;return c.dispose(),m.dispose(),{age:p,gender:l,genderProbability:b}}));return r.age.dispose(),r.gender.dispose(),e.isBatchInput?i:i[0]}getDefaultModelName(){return"age_gender_model"}dispose(t=!0){this.faceFeatureExtractor.dispose(t),super.dispose(t)}loadClassifierParams(t){let{params:e,paramMappings:r}=this.extractClassifierParams(t);this._params=e,this._paramMappings=r}extractClassifierParams(t){return Wo(t)}extractParamsFromWeightMap(t){let{featureExtractorMap:e,classifierMap:r}=br(t);return this.faceFeatureExtractor.loadFromWeightMap(e),ko(r)}extractParams(t){let r=t.slice(0,t.length-1539),n=t.slice(t.length-1539);return this.faceFeatureExtractor.extractWeights(r),this.extractClassifierParams(n)}};var V=v(x());var we=class extends _e{postProcess(t,e,r){let n=r.map(({width:a,height:i})=>{let c=e/Math.max(i,a);return{width:a*c,height:i*c}}),s=n.length;return V.tidy(()=>{let a=(u,f)=>V.stack([V.fill([68],u,"float32"),V.fill([68],f,"float32")],1).as2D(1,136).as1D(),i=(u,f)=>{let{width:l,height:b}=n[u];return f(l,b)?Math.abs(l-b)/2:0},c=u=>i(u,(f,l)=>fi(u,(f,l)=>la(c(f),m(f))))).div(V.stack(Array.from(Array(s),(u,f)=>a(n[f].width,n[f].height))))})}forwardInput(t){return V.tidy(()=>{let e=this.runNet(t);return this.postProcess(e,t.inputSize,t.inputDimensions.map(([r,n])=>({height:r,width:n})))})}async forward(t){return this.forwardInput(await D(t))}async detectLandmarks(t){let e=await D(t),r=V.tidy(()=>V.unstack(this.forwardInput(e))),n=await Promise.all(r.map(async(s,a)=>{let i=Array.from(s.dataSync()),c=i.filter((p,u)=>er(u)),m=i.filter((p,u)=>!er(u));return new Yt(Array(68).fill(0).map((p,u)=>new _(c[u],m[u])),{height:e.getInputHeight(a),width:e.getInputWidth(a)})}));return r.forEach(s=>s.dispose()),e.isBatchInput?n:n[0]}getClassifierChannelsOut(){return 136}};var Zt=class extends we{constructor(t=new xe){super("FaceLandmark68Net",t)}getDefaultModelName(){return"face_landmark_68_model"}getClassifierChannelsIn(){return 256}};var Fe=v(x());function Bo(o){let t=[],{extractDenseBlock3Params:e}=hr(o,t),r={dense0:e("dense0",!0),dense1:e("dense1"),dense2:e("dense2")};return W(o,t),{params:r,paramMappings:t}}function Ro(o){let t=[],{extractWeights:e,getRemainingWeights:r}=k(o),{extractDenseBlock3Params:n}=lr(e,t),s=n(3,32,"dense0",!0),a=n(32,64,"dense1"),i=n(64,128,"dense2");if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:t,params:{dense0:s,dense1:a,dense2:i}}}var Tr=class extends A{constructor(){super("TinyFaceFeatureExtractor")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("TinyFaceFeatureExtractor - load model before inference");return Fe.tidy(()=>{let r=Fe.cast(t.toBatchTensor(112,!0),"float32"),s=rt(r,[122.782,117.001,104.298]).div(255),a=mr(s,e.dense0,!0);return a=mr(a,e.dense1),a=mr(a,e.dense2),a=Fe.avgPool(a,[14,14],[2,2],"valid"),a})}async forward(t){return this.forwardInput(await D(t))}getDefaultModelName(){return"face_feature_extractor_tiny_model"}extractParamsFromWeightMap(t){return Bo(t)}extractParams(t){return Ro(t)}};var ze=class extends we{constructor(t=new Tr){super("FaceLandmark68TinyNet",t)}getDefaultModelName(){return"face_landmark_68_tiny_model"}getClassifierChannelsIn(){return 128}};var po=class extends Zt{};var nt=v(x());var De=v(x());var Pr=v(x());function $o(o,t){return Pr.add(Pr.mul(o,t.weights),t.biases)}function uo(o,t,e,r,n="same"){let{filters:s,bias:a}=t.conv,i=De.conv2d(o,s,e,n);return i=De.add(i,a),i=$o(i,t.scale),r?De.relu(i):i}function Oo(o,t){return uo(o,t,[1,1],!0)}function fo(o,t){return uo(o,t,[1,1],!1)}function wr(o,t){return uo(o,t,[2,2],!0,"valid")}var G=v(x());function Kn(o,t){function e(i,c,m){let p=o(i),u=p.length/(c*m*m);if($r(u))throw new Error(`depth has to be an integer: ${u}, weights.length: ${p.length}, numFilters: ${c}, filterSize: ${m}`);return G.tidy(()=>G.transpose(G.tensor4d(p,[c,u,m,m]),[2,3,1,0]))}function r(i,c,m,p){let u=e(i,c,m),f=G.tensor1d(o(c));return t.push({paramPath:`${p}/filters`},{paramPath:`${p}/bias`}),{filters:u,bias:f}}function n(i,c){let m=G.tensor1d(o(i)),p=G.tensor1d(o(i));return t.push({paramPath:`${c}/weights`},{paramPath:`${c}/biases`}),{weights:m,biases:p}}function s(i,c,m,p){let u=r(i,c,m,`${p}/conv`),f=n(c,`${p}/scale`);return{conv:u,scale:f}}function a(i,c,m,p,u=!1){let f=s((u?.5:1)*i,c,m,`${p}/conv1`),l=s(i,c,m,`${p}/conv2`);return{conv1:f,conv2:l}}return{extractConvLayerParams:s,extractResidualLayerParams:a}}function Ho(o){let{extractWeights:t,getRemainingWeights:e}=k(o),r=[],{extractConvLayerParams:n,extractResidualLayerParams:s}=Kn(t,r),a=n(4704,32,7,"conv32_down"),i=s(9216,32,3,"conv32_1"),c=s(9216,32,3,"conv32_2"),m=s(9216,32,3,"conv32_3"),p=s(36864,64,3,"conv64_down",!0),u=s(36864,64,3,"conv64_1"),f=s(36864,64,3,"conv64_2"),l=s(36864,64,3,"conv64_3"),b=s(147456,128,3,"conv128_down",!0),T=s(147456,128,3,"conv128_1"),h=s(147456,128,3,"conv128_2"),g=s(589824,256,3,"conv256_down",!0),P=s(589824,256,3,"conv256_1"),y=s(589824,256,3,"conv256_2"),I=s(589824,256,3,"conv256_down_out"),j=G.tidy(()=>G.transpose(G.tensor2d(t(256*128),[128,256]),[1,0]));if(r.push({paramPath:"fc"}),e().length!==0)throw new Error(`weights remaing after extract: ${e().length}`);return{params:{conv32_down:a,conv32_1:i,conv32_2:c,conv32_3:m,conv64_down:p,conv64_1:u,conv64_2:f,conv64_3:l,conv128_down:b,conv128_1:T,conv128_2:h,conv256_down:g,conv256_1:P,conv256_2:y,conv256_down_out:I,fc:j},paramMappings:r}}function Qn(o,t){let e=Y(o,t);function r(a){let i=e(`${a}/scale/weights`,1),c=e(`${a}/scale/biases`,1);return{weights:i,biases:c}}function n(a){let i=e(`${a}/conv/filters`,4),c=e(`${a}/conv/bias`,1),m=r(a);return{conv:{filters:i,bias:c},scale:m}}function s(a){return{conv1:n(`${a}/conv1`),conv2:n(`${a}/conv2`)}}return{extractConvLayerParams:n,extractResidualLayerParams:s}}function zo(o){let t=[],{extractConvLayerParams:e,extractResidualLayerParams:r}=Qn(o,t),n=e("conv32_down"),s=r("conv32_1"),a=r("conv32_2"),i=r("conv32_3"),c=r("conv64_down"),m=r("conv64_1"),p=r("conv64_2"),u=r("conv64_3"),f=r("conv128_down"),l=r("conv128_1"),b=r("conv128_2"),T=r("conv256_down"),h=r("conv256_1"),g=r("conv256_2"),P=r("conv256_down_out"),{fc:y}=o;if(t.push({originalPath:"fc",paramPath:"fc"}),!Rr(y))throw new Error(`expected weightMap[fc] to be a Tensor2D, instead have ${y}`);let I={conv32_down:n,conv32_1:s,conv32_2:a,conv32_3:i,conv64_down:c,conv64_1:m,conv64_2:p,conv64_3:u,conv128_down:f,conv128_1:l,conv128_2:b,conv256_down:T,conv256_1:h,conv256_2:g,conv256_down_out:P,fc:y};return W(o,t),{params:I,paramMappings:t}}var B=v(x());function ot(o,t){let e=Oo(o,t.conv1);return e=fo(e,t.conv2),e=B.add(e,o),e=B.relu(e),e}function Ye(o,t){let e=wr(o,t.conv1);e=fo(e,t.conv2);let r=B.avgPool(o,2,2,"valid"),n=B.zeros(r.shape),s=r.shape[3]!==e.shape[3];if(r.shape[1]!==e.shape[1]||r.shape[2]!==e.shape[2]){let i=[...e.shape];i[1]=1;let c=B.zeros(i);e=B.concat([e,c],1);let m=[...e.shape];m[2]=1;let p=B.zeros(m);e=B.concat([e,p],2)}return r=s?B.concat([r,n],3):r,e=B.add(r,e),e=B.relu(e),e}var Kt=class extends A{constructor(){super("FaceRecognitionNet")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("FaceRecognitionNet - load model before inference");return nt.tidy(()=>{let r=nt.cast(t.toBatchTensor(150,!0),"float32"),s=rt(r,[122.782,117.001,104.298]).div(255),a=wr(s,e.conv32_down);a=nt.maxPool(a,3,2,"valid"),a=ot(a,e.conv32_1),a=ot(a,e.conv32_2),a=ot(a,e.conv32_3),a=Ye(a,e.conv64_down),a=ot(a,e.conv64_1),a=ot(a,e.conv64_2),a=ot(a,e.conv64_3),a=Ye(a,e.conv128_down),a=ot(a,e.conv128_1),a=ot(a,e.conv128_2),a=Ye(a,e.conv256_down),a=ot(a,e.conv256_1),a=ot(a,e.conv256_2),a=Ye(a,e.conv256_down_out);let i=a.mean([1,2]);return nt.matMul(i,e.fc)})}async forward(t){return this.forwardInput(await D(t))}async computeFaceDescriptor(t){var s;if((s=t==null?void 0:t.shape)!=null&&s.some(a=>a<=0))return new Float32Array(128);let e=await D(t),r=nt.tidy(()=>nt.unstack(this.forwardInput(e))),n=await Promise.all(r.map(a=>a.data()));return r.forEach(a=>a.dispose()),e.isBatchInput?n:n[0]}getDefaultModelName(){return"face_recognition_model"}extractParamsFromWeightMap(t){return zo(t)}extractParams(t){return Ho(t)}};function ta(o){let t=new Kt;return t.extractWeights(o),t}function Fr(o,t){return{...o,...{descriptor:t}}}function ea(o){return typeof o.age=="number"}function Dr(o,t){return{...o,...{age:t}}}function ra(o){return(o.gender==="male"||o.gender==="female")&&ce(o.genderProbability)}function Er(o,t,e){return{...o,...{gender:t,genderProbability:e}}}var Nt=v(x());var at=v(x());function oa(o,t){function e(c,m){let p=at.tensor4d(o(9*c),[3,3,c,1]),u=at.tensor1d(o(c)),f=at.tensor1d(o(c)),l=at.tensor1d(o(c)),b=at.tensor1d(o(c));return t.push({paramPath:`${m}/filters`},{paramPath:`${m}/batch_norm_scale`},{paramPath:`${m}/batch_norm_offset`},{paramPath:`${m}/batch_norm_mean`},{paramPath:`${m}/batch_norm_variance`}),{filters:p,batch_norm_scale:u,batch_norm_offset:f,batch_norm_mean:l,batch_norm_variance:b}}function r(c,m,p,u,f){let l=at.tensor4d(o(c*m*p*p),[p,p,c,m]),b=at.tensor1d(o(m));return t.push({paramPath:`${u}/filters`},{paramPath:`${u}/${f?"batch_norm_offset":"bias"}`}),{filters:l,bias:b}}function n(c,m,p,u){let{filters:f,bias:l}=r(c,m,p,u,!0);return{filters:f,batch_norm_offset:l}}function s(c,m,p){let u=e(c,`${p}/depthwise_conv`),f=n(c,m,1,`${p}/pointwise_conv`);return{depthwise_conv:u,pointwise_conv:f}}function a(){let c=n(3,32,3,"mobilenetv1/conv_0"),m=s(32,64,"mobilenetv1/conv_1"),p=s(64,128,"mobilenetv1/conv_2"),u=s(128,128,"mobilenetv1/conv_3"),f=s(128,256,"mobilenetv1/conv_4"),l=s(256,256,"mobilenetv1/conv_5"),b=s(256,512,"mobilenetv1/conv_6"),T=s(512,512,"mobilenetv1/conv_7"),h=s(512,512,"mobilenetv1/conv_8"),g=s(512,512,"mobilenetv1/conv_9"),P=s(512,512,"mobilenetv1/conv_10"),y=s(512,512,"mobilenetv1/conv_11"),I=s(512,1024,"mobilenetv1/conv_12"),j=s(1024,1024,"mobilenetv1/conv_13");return{conv_0:c,conv_1:m,conv_2:p,conv_3:u,conv_4:f,conv_5:l,conv_6:b,conv_7:T,conv_8:h,conv_9:g,conv_10:P,conv_11:y,conv_12:I,conv_13:j}}function i(){let c=n(1024,256,1,"prediction_layer/conv_0"),m=n(256,512,3,"prediction_layer/conv_1"),p=n(512,128,1,"prediction_layer/conv_2"),u=n(128,256,3,"prediction_layer/conv_3"),f=n(256,128,1,"prediction_layer/conv_4"),l=n(128,256,3,"prediction_layer/conv_5"),b=n(256,64,1,"prediction_layer/conv_6"),T=n(64,128,3,"prediction_layer/conv_7"),h=r(512,12,1,"prediction_layer/box_predictor_0/box_encoding_predictor"),g=r(512,9,1,"prediction_layer/box_predictor_0/class_predictor"),P=r(1024,24,1,"prediction_layer/box_predictor_1/box_encoding_predictor"),y=r(1024,18,1,"prediction_layer/box_predictor_1/class_predictor"),I=r(512,24,1,"prediction_layer/box_predictor_2/box_encoding_predictor"),j=r(512,18,1,"prediction_layer/box_predictor_2/class_predictor"),tt=r(256,24,1,"prediction_layer/box_predictor_3/box_encoding_predictor"),it=r(256,18,1,"prediction_layer/box_predictor_3/class_predictor"),q=r(256,24,1,"prediction_layer/box_predictor_4/box_encoding_predictor"),Pt=r(256,18,1,"prediction_layer/box_predictor_4/class_predictor"),wt=r(128,24,1,"prediction_layer/box_predictor_5/box_encoding_predictor"),Ft=r(128,18,1,"prediction_layer/box_predictor_5/class_predictor");return{conv_0:c,conv_1:m,conv_2:p,conv_3:u,conv_4:f,conv_5:l,conv_6:b,conv_7:T,box_predictor_0:{box_encoding_predictor:h,class_predictor:g},box_predictor_1:{box_encoding_predictor:P,class_predictor:y},box_predictor_2:{box_encoding_predictor:I,class_predictor:j},box_predictor_3:{box_encoding_predictor:tt,class_predictor:it},box_predictor_4:{box_encoding_predictor:q,class_predictor:Pt},box_predictor_5:{box_encoding_predictor:wt,class_predictor:Ft}}}return{extractMobilenetV1Params:a,extractPredictionLayerParams:i}}function Yo(o){let t=[],{extractWeights:e,getRemainingWeights:r}=k(o),{extractMobilenetV1Params:n,extractPredictionLayerParams:s}=oa(e,t),a=n(),i=s(),m={extra_dim:at.tensor3d(e(5118*4),[1,5118,4])};if(t.push({paramPath:"output_layer/extra_dim"}),r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{params:{mobilenetv1:a,prediction_layer:i,output_layer:m},paramMappings:t}}function na(o,t){let e=Y(o,t);function r(m,p,u){let f=e(`${m}/Conv2d_${p}_pointwise/weights`,4,`${u}/filters`),l=e(`${m}/Conv2d_${p}_pointwise/convolution_bn_offset`,1,`${u}/batch_norm_offset`);return{filters:f,batch_norm_offset:l}}function n(m){let p=`mobilenetv1/conv_${m}`,u=`MobilenetV1/Conv2d_${m}_depthwise`,f=`${p}/depthwise_conv`,l=`${p}/pointwise_conv`,b=e(`${u}/depthwise_weights`,4,`${f}/filters`),T=e(`${u}/BatchNorm/gamma`,1,`${f}/batch_norm_scale`),h=e(`${u}/BatchNorm/beta`,1,`${f}/batch_norm_offset`),g=e(`${u}/BatchNorm/moving_mean`,1,`${f}/batch_norm_mean`),P=e(`${u}/BatchNorm/moving_variance`,1,`${f}/batch_norm_variance`);return{depthwise_conv:{filters:b,batch_norm_scale:T,batch_norm_offset:h,batch_norm_mean:g,batch_norm_variance:P},pointwise_conv:r("MobilenetV1",m,l)}}function s(){return{conv_0:r("MobilenetV1",0,"mobilenetv1/conv_0"),conv_1:n(1),conv_2:n(2),conv_3:n(3),conv_4:n(4),conv_5:n(5),conv_6:n(6),conv_7:n(7),conv_8:n(8),conv_9:n(9),conv_10:n(10),conv_11:n(11),conv_12:n(12),conv_13:n(13)}}function a(m,p){let u=e(`${m}/weights`,4,`${p}/filters`),f=e(`${m}/biases`,1,`${p}/bias`);return{filters:u,bias:f}}function i(m){let p=a(`Prediction/BoxPredictor_${m}/BoxEncodingPredictor`,`prediction_layer/box_predictor_${m}/box_encoding_predictor`),u=a(`Prediction/BoxPredictor_${m}/ClassPredictor`,`prediction_layer/box_predictor_${m}/class_predictor`);return{box_encoding_predictor:p,class_predictor:u}}function c(){return{conv_0:r("Prediction",0,"prediction_layer/conv_0"),conv_1:r("Prediction",1,"prediction_layer/conv_1"),conv_2:r("Prediction",2,"prediction_layer/conv_2"),conv_3:r("Prediction",3,"prediction_layer/conv_3"),conv_4:r("Prediction",4,"prediction_layer/conv_4"),conv_5:r("Prediction",5,"prediction_layer/conv_5"),conv_6:r("Prediction",6,"prediction_layer/conv_6"),conv_7:r("Prediction",7,"prediction_layer/conv_7"),box_predictor_0:i(0),box_predictor_1:i(1),box_predictor_2:i(2),box_predictor_3:i(3),box_predictor_4:i(4),box_predictor_5:i(5)}}return{extractMobilenetV1Params:s,extractPredictionLayerParams:c}}function Vo(o){let t=[],{extractMobilenetV1Params:e,extractPredictionLayerParams:r}=na(o,t),n=o["Output/extra_dim"];if(t.push({originalPath:"Output/extra_dim",paramPath:"output_layer/extra_dim"}),!dt(n))throw new Error(`expected weightMap['Output/extra_dim'] to be a Tensor3D, instead have ${n}`);let s={mobilenetv1:e(),prediction_layer:r(),output_layer:{extra_dim:n}};return W(o,t),{params:s,paramMappings:t}}var xt=v(x());var Ct=v(x());function Z(o,t,e){return Ct.tidy(()=>{let r=Ct.conv2d(o,t.filters,e,"same");return r=Ct.add(r,t.batch_norm_offset),Ct.clipByValue(r,0,6)})}var aa=.0010000000474974513;function sa(o,t,e){return xt.tidy(()=>{let r=xt.depthwiseConv2d(o,t.filters,e,"same");return r=xt.batchNorm(r,t.batch_norm_mean,t.batch_norm_variance,t.batch_norm_offset,t.batch_norm_scale,aa),xt.clipByValue(r,0,6)})}function ia(o){return[2,4,6,12].some(t=>t===o)?[2,2]:[1,1]}function Go(o,t){return xt.tidy(()=>{let e,r=Z(o,t.conv_0,[2,2]);if([t.conv_1,t.conv_2,t.conv_3,t.conv_4,t.conv_5,t.conv_6,t.conv_7,t.conv_8,t.conv_9,t.conv_10,t.conv_11,t.conv_12,t.conv_13].forEach((s,a)=>{let i=a+1,c=ia(i);r=sa(r,s.depthwise_conv,c),r=Z(r,s.pointwise_conv,[1,1]),i===11&&(e=r)}),e===null)throw new Error("mobileNetV1 - output of conv layer 11 is null");return{out:r,conv11:e}})}function ca(o,t,e){let r=o.arraySync(),n=Math.min(r[t][0],r[t][2]),s=Math.min(r[t][1],r[t][3]),a=Math.max(r[t][0],r[t][2]),i=Math.max(r[t][1],r[t][3]),c=Math.min(r[e][0],r[e][2]),m=Math.min(r[e][1],r[e][3]),p=Math.max(r[e][0],r[e][2]),u=Math.max(r[e][1],r[e][3]),f=(a-n)*(i-s),l=(p-c)*(u-m);if(f<=0||l<=0)return 0;let b=Math.max(n,c),T=Math.max(s,m),h=Math.min(a,p),g=Math.min(i,u),P=Math.max(h-b,0)*Math.max(g-T,0);return P/(f+l-P)}function jo(o,t,e,r,n){let s=o.shape[0],a=Math.min(e,s),i=t.map((p,u)=>({score:p,boxIndex:u})).filter(p=>p.score>n).sort((p,u)=>u.score-p.score),c=p=>p<=r?1:0,m=[];return i.forEach(p=>{if(m.length>=a)return;let u=p.score;for(let f=m.length-1;f>=0;--f){let l=ca(o,p.boxIndex,m[f]);if(l!==0&&(p.score*=c(l),p.score<=n))break}u===p.score&&m.push(p.boxIndex)}),m}var d=v(x());function ma(o){let t=d.unstack(d.transpose(o,[1,0])),e=[d.sub(t[2],t[0]),d.sub(t[3],t[1])],r=[d.add(t[0],d.div(e[0],2)),d.add(t[1],d.div(e[1],2))];return{sizes:e,centers:r}}function pa(o,t){let{sizes:e,centers:r}=ma(o),n=d.unstack(d.transpose(t,[1,0])),s=d.div(d.mul(d.exp(d.div(n[2],5)),e[0]),2),a=d.add(d.mul(d.div(n[0],10),e[0]),r[0]),i=d.div(d.mul(d.exp(d.div(n[3],5)),e[1]),2),c=d.add(d.mul(d.div(n[1],10),e[1]),r[1]);return d.transpose(d.stack([d.sub(a,s),d.sub(c,i),d.add(a,s),d.add(c,i)]),[1,0])}function Uo(o,t,e){return d.tidy(()=>{let r=o.shape[0],n=pa(d.reshape(d.tile(e.extra_dim,[r,1,1]),[-1,4]),d.reshape(o,[-1,4]));n=d.reshape(n,[r,n.shape[0]/r,4]);let s=d.sigmoid(d.slice(t,[0,0,1],[-1,-1,-1])),a=d.slice(s,[0,0,0],[-1,-1,1]);a=d.reshape(a,[r,a.shape[1]]);let i=d.unstack(n),c=d.unstack(a);return{boxes:i,scores:c}})}var Ge=v(x());var Ve=v(x());function Qt(o,t){return Ve.tidy(()=>{let e=o.shape[0],r=Ve.reshape(Jt(o,t.box_encoding_predictor),[e,-1,1,4]),n=Ve.reshape(Jt(o,t.class_predictor),[e,-1,3]);return{boxPredictionEncoding:r,classPrediction:n}})}function Xo(o,t,e){return Ge.tidy(()=>{let r=Z(o,e.conv_0,[1,1]),n=Z(r,e.conv_1,[2,2]),s=Z(n,e.conv_2,[1,1]),a=Z(s,e.conv_3,[2,2]),i=Z(a,e.conv_4,[1,1]),c=Z(i,e.conv_5,[2,2]),m=Z(c,e.conv_6,[1,1]),p=Z(m,e.conv_7,[2,2]),u=Qt(t,e.box_predictor_0),f=Qt(o,e.box_predictor_1),l=Qt(n,e.box_predictor_2),b=Qt(a,e.box_predictor_3),T=Qt(c,e.box_predictor_4),h=Qt(p,e.box_predictor_5),g=Ge.concat([u.boxPredictionEncoding,f.boxPredictionEncoding,l.boxPredictionEncoding,b.boxPredictionEncoding,T.boxPredictionEncoding,h.boxPredictionEncoding],1),P=Ge.concat([u.classPrediction,f.classPrediction,l.classPrediction,b.classPrediction,T.classPrediction,h.classPrediction],1);return{boxPredictions:g,classPredictions:P}})}var X=class{constructor({minConfidence:t,maxResults:e}={}){this._name="SsdMobilenetv1Options";if(this._minConfidence=t||.5,this._maxResults=e||100,typeof this._minConfidence!="number"||this._minConfidence<=0||this._minConfidence>=1)throw new Error(`${this._name} - expected minConfidence to be a number between 0 and 1`);if(typeof this._maxResults!="number")throw new Error(`${this._name} - expected maxResults to be a number`)}get minConfidence(){return this._minConfidence}get maxResults(){return this._maxResults}};var It=class extends A{constructor(){super("SsdMobilenetv1")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("SsdMobilenetv1 - load model before inference");return Nt.tidy(()=>{let r=Nt.cast(t.toBatchTensor(512,!1),"float32"),n=Nt.sub(Nt.div(r,127.5),1),s=Go(n,e.mobilenetv1),{boxPredictions:a,classPredictions:i}=Xo(s.out,s.conv11,e.prediction_layer);return Uo(a,i,e.output_layer)})}async forward(t){return this.forwardInput(await D(t))}async locateFaces(t,e={}){let{maxResults:r,minConfidence:n}=new X(e),s=await D(t),{boxes:a,scores:i}=this.forwardInput(s),c=a[0],m=i[0];for(let y=1;y{let[I,j]=[Math.max(0,g[y][0]),Math.min(1,g[y][2])].map(q=>q*h),[tt,it]=[Math.max(0,g[y][1]),Math.min(1,g[y][3])].map(q=>q*T);return new M(p[y],new zt(tt,I,it-tt,j-I),{height:s.getInputHeight(0),width:s.getInputWidth(0)})});return c.dispose(),m.dispose(),P}getDefaultModelName(){return"ssd_mobilenetv1_model"}extractParamsFromWeightMap(t){return Vo(t)}extractParams(t){return Yo(t)}};function Jo(o){let t=new It;return t.extractWeights(o),t}function ua(o){return Jo(o)}var lo=class extends It{};var qo=.4,Zo=[new _(.738768,.874946),new _(2.42204,2.65704),new _(4.30971,7.04493),new _(10.246,4.59428),new _(12.6868,11.8741)],Ko=[new _(1.603231,2.094468),new _(6.041143,7.080126),new _(2.882459,3.518061),new _(4.266906,5.178857),new _(9.041765,10.66308)],Qo=[117.001,114.697,97.404],tn="tiny_yolov2_model",en="tiny_yolov2_separable_conv_model";var C=v(x());var Mr=o=>typeof o=="number";function ho(o){if(!o)throw new Error(`invalid config: ${o}`);if(typeof o.withSeparableConvs!="boolean")throw new Error(`config.withSeparableConvs has to be a boolean, have: ${o.withSeparableConvs}`);if(!Mr(o.iouThreshold)||o.iouThreshold<0||o.iouThreshold>1)throw new Error(`config.iouThreshold has to be a number between [0, 1], have: ${o.iouThreshold}`);if(!Array.isArray(o.classes)||!o.classes.length||!o.classes.every(t=>typeof t=="string"))throw new Error(`config.classes has to be an array class names: string[], have: ${JSON.stringify(o.classes)}`);if(!Array.isArray(o.anchors)||!o.anchors.length||!o.anchors.map(t=>t||{}).every(t=>Mr(t.x)&&Mr(t.y)))throw new Error(`config.anchors has to be an array of { x: number, y: number }, have: ${JSON.stringify(o.anchors)}`);if(o.meanRgb&&(!Array.isArray(o.meanRgb)||o.meanRgb.length!==3||!o.meanRgb.every(Mr)))throw new Error(`config.meanRgb has to be an array of shape [number, number, number], have: ${JSON.stringify(o.meanRgb)}`)}var Q=v(x());var K=v(x());function Ee(o){return K.tidy(()=>{let t=K.mul(o,K.scalar(.10000000149011612));return K.add(K.relu(K.sub(o,t)),t)})}function vt(o,t){return Q.tidy(()=>{let e=Q.pad(o,[[0,0],[1,1],[1,1],[0,0]]);return e=Q.conv2d(e,t.conv.filters,[1,1],"valid"),e=Q.sub(e,t.bn.sub),e=Q.mul(e,t.bn.truediv),e=Q.add(e,t.conv.bias),Ee(e)})}var Lt=v(x());function yt(o,t){return Lt.tidy(()=>{let e=Lt.pad(o,[[0,0],[1,1],[1,1],[0,0]]);return e=Lt.separableConv2d(e,t.depthwise_filter,t.pointwise_filter,[1,1],"valid"),e=Lt.add(e,t.bias),Ee(e)})}var bo=v(x());function fa(o,t){let e=he(o,t);function r(a,i){let c=bo.tensor1d(o(a)),m=bo.tensor1d(o(a));return t.push({paramPath:`${i}/sub`},{paramPath:`${i}/truediv`}),{sub:c,truediv:m}}function n(a,i,c){let m=e(a,i,3,`${c}/conv`),p=r(i,`${c}/bn`);return{conv:m,bn:p}}let s=be(o,t);return{extractConvParams:e,extractConvWithBatchNormParams:n,extractSeparableConvParams:s}}function rn(o,t,e,r){let{extractWeights:n,getRemainingWeights:s}=k(o),a=[],{extractConvParams:i,extractConvWithBatchNormParams:c,extractSeparableConvParams:m}=fa(n,a),p;if(t.withSeparableConvs){let[u,f,l,b,T,h,g,P,y]=r,I=t.isFirstLayerConv2d?i(u,f,3,"conv0"):m(u,f,"conv0"),j=m(f,l,"conv1"),tt=m(l,b,"conv2"),it=m(b,T,"conv3"),q=m(T,h,"conv4"),Pt=m(h,g,"conv5"),wt=P?m(g,P,"conv6"):void 0,Ft=y?m(P,y,"conv7"):void 0,ie=i(y||P||g,5*e,1,"conv8");p={conv0:I,conv1:j,conv2:tt,conv3:it,conv4:q,conv5:Pt,conv6:wt,conv7:Ft,conv8:ie}}else{let[u,f,l,b,T,h,g,P,y]=r,I=c(u,f,"conv0"),j=c(f,l,"conv1"),tt=c(l,b,"conv2"),it=c(b,T,"conv3"),q=c(T,h,"conv4"),Pt=c(h,g,"conv5"),wt=c(g,P,"conv6"),Ft=c(P,y,"conv7"),ie=i(y,5*e,1,"conv8");p={conv0:I,conv1:j,conv2:tt,conv3:it,conv4:q,conv5:Pt,conv6:wt,conv7:Ft,conv8:ie}}if(s().length!==0)throw new Error(`weights remaing after extract: ${s().length}`);return{params:p,paramMappings:a}}function la(o,t){let e=Y(o,t);function r(i){let c=e(`${i}/sub`,1),m=e(`${i}/truediv`,1);return{sub:c,truediv:m}}function n(i){let c=e(`${i}/filters`,4),m=e(`${i}/bias`,1);return{filters:c,bias:m}}function s(i){let c=n(`${i}/conv`),m=r(`${i}/bn`);return{conv:c,bn:m}}let a=ge(e);return{extractConvParams:n,extractConvWithBatchNormParams:s,extractSeparableConvParams:a}}function on(o,t){let e=[],{extractConvParams:r,extractConvWithBatchNormParams:n,extractSeparableConvParams:s}=la(o,e),a;if(t.withSeparableConvs){let i=t.filterSizes&&t.filterSizes.length||9;a={conv0:t.isFirstLayerConv2d?r("conv0"):s("conv0"),conv1:s("conv1"),conv2:s("conv2"),conv3:s("conv3"),conv4:s("conv4"),conv5:s("conv5"),conv6:i>7?s("conv6"):void 0,conv7:i>8?s("conv7"):void 0,conv8:r("conv8")}}else a={conv0:n("conv0"),conv1:n("conv1"),conv2:n("conv2"),conv3:n("conv3"),conv4:n("conv4"),conv5:n("conv5"),conv6:n("conv6"),conv7:n("conv7"),conv8:r("conv8")};return W(o,e),{params:a,paramMappings:e}}var st=class{constructor({inputSize:t,scoreThreshold:e}={}){this._name="TinyYolov2Options";if(this._inputSize=t||416,this._scoreThreshold=e||.5,typeof this._inputSize!="number"||this._inputSize%32!==0)throw new Error(`${this._name} - expected inputSize to be a number divisible by 32`);if(typeof this._scoreThreshold!="number"||this._scoreThreshold<=0||this._scoreThreshold>=1)throw new Error(`${this._name} - expected scoreThreshold to be a number between 0 and 1`)}get inputSize(){return this._inputSize}get scoreThreshold(){return this._scoreThreshold}};var Cr=class Cr extends A{constructor(t){super("TinyYolov2"),ho(t),this._config=t}get config(){return this._config}get withClassScores(){return this.config.withClassScores||this.config.classes.length>1}get boxEncodingSize(){return 5+(this.withClassScores?this.config.classes.length:0)}runTinyYolov2(t,e){let r=vt(t,e.conv0);return r=C.maxPool(r,[2,2],[2,2],"same"),r=vt(r,e.conv1),r=C.maxPool(r,[2,2],[2,2],"same"),r=vt(r,e.conv2),r=C.maxPool(r,[2,2],[2,2],"same"),r=vt(r,e.conv3),r=C.maxPool(r,[2,2],[2,2],"same"),r=vt(r,e.conv4),r=C.maxPool(r,[2,2],[2,2],"same"),r=vt(r,e.conv5),r=C.maxPool(r,[2,2],[1,1],"same"),r=vt(r,e.conv6),r=vt(r,e.conv7),Jt(r,e.conv8,"valid",!1)}runMobilenet(t,e){let r=this.config.isFirstLayerConv2d?Ee(Jt(t,e.conv0,"valid",!1)):yt(t,e.conv0);return r=C.maxPool(r,[2,2],[2,2],"same"),r=yt(r,e.conv1),r=C.maxPool(r,[2,2],[2,2],"same"),r=yt(r,e.conv2),r=C.maxPool(r,[2,2],[2,2],"same"),r=yt(r,e.conv3),r=C.maxPool(r,[2,2],[2,2],"same"),r=yt(r,e.conv4),r=C.maxPool(r,[2,2],[2,2],"same"),r=yt(r,e.conv5),r=C.maxPool(r,[2,2],[1,1],"same"),r=e.conv6?yt(r,e.conv6):r,r=e.conv7?yt(r,e.conv7):r,Jt(r,e.conv8,"valid",!1)}forwardInput(t,e){let{params:r}=this;if(!r)throw new Error("TinyYolov2 - load model before inference");return C.tidy(()=>{let n=C.cast(t.toBatchTensor(e,!1),"float32");return n=this.config.meanRgb?rt(n,this.config.meanRgb):n,n=n.div(255),this.config.withSeparableConvs?this.runMobilenet(n,r):this.runTinyYolov2(n,r)})}async forward(t,e){return this.forwardInput(await D(t),e)}async detect(t,e={}){let{inputSize:r,scoreThreshold:n}=new st(e),s=await D(t),a=await this.forwardInput(s,r),i=C.tidy(()=>C.unstack(a)[0].expandDims()),c={width:s.getInputWidth(0),height:s.getInputHeight(0)},m=await this.extractBoxes(i,s.getReshapedInputDimensions(0),n);a.dispose(),i.dispose();let p=m.map(h=>h.box),u=m.map(h=>h.score),f=m.map(h=>h.classScore),l=m.map(h=>this.config.classes[h.label]);return Vr(p.map(h=>h.rescale(r)),u,this.config.iouThreshold,!0).map(h=>new Ht(u[h],f[h],l[h],p[h],c))}getDefaultModelName(){return""}extractParamsFromWeightMap(t){return on(t,this.config)}extractParams(t){let e=this.config.filterSizes||Cr.DEFAULT_FILTER_SIZES,r=e?e.length:void 0;if(r!==7&&r!==8&&r!==9)throw new Error(`TinyYolov2 - expected 7 | 8 | 9 convolutional filters, but found ${r} filterSizes in config`);return rn(t,this.config,this.boxEncodingSize,e)}async extractBoxes(t,e,r){let{width:n,height:s}=e,a=Math.max(n,s),i=a/n,c=a/s,m=t.shape[1],p=this.config.anchors.length,[u,f,l]=C.tidy(()=>{let g=t.reshape([m,m,p,this.boxEncodingSize]),P=g.slice([0,0,0,0],[m,m,p,4]),y=g.slice([0,0,0,4],[m,m,p,1]),I=this.withClassScores?C.softmax(g.slice([0,0,0,5],[m,m,p,this.config.classes.length]),3):C.scalar(0);return[P,y,I]}),b=[],T=await f.array(),h=await u.array();for(let g=0;gr){let j=(P+Ne(h[g][P][y][0]))/m*i,tt=(g+Ne(h[g][P][y][1]))/m*c,it=Math.exp(h[g][P][y][2])*this.config.anchors[y].x/m*i,q=Math.exp(h[g][P][y][3])*this.config.anchors[y].y/m*c,Pt=j-it/2,wt=tt-q/2,Ft={row:g,col:P,anchor:y},{classScore:ie,label:yo}=this.withClassScores?await this.extractPredictedClass(l,Ft):{classScore:1,label:0};b.push({box:new Ot(Pt,wt,Pt+it,wt+q),score:I,classScore:I*ie,label:yo,...Ft})}}return u.dispose(),f.dispose(),l.dispose(),b}async extractPredictedClass(t,e){let{row:r,col:n,anchor:s}=e,a=await t.array();return Array(this.config.classes.length).fill(0).map((i,c)=>a[r][n][s][c]).map((i,c)=>({classScore:i,label:c})).reduce((i,c)=>i.classScore>c.classScore?i:c)}};Cr.DEFAULT_FILTER_SIZES=[3,16,32,64,128,256,512,1024,1024];var Me=Cr;var te=class extends Me{constructor(t=!0){let e={withSeparableConvs:t,iouThreshold:qo,classes:["face"],...t?{anchors:Ko,meanRgb:Qo}:{anchors:Zo,withClassScores:!0}};super(e)}get withSeparableConvs(){return this.config.withSeparableConvs}get anchors(){return this.config.anchors}async locateFaces(t,e){return(await this.detect(t,e)).map(n=>new M(n.score,n.relativeBox,{width:n.imageWidth,height:n.imageHeight}))}getDefaultModelName(){return this.withSeparableConvs?en:tn}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};function da(o,t=!0){let e=new te(t);return e.extractWeights(o),e}var je=class extends st{constructor(){super(...arguments);this._name="TinyFaceDetectorOptions"}};var J=class{async then(t){return t(await this.run())}async run(){throw new Error("ComposableTask - run is not implemented")}};var Xe=v(x());var go=v(x());async function ee(o,t,e,r,n=({alignedRect:s})=>s){let s=o.map(c=>qt(c)?n(c):c.detection),a=r||(t instanceof go.Tensor?await le(t,s):await fe(t,s)),i=await e(a);return a.forEach(c=>c instanceof go.Tensor&&c.dispose()),i}async function Ce(o,t,e,r,n){return ee([o],t,async s=>e(s[0]),r,n)}var nn=.4,an=[new _(1.603231,2.094468),new _(6.041143,7.080126),new _(2.882459,3.518061),new _(4.266906,5.178857),new _(9.041765,10.66308)],sn=[117.001,114.697,97.404];var re=class extends Me{constructor(){let t={withSeparableConvs:!0,iouThreshold:nn,classes:["face"],anchors:an,meanRgb:sn,isFirstLayerConv2d:!0,filterSizes:[3,16,32,64,128,256,512]};super(t)}get anchors(){return this.config.anchors}async locateFaces(t,e){return(await this.detect(t,e)).map(n=>new M(n.score,n.relativeBox,{width:n.imageWidth,height:n.imageHeight}))}getDefaultModelName(){return"tiny_face_detector_model"}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};var F={ssdMobilenetv1:new It,tinyFaceDetector:new re,tinyYolov2:new te,faceLandmark68Net:new Zt,faceLandmark68TinyNet:new ze,faceRecognitionNet:new Kt,faceExpressionNet:new Oe,ageGenderNet:new He},cn=(o,t)=>F.ssdMobilenetv1.locateFaces(o,t),ha=(o,t)=>F.tinyFaceDetector.locateFaces(o,t),ba=(o,t)=>F.tinyYolov2.locateFaces(o,t),mn=o=>F.faceLandmark68Net.detectLandmarks(o),ga=o=>F.faceLandmark68TinyNet.detectLandmarks(o),xa=o=>F.faceRecognitionNet.computeFaceDescriptor(o),va=o=>F.faceExpressionNet.predictExpressions(o),ya=o=>F.ageGenderNet.predictAgeAndGender(o),pn=o=>F.ssdMobilenetv1.load(o),_a=o=>F.tinyFaceDetector.load(o),Ta=o=>F.tinyYolov2.load(o),Pa=o=>F.faceLandmark68Net.load(o),wa=o=>F.faceLandmark68TinyNet.load(o),Fa=o=>F.faceRecognitionNet.load(o),Da=o=>F.faceExpressionNet.load(o),Ea=o=>F.ageGenderNet.load(o),Ma=pn,Ca=cn,Ia=mn;var Ir=class extends J{constructor(e,r,n){super();this.parentTask=e;this.input=r;this.extractedFaces=n}},oe=class extends Ir{async run(){let t=await this.parentTask,e=await ee(t,this.input,async r=>Promise.all(r.map(n=>F.faceExpressionNet.predictExpressions(n))),this.extractedFaces);return t.map((r,n)=>gr(r,e[n]))}withAgeAndGender(){return new ae(this,this.input)}},ne=class extends Ir{async run(){let t=await this.parentTask;if(!t)return;let e=await Ce(t,this.input,r=>F.faceExpressionNet.predictExpressions(r),this.extractedFaces);return gr(t,e)}withAgeAndGender(){return new se(this,this.input)}},St=class extends oe{withAgeAndGender(){return new Wt(this,this.input)}withFaceDescriptors(){return new _t(this,this.input)}},At=class extends ne{withAgeAndGender(){return new kt(this,this.input)}withFaceDescriptor(){return new Tt(this,this.input)}};var Nr=class extends J{constructor(e,r,n){super();this.parentTask=e;this.input=r;this.extractedFaces=n}},ae=class extends Nr{async run(){let t=await this.parentTask,e=await ee(t,this.input,async r=>Promise.all(r.map(n=>F.ageGenderNet.predictAgeAndGender(n))),this.extractedFaces);return t.map((r,n)=>{let{age:s,gender:a,genderProbability:i}=e[n];return Dr(Er(r,a,i),s)})}withFaceExpressions(){return new oe(this,this.input)}},se=class extends Nr{async run(){let t=await this.parentTask;if(!t)return;let{age:e,gender:r,genderProbability:n}=await Ce(t,this.input,s=>F.ageGenderNet.predictAgeAndGender(s),this.extractedFaces);return Dr(Er(t,r,n),e)}withFaceExpressions(){return new ne(this,this.input)}},Wt=class extends ae{withFaceExpressions(){return new St(this,this.input)}withFaceDescriptors(){return new _t(this,this.input)}},kt=class extends se{withFaceExpressions(){return new At(this,this.input)}withFaceDescriptor(){return new Tt(this,this.input)}};var Ue=class extends J{constructor(e,r){super();this.parentTask=e;this.input=r}},_t=class extends Ue{async run(){let t=await this.parentTask;return(await ee(t,this.input,r=>Promise.all(r.map(n=>F.faceRecognitionNet.computeFaceDescriptor(n))),null,r=>r.landmarks.align(null,{useDlibAlignment:!0}))).map((r,n)=>Fr(t[n],r))}withFaceExpressions(){return new St(this,this.input)}withAgeAndGender(){return new Wt(this,this.input)}},Tt=class extends Ue{async run(){let t=await this.parentTask;if(!t)return;let e=await Ce(t,this.input,r=>F.faceRecognitionNet.computeFaceDescriptor(r),null,r=>r.landmarks.align(null,{useDlibAlignment:!0}));return Fr(t,e)}withFaceExpressions(){return new At(this,this.input)}withAgeAndGender(){return new kt(this,this.input)}};var Je=class extends J{constructor(e,r,n){super();this.parentTask=e;this.input=r;this.useTinyLandmarkNet=n}get landmarkNet(){return this.useTinyLandmarkNet?F.faceLandmark68TinyNet:F.faceLandmark68Net}},qe=class extends Je{async run(){let t=await this.parentTask,e=t.map(a=>a.detection),r=this.input instanceof Xe.Tensor?await le(this.input,e):await fe(this.input,e),n=await Promise.all(r.map(a=>this.landmarkNet.detectLandmarks(a)));return r.forEach(a=>a instanceof Xe.Tensor&&a.dispose()),t.filter((a,i)=>n[i]).map((a,i)=>Pe(a,n[i]))}withFaceExpressions(){return new St(this,this.input)}withAgeAndGender(){return new Wt(this,this.input)}withFaceDescriptors(){return new _t(this,this.input)}},Ze=class extends Je{async run(){let t=await this.parentTask;if(!t)return;let{detection:e}=t,r=this.input instanceof Xe.Tensor?await le(this.input,[e]):await fe(this.input,[e]),n=await this.landmarkNet.detectLandmarks(r[0]);return r.forEach(s=>s instanceof Xe.Tensor&&s.dispose()),Pe(t,n)}withFaceExpressions(){return new At(this,this.input)}withAgeAndGender(){return new kt(this,this.input)}withFaceDescriptor(){return new Tt(this,this.input)}};var Ke=class extends J{constructor(e,r=new X){super();this.input=e;this.options=r}},Ie=class extends Ke{async run(){let{input:t,options:e}=this,r;if(e instanceof je)r=F.tinyFaceDetector.locateFaces(t,e);else if(e instanceof X)r=F.ssdMobilenetv1.locateFaces(t,e);else if(e instanceof st)r=F.tinyYolov2.locateFaces(t,e);else throw new Error("detectFaces - expected options to be instance of TinyFaceDetectorOptions | SsdMobilenetv1Options | TinyYolov2Options");return r}runAndExtendWithFaceDetections(){return new Promise((t,e)=>{this.run().then(r=>t(r.map(n=>Vt({},n)))).catch(r=>e(r))})}withFaceLandmarks(t=!1){return new qe(this.runAndExtendWithFaceDetections(),this.input,t)}withFaceExpressions(){return new oe(this.runAndExtendWithFaceDetections(),this.input)}withAgeAndGender(){return new ae(this.runAndExtendWithFaceDetections(),this.input)}},Qe=class extends Ke{async run(){let t=await new Ie(this.input,this.options),e=t[0];return t.forEach(r=>{r.score>e.score&&(e=r)}),e}runAndExtendWithFaceDetection(){return new Promise(async t=>{let e=await this.run();t(e?Vt({},e):void 0)})}withFaceLandmarks(t=!1){return new Ze(this.runAndExtendWithFaceDetection(),this.input,t)}withFaceExpressions(){return new ne(this.runAndExtendWithFaceDetection(),this.input)}withAgeAndGender(){return new se(this.runAndExtendWithFaceDetection(),this.input)}};function Na(o,t=new X){return new Qe(o,t)}function Lr(o,t=new X){return new Ie(o,t)}async function un(o,t){return Lr(o,new X(t?{minConfidence:t}:{})).withFaceLandmarks().withFaceDescriptors()}async function La(o,t={}){return Lr(o,new st(t)).withFaceLandmarks().withFaceDescriptors()}var Sa=un;function xo(o,t){if(o.length!==t.length)throw new Error("euclideanDistance: arr1.length !== arr2.length");let e=Array.from(o),r=Array.from(t);return Math.sqrt(e.map((n,s)=>n-r[s]).reduce((n,s)=>n+s*s,0))}var vo=class o{constructor(t,e=.6){this._distanceThreshold=e;let r=Array.isArray(t)?t:[t];if(!r.length)throw new Error("FaceRecognizer.constructor - expected atleast one input");let n=1,s=()=>`person ${n++}`;this._labeledDescriptors=r.map(a=>{if(a instanceof Et)return a;if(a instanceof Float32Array)return new Et(s(),[a]);if(a.descriptor&&a.descriptor instanceof Float32Array)return new Et(s(),[a.descriptor]);throw new Error("FaceRecognizer.constructor - expected inputs to be of type LabeledFaceDescriptors | WithFaceDescriptor | Float32Array | Array | Float32Array>")})}get labeledDescriptors(){return this._labeledDescriptors}get distanceThreshold(){return this._distanceThreshold}computeMeanDistance(t,e){return e.map(r=>xo(r,t)).reduce((r,n)=>r+n,0)/(e.length||1)}matchDescriptor(t){return this.labeledDescriptors.map(({descriptors:e,label:r})=>new me(r,this.computeMeanDistance(t,e))).reduce((e,r)=>e.distancet.toJSON())}}static fromJSON(t){let e=t.labeledDescriptors.map(r=>Et.fromJSON(r));return new o(e,t.distanceThreshold)}};function Aa(o){let t=new re;return t.extractWeights(o),t}function fn(o,t){let{width:e,height:r}=new R(t.width,t.height);if(e<=0||r<=0)throw new Error(`resizeResults - invalid dimensions: ${JSON.stringify({width:e,height:r})}`);if(Array.isArray(o))return o.map(n=>fn(n,{width:e,height:r}));if(qt(o)){let n=o.detection.forSize(e,r),s=o.unshiftedLandmarks.forSize(n.box.width,n.box.height);return Pe(Vt(o,n),s)}return pt(o)?Vt(o,o.detection.forSize(e,r)):o instanceof H||o instanceof M?o.forSize(e,r):o}var ka=No;0&&(module.exports={AgeGenderNet,BoundingBox,Box,ComposableTask,ComputeAllFaceDescriptorsTask,ComputeFaceDescriptorsTaskBase,ComputeSingleFaceDescriptorTask,DetectAllFaceLandmarksTask,DetectAllFacesTask,DetectFaceLandmarksTaskBase,DetectFacesTaskBase,DetectSingleFaceLandmarksTask,DetectSingleFaceTask,Dimensions,FACE_EXPRESSION_LABELS,FaceDetection,FaceDetectionNet,FaceExpressionNet,FaceExpressions,FaceLandmark68Net,FaceLandmark68TinyNet,FaceLandmarkNet,FaceLandmarks,FaceLandmarks5,FaceLandmarks68,FaceMatch,FaceMatcher,FaceRecognitionNet,Gender,LabeledBox,LabeledFaceDescriptors,NetInput,NeuralNetwork,ObjectDetection,Point,PredictedBox,Rect,SsdMobilenetv1,SsdMobilenetv1Options,TinyFaceDetector,TinyFaceDetectorOptions,TinyYolov2,TinyYolov2Options,allFaces,allFacesSsdMobilenetv1,allFacesTinyYolov2,awaitMediaLoaded,bufferToImage,computeFaceDescriptor,createCanvas,createCanvasFromMedia,createFaceDetectionNet,createFaceRecognitionNet,createSsdMobilenetv1,createTinyFaceDetector,createTinyYolov2,detectAllFaces,detectFaceLandmarks,detectFaceLandmarksTiny,detectLandmarks,detectSingleFace,draw,env,euclideanDistance,extendWithAge,extendWithFaceDescriptor,extendWithFaceDetection,extendWithFaceExpressions,extendWithFaceLandmarks,extendWithGender,extractFaceTensors,extractFaces,fetchImage,fetchJson,fetchNetWeights,fetchOrThrow,fetchVideo,getContext2dOrThrow,getMediaDimensions,imageTensorToCanvas,imageToSquare,inverseSigmoid,iou,isMediaElement,isMediaLoaded,isWithAge,isWithFaceDetection,isWithFaceExpressions,isWithFaceLandmarks,isWithGender,loadAgeGenderModel,loadFaceDetectionModel,loadFaceExpressionModel,loadFaceLandmarkModel,loadFaceLandmarkTinyModel,loadFaceRecognitionModel,loadSsdMobilenetv1Model,loadTinyFaceDetectorModel,loadTinyYolov2Model,loadWeightMap,locateFaces,matchDimensions,minBbox,nets,nonMaxSuppression,normalize,padToSquare,predictAgeAndGender,recognizeFaceExpressions,resizeResults,resolveInput,shuffleArray,sigmoid,ssdMobilenetv1,tf,tinyFaceDetector,tinyYolov2,toNetInput,utils,validateConfig,version}); +"use strict";var ln=Object.create;var tr=Object.defineProperty;var dn=Object.getOwnPropertyDescriptor;var hn=Object.getOwnPropertyNames;var bn=Object.getPrototypeOf,gn=Object.prototype.hasOwnProperty;var xn=(o,t)=>()=>(t||o((t={exports:{}}).exports,t),t.exports),Sr=(o,t)=>{for(var e in t)tr(o,e,{get:t[e],enumerable:!0})},_o=(o,t,e,r)=>{if(t&&typeof t=="object"||typeof t=="function")for(let n of hn(t))!gn.call(o,n)&&n!==e&&tr(o,n,{get:()=>t[n],enumerable:!(r=dn(t,n))||r.enumerable});return o};var v=(o,t,e)=>(e=o!=null?ln(bn(o)):{},_o(t||!o||!o.__esModule?tr(e,"default",{value:o,enumerable:!0}):e,o)),vn=o=>_o(tr({},"__esModule",{value:!0}),o);var x=xn((Ya,Br)=>{"use strict";var Wr=Object.defineProperty,yn=Object.getOwnPropertyDescriptor,_n=Object.getOwnPropertyNames,Tn=Object.prototype.hasOwnProperty,Pn=(o,t)=>{for(var e in t)Wr(o,e,{get:t[e],enumerable:!0})},Ar=(o,t,e,r)=>{if(t&&typeof t=="object"||typeof t=="function")for(let n of _n(t))!Tn.call(o,n)&&n!==e&&Wr(o,n,{get:()=>t[n],enumerable:!(r=yn(t,n))||r.enumerable});return o},wn=(o,t,e)=>(Ar(o,t,"default"),e&&Ar(e,t,"default")),Fn=o=>Ar(Wr({},"__esModule",{value:!0}),o),kr={};Pn(kr,{version:()=>In});Br.exports=Fn(kr);wn(kr,require("@tensorflow/tfjs-node-gpu"),Br.exports);var To="4.22.0",Dn="4.22.0",En="4.22.0",Mn="4.22.0",Cn="4.22.0",In={tfjs:To,"tfjs-core":To,"tfjs-converter":Dn,"tfjs-backend-cpu":En,"tfjs-backend-webgl":Mn,"tfjs-backend-wasm":Cn}});var Ba={};Sr(Ba,{AgeGenderNet:()=>He,BoundingBox:()=>Ot,Box:()=>L,ComposableTask:()=>J,ComputeAllFaceDescriptorsTask:()=>_t,ComputeFaceDescriptorsTaskBase:()=>Ue,ComputeSingleFaceDescriptorTask:()=>Tt,DetectAllFaceLandmarksTask:()=>qe,DetectAllFacesTask:()=>Ie,DetectFaceLandmarksTaskBase:()=>Je,DetectFacesTaskBase:()=>Ke,DetectSingleFaceLandmarksTask:()=>Ze,DetectSingleFaceTask:()=>Qe,Dimensions:()=>R,FACE_EXPRESSION_LABELS:()=>so,FaceDetection:()=>M,FaceDetectionNet:()=>lo,FaceExpressionNet:()=>Oe,FaceExpressions:()=>gt,FaceLandmark68Net:()=>Zt,FaceLandmark68TinyNet:()=>ze,FaceLandmarkNet:()=>po,FaceLandmarks:()=>H,FaceLandmarks5:()=>jr,FaceLandmarks68:()=>Yt,FaceMatch:()=>me,FaceMatcher:()=>vo,FaceRecognitionNet:()=>Kt,Gender:()=>_r,LabeledBox:()=>pe,LabeledFaceDescriptors:()=>Et,NetInput:()=>ut,NeuralNetwork:()=>A,ObjectDetection:()=>Ht,Point:()=>_,PredictedBox:()=>Ur,Rect:()=>zt,SsdMobilenetv1:()=>It,SsdMobilenetv1Options:()=>X,TinyFaceDetector:()=>re,TinyFaceDetectorOptions:()=>je,TinyYolov2:()=>te,TinyYolov2Options:()=>st,allFaces:()=>Sa,allFacesSsdMobilenetv1:()=>un,allFacesTinyYolov2:()=>La,awaitMediaLoaded:()=>to,bufferToImage:()=>eo,computeFaceDescriptor:()=>xa,createCanvas:()=>Xt,createCanvasFromMedia:()=>We,createFaceDetectionNet:()=>ua,createFaceRecognitionNet:()=>ta,createSsdMobilenetv1:()=>Jo,createTinyFaceDetector:()=>Aa,createTinyYolov2:()=>da,detectAllFaces:()=>Lr,detectFaceLandmarks:()=>mn,detectFaceLandmarksTiny:()=>ga,detectLandmarks:()=>Ia,detectSingleFace:()=>Na,draw:()=>co,env:()=>w,euclideanDistance:()=>xo,extendWithAge:()=>Dr,extendWithFaceDescriptor:()=>Fr,extendWithFaceDetection:()=>Vt,extendWithFaceExpressions:()=>gr,extendWithFaceLandmarks:()=>Pe,extendWithGender:()=>Er,extractFaceTensors:()=>le,extractFaces:()=>fe,fetchImage:()=>On,fetchJson:()=>no,fetchNetWeights:()=>Hn,fetchOrThrow:()=>ht,fetchVideo:()=>zn,getContext2dOrThrow:()=>$,getMediaDimensions:()=>Ut,imageTensorToCanvas:()=>ro,imageToSquare:()=>oo,inverseSigmoid:()=>Sn,iou:()=>zr,isMediaElement:()=>sr,isMediaLoaded:()=>Ae,isWithAge:()=>ea,isWithFaceDetection:()=>pt,isWithFaceExpressions:()=>io,isWithFaceLandmarks:()=>qt,isWithGender:()=>ra,loadAgeGenderModel:()=>Ea,loadFaceDetectionModel:()=>Ma,loadFaceExpressionModel:()=>Da,loadFaceLandmarkModel:()=>Pa,loadFaceLandmarkTinyModel:()=>wa,loadFaceRecognitionModel:()=>Fa,loadSsdMobilenetv1Model:()=>pn,loadTinyFaceDetectorModel:()=>_a,loadTinyYolov2Model:()=>Ta,loadWeightMap:()=>ao,locateFaces:()=>Ca,matchDimensions:()=>Yn,minBbox:()=>Yr,nets:()=>F,nonMaxSuppression:()=>Vr,normalize:()=>rt,padToSquare:()=>Gr,predictAgeAndGender:()=>ya,recognizeFaceExpressions:()=>va,resizeResults:()=>fn,resolveInput:()=>Gt,shuffleArray:()=>Ln,sigmoid:()=>Ne,ssdMobilenetv1:()=>cn,tf:()=>Wa,tinyFaceDetector:()=>ha,tinyYolov2:()=>ba,toNetInput:()=>D,utils:()=>Hr,validateConfig:()=>ho,version:()=>ka});module.exports=vn(Ba);var Wa=v(x());var co={};Sr(co,{AnchorPosition:()=>Qr,DrawBox:()=>Se,DrawBoxOptions:()=>nr,DrawFaceLandmarks:()=>vr,DrawFaceLandmarksOptions:()=>xr,DrawTextField:()=>jt,DrawTextFieldOptions:()=>ue,drawContour:()=>lt,drawDetections:()=>$n,drawFaceExpressions:()=>Vn,drawFaceLandmarks:()=>jn});function lt(o,t,e=!1){if(o.beginPath(),t.slice(1).forEach(({x:r,y:n},s)=>{let a=t[s];o.moveTo(a.x,a.y),o.lineTo(r,n)}),e){let r=t[t.length-1],n=t[0];if(!r||!n)return;o.moveTo(r.x,r.y),o.lineTo(n.x,n.y)}o.stroke()}var Hr={};Sr(Hr,{computeReshapedDimensions:()=>Or,getCenterPoint:()=>$t,isDimensions:()=>rr,isEven:()=>er,isFloat:()=>$r,isTensor:()=>Bt,isTensor1D:()=>Nn,isTensor2D:()=>Rr,isTensor3D:()=>dt,isTensor4D:()=>U,isValidNumber:()=>et,isValidProbablitiy:()=>ce,range:()=>ct,round:()=>Rt});var Po=v(x());var R=class o{constructor(t,e){if(!et(t)||!et(e))throw new Error(`Dimensions.constructor - expected width and height to be valid numbers, instead have ${JSON.stringify({width:t,height:e})}`);this._width=t,this._height=e}get width(){return this._width}get height(){return this._height}reverse(){return new o(1/this.width,1/this.height)}};function Bt(o,t){return o instanceof Po.Tensor&&o.shape.length===t}function Nn(o){return Bt(o,1)}function Rr(o){return Bt(o,2)}function dt(o){return Bt(o,3)}function U(o){return Bt(o,4)}function $r(o){return o%1!==0}function er(o){return o%2===0}function Rt(o,t=2){let e=10**t;return Math.floor(o*e)/e}function rr(o){return o&&o.width&&o.height}function Or({width:o,height:t},e){let r=e/Math.max(t,o);return new R(Math.round(o*r),Math.round(t*r))}function $t(o){return o.reduce((t,e)=>t.add(e),new _(0,0)).div(new _(o.length,o.length))}function ct(o,t,e){return Array(o).fill(0).map((r,n)=>t+n*e)}function et(o){return!!o&&o!==1/0&&o!==-1/0&&!Number.isNaN(o)||o===0}function ce(o){return et(o)&&o>=0&&o<=1}var _=class o{constructor(t,e){this._x=t,this._y=e}get x(){return this._x}get y(){return this._y}add(t){return new o(this.x+t.x,this.y+t.y)}sub(t){return new o(this.x-t.x,this.y-t.y)}mul(t){return new o(this.x*t.x,this.y*t.y)}div(t){return new o(this.x/t.x,this.y/t.y)}abs(){return new o(Math.abs(this.x),Math.abs(this.y))}magnitude(){return Math.sqrt(this.x**2+this.y**2)}floor(){return new o(Math.floor(this.x),Math.floor(this.y))}};var L=class o{static isRect(t){return!!t&&[t.x,t.y,t.width,t.height].every(et)}static assertIsValidBox(t,e,r=!1){if(!o.isRect(t))throw new Error(`${e} - invalid box: ${JSON.stringify(t)}, expected object with properties x, y, width, height`);if(!r&&(t.width<0||t.height<0))throw new Error(`${e} - width (${t.width}) and height (${t.height}) must be positive numbers`)}constructor(t,e=!0){let r=t||{},n=[r.left,r.top,r.right,r.bottom].every(et),s=[r.x,r.y,r.width,r.height].every(et);if(!s&&!n)throw new Error(`Box.constructor - expected box to be IBoundingBox | IRect, instead have ${JSON.stringify(r)}`);let[a,i,c,m]=s?[r.x,r.y,r.width,r.height]:[r.left,r.top,r.right-r.left,r.bottom-r.top];o.assertIsValidBox({x:a,y:i,width:c,height:m},"Box.constructor",e),this._x=a,this._y=i,this._width=c,this._height=m}get x(){return this._x}get y(){return this._y}get width(){return this._width}get height(){return this._height}get left(){return this.x}get top(){return this.y}get right(){return this.x+this.width}get bottom(){return this.y+this.height}get area(){return this.width*this.height}get topLeft(){return new _(this.left,this.top)}get topRight(){return new _(this.right,this.top)}get bottomLeft(){return new _(this.left,this.bottom)}get bottomRight(){return new _(this.right,this.bottom)}round(){let[t,e,r,n]=[this.x,this.y,this.width,this.height].map(s=>Math.round(s));return new o({x:t,y:e,width:r,height:n})}floor(){let[t,e,r,n]=[this.x,this.y,this.width,this.height].map(s=>Math.floor(s));return new o({x:t,y:e,width:r,height:n})}toSquare(){let{x:t,y:e,width:r,height:n}=this,s=Math.abs(r-n);return re&&(i=-u+e+r,u=e),f>t&&(c=-f+t+n,f=t),m<1&&(c=2-m,m=1),p<1&&(c=2-p,p=1),{dy:a,edy:c,dx:s,edx:i,y:p,ey:f,x:m,ex:u,w:r,h:n}}calibrate(t){return new o({left:this.left+t.left*this.width,top:this.top+t.top*this.height,right:this.right+t.right*this.width,bottom:this.bottom+t.bottom*this.height}).toSquare().round()}};var Ot=class extends L{constructor(t,e,r,n,s=!1){super({left:t,top:e,right:r,bottom:n},s)}};var Ht=class o{constructor(t,e,r,n,s){this._imageDims=new R(s.width,s.height),this._score=t,this._classScore=e,this._className=r,this._box=new L(n).rescale(this._imageDims)}get score(){return this._score}get classScore(){return this._classScore}get className(){return this._className}get box(){return this._box}get imageDims(){return this._imageDims}get imageWidth(){return this.imageDims.width}get imageHeight(){return this.imageDims.height}get relativeBox(){return new L(this._box).rescale(this.imageDims.reverse())}forSize(t,e){return new o(this.score,this.classScore,this.className,this.relativeBox,{width:t,height:e})}};var M=class o extends Ht{constructor(t,e,r){super(t,t,"",e,r)}forSize(t,e){let{score:r,relativeBox:n,imageDims:s}=super.forSize(t,e);return new o(r,n,s)}};function zr(o,t,e=!0){let r=Math.max(0,Math.min(o.right,t.right)-Math.max(o.left,t.left)),n=Math.max(0,Math.min(o.bottom,t.bottom)-Math.max(o.top,t.top)),s=r*n;return e?s/(o.area+t.area-s):s/Math.min(o.area,t.area)}function Yr(o){let t=o.map(i=>i.x),e=o.map(i=>i.y),r=t.reduce((i,c)=>ccii({score:a,boxIndex:i})).sort((a,i)=>a.score-i.score).map(a=>a.boxIndex),s=[];for(;n.length>0;){let a=n.pop();s.push(a);let i=n,c=[];for(let m=0;mc[p]<=e)}return s}var mt=v(x());function rt(o,t){return mt.tidy(()=>{let[e,r,n]=t,s=mt.fill([...o.shape.slice(0,3),1],e,"float32"),a=mt.fill([...o.shape.slice(0,3),1],r,"float32"),i=mt.fill([...o.shape.slice(0,3),1],n,"float32"),c=mt.concat([s,a,i],3);return mt.sub(o,c)})}var Dt=v(x());function Gr(o,t=!1){return Dt.tidy(()=>{let[e,r]=o.shape.slice(1);if(e===r)return o;let n=Math.abs(e-r),s=Math.round(n*(t?.5:1)),a=e>r?2:1,i=f=>{let l=o.shape.slice();return l[a]=f,Dt.fill(l,0,"float32")},c=i(s),m=n-c.shape[a],u=[t&&m?i(m):null,o,c].filter(f=>!!f).map(f=>Dt.cast(f,"float32"));return Dt.concat(u,a)})}function Ln(o){let t=o.slice();for(let e=t.length-1;e>0;e--){let r=Math.floor(Math.random()*(e+1)),n=t[e];t[e]=t[r],t[r]=n}return t}function Ne(o){return 1/(1+Math.exp(-o))}function Sn(o){return Math.log(o/(1-o))}var zt=class extends L{constructor(t,e,r,n,s=!1){super({x:t,y:e,width:r,height:n},s)}};var An=.5,Wn=.43,kn=.45,H=class{constructor(t,e,r=new _(0,0)){let{width:n,height:s}=e;this._imgDims=new R(n,s),this._shift=r,this._positions=t.map(a=>a.mul(new _(n,s)).add(r))}get shift(){return new _(this._shift.x,this._shift.y)}get imageWidth(){return this._imgDims.width}get imageHeight(){return this._imgDims.height}get positions(){return this._positions}get relativePositions(){return this._positions.map(t=>t.sub(this._shift).div(new _(this.imageWidth,this.imageHeight)))}forSize(t,e){return new this.constructor(this.relativePositions,{width:t,height:e})}shiftBy(t,e){return new this.constructor(this.relativePositions,this._imgDims,new _(t,e))}shiftByPoint(t){return this.shiftBy(t.x,t.y)}align(t,e={}){if(t){let s=t instanceof M?t.box.floor():new L(t);return this.shiftBy(s.x,s.y).align(null,e)}let{useDlibAlignment:r,minBoxPadding:n}={useDlibAlignment:!1,minBoxPadding:.2,...e};return r?this.alignDlib():this.alignMinBbox(n)}alignDlib(){let t=this.getRefPointsForAlignment(),[e,r,n]=t,s=u=>n.sub(u).magnitude(),a=(s(e)+s(r))/2,i=Math.floor(a/kn),c=$t(t),m=Math.floor(Math.max(0,c.x-An*i)),p=Math.floor(Math.max(0,c.y-Wn*i));return new zt(m,p,Math.min(i,this.imageWidth+m),Math.min(i,this.imageHeight+p))}alignMinBbox(t){let e=Yr(this.positions);return e.pad(e.width*t,e.height*t)}getRefPointsForAlignment(){throw new Error("getRefPointsForAlignment not implemented by base class")}};var jr=class extends H{getRefPointsForAlignment(){let t=this.positions;return[t[0],t[1],$t([t[3],t[4]])]}};var Yt=class extends H{getJawOutline(){return this.positions.slice(0,17)}getLeftEyeBrow(){return this.positions.slice(17,22)}getRightEyeBrow(){return this.positions.slice(22,27)}getNose(){return this.positions.slice(27,36)}getLeftEye(){return this.positions.slice(36,42)}getRightEye(){return this.positions.slice(42,48)}getMouth(){return this.positions.slice(48,68)}getRefPointsForAlignment(){return[this.getLeftEye(),this.getRightEye(),this.getMouth()].map($t)}};var me=class{constructor(t,e){this._label=t,this._distance=e}get label(){return this._label}get distance(){return this._distance}toString(t=!0){return`${this.label}${t?` (${Rt(this.distance)})`:""}`}};var pe=class extends L{static assertIsValidLabeledBox(t,e){if(L.assertIsValidBox(t,e),!et(t.label))throw new Error(`${e} - expected property label (${t.label}) to be a number`)}constructor(t,e){super(t),this._label=e}get label(){return this._label}};var Et=class o{constructor(t,e){if(typeof t!="string")throw new Error("LabeledFaceDescriptors - constructor expected label to be a string");if(!Array.isArray(e)||e.some(r=>!(r instanceof Float32Array)))throw new Error("LabeledFaceDescriptors - constructor expected descriptors to be an array of Float32Array");this._label=t,this._descriptors=e}get label(){return this._label}get descriptors(){return this._descriptors}toJSON(){return{label:this.label,descriptors:this.descriptors.map(t=>Array.from(t))}}static fromJSON(t){let e=t.descriptors.map(r=>new Float32Array(r));return new o(t.label,e)}};var Ur=class extends pe{static assertIsValidPredictedBox(t,e){if(pe.assertIsValidLabeledBox(t,e),!ce(t.score)||!ce(t.classScore))throw new Error(`${e} - expected properties score (${t.score}) and (${t.classScore}) to be a number between [0, 1]`)}constructor(t,e,r,n){super(t,e),this._score=r,this._classScore=n}get score(){return this._score}get classScore(){return this._classScore}};function pt(o){return o.detection instanceof M}function Vt(o,t){return{...o,...{detection:t}}}function Xr(){let o=window.fetch;if(!o)throw new Error("fetch - missing fetch implementation for browser environment");return{Canvas:HTMLCanvasElement,CanvasRenderingContext2D,Image:HTMLImageElement,ImageData,Video:HTMLVideoElement,createCanvasElement:()=>document.createElement("canvas"),createImageElement:()=>document.createElement("img"),createVideoElement:()=>document.createElement("video"),fetch:o,readFile:()=>{throw new Error("readFile - filesystem not available for browser environment")}}}function Le(){return typeof global=="object"&&typeof process!="undefined"&&process.versions!=null&&process.versions.node!=null}function or(o){let t="";if(!o&&Le())try{o=require("fs")}catch(r){t=r.toString()}return{readFile:o?r=>new Promise((n,s)=>{o.readFile(r,(a,i)=>a?s(a):n(i))}):()=>{throw new Error(`readFile - failed to require fs in nodejs environment with error: ${t}`)}}}function Jr(){let o=global.Canvas||global.HTMLCanvasElement,t=global.Image||global.HTMLImageElement,e=global.Video||global.HTMLVideoElement,r=()=>{if(o)return new o;throw new Error("createCanvasElement - missing Canvas implementation for nodejs environment")},n=()=>{if(t)return new t;throw new Error("createImageElement - missing Image implementation for nodejs environment")},s=()=>{if(e)return new e;throw new Error("createVideoElement - missing Video implementation for nodejs environment")},a=global.fetch,i=or();return{Canvas:o||class{},CanvasRenderingContext2D:global.CanvasRenderingContext2D||class{},Image:t||class{},ImageData:global.ImageData||class{},Video:global.HTMLVideoElement||class{},createCanvasElement:r,createImageElement:n,createVideoElement:s,fetch:a,...i}}function qr(){return typeof window=="object"&&typeof document!="undefined"&&typeof HTMLImageElement!="undefined"&&typeof HTMLCanvasElement!="undefined"&&typeof HTMLVideoElement!="undefined"&&typeof ImageData!="undefined"&&typeof CanvasRenderingContext2D!="undefined"}var S;function Bn(){if(!S)throw new Error("getEnv - environment is not defined, check isNodejs() and isBrowser()");return S}function Zr(o){S=o}function Kr(){return qr()?Zr(Xr()):Le()?Zr(Jr()):null}function Rn(o){if(S||Kr(),!S)throw new Error("monkeyPatch - environment is not defined, check isNodejs() and isBrowser()");let{Canvas:t=S.Canvas,Image:e=S.Image}=o;S.Canvas=t,S.Image=e,S.createCanvasElement=o.createCanvasElement||(()=>new t),S.createImageElement=o.createImageElement||(()=>new e),S.ImageData=o.ImageData||S.ImageData,S.Video=o.Video||S.Video,S.fetch=o.fetch||S.fetch,S.readFile=o.readFile||S.readFile}var w={getEnv:Bn,setEnv:Zr,initialize:Kr,createBrowserEnv:Xr,createFileSystem:or,createNodejsEnv:Jr,monkeyPatch:Rn,isBrowser:qr,isNodejs:Le};Kr();function Gt(o){return!w.isNodejs()&&typeof o=="string"?document.getElementById(o):o}function $(o){let{Canvas:t,CanvasRenderingContext2D:e}=w.getEnv();if(o instanceof e)return o;let r=Gt(o);if(!(r instanceof t))throw new Error("resolveContext2d - expected canvas to be of instance of Canvas");let n=r.getContext("2d",{willReadFrequently:!0});if(!n)throw new Error("resolveContext2d - canvas 2d context is null");return n}var Qr=(n=>(n.TOP_LEFT="TOP_LEFT",n.TOP_RIGHT="TOP_RIGHT",n.BOTTOM_LEFT="BOTTOM_LEFT",n.BOTTOM_RIGHT="BOTTOM_RIGHT",n))(Qr||{}),ue=class{constructor(t={}){let{anchorPosition:e,backgroundColor:r,fontColor:n,fontSize:s,fontStyle:a,padding:i}=t;this.anchorPosition=e||"TOP_LEFT",this.backgroundColor=r||"rgba(0, 0, 0, 0.5)",this.fontColor=n||"rgba(255, 255, 255, 1)",this.fontSize=s||14,this.fontStyle=a||"Georgia",this.padding=i||4}},jt=class o{constructor(t,e,r={}){this.text=typeof t=="string"?[t]:t instanceof o?t.text:t,this.anchor=e,this.options=new ue(r)}measureWidth(t){let{padding:e}=this.options;return this.text.map(r=>t.measureText(r).width).reduce((r,n)=>r{let b=c+u.x,T=c+u.y+(l+1)*a;r.fillText(f,b,T)})}};var nr=class{constructor(t={}){let{boxColor:e,lineWidth:r,label:n,drawLabelOptions:s}=t;this.boxColor=e||"rgba(0, 0, 255, 1)",this.lineWidth=r||2,this.label=n;let a={anchorPosition:"BOTTOM_LEFT",backgroundColor:this.boxColor};this.drawLabelOptions=new ue({...a,...s})}},Se=class{constructor(t,e={}){this.box=new L(t),this.options=new nr(e)}draw(t){let e=$(t),{boxColor:r,lineWidth:n}=this.options,{x:s,y:a,width:i,height:c}=this.box;e.strokeStyle=r,e.lineWidth=n,e.strokeRect(s,a,i,c);let{label:m}=this.options;m&&new jt([m],{x:s-n/2,y:a},this.options.drawLabelOptions).draw(t)}};function $n(o,t){(Array.isArray(t)?t:[t]).forEach(r=>{let n=r instanceof M?r.score:pt(r)?r.detection.score:void 0,s=r instanceof M?r.box:pt(r)?r.detection.box:new L(r),a=n?`${Rt(n)}`:void 0;new Se(s,{label:a}).draw(o)})}var Te=v(x());function Ae(o){let{Image:t,Video:e}=w.getEnv();return o instanceof t&&o.complete||o instanceof e&&o.readyState>=3}function to(o){return new Promise((t,e)=>{if(o instanceof w.getEnv().Canvas||Ae(o)){t(null);return}function r(s){s.currentTarget&&(s.currentTarget.removeEventListener("load",n),s.currentTarget.removeEventListener("error",r),e(s))}function n(s){s.currentTarget&&(s.currentTarget.removeEventListener("load",n),s.currentTarget.removeEventListener("error",r),t(s))}o.addEventListener("load",n),o.addEventListener("error",r)})}function eo(o){return new Promise((t,e)=>{o instanceof Blob||e(new Error("bufferToImage - expected buf to be of type: Blob"));let r=new FileReader;r.onload=()=>{typeof r.result!="string"&&e(new Error("bufferToImage - expected reader.result to be a string, in onload"));let n=w.getEnv().createImageElement();n.onload=()=>t(n),n.onerror=e,n.src=r.result},r.onerror=e,r.readAsDataURL(o)})}function Ut(o){let{Image:t,Video:e}=w.getEnv();return o instanceof t?new R(o.naturalWidth,o.naturalHeight):o instanceof e?new R(o.videoWidth,o.videoHeight):new R(o.width,o.height)}function Xt({width:o,height:t}){let{createCanvasElement:e}=w.getEnv(),r=e();return r.width=o,r.height=t,r}function We(o,t){let{ImageData:e}=w.getEnv();if(!(o instanceof e)&&!Ae(o))throw new Error("createCanvasFromMedia - media has not finished loading yet");let{width:r,height:n}=t||Ut(o),s=Xt({width:r,height:n});return o instanceof e?$(s).putImageData(o,0,0):$(s).drawImage(o,0,0,r,n),s}var ar=v(x());async function ro(o,t){let e=t||w.getEnv().createCanvasElement(),[r,n,s]=o.shape.slice(U(o)?1:0),a=ar.tidy(()=>o.as3D(r,n,s).toInt());return await ar.browser.toPixels(a,e),a.dispose(),e}function sr(o){let{Image:t,Canvas:e,Video:r}=w.getEnv();return o instanceof t||o instanceof e||o instanceof r}var z=v(x());function oo(o,t,e=!1){let{Image:r,Canvas:n}=w.getEnv();if(!(o instanceof r||o instanceof n))throw new Error("imageToSquare - expected arg0 to be HTMLImageElement | HTMLCanvasElement");if(t<=0)return Xt({width:1,height:1});let s=Ut(o),a=t/Math.max(s.height,s.width),i=a*s.width,c=a*s.height,m=Xt({width:t,height:t}),p=o instanceof n?o:We(o),u=Math.abs(i-c)/2,f=e&&i0&&p.height>0&&$(m).drawImage(p,f,l,i,c),m}var ut=class{constructor(t,e=!1){this._imageTensors=[];this._canvases=[];this._treatAsBatchInput=!1;this._inputDimensions=[];this._inputSize=0;if(!Array.isArray(t))throw new Error(`NetInput.constructor - expected inputs to be an Array of TResolvedNetInput or to be instanceof tf.Tensor4D, instead have ${t}`);this._treatAsBatchInput=e,this._batchSize=t.length,t.forEach((r,n)=>{if(dt(r)){this._imageTensors[n]=r,this._inputDimensions[n]=r.shape;return}if(U(r)){let a=r.shape[0];if(a!==1)throw new Error(`NetInput - tf.Tensor4D with batchSize ${a} passed, but not supported in input array`);this._imageTensors[n]=r,this._inputDimensions[n]=r.shape.slice(1);return}let s=r instanceof w.getEnv().Canvas?r:We(r);this._canvases[n]=s,this._inputDimensions[n]=[s.height,s.width,3]})}get imageTensors(){return this._imageTensors}get canvases(){return this._canvases}get isBatchInput(){return this.batchSize>1||this._treatAsBatchInput}get batchSize(){return this._batchSize}get inputDimensions(){return this._inputDimensions}get inputSize(){return this._inputSize}get reshapedInputDimensions(){return ct(this.batchSize,0,1).map((t,e)=>this.getReshapedInputDimensions(e))}getInput(t){return this.canvases[t]||this.imageTensors[t]}getInputDimensions(t){return this._inputDimensions[t]}getInputHeight(t){return this._inputDimensions[t][0]}getInputWidth(t){return this._inputDimensions[t][1]}getReshapedInputDimensions(t){if(typeof this.inputSize!="number")throw new Error("getReshapedInputDimensions - inputSize not set, toBatchTensor has not been called yet");let e=this.getInputWidth(t),r=this.getInputHeight(t);return Or({width:e,height:r},this.inputSize)}toBatchTensor(t,e=!0){return this._inputSize=t,z.tidy(()=>{let r=ct(this.batchSize,0,1).map(s=>{let a=this.getInput(s);if(a instanceof z.Tensor){let i=U(a)?a:z.expandDims(a);return i=Gr(i,e),(i.shape[1]!==t||i.shape[2]!==t)&&(i=z.image.resizeBilinear(i,[t,t],!1,!1)),i.as3D(t,t,3)}if(a instanceof w.getEnv().Canvas)return z.browser.fromPixels(oo(a,t,e));throw new Error(`toBatchTensor - at batchIdx ${s}, expected input to be instanceof tf.Tensor or instanceof HTMLCanvasElement, instead have ${a}`)});return z.stack(r.map(s=>z.cast(s,"float32"))).as4D(this.batchSize,t,t,3)})}};async function D(o){if(o instanceof ut)return o;let t=Array.isArray(o)?o:[o];if(!t.length)throw new Error("toNetInput - empty array passed as input");let e=n=>Array.isArray(o)?` at input index ${n}:`:"",r=t.map(Gt);return r.forEach((n,s)=>{if(!sr(n)&&!dt(n)&&!U(n))throw typeof t[s]=="string"?new Error(`toNetInput -${e(s)} string passed, but could not resolve HTMLElement for element id ${t[s]}`):new Error(`toNetInput -${e(s)} expected media to be of type HTMLImageElement | HTMLVideoElement | HTMLCanvasElement | tf.Tensor3D, or to be an element id`);if(U(n)){let a=n.shape[0];if(a!==1)throw new Error(`toNetInput -${e(s)} tf.Tensor4D with batchSize ${a} passed, but not supported in input array`)}}),await Promise.all(r.map(n=>sr(n)&&to(n))),new ut(r,Array.isArray(o))}async function fe(o,t){let{Canvas:e}=w.getEnv(),r=o;if(!(o instanceof e)){let a=await D(o);if(a.batchSize>1)throw new Error("extractFaces - batchSize > 1 not supported");let i=a.getInput(0);r=i instanceof e?i:await ro(i)}let n=$(r);return t.map(a=>a instanceof M?a.forSize(r.width,r.height).box.floor():a).map(a=>a.clipAtImageBorders(r.width,r.height)).map(({x:a,y:i,width:c,height:m})=>{let p=Xt({width:c,height:m});return c>0&&m>0&&$(p).putImageData(n.getImageData(a,i,c,m),0,0),p})}var ir=v(x());async function le(o,t){if(!dt(o)&&!U(o))throw new Error("extractFaceTensors - expected image tensor to be 3D or 4D");if(U(o)&&o.shape[0]>1)throw new Error("extractFaceTensors - batchSize > 1 not supported");return ir.tidy(()=>{let[e,r,n]=o.shape.slice(U(o)?1:0);return t.map(i=>i instanceof M?i.forSize(r,e).box:i).map(i=>i.clipAtImageBorders(r,e)).filter(i=>i.width>0&&i.height>0).map(({x:i,y:c,width:m,height:p})=>ir.slice3d(o.as3D(e,r,n),[c,i,0],[p,m,n]))})}async function ht(o,t){let{fetch:e}=w.getEnv(),r=await e(o,t);if(!(r.status<400))throw new Error(`failed to fetch: (${r.status}) ${r.statusText}, from url: ${r.url}`);return r}async function On(o){let t=await ht(o),e=await t.blob();if(!e.type.startsWith("image/"))throw new Error(`fetchImage - expected blob type to be of type image/*, instead have: ${e.type}, for url: ${t.url}`);return eo(e)}async function no(o){return(await ht(o)).json()}async function Hn(o){return new Float32Array(await(await ht(o)).arrayBuffer())}function wo(o){return new Promise((t,e)=>{o instanceof Blob||e(new Error("bufferToVideo - expected buf to be of type: Blob"));let r=w.getEnv().createVideoElement();r.oncanplay=()=>t(r),r.onerror=e,r.playsInline=!0,r.muted=!0,r.src=URL.createObjectURL(o),r.play()})}async function zn(o){let t=await ht(o),e=await t.blob();if(!e.type.startsWith("video/"))throw new Error(`fetchVideo - expected blob type to be of type video/*, instead have: ${e.type}, for url: ${t.url}`);return wo(e)}var Fo=v(x());function cr(o,t){let e=`${t}-weights_manifest.json`;if(!o)return{modelBaseUri:"",manifestUri:e};if(o==="/")return{modelBaseUri:"/",manifestUri:`/${e}`};let r=o.startsWith("http://")?"http://":o.startsWith("https://")?"https://":"";o=o.replace(r,"");let n=o.split("/").filter(i=>i),s=o.endsWith(".json")?n[n.length-1]:e,a=r+(o.endsWith(".json")?n.slice(0,n.length-1):n).join("/");return a=o.startsWith("/")?`/${a}`:a,{modelBaseUri:a,manifestUri:a==="/"?`/${s}`:`${a}/${s}`}}async function ao(o,t){let{manifestUri:e,modelBaseUri:r}=cr(o,t),n=await no(e);return Fo.io.loadWeights(n,r)}function Yn(o,t,e=!1){let{width:r,height:n}=e?Ut(t):t;return o.width=r,o.height=n,{width:r,height:n}}var ve=v(x());var bt=v(x());var A=class{constructor(t){this._params=void 0;this._paramMappings=[];this._name=t}get params(){return this._params}get paramMappings(){return this._paramMappings}get isLoaded(){return!!this.params}getParamFromPath(t){let{obj:e,objProp:r}=this.traversePropertyPath(t);return e[r]}reassignParamFromPath(t,e){let{obj:r,objProp:n}=this.traversePropertyPath(t);r[n].dispose(),r[n]=e}getParamList(){return this._paramMappings.map(({paramPath:t})=>({path:t,tensor:this.getParamFromPath(t)}))}getTrainableParams(){return this.getParamList().filter(t=>t.tensor instanceof bt.Variable)}getFrozenParams(){return this.getParamList().filter(t=>!(t.tensor instanceof bt.Variable))}variable(){this.getFrozenParams().forEach(({path:t,tensor:e})=>{this.reassignParamFromPath(t,e.variable())})}freeze(){this.getTrainableParams().forEach(({path:t,tensor:e})=>{let r=bt.tensor(e.dataSync());e.dispose(),this.reassignParamFromPath(t,r)})}dispose(t=!0){this.getParamList().forEach(e=>{if(t&&e.tensor.isDisposed)throw new Error(`param tensor has already been disposed for path ${e.path}`);e.tensor.dispose()}),this._params=void 0}serializeParams(){return new Float32Array(this.getParamList().map(({tensor:t})=>Array.from(t.dataSync())).reduce((t,e)=>t.concat(e)))}async load(t){if(t instanceof Float32Array){this.extractWeights(t);return}await this.loadFromUri(t)}async loadFromUri(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromUri - expected model uri`);let e=await ao(t,this.getDefaultModelName());this.loadFromWeightMap(e)}async loadFromDisk(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromDisk - expected model file path`);let{readFile:e}=w.getEnv(),{manifestUri:r,modelBaseUri:n}=cr(t,this.getDefaultModelName()),s=m=>Promise.all(m.map(p=>e(p).then(u=>typeof u=="string"?Buffer.from(u):u.buffer))),a=bt.io.weightsLoaderFactory(s),i=JSON.parse((await e(r)).toString()),c=await a(i,n);this.loadFromWeightMap(c)}loadFromWeightMap(t){let{paramMappings:e,params:r}=this.extractParamsFromWeightMap(t);this._paramMappings=e,this._params=r}extractWeights(t){let{paramMappings:e,params:r}=this.extractParams(t);this._paramMappings=e,this._params=r}traversePropertyPath(t){if(!this.params)throw new Error("traversePropertyPath - model has no loaded params");let e=t.split("/").reduce((s,a)=>{if(!s.nextObj.hasOwnProperty(a))throw new Error(`traversePropertyPath - object does not have property ${a}, for path ${t}`);return{obj:s.nextObj,objProp:a,nextObj:s.nextObj[a]}},{nextObj:this.params}),{obj:r,objProp:n}=e;if(!r||!n||!(r[n]instanceof bt.Tensor))throw new Error(`traversePropertyPath - parameter is not a tensor, for path ${t}`);return{obj:r,objProp:n}}};var E=v(x());var de=v(x());function O(o,t,e){return de.tidy(()=>{let r=de.separableConv2d(o,t.depthwise_filter,t.pointwise_filter,e,"same");return r=de.add(r,t.bias),r})}function mr(o,t,e=!1){return E.tidy(()=>{let r=E.relu(e?E.add(E.conv2d(o,t.conv0.filters,[2,2],"same"),t.conv0.bias):O(o,t.conv0,[2,2])),n=O(r,t.conv1,[1,1]),s=E.relu(E.add(r,n)),a=O(s,t.conv2,[1,1]);return E.relu(E.add(r,E.add(n,a)))})}function ke(o,t,e=!1,r=!0){return E.tidy(()=>{let n=E.relu(e?E.add(E.conv2d(o,t.conv0.filters,r?[2,2]:[1,1],"same"),t.conv0.bias):O(o,t.conv0,r?[2,2]:[1,1])),s=O(n,t.conv1,[1,1]),a=E.relu(E.add(n,s)),i=O(a,t.conv2,[1,1]),c=E.relu(E.add(n,E.add(s,i))),m=O(c,t.conv3,[1,1]);return E.relu(E.add(n,E.add(s,E.add(i,m))))})}var Mt=v(x());function Jt(o,t,e="same",r=!1){return Mt.tidy(()=>{let n=Mt.add(Mt.conv2d(o,t.filters,[1,1],e),t.bias);return r?Mt.relu(n):n})}function W(o,t){Object.keys(o).forEach(e=>{t.some(r=>r.originalPath===e)||o[e].dispose()})}var pr=v(x());function he(o,t){return(e,r,n,s)=>{let a=pr.tensor4d(o(e*r*n*n),[n,n,e,r]),i=pr.tensor1d(o(r));return t.push({paramPath:`${s}/filters`},{paramPath:`${s}/bias`}),{filters:a,bias:i}}}var ur=v(x());function fr(o,t){return(e,r,n)=>{let s=ur.tensor2d(o(e*r),[e,r]),a=ur.tensor1d(o(r));return t.push({paramPath:`${n}/weights`},{paramPath:`${n}/bias`}),{weights:s,bias:a}}}var Re=v(x());var Be=class{constructor(t,e,r){this.depthwise_filter=t;this.pointwise_filter=e;this.bias=r}};function be(o,t){return(e,r,n)=>{let s=Re.tensor4d(o(9*e),[3,3,e,1]),a=Re.tensor4d(o(e*r),[1,1,e,r]),i=Re.tensor1d(o(r));return t.push({paramPath:`${n}/depthwise_filter`},{paramPath:`${n}/pointwise_filter`},{paramPath:`${n}/bias`}),new Be(s,a,i)}}function ge(o){return t=>{let e=o(`${t}/depthwise_filter`,4),r=o(`${t}/pointwise_filter`,4),n=o(`${t}/bias`,1);return new Be(e,r,n)}}function Y(o,t){return(e,r,n)=>{let s=o[e];if(!Bt(s,r))throw new Error(`expected weightMap[${e}] to be a Tensor${r}D, instead have ${s}`);return t.push({originalPath:e,paramPath:n||e}),s}}function k(o){let t=o;function e(n){let s=t.slice(0,n);return t=t.slice(n),s}function r(){return t}return{extractWeights:e,getRemainingWeights:r}}function lr(o,t){let e=he(o,t),r=be(o,t);function n(a,i,c,m=!1){let p=m?e(a,i,3,`${c}/conv0`):r(a,i,`${c}/conv0`),u=r(i,i,`${c}/conv1`),f=r(i,i,`${c}/conv2`);return{conv0:p,conv1:u,conv2:f}}function s(a,i,c,m=!1){let{conv0:p,conv1:u,conv2:f}=n(a,i,c,m),l=r(i,i,`${c}/conv3`);return{conv0:p,conv1:u,conv2:f,conv3:l}}return{extractDenseBlock3Params:n,extractDenseBlock4Params:s}}function Do(o){let t=[],{extractWeights:e,getRemainingWeights:r}=k(o),{extractDenseBlock4Params:n}=lr(e,t),s=n(3,32,"dense0",!0),a=n(32,64,"dense1"),i=n(64,128,"dense2"),c=n(128,256,"dense3");if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:t,params:{dense0:s,dense1:a,dense2:i,dense3:c}}}function dr(o){return t=>{let e=o(`${t}/filters`,4),r=o(`${t}/bias`,1);return{filters:e,bias:r}}}function hr(o,t){let e=Y(o,t),r=dr(e),n=ge(e);function s(i,c=!1){let m=c?r(`${i}/conv0`):n(`${i}/conv0`),p=n(`${i}/conv1`),u=n(`${i}/conv2`);return{conv0:m,conv1:p,conv2:u}}function a(i,c=!1){let m=c?r(`${i}/conv0`):n(`${i}/conv0`),p=n(`${i}/conv1`),u=n(`${i}/conv2`),f=n(`${i}/conv3`);return{conv0:m,conv1:p,conv2:u,conv3:f}}return{extractDenseBlock3Params:s,extractDenseBlock4Params:a}}function Eo(o){let t=[],{extractDenseBlock4Params:e}=hr(o,t),r={dense0:e("dense0",!0),dense1:e("dense1"),dense2:e("dense2"),dense3:e("dense3")};return W(o,t),{params:r,paramMappings:t}}var xe=class extends A{constructor(){super("FaceFeatureExtractor")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("FaceFeatureExtractor - load model before inference");return ve.tidy(()=>{let r=ve.cast(t.toBatchTensor(112,!0),"float32"),s=rt(r,[122.782,117.001,104.298]).div(255),a=ke(s,e.dense0,!0);return a=ke(a,e.dense1),a=ke(a,e.dense2),a=ke(a,e.dense3),a=ve.avgPool(a,[7,7],[2,2],"valid"),a})}async forward(t){return this.forwardInput(await D(t))}getDefaultModelName(){return"face_feature_extractor_model"}extractParamsFromWeightMap(t){return Eo(t)}extractParams(t){return Do(t)}};var Io=v(x());var ye=v(x());function $e(o,t){return ye.tidy(()=>ye.add(ye.matMul(o,t.weights),t.bias))}function Mo(o,t,e){let r=[],{extractWeights:n,getRemainingWeights:s}=k(o),i=fr(n,r)(t,e,"fc");if(s().length!==0)throw new Error(`weights remaing after extract: ${s().length}`);return{paramMappings:r,params:{fc:i}}}function Co(o){let t=[],e=Y(o,t);function r(s){let a=e(`${s}/weights`,2),i=e(`${s}/bias`,1);return{weights:a,bias:i}}let n={fc:r("fc")};return W(o,t),{params:n,paramMappings:t}}function br(o){let t={},e={};return Object.keys(o).forEach(r=>{let n=r.startsWith("fc")?e:t;n[r]=o[r]}),{featureExtractorMap:t,classifierMap:e}}var _e=class extends A{constructor(t,e){super(t),this._faceFeatureExtractor=e}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(t){let{params:e}=this;if(!e)throw new Error(`${this._name} - load model before inference`);return Io.tidy(()=>{let r=t instanceof ut?this.faceFeatureExtractor.forwardInput(t):t;return $e(r.as2D(r.shape[0],-1),e.fc)})}dispose(t=!0){this.faceFeatureExtractor.dispose(t),super.dispose(t)}loadClassifierParams(t){let{params:e,paramMappings:r}=this.extractClassifierParams(t);this._params=e,this._paramMappings=r}extractClassifierParams(t){return Mo(t,this.getClassifierChannelsIn(),this.getClassifierChannelsOut())}extractParamsFromWeightMap(t){let{featureExtractorMap:e,classifierMap:r}=br(t);return this.faceFeatureExtractor.loadFromWeightMap(e),Co(r)}extractParams(t){let e=this.getClassifierChannelsIn(),r=this.getClassifierChannelsOut(),n=r*e+r,s=t.slice(0,t.length-n),a=t.slice(t.length-n);return this.faceFeatureExtractor.extractWeights(s),this.extractClassifierParams(a)}};var so=["neutral","happy","sad","angry","fearful","disgusted","surprised"],gt=class{constructor(t){this.neutral=0;this.happy=0;this.sad=0;this.angry=0;this.fearful=0;this.disgusted=0;this.surprised=0;if(t.length!==7)throw new Error(`FaceExpressions.constructor - expected probabilities.length to be 7, have: ${t.length}`);so.forEach((e,r)=>{this[e]=t[r]})}asSortedArray(){return so.map(t=>({expression:t,probability:this[t]})).sort((t,e)=>e.probability-t.probability)}};var Oe=class extends _e{constructor(t=new xe){super("FaceExpressionNet",t)}forwardInput(t){return Te.tidy(()=>Te.softmax(this.runNet(t)))}async forward(t){return this.forwardInput(await D(t))}async predictExpressions(t){let e=await D(t),r=await this.forwardInput(e),n=await Promise.all(Te.unstack(r).map(async a=>{let i=a.dataSync();return a.dispose(),i}));r.dispose();let s=n.map(a=>new gt(a));return e.isBatchInput?s:s[0]}getDefaultModelName(){return"face_expression_model"}getClassifierChannelsIn(){return 256}getClassifierChannelsOut(){return 7}};function io(o){return o.expressions instanceof gt}function gr(o,t){return{...o,...{expressions:t}}}function Vn(o,t,e=.1,r){(Array.isArray(t)?t:[t]).forEach(s=>{let a=s instanceof gt?s:io(s)?s.expressions:void 0;if(!a)throw new Error("drawFaceExpressions - expected faceExpressions to be FaceExpressions | WithFaceExpressions<{}> or array thereof");let c=a.asSortedArray().filter(u=>u.probability>e),m=pt(s)?s.detection.box.bottomLeft:r||new _(0,0);new jt(c.map(u=>`${u.expression} (${Rt(u.probability)})`),m).draw(o)})}function qt(o){return pt(o)&&o.landmarks instanceof H&&o.unshiftedLandmarks instanceof H&&o.alignedRect instanceof M}function Gn(o){let t=c=>c*180/Math.PI,e=(c,m)=>Math.sqrt((c.x-m.x)**2+(c.y-m.y)**2),r={roll:void 0,pitch:void 0,yaw:void 0},n=(c,m,p)=>{let u=Math.floor(c.x-m.x),f=Math.floor(m.x-p.x);return u-f},s=(c,m)=>{let p=Math.hypot(m.x-c.x,m.y-c.y),u=m.y-c.y,f=Math.asin(u/p),l=t(f),b=Math.floor(90-l),T=m.x-c.x<0?-1:1;return b*T},a=(c,m,p)=>{let u=e(c,p),f=new _((c.x+p.x)/2,(c.y+p.y)/2),l=e(m,f),b=Math.atan(l/u),T=Math.floor(t(b)),h=f.y-m.y<0?-1:1;return T*h};if(!o||!o.positions||o.positions.length!==68)return r;let i=o.positions;return r.roll=s(i[27],i[66]),r.pitch=a(i[14],i[30],i[2]),r.yaw=n(i[14],i[33],i[2]),r}function Pe(o,t){let{box:e}=o.detection,r=t.shiftBy(e.x,e.y),n=r.align(),{imageDims:s}=o.detection,a=new M(o.detection.score,n.rescale(s.reverse()),s),i=Gn(t);return{...o,...{landmarks:r,unshiftedLandmarks:t,alignedRect:a,angle:i}}}var xr=class{constructor(t={}){let{drawLines:e=!0,drawPoints:r=!0,lineWidth:n,lineColor:s,pointSize:a,pointColor:i}=t;this.drawLines=e,this.drawPoints=r,this.lineWidth=n||1,this.pointSize=a||2,this.lineColor=s||"rgba(0, 255, 255, 1)",this.pointColor=i||"rgba(255, 0, 255, 1)"}},vr=class{constructor(t,e={}){this.faceLandmarks=t,this.options=new xr(e)}draw(t){let e=$(t),{drawLines:r,drawPoints:n,lineWidth:s,lineColor:a,pointSize:i,pointColor:c}=this.options;if(r&&this.faceLandmarks instanceof Yt&&(e.strokeStyle=a,e.lineWidth=s,lt(e,this.faceLandmarks.getJawOutline()),lt(e,this.faceLandmarks.getLeftEyeBrow()),lt(e,this.faceLandmarks.getRightEyeBrow()),lt(e,this.faceLandmarks.getNose()),lt(e,this.faceLandmarks.getLeftEye(),!0),lt(e,this.faceLandmarks.getRightEye(),!0),lt(e,this.faceLandmarks.getMouth(),!0)),n){e.strokeStyle=c,e.fillStyle=c;let m=p=>{e.beginPath(),e.arc(p.x,p.y,i,0,2*Math.PI),e.fill()};this.faceLandmarks.positions.forEach(m)}}};function jn(o,t){(Array.isArray(t)?t:[t]).forEach(r=>{let n=r instanceof H?r:qt(r)?r.landmarks:void 0;if(!n)throw new Error("drawFaceLandmarks - expected faceExpressions to be FaceLandmarks | WithFaceLandmarks> or array thereof");new vr(n).draw(o)})}var No="1.7.15";var ft=v(x());var N=v(x());function Jn(o,t){let e=he(o,t),r=be(o,t);function n(a,i,c){let m=r(a,i,`${c}/separable_conv0`),p=r(i,i,`${c}/separable_conv1`),u=e(a,i,1,`${c}/expansion_conv`);return{separable_conv0:m,separable_conv1:p,expansion_conv:u}}function s(a,i){let c=r(a,a,`${i}/separable_conv0`),m=r(a,a,`${i}/separable_conv1`),p=r(a,a,`${i}/separable_conv2`);return{separable_conv0:c,separable_conv1:m,separable_conv2:p}}return{extractConvParams:e,extractSeparableConvParams:r,extractReductionBlockParams:n,extractMainBlockParams:s}}function Lo(o,t){let e=[],{extractWeights:r,getRemainingWeights:n}=k(o),{extractConvParams:s,extractSeparableConvParams:a,extractReductionBlockParams:i,extractMainBlockParams:c}=Jn(r,e),m=s(3,32,3,"entry_flow/conv_in"),p=i(32,64,"entry_flow/reduction_block_0"),u=i(64,128,"entry_flow/reduction_block_1"),f={conv_in:m,reduction_block_0:p,reduction_block_1:u},l={};ct(t,0,1).forEach(g=>{l[`main_block_${g}`]=c(128,`middle_flow/main_block_${g}`)});let b=i(128,256,"exit_flow/reduction_block"),T=a(256,512,"exit_flow/separable_conv"),h={reduction_block:b,separable_conv:T};if(n().length!==0)throw new Error(`weights remaing after extract: ${n().length}`);return{paramMappings:e,params:{entry_flow:f,middle_flow:l,exit_flow:h}}}function qn(o,t){let e=Y(o,t),r=dr(e),n=ge(e);function s(i){let c=n(`${i}/separable_conv0`),m=n(`${i}/separable_conv1`),p=r(`${i}/expansion_conv`);return{separable_conv0:c,separable_conv1:m,expansion_conv:p}}function a(i){let c=n(`${i}/separable_conv0`),m=n(`${i}/separable_conv1`),p=n(`${i}/separable_conv2`);return{separable_conv0:c,separable_conv1:m,separable_conv2:p}}return{extractConvParams:r,extractSeparableConvParams:n,extractReductionBlockParams:s,extractMainBlockParams:a}}function So(o,t){let e=[],{extractConvParams:r,extractSeparableConvParams:n,extractReductionBlockParams:s,extractMainBlockParams:a}=qn(o,e),i=r("entry_flow/conv_in"),c=s("entry_flow/reduction_block_0"),m=s("entry_flow/reduction_block_1"),p={conv_in:i,reduction_block_0:c,reduction_block_1:m},u={};ct(t,0,1).forEach(T=>{u[`main_block_${T}`]=a(`middle_flow/main_block_${T}`)});let f=s("exit_flow/reduction_block"),l=n("exit_flow/separable_conv"),b={reduction_block:f,separable_conv:l};return W(o,e),{params:{entry_flow:p,middle_flow:u,exit_flow:b},paramMappings:e}}function Ao(o,t,e){return N.add(N.conv2d(o,t.filters,e,"same"),t.bias)}function mo(o,t,e=!0){let r=e?N.relu(o):o;return r=O(r,t.separable_conv0,[1,1]),r=O(N.relu(r),t.separable_conv1,[1,1]),r=N.maxPool(r,[3,3],[2,2],"same"),r=N.add(r,Ao(o,t.expansion_conv,[2,2])),r}function Zn(o,t){let e=O(N.relu(o),t.separable_conv0,[1,1]);return e=O(N.relu(e),t.separable_conv1,[1,1]),e=O(N.relu(e),t.separable_conv2,[1,1]),e=N.add(e,o),e}var yr=class extends A{constructor(t){super("TinyXception"),this._numMainBlocks=t}forwardInput(t){let{params:e}=this;if(!e)throw new Error("TinyXception - load model before inference");return N.tidy(()=>{let r=N.cast(t.toBatchTensor(112,!0),"float32"),s=rt(r,[122.782,117.001,104.298]).div(255),a=N.relu(Ao(s,e.entry_flow.conv_in,[2,2]));return a=mo(a,e.entry_flow.reduction_block_0,!1),a=mo(a,e.entry_flow.reduction_block_1),ct(this._numMainBlocks,0,1).forEach(i=>{a=Zn(a,e.middle_flow[`main_block_${i}`])}),a=mo(a,e.exit_flow.reduction_block),a=N.relu(O(a,e.exit_flow.separable_conv,[1,1])),a})}async forward(t){return this.forwardInput(await D(t))}getDefaultModelName(){return"tiny_xception_model"}extractParamsFromWeightMap(t){return So(t,this._numMainBlocks)}extractParams(t){return Lo(t,this._numMainBlocks)}};function Wo(o){let t=[],{extractWeights:e,getRemainingWeights:r}=k(o),n=fr(e,t),s=n(512,1,"fc/age"),a=n(512,2,"fc/gender");if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:t,params:{fc:{age:s,gender:a}}}}function ko(o){let t=[],e=Y(o,t);function r(s){let a=e(`${s}/weights`,2),i=e(`${s}/bias`,1);return{weights:a,bias:i}}let n={fc:{age:r("fc/age"),gender:r("fc/gender")}};return W(o,t),{params:n,paramMappings:t}}var _r=(e=>(e.FEMALE="female",e.MALE="male",e))(_r||{});var He=class extends A{constructor(t=new yr(2)){super("AgeGenderNet"),this._faceFeatureExtractor=t}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(t){let{params:e}=this;if(!e)throw new Error(`${this._name} - load model before inference`);return ft.tidy(()=>{let r=t instanceof ut?this.faceFeatureExtractor.forwardInput(t):t,n=ft.avgPool(r,[7,7],[2,2],"valid").as2D(r.shape[0],-1),s=$e(n,e.fc.age).as1D(),a=$e(n,e.fc.gender);return{age:s,gender:a}})}forwardInput(t){return ft.tidy(()=>{let{age:e,gender:r}=this.runNet(t);return{age:e,gender:ft.softmax(r)}})}async forward(t){return this.forwardInput(await D(t))}async predictAgeAndGender(t){let e=await D(t),r=await this.forwardInput(e),n=ft.unstack(r.age),s=ft.unstack(r.gender),a=n.map((c,m)=>({ageTensor:c,genderTensor:s[m]})),i=await Promise.all(a.map(async({ageTensor:c,genderTensor:m})=>{let p=c.dataSync()[0],u=m.dataSync()[0],f=u>.5,l=f?"male":"female",b=f?u:1-u;return c.dispose(),m.dispose(),{age:p,gender:l,genderProbability:b}}));return r.age.dispose(),r.gender.dispose(),e.isBatchInput?i:i[0]}getDefaultModelName(){return"age_gender_model"}dispose(t=!0){this.faceFeatureExtractor.dispose(t),super.dispose(t)}loadClassifierParams(t){let{params:e,paramMappings:r}=this.extractClassifierParams(t);this._params=e,this._paramMappings=r}extractClassifierParams(t){return Wo(t)}extractParamsFromWeightMap(t){let{featureExtractorMap:e,classifierMap:r}=br(t);return this.faceFeatureExtractor.loadFromWeightMap(e),ko(r)}extractParams(t){let r=t.slice(0,t.length-1539),n=t.slice(t.length-1539);return this.faceFeatureExtractor.extractWeights(r),this.extractClassifierParams(n)}};var V=v(x());var we=class extends _e{postProcess(t,e,r){let n=r.map(({width:a,height:i})=>{let c=e/Math.max(i,a);return{width:a*c,height:i*c}}),s=n.length;return V.tidy(()=>{let a=(u,f)=>V.stack([V.fill([68],u,"float32"),V.fill([68],f,"float32")],1).as2D(1,136).as1D(),i=(u,f)=>{let{width:l,height:b}=n[u];return f(l,b)?Math.abs(l-b)/2:0},c=u=>i(u,(f,l)=>fi(u,(f,l)=>la(c(f),m(f))))).div(V.stack(Array.from(Array(s),(u,f)=>a(n[f].width,n[f].height))))})}forwardInput(t){return V.tidy(()=>{let e=this.runNet(t);return this.postProcess(e,t.inputSize,t.inputDimensions.map(([r,n])=>({height:r,width:n})))})}async forward(t){return this.forwardInput(await D(t))}async detectLandmarks(t){let e=await D(t),r=V.tidy(()=>V.unstack(this.forwardInput(e))),n=await Promise.all(r.map(async(s,a)=>{let i=Array.from(s.dataSync()),c=i.filter((p,u)=>er(u)),m=i.filter((p,u)=>!er(u));return new Yt(Array(68).fill(0).map((p,u)=>new _(c[u],m[u])),{height:e.getInputHeight(a),width:e.getInputWidth(a)})}));return r.forEach(s=>s.dispose()),e.isBatchInput?n:n[0]}getClassifierChannelsOut(){return 136}};var Zt=class extends we{constructor(t=new xe){super("FaceLandmark68Net",t)}getDefaultModelName(){return"face_landmark_68_model"}getClassifierChannelsIn(){return 256}};var Fe=v(x());function Bo(o){let t=[],{extractDenseBlock3Params:e}=hr(o,t),r={dense0:e("dense0",!0),dense1:e("dense1"),dense2:e("dense2")};return W(o,t),{params:r,paramMappings:t}}function Ro(o){let t=[],{extractWeights:e,getRemainingWeights:r}=k(o),{extractDenseBlock3Params:n}=lr(e,t),s=n(3,32,"dense0",!0),a=n(32,64,"dense1"),i=n(64,128,"dense2");if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:t,params:{dense0:s,dense1:a,dense2:i}}}var Tr=class extends A{constructor(){super("TinyFaceFeatureExtractor")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("TinyFaceFeatureExtractor - load model before inference");return Fe.tidy(()=>{let r=Fe.cast(t.toBatchTensor(112,!0),"float32"),s=rt(r,[122.782,117.001,104.298]).div(255),a=mr(s,e.dense0,!0);return a=mr(a,e.dense1),a=mr(a,e.dense2),a=Fe.avgPool(a,[14,14],[2,2],"valid"),a})}async forward(t){return this.forwardInput(await D(t))}getDefaultModelName(){return"face_feature_extractor_tiny_model"}extractParamsFromWeightMap(t){return Bo(t)}extractParams(t){return Ro(t)}};var ze=class extends we{constructor(t=new Tr){super("FaceLandmark68TinyNet",t)}getDefaultModelName(){return"face_landmark_68_tiny_model"}getClassifierChannelsIn(){return 128}};var po=class extends Zt{};var nt=v(x());var De=v(x());var Pr=v(x());function $o(o,t){return Pr.add(Pr.mul(o,t.weights),t.biases)}function uo(o,t,e,r,n="same"){let{filters:s,bias:a}=t.conv,i=De.conv2d(o,s,e,n);return i=De.add(i,a),i=$o(i,t.scale),r?De.relu(i):i}function Oo(o,t){return uo(o,t,[1,1],!0)}function fo(o,t){return uo(o,t,[1,1],!1)}function wr(o,t){return uo(o,t,[2,2],!0,"valid")}var G=v(x());function Kn(o,t){function e(i,c,m){let p=o(i),u=p.length/(c*m*m);if($r(u))throw new Error(`depth has to be an integer: ${u}, weights.length: ${p.length}, numFilters: ${c}, filterSize: ${m}`);return G.tidy(()=>G.transpose(G.tensor4d(p,[c,u,m,m]),[2,3,1,0]))}function r(i,c,m,p){let u=e(i,c,m),f=G.tensor1d(o(c));return t.push({paramPath:`${p}/filters`},{paramPath:`${p}/bias`}),{filters:u,bias:f}}function n(i,c){let m=G.tensor1d(o(i)),p=G.tensor1d(o(i));return t.push({paramPath:`${c}/weights`},{paramPath:`${c}/biases`}),{weights:m,biases:p}}function s(i,c,m,p){let u=r(i,c,m,`${p}/conv`),f=n(c,`${p}/scale`);return{conv:u,scale:f}}function a(i,c,m,p,u=!1){let f=s((u?.5:1)*i,c,m,`${p}/conv1`),l=s(i,c,m,`${p}/conv2`);return{conv1:f,conv2:l}}return{extractConvLayerParams:s,extractResidualLayerParams:a}}function Ho(o){let{extractWeights:t,getRemainingWeights:e}=k(o),r=[],{extractConvLayerParams:n,extractResidualLayerParams:s}=Kn(t,r),a=n(4704,32,7,"conv32_down"),i=s(9216,32,3,"conv32_1"),c=s(9216,32,3,"conv32_2"),m=s(9216,32,3,"conv32_3"),p=s(36864,64,3,"conv64_down",!0),u=s(36864,64,3,"conv64_1"),f=s(36864,64,3,"conv64_2"),l=s(36864,64,3,"conv64_3"),b=s(147456,128,3,"conv128_down",!0),T=s(147456,128,3,"conv128_1"),h=s(147456,128,3,"conv128_2"),g=s(589824,256,3,"conv256_down",!0),P=s(589824,256,3,"conv256_1"),y=s(589824,256,3,"conv256_2"),I=s(589824,256,3,"conv256_down_out"),j=G.tidy(()=>G.transpose(G.tensor2d(t(256*128),[128,256]),[1,0]));if(r.push({paramPath:"fc"}),e().length!==0)throw new Error(`weights remaing after extract: ${e().length}`);return{params:{conv32_down:a,conv32_1:i,conv32_2:c,conv32_3:m,conv64_down:p,conv64_1:u,conv64_2:f,conv64_3:l,conv128_down:b,conv128_1:T,conv128_2:h,conv256_down:g,conv256_1:P,conv256_2:y,conv256_down_out:I,fc:j},paramMappings:r}}function Qn(o,t){let e=Y(o,t);function r(a){let i=e(`${a}/scale/weights`,1),c=e(`${a}/scale/biases`,1);return{weights:i,biases:c}}function n(a){let i=e(`${a}/conv/filters`,4),c=e(`${a}/conv/bias`,1),m=r(a);return{conv:{filters:i,bias:c},scale:m}}function s(a){return{conv1:n(`${a}/conv1`),conv2:n(`${a}/conv2`)}}return{extractConvLayerParams:n,extractResidualLayerParams:s}}function zo(o){let t=[],{extractConvLayerParams:e,extractResidualLayerParams:r}=Qn(o,t),n=e("conv32_down"),s=r("conv32_1"),a=r("conv32_2"),i=r("conv32_3"),c=r("conv64_down"),m=r("conv64_1"),p=r("conv64_2"),u=r("conv64_3"),f=r("conv128_down"),l=r("conv128_1"),b=r("conv128_2"),T=r("conv256_down"),h=r("conv256_1"),g=r("conv256_2"),P=r("conv256_down_out"),{fc:y}=o;if(t.push({originalPath:"fc",paramPath:"fc"}),!Rr(y))throw new Error(`expected weightMap[fc] to be a Tensor2D, instead have ${y}`);let I={conv32_down:n,conv32_1:s,conv32_2:a,conv32_3:i,conv64_down:c,conv64_1:m,conv64_2:p,conv64_3:u,conv128_down:f,conv128_1:l,conv128_2:b,conv256_down:T,conv256_1:h,conv256_2:g,conv256_down_out:P,fc:y};return W(o,t),{params:I,paramMappings:t}}var B=v(x());function ot(o,t){let e=Oo(o,t.conv1);return e=fo(e,t.conv2),e=B.add(e,o),e=B.relu(e),e}function Ye(o,t){let e=wr(o,t.conv1);e=fo(e,t.conv2);let r=B.avgPool(o,2,2,"valid"),n=B.zeros(r.shape),s=r.shape[3]!==e.shape[3];if(r.shape[1]!==e.shape[1]||r.shape[2]!==e.shape[2]){let i=[...e.shape];i[1]=1;let c=B.zeros(i);e=B.concat([e,c],1);let m=[...e.shape];m[2]=1;let p=B.zeros(m);e=B.concat([e,p],2)}return r=s?B.concat([r,n],3):r,e=B.add(r,e),e=B.relu(e),e}var Kt=class extends A{constructor(){super("FaceRecognitionNet")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("FaceRecognitionNet - load model before inference");return nt.tidy(()=>{let r=nt.cast(t.toBatchTensor(150,!0),"float32"),s=rt(r,[122.782,117.001,104.298]).div(255),a=wr(s,e.conv32_down);a=nt.maxPool(a,3,2,"valid"),a=ot(a,e.conv32_1),a=ot(a,e.conv32_2),a=ot(a,e.conv32_3),a=Ye(a,e.conv64_down),a=ot(a,e.conv64_1),a=ot(a,e.conv64_2),a=ot(a,e.conv64_3),a=Ye(a,e.conv128_down),a=ot(a,e.conv128_1),a=ot(a,e.conv128_2),a=Ye(a,e.conv256_down),a=ot(a,e.conv256_1),a=ot(a,e.conv256_2),a=Ye(a,e.conv256_down_out);let i=a.mean([1,2]);return nt.matMul(i,e.fc)})}async forward(t){return this.forwardInput(await D(t))}async computeFaceDescriptor(t){var s;if((s=t==null?void 0:t.shape)!=null&&s.some(a=>a<=0))return new Float32Array(128);let e=await D(t),r=nt.tidy(()=>nt.unstack(this.forwardInput(e))),n=await Promise.all(r.map(a=>a.data()));return r.forEach(a=>a.dispose()),e.isBatchInput?n:n[0]}getDefaultModelName(){return"face_recognition_model"}extractParamsFromWeightMap(t){return zo(t)}extractParams(t){return Ho(t)}};function ta(o){let t=new Kt;return t.extractWeights(o),t}function Fr(o,t){return{...o,...{descriptor:t}}}function ea(o){return typeof o.age=="number"}function Dr(o,t){return{...o,...{age:t}}}function ra(o){return(o.gender==="male"||o.gender==="female")&&ce(o.genderProbability)}function Er(o,t,e){return{...o,...{gender:t,genderProbability:e}}}var Nt=v(x());var at=v(x());function oa(o,t){function e(c,m){let p=at.tensor4d(o(9*c),[3,3,c,1]),u=at.tensor1d(o(c)),f=at.tensor1d(o(c)),l=at.tensor1d(o(c)),b=at.tensor1d(o(c));return t.push({paramPath:`${m}/filters`},{paramPath:`${m}/batch_norm_scale`},{paramPath:`${m}/batch_norm_offset`},{paramPath:`${m}/batch_norm_mean`},{paramPath:`${m}/batch_norm_variance`}),{filters:p,batch_norm_scale:u,batch_norm_offset:f,batch_norm_mean:l,batch_norm_variance:b}}function r(c,m,p,u,f){let l=at.tensor4d(o(c*m*p*p),[p,p,c,m]),b=at.tensor1d(o(m));return t.push({paramPath:`${u}/filters`},{paramPath:`${u}/${f?"batch_norm_offset":"bias"}`}),{filters:l,bias:b}}function n(c,m,p,u){let{filters:f,bias:l}=r(c,m,p,u,!0);return{filters:f,batch_norm_offset:l}}function s(c,m,p){let u=e(c,`${p}/depthwise_conv`),f=n(c,m,1,`${p}/pointwise_conv`);return{depthwise_conv:u,pointwise_conv:f}}function a(){let c=n(3,32,3,"mobilenetv1/conv_0"),m=s(32,64,"mobilenetv1/conv_1"),p=s(64,128,"mobilenetv1/conv_2"),u=s(128,128,"mobilenetv1/conv_3"),f=s(128,256,"mobilenetv1/conv_4"),l=s(256,256,"mobilenetv1/conv_5"),b=s(256,512,"mobilenetv1/conv_6"),T=s(512,512,"mobilenetv1/conv_7"),h=s(512,512,"mobilenetv1/conv_8"),g=s(512,512,"mobilenetv1/conv_9"),P=s(512,512,"mobilenetv1/conv_10"),y=s(512,512,"mobilenetv1/conv_11"),I=s(512,1024,"mobilenetv1/conv_12"),j=s(1024,1024,"mobilenetv1/conv_13");return{conv_0:c,conv_1:m,conv_2:p,conv_3:u,conv_4:f,conv_5:l,conv_6:b,conv_7:T,conv_8:h,conv_9:g,conv_10:P,conv_11:y,conv_12:I,conv_13:j}}function i(){let c=n(1024,256,1,"prediction_layer/conv_0"),m=n(256,512,3,"prediction_layer/conv_1"),p=n(512,128,1,"prediction_layer/conv_2"),u=n(128,256,3,"prediction_layer/conv_3"),f=n(256,128,1,"prediction_layer/conv_4"),l=n(128,256,3,"prediction_layer/conv_5"),b=n(256,64,1,"prediction_layer/conv_6"),T=n(64,128,3,"prediction_layer/conv_7"),h=r(512,12,1,"prediction_layer/box_predictor_0/box_encoding_predictor"),g=r(512,9,1,"prediction_layer/box_predictor_0/class_predictor"),P=r(1024,24,1,"prediction_layer/box_predictor_1/box_encoding_predictor"),y=r(1024,18,1,"prediction_layer/box_predictor_1/class_predictor"),I=r(512,24,1,"prediction_layer/box_predictor_2/box_encoding_predictor"),j=r(512,18,1,"prediction_layer/box_predictor_2/class_predictor"),tt=r(256,24,1,"prediction_layer/box_predictor_3/box_encoding_predictor"),it=r(256,18,1,"prediction_layer/box_predictor_3/class_predictor"),q=r(256,24,1,"prediction_layer/box_predictor_4/box_encoding_predictor"),Pt=r(256,18,1,"prediction_layer/box_predictor_4/class_predictor"),wt=r(128,24,1,"prediction_layer/box_predictor_5/box_encoding_predictor"),Ft=r(128,18,1,"prediction_layer/box_predictor_5/class_predictor");return{conv_0:c,conv_1:m,conv_2:p,conv_3:u,conv_4:f,conv_5:l,conv_6:b,conv_7:T,box_predictor_0:{box_encoding_predictor:h,class_predictor:g},box_predictor_1:{box_encoding_predictor:P,class_predictor:y},box_predictor_2:{box_encoding_predictor:I,class_predictor:j},box_predictor_3:{box_encoding_predictor:tt,class_predictor:it},box_predictor_4:{box_encoding_predictor:q,class_predictor:Pt},box_predictor_5:{box_encoding_predictor:wt,class_predictor:Ft}}}return{extractMobilenetV1Params:a,extractPredictionLayerParams:i}}function Yo(o){let t=[],{extractWeights:e,getRemainingWeights:r}=k(o),{extractMobilenetV1Params:n,extractPredictionLayerParams:s}=oa(e,t),a=n(),i=s(),m={extra_dim:at.tensor3d(e(5118*4),[1,5118,4])};if(t.push({paramPath:"output_layer/extra_dim"}),r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{params:{mobilenetv1:a,prediction_layer:i,output_layer:m},paramMappings:t}}function na(o,t){let e=Y(o,t);function r(m,p,u){let f=e(`${m}/Conv2d_${p}_pointwise/weights`,4,`${u}/filters`),l=e(`${m}/Conv2d_${p}_pointwise/convolution_bn_offset`,1,`${u}/batch_norm_offset`);return{filters:f,batch_norm_offset:l}}function n(m){let p=`mobilenetv1/conv_${m}`,u=`MobilenetV1/Conv2d_${m}_depthwise`,f=`${p}/depthwise_conv`,l=`${p}/pointwise_conv`,b=e(`${u}/depthwise_weights`,4,`${f}/filters`),T=e(`${u}/BatchNorm/gamma`,1,`${f}/batch_norm_scale`),h=e(`${u}/BatchNorm/beta`,1,`${f}/batch_norm_offset`),g=e(`${u}/BatchNorm/moving_mean`,1,`${f}/batch_norm_mean`),P=e(`${u}/BatchNorm/moving_variance`,1,`${f}/batch_norm_variance`);return{depthwise_conv:{filters:b,batch_norm_scale:T,batch_norm_offset:h,batch_norm_mean:g,batch_norm_variance:P},pointwise_conv:r("MobilenetV1",m,l)}}function s(){return{conv_0:r("MobilenetV1",0,"mobilenetv1/conv_0"),conv_1:n(1),conv_2:n(2),conv_3:n(3),conv_4:n(4),conv_5:n(5),conv_6:n(6),conv_7:n(7),conv_8:n(8),conv_9:n(9),conv_10:n(10),conv_11:n(11),conv_12:n(12),conv_13:n(13)}}function a(m,p){let u=e(`${m}/weights`,4,`${p}/filters`),f=e(`${m}/biases`,1,`${p}/bias`);return{filters:u,bias:f}}function i(m){let p=a(`Prediction/BoxPredictor_${m}/BoxEncodingPredictor`,`prediction_layer/box_predictor_${m}/box_encoding_predictor`),u=a(`Prediction/BoxPredictor_${m}/ClassPredictor`,`prediction_layer/box_predictor_${m}/class_predictor`);return{box_encoding_predictor:p,class_predictor:u}}function c(){return{conv_0:r("Prediction",0,"prediction_layer/conv_0"),conv_1:r("Prediction",1,"prediction_layer/conv_1"),conv_2:r("Prediction",2,"prediction_layer/conv_2"),conv_3:r("Prediction",3,"prediction_layer/conv_3"),conv_4:r("Prediction",4,"prediction_layer/conv_4"),conv_5:r("Prediction",5,"prediction_layer/conv_5"),conv_6:r("Prediction",6,"prediction_layer/conv_6"),conv_7:r("Prediction",7,"prediction_layer/conv_7"),box_predictor_0:i(0),box_predictor_1:i(1),box_predictor_2:i(2),box_predictor_3:i(3),box_predictor_4:i(4),box_predictor_5:i(5)}}return{extractMobilenetV1Params:s,extractPredictionLayerParams:c}}function Vo(o){let t=[],{extractMobilenetV1Params:e,extractPredictionLayerParams:r}=na(o,t),n=o["Output/extra_dim"];if(t.push({originalPath:"Output/extra_dim",paramPath:"output_layer/extra_dim"}),!dt(n))throw new Error(`expected weightMap['Output/extra_dim'] to be a Tensor3D, instead have ${n}`);let s={mobilenetv1:e(),prediction_layer:r(),output_layer:{extra_dim:n}};return W(o,t),{params:s,paramMappings:t}}var xt=v(x());var Ct=v(x());function Z(o,t,e){return Ct.tidy(()=>{let r=Ct.conv2d(o,t.filters,e,"same");return r=Ct.add(r,t.batch_norm_offset),Ct.clipByValue(r,0,6)})}var aa=.0010000000474974513;function sa(o,t,e){return xt.tidy(()=>{let r=xt.depthwiseConv2d(o,t.filters,e,"same");return r=xt.batchNorm(r,t.batch_norm_mean,t.batch_norm_variance,t.batch_norm_offset,t.batch_norm_scale,aa),xt.clipByValue(r,0,6)})}function ia(o){return[2,4,6,12].some(t=>t===o)?[2,2]:[1,1]}function Go(o,t){return xt.tidy(()=>{let e,r=Z(o,t.conv_0,[2,2]);if([t.conv_1,t.conv_2,t.conv_3,t.conv_4,t.conv_5,t.conv_6,t.conv_7,t.conv_8,t.conv_9,t.conv_10,t.conv_11,t.conv_12,t.conv_13].forEach((s,a)=>{let i=a+1,c=ia(i);r=sa(r,s.depthwise_conv,c),r=Z(r,s.pointwise_conv,[1,1]),i===11&&(e=r)}),e===null)throw new Error("mobileNetV1 - output of conv layer 11 is null");return{out:r,conv11:e}})}function ca(o,t,e){let r=o.arraySync(),n=Math.min(r[t][0],r[t][2]),s=Math.min(r[t][1],r[t][3]),a=Math.max(r[t][0],r[t][2]),i=Math.max(r[t][1],r[t][3]),c=Math.min(r[e][0],r[e][2]),m=Math.min(r[e][1],r[e][3]),p=Math.max(r[e][0],r[e][2]),u=Math.max(r[e][1],r[e][3]),f=(a-n)*(i-s),l=(p-c)*(u-m);if(f<=0||l<=0)return 0;let b=Math.max(n,c),T=Math.max(s,m),h=Math.min(a,p),g=Math.min(i,u),P=Math.max(h-b,0)*Math.max(g-T,0);return P/(f+l-P)}function jo(o,t,e,r,n){let s=o.shape[0],a=Math.min(e,s),i=t.map((p,u)=>({score:p,boxIndex:u})).filter(p=>p.score>n).sort((p,u)=>u.score-p.score),c=p=>p<=r?1:0,m=[];return i.forEach(p=>{if(m.length>=a)return;let u=p.score;for(let f=m.length-1;f>=0;--f){let l=ca(o,p.boxIndex,m[f]);if(l!==0&&(p.score*=c(l),p.score<=n))break}u===p.score&&m.push(p.boxIndex)}),m}var d=v(x());function ma(o){let t=d.unstack(d.transpose(o,[1,0])),e=[d.sub(t[2],t[0]),d.sub(t[3],t[1])],r=[d.add(t[0],d.div(e[0],2)),d.add(t[1],d.div(e[1],2))];return{sizes:e,centers:r}}function pa(o,t){let{sizes:e,centers:r}=ma(o),n=d.unstack(d.transpose(t,[1,0])),s=d.div(d.mul(d.exp(d.div(n[2],5)),e[0]),2),a=d.add(d.mul(d.div(n[0],10),e[0]),r[0]),i=d.div(d.mul(d.exp(d.div(n[3],5)),e[1]),2),c=d.add(d.mul(d.div(n[1],10),e[1]),r[1]);return d.transpose(d.stack([d.sub(a,s),d.sub(c,i),d.add(a,s),d.add(c,i)]),[1,0])}function Uo(o,t,e){return d.tidy(()=>{let r=o.shape[0],n=pa(d.reshape(d.tile(e.extra_dim,[r,1,1]),[-1,4]),d.reshape(o,[-1,4]));n=d.reshape(n,[r,n.shape[0]/r,4]);let s=d.sigmoid(d.slice(t,[0,0,1],[-1,-1,-1])),a=d.slice(s,[0,0,0],[-1,-1,1]);a=d.reshape(a,[r,a.shape[1]]);let i=d.unstack(n),c=d.unstack(a);return{boxes:i,scores:c}})}var Ge=v(x());var Ve=v(x());function Qt(o,t){return Ve.tidy(()=>{let e=o.shape[0],r=Ve.reshape(Jt(o,t.box_encoding_predictor),[e,-1,1,4]),n=Ve.reshape(Jt(o,t.class_predictor),[e,-1,3]);return{boxPredictionEncoding:r,classPrediction:n}})}function Xo(o,t,e){return Ge.tidy(()=>{let r=Z(o,e.conv_0,[1,1]),n=Z(r,e.conv_1,[2,2]),s=Z(n,e.conv_2,[1,1]),a=Z(s,e.conv_3,[2,2]),i=Z(a,e.conv_4,[1,1]),c=Z(i,e.conv_5,[2,2]),m=Z(c,e.conv_6,[1,1]),p=Z(m,e.conv_7,[2,2]),u=Qt(t,e.box_predictor_0),f=Qt(o,e.box_predictor_1),l=Qt(n,e.box_predictor_2),b=Qt(a,e.box_predictor_3),T=Qt(c,e.box_predictor_4),h=Qt(p,e.box_predictor_5),g=Ge.concat([u.boxPredictionEncoding,f.boxPredictionEncoding,l.boxPredictionEncoding,b.boxPredictionEncoding,T.boxPredictionEncoding,h.boxPredictionEncoding],1),P=Ge.concat([u.classPrediction,f.classPrediction,l.classPrediction,b.classPrediction,T.classPrediction,h.classPrediction],1);return{boxPredictions:g,classPredictions:P}})}var X=class{constructor({minConfidence:t,maxResults:e}={}){this._name="SsdMobilenetv1Options";if(this._minConfidence=t||.5,this._maxResults=e||100,typeof this._minConfidence!="number"||this._minConfidence<=0||this._minConfidence>=1)throw new Error(`${this._name} - expected minConfidence to be a number between 0 and 1`);if(typeof this._maxResults!="number")throw new Error(`${this._name} - expected maxResults to be a number`)}get minConfidence(){return this._minConfidence}get maxResults(){return this._maxResults}};var It=class extends A{constructor(){super("SsdMobilenetv1")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("SsdMobilenetv1 - load model before inference");return Nt.tidy(()=>{let r=Nt.cast(t.toBatchTensor(512,!1),"float32"),n=Nt.sub(Nt.div(r,127.5),1),s=Go(n,e.mobilenetv1),{boxPredictions:a,classPredictions:i}=Xo(s.out,s.conv11,e.prediction_layer);return Uo(a,i,e.output_layer)})}async forward(t){return this.forwardInput(await D(t))}async locateFaces(t,e={}){let{maxResults:r,minConfidence:n}=new X(e),s=await D(t),{boxes:a,scores:i}=this.forwardInput(s),c=a[0],m=i[0];for(let y=1;y{let[I,j]=[Math.max(0,g[y][0]),Math.min(1,g[y][2])].map(q=>q*h),[tt,it]=[Math.max(0,g[y][1]),Math.min(1,g[y][3])].map(q=>q*T);return new M(p[y],new zt(tt,I,it-tt,j-I),{height:s.getInputHeight(0),width:s.getInputWidth(0)})});return c.dispose(),m.dispose(),P}getDefaultModelName(){return"ssd_mobilenetv1_model"}extractParamsFromWeightMap(t){return Vo(t)}extractParams(t){return Yo(t)}};function Jo(o){let t=new It;return t.extractWeights(o),t}function ua(o){return Jo(o)}var lo=class extends It{};var qo=.4,Zo=[new _(.738768,.874946),new _(2.42204,2.65704),new _(4.30971,7.04493),new _(10.246,4.59428),new _(12.6868,11.8741)],Ko=[new _(1.603231,2.094468),new _(6.041143,7.080126),new _(2.882459,3.518061),new _(4.266906,5.178857),new _(9.041765,10.66308)],Qo=[117.001,114.697,97.404],tn="tiny_yolov2_model",en="tiny_yolov2_separable_conv_model";var C=v(x());var Mr=o=>typeof o=="number";function ho(o){if(!o)throw new Error(`invalid config: ${o}`);if(typeof o.withSeparableConvs!="boolean")throw new Error(`config.withSeparableConvs has to be a boolean, have: ${o.withSeparableConvs}`);if(!Mr(o.iouThreshold)||o.iouThreshold<0||o.iouThreshold>1)throw new Error(`config.iouThreshold has to be a number between [0, 1], have: ${o.iouThreshold}`);if(!Array.isArray(o.classes)||!o.classes.length||!o.classes.every(t=>typeof t=="string"))throw new Error(`config.classes has to be an array class names: string[], have: ${JSON.stringify(o.classes)}`);if(!Array.isArray(o.anchors)||!o.anchors.length||!o.anchors.map(t=>t||{}).every(t=>Mr(t.x)&&Mr(t.y)))throw new Error(`config.anchors has to be an array of { x: number, y: number }, have: ${JSON.stringify(o.anchors)}`);if(o.meanRgb&&(!Array.isArray(o.meanRgb)||o.meanRgb.length!==3||!o.meanRgb.every(Mr)))throw new Error(`config.meanRgb has to be an array of shape [number, number, number], have: ${JSON.stringify(o.meanRgb)}`)}var Q=v(x());var K=v(x());function Ee(o){return K.tidy(()=>{let t=K.mul(o,K.scalar(.10000000149011612));return K.add(K.relu(K.sub(o,t)),t)})}function vt(o,t){return Q.tidy(()=>{let e=Q.pad(o,[[0,0],[1,1],[1,1],[0,0]]);return e=Q.conv2d(e,t.conv.filters,[1,1],"valid"),e=Q.sub(e,t.bn.sub),e=Q.mul(e,t.bn.truediv),e=Q.add(e,t.conv.bias),Ee(e)})}var Lt=v(x());function yt(o,t){return Lt.tidy(()=>{let e=Lt.pad(o,[[0,0],[1,1],[1,1],[0,0]]);return e=Lt.separableConv2d(e,t.depthwise_filter,t.pointwise_filter,[1,1],"valid"),e=Lt.add(e,t.bias),Ee(e)})}var bo=v(x());function fa(o,t){let e=he(o,t);function r(a,i){let c=bo.tensor1d(o(a)),m=bo.tensor1d(o(a));return t.push({paramPath:`${i}/sub`},{paramPath:`${i}/truediv`}),{sub:c,truediv:m}}function n(a,i,c){let m=e(a,i,3,`${c}/conv`),p=r(i,`${c}/bn`);return{conv:m,bn:p}}let s=be(o,t);return{extractConvParams:e,extractConvWithBatchNormParams:n,extractSeparableConvParams:s}}function rn(o,t,e,r){let{extractWeights:n,getRemainingWeights:s}=k(o),a=[],{extractConvParams:i,extractConvWithBatchNormParams:c,extractSeparableConvParams:m}=fa(n,a),p;if(t.withSeparableConvs){let[u,f,l,b,T,h,g,P,y]=r,I=t.isFirstLayerConv2d?i(u,f,3,"conv0"):m(u,f,"conv0"),j=m(f,l,"conv1"),tt=m(l,b,"conv2"),it=m(b,T,"conv3"),q=m(T,h,"conv4"),Pt=m(h,g,"conv5"),wt=P?m(g,P,"conv6"):void 0,Ft=y?m(P,y,"conv7"):void 0,ie=i(y||P||g,5*e,1,"conv8");p={conv0:I,conv1:j,conv2:tt,conv3:it,conv4:q,conv5:Pt,conv6:wt,conv7:Ft,conv8:ie}}else{let[u,f,l,b,T,h,g,P,y]=r,I=c(u,f,"conv0"),j=c(f,l,"conv1"),tt=c(l,b,"conv2"),it=c(b,T,"conv3"),q=c(T,h,"conv4"),Pt=c(h,g,"conv5"),wt=c(g,P,"conv6"),Ft=c(P,y,"conv7"),ie=i(y,5*e,1,"conv8");p={conv0:I,conv1:j,conv2:tt,conv3:it,conv4:q,conv5:Pt,conv6:wt,conv7:Ft,conv8:ie}}if(s().length!==0)throw new Error(`weights remaing after extract: ${s().length}`);return{params:p,paramMappings:a}}function la(o,t){let e=Y(o,t);function r(i){let c=e(`${i}/sub`,1),m=e(`${i}/truediv`,1);return{sub:c,truediv:m}}function n(i){let c=e(`${i}/filters`,4),m=e(`${i}/bias`,1);return{filters:c,bias:m}}function s(i){let c=n(`${i}/conv`),m=r(`${i}/bn`);return{conv:c,bn:m}}let a=ge(e);return{extractConvParams:n,extractConvWithBatchNormParams:s,extractSeparableConvParams:a}}function on(o,t){let e=[],{extractConvParams:r,extractConvWithBatchNormParams:n,extractSeparableConvParams:s}=la(o,e),a;if(t.withSeparableConvs){let i=t.filterSizes&&t.filterSizes.length||9;a={conv0:t.isFirstLayerConv2d?r("conv0"):s("conv0"),conv1:s("conv1"),conv2:s("conv2"),conv3:s("conv3"),conv4:s("conv4"),conv5:s("conv5"),conv6:i>7?s("conv6"):void 0,conv7:i>8?s("conv7"):void 0,conv8:r("conv8")}}else a={conv0:n("conv0"),conv1:n("conv1"),conv2:n("conv2"),conv3:n("conv3"),conv4:n("conv4"),conv5:n("conv5"),conv6:n("conv6"),conv7:n("conv7"),conv8:r("conv8")};return W(o,e),{params:a,paramMappings:e}}var st=class{constructor({inputSize:t,scoreThreshold:e}={}){this._name="TinyYolov2Options";if(this._inputSize=t||416,this._scoreThreshold=e||.5,typeof this._inputSize!="number"||this._inputSize%32!==0)throw new Error(`${this._name} - expected inputSize to be a number divisible by 32`);if(typeof this._scoreThreshold!="number"||this._scoreThreshold<=0||this._scoreThreshold>=1)throw new Error(`${this._name} - expected scoreThreshold to be a number between 0 and 1`)}get inputSize(){return this._inputSize}get scoreThreshold(){return this._scoreThreshold}};var Cr=class Cr extends A{constructor(t){super("TinyYolov2"),ho(t),this._config=t}get config(){return this._config}get withClassScores(){return this.config.withClassScores||this.config.classes.length>1}get boxEncodingSize(){return 5+(this.withClassScores?this.config.classes.length:0)}runTinyYolov2(t,e){let r=vt(t,e.conv0);return r=C.maxPool(r,[2,2],[2,2],"same"),r=vt(r,e.conv1),r=C.maxPool(r,[2,2],[2,2],"same"),r=vt(r,e.conv2),r=C.maxPool(r,[2,2],[2,2],"same"),r=vt(r,e.conv3),r=C.maxPool(r,[2,2],[2,2],"same"),r=vt(r,e.conv4),r=C.maxPool(r,[2,2],[2,2],"same"),r=vt(r,e.conv5),r=C.maxPool(r,[2,2],[1,1],"same"),r=vt(r,e.conv6),r=vt(r,e.conv7),Jt(r,e.conv8,"valid",!1)}runMobilenet(t,e){let r=this.config.isFirstLayerConv2d?Ee(Jt(t,e.conv0,"valid",!1)):yt(t,e.conv0);return r=C.maxPool(r,[2,2],[2,2],"same"),r=yt(r,e.conv1),r=C.maxPool(r,[2,2],[2,2],"same"),r=yt(r,e.conv2),r=C.maxPool(r,[2,2],[2,2],"same"),r=yt(r,e.conv3),r=C.maxPool(r,[2,2],[2,2],"same"),r=yt(r,e.conv4),r=C.maxPool(r,[2,2],[2,2],"same"),r=yt(r,e.conv5),r=C.maxPool(r,[2,2],[1,1],"same"),r=e.conv6?yt(r,e.conv6):r,r=e.conv7?yt(r,e.conv7):r,Jt(r,e.conv8,"valid",!1)}forwardInput(t,e){let{params:r}=this;if(!r)throw new Error("TinyYolov2 - load model before inference");return C.tidy(()=>{let n=C.cast(t.toBatchTensor(e,!1),"float32");return n=this.config.meanRgb?rt(n,this.config.meanRgb):n,n=n.div(255),this.config.withSeparableConvs?this.runMobilenet(n,r):this.runTinyYolov2(n,r)})}async forward(t,e){return this.forwardInput(await D(t),e)}async detect(t,e={}){let{inputSize:r,scoreThreshold:n}=new st(e),s=await D(t),a=await this.forwardInput(s,r),i=C.tidy(()=>C.unstack(a)[0].expandDims()),c={width:s.getInputWidth(0),height:s.getInputHeight(0)},m=await this.extractBoxes(i,s.getReshapedInputDimensions(0),n);a.dispose(),i.dispose();let p=m.map(h=>h.box),u=m.map(h=>h.score),f=m.map(h=>h.classScore),l=m.map(h=>this.config.classes[h.label]);return Vr(p.map(h=>h.rescale(r)),u,this.config.iouThreshold,!0).map(h=>new Ht(u[h],f[h],l[h],p[h],c))}getDefaultModelName(){return""}extractParamsFromWeightMap(t){return on(t,this.config)}extractParams(t){let e=this.config.filterSizes||Cr.DEFAULT_FILTER_SIZES,r=e?e.length:void 0;if(r!==7&&r!==8&&r!==9)throw new Error(`TinyYolov2 - expected 7 | 8 | 9 convolutional filters, but found ${r} filterSizes in config`);return rn(t,this.config,this.boxEncodingSize,e)}async extractBoxes(t,e,r){let{width:n,height:s}=e,a=Math.max(n,s),i=a/n,c=a/s,m=t.shape[1],p=this.config.anchors.length,[u,f,l]=C.tidy(()=>{let g=t.reshape([m,m,p,this.boxEncodingSize]),P=g.slice([0,0,0,0],[m,m,p,4]),y=g.slice([0,0,0,4],[m,m,p,1]),I=this.withClassScores?C.softmax(g.slice([0,0,0,5],[m,m,p,this.config.classes.length]),3):C.scalar(0);return[P,y,I]}),b=[],T=await f.array(),h=await u.array();for(let g=0;gr){let j=(P+Ne(h[g][P][y][0]))/m*i,tt=(g+Ne(h[g][P][y][1]))/m*c,it=Math.exp(h[g][P][y][2])*this.config.anchors[y].x/m*i,q=Math.exp(h[g][P][y][3])*this.config.anchors[y].y/m*c,Pt=j-it/2,wt=tt-q/2,Ft={row:g,col:P,anchor:y},{classScore:ie,label:yo}=this.withClassScores?await this.extractPredictedClass(l,Ft):{classScore:1,label:0};b.push({box:new Ot(Pt,wt,Pt+it,wt+q),score:I,classScore:I*ie,label:yo,...Ft})}}return u.dispose(),f.dispose(),l.dispose(),b}async extractPredictedClass(t,e){let{row:r,col:n,anchor:s}=e,a=await t.array();return Array(this.config.classes.length).fill(0).map((i,c)=>a[r][n][s][c]).map((i,c)=>({classScore:i,label:c})).reduce((i,c)=>i.classScore>c.classScore?i:c)}};Cr.DEFAULT_FILTER_SIZES=[3,16,32,64,128,256,512,1024,1024];var Me=Cr;var te=class extends Me{constructor(t=!0){let e={withSeparableConvs:t,iouThreshold:qo,classes:["face"],...t?{anchors:Ko,meanRgb:Qo}:{anchors:Zo,withClassScores:!0}};super(e)}get withSeparableConvs(){return this.config.withSeparableConvs}get anchors(){return this.config.anchors}async locateFaces(t,e){return(await this.detect(t,e)).map(n=>new M(n.score,n.relativeBox,{width:n.imageWidth,height:n.imageHeight}))}getDefaultModelName(){return this.withSeparableConvs?en:tn}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};function da(o,t=!0){let e=new te(t);return e.extractWeights(o),e}var je=class extends st{constructor(){super(...arguments);this._name="TinyFaceDetectorOptions"}};var J=class{async then(t){return t(await this.run())}async run(){throw new Error("ComposableTask - run is not implemented")}};var Xe=v(x());var go=v(x());async function ee(o,t,e,r,n=({alignedRect:s})=>s){let s=o.map(c=>qt(c)?n(c):c.detection),a=r||(t instanceof go.Tensor?await le(t,s):await fe(t,s)),i=await e(a);return a.forEach(c=>c instanceof go.Tensor&&c.dispose()),i}async function Ce(o,t,e,r,n){return ee([o],t,async s=>e(s[0]),r,n)}var nn=.4,an=[new _(1.603231,2.094468),new _(6.041143,7.080126),new _(2.882459,3.518061),new _(4.266906,5.178857),new _(9.041765,10.66308)],sn=[117.001,114.697,97.404];var re=class extends Me{constructor(){let t={withSeparableConvs:!0,iouThreshold:nn,classes:["face"],anchors:an,meanRgb:sn,isFirstLayerConv2d:!0,filterSizes:[3,16,32,64,128,256,512]};super(t)}get anchors(){return this.config.anchors}async locateFaces(t,e){return(await this.detect(t,e)).map(n=>new M(n.score,n.relativeBox,{width:n.imageWidth,height:n.imageHeight}))}getDefaultModelName(){return"tiny_face_detector_model"}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};var F={ssdMobilenetv1:new It,tinyFaceDetector:new re,tinyYolov2:new te,faceLandmark68Net:new Zt,faceLandmark68TinyNet:new ze,faceRecognitionNet:new Kt,faceExpressionNet:new Oe,ageGenderNet:new He},cn=(o,t)=>F.ssdMobilenetv1.locateFaces(o,t),ha=(o,t)=>F.tinyFaceDetector.locateFaces(o,t),ba=(o,t)=>F.tinyYolov2.locateFaces(o,t),mn=o=>F.faceLandmark68Net.detectLandmarks(o),ga=o=>F.faceLandmark68TinyNet.detectLandmarks(o),xa=o=>F.faceRecognitionNet.computeFaceDescriptor(o),va=o=>F.faceExpressionNet.predictExpressions(o),ya=o=>F.ageGenderNet.predictAgeAndGender(o),pn=o=>F.ssdMobilenetv1.load(o),_a=o=>F.tinyFaceDetector.load(o),Ta=o=>F.tinyYolov2.load(o),Pa=o=>F.faceLandmark68Net.load(o),wa=o=>F.faceLandmark68TinyNet.load(o),Fa=o=>F.faceRecognitionNet.load(o),Da=o=>F.faceExpressionNet.load(o),Ea=o=>F.ageGenderNet.load(o),Ma=pn,Ca=cn,Ia=mn;var Ir=class extends J{constructor(e,r,n){super();this.parentTask=e;this.input=r;this.extractedFaces=n}},oe=class extends Ir{async run(){let t=await this.parentTask,e=await ee(t,this.input,async r=>Promise.all(r.map(n=>F.faceExpressionNet.predictExpressions(n))),this.extractedFaces);return t.map((r,n)=>gr(r,e[n]))}withAgeAndGender(){return new ae(this,this.input)}},ne=class extends Ir{async run(){let t=await this.parentTask;if(!t)return;let e=await Ce(t,this.input,r=>F.faceExpressionNet.predictExpressions(r),this.extractedFaces);return gr(t,e)}withAgeAndGender(){return new se(this,this.input)}},St=class extends oe{withAgeAndGender(){return new Wt(this,this.input)}withFaceDescriptors(){return new _t(this,this.input)}},At=class extends ne{withAgeAndGender(){return new kt(this,this.input)}withFaceDescriptor(){return new Tt(this,this.input)}};var Nr=class extends J{constructor(e,r,n){super();this.parentTask=e;this.input=r;this.extractedFaces=n}},ae=class extends Nr{async run(){let t=await this.parentTask,e=await ee(t,this.input,async r=>Promise.all(r.map(n=>F.ageGenderNet.predictAgeAndGender(n))),this.extractedFaces);return t.map((r,n)=>{let{age:s,gender:a,genderProbability:i}=e[n];return Dr(Er(r,a,i),s)})}withFaceExpressions(){return new oe(this,this.input)}},se=class extends Nr{async run(){let t=await this.parentTask;if(!t)return;let{age:e,gender:r,genderProbability:n}=await Ce(t,this.input,s=>F.ageGenderNet.predictAgeAndGender(s),this.extractedFaces);return Dr(Er(t,r,n),e)}withFaceExpressions(){return new ne(this,this.input)}},Wt=class extends ae{withFaceExpressions(){return new St(this,this.input)}withFaceDescriptors(){return new _t(this,this.input)}},kt=class extends se{withFaceExpressions(){return new At(this,this.input)}withFaceDescriptor(){return new Tt(this,this.input)}};var Ue=class extends J{constructor(e,r){super();this.parentTask=e;this.input=r}},_t=class extends Ue{async run(){let t=await this.parentTask;return(await ee(t,this.input,r=>Promise.all(r.map(n=>F.faceRecognitionNet.computeFaceDescriptor(n))),null,r=>r.landmarks.align(null,{useDlibAlignment:!0}))).map((r,n)=>Fr(t[n],r))}withFaceExpressions(){return new St(this,this.input)}withAgeAndGender(){return new Wt(this,this.input)}},Tt=class extends Ue{async run(){let t=await this.parentTask;if(!t)return;let e=await Ce(t,this.input,r=>F.faceRecognitionNet.computeFaceDescriptor(r),null,r=>r.landmarks.align(null,{useDlibAlignment:!0}));return Fr(t,e)}withFaceExpressions(){return new At(this,this.input)}withAgeAndGender(){return new kt(this,this.input)}};var Je=class extends J{constructor(e,r,n){super();this.parentTask=e;this.input=r;this.useTinyLandmarkNet=n}get landmarkNet(){return this.useTinyLandmarkNet?F.faceLandmark68TinyNet:F.faceLandmark68Net}},qe=class extends Je{async run(){let t=await this.parentTask,e=t.map(a=>a.detection),r=this.input instanceof Xe.Tensor?await le(this.input,e):await fe(this.input,e),n=await Promise.all(r.map(a=>this.landmarkNet.detectLandmarks(a)));return r.forEach(a=>a instanceof Xe.Tensor&&a.dispose()),t.filter((a,i)=>n[i]).map((a,i)=>Pe(a,n[i]))}withFaceExpressions(){return new St(this,this.input)}withAgeAndGender(){return new Wt(this,this.input)}withFaceDescriptors(){return new _t(this,this.input)}},Ze=class extends Je{async run(){let t=await this.parentTask;if(!t)return;let{detection:e}=t,r=this.input instanceof Xe.Tensor?await le(this.input,[e]):await fe(this.input,[e]),n=await this.landmarkNet.detectLandmarks(r[0]);return r.forEach(s=>s instanceof Xe.Tensor&&s.dispose()),Pe(t,n)}withFaceExpressions(){return new At(this,this.input)}withAgeAndGender(){return new kt(this,this.input)}withFaceDescriptor(){return new Tt(this,this.input)}};var Ke=class extends J{constructor(e,r=new X){super();this.input=e;this.options=r}},Ie=class extends Ke{async run(){let{input:t,options:e}=this,r;if(e instanceof je)r=F.tinyFaceDetector.locateFaces(t,e);else if(e instanceof X)r=F.ssdMobilenetv1.locateFaces(t,e);else if(e instanceof st)r=F.tinyYolov2.locateFaces(t,e);else throw new Error("detectFaces - expected options to be instance of TinyFaceDetectorOptions | SsdMobilenetv1Options | TinyYolov2Options");return r}runAndExtendWithFaceDetections(){return new Promise((t,e)=>{this.run().then(r=>t(r.map(n=>Vt({},n)))).catch(r=>e(r))})}withFaceLandmarks(t=!1){return new qe(this.runAndExtendWithFaceDetections(),this.input,t)}withFaceExpressions(){return new oe(this.runAndExtendWithFaceDetections(),this.input)}withAgeAndGender(){return new ae(this.runAndExtendWithFaceDetections(),this.input)}},Qe=class extends Ke{async run(){let t=await new Ie(this.input,this.options),e=t[0];return t.forEach(r=>{r.score>e.score&&(e=r)}),e}runAndExtendWithFaceDetection(){return new Promise(async t=>{let e=await this.run();t(e?Vt({},e):void 0)})}withFaceLandmarks(t=!1){return new Ze(this.runAndExtendWithFaceDetection(),this.input,t)}withFaceExpressions(){return new ne(this.runAndExtendWithFaceDetection(),this.input)}withAgeAndGender(){return new se(this.runAndExtendWithFaceDetection(),this.input)}};function Na(o,t=new X){return new Qe(o,t)}function Lr(o,t=new X){return new Ie(o,t)}async function un(o,t){return Lr(o,new X(t?{minConfidence:t}:{})).withFaceLandmarks().withFaceDescriptors()}async function La(o,t={}){return Lr(o,new st(t)).withFaceLandmarks().withFaceDescriptors()}var Sa=un;function xo(o,t){if(o.length!==t.length)throw new Error("euclideanDistance: arr1.length !== arr2.length");let e=Array.from(o),r=Array.from(t);return Math.sqrt(e.map((n,s)=>n-r[s]).reduce((n,s)=>n+s*s,0))}var vo=class o{constructor(t,e=.6){this._distanceThreshold=e;let r=Array.isArray(t)?t:[t];if(!r.length)throw new Error("FaceRecognizer.constructor - expected atleast one input");let n=1,s=()=>`person ${n++}`;this._labeledDescriptors=r.map(a=>{if(a instanceof Et)return a;if(a instanceof Float32Array)return new Et(s(),[a]);if(a.descriptor&&a.descriptor instanceof Float32Array)return new Et(s(),[a.descriptor]);throw new Error("FaceRecognizer.constructor - expected inputs to be of type LabeledFaceDescriptors | WithFaceDescriptor | Float32Array | Array | Float32Array>")})}get labeledDescriptors(){return this._labeledDescriptors}get distanceThreshold(){return this._distanceThreshold}computeMeanDistance(t,e){return e.map(r=>xo(r,t)).reduce((r,n)=>r+n,0)/(e.length||1)}matchDescriptor(t){return this.labeledDescriptors.map(({descriptors:e,label:r})=>new me(r,this.computeMeanDistance(t,e))).reduce((e,r)=>e.distancet.toJSON())}}static fromJSON(t){let e=t.labeledDescriptors.map(r=>Et.fromJSON(r));return new o(e,t.distanceThreshold)}};function Aa(o){let t=new re;return t.extractWeights(o),t}function fn(o,t){let{width:e,height:r}=new R(t.width,t.height);if(e<=0||r<=0)throw new Error(`resizeResults - invalid dimensions: ${JSON.stringify({width:e,height:r})}`);if(Array.isArray(o))return o.map(n=>fn(n,{width:e,height:r}));if(qt(o)){let n=o.detection.forSize(e,r),s=o.unshiftedLandmarks.forSize(n.box.width,n.box.height);return Pe(Vt(o,n),s)}return pt(o)?Vt(o,o.detection.forSize(e,r)):o instanceof H||o instanceof M?o.forSize(e,r):o}var ka=No;0&&(module.exports={AgeGenderNet,BoundingBox,Box,ComposableTask,ComputeAllFaceDescriptorsTask,ComputeFaceDescriptorsTaskBase,ComputeSingleFaceDescriptorTask,DetectAllFaceLandmarksTask,DetectAllFacesTask,DetectFaceLandmarksTaskBase,DetectFacesTaskBase,DetectSingleFaceLandmarksTask,DetectSingleFaceTask,Dimensions,FACE_EXPRESSION_LABELS,FaceDetection,FaceDetectionNet,FaceExpressionNet,FaceExpressions,FaceLandmark68Net,FaceLandmark68TinyNet,FaceLandmarkNet,FaceLandmarks,FaceLandmarks5,FaceLandmarks68,FaceMatch,FaceMatcher,FaceRecognitionNet,Gender,LabeledBox,LabeledFaceDescriptors,NetInput,NeuralNetwork,ObjectDetection,Point,PredictedBox,Rect,SsdMobilenetv1,SsdMobilenetv1Options,TinyFaceDetector,TinyFaceDetectorOptions,TinyYolov2,TinyYolov2Options,allFaces,allFacesSsdMobilenetv1,allFacesTinyYolov2,awaitMediaLoaded,bufferToImage,computeFaceDescriptor,createCanvas,createCanvasFromMedia,createFaceDetectionNet,createFaceRecognitionNet,createSsdMobilenetv1,createTinyFaceDetector,createTinyYolov2,detectAllFaces,detectFaceLandmarks,detectFaceLandmarksTiny,detectLandmarks,detectSingleFace,draw,env,euclideanDistance,extendWithAge,extendWithFaceDescriptor,extendWithFaceDetection,extendWithFaceExpressions,extendWithFaceLandmarks,extendWithGender,extractFaceTensors,extractFaces,fetchImage,fetchJson,fetchNetWeights,fetchOrThrow,fetchVideo,getContext2dOrThrow,getMediaDimensions,imageTensorToCanvas,imageToSquare,inverseSigmoid,iou,isMediaElement,isMediaLoaded,isWithAge,isWithFaceDetection,isWithFaceExpressions,isWithFaceLandmarks,isWithGender,loadAgeGenderModel,loadFaceDetectionModel,loadFaceExpressionModel,loadFaceLandmarkModel,loadFaceLandmarkTinyModel,loadFaceRecognitionModel,loadSsdMobilenetv1Model,loadTinyFaceDetectorModel,loadTinyYolov2Model,loadWeightMap,locateFaces,matchDimensions,minBbox,nets,nonMaxSuppression,normalize,padToSquare,predictAgeAndGender,recognizeFaceExpressions,resizeResults,resolveInput,shuffleArray,sigmoid,ssdMobilenetv1,tf,tinyFaceDetector,tinyYolov2,toNetInput,utils,validateConfig,version}); diff --git a/dist/face-api.node-wasm.js b/dist/face-api.node-wasm.js index 227fac2..243808a 100644 --- a/dist/face-api.node-wasm.js +++ b/dist/face-api.node-wasm.js @@ -4,4 +4,4 @@ author: ' */ -"use strict";var dn=Object.create;var tr=Object.defineProperty;var hn=Object.getOwnPropertyDescriptor;var bn=Object.getOwnPropertyNames;var gn=Object.getPrototypeOf,xn=Object.prototype.hasOwnProperty;var vn=(o,t)=>()=>(t||o((t={exports:{}}).exports,t),t.exports),Wr=(o,t)=>{for(var e in t)tr(o,e,{get:t[e],enumerable:!0})},_o=(o,t,e,r)=>{if(t&&typeof t=="object"||typeof t=="function")for(let n of bn(t))!xn.call(o,n)&&n!==e&&tr(o,n,{get:()=>t[n],enumerable:!(r=hn(t,n))||r.enumerable});return o};var v=(o,t,e)=>(e=o!=null?dn(gn(o)):{},_o(t||!o||!o.__esModule?tr(e,"default",{value:o,enumerable:!0}):e,o)),yn=o=>_o(tr({},"__esModule",{value:!0}),o);var x=vn((Ya,rr)=>{"use strict";var Br=Object.defineProperty,_n=Object.getOwnPropertyDescriptor,Tn=Object.getOwnPropertyNames,Pn=Object.prototype.hasOwnProperty,wn=(o,t)=>{for(var e in t)Br(o,e,{get:t[e],enumerable:!0})},kr=(o,t,e,r)=>{if(t&&typeof t=="object"||typeof t=="function")for(let n of Tn(t))!Pn.call(o,n)&&n!==e&&Br(o,n,{get:()=>t[n],enumerable:!(r=_n(t,n))||r.enumerable});return o},Po=(o,t,e)=>(kr(o,t,"default"),e&&kr(e,t,"default")),Fn=o=>kr(Br({},"__esModule",{value:!0}),o),er={};wn(er,{version:()=>In});rr.exports=Fn(er);Po(er,require("@tensorflow/tfjs"),rr.exports);Po(er,require("@tensorflow/tfjs-backend-wasm"),rr.exports);var To="4.22.0",Dn="4.22.0",En="4.22.0",Mn="4.22.0",Cn="4.22.0",In={tfjs:To,"tfjs-core":To,"tfjs-converter":Dn,"tfjs-backend-cpu":En,"tfjs-backend-webgl":Mn,"tfjs-backend-wasm":Cn}});var Ba={};Wr(Ba,{AgeGenderNet:()=>He,BoundingBox:()=>Ot,Box:()=>L,ComposableTask:()=>J,ComputeAllFaceDescriptorsTask:()=>_t,ComputeFaceDescriptorsTaskBase:()=>Ue,ComputeSingleFaceDescriptorTask:()=>Tt,DetectAllFaceLandmarksTask:()=>qe,DetectAllFacesTask:()=>Ie,DetectFaceLandmarksTaskBase:()=>Je,DetectFacesTaskBase:()=>Ke,DetectSingleFaceLandmarksTask:()=>Ze,DetectSingleFaceTask:()=>Qe,Dimensions:()=>R,FACE_EXPRESSION_LABELS:()=>so,FaceDetection:()=>M,FaceDetectionNet:()=>lo,FaceExpressionNet:()=>Oe,FaceExpressions:()=>gt,FaceLandmark68Net:()=>Zt,FaceLandmark68TinyNet:()=>ze,FaceLandmarkNet:()=>po,FaceLandmarks:()=>H,FaceLandmarks5:()=>jr,FaceLandmarks68:()=>Yt,FaceMatch:()=>me,FaceMatcher:()=>vo,FaceRecognitionNet:()=>Kt,Gender:()=>Pr,LabeledBox:()=>pe,LabeledFaceDescriptors:()=>Et,NetInput:()=>ut,NeuralNetwork:()=>A,ObjectDetection:()=>Ht,Point:()=>_,PredictedBox:()=>Ur,Rect:()=>zt,SsdMobilenetv1:()=>It,SsdMobilenetv1Options:()=>X,TinyFaceDetector:()=>re,TinyFaceDetectorOptions:()=>je,TinyYolov2:()=>te,TinyYolov2Options:()=>st,allFaces:()=>Sa,allFacesSsdMobilenetv1:()=>fn,allFacesTinyYolov2:()=>La,awaitMediaLoaded:()=>to,bufferToImage:()=>eo,computeFaceDescriptor:()=>xa,createCanvas:()=>Xt,createCanvasFromMedia:()=>We,createFaceDetectionNet:()=>ua,createFaceRecognitionNet:()=>ta,createSsdMobilenetv1:()=>qo,createTinyFaceDetector:()=>Aa,createTinyYolov2:()=>da,detectAllFaces:()=>Ar,detectFaceLandmarks:()=>pn,detectFaceLandmarksTiny:()=>ga,detectLandmarks:()=>Ia,detectSingleFace:()=>Na,draw:()=>co,env:()=>w,euclideanDistance:()=>xo,extendWithAge:()=>Mr,extendWithFaceDescriptor:()=>Er,extendWithFaceDetection:()=>Vt,extendWithFaceExpressions:()=>vr,extendWithFaceLandmarks:()=>Pe,extendWithGender:()=>Cr,extractFaceTensors:()=>le,extractFaces:()=>fe,fetchImage:()=>On,fetchJson:()=>no,fetchNetWeights:()=>Hn,fetchOrThrow:()=>ht,fetchVideo:()=>zn,getContext2dOrThrow:()=>$,getMediaDimensions:()=>Ut,imageTensorToCanvas:()=>ro,imageToSquare:()=>oo,inverseSigmoid:()=>Sn,iou:()=>zr,isMediaElement:()=>cr,isMediaLoaded:()=>Ae,isWithAge:()=>ea,isWithFaceDetection:()=>pt,isWithFaceExpressions:()=>io,isWithFaceLandmarks:()=>qt,isWithGender:()=>ra,loadAgeGenderModel:()=>Ea,loadFaceDetectionModel:()=>Ma,loadFaceExpressionModel:()=>Da,loadFaceLandmarkModel:()=>Pa,loadFaceLandmarkTinyModel:()=>wa,loadFaceRecognitionModel:()=>Fa,loadSsdMobilenetv1Model:()=>un,loadTinyFaceDetectorModel:()=>_a,loadTinyYolov2Model:()=>Ta,loadWeightMap:()=>ao,locateFaces:()=>Ca,matchDimensions:()=>Yn,minBbox:()=>Yr,nets:()=>F,nonMaxSuppression:()=>Vr,normalize:()=>rt,padToSquare:()=>Gr,predictAgeAndGender:()=>ya,recognizeFaceExpressions:()=>va,resizeResults:()=>ln,resolveInput:()=>Gt,shuffleArray:()=>Ln,sigmoid:()=>Ne,ssdMobilenetv1:()=>mn,tf:()=>Wa,tinyFaceDetector:()=>ha,tinyYolov2:()=>ba,toNetInput:()=>D,utils:()=>Hr,validateConfig:()=>ho,version:()=>ka});module.exports=yn(Ba);var Wa=v(x());var co={};Wr(co,{AnchorPosition:()=>Qr,DrawBox:()=>Se,DrawBoxOptions:()=>sr,DrawFaceLandmarks:()=>_r,DrawFaceLandmarksOptions:()=>yr,DrawTextField:()=>jt,DrawTextFieldOptions:()=>ue,drawContour:()=>lt,drawDetections:()=>$n,drawFaceExpressions:()=>Vn,drawFaceLandmarks:()=>jn});function lt(o,t,e=!1){if(o.beginPath(),t.slice(1).forEach(({x:r,y:n},s)=>{let a=t[s];o.moveTo(a.x,a.y),o.lineTo(r,n)}),e){let r=t[t.length-1],n=t[0];if(!r||!n)return;o.moveTo(r.x,r.y),o.lineTo(n.x,n.y)}o.stroke()}var Hr={};Wr(Hr,{computeReshapedDimensions:()=>Or,getCenterPoint:()=>$t,isDimensions:()=>nr,isEven:()=>or,isFloat:()=>$r,isTensor:()=>Bt,isTensor1D:()=>Nn,isTensor2D:()=>Rr,isTensor3D:()=>dt,isTensor4D:()=>U,isValidNumber:()=>et,isValidProbablitiy:()=>ce,range:()=>ct,round:()=>Rt});var wo=v(x());var R=class o{constructor(t,e){if(!et(t)||!et(e))throw new Error(`Dimensions.constructor - expected width and height to be valid numbers, instead have ${JSON.stringify({width:t,height:e})}`);this._width=t,this._height=e}get width(){return this._width}get height(){return this._height}reverse(){return new o(1/this.width,1/this.height)}};function Bt(o,t){return o instanceof wo.Tensor&&o.shape.length===t}function Nn(o){return Bt(o,1)}function Rr(o){return Bt(o,2)}function dt(o){return Bt(o,3)}function U(o){return Bt(o,4)}function $r(o){return o%1!==0}function or(o){return o%2===0}function Rt(o,t=2){let e=10**t;return Math.floor(o*e)/e}function nr(o){return o&&o.width&&o.height}function Or({width:o,height:t},e){let r=e/Math.max(t,o);return new R(Math.round(o*r),Math.round(t*r))}function $t(o){return o.reduce((t,e)=>t.add(e),new _(0,0)).div(new _(o.length,o.length))}function ct(o,t,e){return Array(o).fill(0).map((r,n)=>t+n*e)}function et(o){return!!o&&o!==1/0&&o!==-1/0&&!Number.isNaN(o)||o===0}function ce(o){return et(o)&&o>=0&&o<=1}var _=class o{constructor(t,e){this._x=t,this._y=e}get x(){return this._x}get y(){return this._y}add(t){return new o(this.x+t.x,this.y+t.y)}sub(t){return new o(this.x-t.x,this.y-t.y)}mul(t){return new o(this.x*t.x,this.y*t.y)}div(t){return new o(this.x/t.x,this.y/t.y)}abs(){return new o(Math.abs(this.x),Math.abs(this.y))}magnitude(){return Math.sqrt(this.x**2+this.y**2)}floor(){return new o(Math.floor(this.x),Math.floor(this.y))}};var L=class o{static isRect(t){return!!t&&[t.x,t.y,t.width,t.height].every(et)}static assertIsValidBox(t,e,r=!1){if(!o.isRect(t))throw new Error(`${e} - invalid box: ${JSON.stringify(t)}, expected object with properties x, y, width, height`);if(!r&&(t.width<0||t.height<0))throw new Error(`${e} - width (${t.width}) and height (${t.height}) must be positive numbers`)}constructor(t,e=!0){let r=t||{},n=[r.left,r.top,r.right,r.bottom].every(et),s=[r.x,r.y,r.width,r.height].every(et);if(!s&&!n)throw new Error(`Box.constructor - expected box to be IBoundingBox | IRect, instead have ${JSON.stringify(r)}`);let[a,i,c,m]=s?[r.x,r.y,r.width,r.height]:[r.left,r.top,r.right-r.left,r.bottom-r.top];o.assertIsValidBox({x:a,y:i,width:c,height:m},"Box.constructor",e),this._x=a,this._y=i,this._width=c,this._height=m}get x(){return this._x}get y(){return this._y}get width(){return this._width}get height(){return this._height}get left(){return this.x}get top(){return this.y}get right(){return this.x+this.width}get bottom(){return this.y+this.height}get area(){return this.width*this.height}get topLeft(){return new _(this.left,this.top)}get topRight(){return new _(this.right,this.top)}get bottomLeft(){return new _(this.left,this.bottom)}get bottomRight(){return new _(this.right,this.bottom)}round(){let[t,e,r,n]=[this.x,this.y,this.width,this.height].map(s=>Math.round(s));return new o({x:t,y:e,width:r,height:n})}floor(){let[t,e,r,n]=[this.x,this.y,this.width,this.height].map(s=>Math.floor(s));return new o({x:t,y:e,width:r,height:n})}toSquare(){let{x:t,y:e,width:r,height:n}=this,s=Math.abs(r-n);return re&&(i=-u+e+r,u=e),f>t&&(c=-f+t+n,f=t),m<1&&(c=2-m,m=1),p<1&&(c=2-p,p=1),{dy:a,edy:c,dx:s,edx:i,y:p,ey:f,x:m,ex:u,w:r,h:n}}calibrate(t){return new o({left:this.left+t.left*this.width,top:this.top+t.top*this.height,right:this.right+t.right*this.width,bottom:this.bottom+t.bottom*this.height}).toSquare().round()}};var Ot=class extends L{constructor(t,e,r,n,s=!1){super({left:t,top:e,right:r,bottom:n},s)}};var Ht=class o{constructor(t,e,r,n,s){this._imageDims=new R(s.width,s.height),this._score=t,this._classScore=e,this._className=r,this._box=new L(n).rescale(this._imageDims)}get score(){return this._score}get classScore(){return this._classScore}get className(){return this._className}get box(){return this._box}get imageDims(){return this._imageDims}get imageWidth(){return this.imageDims.width}get imageHeight(){return this.imageDims.height}get relativeBox(){return new L(this._box).rescale(this.imageDims.reverse())}forSize(t,e){return new o(this.score,this.classScore,this.className,this.relativeBox,{width:t,height:e})}};var M=class o extends Ht{constructor(t,e,r){super(t,t,"",e,r)}forSize(t,e){let{score:r,relativeBox:n,imageDims:s}=super.forSize(t,e);return new o(r,n,s)}};function zr(o,t,e=!0){let r=Math.max(0,Math.min(o.right,t.right)-Math.max(o.left,t.left)),n=Math.max(0,Math.min(o.bottom,t.bottom)-Math.max(o.top,t.top)),s=r*n;return e?s/(o.area+t.area-s):s/Math.min(o.area,t.area)}function Yr(o){let t=o.map(i=>i.x),e=o.map(i=>i.y),r=t.reduce((i,c)=>ccii({score:a,boxIndex:i})).sort((a,i)=>a.score-i.score).map(a=>a.boxIndex),s=[];for(;n.length>0;){let a=n.pop();s.push(a);let i=n,c=[];for(let m=0;mc[p]<=e)}return s}var mt=v(x());function rt(o,t){return mt.tidy(()=>{let[e,r,n]=t,s=mt.fill([...o.shape.slice(0,3),1],e,"float32"),a=mt.fill([...o.shape.slice(0,3),1],r,"float32"),i=mt.fill([...o.shape.slice(0,3),1],n,"float32"),c=mt.concat([s,a,i],3);return mt.sub(o,c)})}var Dt=v(x());function Gr(o,t=!1){return Dt.tidy(()=>{let[e,r]=o.shape.slice(1);if(e===r)return o;let n=Math.abs(e-r),s=Math.round(n*(t?.5:1)),a=e>r?2:1,i=f=>{let l=o.shape.slice();return l[a]=f,Dt.fill(l,0,"float32")},c=i(s),m=n-c.shape[a],u=[t&&m?i(m):null,o,c].filter(f=>!!f).map(f=>Dt.cast(f,"float32"));return Dt.concat(u,a)})}function Ln(o){let t=o.slice();for(let e=t.length-1;e>0;e--){let r=Math.floor(Math.random()*(e+1)),n=t[e];t[e]=t[r],t[r]=n}return t}function Ne(o){return 1/(1+Math.exp(-o))}function Sn(o){return Math.log(o/(1-o))}var zt=class extends L{constructor(t,e,r,n,s=!1){super({x:t,y:e,width:r,height:n},s)}};var An=.5,Wn=.43,kn=.45,H=class{constructor(t,e,r=new _(0,0)){let{width:n,height:s}=e;this._imgDims=new R(n,s),this._shift=r,this._positions=t.map(a=>a.mul(new _(n,s)).add(r))}get shift(){return new _(this._shift.x,this._shift.y)}get imageWidth(){return this._imgDims.width}get imageHeight(){return this._imgDims.height}get positions(){return this._positions}get relativePositions(){return this._positions.map(t=>t.sub(this._shift).div(new _(this.imageWidth,this.imageHeight)))}forSize(t,e){return new this.constructor(this.relativePositions,{width:t,height:e})}shiftBy(t,e){return new this.constructor(this.relativePositions,this._imgDims,new _(t,e))}shiftByPoint(t){return this.shiftBy(t.x,t.y)}align(t,e={}){if(t){let s=t instanceof M?t.box.floor():new L(t);return this.shiftBy(s.x,s.y).align(null,e)}let{useDlibAlignment:r,minBoxPadding:n}={useDlibAlignment:!1,minBoxPadding:.2,...e};return r?this.alignDlib():this.alignMinBbox(n)}alignDlib(){let t=this.getRefPointsForAlignment(),[e,r,n]=t,s=u=>n.sub(u).magnitude(),a=(s(e)+s(r))/2,i=Math.floor(a/kn),c=$t(t),m=Math.floor(Math.max(0,c.x-An*i)),p=Math.floor(Math.max(0,c.y-Wn*i));return new zt(m,p,Math.min(i,this.imageWidth+m),Math.min(i,this.imageHeight+p))}alignMinBbox(t){let e=Yr(this.positions);return e.pad(e.width*t,e.height*t)}getRefPointsForAlignment(){throw new Error("getRefPointsForAlignment not implemented by base class")}};var jr=class extends H{getRefPointsForAlignment(){let t=this.positions;return[t[0],t[1],$t([t[3],t[4]])]}};var Yt=class extends H{getJawOutline(){return this.positions.slice(0,17)}getLeftEyeBrow(){return this.positions.slice(17,22)}getRightEyeBrow(){return this.positions.slice(22,27)}getNose(){return this.positions.slice(27,36)}getLeftEye(){return this.positions.slice(36,42)}getRightEye(){return this.positions.slice(42,48)}getMouth(){return this.positions.slice(48,68)}getRefPointsForAlignment(){return[this.getLeftEye(),this.getRightEye(),this.getMouth()].map($t)}};var me=class{constructor(t,e){this._label=t,this._distance=e}get label(){return this._label}get distance(){return this._distance}toString(t=!0){return`${this.label}${t?` (${Rt(this.distance)})`:""}`}};var pe=class extends L{static assertIsValidLabeledBox(t,e){if(L.assertIsValidBox(t,e),!et(t.label))throw new Error(`${e} - expected property label (${t.label}) to be a number`)}constructor(t,e){super(t),this._label=e}get label(){return this._label}};var Et=class o{constructor(t,e){if(typeof t!="string")throw new Error("LabeledFaceDescriptors - constructor expected label to be a string");if(!Array.isArray(e)||e.some(r=>!(r instanceof Float32Array)))throw new Error("LabeledFaceDescriptors - constructor expected descriptors to be an array of Float32Array");this._label=t,this._descriptors=e}get label(){return this._label}get descriptors(){return this._descriptors}toJSON(){return{label:this.label,descriptors:this.descriptors.map(t=>Array.from(t))}}static fromJSON(t){let e=t.descriptors.map(r=>new Float32Array(r));return new o(t.label,e)}};var Ur=class extends pe{static assertIsValidPredictedBox(t,e){if(pe.assertIsValidLabeledBox(t,e),!ce(t.score)||!ce(t.classScore))throw new Error(`${e} - expected properties score (${t.score}) and (${t.classScore}) to be a number between [0, 1]`)}constructor(t,e,r,n){super(t,e),this._score=r,this._classScore=n}get score(){return this._score}get classScore(){return this._classScore}};function pt(o){return o.detection instanceof M}function Vt(o,t){return{...o,...{detection:t}}}function Xr(){let o=window.fetch;if(!o)throw new Error("fetch - missing fetch implementation for browser environment");return{Canvas:HTMLCanvasElement,CanvasRenderingContext2D,Image:HTMLImageElement,ImageData,Video:HTMLVideoElement,createCanvasElement:()=>document.createElement("canvas"),createImageElement:()=>document.createElement("img"),createVideoElement:()=>document.createElement("video"),fetch:o,readFile:()=>{throw new Error("readFile - filesystem not available for browser environment")}}}function Le(){return typeof global=="object"&&typeof process!="undefined"&&process.versions!=null&&process.versions.node!=null}function ar(o){let t="";if(!o&&Le())try{o=require("fs")}catch(r){t=r.toString()}return{readFile:o?r=>new Promise((n,s)=>{o.readFile(r,(a,i)=>a?s(a):n(i))}):()=>{throw new Error(`readFile - failed to require fs in nodejs environment with error: ${t}`)}}}function Jr(){let o=global.Canvas||global.HTMLCanvasElement,t=global.Image||global.HTMLImageElement,e=global.Video||global.HTMLVideoElement,r=()=>{if(o)return new o;throw new Error("createCanvasElement - missing Canvas implementation for nodejs environment")},n=()=>{if(t)return new t;throw new Error("createImageElement - missing Image implementation for nodejs environment")},s=()=>{if(e)return new e;throw new Error("createVideoElement - missing Video implementation for nodejs environment")},a=global.fetch,i=ar();return{Canvas:o||class{},CanvasRenderingContext2D:global.CanvasRenderingContext2D||class{},Image:t||class{},ImageData:global.ImageData||class{},Video:global.HTMLVideoElement||class{},createCanvasElement:r,createImageElement:n,createVideoElement:s,fetch:a,...i}}function qr(){return typeof window=="object"&&typeof document!="undefined"&&typeof HTMLImageElement!="undefined"&&typeof HTMLCanvasElement!="undefined"&&typeof HTMLVideoElement!="undefined"&&typeof ImageData!="undefined"&&typeof CanvasRenderingContext2D!="undefined"}var S;function Bn(){if(!S)throw new Error("getEnv - environment is not defined, check isNodejs() and isBrowser()");return S}function Zr(o){S=o}function Kr(){return qr()?Zr(Xr()):Le()?Zr(Jr()):null}function Rn(o){if(S||Kr(),!S)throw new Error("monkeyPatch - environment is not defined, check isNodejs() and isBrowser()");let{Canvas:t=S.Canvas,Image:e=S.Image}=o;S.Canvas=t,S.Image=e,S.createCanvasElement=o.createCanvasElement||(()=>new t),S.createImageElement=o.createImageElement||(()=>new e),S.ImageData=o.ImageData||S.ImageData,S.Video=o.Video||S.Video,S.fetch=o.fetch||S.fetch,S.readFile=o.readFile||S.readFile}var w={getEnv:Bn,setEnv:Zr,initialize:Kr,createBrowserEnv:Xr,createFileSystem:ar,createNodejsEnv:Jr,monkeyPatch:Rn,isBrowser:qr,isNodejs:Le};Kr();function Gt(o){return!w.isNodejs()&&typeof o=="string"?document.getElementById(o):o}function $(o){let{Canvas:t,CanvasRenderingContext2D:e}=w.getEnv();if(o instanceof e)return o;let r=Gt(o);if(!(r instanceof t))throw new Error("resolveContext2d - expected canvas to be of instance of Canvas");let n=r.getContext("2d",{willReadFrequently:!0});if(!n)throw new Error("resolveContext2d - canvas 2d context is null");return n}var Qr=(n=>(n.TOP_LEFT="TOP_LEFT",n.TOP_RIGHT="TOP_RIGHT",n.BOTTOM_LEFT="BOTTOM_LEFT",n.BOTTOM_RIGHT="BOTTOM_RIGHT",n))(Qr||{}),ue=class{constructor(t={}){let{anchorPosition:e,backgroundColor:r,fontColor:n,fontSize:s,fontStyle:a,padding:i}=t;this.anchorPosition=e||"TOP_LEFT",this.backgroundColor=r||"rgba(0, 0, 0, 0.5)",this.fontColor=n||"rgba(255, 255, 255, 1)",this.fontSize=s||14,this.fontStyle=a||"Georgia",this.padding=i||4}},jt=class o{constructor(t,e,r={}){this.text=typeof t=="string"?[t]:t instanceof o?t.text:t,this.anchor=e,this.options=new ue(r)}measureWidth(t){let{padding:e}=this.options;return this.text.map(r=>t.measureText(r).width).reduce((r,n)=>r{let b=c+u.x,T=c+u.y+(l+1)*a;r.fillText(f,b,T)})}};var sr=class{constructor(t={}){let{boxColor:e,lineWidth:r,label:n,drawLabelOptions:s}=t;this.boxColor=e||"rgba(0, 0, 255, 1)",this.lineWidth=r||2,this.label=n;let a={anchorPosition:"BOTTOM_LEFT",backgroundColor:this.boxColor};this.drawLabelOptions=new ue({...a,...s})}},Se=class{constructor(t,e={}){this.box=new L(t),this.options=new sr(e)}draw(t){let e=$(t),{boxColor:r,lineWidth:n}=this.options,{x:s,y:a,width:i,height:c}=this.box;e.strokeStyle=r,e.lineWidth=n,e.strokeRect(s,a,i,c);let{label:m}=this.options;m&&new jt([m],{x:s-n/2,y:a},this.options.drawLabelOptions).draw(t)}};function $n(o,t){(Array.isArray(t)?t:[t]).forEach(r=>{let n=r instanceof M?r.score:pt(r)?r.detection.score:void 0,s=r instanceof M?r.box:pt(r)?r.detection.box:new L(r),a=n?`${Rt(n)}`:void 0;new Se(s,{label:a}).draw(o)})}var Te=v(x());function Ae(o){let{Image:t,Video:e}=w.getEnv();return o instanceof t&&o.complete||o instanceof e&&o.readyState>=3}function to(o){return new Promise((t,e)=>{if(o instanceof w.getEnv().Canvas||Ae(o)){t(null);return}function r(s){s.currentTarget&&(s.currentTarget.removeEventListener("load",n),s.currentTarget.removeEventListener("error",r),e(s))}function n(s){s.currentTarget&&(s.currentTarget.removeEventListener("load",n),s.currentTarget.removeEventListener("error",r),t(s))}o.addEventListener("load",n),o.addEventListener("error",r)})}function eo(o){return new Promise((t,e)=>{o instanceof Blob||e(new Error("bufferToImage - expected buf to be of type: Blob"));let r=new FileReader;r.onload=()=>{typeof r.result!="string"&&e(new Error("bufferToImage - expected reader.result to be a string, in onload"));let n=w.getEnv().createImageElement();n.onload=()=>t(n),n.onerror=e,n.src=r.result},r.onerror=e,r.readAsDataURL(o)})}function Ut(o){let{Image:t,Video:e}=w.getEnv();return o instanceof t?new R(o.naturalWidth,o.naturalHeight):o instanceof e?new R(o.videoWidth,o.videoHeight):new R(o.width,o.height)}function Xt({width:o,height:t}){let{createCanvasElement:e}=w.getEnv(),r=e();return r.width=o,r.height=t,r}function We(o,t){let{ImageData:e}=w.getEnv();if(!(o instanceof e)&&!Ae(o))throw new Error("createCanvasFromMedia - media has not finished loading yet");let{width:r,height:n}=t||Ut(o),s=Xt({width:r,height:n});return o instanceof e?$(s).putImageData(o,0,0):$(s).drawImage(o,0,0,r,n),s}var ir=v(x());async function ro(o,t){let e=t||w.getEnv().createCanvasElement(),[r,n,s]=o.shape.slice(U(o)?1:0),a=ir.tidy(()=>o.as3D(r,n,s).toInt());return await ir.browser.toPixels(a,e),a.dispose(),e}function cr(o){let{Image:t,Canvas:e,Video:r}=w.getEnv();return o instanceof t||o instanceof e||o instanceof r}var z=v(x());function oo(o,t,e=!1){let{Image:r,Canvas:n}=w.getEnv();if(!(o instanceof r||o instanceof n))throw new Error("imageToSquare - expected arg0 to be HTMLImageElement | HTMLCanvasElement");if(t<=0)return Xt({width:1,height:1});let s=Ut(o),a=t/Math.max(s.height,s.width),i=a*s.width,c=a*s.height,m=Xt({width:t,height:t}),p=o instanceof n?o:We(o),u=Math.abs(i-c)/2,f=e&&i0&&p.height>0&&$(m).drawImage(p,f,l,i,c),m}var ut=class{constructor(t,e=!1){this._imageTensors=[];this._canvases=[];this._treatAsBatchInput=!1;this._inputDimensions=[];this._inputSize=0;if(!Array.isArray(t))throw new Error(`NetInput.constructor - expected inputs to be an Array of TResolvedNetInput or to be instanceof tf.Tensor4D, instead have ${t}`);this._treatAsBatchInput=e,this._batchSize=t.length,t.forEach((r,n)=>{if(dt(r)){this._imageTensors[n]=r,this._inputDimensions[n]=r.shape;return}if(U(r)){let a=r.shape[0];if(a!==1)throw new Error(`NetInput - tf.Tensor4D with batchSize ${a} passed, but not supported in input array`);this._imageTensors[n]=r,this._inputDimensions[n]=r.shape.slice(1);return}let s=r instanceof w.getEnv().Canvas?r:We(r);this._canvases[n]=s,this._inputDimensions[n]=[s.height,s.width,3]})}get imageTensors(){return this._imageTensors}get canvases(){return this._canvases}get isBatchInput(){return this.batchSize>1||this._treatAsBatchInput}get batchSize(){return this._batchSize}get inputDimensions(){return this._inputDimensions}get inputSize(){return this._inputSize}get reshapedInputDimensions(){return ct(this.batchSize,0,1).map((t,e)=>this.getReshapedInputDimensions(e))}getInput(t){return this.canvases[t]||this.imageTensors[t]}getInputDimensions(t){return this._inputDimensions[t]}getInputHeight(t){return this._inputDimensions[t][0]}getInputWidth(t){return this._inputDimensions[t][1]}getReshapedInputDimensions(t){if(typeof this.inputSize!="number")throw new Error("getReshapedInputDimensions - inputSize not set, toBatchTensor has not been called yet");let e=this.getInputWidth(t),r=this.getInputHeight(t);return Or({width:e,height:r},this.inputSize)}toBatchTensor(t,e=!0){return this._inputSize=t,z.tidy(()=>{let r=ct(this.batchSize,0,1).map(s=>{let a=this.getInput(s);if(a instanceof z.Tensor){let i=U(a)?a:z.expandDims(a);return i=Gr(i,e),(i.shape[1]!==t||i.shape[2]!==t)&&(i=z.image.resizeBilinear(i,[t,t],!1,!1)),i.as3D(t,t,3)}if(a instanceof w.getEnv().Canvas)return z.browser.fromPixels(oo(a,t,e));throw new Error(`toBatchTensor - at batchIdx ${s}, expected input to be instanceof tf.Tensor or instanceof HTMLCanvasElement, instead have ${a}`)});return z.stack(r.map(s=>z.cast(s,"float32"))).as4D(this.batchSize,t,t,3)})}};async function D(o){if(o instanceof ut)return o;let t=Array.isArray(o)?o:[o];if(!t.length)throw new Error("toNetInput - empty array passed as input");let e=n=>Array.isArray(o)?` at input index ${n}:`:"",r=t.map(Gt);return r.forEach((n,s)=>{if(!cr(n)&&!dt(n)&&!U(n))throw typeof t[s]=="string"?new Error(`toNetInput -${e(s)} string passed, but could not resolve HTMLElement for element id ${t[s]}`):new Error(`toNetInput -${e(s)} expected media to be of type HTMLImageElement | HTMLVideoElement | HTMLCanvasElement | tf.Tensor3D, or to be an element id`);if(U(n)){let a=n.shape[0];if(a!==1)throw new Error(`toNetInput -${e(s)} tf.Tensor4D with batchSize ${a} passed, but not supported in input array`)}}),await Promise.all(r.map(n=>cr(n)&&to(n))),new ut(r,Array.isArray(o))}async function fe(o,t){let{Canvas:e}=w.getEnv(),r=o;if(!(o instanceof e)){let a=await D(o);if(a.batchSize>1)throw new Error("extractFaces - batchSize > 1 not supported");let i=a.getInput(0);r=i instanceof e?i:await ro(i)}let n=$(r);return t.map(a=>a instanceof M?a.forSize(r.width,r.height).box.floor():a).map(a=>a.clipAtImageBorders(r.width,r.height)).map(({x:a,y:i,width:c,height:m})=>{let p=Xt({width:c,height:m});return c>0&&m>0&&$(p).putImageData(n.getImageData(a,i,c,m),0,0),p})}var mr=v(x());async function le(o,t){if(!dt(o)&&!U(o))throw new Error("extractFaceTensors - expected image tensor to be 3D or 4D");if(U(o)&&o.shape[0]>1)throw new Error("extractFaceTensors - batchSize > 1 not supported");return mr.tidy(()=>{let[e,r,n]=o.shape.slice(U(o)?1:0);return t.map(i=>i instanceof M?i.forSize(r,e).box:i).map(i=>i.clipAtImageBorders(r,e)).filter(i=>i.width>0&&i.height>0).map(({x:i,y:c,width:m,height:p})=>mr.slice3d(o.as3D(e,r,n),[c,i,0],[p,m,n]))})}async function ht(o,t){let{fetch:e}=w.getEnv(),r=await e(o,t);if(!(r.status<400))throw new Error(`failed to fetch: (${r.status}) ${r.statusText}, from url: ${r.url}`);return r}async function On(o){let t=await ht(o),e=await t.blob();if(!e.type.startsWith("image/"))throw new Error(`fetchImage - expected blob type to be of type image/*, instead have: ${e.type}, for url: ${t.url}`);return eo(e)}async function no(o){return(await ht(o)).json()}async function Hn(o){return new Float32Array(await(await ht(o)).arrayBuffer())}function Fo(o){return new Promise((t,e)=>{o instanceof Blob||e(new Error("bufferToVideo - expected buf to be of type: Blob"));let r=w.getEnv().createVideoElement();r.oncanplay=()=>t(r),r.onerror=e,r.playsInline=!0,r.muted=!0,r.src=URL.createObjectURL(o),r.play()})}async function zn(o){let t=await ht(o),e=await t.blob();if(!e.type.startsWith("video/"))throw new Error(`fetchVideo - expected blob type to be of type video/*, instead have: ${e.type}, for url: ${t.url}`);return Fo(e)}var Do=v(x());function pr(o,t){let e=`${t}-weights_manifest.json`;if(!o)return{modelBaseUri:"",manifestUri:e};if(o==="/")return{modelBaseUri:"/",manifestUri:`/${e}`};let r=o.startsWith("http://")?"http://":o.startsWith("https://")?"https://":"";o=o.replace(r,"");let n=o.split("/").filter(i=>i),s=o.endsWith(".json")?n[n.length-1]:e,a=r+(o.endsWith(".json")?n.slice(0,n.length-1):n).join("/");return a=o.startsWith("/")?`/${a}`:a,{modelBaseUri:a,manifestUri:a==="/"?`/${s}`:`${a}/${s}`}}async function ao(o,t){let{manifestUri:e,modelBaseUri:r}=pr(o,t),n=await no(e);return Do.io.loadWeights(n,r)}function Yn(o,t,e=!1){let{width:r,height:n}=e?Ut(t):t;return o.width=r,o.height=n,{width:r,height:n}}var ve=v(x());var bt=v(x());var A=class{constructor(t){this._params=void 0;this._paramMappings=[];this._name=t}get params(){return this._params}get paramMappings(){return this._paramMappings}get isLoaded(){return!!this.params}getParamFromPath(t){let{obj:e,objProp:r}=this.traversePropertyPath(t);return e[r]}reassignParamFromPath(t,e){let{obj:r,objProp:n}=this.traversePropertyPath(t);r[n].dispose(),r[n]=e}getParamList(){return this._paramMappings.map(({paramPath:t})=>({path:t,tensor:this.getParamFromPath(t)}))}getTrainableParams(){return this.getParamList().filter(t=>t.tensor instanceof bt.Variable)}getFrozenParams(){return this.getParamList().filter(t=>!(t.tensor instanceof bt.Variable))}variable(){this.getFrozenParams().forEach(({path:t,tensor:e})=>{this.reassignParamFromPath(t,e.variable())})}freeze(){this.getTrainableParams().forEach(({path:t,tensor:e})=>{let r=bt.tensor(e.dataSync());e.dispose(),this.reassignParamFromPath(t,r)})}dispose(t=!0){this.getParamList().forEach(e=>{if(t&&e.tensor.isDisposed)throw new Error(`param tensor has already been disposed for path ${e.path}`);e.tensor.dispose()}),this._params=void 0}serializeParams(){return new Float32Array(this.getParamList().map(({tensor:t})=>Array.from(t.dataSync())).reduce((t,e)=>t.concat(e)))}async load(t){if(t instanceof Float32Array){this.extractWeights(t);return}await this.loadFromUri(t)}async loadFromUri(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromUri - expected model uri`);let e=await ao(t,this.getDefaultModelName());this.loadFromWeightMap(e)}async loadFromDisk(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromDisk - expected model file path`);let{readFile:e}=w.getEnv(),{manifestUri:r,modelBaseUri:n}=pr(t,this.getDefaultModelName()),s=m=>Promise.all(m.map(p=>e(p).then(u=>typeof u=="string"?Buffer.from(u):u.buffer))),a=bt.io.weightsLoaderFactory(s),i=JSON.parse((await e(r)).toString()),c=await a(i,n);this.loadFromWeightMap(c)}loadFromWeightMap(t){let{paramMappings:e,params:r}=this.extractParamsFromWeightMap(t);this._paramMappings=e,this._params=r}extractWeights(t){let{paramMappings:e,params:r}=this.extractParams(t);this._paramMappings=e,this._params=r}traversePropertyPath(t){if(!this.params)throw new Error("traversePropertyPath - model has no loaded params");let e=t.split("/").reduce((s,a)=>{if(!s.nextObj.hasOwnProperty(a))throw new Error(`traversePropertyPath - object does not have property ${a}, for path ${t}`);return{obj:s.nextObj,objProp:a,nextObj:s.nextObj[a]}},{nextObj:this.params}),{obj:r,objProp:n}=e;if(!r||!n||!(r[n]instanceof bt.Tensor))throw new Error(`traversePropertyPath - parameter is not a tensor, for path ${t}`);return{obj:r,objProp:n}}};var E=v(x());var de=v(x());function O(o,t,e){return de.tidy(()=>{let r=de.separableConv2d(o,t.depthwise_filter,t.pointwise_filter,e,"same");return r=de.add(r,t.bias),r})}function ur(o,t,e=!1){return E.tidy(()=>{let r=E.relu(e?E.add(E.conv2d(o,t.conv0.filters,[2,2],"same"),t.conv0.bias):O(o,t.conv0,[2,2])),n=O(r,t.conv1,[1,1]),s=E.relu(E.add(r,n)),a=O(s,t.conv2,[1,1]);return E.relu(E.add(r,E.add(n,a)))})}function ke(o,t,e=!1,r=!0){return E.tidy(()=>{let n=E.relu(e?E.add(E.conv2d(o,t.conv0.filters,r?[2,2]:[1,1],"same"),t.conv0.bias):O(o,t.conv0,r?[2,2]:[1,1])),s=O(n,t.conv1,[1,1]),a=E.relu(E.add(n,s)),i=O(a,t.conv2,[1,1]),c=E.relu(E.add(n,E.add(s,i))),m=O(c,t.conv3,[1,1]);return E.relu(E.add(n,E.add(s,E.add(i,m))))})}var Mt=v(x());function Jt(o,t,e="same",r=!1){return Mt.tidy(()=>{let n=Mt.add(Mt.conv2d(o,t.filters,[1,1],e),t.bias);return r?Mt.relu(n):n})}function W(o,t){Object.keys(o).forEach(e=>{t.some(r=>r.originalPath===e)||o[e].dispose()})}var fr=v(x());function he(o,t){return(e,r,n,s)=>{let a=fr.tensor4d(o(e*r*n*n),[n,n,e,r]),i=fr.tensor1d(o(r));return t.push({paramPath:`${s}/filters`},{paramPath:`${s}/bias`}),{filters:a,bias:i}}}var lr=v(x());function dr(o,t){return(e,r,n)=>{let s=lr.tensor2d(o(e*r),[e,r]),a=lr.tensor1d(o(r));return t.push({paramPath:`${n}/weights`},{paramPath:`${n}/bias`}),{weights:s,bias:a}}}var Re=v(x());var Be=class{constructor(t,e,r){this.depthwise_filter=t;this.pointwise_filter=e;this.bias=r}};function be(o,t){return(e,r,n)=>{let s=Re.tensor4d(o(9*e),[3,3,e,1]),a=Re.tensor4d(o(e*r),[1,1,e,r]),i=Re.tensor1d(o(r));return t.push({paramPath:`${n}/depthwise_filter`},{paramPath:`${n}/pointwise_filter`},{paramPath:`${n}/bias`}),new Be(s,a,i)}}function ge(o){return t=>{let e=o(`${t}/depthwise_filter`,4),r=o(`${t}/pointwise_filter`,4),n=o(`${t}/bias`,1);return new Be(e,r,n)}}function Y(o,t){return(e,r,n)=>{let s=o[e];if(!Bt(s,r))throw new Error(`expected weightMap[${e}] to be a Tensor${r}D, instead have ${s}`);return t.push({originalPath:e,paramPath:n||e}),s}}function k(o){let t=o;function e(n){let s=t.slice(0,n);return t=t.slice(n),s}function r(){return t}return{extractWeights:e,getRemainingWeights:r}}function hr(o,t){let e=he(o,t),r=be(o,t);function n(a,i,c,m=!1){let p=m?e(a,i,3,`${c}/conv0`):r(a,i,`${c}/conv0`),u=r(i,i,`${c}/conv1`),f=r(i,i,`${c}/conv2`);return{conv0:p,conv1:u,conv2:f}}function s(a,i,c,m=!1){let{conv0:p,conv1:u,conv2:f}=n(a,i,c,m),l=r(i,i,`${c}/conv3`);return{conv0:p,conv1:u,conv2:f,conv3:l}}return{extractDenseBlock3Params:n,extractDenseBlock4Params:s}}function Eo(o){let t=[],{extractWeights:e,getRemainingWeights:r}=k(o),{extractDenseBlock4Params:n}=hr(e,t),s=n(3,32,"dense0",!0),a=n(32,64,"dense1"),i=n(64,128,"dense2"),c=n(128,256,"dense3");if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:t,params:{dense0:s,dense1:a,dense2:i,dense3:c}}}function br(o){return t=>{let e=o(`${t}/filters`,4),r=o(`${t}/bias`,1);return{filters:e,bias:r}}}function gr(o,t){let e=Y(o,t),r=br(e),n=ge(e);function s(i,c=!1){let m=c?r(`${i}/conv0`):n(`${i}/conv0`),p=n(`${i}/conv1`),u=n(`${i}/conv2`);return{conv0:m,conv1:p,conv2:u}}function a(i,c=!1){let m=c?r(`${i}/conv0`):n(`${i}/conv0`),p=n(`${i}/conv1`),u=n(`${i}/conv2`),f=n(`${i}/conv3`);return{conv0:m,conv1:p,conv2:u,conv3:f}}return{extractDenseBlock3Params:s,extractDenseBlock4Params:a}}function Mo(o){let t=[],{extractDenseBlock4Params:e}=gr(o,t),r={dense0:e("dense0",!0),dense1:e("dense1"),dense2:e("dense2"),dense3:e("dense3")};return W(o,t),{params:r,paramMappings:t}}var xe=class extends A{constructor(){super("FaceFeatureExtractor")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("FaceFeatureExtractor - load model before inference");return ve.tidy(()=>{let r=ve.cast(t.toBatchTensor(112,!0),"float32"),s=rt(r,[122.782,117.001,104.298]).div(255),a=ke(s,e.dense0,!0);return a=ke(a,e.dense1),a=ke(a,e.dense2),a=ke(a,e.dense3),a=ve.avgPool(a,[7,7],[2,2],"valid"),a})}async forward(t){return this.forwardInput(await D(t))}getDefaultModelName(){return"face_feature_extractor_model"}extractParamsFromWeightMap(t){return Mo(t)}extractParams(t){return Eo(t)}};var No=v(x());var ye=v(x());function $e(o,t){return ye.tidy(()=>ye.add(ye.matMul(o,t.weights),t.bias))}function Co(o,t,e){let r=[],{extractWeights:n,getRemainingWeights:s}=k(o),i=dr(n,r)(t,e,"fc");if(s().length!==0)throw new Error(`weights remaing after extract: ${s().length}`);return{paramMappings:r,params:{fc:i}}}function Io(o){let t=[],e=Y(o,t);function r(s){let a=e(`${s}/weights`,2),i=e(`${s}/bias`,1);return{weights:a,bias:i}}let n={fc:r("fc")};return W(o,t),{params:n,paramMappings:t}}function xr(o){let t={},e={};return Object.keys(o).forEach(r=>{let n=r.startsWith("fc")?e:t;n[r]=o[r]}),{featureExtractorMap:t,classifierMap:e}}var _e=class extends A{constructor(t,e){super(t),this._faceFeatureExtractor=e}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(t){let{params:e}=this;if(!e)throw new Error(`${this._name} - load model before inference`);return No.tidy(()=>{let r=t instanceof ut?this.faceFeatureExtractor.forwardInput(t):t;return $e(r.as2D(r.shape[0],-1),e.fc)})}dispose(t=!0){this.faceFeatureExtractor.dispose(t),super.dispose(t)}loadClassifierParams(t){let{params:e,paramMappings:r}=this.extractClassifierParams(t);this._params=e,this._paramMappings=r}extractClassifierParams(t){return Co(t,this.getClassifierChannelsIn(),this.getClassifierChannelsOut())}extractParamsFromWeightMap(t){let{featureExtractorMap:e,classifierMap:r}=xr(t);return this.faceFeatureExtractor.loadFromWeightMap(e),Io(r)}extractParams(t){let e=this.getClassifierChannelsIn(),r=this.getClassifierChannelsOut(),n=r*e+r,s=t.slice(0,t.length-n),a=t.slice(t.length-n);return this.faceFeatureExtractor.extractWeights(s),this.extractClassifierParams(a)}};var so=["neutral","happy","sad","angry","fearful","disgusted","surprised"],gt=class{constructor(t){this.neutral=0;this.happy=0;this.sad=0;this.angry=0;this.fearful=0;this.disgusted=0;this.surprised=0;if(t.length!==7)throw new Error(`FaceExpressions.constructor - expected probabilities.length to be 7, have: ${t.length}`);so.forEach((e,r)=>{this[e]=t[r]})}asSortedArray(){return so.map(t=>({expression:t,probability:this[t]})).sort((t,e)=>e.probability-t.probability)}};var Oe=class extends _e{constructor(t=new xe){super("FaceExpressionNet",t)}forwardInput(t){return Te.tidy(()=>Te.softmax(this.runNet(t)))}async forward(t){return this.forwardInput(await D(t))}async predictExpressions(t){let e=await D(t),r=await this.forwardInput(e),n=await Promise.all(Te.unstack(r).map(async a=>{let i=a.dataSync();return a.dispose(),i}));r.dispose();let s=n.map(a=>new gt(a));return e.isBatchInput?s:s[0]}getDefaultModelName(){return"face_expression_model"}getClassifierChannelsIn(){return 256}getClassifierChannelsOut(){return 7}};function io(o){return o.expressions instanceof gt}function vr(o,t){return{...o,...{expressions:t}}}function Vn(o,t,e=.1,r){(Array.isArray(t)?t:[t]).forEach(s=>{let a=s instanceof gt?s:io(s)?s.expressions:void 0;if(!a)throw new Error("drawFaceExpressions - expected faceExpressions to be FaceExpressions | WithFaceExpressions<{}> or array thereof");let c=a.asSortedArray().filter(u=>u.probability>e),m=pt(s)?s.detection.box.bottomLeft:r||new _(0,0);new jt(c.map(u=>`${u.expression} (${Rt(u.probability)})`),m).draw(o)})}function qt(o){return pt(o)&&o.landmarks instanceof H&&o.unshiftedLandmarks instanceof H&&o.alignedRect instanceof M}function Gn(o){let t=c=>c*180/Math.PI,e=(c,m)=>Math.sqrt((c.x-m.x)**2+(c.y-m.y)**2),r={roll:void 0,pitch:void 0,yaw:void 0},n=(c,m,p)=>{let u=Math.floor(c.x-m.x),f=Math.floor(m.x-p.x);return u-f},s=(c,m)=>{let p=Math.hypot(m.x-c.x,m.y-c.y),u=m.y-c.y,f=Math.asin(u/p),l=t(f),b=Math.floor(90-l),T=m.x-c.x<0?-1:1;return b*T},a=(c,m,p)=>{let u=e(c,p),f=new _((c.x+p.x)/2,(c.y+p.y)/2),l=e(m,f),b=Math.atan(l/u),T=Math.floor(t(b)),h=f.y-m.y<0?-1:1;return T*h};if(!o||!o.positions||o.positions.length!==68)return r;let i=o.positions;return r.roll=s(i[27],i[66]),r.pitch=a(i[14],i[30],i[2]),r.yaw=n(i[14],i[33],i[2]),r}function Pe(o,t){let{box:e}=o.detection,r=t.shiftBy(e.x,e.y),n=r.align(),{imageDims:s}=o.detection,a=new M(o.detection.score,n.rescale(s.reverse()),s),i=Gn(t);return{...o,...{landmarks:r,unshiftedLandmarks:t,alignedRect:a,angle:i}}}var yr=class{constructor(t={}){let{drawLines:e=!0,drawPoints:r=!0,lineWidth:n,lineColor:s,pointSize:a,pointColor:i}=t;this.drawLines=e,this.drawPoints=r,this.lineWidth=n||1,this.pointSize=a||2,this.lineColor=s||"rgba(0, 255, 255, 1)",this.pointColor=i||"rgba(255, 0, 255, 1)"}},_r=class{constructor(t,e={}){this.faceLandmarks=t,this.options=new yr(e)}draw(t){let e=$(t),{drawLines:r,drawPoints:n,lineWidth:s,lineColor:a,pointSize:i,pointColor:c}=this.options;if(r&&this.faceLandmarks instanceof Yt&&(e.strokeStyle=a,e.lineWidth=s,lt(e,this.faceLandmarks.getJawOutline()),lt(e,this.faceLandmarks.getLeftEyeBrow()),lt(e,this.faceLandmarks.getRightEyeBrow()),lt(e,this.faceLandmarks.getNose()),lt(e,this.faceLandmarks.getLeftEye(),!0),lt(e,this.faceLandmarks.getRightEye(),!0),lt(e,this.faceLandmarks.getMouth(),!0)),n){e.strokeStyle=c,e.fillStyle=c;let m=p=>{e.beginPath(),e.arc(p.x,p.y,i,0,2*Math.PI),e.fill()};this.faceLandmarks.positions.forEach(m)}}};function jn(o,t){(Array.isArray(t)?t:[t]).forEach(r=>{let n=r instanceof H?r:qt(r)?r.landmarks:void 0;if(!n)throw new Error("drawFaceLandmarks - expected faceExpressions to be FaceLandmarks | WithFaceLandmarks> or array thereof");new _r(n).draw(o)})}var Lo="1.7.14";var ft=v(x());var N=v(x());function Jn(o,t){let e=he(o,t),r=be(o,t);function n(a,i,c){let m=r(a,i,`${c}/separable_conv0`),p=r(i,i,`${c}/separable_conv1`),u=e(a,i,1,`${c}/expansion_conv`);return{separable_conv0:m,separable_conv1:p,expansion_conv:u}}function s(a,i){let c=r(a,a,`${i}/separable_conv0`),m=r(a,a,`${i}/separable_conv1`),p=r(a,a,`${i}/separable_conv2`);return{separable_conv0:c,separable_conv1:m,separable_conv2:p}}return{extractConvParams:e,extractSeparableConvParams:r,extractReductionBlockParams:n,extractMainBlockParams:s}}function So(o,t){let e=[],{extractWeights:r,getRemainingWeights:n}=k(o),{extractConvParams:s,extractSeparableConvParams:a,extractReductionBlockParams:i,extractMainBlockParams:c}=Jn(r,e),m=s(3,32,3,"entry_flow/conv_in"),p=i(32,64,"entry_flow/reduction_block_0"),u=i(64,128,"entry_flow/reduction_block_1"),f={conv_in:m,reduction_block_0:p,reduction_block_1:u},l={};ct(t,0,1).forEach(g=>{l[`main_block_${g}`]=c(128,`middle_flow/main_block_${g}`)});let b=i(128,256,"exit_flow/reduction_block"),T=a(256,512,"exit_flow/separable_conv"),h={reduction_block:b,separable_conv:T};if(n().length!==0)throw new Error(`weights remaing after extract: ${n().length}`);return{paramMappings:e,params:{entry_flow:f,middle_flow:l,exit_flow:h}}}function qn(o,t){let e=Y(o,t),r=br(e),n=ge(e);function s(i){let c=n(`${i}/separable_conv0`),m=n(`${i}/separable_conv1`),p=r(`${i}/expansion_conv`);return{separable_conv0:c,separable_conv1:m,expansion_conv:p}}function a(i){let c=n(`${i}/separable_conv0`),m=n(`${i}/separable_conv1`),p=n(`${i}/separable_conv2`);return{separable_conv0:c,separable_conv1:m,separable_conv2:p}}return{extractConvParams:r,extractSeparableConvParams:n,extractReductionBlockParams:s,extractMainBlockParams:a}}function Ao(o,t){let e=[],{extractConvParams:r,extractSeparableConvParams:n,extractReductionBlockParams:s,extractMainBlockParams:a}=qn(o,e),i=r("entry_flow/conv_in"),c=s("entry_flow/reduction_block_0"),m=s("entry_flow/reduction_block_1"),p={conv_in:i,reduction_block_0:c,reduction_block_1:m},u={};ct(t,0,1).forEach(T=>{u[`main_block_${T}`]=a(`middle_flow/main_block_${T}`)});let f=s("exit_flow/reduction_block"),l=n("exit_flow/separable_conv"),b={reduction_block:f,separable_conv:l};return W(o,e),{params:{entry_flow:p,middle_flow:u,exit_flow:b},paramMappings:e}}function Wo(o,t,e){return N.add(N.conv2d(o,t.filters,e,"same"),t.bias)}function mo(o,t,e=!0){let r=e?N.relu(o):o;return r=O(r,t.separable_conv0,[1,1]),r=O(N.relu(r),t.separable_conv1,[1,1]),r=N.maxPool(r,[3,3],[2,2],"same"),r=N.add(r,Wo(o,t.expansion_conv,[2,2])),r}function Zn(o,t){let e=O(N.relu(o),t.separable_conv0,[1,1]);return e=O(N.relu(e),t.separable_conv1,[1,1]),e=O(N.relu(e),t.separable_conv2,[1,1]),e=N.add(e,o),e}var Tr=class extends A{constructor(t){super("TinyXception"),this._numMainBlocks=t}forwardInput(t){let{params:e}=this;if(!e)throw new Error("TinyXception - load model before inference");return N.tidy(()=>{let r=N.cast(t.toBatchTensor(112,!0),"float32"),s=rt(r,[122.782,117.001,104.298]).div(255),a=N.relu(Wo(s,e.entry_flow.conv_in,[2,2]));return a=mo(a,e.entry_flow.reduction_block_0,!1),a=mo(a,e.entry_flow.reduction_block_1),ct(this._numMainBlocks,0,1).forEach(i=>{a=Zn(a,e.middle_flow[`main_block_${i}`])}),a=mo(a,e.exit_flow.reduction_block),a=N.relu(O(a,e.exit_flow.separable_conv,[1,1])),a})}async forward(t){return this.forwardInput(await D(t))}getDefaultModelName(){return"tiny_xception_model"}extractParamsFromWeightMap(t){return Ao(t,this._numMainBlocks)}extractParams(t){return So(t,this._numMainBlocks)}};function ko(o){let t=[],{extractWeights:e,getRemainingWeights:r}=k(o),n=dr(e,t),s=n(512,1,"fc/age"),a=n(512,2,"fc/gender");if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:t,params:{fc:{age:s,gender:a}}}}function Bo(o){let t=[],e=Y(o,t);function r(s){let a=e(`${s}/weights`,2),i=e(`${s}/bias`,1);return{weights:a,bias:i}}let n={fc:{age:r("fc/age"),gender:r("fc/gender")}};return W(o,t),{params:n,paramMappings:t}}var Pr=(e=>(e.FEMALE="female",e.MALE="male",e))(Pr||{});var He=class extends A{constructor(t=new Tr(2)){super("AgeGenderNet"),this._faceFeatureExtractor=t}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(t){let{params:e}=this;if(!e)throw new Error(`${this._name} - load model before inference`);return ft.tidy(()=>{let r=t instanceof ut?this.faceFeatureExtractor.forwardInput(t):t,n=ft.avgPool(r,[7,7],[2,2],"valid").as2D(r.shape[0],-1),s=$e(n,e.fc.age).as1D(),a=$e(n,e.fc.gender);return{age:s,gender:a}})}forwardInput(t){return ft.tidy(()=>{let{age:e,gender:r}=this.runNet(t);return{age:e,gender:ft.softmax(r)}})}async forward(t){return this.forwardInput(await D(t))}async predictAgeAndGender(t){let e=await D(t),r=await this.forwardInput(e),n=ft.unstack(r.age),s=ft.unstack(r.gender),a=n.map((c,m)=>({ageTensor:c,genderTensor:s[m]})),i=await Promise.all(a.map(async({ageTensor:c,genderTensor:m})=>{let p=c.dataSync()[0],u=m.dataSync()[0],f=u>.5,l=f?"male":"female",b=f?u:1-u;return c.dispose(),m.dispose(),{age:p,gender:l,genderProbability:b}}));return r.age.dispose(),r.gender.dispose(),e.isBatchInput?i:i[0]}getDefaultModelName(){return"age_gender_model"}dispose(t=!0){this.faceFeatureExtractor.dispose(t),super.dispose(t)}loadClassifierParams(t){let{params:e,paramMappings:r}=this.extractClassifierParams(t);this._params=e,this._paramMappings=r}extractClassifierParams(t){return ko(t)}extractParamsFromWeightMap(t){let{featureExtractorMap:e,classifierMap:r}=xr(t);return this.faceFeatureExtractor.loadFromWeightMap(e),Bo(r)}extractParams(t){let r=t.slice(0,t.length-1539),n=t.slice(t.length-1539);return this.faceFeatureExtractor.extractWeights(r),this.extractClassifierParams(n)}};var V=v(x());var we=class extends _e{postProcess(t,e,r){let n=r.map(({width:a,height:i})=>{let c=e/Math.max(i,a);return{width:a*c,height:i*c}}),s=n.length;return V.tidy(()=>{let a=(u,f)=>V.stack([V.fill([68],u,"float32"),V.fill([68],f,"float32")],1).as2D(1,136).as1D(),i=(u,f)=>{let{width:l,height:b}=n[u];return f(l,b)?Math.abs(l-b)/2:0},c=u=>i(u,(f,l)=>fi(u,(f,l)=>la(c(f),m(f))))).div(V.stack(Array.from(Array(s),(u,f)=>a(n[f].width,n[f].height))))})}forwardInput(t){return V.tidy(()=>{let e=this.runNet(t);return this.postProcess(e,t.inputSize,t.inputDimensions.map(([r,n])=>({height:r,width:n})))})}async forward(t){return this.forwardInput(await D(t))}async detectLandmarks(t){let e=await D(t),r=V.tidy(()=>V.unstack(this.forwardInput(e))),n=await Promise.all(r.map(async(s,a)=>{let i=Array.from(s.dataSync()),c=i.filter((p,u)=>or(u)),m=i.filter((p,u)=>!or(u));return new Yt(Array(68).fill(0).map((p,u)=>new _(c[u],m[u])),{height:e.getInputHeight(a),width:e.getInputWidth(a)})}));return r.forEach(s=>s.dispose()),e.isBatchInput?n:n[0]}getClassifierChannelsOut(){return 136}};var Zt=class extends we{constructor(t=new xe){super("FaceLandmark68Net",t)}getDefaultModelName(){return"face_landmark_68_model"}getClassifierChannelsIn(){return 256}};var Fe=v(x());function Ro(o){let t=[],{extractDenseBlock3Params:e}=gr(o,t),r={dense0:e("dense0",!0),dense1:e("dense1"),dense2:e("dense2")};return W(o,t),{params:r,paramMappings:t}}function $o(o){let t=[],{extractWeights:e,getRemainingWeights:r}=k(o),{extractDenseBlock3Params:n}=hr(e,t),s=n(3,32,"dense0",!0),a=n(32,64,"dense1"),i=n(64,128,"dense2");if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:t,params:{dense0:s,dense1:a,dense2:i}}}var wr=class extends A{constructor(){super("TinyFaceFeatureExtractor")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("TinyFaceFeatureExtractor - load model before inference");return Fe.tidy(()=>{let r=Fe.cast(t.toBatchTensor(112,!0),"float32"),s=rt(r,[122.782,117.001,104.298]).div(255),a=ur(s,e.dense0,!0);return a=ur(a,e.dense1),a=ur(a,e.dense2),a=Fe.avgPool(a,[14,14],[2,2],"valid"),a})}async forward(t){return this.forwardInput(await D(t))}getDefaultModelName(){return"face_feature_extractor_tiny_model"}extractParamsFromWeightMap(t){return Ro(t)}extractParams(t){return $o(t)}};var ze=class extends we{constructor(t=new wr){super("FaceLandmark68TinyNet",t)}getDefaultModelName(){return"face_landmark_68_tiny_model"}getClassifierChannelsIn(){return 128}};var po=class extends Zt{};var nt=v(x());var De=v(x());var Fr=v(x());function Oo(o,t){return Fr.add(Fr.mul(o,t.weights),t.biases)}function uo(o,t,e,r,n="same"){let{filters:s,bias:a}=t.conv,i=De.conv2d(o,s,e,n);return i=De.add(i,a),i=Oo(i,t.scale),r?De.relu(i):i}function Ho(o,t){return uo(o,t,[1,1],!0)}function fo(o,t){return uo(o,t,[1,1],!1)}function Dr(o,t){return uo(o,t,[2,2],!0,"valid")}var G=v(x());function Kn(o,t){function e(i,c,m){let p=o(i),u=p.length/(c*m*m);if($r(u))throw new Error(`depth has to be an integer: ${u}, weights.length: ${p.length}, numFilters: ${c}, filterSize: ${m}`);return G.tidy(()=>G.transpose(G.tensor4d(p,[c,u,m,m]),[2,3,1,0]))}function r(i,c,m,p){let u=e(i,c,m),f=G.tensor1d(o(c));return t.push({paramPath:`${p}/filters`},{paramPath:`${p}/bias`}),{filters:u,bias:f}}function n(i,c){let m=G.tensor1d(o(i)),p=G.tensor1d(o(i));return t.push({paramPath:`${c}/weights`},{paramPath:`${c}/biases`}),{weights:m,biases:p}}function s(i,c,m,p){let u=r(i,c,m,`${p}/conv`),f=n(c,`${p}/scale`);return{conv:u,scale:f}}function a(i,c,m,p,u=!1){let f=s((u?.5:1)*i,c,m,`${p}/conv1`),l=s(i,c,m,`${p}/conv2`);return{conv1:f,conv2:l}}return{extractConvLayerParams:s,extractResidualLayerParams:a}}function zo(o){let{extractWeights:t,getRemainingWeights:e}=k(o),r=[],{extractConvLayerParams:n,extractResidualLayerParams:s}=Kn(t,r),a=n(4704,32,7,"conv32_down"),i=s(9216,32,3,"conv32_1"),c=s(9216,32,3,"conv32_2"),m=s(9216,32,3,"conv32_3"),p=s(36864,64,3,"conv64_down",!0),u=s(36864,64,3,"conv64_1"),f=s(36864,64,3,"conv64_2"),l=s(36864,64,3,"conv64_3"),b=s(147456,128,3,"conv128_down",!0),T=s(147456,128,3,"conv128_1"),h=s(147456,128,3,"conv128_2"),g=s(589824,256,3,"conv256_down",!0),P=s(589824,256,3,"conv256_1"),y=s(589824,256,3,"conv256_2"),I=s(589824,256,3,"conv256_down_out"),j=G.tidy(()=>G.transpose(G.tensor2d(t(256*128),[128,256]),[1,0]));if(r.push({paramPath:"fc"}),e().length!==0)throw new Error(`weights remaing after extract: ${e().length}`);return{params:{conv32_down:a,conv32_1:i,conv32_2:c,conv32_3:m,conv64_down:p,conv64_1:u,conv64_2:f,conv64_3:l,conv128_down:b,conv128_1:T,conv128_2:h,conv256_down:g,conv256_1:P,conv256_2:y,conv256_down_out:I,fc:j},paramMappings:r}}function Qn(o,t){let e=Y(o,t);function r(a){let i=e(`${a}/scale/weights`,1),c=e(`${a}/scale/biases`,1);return{weights:i,biases:c}}function n(a){let i=e(`${a}/conv/filters`,4),c=e(`${a}/conv/bias`,1),m=r(a);return{conv:{filters:i,bias:c},scale:m}}function s(a){return{conv1:n(`${a}/conv1`),conv2:n(`${a}/conv2`)}}return{extractConvLayerParams:n,extractResidualLayerParams:s}}function Yo(o){let t=[],{extractConvLayerParams:e,extractResidualLayerParams:r}=Qn(o,t),n=e("conv32_down"),s=r("conv32_1"),a=r("conv32_2"),i=r("conv32_3"),c=r("conv64_down"),m=r("conv64_1"),p=r("conv64_2"),u=r("conv64_3"),f=r("conv128_down"),l=r("conv128_1"),b=r("conv128_2"),T=r("conv256_down"),h=r("conv256_1"),g=r("conv256_2"),P=r("conv256_down_out"),{fc:y}=o;if(t.push({originalPath:"fc",paramPath:"fc"}),!Rr(y))throw new Error(`expected weightMap[fc] to be a Tensor2D, instead have ${y}`);let I={conv32_down:n,conv32_1:s,conv32_2:a,conv32_3:i,conv64_down:c,conv64_1:m,conv64_2:p,conv64_3:u,conv128_down:f,conv128_1:l,conv128_2:b,conv256_down:T,conv256_1:h,conv256_2:g,conv256_down_out:P,fc:y};return W(o,t),{params:I,paramMappings:t}}var B=v(x());function ot(o,t){let e=Ho(o,t.conv1);return e=fo(e,t.conv2),e=B.add(e,o),e=B.relu(e),e}function Ye(o,t){let e=Dr(o,t.conv1);e=fo(e,t.conv2);let r=B.avgPool(o,2,2,"valid"),n=B.zeros(r.shape),s=r.shape[3]!==e.shape[3];if(r.shape[1]!==e.shape[1]||r.shape[2]!==e.shape[2]){let i=[...e.shape];i[1]=1;let c=B.zeros(i);e=B.concat([e,c],1);let m=[...e.shape];m[2]=1;let p=B.zeros(m);e=B.concat([e,p],2)}return r=s?B.concat([r,n],3):r,e=B.add(r,e),e=B.relu(e),e}var Kt=class extends A{constructor(){super("FaceRecognitionNet")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("FaceRecognitionNet - load model before inference");return nt.tidy(()=>{let r=nt.cast(t.toBatchTensor(150,!0),"float32"),s=rt(r,[122.782,117.001,104.298]).div(255),a=Dr(s,e.conv32_down);a=nt.maxPool(a,3,2,"valid"),a=ot(a,e.conv32_1),a=ot(a,e.conv32_2),a=ot(a,e.conv32_3),a=Ye(a,e.conv64_down),a=ot(a,e.conv64_1),a=ot(a,e.conv64_2),a=ot(a,e.conv64_3),a=Ye(a,e.conv128_down),a=ot(a,e.conv128_1),a=ot(a,e.conv128_2),a=Ye(a,e.conv256_down),a=ot(a,e.conv256_1),a=ot(a,e.conv256_2),a=Ye(a,e.conv256_down_out);let i=a.mean([1,2]);return nt.matMul(i,e.fc)})}async forward(t){return this.forwardInput(await D(t))}async computeFaceDescriptor(t){var s;if((s=t==null?void 0:t.shape)!=null&&s.some(a=>a<=0))return new Float32Array(128);let e=await D(t),r=nt.tidy(()=>nt.unstack(this.forwardInput(e))),n=await Promise.all(r.map(a=>a.data()));return r.forEach(a=>a.dispose()),e.isBatchInput?n:n[0]}getDefaultModelName(){return"face_recognition_model"}extractParamsFromWeightMap(t){return Yo(t)}extractParams(t){return zo(t)}};function ta(o){let t=new Kt;return t.extractWeights(o),t}function Er(o,t){return{...o,...{descriptor:t}}}function ea(o){return typeof o.age=="number"}function Mr(o,t){return{...o,...{age:t}}}function ra(o){return(o.gender==="male"||o.gender==="female")&&ce(o.genderProbability)}function Cr(o,t,e){return{...o,...{gender:t,genderProbability:e}}}var Nt=v(x());var at=v(x());function oa(o,t){function e(c,m){let p=at.tensor4d(o(9*c),[3,3,c,1]),u=at.tensor1d(o(c)),f=at.tensor1d(o(c)),l=at.tensor1d(o(c)),b=at.tensor1d(o(c));return t.push({paramPath:`${m}/filters`},{paramPath:`${m}/batch_norm_scale`},{paramPath:`${m}/batch_norm_offset`},{paramPath:`${m}/batch_norm_mean`},{paramPath:`${m}/batch_norm_variance`}),{filters:p,batch_norm_scale:u,batch_norm_offset:f,batch_norm_mean:l,batch_norm_variance:b}}function r(c,m,p,u,f){let l=at.tensor4d(o(c*m*p*p),[p,p,c,m]),b=at.tensor1d(o(m));return t.push({paramPath:`${u}/filters`},{paramPath:`${u}/${f?"batch_norm_offset":"bias"}`}),{filters:l,bias:b}}function n(c,m,p,u){let{filters:f,bias:l}=r(c,m,p,u,!0);return{filters:f,batch_norm_offset:l}}function s(c,m,p){let u=e(c,`${p}/depthwise_conv`),f=n(c,m,1,`${p}/pointwise_conv`);return{depthwise_conv:u,pointwise_conv:f}}function a(){let c=n(3,32,3,"mobilenetv1/conv_0"),m=s(32,64,"mobilenetv1/conv_1"),p=s(64,128,"mobilenetv1/conv_2"),u=s(128,128,"mobilenetv1/conv_3"),f=s(128,256,"mobilenetv1/conv_4"),l=s(256,256,"mobilenetv1/conv_5"),b=s(256,512,"mobilenetv1/conv_6"),T=s(512,512,"mobilenetv1/conv_7"),h=s(512,512,"mobilenetv1/conv_8"),g=s(512,512,"mobilenetv1/conv_9"),P=s(512,512,"mobilenetv1/conv_10"),y=s(512,512,"mobilenetv1/conv_11"),I=s(512,1024,"mobilenetv1/conv_12"),j=s(1024,1024,"mobilenetv1/conv_13");return{conv_0:c,conv_1:m,conv_2:p,conv_3:u,conv_4:f,conv_5:l,conv_6:b,conv_7:T,conv_8:h,conv_9:g,conv_10:P,conv_11:y,conv_12:I,conv_13:j}}function i(){let c=n(1024,256,1,"prediction_layer/conv_0"),m=n(256,512,3,"prediction_layer/conv_1"),p=n(512,128,1,"prediction_layer/conv_2"),u=n(128,256,3,"prediction_layer/conv_3"),f=n(256,128,1,"prediction_layer/conv_4"),l=n(128,256,3,"prediction_layer/conv_5"),b=n(256,64,1,"prediction_layer/conv_6"),T=n(64,128,3,"prediction_layer/conv_7"),h=r(512,12,1,"prediction_layer/box_predictor_0/box_encoding_predictor"),g=r(512,9,1,"prediction_layer/box_predictor_0/class_predictor"),P=r(1024,24,1,"prediction_layer/box_predictor_1/box_encoding_predictor"),y=r(1024,18,1,"prediction_layer/box_predictor_1/class_predictor"),I=r(512,24,1,"prediction_layer/box_predictor_2/box_encoding_predictor"),j=r(512,18,1,"prediction_layer/box_predictor_2/class_predictor"),tt=r(256,24,1,"prediction_layer/box_predictor_3/box_encoding_predictor"),it=r(256,18,1,"prediction_layer/box_predictor_3/class_predictor"),q=r(256,24,1,"prediction_layer/box_predictor_4/box_encoding_predictor"),Pt=r(256,18,1,"prediction_layer/box_predictor_4/class_predictor"),wt=r(128,24,1,"prediction_layer/box_predictor_5/box_encoding_predictor"),Ft=r(128,18,1,"prediction_layer/box_predictor_5/class_predictor");return{conv_0:c,conv_1:m,conv_2:p,conv_3:u,conv_4:f,conv_5:l,conv_6:b,conv_7:T,box_predictor_0:{box_encoding_predictor:h,class_predictor:g},box_predictor_1:{box_encoding_predictor:P,class_predictor:y},box_predictor_2:{box_encoding_predictor:I,class_predictor:j},box_predictor_3:{box_encoding_predictor:tt,class_predictor:it},box_predictor_4:{box_encoding_predictor:q,class_predictor:Pt},box_predictor_5:{box_encoding_predictor:wt,class_predictor:Ft}}}return{extractMobilenetV1Params:a,extractPredictionLayerParams:i}}function Vo(o){let t=[],{extractWeights:e,getRemainingWeights:r}=k(o),{extractMobilenetV1Params:n,extractPredictionLayerParams:s}=oa(e,t),a=n(),i=s(),m={extra_dim:at.tensor3d(e(5118*4),[1,5118,4])};if(t.push({paramPath:"output_layer/extra_dim"}),r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{params:{mobilenetv1:a,prediction_layer:i,output_layer:m},paramMappings:t}}function na(o,t){let e=Y(o,t);function r(m,p,u){let f=e(`${m}/Conv2d_${p}_pointwise/weights`,4,`${u}/filters`),l=e(`${m}/Conv2d_${p}_pointwise/convolution_bn_offset`,1,`${u}/batch_norm_offset`);return{filters:f,batch_norm_offset:l}}function n(m){let p=`mobilenetv1/conv_${m}`,u=`MobilenetV1/Conv2d_${m}_depthwise`,f=`${p}/depthwise_conv`,l=`${p}/pointwise_conv`,b=e(`${u}/depthwise_weights`,4,`${f}/filters`),T=e(`${u}/BatchNorm/gamma`,1,`${f}/batch_norm_scale`),h=e(`${u}/BatchNorm/beta`,1,`${f}/batch_norm_offset`),g=e(`${u}/BatchNorm/moving_mean`,1,`${f}/batch_norm_mean`),P=e(`${u}/BatchNorm/moving_variance`,1,`${f}/batch_norm_variance`);return{depthwise_conv:{filters:b,batch_norm_scale:T,batch_norm_offset:h,batch_norm_mean:g,batch_norm_variance:P},pointwise_conv:r("MobilenetV1",m,l)}}function s(){return{conv_0:r("MobilenetV1",0,"mobilenetv1/conv_0"),conv_1:n(1),conv_2:n(2),conv_3:n(3),conv_4:n(4),conv_5:n(5),conv_6:n(6),conv_7:n(7),conv_8:n(8),conv_9:n(9),conv_10:n(10),conv_11:n(11),conv_12:n(12),conv_13:n(13)}}function a(m,p){let u=e(`${m}/weights`,4,`${p}/filters`),f=e(`${m}/biases`,1,`${p}/bias`);return{filters:u,bias:f}}function i(m){let p=a(`Prediction/BoxPredictor_${m}/BoxEncodingPredictor`,`prediction_layer/box_predictor_${m}/box_encoding_predictor`),u=a(`Prediction/BoxPredictor_${m}/ClassPredictor`,`prediction_layer/box_predictor_${m}/class_predictor`);return{box_encoding_predictor:p,class_predictor:u}}function c(){return{conv_0:r("Prediction",0,"prediction_layer/conv_0"),conv_1:r("Prediction",1,"prediction_layer/conv_1"),conv_2:r("Prediction",2,"prediction_layer/conv_2"),conv_3:r("Prediction",3,"prediction_layer/conv_3"),conv_4:r("Prediction",4,"prediction_layer/conv_4"),conv_5:r("Prediction",5,"prediction_layer/conv_5"),conv_6:r("Prediction",6,"prediction_layer/conv_6"),conv_7:r("Prediction",7,"prediction_layer/conv_7"),box_predictor_0:i(0),box_predictor_1:i(1),box_predictor_2:i(2),box_predictor_3:i(3),box_predictor_4:i(4),box_predictor_5:i(5)}}return{extractMobilenetV1Params:s,extractPredictionLayerParams:c}}function Go(o){let t=[],{extractMobilenetV1Params:e,extractPredictionLayerParams:r}=na(o,t),n=o["Output/extra_dim"];if(t.push({originalPath:"Output/extra_dim",paramPath:"output_layer/extra_dim"}),!dt(n))throw new Error(`expected weightMap['Output/extra_dim'] to be a Tensor3D, instead have ${n}`);let s={mobilenetv1:e(),prediction_layer:r(),output_layer:{extra_dim:n}};return W(o,t),{params:s,paramMappings:t}}var xt=v(x());var Ct=v(x());function Z(o,t,e){return Ct.tidy(()=>{let r=Ct.conv2d(o,t.filters,e,"same");return r=Ct.add(r,t.batch_norm_offset),Ct.clipByValue(r,0,6)})}var aa=.0010000000474974513;function sa(o,t,e){return xt.tidy(()=>{let r=xt.depthwiseConv2d(o,t.filters,e,"same");return r=xt.batchNorm(r,t.batch_norm_mean,t.batch_norm_variance,t.batch_norm_offset,t.batch_norm_scale,aa),xt.clipByValue(r,0,6)})}function ia(o){return[2,4,6,12].some(t=>t===o)?[2,2]:[1,1]}function jo(o,t){return xt.tidy(()=>{let e,r=Z(o,t.conv_0,[2,2]);if([t.conv_1,t.conv_2,t.conv_3,t.conv_4,t.conv_5,t.conv_6,t.conv_7,t.conv_8,t.conv_9,t.conv_10,t.conv_11,t.conv_12,t.conv_13].forEach((s,a)=>{let i=a+1,c=ia(i);r=sa(r,s.depthwise_conv,c),r=Z(r,s.pointwise_conv,[1,1]),i===11&&(e=r)}),e===null)throw new Error("mobileNetV1 - output of conv layer 11 is null");return{out:r,conv11:e}})}function ca(o,t,e){let r=o.arraySync(),n=Math.min(r[t][0],r[t][2]),s=Math.min(r[t][1],r[t][3]),a=Math.max(r[t][0],r[t][2]),i=Math.max(r[t][1],r[t][3]),c=Math.min(r[e][0],r[e][2]),m=Math.min(r[e][1],r[e][3]),p=Math.max(r[e][0],r[e][2]),u=Math.max(r[e][1],r[e][3]),f=(a-n)*(i-s),l=(p-c)*(u-m);if(f<=0||l<=0)return 0;let b=Math.max(n,c),T=Math.max(s,m),h=Math.min(a,p),g=Math.min(i,u),P=Math.max(h-b,0)*Math.max(g-T,0);return P/(f+l-P)}function Uo(o,t,e,r,n){let s=o.shape[0],a=Math.min(e,s),i=t.map((p,u)=>({score:p,boxIndex:u})).filter(p=>p.score>n).sort((p,u)=>u.score-p.score),c=p=>p<=r?1:0,m=[];return i.forEach(p=>{if(m.length>=a)return;let u=p.score;for(let f=m.length-1;f>=0;--f){let l=ca(o,p.boxIndex,m[f]);if(l!==0&&(p.score*=c(l),p.score<=n))break}u===p.score&&m.push(p.boxIndex)}),m}var d=v(x());function ma(o){let t=d.unstack(d.transpose(o,[1,0])),e=[d.sub(t[2],t[0]),d.sub(t[3],t[1])],r=[d.add(t[0],d.div(e[0],2)),d.add(t[1],d.div(e[1],2))];return{sizes:e,centers:r}}function pa(o,t){let{sizes:e,centers:r}=ma(o),n=d.unstack(d.transpose(t,[1,0])),s=d.div(d.mul(d.exp(d.div(n[2],5)),e[0]),2),a=d.add(d.mul(d.div(n[0],10),e[0]),r[0]),i=d.div(d.mul(d.exp(d.div(n[3],5)),e[1]),2),c=d.add(d.mul(d.div(n[1],10),e[1]),r[1]);return d.transpose(d.stack([d.sub(a,s),d.sub(c,i),d.add(a,s),d.add(c,i)]),[1,0])}function Xo(o,t,e){return d.tidy(()=>{let r=o.shape[0],n=pa(d.reshape(d.tile(e.extra_dim,[r,1,1]),[-1,4]),d.reshape(o,[-1,4]));n=d.reshape(n,[r,n.shape[0]/r,4]);let s=d.sigmoid(d.slice(t,[0,0,1],[-1,-1,-1])),a=d.slice(s,[0,0,0],[-1,-1,1]);a=d.reshape(a,[r,a.shape[1]]);let i=d.unstack(n),c=d.unstack(a);return{boxes:i,scores:c}})}var Ge=v(x());var Ve=v(x());function Qt(o,t){return Ve.tidy(()=>{let e=o.shape[0],r=Ve.reshape(Jt(o,t.box_encoding_predictor),[e,-1,1,4]),n=Ve.reshape(Jt(o,t.class_predictor),[e,-1,3]);return{boxPredictionEncoding:r,classPrediction:n}})}function Jo(o,t,e){return Ge.tidy(()=>{let r=Z(o,e.conv_0,[1,1]),n=Z(r,e.conv_1,[2,2]),s=Z(n,e.conv_2,[1,1]),a=Z(s,e.conv_3,[2,2]),i=Z(a,e.conv_4,[1,1]),c=Z(i,e.conv_5,[2,2]),m=Z(c,e.conv_6,[1,1]),p=Z(m,e.conv_7,[2,2]),u=Qt(t,e.box_predictor_0),f=Qt(o,e.box_predictor_1),l=Qt(n,e.box_predictor_2),b=Qt(a,e.box_predictor_3),T=Qt(c,e.box_predictor_4),h=Qt(p,e.box_predictor_5),g=Ge.concat([u.boxPredictionEncoding,f.boxPredictionEncoding,l.boxPredictionEncoding,b.boxPredictionEncoding,T.boxPredictionEncoding,h.boxPredictionEncoding],1),P=Ge.concat([u.classPrediction,f.classPrediction,l.classPrediction,b.classPrediction,T.classPrediction,h.classPrediction],1);return{boxPredictions:g,classPredictions:P}})}var X=class{constructor({minConfidence:t,maxResults:e}={}){this._name="SsdMobilenetv1Options";if(this._minConfidence=t||.5,this._maxResults=e||100,typeof this._minConfidence!="number"||this._minConfidence<=0||this._minConfidence>=1)throw new Error(`${this._name} - expected minConfidence to be a number between 0 and 1`);if(typeof this._maxResults!="number")throw new Error(`${this._name} - expected maxResults to be a number`)}get minConfidence(){return this._minConfidence}get maxResults(){return this._maxResults}};var It=class extends A{constructor(){super("SsdMobilenetv1")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("SsdMobilenetv1 - load model before inference");return Nt.tidy(()=>{let r=Nt.cast(t.toBatchTensor(512,!1),"float32"),n=Nt.sub(Nt.div(r,127.5),1),s=jo(n,e.mobilenetv1),{boxPredictions:a,classPredictions:i}=Jo(s.out,s.conv11,e.prediction_layer);return Xo(a,i,e.output_layer)})}async forward(t){return this.forwardInput(await D(t))}async locateFaces(t,e={}){let{maxResults:r,minConfidence:n}=new X(e),s=await D(t),{boxes:a,scores:i}=this.forwardInput(s),c=a[0],m=i[0];for(let y=1;y{let[I,j]=[Math.max(0,g[y][0]),Math.min(1,g[y][2])].map(q=>q*h),[tt,it]=[Math.max(0,g[y][1]),Math.min(1,g[y][3])].map(q=>q*T);return new M(p[y],new zt(tt,I,it-tt,j-I),{height:s.getInputHeight(0),width:s.getInputWidth(0)})});return c.dispose(),m.dispose(),P}getDefaultModelName(){return"ssd_mobilenetv1_model"}extractParamsFromWeightMap(t){return Go(t)}extractParams(t){return Vo(t)}};function qo(o){let t=new It;return t.extractWeights(o),t}function ua(o){return qo(o)}var lo=class extends It{};var Zo=.4,Ko=[new _(.738768,.874946),new _(2.42204,2.65704),new _(4.30971,7.04493),new _(10.246,4.59428),new _(12.6868,11.8741)],Qo=[new _(1.603231,2.094468),new _(6.041143,7.080126),new _(2.882459,3.518061),new _(4.266906,5.178857),new _(9.041765,10.66308)],tn=[117.001,114.697,97.404],en="tiny_yolov2_model",rn="tiny_yolov2_separable_conv_model";var C=v(x());var Ir=o=>typeof o=="number";function ho(o){if(!o)throw new Error(`invalid config: ${o}`);if(typeof o.withSeparableConvs!="boolean")throw new Error(`config.withSeparableConvs has to be a boolean, have: ${o.withSeparableConvs}`);if(!Ir(o.iouThreshold)||o.iouThreshold<0||o.iouThreshold>1)throw new Error(`config.iouThreshold has to be a number between [0, 1], have: ${o.iouThreshold}`);if(!Array.isArray(o.classes)||!o.classes.length||!o.classes.every(t=>typeof t=="string"))throw new Error(`config.classes has to be an array class names: string[], have: ${JSON.stringify(o.classes)}`);if(!Array.isArray(o.anchors)||!o.anchors.length||!o.anchors.map(t=>t||{}).every(t=>Ir(t.x)&&Ir(t.y)))throw new Error(`config.anchors has to be an array of { x: number, y: number }, have: ${JSON.stringify(o.anchors)}`);if(o.meanRgb&&(!Array.isArray(o.meanRgb)||o.meanRgb.length!==3||!o.meanRgb.every(Ir)))throw new Error(`config.meanRgb has to be an array of shape [number, number, number], have: ${JSON.stringify(o.meanRgb)}`)}var Q=v(x());var K=v(x());function Ee(o){return K.tidy(()=>{let t=K.mul(o,K.scalar(.10000000149011612));return K.add(K.relu(K.sub(o,t)),t)})}function vt(o,t){return Q.tidy(()=>{let e=Q.pad(o,[[0,0],[1,1],[1,1],[0,0]]);return e=Q.conv2d(e,t.conv.filters,[1,1],"valid"),e=Q.sub(e,t.bn.sub),e=Q.mul(e,t.bn.truediv),e=Q.add(e,t.conv.bias),Ee(e)})}var Lt=v(x());function yt(o,t){return Lt.tidy(()=>{let e=Lt.pad(o,[[0,0],[1,1],[1,1],[0,0]]);return e=Lt.separableConv2d(e,t.depthwise_filter,t.pointwise_filter,[1,1],"valid"),e=Lt.add(e,t.bias),Ee(e)})}var bo=v(x());function fa(o,t){let e=he(o,t);function r(a,i){let c=bo.tensor1d(o(a)),m=bo.tensor1d(o(a));return t.push({paramPath:`${i}/sub`},{paramPath:`${i}/truediv`}),{sub:c,truediv:m}}function n(a,i,c){let m=e(a,i,3,`${c}/conv`),p=r(i,`${c}/bn`);return{conv:m,bn:p}}let s=be(o,t);return{extractConvParams:e,extractConvWithBatchNormParams:n,extractSeparableConvParams:s}}function on(o,t,e,r){let{extractWeights:n,getRemainingWeights:s}=k(o),a=[],{extractConvParams:i,extractConvWithBatchNormParams:c,extractSeparableConvParams:m}=fa(n,a),p;if(t.withSeparableConvs){let[u,f,l,b,T,h,g,P,y]=r,I=t.isFirstLayerConv2d?i(u,f,3,"conv0"):m(u,f,"conv0"),j=m(f,l,"conv1"),tt=m(l,b,"conv2"),it=m(b,T,"conv3"),q=m(T,h,"conv4"),Pt=m(h,g,"conv5"),wt=P?m(g,P,"conv6"):void 0,Ft=y?m(P,y,"conv7"):void 0,ie=i(y||P||g,5*e,1,"conv8");p={conv0:I,conv1:j,conv2:tt,conv3:it,conv4:q,conv5:Pt,conv6:wt,conv7:Ft,conv8:ie}}else{let[u,f,l,b,T,h,g,P,y]=r,I=c(u,f,"conv0"),j=c(f,l,"conv1"),tt=c(l,b,"conv2"),it=c(b,T,"conv3"),q=c(T,h,"conv4"),Pt=c(h,g,"conv5"),wt=c(g,P,"conv6"),Ft=c(P,y,"conv7"),ie=i(y,5*e,1,"conv8");p={conv0:I,conv1:j,conv2:tt,conv3:it,conv4:q,conv5:Pt,conv6:wt,conv7:Ft,conv8:ie}}if(s().length!==0)throw new Error(`weights remaing after extract: ${s().length}`);return{params:p,paramMappings:a}}function la(o,t){let e=Y(o,t);function r(i){let c=e(`${i}/sub`,1),m=e(`${i}/truediv`,1);return{sub:c,truediv:m}}function n(i){let c=e(`${i}/filters`,4),m=e(`${i}/bias`,1);return{filters:c,bias:m}}function s(i){let c=n(`${i}/conv`),m=r(`${i}/bn`);return{conv:c,bn:m}}let a=ge(e);return{extractConvParams:n,extractConvWithBatchNormParams:s,extractSeparableConvParams:a}}function nn(o,t){let e=[],{extractConvParams:r,extractConvWithBatchNormParams:n,extractSeparableConvParams:s}=la(o,e),a;if(t.withSeparableConvs){let i=t.filterSizes&&t.filterSizes.length||9;a={conv0:t.isFirstLayerConv2d?r("conv0"):s("conv0"),conv1:s("conv1"),conv2:s("conv2"),conv3:s("conv3"),conv4:s("conv4"),conv5:s("conv5"),conv6:i>7?s("conv6"):void 0,conv7:i>8?s("conv7"):void 0,conv8:r("conv8")}}else a={conv0:n("conv0"),conv1:n("conv1"),conv2:n("conv2"),conv3:n("conv3"),conv4:n("conv4"),conv5:n("conv5"),conv6:n("conv6"),conv7:n("conv7"),conv8:r("conv8")};return W(o,e),{params:a,paramMappings:e}}var st=class{constructor({inputSize:t,scoreThreshold:e}={}){this._name="TinyYolov2Options";if(this._inputSize=t||416,this._scoreThreshold=e||.5,typeof this._inputSize!="number"||this._inputSize%32!==0)throw new Error(`${this._name} - expected inputSize to be a number divisible by 32`);if(typeof this._scoreThreshold!="number"||this._scoreThreshold<=0||this._scoreThreshold>=1)throw new Error(`${this._name} - expected scoreThreshold to be a number between 0 and 1`)}get inputSize(){return this._inputSize}get scoreThreshold(){return this._scoreThreshold}};var Nr=class Nr extends A{constructor(t){super("TinyYolov2"),ho(t),this._config=t}get config(){return this._config}get withClassScores(){return this.config.withClassScores||this.config.classes.length>1}get boxEncodingSize(){return 5+(this.withClassScores?this.config.classes.length:0)}runTinyYolov2(t,e){let r=vt(t,e.conv0);return r=C.maxPool(r,[2,2],[2,2],"same"),r=vt(r,e.conv1),r=C.maxPool(r,[2,2],[2,2],"same"),r=vt(r,e.conv2),r=C.maxPool(r,[2,2],[2,2],"same"),r=vt(r,e.conv3),r=C.maxPool(r,[2,2],[2,2],"same"),r=vt(r,e.conv4),r=C.maxPool(r,[2,2],[2,2],"same"),r=vt(r,e.conv5),r=C.maxPool(r,[2,2],[1,1],"same"),r=vt(r,e.conv6),r=vt(r,e.conv7),Jt(r,e.conv8,"valid",!1)}runMobilenet(t,e){let r=this.config.isFirstLayerConv2d?Ee(Jt(t,e.conv0,"valid",!1)):yt(t,e.conv0);return r=C.maxPool(r,[2,2],[2,2],"same"),r=yt(r,e.conv1),r=C.maxPool(r,[2,2],[2,2],"same"),r=yt(r,e.conv2),r=C.maxPool(r,[2,2],[2,2],"same"),r=yt(r,e.conv3),r=C.maxPool(r,[2,2],[2,2],"same"),r=yt(r,e.conv4),r=C.maxPool(r,[2,2],[2,2],"same"),r=yt(r,e.conv5),r=C.maxPool(r,[2,2],[1,1],"same"),r=e.conv6?yt(r,e.conv6):r,r=e.conv7?yt(r,e.conv7):r,Jt(r,e.conv8,"valid",!1)}forwardInput(t,e){let{params:r}=this;if(!r)throw new Error("TinyYolov2 - load model before inference");return C.tidy(()=>{let n=C.cast(t.toBatchTensor(e,!1),"float32");return n=this.config.meanRgb?rt(n,this.config.meanRgb):n,n=n.div(255),this.config.withSeparableConvs?this.runMobilenet(n,r):this.runTinyYolov2(n,r)})}async forward(t,e){return this.forwardInput(await D(t),e)}async detect(t,e={}){let{inputSize:r,scoreThreshold:n}=new st(e),s=await D(t),a=await this.forwardInput(s,r),i=C.tidy(()=>C.unstack(a)[0].expandDims()),c={width:s.getInputWidth(0),height:s.getInputHeight(0)},m=await this.extractBoxes(i,s.getReshapedInputDimensions(0),n);a.dispose(),i.dispose();let p=m.map(h=>h.box),u=m.map(h=>h.score),f=m.map(h=>h.classScore),l=m.map(h=>this.config.classes[h.label]);return Vr(p.map(h=>h.rescale(r)),u,this.config.iouThreshold,!0).map(h=>new Ht(u[h],f[h],l[h],p[h],c))}getDefaultModelName(){return""}extractParamsFromWeightMap(t){return nn(t,this.config)}extractParams(t){let e=this.config.filterSizes||Nr.DEFAULT_FILTER_SIZES,r=e?e.length:void 0;if(r!==7&&r!==8&&r!==9)throw new Error(`TinyYolov2 - expected 7 | 8 | 9 convolutional filters, but found ${r} filterSizes in config`);return on(t,this.config,this.boxEncodingSize,e)}async extractBoxes(t,e,r){let{width:n,height:s}=e,a=Math.max(n,s),i=a/n,c=a/s,m=t.shape[1],p=this.config.anchors.length,[u,f,l]=C.tidy(()=>{let g=t.reshape([m,m,p,this.boxEncodingSize]),P=g.slice([0,0,0,0],[m,m,p,4]),y=g.slice([0,0,0,4],[m,m,p,1]),I=this.withClassScores?C.softmax(g.slice([0,0,0,5],[m,m,p,this.config.classes.length]),3):C.scalar(0);return[P,y,I]}),b=[],T=await f.array(),h=await u.array();for(let g=0;gr){let j=(P+Ne(h[g][P][y][0]))/m*i,tt=(g+Ne(h[g][P][y][1]))/m*c,it=Math.exp(h[g][P][y][2])*this.config.anchors[y].x/m*i,q=Math.exp(h[g][P][y][3])*this.config.anchors[y].y/m*c,Pt=j-it/2,wt=tt-q/2,Ft={row:g,col:P,anchor:y},{classScore:ie,label:yo}=this.withClassScores?await this.extractPredictedClass(l,Ft):{classScore:1,label:0};b.push({box:new Ot(Pt,wt,Pt+it,wt+q),score:I,classScore:I*ie,label:yo,...Ft})}}return u.dispose(),f.dispose(),l.dispose(),b}async extractPredictedClass(t,e){let{row:r,col:n,anchor:s}=e,a=await t.array();return Array(this.config.classes.length).fill(0).map((i,c)=>a[r][n][s][c]).map((i,c)=>({classScore:i,label:c})).reduce((i,c)=>i.classScore>c.classScore?i:c)}};Nr.DEFAULT_FILTER_SIZES=[3,16,32,64,128,256,512,1024,1024];var Me=Nr;var te=class extends Me{constructor(t=!0){let e={withSeparableConvs:t,iouThreshold:Zo,classes:["face"],...t?{anchors:Qo,meanRgb:tn}:{anchors:Ko,withClassScores:!0}};super(e)}get withSeparableConvs(){return this.config.withSeparableConvs}get anchors(){return this.config.anchors}async locateFaces(t,e){return(await this.detect(t,e)).map(n=>new M(n.score,n.relativeBox,{width:n.imageWidth,height:n.imageHeight}))}getDefaultModelName(){return this.withSeparableConvs?rn:en}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};function da(o,t=!0){let e=new te(t);return e.extractWeights(o),e}var je=class extends st{constructor(){super(...arguments);this._name="TinyFaceDetectorOptions"}};var J=class{async then(t){return t(await this.run())}async run(){throw new Error("ComposableTask - run is not implemented")}};var Xe=v(x());var go=v(x());async function ee(o,t,e,r,n=({alignedRect:s})=>s){let s=o.map(c=>qt(c)?n(c):c.detection),a=r||(t instanceof go.Tensor?await le(t,s):await fe(t,s)),i=await e(a);return a.forEach(c=>c instanceof go.Tensor&&c.dispose()),i}async function Ce(o,t,e,r,n){return ee([o],t,async s=>e(s[0]),r,n)}var an=.4,sn=[new _(1.603231,2.094468),new _(6.041143,7.080126),new _(2.882459,3.518061),new _(4.266906,5.178857),new _(9.041765,10.66308)],cn=[117.001,114.697,97.404];var re=class extends Me{constructor(){let t={withSeparableConvs:!0,iouThreshold:an,classes:["face"],anchors:sn,meanRgb:cn,isFirstLayerConv2d:!0,filterSizes:[3,16,32,64,128,256,512]};super(t)}get anchors(){return this.config.anchors}async locateFaces(t,e){return(await this.detect(t,e)).map(n=>new M(n.score,n.relativeBox,{width:n.imageWidth,height:n.imageHeight}))}getDefaultModelName(){return"tiny_face_detector_model"}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};var F={ssdMobilenetv1:new It,tinyFaceDetector:new re,tinyYolov2:new te,faceLandmark68Net:new Zt,faceLandmark68TinyNet:new ze,faceRecognitionNet:new Kt,faceExpressionNet:new Oe,ageGenderNet:new He},mn=(o,t)=>F.ssdMobilenetv1.locateFaces(o,t),ha=(o,t)=>F.tinyFaceDetector.locateFaces(o,t),ba=(o,t)=>F.tinyYolov2.locateFaces(o,t),pn=o=>F.faceLandmark68Net.detectLandmarks(o),ga=o=>F.faceLandmark68TinyNet.detectLandmarks(o),xa=o=>F.faceRecognitionNet.computeFaceDescriptor(o),va=o=>F.faceExpressionNet.predictExpressions(o),ya=o=>F.ageGenderNet.predictAgeAndGender(o),un=o=>F.ssdMobilenetv1.load(o),_a=o=>F.tinyFaceDetector.load(o),Ta=o=>F.tinyYolov2.load(o),Pa=o=>F.faceLandmark68Net.load(o),wa=o=>F.faceLandmark68TinyNet.load(o),Fa=o=>F.faceRecognitionNet.load(o),Da=o=>F.faceExpressionNet.load(o),Ea=o=>F.ageGenderNet.load(o),Ma=un,Ca=mn,Ia=pn;var Lr=class extends J{constructor(e,r,n){super();this.parentTask=e;this.input=r;this.extractedFaces=n}},oe=class extends Lr{async run(){let t=await this.parentTask,e=await ee(t,this.input,async r=>Promise.all(r.map(n=>F.faceExpressionNet.predictExpressions(n))),this.extractedFaces);return t.map((r,n)=>vr(r,e[n]))}withAgeAndGender(){return new ae(this,this.input)}},ne=class extends Lr{async run(){let t=await this.parentTask;if(!t)return;let e=await Ce(t,this.input,r=>F.faceExpressionNet.predictExpressions(r),this.extractedFaces);return vr(t,e)}withAgeAndGender(){return new se(this,this.input)}},St=class extends oe{withAgeAndGender(){return new Wt(this,this.input)}withFaceDescriptors(){return new _t(this,this.input)}},At=class extends ne{withAgeAndGender(){return new kt(this,this.input)}withFaceDescriptor(){return new Tt(this,this.input)}};var Sr=class extends J{constructor(e,r,n){super();this.parentTask=e;this.input=r;this.extractedFaces=n}},ae=class extends Sr{async run(){let t=await this.parentTask,e=await ee(t,this.input,async r=>Promise.all(r.map(n=>F.ageGenderNet.predictAgeAndGender(n))),this.extractedFaces);return t.map((r,n)=>{let{age:s,gender:a,genderProbability:i}=e[n];return Mr(Cr(r,a,i),s)})}withFaceExpressions(){return new oe(this,this.input)}},se=class extends Sr{async run(){let t=await this.parentTask;if(!t)return;let{age:e,gender:r,genderProbability:n}=await Ce(t,this.input,s=>F.ageGenderNet.predictAgeAndGender(s),this.extractedFaces);return Mr(Cr(t,r,n),e)}withFaceExpressions(){return new ne(this,this.input)}},Wt=class extends ae{withFaceExpressions(){return new St(this,this.input)}withFaceDescriptors(){return new _t(this,this.input)}},kt=class extends se{withFaceExpressions(){return new At(this,this.input)}withFaceDescriptor(){return new Tt(this,this.input)}};var Ue=class extends J{constructor(e,r){super();this.parentTask=e;this.input=r}},_t=class extends Ue{async run(){let t=await this.parentTask;return(await ee(t,this.input,r=>Promise.all(r.map(n=>F.faceRecognitionNet.computeFaceDescriptor(n))),null,r=>r.landmarks.align(null,{useDlibAlignment:!0}))).map((r,n)=>Er(t[n],r))}withFaceExpressions(){return new St(this,this.input)}withAgeAndGender(){return new Wt(this,this.input)}},Tt=class extends Ue{async run(){let t=await this.parentTask;if(!t)return;let e=await Ce(t,this.input,r=>F.faceRecognitionNet.computeFaceDescriptor(r),null,r=>r.landmarks.align(null,{useDlibAlignment:!0}));return Er(t,e)}withFaceExpressions(){return new At(this,this.input)}withAgeAndGender(){return new kt(this,this.input)}};var Je=class extends J{constructor(e,r,n){super();this.parentTask=e;this.input=r;this.useTinyLandmarkNet=n}get landmarkNet(){return this.useTinyLandmarkNet?F.faceLandmark68TinyNet:F.faceLandmark68Net}},qe=class extends Je{async run(){let t=await this.parentTask,e=t.map(a=>a.detection),r=this.input instanceof Xe.Tensor?await le(this.input,e):await fe(this.input,e),n=await Promise.all(r.map(a=>this.landmarkNet.detectLandmarks(a)));return r.forEach(a=>a instanceof Xe.Tensor&&a.dispose()),t.filter((a,i)=>n[i]).map((a,i)=>Pe(a,n[i]))}withFaceExpressions(){return new St(this,this.input)}withAgeAndGender(){return new Wt(this,this.input)}withFaceDescriptors(){return new _t(this,this.input)}},Ze=class extends Je{async run(){let t=await this.parentTask;if(!t)return;let{detection:e}=t,r=this.input instanceof Xe.Tensor?await le(this.input,[e]):await fe(this.input,[e]),n=await this.landmarkNet.detectLandmarks(r[0]);return r.forEach(s=>s instanceof Xe.Tensor&&s.dispose()),Pe(t,n)}withFaceExpressions(){return new At(this,this.input)}withAgeAndGender(){return new kt(this,this.input)}withFaceDescriptor(){return new Tt(this,this.input)}};var Ke=class extends J{constructor(e,r=new X){super();this.input=e;this.options=r}},Ie=class extends Ke{async run(){let{input:t,options:e}=this,r;if(e instanceof je)r=F.tinyFaceDetector.locateFaces(t,e);else if(e instanceof X)r=F.ssdMobilenetv1.locateFaces(t,e);else if(e instanceof st)r=F.tinyYolov2.locateFaces(t,e);else throw new Error("detectFaces - expected options to be instance of TinyFaceDetectorOptions | SsdMobilenetv1Options | TinyYolov2Options");return r}runAndExtendWithFaceDetections(){return new Promise((t,e)=>{this.run().then(r=>t(r.map(n=>Vt({},n)))).catch(r=>e(r))})}withFaceLandmarks(t=!1){return new qe(this.runAndExtendWithFaceDetections(),this.input,t)}withFaceExpressions(){return new oe(this.runAndExtendWithFaceDetections(),this.input)}withAgeAndGender(){return new ae(this.runAndExtendWithFaceDetections(),this.input)}},Qe=class extends Ke{async run(){let t=await new Ie(this.input,this.options),e=t[0];return t.forEach(r=>{r.score>e.score&&(e=r)}),e}runAndExtendWithFaceDetection(){return new Promise(async t=>{let e=await this.run();t(e?Vt({},e):void 0)})}withFaceLandmarks(t=!1){return new Ze(this.runAndExtendWithFaceDetection(),this.input,t)}withFaceExpressions(){return new ne(this.runAndExtendWithFaceDetection(),this.input)}withAgeAndGender(){return new se(this.runAndExtendWithFaceDetection(),this.input)}};function Na(o,t=new X){return new Qe(o,t)}function Ar(o,t=new X){return new Ie(o,t)}async function fn(o,t){return Ar(o,new X(t?{minConfidence:t}:{})).withFaceLandmarks().withFaceDescriptors()}async function La(o,t={}){return Ar(o,new st(t)).withFaceLandmarks().withFaceDescriptors()}var Sa=fn;function xo(o,t){if(o.length!==t.length)throw new Error("euclideanDistance: arr1.length !== arr2.length");let e=Array.from(o),r=Array.from(t);return Math.sqrt(e.map((n,s)=>n-r[s]).reduce((n,s)=>n+s*s,0))}var vo=class o{constructor(t,e=.6){this._distanceThreshold=e;let r=Array.isArray(t)?t:[t];if(!r.length)throw new Error("FaceRecognizer.constructor - expected atleast one input");let n=1,s=()=>`person ${n++}`;this._labeledDescriptors=r.map(a=>{if(a instanceof Et)return a;if(a instanceof Float32Array)return new Et(s(),[a]);if(a.descriptor&&a.descriptor instanceof Float32Array)return new Et(s(),[a.descriptor]);throw new Error("FaceRecognizer.constructor - expected inputs to be of type LabeledFaceDescriptors | WithFaceDescriptor | Float32Array | Array | Float32Array>")})}get labeledDescriptors(){return this._labeledDescriptors}get distanceThreshold(){return this._distanceThreshold}computeMeanDistance(t,e){return e.map(r=>xo(r,t)).reduce((r,n)=>r+n,0)/(e.length||1)}matchDescriptor(t){return this.labeledDescriptors.map(({descriptors:e,label:r})=>new me(r,this.computeMeanDistance(t,e))).reduce((e,r)=>e.distancet.toJSON())}}static fromJSON(t){let e=t.labeledDescriptors.map(r=>Et.fromJSON(r));return new o(e,t.distanceThreshold)}};function Aa(o){let t=new re;return t.extractWeights(o),t}function ln(o,t){let{width:e,height:r}=new R(t.width,t.height);if(e<=0||r<=0)throw new Error(`resizeResults - invalid dimensions: ${JSON.stringify({width:e,height:r})}`);if(Array.isArray(o))return o.map(n=>ln(n,{width:e,height:r}));if(qt(o)){let n=o.detection.forSize(e,r),s=o.unshiftedLandmarks.forSize(n.box.width,n.box.height);return Pe(Vt(o,n),s)}return pt(o)?Vt(o,o.detection.forSize(e,r)):o instanceof H||o instanceof M?o.forSize(e,r):o}var ka=Lo;0&&(module.exports={AgeGenderNet,BoundingBox,Box,ComposableTask,ComputeAllFaceDescriptorsTask,ComputeFaceDescriptorsTaskBase,ComputeSingleFaceDescriptorTask,DetectAllFaceLandmarksTask,DetectAllFacesTask,DetectFaceLandmarksTaskBase,DetectFacesTaskBase,DetectSingleFaceLandmarksTask,DetectSingleFaceTask,Dimensions,FACE_EXPRESSION_LABELS,FaceDetection,FaceDetectionNet,FaceExpressionNet,FaceExpressions,FaceLandmark68Net,FaceLandmark68TinyNet,FaceLandmarkNet,FaceLandmarks,FaceLandmarks5,FaceLandmarks68,FaceMatch,FaceMatcher,FaceRecognitionNet,Gender,LabeledBox,LabeledFaceDescriptors,NetInput,NeuralNetwork,ObjectDetection,Point,PredictedBox,Rect,SsdMobilenetv1,SsdMobilenetv1Options,TinyFaceDetector,TinyFaceDetectorOptions,TinyYolov2,TinyYolov2Options,allFaces,allFacesSsdMobilenetv1,allFacesTinyYolov2,awaitMediaLoaded,bufferToImage,computeFaceDescriptor,createCanvas,createCanvasFromMedia,createFaceDetectionNet,createFaceRecognitionNet,createSsdMobilenetv1,createTinyFaceDetector,createTinyYolov2,detectAllFaces,detectFaceLandmarks,detectFaceLandmarksTiny,detectLandmarks,detectSingleFace,draw,env,euclideanDistance,extendWithAge,extendWithFaceDescriptor,extendWithFaceDetection,extendWithFaceExpressions,extendWithFaceLandmarks,extendWithGender,extractFaceTensors,extractFaces,fetchImage,fetchJson,fetchNetWeights,fetchOrThrow,fetchVideo,getContext2dOrThrow,getMediaDimensions,imageTensorToCanvas,imageToSquare,inverseSigmoid,iou,isMediaElement,isMediaLoaded,isWithAge,isWithFaceDetection,isWithFaceExpressions,isWithFaceLandmarks,isWithGender,loadAgeGenderModel,loadFaceDetectionModel,loadFaceExpressionModel,loadFaceLandmarkModel,loadFaceLandmarkTinyModel,loadFaceRecognitionModel,loadSsdMobilenetv1Model,loadTinyFaceDetectorModel,loadTinyYolov2Model,loadWeightMap,locateFaces,matchDimensions,minBbox,nets,nonMaxSuppression,normalize,padToSquare,predictAgeAndGender,recognizeFaceExpressions,resizeResults,resolveInput,shuffleArray,sigmoid,ssdMobilenetv1,tf,tinyFaceDetector,tinyYolov2,toNetInput,utils,validateConfig,version}); +"use strict";var dn=Object.create;var tr=Object.defineProperty;var hn=Object.getOwnPropertyDescriptor;var bn=Object.getOwnPropertyNames;var gn=Object.getPrototypeOf,xn=Object.prototype.hasOwnProperty;var vn=(o,t)=>()=>(t||o((t={exports:{}}).exports,t),t.exports),Wr=(o,t)=>{for(var e in t)tr(o,e,{get:t[e],enumerable:!0})},_o=(o,t,e,r)=>{if(t&&typeof t=="object"||typeof t=="function")for(let n of bn(t))!xn.call(o,n)&&n!==e&&tr(o,n,{get:()=>t[n],enumerable:!(r=hn(t,n))||r.enumerable});return o};var v=(o,t,e)=>(e=o!=null?dn(gn(o)):{},_o(t||!o||!o.__esModule?tr(e,"default",{value:o,enumerable:!0}):e,o)),yn=o=>_o(tr({},"__esModule",{value:!0}),o);var x=vn((Ya,rr)=>{"use strict";var Br=Object.defineProperty,_n=Object.getOwnPropertyDescriptor,Tn=Object.getOwnPropertyNames,Pn=Object.prototype.hasOwnProperty,wn=(o,t)=>{for(var e in t)Br(o,e,{get:t[e],enumerable:!0})},kr=(o,t,e,r)=>{if(t&&typeof t=="object"||typeof t=="function")for(let n of Tn(t))!Pn.call(o,n)&&n!==e&&Br(o,n,{get:()=>t[n],enumerable:!(r=_n(t,n))||r.enumerable});return o},Po=(o,t,e)=>(kr(o,t,"default"),e&&kr(e,t,"default")),Fn=o=>kr(Br({},"__esModule",{value:!0}),o),er={};wn(er,{version:()=>In});rr.exports=Fn(er);Po(er,require("@tensorflow/tfjs"),rr.exports);Po(er,require("@tensorflow/tfjs-backend-wasm"),rr.exports);var To="4.22.0",Dn="4.22.0",En="4.22.0",Mn="4.22.0",Cn="4.22.0",In={tfjs:To,"tfjs-core":To,"tfjs-converter":Dn,"tfjs-backend-cpu":En,"tfjs-backend-webgl":Mn,"tfjs-backend-wasm":Cn}});var Ba={};Wr(Ba,{AgeGenderNet:()=>He,BoundingBox:()=>Ot,Box:()=>L,ComposableTask:()=>J,ComputeAllFaceDescriptorsTask:()=>_t,ComputeFaceDescriptorsTaskBase:()=>Ue,ComputeSingleFaceDescriptorTask:()=>Tt,DetectAllFaceLandmarksTask:()=>qe,DetectAllFacesTask:()=>Ie,DetectFaceLandmarksTaskBase:()=>Je,DetectFacesTaskBase:()=>Ke,DetectSingleFaceLandmarksTask:()=>Ze,DetectSingleFaceTask:()=>Qe,Dimensions:()=>R,FACE_EXPRESSION_LABELS:()=>so,FaceDetection:()=>M,FaceDetectionNet:()=>lo,FaceExpressionNet:()=>Oe,FaceExpressions:()=>gt,FaceLandmark68Net:()=>Zt,FaceLandmark68TinyNet:()=>ze,FaceLandmarkNet:()=>po,FaceLandmarks:()=>H,FaceLandmarks5:()=>jr,FaceLandmarks68:()=>Yt,FaceMatch:()=>me,FaceMatcher:()=>vo,FaceRecognitionNet:()=>Kt,Gender:()=>Pr,LabeledBox:()=>pe,LabeledFaceDescriptors:()=>Et,NetInput:()=>ut,NeuralNetwork:()=>A,ObjectDetection:()=>Ht,Point:()=>_,PredictedBox:()=>Ur,Rect:()=>zt,SsdMobilenetv1:()=>It,SsdMobilenetv1Options:()=>X,TinyFaceDetector:()=>re,TinyFaceDetectorOptions:()=>je,TinyYolov2:()=>te,TinyYolov2Options:()=>st,allFaces:()=>Sa,allFacesSsdMobilenetv1:()=>fn,allFacesTinyYolov2:()=>La,awaitMediaLoaded:()=>to,bufferToImage:()=>eo,computeFaceDescriptor:()=>xa,createCanvas:()=>Xt,createCanvasFromMedia:()=>We,createFaceDetectionNet:()=>ua,createFaceRecognitionNet:()=>ta,createSsdMobilenetv1:()=>qo,createTinyFaceDetector:()=>Aa,createTinyYolov2:()=>da,detectAllFaces:()=>Ar,detectFaceLandmarks:()=>pn,detectFaceLandmarksTiny:()=>ga,detectLandmarks:()=>Ia,detectSingleFace:()=>Na,draw:()=>co,env:()=>w,euclideanDistance:()=>xo,extendWithAge:()=>Mr,extendWithFaceDescriptor:()=>Er,extendWithFaceDetection:()=>Vt,extendWithFaceExpressions:()=>vr,extendWithFaceLandmarks:()=>Pe,extendWithGender:()=>Cr,extractFaceTensors:()=>le,extractFaces:()=>fe,fetchImage:()=>On,fetchJson:()=>no,fetchNetWeights:()=>Hn,fetchOrThrow:()=>ht,fetchVideo:()=>zn,getContext2dOrThrow:()=>$,getMediaDimensions:()=>Ut,imageTensorToCanvas:()=>ro,imageToSquare:()=>oo,inverseSigmoid:()=>Sn,iou:()=>zr,isMediaElement:()=>cr,isMediaLoaded:()=>Ae,isWithAge:()=>ea,isWithFaceDetection:()=>pt,isWithFaceExpressions:()=>io,isWithFaceLandmarks:()=>qt,isWithGender:()=>ra,loadAgeGenderModel:()=>Ea,loadFaceDetectionModel:()=>Ma,loadFaceExpressionModel:()=>Da,loadFaceLandmarkModel:()=>Pa,loadFaceLandmarkTinyModel:()=>wa,loadFaceRecognitionModel:()=>Fa,loadSsdMobilenetv1Model:()=>un,loadTinyFaceDetectorModel:()=>_a,loadTinyYolov2Model:()=>Ta,loadWeightMap:()=>ao,locateFaces:()=>Ca,matchDimensions:()=>Yn,minBbox:()=>Yr,nets:()=>F,nonMaxSuppression:()=>Vr,normalize:()=>rt,padToSquare:()=>Gr,predictAgeAndGender:()=>ya,recognizeFaceExpressions:()=>va,resizeResults:()=>ln,resolveInput:()=>Gt,shuffleArray:()=>Ln,sigmoid:()=>Ne,ssdMobilenetv1:()=>mn,tf:()=>Wa,tinyFaceDetector:()=>ha,tinyYolov2:()=>ba,toNetInput:()=>D,utils:()=>Hr,validateConfig:()=>ho,version:()=>ka});module.exports=yn(Ba);var Wa=v(x());var co={};Wr(co,{AnchorPosition:()=>Qr,DrawBox:()=>Se,DrawBoxOptions:()=>sr,DrawFaceLandmarks:()=>_r,DrawFaceLandmarksOptions:()=>yr,DrawTextField:()=>jt,DrawTextFieldOptions:()=>ue,drawContour:()=>lt,drawDetections:()=>$n,drawFaceExpressions:()=>Vn,drawFaceLandmarks:()=>jn});function lt(o,t,e=!1){if(o.beginPath(),t.slice(1).forEach(({x:r,y:n},s)=>{let a=t[s];o.moveTo(a.x,a.y),o.lineTo(r,n)}),e){let r=t[t.length-1],n=t[0];if(!r||!n)return;o.moveTo(r.x,r.y),o.lineTo(n.x,n.y)}o.stroke()}var Hr={};Wr(Hr,{computeReshapedDimensions:()=>Or,getCenterPoint:()=>$t,isDimensions:()=>nr,isEven:()=>or,isFloat:()=>$r,isTensor:()=>Bt,isTensor1D:()=>Nn,isTensor2D:()=>Rr,isTensor3D:()=>dt,isTensor4D:()=>U,isValidNumber:()=>et,isValidProbablitiy:()=>ce,range:()=>ct,round:()=>Rt});var wo=v(x());var R=class o{constructor(t,e){if(!et(t)||!et(e))throw new Error(`Dimensions.constructor - expected width and height to be valid numbers, instead have ${JSON.stringify({width:t,height:e})}`);this._width=t,this._height=e}get width(){return this._width}get height(){return this._height}reverse(){return new o(1/this.width,1/this.height)}};function Bt(o,t){return o instanceof wo.Tensor&&o.shape.length===t}function Nn(o){return Bt(o,1)}function Rr(o){return Bt(o,2)}function dt(o){return Bt(o,3)}function U(o){return Bt(o,4)}function $r(o){return o%1!==0}function or(o){return o%2===0}function Rt(o,t=2){let e=10**t;return Math.floor(o*e)/e}function nr(o){return o&&o.width&&o.height}function Or({width:o,height:t},e){let r=e/Math.max(t,o);return new R(Math.round(o*r),Math.round(t*r))}function $t(o){return o.reduce((t,e)=>t.add(e),new _(0,0)).div(new _(o.length,o.length))}function ct(o,t,e){return Array(o).fill(0).map((r,n)=>t+n*e)}function et(o){return!!o&&o!==1/0&&o!==-1/0&&!Number.isNaN(o)||o===0}function ce(o){return et(o)&&o>=0&&o<=1}var _=class o{constructor(t,e){this._x=t,this._y=e}get x(){return this._x}get y(){return this._y}add(t){return new o(this.x+t.x,this.y+t.y)}sub(t){return new o(this.x-t.x,this.y-t.y)}mul(t){return new o(this.x*t.x,this.y*t.y)}div(t){return new o(this.x/t.x,this.y/t.y)}abs(){return new o(Math.abs(this.x),Math.abs(this.y))}magnitude(){return Math.sqrt(this.x**2+this.y**2)}floor(){return new o(Math.floor(this.x),Math.floor(this.y))}};var L=class o{static isRect(t){return!!t&&[t.x,t.y,t.width,t.height].every(et)}static assertIsValidBox(t,e,r=!1){if(!o.isRect(t))throw new Error(`${e} - invalid box: ${JSON.stringify(t)}, expected object with properties x, y, width, height`);if(!r&&(t.width<0||t.height<0))throw new Error(`${e} - width (${t.width}) and height (${t.height}) must be positive numbers`)}constructor(t,e=!0){let r=t||{},n=[r.left,r.top,r.right,r.bottom].every(et),s=[r.x,r.y,r.width,r.height].every(et);if(!s&&!n)throw new Error(`Box.constructor - expected box to be IBoundingBox | IRect, instead have ${JSON.stringify(r)}`);let[a,i,c,m]=s?[r.x,r.y,r.width,r.height]:[r.left,r.top,r.right-r.left,r.bottom-r.top];o.assertIsValidBox({x:a,y:i,width:c,height:m},"Box.constructor",e),this._x=a,this._y=i,this._width=c,this._height=m}get x(){return this._x}get y(){return this._y}get width(){return this._width}get height(){return this._height}get left(){return this.x}get top(){return this.y}get right(){return this.x+this.width}get bottom(){return this.y+this.height}get area(){return this.width*this.height}get topLeft(){return new _(this.left,this.top)}get topRight(){return new _(this.right,this.top)}get bottomLeft(){return new _(this.left,this.bottom)}get bottomRight(){return new _(this.right,this.bottom)}round(){let[t,e,r,n]=[this.x,this.y,this.width,this.height].map(s=>Math.round(s));return new o({x:t,y:e,width:r,height:n})}floor(){let[t,e,r,n]=[this.x,this.y,this.width,this.height].map(s=>Math.floor(s));return new o({x:t,y:e,width:r,height:n})}toSquare(){let{x:t,y:e,width:r,height:n}=this,s=Math.abs(r-n);return re&&(i=-u+e+r,u=e),f>t&&(c=-f+t+n,f=t),m<1&&(c=2-m,m=1),p<1&&(c=2-p,p=1),{dy:a,edy:c,dx:s,edx:i,y:p,ey:f,x:m,ex:u,w:r,h:n}}calibrate(t){return new o({left:this.left+t.left*this.width,top:this.top+t.top*this.height,right:this.right+t.right*this.width,bottom:this.bottom+t.bottom*this.height}).toSquare().round()}};var Ot=class extends L{constructor(t,e,r,n,s=!1){super({left:t,top:e,right:r,bottom:n},s)}};var Ht=class o{constructor(t,e,r,n,s){this._imageDims=new R(s.width,s.height),this._score=t,this._classScore=e,this._className=r,this._box=new L(n).rescale(this._imageDims)}get score(){return this._score}get classScore(){return this._classScore}get className(){return this._className}get box(){return this._box}get imageDims(){return this._imageDims}get imageWidth(){return this.imageDims.width}get imageHeight(){return this.imageDims.height}get relativeBox(){return new L(this._box).rescale(this.imageDims.reverse())}forSize(t,e){return new o(this.score,this.classScore,this.className,this.relativeBox,{width:t,height:e})}};var M=class o extends Ht{constructor(t,e,r){super(t,t,"",e,r)}forSize(t,e){let{score:r,relativeBox:n,imageDims:s}=super.forSize(t,e);return new o(r,n,s)}};function zr(o,t,e=!0){let r=Math.max(0,Math.min(o.right,t.right)-Math.max(o.left,t.left)),n=Math.max(0,Math.min(o.bottom,t.bottom)-Math.max(o.top,t.top)),s=r*n;return e?s/(o.area+t.area-s):s/Math.min(o.area,t.area)}function Yr(o){let t=o.map(i=>i.x),e=o.map(i=>i.y),r=t.reduce((i,c)=>ccii({score:a,boxIndex:i})).sort((a,i)=>a.score-i.score).map(a=>a.boxIndex),s=[];for(;n.length>0;){let a=n.pop();s.push(a);let i=n,c=[];for(let m=0;mc[p]<=e)}return s}var mt=v(x());function rt(o,t){return mt.tidy(()=>{let[e,r,n]=t,s=mt.fill([...o.shape.slice(0,3),1],e,"float32"),a=mt.fill([...o.shape.slice(0,3),1],r,"float32"),i=mt.fill([...o.shape.slice(0,3),1],n,"float32"),c=mt.concat([s,a,i],3);return mt.sub(o,c)})}var Dt=v(x());function Gr(o,t=!1){return Dt.tidy(()=>{let[e,r]=o.shape.slice(1);if(e===r)return o;let n=Math.abs(e-r),s=Math.round(n*(t?.5:1)),a=e>r?2:1,i=f=>{let l=o.shape.slice();return l[a]=f,Dt.fill(l,0,"float32")},c=i(s),m=n-c.shape[a],u=[t&&m?i(m):null,o,c].filter(f=>!!f).map(f=>Dt.cast(f,"float32"));return Dt.concat(u,a)})}function Ln(o){let t=o.slice();for(let e=t.length-1;e>0;e--){let r=Math.floor(Math.random()*(e+1)),n=t[e];t[e]=t[r],t[r]=n}return t}function Ne(o){return 1/(1+Math.exp(-o))}function Sn(o){return Math.log(o/(1-o))}var zt=class extends L{constructor(t,e,r,n,s=!1){super({x:t,y:e,width:r,height:n},s)}};var An=.5,Wn=.43,kn=.45,H=class{constructor(t,e,r=new _(0,0)){let{width:n,height:s}=e;this._imgDims=new R(n,s),this._shift=r,this._positions=t.map(a=>a.mul(new _(n,s)).add(r))}get shift(){return new _(this._shift.x,this._shift.y)}get imageWidth(){return this._imgDims.width}get imageHeight(){return this._imgDims.height}get positions(){return this._positions}get relativePositions(){return this._positions.map(t=>t.sub(this._shift).div(new _(this.imageWidth,this.imageHeight)))}forSize(t,e){return new this.constructor(this.relativePositions,{width:t,height:e})}shiftBy(t,e){return new this.constructor(this.relativePositions,this._imgDims,new _(t,e))}shiftByPoint(t){return this.shiftBy(t.x,t.y)}align(t,e={}){if(t){let s=t instanceof M?t.box.floor():new L(t);return this.shiftBy(s.x,s.y).align(null,e)}let{useDlibAlignment:r,minBoxPadding:n}={useDlibAlignment:!1,minBoxPadding:.2,...e};return r?this.alignDlib():this.alignMinBbox(n)}alignDlib(){let t=this.getRefPointsForAlignment(),[e,r,n]=t,s=u=>n.sub(u).magnitude(),a=(s(e)+s(r))/2,i=Math.floor(a/kn),c=$t(t),m=Math.floor(Math.max(0,c.x-An*i)),p=Math.floor(Math.max(0,c.y-Wn*i));return new zt(m,p,Math.min(i,this.imageWidth+m),Math.min(i,this.imageHeight+p))}alignMinBbox(t){let e=Yr(this.positions);return e.pad(e.width*t,e.height*t)}getRefPointsForAlignment(){throw new Error("getRefPointsForAlignment not implemented by base class")}};var jr=class extends H{getRefPointsForAlignment(){let t=this.positions;return[t[0],t[1],$t([t[3],t[4]])]}};var Yt=class extends H{getJawOutline(){return this.positions.slice(0,17)}getLeftEyeBrow(){return this.positions.slice(17,22)}getRightEyeBrow(){return this.positions.slice(22,27)}getNose(){return this.positions.slice(27,36)}getLeftEye(){return this.positions.slice(36,42)}getRightEye(){return this.positions.slice(42,48)}getMouth(){return this.positions.slice(48,68)}getRefPointsForAlignment(){return[this.getLeftEye(),this.getRightEye(),this.getMouth()].map($t)}};var me=class{constructor(t,e){this._label=t,this._distance=e}get label(){return this._label}get distance(){return this._distance}toString(t=!0){return`${this.label}${t?` (${Rt(this.distance)})`:""}`}};var pe=class extends L{static assertIsValidLabeledBox(t,e){if(L.assertIsValidBox(t,e),!et(t.label))throw new Error(`${e} - expected property label (${t.label}) to be a number`)}constructor(t,e){super(t),this._label=e}get label(){return this._label}};var Et=class o{constructor(t,e){if(typeof t!="string")throw new Error("LabeledFaceDescriptors - constructor expected label to be a string");if(!Array.isArray(e)||e.some(r=>!(r instanceof Float32Array)))throw new Error("LabeledFaceDescriptors - constructor expected descriptors to be an array of Float32Array");this._label=t,this._descriptors=e}get label(){return this._label}get descriptors(){return this._descriptors}toJSON(){return{label:this.label,descriptors:this.descriptors.map(t=>Array.from(t))}}static fromJSON(t){let e=t.descriptors.map(r=>new Float32Array(r));return new o(t.label,e)}};var Ur=class extends pe{static assertIsValidPredictedBox(t,e){if(pe.assertIsValidLabeledBox(t,e),!ce(t.score)||!ce(t.classScore))throw new Error(`${e} - expected properties score (${t.score}) and (${t.classScore}) to be a number between [0, 1]`)}constructor(t,e,r,n){super(t,e),this._score=r,this._classScore=n}get score(){return this._score}get classScore(){return this._classScore}};function pt(o){return o.detection instanceof M}function Vt(o,t){return{...o,...{detection:t}}}function Xr(){let o=window.fetch;if(!o)throw new Error("fetch - missing fetch implementation for browser environment");return{Canvas:HTMLCanvasElement,CanvasRenderingContext2D,Image:HTMLImageElement,ImageData,Video:HTMLVideoElement,createCanvasElement:()=>document.createElement("canvas"),createImageElement:()=>document.createElement("img"),createVideoElement:()=>document.createElement("video"),fetch:o,readFile:()=>{throw new Error("readFile - filesystem not available for browser environment")}}}function Le(){return typeof global=="object"&&typeof process!="undefined"&&process.versions!=null&&process.versions.node!=null}function ar(o){let t="";if(!o&&Le())try{o=require("fs")}catch(r){t=r.toString()}return{readFile:o?r=>new Promise((n,s)=>{o.readFile(r,(a,i)=>a?s(a):n(i))}):()=>{throw new Error(`readFile - failed to require fs in nodejs environment with error: ${t}`)}}}function Jr(){let o=global.Canvas||global.HTMLCanvasElement,t=global.Image||global.HTMLImageElement,e=global.Video||global.HTMLVideoElement,r=()=>{if(o)return new o;throw new Error("createCanvasElement - missing Canvas implementation for nodejs environment")},n=()=>{if(t)return new t;throw new Error("createImageElement - missing Image implementation for nodejs environment")},s=()=>{if(e)return new e;throw new Error("createVideoElement - missing Video implementation for nodejs environment")},a=global.fetch,i=ar();return{Canvas:o||class{},CanvasRenderingContext2D:global.CanvasRenderingContext2D||class{},Image:t||class{},ImageData:global.ImageData||class{},Video:global.HTMLVideoElement||class{},createCanvasElement:r,createImageElement:n,createVideoElement:s,fetch:a,...i}}function qr(){return typeof window=="object"&&typeof document!="undefined"&&typeof HTMLImageElement!="undefined"&&typeof HTMLCanvasElement!="undefined"&&typeof HTMLVideoElement!="undefined"&&typeof ImageData!="undefined"&&typeof CanvasRenderingContext2D!="undefined"}var S;function Bn(){if(!S)throw new Error("getEnv - environment is not defined, check isNodejs() and isBrowser()");return S}function Zr(o){S=o}function Kr(){return qr()?Zr(Xr()):Le()?Zr(Jr()):null}function Rn(o){if(S||Kr(),!S)throw new Error("monkeyPatch - environment is not defined, check isNodejs() and isBrowser()");let{Canvas:t=S.Canvas,Image:e=S.Image}=o;S.Canvas=t,S.Image=e,S.createCanvasElement=o.createCanvasElement||(()=>new t),S.createImageElement=o.createImageElement||(()=>new e),S.ImageData=o.ImageData||S.ImageData,S.Video=o.Video||S.Video,S.fetch=o.fetch||S.fetch,S.readFile=o.readFile||S.readFile}var w={getEnv:Bn,setEnv:Zr,initialize:Kr,createBrowserEnv:Xr,createFileSystem:ar,createNodejsEnv:Jr,monkeyPatch:Rn,isBrowser:qr,isNodejs:Le};Kr();function Gt(o){return!w.isNodejs()&&typeof o=="string"?document.getElementById(o):o}function $(o){let{Canvas:t,CanvasRenderingContext2D:e}=w.getEnv();if(o instanceof e)return o;let r=Gt(o);if(!(r instanceof t))throw new Error("resolveContext2d - expected canvas to be of instance of Canvas");let n=r.getContext("2d",{willReadFrequently:!0});if(!n)throw new Error("resolveContext2d - canvas 2d context is null");return n}var Qr=(n=>(n.TOP_LEFT="TOP_LEFT",n.TOP_RIGHT="TOP_RIGHT",n.BOTTOM_LEFT="BOTTOM_LEFT",n.BOTTOM_RIGHT="BOTTOM_RIGHT",n))(Qr||{}),ue=class{constructor(t={}){let{anchorPosition:e,backgroundColor:r,fontColor:n,fontSize:s,fontStyle:a,padding:i}=t;this.anchorPosition=e||"TOP_LEFT",this.backgroundColor=r||"rgba(0, 0, 0, 0.5)",this.fontColor=n||"rgba(255, 255, 255, 1)",this.fontSize=s||14,this.fontStyle=a||"Georgia",this.padding=i||4}},jt=class o{constructor(t,e,r={}){this.text=typeof t=="string"?[t]:t instanceof o?t.text:t,this.anchor=e,this.options=new ue(r)}measureWidth(t){let{padding:e}=this.options;return this.text.map(r=>t.measureText(r).width).reduce((r,n)=>r{let b=c+u.x,T=c+u.y+(l+1)*a;r.fillText(f,b,T)})}};var sr=class{constructor(t={}){let{boxColor:e,lineWidth:r,label:n,drawLabelOptions:s}=t;this.boxColor=e||"rgba(0, 0, 255, 1)",this.lineWidth=r||2,this.label=n;let a={anchorPosition:"BOTTOM_LEFT",backgroundColor:this.boxColor};this.drawLabelOptions=new ue({...a,...s})}},Se=class{constructor(t,e={}){this.box=new L(t),this.options=new sr(e)}draw(t){let e=$(t),{boxColor:r,lineWidth:n}=this.options,{x:s,y:a,width:i,height:c}=this.box;e.strokeStyle=r,e.lineWidth=n,e.strokeRect(s,a,i,c);let{label:m}=this.options;m&&new jt([m],{x:s-n/2,y:a},this.options.drawLabelOptions).draw(t)}};function $n(o,t){(Array.isArray(t)?t:[t]).forEach(r=>{let n=r instanceof M?r.score:pt(r)?r.detection.score:void 0,s=r instanceof M?r.box:pt(r)?r.detection.box:new L(r),a=n?`${Rt(n)}`:void 0;new Se(s,{label:a}).draw(o)})}var Te=v(x());function Ae(o){let{Image:t,Video:e}=w.getEnv();return o instanceof t&&o.complete||o instanceof e&&o.readyState>=3}function to(o){return new Promise((t,e)=>{if(o instanceof w.getEnv().Canvas||Ae(o)){t(null);return}function r(s){s.currentTarget&&(s.currentTarget.removeEventListener("load",n),s.currentTarget.removeEventListener("error",r),e(s))}function n(s){s.currentTarget&&(s.currentTarget.removeEventListener("load",n),s.currentTarget.removeEventListener("error",r),t(s))}o.addEventListener("load",n),o.addEventListener("error",r)})}function eo(o){return new Promise((t,e)=>{o instanceof Blob||e(new Error("bufferToImage - expected buf to be of type: Blob"));let r=new FileReader;r.onload=()=>{typeof r.result!="string"&&e(new Error("bufferToImage - expected reader.result to be a string, in onload"));let n=w.getEnv().createImageElement();n.onload=()=>t(n),n.onerror=e,n.src=r.result},r.onerror=e,r.readAsDataURL(o)})}function Ut(o){let{Image:t,Video:e}=w.getEnv();return o instanceof t?new R(o.naturalWidth,o.naturalHeight):o instanceof e?new R(o.videoWidth,o.videoHeight):new R(o.width,o.height)}function Xt({width:o,height:t}){let{createCanvasElement:e}=w.getEnv(),r=e();return r.width=o,r.height=t,r}function We(o,t){let{ImageData:e}=w.getEnv();if(!(o instanceof e)&&!Ae(o))throw new Error("createCanvasFromMedia - media has not finished loading yet");let{width:r,height:n}=t||Ut(o),s=Xt({width:r,height:n});return o instanceof e?$(s).putImageData(o,0,0):$(s).drawImage(o,0,0,r,n),s}var ir=v(x());async function ro(o,t){let e=t||w.getEnv().createCanvasElement(),[r,n,s]=o.shape.slice(U(o)?1:0),a=ir.tidy(()=>o.as3D(r,n,s).toInt());return await ir.browser.toPixels(a,e),a.dispose(),e}function cr(o){let{Image:t,Canvas:e,Video:r}=w.getEnv();return o instanceof t||o instanceof e||o instanceof r}var z=v(x());function oo(o,t,e=!1){let{Image:r,Canvas:n}=w.getEnv();if(!(o instanceof r||o instanceof n))throw new Error("imageToSquare - expected arg0 to be HTMLImageElement | HTMLCanvasElement");if(t<=0)return Xt({width:1,height:1});let s=Ut(o),a=t/Math.max(s.height,s.width),i=a*s.width,c=a*s.height,m=Xt({width:t,height:t}),p=o instanceof n?o:We(o),u=Math.abs(i-c)/2,f=e&&i0&&p.height>0&&$(m).drawImage(p,f,l,i,c),m}var ut=class{constructor(t,e=!1){this._imageTensors=[];this._canvases=[];this._treatAsBatchInput=!1;this._inputDimensions=[];this._inputSize=0;if(!Array.isArray(t))throw new Error(`NetInput.constructor - expected inputs to be an Array of TResolvedNetInput or to be instanceof tf.Tensor4D, instead have ${t}`);this._treatAsBatchInput=e,this._batchSize=t.length,t.forEach((r,n)=>{if(dt(r)){this._imageTensors[n]=r,this._inputDimensions[n]=r.shape;return}if(U(r)){let a=r.shape[0];if(a!==1)throw new Error(`NetInput - tf.Tensor4D with batchSize ${a} passed, but not supported in input array`);this._imageTensors[n]=r,this._inputDimensions[n]=r.shape.slice(1);return}let s=r instanceof w.getEnv().Canvas?r:We(r);this._canvases[n]=s,this._inputDimensions[n]=[s.height,s.width,3]})}get imageTensors(){return this._imageTensors}get canvases(){return this._canvases}get isBatchInput(){return this.batchSize>1||this._treatAsBatchInput}get batchSize(){return this._batchSize}get inputDimensions(){return this._inputDimensions}get inputSize(){return this._inputSize}get reshapedInputDimensions(){return ct(this.batchSize,0,1).map((t,e)=>this.getReshapedInputDimensions(e))}getInput(t){return this.canvases[t]||this.imageTensors[t]}getInputDimensions(t){return this._inputDimensions[t]}getInputHeight(t){return this._inputDimensions[t][0]}getInputWidth(t){return this._inputDimensions[t][1]}getReshapedInputDimensions(t){if(typeof this.inputSize!="number")throw new Error("getReshapedInputDimensions - inputSize not set, toBatchTensor has not been called yet");let e=this.getInputWidth(t),r=this.getInputHeight(t);return Or({width:e,height:r},this.inputSize)}toBatchTensor(t,e=!0){return this._inputSize=t,z.tidy(()=>{let r=ct(this.batchSize,0,1).map(s=>{let a=this.getInput(s);if(a instanceof z.Tensor){let i=U(a)?a:z.expandDims(a);return i=Gr(i,e),(i.shape[1]!==t||i.shape[2]!==t)&&(i=z.image.resizeBilinear(i,[t,t],!1,!1)),i.as3D(t,t,3)}if(a instanceof w.getEnv().Canvas)return z.browser.fromPixels(oo(a,t,e));throw new Error(`toBatchTensor - at batchIdx ${s}, expected input to be instanceof tf.Tensor or instanceof HTMLCanvasElement, instead have ${a}`)});return z.stack(r.map(s=>z.cast(s,"float32"))).as4D(this.batchSize,t,t,3)})}};async function D(o){if(o instanceof ut)return o;let t=Array.isArray(o)?o:[o];if(!t.length)throw new Error("toNetInput - empty array passed as input");let e=n=>Array.isArray(o)?` at input index ${n}:`:"",r=t.map(Gt);return r.forEach((n,s)=>{if(!cr(n)&&!dt(n)&&!U(n))throw typeof t[s]=="string"?new Error(`toNetInput -${e(s)} string passed, but could not resolve HTMLElement for element id ${t[s]}`):new Error(`toNetInput -${e(s)} expected media to be of type HTMLImageElement | HTMLVideoElement | HTMLCanvasElement | tf.Tensor3D, or to be an element id`);if(U(n)){let a=n.shape[0];if(a!==1)throw new Error(`toNetInput -${e(s)} tf.Tensor4D with batchSize ${a} passed, but not supported in input array`)}}),await Promise.all(r.map(n=>cr(n)&&to(n))),new ut(r,Array.isArray(o))}async function fe(o,t){let{Canvas:e}=w.getEnv(),r=o;if(!(o instanceof e)){let a=await D(o);if(a.batchSize>1)throw new Error("extractFaces - batchSize > 1 not supported");let i=a.getInput(0);r=i instanceof e?i:await ro(i)}let n=$(r);return t.map(a=>a instanceof M?a.forSize(r.width,r.height).box.floor():a).map(a=>a.clipAtImageBorders(r.width,r.height)).map(({x:a,y:i,width:c,height:m})=>{let p=Xt({width:c,height:m});return c>0&&m>0&&$(p).putImageData(n.getImageData(a,i,c,m),0,0),p})}var mr=v(x());async function le(o,t){if(!dt(o)&&!U(o))throw new Error("extractFaceTensors - expected image tensor to be 3D or 4D");if(U(o)&&o.shape[0]>1)throw new Error("extractFaceTensors - batchSize > 1 not supported");return mr.tidy(()=>{let[e,r,n]=o.shape.slice(U(o)?1:0);return t.map(i=>i instanceof M?i.forSize(r,e).box:i).map(i=>i.clipAtImageBorders(r,e)).filter(i=>i.width>0&&i.height>0).map(({x:i,y:c,width:m,height:p})=>mr.slice3d(o.as3D(e,r,n),[c,i,0],[p,m,n]))})}async function ht(o,t){let{fetch:e}=w.getEnv(),r=await e(o,t);if(!(r.status<400))throw new Error(`failed to fetch: (${r.status}) ${r.statusText}, from url: ${r.url}`);return r}async function On(o){let t=await ht(o),e=await t.blob();if(!e.type.startsWith("image/"))throw new Error(`fetchImage - expected blob type to be of type image/*, instead have: ${e.type}, for url: ${t.url}`);return eo(e)}async function no(o){return(await ht(o)).json()}async function Hn(o){return new Float32Array(await(await ht(o)).arrayBuffer())}function Fo(o){return new Promise((t,e)=>{o instanceof Blob||e(new Error("bufferToVideo - expected buf to be of type: Blob"));let r=w.getEnv().createVideoElement();r.oncanplay=()=>t(r),r.onerror=e,r.playsInline=!0,r.muted=!0,r.src=URL.createObjectURL(o),r.play()})}async function zn(o){let t=await ht(o),e=await t.blob();if(!e.type.startsWith("video/"))throw new Error(`fetchVideo - expected blob type to be of type video/*, instead have: ${e.type}, for url: ${t.url}`);return Fo(e)}var Do=v(x());function pr(o,t){let e=`${t}-weights_manifest.json`;if(!o)return{modelBaseUri:"",manifestUri:e};if(o==="/")return{modelBaseUri:"/",manifestUri:`/${e}`};let r=o.startsWith("http://")?"http://":o.startsWith("https://")?"https://":"";o=o.replace(r,"");let n=o.split("/").filter(i=>i),s=o.endsWith(".json")?n[n.length-1]:e,a=r+(o.endsWith(".json")?n.slice(0,n.length-1):n).join("/");return a=o.startsWith("/")?`/${a}`:a,{modelBaseUri:a,manifestUri:a==="/"?`/${s}`:`${a}/${s}`}}async function ao(o,t){let{manifestUri:e,modelBaseUri:r}=pr(o,t),n=await no(e);return Do.io.loadWeights(n,r)}function Yn(o,t,e=!1){let{width:r,height:n}=e?Ut(t):t;return o.width=r,o.height=n,{width:r,height:n}}var ve=v(x());var bt=v(x());var A=class{constructor(t){this._params=void 0;this._paramMappings=[];this._name=t}get params(){return this._params}get paramMappings(){return this._paramMappings}get isLoaded(){return!!this.params}getParamFromPath(t){let{obj:e,objProp:r}=this.traversePropertyPath(t);return e[r]}reassignParamFromPath(t,e){let{obj:r,objProp:n}=this.traversePropertyPath(t);r[n].dispose(),r[n]=e}getParamList(){return this._paramMappings.map(({paramPath:t})=>({path:t,tensor:this.getParamFromPath(t)}))}getTrainableParams(){return this.getParamList().filter(t=>t.tensor instanceof bt.Variable)}getFrozenParams(){return this.getParamList().filter(t=>!(t.tensor instanceof bt.Variable))}variable(){this.getFrozenParams().forEach(({path:t,tensor:e})=>{this.reassignParamFromPath(t,e.variable())})}freeze(){this.getTrainableParams().forEach(({path:t,tensor:e})=>{let r=bt.tensor(e.dataSync());e.dispose(),this.reassignParamFromPath(t,r)})}dispose(t=!0){this.getParamList().forEach(e=>{if(t&&e.tensor.isDisposed)throw new Error(`param tensor has already been disposed for path ${e.path}`);e.tensor.dispose()}),this._params=void 0}serializeParams(){return new Float32Array(this.getParamList().map(({tensor:t})=>Array.from(t.dataSync())).reduce((t,e)=>t.concat(e)))}async load(t){if(t instanceof Float32Array){this.extractWeights(t);return}await this.loadFromUri(t)}async loadFromUri(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromUri - expected model uri`);let e=await ao(t,this.getDefaultModelName());this.loadFromWeightMap(e)}async loadFromDisk(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromDisk - expected model file path`);let{readFile:e}=w.getEnv(),{manifestUri:r,modelBaseUri:n}=pr(t,this.getDefaultModelName()),s=m=>Promise.all(m.map(p=>e(p).then(u=>typeof u=="string"?Buffer.from(u):u.buffer))),a=bt.io.weightsLoaderFactory(s),i=JSON.parse((await e(r)).toString()),c=await a(i,n);this.loadFromWeightMap(c)}loadFromWeightMap(t){let{paramMappings:e,params:r}=this.extractParamsFromWeightMap(t);this._paramMappings=e,this._params=r}extractWeights(t){let{paramMappings:e,params:r}=this.extractParams(t);this._paramMappings=e,this._params=r}traversePropertyPath(t){if(!this.params)throw new Error("traversePropertyPath - model has no loaded params");let e=t.split("/").reduce((s,a)=>{if(!s.nextObj.hasOwnProperty(a))throw new Error(`traversePropertyPath - object does not have property ${a}, for path ${t}`);return{obj:s.nextObj,objProp:a,nextObj:s.nextObj[a]}},{nextObj:this.params}),{obj:r,objProp:n}=e;if(!r||!n||!(r[n]instanceof bt.Tensor))throw new Error(`traversePropertyPath - parameter is not a tensor, for path ${t}`);return{obj:r,objProp:n}}};var E=v(x());var de=v(x());function O(o,t,e){return de.tidy(()=>{let r=de.separableConv2d(o,t.depthwise_filter,t.pointwise_filter,e,"same");return r=de.add(r,t.bias),r})}function ur(o,t,e=!1){return E.tidy(()=>{let r=E.relu(e?E.add(E.conv2d(o,t.conv0.filters,[2,2],"same"),t.conv0.bias):O(o,t.conv0,[2,2])),n=O(r,t.conv1,[1,1]),s=E.relu(E.add(r,n)),a=O(s,t.conv2,[1,1]);return E.relu(E.add(r,E.add(n,a)))})}function ke(o,t,e=!1,r=!0){return E.tidy(()=>{let n=E.relu(e?E.add(E.conv2d(o,t.conv0.filters,r?[2,2]:[1,1],"same"),t.conv0.bias):O(o,t.conv0,r?[2,2]:[1,1])),s=O(n,t.conv1,[1,1]),a=E.relu(E.add(n,s)),i=O(a,t.conv2,[1,1]),c=E.relu(E.add(n,E.add(s,i))),m=O(c,t.conv3,[1,1]);return E.relu(E.add(n,E.add(s,E.add(i,m))))})}var Mt=v(x());function Jt(o,t,e="same",r=!1){return Mt.tidy(()=>{let n=Mt.add(Mt.conv2d(o,t.filters,[1,1],e),t.bias);return r?Mt.relu(n):n})}function W(o,t){Object.keys(o).forEach(e=>{t.some(r=>r.originalPath===e)||o[e].dispose()})}var fr=v(x());function he(o,t){return(e,r,n,s)=>{let a=fr.tensor4d(o(e*r*n*n),[n,n,e,r]),i=fr.tensor1d(o(r));return t.push({paramPath:`${s}/filters`},{paramPath:`${s}/bias`}),{filters:a,bias:i}}}var lr=v(x());function dr(o,t){return(e,r,n)=>{let s=lr.tensor2d(o(e*r),[e,r]),a=lr.tensor1d(o(r));return t.push({paramPath:`${n}/weights`},{paramPath:`${n}/bias`}),{weights:s,bias:a}}}var Re=v(x());var Be=class{constructor(t,e,r){this.depthwise_filter=t;this.pointwise_filter=e;this.bias=r}};function be(o,t){return(e,r,n)=>{let s=Re.tensor4d(o(9*e),[3,3,e,1]),a=Re.tensor4d(o(e*r),[1,1,e,r]),i=Re.tensor1d(o(r));return t.push({paramPath:`${n}/depthwise_filter`},{paramPath:`${n}/pointwise_filter`},{paramPath:`${n}/bias`}),new Be(s,a,i)}}function ge(o){return t=>{let e=o(`${t}/depthwise_filter`,4),r=o(`${t}/pointwise_filter`,4),n=o(`${t}/bias`,1);return new Be(e,r,n)}}function Y(o,t){return(e,r,n)=>{let s=o[e];if(!Bt(s,r))throw new Error(`expected weightMap[${e}] to be a Tensor${r}D, instead have ${s}`);return t.push({originalPath:e,paramPath:n||e}),s}}function k(o){let t=o;function e(n){let s=t.slice(0,n);return t=t.slice(n),s}function r(){return t}return{extractWeights:e,getRemainingWeights:r}}function hr(o,t){let e=he(o,t),r=be(o,t);function n(a,i,c,m=!1){let p=m?e(a,i,3,`${c}/conv0`):r(a,i,`${c}/conv0`),u=r(i,i,`${c}/conv1`),f=r(i,i,`${c}/conv2`);return{conv0:p,conv1:u,conv2:f}}function s(a,i,c,m=!1){let{conv0:p,conv1:u,conv2:f}=n(a,i,c,m),l=r(i,i,`${c}/conv3`);return{conv0:p,conv1:u,conv2:f,conv3:l}}return{extractDenseBlock3Params:n,extractDenseBlock4Params:s}}function Eo(o){let t=[],{extractWeights:e,getRemainingWeights:r}=k(o),{extractDenseBlock4Params:n}=hr(e,t),s=n(3,32,"dense0",!0),a=n(32,64,"dense1"),i=n(64,128,"dense2"),c=n(128,256,"dense3");if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:t,params:{dense0:s,dense1:a,dense2:i,dense3:c}}}function br(o){return t=>{let e=o(`${t}/filters`,4),r=o(`${t}/bias`,1);return{filters:e,bias:r}}}function gr(o,t){let e=Y(o,t),r=br(e),n=ge(e);function s(i,c=!1){let m=c?r(`${i}/conv0`):n(`${i}/conv0`),p=n(`${i}/conv1`),u=n(`${i}/conv2`);return{conv0:m,conv1:p,conv2:u}}function a(i,c=!1){let m=c?r(`${i}/conv0`):n(`${i}/conv0`),p=n(`${i}/conv1`),u=n(`${i}/conv2`),f=n(`${i}/conv3`);return{conv0:m,conv1:p,conv2:u,conv3:f}}return{extractDenseBlock3Params:s,extractDenseBlock4Params:a}}function Mo(o){let t=[],{extractDenseBlock4Params:e}=gr(o,t),r={dense0:e("dense0",!0),dense1:e("dense1"),dense2:e("dense2"),dense3:e("dense3")};return W(o,t),{params:r,paramMappings:t}}var xe=class extends A{constructor(){super("FaceFeatureExtractor")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("FaceFeatureExtractor - load model before inference");return ve.tidy(()=>{let r=ve.cast(t.toBatchTensor(112,!0),"float32"),s=rt(r,[122.782,117.001,104.298]).div(255),a=ke(s,e.dense0,!0);return a=ke(a,e.dense1),a=ke(a,e.dense2),a=ke(a,e.dense3),a=ve.avgPool(a,[7,7],[2,2],"valid"),a})}async forward(t){return this.forwardInput(await D(t))}getDefaultModelName(){return"face_feature_extractor_model"}extractParamsFromWeightMap(t){return Mo(t)}extractParams(t){return Eo(t)}};var No=v(x());var ye=v(x());function $e(o,t){return ye.tidy(()=>ye.add(ye.matMul(o,t.weights),t.bias))}function Co(o,t,e){let r=[],{extractWeights:n,getRemainingWeights:s}=k(o),i=dr(n,r)(t,e,"fc");if(s().length!==0)throw new Error(`weights remaing after extract: ${s().length}`);return{paramMappings:r,params:{fc:i}}}function Io(o){let t=[],e=Y(o,t);function r(s){let a=e(`${s}/weights`,2),i=e(`${s}/bias`,1);return{weights:a,bias:i}}let n={fc:r("fc")};return W(o,t),{params:n,paramMappings:t}}function xr(o){let t={},e={};return Object.keys(o).forEach(r=>{let n=r.startsWith("fc")?e:t;n[r]=o[r]}),{featureExtractorMap:t,classifierMap:e}}var _e=class extends A{constructor(t,e){super(t),this._faceFeatureExtractor=e}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(t){let{params:e}=this;if(!e)throw new Error(`${this._name} - load model before inference`);return No.tidy(()=>{let r=t instanceof ut?this.faceFeatureExtractor.forwardInput(t):t;return $e(r.as2D(r.shape[0],-1),e.fc)})}dispose(t=!0){this.faceFeatureExtractor.dispose(t),super.dispose(t)}loadClassifierParams(t){let{params:e,paramMappings:r}=this.extractClassifierParams(t);this._params=e,this._paramMappings=r}extractClassifierParams(t){return Co(t,this.getClassifierChannelsIn(),this.getClassifierChannelsOut())}extractParamsFromWeightMap(t){let{featureExtractorMap:e,classifierMap:r}=xr(t);return this.faceFeatureExtractor.loadFromWeightMap(e),Io(r)}extractParams(t){let e=this.getClassifierChannelsIn(),r=this.getClassifierChannelsOut(),n=r*e+r,s=t.slice(0,t.length-n),a=t.slice(t.length-n);return this.faceFeatureExtractor.extractWeights(s),this.extractClassifierParams(a)}};var so=["neutral","happy","sad","angry","fearful","disgusted","surprised"],gt=class{constructor(t){this.neutral=0;this.happy=0;this.sad=0;this.angry=0;this.fearful=0;this.disgusted=0;this.surprised=0;if(t.length!==7)throw new Error(`FaceExpressions.constructor - expected probabilities.length to be 7, have: ${t.length}`);so.forEach((e,r)=>{this[e]=t[r]})}asSortedArray(){return so.map(t=>({expression:t,probability:this[t]})).sort((t,e)=>e.probability-t.probability)}};var Oe=class extends _e{constructor(t=new xe){super("FaceExpressionNet",t)}forwardInput(t){return Te.tidy(()=>Te.softmax(this.runNet(t)))}async forward(t){return this.forwardInput(await D(t))}async predictExpressions(t){let e=await D(t),r=await this.forwardInput(e),n=await Promise.all(Te.unstack(r).map(async a=>{let i=a.dataSync();return a.dispose(),i}));r.dispose();let s=n.map(a=>new gt(a));return e.isBatchInput?s:s[0]}getDefaultModelName(){return"face_expression_model"}getClassifierChannelsIn(){return 256}getClassifierChannelsOut(){return 7}};function io(o){return o.expressions instanceof gt}function vr(o,t){return{...o,...{expressions:t}}}function Vn(o,t,e=.1,r){(Array.isArray(t)?t:[t]).forEach(s=>{let a=s instanceof gt?s:io(s)?s.expressions:void 0;if(!a)throw new Error("drawFaceExpressions - expected faceExpressions to be FaceExpressions | WithFaceExpressions<{}> or array thereof");let c=a.asSortedArray().filter(u=>u.probability>e),m=pt(s)?s.detection.box.bottomLeft:r||new _(0,0);new jt(c.map(u=>`${u.expression} (${Rt(u.probability)})`),m).draw(o)})}function qt(o){return pt(o)&&o.landmarks instanceof H&&o.unshiftedLandmarks instanceof H&&o.alignedRect instanceof M}function Gn(o){let t=c=>c*180/Math.PI,e=(c,m)=>Math.sqrt((c.x-m.x)**2+(c.y-m.y)**2),r={roll:void 0,pitch:void 0,yaw:void 0},n=(c,m,p)=>{let u=Math.floor(c.x-m.x),f=Math.floor(m.x-p.x);return u-f},s=(c,m)=>{let p=Math.hypot(m.x-c.x,m.y-c.y),u=m.y-c.y,f=Math.asin(u/p),l=t(f),b=Math.floor(90-l),T=m.x-c.x<0?-1:1;return b*T},a=(c,m,p)=>{let u=e(c,p),f=new _((c.x+p.x)/2,(c.y+p.y)/2),l=e(m,f),b=Math.atan(l/u),T=Math.floor(t(b)),h=f.y-m.y<0?-1:1;return T*h};if(!o||!o.positions||o.positions.length!==68)return r;let i=o.positions;return r.roll=s(i[27],i[66]),r.pitch=a(i[14],i[30],i[2]),r.yaw=n(i[14],i[33],i[2]),r}function Pe(o,t){let{box:e}=o.detection,r=t.shiftBy(e.x,e.y),n=r.align(),{imageDims:s}=o.detection,a=new M(o.detection.score,n.rescale(s.reverse()),s),i=Gn(t);return{...o,...{landmarks:r,unshiftedLandmarks:t,alignedRect:a,angle:i}}}var yr=class{constructor(t={}){let{drawLines:e=!0,drawPoints:r=!0,lineWidth:n,lineColor:s,pointSize:a,pointColor:i}=t;this.drawLines=e,this.drawPoints=r,this.lineWidth=n||1,this.pointSize=a||2,this.lineColor=s||"rgba(0, 255, 255, 1)",this.pointColor=i||"rgba(255, 0, 255, 1)"}},_r=class{constructor(t,e={}){this.faceLandmarks=t,this.options=new yr(e)}draw(t){let e=$(t),{drawLines:r,drawPoints:n,lineWidth:s,lineColor:a,pointSize:i,pointColor:c}=this.options;if(r&&this.faceLandmarks instanceof Yt&&(e.strokeStyle=a,e.lineWidth=s,lt(e,this.faceLandmarks.getJawOutline()),lt(e,this.faceLandmarks.getLeftEyeBrow()),lt(e,this.faceLandmarks.getRightEyeBrow()),lt(e,this.faceLandmarks.getNose()),lt(e,this.faceLandmarks.getLeftEye(),!0),lt(e,this.faceLandmarks.getRightEye(),!0),lt(e,this.faceLandmarks.getMouth(),!0)),n){e.strokeStyle=c,e.fillStyle=c;let m=p=>{e.beginPath(),e.arc(p.x,p.y,i,0,2*Math.PI),e.fill()};this.faceLandmarks.positions.forEach(m)}}};function jn(o,t){(Array.isArray(t)?t:[t]).forEach(r=>{let n=r instanceof H?r:qt(r)?r.landmarks:void 0;if(!n)throw new Error("drawFaceLandmarks - expected faceExpressions to be FaceLandmarks | WithFaceLandmarks> or array thereof");new _r(n).draw(o)})}var Lo="1.7.15";var ft=v(x());var N=v(x());function Jn(o,t){let e=he(o,t),r=be(o,t);function n(a,i,c){let m=r(a,i,`${c}/separable_conv0`),p=r(i,i,`${c}/separable_conv1`),u=e(a,i,1,`${c}/expansion_conv`);return{separable_conv0:m,separable_conv1:p,expansion_conv:u}}function s(a,i){let c=r(a,a,`${i}/separable_conv0`),m=r(a,a,`${i}/separable_conv1`),p=r(a,a,`${i}/separable_conv2`);return{separable_conv0:c,separable_conv1:m,separable_conv2:p}}return{extractConvParams:e,extractSeparableConvParams:r,extractReductionBlockParams:n,extractMainBlockParams:s}}function So(o,t){let e=[],{extractWeights:r,getRemainingWeights:n}=k(o),{extractConvParams:s,extractSeparableConvParams:a,extractReductionBlockParams:i,extractMainBlockParams:c}=Jn(r,e),m=s(3,32,3,"entry_flow/conv_in"),p=i(32,64,"entry_flow/reduction_block_0"),u=i(64,128,"entry_flow/reduction_block_1"),f={conv_in:m,reduction_block_0:p,reduction_block_1:u},l={};ct(t,0,1).forEach(g=>{l[`main_block_${g}`]=c(128,`middle_flow/main_block_${g}`)});let b=i(128,256,"exit_flow/reduction_block"),T=a(256,512,"exit_flow/separable_conv"),h={reduction_block:b,separable_conv:T};if(n().length!==0)throw new Error(`weights remaing after extract: ${n().length}`);return{paramMappings:e,params:{entry_flow:f,middle_flow:l,exit_flow:h}}}function qn(o,t){let e=Y(o,t),r=br(e),n=ge(e);function s(i){let c=n(`${i}/separable_conv0`),m=n(`${i}/separable_conv1`),p=r(`${i}/expansion_conv`);return{separable_conv0:c,separable_conv1:m,expansion_conv:p}}function a(i){let c=n(`${i}/separable_conv0`),m=n(`${i}/separable_conv1`),p=n(`${i}/separable_conv2`);return{separable_conv0:c,separable_conv1:m,separable_conv2:p}}return{extractConvParams:r,extractSeparableConvParams:n,extractReductionBlockParams:s,extractMainBlockParams:a}}function Ao(o,t){let e=[],{extractConvParams:r,extractSeparableConvParams:n,extractReductionBlockParams:s,extractMainBlockParams:a}=qn(o,e),i=r("entry_flow/conv_in"),c=s("entry_flow/reduction_block_0"),m=s("entry_flow/reduction_block_1"),p={conv_in:i,reduction_block_0:c,reduction_block_1:m},u={};ct(t,0,1).forEach(T=>{u[`main_block_${T}`]=a(`middle_flow/main_block_${T}`)});let f=s("exit_flow/reduction_block"),l=n("exit_flow/separable_conv"),b={reduction_block:f,separable_conv:l};return W(o,e),{params:{entry_flow:p,middle_flow:u,exit_flow:b},paramMappings:e}}function Wo(o,t,e){return N.add(N.conv2d(o,t.filters,e,"same"),t.bias)}function mo(o,t,e=!0){let r=e?N.relu(o):o;return r=O(r,t.separable_conv0,[1,1]),r=O(N.relu(r),t.separable_conv1,[1,1]),r=N.maxPool(r,[3,3],[2,2],"same"),r=N.add(r,Wo(o,t.expansion_conv,[2,2])),r}function Zn(o,t){let e=O(N.relu(o),t.separable_conv0,[1,1]);return e=O(N.relu(e),t.separable_conv1,[1,1]),e=O(N.relu(e),t.separable_conv2,[1,1]),e=N.add(e,o),e}var Tr=class extends A{constructor(t){super("TinyXception"),this._numMainBlocks=t}forwardInput(t){let{params:e}=this;if(!e)throw new Error("TinyXception - load model before inference");return N.tidy(()=>{let r=N.cast(t.toBatchTensor(112,!0),"float32"),s=rt(r,[122.782,117.001,104.298]).div(255),a=N.relu(Wo(s,e.entry_flow.conv_in,[2,2]));return a=mo(a,e.entry_flow.reduction_block_0,!1),a=mo(a,e.entry_flow.reduction_block_1),ct(this._numMainBlocks,0,1).forEach(i=>{a=Zn(a,e.middle_flow[`main_block_${i}`])}),a=mo(a,e.exit_flow.reduction_block),a=N.relu(O(a,e.exit_flow.separable_conv,[1,1])),a})}async forward(t){return this.forwardInput(await D(t))}getDefaultModelName(){return"tiny_xception_model"}extractParamsFromWeightMap(t){return Ao(t,this._numMainBlocks)}extractParams(t){return So(t,this._numMainBlocks)}};function ko(o){let t=[],{extractWeights:e,getRemainingWeights:r}=k(o),n=dr(e,t),s=n(512,1,"fc/age"),a=n(512,2,"fc/gender");if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:t,params:{fc:{age:s,gender:a}}}}function Bo(o){let t=[],e=Y(o,t);function r(s){let a=e(`${s}/weights`,2),i=e(`${s}/bias`,1);return{weights:a,bias:i}}let n={fc:{age:r("fc/age"),gender:r("fc/gender")}};return W(o,t),{params:n,paramMappings:t}}var Pr=(e=>(e.FEMALE="female",e.MALE="male",e))(Pr||{});var He=class extends A{constructor(t=new Tr(2)){super("AgeGenderNet"),this._faceFeatureExtractor=t}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(t){let{params:e}=this;if(!e)throw new Error(`${this._name} - load model before inference`);return ft.tidy(()=>{let r=t instanceof ut?this.faceFeatureExtractor.forwardInput(t):t,n=ft.avgPool(r,[7,7],[2,2],"valid").as2D(r.shape[0],-1),s=$e(n,e.fc.age).as1D(),a=$e(n,e.fc.gender);return{age:s,gender:a}})}forwardInput(t){return ft.tidy(()=>{let{age:e,gender:r}=this.runNet(t);return{age:e,gender:ft.softmax(r)}})}async forward(t){return this.forwardInput(await D(t))}async predictAgeAndGender(t){let e=await D(t),r=await this.forwardInput(e),n=ft.unstack(r.age),s=ft.unstack(r.gender),a=n.map((c,m)=>({ageTensor:c,genderTensor:s[m]})),i=await Promise.all(a.map(async({ageTensor:c,genderTensor:m})=>{let p=c.dataSync()[0],u=m.dataSync()[0],f=u>.5,l=f?"male":"female",b=f?u:1-u;return c.dispose(),m.dispose(),{age:p,gender:l,genderProbability:b}}));return r.age.dispose(),r.gender.dispose(),e.isBatchInput?i:i[0]}getDefaultModelName(){return"age_gender_model"}dispose(t=!0){this.faceFeatureExtractor.dispose(t),super.dispose(t)}loadClassifierParams(t){let{params:e,paramMappings:r}=this.extractClassifierParams(t);this._params=e,this._paramMappings=r}extractClassifierParams(t){return ko(t)}extractParamsFromWeightMap(t){let{featureExtractorMap:e,classifierMap:r}=xr(t);return this.faceFeatureExtractor.loadFromWeightMap(e),Bo(r)}extractParams(t){let r=t.slice(0,t.length-1539),n=t.slice(t.length-1539);return this.faceFeatureExtractor.extractWeights(r),this.extractClassifierParams(n)}};var V=v(x());var we=class extends _e{postProcess(t,e,r){let n=r.map(({width:a,height:i})=>{let c=e/Math.max(i,a);return{width:a*c,height:i*c}}),s=n.length;return V.tidy(()=>{let a=(u,f)=>V.stack([V.fill([68],u,"float32"),V.fill([68],f,"float32")],1).as2D(1,136).as1D(),i=(u,f)=>{let{width:l,height:b}=n[u];return f(l,b)?Math.abs(l-b)/2:0},c=u=>i(u,(f,l)=>fi(u,(f,l)=>la(c(f),m(f))))).div(V.stack(Array.from(Array(s),(u,f)=>a(n[f].width,n[f].height))))})}forwardInput(t){return V.tidy(()=>{let e=this.runNet(t);return this.postProcess(e,t.inputSize,t.inputDimensions.map(([r,n])=>({height:r,width:n})))})}async forward(t){return this.forwardInput(await D(t))}async detectLandmarks(t){let e=await D(t),r=V.tidy(()=>V.unstack(this.forwardInput(e))),n=await Promise.all(r.map(async(s,a)=>{let i=Array.from(s.dataSync()),c=i.filter((p,u)=>or(u)),m=i.filter((p,u)=>!or(u));return new Yt(Array(68).fill(0).map((p,u)=>new _(c[u],m[u])),{height:e.getInputHeight(a),width:e.getInputWidth(a)})}));return r.forEach(s=>s.dispose()),e.isBatchInput?n:n[0]}getClassifierChannelsOut(){return 136}};var Zt=class extends we{constructor(t=new xe){super("FaceLandmark68Net",t)}getDefaultModelName(){return"face_landmark_68_model"}getClassifierChannelsIn(){return 256}};var Fe=v(x());function Ro(o){let t=[],{extractDenseBlock3Params:e}=gr(o,t),r={dense0:e("dense0",!0),dense1:e("dense1"),dense2:e("dense2")};return W(o,t),{params:r,paramMappings:t}}function $o(o){let t=[],{extractWeights:e,getRemainingWeights:r}=k(o),{extractDenseBlock3Params:n}=hr(e,t),s=n(3,32,"dense0",!0),a=n(32,64,"dense1"),i=n(64,128,"dense2");if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:t,params:{dense0:s,dense1:a,dense2:i}}}var wr=class extends A{constructor(){super("TinyFaceFeatureExtractor")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("TinyFaceFeatureExtractor - load model before inference");return Fe.tidy(()=>{let r=Fe.cast(t.toBatchTensor(112,!0),"float32"),s=rt(r,[122.782,117.001,104.298]).div(255),a=ur(s,e.dense0,!0);return a=ur(a,e.dense1),a=ur(a,e.dense2),a=Fe.avgPool(a,[14,14],[2,2],"valid"),a})}async forward(t){return this.forwardInput(await D(t))}getDefaultModelName(){return"face_feature_extractor_tiny_model"}extractParamsFromWeightMap(t){return Ro(t)}extractParams(t){return $o(t)}};var ze=class extends we{constructor(t=new wr){super("FaceLandmark68TinyNet",t)}getDefaultModelName(){return"face_landmark_68_tiny_model"}getClassifierChannelsIn(){return 128}};var po=class extends Zt{};var nt=v(x());var De=v(x());var Fr=v(x());function Oo(o,t){return Fr.add(Fr.mul(o,t.weights),t.biases)}function uo(o,t,e,r,n="same"){let{filters:s,bias:a}=t.conv,i=De.conv2d(o,s,e,n);return i=De.add(i,a),i=Oo(i,t.scale),r?De.relu(i):i}function Ho(o,t){return uo(o,t,[1,1],!0)}function fo(o,t){return uo(o,t,[1,1],!1)}function Dr(o,t){return uo(o,t,[2,2],!0,"valid")}var G=v(x());function Kn(o,t){function e(i,c,m){let p=o(i),u=p.length/(c*m*m);if($r(u))throw new Error(`depth has to be an integer: ${u}, weights.length: ${p.length}, numFilters: ${c}, filterSize: ${m}`);return G.tidy(()=>G.transpose(G.tensor4d(p,[c,u,m,m]),[2,3,1,0]))}function r(i,c,m,p){let u=e(i,c,m),f=G.tensor1d(o(c));return t.push({paramPath:`${p}/filters`},{paramPath:`${p}/bias`}),{filters:u,bias:f}}function n(i,c){let m=G.tensor1d(o(i)),p=G.tensor1d(o(i));return t.push({paramPath:`${c}/weights`},{paramPath:`${c}/biases`}),{weights:m,biases:p}}function s(i,c,m,p){let u=r(i,c,m,`${p}/conv`),f=n(c,`${p}/scale`);return{conv:u,scale:f}}function a(i,c,m,p,u=!1){let f=s((u?.5:1)*i,c,m,`${p}/conv1`),l=s(i,c,m,`${p}/conv2`);return{conv1:f,conv2:l}}return{extractConvLayerParams:s,extractResidualLayerParams:a}}function zo(o){let{extractWeights:t,getRemainingWeights:e}=k(o),r=[],{extractConvLayerParams:n,extractResidualLayerParams:s}=Kn(t,r),a=n(4704,32,7,"conv32_down"),i=s(9216,32,3,"conv32_1"),c=s(9216,32,3,"conv32_2"),m=s(9216,32,3,"conv32_3"),p=s(36864,64,3,"conv64_down",!0),u=s(36864,64,3,"conv64_1"),f=s(36864,64,3,"conv64_2"),l=s(36864,64,3,"conv64_3"),b=s(147456,128,3,"conv128_down",!0),T=s(147456,128,3,"conv128_1"),h=s(147456,128,3,"conv128_2"),g=s(589824,256,3,"conv256_down",!0),P=s(589824,256,3,"conv256_1"),y=s(589824,256,3,"conv256_2"),I=s(589824,256,3,"conv256_down_out"),j=G.tidy(()=>G.transpose(G.tensor2d(t(256*128),[128,256]),[1,0]));if(r.push({paramPath:"fc"}),e().length!==0)throw new Error(`weights remaing after extract: ${e().length}`);return{params:{conv32_down:a,conv32_1:i,conv32_2:c,conv32_3:m,conv64_down:p,conv64_1:u,conv64_2:f,conv64_3:l,conv128_down:b,conv128_1:T,conv128_2:h,conv256_down:g,conv256_1:P,conv256_2:y,conv256_down_out:I,fc:j},paramMappings:r}}function Qn(o,t){let e=Y(o,t);function r(a){let i=e(`${a}/scale/weights`,1),c=e(`${a}/scale/biases`,1);return{weights:i,biases:c}}function n(a){let i=e(`${a}/conv/filters`,4),c=e(`${a}/conv/bias`,1),m=r(a);return{conv:{filters:i,bias:c},scale:m}}function s(a){return{conv1:n(`${a}/conv1`),conv2:n(`${a}/conv2`)}}return{extractConvLayerParams:n,extractResidualLayerParams:s}}function Yo(o){let t=[],{extractConvLayerParams:e,extractResidualLayerParams:r}=Qn(o,t),n=e("conv32_down"),s=r("conv32_1"),a=r("conv32_2"),i=r("conv32_3"),c=r("conv64_down"),m=r("conv64_1"),p=r("conv64_2"),u=r("conv64_3"),f=r("conv128_down"),l=r("conv128_1"),b=r("conv128_2"),T=r("conv256_down"),h=r("conv256_1"),g=r("conv256_2"),P=r("conv256_down_out"),{fc:y}=o;if(t.push({originalPath:"fc",paramPath:"fc"}),!Rr(y))throw new Error(`expected weightMap[fc] to be a Tensor2D, instead have ${y}`);let I={conv32_down:n,conv32_1:s,conv32_2:a,conv32_3:i,conv64_down:c,conv64_1:m,conv64_2:p,conv64_3:u,conv128_down:f,conv128_1:l,conv128_2:b,conv256_down:T,conv256_1:h,conv256_2:g,conv256_down_out:P,fc:y};return W(o,t),{params:I,paramMappings:t}}var B=v(x());function ot(o,t){let e=Ho(o,t.conv1);return e=fo(e,t.conv2),e=B.add(e,o),e=B.relu(e),e}function Ye(o,t){let e=Dr(o,t.conv1);e=fo(e,t.conv2);let r=B.avgPool(o,2,2,"valid"),n=B.zeros(r.shape),s=r.shape[3]!==e.shape[3];if(r.shape[1]!==e.shape[1]||r.shape[2]!==e.shape[2]){let i=[...e.shape];i[1]=1;let c=B.zeros(i);e=B.concat([e,c],1);let m=[...e.shape];m[2]=1;let p=B.zeros(m);e=B.concat([e,p],2)}return r=s?B.concat([r,n],3):r,e=B.add(r,e),e=B.relu(e),e}var Kt=class extends A{constructor(){super("FaceRecognitionNet")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("FaceRecognitionNet - load model before inference");return nt.tidy(()=>{let r=nt.cast(t.toBatchTensor(150,!0),"float32"),s=rt(r,[122.782,117.001,104.298]).div(255),a=Dr(s,e.conv32_down);a=nt.maxPool(a,3,2,"valid"),a=ot(a,e.conv32_1),a=ot(a,e.conv32_2),a=ot(a,e.conv32_3),a=Ye(a,e.conv64_down),a=ot(a,e.conv64_1),a=ot(a,e.conv64_2),a=ot(a,e.conv64_3),a=Ye(a,e.conv128_down),a=ot(a,e.conv128_1),a=ot(a,e.conv128_2),a=Ye(a,e.conv256_down),a=ot(a,e.conv256_1),a=ot(a,e.conv256_2),a=Ye(a,e.conv256_down_out);let i=a.mean([1,2]);return nt.matMul(i,e.fc)})}async forward(t){return this.forwardInput(await D(t))}async computeFaceDescriptor(t){var s;if((s=t==null?void 0:t.shape)!=null&&s.some(a=>a<=0))return new Float32Array(128);let e=await D(t),r=nt.tidy(()=>nt.unstack(this.forwardInput(e))),n=await Promise.all(r.map(a=>a.data()));return r.forEach(a=>a.dispose()),e.isBatchInput?n:n[0]}getDefaultModelName(){return"face_recognition_model"}extractParamsFromWeightMap(t){return Yo(t)}extractParams(t){return zo(t)}};function ta(o){let t=new Kt;return t.extractWeights(o),t}function Er(o,t){return{...o,...{descriptor:t}}}function ea(o){return typeof o.age=="number"}function Mr(o,t){return{...o,...{age:t}}}function ra(o){return(o.gender==="male"||o.gender==="female")&&ce(o.genderProbability)}function Cr(o,t,e){return{...o,...{gender:t,genderProbability:e}}}var Nt=v(x());var at=v(x());function oa(o,t){function e(c,m){let p=at.tensor4d(o(9*c),[3,3,c,1]),u=at.tensor1d(o(c)),f=at.tensor1d(o(c)),l=at.tensor1d(o(c)),b=at.tensor1d(o(c));return t.push({paramPath:`${m}/filters`},{paramPath:`${m}/batch_norm_scale`},{paramPath:`${m}/batch_norm_offset`},{paramPath:`${m}/batch_norm_mean`},{paramPath:`${m}/batch_norm_variance`}),{filters:p,batch_norm_scale:u,batch_norm_offset:f,batch_norm_mean:l,batch_norm_variance:b}}function r(c,m,p,u,f){let l=at.tensor4d(o(c*m*p*p),[p,p,c,m]),b=at.tensor1d(o(m));return t.push({paramPath:`${u}/filters`},{paramPath:`${u}/${f?"batch_norm_offset":"bias"}`}),{filters:l,bias:b}}function n(c,m,p,u){let{filters:f,bias:l}=r(c,m,p,u,!0);return{filters:f,batch_norm_offset:l}}function s(c,m,p){let u=e(c,`${p}/depthwise_conv`),f=n(c,m,1,`${p}/pointwise_conv`);return{depthwise_conv:u,pointwise_conv:f}}function a(){let c=n(3,32,3,"mobilenetv1/conv_0"),m=s(32,64,"mobilenetv1/conv_1"),p=s(64,128,"mobilenetv1/conv_2"),u=s(128,128,"mobilenetv1/conv_3"),f=s(128,256,"mobilenetv1/conv_4"),l=s(256,256,"mobilenetv1/conv_5"),b=s(256,512,"mobilenetv1/conv_6"),T=s(512,512,"mobilenetv1/conv_7"),h=s(512,512,"mobilenetv1/conv_8"),g=s(512,512,"mobilenetv1/conv_9"),P=s(512,512,"mobilenetv1/conv_10"),y=s(512,512,"mobilenetv1/conv_11"),I=s(512,1024,"mobilenetv1/conv_12"),j=s(1024,1024,"mobilenetv1/conv_13");return{conv_0:c,conv_1:m,conv_2:p,conv_3:u,conv_4:f,conv_5:l,conv_6:b,conv_7:T,conv_8:h,conv_9:g,conv_10:P,conv_11:y,conv_12:I,conv_13:j}}function i(){let c=n(1024,256,1,"prediction_layer/conv_0"),m=n(256,512,3,"prediction_layer/conv_1"),p=n(512,128,1,"prediction_layer/conv_2"),u=n(128,256,3,"prediction_layer/conv_3"),f=n(256,128,1,"prediction_layer/conv_4"),l=n(128,256,3,"prediction_layer/conv_5"),b=n(256,64,1,"prediction_layer/conv_6"),T=n(64,128,3,"prediction_layer/conv_7"),h=r(512,12,1,"prediction_layer/box_predictor_0/box_encoding_predictor"),g=r(512,9,1,"prediction_layer/box_predictor_0/class_predictor"),P=r(1024,24,1,"prediction_layer/box_predictor_1/box_encoding_predictor"),y=r(1024,18,1,"prediction_layer/box_predictor_1/class_predictor"),I=r(512,24,1,"prediction_layer/box_predictor_2/box_encoding_predictor"),j=r(512,18,1,"prediction_layer/box_predictor_2/class_predictor"),tt=r(256,24,1,"prediction_layer/box_predictor_3/box_encoding_predictor"),it=r(256,18,1,"prediction_layer/box_predictor_3/class_predictor"),q=r(256,24,1,"prediction_layer/box_predictor_4/box_encoding_predictor"),Pt=r(256,18,1,"prediction_layer/box_predictor_4/class_predictor"),wt=r(128,24,1,"prediction_layer/box_predictor_5/box_encoding_predictor"),Ft=r(128,18,1,"prediction_layer/box_predictor_5/class_predictor");return{conv_0:c,conv_1:m,conv_2:p,conv_3:u,conv_4:f,conv_5:l,conv_6:b,conv_7:T,box_predictor_0:{box_encoding_predictor:h,class_predictor:g},box_predictor_1:{box_encoding_predictor:P,class_predictor:y},box_predictor_2:{box_encoding_predictor:I,class_predictor:j},box_predictor_3:{box_encoding_predictor:tt,class_predictor:it},box_predictor_4:{box_encoding_predictor:q,class_predictor:Pt},box_predictor_5:{box_encoding_predictor:wt,class_predictor:Ft}}}return{extractMobilenetV1Params:a,extractPredictionLayerParams:i}}function Vo(o){let t=[],{extractWeights:e,getRemainingWeights:r}=k(o),{extractMobilenetV1Params:n,extractPredictionLayerParams:s}=oa(e,t),a=n(),i=s(),m={extra_dim:at.tensor3d(e(5118*4),[1,5118,4])};if(t.push({paramPath:"output_layer/extra_dim"}),r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{params:{mobilenetv1:a,prediction_layer:i,output_layer:m},paramMappings:t}}function na(o,t){let e=Y(o,t);function r(m,p,u){let f=e(`${m}/Conv2d_${p}_pointwise/weights`,4,`${u}/filters`),l=e(`${m}/Conv2d_${p}_pointwise/convolution_bn_offset`,1,`${u}/batch_norm_offset`);return{filters:f,batch_norm_offset:l}}function n(m){let p=`mobilenetv1/conv_${m}`,u=`MobilenetV1/Conv2d_${m}_depthwise`,f=`${p}/depthwise_conv`,l=`${p}/pointwise_conv`,b=e(`${u}/depthwise_weights`,4,`${f}/filters`),T=e(`${u}/BatchNorm/gamma`,1,`${f}/batch_norm_scale`),h=e(`${u}/BatchNorm/beta`,1,`${f}/batch_norm_offset`),g=e(`${u}/BatchNorm/moving_mean`,1,`${f}/batch_norm_mean`),P=e(`${u}/BatchNorm/moving_variance`,1,`${f}/batch_norm_variance`);return{depthwise_conv:{filters:b,batch_norm_scale:T,batch_norm_offset:h,batch_norm_mean:g,batch_norm_variance:P},pointwise_conv:r("MobilenetV1",m,l)}}function s(){return{conv_0:r("MobilenetV1",0,"mobilenetv1/conv_0"),conv_1:n(1),conv_2:n(2),conv_3:n(3),conv_4:n(4),conv_5:n(5),conv_6:n(6),conv_7:n(7),conv_8:n(8),conv_9:n(9),conv_10:n(10),conv_11:n(11),conv_12:n(12),conv_13:n(13)}}function a(m,p){let u=e(`${m}/weights`,4,`${p}/filters`),f=e(`${m}/biases`,1,`${p}/bias`);return{filters:u,bias:f}}function i(m){let p=a(`Prediction/BoxPredictor_${m}/BoxEncodingPredictor`,`prediction_layer/box_predictor_${m}/box_encoding_predictor`),u=a(`Prediction/BoxPredictor_${m}/ClassPredictor`,`prediction_layer/box_predictor_${m}/class_predictor`);return{box_encoding_predictor:p,class_predictor:u}}function c(){return{conv_0:r("Prediction",0,"prediction_layer/conv_0"),conv_1:r("Prediction",1,"prediction_layer/conv_1"),conv_2:r("Prediction",2,"prediction_layer/conv_2"),conv_3:r("Prediction",3,"prediction_layer/conv_3"),conv_4:r("Prediction",4,"prediction_layer/conv_4"),conv_5:r("Prediction",5,"prediction_layer/conv_5"),conv_6:r("Prediction",6,"prediction_layer/conv_6"),conv_7:r("Prediction",7,"prediction_layer/conv_7"),box_predictor_0:i(0),box_predictor_1:i(1),box_predictor_2:i(2),box_predictor_3:i(3),box_predictor_4:i(4),box_predictor_5:i(5)}}return{extractMobilenetV1Params:s,extractPredictionLayerParams:c}}function Go(o){let t=[],{extractMobilenetV1Params:e,extractPredictionLayerParams:r}=na(o,t),n=o["Output/extra_dim"];if(t.push({originalPath:"Output/extra_dim",paramPath:"output_layer/extra_dim"}),!dt(n))throw new Error(`expected weightMap['Output/extra_dim'] to be a Tensor3D, instead have ${n}`);let s={mobilenetv1:e(),prediction_layer:r(),output_layer:{extra_dim:n}};return W(o,t),{params:s,paramMappings:t}}var xt=v(x());var Ct=v(x());function Z(o,t,e){return Ct.tidy(()=>{let r=Ct.conv2d(o,t.filters,e,"same");return r=Ct.add(r,t.batch_norm_offset),Ct.clipByValue(r,0,6)})}var aa=.0010000000474974513;function sa(o,t,e){return xt.tidy(()=>{let r=xt.depthwiseConv2d(o,t.filters,e,"same");return r=xt.batchNorm(r,t.batch_norm_mean,t.batch_norm_variance,t.batch_norm_offset,t.batch_norm_scale,aa),xt.clipByValue(r,0,6)})}function ia(o){return[2,4,6,12].some(t=>t===o)?[2,2]:[1,1]}function jo(o,t){return xt.tidy(()=>{let e,r=Z(o,t.conv_0,[2,2]);if([t.conv_1,t.conv_2,t.conv_3,t.conv_4,t.conv_5,t.conv_6,t.conv_7,t.conv_8,t.conv_9,t.conv_10,t.conv_11,t.conv_12,t.conv_13].forEach((s,a)=>{let i=a+1,c=ia(i);r=sa(r,s.depthwise_conv,c),r=Z(r,s.pointwise_conv,[1,1]),i===11&&(e=r)}),e===null)throw new Error("mobileNetV1 - output of conv layer 11 is null");return{out:r,conv11:e}})}function ca(o,t,e){let r=o.arraySync(),n=Math.min(r[t][0],r[t][2]),s=Math.min(r[t][1],r[t][3]),a=Math.max(r[t][0],r[t][2]),i=Math.max(r[t][1],r[t][3]),c=Math.min(r[e][0],r[e][2]),m=Math.min(r[e][1],r[e][3]),p=Math.max(r[e][0],r[e][2]),u=Math.max(r[e][1],r[e][3]),f=(a-n)*(i-s),l=(p-c)*(u-m);if(f<=0||l<=0)return 0;let b=Math.max(n,c),T=Math.max(s,m),h=Math.min(a,p),g=Math.min(i,u),P=Math.max(h-b,0)*Math.max(g-T,0);return P/(f+l-P)}function Uo(o,t,e,r,n){let s=o.shape[0],a=Math.min(e,s),i=t.map((p,u)=>({score:p,boxIndex:u})).filter(p=>p.score>n).sort((p,u)=>u.score-p.score),c=p=>p<=r?1:0,m=[];return i.forEach(p=>{if(m.length>=a)return;let u=p.score;for(let f=m.length-1;f>=0;--f){let l=ca(o,p.boxIndex,m[f]);if(l!==0&&(p.score*=c(l),p.score<=n))break}u===p.score&&m.push(p.boxIndex)}),m}var d=v(x());function ma(o){let t=d.unstack(d.transpose(o,[1,0])),e=[d.sub(t[2],t[0]),d.sub(t[3],t[1])],r=[d.add(t[0],d.div(e[0],2)),d.add(t[1],d.div(e[1],2))];return{sizes:e,centers:r}}function pa(o,t){let{sizes:e,centers:r}=ma(o),n=d.unstack(d.transpose(t,[1,0])),s=d.div(d.mul(d.exp(d.div(n[2],5)),e[0]),2),a=d.add(d.mul(d.div(n[0],10),e[0]),r[0]),i=d.div(d.mul(d.exp(d.div(n[3],5)),e[1]),2),c=d.add(d.mul(d.div(n[1],10),e[1]),r[1]);return d.transpose(d.stack([d.sub(a,s),d.sub(c,i),d.add(a,s),d.add(c,i)]),[1,0])}function Xo(o,t,e){return d.tidy(()=>{let r=o.shape[0],n=pa(d.reshape(d.tile(e.extra_dim,[r,1,1]),[-1,4]),d.reshape(o,[-1,4]));n=d.reshape(n,[r,n.shape[0]/r,4]);let s=d.sigmoid(d.slice(t,[0,0,1],[-1,-1,-1])),a=d.slice(s,[0,0,0],[-1,-1,1]);a=d.reshape(a,[r,a.shape[1]]);let i=d.unstack(n),c=d.unstack(a);return{boxes:i,scores:c}})}var Ge=v(x());var Ve=v(x());function Qt(o,t){return Ve.tidy(()=>{let e=o.shape[0],r=Ve.reshape(Jt(o,t.box_encoding_predictor),[e,-1,1,4]),n=Ve.reshape(Jt(o,t.class_predictor),[e,-1,3]);return{boxPredictionEncoding:r,classPrediction:n}})}function Jo(o,t,e){return Ge.tidy(()=>{let r=Z(o,e.conv_0,[1,1]),n=Z(r,e.conv_1,[2,2]),s=Z(n,e.conv_2,[1,1]),a=Z(s,e.conv_3,[2,2]),i=Z(a,e.conv_4,[1,1]),c=Z(i,e.conv_5,[2,2]),m=Z(c,e.conv_6,[1,1]),p=Z(m,e.conv_7,[2,2]),u=Qt(t,e.box_predictor_0),f=Qt(o,e.box_predictor_1),l=Qt(n,e.box_predictor_2),b=Qt(a,e.box_predictor_3),T=Qt(c,e.box_predictor_4),h=Qt(p,e.box_predictor_5),g=Ge.concat([u.boxPredictionEncoding,f.boxPredictionEncoding,l.boxPredictionEncoding,b.boxPredictionEncoding,T.boxPredictionEncoding,h.boxPredictionEncoding],1),P=Ge.concat([u.classPrediction,f.classPrediction,l.classPrediction,b.classPrediction,T.classPrediction,h.classPrediction],1);return{boxPredictions:g,classPredictions:P}})}var X=class{constructor({minConfidence:t,maxResults:e}={}){this._name="SsdMobilenetv1Options";if(this._minConfidence=t||.5,this._maxResults=e||100,typeof this._minConfidence!="number"||this._minConfidence<=0||this._minConfidence>=1)throw new Error(`${this._name} - expected minConfidence to be a number between 0 and 1`);if(typeof this._maxResults!="number")throw new Error(`${this._name} - expected maxResults to be a number`)}get minConfidence(){return this._minConfidence}get maxResults(){return this._maxResults}};var It=class extends A{constructor(){super("SsdMobilenetv1")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("SsdMobilenetv1 - load model before inference");return Nt.tidy(()=>{let r=Nt.cast(t.toBatchTensor(512,!1),"float32"),n=Nt.sub(Nt.div(r,127.5),1),s=jo(n,e.mobilenetv1),{boxPredictions:a,classPredictions:i}=Jo(s.out,s.conv11,e.prediction_layer);return Xo(a,i,e.output_layer)})}async forward(t){return this.forwardInput(await D(t))}async locateFaces(t,e={}){let{maxResults:r,minConfidence:n}=new X(e),s=await D(t),{boxes:a,scores:i}=this.forwardInput(s),c=a[0],m=i[0];for(let y=1;y{let[I,j]=[Math.max(0,g[y][0]),Math.min(1,g[y][2])].map(q=>q*h),[tt,it]=[Math.max(0,g[y][1]),Math.min(1,g[y][3])].map(q=>q*T);return new M(p[y],new zt(tt,I,it-tt,j-I),{height:s.getInputHeight(0),width:s.getInputWidth(0)})});return c.dispose(),m.dispose(),P}getDefaultModelName(){return"ssd_mobilenetv1_model"}extractParamsFromWeightMap(t){return Go(t)}extractParams(t){return Vo(t)}};function qo(o){let t=new It;return t.extractWeights(o),t}function ua(o){return qo(o)}var lo=class extends It{};var Zo=.4,Ko=[new _(.738768,.874946),new _(2.42204,2.65704),new _(4.30971,7.04493),new _(10.246,4.59428),new _(12.6868,11.8741)],Qo=[new _(1.603231,2.094468),new _(6.041143,7.080126),new _(2.882459,3.518061),new _(4.266906,5.178857),new _(9.041765,10.66308)],tn=[117.001,114.697,97.404],en="tiny_yolov2_model",rn="tiny_yolov2_separable_conv_model";var C=v(x());var Ir=o=>typeof o=="number";function ho(o){if(!o)throw new Error(`invalid config: ${o}`);if(typeof o.withSeparableConvs!="boolean")throw new Error(`config.withSeparableConvs has to be a boolean, have: ${o.withSeparableConvs}`);if(!Ir(o.iouThreshold)||o.iouThreshold<0||o.iouThreshold>1)throw new Error(`config.iouThreshold has to be a number between [0, 1], have: ${o.iouThreshold}`);if(!Array.isArray(o.classes)||!o.classes.length||!o.classes.every(t=>typeof t=="string"))throw new Error(`config.classes has to be an array class names: string[], have: ${JSON.stringify(o.classes)}`);if(!Array.isArray(o.anchors)||!o.anchors.length||!o.anchors.map(t=>t||{}).every(t=>Ir(t.x)&&Ir(t.y)))throw new Error(`config.anchors has to be an array of { x: number, y: number }, have: ${JSON.stringify(o.anchors)}`);if(o.meanRgb&&(!Array.isArray(o.meanRgb)||o.meanRgb.length!==3||!o.meanRgb.every(Ir)))throw new Error(`config.meanRgb has to be an array of shape [number, number, number], have: ${JSON.stringify(o.meanRgb)}`)}var Q=v(x());var K=v(x());function Ee(o){return K.tidy(()=>{let t=K.mul(o,K.scalar(.10000000149011612));return K.add(K.relu(K.sub(o,t)),t)})}function vt(o,t){return Q.tidy(()=>{let e=Q.pad(o,[[0,0],[1,1],[1,1],[0,0]]);return e=Q.conv2d(e,t.conv.filters,[1,1],"valid"),e=Q.sub(e,t.bn.sub),e=Q.mul(e,t.bn.truediv),e=Q.add(e,t.conv.bias),Ee(e)})}var Lt=v(x());function yt(o,t){return Lt.tidy(()=>{let e=Lt.pad(o,[[0,0],[1,1],[1,1],[0,0]]);return e=Lt.separableConv2d(e,t.depthwise_filter,t.pointwise_filter,[1,1],"valid"),e=Lt.add(e,t.bias),Ee(e)})}var bo=v(x());function fa(o,t){let e=he(o,t);function r(a,i){let c=bo.tensor1d(o(a)),m=bo.tensor1d(o(a));return t.push({paramPath:`${i}/sub`},{paramPath:`${i}/truediv`}),{sub:c,truediv:m}}function n(a,i,c){let m=e(a,i,3,`${c}/conv`),p=r(i,`${c}/bn`);return{conv:m,bn:p}}let s=be(o,t);return{extractConvParams:e,extractConvWithBatchNormParams:n,extractSeparableConvParams:s}}function on(o,t,e,r){let{extractWeights:n,getRemainingWeights:s}=k(o),a=[],{extractConvParams:i,extractConvWithBatchNormParams:c,extractSeparableConvParams:m}=fa(n,a),p;if(t.withSeparableConvs){let[u,f,l,b,T,h,g,P,y]=r,I=t.isFirstLayerConv2d?i(u,f,3,"conv0"):m(u,f,"conv0"),j=m(f,l,"conv1"),tt=m(l,b,"conv2"),it=m(b,T,"conv3"),q=m(T,h,"conv4"),Pt=m(h,g,"conv5"),wt=P?m(g,P,"conv6"):void 0,Ft=y?m(P,y,"conv7"):void 0,ie=i(y||P||g,5*e,1,"conv8");p={conv0:I,conv1:j,conv2:tt,conv3:it,conv4:q,conv5:Pt,conv6:wt,conv7:Ft,conv8:ie}}else{let[u,f,l,b,T,h,g,P,y]=r,I=c(u,f,"conv0"),j=c(f,l,"conv1"),tt=c(l,b,"conv2"),it=c(b,T,"conv3"),q=c(T,h,"conv4"),Pt=c(h,g,"conv5"),wt=c(g,P,"conv6"),Ft=c(P,y,"conv7"),ie=i(y,5*e,1,"conv8");p={conv0:I,conv1:j,conv2:tt,conv3:it,conv4:q,conv5:Pt,conv6:wt,conv7:Ft,conv8:ie}}if(s().length!==0)throw new Error(`weights remaing after extract: ${s().length}`);return{params:p,paramMappings:a}}function la(o,t){let e=Y(o,t);function r(i){let c=e(`${i}/sub`,1),m=e(`${i}/truediv`,1);return{sub:c,truediv:m}}function n(i){let c=e(`${i}/filters`,4),m=e(`${i}/bias`,1);return{filters:c,bias:m}}function s(i){let c=n(`${i}/conv`),m=r(`${i}/bn`);return{conv:c,bn:m}}let a=ge(e);return{extractConvParams:n,extractConvWithBatchNormParams:s,extractSeparableConvParams:a}}function nn(o,t){let e=[],{extractConvParams:r,extractConvWithBatchNormParams:n,extractSeparableConvParams:s}=la(o,e),a;if(t.withSeparableConvs){let i=t.filterSizes&&t.filterSizes.length||9;a={conv0:t.isFirstLayerConv2d?r("conv0"):s("conv0"),conv1:s("conv1"),conv2:s("conv2"),conv3:s("conv3"),conv4:s("conv4"),conv5:s("conv5"),conv6:i>7?s("conv6"):void 0,conv7:i>8?s("conv7"):void 0,conv8:r("conv8")}}else a={conv0:n("conv0"),conv1:n("conv1"),conv2:n("conv2"),conv3:n("conv3"),conv4:n("conv4"),conv5:n("conv5"),conv6:n("conv6"),conv7:n("conv7"),conv8:r("conv8")};return W(o,e),{params:a,paramMappings:e}}var st=class{constructor({inputSize:t,scoreThreshold:e}={}){this._name="TinyYolov2Options";if(this._inputSize=t||416,this._scoreThreshold=e||.5,typeof this._inputSize!="number"||this._inputSize%32!==0)throw new Error(`${this._name} - expected inputSize to be a number divisible by 32`);if(typeof this._scoreThreshold!="number"||this._scoreThreshold<=0||this._scoreThreshold>=1)throw new Error(`${this._name} - expected scoreThreshold to be a number between 0 and 1`)}get inputSize(){return this._inputSize}get scoreThreshold(){return this._scoreThreshold}};var Nr=class Nr extends A{constructor(t){super("TinyYolov2"),ho(t),this._config=t}get config(){return this._config}get withClassScores(){return this.config.withClassScores||this.config.classes.length>1}get boxEncodingSize(){return 5+(this.withClassScores?this.config.classes.length:0)}runTinyYolov2(t,e){let r=vt(t,e.conv0);return r=C.maxPool(r,[2,2],[2,2],"same"),r=vt(r,e.conv1),r=C.maxPool(r,[2,2],[2,2],"same"),r=vt(r,e.conv2),r=C.maxPool(r,[2,2],[2,2],"same"),r=vt(r,e.conv3),r=C.maxPool(r,[2,2],[2,2],"same"),r=vt(r,e.conv4),r=C.maxPool(r,[2,2],[2,2],"same"),r=vt(r,e.conv5),r=C.maxPool(r,[2,2],[1,1],"same"),r=vt(r,e.conv6),r=vt(r,e.conv7),Jt(r,e.conv8,"valid",!1)}runMobilenet(t,e){let r=this.config.isFirstLayerConv2d?Ee(Jt(t,e.conv0,"valid",!1)):yt(t,e.conv0);return r=C.maxPool(r,[2,2],[2,2],"same"),r=yt(r,e.conv1),r=C.maxPool(r,[2,2],[2,2],"same"),r=yt(r,e.conv2),r=C.maxPool(r,[2,2],[2,2],"same"),r=yt(r,e.conv3),r=C.maxPool(r,[2,2],[2,2],"same"),r=yt(r,e.conv4),r=C.maxPool(r,[2,2],[2,2],"same"),r=yt(r,e.conv5),r=C.maxPool(r,[2,2],[1,1],"same"),r=e.conv6?yt(r,e.conv6):r,r=e.conv7?yt(r,e.conv7):r,Jt(r,e.conv8,"valid",!1)}forwardInput(t,e){let{params:r}=this;if(!r)throw new Error("TinyYolov2 - load model before inference");return C.tidy(()=>{let n=C.cast(t.toBatchTensor(e,!1),"float32");return n=this.config.meanRgb?rt(n,this.config.meanRgb):n,n=n.div(255),this.config.withSeparableConvs?this.runMobilenet(n,r):this.runTinyYolov2(n,r)})}async forward(t,e){return this.forwardInput(await D(t),e)}async detect(t,e={}){let{inputSize:r,scoreThreshold:n}=new st(e),s=await D(t),a=await this.forwardInput(s,r),i=C.tidy(()=>C.unstack(a)[0].expandDims()),c={width:s.getInputWidth(0),height:s.getInputHeight(0)},m=await this.extractBoxes(i,s.getReshapedInputDimensions(0),n);a.dispose(),i.dispose();let p=m.map(h=>h.box),u=m.map(h=>h.score),f=m.map(h=>h.classScore),l=m.map(h=>this.config.classes[h.label]);return Vr(p.map(h=>h.rescale(r)),u,this.config.iouThreshold,!0).map(h=>new Ht(u[h],f[h],l[h],p[h],c))}getDefaultModelName(){return""}extractParamsFromWeightMap(t){return nn(t,this.config)}extractParams(t){let e=this.config.filterSizes||Nr.DEFAULT_FILTER_SIZES,r=e?e.length:void 0;if(r!==7&&r!==8&&r!==9)throw new Error(`TinyYolov2 - expected 7 | 8 | 9 convolutional filters, but found ${r} filterSizes in config`);return on(t,this.config,this.boxEncodingSize,e)}async extractBoxes(t,e,r){let{width:n,height:s}=e,a=Math.max(n,s),i=a/n,c=a/s,m=t.shape[1],p=this.config.anchors.length,[u,f,l]=C.tidy(()=>{let g=t.reshape([m,m,p,this.boxEncodingSize]),P=g.slice([0,0,0,0],[m,m,p,4]),y=g.slice([0,0,0,4],[m,m,p,1]),I=this.withClassScores?C.softmax(g.slice([0,0,0,5],[m,m,p,this.config.classes.length]),3):C.scalar(0);return[P,y,I]}),b=[],T=await f.array(),h=await u.array();for(let g=0;gr){let j=(P+Ne(h[g][P][y][0]))/m*i,tt=(g+Ne(h[g][P][y][1]))/m*c,it=Math.exp(h[g][P][y][2])*this.config.anchors[y].x/m*i,q=Math.exp(h[g][P][y][3])*this.config.anchors[y].y/m*c,Pt=j-it/2,wt=tt-q/2,Ft={row:g,col:P,anchor:y},{classScore:ie,label:yo}=this.withClassScores?await this.extractPredictedClass(l,Ft):{classScore:1,label:0};b.push({box:new Ot(Pt,wt,Pt+it,wt+q),score:I,classScore:I*ie,label:yo,...Ft})}}return u.dispose(),f.dispose(),l.dispose(),b}async extractPredictedClass(t,e){let{row:r,col:n,anchor:s}=e,a=await t.array();return Array(this.config.classes.length).fill(0).map((i,c)=>a[r][n][s][c]).map((i,c)=>({classScore:i,label:c})).reduce((i,c)=>i.classScore>c.classScore?i:c)}};Nr.DEFAULT_FILTER_SIZES=[3,16,32,64,128,256,512,1024,1024];var Me=Nr;var te=class extends Me{constructor(t=!0){let e={withSeparableConvs:t,iouThreshold:Zo,classes:["face"],...t?{anchors:Qo,meanRgb:tn}:{anchors:Ko,withClassScores:!0}};super(e)}get withSeparableConvs(){return this.config.withSeparableConvs}get anchors(){return this.config.anchors}async locateFaces(t,e){return(await this.detect(t,e)).map(n=>new M(n.score,n.relativeBox,{width:n.imageWidth,height:n.imageHeight}))}getDefaultModelName(){return this.withSeparableConvs?rn:en}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};function da(o,t=!0){let e=new te(t);return e.extractWeights(o),e}var je=class extends st{constructor(){super(...arguments);this._name="TinyFaceDetectorOptions"}};var J=class{async then(t){return t(await this.run())}async run(){throw new Error("ComposableTask - run is not implemented")}};var Xe=v(x());var go=v(x());async function ee(o,t,e,r,n=({alignedRect:s})=>s){let s=o.map(c=>qt(c)?n(c):c.detection),a=r||(t instanceof go.Tensor?await le(t,s):await fe(t,s)),i=await e(a);return a.forEach(c=>c instanceof go.Tensor&&c.dispose()),i}async function Ce(o,t,e,r,n){return ee([o],t,async s=>e(s[0]),r,n)}var an=.4,sn=[new _(1.603231,2.094468),new _(6.041143,7.080126),new _(2.882459,3.518061),new _(4.266906,5.178857),new _(9.041765,10.66308)],cn=[117.001,114.697,97.404];var re=class extends Me{constructor(){let t={withSeparableConvs:!0,iouThreshold:an,classes:["face"],anchors:sn,meanRgb:cn,isFirstLayerConv2d:!0,filterSizes:[3,16,32,64,128,256,512]};super(t)}get anchors(){return this.config.anchors}async locateFaces(t,e){return(await this.detect(t,e)).map(n=>new M(n.score,n.relativeBox,{width:n.imageWidth,height:n.imageHeight}))}getDefaultModelName(){return"tiny_face_detector_model"}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};var F={ssdMobilenetv1:new It,tinyFaceDetector:new re,tinyYolov2:new te,faceLandmark68Net:new Zt,faceLandmark68TinyNet:new ze,faceRecognitionNet:new Kt,faceExpressionNet:new Oe,ageGenderNet:new He},mn=(o,t)=>F.ssdMobilenetv1.locateFaces(o,t),ha=(o,t)=>F.tinyFaceDetector.locateFaces(o,t),ba=(o,t)=>F.tinyYolov2.locateFaces(o,t),pn=o=>F.faceLandmark68Net.detectLandmarks(o),ga=o=>F.faceLandmark68TinyNet.detectLandmarks(o),xa=o=>F.faceRecognitionNet.computeFaceDescriptor(o),va=o=>F.faceExpressionNet.predictExpressions(o),ya=o=>F.ageGenderNet.predictAgeAndGender(o),un=o=>F.ssdMobilenetv1.load(o),_a=o=>F.tinyFaceDetector.load(o),Ta=o=>F.tinyYolov2.load(o),Pa=o=>F.faceLandmark68Net.load(o),wa=o=>F.faceLandmark68TinyNet.load(o),Fa=o=>F.faceRecognitionNet.load(o),Da=o=>F.faceExpressionNet.load(o),Ea=o=>F.ageGenderNet.load(o),Ma=un,Ca=mn,Ia=pn;var Lr=class extends J{constructor(e,r,n){super();this.parentTask=e;this.input=r;this.extractedFaces=n}},oe=class extends Lr{async run(){let t=await this.parentTask,e=await ee(t,this.input,async r=>Promise.all(r.map(n=>F.faceExpressionNet.predictExpressions(n))),this.extractedFaces);return t.map((r,n)=>vr(r,e[n]))}withAgeAndGender(){return new ae(this,this.input)}},ne=class extends Lr{async run(){let t=await this.parentTask;if(!t)return;let e=await Ce(t,this.input,r=>F.faceExpressionNet.predictExpressions(r),this.extractedFaces);return vr(t,e)}withAgeAndGender(){return new se(this,this.input)}},St=class extends oe{withAgeAndGender(){return new Wt(this,this.input)}withFaceDescriptors(){return new _t(this,this.input)}},At=class extends ne{withAgeAndGender(){return new kt(this,this.input)}withFaceDescriptor(){return new Tt(this,this.input)}};var Sr=class extends J{constructor(e,r,n){super();this.parentTask=e;this.input=r;this.extractedFaces=n}},ae=class extends Sr{async run(){let t=await this.parentTask,e=await ee(t,this.input,async r=>Promise.all(r.map(n=>F.ageGenderNet.predictAgeAndGender(n))),this.extractedFaces);return t.map((r,n)=>{let{age:s,gender:a,genderProbability:i}=e[n];return Mr(Cr(r,a,i),s)})}withFaceExpressions(){return new oe(this,this.input)}},se=class extends Sr{async run(){let t=await this.parentTask;if(!t)return;let{age:e,gender:r,genderProbability:n}=await Ce(t,this.input,s=>F.ageGenderNet.predictAgeAndGender(s),this.extractedFaces);return Mr(Cr(t,r,n),e)}withFaceExpressions(){return new ne(this,this.input)}},Wt=class extends ae{withFaceExpressions(){return new St(this,this.input)}withFaceDescriptors(){return new _t(this,this.input)}},kt=class extends se{withFaceExpressions(){return new At(this,this.input)}withFaceDescriptor(){return new Tt(this,this.input)}};var Ue=class extends J{constructor(e,r){super();this.parentTask=e;this.input=r}},_t=class extends Ue{async run(){let t=await this.parentTask;return(await ee(t,this.input,r=>Promise.all(r.map(n=>F.faceRecognitionNet.computeFaceDescriptor(n))),null,r=>r.landmarks.align(null,{useDlibAlignment:!0}))).map((r,n)=>Er(t[n],r))}withFaceExpressions(){return new St(this,this.input)}withAgeAndGender(){return new Wt(this,this.input)}},Tt=class extends Ue{async run(){let t=await this.parentTask;if(!t)return;let e=await Ce(t,this.input,r=>F.faceRecognitionNet.computeFaceDescriptor(r),null,r=>r.landmarks.align(null,{useDlibAlignment:!0}));return Er(t,e)}withFaceExpressions(){return new At(this,this.input)}withAgeAndGender(){return new kt(this,this.input)}};var Je=class extends J{constructor(e,r,n){super();this.parentTask=e;this.input=r;this.useTinyLandmarkNet=n}get landmarkNet(){return this.useTinyLandmarkNet?F.faceLandmark68TinyNet:F.faceLandmark68Net}},qe=class extends Je{async run(){let t=await this.parentTask,e=t.map(a=>a.detection),r=this.input instanceof Xe.Tensor?await le(this.input,e):await fe(this.input,e),n=await Promise.all(r.map(a=>this.landmarkNet.detectLandmarks(a)));return r.forEach(a=>a instanceof Xe.Tensor&&a.dispose()),t.filter((a,i)=>n[i]).map((a,i)=>Pe(a,n[i]))}withFaceExpressions(){return new St(this,this.input)}withAgeAndGender(){return new Wt(this,this.input)}withFaceDescriptors(){return new _t(this,this.input)}},Ze=class extends Je{async run(){let t=await this.parentTask;if(!t)return;let{detection:e}=t,r=this.input instanceof Xe.Tensor?await le(this.input,[e]):await fe(this.input,[e]),n=await this.landmarkNet.detectLandmarks(r[0]);return r.forEach(s=>s instanceof Xe.Tensor&&s.dispose()),Pe(t,n)}withFaceExpressions(){return new At(this,this.input)}withAgeAndGender(){return new kt(this,this.input)}withFaceDescriptor(){return new Tt(this,this.input)}};var Ke=class extends J{constructor(e,r=new X){super();this.input=e;this.options=r}},Ie=class extends Ke{async run(){let{input:t,options:e}=this,r;if(e instanceof je)r=F.tinyFaceDetector.locateFaces(t,e);else if(e instanceof X)r=F.ssdMobilenetv1.locateFaces(t,e);else if(e instanceof st)r=F.tinyYolov2.locateFaces(t,e);else throw new Error("detectFaces - expected options to be instance of TinyFaceDetectorOptions | SsdMobilenetv1Options | TinyYolov2Options");return r}runAndExtendWithFaceDetections(){return new Promise((t,e)=>{this.run().then(r=>t(r.map(n=>Vt({},n)))).catch(r=>e(r))})}withFaceLandmarks(t=!1){return new qe(this.runAndExtendWithFaceDetections(),this.input,t)}withFaceExpressions(){return new oe(this.runAndExtendWithFaceDetections(),this.input)}withAgeAndGender(){return new ae(this.runAndExtendWithFaceDetections(),this.input)}},Qe=class extends Ke{async run(){let t=await new Ie(this.input,this.options),e=t[0];return t.forEach(r=>{r.score>e.score&&(e=r)}),e}runAndExtendWithFaceDetection(){return new Promise(async t=>{let e=await this.run();t(e?Vt({},e):void 0)})}withFaceLandmarks(t=!1){return new Ze(this.runAndExtendWithFaceDetection(),this.input,t)}withFaceExpressions(){return new ne(this.runAndExtendWithFaceDetection(),this.input)}withAgeAndGender(){return new se(this.runAndExtendWithFaceDetection(),this.input)}};function Na(o,t=new X){return new Qe(o,t)}function Ar(o,t=new X){return new Ie(o,t)}async function fn(o,t){return Ar(o,new X(t?{minConfidence:t}:{})).withFaceLandmarks().withFaceDescriptors()}async function La(o,t={}){return Ar(o,new st(t)).withFaceLandmarks().withFaceDescriptors()}var Sa=fn;function xo(o,t){if(o.length!==t.length)throw new Error("euclideanDistance: arr1.length !== arr2.length");let e=Array.from(o),r=Array.from(t);return Math.sqrt(e.map((n,s)=>n-r[s]).reduce((n,s)=>n+s*s,0))}var vo=class o{constructor(t,e=.6){this._distanceThreshold=e;let r=Array.isArray(t)?t:[t];if(!r.length)throw new Error("FaceRecognizer.constructor - expected atleast one input");let n=1,s=()=>`person ${n++}`;this._labeledDescriptors=r.map(a=>{if(a instanceof Et)return a;if(a instanceof Float32Array)return new Et(s(),[a]);if(a.descriptor&&a.descriptor instanceof Float32Array)return new Et(s(),[a.descriptor]);throw new Error("FaceRecognizer.constructor - expected inputs to be of type LabeledFaceDescriptors | WithFaceDescriptor | Float32Array | Array | Float32Array>")})}get labeledDescriptors(){return this._labeledDescriptors}get distanceThreshold(){return this._distanceThreshold}computeMeanDistance(t,e){return e.map(r=>xo(r,t)).reduce((r,n)=>r+n,0)/(e.length||1)}matchDescriptor(t){return this.labeledDescriptors.map(({descriptors:e,label:r})=>new me(r,this.computeMeanDistance(t,e))).reduce((e,r)=>e.distancet.toJSON())}}static fromJSON(t){let e=t.labeledDescriptors.map(r=>Et.fromJSON(r));return new o(e,t.distanceThreshold)}};function Aa(o){let t=new re;return t.extractWeights(o),t}function ln(o,t){let{width:e,height:r}=new R(t.width,t.height);if(e<=0||r<=0)throw new Error(`resizeResults - invalid dimensions: ${JSON.stringify({width:e,height:r})}`);if(Array.isArray(o))return o.map(n=>ln(n,{width:e,height:r}));if(qt(o)){let n=o.detection.forSize(e,r),s=o.unshiftedLandmarks.forSize(n.box.width,n.box.height);return Pe(Vt(o,n),s)}return pt(o)?Vt(o,o.detection.forSize(e,r)):o instanceof H||o instanceof M?o.forSize(e,r):o}var ka=Lo;0&&(module.exports={AgeGenderNet,BoundingBox,Box,ComposableTask,ComputeAllFaceDescriptorsTask,ComputeFaceDescriptorsTaskBase,ComputeSingleFaceDescriptorTask,DetectAllFaceLandmarksTask,DetectAllFacesTask,DetectFaceLandmarksTaskBase,DetectFacesTaskBase,DetectSingleFaceLandmarksTask,DetectSingleFaceTask,Dimensions,FACE_EXPRESSION_LABELS,FaceDetection,FaceDetectionNet,FaceExpressionNet,FaceExpressions,FaceLandmark68Net,FaceLandmark68TinyNet,FaceLandmarkNet,FaceLandmarks,FaceLandmarks5,FaceLandmarks68,FaceMatch,FaceMatcher,FaceRecognitionNet,Gender,LabeledBox,LabeledFaceDescriptors,NetInput,NeuralNetwork,ObjectDetection,Point,PredictedBox,Rect,SsdMobilenetv1,SsdMobilenetv1Options,TinyFaceDetector,TinyFaceDetectorOptions,TinyYolov2,TinyYolov2Options,allFaces,allFacesSsdMobilenetv1,allFacesTinyYolov2,awaitMediaLoaded,bufferToImage,computeFaceDescriptor,createCanvas,createCanvasFromMedia,createFaceDetectionNet,createFaceRecognitionNet,createSsdMobilenetv1,createTinyFaceDetector,createTinyYolov2,detectAllFaces,detectFaceLandmarks,detectFaceLandmarksTiny,detectLandmarks,detectSingleFace,draw,env,euclideanDistance,extendWithAge,extendWithFaceDescriptor,extendWithFaceDetection,extendWithFaceExpressions,extendWithFaceLandmarks,extendWithGender,extractFaceTensors,extractFaces,fetchImage,fetchJson,fetchNetWeights,fetchOrThrow,fetchVideo,getContext2dOrThrow,getMediaDimensions,imageTensorToCanvas,imageToSquare,inverseSigmoid,iou,isMediaElement,isMediaLoaded,isWithAge,isWithFaceDetection,isWithFaceExpressions,isWithFaceLandmarks,isWithGender,loadAgeGenderModel,loadFaceDetectionModel,loadFaceExpressionModel,loadFaceLandmarkModel,loadFaceLandmarkTinyModel,loadFaceRecognitionModel,loadSsdMobilenetv1Model,loadTinyFaceDetectorModel,loadTinyYolov2Model,loadWeightMap,locateFaces,matchDimensions,minBbox,nets,nonMaxSuppression,normalize,padToSquare,predictAgeAndGender,recognizeFaceExpressions,resizeResults,resolveInput,shuffleArray,sigmoid,ssdMobilenetv1,tf,tinyFaceDetector,tinyYolov2,toNetInput,utils,validateConfig,version}); diff --git a/dist/face-api.node.js b/dist/face-api.node.js index 95f1c39..411f317 100644 --- a/dist/face-api.node.js +++ b/dist/face-api.node.js @@ -4,4 +4,4 @@ author: ' */ -"use strict";var ln=Object.create;var tr=Object.defineProperty;var dn=Object.getOwnPropertyDescriptor;var hn=Object.getOwnPropertyNames;var bn=Object.getPrototypeOf,gn=Object.prototype.hasOwnProperty;var xn=(o,t)=>()=>(t||o((t={exports:{}}).exports,t),t.exports),Sr=(o,t)=>{for(var e in t)tr(o,e,{get:t[e],enumerable:!0})},_o=(o,t,e,r)=>{if(t&&typeof t=="object"||typeof t=="function")for(let n of hn(t))!gn.call(o,n)&&n!==e&&tr(o,n,{get:()=>t[n],enumerable:!(r=dn(t,n))||r.enumerable});return o};var v=(o,t,e)=>(e=o!=null?ln(bn(o)):{},_o(t||!o||!o.__esModule?tr(e,"default",{value:o,enumerable:!0}):e,o)),vn=o=>_o(tr({},"__esModule",{value:!0}),o);var x=xn((Ya,Br)=>{"use strict";var Wr=Object.defineProperty,yn=Object.getOwnPropertyDescriptor,_n=Object.getOwnPropertyNames,Tn=Object.prototype.hasOwnProperty,Pn=(o,t)=>{for(var e in t)Wr(o,e,{get:t[e],enumerable:!0})},Ar=(o,t,e,r)=>{if(t&&typeof t=="object"||typeof t=="function")for(let n of _n(t))!Tn.call(o,n)&&n!==e&&Wr(o,n,{get:()=>t[n],enumerable:!(r=yn(t,n))||r.enumerable});return o},wn=(o,t,e)=>(Ar(o,t,"default"),e&&Ar(e,t,"default")),Fn=o=>Ar(Wr({},"__esModule",{value:!0}),o),kr={};Pn(kr,{version:()=>In});Br.exports=Fn(kr);wn(kr,require("@tensorflow/tfjs-node"),Br.exports);var To="4.22.0",Dn="4.22.0",En="4.22.0",Mn="4.22.0",Cn="4.22.0",In={tfjs:To,"tfjs-core":To,"tfjs-converter":Dn,"tfjs-backend-cpu":En,"tfjs-backend-webgl":Mn,"tfjs-backend-wasm":Cn}});var Ba={};Sr(Ba,{AgeGenderNet:()=>He,BoundingBox:()=>Ot,Box:()=>L,ComposableTask:()=>J,ComputeAllFaceDescriptorsTask:()=>_t,ComputeFaceDescriptorsTaskBase:()=>Ue,ComputeSingleFaceDescriptorTask:()=>Tt,DetectAllFaceLandmarksTask:()=>qe,DetectAllFacesTask:()=>Ie,DetectFaceLandmarksTaskBase:()=>Je,DetectFacesTaskBase:()=>Ke,DetectSingleFaceLandmarksTask:()=>Ze,DetectSingleFaceTask:()=>Qe,Dimensions:()=>R,FACE_EXPRESSION_LABELS:()=>so,FaceDetection:()=>M,FaceDetectionNet:()=>lo,FaceExpressionNet:()=>Oe,FaceExpressions:()=>gt,FaceLandmark68Net:()=>Zt,FaceLandmark68TinyNet:()=>ze,FaceLandmarkNet:()=>po,FaceLandmarks:()=>H,FaceLandmarks5:()=>jr,FaceLandmarks68:()=>Yt,FaceMatch:()=>me,FaceMatcher:()=>vo,FaceRecognitionNet:()=>Kt,Gender:()=>_r,LabeledBox:()=>pe,LabeledFaceDescriptors:()=>Et,NetInput:()=>ut,NeuralNetwork:()=>A,ObjectDetection:()=>Ht,Point:()=>_,PredictedBox:()=>Ur,Rect:()=>zt,SsdMobilenetv1:()=>It,SsdMobilenetv1Options:()=>X,TinyFaceDetector:()=>re,TinyFaceDetectorOptions:()=>je,TinyYolov2:()=>te,TinyYolov2Options:()=>st,allFaces:()=>Sa,allFacesSsdMobilenetv1:()=>un,allFacesTinyYolov2:()=>La,awaitMediaLoaded:()=>to,bufferToImage:()=>eo,computeFaceDescriptor:()=>xa,createCanvas:()=>Xt,createCanvasFromMedia:()=>We,createFaceDetectionNet:()=>ua,createFaceRecognitionNet:()=>ta,createSsdMobilenetv1:()=>Jo,createTinyFaceDetector:()=>Aa,createTinyYolov2:()=>da,detectAllFaces:()=>Lr,detectFaceLandmarks:()=>mn,detectFaceLandmarksTiny:()=>ga,detectLandmarks:()=>Ia,detectSingleFace:()=>Na,draw:()=>co,env:()=>w,euclideanDistance:()=>xo,extendWithAge:()=>Dr,extendWithFaceDescriptor:()=>Fr,extendWithFaceDetection:()=>Vt,extendWithFaceExpressions:()=>gr,extendWithFaceLandmarks:()=>Pe,extendWithGender:()=>Er,extractFaceTensors:()=>le,extractFaces:()=>fe,fetchImage:()=>On,fetchJson:()=>no,fetchNetWeights:()=>Hn,fetchOrThrow:()=>ht,fetchVideo:()=>zn,getContext2dOrThrow:()=>$,getMediaDimensions:()=>Ut,imageTensorToCanvas:()=>ro,imageToSquare:()=>oo,inverseSigmoid:()=>Sn,iou:()=>zr,isMediaElement:()=>sr,isMediaLoaded:()=>Ae,isWithAge:()=>ea,isWithFaceDetection:()=>pt,isWithFaceExpressions:()=>io,isWithFaceLandmarks:()=>qt,isWithGender:()=>ra,loadAgeGenderModel:()=>Ea,loadFaceDetectionModel:()=>Ma,loadFaceExpressionModel:()=>Da,loadFaceLandmarkModel:()=>Pa,loadFaceLandmarkTinyModel:()=>wa,loadFaceRecognitionModel:()=>Fa,loadSsdMobilenetv1Model:()=>pn,loadTinyFaceDetectorModel:()=>_a,loadTinyYolov2Model:()=>Ta,loadWeightMap:()=>ao,locateFaces:()=>Ca,matchDimensions:()=>Yn,minBbox:()=>Yr,nets:()=>F,nonMaxSuppression:()=>Vr,normalize:()=>rt,padToSquare:()=>Gr,predictAgeAndGender:()=>ya,recognizeFaceExpressions:()=>va,resizeResults:()=>fn,resolveInput:()=>Gt,shuffleArray:()=>Ln,sigmoid:()=>Ne,ssdMobilenetv1:()=>cn,tf:()=>Wa,tinyFaceDetector:()=>ha,tinyYolov2:()=>ba,toNetInput:()=>D,utils:()=>Hr,validateConfig:()=>ho,version:()=>ka});module.exports=vn(Ba);var Wa=v(x());var co={};Sr(co,{AnchorPosition:()=>Qr,DrawBox:()=>Se,DrawBoxOptions:()=>nr,DrawFaceLandmarks:()=>vr,DrawFaceLandmarksOptions:()=>xr,DrawTextField:()=>jt,DrawTextFieldOptions:()=>ue,drawContour:()=>lt,drawDetections:()=>$n,drawFaceExpressions:()=>Vn,drawFaceLandmarks:()=>jn});function lt(o,t,e=!1){if(o.beginPath(),t.slice(1).forEach(({x:r,y:n},s)=>{let a=t[s];o.moveTo(a.x,a.y),o.lineTo(r,n)}),e){let r=t[t.length-1],n=t[0];if(!r||!n)return;o.moveTo(r.x,r.y),o.lineTo(n.x,n.y)}o.stroke()}var Hr={};Sr(Hr,{computeReshapedDimensions:()=>Or,getCenterPoint:()=>$t,isDimensions:()=>rr,isEven:()=>er,isFloat:()=>$r,isTensor:()=>Bt,isTensor1D:()=>Nn,isTensor2D:()=>Rr,isTensor3D:()=>dt,isTensor4D:()=>U,isValidNumber:()=>et,isValidProbablitiy:()=>ce,range:()=>ct,round:()=>Rt});var Po=v(x());var R=class o{constructor(t,e){if(!et(t)||!et(e))throw new Error(`Dimensions.constructor - expected width and height to be valid numbers, instead have ${JSON.stringify({width:t,height:e})}`);this._width=t,this._height=e}get width(){return this._width}get height(){return this._height}reverse(){return new o(1/this.width,1/this.height)}};function Bt(o,t){return o instanceof Po.Tensor&&o.shape.length===t}function Nn(o){return Bt(o,1)}function Rr(o){return Bt(o,2)}function dt(o){return Bt(o,3)}function U(o){return Bt(o,4)}function $r(o){return o%1!==0}function er(o){return o%2===0}function Rt(o,t=2){let e=10**t;return Math.floor(o*e)/e}function rr(o){return o&&o.width&&o.height}function Or({width:o,height:t},e){let r=e/Math.max(t,o);return new R(Math.round(o*r),Math.round(t*r))}function $t(o){return o.reduce((t,e)=>t.add(e),new _(0,0)).div(new _(o.length,o.length))}function ct(o,t,e){return Array(o).fill(0).map((r,n)=>t+n*e)}function et(o){return!!o&&o!==1/0&&o!==-1/0&&!Number.isNaN(o)||o===0}function ce(o){return et(o)&&o>=0&&o<=1}var _=class o{constructor(t,e){this._x=t,this._y=e}get x(){return this._x}get y(){return this._y}add(t){return new o(this.x+t.x,this.y+t.y)}sub(t){return new o(this.x-t.x,this.y-t.y)}mul(t){return new o(this.x*t.x,this.y*t.y)}div(t){return new o(this.x/t.x,this.y/t.y)}abs(){return new o(Math.abs(this.x),Math.abs(this.y))}magnitude(){return Math.sqrt(this.x**2+this.y**2)}floor(){return new o(Math.floor(this.x),Math.floor(this.y))}};var L=class o{static isRect(t){return!!t&&[t.x,t.y,t.width,t.height].every(et)}static assertIsValidBox(t,e,r=!1){if(!o.isRect(t))throw new Error(`${e} - invalid box: ${JSON.stringify(t)}, expected object with properties x, y, width, height`);if(!r&&(t.width<0||t.height<0))throw new Error(`${e} - width (${t.width}) and height (${t.height}) must be positive numbers`)}constructor(t,e=!0){let r=t||{},n=[r.left,r.top,r.right,r.bottom].every(et),s=[r.x,r.y,r.width,r.height].every(et);if(!s&&!n)throw new Error(`Box.constructor - expected box to be IBoundingBox | IRect, instead have ${JSON.stringify(r)}`);let[a,i,c,m]=s?[r.x,r.y,r.width,r.height]:[r.left,r.top,r.right-r.left,r.bottom-r.top];o.assertIsValidBox({x:a,y:i,width:c,height:m},"Box.constructor",e),this._x=a,this._y=i,this._width=c,this._height=m}get x(){return this._x}get y(){return this._y}get width(){return this._width}get height(){return this._height}get left(){return this.x}get top(){return this.y}get right(){return this.x+this.width}get bottom(){return this.y+this.height}get area(){return this.width*this.height}get topLeft(){return new _(this.left,this.top)}get topRight(){return new _(this.right,this.top)}get bottomLeft(){return new _(this.left,this.bottom)}get bottomRight(){return new _(this.right,this.bottom)}round(){let[t,e,r,n]=[this.x,this.y,this.width,this.height].map(s=>Math.round(s));return new o({x:t,y:e,width:r,height:n})}floor(){let[t,e,r,n]=[this.x,this.y,this.width,this.height].map(s=>Math.floor(s));return new o({x:t,y:e,width:r,height:n})}toSquare(){let{x:t,y:e,width:r,height:n}=this,s=Math.abs(r-n);return re&&(i=-u+e+r,u=e),f>t&&(c=-f+t+n,f=t),m<1&&(c=2-m,m=1),p<1&&(c=2-p,p=1),{dy:a,edy:c,dx:s,edx:i,y:p,ey:f,x:m,ex:u,w:r,h:n}}calibrate(t){return new o({left:this.left+t.left*this.width,top:this.top+t.top*this.height,right:this.right+t.right*this.width,bottom:this.bottom+t.bottom*this.height}).toSquare().round()}};var Ot=class extends L{constructor(t,e,r,n,s=!1){super({left:t,top:e,right:r,bottom:n},s)}};var Ht=class o{constructor(t,e,r,n,s){this._imageDims=new R(s.width,s.height),this._score=t,this._classScore=e,this._className=r,this._box=new L(n).rescale(this._imageDims)}get score(){return this._score}get classScore(){return this._classScore}get className(){return this._className}get box(){return this._box}get imageDims(){return this._imageDims}get imageWidth(){return this.imageDims.width}get imageHeight(){return this.imageDims.height}get relativeBox(){return new L(this._box).rescale(this.imageDims.reverse())}forSize(t,e){return new o(this.score,this.classScore,this.className,this.relativeBox,{width:t,height:e})}};var M=class o extends Ht{constructor(t,e,r){super(t,t,"",e,r)}forSize(t,e){let{score:r,relativeBox:n,imageDims:s}=super.forSize(t,e);return new o(r,n,s)}};function zr(o,t,e=!0){let r=Math.max(0,Math.min(o.right,t.right)-Math.max(o.left,t.left)),n=Math.max(0,Math.min(o.bottom,t.bottom)-Math.max(o.top,t.top)),s=r*n;return e?s/(o.area+t.area-s):s/Math.min(o.area,t.area)}function Yr(o){let t=o.map(i=>i.x),e=o.map(i=>i.y),r=t.reduce((i,c)=>ccii({score:a,boxIndex:i})).sort((a,i)=>a.score-i.score).map(a=>a.boxIndex),s=[];for(;n.length>0;){let a=n.pop();s.push(a);let i=n,c=[];for(let m=0;mc[p]<=e)}return s}var mt=v(x());function rt(o,t){return mt.tidy(()=>{let[e,r,n]=t,s=mt.fill([...o.shape.slice(0,3),1],e,"float32"),a=mt.fill([...o.shape.slice(0,3),1],r,"float32"),i=mt.fill([...o.shape.slice(0,3),1],n,"float32"),c=mt.concat([s,a,i],3);return mt.sub(o,c)})}var Dt=v(x());function Gr(o,t=!1){return Dt.tidy(()=>{let[e,r]=o.shape.slice(1);if(e===r)return o;let n=Math.abs(e-r),s=Math.round(n*(t?.5:1)),a=e>r?2:1,i=f=>{let l=o.shape.slice();return l[a]=f,Dt.fill(l,0,"float32")},c=i(s),m=n-c.shape[a],u=[t&&m?i(m):null,o,c].filter(f=>!!f).map(f=>Dt.cast(f,"float32"));return Dt.concat(u,a)})}function Ln(o){let t=o.slice();for(let e=t.length-1;e>0;e--){let r=Math.floor(Math.random()*(e+1)),n=t[e];t[e]=t[r],t[r]=n}return t}function Ne(o){return 1/(1+Math.exp(-o))}function Sn(o){return Math.log(o/(1-o))}var zt=class extends L{constructor(t,e,r,n,s=!1){super({x:t,y:e,width:r,height:n},s)}};var An=.5,Wn=.43,kn=.45,H=class{constructor(t,e,r=new _(0,0)){let{width:n,height:s}=e;this._imgDims=new R(n,s),this._shift=r,this._positions=t.map(a=>a.mul(new _(n,s)).add(r))}get shift(){return new _(this._shift.x,this._shift.y)}get imageWidth(){return this._imgDims.width}get imageHeight(){return this._imgDims.height}get positions(){return this._positions}get relativePositions(){return this._positions.map(t=>t.sub(this._shift).div(new _(this.imageWidth,this.imageHeight)))}forSize(t,e){return new this.constructor(this.relativePositions,{width:t,height:e})}shiftBy(t,e){return new this.constructor(this.relativePositions,this._imgDims,new _(t,e))}shiftByPoint(t){return this.shiftBy(t.x,t.y)}align(t,e={}){if(t){let s=t instanceof M?t.box.floor():new L(t);return this.shiftBy(s.x,s.y).align(null,e)}let{useDlibAlignment:r,minBoxPadding:n}={useDlibAlignment:!1,minBoxPadding:.2,...e};return r?this.alignDlib():this.alignMinBbox(n)}alignDlib(){let t=this.getRefPointsForAlignment(),[e,r,n]=t,s=u=>n.sub(u).magnitude(),a=(s(e)+s(r))/2,i=Math.floor(a/kn),c=$t(t),m=Math.floor(Math.max(0,c.x-An*i)),p=Math.floor(Math.max(0,c.y-Wn*i));return new zt(m,p,Math.min(i,this.imageWidth+m),Math.min(i,this.imageHeight+p))}alignMinBbox(t){let e=Yr(this.positions);return e.pad(e.width*t,e.height*t)}getRefPointsForAlignment(){throw new Error("getRefPointsForAlignment not implemented by base class")}};var jr=class extends H{getRefPointsForAlignment(){let t=this.positions;return[t[0],t[1],$t([t[3],t[4]])]}};var Yt=class extends H{getJawOutline(){return this.positions.slice(0,17)}getLeftEyeBrow(){return this.positions.slice(17,22)}getRightEyeBrow(){return this.positions.slice(22,27)}getNose(){return this.positions.slice(27,36)}getLeftEye(){return this.positions.slice(36,42)}getRightEye(){return this.positions.slice(42,48)}getMouth(){return this.positions.slice(48,68)}getRefPointsForAlignment(){return[this.getLeftEye(),this.getRightEye(),this.getMouth()].map($t)}};var me=class{constructor(t,e){this._label=t,this._distance=e}get label(){return this._label}get distance(){return this._distance}toString(t=!0){return`${this.label}${t?` (${Rt(this.distance)})`:""}`}};var pe=class extends L{static assertIsValidLabeledBox(t,e){if(L.assertIsValidBox(t,e),!et(t.label))throw new Error(`${e} - expected property label (${t.label}) to be a number`)}constructor(t,e){super(t),this._label=e}get label(){return this._label}};var Et=class o{constructor(t,e){if(typeof t!="string")throw new Error("LabeledFaceDescriptors - constructor expected label to be a string");if(!Array.isArray(e)||e.some(r=>!(r instanceof Float32Array)))throw new Error("LabeledFaceDescriptors - constructor expected descriptors to be an array of Float32Array");this._label=t,this._descriptors=e}get label(){return this._label}get descriptors(){return this._descriptors}toJSON(){return{label:this.label,descriptors:this.descriptors.map(t=>Array.from(t))}}static fromJSON(t){let e=t.descriptors.map(r=>new Float32Array(r));return new o(t.label,e)}};var Ur=class extends pe{static assertIsValidPredictedBox(t,e){if(pe.assertIsValidLabeledBox(t,e),!ce(t.score)||!ce(t.classScore))throw new Error(`${e} - expected properties score (${t.score}) and (${t.classScore}) to be a number between [0, 1]`)}constructor(t,e,r,n){super(t,e),this._score=r,this._classScore=n}get score(){return this._score}get classScore(){return this._classScore}};function pt(o){return o.detection instanceof M}function Vt(o,t){return{...o,...{detection:t}}}function Xr(){let o=window.fetch;if(!o)throw new Error("fetch - missing fetch implementation for browser environment");return{Canvas:HTMLCanvasElement,CanvasRenderingContext2D,Image:HTMLImageElement,ImageData,Video:HTMLVideoElement,createCanvasElement:()=>document.createElement("canvas"),createImageElement:()=>document.createElement("img"),createVideoElement:()=>document.createElement("video"),fetch:o,readFile:()=>{throw new Error("readFile - filesystem not available for browser environment")}}}function Le(){return typeof global=="object"&&typeof process!="undefined"&&process.versions!=null&&process.versions.node!=null}function or(o){let t="";if(!o&&Le())try{o=require("fs")}catch(r){t=r.toString()}return{readFile:o?r=>new Promise((n,s)=>{o.readFile(r,(a,i)=>a?s(a):n(i))}):()=>{throw new Error(`readFile - failed to require fs in nodejs environment with error: ${t}`)}}}function Jr(){let o=global.Canvas||global.HTMLCanvasElement,t=global.Image||global.HTMLImageElement,e=global.Video||global.HTMLVideoElement,r=()=>{if(o)return new o;throw new Error("createCanvasElement - missing Canvas implementation for nodejs environment")},n=()=>{if(t)return new t;throw new Error("createImageElement - missing Image implementation for nodejs environment")},s=()=>{if(e)return new e;throw new Error("createVideoElement - missing Video implementation for nodejs environment")},a=global.fetch,i=or();return{Canvas:o||class{},CanvasRenderingContext2D:global.CanvasRenderingContext2D||class{},Image:t||class{},ImageData:global.ImageData||class{},Video:global.HTMLVideoElement||class{},createCanvasElement:r,createImageElement:n,createVideoElement:s,fetch:a,...i}}function qr(){return typeof window=="object"&&typeof document!="undefined"&&typeof HTMLImageElement!="undefined"&&typeof HTMLCanvasElement!="undefined"&&typeof HTMLVideoElement!="undefined"&&typeof ImageData!="undefined"&&typeof CanvasRenderingContext2D!="undefined"}var S;function Bn(){if(!S)throw new Error("getEnv - environment is not defined, check isNodejs() and isBrowser()");return S}function Zr(o){S=o}function Kr(){return qr()?Zr(Xr()):Le()?Zr(Jr()):null}function Rn(o){if(S||Kr(),!S)throw new Error("monkeyPatch - environment is not defined, check isNodejs() and isBrowser()");let{Canvas:t=S.Canvas,Image:e=S.Image}=o;S.Canvas=t,S.Image=e,S.createCanvasElement=o.createCanvasElement||(()=>new t),S.createImageElement=o.createImageElement||(()=>new e),S.ImageData=o.ImageData||S.ImageData,S.Video=o.Video||S.Video,S.fetch=o.fetch||S.fetch,S.readFile=o.readFile||S.readFile}var w={getEnv:Bn,setEnv:Zr,initialize:Kr,createBrowserEnv:Xr,createFileSystem:or,createNodejsEnv:Jr,monkeyPatch:Rn,isBrowser:qr,isNodejs:Le};Kr();function Gt(o){return!w.isNodejs()&&typeof o=="string"?document.getElementById(o):o}function $(o){let{Canvas:t,CanvasRenderingContext2D:e}=w.getEnv();if(o instanceof e)return o;let r=Gt(o);if(!(r instanceof t))throw new Error("resolveContext2d - expected canvas to be of instance of Canvas");let n=r.getContext("2d",{willReadFrequently:!0});if(!n)throw new Error("resolveContext2d - canvas 2d context is null");return n}var Qr=(n=>(n.TOP_LEFT="TOP_LEFT",n.TOP_RIGHT="TOP_RIGHT",n.BOTTOM_LEFT="BOTTOM_LEFT",n.BOTTOM_RIGHT="BOTTOM_RIGHT",n))(Qr||{}),ue=class{constructor(t={}){let{anchorPosition:e,backgroundColor:r,fontColor:n,fontSize:s,fontStyle:a,padding:i}=t;this.anchorPosition=e||"TOP_LEFT",this.backgroundColor=r||"rgba(0, 0, 0, 0.5)",this.fontColor=n||"rgba(255, 255, 255, 1)",this.fontSize=s||14,this.fontStyle=a||"Georgia",this.padding=i||4}},jt=class o{constructor(t,e,r={}){this.text=typeof t=="string"?[t]:t instanceof o?t.text:t,this.anchor=e,this.options=new ue(r)}measureWidth(t){let{padding:e}=this.options;return this.text.map(r=>t.measureText(r).width).reduce((r,n)=>r{let b=c+u.x,T=c+u.y+(l+1)*a;r.fillText(f,b,T)})}};var nr=class{constructor(t={}){let{boxColor:e,lineWidth:r,label:n,drawLabelOptions:s}=t;this.boxColor=e||"rgba(0, 0, 255, 1)",this.lineWidth=r||2,this.label=n;let a={anchorPosition:"BOTTOM_LEFT",backgroundColor:this.boxColor};this.drawLabelOptions=new ue({...a,...s})}},Se=class{constructor(t,e={}){this.box=new L(t),this.options=new nr(e)}draw(t){let e=$(t),{boxColor:r,lineWidth:n}=this.options,{x:s,y:a,width:i,height:c}=this.box;e.strokeStyle=r,e.lineWidth=n,e.strokeRect(s,a,i,c);let{label:m}=this.options;m&&new jt([m],{x:s-n/2,y:a},this.options.drawLabelOptions).draw(t)}};function $n(o,t){(Array.isArray(t)?t:[t]).forEach(r=>{let n=r instanceof M?r.score:pt(r)?r.detection.score:void 0,s=r instanceof M?r.box:pt(r)?r.detection.box:new L(r),a=n?`${Rt(n)}`:void 0;new Se(s,{label:a}).draw(o)})}var Te=v(x());function Ae(o){let{Image:t,Video:e}=w.getEnv();return o instanceof t&&o.complete||o instanceof e&&o.readyState>=3}function to(o){return new Promise((t,e)=>{if(o instanceof w.getEnv().Canvas||Ae(o)){t(null);return}function r(s){s.currentTarget&&(s.currentTarget.removeEventListener("load",n),s.currentTarget.removeEventListener("error",r),e(s))}function n(s){s.currentTarget&&(s.currentTarget.removeEventListener("load",n),s.currentTarget.removeEventListener("error",r),t(s))}o.addEventListener("load",n),o.addEventListener("error",r)})}function eo(o){return new Promise((t,e)=>{o instanceof Blob||e(new Error("bufferToImage - expected buf to be of type: Blob"));let r=new FileReader;r.onload=()=>{typeof r.result!="string"&&e(new Error("bufferToImage - expected reader.result to be a string, in onload"));let n=w.getEnv().createImageElement();n.onload=()=>t(n),n.onerror=e,n.src=r.result},r.onerror=e,r.readAsDataURL(o)})}function Ut(o){let{Image:t,Video:e}=w.getEnv();return o instanceof t?new R(o.naturalWidth,o.naturalHeight):o instanceof e?new R(o.videoWidth,o.videoHeight):new R(o.width,o.height)}function Xt({width:o,height:t}){let{createCanvasElement:e}=w.getEnv(),r=e();return r.width=o,r.height=t,r}function We(o,t){let{ImageData:e}=w.getEnv();if(!(o instanceof e)&&!Ae(o))throw new Error("createCanvasFromMedia - media has not finished loading yet");let{width:r,height:n}=t||Ut(o),s=Xt({width:r,height:n});return o instanceof e?$(s).putImageData(o,0,0):$(s).drawImage(o,0,0,r,n),s}var ar=v(x());async function ro(o,t){let e=t||w.getEnv().createCanvasElement(),[r,n,s]=o.shape.slice(U(o)?1:0),a=ar.tidy(()=>o.as3D(r,n,s).toInt());return await ar.browser.toPixels(a,e),a.dispose(),e}function sr(o){let{Image:t,Canvas:e,Video:r}=w.getEnv();return o instanceof t||o instanceof e||o instanceof r}var z=v(x());function oo(o,t,e=!1){let{Image:r,Canvas:n}=w.getEnv();if(!(o instanceof r||o instanceof n))throw new Error("imageToSquare - expected arg0 to be HTMLImageElement | HTMLCanvasElement");if(t<=0)return Xt({width:1,height:1});let s=Ut(o),a=t/Math.max(s.height,s.width),i=a*s.width,c=a*s.height,m=Xt({width:t,height:t}),p=o instanceof n?o:We(o),u=Math.abs(i-c)/2,f=e&&i0&&p.height>0&&$(m).drawImage(p,f,l,i,c),m}var ut=class{constructor(t,e=!1){this._imageTensors=[];this._canvases=[];this._treatAsBatchInput=!1;this._inputDimensions=[];this._inputSize=0;if(!Array.isArray(t))throw new Error(`NetInput.constructor - expected inputs to be an Array of TResolvedNetInput or to be instanceof tf.Tensor4D, instead have ${t}`);this._treatAsBatchInput=e,this._batchSize=t.length,t.forEach((r,n)=>{if(dt(r)){this._imageTensors[n]=r,this._inputDimensions[n]=r.shape;return}if(U(r)){let a=r.shape[0];if(a!==1)throw new Error(`NetInput - tf.Tensor4D with batchSize ${a} passed, but not supported in input array`);this._imageTensors[n]=r,this._inputDimensions[n]=r.shape.slice(1);return}let s=r instanceof w.getEnv().Canvas?r:We(r);this._canvases[n]=s,this._inputDimensions[n]=[s.height,s.width,3]})}get imageTensors(){return this._imageTensors}get canvases(){return this._canvases}get isBatchInput(){return this.batchSize>1||this._treatAsBatchInput}get batchSize(){return this._batchSize}get inputDimensions(){return this._inputDimensions}get inputSize(){return this._inputSize}get reshapedInputDimensions(){return ct(this.batchSize,0,1).map((t,e)=>this.getReshapedInputDimensions(e))}getInput(t){return this.canvases[t]||this.imageTensors[t]}getInputDimensions(t){return this._inputDimensions[t]}getInputHeight(t){return this._inputDimensions[t][0]}getInputWidth(t){return this._inputDimensions[t][1]}getReshapedInputDimensions(t){if(typeof this.inputSize!="number")throw new Error("getReshapedInputDimensions - inputSize not set, toBatchTensor has not been called yet");let e=this.getInputWidth(t),r=this.getInputHeight(t);return Or({width:e,height:r},this.inputSize)}toBatchTensor(t,e=!0){return this._inputSize=t,z.tidy(()=>{let r=ct(this.batchSize,0,1).map(s=>{let a=this.getInput(s);if(a instanceof z.Tensor){let i=U(a)?a:z.expandDims(a);return i=Gr(i,e),(i.shape[1]!==t||i.shape[2]!==t)&&(i=z.image.resizeBilinear(i,[t,t],!1,!1)),i.as3D(t,t,3)}if(a instanceof w.getEnv().Canvas)return z.browser.fromPixels(oo(a,t,e));throw new Error(`toBatchTensor - at batchIdx ${s}, expected input to be instanceof tf.Tensor or instanceof HTMLCanvasElement, instead have ${a}`)});return z.stack(r.map(s=>z.cast(s,"float32"))).as4D(this.batchSize,t,t,3)})}};async function D(o){if(o instanceof ut)return o;let t=Array.isArray(o)?o:[o];if(!t.length)throw new Error("toNetInput - empty array passed as input");let e=n=>Array.isArray(o)?` at input index ${n}:`:"",r=t.map(Gt);return r.forEach((n,s)=>{if(!sr(n)&&!dt(n)&&!U(n))throw typeof t[s]=="string"?new Error(`toNetInput -${e(s)} string passed, but could not resolve HTMLElement for element id ${t[s]}`):new Error(`toNetInput -${e(s)} expected media to be of type HTMLImageElement | HTMLVideoElement | HTMLCanvasElement | tf.Tensor3D, or to be an element id`);if(U(n)){let a=n.shape[0];if(a!==1)throw new Error(`toNetInput -${e(s)} tf.Tensor4D with batchSize ${a} passed, but not supported in input array`)}}),await Promise.all(r.map(n=>sr(n)&&to(n))),new ut(r,Array.isArray(o))}async function fe(o,t){let{Canvas:e}=w.getEnv(),r=o;if(!(o instanceof e)){let a=await D(o);if(a.batchSize>1)throw new Error("extractFaces - batchSize > 1 not supported");let i=a.getInput(0);r=i instanceof e?i:await ro(i)}let n=$(r);return t.map(a=>a instanceof M?a.forSize(r.width,r.height).box.floor():a).map(a=>a.clipAtImageBorders(r.width,r.height)).map(({x:a,y:i,width:c,height:m})=>{let p=Xt({width:c,height:m});return c>0&&m>0&&$(p).putImageData(n.getImageData(a,i,c,m),0,0),p})}var ir=v(x());async function le(o,t){if(!dt(o)&&!U(o))throw new Error("extractFaceTensors - expected image tensor to be 3D or 4D");if(U(o)&&o.shape[0]>1)throw new Error("extractFaceTensors - batchSize > 1 not supported");return ir.tidy(()=>{let[e,r,n]=o.shape.slice(U(o)?1:0);return t.map(i=>i instanceof M?i.forSize(r,e).box:i).map(i=>i.clipAtImageBorders(r,e)).filter(i=>i.width>0&&i.height>0).map(({x:i,y:c,width:m,height:p})=>ir.slice3d(o.as3D(e,r,n),[c,i,0],[p,m,n]))})}async function ht(o,t){let{fetch:e}=w.getEnv(),r=await e(o,t);if(!(r.status<400))throw new Error(`failed to fetch: (${r.status}) ${r.statusText}, from url: ${r.url}`);return r}async function On(o){let t=await ht(o),e=await t.blob();if(!e.type.startsWith("image/"))throw new Error(`fetchImage - expected blob type to be of type image/*, instead have: ${e.type}, for url: ${t.url}`);return eo(e)}async function no(o){return(await ht(o)).json()}async function Hn(o){return new Float32Array(await(await ht(o)).arrayBuffer())}function wo(o){return new Promise((t,e)=>{o instanceof Blob||e(new Error("bufferToVideo - expected buf to be of type: Blob"));let r=w.getEnv().createVideoElement();r.oncanplay=()=>t(r),r.onerror=e,r.playsInline=!0,r.muted=!0,r.src=URL.createObjectURL(o),r.play()})}async function zn(o){let t=await ht(o),e=await t.blob();if(!e.type.startsWith("video/"))throw new Error(`fetchVideo - expected blob type to be of type video/*, instead have: ${e.type}, for url: ${t.url}`);return wo(e)}var Fo=v(x());function cr(o,t){let e=`${t}-weights_manifest.json`;if(!o)return{modelBaseUri:"",manifestUri:e};if(o==="/")return{modelBaseUri:"/",manifestUri:`/${e}`};let r=o.startsWith("http://")?"http://":o.startsWith("https://")?"https://":"";o=o.replace(r,"");let n=o.split("/").filter(i=>i),s=o.endsWith(".json")?n[n.length-1]:e,a=r+(o.endsWith(".json")?n.slice(0,n.length-1):n).join("/");return a=o.startsWith("/")?`/${a}`:a,{modelBaseUri:a,manifestUri:a==="/"?`/${s}`:`${a}/${s}`}}async function ao(o,t){let{manifestUri:e,modelBaseUri:r}=cr(o,t),n=await no(e);return Fo.io.loadWeights(n,r)}function Yn(o,t,e=!1){let{width:r,height:n}=e?Ut(t):t;return o.width=r,o.height=n,{width:r,height:n}}var ve=v(x());var bt=v(x());var A=class{constructor(t){this._params=void 0;this._paramMappings=[];this._name=t}get params(){return this._params}get paramMappings(){return this._paramMappings}get isLoaded(){return!!this.params}getParamFromPath(t){let{obj:e,objProp:r}=this.traversePropertyPath(t);return e[r]}reassignParamFromPath(t,e){let{obj:r,objProp:n}=this.traversePropertyPath(t);r[n].dispose(),r[n]=e}getParamList(){return this._paramMappings.map(({paramPath:t})=>({path:t,tensor:this.getParamFromPath(t)}))}getTrainableParams(){return this.getParamList().filter(t=>t.tensor instanceof bt.Variable)}getFrozenParams(){return this.getParamList().filter(t=>!(t.tensor instanceof bt.Variable))}variable(){this.getFrozenParams().forEach(({path:t,tensor:e})=>{this.reassignParamFromPath(t,e.variable())})}freeze(){this.getTrainableParams().forEach(({path:t,tensor:e})=>{let r=bt.tensor(e.dataSync());e.dispose(),this.reassignParamFromPath(t,r)})}dispose(t=!0){this.getParamList().forEach(e=>{if(t&&e.tensor.isDisposed)throw new Error(`param tensor has already been disposed for path ${e.path}`);e.tensor.dispose()}),this._params=void 0}serializeParams(){return new Float32Array(this.getParamList().map(({tensor:t})=>Array.from(t.dataSync())).reduce((t,e)=>t.concat(e)))}async load(t){if(t instanceof Float32Array){this.extractWeights(t);return}await this.loadFromUri(t)}async loadFromUri(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromUri - expected model uri`);let e=await ao(t,this.getDefaultModelName());this.loadFromWeightMap(e)}async loadFromDisk(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromDisk - expected model file path`);let{readFile:e}=w.getEnv(),{manifestUri:r,modelBaseUri:n}=cr(t,this.getDefaultModelName()),s=m=>Promise.all(m.map(p=>e(p).then(u=>typeof u=="string"?Buffer.from(u):u.buffer))),a=bt.io.weightsLoaderFactory(s),i=JSON.parse((await e(r)).toString()),c=await a(i,n);this.loadFromWeightMap(c)}loadFromWeightMap(t){let{paramMappings:e,params:r}=this.extractParamsFromWeightMap(t);this._paramMappings=e,this._params=r}extractWeights(t){let{paramMappings:e,params:r}=this.extractParams(t);this._paramMappings=e,this._params=r}traversePropertyPath(t){if(!this.params)throw new Error("traversePropertyPath - model has no loaded params");let e=t.split("/").reduce((s,a)=>{if(!s.nextObj.hasOwnProperty(a))throw new Error(`traversePropertyPath - object does not have property ${a}, for path ${t}`);return{obj:s.nextObj,objProp:a,nextObj:s.nextObj[a]}},{nextObj:this.params}),{obj:r,objProp:n}=e;if(!r||!n||!(r[n]instanceof bt.Tensor))throw new Error(`traversePropertyPath - parameter is not a tensor, for path ${t}`);return{obj:r,objProp:n}}};var E=v(x());var de=v(x());function O(o,t,e){return de.tidy(()=>{let r=de.separableConv2d(o,t.depthwise_filter,t.pointwise_filter,e,"same");return r=de.add(r,t.bias),r})}function mr(o,t,e=!1){return E.tidy(()=>{let r=E.relu(e?E.add(E.conv2d(o,t.conv0.filters,[2,2],"same"),t.conv0.bias):O(o,t.conv0,[2,2])),n=O(r,t.conv1,[1,1]),s=E.relu(E.add(r,n)),a=O(s,t.conv2,[1,1]);return E.relu(E.add(r,E.add(n,a)))})}function ke(o,t,e=!1,r=!0){return E.tidy(()=>{let n=E.relu(e?E.add(E.conv2d(o,t.conv0.filters,r?[2,2]:[1,1],"same"),t.conv0.bias):O(o,t.conv0,r?[2,2]:[1,1])),s=O(n,t.conv1,[1,1]),a=E.relu(E.add(n,s)),i=O(a,t.conv2,[1,1]),c=E.relu(E.add(n,E.add(s,i))),m=O(c,t.conv3,[1,1]);return E.relu(E.add(n,E.add(s,E.add(i,m))))})}var Mt=v(x());function Jt(o,t,e="same",r=!1){return Mt.tidy(()=>{let n=Mt.add(Mt.conv2d(o,t.filters,[1,1],e),t.bias);return r?Mt.relu(n):n})}function W(o,t){Object.keys(o).forEach(e=>{t.some(r=>r.originalPath===e)||o[e].dispose()})}var pr=v(x());function he(o,t){return(e,r,n,s)=>{let a=pr.tensor4d(o(e*r*n*n),[n,n,e,r]),i=pr.tensor1d(o(r));return t.push({paramPath:`${s}/filters`},{paramPath:`${s}/bias`}),{filters:a,bias:i}}}var ur=v(x());function fr(o,t){return(e,r,n)=>{let s=ur.tensor2d(o(e*r),[e,r]),a=ur.tensor1d(o(r));return t.push({paramPath:`${n}/weights`},{paramPath:`${n}/bias`}),{weights:s,bias:a}}}var Re=v(x());var Be=class{constructor(t,e,r){this.depthwise_filter=t;this.pointwise_filter=e;this.bias=r}};function be(o,t){return(e,r,n)=>{let s=Re.tensor4d(o(9*e),[3,3,e,1]),a=Re.tensor4d(o(e*r),[1,1,e,r]),i=Re.tensor1d(o(r));return t.push({paramPath:`${n}/depthwise_filter`},{paramPath:`${n}/pointwise_filter`},{paramPath:`${n}/bias`}),new Be(s,a,i)}}function ge(o){return t=>{let e=o(`${t}/depthwise_filter`,4),r=o(`${t}/pointwise_filter`,4),n=o(`${t}/bias`,1);return new Be(e,r,n)}}function Y(o,t){return(e,r,n)=>{let s=o[e];if(!Bt(s,r))throw new Error(`expected weightMap[${e}] to be a Tensor${r}D, instead have ${s}`);return t.push({originalPath:e,paramPath:n||e}),s}}function k(o){let t=o;function e(n){let s=t.slice(0,n);return t=t.slice(n),s}function r(){return t}return{extractWeights:e,getRemainingWeights:r}}function lr(o,t){let e=he(o,t),r=be(o,t);function n(a,i,c,m=!1){let p=m?e(a,i,3,`${c}/conv0`):r(a,i,`${c}/conv0`),u=r(i,i,`${c}/conv1`),f=r(i,i,`${c}/conv2`);return{conv0:p,conv1:u,conv2:f}}function s(a,i,c,m=!1){let{conv0:p,conv1:u,conv2:f}=n(a,i,c,m),l=r(i,i,`${c}/conv3`);return{conv0:p,conv1:u,conv2:f,conv3:l}}return{extractDenseBlock3Params:n,extractDenseBlock4Params:s}}function Do(o){let t=[],{extractWeights:e,getRemainingWeights:r}=k(o),{extractDenseBlock4Params:n}=lr(e,t),s=n(3,32,"dense0",!0),a=n(32,64,"dense1"),i=n(64,128,"dense2"),c=n(128,256,"dense3");if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:t,params:{dense0:s,dense1:a,dense2:i,dense3:c}}}function dr(o){return t=>{let e=o(`${t}/filters`,4),r=o(`${t}/bias`,1);return{filters:e,bias:r}}}function hr(o,t){let e=Y(o,t),r=dr(e),n=ge(e);function s(i,c=!1){let m=c?r(`${i}/conv0`):n(`${i}/conv0`),p=n(`${i}/conv1`),u=n(`${i}/conv2`);return{conv0:m,conv1:p,conv2:u}}function a(i,c=!1){let m=c?r(`${i}/conv0`):n(`${i}/conv0`),p=n(`${i}/conv1`),u=n(`${i}/conv2`),f=n(`${i}/conv3`);return{conv0:m,conv1:p,conv2:u,conv3:f}}return{extractDenseBlock3Params:s,extractDenseBlock4Params:a}}function Eo(o){let t=[],{extractDenseBlock4Params:e}=hr(o,t),r={dense0:e("dense0",!0),dense1:e("dense1"),dense2:e("dense2"),dense3:e("dense3")};return W(o,t),{params:r,paramMappings:t}}var xe=class extends A{constructor(){super("FaceFeatureExtractor")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("FaceFeatureExtractor - load model before inference");return ve.tidy(()=>{let r=ve.cast(t.toBatchTensor(112,!0),"float32"),s=rt(r,[122.782,117.001,104.298]).div(255),a=ke(s,e.dense0,!0);return a=ke(a,e.dense1),a=ke(a,e.dense2),a=ke(a,e.dense3),a=ve.avgPool(a,[7,7],[2,2],"valid"),a})}async forward(t){return this.forwardInput(await D(t))}getDefaultModelName(){return"face_feature_extractor_model"}extractParamsFromWeightMap(t){return Eo(t)}extractParams(t){return Do(t)}};var Io=v(x());var ye=v(x());function $e(o,t){return ye.tidy(()=>ye.add(ye.matMul(o,t.weights),t.bias))}function Mo(o,t,e){let r=[],{extractWeights:n,getRemainingWeights:s}=k(o),i=fr(n,r)(t,e,"fc");if(s().length!==0)throw new Error(`weights remaing after extract: ${s().length}`);return{paramMappings:r,params:{fc:i}}}function Co(o){let t=[],e=Y(o,t);function r(s){let a=e(`${s}/weights`,2),i=e(`${s}/bias`,1);return{weights:a,bias:i}}let n={fc:r("fc")};return W(o,t),{params:n,paramMappings:t}}function br(o){let t={},e={};return Object.keys(o).forEach(r=>{let n=r.startsWith("fc")?e:t;n[r]=o[r]}),{featureExtractorMap:t,classifierMap:e}}var _e=class extends A{constructor(t,e){super(t),this._faceFeatureExtractor=e}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(t){let{params:e}=this;if(!e)throw new Error(`${this._name} - load model before inference`);return Io.tidy(()=>{let r=t instanceof ut?this.faceFeatureExtractor.forwardInput(t):t;return $e(r.as2D(r.shape[0],-1),e.fc)})}dispose(t=!0){this.faceFeatureExtractor.dispose(t),super.dispose(t)}loadClassifierParams(t){let{params:e,paramMappings:r}=this.extractClassifierParams(t);this._params=e,this._paramMappings=r}extractClassifierParams(t){return Mo(t,this.getClassifierChannelsIn(),this.getClassifierChannelsOut())}extractParamsFromWeightMap(t){let{featureExtractorMap:e,classifierMap:r}=br(t);return this.faceFeatureExtractor.loadFromWeightMap(e),Co(r)}extractParams(t){let e=this.getClassifierChannelsIn(),r=this.getClassifierChannelsOut(),n=r*e+r,s=t.slice(0,t.length-n),a=t.slice(t.length-n);return this.faceFeatureExtractor.extractWeights(s),this.extractClassifierParams(a)}};var so=["neutral","happy","sad","angry","fearful","disgusted","surprised"],gt=class{constructor(t){this.neutral=0;this.happy=0;this.sad=0;this.angry=0;this.fearful=0;this.disgusted=0;this.surprised=0;if(t.length!==7)throw new Error(`FaceExpressions.constructor - expected probabilities.length to be 7, have: ${t.length}`);so.forEach((e,r)=>{this[e]=t[r]})}asSortedArray(){return so.map(t=>({expression:t,probability:this[t]})).sort((t,e)=>e.probability-t.probability)}};var Oe=class extends _e{constructor(t=new xe){super("FaceExpressionNet",t)}forwardInput(t){return Te.tidy(()=>Te.softmax(this.runNet(t)))}async forward(t){return this.forwardInput(await D(t))}async predictExpressions(t){let e=await D(t),r=await this.forwardInput(e),n=await Promise.all(Te.unstack(r).map(async a=>{let i=a.dataSync();return a.dispose(),i}));r.dispose();let s=n.map(a=>new gt(a));return e.isBatchInput?s:s[0]}getDefaultModelName(){return"face_expression_model"}getClassifierChannelsIn(){return 256}getClassifierChannelsOut(){return 7}};function io(o){return o.expressions instanceof gt}function gr(o,t){return{...o,...{expressions:t}}}function Vn(o,t,e=.1,r){(Array.isArray(t)?t:[t]).forEach(s=>{let a=s instanceof gt?s:io(s)?s.expressions:void 0;if(!a)throw new Error("drawFaceExpressions - expected faceExpressions to be FaceExpressions | WithFaceExpressions<{}> or array thereof");let c=a.asSortedArray().filter(u=>u.probability>e),m=pt(s)?s.detection.box.bottomLeft:r||new _(0,0);new jt(c.map(u=>`${u.expression} (${Rt(u.probability)})`),m).draw(o)})}function qt(o){return pt(o)&&o.landmarks instanceof H&&o.unshiftedLandmarks instanceof H&&o.alignedRect instanceof M}function Gn(o){let t=c=>c*180/Math.PI,e=(c,m)=>Math.sqrt((c.x-m.x)**2+(c.y-m.y)**2),r={roll:void 0,pitch:void 0,yaw:void 0},n=(c,m,p)=>{let u=Math.floor(c.x-m.x),f=Math.floor(m.x-p.x);return u-f},s=(c,m)=>{let p=Math.hypot(m.x-c.x,m.y-c.y),u=m.y-c.y,f=Math.asin(u/p),l=t(f),b=Math.floor(90-l),T=m.x-c.x<0?-1:1;return b*T},a=(c,m,p)=>{let u=e(c,p),f=new _((c.x+p.x)/2,(c.y+p.y)/2),l=e(m,f),b=Math.atan(l/u),T=Math.floor(t(b)),h=f.y-m.y<0?-1:1;return T*h};if(!o||!o.positions||o.positions.length!==68)return r;let i=o.positions;return r.roll=s(i[27],i[66]),r.pitch=a(i[14],i[30],i[2]),r.yaw=n(i[14],i[33],i[2]),r}function Pe(o,t){let{box:e}=o.detection,r=t.shiftBy(e.x,e.y),n=r.align(),{imageDims:s}=o.detection,a=new M(o.detection.score,n.rescale(s.reverse()),s),i=Gn(t);return{...o,...{landmarks:r,unshiftedLandmarks:t,alignedRect:a,angle:i}}}var xr=class{constructor(t={}){let{drawLines:e=!0,drawPoints:r=!0,lineWidth:n,lineColor:s,pointSize:a,pointColor:i}=t;this.drawLines=e,this.drawPoints=r,this.lineWidth=n||1,this.pointSize=a||2,this.lineColor=s||"rgba(0, 255, 255, 1)",this.pointColor=i||"rgba(255, 0, 255, 1)"}},vr=class{constructor(t,e={}){this.faceLandmarks=t,this.options=new xr(e)}draw(t){let e=$(t),{drawLines:r,drawPoints:n,lineWidth:s,lineColor:a,pointSize:i,pointColor:c}=this.options;if(r&&this.faceLandmarks instanceof Yt&&(e.strokeStyle=a,e.lineWidth=s,lt(e,this.faceLandmarks.getJawOutline()),lt(e,this.faceLandmarks.getLeftEyeBrow()),lt(e,this.faceLandmarks.getRightEyeBrow()),lt(e,this.faceLandmarks.getNose()),lt(e,this.faceLandmarks.getLeftEye(),!0),lt(e,this.faceLandmarks.getRightEye(),!0),lt(e,this.faceLandmarks.getMouth(),!0)),n){e.strokeStyle=c,e.fillStyle=c;let m=p=>{e.beginPath(),e.arc(p.x,p.y,i,0,2*Math.PI),e.fill()};this.faceLandmarks.positions.forEach(m)}}};function jn(o,t){(Array.isArray(t)?t:[t]).forEach(r=>{let n=r instanceof H?r:qt(r)?r.landmarks:void 0;if(!n)throw new Error("drawFaceLandmarks - expected faceExpressions to be FaceLandmarks | WithFaceLandmarks> or array thereof");new vr(n).draw(o)})}var No="1.7.14";var ft=v(x());var N=v(x());function Jn(o,t){let e=he(o,t),r=be(o,t);function n(a,i,c){let m=r(a,i,`${c}/separable_conv0`),p=r(i,i,`${c}/separable_conv1`),u=e(a,i,1,`${c}/expansion_conv`);return{separable_conv0:m,separable_conv1:p,expansion_conv:u}}function s(a,i){let c=r(a,a,`${i}/separable_conv0`),m=r(a,a,`${i}/separable_conv1`),p=r(a,a,`${i}/separable_conv2`);return{separable_conv0:c,separable_conv1:m,separable_conv2:p}}return{extractConvParams:e,extractSeparableConvParams:r,extractReductionBlockParams:n,extractMainBlockParams:s}}function Lo(o,t){let e=[],{extractWeights:r,getRemainingWeights:n}=k(o),{extractConvParams:s,extractSeparableConvParams:a,extractReductionBlockParams:i,extractMainBlockParams:c}=Jn(r,e),m=s(3,32,3,"entry_flow/conv_in"),p=i(32,64,"entry_flow/reduction_block_0"),u=i(64,128,"entry_flow/reduction_block_1"),f={conv_in:m,reduction_block_0:p,reduction_block_1:u},l={};ct(t,0,1).forEach(g=>{l[`main_block_${g}`]=c(128,`middle_flow/main_block_${g}`)});let b=i(128,256,"exit_flow/reduction_block"),T=a(256,512,"exit_flow/separable_conv"),h={reduction_block:b,separable_conv:T};if(n().length!==0)throw new Error(`weights remaing after extract: ${n().length}`);return{paramMappings:e,params:{entry_flow:f,middle_flow:l,exit_flow:h}}}function qn(o,t){let e=Y(o,t),r=dr(e),n=ge(e);function s(i){let c=n(`${i}/separable_conv0`),m=n(`${i}/separable_conv1`),p=r(`${i}/expansion_conv`);return{separable_conv0:c,separable_conv1:m,expansion_conv:p}}function a(i){let c=n(`${i}/separable_conv0`),m=n(`${i}/separable_conv1`),p=n(`${i}/separable_conv2`);return{separable_conv0:c,separable_conv1:m,separable_conv2:p}}return{extractConvParams:r,extractSeparableConvParams:n,extractReductionBlockParams:s,extractMainBlockParams:a}}function So(o,t){let e=[],{extractConvParams:r,extractSeparableConvParams:n,extractReductionBlockParams:s,extractMainBlockParams:a}=qn(o,e),i=r("entry_flow/conv_in"),c=s("entry_flow/reduction_block_0"),m=s("entry_flow/reduction_block_1"),p={conv_in:i,reduction_block_0:c,reduction_block_1:m},u={};ct(t,0,1).forEach(T=>{u[`main_block_${T}`]=a(`middle_flow/main_block_${T}`)});let f=s("exit_flow/reduction_block"),l=n("exit_flow/separable_conv"),b={reduction_block:f,separable_conv:l};return W(o,e),{params:{entry_flow:p,middle_flow:u,exit_flow:b},paramMappings:e}}function Ao(o,t,e){return N.add(N.conv2d(o,t.filters,e,"same"),t.bias)}function mo(o,t,e=!0){let r=e?N.relu(o):o;return r=O(r,t.separable_conv0,[1,1]),r=O(N.relu(r),t.separable_conv1,[1,1]),r=N.maxPool(r,[3,3],[2,2],"same"),r=N.add(r,Ao(o,t.expansion_conv,[2,2])),r}function Zn(o,t){let e=O(N.relu(o),t.separable_conv0,[1,1]);return e=O(N.relu(e),t.separable_conv1,[1,1]),e=O(N.relu(e),t.separable_conv2,[1,1]),e=N.add(e,o),e}var yr=class extends A{constructor(t){super("TinyXception"),this._numMainBlocks=t}forwardInput(t){let{params:e}=this;if(!e)throw new Error("TinyXception - load model before inference");return N.tidy(()=>{let r=N.cast(t.toBatchTensor(112,!0),"float32"),s=rt(r,[122.782,117.001,104.298]).div(255),a=N.relu(Ao(s,e.entry_flow.conv_in,[2,2]));return a=mo(a,e.entry_flow.reduction_block_0,!1),a=mo(a,e.entry_flow.reduction_block_1),ct(this._numMainBlocks,0,1).forEach(i=>{a=Zn(a,e.middle_flow[`main_block_${i}`])}),a=mo(a,e.exit_flow.reduction_block),a=N.relu(O(a,e.exit_flow.separable_conv,[1,1])),a})}async forward(t){return this.forwardInput(await D(t))}getDefaultModelName(){return"tiny_xception_model"}extractParamsFromWeightMap(t){return So(t,this._numMainBlocks)}extractParams(t){return Lo(t,this._numMainBlocks)}};function Wo(o){let t=[],{extractWeights:e,getRemainingWeights:r}=k(o),n=fr(e,t),s=n(512,1,"fc/age"),a=n(512,2,"fc/gender");if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:t,params:{fc:{age:s,gender:a}}}}function ko(o){let t=[],e=Y(o,t);function r(s){let a=e(`${s}/weights`,2),i=e(`${s}/bias`,1);return{weights:a,bias:i}}let n={fc:{age:r("fc/age"),gender:r("fc/gender")}};return W(o,t),{params:n,paramMappings:t}}var _r=(e=>(e.FEMALE="female",e.MALE="male",e))(_r||{});var He=class extends A{constructor(t=new yr(2)){super("AgeGenderNet"),this._faceFeatureExtractor=t}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(t){let{params:e}=this;if(!e)throw new Error(`${this._name} - load model before inference`);return ft.tidy(()=>{let r=t instanceof ut?this.faceFeatureExtractor.forwardInput(t):t,n=ft.avgPool(r,[7,7],[2,2],"valid").as2D(r.shape[0],-1),s=$e(n,e.fc.age).as1D(),a=$e(n,e.fc.gender);return{age:s,gender:a}})}forwardInput(t){return ft.tidy(()=>{let{age:e,gender:r}=this.runNet(t);return{age:e,gender:ft.softmax(r)}})}async forward(t){return this.forwardInput(await D(t))}async predictAgeAndGender(t){let e=await D(t),r=await this.forwardInput(e),n=ft.unstack(r.age),s=ft.unstack(r.gender),a=n.map((c,m)=>({ageTensor:c,genderTensor:s[m]})),i=await Promise.all(a.map(async({ageTensor:c,genderTensor:m})=>{let p=c.dataSync()[0],u=m.dataSync()[0],f=u>.5,l=f?"male":"female",b=f?u:1-u;return c.dispose(),m.dispose(),{age:p,gender:l,genderProbability:b}}));return r.age.dispose(),r.gender.dispose(),e.isBatchInput?i:i[0]}getDefaultModelName(){return"age_gender_model"}dispose(t=!0){this.faceFeatureExtractor.dispose(t),super.dispose(t)}loadClassifierParams(t){let{params:e,paramMappings:r}=this.extractClassifierParams(t);this._params=e,this._paramMappings=r}extractClassifierParams(t){return Wo(t)}extractParamsFromWeightMap(t){let{featureExtractorMap:e,classifierMap:r}=br(t);return this.faceFeatureExtractor.loadFromWeightMap(e),ko(r)}extractParams(t){let r=t.slice(0,t.length-1539),n=t.slice(t.length-1539);return this.faceFeatureExtractor.extractWeights(r),this.extractClassifierParams(n)}};var V=v(x());var we=class extends _e{postProcess(t,e,r){let n=r.map(({width:a,height:i})=>{let c=e/Math.max(i,a);return{width:a*c,height:i*c}}),s=n.length;return V.tidy(()=>{let a=(u,f)=>V.stack([V.fill([68],u,"float32"),V.fill([68],f,"float32")],1).as2D(1,136).as1D(),i=(u,f)=>{let{width:l,height:b}=n[u];return f(l,b)?Math.abs(l-b)/2:0},c=u=>i(u,(f,l)=>fi(u,(f,l)=>la(c(f),m(f))))).div(V.stack(Array.from(Array(s),(u,f)=>a(n[f].width,n[f].height))))})}forwardInput(t){return V.tidy(()=>{let e=this.runNet(t);return this.postProcess(e,t.inputSize,t.inputDimensions.map(([r,n])=>({height:r,width:n})))})}async forward(t){return this.forwardInput(await D(t))}async detectLandmarks(t){let e=await D(t),r=V.tidy(()=>V.unstack(this.forwardInput(e))),n=await Promise.all(r.map(async(s,a)=>{let i=Array.from(s.dataSync()),c=i.filter((p,u)=>er(u)),m=i.filter((p,u)=>!er(u));return new Yt(Array(68).fill(0).map((p,u)=>new _(c[u],m[u])),{height:e.getInputHeight(a),width:e.getInputWidth(a)})}));return r.forEach(s=>s.dispose()),e.isBatchInput?n:n[0]}getClassifierChannelsOut(){return 136}};var Zt=class extends we{constructor(t=new xe){super("FaceLandmark68Net",t)}getDefaultModelName(){return"face_landmark_68_model"}getClassifierChannelsIn(){return 256}};var Fe=v(x());function Bo(o){let t=[],{extractDenseBlock3Params:e}=hr(o,t),r={dense0:e("dense0",!0),dense1:e("dense1"),dense2:e("dense2")};return W(o,t),{params:r,paramMappings:t}}function Ro(o){let t=[],{extractWeights:e,getRemainingWeights:r}=k(o),{extractDenseBlock3Params:n}=lr(e,t),s=n(3,32,"dense0",!0),a=n(32,64,"dense1"),i=n(64,128,"dense2");if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:t,params:{dense0:s,dense1:a,dense2:i}}}var Tr=class extends A{constructor(){super("TinyFaceFeatureExtractor")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("TinyFaceFeatureExtractor - load model before inference");return Fe.tidy(()=>{let r=Fe.cast(t.toBatchTensor(112,!0),"float32"),s=rt(r,[122.782,117.001,104.298]).div(255),a=mr(s,e.dense0,!0);return a=mr(a,e.dense1),a=mr(a,e.dense2),a=Fe.avgPool(a,[14,14],[2,2],"valid"),a})}async forward(t){return this.forwardInput(await D(t))}getDefaultModelName(){return"face_feature_extractor_tiny_model"}extractParamsFromWeightMap(t){return Bo(t)}extractParams(t){return Ro(t)}};var ze=class extends we{constructor(t=new Tr){super("FaceLandmark68TinyNet",t)}getDefaultModelName(){return"face_landmark_68_tiny_model"}getClassifierChannelsIn(){return 128}};var po=class extends Zt{};var nt=v(x());var De=v(x());var Pr=v(x());function $o(o,t){return Pr.add(Pr.mul(o,t.weights),t.biases)}function uo(o,t,e,r,n="same"){let{filters:s,bias:a}=t.conv,i=De.conv2d(o,s,e,n);return i=De.add(i,a),i=$o(i,t.scale),r?De.relu(i):i}function Oo(o,t){return uo(o,t,[1,1],!0)}function fo(o,t){return uo(o,t,[1,1],!1)}function wr(o,t){return uo(o,t,[2,2],!0,"valid")}var G=v(x());function Kn(o,t){function e(i,c,m){let p=o(i),u=p.length/(c*m*m);if($r(u))throw new Error(`depth has to be an integer: ${u}, weights.length: ${p.length}, numFilters: ${c}, filterSize: ${m}`);return G.tidy(()=>G.transpose(G.tensor4d(p,[c,u,m,m]),[2,3,1,0]))}function r(i,c,m,p){let u=e(i,c,m),f=G.tensor1d(o(c));return t.push({paramPath:`${p}/filters`},{paramPath:`${p}/bias`}),{filters:u,bias:f}}function n(i,c){let m=G.tensor1d(o(i)),p=G.tensor1d(o(i));return t.push({paramPath:`${c}/weights`},{paramPath:`${c}/biases`}),{weights:m,biases:p}}function s(i,c,m,p){let u=r(i,c,m,`${p}/conv`),f=n(c,`${p}/scale`);return{conv:u,scale:f}}function a(i,c,m,p,u=!1){let f=s((u?.5:1)*i,c,m,`${p}/conv1`),l=s(i,c,m,`${p}/conv2`);return{conv1:f,conv2:l}}return{extractConvLayerParams:s,extractResidualLayerParams:a}}function Ho(o){let{extractWeights:t,getRemainingWeights:e}=k(o),r=[],{extractConvLayerParams:n,extractResidualLayerParams:s}=Kn(t,r),a=n(4704,32,7,"conv32_down"),i=s(9216,32,3,"conv32_1"),c=s(9216,32,3,"conv32_2"),m=s(9216,32,3,"conv32_3"),p=s(36864,64,3,"conv64_down",!0),u=s(36864,64,3,"conv64_1"),f=s(36864,64,3,"conv64_2"),l=s(36864,64,3,"conv64_3"),b=s(147456,128,3,"conv128_down",!0),T=s(147456,128,3,"conv128_1"),h=s(147456,128,3,"conv128_2"),g=s(589824,256,3,"conv256_down",!0),P=s(589824,256,3,"conv256_1"),y=s(589824,256,3,"conv256_2"),I=s(589824,256,3,"conv256_down_out"),j=G.tidy(()=>G.transpose(G.tensor2d(t(256*128),[128,256]),[1,0]));if(r.push({paramPath:"fc"}),e().length!==0)throw new Error(`weights remaing after extract: ${e().length}`);return{params:{conv32_down:a,conv32_1:i,conv32_2:c,conv32_3:m,conv64_down:p,conv64_1:u,conv64_2:f,conv64_3:l,conv128_down:b,conv128_1:T,conv128_2:h,conv256_down:g,conv256_1:P,conv256_2:y,conv256_down_out:I,fc:j},paramMappings:r}}function Qn(o,t){let e=Y(o,t);function r(a){let i=e(`${a}/scale/weights`,1),c=e(`${a}/scale/biases`,1);return{weights:i,biases:c}}function n(a){let i=e(`${a}/conv/filters`,4),c=e(`${a}/conv/bias`,1),m=r(a);return{conv:{filters:i,bias:c},scale:m}}function s(a){return{conv1:n(`${a}/conv1`),conv2:n(`${a}/conv2`)}}return{extractConvLayerParams:n,extractResidualLayerParams:s}}function zo(o){let t=[],{extractConvLayerParams:e,extractResidualLayerParams:r}=Qn(o,t),n=e("conv32_down"),s=r("conv32_1"),a=r("conv32_2"),i=r("conv32_3"),c=r("conv64_down"),m=r("conv64_1"),p=r("conv64_2"),u=r("conv64_3"),f=r("conv128_down"),l=r("conv128_1"),b=r("conv128_2"),T=r("conv256_down"),h=r("conv256_1"),g=r("conv256_2"),P=r("conv256_down_out"),{fc:y}=o;if(t.push({originalPath:"fc",paramPath:"fc"}),!Rr(y))throw new Error(`expected weightMap[fc] to be a Tensor2D, instead have ${y}`);let I={conv32_down:n,conv32_1:s,conv32_2:a,conv32_3:i,conv64_down:c,conv64_1:m,conv64_2:p,conv64_3:u,conv128_down:f,conv128_1:l,conv128_2:b,conv256_down:T,conv256_1:h,conv256_2:g,conv256_down_out:P,fc:y};return W(o,t),{params:I,paramMappings:t}}var B=v(x());function ot(o,t){let e=Oo(o,t.conv1);return e=fo(e,t.conv2),e=B.add(e,o),e=B.relu(e),e}function Ye(o,t){let e=wr(o,t.conv1);e=fo(e,t.conv2);let r=B.avgPool(o,2,2,"valid"),n=B.zeros(r.shape),s=r.shape[3]!==e.shape[3];if(r.shape[1]!==e.shape[1]||r.shape[2]!==e.shape[2]){let i=[...e.shape];i[1]=1;let c=B.zeros(i);e=B.concat([e,c],1);let m=[...e.shape];m[2]=1;let p=B.zeros(m);e=B.concat([e,p],2)}return r=s?B.concat([r,n],3):r,e=B.add(r,e),e=B.relu(e),e}var Kt=class extends A{constructor(){super("FaceRecognitionNet")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("FaceRecognitionNet - load model before inference");return nt.tidy(()=>{let r=nt.cast(t.toBatchTensor(150,!0),"float32"),s=rt(r,[122.782,117.001,104.298]).div(255),a=wr(s,e.conv32_down);a=nt.maxPool(a,3,2,"valid"),a=ot(a,e.conv32_1),a=ot(a,e.conv32_2),a=ot(a,e.conv32_3),a=Ye(a,e.conv64_down),a=ot(a,e.conv64_1),a=ot(a,e.conv64_2),a=ot(a,e.conv64_3),a=Ye(a,e.conv128_down),a=ot(a,e.conv128_1),a=ot(a,e.conv128_2),a=Ye(a,e.conv256_down),a=ot(a,e.conv256_1),a=ot(a,e.conv256_2),a=Ye(a,e.conv256_down_out);let i=a.mean([1,2]);return nt.matMul(i,e.fc)})}async forward(t){return this.forwardInput(await D(t))}async computeFaceDescriptor(t){var s;if((s=t==null?void 0:t.shape)!=null&&s.some(a=>a<=0))return new Float32Array(128);let e=await D(t),r=nt.tidy(()=>nt.unstack(this.forwardInput(e))),n=await Promise.all(r.map(a=>a.data()));return r.forEach(a=>a.dispose()),e.isBatchInput?n:n[0]}getDefaultModelName(){return"face_recognition_model"}extractParamsFromWeightMap(t){return zo(t)}extractParams(t){return Ho(t)}};function ta(o){let t=new Kt;return t.extractWeights(o),t}function Fr(o,t){return{...o,...{descriptor:t}}}function ea(o){return typeof o.age=="number"}function Dr(o,t){return{...o,...{age:t}}}function ra(o){return(o.gender==="male"||o.gender==="female")&&ce(o.genderProbability)}function Er(o,t,e){return{...o,...{gender:t,genderProbability:e}}}var Nt=v(x());var at=v(x());function oa(o,t){function e(c,m){let p=at.tensor4d(o(9*c),[3,3,c,1]),u=at.tensor1d(o(c)),f=at.tensor1d(o(c)),l=at.tensor1d(o(c)),b=at.tensor1d(o(c));return t.push({paramPath:`${m}/filters`},{paramPath:`${m}/batch_norm_scale`},{paramPath:`${m}/batch_norm_offset`},{paramPath:`${m}/batch_norm_mean`},{paramPath:`${m}/batch_norm_variance`}),{filters:p,batch_norm_scale:u,batch_norm_offset:f,batch_norm_mean:l,batch_norm_variance:b}}function r(c,m,p,u,f){let l=at.tensor4d(o(c*m*p*p),[p,p,c,m]),b=at.tensor1d(o(m));return t.push({paramPath:`${u}/filters`},{paramPath:`${u}/${f?"batch_norm_offset":"bias"}`}),{filters:l,bias:b}}function n(c,m,p,u){let{filters:f,bias:l}=r(c,m,p,u,!0);return{filters:f,batch_norm_offset:l}}function s(c,m,p){let u=e(c,`${p}/depthwise_conv`),f=n(c,m,1,`${p}/pointwise_conv`);return{depthwise_conv:u,pointwise_conv:f}}function a(){let c=n(3,32,3,"mobilenetv1/conv_0"),m=s(32,64,"mobilenetv1/conv_1"),p=s(64,128,"mobilenetv1/conv_2"),u=s(128,128,"mobilenetv1/conv_3"),f=s(128,256,"mobilenetv1/conv_4"),l=s(256,256,"mobilenetv1/conv_5"),b=s(256,512,"mobilenetv1/conv_6"),T=s(512,512,"mobilenetv1/conv_7"),h=s(512,512,"mobilenetv1/conv_8"),g=s(512,512,"mobilenetv1/conv_9"),P=s(512,512,"mobilenetv1/conv_10"),y=s(512,512,"mobilenetv1/conv_11"),I=s(512,1024,"mobilenetv1/conv_12"),j=s(1024,1024,"mobilenetv1/conv_13");return{conv_0:c,conv_1:m,conv_2:p,conv_3:u,conv_4:f,conv_5:l,conv_6:b,conv_7:T,conv_8:h,conv_9:g,conv_10:P,conv_11:y,conv_12:I,conv_13:j}}function i(){let c=n(1024,256,1,"prediction_layer/conv_0"),m=n(256,512,3,"prediction_layer/conv_1"),p=n(512,128,1,"prediction_layer/conv_2"),u=n(128,256,3,"prediction_layer/conv_3"),f=n(256,128,1,"prediction_layer/conv_4"),l=n(128,256,3,"prediction_layer/conv_5"),b=n(256,64,1,"prediction_layer/conv_6"),T=n(64,128,3,"prediction_layer/conv_7"),h=r(512,12,1,"prediction_layer/box_predictor_0/box_encoding_predictor"),g=r(512,9,1,"prediction_layer/box_predictor_0/class_predictor"),P=r(1024,24,1,"prediction_layer/box_predictor_1/box_encoding_predictor"),y=r(1024,18,1,"prediction_layer/box_predictor_1/class_predictor"),I=r(512,24,1,"prediction_layer/box_predictor_2/box_encoding_predictor"),j=r(512,18,1,"prediction_layer/box_predictor_2/class_predictor"),tt=r(256,24,1,"prediction_layer/box_predictor_3/box_encoding_predictor"),it=r(256,18,1,"prediction_layer/box_predictor_3/class_predictor"),q=r(256,24,1,"prediction_layer/box_predictor_4/box_encoding_predictor"),Pt=r(256,18,1,"prediction_layer/box_predictor_4/class_predictor"),wt=r(128,24,1,"prediction_layer/box_predictor_5/box_encoding_predictor"),Ft=r(128,18,1,"prediction_layer/box_predictor_5/class_predictor");return{conv_0:c,conv_1:m,conv_2:p,conv_3:u,conv_4:f,conv_5:l,conv_6:b,conv_7:T,box_predictor_0:{box_encoding_predictor:h,class_predictor:g},box_predictor_1:{box_encoding_predictor:P,class_predictor:y},box_predictor_2:{box_encoding_predictor:I,class_predictor:j},box_predictor_3:{box_encoding_predictor:tt,class_predictor:it},box_predictor_4:{box_encoding_predictor:q,class_predictor:Pt},box_predictor_5:{box_encoding_predictor:wt,class_predictor:Ft}}}return{extractMobilenetV1Params:a,extractPredictionLayerParams:i}}function Yo(o){let t=[],{extractWeights:e,getRemainingWeights:r}=k(o),{extractMobilenetV1Params:n,extractPredictionLayerParams:s}=oa(e,t),a=n(),i=s(),m={extra_dim:at.tensor3d(e(5118*4),[1,5118,4])};if(t.push({paramPath:"output_layer/extra_dim"}),r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{params:{mobilenetv1:a,prediction_layer:i,output_layer:m},paramMappings:t}}function na(o,t){let e=Y(o,t);function r(m,p,u){let f=e(`${m}/Conv2d_${p}_pointwise/weights`,4,`${u}/filters`),l=e(`${m}/Conv2d_${p}_pointwise/convolution_bn_offset`,1,`${u}/batch_norm_offset`);return{filters:f,batch_norm_offset:l}}function n(m){let p=`mobilenetv1/conv_${m}`,u=`MobilenetV1/Conv2d_${m}_depthwise`,f=`${p}/depthwise_conv`,l=`${p}/pointwise_conv`,b=e(`${u}/depthwise_weights`,4,`${f}/filters`),T=e(`${u}/BatchNorm/gamma`,1,`${f}/batch_norm_scale`),h=e(`${u}/BatchNorm/beta`,1,`${f}/batch_norm_offset`),g=e(`${u}/BatchNorm/moving_mean`,1,`${f}/batch_norm_mean`),P=e(`${u}/BatchNorm/moving_variance`,1,`${f}/batch_norm_variance`);return{depthwise_conv:{filters:b,batch_norm_scale:T,batch_norm_offset:h,batch_norm_mean:g,batch_norm_variance:P},pointwise_conv:r("MobilenetV1",m,l)}}function s(){return{conv_0:r("MobilenetV1",0,"mobilenetv1/conv_0"),conv_1:n(1),conv_2:n(2),conv_3:n(3),conv_4:n(4),conv_5:n(5),conv_6:n(6),conv_7:n(7),conv_8:n(8),conv_9:n(9),conv_10:n(10),conv_11:n(11),conv_12:n(12),conv_13:n(13)}}function a(m,p){let u=e(`${m}/weights`,4,`${p}/filters`),f=e(`${m}/biases`,1,`${p}/bias`);return{filters:u,bias:f}}function i(m){let p=a(`Prediction/BoxPredictor_${m}/BoxEncodingPredictor`,`prediction_layer/box_predictor_${m}/box_encoding_predictor`),u=a(`Prediction/BoxPredictor_${m}/ClassPredictor`,`prediction_layer/box_predictor_${m}/class_predictor`);return{box_encoding_predictor:p,class_predictor:u}}function c(){return{conv_0:r("Prediction",0,"prediction_layer/conv_0"),conv_1:r("Prediction",1,"prediction_layer/conv_1"),conv_2:r("Prediction",2,"prediction_layer/conv_2"),conv_3:r("Prediction",3,"prediction_layer/conv_3"),conv_4:r("Prediction",4,"prediction_layer/conv_4"),conv_5:r("Prediction",5,"prediction_layer/conv_5"),conv_6:r("Prediction",6,"prediction_layer/conv_6"),conv_7:r("Prediction",7,"prediction_layer/conv_7"),box_predictor_0:i(0),box_predictor_1:i(1),box_predictor_2:i(2),box_predictor_3:i(3),box_predictor_4:i(4),box_predictor_5:i(5)}}return{extractMobilenetV1Params:s,extractPredictionLayerParams:c}}function Vo(o){let t=[],{extractMobilenetV1Params:e,extractPredictionLayerParams:r}=na(o,t),n=o["Output/extra_dim"];if(t.push({originalPath:"Output/extra_dim",paramPath:"output_layer/extra_dim"}),!dt(n))throw new Error(`expected weightMap['Output/extra_dim'] to be a Tensor3D, instead have ${n}`);let s={mobilenetv1:e(),prediction_layer:r(),output_layer:{extra_dim:n}};return W(o,t),{params:s,paramMappings:t}}var xt=v(x());var Ct=v(x());function Z(o,t,e){return Ct.tidy(()=>{let r=Ct.conv2d(o,t.filters,e,"same");return r=Ct.add(r,t.batch_norm_offset),Ct.clipByValue(r,0,6)})}var aa=.0010000000474974513;function sa(o,t,e){return xt.tidy(()=>{let r=xt.depthwiseConv2d(o,t.filters,e,"same");return r=xt.batchNorm(r,t.batch_norm_mean,t.batch_norm_variance,t.batch_norm_offset,t.batch_norm_scale,aa),xt.clipByValue(r,0,6)})}function ia(o){return[2,4,6,12].some(t=>t===o)?[2,2]:[1,1]}function Go(o,t){return xt.tidy(()=>{let e,r=Z(o,t.conv_0,[2,2]);if([t.conv_1,t.conv_2,t.conv_3,t.conv_4,t.conv_5,t.conv_6,t.conv_7,t.conv_8,t.conv_9,t.conv_10,t.conv_11,t.conv_12,t.conv_13].forEach((s,a)=>{let i=a+1,c=ia(i);r=sa(r,s.depthwise_conv,c),r=Z(r,s.pointwise_conv,[1,1]),i===11&&(e=r)}),e===null)throw new Error("mobileNetV1 - output of conv layer 11 is null");return{out:r,conv11:e}})}function ca(o,t,e){let r=o.arraySync(),n=Math.min(r[t][0],r[t][2]),s=Math.min(r[t][1],r[t][3]),a=Math.max(r[t][0],r[t][2]),i=Math.max(r[t][1],r[t][3]),c=Math.min(r[e][0],r[e][2]),m=Math.min(r[e][1],r[e][3]),p=Math.max(r[e][0],r[e][2]),u=Math.max(r[e][1],r[e][3]),f=(a-n)*(i-s),l=(p-c)*(u-m);if(f<=0||l<=0)return 0;let b=Math.max(n,c),T=Math.max(s,m),h=Math.min(a,p),g=Math.min(i,u),P=Math.max(h-b,0)*Math.max(g-T,0);return P/(f+l-P)}function jo(o,t,e,r,n){let s=o.shape[0],a=Math.min(e,s),i=t.map((p,u)=>({score:p,boxIndex:u})).filter(p=>p.score>n).sort((p,u)=>u.score-p.score),c=p=>p<=r?1:0,m=[];return i.forEach(p=>{if(m.length>=a)return;let u=p.score;for(let f=m.length-1;f>=0;--f){let l=ca(o,p.boxIndex,m[f]);if(l!==0&&(p.score*=c(l),p.score<=n))break}u===p.score&&m.push(p.boxIndex)}),m}var d=v(x());function ma(o){let t=d.unstack(d.transpose(o,[1,0])),e=[d.sub(t[2],t[0]),d.sub(t[3],t[1])],r=[d.add(t[0],d.div(e[0],2)),d.add(t[1],d.div(e[1],2))];return{sizes:e,centers:r}}function pa(o,t){let{sizes:e,centers:r}=ma(o),n=d.unstack(d.transpose(t,[1,0])),s=d.div(d.mul(d.exp(d.div(n[2],5)),e[0]),2),a=d.add(d.mul(d.div(n[0],10),e[0]),r[0]),i=d.div(d.mul(d.exp(d.div(n[3],5)),e[1]),2),c=d.add(d.mul(d.div(n[1],10),e[1]),r[1]);return d.transpose(d.stack([d.sub(a,s),d.sub(c,i),d.add(a,s),d.add(c,i)]),[1,0])}function Uo(o,t,e){return d.tidy(()=>{let r=o.shape[0],n=pa(d.reshape(d.tile(e.extra_dim,[r,1,1]),[-1,4]),d.reshape(o,[-1,4]));n=d.reshape(n,[r,n.shape[0]/r,4]);let s=d.sigmoid(d.slice(t,[0,0,1],[-1,-1,-1])),a=d.slice(s,[0,0,0],[-1,-1,1]);a=d.reshape(a,[r,a.shape[1]]);let i=d.unstack(n),c=d.unstack(a);return{boxes:i,scores:c}})}var Ge=v(x());var Ve=v(x());function Qt(o,t){return Ve.tidy(()=>{let e=o.shape[0],r=Ve.reshape(Jt(o,t.box_encoding_predictor),[e,-1,1,4]),n=Ve.reshape(Jt(o,t.class_predictor),[e,-1,3]);return{boxPredictionEncoding:r,classPrediction:n}})}function Xo(o,t,e){return Ge.tidy(()=>{let r=Z(o,e.conv_0,[1,1]),n=Z(r,e.conv_1,[2,2]),s=Z(n,e.conv_2,[1,1]),a=Z(s,e.conv_3,[2,2]),i=Z(a,e.conv_4,[1,1]),c=Z(i,e.conv_5,[2,2]),m=Z(c,e.conv_6,[1,1]),p=Z(m,e.conv_7,[2,2]),u=Qt(t,e.box_predictor_0),f=Qt(o,e.box_predictor_1),l=Qt(n,e.box_predictor_2),b=Qt(a,e.box_predictor_3),T=Qt(c,e.box_predictor_4),h=Qt(p,e.box_predictor_5),g=Ge.concat([u.boxPredictionEncoding,f.boxPredictionEncoding,l.boxPredictionEncoding,b.boxPredictionEncoding,T.boxPredictionEncoding,h.boxPredictionEncoding],1),P=Ge.concat([u.classPrediction,f.classPrediction,l.classPrediction,b.classPrediction,T.classPrediction,h.classPrediction],1);return{boxPredictions:g,classPredictions:P}})}var X=class{constructor({minConfidence:t,maxResults:e}={}){this._name="SsdMobilenetv1Options";if(this._minConfidence=t||.5,this._maxResults=e||100,typeof this._minConfidence!="number"||this._minConfidence<=0||this._minConfidence>=1)throw new Error(`${this._name} - expected minConfidence to be a number between 0 and 1`);if(typeof this._maxResults!="number")throw new Error(`${this._name} - expected maxResults to be a number`)}get minConfidence(){return this._minConfidence}get maxResults(){return this._maxResults}};var It=class extends A{constructor(){super("SsdMobilenetv1")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("SsdMobilenetv1 - load model before inference");return Nt.tidy(()=>{let r=Nt.cast(t.toBatchTensor(512,!1),"float32"),n=Nt.sub(Nt.div(r,127.5),1),s=Go(n,e.mobilenetv1),{boxPredictions:a,classPredictions:i}=Xo(s.out,s.conv11,e.prediction_layer);return Uo(a,i,e.output_layer)})}async forward(t){return this.forwardInput(await D(t))}async locateFaces(t,e={}){let{maxResults:r,minConfidence:n}=new X(e),s=await D(t),{boxes:a,scores:i}=this.forwardInput(s),c=a[0],m=i[0];for(let y=1;y{let[I,j]=[Math.max(0,g[y][0]),Math.min(1,g[y][2])].map(q=>q*h),[tt,it]=[Math.max(0,g[y][1]),Math.min(1,g[y][3])].map(q=>q*T);return new M(p[y],new zt(tt,I,it-tt,j-I),{height:s.getInputHeight(0),width:s.getInputWidth(0)})});return c.dispose(),m.dispose(),P}getDefaultModelName(){return"ssd_mobilenetv1_model"}extractParamsFromWeightMap(t){return Vo(t)}extractParams(t){return Yo(t)}};function Jo(o){let t=new It;return t.extractWeights(o),t}function ua(o){return Jo(o)}var lo=class extends It{};var qo=.4,Zo=[new _(.738768,.874946),new _(2.42204,2.65704),new _(4.30971,7.04493),new _(10.246,4.59428),new _(12.6868,11.8741)],Ko=[new _(1.603231,2.094468),new _(6.041143,7.080126),new _(2.882459,3.518061),new _(4.266906,5.178857),new _(9.041765,10.66308)],Qo=[117.001,114.697,97.404],tn="tiny_yolov2_model",en="tiny_yolov2_separable_conv_model";var C=v(x());var Mr=o=>typeof o=="number";function ho(o){if(!o)throw new Error(`invalid config: ${o}`);if(typeof o.withSeparableConvs!="boolean")throw new Error(`config.withSeparableConvs has to be a boolean, have: ${o.withSeparableConvs}`);if(!Mr(o.iouThreshold)||o.iouThreshold<0||o.iouThreshold>1)throw new Error(`config.iouThreshold has to be a number between [0, 1], have: ${o.iouThreshold}`);if(!Array.isArray(o.classes)||!o.classes.length||!o.classes.every(t=>typeof t=="string"))throw new Error(`config.classes has to be an array class names: string[], have: ${JSON.stringify(o.classes)}`);if(!Array.isArray(o.anchors)||!o.anchors.length||!o.anchors.map(t=>t||{}).every(t=>Mr(t.x)&&Mr(t.y)))throw new Error(`config.anchors has to be an array of { x: number, y: number }, have: ${JSON.stringify(o.anchors)}`);if(o.meanRgb&&(!Array.isArray(o.meanRgb)||o.meanRgb.length!==3||!o.meanRgb.every(Mr)))throw new Error(`config.meanRgb has to be an array of shape [number, number, number], have: ${JSON.stringify(o.meanRgb)}`)}var Q=v(x());var K=v(x());function Ee(o){return K.tidy(()=>{let t=K.mul(o,K.scalar(.10000000149011612));return K.add(K.relu(K.sub(o,t)),t)})}function vt(o,t){return Q.tidy(()=>{let e=Q.pad(o,[[0,0],[1,1],[1,1],[0,0]]);return e=Q.conv2d(e,t.conv.filters,[1,1],"valid"),e=Q.sub(e,t.bn.sub),e=Q.mul(e,t.bn.truediv),e=Q.add(e,t.conv.bias),Ee(e)})}var Lt=v(x());function yt(o,t){return Lt.tidy(()=>{let e=Lt.pad(o,[[0,0],[1,1],[1,1],[0,0]]);return e=Lt.separableConv2d(e,t.depthwise_filter,t.pointwise_filter,[1,1],"valid"),e=Lt.add(e,t.bias),Ee(e)})}var bo=v(x());function fa(o,t){let e=he(o,t);function r(a,i){let c=bo.tensor1d(o(a)),m=bo.tensor1d(o(a));return t.push({paramPath:`${i}/sub`},{paramPath:`${i}/truediv`}),{sub:c,truediv:m}}function n(a,i,c){let m=e(a,i,3,`${c}/conv`),p=r(i,`${c}/bn`);return{conv:m,bn:p}}let s=be(o,t);return{extractConvParams:e,extractConvWithBatchNormParams:n,extractSeparableConvParams:s}}function rn(o,t,e,r){let{extractWeights:n,getRemainingWeights:s}=k(o),a=[],{extractConvParams:i,extractConvWithBatchNormParams:c,extractSeparableConvParams:m}=fa(n,a),p;if(t.withSeparableConvs){let[u,f,l,b,T,h,g,P,y]=r,I=t.isFirstLayerConv2d?i(u,f,3,"conv0"):m(u,f,"conv0"),j=m(f,l,"conv1"),tt=m(l,b,"conv2"),it=m(b,T,"conv3"),q=m(T,h,"conv4"),Pt=m(h,g,"conv5"),wt=P?m(g,P,"conv6"):void 0,Ft=y?m(P,y,"conv7"):void 0,ie=i(y||P||g,5*e,1,"conv8");p={conv0:I,conv1:j,conv2:tt,conv3:it,conv4:q,conv5:Pt,conv6:wt,conv7:Ft,conv8:ie}}else{let[u,f,l,b,T,h,g,P,y]=r,I=c(u,f,"conv0"),j=c(f,l,"conv1"),tt=c(l,b,"conv2"),it=c(b,T,"conv3"),q=c(T,h,"conv4"),Pt=c(h,g,"conv5"),wt=c(g,P,"conv6"),Ft=c(P,y,"conv7"),ie=i(y,5*e,1,"conv8");p={conv0:I,conv1:j,conv2:tt,conv3:it,conv4:q,conv5:Pt,conv6:wt,conv7:Ft,conv8:ie}}if(s().length!==0)throw new Error(`weights remaing after extract: ${s().length}`);return{params:p,paramMappings:a}}function la(o,t){let e=Y(o,t);function r(i){let c=e(`${i}/sub`,1),m=e(`${i}/truediv`,1);return{sub:c,truediv:m}}function n(i){let c=e(`${i}/filters`,4),m=e(`${i}/bias`,1);return{filters:c,bias:m}}function s(i){let c=n(`${i}/conv`),m=r(`${i}/bn`);return{conv:c,bn:m}}let a=ge(e);return{extractConvParams:n,extractConvWithBatchNormParams:s,extractSeparableConvParams:a}}function on(o,t){let e=[],{extractConvParams:r,extractConvWithBatchNormParams:n,extractSeparableConvParams:s}=la(o,e),a;if(t.withSeparableConvs){let i=t.filterSizes&&t.filterSizes.length||9;a={conv0:t.isFirstLayerConv2d?r("conv0"):s("conv0"),conv1:s("conv1"),conv2:s("conv2"),conv3:s("conv3"),conv4:s("conv4"),conv5:s("conv5"),conv6:i>7?s("conv6"):void 0,conv7:i>8?s("conv7"):void 0,conv8:r("conv8")}}else a={conv0:n("conv0"),conv1:n("conv1"),conv2:n("conv2"),conv3:n("conv3"),conv4:n("conv4"),conv5:n("conv5"),conv6:n("conv6"),conv7:n("conv7"),conv8:r("conv8")};return W(o,e),{params:a,paramMappings:e}}var st=class{constructor({inputSize:t,scoreThreshold:e}={}){this._name="TinyYolov2Options";if(this._inputSize=t||416,this._scoreThreshold=e||.5,typeof this._inputSize!="number"||this._inputSize%32!==0)throw new Error(`${this._name} - expected inputSize to be a number divisible by 32`);if(typeof this._scoreThreshold!="number"||this._scoreThreshold<=0||this._scoreThreshold>=1)throw new Error(`${this._name} - expected scoreThreshold to be a number between 0 and 1`)}get inputSize(){return this._inputSize}get scoreThreshold(){return this._scoreThreshold}};var Cr=class Cr extends A{constructor(t){super("TinyYolov2"),ho(t),this._config=t}get config(){return this._config}get withClassScores(){return this.config.withClassScores||this.config.classes.length>1}get boxEncodingSize(){return 5+(this.withClassScores?this.config.classes.length:0)}runTinyYolov2(t,e){let r=vt(t,e.conv0);return r=C.maxPool(r,[2,2],[2,2],"same"),r=vt(r,e.conv1),r=C.maxPool(r,[2,2],[2,2],"same"),r=vt(r,e.conv2),r=C.maxPool(r,[2,2],[2,2],"same"),r=vt(r,e.conv3),r=C.maxPool(r,[2,2],[2,2],"same"),r=vt(r,e.conv4),r=C.maxPool(r,[2,2],[2,2],"same"),r=vt(r,e.conv5),r=C.maxPool(r,[2,2],[1,1],"same"),r=vt(r,e.conv6),r=vt(r,e.conv7),Jt(r,e.conv8,"valid",!1)}runMobilenet(t,e){let r=this.config.isFirstLayerConv2d?Ee(Jt(t,e.conv0,"valid",!1)):yt(t,e.conv0);return r=C.maxPool(r,[2,2],[2,2],"same"),r=yt(r,e.conv1),r=C.maxPool(r,[2,2],[2,2],"same"),r=yt(r,e.conv2),r=C.maxPool(r,[2,2],[2,2],"same"),r=yt(r,e.conv3),r=C.maxPool(r,[2,2],[2,2],"same"),r=yt(r,e.conv4),r=C.maxPool(r,[2,2],[2,2],"same"),r=yt(r,e.conv5),r=C.maxPool(r,[2,2],[1,1],"same"),r=e.conv6?yt(r,e.conv6):r,r=e.conv7?yt(r,e.conv7):r,Jt(r,e.conv8,"valid",!1)}forwardInput(t,e){let{params:r}=this;if(!r)throw new Error("TinyYolov2 - load model before inference");return C.tidy(()=>{let n=C.cast(t.toBatchTensor(e,!1),"float32");return n=this.config.meanRgb?rt(n,this.config.meanRgb):n,n=n.div(255),this.config.withSeparableConvs?this.runMobilenet(n,r):this.runTinyYolov2(n,r)})}async forward(t,e){return this.forwardInput(await D(t),e)}async detect(t,e={}){let{inputSize:r,scoreThreshold:n}=new st(e),s=await D(t),a=await this.forwardInput(s,r),i=C.tidy(()=>C.unstack(a)[0].expandDims()),c={width:s.getInputWidth(0),height:s.getInputHeight(0)},m=await this.extractBoxes(i,s.getReshapedInputDimensions(0),n);a.dispose(),i.dispose();let p=m.map(h=>h.box),u=m.map(h=>h.score),f=m.map(h=>h.classScore),l=m.map(h=>this.config.classes[h.label]);return Vr(p.map(h=>h.rescale(r)),u,this.config.iouThreshold,!0).map(h=>new Ht(u[h],f[h],l[h],p[h],c))}getDefaultModelName(){return""}extractParamsFromWeightMap(t){return on(t,this.config)}extractParams(t){let e=this.config.filterSizes||Cr.DEFAULT_FILTER_SIZES,r=e?e.length:void 0;if(r!==7&&r!==8&&r!==9)throw new Error(`TinyYolov2 - expected 7 | 8 | 9 convolutional filters, but found ${r} filterSizes in config`);return rn(t,this.config,this.boxEncodingSize,e)}async extractBoxes(t,e,r){let{width:n,height:s}=e,a=Math.max(n,s),i=a/n,c=a/s,m=t.shape[1],p=this.config.anchors.length,[u,f,l]=C.tidy(()=>{let g=t.reshape([m,m,p,this.boxEncodingSize]),P=g.slice([0,0,0,0],[m,m,p,4]),y=g.slice([0,0,0,4],[m,m,p,1]),I=this.withClassScores?C.softmax(g.slice([0,0,0,5],[m,m,p,this.config.classes.length]),3):C.scalar(0);return[P,y,I]}),b=[],T=await f.array(),h=await u.array();for(let g=0;gr){let j=(P+Ne(h[g][P][y][0]))/m*i,tt=(g+Ne(h[g][P][y][1]))/m*c,it=Math.exp(h[g][P][y][2])*this.config.anchors[y].x/m*i,q=Math.exp(h[g][P][y][3])*this.config.anchors[y].y/m*c,Pt=j-it/2,wt=tt-q/2,Ft={row:g,col:P,anchor:y},{classScore:ie,label:yo}=this.withClassScores?await this.extractPredictedClass(l,Ft):{classScore:1,label:0};b.push({box:new Ot(Pt,wt,Pt+it,wt+q),score:I,classScore:I*ie,label:yo,...Ft})}}return u.dispose(),f.dispose(),l.dispose(),b}async extractPredictedClass(t,e){let{row:r,col:n,anchor:s}=e,a=await t.array();return Array(this.config.classes.length).fill(0).map((i,c)=>a[r][n][s][c]).map((i,c)=>({classScore:i,label:c})).reduce((i,c)=>i.classScore>c.classScore?i:c)}};Cr.DEFAULT_FILTER_SIZES=[3,16,32,64,128,256,512,1024,1024];var Me=Cr;var te=class extends Me{constructor(t=!0){let e={withSeparableConvs:t,iouThreshold:qo,classes:["face"],...t?{anchors:Ko,meanRgb:Qo}:{anchors:Zo,withClassScores:!0}};super(e)}get withSeparableConvs(){return this.config.withSeparableConvs}get anchors(){return this.config.anchors}async locateFaces(t,e){return(await this.detect(t,e)).map(n=>new M(n.score,n.relativeBox,{width:n.imageWidth,height:n.imageHeight}))}getDefaultModelName(){return this.withSeparableConvs?en:tn}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};function da(o,t=!0){let e=new te(t);return e.extractWeights(o),e}var je=class extends st{constructor(){super(...arguments);this._name="TinyFaceDetectorOptions"}};var J=class{async then(t){return t(await this.run())}async run(){throw new Error("ComposableTask - run is not implemented")}};var Xe=v(x());var go=v(x());async function ee(o,t,e,r,n=({alignedRect:s})=>s){let s=o.map(c=>qt(c)?n(c):c.detection),a=r||(t instanceof go.Tensor?await le(t,s):await fe(t,s)),i=await e(a);return a.forEach(c=>c instanceof go.Tensor&&c.dispose()),i}async function Ce(o,t,e,r,n){return ee([o],t,async s=>e(s[0]),r,n)}var nn=.4,an=[new _(1.603231,2.094468),new _(6.041143,7.080126),new _(2.882459,3.518061),new _(4.266906,5.178857),new _(9.041765,10.66308)],sn=[117.001,114.697,97.404];var re=class extends Me{constructor(){let t={withSeparableConvs:!0,iouThreshold:nn,classes:["face"],anchors:an,meanRgb:sn,isFirstLayerConv2d:!0,filterSizes:[3,16,32,64,128,256,512]};super(t)}get anchors(){return this.config.anchors}async locateFaces(t,e){return(await this.detect(t,e)).map(n=>new M(n.score,n.relativeBox,{width:n.imageWidth,height:n.imageHeight}))}getDefaultModelName(){return"tiny_face_detector_model"}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};var F={ssdMobilenetv1:new It,tinyFaceDetector:new re,tinyYolov2:new te,faceLandmark68Net:new Zt,faceLandmark68TinyNet:new ze,faceRecognitionNet:new Kt,faceExpressionNet:new Oe,ageGenderNet:new He},cn=(o,t)=>F.ssdMobilenetv1.locateFaces(o,t),ha=(o,t)=>F.tinyFaceDetector.locateFaces(o,t),ba=(o,t)=>F.tinyYolov2.locateFaces(o,t),mn=o=>F.faceLandmark68Net.detectLandmarks(o),ga=o=>F.faceLandmark68TinyNet.detectLandmarks(o),xa=o=>F.faceRecognitionNet.computeFaceDescriptor(o),va=o=>F.faceExpressionNet.predictExpressions(o),ya=o=>F.ageGenderNet.predictAgeAndGender(o),pn=o=>F.ssdMobilenetv1.load(o),_a=o=>F.tinyFaceDetector.load(o),Ta=o=>F.tinyYolov2.load(o),Pa=o=>F.faceLandmark68Net.load(o),wa=o=>F.faceLandmark68TinyNet.load(o),Fa=o=>F.faceRecognitionNet.load(o),Da=o=>F.faceExpressionNet.load(o),Ea=o=>F.ageGenderNet.load(o),Ma=pn,Ca=cn,Ia=mn;var Ir=class extends J{constructor(e,r,n){super();this.parentTask=e;this.input=r;this.extractedFaces=n}},oe=class extends Ir{async run(){let t=await this.parentTask,e=await ee(t,this.input,async r=>Promise.all(r.map(n=>F.faceExpressionNet.predictExpressions(n))),this.extractedFaces);return t.map((r,n)=>gr(r,e[n]))}withAgeAndGender(){return new ae(this,this.input)}},ne=class extends Ir{async run(){let t=await this.parentTask;if(!t)return;let e=await Ce(t,this.input,r=>F.faceExpressionNet.predictExpressions(r),this.extractedFaces);return gr(t,e)}withAgeAndGender(){return new se(this,this.input)}},St=class extends oe{withAgeAndGender(){return new Wt(this,this.input)}withFaceDescriptors(){return new _t(this,this.input)}},At=class extends ne{withAgeAndGender(){return new kt(this,this.input)}withFaceDescriptor(){return new Tt(this,this.input)}};var Nr=class extends J{constructor(e,r,n){super();this.parentTask=e;this.input=r;this.extractedFaces=n}},ae=class extends Nr{async run(){let t=await this.parentTask,e=await ee(t,this.input,async r=>Promise.all(r.map(n=>F.ageGenderNet.predictAgeAndGender(n))),this.extractedFaces);return t.map((r,n)=>{let{age:s,gender:a,genderProbability:i}=e[n];return Dr(Er(r,a,i),s)})}withFaceExpressions(){return new oe(this,this.input)}},se=class extends Nr{async run(){let t=await this.parentTask;if(!t)return;let{age:e,gender:r,genderProbability:n}=await Ce(t,this.input,s=>F.ageGenderNet.predictAgeAndGender(s),this.extractedFaces);return Dr(Er(t,r,n),e)}withFaceExpressions(){return new ne(this,this.input)}},Wt=class extends ae{withFaceExpressions(){return new St(this,this.input)}withFaceDescriptors(){return new _t(this,this.input)}},kt=class extends se{withFaceExpressions(){return new At(this,this.input)}withFaceDescriptor(){return new Tt(this,this.input)}};var Ue=class extends J{constructor(e,r){super();this.parentTask=e;this.input=r}},_t=class extends Ue{async run(){let t=await this.parentTask;return(await ee(t,this.input,r=>Promise.all(r.map(n=>F.faceRecognitionNet.computeFaceDescriptor(n))),null,r=>r.landmarks.align(null,{useDlibAlignment:!0}))).map((r,n)=>Fr(t[n],r))}withFaceExpressions(){return new St(this,this.input)}withAgeAndGender(){return new Wt(this,this.input)}},Tt=class extends Ue{async run(){let t=await this.parentTask;if(!t)return;let e=await Ce(t,this.input,r=>F.faceRecognitionNet.computeFaceDescriptor(r),null,r=>r.landmarks.align(null,{useDlibAlignment:!0}));return Fr(t,e)}withFaceExpressions(){return new At(this,this.input)}withAgeAndGender(){return new kt(this,this.input)}};var Je=class extends J{constructor(e,r,n){super();this.parentTask=e;this.input=r;this.useTinyLandmarkNet=n}get landmarkNet(){return this.useTinyLandmarkNet?F.faceLandmark68TinyNet:F.faceLandmark68Net}},qe=class extends Je{async run(){let t=await this.parentTask,e=t.map(a=>a.detection),r=this.input instanceof Xe.Tensor?await le(this.input,e):await fe(this.input,e),n=await Promise.all(r.map(a=>this.landmarkNet.detectLandmarks(a)));return r.forEach(a=>a instanceof Xe.Tensor&&a.dispose()),t.filter((a,i)=>n[i]).map((a,i)=>Pe(a,n[i]))}withFaceExpressions(){return new St(this,this.input)}withAgeAndGender(){return new Wt(this,this.input)}withFaceDescriptors(){return new _t(this,this.input)}},Ze=class extends Je{async run(){let t=await this.parentTask;if(!t)return;let{detection:e}=t,r=this.input instanceof Xe.Tensor?await le(this.input,[e]):await fe(this.input,[e]),n=await this.landmarkNet.detectLandmarks(r[0]);return r.forEach(s=>s instanceof Xe.Tensor&&s.dispose()),Pe(t,n)}withFaceExpressions(){return new At(this,this.input)}withAgeAndGender(){return new kt(this,this.input)}withFaceDescriptor(){return new Tt(this,this.input)}};var Ke=class extends J{constructor(e,r=new X){super();this.input=e;this.options=r}},Ie=class extends Ke{async run(){let{input:t,options:e}=this,r;if(e instanceof je)r=F.tinyFaceDetector.locateFaces(t,e);else if(e instanceof X)r=F.ssdMobilenetv1.locateFaces(t,e);else if(e instanceof st)r=F.tinyYolov2.locateFaces(t,e);else throw new Error("detectFaces - expected options to be instance of TinyFaceDetectorOptions | SsdMobilenetv1Options | TinyYolov2Options");return r}runAndExtendWithFaceDetections(){return new Promise((t,e)=>{this.run().then(r=>t(r.map(n=>Vt({},n)))).catch(r=>e(r))})}withFaceLandmarks(t=!1){return new qe(this.runAndExtendWithFaceDetections(),this.input,t)}withFaceExpressions(){return new oe(this.runAndExtendWithFaceDetections(),this.input)}withAgeAndGender(){return new ae(this.runAndExtendWithFaceDetections(),this.input)}},Qe=class extends Ke{async run(){let t=await new Ie(this.input,this.options),e=t[0];return t.forEach(r=>{r.score>e.score&&(e=r)}),e}runAndExtendWithFaceDetection(){return new Promise(async t=>{let e=await this.run();t(e?Vt({},e):void 0)})}withFaceLandmarks(t=!1){return new Ze(this.runAndExtendWithFaceDetection(),this.input,t)}withFaceExpressions(){return new ne(this.runAndExtendWithFaceDetection(),this.input)}withAgeAndGender(){return new se(this.runAndExtendWithFaceDetection(),this.input)}};function Na(o,t=new X){return new Qe(o,t)}function Lr(o,t=new X){return new Ie(o,t)}async function un(o,t){return Lr(o,new X(t?{minConfidence:t}:{})).withFaceLandmarks().withFaceDescriptors()}async function La(o,t={}){return Lr(o,new st(t)).withFaceLandmarks().withFaceDescriptors()}var Sa=un;function xo(o,t){if(o.length!==t.length)throw new Error("euclideanDistance: arr1.length !== arr2.length");let e=Array.from(o),r=Array.from(t);return Math.sqrt(e.map((n,s)=>n-r[s]).reduce((n,s)=>n+s*s,0))}var vo=class o{constructor(t,e=.6){this._distanceThreshold=e;let r=Array.isArray(t)?t:[t];if(!r.length)throw new Error("FaceRecognizer.constructor - expected atleast one input");let n=1,s=()=>`person ${n++}`;this._labeledDescriptors=r.map(a=>{if(a instanceof Et)return a;if(a instanceof Float32Array)return new Et(s(),[a]);if(a.descriptor&&a.descriptor instanceof Float32Array)return new Et(s(),[a.descriptor]);throw new Error("FaceRecognizer.constructor - expected inputs to be of type LabeledFaceDescriptors | WithFaceDescriptor | Float32Array | Array | Float32Array>")})}get labeledDescriptors(){return this._labeledDescriptors}get distanceThreshold(){return this._distanceThreshold}computeMeanDistance(t,e){return e.map(r=>xo(r,t)).reduce((r,n)=>r+n,0)/(e.length||1)}matchDescriptor(t){return this.labeledDescriptors.map(({descriptors:e,label:r})=>new me(r,this.computeMeanDistance(t,e))).reduce((e,r)=>e.distancet.toJSON())}}static fromJSON(t){let e=t.labeledDescriptors.map(r=>Et.fromJSON(r));return new o(e,t.distanceThreshold)}};function Aa(o){let t=new re;return t.extractWeights(o),t}function fn(o,t){let{width:e,height:r}=new R(t.width,t.height);if(e<=0||r<=0)throw new Error(`resizeResults - invalid dimensions: ${JSON.stringify({width:e,height:r})}`);if(Array.isArray(o))return o.map(n=>fn(n,{width:e,height:r}));if(qt(o)){let n=o.detection.forSize(e,r),s=o.unshiftedLandmarks.forSize(n.box.width,n.box.height);return Pe(Vt(o,n),s)}return pt(o)?Vt(o,o.detection.forSize(e,r)):o instanceof H||o instanceof M?o.forSize(e,r):o}var ka=No;0&&(module.exports={AgeGenderNet,BoundingBox,Box,ComposableTask,ComputeAllFaceDescriptorsTask,ComputeFaceDescriptorsTaskBase,ComputeSingleFaceDescriptorTask,DetectAllFaceLandmarksTask,DetectAllFacesTask,DetectFaceLandmarksTaskBase,DetectFacesTaskBase,DetectSingleFaceLandmarksTask,DetectSingleFaceTask,Dimensions,FACE_EXPRESSION_LABELS,FaceDetection,FaceDetectionNet,FaceExpressionNet,FaceExpressions,FaceLandmark68Net,FaceLandmark68TinyNet,FaceLandmarkNet,FaceLandmarks,FaceLandmarks5,FaceLandmarks68,FaceMatch,FaceMatcher,FaceRecognitionNet,Gender,LabeledBox,LabeledFaceDescriptors,NetInput,NeuralNetwork,ObjectDetection,Point,PredictedBox,Rect,SsdMobilenetv1,SsdMobilenetv1Options,TinyFaceDetector,TinyFaceDetectorOptions,TinyYolov2,TinyYolov2Options,allFaces,allFacesSsdMobilenetv1,allFacesTinyYolov2,awaitMediaLoaded,bufferToImage,computeFaceDescriptor,createCanvas,createCanvasFromMedia,createFaceDetectionNet,createFaceRecognitionNet,createSsdMobilenetv1,createTinyFaceDetector,createTinyYolov2,detectAllFaces,detectFaceLandmarks,detectFaceLandmarksTiny,detectLandmarks,detectSingleFace,draw,env,euclideanDistance,extendWithAge,extendWithFaceDescriptor,extendWithFaceDetection,extendWithFaceExpressions,extendWithFaceLandmarks,extendWithGender,extractFaceTensors,extractFaces,fetchImage,fetchJson,fetchNetWeights,fetchOrThrow,fetchVideo,getContext2dOrThrow,getMediaDimensions,imageTensorToCanvas,imageToSquare,inverseSigmoid,iou,isMediaElement,isMediaLoaded,isWithAge,isWithFaceDetection,isWithFaceExpressions,isWithFaceLandmarks,isWithGender,loadAgeGenderModel,loadFaceDetectionModel,loadFaceExpressionModel,loadFaceLandmarkModel,loadFaceLandmarkTinyModel,loadFaceRecognitionModel,loadSsdMobilenetv1Model,loadTinyFaceDetectorModel,loadTinyYolov2Model,loadWeightMap,locateFaces,matchDimensions,minBbox,nets,nonMaxSuppression,normalize,padToSquare,predictAgeAndGender,recognizeFaceExpressions,resizeResults,resolveInput,shuffleArray,sigmoid,ssdMobilenetv1,tf,tinyFaceDetector,tinyYolov2,toNetInput,utils,validateConfig,version}); +"use strict";var ln=Object.create;var tr=Object.defineProperty;var dn=Object.getOwnPropertyDescriptor;var hn=Object.getOwnPropertyNames;var bn=Object.getPrototypeOf,gn=Object.prototype.hasOwnProperty;var xn=(o,t)=>()=>(t||o((t={exports:{}}).exports,t),t.exports),Sr=(o,t)=>{for(var e in t)tr(o,e,{get:t[e],enumerable:!0})},_o=(o,t,e,r)=>{if(t&&typeof t=="object"||typeof t=="function")for(let n of hn(t))!gn.call(o,n)&&n!==e&&tr(o,n,{get:()=>t[n],enumerable:!(r=dn(t,n))||r.enumerable});return o};var v=(o,t,e)=>(e=o!=null?ln(bn(o)):{},_o(t||!o||!o.__esModule?tr(e,"default",{value:o,enumerable:!0}):e,o)),vn=o=>_o(tr({},"__esModule",{value:!0}),o);var x=xn((Ya,Br)=>{"use strict";var Wr=Object.defineProperty,yn=Object.getOwnPropertyDescriptor,_n=Object.getOwnPropertyNames,Tn=Object.prototype.hasOwnProperty,Pn=(o,t)=>{for(var e in t)Wr(o,e,{get:t[e],enumerable:!0})},Ar=(o,t,e,r)=>{if(t&&typeof t=="object"||typeof t=="function")for(let n of _n(t))!Tn.call(o,n)&&n!==e&&Wr(o,n,{get:()=>t[n],enumerable:!(r=yn(t,n))||r.enumerable});return o},wn=(o,t,e)=>(Ar(o,t,"default"),e&&Ar(e,t,"default")),Fn=o=>Ar(Wr({},"__esModule",{value:!0}),o),kr={};Pn(kr,{version:()=>In});Br.exports=Fn(kr);wn(kr,require("@tensorflow/tfjs-node"),Br.exports);var To="4.22.0",Dn="4.22.0",En="4.22.0",Mn="4.22.0",Cn="4.22.0",In={tfjs:To,"tfjs-core":To,"tfjs-converter":Dn,"tfjs-backend-cpu":En,"tfjs-backend-webgl":Mn,"tfjs-backend-wasm":Cn}});var Ba={};Sr(Ba,{AgeGenderNet:()=>He,BoundingBox:()=>Ot,Box:()=>L,ComposableTask:()=>J,ComputeAllFaceDescriptorsTask:()=>_t,ComputeFaceDescriptorsTaskBase:()=>Ue,ComputeSingleFaceDescriptorTask:()=>Tt,DetectAllFaceLandmarksTask:()=>qe,DetectAllFacesTask:()=>Ie,DetectFaceLandmarksTaskBase:()=>Je,DetectFacesTaskBase:()=>Ke,DetectSingleFaceLandmarksTask:()=>Ze,DetectSingleFaceTask:()=>Qe,Dimensions:()=>R,FACE_EXPRESSION_LABELS:()=>so,FaceDetection:()=>M,FaceDetectionNet:()=>lo,FaceExpressionNet:()=>Oe,FaceExpressions:()=>gt,FaceLandmark68Net:()=>Zt,FaceLandmark68TinyNet:()=>ze,FaceLandmarkNet:()=>po,FaceLandmarks:()=>H,FaceLandmarks5:()=>jr,FaceLandmarks68:()=>Yt,FaceMatch:()=>me,FaceMatcher:()=>vo,FaceRecognitionNet:()=>Kt,Gender:()=>_r,LabeledBox:()=>pe,LabeledFaceDescriptors:()=>Et,NetInput:()=>ut,NeuralNetwork:()=>A,ObjectDetection:()=>Ht,Point:()=>_,PredictedBox:()=>Ur,Rect:()=>zt,SsdMobilenetv1:()=>It,SsdMobilenetv1Options:()=>X,TinyFaceDetector:()=>re,TinyFaceDetectorOptions:()=>je,TinyYolov2:()=>te,TinyYolov2Options:()=>st,allFaces:()=>Sa,allFacesSsdMobilenetv1:()=>un,allFacesTinyYolov2:()=>La,awaitMediaLoaded:()=>to,bufferToImage:()=>eo,computeFaceDescriptor:()=>xa,createCanvas:()=>Xt,createCanvasFromMedia:()=>We,createFaceDetectionNet:()=>ua,createFaceRecognitionNet:()=>ta,createSsdMobilenetv1:()=>Jo,createTinyFaceDetector:()=>Aa,createTinyYolov2:()=>da,detectAllFaces:()=>Lr,detectFaceLandmarks:()=>mn,detectFaceLandmarksTiny:()=>ga,detectLandmarks:()=>Ia,detectSingleFace:()=>Na,draw:()=>co,env:()=>w,euclideanDistance:()=>xo,extendWithAge:()=>Dr,extendWithFaceDescriptor:()=>Fr,extendWithFaceDetection:()=>Vt,extendWithFaceExpressions:()=>gr,extendWithFaceLandmarks:()=>Pe,extendWithGender:()=>Er,extractFaceTensors:()=>le,extractFaces:()=>fe,fetchImage:()=>On,fetchJson:()=>no,fetchNetWeights:()=>Hn,fetchOrThrow:()=>ht,fetchVideo:()=>zn,getContext2dOrThrow:()=>$,getMediaDimensions:()=>Ut,imageTensorToCanvas:()=>ro,imageToSquare:()=>oo,inverseSigmoid:()=>Sn,iou:()=>zr,isMediaElement:()=>sr,isMediaLoaded:()=>Ae,isWithAge:()=>ea,isWithFaceDetection:()=>pt,isWithFaceExpressions:()=>io,isWithFaceLandmarks:()=>qt,isWithGender:()=>ra,loadAgeGenderModel:()=>Ea,loadFaceDetectionModel:()=>Ma,loadFaceExpressionModel:()=>Da,loadFaceLandmarkModel:()=>Pa,loadFaceLandmarkTinyModel:()=>wa,loadFaceRecognitionModel:()=>Fa,loadSsdMobilenetv1Model:()=>pn,loadTinyFaceDetectorModel:()=>_a,loadTinyYolov2Model:()=>Ta,loadWeightMap:()=>ao,locateFaces:()=>Ca,matchDimensions:()=>Yn,minBbox:()=>Yr,nets:()=>F,nonMaxSuppression:()=>Vr,normalize:()=>rt,padToSquare:()=>Gr,predictAgeAndGender:()=>ya,recognizeFaceExpressions:()=>va,resizeResults:()=>fn,resolveInput:()=>Gt,shuffleArray:()=>Ln,sigmoid:()=>Ne,ssdMobilenetv1:()=>cn,tf:()=>Wa,tinyFaceDetector:()=>ha,tinyYolov2:()=>ba,toNetInput:()=>D,utils:()=>Hr,validateConfig:()=>ho,version:()=>ka});module.exports=vn(Ba);var Wa=v(x());var co={};Sr(co,{AnchorPosition:()=>Qr,DrawBox:()=>Se,DrawBoxOptions:()=>nr,DrawFaceLandmarks:()=>vr,DrawFaceLandmarksOptions:()=>xr,DrawTextField:()=>jt,DrawTextFieldOptions:()=>ue,drawContour:()=>lt,drawDetections:()=>$n,drawFaceExpressions:()=>Vn,drawFaceLandmarks:()=>jn});function lt(o,t,e=!1){if(o.beginPath(),t.slice(1).forEach(({x:r,y:n},s)=>{let a=t[s];o.moveTo(a.x,a.y),o.lineTo(r,n)}),e){let r=t[t.length-1],n=t[0];if(!r||!n)return;o.moveTo(r.x,r.y),o.lineTo(n.x,n.y)}o.stroke()}var Hr={};Sr(Hr,{computeReshapedDimensions:()=>Or,getCenterPoint:()=>$t,isDimensions:()=>rr,isEven:()=>er,isFloat:()=>$r,isTensor:()=>Bt,isTensor1D:()=>Nn,isTensor2D:()=>Rr,isTensor3D:()=>dt,isTensor4D:()=>U,isValidNumber:()=>et,isValidProbablitiy:()=>ce,range:()=>ct,round:()=>Rt});var Po=v(x());var R=class o{constructor(t,e){if(!et(t)||!et(e))throw new Error(`Dimensions.constructor - expected width and height to be valid numbers, instead have ${JSON.stringify({width:t,height:e})}`);this._width=t,this._height=e}get width(){return this._width}get height(){return this._height}reverse(){return new o(1/this.width,1/this.height)}};function Bt(o,t){return o instanceof Po.Tensor&&o.shape.length===t}function Nn(o){return Bt(o,1)}function Rr(o){return Bt(o,2)}function dt(o){return Bt(o,3)}function U(o){return Bt(o,4)}function $r(o){return o%1!==0}function er(o){return o%2===0}function Rt(o,t=2){let e=10**t;return Math.floor(o*e)/e}function rr(o){return o&&o.width&&o.height}function Or({width:o,height:t},e){let r=e/Math.max(t,o);return new R(Math.round(o*r),Math.round(t*r))}function $t(o){return o.reduce((t,e)=>t.add(e),new _(0,0)).div(new _(o.length,o.length))}function ct(o,t,e){return Array(o).fill(0).map((r,n)=>t+n*e)}function et(o){return!!o&&o!==1/0&&o!==-1/0&&!Number.isNaN(o)||o===0}function ce(o){return et(o)&&o>=0&&o<=1}var _=class o{constructor(t,e){this._x=t,this._y=e}get x(){return this._x}get y(){return this._y}add(t){return new o(this.x+t.x,this.y+t.y)}sub(t){return new o(this.x-t.x,this.y-t.y)}mul(t){return new o(this.x*t.x,this.y*t.y)}div(t){return new o(this.x/t.x,this.y/t.y)}abs(){return new o(Math.abs(this.x),Math.abs(this.y))}magnitude(){return Math.sqrt(this.x**2+this.y**2)}floor(){return new o(Math.floor(this.x),Math.floor(this.y))}};var L=class o{static isRect(t){return!!t&&[t.x,t.y,t.width,t.height].every(et)}static assertIsValidBox(t,e,r=!1){if(!o.isRect(t))throw new Error(`${e} - invalid box: ${JSON.stringify(t)}, expected object with properties x, y, width, height`);if(!r&&(t.width<0||t.height<0))throw new Error(`${e} - width (${t.width}) and height (${t.height}) must be positive numbers`)}constructor(t,e=!0){let r=t||{},n=[r.left,r.top,r.right,r.bottom].every(et),s=[r.x,r.y,r.width,r.height].every(et);if(!s&&!n)throw new Error(`Box.constructor - expected box to be IBoundingBox | IRect, instead have ${JSON.stringify(r)}`);let[a,i,c,m]=s?[r.x,r.y,r.width,r.height]:[r.left,r.top,r.right-r.left,r.bottom-r.top];o.assertIsValidBox({x:a,y:i,width:c,height:m},"Box.constructor",e),this._x=a,this._y=i,this._width=c,this._height=m}get x(){return this._x}get y(){return this._y}get width(){return this._width}get height(){return this._height}get left(){return this.x}get top(){return this.y}get right(){return this.x+this.width}get bottom(){return this.y+this.height}get area(){return this.width*this.height}get topLeft(){return new _(this.left,this.top)}get topRight(){return new _(this.right,this.top)}get bottomLeft(){return new _(this.left,this.bottom)}get bottomRight(){return new _(this.right,this.bottom)}round(){let[t,e,r,n]=[this.x,this.y,this.width,this.height].map(s=>Math.round(s));return new o({x:t,y:e,width:r,height:n})}floor(){let[t,e,r,n]=[this.x,this.y,this.width,this.height].map(s=>Math.floor(s));return new o({x:t,y:e,width:r,height:n})}toSquare(){let{x:t,y:e,width:r,height:n}=this,s=Math.abs(r-n);return re&&(i=-u+e+r,u=e),f>t&&(c=-f+t+n,f=t),m<1&&(c=2-m,m=1),p<1&&(c=2-p,p=1),{dy:a,edy:c,dx:s,edx:i,y:p,ey:f,x:m,ex:u,w:r,h:n}}calibrate(t){return new o({left:this.left+t.left*this.width,top:this.top+t.top*this.height,right:this.right+t.right*this.width,bottom:this.bottom+t.bottom*this.height}).toSquare().round()}};var Ot=class extends L{constructor(t,e,r,n,s=!1){super({left:t,top:e,right:r,bottom:n},s)}};var Ht=class o{constructor(t,e,r,n,s){this._imageDims=new R(s.width,s.height),this._score=t,this._classScore=e,this._className=r,this._box=new L(n).rescale(this._imageDims)}get score(){return this._score}get classScore(){return this._classScore}get className(){return this._className}get box(){return this._box}get imageDims(){return this._imageDims}get imageWidth(){return this.imageDims.width}get imageHeight(){return this.imageDims.height}get relativeBox(){return new L(this._box).rescale(this.imageDims.reverse())}forSize(t,e){return new o(this.score,this.classScore,this.className,this.relativeBox,{width:t,height:e})}};var M=class o extends Ht{constructor(t,e,r){super(t,t,"",e,r)}forSize(t,e){let{score:r,relativeBox:n,imageDims:s}=super.forSize(t,e);return new o(r,n,s)}};function zr(o,t,e=!0){let r=Math.max(0,Math.min(o.right,t.right)-Math.max(o.left,t.left)),n=Math.max(0,Math.min(o.bottom,t.bottom)-Math.max(o.top,t.top)),s=r*n;return e?s/(o.area+t.area-s):s/Math.min(o.area,t.area)}function Yr(o){let t=o.map(i=>i.x),e=o.map(i=>i.y),r=t.reduce((i,c)=>ccii({score:a,boxIndex:i})).sort((a,i)=>a.score-i.score).map(a=>a.boxIndex),s=[];for(;n.length>0;){let a=n.pop();s.push(a);let i=n,c=[];for(let m=0;mc[p]<=e)}return s}var mt=v(x());function rt(o,t){return mt.tidy(()=>{let[e,r,n]=t,s=mt.fill([...o.shape.slice(0,3),1],e,"float32"),a=mt.fill([...o.shape.slice(0,3),1],r,"float32"),i=mt.fill([...o.shape.slice(0,3),1],n,"float32"),c=mt.concat([s,a,i],3);return mt.sub(o,c)})}var Dt=v(x());function Gr(o,t=!1){return Dt.tidy(()=>{let[e,r]=o.shape.slice(1);if(e===r)return o;let n=Math.abs(e-r),s=Math.round(n*(t?.5:1)),a=e>r?2:1,i=f=>{let l=o.shape.slice();return l[a]=f,Dt.fill(l,0,"float32")},c=i(s),m=n-c.shape[a],u=[t&&m?i(m):null,o,c].filter(f=>!!f).map(f=>Dt.cast(f,"float32"));return Dt.concat(u,a)})}function Ln(o){let t=o.slice();for(let e=t.length-1;e>0;e--){let r=Math.floor(Math.random()*(e+1)),n=t[e];t[e]=t[r],t[r]=n}return t}function Ne(o){return 1/(1+Math.exp(-o))}function Sn(o){return Math.log(o/(1-o))}var zt=class extends L{constructor(t,e,r,n,s=!1){super({x:t,y:e,width:r,height:n},s)}};var An=.5,Wn=.43,kn=.45,H=class{constructor(t,e,r=new _(0,0)){let{width:n,height:s}=e;this._imgDims=new R(n,s),this._shift=r,this._positions=t.map(a=>a.mul(new _(n,s)).add(r))}get shift(){return new _(this._shift.x,this._shift.y)}get imageWidth(){return this._imgDims.width}get imageHeight(){return this._imgDims.height}get positions(){return this._positions}get relativePositions(){return this._positions.map(t=>t.sub(this._shift).div(new _(this.imageWidth,this.imageHeight)))}forSize(t,e){return new this.constructor(this.relativePositions,{width:t,height:e})}shiftBy(t,e){return new this.constructor(this.relativePositions,this._imgDims,new _(t,e))}shiftByPoint(t){return this.shiftBy(t.x,t.y)}align(t,e={}){if(t){let s=t instanceof M?t.box.floor():new L(t);return this.shiftBy(s.x,s.y).align(null,e)}let{useDlibAlignment:r,minBoxPadding:n}={useDlibAlignment:!1,minBoxPadding:.2,...e};return r?this.alignDlib():this.alignMinBbox(n)}alignDlib(){let t=this.getRefPointsForAlignment(),[e,r,n]=t,s=u=>n.sub(u).magnitude(),a=(s(e)+s(r))/2,i=Math.floor(a/kn),c=$t(t),m=Math.floor(Math.max(0,c.x-An*i)),p=Math.floor(Math.max(0,c.y-Wn*i));return new zt(m,p,Math.min(i,this.imageWidth+m),Math.min(i,this.imageHeight+p))}alignMinBbox(t){let e=Yr(this.positions);return e.pad(e.width*t,e.height*t)}getRefPointsForAlignment(){throw new Error("getRefPointsForAlignment not implemented by base class")}};var jr=class extends H{getRefPointsForAlignment(){let t=this.positions;return[t[0],t[1],$t([t[3],t[4]])]}};var Yt=class extends H{getJawOutline(){return this.positions.slice(0,17)}getLeftEyeBrow(){return this.positions.slice(17,22)}getRightEyeBrow(){return this.positions.slice(22,27)}getNose(){return this.positions.slice(27,36)}getLeftEye(){return this.positions.slice(36,42)}getRightEye(){return this.positions.slice(42,48)}getMouth(){return this.positions.slice(48,68)}getRefPointsForAlignment(){return[this.getLeftEye(),this.getRightEye(),this.getMouth()].map($t)}};var me=class{constructor(t,e){this._label=t,this._distance=e}get label(){return this._label}get distance(){return this._distance}toString(t=!0){return`${this.label}${t?` (${Rt(this.distance)})`:""}`}};var pe=class extends L{static assertIsValidLabeledBox(t,e){if(L.assertIsValidBox(t,e),!et(t.label))throw new Error(`${e} - expected property label (${t.label}) to be a number`)}constructor(t,e){super(t),this._label=e}get label(){return this._label}};var Et=class o{constructor(t,e){if(typeof t!="string")throw new Error("LabeledFaceDescriptors - constructor expected label to be a string");if(!Array.isArray(e)||e.some(r=>!(r instanceof Float32Array)))throw new Error("LabeledFaceDescriptors - constructor expected descriptors to be an array of Float32Array");this._label=t,this._descriptors=e}get label(){return this._label}get descriptors(){return this._descriptors}toJSON(){return{label:this.label,descriptors:this.descriptors.map(t=>Array.from(t))}}static fromJSON(t){let e=t.descriptors.map(r=>new Float32Array(r));return new o(t.label,e)}};var Ur=class extends pe{static assertIsValidPredictedBox(t,e){if(pe.assertIsValidLabeledBox(t,e),!ce(t.score)||!ce(t.classScore))throw new Error(`${e} - expected properties score (${t.score}) and (${t.classScore}) to be a number between [0, 1]`)}constructor(t,e,r,n){super(t,e),this._score=r,this._classScore=n}get score(){return this._score}get classScore(){return this._classScore}};function pt(o){return o.detection instanceof M}function Vt(o,t){return{...o,...{detection:t}}}function Xr(){let o=window.fetch;if(!o)throw new Error("fetch - missing fetch implementation for browser environment");return{Canvas:HTMLCanvasElement,CanvasRenderingContext2D,Image:HTMLImageElement,ImageData,Video:HTMLVideoElement,createCanvasElement:()=>document.createElement("canvas"),createImageElement:()=>document.createElement("img"),createVideoElement:()=>document.createElement("video"),fetch:o,readFile:()=>{throw new Error("readFile - filesystem not available for browser environment")}}}function Le(){return typeof global=="object"&&typeof process!="undefined"&&process.versions!=null&&process.versions.node!=null}function or(o){let t="";if(!o&&Le())try{o=require("fs")}catch(r){t=r.toString()}return{readFile:o?r=>new Promise((n,s)=>{o.readFile(r,(a,i)=>a?s(a):n(i))}):()=>{throw new Error(`readFile - failed to require fs in nodejs environment with error: ${t}`)}}}function Jr(){let o=global.Canvas||global.HTMLCanvasElement,t=global.Image||global.HTMLImageElement,e=global.Video||global.HTMLVideoElement,r=()=>{if(o)return new o;throw new Error("createCanvasElement - missing Canvas implementation for nodejs environment")},n=()=>{if(t)return new t;throw new Error("createImageElement - missing Image implementation for nodejs environment")},s=()=>{if(e)return new e;throw new Error("createVideoElement - missing Video implementation for nodejs environment")},a=global.fetch,i=or();return{Canvas:o||class{},CanvasRenderingContext2D:global.CanvasRenderingContext2D||class{},Image:t||class{},ImageData:global.ImageData||class{},Video:global.HTMLVideoElement||class{},createCanvasElement:r,createImageElement:n,createVideoElement:s,fetch:a,...i}}function qr(){return typeof window=="object"&&typeof document!="undefined"&&typeof HTMLImageElement!="undefined"&&typeof HTMLCanvasElement!="undefined"&&typeof HTMLVideoElement!="undefined"&&typeof ImageData!="undefined"&&typeof CanvasRenderingContext2D!="undefined"}var S;function Bn(){if(!S)throw new Error("getEnv - environment is not defined, check isNodejs() and isBrowser()");return S}function Zr(o){S=o}function Kr(){return qr()?Zr(Xr()):Le()?Zr(Jr()):null}function Rn(o){if(S||Kr(),!S)throw new Error("monkeyPatch - environment is not defined, check isNodejs() and isBrowser()");let{Canvas:t=S.Canvas,Image:e=S.Image}=o;S.Canvas=t,S.Image=e,S.createCanvasElement=o.createCanvasElement||(()=>new t),S.createImageElement=o.createImageElement||(()=>new e),S.ImageData=o.ImageData||S.ImageData,S.Video=o.Video||S.Video,S.fetch=o.fetch||S.fetch,S.readFile=o.readFile||S.readFile}var w={getEnv:Bn,setEnv:Zr,initialize:Kr,createBrowserEnv:Xr,createFileSystem:or,createNodejsEnv:Jr,monkeyPatch:Rn,isBrowser:qr,isNodejs:Le};Kr();function Gt(o){return!w.isNodejs()&&typeof o=="string"?document.getElementById(o):o}function $(o){let{Canvas:t,CanvasRenderingContext2D:e}=w.getEnv();if(o instanceof e)return o;let r=Gt(o);if(!(r instanceof t))throw new Error("resolveContext2d - expected canvas to be of instance of Canvas");let n=r.getContext("2d",{willReadFrequently:!0});if(!n)throw new Error("resolveContext2d - canvas 2d context is null");return n}var Qr=(n=>(n.TOP_LEFT="TOP_LEFT",n.TOP_RIGHT="TOP_RIGHT",n.BOTTOM_LEFT="BOTTOM_LEFT",n.BOTTOM_RIGHT="BOTTOM_RIGHT",n))(Qr||{}),ue=class{constructor(t={}){let{anchorPosition:e,backgroundColor:r,fontColor:n,fontSize:s,fontStyle:a,padding:i}=t;this.anchorPosition=e||"TOP_LEFT",this.backgroundColor=r||"rgba(0, 0, 0, 0.5)",this.fontColor=n||"rgba(255, 255, 255, 1)",this.fontSize=s||14,this.fontStyle=a||"Georgia",this.padding=i||4}},jt=class o{constructor(t,e,r={}){this.text=typeof t=="string"?[t]:t instanceof o?t.text:t,this.anchor=e,this.options=new ue(r)}measureWidth(t){let{padding:e}=this.options;return this.text.map(r=>t.measureText(r).width).reduce((r,n)=>r{let b=c+u.x,T=c+u.y+(l+1)*a;r.fillText(f,b,T)})}};var nr=class{constructor(t={}){let{boxColor:e,lineWidth:r,label:n,drawLabelOptions:s}=t;this.boxColor=e||"rgba(0, 0, 255, 1)",this.lineWidth=r||2,this.label=n;let a={anchorPosition:"BOTTOM_LEFT",backgroundColor:this.boxColor};this.drawLabelOptions=new ue({...a,...s})}},Se=class{constructor(t,e={}){this.box=new L(t),this.options=new nr(e)}draw(t){let e=$(t),{boxColor:r,lineWidth:n}=this.options,{x:s,y:a,width:i,height:c}=this.box;e.strokeStyle=r,e.lineWidth=n,e.strokeRect(s,a,i,c);let{label:m}=this.options;m&&new jt([m],{x:s-n/2,y:a},this.options.drawLabelOptions).draw(t)}};function $n(o,t){(Array.isArray(t)?t:[t]).forEach(r=>{let n=r instanceof M?r.score:pt(r)?r.detection.score:void 0,s=r instanceof M?r.box:pt(r)?r.detection.box:new L(r),a=n?`${Rt(n)}`:void 0;new Se(s,{label:a}).draw(o)})}var Te=v(x());function Ae(o){let{Image:t,Video:e}=w.getEnv();return o instanceof t&&o.complete||o instanceof e&&o.readyState>=3}function to(o){return new Promise((t,e)=>{if(o instanceof w.getEnv().Canvas||Ae(o)){t(null);return}function r(s){s.currentTarget&&(s.currentTarget.removeEventListener("load",n),s.currentTarget.removeEventListener("error",r),e(s))}function n(s){s.currentTarget&&(s.currentTarget.removeEventListener("load",n),s.currentTarget.removeEventListener("error",r),t(s))}o.addEventListener("load",n),o.addEventListener("error",r)})}function eo(o){return new Promise((t,e)=>{o instanceof Blob||e(new Error("bufferToImage - expected buf to be of type: Blob"));let r=new FileReader;r.onload=()=>{typeof r.result!="string"&&e(new Error("bufferToImage - expected reader.result to be a string, in onload"));let n=w.getEnv().createImageElement();n.onload=()=>t(n),n.onerror=e,n.src=r.result},r.onerror=e,r.readAsDataURL(o)})}function Ut(o){let{Image:t,Video:e}=w.getEnv();return o instanceof t?new R(o.naturalWidth,o.naturalHeight):o instanceof e?new R(o.videoWidth,o.videoHeight):new R(o.width,o.height)}function Xt({width:o,height:t}){let{createCanvasElement:e}=w.getEnv(),r=e();return r.width=o,r.height=t,r}function We(o,t){let{ImageData:e}=w.getEnv();if(!(o instanceof e)&&!Ae(o))throw new Error("createCanvasFromMedia - media has not finished loading yet");let{width:r,height:n}=t||Ut(o),s=Xt({width:r,height:n});return o instanceof e?$(s).putImageData(o,0,0):$(s).drawImage(o,0,0,r,n),s}var ar=v(x());async function ro(o,t){let e=t||w.getEnv().createCanvasElement(),[r,n,s]=o.shape.slice(U(o)?1:0),a=ar.tidy(()=>o.as3D(r,n,s).toInt());return await ar.browser.toPixels(a,e),a.dispose(),e}function sr(o){let{Image:t,Canvas:e,Video:r}=w.getEnv();return o instanceof t||o instanceof e||o instanceof r}var z=v(x());function oo(o,t,e=!1){let{Image:r,Canvas:n}=w.getEnv();if(!(o instanceof r||o instanceof n))throw new Error("imageToSquare - expected arg0 to be HTMLImageElement | HTMLCanvasElement");if(t<=0)return Xt({width:1,height:1});let s=Ut(o),a=t/Math.max(s.height,s.width),i=a*s.width,c=a*s.height,m=Xt({width:t,height:t}),p=o instanceof n?o:We(o),u=Math.abs(i-c)/2,f=e&&i0&&p.height>0&&$(m).drawImage(p,f,l,i,c),m}var ut=class{constructor(t,e=!1){this._imageTensors=[];this._canvases=[];this._treatAsBatchInput=!1;this._inputDimensions=[];this._inputSize=0;if(!Array.isArray(t))throw new Error(`NetInput.constructor - expected inputs to be an Array of TResolvedNetInput or to be instanceof tf.Tensor4D, instead have ${t}`);this._treatAsBatchInput=e,this._batchSize=t.length,t.forEach((r,n)=>{if(dt(r)){this._imageTensors[n]=r,this._inputDimensions[n]=r.shape;return}if(U(r)){let a=r.shape[0];if(a!==1)throw new Error(`NetInput - tf.Tensor4D with batchSize ${a} passed, but not supported in input array`);this._imageTensors[n]=r,this._inputDimensions[n]=r.shape.slice(1);return}let s=r instanceof w.getEnv().Canvas?r:We(r);this._canvases[n]=s,this._inputDimensions[n]=[s.height,s.width,3]})}get imageTensors(){return this._imageTensors}get canvases(){return this._canvases}get isBatchInput(){return this.batchSize>1||this._treatAsBatchInput}get batchSize(){return this._batchSize}get inputDimensions(){return this._inputDimensions}get inputSize(){return this._inputSize}get reshapedInputDimensions(){return ct(this.batchSize,0,1).map((t,e)=>this.getReshapedInputDimensions(e))}getInput(t){return this.canvases[t]||this.imageTensors[t]}getInputDimensions(t){return this._inputDimensions[t]}getInputHeight(t){return this._inputDimensions[t][0]}getInputWidth(t){return this._inputDimensions[t][1]}getReshapedInputDimensions(t){if(typeof this.inputSize!="number")throw new Error("getReshapedInputDimensions - inputSize not set, toBatchTensor has not been called yet");let e=this.getInputWidth(t),r=this.getInputHeight(t);return Or({width:e,height:r},this.inputSize)}toBatchTensor(t,e=!0){return this._inputSize=t,z.tidy(()=>{let r=ct(this.batchSize,0,1).map(s=>{let a=this.getInput(s);if(a instanceof z.Tensor){let i=U(a)?a:z.expandDims(a);return i=Gr(i,e),(i.shape[1]!==t||i.shape[2]!==t)&&(i=z.image.resizeBilinear(i,[t,t],!1,!1)),i.as3D(t,t,3)}if(a instanceof w.getEnv().Canvas)return z.browser.fromPixels(oo(a,t,e));throw new Error(`toBatchTensor - at batchIdx ${s}, expected input to be instanceof tf.Tensor or instanceof HTMLCanvasElement, instead have ${a}`)});return z.stack(r.map(s=>z.cast(s,"float32"))).as4D(this.batchSize,t,t,3)})}};async function D(o){if(o instanceof ut)return o;let t=Array.isArray(o)?o:[o];if(!t.length)throw new Error("toNetInput - empty array passed as input");let e=n=>Array.isArray(o)?` at input index ${n}:`:"",r=t.map(Gt);return r.forEach((n,s)=>{if(!sr(n)&&!dt(n)&&!U(n))throw typeof t[s]=="string"?new Error(`toNetInput -${e(s)} string passed, but could not resolve HTMLElement for element id ${t[s]}`):new Error(`toNetInput -${e(s)} expected media to be of type HTMLImageElement | HTMLVideoElement | HTMLCanvasElement | tf.Tensor3D, or to be an element id`);if(U(n)){let a=n.shape[0];if(a!==1)throw new Error(`toNetInput -${e(s)} tf.Tensor4D with batchSize ${a} passed, but not supported in input array`)}}),await Promise.all(r.map(n=>sr(n)&&to(n))),new ut(r,Array.isArray(o))}async function fe(o,t){let{Canvas:e}=w.getEnv(),r=o;if(!(o instanceof e)){let a=await D(o);if(a.batchSize>1)throw new Error("extractFaces - batchSize > 1 not supported");let i=a.getInput(0);r=i instanceof e?i:await ro(i)}let n=$(r);return t.map(a=>a instanceof M?a.forSize(r.width,r.height).box.floor():a).map(a=>a.clipAtImageBorders(r.width,r.height)).map(({x:a,y:i,width:c,height:m})=>{let p=Xt({width:c,height:m});return c>0&&m>0&&$(p).putImageData(n.getImageData(a,i,c,m),0,0),p})}var ir=v(x());async function le(o,t){if(!dt(o)&&!U(o))throw new Error("extractFaceTensors - expected image tensor to be 3D or 4D");if(U(o)&&o.shape[0]>1)throw new Error("extractFaceTensors - batchSize > 1 not supported");return ir.tidy(()=>{let[e,r,n]=o.shape.slice(U(o)?1:0);return t.map(i=>i instanceof M?i.forSize(r,e).box:i).map(i=>i.clipAtImageBorders(r,e)).filter(i=>i.width>0&&i.height>0).map(({x:i,y:c,width:m,height:p})=>ir.slice3d(o.as3D(e,r,n),[c,i,0],[p,m,n]))})}async function ht(o,t){let{fetch:e}=w.getEnv(),r=await e(o,t);if(!(r.status<400))throw new Error(`failed to fetch: (${r.status}) ${r.statusText}, from url: ${r.url}`);return r}async function On(o){let t=await ht(o),e=await t.blob();if(!e.type.startsWith("image/"))throw new Error(`fetchImage - expected blob type to be of type image/*, instead have: ${e.type}, for url: ${t.url}`);return eo(e)}async function no(o){return(await ht(o)).json()}async function Hn(o){return new Float32Array(await(await ht(o)).arrayBuffer())}function wo(o){return new Promise((t,e)=>{o instanceof Blob||e(new Error("bufferToVideo - expected buf to be of type: Blob"));let r=w.getEnv().createVideoElement();r.oncanplay=()=>t(r),r.onerror=e,r.playsInline=!0,r.muted=!0,r.src=URL.createObjectURL(o),r.play()})}async function zn(o){let t=await ht(o),e=await t.blob();if(!e.type.startsWith("video/"))throw new Error(`fetchVideo - expected blob type to be of type video/*, instead have: ${e.type}, for url: ${t.url}`);return wo(e)}var Fo=v(x());function cr(o,t){let e=`${t}-weights_manifest.json`;if(!o)return{modelBaseUri:"",manifestUri:e};if(o==="/")return{modelBaseUri:"/",manifestUri:`/${e}`};let r=o.startsWith("http://")?"http://":o.startsWith("https://")?"https://":"";o=o.replace(r,"");let n=o.split("/").filter(i=>i),s=o.endsWith(".json")?n[n.length-1]:e,a=r+(o.endsWith(".json")?n.slice(0,n.length-1):n).join("/");return a=o.startsWith("/")?`/${a}`:a,{modelBaseUri:a,manifestUri:a==="/"?`/${s}`:`${a}/${s}`}}async function ao(o,t){let{manifestUri:e,modelBaseUri:r}=cr(o,t),n=await no(e);return Fo.io.loadWeights(n,r)}function Yn(o,t,e=!1){let{width:r,height:n}=e?Ut(t):t;return o.width=r,o.height=n,{width:r,height:n}}var ve=v(x());var bt=v(x());var A=class{constructor(t){this._params=void 0;this._paramMappings=[];this._name=t}get params(){return this._params}get paramMappings(){return this._paramMappings}get isLoaded(){return!!this.params}getParamFromPath(t){let{obj:e,objProp:r}=this.traversePropertyPath(t);return e[r]}reassignParamFromPath(t,e){let{obj:r,objProp:n}=this.traversePropertyPath(t);r[n].dispose(),r[n]=e}getParamList(){return this._paramMappings.map(({paramPath:t})=>({path:t,tensor:this.getParamFromPath(t)}))}getTrainableParams(){return this.getParamList().filter(t=>t.tensor instanceof bt.Variable)}getFrozenParams(){return this.getParamList().filter(t=>!(t.tensor instanceof bt.Variable))}variable(){this.getFrozenParams().forEach(({path:t,tensor:e})=>{this.reassignParamFromPath(t,e.variable())})}freeze(){this.getTrainableParams().forEach(({path:t,tensor:e})=>{let r=bt.tensor(e.dataSync());e.dispose(),this.reassignParamFromPath(t,r)})}dispose(t=!0){this.getParamList().forEach(e=>{if(t&&e.tensor.isDisposed)throw new Error(`param tensor has already been disposed for path ${e.path}`);e.tensor.dispose()}),this._params=void 0}serializeParams(){return new Float32Array(this.getParamList().map(({tensor:t})=>Array.from(t.dataSync())).reduce((t,e)=>t.concat(e)))}async load(t){if(t instanceof Float32Array){this.extractWeights(t);return}await this.loadFromUri(t)}async loadFromUri(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromUri - expected model uri`);let e=await ao(t,this.getDefaultModelName());this.loadFromWeightMap(e)}async loadFromDisk(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromDisk - expected model file path`);let{readFile:e}=w.getEnv(),{manifestUri:r,modelBaseUri:n}=cr(t,this.getDefaultModelName()),s=m=>Promise.all(m.map(p=>e(p).then(u=>typeof u=="string"?Buffer.from(u):u.buffer))),a=bt.io.weightsLoaderFactory(s),i=JSON.parse((await e(r)).toString()),c=await a(i,n);this.loadFromWeightMap(c)}loadFromWeightMap(t){let{paramMappings:e,params:r}=this.extractParamsFromWeightMap(t);this._paramMappings=e,this._params=r}extractWeights(t){let{paramMappings:e,params:r}=this.extractParams(t);this._paramMappings=e,this._params=r}traversePropertyPath(t){if(!this.params)throw new Error("traversePropertyPath - model has no loaded params");let e=t.split("/").reduce((s,a)=>{if(!s.nextObj.hasOwnProperty(a))throw new Error(`traversePropertyPath - object does not have property ${a}, for path ${t}`);return{obj:s.nextObj,objProp:a,nextObj:s.nextObj[a]}},{nextObj:this.params}),{obj:r,objProp:n}=e;if(!r||!n||!(r[n]instanceof bt.Tensor))throw new Error(`traversePropertyPath - parameter is not a tensor, for path ${t}`);return{obj:r,objProp:n}}};var E=v(x());var de=v(x());function O(o,t,e){return de.tidy(()=>{let r=de.separableConv2d(o,t.depthwise_filter,t.pointwise_filter,e,"same");return r=de.add(r,t.bias),r})}function mr(o,t,e=!1){return E.tidy(()=>{let r=E.relu(e?E.add(E.conv2d(o,t.conv0.filters,[2,2],"same"),t.conv0.bias):O(o,t.conv0,[2,2])),n=O(r,t.conv1,[1,1]),s=E.relu(E.add(r,n)),a=O(s,t.conv2,[1,1]);return E.relu(E.add(r,E.add(n,a)))})}function ke(o,t,e=!1,r=!0){return E.tidy(()=>{let n=E.relu(e?E.add(E.conv2d(o,t.conv0.filters,r?[2,2]:[1,1],"same"),t.conv0.bias):O(o,t.conv0,r?[2,2]:[1,1])),s=O(n,t.conv1,[1,1]),a=E.relu(E.add(n,s)),i=O(a,t.conv2,[1,1]),c=E.relu(E.add(n,E.add(s,i))),m=O(c,t.conv3,[1,1]);return E.relu(E.add(n,E.add(s,E.add(i,m))))})}var Mt=v(x());function Jt(o,t,e="same",r=!1){return Mt.tidy(()=>{let n=Mt.add(Mt.conv2d(o,t.filters,[1,1],e),t.bias);return r?Mt.relu(n):n})}function W(o,t){Object.keys(o).forEach(e=>{t.some(r=>r.originalPath===e)||o[e].dispose()})}var pr=v(x());function he(o,t){return(e,r,n,s)=>{let a=pr.tensor4d(o(e*r*n*n),[n,n,e,r]),i=pr.tensor1d(o(r));return t.push({paramPath:`${s}/filters`},{paramPath:`${s}/bias`}),{filters:a,bias:i}}}var ur=v(x());function fr(o,t){return(e,r,n)=>{let s=ur.tensor2d(o(e*r),[e,r]),a=ur.tensor1d(o(r));return t.push({paramPath:`${n}/weights`},{paramPath:`${n}/bias`}),{weights:s,bias:a}}}var Re=v(x());var Be=class{constructor(t,e,r){this.depthwise_filter=t;this.pointwise_filter=e;this.bias=r}};function be(o,t){return(e,r,n)=>{let s=Re.tensor4d(o(9*e),[3,3,e,1]),a=Re.tensor4d(o(e*r),[1,1,e,r]),i=Re.tensor1d(o(r));return t.push({paramPath:`${n}/depthwise_filter`},{paramPath:`${n}/pointwise_filter`},{paramPath:`${n}/bias`}),new Be(s,a,i)}}function ge(o){return t=>{let e=o(`${t}/depthwise_filter`,4),r=o(`${t}/pointwise_filter`,4),n=o(`${t}/bias`,1);return new Be(e,r,n)}}function Y(o,t){return(e,r,n)=>{let s=o[e];if(!Bt(s,r))throw new Error(`expected weightMap[${e}] to be a Tensor${r}D, instead have ${s}`);return t.push({originalPath:e,paramPath:n||e}),s}}function k(o){let t=o;function e(n){let s=t.slice(0,n);return t=t.slice(n),s}function r(){return t}return{extractWeights:e,getRemainingWeights:r}}function lr(o,t){let e=he(o,t),r=be(o,t);function n(a,i,c,m=!1){let p=m?e(a,i,3,`${c}/conv0`):r(a,i,`${c}/conv0`),u=r(i,i,`${c}/conv1`),f=r(i,i,`${c}/conv2`);return{conv0:p,conv1:u,conv2:f}}function s(a,i,c,m=!1){let{conv0:p,conv1:u,conv2:f}=n(a,i,c,m),l=r(i,i,`${c}/conv3`);return{conv0:p,conv1:u,conv2:f,conv3:l}}return{extractDenseBlock3Params:n,extractDenseBlock4Params:s}}function Do(o){let t=[],{extractWeights:e,getRemainingWeights:r}=k(o),{extractDenseBlock4Params:n}=lr(e,t),s=n(3,32,"dense0",!0),a=n(32,64,"dense1"),i=n(64,128,"dense2"),c=n(128,256,"dense3");if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:t,params:{dense0:s,dense1:a,dense2:i,dense3:c}}}function dr(o){return t=>{let e=o(`${t}/filters`,4),r=o(`${t}/bias`,1);return{filters:e,bias:r}}}function hr(o,t){let e=Y(o,t),r=dr(e),n=ge(e);function s(i,c=!1){let m=c?r(`${i}/conv0`):n(`${i}/conv0`),p=n(`${i}/conv1`),u=n(`${i}/conv2`);return{conv0:m,conv1:p,conv2:u}}function a(i,c=!1){let m=c?r(`${i}/conv0`):n(`${i}/conv0`),p=n(`${i}/conv1`),u=n(`${i}/conv2`),f=n(`${i}/conv3`);return{conv0:m,conv1:p,conv2:u,conv3:f}}return{extractDenseBlock3Params:s,extractDenseBlock4Params:a}}function Eo(o){let t=[],{extractDenseBlock4Params:e}=hr(o,t),r={dense0:e("dense0",!0),dense1:e("dense1"),dense2:e("dense2"),dense3:e("dense3")};return W(o,t),{params:r,paramMappings:t}}var xe=class extends A{constructor(){super("FaceFeatureExtractor")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("FaceFeatureExtractor - load model before inference");return ve.tidy(()=>{let r=ve.cast(t.toBatchTensor(112,!0),"float32"),s=rt(r,[122.782,117.001,104.298]).div(255),a=ke(s,e.dense0,!0);return a=ke(a,e.dense1),a=ke(a,e.dense2),a=ke(a,e.dense3),a=ve.avgPool(a,[7,7],[2,2],"valid"),a})}async forward(t){return this.forwardInput(await D(t))}getDefaultModelName(){return"face_feature_extractor_model"}extractParamsFromWeightMap(t){return Eo(t)}extractParams(t){return Do(t)}};var Io=v(x());var ye=v(x());function $e(o,t){return ye.tidy(()=>ye.add(ye.matMul(o,t.weights),t.bias))}function Mo(o,t,e){let r=[],{extractWeights:n,getRemainingWeights:s}=k(o),i=fr(n,r)(t,e,"fc");if(s().length!==0)throw new Error(`weights remaing after extract: ${s().length}`);return{paramMappings:r,params:{fc:i}}}function Co(o){let t=[],e=Y(o,t);function r(s){let a=e(`${s}/weights`,2),i=e(`${s}/bias`,1);return{weights:a,bias:i}}let n={fc:r("fc")};return W(o,t),{params:n,paramMappings:t}}function br(o){let t={},e={};return Object.keys(o).forEach(r=>{let n=r.startsWith("fc")?e:t;n[r]=o[r]}),{featureExtractorMap:t,classifierMap:e}}var _e=class extends A{constructor(t,e){super(t),this._faceFeatureExtractor=e}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(t){let{params:e}=this;if(!e)throw new Error(`${this._name} - load model before inference`);return Io.tidy(()=>{let r=t instanceof ut?this.faceFeatureExtractor.forwardInput(t):t;return $e(r.as2D(r.shape[0],-1),e.fc)})}dispose(t=!0){this.faceFeatureExtractor.dispose(t),super.dispose(t)}loadClassifierParams(t){let{params:e,paramMappings:r}=this.extractClassifierParams(t);this._params=e,this._paramMappings=r}extractClassifierParams(t){return Mo(t,this.getClassifierChannelsIn(),this.getClassifierChannelsOut())}extractParamsFromWeightMap(t){let{featureExtractorMap:e,classifierMap:r}=br(t);return this.faceFeatureExtractor.loadFromWeightMap(e),Co(r)}extractParams(t){let e=this.getClassifierChannelsIn(),r=this.getClassifierChannelsOut(),n=r*e+r,s=t.slice(0,t.length-n),a=t.slice(t.length-n);return this.faceFeatureExtractor.extractWeights(s),this.extractClassifierParams(a)}};var so=["neutral","happy","sad","angry","fearful","disgusted","surprised"],gt=class{constructor(t){this.neutral=0;this.happy=0;this.sad=0;this.angry=0;this.fearful=0;this.disgusted=0;this.surprised=0;if(t.length!==7)throw new Error(`FaceExpressions.constructor - expected probabilities.length to be 7, have: ${t.length}`);so.forEach((e,r)=>{this[e]=t[r]})}asSortedArray(){return so.map(t=>({expression:t,probability:this[t]})).sort((t,e)=>e.probability-t.probability)}};var Oe=class extends _e{constructor(t=new xe){super("FaceExpressionNet",t)}forwardInput(t){return Te.tidy(()=>Te.softmax(this.runNet(t)))}async forward(t){return this.forwardInput(await D(t))}async predictExpressions(t){let e=await D(t),r=await this.forwardInput(e),n=await Promise.all(Te.unstack(r).map(async a=>{let i=a.dataSync();return a.dispose(),i}));r.dispose();let s=n.map(a=>new gt(a));return e.isBatchInput?s:s[0]}getDefaultModelName(){return"face_expression_model"}getClassifierChannelsIn(){return 256}getClassifierChannelsOut(){return 7}};function io(o){return o.expressions instanceof gt}function gr(o,t){return{...o,...{expressions:t}}}function Vn(o,t,e=.1,r){(Array.isArray(t)?t:[t]).forEach(s=>{let a=s instanceof gt?s:io(s)?s.expressions:void 0;if(!a)throw new Error("drawFaceExpressions - expected faceExpressions to be FaceExpressions | WithFaceExpressions<{}> or array thereof");let c=a.asSortedArray().filter(u=>u.probability>e),m=pt(s)?s.detection.box.bottomLeft:r||new _(0,0);new jt(c.map(u=>`${u.expression} (${Rt(u.probability)})`),m).draw(o)})}function qt(o){return pt(o)&&o.landmarks instanceof H&&o.unshiftedLandmarks instanceof H&&o.alignedRect instanceof M}function Gn(o){let t=c=>c*180/Math.PI,e=(c,m)=>Math.sqrt((c.x-m.x)**2+(c.y-m.y)**2),r={roll:void 0,pitch:void 0,yaw:void 0},n=(c,m,p)=>{let u=Math.floor(c.x-m.x),f=Math.floor(m.x-p.x);return u-f},s=(c,m)=>{let p=Math.hypot(m.x-c.x,m.y-c.y),u=m.y-c.y,f=Math.asin(u/p),l=t(f),b=Math.floor(90-l),T=m.x-c.x<0?-1:1;return b*T},a=(c,m,p)=>{let u=e(c,p),f=new _((c.x+p.x)/2,(c.y+p.y)/2),l=e(m,f),b=Math.atan(l/u),T=Math.floor(t(b)),h=f.y-m.y<0?-1:1;return T*h};if(!o||!o.positions||o.positions.length!==68)return r;let i=o.positions;return r.roll=s(i[27],i[66]),r.pitch=a(i[14],i[30],i[2]),r.yaw=n(i[14],i[33],i[2]),r}function Pe(o,t){let{box:e}=o.detection,r=t.shiftBy(e.x,e.y),n=r.align(),{imageDims:s}=o.detection,a=new M(o.detection.score,n.rescale(s.reverse()),s),i=Gn(t);return{...o,...{landmarks:r,unshiftedLandmarks:t,alignedRect:a,angle:i}}}var xr=class{constructor(t={}){let{drawLines:e=!0,drawPoints:r=!0,lineWidth:n,lineColor:s,pointSize:a,pointColor:i}=t;this.drawLines=e,this.drawPoints=r,this.lineWidth=n||1,this.pointSize=a||2,this.lineColor=s||"rgba(0, 255, 255, 1)",this.pointColor=i||"rgba(255, 0, 255, 1)"}},vr=class{constructor(t,e={}){this.faceLandmarks=t,this.options=new xr(e)}draw(t){let e=$(t),{drawLines:r,drawPoints:n,lineWidth:s,lineColor:a,pointSize:i,pointColor:c}=this.options;if(r&&this.faceLandmarks instanceof Yt&&(e.strokeStyle=a,e.lineWidth=s,lt(e,this.faceLandmarks.getJawOutline()),lt(e,this.faceLandmarks.getLeftEyeBrow()),lt(e,this.faceLandmarks.getRightEyeBrow()),lt(e,this.faceLandmarks.getNose()),lt(e,this.faceLandmarks.getLeftEye(),!0),lt(e,this.faceLandmarks.getRightEye(),!0),lt(e,this.faceLandmarks.getMouth(),!0)),n){e.strokeStyle=c,e.fillStyle=c;let m=p=>{e.beginPath(),e.arc(p.x,p.y,i,0,2*Math.PI),e.fill()};this.faceLandmarks.positions.forEach(m)}}};function jn(o,t){(Array.isArray(t)?t:[t]).forEach(r=>{let n=r instanceof H?r:qt(r)?r.landmarks:void 0;if(!n)throw new Error("drawFaceLandmarks - expected faceExpressions to be FaceLandmarks | WithFaceLandmarks> or array thereof");new vr(n).draw(o)})}var No="1.7.15";var ft=v(x());var N=v(x());function Jn(o,t){let e=he(o,t),r=be(o,t);function n(a,i,c){let m=r(a,i,`${c}/separable_conv0`),p=r(i,i,`${c}/separable_conv1`),u=e(a,i,1,`${c}/expansion_conv`);return{separable_conv0:m,separable_conv1:p,expansion_conv:u}}function s(a,i){let c=r(a,a,`${i}/separable_conv0`),m=r(a,a,`${i}/separable_conv1`),p=r(a,a,`${i}/separable_conv2`);return{separable_conv0:c,separable_conv1:m,separable_conv2:p}}return{extractConvParams:e,extractSeparableConvParams:r,extractReductionBlockParams:n,extractMainBlockParams:s}}function Lo(o,t){let e=[],{extractWeights:r,getRemainingWeights:n}=k(o),{extractConvParams:s,extractSeparableConvParams:a,extractReductionBlockParams:i,extractMainBlockParams:c}=Jn(r,e),m=s(3,32,3,"entry_flow/conv_in"),p=i(32,64,"entry_flow/reduction_block_0"),u=i(64,128,"entry_flow/reduction_block_1"),f={conv_in:m,reduction_block_0:p,reduction_block_1:u},l={};ct(t,0,1).forEach(g=>{l[`main_block_${g}`]=c(128,`middle_flow/main_block_${g}`)});let b=i(128,256,"exit_flow/reduction_block"),T=a(256,512,"exit_flow/separable_conv"),h={reduction_block:b,separable_conv:T};if(n().length!==0)throw new Error(`weights remaing after extract: ${n().length}`);return{paramMappings:e,params:{entry_flow:f,middle_flow:l,exit_flow:h}}}function qn(o,t){let e=Y(o,t),r=dr(e),n=ge(e);function s(i){let c=n(`${i}/separable_conv0`),m=n(`${i}/separable_conv1`),p=r(`${i}/expansion_conv`);return{separable_conv0:c,separable_conv1:m,expansion_conv:p}}function a(i){let c=n(`${i}/separable_conv0`),m=n(`${i}/separable_conv1`),p=n(`${i}/separable_conv2`);return{separable_conv0:c,separable_conv1:m,separable_conv2:p}}return{extractConvParams:r,extractSeparableConvParams:n,extractReductionBlockParams:s,extractMainBlockParams:a}}function So(o,t){let e=[],{extractConvParams:r,extractSeparableConvParams:n,extractReductionBlockParams:s,extractMainBlockParams:a}=qn(o,e),i=r("entry_flow/conv_in"),c=s("entry_flow/reduction_block_0"),m=s("entry_flow/reduction_block_1"),p={conv_in:i,reduction_block_0:c,reduction_block_1:m},u={};ct(t,0,1).forEach(T=>{u[`main_block_${T}`]=a(`middle_flow/main_block_${T}`)});let f=s("exit_flow/reduction_block"),l=n("exit_flow/separable_conv"),b={reduction_block:f,separable_conv:l};return W(o,e),{params:{entry_flow:p,middle_flow:u,exit_flow:b},paramMappings:e}}function Ao(o,t,e){return N.add(N.conv2d(o,t.filters,e,"same"),t.bias)}function mo(o,t,e=!0){let r=e?N.relu(o):o;return r=O(r,t.separable_conv0,[1,1]),r=O(N.relu(r),t.separable_conv1,[1,1]),r=N.maxPool(r,[3,3],[2,2],"same"),r=N.add(r,Ao(o,t.expansion_conv,[2,2])),r}function Zn(o,t){let e=O(N.relu(o),t.separable_conv0,[1,1]);return e=O(N.relu(e),t.separable_conv1,[1,1]),e=O(N.relu(e),t.separable_conv2,[1,1]),e=N.add(e,o),e}var yr=class extends A{constructor(t){super("TinyXception"),this._numMainBlocks=t}forwardInput(t){let{params:e}=this;if(!e)throw new Error("TinyXception - load model before inference");return N.tidy(()=>{let r=N.cast(t.toBatchTensor(112,!0),"float32"),s=rt(r,[122.782,117.001,104.298]).div(255),a=N.relu(Ao(s,e.entry_flow.conv_in,[2,2]));return a=mo(a,e.entry_flow.reduction_block_0,!1),a=mo(a,e.entry_flow.reduction_block_1),ct(this._numMainBlocks,0,1).forEach(i=>{a=Zn(a,e.middle_flow[`main_block_${i}`])}),a=mo(a,e.exit_flow.reduction_block),a=N.relu(O(a,e.exit_flow.separable_conv,[1,1])),a})}async forward(t){return this.forwardInput(await D(t))}getDefaultModelName(){return"tiny_xception_model"}extractParamsFromWeightMap(t){return So(t,this._numMainBlocks)}extractParams(t){return Lo(t,this._numMainBlocks)}};function Wo(o){let t=[],{extractWeights:e,getRemainingWeights:r}=k(o),n=fr(e,t),s=n(512,1,"fc/age"),a=n(512,2,"fc/gender");if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:t,params:{fc:{age:s,gender:a}}}}function ko(o){let t=[],e=Y(o,t);function r(s){let a=e(`${s}/weights`,2),i=e(`${s}/bias`,1);return{weights:a,bias:i}}let n={fc:{age:r("fc/age"),gender:r("fc/gender")}};return W(o,t),{params:n,paramMappings:t}}var _r=(e=>(e.FEMALE="female",e.MALE="male",e))(_r||{});var He=class extends A{constructor(t=new yr(2)){super("AgeGenderNet"),this._faceFeatureExtractor=t}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(t){let{params:e}=this;if(!e)throw new Error(`${this._name} - load model before inference`);return ft.tidy(()=>{let r=t instanceof ut?this.faceFeatureExtractor.forwardInput(t):t,n=ft.avgPool(r,[7,7],[2,2],"valid").as2D(r.shape[0],-1),s=$e(n,e.fc.age).as1D(),a=$e(n,e.fc.gender);return{age:s,gender:a}})}forwardInput(t){return ft.tidy(()=>{let{age:e,gender:r}=this.runNet(t);return{age:e,gender:ft.softmax(r)}})}async forward(t){return this.forwardInput(await D(t))}async predictAgeAndGender(t){let e=await D(t),r=await this.forwardInput(e),n=ft.unstack(r.age),s=ft.unstack(r.gender),a=n.map((c,m)=>({ageTensor:c,genderTensor:s[m]})),i=await Promise.all(a.map(async({ageTensor:c,genderTensor:m})=>{let p=c.dataSync()[0],u=m.dataSync()[0],f=u>.5,l=f?"male":"female",b=f?u:1-u;return c.dispose(),m.dispose(),{age:p,gender:l,genderProbability:b}}));return r.age.dispose(),r.gender.dispose(),e.isBatchInput?i:i[0]}getDefaultModelName(){return"age_gender_model"}dispose(t=!0){this.faceFeatureExtractor.dispose(t),super.dispose(t)}loadClassifierParams(t){let{params:e,paramMappings:r}=this.extractClassifierParams(t);this._params=e,this._paramMappings=r}extractClassifierParams(t){return Wo(t)}extractParamsFromWeightMap(t){let{featureExtractorMap:e,classifierMap:r}=br(t);return this.faceFeatureExtractor.loadFromWeightMap(e),ko(r)}extractParams(t){let r=t.slice(0,t.length-1539),n=t.slice(t.length-1539);return this.faceFeatureExtractor.extractWeights(r),this.extractClassifierParams(n)}};var V=v(x());var we=class extends _e{postProcess(t,e,r){let n=r.map(({width:a,height:i})=>{let c=e/Math.max(i,a);return{width:a*c,height:i*c}}),s=n.length;return V.tidy(()=>{let a=(u,f)=>V.stack([V.fill([68],u,"float32"),V.fill([68],f,"float32")],1).as2D(1,136).as1D(),i=(u,f)=>{let{width:l,height:b}=n[u];return f(l,b)?Math.abs(l-b)/2:0},c=u=>i(u,(f,l)=>fi(u,(f,l)=>la(c(f),m(f))))).div(V.stack(Array.from(Array(s),(u,f)=>a(n[f].width,n[f].height))))})}forwardInput(t){return V.tidy(()=>{let e=this.runNet(t);return this.postProcess(e,t.inputSize,t.inputDimensions.map(([r,n])=>({height:r,width:n})))})}async forward(t){return this.forwardInput(await D(t))}async detectLandmarks(t){let e=await D(t),r=V.tidy(()=>V.unstack(this.forwardInput(e))),n=await Promise.all(r.map(async(s,a)=>{let i=Array.from(s.dataSync()),c=i.filter((p,u)=>er(u)),m=i.filter((p,u)=>!er(u));return new Yt(Array(68).fill(0).map((p,u)=>new _(c[u],m[u])),{height:e.getInputHeight(a),width:e.getInputWidth(a)})}));return r.forEach(s=>s.dispose()),e.isBatchInput?n:n[0]}getClassifierChannelsOut(){return 136}};var Zt=class extends we{constructor(t=new xe){super("FaceLandmark68Net",t)}getDefaultModelName(){return"face_landmark_68_model"}getClassifierChannelsIn(){return 256}};var Fe=v(x());function Bo(o){let t=[],{extractDenseBlock3Params:e}=hr(o,t),r={dense0:e("dense0",!0),dense1:e("dense1"),dense2:e("dense2")};return W(o,t),{params:r,paramMappings:t}}function Ro(o){let t=[],{extractWeights:e,getRemainingWeights:r}=k(o),{extractDenseBlock3Params:n}=lr(e,t),s=n(3,32,"dense0",!0),a=n(32,64,"dense1"),i=n(64,128,"dense2");if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:t,params:{dense0:s,dense1:a,dense2:i}}}var Tr=class extends A{constructor(){super("TinyFaceFeatureExtractor")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("TinyFaceFeatureExtractor - load model before inference");return Fe.tidy(()=>{let r=Fe.cast(t.toBatchTensor(112,!0),"float32"),s=rt(r,[122.782,117.001,104.298]).div(255),a=mr(s,e.dense0,!0);return a=mr(a,e.dense1),a=mr(a,e.dense2),a=Fe.avgPool(a,[14,14],[2,2],"valid"),a})}async forward(t){return this.forwardInput(await D(t))}getDefaultModelName(){return"face_feature_extractor_tiny_model"}extractParamsFromWeightMap(t){return Bo(t)}extractParams(t){return Ro(t)}};var ze=class extends we{constructor(t=new Tr){super("FaceLandmark68TinyNet",t)}getDefaultModelName(){return"face_landmark_68_tiny_model"}getClassifierChannelsIn(){return 128}};var po=class extends Zt{};var nt=v(x());var De=v(x());var Pr=v(x());function $o(o,t){return Pr.add(Pr.mul(o,t.weights),t.biases)}function uo(o,t,e,r,n="same"){let{filters:s,bias:a}=t.conv,i=De.conv2d(o,s,e,n);return i=De.add(i,a),i=$o(i,t.scale),r?De.relu(i):i}function Oo(o,t){return uo(o,t,[1,1],!0)}function fo(o,t){return uo(o,t,[1,1],!1)}function wr(o,t){return uo(o,t,[2,2],!0,"valid")}var G=v(x());function Kn(o,t){function e(i,c,m){let p=o(i),u=p.length/(c*m*m);if($r(u))throw new Error(`depth has to be an integer: ${u}, weights.length: ${p.length}, numFilters: ${c}, filterSize: ${m}`);return G.tidy(()=>G.transpose(G.tensor4d(p,[c,u,m,m]),[2,3,1,0]))}function r(i,c,m,p){let u=e(i,c,m),f=G.tensor1d(o(c));return t.push({paramPath:`${p}/filters`},{paramPath:`${p}/bias`}),{filters:u,bias:f}}function n(i,c){let m=G.tensor1d(o(i)),p=G.tensor1d(o(i));return t.push({paramPath:`${c}/weights`},{paramPath:`${c}/biases`}),{weights:m,biases:p}}function s(i,c,m,p){let u=r(i,c,m,`${p}/conv`),f=n(c,`${p}/scale`);return{conv:u,scale:f}}function a(i,c,m,p,u=!1){let f=s((u?.5:1)*i,c,m,`${p}/conv1`),l=s(i,c,m,`${p}/conv2`);return{conv1:f,conv2:l}}return{extractConvLayerParams:s,extractResidualLayerParams:a}}function Ho(o){let{extractWeights:t,getRemainingWeights:e}=k(o),r=[],{extractConvLayerParams:n,extractResidualLayerParams:s}=Kn(t,r),a=n(4704,32,7,"conv32_down"),i=s(9216,32,3,"conv32_1"),c=s(9216,32,3,"conv32_2"),m=s(9216,32,3,"conv32_3"),p=s(36864,64,3,"conv64_down",!0),u=s(36864,64,3,"conv64_1"),f=s(36864,64,3,"conv64_2"),l=s(36864,64,3,"conv64_3"),b=s(147456,128,3,"conv128_down",!0),T=s(147456,128,3,"conv128_1"),h=s(147456,128,3,"conv128_2"),g=s(589824,256,3,"conv256_down",!0),P=s(589824,256,3,"conv256_1"),y=s(589824,256,3,"conv256_2"),I=s(589824,256,3,"conv256_down_out"),j=G.tidy(()=>G.transpose(G.tensor2d(t(256*128),[128,256]),[1,0]));if(r.push({paramPath:"fc"}),e().length!==0)throw new Error(`weights remaing after extract: ${e().length}`);return{params:{conv32_down:a,conv32_1:i,conv32_2:c,conv32_3:m,conv64_down:p,conv64_1:u,conv64_2:f,conv64_3:l,conv128_down:b,conv128_1:T,conv128_2:h,conv256_down:g,conv256_1:P,conv256_2:y,conv256_down_out:I,fc:j},paramMappings:r}}function Qn(o,t){let e=Y(o,t);function r(a){let i=e(`${a}/scale/weights`,1),c=e(`${a}/scale/biases`,1);return{weights:i,biases:c}}function n(a){let i=e(`${a}/conv/filters`,4),c=e(`${a}/conv/bias`,1),m=r(a);return{conv:{filters:i,bias:c},scale:m}}function s(a){return{conv1:n(`${a}/conv1`),conv2:n(`${a}/conv2`)}}return{extractConvLayerParams:n,extractResidualLayerParams:s}}function zo(o){let t=[],{extractConvLayerParams:e,extractResidualLayerParams:r}=Qn(o,t),n=e("conv32_down"),s=r("conv32_1"),a=r("conv32_2"),i=r("conv32_3"),c=r("conv64_down"),m=r("conv64_1"),p=r("conv64_2"),u=r("conv64_3"),f=r("conv128_down"),l=r("conv128_1"),b=r("conv128_2"),T=r("conv256_down"),h=r("conv256_1"),g=r("conv256_2"),P=r("conv256_down_out"),{fc:y}=o;if(t.push({originalPath:"fc",paramPath:"fc"}),!Rr(y))throw new Error(`expected weightMap[fc] to be a Tensor2D, instead have ${y}`);let I={conv32_down:n,conv32_1:s,conv32_2:a,conv32_3:i,conv64_down:c,conv64_1:m,conv64_2:p,conv64_3:u,conv128_down:f,conv128_1:l,conv128_2:b,conv256_down:T,conv256_1:h,conv256_2:g,conv256_down_out:P,fc:y};return W(o,t),{params:I,paramMappings:t}}var B=v(x());function ot(o,t){let e=Oo(o,t.conv1);return e=fo(e,t.conv2),e=B.add(e,o),e=B.relu(e),e}function Ye(o,t){let e=wr(o,t.conv1);e=fo(e,t.conv2);let r=B.avgPool(o,2,2,"valid"),n=B.zeros(r.shape),s=r.shape[3]!==e.shape[3];if(r.shape[1]!==e.shape[1]||r.shape[2]!==e.shape[2]){let i=[...e.shape];i[1]=1;let c=B.zeros(i);e=B.concat([e,c],1);let m=[...e.shape];m[2]=1;let p=B.zeros(m);e=B.concat([e,p],2)}return r=s?B.concat([r,n],3):r,e=B.add(r,e),e=B.relu(e),e}var Kt=class extends A{constructor(){super("FaceRecognitionNet")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("FaceRecognitionNet - load model before inference");return nt.tidy(()=>{let r=nt.cast(t.toBatchTensor(150,!0),"float32"),s=rt(r,[122.782,117.001,104.298]).div(255),a=wr(s,e.conv32_down);a=nt.maxPool(a,3,2,"valid"),a=ot(a,e.conv32_1),a=ot(a,e.conv32_2),a=ot(a,e.conv32_3),a=Ye(a,e.conv64_down),a=ot(a,e.conv64_1),a=ot(a,e.conv64_2),a=ot(a,e.conv64_3),a=Ye(a,e.conv128_down),a=ot(a,e.conv128_1),a=ot(a,e.conv128_2),a=Ye(a,e.conv256_down),a=ot(a,e.conv256_1),a=ot(a,e.conv256_2),a=Ye(a,e.conv256_down_out);let i=a.mean([1,2]);return nt.matMul(i,e.fc)})}async forward(t){return this.forwardInput(await D(t))}async computeFaceDescriptor(t){var s;if((s=t==null?void 0:t.shape)!=null&&s.some(a=>a<=0))return new Float32Array(128);let e=await D(t),r=nt.tidy(()=>nt.unstack(this.forwardInput(e))),n=await Promise.all(r.map(a=>a.data()));return r.forEach(a=>a.dispose()),e.isBatchInput?n:n[0]}getDefaultModelName(){return"face_recognition_model"}extractParamsFromWeightMap(t){return zo(t)}extractParams(t){return Ho(t)}};function ta(o){let t=new Kt;return t.extractWeights(o),t}function Fr(o,t){return{...o,...{descriptor:t}}}function ea(o){return typeof o.age=="number"}function Dr(o,t){return{...o,...{age:t}}}function ra(o){return(o.gender==="male"||o.gender==="female")&&ce(o.genderProbability)}function Er(o,t,e){return{...o,...{gender:t,genderProbability:e}}}var Nt=v(x());var at=v(x());function oa(o,t){function e(c,m){let p=at.tensor4d(o(9*c),[3,3,c,1]),u=at.tensor1d(o(c)),f=at.tensor1d(o(c)),l=at.tensor1d(o(c)),b=at.tensor1d(o(c));return t.push({paramPath:`${m}/filters`},{paramPath:`${m}/batch_norm_scale`},{paramPath:`${m}/batch_norm_offset`},{paramPath:`${m}/batch_norm_mean`},{paramPath:`${m}/batch_norm_variance`}),{filters:p,batch_norm_scale:u,batch_norm_offset:f,batch_norm_mean:l,batch_norm_variance:b}}function r(c,m,p,u,f){let l=at.tensor4d(o(c*m*p*p),[p,p,c,m]),b=at.tensor1d(o(m));return t.push({paramPath:`${u}/filters`},{paramPath:`${u}/${f?"batch_norm_offset":"bias"}`}),{filters:l,bias:b}}function n(c,m,p,u){let{filters:f,bias:l}=r(c,m,p,u,!0);return{filters:f,batch_norm_offset:l}}function s(c,m,p){let u=e(c,`${p}/depthwise_conv`),f=n(c,m,1,`${p}/pointwise_conv`);return{depthwise_conv:u,pointwise_conv:f}}function a(){let c=n(3,32,3,"mobilenetv1/conv_0"),m=s(32,64,"mobilenetv1/conv_1"),p=s(64,128,"mobilenetv1/conv_2"),u=s(128,128,"mobilenetv1/conv_3"),f=s(128,256,"mobilenetv1/conv_4"),l=s(256,256,"mobilenetv1/conv_5"),b=s(256,512,"mobilenetv1/conv_6"),T=s(512,512,"mobilenetv1/conv_7"),h=s(512,512,"mobilenetv1/conv_8"),g=s(512,512,"mobilenetv1/conv_9"),P=s(512,512,"mobilenetv1/conv_10"),y=s(512,512,"mobilenetv1/conv_11"),I=s(512,1024,"mobilenetv1/conv_12"),j=s(1024,1024,"mobilenetv1/conv_13");return{conv_0:c,conv_1:m,conv_2:p,conv_3:u,conv_4:f,conv_5:l,conv_6:b,conv_7:T,conv_8:h,conv_9:g,conv_10:P,conv_11:y,conv_12:I,conv_13:j}}function i(){let c=n(1024,256,1,"prediction_layer/conv_0"),m=n(256,512,3,"prediction_layer/conv_1"),p=n(512,128,1,"prediction_layer/conv_2"),u=n(128,256,3,"prediction_layer/conv_3"),f=n(256,128,1,"prediction_layer/conv_4"),l=n(128,256,3,"prediction_layer/conv_5"),b=n(256,64,1,"prediction_layer/conv_6"),T=n(64,128,3,"prediction_layer/conv_7"),h=r(512,12,1,"prediction_layer/box_predictor_0/box_encoding_predictor"),g=r(512,9,1,"prediction_layer/box_predictor_0/class_predictor"),P=r(1024,24,1,"prediction_layer/box_predictor_1/box_encoding_predictor"),y=r(1024,18,1,"prediction_layer/box_predictor_1/class_predictor"),I=r(512,24,1,"prediction_layer/box_predictor_2/box_encoding_predictor"),j=r(512,18,1,"prediction_layer/box_predictor_2/class_predictor"),tt=r(256,24,1,"prediction_layer/box_predictor_3/box_encoding_predictor"),it=r(256,18,1,"prediction_layer/box_predictor_3/class_predictor"),q=r(256,24,1,"prediction_layer/box_predictor_4/box_encoding_predictor"),Pt=r(256,18,1,"prediction_layer/box_predictor_4/class_predictor"),wt=r(128,24,1,"prediction_layer/box_predictor_5/box_encoding_predictor"),Ft=r(128,18,1,"prediction_layer/box_predictor_5/class_predictor");return{conv_0:c,conv_1:m,conv_2:p,conv_3:u,conv_4:f,conv_5:l,conv_6:b,conv_7:T,box_predictor_0:{box_encoding_predictor:h,class_predictor:g},box_predictor_1:{box_encoding_predictor:P,class_predictor:y},box_predictor_2:{box_encoding_predictor:I,class_predictor:j},box_predictor_3:{box_encoding_predictor:tt,class_predictor:it},box_predictor_4:{box_encoding_predictor:q,class_predictor:Pt},box_predictor_5:{box_encoding_predictor:wt,class_predictor:Ft}}}return{extractMobilenetV1Params:a,extractPredictionLayerParams:i}}function Yo(o){let t=[],{extractWeights:e,getRemainingWeights:r}=k(o),{extractMobilenetV1Params:n,extractPredictionLayerParams:s}=oa(e,t),a=n(),i=s(),m={extra_dim:at.tensor3d(e(5118*4),[1,5118,4])};if(t.push({paramPath:"output_layer/extra_dim"}),r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{params:{mobilenetv1:a,prediction_layer:i,output_layer:m},paramMappings:t}}function na(o,t){let e=Y(o,t);function r(m,p,u){let f=e(`${m}/Conv2d_${p}_pointwise/weights`,4,`${u}/filters`),l=e(`${m}/Conv2d_${p}_pointwise/convolution_bn_offset`,1,`${u}/batch_norm_offset`);return{filters:f,batch_norm_offset:l}}function n(m){let p=`mobilenetv1/conv_${m}`,u=`MobilenetV1/Conv2d_${m}_depthwise`,f=`${p}/depthwise_conv`,l=`${p}/pointwise_conv`,b=e(`${u}/depthwise_weights`,4,`${f}/filters`),T=e(`${u}/BatchNorm/gamma`,1,`${f}/batch_norm_scale`),h=e(`${u}/BatchNorm/beta`,1,`${f}/batch_norm_offset`),g=e(`${u}/BatchNorm/moving_mean`,1,`${f}/batch_norm_mean`),P=e(`${u}/BatchNorm/moving_variance`,1,`${f}/batch_norm_variance`);return{depthwise_conv:{filters:b,batch_norm_scale:T,batch_norm_offset:h,batch_norm_mean:g,batch_norm_variance:P},pointwise_conv:r("MobilenetV1",m,l)}}function s(){return{conv_0:r("MobilenetV1",0,"mobilenetv1/conv_0"),conv_1:n(1),conv_2:n(2),conv_3:n(3),conv_4:n(4),conv_5:n(5),conv_6:n(6),conv_7:n(7),conv_8:n(8),conv_9:n(9),conv_10:n(10),conv_11:n(11),conv_12:n(12),conv_13:n(13)}}function a(m,p){let u=e(`${m}/weights`,4,`${p}/filters`),f=e(`${m}/biases`,1,`${p}/bias`);return{filters:u,bias:f}}function i(m){let p=a(`Prediction/BoxPredictor_${m}/BoxEncodingPredictor`,`prediction_layer/box_predictor_${m}/box_encoding_predictor`),u=a(`Prediction/BoxPredictor_${m}/ClassPredictor`,`prediction_layer/box_predictor_${m}/class_predictor`);return{box_encoding_predictor:p,class_predictor:u}}function c(){return{conv_0:r("Prediction",0,"prediction_layer/conv_0"),conv_1:r("Prediction",1,"prediction_layer/conv_1"),conv_2:r("Prediction",2,"prediction_layer/conv_2"),conv_3:r("Prediction",3,"prediction_layer/conv_3"),conv_4:r("Prediction",4,"prediction_layer/conv_4"),conv_5:r("Prediction",5,"prediction_layer/conv_5"),conv_6:r("Prediction",6,"prediction_layer/conv_6"),conv_7:r("Prediction",7,"prediction_layer/conv_7"),box_predictor_0:i(0),box_predictor_1:i(1),box_predictor_2:i(2),box_predictor_3:i(3),box_predictor_4:i(4),box_predictor_5:i(5)}}return{extractMobilenetV1Params:s,extractPredictionLayerParams:c}}function Vo(o){let t=[],{extractMobilenetV1Params:e,extractPredictionLayerParams:r}=na(o,t),n=o["Output/extra_dim"];if(t.push({originalPath:"Output/extra_dim",paramPath:"output_layer/extra_dim"}),!dt(n))throw new Error(`expected weightMap['Output/extra_dim'] to be a Tensor3D, instead have ${n}`);let s={mobilenetv1:e(),prediction_layer:r(),output_layer:{extra_dim:n}};return W(o,t),{params:s,paramMappings:t}}var xt=v(x());var Ct=v(x());function Z(o,t,e){return Ct.tidy(()=>{let r=Ct.conv2d(o,t.filters,e,"same");return r=Ct.add(r,t.batch_norm_offset),Ct.clipByValue(r,0,6)})}var aa=.0010000000474974513;function sa(o,t,e){return xt.tidy(()=>{let r=xt.depthwiseConv2d(o,t.filters,e,"same");return r=xt.batchNorm(r,t.batch_norm_mean,t.batch_norm_variance,t.batch_norm_offset,t.batch_norm_scale,aa),xt.clipByValue(r,0,6)})}function ia(o){return[2,4,6,12].some(t=>t===o)?[2,2]:[1,1]}function Go(o,t){return xt.tidy(()=>{let e,r=Z(o,t.conv_0,[2,2]);if([t.conv_1,t.conv_2,t.conv_3,t.conv_4,t.conv_5,t.conv_6,t.conv_7,t.conv_8,t.conv_9,t.conv_10,t.conv_11,t.conv_12,t.conv_13].forEach((s,a)=>{let i=a+1,c=ia(i);r=sa(r,s.depthwise_conv,c),r=Z(r,s.pointwise_conv,[1,1]),i===11&&(e=r)}),e===null)throw new Error("mobileNetV1 - output of conv layer 11 is null");return{out:r,conv11:e}})}function ca(o,t,e){let r=o.arraySync(),n=Math.min(r[t][0],r[t][2]),s=Math.min(r[t][1],r[t][3]),a=Math.max(r[t][0],r[t][2]),i=Math.max(r[t][1],r[t][3]),c=Math.min(r[e][0],r[e][2]),m=Math.min(r[e][1],r[e][3]),p=Math.max(r[e][0],r[e][2]),u=Math.max(r[e][1],r[e][3]),f=(a-n)*(i-s),l=(p-c)*(u-m);if(f<=0||l<=0)return 0;let b=Math.max(n,c),T=Math.max(s,m),h=Math.min(a,p),g=Math.min(i,u),P=Math.max(h-b,0)*Math.max(g-T,0);return P/(f+l-P)}function jo(o,t,e,r,n){let s=o.shape[0],a=Math.min(e,s),i=t.map((p,u)=>({score:p,boxIndex:u})).filter(p=>p.score>n).sort((p,u)=>u.score-p.score),c=p=>p<=r?1:0,m=[];return i.forEach(p=>{if(m.length>=a)return;let u=p.score;for(let f=m.length-1;f>=0;--f){let l=ca(o,p.boxIndex,m[f]);if(l!==0&&(p.score*=c(l),p.score<=n))break}u===p.score&&m.push(p.boxIndex)}),m}var d=v(x());function ma(o){let t=d.unstack(d.transpose(o,[1,0])),e=[d.sub(t[2],t[0]),d.sub(t[3],t[1])],r=[d.add(t[0],d.div(e[0],2)),d.add(t[1],d.div(e[1],2))];return{sizes:e,centers:r}}function pa(o,t){let{sizes:e,centers:r}=ma(o),n=d.unstack(d.transpose(t,[1,0])),s=d.div(d.mul(d.exp(d.div(n[2],5)),e[0]),2),a=d.add(d.mul(d.div(n[0],10),e[0]),r[0]),i=d.div(d.mul(d.exp(d.div(n[3],5)),e[1]),2),c=d.add(d.mul(d.div(n[1],10),e[1]),r[1]);return d.transpose(d.stack([d.sub(a,s),d.sub(c,i),d.add(a,s),d.add(c,i)]),[1,0])}function Uo(o,t,e){return d.tidy(()=>{let r=o.shape[0],n=pa(d.reshape(d.tile(e.extra_dim,[r,1,1]),[-1,4]),d.reshape(o,[-1,4]));n=d.reshape(n,[r,n.shape[0]/r,4]);let s=d.sigmoid(d.slice(t,[0,0,1],[-1,-1,-1])),a=d.slice(s,[0,0,0],[-1,-1,1]);a=d.reshape(a,[r,a.shape[1]]);let i=d.unstack(n),c=d.unstack(a);return{boxes:i,scores:c}})}var Ge=v(x());var Ve=v(x());function Qt(o,t){return Ve.tidy(()=>{let e=o.shape[0],r=Ve.reshape(Jt(o,t.box_encoding_predictor),[e,-1,1,4]),n=Ve.reshape(Jt(o,t.class_predictor),[e,-1,3]);return{boxPredictionEncoding:r,classPrediction:n}})}function Xo(o,t,e){return Ge.tidy(()=>{let r=Z(o,e.conv_0,[1,1]),n=Z(r,e.conv_1,[2,2]),s=Z(n,e.conv_2,[1,1]),a=Z(s,e.conv_3,[2,2]),i=Z(a,e.conv_4,[1,1]),c=Z(i,e.conv_5,[2,2]),m=Z(c,e.conv_6,[1,1]),p=Z(m,e.conv_7,[2,2]),u=Qt(t,e.box_predictor_0),f=Qt(o,e.box_predictor_1),l=Qt(n,e.box_predictor_2),b=Qt(a,e.box_predictor_3),T=Qt(c,e.box_predictor_4),h=Qt(p,e.box_predictor_5),g=Ge.concat([u.boxPredictionEncoding,f.boxPredictionEncoding,l.boxPredictionEncoding,b.boxPredictionEncoding,T.boxPredictionEncoding,h.boxPredictionEncoding],1),P=Ge.concat([u.classPrediction,f.classPrediction,l.classPrediction,b.classPrediction,T.classPrediction,h.classPrediction],1);return{boxPredictions:g,classPredictions:P}})}var X=class{constructor({minConfidence:t,maxResults:e}={}){this._name="SsdMobilenetv1Options";if(this._minConfidence=t||.5,this._maxResults=e||100,typeof this._minConfidence!="number"||this._minConfidence<=0||this._minConfidence>=1)throw new Error(`${this._name} - expected minConfidence to be a number between 0 and 1`);if(typeof this._maxResults!="number")throw new Error(`${this._name} - expected maxResults to be a number`)}get minConfidence(){return this._minConfidence}get maxResults(){return this._maxResults}};var It=class extends A{constructor(){super("SsdMobilenetv1")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("SsdMobilenetv1 - load model before inference");return Nt.tidy(()=>{let r=Nt.cast(t.toBatchTensor(512,!1),"float32"),n=Nt.sub(Nt.div(r,127.5),1),s=Go(n,e.mobilenetv1),{boxPredictions:a,classPredictions:i}=Xo(s.out,s.conv11,e.prediction_layer);return Uo(a,i,e.output_layer)})}async forward(t){return this.forwardInput(await D(t))}async locateFaces(t,e={}){let{maxResults:r,minConfidence:n}=new X(e),s=await D(t),{boxes:a,scores:i}=this.forwardInput(s),c=a[0],m=i[0];for(let y=1;y{let[I,j]=[Math.max(0,g[y][0]),Math.min(1,g[y][2])].map(q=>q*h),[tt,it]=[Math.max(0,g[y][1]),Math.min(1,g[y][3])].map(q=>q*T);return new M(p[y],new zt(tt,I,it-tt,j-I),{height:s.getInputHeight(0),width:s.getInputWidth(0)})});return c.dispose(),m.dispose(),P}getDefaultModelName(){return"ssd_mobilenetv1_model"}extractParamsFromWeightMap(t){return Vo(t)}extractParams(t){return Yo(t)}};function Jo(o){let t=new It;return t.extractWeights(o),t}function ua(o){return Jo(o)}var lo=class extends It{};var qo=.4,Zo=[new _(.738768,.874946),new _(2.42204,2.65704),new _(4.30971,7.04493),new _(10.246,4.59428),new _(12.6868,11.8741)],Ko=[new _(1.603231,2.094468),new _(6.041143,7.080126),new _(2.882459,3.518061),new _(4.266906,5.178857),new _(9.041765,10.66308)],Qo=[117.001,114.697,97.404],tn="tiny_yolov2_model",en="tiny_yolov2_separable_conv_model";var C=v(x());var Mr=o=>typeof o=="number";function ho(o){if(!o)throw new Error(`invalid config: ${o}`);if(typeof o.withSeparableConvs!="boolean")throw new Error(`config.withSeparableConvs has to be a boolean, have: ${o.withSeparableConvs}`);if(!Mr(o.iouThreshold)||o.iouThreshold<0||o.iouThreshold>1)throw new Error(`config.iouThreshold has to be a number between [0, 1], have: ${o.iouThreshold}`);if(!Array.isArray(o.classes)||!o.classes.length||!o.classes.every(t=>typeof t=="string"))throw new Error(`config.classes has to be an array class names: string[], have: ${JSON.stringify(o.classes)}`);if(!Array.isArray(o.anchors)||!o.anchors.length||!o.anchors.map(t=>t||{}).every(t=>Mr(t.x)&&Mr(t.y)))throw new Error(`config.anchors has to be an array of { x: number, y: number }, have: ${JSON.stringify(o.anchors)}`);if(o.meanRgb&&(!Array.isArray(o.meanRgb)||o.meanRgb.length!==3||!o.meanRgb.every(Mr)))throw new Error(`config.meanRgb has to be an array of shape [number, number, number], have: ${JSON.stringify(o.meanRgb)}`)}var Q=v(x());var K=v(x());function Ee(o){return K.tidy(()=>{let t=K.mul(o,K.scalar(.10000000149011612));return K.add(K.relu(K.sub(o,t)),t)})}function vt(o,t){return Q.tidy(()=>{let e=Q.pad(o,[[0,0],[1,1],[1,1],[0,0]]);return e=Q.conv2d(e,t.conv.filters,[1,1],"valid"),e=Q.sub(e,t.bn.sub),e=Q.mul(e,t.bn.truediv),e=Q.add(e,t.conv.bias),Ee(e)})}var Lt=v(x());function yt(o,t){return Lt.tidy(()=>{let e=Lt.pad(o,[[0,0],[1,1],[1,1],[0,0]]);return e=Lt.separableConv2d(e,t.depthwise_filter,t.pointwise_filter,[1,1],"valid"),e=Lt.add(e,t.bias),Ee(e)})}var bo=v(x());function fa(o,t){let e=he(o,t);function r(a,i){let c=bo.tensor1d(o(a)),m=bo.tensor1d(o(a));return t.push({paramPath:`${i}/sub`},{paramPath:`${i}/truediv`}),{sub:c,truediv:m}}function n(a,i,c){let m=e(a,i,3,`${c}/conv`),p=r(i,`${c}/bn`);return{conv:m,bn:p}}let s=be(o,t);return{extractConvParams:e,extractConvWithBatchNormParams:n,extractSeparableConvParams:s}}function rn(o,t,e,r){let{extractWeights:n,getRemainingWeights:s}=k(o),a=[],{extractConvParams:i,extractConvWithBatchNormParams:c,extractSeparableConvParams:m}=fa(n,a),p;if(t.withSeparableConvs){let[u,f,l,b,T,h,g,P,y]=r,I=t.isFirstLayerConv2d?i(u,f,3,"conv0"):m(u,f,"conv0"),j=m(f,l,"conv1"),tt=m(l,b,"conv2"),it=m(b,T,"conv3"),q=m(T,h,"conv4"),Pt=m(h,g,"conv5"),wt=P?m(g,P,"conv6"):void 0,Ft=y?m(P,y,"conv7"):void 0,ie=i(y||P||g,5*e,1,"conv8");p={conv0:I,conv1:j,conv2:tt,conv3:it,conv4:q,conv5:Pt,conv6:wt,conv7:Ft,conv8:ie}}else{let[u,f,l,b,T,h,g,P,y]=r,I=c(u,f,"conv0"),j=c(f,l,"conv1"),tt=c(l,b,"conv2"),it=c(b,T,"conv3"),q=c(T,h,"conv4"),Pt=c(h,g,"conv5"),wt=c(g,P,"conv6"),Ft=c(P,y,"conv7"),ie=i(y,5*e,1,"conv8");p={conv0:I,conv1:j,conv2:tt,conv3:it,conv4:q,conv5:Pt,conv6:wt,conv7:Ft,conv8:ie}}if(s().length!==0)throw new Error(`weights remaing after extract: ${s().length}`);return{params:p,paramMappings:a}}function la(o,t){let e=Y(o,t);function r(i){let c=e(`${i}/sub`,1),m=e(`${i}/truediv`,1);return{sub:c,truediv:m}}function n(i){let c=e(`${i}/filters`,4),m=e(`${i}/bias`,1);return{filters:c,bias:m}}function s(i){let c=n(`${i}/conv`),m=r(`${i}/bn`);return{conv:c,bn:m}}let a=ge(e);return{extractConvParams:n,extractConvWithBatchNormParams:s,extractSeparableConvParams:a}}function on(o,t){let e=[],{extractConvParams:r,extractConvWithBatchNormParams:n,extractSeparableConvParams:s}=la(o,e),a;if(t.withSeparableConvs){let i=t.filterSizes&&t.filterSizes.length||9;a={conv0:t.isFirstLayerConv2d?r("conv0"):s("conv0"),conv1:s("conv1"),conv2:s("conv2"),conv3:s("conv3"),conv4:s("conv4"),conv5:s("conv5"),conv6:i>7?s("conv6"):void 0,conv7:i>8?s("conv7"):void 0,conv8:r("conv8")}}else a={conv0:n("conv0"),conv1:n("conv1"),conv2:n("conv2"),conv3:n("conv3"),conv4:n("conv4"),conv5:n("conv5"),conv6:n("conv6"),conv7:n("conv7"),conv8:r("conv8")};return W(o,e),{params:a,paramMappings:e}}var st=class{constructor({inputSize:t,scoreThreshold:e}={}){this._name="TinyYolov2Options";if(this._inputSize=t||416,this._scoreThreshold=e||.5,typeof this._inputSize!="number"||this._inputSize%32!==0)throw new Error(`${this._name} - expected inputSize to be a number divisible by 32`);if(typeof this._scoreThreshold!="number"||this._scoreThreshold<=0||this._scoreThreshold>=1)throw new Error(`${this._name} - expected scoreThreshold to be a number between 0 and 1`)}get inputSize(){return this._inputSize}get scoreThreshold(){return this._scoreThreshold}};var Cr=class Cr extends A{constructor(t){super("TinyYolov2"),ho(t),this._config=t}get config(){return this._config}get withClassScores(){return this.config.withClassScores||this.config.classes.length>1}get boxEncodingSize(){return 5+(this.withClassScores?this.config.classes.length:0)}runTinyYolov2(t,e){let r=vt(t,e.conv0);return r=C.maxPool(r,[2,2],[2,2],"same"),r=vt(r,e.conv1),r=C.maxPool(r,[2,2],[2,2],"same"),r=vt(r,e.conv2),r=C.maxPool(r,[2,2],[2,2],"same"),r=vt(r,e.conv3),r=C.maxPool(r,[2,2],[2,2],"same"),r=vt(r,e.conv4),r=C.maxPool(r,[2,2],[2,2],"same"),r=vt(r,e.conv5),r=C.maxPool(r,[2,2],[1,1],"same"),r=vt(r,e.conv6),r=vt(r,e.conv7),Jt(r,e.conv8,"valid",!1)}runMobilenet(t,e){let r=this.config.isFirstLayerConv2d?Ee(Jt(t,e.conv0,"valid",!1)):yt(t,e.conv0);return r=C.maxPool(r,[2,2],[2,2],"same"),r=yt(r,e.conv1),r=C.maxPool(r,[2,2],[2,2],"same"),r=yt(r,e.conv2),r=C.maxPool(r,[2,2],[2,2],"same"),r=yt(r,e.conv3),r=C.maxPool(r,[2,2],[2,2],"same"),r=yt(r,e.conv4),r=C.maxPool(r,[2,2],[2,2],"same"),r=yt(r,e.conv5),r=C.maxPool(r,[2,2],[1,1],"same"),r=e.conv6?yt(r,e.conv6):r,r=e.conv7?yt(r,e.conv7):r,Jt(r,e.conv8,"valid",!1)}forwardInput(t,e){let{params:r}=this;if(!r)throw new Error("TinyYolov2 - load model before inference");return C.tidy(()=>{let n=C.cast(t.toBatchTensor(e,!1),"float32");return n=this.config.meanRgb?rt(n,this.config.meanRgb):n,n=n.div(255),this.config.withSeparableConvs?this.runMobilenet(n,r):this.runTinyYolov2(n,r)})}async forward(t,e){return this.forwardInput(await D(t),e)}async detect(t,e={}){let{inputSize:r,scoreThreshold:n}=new st(e),s=await D(t),a=await this.forwardInput(s,r),i=C.tidy(()=>C.unstack(a)[0].expandDims()),c={width:s.getInputWidth(0),height:s.getInputHeight(0)},m=await this.extractBoxes(i,s.getReshapedInputDimensions(0),n);a.dispose(),i.dispose();let p=m.map(h=>h.box),u=m.map(h=>h.score),f=m.map(h=>h.classScore),l=m.map(h=>this.config.classes[h.label]);return Vr(p.map(h=>h.rescale(r)),u,this.config.iouThreshold,!0).map(h=>new Ht(u[h],f[h],l[h],p[h],c))}getDefaultModelName(){return""}extractParamsFromWeightMap(t){return on(t,this.config)}extractParams(t){let e=this.config.filterSizes||Cr.DEFAULT_FILTER_SIZES,r=e?e.length:void 0;if(r!==7&&r!==8&&r!==9)throw new Error(`TinyYolov2 - expected 7 | 8 | 9 convolutional filters, but found ${r} filterSizes in config`);return rn(t,this.config,this.boxEncodingSize,e)}async extractBoxes(t,e,r){let{width:n,height:s}=e,a=Math.max(n,s),i=a/n,c=a/s,m=t.shape[1],p=this.config.anchors.length,[u,f,l]=C.tidy(()=>{let g=t.reshape([m,m,p,this.boxEncodingSize]),P=g.slice([0,0,0,0],[m,m,p,4]),y=g.slice([0,0,0,4],[m,m,p,1]),I=this.withClassScores?C.softmax(g.slice([0,0,0,5],[m,m,p,this.config.classes.length]),3):C.scalar(0);return[P,y,I]}),b=[],T=await f.array(),h=await u.array();for(let g=0;gr){let j=(P+Ne(h[g][P][y][0]))/m*i,tt=(g+Ne(h[g][P][y][1]))/m*c,it=Math.exp(h[g][P][y][2])*this.config.anchors[y].x/m*i,q=Math.exp(h[g][P][y][3])*this.config.anchors[y].y/m*c,Pt=j-it/2,wt=tt-q/2,Ft={row:g,col:P,anchor:y},{classScore:ie,label:yo}=this.withClassScores?await this.extractPredictedClass(l,Ft):{classScore:1,label:0};b.push({box:new Ot(Pt,wt,Pt+it,wt+q),score:I,classScore:I*ie,label:yo,...Ft})}}return u.dispose(),f.dispose(),l.dispose(),b}async extractPredictedClass(t,e){let{row:r,col:n,anchor:s}=e,a=await t.array();return Array(this.config.classes.length).fill(0).map((i,c)=>a[r][n][s][c]).map((i,c)=>({classScore:i,label:c})).reduce((i,c)=>i.classScore>c.classScore?i:c)}};Cr.DEFAULT_FILTER_SIZES=[3,16,32,64,128,256,512,1024,1024];var Me=Cr;var te=class extends Me{constructor(t=!0){let e={withSeparableConvs:t,iouThreshold:qo,classes:["face"],...t?{anchors:Ko,meanRgb:Qo}:{anchors:Zo,withClassScores:!0}};super(e)}get withSeparableConvs(){return this.config.withSeparableConvs}get anchors(){return this.config.anchors}async locateFaces(t,e){return(await this.detect(t,e)).map(n=>new M(n.score,n.relativeBox,{width:n.imageWidth,height:n.imageHeight}))}getDefaultModelName(){return this.withSeparableConvs?en:tn}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};function da(o,t=!0){let e=new te(t);return e.extractWeights(o),e}var je=class extends st{constructor(){super(...arguments);this._name="TinyFaceDetectorOptions"}};var J=class{async then(t){return t(await this.run())}async run(){throw new Error("ComposableTask - run is not implemented")}};var Xe=v(x());var go=v(x());async function ee(o,t,e,r,n=({alignedRect:s})=>s){let s=o.map(c=>qt(c)?n(c):c.detection),a=r||(t instanceof go.Tensor?await le(t,s):await fe(t,s)),i=await e(a);return a.forEach(c=>c instanceof go.Tensor&&c.dispose()),i}async function Ce(o,t,e,r,n){return ee([o],t,async s=>e(s[0]),r,n)}var nn=.4,an=[new _(1.603231,2.094468),new _(6.041143,7.080126),new _(2.882459,3.518061),new _(4.266906,5.178857),new _(9.041765,10.66308)],sn=[117.001,114.697,97.404];var re=class extends Me{constructor(){let t={withSeparableConvs:!0,iouThreshold:nn,classes:["face"],anchors:an,meanRgb:sn,isFirstLayerConv2d:!0,filterSizes:[3,16,32,64,128,256,512]};super(t)}get anchors(){return this.config.anchors}async locateFaces(t,e){return(await this.detect(t,e)).map(n=>new M(n.score,n.relativeBox,{width:n.imageWidth,height:n.imageHeight}))}getDefaultModelName(){return"tiny_face_detector_model"}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};var F={ssdMobilenetv1:new It,tinyFaceDetector:new re,tinyYolov2:new te,faceLandmark68Net:new Zt,faceLandmark68TinyNet:new ze,faceRecognitionNet:new Kt,faceExpressionNet:new Oe,ageGenderNet:new He},cn=(o,t)=>F.ssdMobilenetv1.locateFaces(o,t),ha=(o,t)=>F.tinyFaceDetector.locateFaces(o,t),ba=(o,t)=>F.tinyYolov2.locateFaces(o,t),mn=o=>F.faceLandmark68Net.detectLandmarks(o),ga=o=>F.faceLandmark68TinyNet.detectLandmarks(o),xa=o=>F.faceRecognitionNet.computeFaceDescriptor(o),va=o=>F.faceExpressionNet.predictExpressions(o),ya=o=>F.ageGenderNet.predictAgeAndGender(o),pn=o=>F.ssdMobilenetv1.load(o),_a=o=>F.tinyFaceDetector.load(o),Ta=o=>F.tinyYolov2.load(o),Pa=o=>F.faceLandmark68Net.load(o),wa=o=>F.faceLandmark68TinyNet.load(o),Fa=o=>F.faceRecognitionNet.load(o),Da=o=>F.faceExpressionNet.load(o),Ea=o=>F.ageGenderNet.load(o),Ma=pn,Ca=cn,Ia=mn;var Ir=class extends J{constructor(e,r,n){super();this.parentTask=e;this.input=r;this.extractedFaces=n}},oe=class extends Ir{async run(){let t=await this.parentTask,e=await ee(t,this.input,async r=>Promise.all(r.map(n=>F.faceExpressionNet.predictExpressions(n))),this.extractedFaces);return t.map((r,n)=>gr(r,e[n]))}withAgeAndGender(){return new ae(this,this.input)}},ne=class extends Ir{async run(){let t=await this.parentTask;if(!t)return;let e=await Ce(t,this.input,r=>F.faceExpressionNet.predictExpressions(r),this.extractedFaces);return gr(t,e)}withAgeAndGender(){return new se(this,this.input)}},St=class extends oe{withAgeAndGender(){return new Wt(this,this.input)}withFaceDescriptors(){return new _t(this,this.input)}},At=class extends ne{withAgeAndGender(){return new kt(this,this.input)}withFaceDescriptor(){return new Tt(this,this.input)}};var Nr=class extends J{constructor(e,r,n){super();this.parentTask=e;this.input=r;this.extractedFaces=n}},ae=class extends Nr{async run(){let t=await this.parentTask,e=await ee(t,this.input,async r=>Promise.all(r.map(n=>F.ageGenderNet.predictAgeAndGender(n))),this.extractedFaces);return t.map((r,n)=>{let{age:s,gender:a,genderProbability:i}=e[n];return Dr(Er(r,a,i),s)})}withFaceExpressions(){return new oe(this,this.input)}},se=class extends Nr{async run(){let t=await this.parentTask;if(!t)return;let{age:e,gender:r,genderProbability:n}=await Ce(t,this.input,s=>F.ageGenderNet.predictAgeAndGender(s),this.extractedFaces);return Dr(Er(t,r,n),e)}withFaceExpressions(){return new ne(this,this.input)}},Wt=class extends ae{withFaceExpressions(){return new St(this,this.input)}withFaceDescriptors(){return new _t(this,this.input)}},kt=class extends se{withFaceExpressions(){return new At(this,this.input)}withFaceDescriptor(){return new Tt(this,this.input)}};var Ue=class extends J{constructor(e,r){super();this.parentTask=e;this.input=r}},_t=class extends Ue{async run(){let t=await this.parentTask;return(await ee(t,this.input,r=>Promise.all(r.map(n=>F.faceRecognitionNet.computeFaceDescriptor(n))),null,r=>r.landmarks.align(null,{useDlibAlignment:!0}))).map((r,n)=>Fr(t[n],r))}withFaceExpressions(){return new St(this,this.input)}withAgeAndGender(){return new Wt(this,this.input)}},Tt=class extends Ue{async run(){let t=await this.parentTask;if(!t)return;let e=await Ce(t,this.input,r=>F.faceRecognitionNet.computeFaceDescriptor(r),null,r=>r.landmarks.align(null,{useDlibAlignment:!0}));return Fr(t,e)}withFaceExpressions(){return new At(this,this.input)}withAgeAndGender(){return new kt(this,this.input)}};var Je=class extends J{constructor(e,r,n){super();this.parentTask=e;this.input=r;this.useTinyLandmarkNet=n}get landmarkNet(){return this.useTinyLandmarkNet?F.faceLandmark68TinyNet:F.faceLandmark68Net}},qe=class extends Je{async run(){let t=await this.parentTask,e=t.map(a=>a.detection),r=this.input instanceof Xe.Tensor?await le(this.input,e):await fe(this.input,e),n=await Promise.all(r.map(a=>this.landmarkNet.detectLandmarks(a)));return r.forEach(a=>a instanceof Xe.Tensor&&a.dispose()),t.filter((a,i)=>n[i]).map((a,i)=>Pe(a,n[i]))}withFaceExpressions(){return new St(this,this.input)}withAgeAndGender(){return new Wt(this,this.input)}withFaceDescriptors(){return new _t(this,this.input)}},Ze=class extends Je{async run(){let t=await this.parentTask;if(!t)return;let{detection:e}=t,r=this.input instanceof Xe.Tensor?await le(this.input,[e]):await fe(this.input,[e]),n=await this.landmarkNet.detectLandmarks(r[0]);return r.forEach(s=>s instanceof Xe.Tensor&&s.dispose()),Pe(t,n)}withFaceExpressions(){return new At(this,this.input)}withAgeAndGender(){return new kt(this,this.input)}withFaceDescriptor(){return new Tt(this,this.input)}};var Ke=class extends J{constructor(e,r=new X){super();this.input=e;this.options=r}},Ie=class extends Ke{async run(){let{input:t,options:e}=this,r;if(e instanceof je)r=F.tinyFaceDetector.locateFaces(t,e);else if(e instanceof X)r=F.ssdMobilenetv1.locateFaces(t,e);else if(e instanceof st)r=F.tinyYolov2.locateFaces(t,e);else throw new Error("detectFaces - expected options to be instance of TinyFaceDetectorOptions | SsdMobilenetv1Options | TinyYolov2Options");return r}runAndExtendWithFaceDetections(){return new Promise((t,e)=>{this.run().then(r=>t(r.map(n=>Vt({},n)))).catch(r=>e(r))})}withFaceLandmarks(t=!1){return new qe(this.runAndExtendWithFaceDetections(),this.input,t)}withFaceExpressions(){return new oe(this.runAndExtendWithFaceDetections(),this.input)}withAgeAndGender(){return new ae(this.runAndExtendWithFaceDetections(),this.input)}},Qe=class extends Ke{async run(){let t=await new Ie(this.input,this.options),e=t[0];return t.forEach(r=>{r.score>e.score&&(e=r)}),e}runAndExtendWithFaceDetection(){return new Promise(async t=>{let e=await this.run();t(e?Vt({},e):void 0)})}withFaceLandmarks(t=!1){return new Ze(this.runAndExtendWithFaceDetection(),this.input,t)}withFaceExpressions(){return new ne(this.runAndExtendWithFaceDetection(),this.input)}withAgeAndGender(){return new se(this.runAndExtendWithFaceDetection(),this.input)}};function Na(o,t=new X){return new Qe(o,t)}function Lr(o,t=new X){return new Ie(o,t)}async function un(o,t){return Lr(o,new X(t?{minConfidence:t}:{})).withFaceLandmarks().withFaceDescriptors()}async function La(o,t={}){return Lr(o,new st(t)).withFaceLandmarks().withFaceDescriptors()}var Sa=un;function xo(o,t){if(o.length!==t.length)throw new Error("euclideanDistance: arr1.length !== arr2.length");let e=Array.from(o),r=Array.from(t);return Math.sqrt(e.map((n,s)=>n-r[s]).reduce((n,s)=>n+s*s,0))}var vo=class o{constructor(t,e=.6){this._distanceThreshold=e;let r=Array.isArray(t)?t:[t];if(!r.length)throw new Error("FaceRecognizer.constructor - expected atleast one input");let n=1,s=()=>`person ${n++}`;this._labeledDescriptors=r.map(a=>{if(a instanceof Et)return a;if(a instanceof Float32Array)return new Et(s(),[a]);if(a.descriptor&&a.descriptor instanceof Float32Array)return new Et(s(),[a.descriptor]);throw new Error("FaceRecognizer.constructor - expected inputs to be of type LabeledFaceDescriptors | WithFaceDescriptor | Float32Array | Array | Float32Array>")})}get labeledDescriptors(){return this._labeledDescriptors}get distanceThreshold(){return this._distanceThreshold}computeMeanDistance(t,e){return e.map(r=>xo(r,t)).reduce((r,n)=>r+n,0)/(e.length||1)}matchDescriptor(t){return this.labeledDescriptors.map(({descriptors:e,label:r})=>new me(r,this.computeMeanDistance(t,e))).reduce((e,r)=>e.distancet.toJSON())}}static fromJSON(t){let e=t.labeledDescriptors.map(r=>Et.fromJSON(r));return new o(e,t.distanceThreshold)}};function Aa(o){let t=new re;return t.extractWeights(o),t}function fn(o,t){let{width:e,height:r}=new R(t.width,t.height);if(e<=0||r<=0)throw new Error(`resizeResults - invalid dimensions: ${JSON.stringify({width:e,height:r})}`);if(Array.isArray(o))return o.map(n=>fn(n,{width:e,height:r}));if(qt(o)){let n=o.detection.forSize(e,r),s=o.unshiftedLandmarks.forSize(n.box.width,n.box.height);return Pe(Vt(o,n),s)}return pt(o)?Vt(o,o.detection.forSize(e,r)):o instanceof H||o instanceof M?o.forSize(e,r):o}var ka=No;0&&(module.exports={AgeGenderNet,BoundingBox,Box,ComposableTask,ComputeAllFaceDescriptorsTask,ComputeFaceDescriptorsTaskBase,ComputeSingleFaceDescriptorTask,DetectAllFaceLandmarksTask,DetectAllFacesTask,DetectFaceLandmarksTaskBase,DetectFacesTaskBase,DetectSingleFaceLandmarksTask,DetectSingleFaceTask,Dimensions,FACE_EXPRESSION_LABELS,FaceDetection,FaceDetectionNet,FaceExpressionNet,FaceExpressions,FaceLandmark68Net,FaceLandmark68TinyNet,FaceLandmarkNet,FaceLandmarks,FaceLandmarks5,FaceLandmarks68,FaceMatch,FaceMatcher,FaceRecognitionNet,Gender,LabeledBox,LabeledFaceDescriptors,NetInput,NeuralNetwork,ObjectDetection,Point,PredictedBox,Rect,SsdMobilenetv1,SsdMobilenetv1Options,TinyFaceDetector,TinyFaceDetectorOptions,TinyYolov2,TinyYolov2Options,allFaces,allFacesSsdMobilenetv1,allFacesTinyYolov2,awaitMediaLoaded,bufferToImage,computeFaceDescriptor,createCanvas,createCanvasFromMedia,createFaceDetectionNet,createFaceRecognitionNet,createSsdMobilenetv1,createTinyFaceDetector,createTinyYolov2,detectAllFaces,detectFaceLandmarks,detectFaceLandmarksTiny,detectLandmarks,detectSingleFace,draw,env,euclideanDistance,extendWithAge,extendWithFaceDescriptor,extendWithFaceDetection,extendWithFaceExpressions,extendWithFaceLandmarks,extendWithGender,extractFaceTensors,extractFaces,fetchImage,fetchJson,fetchNetWeights,fetchOrThrow,fetchVideo,getContext2dOrThrow,getMediaDimensions,imageTensorToCanvas,imageToSquare,inverseSigmoid,iou,isMediaElement,isMediaLoaded,isWithAge,isWithFaceDetection,isWithFaceExpressions,isWithFaceLandmarks,isWithGender,loadAgeGenderModel,loadFaceDetectionModel,loadFaceExpressionModel,loadFaceLandmarkModel,loadFaceLandmarkTinyModel,loadFaceRecognitionModel,loadSsdMobilenetv1Model,loadTinyFaceDetectorModel,loadTinyYolov2Model,loadWeightMap,locateFaces,matchDimensions,minBbox,nets,nonMaxSuppression,normalize,padToSquare,predictAgeAndGender,recognizeFaceExpressions,resizeResults,resolveInput,shuffleArray,sigmoid,ssdMobilenetv1,tf,tinyFaceDetector,tinyYolov2,toNetInput,utils,validateConfig,version}); diff --git a/package.json b/package.json index 08e2d61..2c81b55 100644 --- a/package.json +++ b/package.json @@ -24,7 +24,6 @@ "start": "node --no-warnings demo/node.js", "build": "node build.js", "dev": "build --profile development", - "typings": "build --profile typings", "lint": "eslint src/ demo/", "test": "node --trace-warnings test/test-node.js", "scan": "npx auditjs@latest ossi --dev --quiet" diff --git a/typedoc/classes/AgeGenderNet.html b/typedoc/classes/AgeGenderNet.html index 99b98b4..b34ac12 100644 --- a/typedoc/classes/AgeGenderNet.html +++ b/typedoc/classes/AgeGenderNet.html @@ -1,4 +1,4 @@ -AgeGenderNet | @vladmandic/face-api - v1.7.14

Hierarchy (View Summary)

Constructors

constructor +AgeGenderNet | @vladmandic/face-api - v1.7.15

Hierarchy (View Summary)

Constructors

Properties

Accessors

Constructors

Properties

_name: any

Accessors

  • get paramMappings(): ParamMapping[]
  • Returns ParamMapping[]

Methods

  • Parameters

    • weightsOrUrl: undefined | string | Float32Array

    Returns Promise<void>

+

Constructors

Properties

_name: any

Accessors

  • get paramMappings(): ParamMapping[]
  • Returns ParamMapping[]

Methods

  • Parameters

    • weightsOrUrl: undefined | string | Float32Array

    Returns Promise<void>

diff --git a/typedoc/classes/BoundingBox.html b/typedoc/classes/BoundingBox.html index 7354c5d..109c9e0 100644 --- a/typedoc/classes/BoundingBox.html +++ b/typedoc/classes/BoundingBox.html @@ -1,4 +1,4 @@ -BoundingBox | @vladmandic/face-api - v1.7.14

Hierarchy (View Summary)

Implements

Constructors

constructor +BoundingBox | @vladmandic/face-api - v1.7.15

Hierarchy (View Summary)

Implements

Constructors

Accessors

Constructors

  • Parameters

    • left: number
    • top: number
    • right: number
    • bottom: number
    • allowNegativeDimensions: boolean = false

    Returns BoundingBox

Accessors

Methods

  • Parameters

    • imageHeight: number
    • imageWidth: number

    Returns {
        dx: number;
        dy: number;
        edx: number;
        edy: number;
        ex: number;
        ey: number;
        h: number;
        w: number;
        x: number;
        y: number;
    }

  • Parameters

    • box: any
    • callee: string
    • allowNegativeDimensions: boolean = false

    Returns void

+

Constructors

  • Parameters

    • left: number
    • top: number
    • right: number
    • bottom: number
    • allowNegativeDimensions: boolean = false

    Returns BoundingBox

Accessors

Methods

  • Parameters

    • imageHeight: number
    • imageWidth: number

    Returns {
        dx: number;
        dy: number;
        edx: number;
        edy: number;
        ex: number;
        ey: number;
        h: number;
        w: number;
        x: number;
        y: number;
    }

  • Parameters

    • box: any
    • callee: string
    • allowNegativeDimensions: boolean = false

    Returns void

diff --git a/typedoc/classes/Box.html b/typedoc/classes/Box.html index c8e0eb3..7416d70 100644 --- a/typedoc/classes/Box.html +++ b/typedoc/classes/Box.html @@ -1,4 +1,4 @@ -Box | @vladmandic/face-api - v1.7.14

Class Box<BoxType>

Type Parameters

  • BoxType = any

Hierarchy (View Summary)

Implements

Constructors

constructor +Box | @vladmandic/face-api - v1.7.15

Class Box<BoxType>

Type Parameters

  • BoxType = any

Hierarchy (View Summary)

Implements

Constructors

Accessors

Constructors

Accessors

Methods

  • Parameters

    • imageHeight: number
    • imageWidth: number

    Returns {
        dx: number;
        dy: number;
        edx: number;
        edy: number;
        ex: number;
        ey: number;
        h: number;
        w: number;
        x: number;
        y: number;
    }

  • Parameters

    • box: any
    • callee: string
    • allowNegativeDimensions: boolean = false

    Returns void

+

Constructors

Accessors

Methods

  • Parameters

    • imageHeight: number
    • imageWidth: number

    Returns {
        dx: number;
        dy: number;
        edx: number;
        edy: number;
        ex: number;
        ey: number;
        h: number;
        w: number;
        x: number;
        y: number;
    }

  • Parameters

    • box: any
    • callee: string
    • allowNegativeDimensions: boolean = false

    Returns void

diff --git a/typedoc/classes/ComposableTask.html b/typedoc/classes/ComposableTask.html index 829e1bc..99d373a 100644 --- a/typedoc/classes/ComposableTask.html +++ b/typedoc/classes/ComposableTask.html @@ -1,4 +1,4 @@ -ComposableTask | @vladmandic/face-api - v1.7.14

Class ComposableTask<T>

Type Parameters

  • T

Hierarchy (View Summary)

Constructors

constructor +ComposableTask | @vladmandic/face-api - v1.7.15

Class ComposableTask<T>

Type Parameters

  • T

Hierarchy (View Summary)

Constructors

Methods

Constructors

Methods

+

Constructors

Methods

diff --git a/typedoc/classes/ComputeAllFaceDescriptorsTask.html b/typedoc/classes/ComputeAllFaceDescriptorsTask.html index a17ab82..7d61ee8 100644 --- a/typedoc/classes/ComputeAllFaceDescriptorsTask.html +++ b/typedoc/classes/ComputeAllFaceDescriptorsTask.html @@ -1,6 +1,6 @@ -ComputeAllFaceDescriptorsTask | @vladmandic/face-api - v1.7.14

Class ComputeAllFaceDescriptorsTask<TSource>

Type Parameters

Hierarchy (View Summary)

Constructors

constructor +ComputeAllFaceDescriptorsTask | @vladmandic/face-api - v1.7.15

Class ComputeAllFaceDescriptorsTask<TSource>

Type Parameters

Hierarchy (View Summary)

Constructors

Methods

+

Constructors

Methods

diff --git a/typedoc/classes/ComputeFaceDescriptorsTaskBase.html b/typedoc/classes/ComputeFaceDescriptorsTaskBase.html index ffc9fcc..2fff17c 100644 --- a/typedoc/classes/ComputeFaceDescriptorsTaskBase.html +++ b/typedoc/classes/ComputeFaceDescriptorsTaskBase.html @@ -1,4 +1,4 @@ -ComputeFaceDescriptorsTaskBase | @vladmandic/face-api - v1.7.14

Class ComputeFaceDescriptorsTaskBase<TReturn, TParentReturn>

Type Parameters

  • TReturn
  • TParentReturn

Hierarchy (View Summary)

Constructors

constructor +ComputeFaceDescriptorsTaskBase | @vladmandic/face-api - v1.7.15

Class ComputeFaceDescriptorsTaskBase<TReturn, TParentReturn>

Type Parameters

  • TReturn
  • TParentReturn

Hierarchy (View Summary)

Constructors

Methods

Constructors

Methods

+

Constructors

Methods

diff --git a/typedoc/classes/ComputeSingleFaceDescriptorTask.html b/typedoc/classes/ComputeSingleFaceDescriptorTask.html index 9feaf37..3bc841e 100644 --- a/typedoc/classes/ComputeSingleFaceDescriptorTask.html +++ b/typedoc/classes/ComputeSingleFaceDescriptorTask.html @@ -1,6 +1,6 @@ -ComputeSingleFaceDescriptorTask | @vladmandic/face-api - v1.7.14

Class ComputeSingleFaceDescriptorTask<TSource>

Type Parameters

Hierarchy (View Summary)

Constructors

constructor +ComputeSingleFaceDescriptorTask | @vladmandic/face-api - v1.7.15

Class ComputeSingleFaceDescriptorTask<TSource>

Type Parameters

Hierarchy (View Summary)

Constructors

Methods

+

Constructors

Methods

diff --git a/typedoc/classes/DetectAllFaceLandmarksTask.html b/typedoc/classes/DetectAllFaceLandmarksTask.html index d3f704d..97bef83 100644 --- a/typedoc/classes/DetectAllFaceLandmarksTask.html +++ b/typedoc/classes/DetectAllFaceLandmarksTask.html @@ -1,7 +1,7 @@ -DetectAllFaceLandmarksTask | @vladmandic/face-api - v1.7.14

Class DetectAllFaceLandmarksTask<TSource>

Type Parameters

Hierarchy (View Summary)

Constructors

constructor +DetectAllFaceLandmarksTask | @vladmandic/face-api - v1.7.15

Class DetectAllFaceLandmarksTask<TSource>

Type Parameters

Hierarchy (View Summary)

Constructors

Methods

+

Constructors

Methods

diff --git a/typedoc/classes/DetectAllFacesTask.html b/typedoc/classes/DetectAllFacesTask.html index 4c12daf..1640b1a 100644 --- a/typedoc/classes/DetectAllFacesTask.html +++ b/typedoc/classes/DetectAllFacesTask.html @@ -1,7 +1,7 @@ -DetectAllFacesTask | @vladmandic/face-api - v1.7.14

Hierarchy (View Summary)

Constructors

constructor +DetectAllFacesTask | @vladmandic/face-api - v1.7.15

Hierarchy (View Summary)

Constructors

Methods

+

Constructors

Methods

diff --git a/typedoc/classes/DetectFaceLandmarksTaskBase.html b/typedoc/classes/DetectFaceLandmarksTaskBase.html index 21056f1..577676b 100644 --- a/typedoc/classes/DetectFaceLandmarksTaskBase.html +++ b/typedoc/classes/DetectFaceLandmarksTaskBase.html @@ -1,4 +1,4 @@ -DetectFaceLandmarksTaskBase | @vladmandic/face-api - v1.7.14

Class DetectFaceLandmarksTaskBase<TReturn, TParentReturn>

Type Parameters

  • TReturn
  • TParentReturn

Hierarchy (View Summary)

Constructors

constructor +DetectFaceLandmarksTaskBase | @vladmandic/face-api - v1.7.15

Class DetectFaceLandmarksTaskBase<TReturn, TParentReturn>

Type Parameters

  • TReturn
  • TParentReturn

Hierarchy (View Summary)

Constructors

Methods

Constructors

Methods

+

Constructors

Methods

diff --git a/typedoc/classes/DetectFacesTaskBase.html b/typedoc/classes/DetectFacesTaskBase.html index 1d8a404..3c45da4 100644 --- a/typedoc/classes/DetectFacesTaskBase.html +++ b/typedoc/classes/DetectFacesTaskBase.html @@ -1,4 +1,4 @@ -DetectFacesTaskBase | @vladmandic/face-api - v1.7.14

Class DetectFacesTaskBase<TReturn>

Type Parameters

  • TReturn

Hierarchy (View Summary)

Constructors

constructor +DetectFacesTaskBase | @vladmandic/face-api - v1.7.15

Class DetectFacesTaskBase<TReturn>

Type Parameters

  • TReturn

Hierarchy (View Summary)

Constructors

Methods

Constructors

Methods

+

Constructors

Methods

diff --git a/typedoc/classes/DetectSingleFaceLandmarksTask.html b/typedoc/classes/DetectSingleFaceLandmarksTask.html index a7b0ed4..5bd20d0 100644 --- a/typedoc/classes/DetectSingleFaceLandmarksTask.html +++ b/typedoc/classes/DetectSingleFaceLandmarksTask.html @@ -1,7 +1,7 @@ -DetectSingleFaceLandmarksTask | @vladmandic/face-api - v1.7.14

Class DetectSingleFaceLandmarksTask<TSource>

Type Parameters

Hierarchy (View Summary)

Constructors

constructor +DetectSingleFaceLandmarksTask | @vladmandic/face-api - v1.7.15

Class DetectSingleFaceLandmarksTask<TSource>

Type Parameters

Hierarchy (View Summary)

Constructors

Methods

+

Constructors

Methods

diff --git a/typedoc/classes/DetectSingleFaceTask.html b/typedoc/classes/DetectSingleFaceTask.html index c32c67a..de871ea 100644 --- a/typedoc/classes/DetectSingleFaceTask.html +++ b/typedoc/classes/DetectSingleFaceTask.html @@ -1,7 +1,7 @@ -DetectSingleFaceTask | @vladmandic/face-api - v1.7.14

Hierarchy (View Summary)

Constructors

constructor +DetectSingleFaceTask | @vladmandic/face-api - v1.7.15

Hierarchy (View Summary)

Constructors

Methods

+

Constructors

Methods

diff --git a/typedoc/classes/Dimensions.html b/typedoc/classes/Dimensions.html index d32e411..4944137 100644 --- a/typedoc/classes/Dimensions.html +++ b/typedoc/classes/Dimensions.html @@ -1,5 +1,5 @@ -Dimensions | @vladmandic/face-api - v1.7.14

Implements

Constructors

constructor +Dimensions | @vladmandic/face-api - v1.7.15

Implements

Constructors

Accessors

Methods

Constructors

Accessors

Methods

+

Constructors

Accessors

Methods

diff --git a/typedoc/classes/FaceDetection.html b/typedoc/classes/FaceDetection.html index 8db6a8a..2714c66 100644 --- a/typedoc/classes/FaceDetection.html +++ b/typedoc/classes/FaceDetection.html @@ -1,4 +1,4 @@ -FaceDetection | @vladmandic/face-api - v1.7.14

Hierarchy (View Summary)

Implements

Constructors

constructor +FaceDetection | @vladmandic/face-api - v1.7.15

Hierarchy (View Summary)

Implements

Constructors

Accessors

Methods

Constructors

Accessors

Methods

+

Constructors

Accessors

Methods

diff --git a/typedoc/classes/FaceDetectionNet.html b/typedoc/classes/FaceDetectionNet.html index 183bfb7..fe50f34 100644 --- a/typedoc/classes/FaceDetectionNet.html +++ b/typedoc/classes/FaceDetectionNet.html @@ -1,4 +1,4 @@ -FaceDetectionNet | @vladmandic/face-api - v1.7.14

Hierarchy (View Summary)

Constructors

constructor +FaceDetectionNet | @vladmandic/face-api - v1.7.15

Hierarchy (View Summary)

Constructors

Properties

Accessors

Constructors

Properties

_name: any

Accessors

  • get paramMappings(): ParamMapping[]
  • Returns ParamMapping[]

Methods

  • Parameters

    • weightsOrUrl: undefined | string | Float32Array

    Returns Promise<void>

+

Constructors

Properties

_name: any

Accessors

  • get paramMappings(): ParamMapping[]
  • Returns ParamMapping[]

Methods

  • Parameters

    • weightsOrUrl: undefined | string | Float32Array

    Returns Promise<void>

diff --git a/typedoc/classes/FaceExpressionNet.html b/typedoc/classes/FaceExpressionNet.html index 0ec140c..058f42b 100644 --- a/typedoc/classes/FaceExpressionNet.html +++ b/typedoc/classes/FaceExpressionNet.html @@ -1,4 +1,4 @@ -FaceExpressionNet | @vladmandic/face-api - v1.7.14

Hierarchy

  • FaceProcessor<FaceFeatureExtractorParams>
    • FaceExpressionNet

Constructors

constructor +FaceExpressionNet | @vladmandic/face-api - v1.7.15

Hierarchy

  • FaceProcessor<FaceFeatureExtractorParams>
    • FaceExpressionNet

Constructors

Properties

Accessors

Constructors

Properties

_name: any

Accessors

  • get faceFeatureExtractor(): IFaceFeatureExtractor<TExtractorParams>
  • Returns IFaceFeatureExtractor<TExtractorParams>

  • get paramMappings(): ParamMapping[]
  • Returns ParamMapping[]

Methods

  • Parameters

    • weights: Float32Array

    Returns { paramMappings: ParamMapping[]; params: NetParams }

  • Parameters

    • weights: Float32Array

    Returns void

  • Parameters

    • weightsOrUrl: undefined | string | Float32Array

    Returns Promise<void>

  • Parameters

    • weights: Float32Array

    Returns void

  • Parameters

    • filePath: undefined | string

    Returns Promise<void>

  • Parameters

    • uri: undefined | string

    Returns Promise<void>

  • Parameters

    Returns void

  • Returns Float32Array

+

Constructors

Properties

_name: any

Accessors

  • get faceFeatureExtractor(): IFaceFeatureExtractor<TExtractorParams>
  • Returns IFaceFeatureExtractor<TExtractorParams>

  • get paramMappings(): ParamMapping[]
  • Returns ParamMapping[]

Methods

  • Parameters

    • weights: Float32Array

    Returns { paramMappings: ParamMapping[]; params: NetParams }

  • Parameters

    • weights: Float32Array

    Returns void

  • Parameters

    • weightsOrUrl: undefined | string | Float32Array

    Returns Promise<void>

  • Parameters

    • weights: Float32Array

    Returns void

  • Parameters

    • filePath: undefined | string

    Returns Promise<void>

  • Parameters

    • uri: undefined | string

    Returns Promise<void>

  • Parameters

    Returns void

  • Returns Float32Array

diff --git a/typedoc/classes/FaceExpressions.html b/typedoc/classes/FaceExpressions.html index 7f730ea..23cab45 100644 --- a/typedoc/classes/FaceExpressions.html +++ b/typedoc/classes/FaceExpressions.html @@ -1,4 +1,4 @@ -FaceExpressions | @vladmandic/face-api - v1.7.14

Constructors

constructor +FaceExpressions | @vladmandic/face-api - v1.7.15

Constructors

Properties

Methods

Constructors

Properties

angry: number = 0
disgusted: number = 0
fearful: number = 0
happy: number = 0
neutral: number = 0
sad: number = 0
surprised: number = 0

Methods

  • Returns {
        expression:
            | "neutral"
            | "happy"
            | "sad"
            | "angry"
            | "fearful"
            | "disgusted"
            | "surprised";
        probability: number;
    }[]

+

Constructors

Properties

angry: number = 0
disgusted: number = 0
fearful: number = 0
happy: number = 0
neutral: number = 0
sad: number = 0
surprised: number = 0

Methods

  • Returns {
        expression:
            | "neutral"
            | "happy"
            | "sad"
            | "angry"
            | "fearful"
            | "disgusted"
            | "surprised";
        probability: number;
    }[]

diff --git a/typedoc/classes/FaceLandmark68Net.html b/typedoc/classes/FaceLandmark68Net.html index 1a5dddd..a32de90 100644 --- a/typedoc/classes/FaceLandmark68Net.html +++ b/typedoc/classes/FaceLandmark68Net.html @@ -1,4 +1,4 @@ -FaceLandmark68Net | @vladmandic/face-api - v1.7.14

Hierarchy (View Summary)

  • FaceLandmark68NetBase<FaceFeatureExtractorParams>

Constructors

constructor +FaceLandmark68Net | @vladmandic/face-api - v1.7.15

Hierarchy (View Summary)

  • FaceLandmark68NetBase<FaceFeatureExtractorParams>

Constructors

Properties

Accessors

Constructors

Properties

_name: any

Accessors

  • get faceFeatureExtractor(): IFaceFeatureExtractor<TExtractorParams>
  • Returns IFaceFeatureExtractor<TExtractorParams>

  • get isLoaded(): boolean
  • Returns boolean

  • get paramMappings(): ParamMapping[]
  • Returns ParamMapping[]

Methods

  • Parameters

    • throwOnRedispose: boolean = true

    Returns void

  • Parameters

    • weights: Float32Array

    Returns { paramMappings: ParamMapping[]; params: NetParams }

  • Parameters

    • weights: Float32Array

    Returns void

  • Parameters

    • weightsOrUrl: undefined | string | Float32Array

    Returns Promise<void>

  • Parameters

    • weights: Float32Array

    Returns void

  • Parameters

    • filePath: undefined | string

    Returns Promise<void>

  • Parameters

    • uri: undefined | string

    Returns Promise<void>

  • Parameters

    Returns void

  • Returns Float32Array

+

Constructors

Properties

_name: any

Accessors

  • get faceFeatureExtractor(): IFaceFeatureExtractor<TExtractorParams>
  • Returns IFaceFeatureExtractor<TExtractorParams>

  • get isLoaded(): boolean
  • Returns boolean

  • get paramMappings(): ParamMapping[]
  • Returns ParamMapping[]

Methods

  • Parameters

    • throwOnRedispose: boolean = true

    Returns void

  • Parameters

    • weights: Float32Array

    Returns { paramMappings: ParamMapping[]; params: NetParams }

  • Parameters

    • weights: Float32Array

    Returns void

  • Parameters

    • weightsOrUrl: undefined | string | Float32Array

    Returns Promise<void>

  • Parameters

    • weights: Float32Array

    Returns void

  • Parameters

    • filePath: undefined | string

    Returns Promise<void>

  • Parameters

    • uri: undefined | string

    Returns Promise<void>

  • Parameters

    Returns void

  • Returns Float32Array

diff --git a/typedoc/classes/FaceLandmark68TinyNet.html b/typedoc/classes/FaceLandmark68TinyNet.html index 8ad8446..df89c1c 100644 --- a/typedoc/classes/FaceLandmark68TinyNet.html +++ b/typedoc/classes/FaceLandmark68TinyNet.html @@ -1,4 +1,4 @@ -FaceLandmark68TinyNet | @vladmandic/face-api - v1.7.14

Hierarchy

  • FaceLandmark68NetBase<TinyFaceFeatureExtractorParams>
    • FaceLandmark68TinyNet

Constructors

constructor +FaceLandmark68TinyNet | @vladmandic/face-api - v1.7.15

Hierarchy

  • FaceLandmark68NetBase<TinyFaceFeatureExtractorParams>
    • FaceLandmark68TinyNet

Constructors

Properties

Accessors

Constructors

Properties

_name: any

Accessors

  • get faceFeatureExtractor(): IFaceFeatureExtractor<TExtractorParams>
  • Returns IFaceFeatureExtractor<TExtractorParams>

  • get isLoaded(): boolean
  • Returns boolean

  • get paramMappings(): ParamMapping[]
  • Returns ParamMapping[]

Methods

  • Parameters

    • throwOnRedispose: boolean = true

    Returns void

  • Parameters

    • weights: Float32Array

    Returns { paramMappings: ParamMapping[]; params: NetParams }

  • Parameters

    • weights: Float32Array

    Returns void

  • Parameters

    • weightsOrUrl: undefined | string | Float32Array

    Returns Promise<void>

  • Parameters

    • weights: Float32Array

    Returns void

  • Parameters

    • filePath: undefined | string

    Returns Promise<void>

  • Parameters

    • uri: undefined | string

    Returns Promise<void>

  • Parameters

    Returns void

  • Returns Float32Array

+

Constructors

Properties

_name: any

Accessors

  • get faceFeatureExtractor(): IFaceFeatureExtractor<TExtractorParams>
  • Returns IFaceFeatureExtractor<TExtractorParams>

  • get isLoaded(): boolean
  • Returns boolean

  • get paramMappings(): ParamMapping[]
  • Returns ParamMapping[]

Methods

  • Parameters

    • throwOnRedispose: boolean = true

    Returns void

  • Parameters

    • weights: Float32Array

    Returns { paramMappings: ParamMapping[]; params: NetParams }

  • Parameters

    • weights: Float32Array

    Returns void

  • Parameters

    • weightsOrUrl: undefined | string | Float32Array

    Returns Promise<void>

  • Parameters

    • weights: Float32Array

    Returns void

  • Parameters

    • filePath: undefined | string

    Returns Promise<void>

  • Parameters

    • uri: undefined | string

    Returns Promise<void>

  • Parameters

    Returns void

  • Returns Float32Array

diff --git a/typedoc/classes/FaceLandmarkNet.html b/typedoc/classes/FaceLandmarkNet.html index 6ed132c..e6f21dd 100644 --- a/typedoc/classes/FaceLandmarkNet.html +++ b/typedoc/classes/FaceLandmarkNet.html @@ -1,4 +1,4 @@ -FaceLandmarkNet | @vladmandic/face-api - v1.7.14

Hierarchy (View Summary)

Constructors

constructor +FaceLandmarkNet | @vladmandic/face-api - v1.7.15

Hierarchy (View Summary)

Constructors

Properties

Accessors

Constructors

Properties

_name: any

Accessors

  • get faceFeatureExtractor(): IFaceFeatureExtractor<TExtractorParams>
  • Returns IFaceFeatureExtractor<TExtractorParams>

  • get paramMappings(): ParamMapping[]
  • Returns ParamMapping[]

Methods

+

Constructors

Properties

_name: any

Accessors

  • get faceFeatureExtractor(): IFaceFeatureExtractor<TExtractorParams>
  • Returns IFaceFeatureExtractor<TExtractorParams>

  • get paramMappings(): ParamMapping[]
  • Returns ParamMapping[]

Methods

diff --git a/typedoc/classes/FaceLandmarks.html b/typedoc/classes/FaceLandmarks.html index ac2f1e6..c27d13a 100644 --- a/typedoc/classes/FaceLandmarks.html +++ b/typedoc/classes/FaceLandmarks.html @@ -1,4 +1,4 @@ -FaceLandmarks | @vladmandic/face-api - v1.7.14

Hierarchy (View Summary)

Implements

Constructors

constructor +FaceLandmarks | @vladmandic/face-api - v1.7.15

Hierarchy (View Summary)

Implements

Constructors

Accessors

imageHeight imageWidth positions @@ -16,4 +16,4 @@ This will make the computed face descriptor more accurate.

no argument was passed the position of the face landmarks are assumed to be relative to it's current shift.

  • options: { minBoxPadding?: number; useDlibAlignment?: boolean } = {}
  • Returns Box

    The bounding box of the aligned face.

    -
    +
    diff --git a/typedoc/classes/FaceLandmarks5.html b/typedoc/classes/FaceLandmarks5.html index 6e5cd53..ab04b4f 100644 --- a/typedoc/classes/FaceLandmarks5.html +++ b/typedoc/classes/FaceLandmarks5.html @@ -1,4 +1,4 @@ -FaceLandmarks5 | @vladmandic/face-api - v1.7.14

    Hierarchy (View Summary)

    Constructors

    constructor +FaceLandmarks5 | @vladmandic/face-api - v1.7.15

    Hierarchy (View Summary)

    Constructors

    Accessors

    imageHeight imageWidth positions @@ -16,4 +16,4 @@ This will make the computed face descriptor more accurate.

    no argument was passed the position of the face landmarks are assumed to be relative to it's current shift.

  • options: { minBoxPadding?: number; useDlibAlignment?: boolean } = {}
  • Returns Box

    The bounding box of the aligned face.

    -
    +
    diff --git a/typedoc/classes/FaceLandmarks68.html b/typedoc/classes/FaceLandmarks68.html index 95aa4e2..19e2412 100644 --- a/typedoc/classes/FaceLandmarks68.html +++ b/typedoc/classes/FaceLandmarks68.html @@ -1,4 +1,4 @@ -FaceLandmarks68 | @vladmandic/face-api - v1.7.14

    Hierarchy (View Summary)

    Constructors

    constructor +FaceLandmarks68 | @vladmandic/face-api - v1.7.15

    Hierarchy (View Summary)

    Constructors

    Accessors

    imageHeight imageWidth positions @@ -23,4 +23,4 @@ This will make the computed face descriptor more accurate.

    no argument was passed the position of the face landmarks are assumed to be relative to it's current shift.

  • options: { minBoxPadding?: number; useDlibAlignment?: boolean } = {}
  • Returns Box

    The bounding box of the aligned face.

    -
    +
    diff --git a/typedoc/classes/FaceMatch.html b/typedoc/classes/FaceMatch.html index 2b9036e..c3ba308 100644 --- a/typedoc/classes/FaceMatch.html +++ b/typedoc/classes/FaceMatch.html @@ -1,6 +1,6 @@ -FaceMatch | @vladmandic/face-api - v1.7.14

    Implements

    Constructors

    constructor +FaceMatch | @vladmandic/face-api - v1.7.15

    Implements

    Constructors

    Accessors

    Methods

    Constructors

    Accessors

    Methods

    • Returns a string representation of an object.

      -

      Parameters

      • withDistance: boolean = true

      Returns string

    +

    Parameters

    • withDistance: boolean = true

    Returns string

    diff --git a/typedoc/classes/FaceMatcher.html b/typedoc/classes/FaceMatcher.html index 9aca31a..491da44 100644 --- a/typedoc/classes/FaceMatcher.html +++ b/typedoc/classes/FaceMatcher.html @@ -1,4 +1,4 @@ -FaceMatcher | @vladmandic/face-api - v1.7.14

    Constructors

    constructor +FaceMatcher | @vladmandic/face-api - v1.7.15

    Constructors

    Accessors

    Methods

    • Parameters

      • queryDescriptor: Float32Array
      • descriptors: Float32Array[]

      Returns number

    +

    Constructors

    Accessors

    Methods

    • Parameters

      • queryDescriptor: Float32Array
      • descriptors: Float32Array[]

      Returns number

    diff --git a/typedoc/classes/FaceRecognitionNet.html b/typedoc/classes/FaceRecognitionNet.html index c97b40d..2e7864b 100644 --- a/typedoc/classes/FaceRecognitionNet.html +++ b/typedoc/classes/FaceRecognitionNet.html @@ -1,4 +1,4 @@ -FaceRecognitionNet | @vladmandic/face-api - v1.7.14

    Hierarchy (View Summary)

    Constructors

    constructor +FaceRecognitionNet | @vladmandic/face-api - v1.7.15

    Hierarchy (View Summary)

    Constructors

    Properties

    Accessors

    Constructors

    Properties

    _name: any

    Accessors

    • get paramMappings(): ParamMapping[]
    • Returns ParamMapping[]

    Methods

    • Parameters

      • weightsOrUrl: undefined | string | Float32Array

      Returns Promise<void>

    +

    Constructors

    Properties

    _name: any

    Accessors

    • get paramMappings(): ParamMapping[]
    • Returns ParamMapping[]

    Methods

    • Parameters

      • weightsOrUrl: undefined | string | Float32Array

      Returns Promise<void>

    diff --git a/typedoc/classes/LabeledBox.html b/typedoc/classes/LabeledBox.html index 51e0198..7eaa749 100644 --- a/typedoc/classes/LabeledBox.html +++ b/typedoc/classes/LabeledBox.html @@ -1,4 +1,4 @@ -LabeledBox | @vladmandic/face-api - v1.7.14

    Hierarchy (View Summary)

    Constructors

    constructor +LabeledBox | @vladmandic/face-api - v1.7.15

    Hierarchy (View Summary)

    Constructors

    Accessors

    Methods

    • Parameters

      • imageHeight: number
      • imageWidth: number

      Returns {
          dx: number;
          dy: number;
          edx: number;
          edy: number;
          ex: number;
          ey: number;
          h: number;
          w: number;
          x: number;
          y: number;
      }

    • Parameters

      • box: any
      • callee: string
      • allowNegativeDimensions: boolean = false

      Returns void

    • Parameters

      • box: any
      • callee: string

      Returns void

    +

    Constructors

    Accessors

    Methods

    • Parameters

      • imageHeight: number
      • imageWidth: number

      Returns {
          dx: number;
          dy: number;
          edx: number;
          edy: number;
          ex: number;
          ey: number;
          h: number;
          w: number;
          x: number;
          y: number;
      }

    • Parameters

      • box: any
      • callee: string
      • allowNegativeDimensions: boolean = false

      Returns void

    • Parameters

      • box: any
      • callee: string

      Returns void

    diff --git a/typedoc/classes/LabeledFaceDescriptors.html b/typedoc/classes/LabeledFaceDescriptors.html index 3cebdba..ea4792b 100644 --- a/typedoc/classes/LabeledFaceDescriptors.html +++ b/typedoc/classes/LabeledFaceDescriptors.html @@ -1,6 +1,6 @@ -LabeledFaceDescriptors | @vladmandic/face-api - v1.7.14

    Class LabeledFaceDescriptors

    Constructors

    constructor +LabeledFaceDescriptors | @vladmandic/face-api - v1.7.15

    Class LabeledFaceDescriptors

    Constructors

    Accessors

    Methods

    Constructors

    Accessors

    Methods

    +

    Constructors

    Accessors

    Methods

    diff --git a/typedoc/classes/NetInput.html b/typedoc/classes/NetInput.html index 8748754..24a1651 100644 --- a/typedoc/classes/NetInput.html +++ b/typedoc/classes/NetInput.html @@ -1,4 +1,4 @@ -NetInput | @vladmandic/face-api - v1.7.14

    Constructors

    constructor +NetInput | @vladmandic/face-api - v1.7.15

    Constructors

    Accessors

    batchSize canvases imageTensors @@ -16,4 +16,4 @@ with size [batchSize, inputSize, inputSize, 3].

    Parameters

    • inputSize: number

      Height and width of the tensor.

    • isCenterInputs: boolean = true

    Returns Tensor4D

    The batch tensor.

    -
    +
    diff --git a/typedoc/classes/NeuralNetwork.html b/typedoc/classes/NeuralNetwork.html index a8e2fd7..ba2aeb2 100644 --- a/typedoc/classes/NeuralNetwork.html +++ b/typedoc/classes/NeuralNetwork.html @@ -1,4 +1,4 @@ -NeuralNetwork | @vladmandic/face-api - v1.7.14

    Class NeuralNetwork<TNetParams>Abstract

    Type Parameters

    • TNetParams

    Hierarchy (View Summary)

    Constructors

    constructor +NeuralNetwork | @vladmandic/face-api - v1.7.15

    Class NeuralNetwork<TNetParams>Abstract

    Type Parameters

    • TNetParams

    Hierarchy (View Summary)

    Constructors

    Properties

    Accessors

    Constructors

    Properties

    _name: any

    Accessors

    Methods

    • Parameters

      • throwOnRedispose: boolean = true

      Returns void

    • Parameters

      • weights: Float32Array

      Returns void

    • Parameters

      • weightsOrUrl: undefined | string | Float32Array

      Returns Promise<void>

    • Parameters

      • filePath: undefined | string

      Returns Promise<void>

    • Parameters

      • uri: undefined | string

      Returns Promise<void>

    +

    Constructors

    Properties

    _name: any

    Accessors

    Methods

    • Parameters

      • throwOnRedispose: boolean = true

      Returns void

    • Parameters

      • weights: Float32Array

      Returns void

    • Parameters

      • weightsOrUrl: undefined | string | Float32Array

      Returns Promise<void>

    • Parameters

      • filePath: undefined | string

      Returns Promise<void>

    • Parameters

      • uri: undefined | string

      Returns Promise<void>

    diff --git a/typedoc/classes/ObjectDetection.html b/typedoc/classes/ObjectDetection.html index 9cbc0ec..36e01c9 100644 --- a/typedoc/classes/ObjectDetection.html +++ b/typedoc/classes/ObjectDetection.html @@ -1,4 +1,4 @@ -ObjectDetection | @vladmandic/face-api - v1.7.14

    Hierarchy (View Summary)

    Constructors

    constructor +ObjectDetection | @vladmandic/face-api - v1.7.15

    Hierarchy (View Summary)

    Constructors

    Accessors

    Methods

    Constructors

    Accessors

    Methods

    +

    Constructors

    Accessors

    Methods

    diff --git a/typedoc/classes/Point.html b/typedoc/classes/Point.html index 12ffce2..ff82afd 100644 --- a/typedoc/classes/Point.html +++ b/typedoc/classes/Point.html @@ -1,4 +1,4 @@ -Point | @vladmandic/face-api - v1.7.14

    Implements

    Constructors

    constructor +Point | @vladmandic/face-api - v1.7.15

    Implements

    Constructors

    Accessors

    x y

    Methods

    abs @@ -8,4 +8,4 @@ magnitude mul sub -

    Constructors

    Accessors

    Methods

    +

    Constructors

    Accessors

    Methods

    diff --git a/typedoc/classes/PredictedBox.html b/typedoc/classes/PredictedBox.html index 12ee8a5..19a0b65 100644 --- a/typedoc/classes/PredictedBox.html +++ b/typedoc/classes/PredictedBox.html @@ -1,4 +1,4 @@ -PredictedBox | @vladmandic/face-api - v1.7.14

    Hierarchy (View Summary)

    Constructors

    constructor +PredictedBox | @vladmandic/face-api - v1.7.15

    Hierarchy (View Summary)

    Constructors

    Accessors

    Methods

    • Parameters

      • imageHeight: number
      • imageWidth: number

      Returns {
          dx: number;
          dy: number;
          edx: number;
          edy: number;
          ex: number;
          ey: number;
          h: number;
          w: number;
          x: number;
          y: number;
      }

    • Parameters

      • box: any
      • callee: string
      • allowNegativeDimensions: boolean = false

      Returns void

    +

    Constructors

    Accessors

    Methods

    • Parameters

      • imageHeight: number
      • imageWidth: number

      Returns {
          dx: number;
          dy: number;
          edx: number;
          edy: number;
          ex: number;
          ey: number;
          h: number;
          w: number;
          x: number;
          y: number;
      }

    • Parameters

      • box: any
      • callee: string
      • allowNegativeDimensions: boolean = false

      Returns void

    diff --git a/typedoc/classes/Rect.html b/typedoc/classes/Rect.html index 3956c7a..0339d26 100644 --- a/typedoc/classes/Rect.html +++ b/typedoc/classes/Rect.html @@ -1,4 +1,4 @@ -Rect | @vladmandic/face-api - v1.7.14

    Hierarchy (View Summary)

    Implements

    Constructors

    constructor +Rect | @vladmandic/face-api - v1.7.15

    Hierarchy (View Summary)

    Implements

    Constructors

    Accessors

    Constructors

    • Parameters

      • x: number
      • y: number
      • width: number
      • height: number
      • allowNegativeDimensions: boolean = false

      Returns Rect

    Accessors

    Methods

    • Parameters

      • imageHeight: number
      • imageWidth: number

      Returns {
          dx: number;
          dy: number;
          edx: number;
          edy: number;
          ex: number;
          ey: number;
          h: number;
          w: number;
          x: number;
          y: number;
      }

    • Parameters

      • box: any
      • callee: string
      • allowNegativeDimensions: boolean = false

      Returns void

    +

    Constructors

    • Parameters

      • x: number
      • y: number
      • width: number
      • height: number
      • allowNegativeDimensions: boolean = false

      Returns Rect

    Accessors

    Methods

    • Parameters

      • imageHeight: number
      • imageWidth: number

      Returns {
          dx: number;
          dy: number;
          edx: number;
          edy: number;
          ex: number;
          ey: number;
          h: number;
          w: number;
          x: number;
          y: number;
      }

    • Parameters

      • box: any
      • callee: string
      • allowNegativeDimensions: boolean = false

      Returns void

    diff --git a/typedoc/classes/SsdMobilenetv1.html b/typedoc/classes/SsdMobilenetv1.html index db2f22b..688b69a 100644 --- a/typedoc/classes/SsdMobilenetv1.html +++ b/typedoc/classes/SsdMobilenetv1.html @@ -1,4 +1,4 @@ -SsdMobilenetv1 | @vladmandic/face-api - v1.7.14

    Hierarchy (View Summary)

    Constructors

    constructor +SsdMobilenetv1 | @vladmandic/face-api - v1.7.15

    Hierarchy (View Summary)

    Constructors

    Properties

    Accessors

    Constructors

    Properties

    _name: any

    Accessors

    • get paramMappings(): ParamMapping[]
    • Returns ParamMapping[]

    Methods

    • Parameters

      • weightsOrUrl: undefined | string | Float32Array

      Returns Promise<void>

    +

    Constructors

    Properties

    _name: any

    Accessors

    • get paramMappings(): ParamMapping[]
    • Returns ParamMapping[]

    Methods

    • Parameters

      • weightsOrUrl: undefined | string | Float32Array

      Returns Promise<void>

    diff --git a/typedoc/classes/SsdMobilenetv1Options.html b/typedoc/classes/SsdMobilenetv1Options.html index 739dbe6..7ab9d98 100644 --- a/typedoc/classes/SsdMobilenetv1Options.html +++ b/typedoc/classes/SsdMobilenetv1Options.html @@ -1,4 +1,4 @@ -SsdMobilenetv1Options | @vladmandic/face-api - v1.7.14

    Constructors

    constructor +SsdMobilenetv1Options | @vladmandic/face-api - v1.7.15

    Constructors

    Accessors

    Constructors

    Accessors

    +

    Constructors

    Accessors

    diff --git a/typedoc/classes/TinyFaceDetector.html b/typedoc/classes/TinyFaceDetector.html index bd5da1a..bea6cd2 100644 --- a/typedoc/classes/TinyFaceDetector.html +++ b/typedoc/classes/TinyFaceDetector.html @@ -1,4 +1,4 @@ -TinyFaceDetector | @vladmandic/face-api - v1.7.14

    Hierarchy

    • TinyYolov2Base
      • TinyFaceDetector

    Constructors

    constructor +TinyFaceDetector | @vladmandic/face-api - v1.7.15

    Hierarchy

    • TinyYolov2Base
      • TinyFaceDetector

    Constructors

    Properties

    Accessors

    Constructors

    Properties

    _name: any
    DEFAULT_FILTER_SIZES: number[] = ...

    Accessors

    • get paramMappings(): ParamMapping[]
    • Returns ParamMapping[]

    Methods

    • Parameters

      • throwOnRedispose: boolean = true

      Returns void

    • Parameters

      • weights: Float32Array

      Returns void

    • Parameters

      • weightsOrUrl: undefined | string | Float32Array

      Returns Promise<void>

    • Parameters

      • filePath: undefined | string

      Returns Promise<void>

    • Parameters

      • uri: undefined | string

      Returns Promise<void>

    • Parameters

      Returns void

    • Returns Float32Array

    +

    Constructors

    Properties

    _name: any
    DEFAULT_FILTER_SIZES: number[] = ...

    Accessors

    • get paramMappings(): ParamMapping[]
    • Returns ParamMapping[]

    Methods

    • Parameters

      • throwOnRedispose: boolean = true

      Returns void

    • Parameters

      • weights: Float32Array

      Returns void

    • Parameters

      • weightsOrUrl: undefined | string | Float32Array

      Returns Promise<void>

    • Parameters

      • filePath: undefined | string

      Returns Promise<void>

    • Parameters

      • uri: undefined | string

      Returns Promise<void>

    • Parameters

      Returns void

    • Returns Float32Array

    diff --git a/typedoc/classes/TinyFaceDetectorOptions.html b/typedoc/classes/TinyFaceDetectorOptions.html index 2245337..621660b 100644 --- a/typedoc/classes/TinyFaceDetectorOptions.html +++ b/typedoc/classes/TinyFaceDetectorOptions.html @@ -1,4 +1,4 @@ -TinyFaceDetectorOptions | @vladmandic/face-api - v1.7.14

    Class TinyFaceDetectorOptions

    Hierarchy (View Summary)

    Constructors

    constructor +TinyFaceDetectorOptions | @vladmandic/face-api - v1.7.15

    Class TinyFaceDetectorOptions

    Hierarchy (View Summary)

    Constructors

    Accessors

    Constructors

    Accessors

    +

    Constructors

    Accessors

    diff --git a/typedoc/classes/TinyYolov2.html b/typedoc/classes/TinyYolov2.html index b9017d6..1454e47 100644 --- a/typedoc/classes/TinyYolov2.html +++ b/typedoc/classes/TinyYolov2.html @@ -1,4 +1,4 @@ -TinyYolov2 | @vladmandic/face-api - v1.7.14

    Hierarchy

    • TinyYolov2Base
      • TinyYolov2

    Constructors

    constructor +TinyYolov2 | @vladmandic/face-api - v1.7.15

    Hierarchy

    • TinyYolov2Base
      • TinyYolov2

    Constructors

    Properties

    Accessors

    Constructors

    Properties

    _name: any
    DEFAULT_FILTER_SIZES: number[] = ...

    Accessors

    • get paramMappings(): ParamMapping[]
    • Returns ParamMapping[]

    Methods

    • Parameters

      • throwOnRedispose: boolean = true

      Returns void

    • Parameters

      • weights: Float32Array

      Returns void

    • Parameters

      • weightsOrUrl: undefined | string | Float32Array

      Returns Promise<void>

    • Parameters

      • filePath: undefined | string

      Returns Promise<void>

    • Parameters

      • uri: undefined | string

      Returns Promise<void>

    • Parameters

      Returns void

    • Returns Float32Array

    +

    Constructors

    Properties

    _name: any
    DEFAULT_FILTER_SIZES: number[] = ...

    Accessors

    • get paramMappings(): ParamMapping[]
    • Returns ParamMapping[]

    Methods

    • Parameters

      • throwOnRedispose: boolean = true

      Returns void

    • Parameters

      • weights: Float32Array

      Returns void

    • Parameters

      • weightsOrUrl: undefined | string | Float32Array

      Returns Promise<void>

    • Parameters

      • filePath: undefined | string

      Returns Promise<void>

    • Parameters

      • uri: undefined | string

      Returns Promise<void>

    • Parameters

      Returns void

    • Returns Float32Array

    diff --git a/typedoc/classes/TinyYolov2Options.html b/typedoc/classes/TinyYolov2Options.html index ca17271..8e2c72f 100644 --- a/typedoc/classes/TinyYolov2Options.html +++ b/typedoc/classes/TinyYolov2Options.html @@ -1,4 +1,4 @@ -TinyYolov2Options | @vladmandic/face-api - v1.7.14

    Hierarchy (View Summary)

    Constructors

    constructor +TinyYolov2Options | @vladmandic/face-api - v1.7.15

    Hierarchy (View Summary)

    Constructors

    Accessors

    Constructors

    Accessors

    +

    Constructors

    Accessors

    diff --git a/typedoc/classes/draw.DrawBox.html b/typedoc/classes/draw.DrawBox.html index 949b356..bf1b578 100644 --- a/typedoc/classes/draw.DrawBox.html +++ b/typedoc/classes/draw.DrawBox.html @@ -1,5 +1,5 @@ -DrawBox | @vladmandic/face-api - v1.7.14

    Constructors

    constructor +DrawBox | @vladmandic/face-api - v1.7.15

    Constructors

    Properties

    Methods

    Constructors

    Properties

    box: Box

    Methods

    • Parameters

      • canvasArg: string | HTMLCanvasElement | CanvasRenderingContext2D

      Returns void

    +

    Constructors

    Properties

    box: Box

    Methods

    • Parameters

      • canvasArg: string | HTMLCanvasElement | CanvasRenderingContext2D

      Returns void

    diff --git a/typedoc/classes/draw.DrawBoxOptions.html b/typedoc/classes/draw.DrawBoxOptions.html index 6dbd435..bd67fcb 100644 --- a/typedoc/classes/draw.DrawBoxOptions.html +++ b/typedoc/classes/draw.DrawBoxOptions.html @@ -1,6 +1,6 @@ -DrawBoxOptions | @vladmandic/face-api - v1.7.14

    Constructors

    constructor +DrawBoxOptions | @vladmandic/face-api - v1.7.15

    Constructors

    Properties

    boxColor: string
    drawLabelOptions: DrawTextFieldOptions
    label?: string
    lineWidth: number
    +

    Constructors

    Properties

    boxColor: string
    drawLabelOptions: DrawTextFieldOptions
    label?: string
    lineWidth: number
    diff --git a/typedoc/classes/draw.DrawFaceLandmarks.html b/typedoc/classes/draw.DrawFaceLandmarks.html index 6d1b0e6..8dda7e8 100644 --- a/typedoc/classes/draw.DrawFaceLandmarks.html +++ b/typedoc/classes/draw.DrawFaceLandmarks.html @@ -1,5 +1,5 @@ -DrawFaceLandmarks | @vladmandic/face-api - v1.7.14

    Constructors

    constructor +DrawFaceLandmarks | @vladmandic/face-api - v1.7.15

    Constructors

    Properties

    Methods

    Constructors

    Properties

    faceLandmarks: FaceLandmarks

    Methods

    • Parameters

      • canvasArg: string | HTMLCanvasElement | CanvasRenderingContext2D

      Returns void

    +

    Constructors

    Properties

    faceLandmarks: FaceLandmarks

    Methods

    • Parameters

      • canvasArg: string | HTMLCanvasElement | CanvasRenderingContext2D

      Returns void

    diff --git a/typedoc/classes/draw.DrawFaceLandmarksOptions.html b/typedoc/classes/draw.DrawFaceLandmarksOptions.html index d0f6b43..85729db 100644 --- a/typedoc/classes/draw.DrawFaceLandmarksOptions.html +++ b/typedoc/classes/draw.DrawFaceLandmarksOptions.html @@ -1,8 +1,8 @@ -DrawFaceLandmarksOptions | @vladmandic/face-api - v1.7.14

    Constructors

    constructor +DrawFaceLandmarksOptions | @vladmandic/face-api - v1.7.15

    Constructors

    Properties

    drawLines: boolean
    drawPoints: boolean
    lineColor: string
    lineWidth: number
    pointColor: string
    pointSize: number
    +

    Constructors

    Properties

    drawLines: boolean
    drawPoints: boolean
    lineColor: string
    lineWidth: number
    pointColor: string
    pointSize: number
    diff --git a/typedoc/classes/draw.DrawTextField.html b/typedoc/classes/draw.DrawTextField.html index 509c78a..a885358 100644 --- a/typedoc/classes/draw.DrawTextField.html +++ b/typedoc/classes/draw.DrawTextField.html @@ -1,4 +1,4 @@ -DrawTextField | @vladmandic/face-api - v1.7.14

    Constructors

    constructor +DrawTextField | @vladmandic/face-api - v1.7.15

    Constructors

    Properties

    Constructors

    Properties

    anchor: IPoint
    text: string[]

    Methods

    • Parameters

      • canvasArg: string | HTMLCanvasElement | CanvasRenderingContext2D

      Returns void

    • Parameters

      • ctx: CanvasRenderingContext2D

      Returns number

    +

    Constructors

    Properties

    anchor: IPoint
    text: string[]

    Methods

    • Parameters

      • canvasArg: string | HTMLCanvasElement | CanvasRenderingContext2D

      Returns void

    • Parameters

      • ctx: CanvasRenderingContext2D

      Returns number

    diff --git a/typedoc/classes/draw.DrawTextFieldOptions.html b/typedoc/classes/draw.DrawTextFieldOptions.html index ed73204..7cc6926 100644 --- a/typedoc/classes/draw.DrawTextFieldOptions.html +++ b/typedoc/classes/draw.DrawTextFieldOptions.html @@ -1,8 +1,8 @@ -DrawTextFieldOptions | @vladmandic/face-api - v1.7.14

    Implements

    Constructors

    constructor +DrawTextFieldOptions | @vladmandic/face-api - v1.7.15

    Implements

    Constructors

    Properties

    anchorPosition: AnchorPosition
    backgroundColor: string
    fontColor: string
    fontSize: number
    fontStyle: string
    padding: number
    +

    Constructors

    Properties

    anchorPosition: AnchorPosition
    backgroundColor: string
    fontColor: string
    fontSize: number
    fontStyle: string
    padding: number
    diff --git a/typedoc/classes/tf.Tensor-1.html b/typedoc/classes/tf.Tensor-1.html index d92e1cf..50d6a7f 100644 --- a/typedoc/classes/tf.Tensor-1.html +++ b/typedoc/classes/tf.Tensor-1.html @@ -1,4 +1,4 @@ -Tensor | @vladmandic/face-api - v1.7.14

    A tf.Tensor object represents an immutable, multidimensional array of +Tensor | @vladmandic/face-api - v1.7.15

    A tf.Tensor object represents an immutable, multidimensional array of numbers that has a shape and a data type.

    For performance reasons, functions that create tensors do not necessarily perform a copy of the data passed to them (e.g. if the data is passed as a @@ -222,4 +222,4 @@ Remember to dispose the GPUData after it is used by

    Parameters

    • Optionalverbose: boolean

      Whether to print verbose information about the tensor, including dtype and size.

    Returns void

    • Type Parameters

      Parameters

      • this: T
      • Optionalaxis: number | number[]
      • OptionalkeepDims: boolean

      Returns T

    • Type Parameters

      Parameters

      • this: T

      Returns T

    • Type Parameters

      Returns T

    • Type Parameters

      Returns T

    • Type Parameters

      Parameters

      • shape: number[]

      Returns T

    • Type Parameters

      Parameters

      Returns T

    • Type Parameters

      Parameters

      • newShape2D: [number, number]
      • OptionalalignCorners: boolean
      • OptionalhalfPixelCenters: boolean

      Returns T

    • Type Parameters

      Parameters

      • newShape2D: [number, number]
      • OptionalalignCorners: boolean
      • OptionalhalfFloatCenters: boolean

      Returns T

    • Type Parameters

      Parameters

      • this: T
      • Optionalaxis: number | number[]

      Returns T

    • Type Parameters

      Parameters

      Returns tf.Tensor

    • Type Parameters

      Parameters

      • this: T

      Returns T

    • Type Parameters

      Parameters

      • this: T

      Returns T

    • Type Parameters

      Returns T

    • Type Parameters

      Parameters

      • depthwiseFilter: Tensor4D | TensorLike4D
      • pointwiseFilter: Tensor4D | TensorLike
      • strides: number | [number, number]
      • pad: "valid" | "same"
      • Optionaldilation: number | [number, number]
      • OptionaldataFormat: "NHWC" | "NCHW"

      Returns T

    • Type Parameters

      Parameters

      • this: T

      Returns T

    • Type Parameters

      Parameters

      • this: T

      Returns T

    • Type Parameters

      Parameters

      • this: T

      Returns T

    • Type Parameters

      Parameters

      • this: T

      Returns T

    • Type Parameters

      Parameters

      • this: T
      • begin: number | number[]
      • Optionalsize: number | number[]

      Returns T

    • Type Parameters

      Parameters

      • this: T
      • Optionaldim: number

      Returns T

    • Type Parameters

      Parameters

      • this: T

      Returns T

    • Type Parameters

      Parameters

      • blockShape: number[]
      • paddings: number[][]

      Returns tf.Tensor<R>

    • Type Parameters

      Parameters

      • numOrSizeSplits: number | number[]
      • Optionalaxis: number

      Returns T[]

    • Type Parameters

      Parameters

      • this: T

      Returns T

    • Type Parameters

      Parameters

      • this: T

      Returns T

    • Type Parameters

      Parameters

      Returns T

    • Type Parameters

      Parameters

      • Optionalaxis: number[]

      Returns T

    • Type Parameters

      Parameters

      Returns T

    • Type Parameters

      Parameters

      • this: T
      • Optionalalpha: number

      Returns T

    • Type Parameters

      Parameters

      • this: tf.Tensor
      • begin: number[]
      • end: number[]
      • strides: number[]
      • OptionalbeginMask: number
      • OptionalendMask: number
      • OptionalellipsisMask: number
      • OptionalnewAxisMask: number
      • OptionalshrinkAxisMask: number

      Returns tf.Tensor

    • Type Parameters

      Parameters

      • Optionalaxis: number | number[]
      • OptionalkeepDims: boolean

      Returns T

    • Type Parameters

      Parameters

      • this: T

      Returns T

    • Type Parameters

      Parameters

      • this: T

      Returns T

    • Returns void

    • Type Parameters

      Parameters

      • b: number[]

      Returns T

    • Type Parameters

      Parameters

      • this: T

      Returns T

    • Type Parameters

      Parameters

      • this: T

      Returns T

    • Type Parameters

      Parameters

      • this: T

      Returns T

    • Type Parameters

      Parameters

      • this: T
      • Optionalk: number
      • Optionalsorted: boolean

      Returns { indices: T; values: T }

    • Returns a human-readable description of the tensor. Useful for logging.

      -

      Parameters

      • Optionalverbose: boolean

      Returns string

    • Type Parameters

      Parameters

      • Optionalperm: number[]

      Returns T

    • Type Parameters

      Parameters

      • this: T
      • Optionalaxis: number

      Returns { indices: T; values: T }

    • Type Parameters

      Parameters

      • this: T
      • segmentIds: Tensor1D | TensorLike1D
      • numSegments: number

      Returns T

    • Type Parameters

      Parameters

      • Optionalaxis: number

      Returns T[]

    • Parameters

      • Optionaltrainable: boolean
      • Optionalname: string
      • Optionaldtype: keyof DataTypeMap

      Returns Variable<R>

    • Type Parameters

      Parameters

      • this: T

      Returns T

    +

    Parameters

    • Optionalverbose: boolean

    Returns string

    • Type Parameters

      Parameters

      • Optionalperm: number[]

      Returns T

    • Type Parameters

      Parameters

      • this: T
      • Optionalaxis: number

      Returns { indices: T; values: T }

    • Type Parameters

      Parameters

      • this: T
      • segmentIds: Tensor1D | TensorLike1D
      • numSegments: number

      Returns T

    • Type Parameters

      Parameters

      • Optionalaxis: number

      Returns T[]

    • Parameters

      • Optionaltrainable: boolean
      • Optionalname: string
      • Optionaldtype: keyof DataTypeMap

      Returns Variable<R>

    • Type Parameters

      Parameters

      • this: T

      Returns T

    diff --git a/typedoc/classes/tf.Variable.html b/typedoc/classes/tf.Variable.html index f1e668d..3cc5619 100644 --- a/typedoc/classes/tf.Variable.html +++ b/typedoc/classes/tf.Variable.html @@ -1,4 +1,4 @@ -Variable | @vladmandic/face-api - v1.7.14

    A mutable tf.Tensor, useful for persisting state, e.g. for training.

    +Variable | @vladmandic/face-api - v1.7.15

    A mutable tf.Tensor, useful for persisting state, e.g. for training.

    Type Parameters

    Hierarchy (View Summary)

    Constructors

    Properties

    dataId dtype @@ -221,4 +221,4 @@ Remember to dispose the GPUData after it is used by

    Parameters

    • Optionalverbose: boolean

      Whether to print verbose information about the tensor, including dtype and size.

    Returns void

    • Type Parameters

      Parameters

      • this: T
      • Optionalaxis: number | number[]
      • OptionalkeepDims: boolean

      Returns T

    • Type Parameters

      Parameters

      • this: T

      Returns T

    • Type Parameters

      Returns T

    • Type Parameters

      Returns T

    • Type Parameters

      Parameters

      • shape: number[]

      Returns T

    • Type Parameters

      Parameters

      Returns T

    • Type Parameters

      Parameters

      • newShape2D: [number, number]
      • OptionalalignCorners: boolean
      • OptionalhalfPixelCenters: boolean

      Returns T

    • Type Parameters

      Parameters

      • newShape2D: [number, number]
      • OptionalalignCorners: boolean
      • OptionalhalfFloatCenters: boolean

      Returns T

    • Type Parameters

      Parameters

      • this: T
      • Optionalaxis: number | number[]

      Returns T

    • Type Parameters

      Parameters

      • this: T

      Returns T

    • Type Parameters

      Parameters

      • this: T

      Returns T

    • Type Parameters

      Returns T

    • Type Parameters

      Parameters

      • depthwiseFilter: Tensor4D | TensorLike4D
      • pointwiseFilter: Tensor4D | TensorLike
      • strides: number | [number, number]
      • pad: "valid" | "same"
      • Optionaldilation: number | [number, number]
      • OptionaldataFormat: "NHWC" | "NCHW"

      Returns T

    • Type Parameters

      Parameters

      • this: T

      Returns T

    • Type Parameters

      Parameters

      • this: T

      Returns T

    • Type Parameters

      Parameters

      • this: T

      Returns T

    • Type Parameters

      Parameters

      • this: T

      Returns T

    • Type Parameters

      Parameters

      • this: T
      • begin: number | number[]
      • Optionalsize: number | number[]

      Returns T

    • Type Parameters

      Parameters

      • this: T
      • Optionaldim: number

      Returns T

    • Type Parameters

      Parameters

      • this: T

      Returns T

    • Type Parameters

      Parameters

      • blockShape: number[]
      • paddings: number[][]

      Returns tf.Tensor<R>

    • Type Parameters

      Parameters

      • numOrSizeSplits: number | number[]
      • Optionalaxis: number

      Returns T[]

    • Type Parameters

      Parameters

      • this: T

      Returns T

    • Type Parameters

      Parameters

      • this: T

      Returns T

    • Type Parameters

      Parameters

      • Optionalaxis: number[]

      Returns T

    • Type Parameters

      Parameters

      Returns T

    • Type Parameters

      Parameters

      • this: T
      • Optionalalpha: number

      Returns T

    • Type Parameters

      Parameters

      • this: tf.Tensor
      • begin: number[]
      • end: number[]
      • strides: number[]
      • OptionalbeginMask: number
      • OptionalendMask: number
      • OptionalellipsisMask: number
      • OptionalnewAxisMask: number
      • OptionalshrinkAxisMask: number

      Returns tf.Tensor

    • Type Parameters

      Parameters

      • Optionalaxis: number | number[]
      • OptionalkeepDims: boolean

      Returns T

    • Type Parameters

      Parameters

      • this: T

      Returns T

    • Type Parameters

      Parameters

      • this: T

      Returns T

    • Returns void

    • Type Parameters

      Parameters

      • b: number[]

      Returns T

    • Type Parameters

      Parameters

      • this: T

      Returns T

    • Type Parameters

      Parameters

      • this: T

      Returns T

    • Type Parameters

      Parameters

      • this: T

      Returns T

    • Type Parameters

      Parameters

      • this: T
      • Optionalk: number
      • Optionalsorted: boolean

      Returns { indices: T; values: T }

    • Returns a human-readable description of the tensor. Useful for logging.

      -

      Parameters

      • Optionalverbose: boolean

      Returns string

    • Type Parameters

      Parameters

      • Optionalperm: number[]

      Returns T

    • Type Parameters

      Parameters

      • this: T
      • Optionalaxis: number

      Returns { indices: T; values: T }

    • Type Parameters

      Parameters

      • this: T
      • segmentIds: Tensor1D | TensorLike1D
      • numSegments: number

      Returns T

    • Type Parameters

      Parameters

      • Optionalaxis: number

      Returns T[]

    • Parameters

      • Optionaltrainable: boolean
      • Optionalname: string
      • Optionaldtype: keyof DataTypeMap

      Returns Variable<R>

    • Type Parameters

      Parameters

      • this: T

      Returns T

    +

    Parameters

    • Optionalverbose: boolean

    Returns string

    • Type Parameters

      Parameters

      • Optionalperm: number[]

      Returns T

    • Type Parameters

      Parameters

      • this: T
      • Optionalaxis: number

      Returns { indices: T; values: T }

    • Type Parameters

      Parameters

      • this: T
      • segmentIds: Tensor1D | TensorLike1D
      • numSegments: number

      Returns T

    • Type Parameters

      Parameters

      • Optionalaxis: number

      Returns T[]

    • Parameters

      • Optionaltrainable: boolean
      • Optionalname: string
      • Optionaldtype: keyof DataTypeMap

      Returns Variable<R>

    • Type Parameters

      Parameters

      • this: T

      Returns T

    diff --git a/typedoc/classes/tf.io.CompositeArrayBuffer.html b/typedoc/classes/tf.io.CompositeArrayBuffer.html index c302c7c..193a41f 100644 --- a/typedoc/classes/tf.io.CompositeArrayBuffer.html +++ b/typedoc/classes/tf.io.CompositeArrayBuffer.html @@ -1,4 +1,4 @@ -CompositeArrayBuffer | @vladmandic/face-api - v1.7.14

    Wraps a list of ArrayBuffers into a slice()-able object without allocating +CompositeArrayBuffer | @vladmandic/face-api - v1.7.15

    Wraps a list of ArrayBuffers into a slice()-able object without allocating a large ArrayBuffer.

    Allocating large ArrayBuffers (~2GB) can be unstable on Chrome. TFJS loads its weights as a list of (usually) 4MB ArrayBuffers and then slices the @@ -13,4 +13,4 @@ tensors out of it, but for large models, a different approach is needed.

    Parameters

    • Optionalbuffers: ArrayBuffer | ArrayBuffer[]

      An array of ArrayBuffers to concatenate, or a single ArrayBuffer.

    Returns ArrayBuffer

    Result of concatenating buffers in order.

    -
    +
    diff --git a/typedoc/enums/Gender.html b/typedoc/enums/Gender.html index e666bb4..fccfbf2 100644 --- a/typedoc/enums/Gender.html +++ b/typedoc/enums/Gender.html @@ -1,3 +1,3 @@ -Gender | @vladmandic/face-api - v1.7.14

    Enumeration Gender

    Enumeration Members

    FEMALE +Gender | @vladmandic/face-api - v1.7.15

    Enumeration Gender

    Enumeration Members

    Enumeration Members

    FEMALE: "female"
    MALE: "male"
    +

    Enumeration Members

    FEMALE: "female"
    MALE: "male"
    diff --git a/typedoc/enums/draw.AnchorPosition.html b/typedoc/enums/draw.AnchorPosition.html index 1d87eba..ea1b362 100644 --- a/typedoc/enums/draw.AnchorPosition.html +++ b/typedoc/enums/draw.AnchorPosition.html @@ -1,5 +1,5 @@ -AnchorPosition | @vladmandic/face-api - v1.7.14

    Enumeration AnchorPosition

    Enumeration Members

    BOTTOM_LEFT +AnchorPosition | @vladmandic/face-api - v1.7.15

    Enumeration AnchorPosition

    Enumeration Members

    BOTTOM_LEFT: "BOTTOM_LEFT"
    BOTTOM_RIGHT: "BOTTOM_RIGHT"
    TOP_LEFT: "TOP_LEFT"
    TOP_RIGHT: "TOP_RIGHT"
    +

    Enumeration Members

    BOTTOM_LEFT: "BOTTOM_LEFT"
    BOTTOM_RIGHT: "BOTTOM_RIGHT"
    TOP_LEFT: "TOP_LEFT"
    TOP_RIGHT: "TOP_RIGHT"
    diff --git a/typedoc/enums/tf.Rank.html b/typedoc/enums/tf.Rank.html index 0033ea6..f0a6516 100644 --- a/typedoc/enums/tf.Rank.html +++ b/typedoc/enums/tf.Rank.html @@ -1,8 +1,8 @@ -Rank | @vladmandic/face-api - v1.7.14

    Enumeration Members

    R0 +Rank | @vladmandic/face-api - v1.7.15

    Enumeration Members

    Enumeration Members

    R0: "R0"
    R1: "R1"
    R2: "R2"
    R3: "R3"
    R4: "R4"
    R5: "R5"
    R6: "R6"
    +

    Enumeration Members

    R0: "R0"
    R1: "R1"
    R2: "R2"
    R3: "R3"
    R4: "R4"
    R5: "R5"
    R6: "R6"
    diff --git a/typedoc/functions/allFaces.html b/typedoc/functions/allFaces.html index 519c362..916a656 100644 --- a/typedoc/functions/allFaces.html +++ b/typedoc/functions/allFaces.html @@ -1 +1 @@ -allFaces | @vladmandic/face-api - v1.7.14
    +allFaces | @vladmandic/face-api - v1.7.15
    diff --git a/typedoc/functions/allFacesSsdMobilenetv1.html b/typedoc/functions/allFacesSsdMobilenetv1.html index 0938a20..3505d93 100644 --- a/typedoc/functions/allFacesSsdMobilenetv1.html +++ b/typedoc/functions/allFacesSsdMobilenetv1.html @@ -1 +1 @@ -allFacesSsdMobilenetv1 | @vladmandic/face-api - v1.7.14

    Function allFacesSsdMobilenetv1

    +allFacesSsdMobilenetv1 | @vladmandic/face-api - v1.7.15

    Function allFacesSsdMobilenetv1

    diff --git a/typedoc/functions/allFacesTinyYolov2.html b/typedoc/functions/allFacesTinyYolov2.html index 0f24d17..39fad7e 100644 --- a/typedoc/functions/allFacesTinyYolov2.html +++ b/typedoc/functions/allFacesTinyYolov2.html @@ -1 +1 @@ -allFacesTinyYolov2 | @vladmandic/face-api - v1.7.14

    Function allFacesTinyYolov2

    +allFacesTinyYolov2 | @vladmandic/face-api - v1.7.15

    Function allFacesTinyYolov2

    diff --git a/typedoc/functions/awaitMediaLoaded.html b/typedoc/functions/awaitMediaLoaded.html index a28e43b..ce7680e 100644 --- a/typedoc/functions/awaitMediaLoaded.html +++ b/typedoc/functions/awaitMediaLoaded.html @@ -1 +1 @@ -awaitMediaLoaded | @vladmandic/face-api - v1.7.14

    Function awaitMediaLoaded

    • Parameters

      • media: HTMLCanvasElement | HTMLImageElement | HTMLVideoElement

      Returns Promise<unknown>

    +awaitMediaLoaded | @vladmandic/face-api - v1.7.15

    Function awaitMediaLoaded

    • Parameters

      • media: HTMLCanvasElement | HTMLImageElement | HTMLVideoElement

      Returns Promise<unknown>

    diff --git a/typedoc/functions/bufferToImage.html b/typedoc/functions/bufferToImage.html index 12847f3..72fda92 100644 --- a/typedoc/functions/bufferToImage.html +++ b/typedoc/functions/bufferToImage.html @@ -1 +1 @@ -bufferToImage | @vladmandic/face-api - v1.7.14

    Function bufferToImage

    • Parameters

      • buf: Blob

      Returns Promise<HTMLImageElement>

    +bufferToImage | @vladmandic/face-api - v1.7.15

    Function bufferToImage

    • Parameters

      • buf: Blob

      Returns Promise<HTMLImageElement>

    diff --git a/typedoc/functions/computeFaceDescriptor.html b/typedoc/functions/computeFaceDescriptor.html index 2c1898d..3f581f9 100644 --- a/typedoc/functions/computeFaceDescriptor.html +++ b/typedoc/functions/computeFaceDescriptor.html @@ -1,6 +1,6 @@ -computeFaceDescriptor | @vladmandic/face-api - v1.7.14

    Function computeFaceDescriptor

    Computes a 128 entry vector (face descriptor / face embeddings) from the face shown in an image, +computeFaceDescriptor | @vladmandic/face-api - v1.7.15

    Function computeFaceDescriptor

    Computes a 128 entry vector (face descriptor / face embeddings) from the face shown in an image, which uniquely represents the features of that persons face. The computed face descriptor can be used to measure the similarity between faces, by computing the euclidean distance of two face descriptors.

    • Parameters

      Returns Promise<Float32Array | Float32Array[]>

      Face descriptor with 128 entries or array thereof in case of batch input.

      -
    +
    diff --git a/typedoc/functions/createCanvas.html b/typedoc/functions/createCanvas.html index 0ae6a42..23633c9 100644 --- a/typedoc/functions/createCanvas.html +++ b/typedoc/functions/createCanvas.html @@ -1 +1 @@ -createCanvas | @vladmandic/face-api - v1.7.14
    +createCanvas | @vladmandic/face-api - v1.7.15
    diff --git a/typedoc/functions/createCanvasFromMedia.html b/typedoc/functions/createCanvasFromMedia.html index 254199c..84047bf 100644 --- a/typedoc/functions/createCanvasFromMedia.html +++ b/typedoc/functions/createCanvasFromMedia.html @@ -1 +1 @@ -createCanvasFromMedia | @vladmandic/face-api - v1.7.14

    Function createCanvasFromMedia

    • Parameters

      • media: HTMLImageElement | HTMLVideoElement | ImageData
      • Optionaldims: IDimensions

      Returns HTMLCanvasElement

    +createCanvasFromMedia | @vladmandic/face-api - v1.7.15

    Function createCanvasFromMedia

    • Parameters

      • media: HTMLImageElement | HTMLVideoElement | ImageData
      • Optionaldims: IDimensions

      Returns HTMLCanvasElement

    diff --git a/typedoc/functions/createFaceDetectionNet.html b/typedoc/functions/createFaceDetectionNet.html index f8e9b17..c449127 100644 --- a/typedoc/functions/createFaceDetectionNet.html +++ b/typedoc/functions/createFaceDetectionNet.html @@ -1 +1 @@ -createFaceDetectionNet | @vladmandic/face-api - v1.7.14

    Function createFaceDetectionNet

    +createFaceDetectionNet | @vladmandic/face-api - v1.7.15

    Function createFaceDetectionNet

    diff --git a/typedoc/functions/createFaceRecognitionNet.html b/typedoc/functions/createFaceRecognitionNet.html index 79838ff..05435f0 100644 --- a/typedoc/functions/createFaceRecognitionNet.html +++ b/typedoc/functions/createFaceRecognitionNet.html @@ -1 +1 @@ -createFaceRecognitionNet | @vladmandic/face-api - v1.7.14

    Function createFaceRecognitionNet

    +createFaceRecognitionNet | @vladmandic/face-api - v1.7.15

    Function createFaceRecognitionNet

    diff --git a/typedoc/functions/createSsdMobilenetv1.html b/typedoc/functions/createSsdMobilenetv1.html index 8f80f55..320e68c 100644 --- a/typedoc/functions/createSsdMobilenetv1.html +++ b/typedoc/functions/createSsdMobilenetv1.html @@ -1 +1 @@ -createSsdMobilenetv1 | @vladmandic/face-api - v1.7.14

    Function createSsdMobilenetv1

    +createSsdMobilenetv1 | @vladmandic/face-api - v1.7.15

    Function createSsdMobilenetv1

    diff --git a/typedoc/functions/createTinyFaceDetector.html b/typedoc/functions/createTinyFaceDetector.html index c0fb3b4..655c194 100644 --- a/typedoc/functions/createTinyFaceDetector.html +++ b/typedoc/functions/createTinyFaceDetector.html @@ -1 +1 @@ -createTinyFaceDetector | @vladmandic/face-api - v1.7.14

    Function createTinyFaceDetector

    +createTinyFaceDetector | @vladmandic/face-api - v1.7.15

    Function createTinyFaceDetector

    diff --git a/typedoc/functions/createTinyYolov2.html b/typedoc/functions/createTinyYolov2.html index 9692afe..da11e95 100644 --- a/typedoc/functions/createTinyYolov2.html +++ b/typedoc/functions/createTinyYolov2.html @@ -1 +1 @@ -createTinyYolov2 | @vladmandic/face-api - v1.7.14

    Function createTinyYolov2

    +createTinyYolov2 | @vladmandic/face-api - v1.7.15

    Function createTinyYolov2

    diff --git a/typedoc/functions/detectAllFaces.html b/typedoc/functions/detectAllFaces.html index 3543d41..1d54d3f 100644 --- a/typedoc/functions/detectAllFaces.html +++ b/typedoc/functions/detectAllFaces.html @@ -1 +1 @@ -detectAllFaces | @vladmandic/face-api - v1.7.14

    Function detectAllFaces

    +detectAllFaces | @vladmandic/face-api - v1.7.15

    Function detectAllFaces

    diff --git a/typedoc/functions/detectFaceLandmarks.html b/typedoc/functions/detectFaceLandmarks.html index da931b4..30227e4 100644 --- a/typedoc/functions/detectFaceLandmarks.html +++ b/typedoc/functions/detectFaceLandmarks.html @@ -1,3 +1,3 @@ -detectFaceLandmarks | @vladmandic/face-api - v1.7.14

    Function detectFaceLandmarks

    Detects the 68 point face landmark positions of the face shown in an image.

    +detectFaceLandmarks | @vladmandic/face-api - v1.7.15

    Function detectFaceLandmarks

    Detects the 68 point face landmark positions of the face shown in an image.

    +
    diff --git a/typedoc/functions/detectFaceLandmarksTiny.html b/typedoc/functions/detectFaceLandmarksTiny.html index 59a7fe3..e5f01dd 100644 --- a/typedoc/functions/detectFaceLandmarksTiny.html +++ b/typedoc/functions/detectFaceLandmarksTiny.html @@ -1,5 +1,5 @@ -detectFaceLandmarksTiny | @vladmandic/face-api - v1.7.14

    Function detectFaceLandmarksTiny

    Detects the 68 point face landmark positions of the face shown in an image +detectFaceLandmarksTiny | @vladmandic/face-api - v1.7.15

    Function detectFaceLandmarksTiny

    Detects the 68 point face landmark positions of the face shown in an image using a tinier version of the 68 point face landmark model, which is slightly faster at inference, but also slightly less accurate.

    +
    diff --git a/typedoc/functions/detectLandmarks.html b/typedoc/functions/detectLandmarks.html index d26d73f..70dab85 100644 --- a/typedoc/functions/detectLandmarks.html +++ b/typedoc/functions/detectLandmarks.html @@ -1,3 +1,3 @@ -detectLandmarks | @vladmandic/face-api - v1.7.14

    Function detectLandmarks

    diff --git a/typedoc/functions/detectSingleFace.html b/typedoc/functions/detectSingleFace.html index e1564bb..387d037 100644 --- a/typedoc/functions/detectSingleFace.html +++ b/typedoc/functions/detectSingleFace.html @@ -1 +1 @@ -detectSingleFace | @vladmandic/face-api - v1.7.14

    Function detectSingleFace

    +detectSingleFace | @vladmandic/face-api - v1.7.15

    Function detectSingleFace

    diff --git a/typedoc/functions/draw.drawContour.html b/typedoc/functions/draw.drawContour.html index f1645b9..ecbe92c 100644 --- a/typedoc/functions/draw.drawContour.html +++ b/typedoc/functions/draw.drawContour.html @@ -1 +1 @@ -drawContour | @vladmandic/face-api - v1.7.14
    • Parameters

      • ctx: CanvasRenderingContext2D
      • points: Point[]
      • isClosed: boolean = false

      Returns void

    +drawContour | @vladmandic/face-api - v1.7.15
    • Parameters

      • ctx: CanvasRenderingContext2D
      • points: Point[]
      • isClosed: boolean = false

      Returns void

    diff --git a/typedoc/functions/draw.drawDetections.html b/typedoc/functions/draw.drawDetections.html index 2225247..f66af5f 100644 --- a/typedoc/functions/draw.drawDetections.html +++ b/typedoc/functions/draw.drawDetections.html @@ -1 +1 @@ -drawDetections | @vladmandic/face-api - v1.7.14
    +drawDetections | @vladmandic/face-api - v1.7.15
    diff --git a/typedoc/functions/draw.drawFaceExpressions.html b/typedoc/functions/draw.drawFaceExpressions.html index 1be370d..52f7d72 100644 --- a/typedoc/functions/draw.drawFaceExpressions.html +++ b/typedoc/functions/draw.drawFaceExpressions.html @@ -1 +1 @@ -drawFaceExpressions | @vladmandic/face-api - v1.7.14
    +drawFaceExpressions | @vladmandic/face-api - v1.7.15
    diff --git a/typedoc/functions/draw.drawFaceLandmarks-1.html b/typedoc/functions/draw.drawFaceLandmarks-1.html index b5de6b0..6d01ece 100644 --- a/typedoc/functions/draw.drawFaceLandmarks-1.html +++ b/typedoc/functions/draw.drawFaceLandmarks-1.html @@ -1 +1 @@ -drawFaceLandmarks | @vladmandic/face-api - v1.7.14
    +drawFaceLandmarks | @vladmandic/face-api - v1.7.15
    diff --git a/typedoc/functions/euclideanDistance.html b/typedoc/functions/euclideanDistance.html index 13e6197..3d0e9d8 100644 --- a/typedoc/functions/euclideanDistance.html +++ b/typedoc/functions/euclideanDistance.html @@ -1 +1 @@ -euclideanDistance | @vladmandic/face-api - v1.7.14

    Function euclideanDistance

    • Parameters

      • arr1: Float32Array | number[]
      • arr2: Float32Array | number[]

      Returns number

    +euclideanDistance | @vladmandic/face-api - v1.7.15

    Function euclideanDistance

    • Parameters

      • arr1: Float32Array | number[]
      • arr2: Float32Array | number[]

      Returns number

    diff --git a/typedoc/functions/extendWithAge.html b/typedoc/functions/extendWithAge.html index 5243d21..a66b2a6 100644 --- a/typedoc/functions/extendWithAge.html +++ b/typedoc/functions/extendWithAge.html @@ -1 +1 @@ -extendWithAge | @vladmandic/face-api - v1.7.14

    Function extendWithAge

    +extendWithAge | @vladmandic/face-api - v1.7.15

    Function extendWithAge

    diff --git a/typedoc/functions/extendWithFaceDescriptor.html b/typedoc/functions/extendWithFaceDescriptor.html index d7bdda0..c10f10d 100644 --- a/typedoc/functions/extendWithFaceDescriptor.html +++ b/typedoc/functions/extendWithFaceDescriptor.html @@ -1 +1 @@ -extendWithFaceDescriptor | @vladmandic/face-api - v1.7.14

    Function extendWithFaceDescriptor

    +extendWithFaceDescriptor | @vladmandic/face-api - v1.7.15

    Function extendWithFaceDescriptor

    diff --git a/typedoc/functions/extendWithFaceDetection.html b/typedoc/functions/extendWithFaceDetection.html index 7519d79..6f696b2 100644 --- a/typedoc/functions/extendWithFaceDetection.html +++ b/typedoc/functions/extendWithFaceDetection.html @@ -1 +1 @@ -extendWithFaceDetection | @vladmandic/face-api - v1.7.14

    Function extendWithFaceDetection

    +extendWithFaceDetection | @vladmandic/face-api - v1.7.15

    Function extendWithFaceDetection

    diff --git a/typedoc/functions/extendWithFaceExpressions.html b/typedoc/functions/extendWithFaceExpressions.html index eb33e9f..410e625 100644 --- a/typedoc/functions/extendWithFaceExpressions.html +++ b/typedoc/functions/extendWithFaceExpressions.html @@ -1 +1 @@ -extendWithFaceExpressions | @vladmandic/face-api - v1.7.14

    Function extendWithFaceExpressions

    +extendWithFaceExpressions | @vladmandic/face-api - v1.7.15

    Function extendWithFaceExpressions

    diff --git a/typedoc/functions/extendWithFaceLandmarks.html b/typedoc/functions/extendWithFaceLandmarks.html index c78ac5d..a84910c 100644 --- a/typedoc/functions/extendWithFaceLandmarks.html +++ b/typedoc/functions/extendWithFaceLandmarks.html @@ -1 +1 @@ -extendWithFaceLandmarks | @vladmandic/face-api - v1.7.14

    Function extendWithFaceLandmarks

    +extendWithFaceLandmarks | @vladmandic/face-api - v1.7.15

    Function extendWithFaceLandmarks

    diff --git a/typedoc/functions/extendWithGender.html b/typedoc/functions/extendWithGender.html index 9d83e48..d2a963d 100644 --- a/typedoc/functions/extendWithGender.html +++ b/typedoc/functions/extendWithGender.html @@ -1 +1 @@ -extendWithGender | @vladmandic/face-api - v1.7.14

    Function extendWithGender

    +extendWithGender | @vladmandic/face-api - v1.7.15

    Function extendWithGender

    diff --git a/typedoc/functions/extractFaceTensors.html b/typedoc/functions/extractFaceTensors.html index 19aa9f5..ec79704 100644 --- a/typedoc/functions/extractFaceTensors.html +++ b/typedoc/functions/extractFaceTensors.html @@ -1,8 +1,8 @@ -extractFaceTensors | @vladmandic/face-api - v1.7.14

    Function extractFaceTensors

    • Extracts the tensors of the image regions containing the detected faces. +extractFaceTensors | @vladmandic/face-api - v1.7.15

      Function extractFaceTensors

      • Extracts the tensors of the image regions containing the detected faces. Useful if you want to compute the face descriptors for the face images. Using this method is faster then extracting a canvas for each face and converting them to tensors individually.

        Parameters

        • imageTensor: Tensor4D | Tensor3D

          The image tensor that face detection has been performed on.

        • detections: (Rect | FaceDetection)[]

          The face detection results or face bounding boxes for that image.

        Returns Promise<Tensor3D[]>

        Tensors of the corresponding image region for each detected face.

        -
      +
    diff --git a/typedoc/functions/extractFaces.html b/typedoc/functions/extractFaces.html index 32f9b3a..49c9f7f 100644 --- a/typedoc/functions/extractFaces.html +++ b/typedoc/functions/extractFaces.html @@ -1,5 +1,5 @@ -extractFaces | @vladmandic/face-api - v1.7.14
    • Extracts the image regions containing the detected faces.

      +extractFaces | @vladmandic/face-api - v1.7.15
      • Extracts the image regions containing the detected faces.

        Parameters

        • input: TNetInput

          The image that face detection has been performed on.

        • detections: (Rect | FaceDetection)[]

          The face detection results or face bounding boxes for that image.

        Returns Promise<HTMLCanvasElement[]>

        The Canvases of the corresponding image region for each detected face.

        -
      +
    diff --git a/typedoc/functions/fetchImage.html b/typedoc/functions/fetchImage.html index 3c85585..ecb95e9 100644 --- a/typedoc/functions/fetchImage.html +++ b/typedoc/functions/fetchImage.html @@ -1 +1 @@ -fetchImage | @vladmandic/face-api - v1.7.14
    • Parameters

      • uri: string

      Returns Promise<HTMLImageElement>

    +fetchImage | @vladmandic/face-api - v1.7.15
    • Parameters

      • uri: string

      Returns Promise<HTMLImageElement>

    diff --git a/typedoc/functions/fetchJson.html b/typedoc/functions/fetchJson.html index fbb05de..c3dff34 100644 --- a/typedoc/functions/fetchJson.html +++ b/typedoc/functions/fetchJson.html @@ -1 +1 @@ -fetchJson | @vladmandic/face-api - v1.7.14
    • Type Parameters

      • T

      Parameters

      • uri: string

      Returns Promise<T>

    +fetchJson | @vladmandic/face-api - v1.7.15
    • Type Parameters

      • T

      Parameters

      • uri: string

      Returns Promise<T>

    diff --git a/typedoc/functions/fetchNetWeights.html b/typedoc/functions/fetchNetWeights.html index c4ef9a7..20f8339 100644 --- a/typedoc/functions/fetchNetWeights.html +++ b/typedoc/functions/fetchNetWeights.html @@ -1 +1 @@ -fetchNetWeights | @vladmandic/face-api - v1.7.14

    Function fetchNetWeights

    • Parameters

      • uri: string

      Returns Promise<Float32Array>

    +fetchNetWeights | @vladmandic/face-api - v1.7.15

    Function fetchNetWeights

    • Parameters

      • uri: string

      Returns Promise<Float32Array>

    diff --git a/typedoc/functions/fetchOrThrow.html b/typedoc/functions/fetchOrThrow.html index be4babf..ce50b43 100644 --- a/typedoc/functions/fetchOrThrow.html +++ b/typedoc/functions/fetchOrThrow.html @@ -1 +1 @@ -fetchOrThrow | @vladmandic/face-api - v1.7.14
    • Parameters

      • url: string
      • Optionalinit: RequestInit

      Returns Promise<Response>

    +fetchOrThrow | @vladmandic/face-api - v1.7.15
    • Parameters

      • url: string
      • Optionalinit: RequestInit

      Returns Promise<Response>

    diff --git a/typedoc/functions/fetchVideo.html b/typedoc/functions/fetchVideo.html index cad6a3f..6fc7b57 100644 --- a/typedoc/functions/fetchVideo.html +++ b/typedoc/functions/fetchVideo.html @@ -1 +1 @@ -fetchVideo | @vladmandic/face-api - v1.7.14
    • Parameters

      • uri: string

      Returns Promise<HTMLVideoElement>

    +fetchVideo | @vladmandic/face-api - v1.7.15
    • Parameters

      • uri: string

      Returns Promise<HTMLVideoElement>

    diff --git a/typedoc/functions/getContext2dOrThrow.html b/typedoc/functions/getContext2dOrThrow.html index ff4c0a5..61b99db 100644 --- a/typedoc/functions/getContext2dOrThrow.html +++ b/typedoc/functions/getContext2dOrThrow.html @@ -1 +1 @@ -getContext2dOrThrow | @vladmandic/face-api - v1.7.14

    Function getContext2dOrThrow

    • Parameters

      • canvasArg: string | HTMLCanvasElement | CanvasRenderingContext2D

      Returns CanvasRenderingContext2D

    +getContext2dOrThrow | @vladmandic/face-api - v1.7.15

    Function getContext2dOrThrow

    • Parameters

      • canvasArg: string | HTMLCanvasElement | CanvasRenderingContext2D

      Returns CanvasRenderingContext2D

    diff --git a/typedoc/functions/getMediaDimensions.html b/typedoc/functions/getMediaDimensions.html index a1bf1e0..3c0aa4b 100644 --- a/typedoc/functions/getMediaDimensions.html +++ b/typedoc/functions/getMediaDimensions.html @@ -1 +1 @@ -getMediaDimensions | @vladmandic/face-api - v1.7.14

    Function getMediaDimensions

    +getMediaDimensions | @vladmandic/face-api - v1.7.15

    Function getMediaDimensions

    diff --git a/typedoc/functions/imageTensorToCanvas.html b/typedoc/functions/imageTensorToCanvas.html index 137f746..e38155c 100644 --- a/typedoc/functions/imageTensorToCanvas.html +++ b/typedoc/functions/imageTensorToCanvas.html @@ -1 +1 @@ -imageTensorToCanvas | @vladmandic/face-api - v1.7.14

    Function imageTensorToCanvas

    • Parameters

      • imgTensor: tf.Tensor
      • Optionalcanvas: HTMLCanvasElement

      Returns Promise<HTMLCanvasElement>

    +imageTensorToCanvas | @vladmandic/face-api - v1.7.15

    Function imageTensorToCanvas

    • Parameters

      • imgTensor: tf.Tensor
      • Optionalcanvas: HTMLCanvasElement

      Returns Promise<HTMLCanvasElement>

    diff --git a/typedoc/functions/imageToSquare.html b/typedoc/functions/imageToSquare.html index 102aa3f..db89fa5 100644 --- a/typedoc/functions/imageToSquare.html +++ b/typedoc/functions/imageToSquare.html @@ -1 +1 @@ -imageToSquare | @vladmandic/face-api - v1.7.14

    Function imageToSquare

    • Parameters

      • input: HTMLCanvasElement | HTMLImageElement
      • inputSize: number
      • centerImage: boolean = false

      Returns HTMLCanvasElement

    +imageToSquare | @vladmandic/face-api - v1.7.15

    Function imageToSquare

    • Parameters

      • input: HTMLCanvasElement | HTMLImageElement
      • inputSize: number
      • centerImage: boolean = false

      Returns HTMLCanvasElement

    diff --git a/typedoc/functions/inverseSigmoid.html b/typedoc/functions/inverseSigmoid.html index 5090651..6ffbbec 100644 --- a/typedoc/functions/inverseSigmoid.html +++ b/typedoc/functions/inverseSigmoid.html @@ -1 +1 @@ -inverseSigmoid | @vladmandic/face-api - v1.7.14

    Function inverseSigmoid

    • Parameters

      • x: number

      Returns number

    +inverseSigmoid | @vladmandic/face-api - v1.7.15

    Function inverseSigmoid

    • Parameters

      • x: number

      Returns number

    diff --git a/typedoc/functions/iou.html b/typedoc/functions/iou.html index 6a180a6..f557c26 100644 --- a/typedoc/functions/iou.html +++ b/typedoc/functions/iou.html @@ -1 +1 @@ -iou | @vladmandic/face-api - v1.7.14
    • Parameters

      • box1: Box
      • box2: Box
      • isIOU: boolean = true

      Returns number

    +iou | @vladmandic/face-api - v1.7.15
    • Parameters

      • box1: Box
      • box2: Box
      • isIOU: boolean = true

      Returns number

    diff --git a/typedoc/functions/isMediaElement.html b/typedoc/functions/isMediaElement.html index c11e0b7..ddae07e 100644 --- a/typedoc/functions/isMediaElement.html +++ b/typedoc/functions/isMediaElement.html @@ -1 +1 @@ -isMediaElement | @vladmandic/face-api - v1.7.14

    Function isMediaElement

    • Parameters

      • input: any

      Returns input is HTMLCanvasElement | HTMLImageElement | HTMLVideoElement

    +isMediaElement | @vladmandic/face-api - v1.7.15

    Function isMediaElement

    • Parameters

      • input: any

      Returns input is HTMLCanvasElement | HTMLImageElement | HTMLVideoElement

    diff --git a/typedoc/functions/isMediaLoaded.html b/typedoc/functions/isMediaLoaded.html index 5ba2ff2..f5531d2 100644 --- a/typedoc/functions/isMediaLoaded.html +++ b/typedoc/functions/isMediaLoaded.html @@ -1 +1 @@ -isMediaLoaded | @vladmandic/face-api - v1.7.14

    Function isMediaLoaded

    • Parameters

      • media: HTMLImageElement | HTMLVideoElement

      Returns boolean

    +isMediaLoaded | @vladmandic/face-api - v1.7.15

    Function isMediaLoaded

    • Parameters

      • media: HTMLImageElement | HTMLVideoElement

      Returns boolean

    diff --git a/typedoc/functions/isWithAge.html b/typedoc/functions/isWithAge.html index acc0308..b586f2a 100644 --- a/typedoc/functions/isWithAge.html +++ b/typedoc/functions/isWithAge.html @@ -1 +1 @@ -isWithAge | @vladmandic/face-api - v1.7.14
    +isWithAge | @vladmandic/face-api - v1.7.15
    diff --git a/typedoc/functions/isWithFaceDetection.html b/typedoc/functions/isWithFaceDetection.html index 73ff339..07d9926 100644 --- a/typedoc/functions/isWithFaceDetection.html +++ b/typedoc/functions/isWithFaceDetection.html @@ -1 +1 @@ -isWithFaceDetection | @vladmandic/face-api - v1.7.14

    Function isWithFaceDetection

    +isWithFaceDetection | @vladmandic/face-api - v1.7.15

    Function isWithFaceDetection

    diff --git a/typedoc/functions/isWithFaceExpressions.html b/typedoc/functions/isWithFaceExpressions.html index c129b27..8e2bd64 100644 --- a/typedoc/functions/isWithFaceExpressions.html +++ b/typedoc/functions/isWithFaceExpressions.html @@ -1 +1 @@ -isWithFaceExpressions | @vladmandic/face-api - v1.7.14

    Function isWithFaceExpressions

    +isWithFaceExpressions | @vladmandic/face-api - v1.7.15

    Function isWithFaceExpressions

    diff --git a/typedoc/functions/isWithFaceLandmarks.html b/typedoc/functions/isWithFaceLandmarks.html index 4862e3f..5ee9602 100644 --- a/typedoc/functions/isWithFaceLandmarks.html +++ b/typedoc/functions/isWithFaceLandmarks.html @@ -1 +1 @@ -isWithFaceLandmarks | @vladmandic/face-api - v1.7.14

    Function isWithFaceLandmarks

    +isWithFaceLandmarks | @vladmandic/face-api - v1.7.15

    Function isWithFaceLandmarks

    diff --git a/typedoc/functions/isWithGender.html b/typedoc/functions/isWithGender.html index 06c7374..1b9926a 100644 --- a/typedoc/functions/isWithGender.html +++ b/typedoc/functions/isWithGender.html @@ -1 +1 @@ -isWithGender | @vladmandic/face-api - v1.7.14
    +isWithGender | @vladmandic/face-api - v1.7.15
    diff --git a/typedoc/functions/loadAgeGenderModel.html b/typedoc/functions/loadAgeGenderModel.html index 0593f37..1830b22 100644 --- a/typedoc/functions/loadAgeGenderModel.html +++ b/typedoc/functions/loadAgeGenderModel.html @@ -1 +1 @@ -loadAgeGenderModel | @vladmandic/face-api - v1.7.14

    Function loadAgeGenderModel

    +loadAgeGenderModel | @vladmandic/face-api - v1.7.15

    Function loadAgeGenderModel

    diff --git a/typedoc/functions/loadFaceDetectionModel.html b/typedoc/functions/loadFaceDetectionModel.html index 599e3de..ee641f6 100644 --- a/typedoc/functions/loadFaceDetectionModel.html +++ b/typedoc/functions/loadFaceDetectionModel.html @@ -1 +1 @@ -loadFaceDetectionModel | @vladmandic/face-api - v1.7.14

    Function loadFaceDetectionModel

    • Parameters

      • url: string

      Returns Promise<void>

    +loadFaceDetectionModel | @vladmandic/face-api - v1.7.15

    Function loadFaceDetectionModel

    • Parameters

      • url: string

      Returns Promise<void>

    diff --git a/typedoc/functions/loadFaceExpressionModel.html b/typedoc/functions/loadFaceExpressionModel.html index dfd3580..6b312c7 100644 --- a/typedoc/functions/loadFaceExpressionModel.html +++ b/typedoc/functions/loadFaceExpressionModel.html @@ -1 +1 @@ -loadFaceExpressionModel | @vladmandic/face-api - v1.7.14

    Function loadFaceExpressionModel

    • Parameters

      • url: string

      Returns Promise<void>

    +loadFaceExpressionModel | @vladmandic/face-api - v1.7.15

    Function loadFaceExpressionModel

    • Parameters

      • url: string

      Returns Promise<void>

    diff --git a/typedoc/functions/loadFaceLandmarkModel.html b/typedoc/functions/loadFaceLandmarkModel.html index 46612d2..179fd0b 100644 --- a/typedoc/functions/loadFaceLandmarkModel.html +++ b/typedoc/functions/loadFaceLandmarkModel.html @@ -1 +1 @@ -loadFaceLandmarkModel | @vladmandic/face-api - v1.7.14

    Function loadFaceLandmarkModel

    • Parameters

      • url: string

      Returns Promise<void>

    +loadFaceLandmarkModel | @vladmandic/face-api - v1.7.15

    Function loadFaceLandmarkModel

    • Parameters

      • url: string

      Returns Promise<void>

    diff --git a/typedoc/functions/loadFaceLandmarkTinyModel.html b/typedoc/functions/loadFaceLandmarkTinyModel.html index 9a6ac67..9893796 100644 --- a/typedoc/functions/loadFaceLandmarkTinyModel.html +++ b/typedoc/functions/loadFaceLandmarkTinyModel.html @@ -1 +1 @@ -loadFaceLandmarkTinyModel | @vladmandic/face-api - v1.7.14

    Function loadFaceLandmarkTinyModel

    • Parameters

      • url: string

      Returns Promise<void>

    +loadFaceLandmarkTinyModel | @vladmandic/face-api - v1.7.15

    Function loadFaceLandmarkTinyModel

    • Parameters

      • url: string

      Returns Promise<void>

    diff --git a/typedoc/functions/loadFaceRecognitionModel.html b/typedoc/functions/loadFaceRecognitionModel.html index 0f38c1f..7d1931a 100644 --- a/typedoc/functions/loadFaceRecognitionModel.html +++ b/typedoc/functions/loadFaceRecognitionModel.html @@ -1 +1 @@ -loadFaceRecognitionModel | @vladmandic/face-api - v1.7.14

    Function loadFaceRecognitionModel

    • Parameters

      • url: string

      Returns Promise<void>

    +loadFaceRecognitionModel | @vladmandic/face-api - v1.7.15

    Function loadFaceRecognitionModel

    • Parameters

      • url: string

      Returns Promise<void>

    diff --git a/typedoc/functions/loadSsdMobilenetv1Model.html b/typedoc/functions/loadSsdMobilenetv1Model.html index 1e01b8d..a27f7b4 100644 --- a/typedoc/functions/loadSsdMobilenetv1Model.html +++ b/typedoc/functions/loadSsdMobilenetv1Model.html @@ -1 +1 @@ -loadSsdMobilenetv1Model | @vladmandic/face-api - v1.7.14

    Function loadSsdMobilenetv1Model

    • Parameters

      • url: string

      Returns Promise<void>

    +loadSsdMobilenetv1Model | @vladmandic/face-api - v1.7.15

    Function loadSsdMobilenetv1Model

    • Parameters

      • url: string

      Returns Promise<void>

    diff --git a/typedoc/functions/loadTinyFaceDetectorModel.html b/typedoc/functions/loadTinyFaceDetectorModel.html index bfe2606..675a16b 100644 --- a/typedoc/functions/loadTinyFaceDetectorModel.html +++ b/typedoc/functions/loadTinyFaceDetectorModel.html @@ -1 +1 @@ -loadTinyFaceDetectorModel | @vladmandic/face-api - v1.7.14

    Function loadTinyFaceDetectorModel

    • Parameters

      • url: string

      Returns Promise<void>

    +loadTinyFaceDetectorModel | @vladmandic/face-api - v1.7.15

    Function loadTinyFaceDetectorModel

    • Parameters

      • url: string

      Returns Promise<void>

    diff --git a/typedoc/functions/loadTinyYolov2Model.html b/typedoc/functions/loadTinyYolov2Model.html index f312669..05adf0c 100644 --- a/typedoc/functions/loadTinyYolov2Model.html +++ b/typedoc/functions/loadTinyYolov2Model.html @@ -1 +1 @@ -loadTinyYolov2Model | @vladmandic/face-api - v1.7.14

    Function loadTinyYolov2Model

    • Parameters

      • url: string

      Returns Promise<void>

    +loadTinyYolov2Model | @vladmandic/face-api - v1.7.15

    Function loadTinyYolov2Model

    • Parameters

      • url: string

      Returns Promise<void>

    diff --git a/typedoc/functions/loadWeightMap.html b/typedoc/functions/loadWeightMap.html index 2c8ff00..a5dc565 100644 --- a/typedoc/functions/loadWeightMap.html +++ b/typedoc/functions/loadWeightMap.html @@ -1 +1 @@ -loadWeightMap | @vladmandic/face-api - v1.7.14

    Function loadWeightMap

    +loadWeightMap | @vladmandic/face-api - v1.7.15

    Function loadWeightMap

    diff --git a/typedoc/functions/locateFaces.html b/typedoc/functions/locateFaces.html index ed8c3bc..af44e63 100644 --- a/typedoc/functions/locateFaces.html +++ b/typedoc/functions/locateFaces.html @@ -1,5 +1,5 @@ -locateFaces | @vladmandic/face-api - v1.7.14
    diff --git a/typedoc/functions/matchDimensions.html b/typedoc/functions/matchDimensions.html index 18a1839..c21e27f 100644 --- a/typedoc/functions/matchDimensions.html +++ b/typedoc/functions/matchDimensions.html @@ -1 +1 @@ -matchDimensions | @vladmandic/face-api - v1.7.14

    Function matchDimensions

    +matchDimensions | @vladmandic/face-api - v1.7.15

    Function matchDimensions

    diff --git a/typedoc/functions/minBbox.html b/typedoc/functions/minBbox.html index 9854174..3ca712e 100644 --- a/typedoc/functions/minBbox.html +++ b/typedoc/functions/minBbox.html @@ -1 +1 @@ -minBbox | @vladmandic/face-api - v1.7.14
    +minBbox | @vladmandic/face-api - v1.7.15
    diff --git a/typedoc/functions/nonMaxSuppression.html b/typedoc/functions/nonMaxSuppression.html index e169f71..128ad3f 100644 --- a/typedoc/functions/nonMaxSuppression.html +++ b/typedoc/functions/nonMaxSuppression.html @@ -1 +1 @@ -nonMaxSuppression | @vladmandic/face-api - v1.7.14

    Function nonMaxSuppression

    • Parameters

      • boxes: Box[]
      • scores: number[]
      • iouThreshold: number
      • isIOU: boolean = true

      Returns number[]

    +nonMaxSuppression | @vladmandic/face-api - v1.7.15

    Function nonMaxSuppression

    • Parameters

      • boxes: Box[]
      • scores: number[]
      • iouThreshold: number
      • isIOU: boolean = true

      Returns number[]

    diff --git a/typedoc/functions/normalize.html b/typedoc/functions/normalize.html index 7d3e52f..3b9025a 100644 --- a/typedoc/functions/normalize.html +++ b/typedoc/functions/normalize.html @@ -1 +1 @@ -normalize | @vladmandic/face-api - v1.7.14
    +normalize | @vladmandic/face-api - v1.7.15
    diff --git a/typedoc/functions/padToSquare.html b/typedoc/functions/padToSquare.html index 01bd94d..0822642 100644 --- a/typedoc/functions/padToSquare.html +++ b/typedoc/functions/padToSquare.html @@ -1,6 +1,6 @@ -padToSquare | @vladmandic/face-api - v1.7.14
    • Pads the smaller dimension of an image tensor with zeros, such that width === height.

      +padToSquare | @vladmandic/face-api - v1.7.15
      • Pads the smaller dimension of an image tensor with zeros, such that width === height.

        Parameters

        • imgTensor: Tensor4D

          The image tensor.

        • isCenterImage: boolean = false

          (optional, default: false) If true, add an equal amount of padding on both sides of the minor dimension oof the image.

        Returns Tensor4D

        The padded tensor with width === height.

        -
      +
    diff --git a/typedoc/functions/predictAgeAndGender.html b/typedoc/functions/predictAgeAndGender.html index 09290ad..9a10c60 100644 --- a/typedoc/functions/predictAgeAndGender.html +++ b/typedoc/functions/predictAgeAndGender.html @@ -1,3 +1,3 @@ -predictAgeAndGender | @vladmandic/face-api - v1.7.14

    Function predictAgeAndGender

    Predicts age and gender from a face image.

    +predictAgeAndGender | @vladmandic/face-api - v1.7.15

    Function predictAgeAndGender

    Predicts age and gender from a face image.

    +
    diff --git a/typedoc/functions/recognizeFaceExpressions.html b/typedoc/functions/recognizeFaceExpressions.html index 1afcd61..95d1d90 100644 --- a/typedoc/functions/recognizeFaceExpressions.html +++ b/typedoc/functions/recognizeFaceExpressions.html @@ -1,3 +1,3 @@ -recognizeFaceExpressions | @vladmandic/face-api - v1.7.14

    Function recognizeFaceExpressions

    Recognizes the facial expressions from a face image.

    +recognizeFaceExpressions | @vladmandic/face-api - v1.7.15

    Function recognizeFaceExpressions

    Recognizes the facial expressions from a face image.

    +
    diff --git a/typedoc/functions/resizeResults.html b/typedoc/functions/resizeResults.html index 7b2afb3..3f4bdf5 100644 --- a/typedoc/functions/resizeResults.html +++ b/typedoc/functions/resizeResults.html @@ -1 +1 @@ -resizeResults | @vladmandic/face-api - v1.7.14

    Function resizeResults

    +resizeResults | @vladmandic/face-api - v1.7.15

    Function resizeResults

    diff --git a/typedoc/functions/resolveInput.html b/typedoc/functions/resolveInput.html index e56c98f..08a8694 100644 --- a/typedoc/functions/resolveInput.html +++ b/typedoc/functions/resolveInput.html @@ -1 +1 @@ -resolveInput | @vladmandic/face-api - v1.7.14
    +resolveInput | @vladmandic/face-api - v1.7.15
    diff --git a/typedoc/functions/shuffleArray.html b/typedoc/functions/shuffleArray.html index 70c58e6..916c573 100644 --- a/typedoc/functions/shuffleArray.html +++ b/typedoc/functions/shuffleArray.html @@ -1 +1 @@ -shuffleArray | @vladmandic/face-api - v1.7.14
    +shuffleArray | @vladmandic/face-api - v1.7.15
    diff --git a/typedoc/functions/sigmoid.html b/typedoc/functions/sigmoid.html index b045c7b..4da41ab 100644 --- a/typedoc/functions/sigmoid.html +++ b/typedoc/functions/sigmoid.html @@ -1 +1 @@ -sigmoid | @vladmandic/face-api - v1.7.14
    +sigmoid | @vladmandic/face-api - v1.7.15
    diff --git a/typedoc/functions/ssdMobilenetv1-1.html b/typedoc/functions/ssdMobilenetv1-1.html index 639efe8..2667cc6 100644 --- a/typedoc/functions/ssdMobilenetv1-1.html +++ b/typedoc/functions/ssdMobilenetv1-1.html @@ -1,5 +1,5 @@ -ssdMobilenetv1 | @vladmandic/face-api - v1.7.14

    Function ssdMobilenetv1

    Attempts to detect all faces in an image using SSD Mobilenetv1 Network.

    +ssdMobilenetv1 | @vladmandic/face-api - v1.7.15

    Function ssdMobilenetv1

    Attempts to detect all faces in an image using SSD Mobilenetv1 Network.

    +
    diff --git a/typedoc/functions/tf.add.html b/typedoc/functions/tf.add.html index 0ae97ac..811a5ae 100644 --- a/typedoc/functions/tf.add.html +++ b/typedoc/functions/tf.add.html @@ -1,4 +1,4 @@ -add | @vladmandic/face-api - v1.7.14
    • Adds two tf.Tensors element-wise, A + B. Supports broadcasting.

      +add | @vladmandic/face-api - v1.7.15
      • Adds two tf.Tensors element-wise, A + B. Supports broadcasting.

        const a = tf.tensor1d([1, 2, 3, 4]);
        const b = tf.tensor1d([10, 20, 30, 40]);

        a.add(b).print(); // or tf.add(a, b)
        @@ -7,4 +7,4 @@

        Type Parameters

        Parameters

        Returns T

      +

    Returns T

    diff --git a/typedoc/functions/tf.avgPool.html b/typedoc/functions/tf.avgPool.html index fc9cb8f..17d65d5 100644 --- a/typedoc/functions/tf.avgPool.html +++ b/typedoc/functions/tf.avgPool.html @@ -1,4 +1,4 @@ -avgPool | @vladmandic/face-api - v1.7.14
    • Computes the 2D average pooling of an image.

      +avgPool | @vladmandic/face-api - v1.7.15
      • Computes the 2D average pooling of an image.

        Type Parameters

        Parameters

        • x: TensorLike | T

          The input tensor, of rank 4 or rank 3 of shape [batch, height, width, inChannels]. If rank 3, batch of 1 is assumed.

        • filterSize: number | [number, number]

          The filter size: [filterHeight, filterWidth]. If @@ -16,4 +16,4 @@ than 1x1.

      • OptionaldimRoundingMode: "floor" | "round" | "ceil"

        A string from: 'ceil', 'round', 'floor'. If none is provided, it will default to truncate.

        -

      Returns T

    +

    Returns T

    diff --git a/typedoc/functions/tf.batchNorm.html b/typedoc/functions/tf.batchNorm.html index 40cc5ba..9419e43 100644 --- a/typedoc/functions/tf.batchNorm.html +++ b/typedoc/functions/tf.batchNorm.html @@ -1,4 +1,4 @@ -batchNorm | @vladmandic/face-api - v1.7.14
    +

    Returns tf.Tensor<R>

    diff --git a/typedoc/functions/tf.browser.draw.html b/typedoc/functions/tf.browser.draw.html index 6a68d7f..ed8a89b 100644 --- a/typedoc/functions/tf.browser.draw.html +++ b/typedoc/functions/tf.browser.draw.html @@ -1,4 +1,4 @@ -draw | @vladmandic/face-api - v1.7.14
    • Draws a tf.Tensor to a canvas.

      +draw | @vladmandic/face-api - v1.7.15
      • Draws a tf.Tensor to a canvas.

        When the dtype of the input is 'float32', we assume values in the range [0-1]. Otherwise, when input is 'int32', we assume values in the range [0-255].

        @@ -14,4 +14,4 @@ these shapes:

      • canvas: HTMLCanvasElement

        The canvas to draw to.

      • Optionaloptions: DrawOptions

        The configuration arguments for image to be drawn and the canvas to draw to.

        -

      Returns void

    +

    Returns void

    diff --git a/typedoc/functions/tf.browser.fromPixels.html b/typedoc/functions/tf.browser.fromPixels.html index 341e635..4a0cb08 100644 --- a/typedoc/functions/tf.browser.fromPixels.html +++ b/typedoc/functions/tf.browser.fromPixels.html @@ -1,4 +1,4 @@ -fromPixels | @vladmandic/face-api - v1.7.14
    • Creates a tf.Tensor from an image.

      +fromPixels | @vladmandic/face-api - v1.7.15
      • Creates a tf.Tensor from an image.

        const image = new ImageData(1, 1);
        image.data[0] = 100;
        image.data[1] = 150;
        image.data[2] = 200;
        image.data[3] = 255;

        tf.browser.fromPixels(image).print();
        @@ -16,4 +16,4 @@ engines. This means that results from different browsers, or even same browser with CPU and GPU rendering engines can be different. See discussion in details: https://github.com/tensorflow/tfjs/issues/5482

        -
      +
    diff --git a/typedoc/functions/tf.browser.fromPixelsAsync.html b/typedoc/functions/tf.browser.fromPixelsAsync.html index aaaf6ef..0b49b77 100644 --- a/typedoc/functions/tf.browser.fromPixelsAsync.html +++ b/typedoc/functions/tf.browser.fromPixelsAsync.html @@ -1,4 +1,4 @@ -fromPixelsAsync | @vladmandic/face-api - v1.7.14
    • Creates a tf.Tensor from an image in async way.

      +fromPixelsAsync | @vladmandic/face-api - v1.7.15
      • Creates a tf.Tensor from an image in async way.

        const image = new ImageData(1, 1);
        image.data[0] = 100;
        image.data[1] = 150;
        image.data[2] = 200;
        image.data[3] = 255;

        (await tf.browser.fromPixelsAsync(image)).print();
        @@ -12,4 +12,4 @@ object with following attributes:
      • OptionalnumChannels: number

        The number of channels of the output tensor. A numChannels value less than 4 allows you to ignore channels. Defaults to 3 (ignores alpha channel of input image).

        -

      Returns Promise<Tensor3D>

    +

    Returns Promise<Tensor3D>

    diff --git a/typedoc/functions/tf.browser.toPixels.html b/typedoc/functions/tf.browser.toPixels.html index 2b4c82d..23e5262 100644 --- a/typedoc/functions/tf.browser.toPixels.html +++ b/typedoc/functions/tf.browser.toPixels.html @@ -1,4 +1,4 @@ -toPixels | @vladmandic/face-api - v1.7.14
    • Draws a tf.Tensor of pixel values to a byte array or optionally a +toPixels | @vladmandic/face-api - v1.7.15

      • Draws a tf.Tensor of pixel values to a byte array or optionally a canvas.

        When the dtype of the input is 'float32', we assume values in the range [0-1]. Otherwise, when input is 'int32', we assume values in the range @@ -11,4 +11,4 @@ grayscale. When depth of 3, we draw with the first three components of the depth dimension corresponding to r, g, b and alpha = 1. When depth of 4, all four components of the depth dimension correspond to r, g, b, a.

      • Optionalcanvas: HTMLCanvasElement

        The canvas to draw to.

        -

      Returns Promise<Uint8ClampedArray>

    +

    Returns Promise<Uint8ClampedArray>

    diff --git a/typedoc/functions/tf.cast.html b/typedoc/functions/tf.cast.html index 3cb3898..b160ca7 100644 --- a/typedoc/functions/tf.cast.html +++ b/typedoc/functions/tf.cast.html @@ -1,7 +1,7 @@ -cast | @vladmandic/face-api - v1.7.14
    • Casts a tf.Tensor to a new dtype.

      +cast | @vladmandic/face-api - v1.7.15
      • Casts a tf.Tensor to a new dtype.

        const x = tf.tensor1d([1.5, 2.5, 3]);
        tf.cast(x, 'int32').print();

        Type Parameters

        Parameters

        • x: TensorLike | T

          The input tensor to be casted.

        • dtype: keyof DataTypeMap

          The dtype to cast the input tensor to.

          -

        Returns T

      +

    Returns T

    diff --git a/typedoc/functions/tf.clipByValue.html b/typedoc/functions/tf.clipByValue.html index d288b1d..3cf9ed7 100644 --- a/typedoc/functions/tf.clipByValue.html +++ b/typedoc/functions/tf.clipByValue.html @@ -1,8 +1,8 @@ -clipByValue | @vladmandic/face-api - v1.7.14
    • Clips values element-wise. max(min(x, clipValueMax), clipValueMin)

      +clipByValue | @vladmandic/face-api - v1.7.15
      • Clips values element-wise. max(min(x, clipValueMax), clipValueMin)

        const x = tf.tensor1d([-1, 2, -3, 4]);

        x.clipByValue(-2, 3).print(); // or tf.clipByValue(x, -2, 3)

        Type Parameters

        Parameters

        • x: TensorLike | T

          The input tensor.

        • clipValueMin: number

          Lower bound of range to be clipped to.

        • clipValueMax: number

          Upper bound of range to be clipped to.

          -

        Returns T

      +

    Returns T

    diff --git a/typedoc/functions/tf.concat.html b/typedoc/functions/tf.concat.html index 6adea10..9a0b587 100644 --- a/typedoc/functions/tf.concat.html +++ b/typedoc/functions/tf.concat.html @@ -1,4 +1,4 @@ -concat | @vladmandic/face-api - v1.7.14
    • Concatenates a list of tf.Tensors along a given axis.

      +concat | @vladmandic/face-api - v1.7.15
      • Concatenates a list of tf.Tensors along a given axis.

        The tensors ranks and types must match, and their sizes must match in all dimensions except axis.

        Also available are stricter rank-specific methods that assert that @@ -22,4 +22,4 @@ same signature as this method.

        Type Parameters

        Parameters

        • tensors: (TensorLike | T)[]

          A list of tensors to concatenate.

        • Optionalaxis: number

          The axis to concatenate along. Defaults to 0 (the first dim).

          -

        Returns T

      +

    Returns T

    diff --git a/typedoc/functions/tf.conv2d.html b/typedoc/functions/tf.conv2d.html index cf8dba4..7ed8d7c 100644 --- a/typedoc/functions/tf.conv2d.html +++ b/typedoc/functions/tf.conv2d.html @@ -1,4 +1,4 @@ -conv2d | @vladmandic/face-api - v1.7.14
    • Computes a 2D convolution over the input x.

      +conv2d | @vladmandic/face-api - v1.7.15
      • Computes a 2D convolution over the input x.

        Type Parameters

        Parameters

        • x: TensorLike | T

          The input tensor, of rank 4 or rank 3, of shape [batch, height, width, inChannels]. If rank 3, batch of 1 is assumed.

          @@ -21,4 +21,4 @@ number, then dilationHeight == dilationWidth. If it is greater than 1, then all values of strides must be 1.

        • OptionaldimRoundingMode: "floor" | "round" | "ceil"

          A string from: 'ceil', 'round', 'floor'. If none is provided, it will default to truncate.

          -

        Returns T

      +

    Returns T

    diff --git a/typedoc/functions/tf.depthwiseConv2d.html b/typedoc/functions/tf.depthwiseConv2d.html index 5cd1182..f77fa52 100644 --- a/typedoc/functions/tf.depthwiseConv2d.html +++ b/typedoc/functions/tf.depthwiseConv2d.html @@ -1,4 +1,4 @@ -depthwiseConv2d | @vladmandic/face-api - v1.7.14
    • Depthwise 2D convolution.

      +depthwiseConv2d | @vladmandic/face-api - v1.7.15
      • Depthwise 2D convolution.

        Given a 4D input array and a filter array of shape [filterHeight, filterWidth, inChannels, channelMultiplier] containing inChannels convolutional filters of depth 1, this op applies a @@ -30,4 +30,4 @@ number, then dilationHeight == dilationWidth. If it is greater than 1, then all values of strides must be 1.

      • OptionaldimRoundingMode: "floor" | "round" | "ceil"

        A string from: 'ceil', 'round', 'floor'. If none is provided, it will default to truncate.

        -

      Returns T

    +

    Returns T

    diff --git a/typedoc/functions/tf.div.html b/typedoc/functions/tf.div.html index 8d77343..cabd16b 100644 --- a/typedoc/functions/tf.div.html +++ b/typedoc/functions/tf.div.html @@ -1,4 +1,4 @@ -div | @vladmandic/face-api - v1.7.14
    • Divides two tf.Tensors element-wise, A / B. Supports broadcasting.

      +div | @vladmandic/face-api - v1.7.15
      • Divides two tf.Tensors element-wise, A / B. Supports broadcasting.

        const a = tf.tensor1d([1, 4, 9, 16]);
        const b = tf.tensor1d([1, 2, 3, 4]);

        a.div(b).print(); // or tf.div(a, b)
        @@ -8,4 +8,4 @@

        Type Parameters

        Parameters

        Returns T

      +

    Returns T

    diff --git a/typedoc/functions/tf.exp.html b/typedoc/functions/tf.exp.html index a0c97d8..95bf64e 100644 --- a/typedoc/functions/tf.exp.html +++ b/typedoc/functions/tf.exp.html @@ -1,6 +1,6 @@ -exp | @vladmandic/face-api - v1.7.14
    • Computes exponential of the input tf.Tensor element-wise. e ^ x

      +exp | @vladmandic/face-api - v1.7.15
      • Computes exponential of the input tf.Tensor element-wise. e ^ x

        const x = tf.tensor1d([1, 2, -3]);

        x.exp().print(); // or tf.exp(x)

        Type Parameters

        Parameters

        Returns T

      +

    Returns T

    diff --git a/typedoc/functions/tf.expandDims.html b/typedoc/functions/tf.expandDims.html index 1ccd12d..b448372 100644 --- a/typedoc/functions/tf.expandDims.html +++ b/typedoc/functions/tf.expandDims.html @@ -1,4 +1,4 @@ -expandDims | @vladmandic/face-api - v1.7.14
    • Returns a tf.Tensor that has expanded rank, by inserting a dimension +expandDims | @vladmandic/face-api - v1.7.15

      • Returns a tf.Tensor that has expanded rank, by inserting a dimension into the tensor's shape.

        const x = tf.tensor1d([1, 2, 3, 4]);
        const axis = 1;
        x.expandDims(axis).print();
        @@ -6,4 +6,4 @@ into the tensor's shape.

        Type Parameters

        Parameters

        • x: TensorLike | tf.Tensor

          The input tensor whose dimensions are to be expanded.

        • Optionalaxis: number

          The dimension index at which to insert shape of 1. Defaults to 0 (the first dimension).

          -

        Returns T

      +

    Returns T

    diff --git a/typedoc/functions/tf.fill.html b/typedoc/functions/tf.fill.html index d5b34ca..55c26a0 100644 --- a/typedoc/functions/tf.fill.html +++ b/typedoc/functions/tf.fill.html @@ -1,4 +1,4 @@ -fill | @vladmandic/face-api - v1.7.14
    • Creates a tf.Tensor filled with a scalar value.

      +fill | @vladmandic/face-api - v1.7.15
      • Creates a tf.Tensor filled with a scalar value.

        tf.fill([2, 2], 4).print();
         
        @@ -6,4 +6,4 @@
      • value: string | number

        The scalar value to fill the tensor with.

      • Optionaldtype: keyof DataTypeMap

        The type of an element in the resulting tensor. Defaults to 'float32' if the given param value is a number, otherwise 'string'.

        -

      Returns tf.Tensor<R>

    +

    Returns tf.Tensor<R>

    diff --git a/typedoc/functions/tf.io.browserFiles.html b/typedoc/functions/tf.io.browserFiles.html index 5214314..962dfe1 100644 --- a/typedoc/functions/tf.io.browserFiles.html +++ b/typedoc/functions/tf.io.browserFiles.html @@ -1,4 +1,4 @@ -browserFiles | @vladmandic/face-api - v1.7.14
    • Creates an IOHandler that loads model artifacts from user-selected files.

      +browserFiles | @vladmandic/face-api - v1.7.15
      • Creates an IOHandler that loads model artifacts from user-selected files.

        This method can be used for loading from files such as user-selected files in the browser. When used in conjunction with tf.loadLayersModel, an instance of @@ -20,4 +20,4 @@ Python PIP package. If no weights files are provided, only the model topology will be loaded from the JSON file above.

    Returns IOHandler

    An instance of Files IOHandler.

    -
    +
    diff --git a/typedoc/functions/tf.io.browserHTTPRequest.html b/typedoc/functions/tf.io.browserHTTPRequest.html index 03ec45e..acca72f 100644 --- a/typedoc/functions/tf.io.browserHTTPRequest.html +++ b/typedoc/functions/tf.io.browserHTTPRequest.html @@ -1,2 +1,2 @@ -browserHTTPRequest | @vladmandic/face-api - v1.7.14
    • Deprecated. Use tf.io.http.

      -

      Parameters

      Returns IOHandler

    +browserHTTPRequest | @vladmandic/face-api - v1.7.15
    • Deprecated. Use tf.io.http.

      +

      Parameters

      Returns IOHandler

    diff --git a/typedoc/functions/tf.io.concatenateArrayBuffers.html b/typedoc/functions/tf.io.concatenateArrayBuffers.html index 09a0ce0..3d8783a 100644 --- a/typedoc/functions/tf.io.concatenateArrayBuffers.html +++ b/typedoc/functions/tf.io.concatenateArrayBuffers.html @@ -1,6 +1,6 @@ -concatenateArrayBuffers | @vladmandic/face-api - v1.7.14

    Function concatenateArrayBuffers

    • Concatenate a number of ArrayBuffers into one.

      +concatenateArrayBuffers | @vladmandic/face-api - v1.7.15

      Function concatenateArrayBuffers

      • Concatenate a number of ArrayBuffers into one.

        Parameters

        • buffers: ArrayBuffer | ArrayBuffer[]

          An array of ArrayBuffers to concatenate, or a single ArrayBuffer.

        Returns ArrayBuffer

        Result of concatenating buffers in order.

        Use tf.io.CompositeArrayBuffer.join() instead.

        -
      +
    diff --git a/typedoc/functions/tf.io.copyModel.html b/typedoc/functions/tf.io.copyModel.html index af5c060..5c7c886 100644 --- a/typedoc/functions/tf.io.copyModel.html +++ b/typedoc/functions/tf.io.copyModel.html @@ -1,4 +1,4 @@ -copyModel | @vladmandic/face-api - v1.7.14
    • Copy a model from one URL to another.

      +copyModel | @vladmandic/face-api - v1.7.15
      • Copy a model from one URL to another.

        This function supports:

        1. Copying within a storage medium, e.g., @@ -15,4 +15,4 @@ is successful).

          Error if copying fails, e.g., if no model exists at sourceURL, or if oldPath and newPath are identical.

          -
      +
    diff --git a/typedoc/functions/tf.io.decodeWeights.html b/typedoc/functions/tf.io.decodeWeights.html index 9e3e353..4cbc33b 100644 --- a/typedoc/functions/tf.io.decodeWeights.html +++ b/typedoc/functions/tf.io.decodeWeights.html @@ -1,4 +1,4 @@ -decodeWeights | @vladmandic/face-api - v1.7.14
    • Decode flat ArrayBuffer as weights.

      +decodeWeights | @vladmandic/face-api - v1.7.15
      • Decode flat ArrayBuffer as weights.

        This function does not handle sharding.

        This function is the reverse of encodeWeights.

        Parameters

        • weightData: WeightData

          A flat ArrayBuffer or an array of ArrayBuffers carrying the @@ -9,4 +9,4 @@ whose value are encoded by buffer.

        Returns NamedTensorMap

        A map from tensor name to tensor value, with the names corresponding to names in specs.

        Error, if any of the tensors has unsupported dtype.

        -
      +
    diff --git a/typedoc/functions/tf.io.decodeWeightsStream.html b/typedoc/functions/tf.io.decodeWeightsStream.html index 0a95168..307abb6 100644 --- a/typedoc/functions/tf.io.decodeWeightsStream.html +++ b/typedoc/functions/tf.io.decodeWeightsStream.html @@ -1 +1 @@ -decodeWeightsStream | @vladmandic/face-api - v1.7.14
    • Parameters

      Returns Promise<NamedTensorMap>

    +decodeWeightsStream | @vladmandic/face-api - v1.7.15
    • Parameters

      Returns Promise<NamedTensorMap>

    diff --git a/typedoc/functions/tf.io.encodeWeights.html b/typedoc/functions/tf.io.encodeWeights.html index 87b402b..08be17d 100644 --- a/typedoc/functions/tf.io.encodeWeights.html +++ b/typedoc/functions/tf.io.encodeWeights.html @@ -1,4 +1,4 @@ -encodeWeights | @vladmandic/face-api - v1.7.14
    • Encode a map from names to weight values as an ArrayBuffer, along with an +encodeWeights | @vladmandic/face-api - v1.7.15

      • Encode a map from names to weight values as an ArrayBuffer, along with an Array of WeightsManifestEntry as specification of the encoded weights.

        This function does not perform sharding.

        This function is the reverse of decodeWeights.

        @@ -12,4 +12,4 @@ concatenated.
      • tensor names, dtypes and shapes.

      Error: on unsupported tensor dtype.

      -
    +
    diff --git a/typedoc/functions/tf.io.fromMemory.html b/typedoc/functions/tf.io.fromMemory.html index 20ac761..26d61bc 100644 --- a/typedoc/functions/tf.io.fromMemory.html +++ b/typedoc/functions/tf.io.fromMemory.html @@ -1,4 +1,4 @@ -fromMemory | @vladmandic/face-api - v1.7.14
    • Creates an IOHandler that loads model artifacts from memory.

      +fromMemory | @vladmandic/face-api - v1.7.15
      • Creates an IOHandler that loads model artifacts from memory.

        When used in conjunction with tf.loadLayersModel, an instance of tf.LayersModel (Keras-style) can be constructed from the loaded artifacts.

        const model = await tf.loadLayersModel(tf.io.fromMemory(
        modelTopology, weightSpecs, weightData)); @@ -12,4 +12,4 @@ names, shapes, types, and quantization of the weight data. Optional.

        concatenated in the order described by the weightSpecs. Optional.

      • OptionaltrainingConfig: TrainingConfig

        Model training configuration. Optional.

      Returns IOHandler

      A passthrough IOHandler that simply loads the provided data.

      -
    +
    diff --git a/typedoc/functions/tf.io.fromMemorySync.html b/typedoc/functions/tf.io.fromMemorySync.html index 53916ce..fed1cf7 100644 --- a/typedoc/functions/tf.io.fromMemorySync.html +++ b/typedoc/functions/tf.io.fromMemorySync.html @@ -1,4 +1,4 @@ -fromMemorySync | @vladmandic/face-api - v1.7.14
    • Creates an IOHandler that loads model artifacts from memory.

      +fromMemorySync | @vladmandic/face-api - v1.7.15
      • Creates an IOHandler that loads model artifacts from memory.

        When used in conjunction with tf.loadLayersModel, an instance of tf.LayersModel (Keras-style) can be constructed from the loaded artifacts.

        const model = await tf.loadLayersModel(tf.io.fromMemory(
        modelTopology, weightSpecs, weightData)); @@ -12,4 +12,4 @@ names, shapes, types, and quantization of the weight data. Optional.

        concatenated in the order described by the weightSpecs. Optional.

      • OptionaltrainingConfig: TrainingConfig

        Model training configuration. Optional.

      Returns IOHandlerSync

      A passthrough IOHandlerSync that simply loads the provided data.

      -
    +
    diff --git a/typedoc/functions/tf.io.getLoadHandlers.html b/typedoc/functions/tf.io.getLoadHandlers.html index 3733cf6..c89004c 100644 --- a/typedoc/functions/tf.io.getLoadHandlers.html +++ b/typedoc/functions/tf.io.getLoadHandlers.html @@ -1 +1 @@ -getLoadHandlers | @vladmandic/face-api - v1.7.14
    • Parameters

      Returns IOHandler[]

    +getLoadHandlers | @vladmandic/face-api - v1.7.15
    • Parameters

      Returns IOHandler[]

    diff --git a/typedoc/functions/tf.io.getModelArtifactsForJSON.html b/typedoc/functions/tf.io.getModelArtifactsForJSON.html index 1f6aa42..0b246e5 100644 --- a/typedoc/functions/tf.io.getModelArtifactsForJSON.html +++ b/typedoc/functions/tf.io.getModelArtifactsForJSON.html @@ -1,7 +1,7 @@ -getModelArtifactsForJSON | @vladmandic/face-api - v1.7.14

    Function getModelArtifactsForJSON

    • Create ModelArtifacts from a JSON file.

      +getModelArtifactsForJSON | @vladmandic/face-api - v1.7.15

      Function getModelArtifactsForJSON

      • Create ModelArtifacts from a JSON file.

        Parameters

        • modelJSON: ModelJSON

          Object containing the parsed JSON of model.json

        • loadWeights: (
              weightsManifest: WeightsManifestConfig,
          ) => Promise<[WeightsManifestEntry[], WeightData]>

          Function that takes the JSON file's weights manifest, reads weights from the listed path(s), and returns a Promise of the weight manifest entries along with the weights data.

        Returns Promise<ModelArtifacts>

        A Promise of the ModelArtifacts, as described by the JSON file.

        -
      +
    diff --git a/typedoc/functions/tf.io.getModelArtifactsForJSONSync.html b/typedoc/functions/tf.io.getModelArtifactsForJSONSync.html index 05e681e..0c822cb 100644 --- a/typedoc/functions/tf.io.getModelArtifactsForJSONSync.html +++ b/typedoc/functions/tf.io.getModelArtifactsForJSONSync.html @@ -1,4 +1,4 @@ -getModelArtifactsForJSONSync | @vladmandic/face-api - v1.7.14

    Function getModelArtifactsForJSONSync

    • Create ModelArtifacts from a JSON file and weights.

      +getModelArtifactsForJSONSync | @vladmandic/face-api - v1.7.15

      Function getModelArtifactsForJSONSync

      • Create ModelArtifacts from a JSON file and weights.

        Parameters

        • modelJSON: ModelJSON

          Object containing the parsed JSON of model.json

        • OptionalweightSpecs: WeightsManifestEntry[]

          The list of WeightsManifestEntry for the model. Must be passed if the modelJSON has a weightsManifest.

          @@ -6,4 +6,4 @@ passed if the modelJSON has a weightsManifest.

          the model corresponding to the weights in weightSpecs. Must be passed if the modelJSON has a weightsManifest.

        Returns ModelArtifacts

        A Promise of the ModelArtifacts, as described by the JSON file.

        -
      +
    diff --git a/typedoc/functions/tf.io.getModelArtifactsInfoForJSON.html b/typedoc/functions/tf.io.getModelArtifactsInfoForJSON.html index 9223641..51baa41 100644 --- a/typedoc/functions/tf.io.getModelArtifactsInfoForJSON.html +++ b/typedoc/functions/tf.io.getModelArtifactsInfoForJSON.html @@ -1,3 +1,3 @@ -getModelArtifactsInfoForJSON | @vladmandic/face-api - v1.7.14

    Function getModelArtifactsInfoForJSON

    • Populate ModelArtifactsInfo fields for a model with JSON topology.

      +getModelArtifactsInfoForJSON | @vladmandic/face-api - v1.7.15

      Function getModelArtifactsInfoForJSON

      • Populate ModelArtifactsInfo fields for a model with JSON topology.

        Parameters

        Returns ModelArtifactsInfo

        A ModelArtifactsInfo object.

        -
      +
    diff --git a/typedoc/functions/tf.io.getSaveHandlers.html b/typedoc/functions/tf.io.getSaveHandlers.html index 3aefc42..dc5adf4 100644 --- a/typedoc/functions/tf.io.getSaveHandlers.html +++ b/typedoc/functions/tf.io.getSaveHandlers.html @@ -1 +1 @@ -getSaveHandlers | @vladmandic/face-api - v1.7.14
    • Parameters

      • url: string | string[]

      Returns IOHandler[]

    +getSaveHandlers | @vladmandic/face-api - v1.7.15
    • Parameters

      • url: string | string[]

      Returns IOHandler[]

    diff --git a/typedoc/functions/tf.io.getWeightSpecs.html b/typedoc/functions/tf.io.getWeightSpecs.html index 54a1830..8d98e04 100644 --- a/typedoc/functions/tf.io.getWeightSpecs.html +++ b/typedoc/functions/tf.io.getWeightSpecs.html @@ -1,5 +1,5 @@ -getWeightSpecs | @vladmandic/face-api - v1.7.14
    • Concatenate the weights stored in a WeightsManifestConfig into a list of +getWeightSpecs | @vladmandic/face-api - v1.7.15

      • Concatenate the weights stored in a WeightsManifestConfig into a list of WeightsManifestEntry

        Parameters

        Returns WeightsManifestEntry[]

        A list of WeightsManifestEntry of the weights in the weightsManifest

        -
      +
    diff --git a/typedoc/functions/tf.io.http.html b/typedoc/functions/tf.io.http.html index 75fd027..8c371f0 100644 --- a/typedoc/functions/tf.io.http.html +++ b/typedoc/functions/tf.io.http.html @@ -1,4 +1,4 @@ -http | @vladmandic/face-api - v1.7.14
    • Creates an IOHandler subtype that sends model artifacts to HTTP server.

      +http | @vladmandic/face-api - v1.7.15
      • Creates an IOHandler subtype that sends model artifacts to HTTP server.

        An HTTP request of the multipart/form-data mime type will be sent to the path URL. The form data includes artifacts that represent the topology and/or weights of the model. In the case of Keras-style tf.Model, two @@ -40,4 +40,4 @@ the fetch from node-fetch can be used here.

      • before the load is completed.

    Returns IOHandler

    An instance of IOHandler.

    -
    +
    diff --git a/typedoc/functions/tf.io.isHTTPScheme.html b/typedoc/functions/tf.io.isHTTPScheme.html index 13cc8c8..b92a417 100644 --- a/typedoc/functions/tf.io.isHTTPScheme.html +++ b/typedoc/functions/tf.io.isHTTPScheme.html @@ -1 +1 @@ -isHTTPScheme | @vladmandic/face-api - v1.7.14
    • Parameters

      • url: string

      Returns boolean

    +isHTTPScheme | @vladmandic/face-api - v1.7.15
    • Parameters

      • url: string

      Returns boolean

    diff --git a/typedoc/functions/tf.io.listModels.html b/typedoc/functions/tf.io.listModels.html index 8a78dd0..f60500e 100644 --- a/typedoc/functions/tf.io.listModels.html +++ b/typedoc/functions/tf.io.listModels.html @@ -1,4 +1,4 @@ -listModels | @vladmandic/face-api - v1.7.14
    • List all models stored in registered storage mediums.

      +listModels | @vladmandic/face-api - v1.7.15
      • List all models stored in registered storage mediums.

        For a web browser environment, the registered mediums are Local Storage and IndexedDB.

        // First create and save a model.
        const model = tf.sequential();
        model.add(tf.layers.dense(
        {units: 1, inputShape: [10], activation: 'sigmoid'}));
        await model.save('localstorage://demo/management/model1');

        // Then list existing models.
        console.log(JSON.stringify(await tf.io.listModels()));

        // Delete the model.
        await tf.io.removeModel('localstorage://demo/management/model1');

        // List models again.
        console.log(JSON.stringify(await tf.io.listModels())); @@ -8,4 +8,4 @@ IndexedDB.

        their model artifacts info. URLs include medium-specific schemes, e.g., 'indexeddb://my/model/1'. Model artifacts info include type of the model's topology, byte sizes of the topology, weights, etc.

        -
      +
    diff --git a/typedoc/functions/tf.io.loadWeights.html b/typedoc/functions/tf.io.loadWeights.html index 1fb95ce..203cbb9 100644 --- a/typedoc/functions/tf.io.loadWeights.html +++ b/typedoc/functions/tf.io.loadWeights.html @@ -1,7 +1,7 @@ -loadWeights | @vladmandic/face-api - v1.7.14
    • Reads a weights manifest JSON configuration, fetches the weights and +loadWeights | @vladmandic/face-api - v1.7.15

      • Reads a weights manifest JSON configuration, fetches the weights and returns them as Tensors.

        Parameters

        • manifest: WeightsManifestConfig

          The weights manifest JSON.

        • OptionalfilePathPrefix: string

          The path prefix for filenames given in the manifest. Defaults to the empty string.

        • OptionalweightNames: string[]

          The names of the weights to be fetched.

          -
        • OptionalrequestInit: RequestInit

        Returns Promise<NamedTensorMap>

      +
    • OptionalrequestInit: RequestInit

    Returns Promise<NamedTensorMap>

    diff --git a/typedoc/functions/tf.io.moveModel.html b/typedoc/functions/tf.io.moveModel.html index f59e26d..f837445 100644 --- a/typedoc/functions/tf.io.moveModel.html +++ b/typedoc/functions/tf.io.moveModel.html @@ -1,4 +1,4 @@ -moveModel | @vladmandic/face-api - v1.7.14
    • Move a model from one URL to another.

      +moveModel | @vladmandic/face-api - v1.7.15
      • Move a model from one URL to another.

        This function supports:

        1. Moving within a storage medium, e.g., @@ -15,4 +15,4 @@ is successful).

          Error if moving fails, e.g., if no model exists at sourceURL, or if oldPath and newPath are identical.

          -
      +
    diff --git a/typedoc/functions/tf.io.registerLoadRouter.html b/typedoc/functions/tf.io.registerLoadRouter.html index 9bc0ad0..dff24d5 100644 --- a/typedoc/functions/tf.io.registerLoadRouter.html +++ b/typedoc/functions/tf.io.registerLoadRouter.html @@ -1 +1 @@ -registerLoadRouter | @vladmandic/face-api - v1.7.14
    • Parameters

      • loudRouter: IORouter

      Returns void

    +registerLoadRouter | @vladmandic/face-api - v1.7.15
    • Parameters

      • loudRouter: IORouter

      Returns void

    diff --git a/typedoc/functions/tf.io.registerSaveRouter.html b/typedoc/functions/tf.io.registerSaveRouter.html index 566a950..97cd70d 100644 --- a/typedoc/functions/tf.io.registerSaveRouter.html +++ b/typedoc/functions/tf.io.registerSaveRouter.html @@ -1 +1 @@ -registerSaveRouter | @vladmandic/face-api - v1.7.14
    • Parameters

      • loudRouter: IORouter

      Returns void

    +registerSaveRouter | @vladmandic/face-api - v1.7.15
    • Parameters

      • loudRouter: IORouter

      Returns void

    diff --git a/typedoc/functions/tf.io.removeModel.html b/typedoc/functions/tf.io.removeModel.html index aaa6d48..78589fd 100644 --- a/typedoc/functions/tf.io.removeModel.html +++ b/typedoc/functions/tf.io.removeModel.html @@ -1,4 +1,4 @@ -removeModel | @vladmandic/face-api - v1.7.14
    • Remove a model specified by URL from a registered storage medium.

      +removeModel | @vladmandic/face-api - v1.7.15
      • Remove a model specified by URL from a registered storage medium.

        // First create and save a model.
        const model = tf.sequential();
        model.add(tf.layers.dense(
        {units: 1, inputShape: [10], activation: 'sigmoid'}));
        await model.save('localstorage://demo/management/model1');

        // Then list existing models.
        console.log(JSON.stringify(await tf.io.listModels()));

        // Delete the model.
        await tf.io.removeModel('localstorage://demo/management/model1');

        // List models again.
        console.log(JSON.stringify(await tf.io.listModels()));
        @@ -7,4 +7,4 @@

      Returns Promise<ModelArtifactsInfo>

      ModelArtifactsInfo of the deleted model (if and only if deletion is successful).

      Error if deletion fails, e.g., if no model exists at path.

      -
    +
    diff --git a/typedoc/functions/tf.io.weightsLoaderFactory.html b/typedoc/functions/tf.io.weightsLoaderFactory.html index e0b628d..1be060e 100644 --- a/typedoc/functions/tf.io.weightsLoaderFactory.html +++ b/typedoc/functions/tf.io.weightsLoaderFactory.html @@ -1,4 +1,4 @@ -weightsLoaderFactory | @vladmandic/face-api - v1.7.14
    • Creates a function, which reads a weights manifest JSON configuration, +weightsLoaderFactory | @vladmandic/face-api - v1.7.15

      • Creates a function, which reads a weights manifest JSON configuration, fetches the weight files using the specified function and returns them as Tensors.

        // example for creating a nodejs weight loader, which reads the weight files
        // from disk using fs.readFileSync

        import * as fs from 'fs'

        const fetchWeightsFromDisk = (filePaths: string[]) =>
        filePaths.map(filePath => fs.readFileSync(filePath).buffer)

        const loadWeights = tf.io.weightsLoaderFactory(fetchWeightsFromDisk)

        const manifest = JSON.parse(
        fs.readFileSync('./my_model-weights_manifest').toString()
        )
        const weightMap = await loadWeights(manifest, './') @@ -6,4 +6,4 @@ fetches the weight files using the specified function and returns them as

        Parameters

        • fetchWeightsFunction: (fetchUrls: string[]) => Promise<ArrayBuffer[]>

          The function used for fetching the weight files.

        Returns (
            manifest: WeightsManifestConfig,
            filePathPrefix?: string,
            weightNames?: string[],
        ) => Promise<NamedTensorMap>

        Weight loading function.

        -
      +
    diff --git a/typedoc/functions/tf.io.withSaveHandler.html b/typedoc/functions/tf.io.withSaveHandler.html index d7045d2..c68a815 100644 --- a/typedoc/functions/tf.io.withSaveHandler.html +++ b/typedoc/functions/tf.io.withSaveHandler.html @@ -1,7 +1,7 @@ -withSaveHandler | @vladmandic/face-api - v1.7.14
    • Creates an IOHandler that passes saved model artifacts to a callback.

      +withSaveHandler | @vladmandic/face-api - v1.7.15
      • Creates an IOHandler that passes saved model artifacts to a callback.

        function handleSave(artifacts) {
        // ... do something with the artifacts ...
        return {modelArtifactsInfo: {...}, ...};
        }

        const saveResult = model.save(tf.io.withSaveHandler(handleSave));

        Parameters

        • saveHandler: (artifacts: ModelArtifacts) => Promise<SaveResult>

          A function that accepts a ModelArtifacts and returns a promise that resolves to a SaveResult.

          -

        Returns IOHandler

      +

    Returns IOHandler

    diff --git a/typedoc/functions/tf.io.withSaveHandlerSync.html b/typedoc/functions/tf.io.withSaveHandlerSync.html index 63a5c52..5c9a338 100644 --- a/typedoc/functions/tf.io.withSaveHandlerSync.html +++ b/typedoc/functions/tf.io.withSaveHandlerSync.html @@ -1,7 +1,7 @@ -withSaveHandlerSync | @vladmandic/face-api - v1.7.14
    • Creates an IOHandlerSync that passes saved model artifacts to a callback.

      +withSaveHandlerSync | @vladmandic/face-api - v1.7.15
      • Creates an IOHandlerSync that passes saved model artifacts to a callback.

        function handleSave(artifacts) {
        // ... do something with the artifacts ...
        return {modelArtifactsInfo: {...}, ...};
        }

        const saveResult = model.save(tf.io.withSaveHandler(handleSave));

        Parameters

        • saveHandler: (artifacts: ModelArtifacts) => SaveResult

          A function that accepts a ModelArtifacts and returns a SaveResult.

          -

        Returns IOHandlerSync

      +

    Returns IOHandlerSync

    diff --git a/typedoc/functions/tf.matMul.html b/typedoc/functions/tf.matMul.html index f211232..6563c92 100644 --- a/typedoc/functions/tf.matMul.html +++ b/typedoc/functions/tf.matMul.html @@ -1,4 +1,4 @@ -matMul | @vladmandic/face-api - v1.7.14
    • Computes the dot product of two matrices, A * B. These must be matrices.

      +matMul | @vladmandic/face-api - v1.7.15
      • Computes the dot product of two matrices, A * B. These must be matrices.

        const a = tf.tensor2d([1, 2], [1, 2]);
        const b = tf.tensor2d([1, 2, 3, 4], [2, 2]);

        a.matMul(b).print(); // or tf.matMul(a, b)
        @@ -6,4 +6,4 @@
      • b: TensorLike | tf.Tensor

        Second matrix in dot product operation.

      • OptionaltransposeA: boolean

        If true, a is transposed before multiplication.

      • OptionaltransposeB: boolean

        If true, b is transposed before multiplication.

        -

      Returns T

    +

    Returns T

    diff --git a/typedoc/functions/tf.maxPool.html b/typedoc/functions/tf.maxPool.html index aaabb30..5425a70 100644 --- a/typedoc/functions/tf.maxPool.html +++ b/typedoc/functions/tf.maxPool.html @@ -1,4 +1,4 @@ -maxPool | @vladmandic/face-api - v1.7.14
    • Computes the 2D max pooling of an image.

      +maxPool | @vladmandic/face-api - v1.7.15
      • Computes the 2D max pooling of an image.

        Type Parameters

        Parameters

        • x: TensorLike | T

          The input tensor, of rank 4 or rank 3 of shape [batch, height, width, inChannels]. If rank 3, batch of 1 is assumed.

        • filterSize: number | [number, number]

          The filter size: [filterHeight, filterWidth]. If @@ -16,4 +16,4 @@ than 1x1.

      • OptionaldimRoundingMode: "floor" | "round" | "ceil"

        A string from: 'ceil', 'round', 'floor'. If none is provided, it will default to truncate.

        -

      Returns T

    +

    Returns T

    diff --git a/typedoc/functions/tf.mul.html b/typedoc/functions/tf.mul.html index 4f1685c..5120a56 100644 --- a/typedoc/functions/tf.mul.html +++ b/typedoc/functions/tf.mul.html @@ -1,4 +1,4 @@ -mul | @vladmandic/face-api - v1.7.14
    • Multiplies two tf.Tensors element-wise, A * B. Supports broadcasting.

      +mul | @vladmandic/face-api - v1.7.15
      • Multiplies two tf.Tensors element-wise, A * B. Supports broadcasting.

        We also expose tf.mulStrict which has the same signature as this op and asserts that a and b are the same shape (does not broadcast).

        const a = tf.tensor1d([1, 2, 3, 4]);
        const b = tf.tensor1d([2, 3, 4, 5]);

        a.mul(b).print(); // or tf.mul(a, b) @@ -9,4 +9,4 @@ asserts that a and b are the same shape (does not broa

        Type Parameters

        Parameters

        Returns T

      +

    Returns T

    diff --git a/typedoc/functions/tf.pad.html b/typedoc/functions/tf.pad.html index eabe551..fb5d97d 100644 --- a/typedoc/functions/tf.pad.html +++ b/typedoc/functions/tf.pad.html @@ -1,4 +1,4 @@ -pad | @vladmandic/face-api - v1.7.14
    • Pads a tf.Tensor with a given value and paddings.

      +pad | @vladmandic/face-api - v1.7.15
      • Pads a tf.Tensor with a given value and paddings.

        This operation implements CONSTANT mode. For REFLECT and SYMMETRIC, refer to tf.mirrorPad.

        Also available are stricter rank-specific methods with the same signature @@ -17,4 +17,4 @@ as this method that assert that paddings is of given length.

        each element is a length-2 tuple of ints [padBefore, padAfter], specifying how much to pad along each dimension of the tensor.

      • OptionalconstantValue: number

        The pad value to use. Defaults to 0.

        -

      Returns T

    +

    Returns T

    diff --git a/typedoc/functions/tf.relu.html b/typedoc/functions/tf.relu.html index 546ffb9..ee49fdc 100644 --- a/typedoc/functions/tf.relu.html +++ b/typedoc/functions/tf.relu.html @@ -1,7 +1,7 @@ -relu | @vladmandic/face-api - v1.7.14
    • Computes rectified linear element-wise: max(x, 0).

      +relu | @vladmandic/face-api - v1.7.15
      • Computes rectified linear element-wise: max(x, 0).

        const x = tf.tensor1d([-1, 2, -3, 4]);

        x.relu().print(); // or tf.relu(x)

        Type Parameters

        Parameters

        • x: T | TensorLike

          The input tensor. If the dtype is bool, the output dtype will be int32.

          -

        Returns T

      +

    Returns T

    diff --git a/typedoc/functions/tf.reshape.html b/typedoc/functions/tf.reshape.html index c140c86..5c423a3 100644 --- a/typedoc/functions/tf.reshape.html +++ b/typedoc/functions/tf.reshape.html @@ -1,4 +1,4 @@ -reshape | @vladmandic/face-api - v1.7.14
    • Reshapes a tf.Tensor to a given shape.

      +reshape | @vladmandic/face-api - v1.7.15
      • Reshapes a tf.Tensor to a given shape.

        Given an input tensor, returns a new tensor with the same values as the input tensor with shape shape.

        If one component of shape is the special value -1, the size of that @@ -14,4 +14,4 @@ tensor.

        Type Parameters

        Parameters

        • x: TensorLike | tf.Tensor

          The input tensor to be reshaped.

        • shape: ShapeMap[R]

          An array of integers defining the output tensor shape.

          -

        Returns tf.Tensor<R>

      +

    Returns tf.Tensor<R>

    diff --git a/typedoc/functions/tf.scalar.html b/typedoc/functions/tf.scalar.html index 361fabd..f1c65d0 100644 --- a/typedoc/functions/tf.scalar.html +++ b/typedoc/functions/tf.scalar.html @@ -1,4 +1,4 @@ -scalar | @vladmandic/face-api - v1.7.14
    • Creates rank-0 tf.Tensor (scalar) with the provided value and dtype.

      +scalar | @vladmandic/face-api - v1.7.15
      • Creates rank-0 tf.Tensor (scalar) with the provided value and dtype.

        The same functionality can be achieved with tf.tensor, but in general we recommend using tf.scalar as it makes the code more readable.

        tf.scalar(3.14).print();
        @@ -6,4 +6,4 @@ we recommend using tf.scalar as it makes the code more readable.

        Parameters

        • value: string | number | boolean | Uint8Array

          The value of the scalar.

        • Optionaldtype: keyof DataTypeMap

          The data type.

          -

        Returns Scalar

      +

    Returns Scalar

    diff --git a/typedoc/functions/tf.separableConv2d.html b/typedoc/functions/tf.separableConv2d.html index 1faf6da..581c700 100644 --- a/typedoc/functions/tf.separableConv2d.html +++ b/typedoc/functions/tf.separableConv2d.html @@ -1,4 +1,4 @@ -separableConv2d | @vladmandic/face-api - v1.7.14
    • 2-D convolution with separable filters.

      +separableConv2d | @vladmandic/face-api - v1.7.15
      • 2-D convolution with separable filters.

        Performs a depthwise convolution that acts separately on channels followed by a pointwise convolution that mixes channels. Note that this is separability between dimensions [1, 2] and 3, not spatial separability @@ -25,4 +25,4 @@ than 1x1.

      • For more info, see this guide: https://www.tensorflow.org/api_docs/python/tf/nn/convolution
      -
    • Optionaldilation: number | [number, number]
    • OptionaldataFormat: "NHWC" | "NCHW"

    Returns T

    +
  • Optionaldilation: number | [number, number]
  • OptionaldataFormat: "NHWC" | "NCHW"
  • Returns T

    diff --git a/typedoc/functions/tf.sigmoid.html b/typedoc/functions/tf.sigmoid.html index 103cb39..83ee15c 100644 --- a/typedoc/functions/tf.sigmoid.html +++ b/typedoc/functions/tf.sigmoid.html @@ -1,6 +1,6 @@ -sigmoid | @vladmandic/face-api - v1.7.14
    • Computes sigmoid element-wise, 1 / (1 + exp(-x))

      +sigmoid | @vladmandic/face-api - v1.7.15
      • Computes sigmoid element-wise, 1 / (1 + exp(-x))

        const x = tf.tensor1d([0, -1, 2, -3]);

        x.sigmoid().print(); // or tf.sigmoid(x)

        Type Parameters

        Parameters

        Returns T

      +

    Returns T

    diff --git a/typedoc/functions/tf.slice.html b/typedoc/functions/tf.slice.html index 28be138..bf06bd1 100644 --- a/typedoc/functions/tf.slice.html +++ b/typedoc/functions/tf.slice.html @@ -1,4 +1,4 @@ -slice | @vladmandic/face-api - v1.7.14
    • Extracts a slice from a tf.Tensor starting at coordinates begin +slice | @vladmandic/face-api - v1.7.15

      • Extracts a slice from a tf.Tensor starting at coordinates begin and is of size size.

        Also available are stricter rank-specific methods with the same signature as this method that assert that x is of the given rank:

        @@ -23,4 +23,4 @@ first axis.

        x - the rest of the axes will have implicit -1. A value of -1 requests the rest of the dimensions in the axis. Can also be a single number, in which case it specifies the size of the first axis.

        -

      Returns T

    +

    Returns T

    diff --git a/typedoc/functions/tf.slice3d.html b/typedoc/functions/tf.slice3d.html index f3c686d..6fee790 100644 --- a/typedoc/functions/tf.slice3d.html +++ b/typedoc/functions/tf.slice3d.html @@ -1,3 +1,3 @@ -slice3d | @vladmandic/face-api - v1.7.14
    • Extracts a 3D slice from a 3D array starting at coordinates begin and +slice3d | @vladmandic/face-api - v1.7.15

      • Extracts a 3D slice from a 3D array starting at coordinates begin and is of size size. See slice for details.

        -

        Parameters

        Returns Tensor3D

      +

      Parameters

      Returns Tensor3D

    diff --git a/typedoc/functions/tf.softmax.html b/typedoc/functions/tf.softmax.html index 87c00ca..deebc12 100644 --- a/typedoc/functions/tf.softmax.html +++ b/typedoc/functions/tf.softmax.html @@ -1,4 +1,4 @@ -softmax | @vladmandic/face-api - v1.7.14
    • Computes the softmax normalized vector given the logits.

      +softmax | @vladmandic/face-api - v1.7.15
      • Computes the softmax normalized vector given the logits.

        const a = tf.tensor1d([1, 2, 3]);

        a.softmax().print(); // or tf.softmax(a)
        @@ -8,4 +8,4 @@

        Type Parameters

        Parameters

        • logits: TensorLike | T

          The logits array.

        • Optionaldim: number

          The dimension softmax would be performed on. Defaults to -1 which indicates the last dimension.

          -

        Returns T

      +

    Returns T

    diff --git a/typedoc/functions/tf.stack.html b/typedoc/functions/tf.stack.html index 3dca08b..1442c30 100644 --- a/typedoc/functions/tf.stack.html +++ b/typedoc/functions/tf.stack.html @@ -1,7 +1,7 @@ -stack | @vladmandic/face-api - v1.7.14
    • Stacks a list of rank-R tf.Tensors into one rank-(R+1) tf.Tensor.

      +stack | @vladmandic/face-api - v1.7.15
      • Stacks a list of rank-R tf.Tensors into one rank-(R+1) tf.Tensor.

        const a = tf.tensor1d([1, 2]);
        const b = tf.tensor1d([3, 4]);
        const c = tf.tensor1d([5, 6]);
        tf.stack([a, b, c]).print();

        Type Parameters

        Parameters

        • tensors: (TensorLike | T)[]

          A list of tensor objects with the same shape and dtype.

        • Optionalaxis: number

          The axis to stack along. Defaults to 0 (the first dim).

          -

        Returns tf.Tensor

      +

    Returns tf.Tensor

    diff --git a/typedoc/functions/tf.sub.html b/typedoc/functions/tf.sub.html index 4ee0f7e..6c698ca 100644 --- a/typedoc/functions/tf.sub.html +++ b/typedoc/functions/tf.sub.html @@ -1,4 +1,4 @@ -sub | @vladmandic/face-api - v1.7.14
    • Subtracts two tf.Tensors element-wise, A - B. Supports broadcasting.

      +sub | @vladmandic/face-api - v1.7.15
      • Subtracts two tf.Tensors element-wise, A - B. Supports broadcasting.

        const a = tf.tensor1d([10, 20, 30, 40]);
        const b = tf.tensor1d([1, 2, 3, 4]);

        a.sub(b).print(); // or tf.sub(a, b)
        @@ -8,4 +8,4 @@

        Type Parameters

        Parameters

        Returns T

      +

    Returns T

    diff --git a/typedoc/functions/tf.tensor-2.html b/typedoc/functions/tf.tensor-2.html index bbaea42..db96de8 100644 --- a/typedoc/functions/tf.tensor-2.html +++ b/typedoc/functions/tf.tensor-2.html @@ -1,4 +1,4 @@ -tensor | @vladmandic/face-api - v1.7.14
    • Creates a tf.Tensor with the provided values, shape and dtype.

      +tensor | @vladmandic/face-api - v1.7.15
      • Creates a tf.Tensor with the provided values, shape and dtype.

        // Pass an array of values to create a vector.
        tf.tensor([1, 2, 3, 4]).print();
        @@ -43,4 +43,4 @@ by the tensor, so do not destroy this GPUBuffer until all access is done.
    • Optionalshape: ShapeMap[R]

      The shape of the tensor. Optional. If not provided, it is inferred from values.

    • Optionaldtype: keyof DataTypeMap

      The data type.

      -

    Returns tf.Tensor<R>

    +

    Returns tf.Tensor<R>

    diff --git a/typedoc/functions/tf.tensor1d-1.html b/typedoc/functions/tf.tensor1d-1.html index 81f7cfa..a72e08e 100644 --- a/typedoc/functions/tf.tensor1d-1.html +++ b/typedoc/functions/tf.tensor1d-1.html @@ -1,4 +1,4 @@ -tensor1d | @vladmandic/face-api - v1.7.14
    • Creates rank-1 tf.Tensor with the provided values, shape and dtype.

      +tensor1d | @vladmandic/face-api - v1.7.15
      • Creates rank-1 tf.Tensor with the provided values, shape and dtype.

        The same functionality can be achieved with tf.tensor, but in general we recommend using tf.tensor1d as it makes the code more readable.

        tf.tensor1d([1, 2, 3]).print();
        @@ -7,4 +7,4 @@ we recommend using tf.tensor1d as it makes the code more readable.<
         

        Parameters

        • values: TensorLike1D

          The values of the tensor. Can be array of numbers, or a TypedArray.

        • Optionaldtype: keyof DataTypeMap

          The data type.

          -

        Returns Tensor1D

      +

    Returns Tensor1D

    diff --git a/typedoc/functions/tf.tensor2d-1.html b/typedoc/functions/tf.tensor2d-1.html index b824aa6..70377fd 100644 --- a/typedoc/functions/tf.tensor2d-1.html +++ b/typedoc/functions/tf.tensor2d-1.html @@ -1,4 +1,4 @@ -tensor2d | @vladmandic/face-api - v1.7.14
    • Creates rank-2 tf.Tensor with the provided values, shape and dtype.

      +tensor2d | @vladmandic/face-api - v1.7.15
      • Creates rank-2 tf.Tensor with the provided values, shape and dtype.

        The same functionality can be achieved with tf.tensor, but in general we recommend using tf.tensor2d as it makes the code more readable.

        // Pass a nested array.
        tf.tensor2d([[1, 2], [3, 4]]).print(); @@ -12,4 +12,4 @@ or a flat array, or a TypedArray.

      • Optionalshape: [number, number]

        The shape of the tensor. If not provided, it is inferred from values.

      • Optionaldtype: keyof DataTypeMap

        The data type.

        -

      Returns Tensor2D

    +

    Returns Tensor2D

    diff --git a/typedoc/functions/tf.tensor3d-1.html b/typedoc/functions/tf.tensor3d-1.html index 8280ff8..3ce2a3f 100644 --- a/typedoc/functions/tf.tensor3d-1.html +++ b/typedoc/functions/tf.tensor3d-1.html @@ -1,4 +1,4 @@ -tensor3d | @vladmandic/face-api - v1.7.14
    • Creates rank-3 tf.Tensor with the provided values, shape and dtype.

      +tensor3d | @vladmandic/face-api - v1.7.15
      • Creates rank-3 tf.Tensor with the provided values, shape and dtype.

        The same functionality can be achieved with tf.tensor, but in general we recommend using tf.tensor3d as it makes the code more readable.

        // Pass a nested array.
        tf.tensor3d([[[1], [2]], [[3], [4]]]).print(); @@ -12,4 +12,4 @@ or a flat array, or a TypedArray.

      • Optionalshape: [number, number, number]

        The shape of the tensor. If not provided, it is inferred from values.

      • Optionaldtype: keyof DataTypeMap

        The data type.

        -

      Returns Tensor3D

    +

    Returns Tensor3D

    diff --git a/typedoc/functions/tf.tensor4d-1.html b/typedoc/functions/tf.tensor4d-1.html index 7b0872c..493ea86 100644 --- a/typedoc/functions/tf.tensor4d-1.html +++ b/typedoc/functions/tf.tensor4d-1.html @@ -1,4 +1,4 @@ -tensor4d | @vladmandic/face-api - v1.7.14
    • Creates rank-4 tf.Tensor with the provided values, shape and dtype.

      +tensor4d | @vladmandic/face-api - v1.7.15
      • Creates rank-4 tf.Tensor with the provided values, shape and dtype.

        The same functionality can be achieved with tf.tensor, but in general we recommend using tf.tensor4d as it makes the code more readable.

        // Pass a nested array.
        tf.tensor4d([[[[1], [2]], [[3], [4]]]]).print(); @@ -12,4 +12,4 @@ or a flat array, or a TypedArray.

      • Optionalshape: [number, number, number, number]

        The shape of the tensor. Optional. If not provided, it is inferred from values.

      • Optionaldtype: keyof DataTypeMap

        The data type.

        -

      Returns Tensor4D

    +

    Returns Tensor4D

    diff --git a/typedoc/functions/tf.tidy.html b/typedoc/functions/tf.tidy.html index e923716..16baedc 100644 --- a/typedoc/functions/tf.tidy.html +++ b/typedoc/functions/tf.tidy.html @@ -1,4 +1,4 @@ -tidy | @vladmandic/face-api - v1.7.14
    • Executes the provided function fn and after it is executed, cleans up all +tidy | @vladmandic/face-api - v1.7.15

      • Executes the provided function fn and after it is executed, cleans up all intermediate tensors allocated by fn except those returned by fn. fn must not return a Promise (async functions not allowed). The returned result can be a complex object.

        @@ -15,4 +15,4 @@ If a name is provided, the 2nd argument should be the function. If debug mode is on, the timing and the memory usage of the function will be tracked and displayed on the console using the provided name.

      • Optionalfn: ScopeFn<T>

        The function to execute.

        -

      Returns T

    +

    Returns T

    diff --git a/typedoc/functions/tf.tile.html b/typedoc/functions/tf.tile.html index a7db387..b77670b 100644 --- a/typedoc/functions/tf.tile.html +++ b/typedoc/functions/tf.tile.html @@ -1,4 +1,4 @@ -tile | @vladmandic/face-api - v1.7.14
    • Construct a tensor by repeating it the number of times given by reps.

      +tile | @vladmandic/face-api - v1.7.15
      • Construct a tensor by repeating it the number of times given by reps.

        This operation creates a new tensor by replicating input reps times. The output tensor's ith dimension has input.shape[i] * reps[i] elements, and the values of input are replicated reps[i] times along the ith dimension. For example, tiling @@ -11,4 +11,4 @@ times. The output tensor's ith dimension has input.shape[i] *

        Type Parameters

        Parameters

        • x: TensorLike | T

          The tensor to tile.

        • reps: number[]

          Determines the number of replications per dimension.

          -

        Returns T

      +

    Returns T

    diff --git a/typedoc/functions/tf.transpose.html b/typedoc/functions/tf.transpose.html index bf54709..431e41c 100644 --- a/typedoc/functions/tf.transpose.html +++ b/typedoc/functions/tf.transpose.html @@ -1,4 +1,4 @@ -transpose | @vladmandic/face-api - v1.7.14
    • Transposes the tf.Tensor. Permutes the dimensions according to perm.

      +transpose | @vladmandic/face-api - v1.7.15
      • Transposes the tf.Tensor. Permutes the dimensions according to perm.

        The returned tf.Tensor's dimension i will correspond to the input dimension perm[i]. If perm is not given, it is set to [n-1...0], where n is the rank of the input tf.Tensor. Hence by default, this @@ -9,4 +9,4 @@ operation performs a regular matrix transpose on 2-D input tf.Tensor

        Type Parameters

        Parameters

        • x: TensorLike | T

          The tensor to transpose.

        • Optionalperm: number[]

          The permutation of the dimensions of a.

        • Optionalconjugate: boolean

          Will conjugate complex input if true.

          -

        Returns T

      +

    Returns T

    diff --git a/typedoc/functions/tf.unstack.html b/typedoc/functions/tf.unstack.html index 6a22d36..953156a 100644 --- a/typedoc/functions/tf.unstack.html +++ b/typedoc/functions/tf.unstack.html @@ -1,7 +1,7 @@ -unstack | @vladmandic/face-api - v1.7.14
    • Unstacks a tf.Tensor of rank-R into a list of rank-(R-1) tf.Tensors.

      +unstack | @vladmandic/face-api - v1.7.15
      • Unstacks a tf.Tensor of rank-R into a list of rank-(R-1) tf.Tensors.

        const a = tf.tensor2d([1, 2, 3, 4], [2, 2]);

        tf.unstack(a).forEach(tensor => tensor.print());

        Parameters

        • x: TensorLike | tf.Tensor

          A tensor object.

        • Optionalaxis: number

          The axis to unstack along. Defaults to 0 (the first dim).

          -

        Returns tf.Tensor[]

      +

    Returns tf.Tensor[]

    diff --git a/typedoc/functions/tf.zeros.html b/typedoc/functions/tf.zeros.html index c22c3f2..6b4206f 100644 --- a/typedoc/functions/tf.zeros.html +++ b/typedoc/functions/tf.zeros.html @@ -1,8 +1,8 @@ -zeros | @vladmandic/face-api - v1.7.14
    • Creates a tf.Tensor with all elements set to 0.

      +zeros | @vladmandic/face-api - v1.7.15
      • Creates a tf.Tensor with all elements set to 0.

        tf.zeros([2, 2]).print();
         

        Type Parameters

        Parameters

        • shape: ShapeMap[R]

          An array of integers defining the output tensor shape.

        • Optionaldtype: keyof DataTypeMap

          The type of an element in the resulting tensor. Can be 'float32', 'int32' or 'bool'. Defaults to 'float'.

          -

        Returns tf.Tensor<R>

      +

    Returns tf.Tensor<R>

    diff --git a/typedoc/functions/tinyFaceDetector-1.html b/typedoc/functions/tinyFaceDetector-1.html index 1516e66..0217cf8 100644 --- a/typedoc/functions/tinyFaceDetector-1.html +++ b/typedoc/functions/tinyFaceDetector-1.html @@ -1,5 +1,5 @@ -tinyFaceDetector | @vladmandic/face-api - v1.7.14

    Function tinyFaceDetector

    Attempts to detect all faces in an image using the Tiny Face Detector.

    +tinyFaceDetector | @vladmandic/face-api - v1.7.15

    Function tinyFaceDetector

    Attempts to detect all faces in an image using the Tiny Face Detector.

    +
    diff --git a/typedoc/functions/tinyYolov2-1.html b/typedoc/functions/tinyYolov2-1.html index d0e0926..eaae2c3 100644 --- a/typedoc/functions/tinyYolov2-1.html +++ b/typedoc/functions/tinyYolov2-1.html @@ -1,5 +1,5 @@ -tinyYolov2 | @vladmandic/face-api - v1.7.14

    Attempts to detect all faces in an image using the Tiny Yolov2 Network.

    +tinyYolov2 | @vladmandic/face-api - v1.7.15

    Attempts to detect all faces in an image using the Tiny Yolov2 Network.

    +
    diff --git a/typedoc/functions/toNetInput.html b/typedoc/functions/toNetInput.html index 5506011..b5096cb 100644 --- a/typedoc/functions/toNetInput.html +++ b/typedoc/functions/toNetInput.html @@ -1,4 +1,4 @@ -toNetInput | @vladmandic/face-api - v1.7.14
    • Validates the input to make sure, they are valid net inputs and awaits all media elements +toNetInput | @vladmandic/face-api - v1.7.15

      • Validates the input to make sure, they are valid net inputs and awaits all media elements to be finished loading.

        Parameters

        Returns Promise<NetInput>

        A NetInput instance, which can be passed into one of the neural networks.

        -
      +
    diff --git a/typedoc/functions/utils.computeReshapedDimensions.html b/typedoc/functions/utils.computeReshapedDimensions.html index 030a5d5..f59d358 100644 --- a/typedoc/functions/utils.computeReshapedDimensions.html +++ b/typedoc/functions/utils.computeReshapedDimensions.html @@ -1 +1 @@ -computeReshapedDimensions | @vladmandic/face-api - v1.7.14

    Function computeReshapedDimensions

    +computeReshapedDimensions | @vladmandic/face-api - v1.7.15

    Function computeReshapedDimensions

    diff --git a/typedoc/functions/utils.getCenterPoint.html b/typedoc/functions/utils.getCenterPoint.html index 6eb9557..a573c7b 100644 --- a/typedoc/functions/utils.getCenterPoint.html +++ b/typedoc/functions/utils.getCenterPoint.html @@ -1 +1 @@ -getCenterPoint | @vladmandic/face-api - v1.7.14
    +getCenterPoint | @vladmandic/face-api - v1.7.15
    diff --git a/typedoc/functions/utils.isDimensions.html b/typedoc/functions/utils.isDimensions.html index 0548aa6..6f05ef1 100644 --- a/typedoc/functions/utils.isDimensions.html +++ b/typedoc/functions/utils.isDimensions.html @@ -1 +1 @@ -isDimensions | @vladmandic/face-api - v1.7.14
    +isDimensions | @vladmandic/face-api - v1.7.15
    diff --git a/typedoc/functions/utils.isEven.html b/typedoc/functions/utils.isEven.html index d129d75..28016af 100644 --- a/typedoc/functions/utils.isEven.html +++ b/typedoc/functions/utils.isEven.html @@ -1 +1 @@ -isEven | @vladmandic/face-api - v1.7.14
    +isEven | @vladmandic/face-api - v1.7.15
    diff --git a/typedoc/functions/utils.isFloat.html b/typedoc/functions/utils.isFloat.html index 02df35e..b98404a 100644 --- a/typedoc/functions/utils.isFloat.html +++ b/typedoc/functions/utils.isFloat.html @@ -1 +1 @@ -isFloat | @vladmandic/face-api - v1.7.14
    +isFloat | @vladmandic/face-api - v1.7.15
    diff --git a/typedoc/functions/utils.isTensor.html b/typedoc/functions/utils.isTensor.html index dd0ffb3..09c60d7 100644 --- a/typedoc/functions/utils.isTensor.html +++ b/typedoc/functions/utils.isTensor.html @@ -1 +1 @@ -isTensor | @vladmandic/face-api - v1.7.14
    • Parameters

      • tensor: any
      • dim: number

      Returns boolean

    +isTensor | @vladmandic/face-api - v1.7.15
    • Parameters

      • tensor: any
      • dim: number

      Returns boolean

    diff --git a/typedoc/functions/utils.isTensor1D.html b/typedoc/functions/utils.isTensor1D.html index 84462ba..bb1c55e 100644 --- a/typedoc/functions/utils.isTensor1D.html +++ b/typedoc/functions/utils.isTensor1D.html @@ -1 +1 @@ -isTensor1D | @vladmandic/face-api - v1.7.14
    +isTensor1D | @vladmandic/face-api - v1.7.15
    diff --git a/typedoc/functions/utils.isTensor2D.html b/typedoc/functions/utils.isTensor2D.html index 596307e..0836362 100644 --- a/typedoc/functions/utils.isTensor2D.html +++ b/typedoc/functions/utils.isTensor2D.html @@ -1 +1 @@ -isTensor2D | @vladmandic/face-api - v1.7.14
    +isTensor2D | @vladmandic/face-api - v1.7.15
    diff --git a/typedoc/functions/utils.isTensor3D.html b/typedoc/functions/utils.isTensor3D.html index 1899344..eabf8a2 100644 --- a/typedoc/functions/utils.isTensor3D.html +++ b/typedoc/functions/utils.isTensor3D.html @@ -1 +1 @@ -isTensor3D | @vladmandic/face-api - v1.7.14
    +isTensor3D | @vladmandic/face-api - v1.7.15
    diff --git a/typedoc/functions/utils.isTensor4D.html b/typedoc/functions/utils.isTensor4D.html index c869219..77eed34 100644 --- a/typedoc/functions/utils.isTensor4D.html +++ b/typedoc/functions/utils.isTensor4D.html @@ -1 +1 @@ -isTensor4D | @vladmandic/face-api - v1.7.14
    +isTensor4D | @vladmandic/face-api - v1.7.15
    diff --git a/typedoc/functions/utils.isValidNumber.html b/typedoc/functions/utils.isValidNumber.html index 67cb864..405d88a 100644 --- a/typedoc/functions/utils.isValidNumber.html +++ b/typedoc/functions/utils.isValidNumber.html @@ -1 +1 @@ -isValidNumber | @vladmandic/face-api - v1.7.14
    +isValidNumber | @vladmandic/face-api - v1.7.15
    diff --git a/typedoc/functions/utils.isValidProbablitiy.html b/typedoc/functions/utils.isValidProbablitiy.html index b0dae4d..10f4840 100644 --- a/typedoc/functions/utils.isValidProbablitiy.html +++ b/typedoc/functions/utils.isValidProbablitiy.html @@ -1 +1 @@ -isValidProbablitiy | @vladmandic/face-api - v1.7.14
    +isValidProbablitiy | @vladmandic/face-api - v1.7.15
    diff --git a/typedoc/functions/utils.range.html b/typedoc/functions/utils.range.html index 3e15f62..f85fadc 100644 --- a/typedoc/functions/utils.range.html +++ b/typedoc/functions/utils.range.html @@ -1 +1 @@ -range | @vladmandic/face-api - v1.7.14
    • Parameters

      • num: number
      • start: number
      • step: number

      Returns number[]

    +range | @vladmandic/face-api - v1.7.15
    • Parameters

      • num: number
      • start: number
      • step: number

      Returns number[]

    diff --git a/typedoc/functions/utils.round.html b/typedoc/functions/utils.round.html index 702ab71..9b259b3 100644 --- a/typedoc/functions/utils.round.html +++ b/typedoc/functions/utils.round.html @@ -1 +1 @@ -round | @vladmandic/face-api - v1.7.14
    • Parameters

      • num: number
      • prec: number = 2

      Returns number

    +round | @vladmandic/face-api - v1.7.15
    • Parameters

      • num: number
      • prec: number = 2

      Returns number

    diff --git a/typedoc/functions/validateConfig.html b/typedoc/functions/validateConfig.html index af54aa6..6aafd31 100644 --- a/typedoc/functions/validateConfig.html +++ b/typedoc/functions/validateConfig.html @@ -1 +1 @@ -validateConfig | @vladmandic/face-api - v1.7.14

    Function validateConfig

    +validateConfig | @vladmandic/face-api - v1.7.15

    Function validateConfig

    diff --git a/typedoc/hierarchy.html b/typedoc/hierarchy.html index b759f1a..a1b5c53 100644 --- a/typedoc/hierarchy.html +++ b/typedoc/hierarchy.html @@ -1 +1 @@ -@vladmandic/face-api - v1.7.14
    +@vladmandic/face-api - v1.7.15
    diff --git a/typedoc/index.html b/typedoc/index.html index 2c30792..f9a4743 100644 --- a/typedoc/index.html +++ b/typedoc/index.html @@ -1 +1 @@ -@vladmandic/face-api - v1.7.14

    @vladmandic/face-api - v1.7.14

    Namespaces

    draw
    tf
    utils

    Enumerations

    Gender

    Classes

    AgeGenderNet
    BoundingBox
    Box
    ComposableTask
    ComputeAllFaceDescriptorsTask
    ComputeFaceDescriptorsTaskBase
    ComputeSingleFaceDescriptorTask
    DetectAllFaceLandmarksTask
    DetectAllFacesTask
    DetectFaceLandmarksTaskBase
    DetectFacesTaskBase
    DetectSingleFaceLandmarksTask
    DetectSingleFaceTask
    Dimensions
    FaceDetection
    FaceDetectionNet
    FaceExpressionNet
    FaceExpressions
    FaceLandmark68Net
    FaceLandmark68TinyNet
    FaceLandmarkNet
    FaceLandmarks
    FaceLandmarks5
    FaceLandmarks68
    FaceMatch
    FaceMatcher
    FaceRecognitionNet
    LabeledBox
    LabeledFaceDescriptors
    NetInput
    NeuralNetwork
    ObjectDetection
    Point
    PredictedBox
    Rect
    SsdMobilenetv1
    SsdMobilenetv1Options
    TinyFaceDetector
    TinyFaceDetectorOptions
    TinyYolov2
    TinyYolov2Options

    Interfaces

    IBoundingBox
    IDimensions
    IFaceDetecion
    IFaceLandmarks
    IFaceMatch
    IPoint
    IRect
    ISsdMobilenetv1Options
    ITinyYolov2Options

    Type Aliases

    AgeAndGenderPrediction
    BatchNorm
    ConvWithBatchNorm
    DefaultTinyYolov2NetParams
    Environment
    FaceDetectionFunction
    FaceDetectionOptions
    FileSystem
    ITinyFaceDetectorOptions
    MobilenetParams
    NetOutput
    NetParams
    TinyYolov2Config
    TinyYolov2ExtractBoxesResult
    TinyYolov2NetParams
    TMediaElement
    TNetInput
    TResolvedNetInput
    WithAge
    WithFaceDescriptor
    WithFaceDetection
    WithFaceExpressions
    WithFaceLandmarks
    WithGender

    Variables

    env
    FACE_EXPRESSION_LABELS
    nets
    version

    Functions

    allFaces
    allFacesSsdMobilenetv1
    allFacesTinyYolov2
    awaitMediaLoaded
    bufferToImage
    computeFaceDescriptor
    createCanvas
    createCanvasFromMedia
    createFaceDetectionNet
    createFaceRecognitionNet
    createSsdMobilenetv1
    createTinyFaceDetector
    createTinyYolov2
    detectAllFaces
    detectFaceLandmarks
    detectFaceLandmarksTiny
    detectLandmarks
    detectSingleFace
    euclideanDistance
    extendWithAge
    extendWithFaceDescriptor
    extendWithFaceDetection
    extendWithFaceExpressions
    extendWithFaceLandmarks
    extendWithGender
    extractFaces
    extractFaceTensors
    fetchImage
    fetchJson
    fetchNetWeights
    fetchOrThrow
    fetchVideo
    getContext2dOrThrow
    getMediaDimensions
    imageTensorToCanvas
    imageToSquare
    inverseSigmoid
    iou
    isMediaElement
    isMediaLoaded
    isWithAge
    isWithFaceDetection
    isWithFaceExpressions
    isWithFaceLandmarks
    isWithGender
    loadAgeGenderModel
    loadFaceDetectionModel
    loadFaceExpressionModel
    loadFaceLandmarkModel
    loadFaceLandmarkTinyModel
    loadFaceRecognitionModel
    loadSsdMobilenetv1Model
    loadTinyFaceDetectorModel
    loadTinyYolov2Model
    loadWeightMap
    locateFaces
    matchDimensions
    minBbox
    nonMaxSuppression
    normalize
    padToSquare
    predictAgeAndGender
    recognizeFaceExpressions
    resizeResults
    resolveInput
    shuffleArray
    sigmoid
    ssdMobilenetv1
    tinyFaceDetector
    tinyYolov2
    toNetInput
    validateConfig
    +@vladmandic/face-api - v1.7.15

    @vladmandic/face-api - v1.7.15

    Namespaces

    draw
    tf
    utils

    Enumerations

    Gender

    Classes

    AgeGenderNet
    BoundingBox
    Box
    ComposableTask
    ComputeAllFaceDescriptorsTask
    ComputeFaceDescriptorsTaskBase
    ComputeSingleFaceDescriptorTask
    DetectAllFaceLandmarksTask
    DetectAllFacesTask
    DetectFaceLandmarksTaskBase
    DetectFacesTaskBase
    DetectSingleFaceLandmarksTask
    DetectSingleFaceTask
    Dimensions
    FaceDetection
    FaceDetectionNet
    FaceExpressionNet
    FaceExpressions
    FaceLandmark68Net
    FaceLandmark68TinyNet
    FaceLandmarkNet
    FaceLandmarks
    FaceLandmarks5
    FaceLandmarks68
    FaceMatch
    FaceMatcher
    FaceRecognitionNet
    LabeledBox
    LabeledFaceDescriptors
    NetInput
    NeuralNetwork
    ObjectDetection
    Point
    PredictedBox
    Rect
    SsdMobilenetv1
    SsdMobilenetv1Options
    TinyFaceDetector
    TinyFaceDetectorOptions
    TinyYolov2
    TinyYolov2Options

    Interfaces

    IBoundingBox
    IDimensions
    IFaceDetecion
    IFaceLandmarks
    IFaceMatch
    IPoint
    IRect
    ISsdMobilenetv1Options
    ITinyYolov2Options

    Type Aliases

    AgeAndGenderPrediction
    BatchNorm
    ConvWithBatchNorm
    DefaultTinyYolov2NetParams
    Environment
    FaceDetectionFunction
    FaceDetectionOptions
    FileSystem
    ITinyFaceDetectorOptions
    MobilenetParams
    NetOutput
    NetParams
    TinyYolov2Config
    TinyYolov2ExtractBoxesResult
    TinyYolov2NetParams
    TMediaElement
    TNetInput
    TResolvedNetInput
    WithAge
    WithFaceDescriptor
    WithFaceDetection
    WithFaceExpressions
    WithFaceLandmarks
    WithGender

    Variables

    env
    FACE_EXPRESSION_LABELS
    nets
    version

    Functions

    allFaces
    allFacesSsdMobilenetv1
    allFacesTinyYolov2
    awaitMediaLoaded
    bufferToImage
    computeFaceDescriptor
    createCanvas
    createCanvasFromMedia
    createFaceDetectionNet
    createFaceRecognitionNet
    createSsdMobilenetv1
    createTinyFaceDetector
    createTinyYolov2
    detectAllFaces
    detectFaceLandmarks
    detectFaceLandmarksTiny
    detectLandmarks
    detectSingleFace
    euclideanDistance
    extendWithAge
    extendWithFaceDescriptor
    extendWithFaceDetection
    extendWithFaceExpressions
    extendWithFaceLandmarks
    extendWithGender
    extractFaces
    extractFaceTensors
    fetchImage
    fetchJson
    fetchNetWeights
    fetchOrThrow
    fetchVideo
    getContext2dOrThrow
    getMediaDimensions
    imageTensorToCanvas
    imageToSquare
    inverseSigmoid
    iou
    isMediaElement
    isMediaLoaded
    isWithAge
    isWithFaceDetection
    isWithFaceExpressions
    isWithFaceLandmarks
    isWithGender
    loadAgeGenderModel
    loadFaceDetectionModel
    loadFaceExpressionModel
    loadFaceLandmarkModel
    loadFaceLandmarkTinyModel
    loadFaceRecognitionModel
    loadSsdMobilenetv1Model
    loadTinyFaceDetectorModel
    loadTinyYolov2Model
    loadWeightMap
    locateFaces
    matchDimensions
    minBbox
    nonMaxSuppression
    normalize
    padToSquare
    predictAgeAndGender
    recognizeFaceExpressions
    resizeResults
    resolveInput
    shuffleArray
    sigmoid
    ssdMobilenetv1
    tinyFaceDetector
    tinyYolov2
    toNetInput
    validateConfig
    diff --git a/typedoc/interfaces/IBoundingBox.html b/typedoc/interfaces/IBoundingBox.html index 5a2e233..a98a7a4 100644 --- a/typedoc/interfaces/IBoundingBox.html +++ b/typedoc/interfaces/IBoundingBox.html @@ -1,5 +1,5 @@ -IBoundingBox | @vladmandic/face-api - v1.7.14

    Interface IBoundingBox

    interface IBoundingBox {
        bottom: number;
        left: number;
        right: number;
        top: number;
    }

    Implemented by

    Properties

    bottom +IBoundingBox | @vladmandic/face-api - v1.7.15

    Interface IBoundingBox

    interface IBoundingBox {
        bottom: number;
        left: number;
        right: number;
        top: number;
    }

    Implemented by

    Properties

    Properties

    bottom: number
    left: number
    right: number
    top: number
    +

    Properties

    bottom: number
    left: number
    right: number
    top: number
    diff --git a/typedoc/interfaces/IDimensions.html b/typedoc/interfaces/IDimensions.html index a4c2897..6d83d92 100644 --- a/typedoc/interfaces/IDimensions.html +++ b/typedoc/interfaces/IDimensions.html @@ -1,3 +1,3 @@ -IDimensions | @vladmandic/face-api - v1.7.14

    Interface IDimensions

    interface IDimensions {
        height: number;
        width: number;
    }

    Implemented by

    Properties

    height +IDimensions | @vladmandic/face-api - v1.7.15

    Interface IDimensions

    interface IDimensions {
        height: number;
        width: number;
    }

    Implemented by

    Properties

    Properties

    height: number
    width: number
    +

    Properties

    height: number
    width: number
    diff --git a/typedoc/interfaces/IFaceDetecion.html b/typedoc/interfaces/IFaceDetecion.html index 9e9b2cb..d52929e 100644 --- a/typedoc/interfaces/IFaceDetecion.html +++ b/typedoc/interfaces/IFaceDetecion.html @@ -1,3 +1,3 @@ -IFaceDetecion | @vladmandic/face-api - v1.7.14

    Interface IFaceDetecion

    interface IFaceDetecion {
        box: Box;
        score: number;
    }

    Implemented by

    Properties

    box +IFaceDetecion | @vladmandic/face-api - v1.7.15

    Interface IFaceDetecion

    interface IFaceDetecion {
        box: Box;
        score: number;
    }

    Implemented by

    Properties

    Properties

    box: Box
    score: number
    +

    Properties

    box: Box
    score: number
    diff --git a/typedoc/interfaces/IFaceLandmarks.html b/typedoc/interfaces/IFaceLandmarks.html index 15d21d1..483cb4e 100644 --- a/typedoc/interfaces/IFaceLandmarks.html +++ b/typedoc/interfaces/IFaceLandmarks.html @@ -1,3 +1,3 @@ -IFaceLandmarks | @vladmandic/face-api - v1.7.14

    Interface IFaceLandmarks

    interface IFaceLandmarks {
        positions: Point[];
        shift: Point;
    }

    Implemented by

    Properties

    positions +IFaceLandmarks | @vladmandic/face-api - v1.7.15

    Interface IFaceLandmarks

    interface IFaceLandmarks {
        positions: Point[];
        shift: Point;
    }

    Implemented by

    Properties

    Properties

    positions: Point[]
    shift: Point
    +

    Properties

    positions: Point[]
    shift: Point
    diff --git a/typedoc/interfaces/IFaceMatch.html b/typedoc/interfaces/IFaceMatch.html index 12b7ac4..5291698 100644 --- a/typedoc/interfaces/IFaceMatch.html +++ b/typedoc/interfaces/IFaceMatch.html @@ -1,3 +1,3 @@ -IFaceMatch | @vladmandic/face-api - v1.7.14

    Interface IFaceMatch

    interface IFaceMatch {
        distance: number;
        label: string;
    }

    Implemented by

    Properties

    distance +IFaceMatch | @vladmandic/face-api - v1.7.15

    Interface IFaceMatch

    interface IFaceMatch {
        distance: number;
        label: string;
    }

    Implemented by

    Properties

    Properties

    distance: number
    label: string
    +

    Properties

    distance: number
    label: string
    diff --git a/typedoc/interfaces/IPoint.html b/typedoc/interfaces/IPoint.html index 37d0ea1..c3989a3 100644 --- a/typedoc/interfaces/IPoint.html +++ b/typedoc/interfaces/IPoint.html @@ -1,3 +1,3 @@ -IPoint | @vladmandic/face-api - v1.7.14
    interface IPoint {
        x: number;
        y: number;
    }

    Implemented by

    Properties

    x +IPoint | @vladmandic/face-api - v1.7.15
    interface IPoint {
        x: number;
        y: number;
    }

    Implemented by

    Properties

    x y -

    Properties

    x: number
    y: number
    +

    Properties

    x: number
    y: number
    diff --git a/typedoc/interfaces/IRect.html b/typedoc/interfaces/IRect.html index 116ac00..6e6324f 100644 --- a/typedoc/interfaces/IRect.html +++ b/typedoc/interfaces/IRect.html @@ -1,5 +1,5 @@ -IRect | @vladmandic/face-api - v1.7.14
    interface IRect {
        height: number;
        width: number;
        x: number;
        y: number;
    }

    Implemented by

    Properties

    height +IRect | @vladmandic/face-api - v1.7.15
    interface IRect {
        height: number;
        width: number;
        x: number;
        y: number;
    }

    Implemented by

    Properties

    Properties

    height: number
    width: number
    x: number
    y: number
    +

    Properties

    height: number
    width: number
    x: number
    y: number
    diff --git a/typedoc/interfaces/ISsdMobilenetv1Options.html b/typedoc/interfaces/ISsdMobilenetv1Options.html index a6e57ed..3714b50 100644 --- a/typedoc/interfaces/ISsdMobilenetv1Options.html +++ b/typedoc/interfaces/ISsdMobilenetv1Options.html @@ -1,3 +1,3 @@ -ISsdMobilenetv1Options | @vladmandic/face-api - v1.7.14

    Interface ISsdMobilenetv1Options

    interface ISsdMobilenetv1Options {
        maxResults?: number;
        minConfidence?: number;
    }

    Properties

    maxResults? +ISsdMobilenetv1Options | @vladmandic/face-api - v1.7.15

    Interface ISsdMobilenetv1Options

    interface ISsdMobilenetv1Options {
        maxResults?: number;
        minConfidence?: number;
    }

    Properties

    maxResults?: number
    minConfidence?: number
    +

    Properties

    maxResults?: number
    minConfidence?: number
    diff --git a/typedoc/interfaces/ITinyYolov2Options.html b/typedoc/interfaces/ITinyYolov2Options.html index 782fb3e..feddb94 100644 --- a/typedoc/interfaces/ITinyYolov2Options.html +++ b/typedoc/interfaces/ITinyYolov2Options.html @@ -1,3 +1,3 @@ -ITinyYolov2Options | @vladmandic/face-api - v1.7.14

    Interface ITinyYolov2Options

    interface ITinyYolov2Options {
        inputSize?: number;
        scoreThreshold?: number;
    }

    Properties

    inputSize? +ITinyYolov2Options | @vladmandic/face-api - v1.7.15

    Interface ITinyYolov2Options

    interface ITinyYolov2Options {
        inputSize?: number;
        scoreThreshold?: number;
    }

    Properties

    inputSize?: number
    scoreThreshold?: number
    +

    Properties

    inputSize?: number
    scoreThreshold?: number
    diff --git a/typedoc/interfaces/draw.IDrawBoxOptions.html b/typedoc/interfaces/draw.IDrawBoxOptions.html index 4498e5c..f9c17fc 100644 --- a/typedoc/interfaces/draw.IDrawBoxOptions.html +++ b/typedoc/interfaces/draw.IDrawBoxOptions.html @@ -1,5 +1,5 @@ -IDrawBoxOptions | @vladmandic/face-api - v1.7.14
    interface IDrawBoxOptions {
        boxColor?: string;
        drawLabelOptions?: IDrawTextFieldOptions;
        label?: string;
        lineWidth?: number;
    }

    Properties

    boxColor? +IDrawBoxOptions | @vladmandic/face-api - v1.7.15
    interface IDrawBoxOptions {
        boxColor?: string;
        drawLabelOptions?: IDrawTextFieldOptions;
        label?: string;
        lineWidth?: number;
    }

    Properties

    boxColor?: string
    drawLabelOptions?: IDrawTextFieldOptions
    label?: string
    lineWidth?: number
    +

    Properties

    boxColor?: string
    drawLabelOptions?: IDrawTextFieldOptions
    label?: string
    lineWidth?: number
    diff --git a/typedoc/interfaces/draw.IDrawFaceLandmarksOptions.html b/typedoc/interfaces/draw.IDrawFaceLandmarksOptions.html index 2116d63..2b44133 100644 --- a/typedoc/interfaces/draw.IDrawFaceLandmarksOptions.html +++ b/typedoc/interfaces/draw.IDrawFaceLandmarksOptions.html @@ -1,7 +1,7 @@ -IDrawFaceLandmarksOptions | @vladmandic/face-api - v1.7.14

    Interface IDrawFaceLandmarksOptions

    interface IDrawFaceLandmarksOptions {
        drawLines?: boolean;
        drawPoints?: boolean;
        lineColor?: string;
        lineWidth?: number;
        pointColor?: string;
        pointSize?: number;
    }

    Properties

    drawLines? +IDrawFaceLandmarksOptions | @vladmandic/face-api - v1.7.15

    Interface IDrawFaceLandmarksOptions

    interface IDrawFaceLandmarksOptions {
        drawLines?: boolean;
        drawPoints?: boolean;
        lineColor?: string;
        lineWidth?: number;
        pointColor?: string;
        pointSize?: number;
    }

    Properties

    drawLines?: boolean
    drawPoints?: boolean
    lineColor?: string
    lineWidth?: number
    pointColor?: string
    pointSize?: number
    +

    Properties

    drawLines?: boolean
    drawPoints?: boolean
    lineColor?: string
    lineWidth?: number
    pointColor?: string
    pointSize?: number
    diff --git a/typedoc/interfaces/draw.IDrawTextFieldOptions.html b/typedoc/interfaces/draw.IDrawTextFieldOptions.html index d35fee6..fecb09b 100644 --- a/typedoc/interfaces/draw.IDrawTextFieldOptions.html +++ b/typedoc/interfaces/draw.IDrawTextFieldOptions.html @@ -1,7 +1,7 @@ -IDrawTextFieldOptions | @vladmandic/face-api - v1.7.14

    Interface IDrawTextFieldOptions

    interface IDrawTextFieldOptions {
        anchorPosition?: AnchorPosition;
        backgroundColor?: string;
        fontColor?: string;
        fontSize?: number;
        fontStyle?: string;
        padding?: number;
    }

    Implemented by

    Properties

    anchorPosition? +IDrawTextFieldOptions | @vladmandic/face-api - v1.7.15

    Interface IDrawTextFieldOptions

    interface IDrawTextFieldOptions {
        anchorPosition?: AnchorPosition;
        backgroundColor?: string;
        fontColor?: string;
        fontSize?: number;
        fontStyle?: string;
        padding?: number;
    }

    Implemented by

    Properties

    anchorPosition?: AnchorPosition
    backgroundColor?: string
    fontColor?: string
    fontSize?: number
    fontStyle?: string
    padding?: number
    +

    Properties

    anchorPosition?: AnchorPosition
    backgroundColor?: string
    fontColor?: string
    fontSize?: number
    fontStyle?: string
    padding?: number
    diff --git a/typedoc/interfaces/tf.io.IOHandler.html b/typedoc/interfaces/tf.io.IOHandler.html index c1a705b..4ef7521 100644 --- a/typedoc/interfaces/tf.io.IOHandler.html +++ b/typedoc/interfaces/tf.io.IOHandler.html @@ -1,6 +1,6 @@ -IOHandler | @vladmandic/face-api - v1.7.14

    Interface for a model import/export handler.

    +IOHandler | @vladmandic/face-api - v1.7.15

    Interface for a model import/export handler.

    The save and load handlers are both optional, in order to allow handlers that support only saving or loading.

    interface IOHandler {
        load?: LoadHandler;
        save?: SaveHandler;
    }

    Properties

    Properties

    +

    Properties

    diff --git a/typedoc/interfaces/tf.io.LoadOptions.html b/typedoc/interfaces/tf.io.LoadOptions.html index 87b4dfc..4cb1029 100644 --- a/typedoc/interfaces/tf.io.LoadOptions.html +++ b/typedoc/interfaces/tf.io.LoadOptions.html @@ -1,4 +1,4 @@ -LoadOptions | @vladmandic/face-api - v1.7.14

    io

    +LoadOptions | @vladmandic/face-api - v1.7.15

    io

    interface LoadOptions {
        fetchFunc?: {
            (input: RequestInfo | URL, init?: RequestInit): Promise<Response>;
            (input: RequestInfo | URL, init?: RequestInit): Promise<Response>;
            (input: string | Request | URL, init?: RequestInit): Promise<Response>;
        };
        fromTFHub?: boolean;
        onProgress?: OnProgressCallback;
        requestInit?: RequestInit;
        streamWeights?: boolean;
        strict?: boolean;
        weightPathPrefix?: string;
        weightUrlConverter?: (weightFileName: string) => Promise<string>;
    }

    Properties

    fetchFunc? fromTFHub? onProgress? @@ -44,4 +44,4 @@ model.json URL: https://www group1-shard1of1.bin url: https://www.google.com/models/1/group1-shard1of1.bin

    With this func you can convert the weight file name to any URL.

    -
    +
    diff --git a/typedoc/interfaces/tf.io.ModelArtifacts.html b/typedoc/interfaces/tf.io.ModelArtifacts.html index 0cb4d60..877fce8 100644 --- a/typedoc/interfaces/tf.io.ModelArtifacts.html +++ b/typedoc/interfaces/tf.io.ModelArtifacts.html @@ -1,4 +1,4 @@ -ModelArtifacts | @vladmandic/face-api - v1.7.14

    The serialized artifacts of a model, including topology and weights.

    +ModelArtifacts | @vladmandic/face-api - v1.7.15

    The serialized artifacts of a model, including topology and weights.

    The modelTopology, trainingConfig, weightSpecs and weightData fields of this interface are optional, in order to support topology- or weights-only saving and loading.

    @@ -44,4 +44,4 @@ concatenated together or an Array of ArrayBuffers containing the weights (weights may be sharded across multiple ArrayBuffers).

    weightSpecs?: WeightsManifestEntry[]

    Weight specifications.

    This corresponds to the weightsData below.

    -
    +
    diff --git a/typedoc/interfaces/tf.io.ModelArtifactsInfo.html b/typedoc/interfaces/tf.io.ModelArtifactsInfo.html index 8012155..0251408 100644 --- a/typedoc/interfaces/tf.io.ModelArtifactsInfo.html +++ b/typedoc/interfaces/tf.io.ModelArtifactsInfo.html @@ -1,4 +1,4 @@ -ModelArtifactsInfo | @vladmandic/face-api - v1.7.14

    Interface ModelArtifactsInfo

    interface ModelArtifactsInfo {
        dateSaved: Date;
        modelTopologyBytes?: number;
        modelTopologyType: "JSON" | "GraphDef";
        weightDataBytes?: number;
        weightSpecsBytes?: number;
    }

    Properties

    dateSaved +ModelArtifactsInfo | @vladmandic/face-api - v1.7.15

    Interface ModelArtifactsInfo

    interface ModelArtifactsInfo {
        dateSaved: Date;
        modelTopologyBytes?: number;
        modelTopologyType: "JSON" | "GraphDef";
        weightDataBytes?: number;
        weightSpecsBytes?: number;
    }

    Properties

    dateSaved modelTopologyBytes? modelTopologyType weightDataBytes? @@ -21,4 +21,4 @@ protocol buffer (binary).
    weightDataBytes?: number

    Size of weight value data, in bytes.

    weightSpecsBytes?: number

    Size of weight specification or manifest, in bytes.

    -
    +
    diff --git a/typedoc/interfaces/tf.io.ModelJSON.html b/typedoc/interfaces/tf.io.ModelJSON.html index 0fd3ead..b31e8c0 100644 --- a/typedoc/interfaces/tf.io.ModelJSON.html +++ b/typedoc/interfaces/tf.io.ModelJSON.html @@ -1,4 +1,4 @@ -ModelJSON | @vladmandic/face-api - v1.7.14

    The on-disk format of the model.json file.

    +ModelJSON | @vladmandic/face-api - v1.7.15

    The on-disk format of the model.json file.

    TF.js 1.0 always populates the optional fields when writing model.json. Prior versions did not provide those fields.

    interface ModelJSON {
        convertedBy?: null | string;
        format?: string;
        generatedBy?: string;
        initializerSignature?: {};
        modelInitializer?: {};
        modelTopology: {};
        signature?: {};
        trainingConfig?: TrainingConfig;
        userDefinedMetadata?: { [key: string]: {} };
        weightsManifest: WeightsManifestConfig;
    }

    Properties

    convertedBy? @@ -35,4 +35,4 @@ encoding of the GraphDef protocol buffer.

    groups. Each weight-manifest group consists of a number of weight values stored in a number of paths. See the documentation of WeightsManifestConfig for more details.

    -
    +
    diff --git a/typedoc/interfaces/tf.io.ModelStoreManager.html b/typedoc/interfaces/tf.io.ModelStoreManager.html index 698afc7..4fc099f 100644 --- a/typedoc/interfaces/tf.io.ModelStoreManager.html +++ b/typedoc/interfaces/tf.io.ModelStoreManager.html @@ -1,4 +1,4 @@ -ModelStoreManager | @vladmandic/face-api - v1.7.14

    An interface for the manager of a model store.

    +ModelStoreManager | @vladmandic/face-api - v1.7.15

    An interface for the manager of a model store.

    A model store is defined as a storage medium on which multiple models can be stored. Each stored model has a unique path as its identifier. A ModelStoreManager for the store allows actions including

    @@ -16,4 +16,4 @@ topology, byte sizes of the topology, weights, etc.

    Parameters

    • path: string

    Returns Promise<ModelArtifactsInfo>

    ModelArtifactsInfo of the deleted model (if and only if deletion is successful).

    Error if deletion fails, e.g., if no model exists at path.

    -
    +
    diff --git a/typedoc/interfaces/tf.io.RequestDetails.html b/typedoc/interfaces/tf.io.RequestDetails.html index 76eece8..90f89ca 100644 --- a/typedoc/interfaces/tf.io.RequestDetails.html +++ b/typedoc/interfaces/tf.io.RequestDetails.html @@ -1,4 +1,4 @@ -RequestDetails | @vladmandic/face-api - v1.7.14

    Additional options for Platform.fetch

    +RequestDetails | @vladmandic/face-api - v1.7.15

    Additional options for Platform.fetch

    interface RequestDetails {
        isBinary?: boolean;
    }

    Properties

    Properties

    isBinary?: boolean

    Is this request for a binary file (as opposed to a json file)

    -
    +
    diff --git a/typedoc/interfaces/tf.io.SaveConfig.html b/typedoc/interfaces/tf.io.SaveConfig.html index a6aa632..a8315e2 100644 --- a/typedoc/interfaces/tf.io.SaveConfig.html +++ b/typedoc/interfaces/tf.io.SaveConfig.html @@ -1,4 +1,4 @@ -SaveConfig | @vladmandic/face-api - v1.7.14

    Options for saving a model.

    +SaveConfig | @vladmandic/face-api - v1.7.15

    Options for saving a model.

    io

    interface SaveConfig {
        includeOptimizer?: boolean;
        trainableOnly?: boolean;
    }

    Properties

    includeOptimizer? trainableOnly? @@ -6,4 +6,4 @@

    Default: false.

    trainableOnly?: boolean

    Whether to save only the trainable weights of the model, ignoring the non-trainable ones.

    -
    +
    diff --git a/typedoc/interfaces/tf.io.SaveResult.html b/typedoc/interfaces/tf.io.SaveResult.html index 311fb75..79c91dc 100644 --- a/typedoc/interfaces/tf.io.SaveResult.html +++ b/typedoc/interfaces/tf.io.SaveResult.html @@ -1,4 +1,4 @@ -SaveResult | @vladmandic/face-api - v1.7.14

    Result of a saving operation.

    +SaveResult | @vladmandic/face-api - v1.7.15

    Result of a saving operation.

    interface SaveResult {
        errors?: (string | {})[];
        modelArtifactsInfo: ModelArtifactsInfo;
        responses?: Response[];
    }

    Properties

    modelArtifactsInfo: ModelArtifactsInfo

    Information about the model artifacts saved.

    responses?: Response[]

    HTTP responses from the server that handled the model-saving request (if any). This is applicable only to server-based saving routes.

    -
    +
    diff --git a/typedoc/interfaces/tf.io.TrainingConfig.html b/typedoc/interfaces/tf.io.TrainingConfig.html index 4729df2..1d96f35 100644 --- a/typedoc/interfaces/tf.io.TrainingConfig.html +++ b/typedoc/interfaces/tf.io.TrainingConfig.html @@ -1,4 +1,4 @@ -TrainingConfig | @vladmandic/face-api - v1.7.14

    Model training configuration.

    +TrainingConfig | @vladmandic/face-api - v1.7.15

    Model training configuration.

    interface TrainingConfig {
        loss: string | string[] | { [key: string]: string };
        loss_weights?: number[] | { [key: string]: number };
        metrics?: string[] | { [key: string]: string };
        optimizer_config: {};
        sample_weight_mode?: string;
        weighted_metrics?: string[];
    }

    Properties

    loss loss_weights? metrics? @@ -8,4 +8,4 @@

    Properties

    loss: string | string[] | { [key: string]: string }

    Loss function(s) for the model's output(s).

    loss_weights?: number[] | { [key: string]: number }
    metrics?: string[] | { [key: string]: string }

    Metric function(s) for the model's output(s).

    optimizer_config: {}

    Optimizer used for the model training.

    -
    sample_weight_mode?: string
    weighted_metrics?: string[]
    +
    sample_weight_mode?: string
    weighted_metrics?: string[]
    diff --git a/typedoc/interfaces/tf.io.WeightsManifestEntry.html b/typedoc/interfaces/tf.io.WeightsManifestEntry.html index 97f99aa..874b5ee 100644 --- a/typedoc/interfaces/tf.io.WeightsManifestEntry.html +++ b/typedoc/interfaces/tf.io.WeightsManifestEntry.html @@ -1,4 +1,4 @@ -WeightsManifestEntry | @vladmandic/face-api - v1.7.14

    Interface WeightsManifestEntry

    An entry in the weight manifest.

    +WeightsManifestEntry | @vladmandic/face-api - v1.7.15

    Interface WeightsManifestEntry

    An entry in the weight manifest.

    The entry contains specification of a weight.

    interface WeightsManifestEntry {
        dtype: "string" | "float32" | "int32" | "bool" | "complex64";
        group?: WeightGroup;
        name: string;
        quantization?: {
            dtype: "uint16" | "uint8" | "float16";
            min?: number;
            scale?: number;
        };
        shape: number[];
    }

    Properties

    dtype group? @@ -13,4 +13,4 @@
    name: string

    Name of the weight, e.g., 'Dense_1/bias'

    quantization?: {
        dtype: "uint16" | "uint8" | "float16";
        min?: number;
        scale?: number;
    }

    Information for dequantization of the weight.

    shape: number[]

    Shape of the weight.

    -
    +
    diff --git a/typedoc/modules/draw.html b/typedoc/modules/draw.html index 7f46d9a..bab19a5 100644 --- a/typedoc/modules/draw.html +++ b/typedoc/modules/draw.html @@ -1 +1 @@ -draw | @vladmandic/face-api - v1.7.14
    +draw | @vladmandic/face-api - v1.7.15
    diff --git a/typedoc/modules/tf.Tensor.html b/typedoc/modules/tf.Tensor.html index 9ce3ad7..08e81bb 100644 --- a/typedoc/modules/tf.Tensor.html +++ b/typedoc/modules/tf.Tensor.html @@ -1 +1 @@ -Tensor | @vladmandic/face-api - v1.7.14
    +Tensor | @vladmandic/face-api - v1.7.15
    diff --git a/typedoc/modules/tf.browser.html b/typedoc/modules/tf.browser.html index 965a26e..341b975 100644 --- a/typedoc/modules/tf.browser.html +++ b/typedoc/modules/tf.browser.html @@ -1 +1 @@ -browser | @vladmandic/face-api - v1.7.14
    +browser | @vladmandic/face-api - v1.7.15
    diff --git a/typedoc/modules/tf.html b/typedoc/modules/tf.html index d947f87..a5ba293 100644 --- a/typedoc/modules/tf.html +++ b/typedoc/modules/tf.html @@ -1 +1 @@ -tf | @vladmandic/face-api - v1.7.14
    +tf | @vladmandic/face-api - v1.7.15
    diff --git a/typedoc/modules/tf.io.html b/typedoc/modules/tf.io.html index b6e8ad9..2cdaa50 100644 --- a/typedoc/modules/tf.io.html +++ b/typedoc/modules/tf.io.html @@ -1 +1 @@ -io | @vladmandic/face-api - v1.7.14
    +io | @vladmandic/face-api - v1.7.15
    diff --git a/typedoc/modules/utils.html b/typedoc/modules/utils.html index 04520db..6fd8833 100644 --- a/typedoc/modules/utils.html +++ b/typedoc/modules/utils.html @@ -1 +1 @@ -utils | @vladmandic/face-api - v1.7.14
    +utils | @vladmandic/face-api - v1.7.15
    diff --git a/typedoc/types/AgeAndGenderPrediction.html b/typedoc/types/AgeAndGenderPrediction.html index 13a63a8..b4024a1 100644 --- a/typedoc/types/AgeAndGenderPrediction.html +++ b/typedoc/types/AgeAndGenderPrediction.html @@ -1 +1 @@ -AgeAndGenderPrediction | @vladmandic/face-api - v1.7.14

    Type Alias AgeAndGenderPrediction

    AgeAndGenderPrediction: {
        age: number;
        gender: Gender;
        genderProbability: number;
    }

    Type declaration

    • age: number
    • gender: Gender
    • genderProbability: number
    +AgeAndGenderPrediction | @vladmandic/face-api - v1.7.15

    Type Alias AgeAndGenderPrediction

    AgeAndGenderPrediction: {
        age: number;
        gender: Gender;
        genderProbability: number;
    }

    Type declaration

    • age: number
    • gender: Gender
    • genderProbability: number
    diff --git a/typedoc/types/BatchNorm.html b/typedoc/types/BatchNorm.html index f910d86..d7902f0 100644 --- a/typedoc/types/BatchNorm.html +++ b/typedoc/types/BatchNorm.html @@ -1 +1 @@ -BatchNorm | @vladmandic/face-api - v1.7.14

    Type Alias BatchNorm

    BatchNorm: { sub: Tensor1D; truediv: Tensor1D }

    Type declaration

    +BatchNorm | @vladmandic/face-api - v1.7.15

    Type Alias BatchNorm

    BatchNorm: { sub: Tensor1D; truediv: Tensor1D }

    Type declaration

    diff --git a/typedoc/types/ConvWithBatchNorm.html b/typedoc/types/ConvWithBatchNorm.html index 9c3c52b..7872658 100644 --- a/typedoc/types/ConvWithBatchNorm.html +++ b/typedoc/types/ConvWithBatchNorm.html @@ -1 +1 @@ -ConvWithBatchNorm | @vladmandic/face-api - v1.7.14

    Type Alias ConvWithBatchNorm

    ConvWithBatchNorm: { bn: BatchNorm; conv: ConvParams }

    Type declaration

    +ConvWithBatchNorm | @vladmandic/face-api - v1.7.15

    Type Alias ConvWithBatchNorm

    ConvWithBatchNorm: { bn: BatchNorm; conv: ConvParams }

    Type declaration

    diff --git a/typedoc/types/DefaultTinyYolov2NetParams.html b/typedoc/types/DefaultTinyYolov2NetParams.html index 3b35a22..5646bad 100644 --- a/typedoc/types/DefaultTinyYolov2NetParams.html +++ b/typedoc/types/DefaultTinyYolov2NetParams.html @@ -1 +1 @@ -DefaultTinyYolov2NetParams | @vladmandic/face-api - v1.7.14

    Type Alias DefaultTinyYolov2NetParams

    DefaultTinyYolov2NetParams: {
        conv0: ConvWithBatchNorm;
        conv1: ConvWithBatchNorm;
        conv2: ConvWithBatchNorm;
        conv3: ConvWithBatchNorm;
        conv4: ConvWithBatchNorm;
        conv5: ConvWithBatchNorm;
        conv6: ConvWithBatchNorm;
        conv7: ConvWithBatchNorm;
        conv8: ConvParams;
    }
    +DefaultTinyYolov2NetParams | @vladmandic/face-api - v1.7.15

    Type Alias DefaultTinyYolov2NetParams

    DefaultTinyYolov2NetParams: {
        conv0: ConvWithBatchNorm;
        conv1: ConvWithBatchNorm;
        conv2: ConvWithBatchNorm;
        conv3: ConvWithBatchNorm;
        conv4: ConvWithBatchNorm;
        conv5: ConvWithBatchNorm;
        conv6: ConvWithBatchNorm;
        conv7: ConvWithBatchNorm;
        conv8: ConvParams;
    }
    diff --git a/typedoc/types/Environment.html b/typedoc/types/Environment.html index 98f94a3..53baf97 100644 --- a/typedoc/types/Environment.html +++ b/typedoc/types/Environment.html @@ -1 +1 @@ -Environment | @vladmandic/face-api - v1.7.14

    Type Alias Environment

    Environment: FileSystem & {
        Canvas: typeof HTMLCanvasElement;
        CanvasRenderingContext2D: typeof CanvasRenderingContext2D;
        createCanvasElement: () => HTMLCanvasElement;
        createImageElement: () => HTMLImageElement;
        createVideoElement: () => HTMLVideoElement;
        fetch: (url: string, init?: RequestInit) => Promise<Response>;
        Image: typeof HTMLImageElement;
        ImageData: typeof ImageData;
        Video: typeof HTMLVideoElement;
    }
    +Environment | @vladmandic/face-api - v1.7.15

    Type Alias Environment

    Environment: FileSystem & {
        Canvas: typeof HTMLCanvasElement;
        CanvasRenderingContext2D: typeof CanvasRenderingContext2D;
        createCanvasElement: () => HTMLCanvasElement;
        createImageElement: () => HTMLImageElement;
        createVideoElement: () => HTMLVideoElement;
        fetch: (url: string, init?: RequestInit) => Promise<Response>;
        Image: typeof HTMLImageElement;
        ImageData: typeof ImageData;
        Video: typeof HTMLVideoElement;
    }
    diff --git a/typedoc/types/FaceDetectionFunction.html b/typedoc/types/FaceDetectionFunction.html index bbff0ba..9985526 100644 --- a/typedoc/types/FaceDetectionFunction.html +++ b/typedoc/types/FaceDetectionFunction.html @@ -1 +1 @@ -FaceDetectionFunction | @vladmandic/face-api - v1.7.14

    Type Alias FaceDetectionFunction

    FaceDetectionFunction: (input: TNetInput) => Promise<FaceDetection[]>

    Type declaration

    +FaceDetectionFunction | @vladmandic/face-api - v1.7.15

    Type Alias FaceDetectionFunction

    FaceDetectionFunction: (input: TNetInput) => Promise<FaceDetection[]>

    Type declaration

    diff --git a/typedoc/types/FaceDetectionOptions.html b/typedoc/types/FaceDetectionOptions.html index 046167c..5f0fec8 100644 --- a/typedoc/types/FaceDetectionOptions.html +++ b/typedoc/types/FaceDetectionOptions.html @@ -1 +1 @@ -FaceDetectionOptions | @vladmandic/face-api - v1.7.14

    Type Alias FaceDetectionOptions

    FaceDetectionOptions:
        | TinyFaceDetectorOptions
        | SsdMobilenetv1Options
        | TinyYolov2Options
    +FaceDetectionOptions | @vladmandic/face-api - v1.7.15

    Type Alias FaceDetectionOptions

    FaceDetectionOptions:
        | TinyFaceDetectorOptions
        | SsdMobilenetv1Options
        | TinyYolov2Options
    diff --git a/typedoc/types/FileSystem.html b/typedoc/types/FileSystem.html index a5fa931..6dd9a20 100644 --- a/typedoc/types/FileSystem.html +++ b/typedoc/types/FileSystem.html @@ -1 +1 @@ -FileSystem | @vladmandic/face-api - v1.7.14

    Type Alias FileSystem

    FileSystem: { readFile: (filePath: string) => Promise<string | Buffer> }

    Type declaration

    • readFile: (filePath: string) => Promise<string | Buffer>
    +FileSystem | @vladmandic/face-api - v1.7.15

    Type Alias FileSystem

    FileSystem: { readFile: (filePath: string) => Promise<string | Buffer> }

    Type declaration

    • readFile: (filePath: string) => Promise<string | Buffer>
    diff --git a/typedoc/types/ITinyFaceDetectorOptions.html b/typedoc/types/ITinyFaceDetectorOptions.html index 41c63ab..017688e 100644 --- a/typedoc/types/ITinyFaceDetectorOptions.html +++ b/typedoc/types/ITinyFaceDetectorOptions.html @@ -1 +1 @@ -ITinyFaceDetectorOptions | @vladmandic/face-api - v1.7.14
    +ITinyFaceDetectorOptions | @vladmandic/face-api - v1.7.15
    diff --git a/typedoc/types/MobilenetParams.html b/typedoc/types/MobilenetParams.html index 1a4b60c..d267ff3 100644 --- a/typedoc/types/MobilenetParams.html +++ b/typedoc/types/MobilenetParams.html @@ -1 +1 @@ -MobilenetParams | @vladmandic/face-api - v1.7.14

    Type Alias MobilenetParams

    MobilenetParams: {
        conv0: SeparableConvParams | ConvParams;
        conv1: SeparableConvParams;
        conv2: SeparableConvParams;
        conv3: SeparableConvParams;
        conv4: SeparableConvParams;
        conv5: SeparableConvParams;
        conv6?: SeparableConvParams;
        conv7?: SeparableConvParams;
        conv8: ConvParams;
    }

    Type declaration

    • conv0: SeparableConvParams | ConvParams
    • conv1: SeparableConvParams
    • conv2: SeparableConvParams
    • conv3: SeparableConvParams
    • conv4: SeparableConvParams
    • conv5: SeparableConvParams
    • Optionalconv6?: SeparableConvParams
    • Optionalconv7?: SeparableConvParams
    • conv8: ConvParams
    +MobilenetParams | @vladmandic/face-api - v1.7.15

    Type Alias MobilenetParams

    MobilenetParams: {
        conv0: SeparableConvParams | ConvParams;
        conv1: SeparableConvParams;
        conv2: SeparableConvParams;
        conv3: SeparableConvParams;
        conv4: SeparableConvParams;
        conv5: SeparableConvParams;
        conv6?: SeparableConvParams;
        conv7?: SeparableConvParams;
        conv8: ConvParams;
    }

    Type declaration

    • conv0: SeparableConvParams | ConvParams
    • conv1: SeparableConvParams
    • conv2: SeparableConvParams
    • conv3: SeparableConvParams
    • conv4: SeparableConvParams
    • conv5: SeparableConvParams
    • Optionalconv6?: SeparableConvParams
    • Optionalconv7?: SeparableConvParams
    • conv8: ConvParams
    diff --git a/typedoc/types/NetOutput.html b/typedoc/types/NetOutput.html index f77a960..a016742 100644 --- a/typedoc/types/NetOutput.html +++ b/typedoc/types/NetOutput.html @@ -1 +1 @@ -NetOutput | @vladmandic/face-api - v1.7.14

    Type Alias NetOutput

    NetOutput: { age: Tensor1D; gender: Tensor2D }

    Type declaration

    +NetOutput | @vladmandic/face-api - v1.7.15

    Type Alias NetOutput

    NetOutput: { age: Tensor1D; gender: Tensor2D }

    Type declaration

    diff --git a/typedoc/types/NetParams.html b/typedoc/types/NetParams.html index c125ae9..5848795 100644 --- a/typedoc/types/NetParams.html +++ b/typedoc/types/NetParams.html @@ -1 +1 @@ -NetParams | @vladmandic/face-api - v1.7.14

    Type Alias NetParams

    NetParams: { fc: { age: FCParams; gender: FCParams } }

    Type declaration

    • fc: { age: FCParams; gender: FCParams }
    +NetParams | @vladmandic/face-api - v1.7.15

    Type Alias NetParams

    NetParams: { fc: { age: FCParams; gender: FCParams } }

    Type declaration

    • fc: { age: FCParams; gender: FCParams }
    diff --git a/typedoc/types/TMediaElement.html b/typedoc/types/TMediaElement.html index b068185..a410764 100644 --- a/typedoc/types/TMediaElement.html +++ b/typedoc/types/TMediaElement.html @@ -1 +1 @@ -TMediaElement | @vladmandic/face-api - v1.7.14

    Type Alias TMediaElement

    TMediaElement: HTMLImageElement | HTMLVideoElement | HTMLCanvasElement
    +TMediaElement | @vladmandic/face-api - v1.7.15

    Type Alias TMediaElement

    TMediaElement: HTMLImageElement | HTMLVideoElement | HTMLCanvasElement
    diff --git a/typedoc/types/TNetInput.html b/typedoc/types/TNetInput.html index de67683..abfd5fc 100644 --- a/typedoc/types/TNetInput.html +++ b/typedoc/types/TNetInput.html @@ -1 +1 @@ -TNetInput | @vladmandic/face-api - v1.7.14

    Type Alias TNetInput

    TNetInput:
        | string
        | TResolvedNetInput
        | (string | TResolvedNetInput)[]
        | NetInput
    +TNetInput | @vladmandic/face-api - v1.7.15

    Type Alias TNetInput

    TNetInput:
        | string
        | TResolvedNetInput
        | (string | TResolvedNetInput)[]
        | NetInput
    diff --git a/typedoc/types/TResolvedNetInput.html b/typedoc/types/TResolvedNetInput.html index c0b7d23..cee29cf 100644 --- a/typedoc/types/TResolvedNetInput.html +++ b/typedoc/types/TResolvedNetInput.html @@ -1 +1 @@ -TResolvedNetInput | @vladmandic/face-api - v1.7.14

    Type Alias TResolvedNetInput

    TResolvedNetInput: TMediaElement | Tensor3D | Tensor4D
    +TResolvedNetInput | @vladmandic/face-api - v1.7.15

    Type Alias TResolvedNetInput

    TResolvedNetInput: TMediaElement | Tensor3D | Tensor4D
    diff --git a/typedoc/types/TinyYolov2Config.html b/typedoc/types/TinyYolov2Config.html index 099f1ba..10794a6 100644 --- a/typedoc/types/TinyYolov2Config.html +++ b/typedoc/types/TinyYolov2Config.html @@ -1 +1 @@ -TinyYolov2Config | @vladmandic/face-api - v1.7.14

    Type Alias TinyYolov2Config

    TinyYolov2Config: {
        anchors: Point[];
        classes: string[];
        filterSizes?: number[];
        iouThreshold: number;
        isFirstLayerConv2d?: boolean;
        meanRgb?: [number, number, number];
        withClassScores?: boolean;
        withSeparableConvs: boolean;
    }

    Type declaration

    • anchors: Point[]
    • classes: string[]
    • OptionalfilterSizes?: number[]
    • iouThreshold: number
    • OptionalisFirstLayerConv2d?: boolean
    • OptionalmeanRgb?: [number, number, number]
    • OptionalwithClassScores?: boolean
    • withSeparableConvs: boolean
    +TinyYolov2Config | @vladmandic/face-api - v1.7.15

    Type Alias TinyYolov2Config

    TinyYolov2Config: {
        anchors: Point[];
        classes: string[];
        filterSizes?: number[];
        iouThreshold: number;
        isFirstLayerConv2d?: boolean;
        meanRgb?: [number, number, number];
        withClassScores?: boolean;
        withSeparableConvs: boolean;
    }

    Type declaration

    • anchors: Point[]
    • classes: string[]
    • OptionalfilterSizes?: number[]
    • iouThreshold: number
    • OptionalisFirstLayerConv2d?: boolean
    • OptionalmeanRgb?: [number, number, number]
    • OptionalwithClassScores?: boolean
    • withSeparableConvs: boolean
    diff --git a/typedoc/types/TinyYolov2ExtractBoxesResult.html b/typedoc/types/TinyYolov2ExtractBoxesResult.html index ac695cf..3880814 100644 --- a/typedoc/types/TinyYolov2ExtractBoxesResult.html +++ b/typedoc/types/TinyYolov2ExtractBoxesResult.html @@ -1 +1 @@ -TinyYolov2ExtractBoxesResult | @vladmandic/face-api - v1.7.14

    Type Alias TinyYolov2ExtractBoxesResult

    TinyYolov2ExtractBoxesResult: {
        anchor: number;
        box: BoundingBox;
        classScore: number;
        col: number;
        label: number;
        row: number;
        score: number;
    }

    Type declaration

    • anchor: number
    • box: BoundingBox
    • classScore: number
    • col: number
    • label: number
    • row: number
    • score: number
    +TinyYolov2ExtractBoxesResult | @vladmandic/face-api - v1.7.15

    Type Alias TinyYolov2ExtractBoxesResult

    TinyYolov2ExtractBoxesResult: {
        anchor: number;
        box: BoundingBox;
        classScore: number;
        col: number;
        label: number;
        row: number;
        score: number;
    }

    Type declaration

    • anchor: number
    • box: BoundingBox
    • classScore: number
    • col: number
    • label: number
    • row: number
    • score: number
    diff --git a/typedoc/types/TinyYolov2NetParams.html b/typedoc/types/TinyYolov2NetParams.html index d79ff82..cf02b17 100644 --- a/typedoc/types/TinyYolov2NetParams.html +++ b/typedoc/types/TinyYolov2NetParams.html @@ -1 +1 @@ -TinyYolov2NetParams | @vladmandic/face-api - v1.7.14
    +TinyYolov2NetParams | @vladmandic/face-api - v1.7.15
    diff --git a/typedoc/types/WithAge.html b/typedoc/types/WithAge.html index cf200ce..782ae31 100644 --- a/typedoc/types/WithAge.html +++ b/typedoc/types/WithAge.html @@ -1 +1 @@ -WithAge | @vladmandic/face-api - v1.7.14

    Type Alias WithAge<TSource>

    WithAge: TSource & { age: number }

    Type Parameters

    • TSource
    +WithAge | @vladmandic/face-api - v1.7.15

    Type Alias WithAge<TSource>

    WithAge: TSource & { age: number }

    Type Parameters

    • TSource
    diff --git a/typedoc/types/WithFaceDescriptor.html b/typedoc/types/WithFaceDescriptor.html index a1c0523..f3184d0 100644 --- a/typedoc/types/WithFaceDescriptor.html +++ b/typedoc/types/WithFaceDescriptor.html @@ -1 +1 @@ -WithFaceDescriptor | @vladmandic/face-api - v1.7.14

    Type Alias WithFaceDescriptor<TSource>

    WithFaceDescriptor: TSource & { descriptor: Float32Array }

    Type Parameters

    • TSource
    +WithFaceDescriptor | @vladmandic/face-api - v1.7.15

    Type Alias WithFaceDescriptor<TSource>

    WithFaceDescriptor: TSource & { descriptor: Float32Array }

    Type Parameters

    • TSource
    diff --git a/typedoc/types/WithFaceDetection.html b/typedoc/types/WithFaceDetection.html index 24122c3..dde5fc9 100644 --- a/typedoc/types/WithFaceDetection.html +++ b/typedoc/types/WithFaceDetection.html @@ -1 +1 @@ -WithFaceDetection | @vladmandic/face-api - v1.7.14

    Type Alias WithFaceDetection<TSource>

    WithFaceDetection: TSource & { detection: FaceDetection }

    Type Parameters

    • TSource
    +WithFaceDetection | @vladmandic/face-api - v1.7.15

    Type Alias WithFaceDetection<TSource>

    WithFaceDetection: TSource & { detection: FaceDetection }

    Type Parameters

    • TSource
    diff --git a/typedoc/types/WithFaceExpressions.html b/typedoc/types/WithFaceExpressions.html index 3dc446f..7f4eeea 100644 --- a/typedoc/types/WithFaceExpressions.html +++ b/typedoc/types/WithFaceExpressions.html @@ -1 +1 @@ -WithFaceExpressions | @vladmandic/face-api - v1.7.14

    Type Alias WithFaceExpressions<TSource>

    WithFaceExpressions: TSource & { expressions: FaceExpressions }

    Type Parameters

    • TSource
    +WithFaceExpressions | @vladmandic/face-api - v1.7.15

    Type Alias WithFaceExpressions<TSource>

    WithFaceExpressions: TSource & { expressions: FaceExpressions }

    Type Parameters

    • TSource
    diff --git a/typedoc/types/WithFaceLandmarks.html b/typedoc/types/WithFaceLandmarks.html index 300cc35..8d9ff94 100644 --- a/typedoc/types/WithFaceLandmarks.html +++ b/typedoc/types/WithFaceLandmarks.html @@ -1 +1 @@ -WithFaceLandmarks | @vladmandic/face-api - v1.7.14

    Type Alias WithFaceLandmarks<TSource, TFaceLandmarks>

    WithFaceLandmarks: TSource & {
        alignedRect: FaceDetection;
        angle: {
            pitch: number | undefined;
            roll: number | undefined;
            yaw: number | undefined;
        };
        landmarks: TFaceLandmarks;
        unshiftedLandmarks: TFaceLandmarks;
    }

    Type Parameters

    +WithFaceLandmarks | @vladmandic/face-api - v1.7.15

    Type Alias WithFaceLandmarks<TSource, TFaceLandmarks>

    WithFaceLandmarks: TSource & {
        alignedRect: FaceDetection;
        angle: {
            pitch: number | undefined;
            roll: number | undefined;
            yaw: number | undefined;
        };
        landmarks: TFaceLandmarks;
        unshiftedLandmarks: TFaceLandmarks;
    }

    Type Parameters

    diff --git a/typedoc/types/WithGender.html b/typedoc/types/WithGender.html index 6c72b5c..52960eb 100644 --- a/typedoc/types/WithGender.html +++ b/typedoc/types/WithGender.html @@ -1 +1 @@ -WithGender | @vladmandic/face-api - v1.7.14

    Type Alias WithGender<TSource>

    WithGender: TSource & { gender: Gender; genderProbability: number }

    Type Parameters

    • TSource
    +WithGender | @vladmandic/face-api - v1.7.15

    Type Alias WithGender<TSource>

    WithGender: TSource & { gender: Gender; genderProbability: number }

    Type Parameters

    • TSource
    diff --git a/typedoc/types/draw.DrawFaceExpressionsInput.html b/typedoc/types/draw.DrawFaceExpressionsInput.html index 55aae0f..a5a802a 100644 --- a/typedoc/types/draw.DrawFaceExpressionsInput.html +++ b/typedoc/types/draw.DrawFaceExpressionsInput.html @@ -1 +1 @@ -DrawFaceExpressionsInput | @vladmandic/face-api - v1.7.14

    Type Alias DrawFaceExpressionsInput

    DrawFaceExpressionsInput: FaceExpressions | WithFaceExpressions<{}>
    +DrawFaceExpressionsInput | @vladmandic/face-api - v1.7.15

    Type Alias DrawFaceExpressionsInput

    DrawFaceExpressionsInput: FaceExpressions | WithFaceExpressions<{}>
    diff --git a/typedoc/types/draw.DrawFaceLandmarksInput.html b/typedoc/types/draw.DrawFaceLandmarksInput.html index 22f4016..821a42c 100644 --- a/typedoc/types/draw.DrawFaceLandmarksInput.html +++ b/typedoc/types/draw.DrawFaceLandmarksInput.html @@ -1 +1 @@ -DrawFaceLandmarksInput | @vladmandic/face-api - v1.7.14
    +DrawFaceLandmarksInput | @vladmandic/face-api - v1.7.15
    diff --git a/typedoc/types/draw.TDrawDetectionsInput.html b/typedoc/types/draw.TDrawDetectionsInput.html index bd953c9..32c7302 100644 --- a/typedoc/types/draw.TDrawDetectionsInput.html +++ b/typedoc/types/draw.TDrawDetectionsInput.html @@ -1 +1 @@ -TDrawDetectionsInput | @vladmandic/face-api - v1.7.14

    Type Alias TDrawDetectionsInput

    TDrawDetectionsInput:
        | IRect
        | IBoundingBox
        | FaceDetection
        | WithFaceDetection<{}>
    +TDrawDetectionsInput | @vladmandic/face-api - v1.7.15

    Type Alias TDrawDetectionsInput

    TDrawDetectionsInput:
        | IRect
        | IBoundingBox
        | FaceDetection
        | WithFaceDetection<{}>
    diff --git a/typedoc/types/tf.NamedTensorMap.html b/typedoc/types/tf.NamedTensorMap.html index 0d01f90..c981437 100644 --- a/typedoc/types/tf.NamedTensorMap.html +++ b/typedoc/types/tf.NamedTensorMap.html @@ -1 +1 @@ -NamedTensorMap | @vladmandic/face-api - v1.7.14

    Type Alias NamedTensorMap

    NamedTensorMap: { [name: string]: tf.Tensor }

    Type declaration

    +NamedTensorMap | @vladmandic/face-api - v1.7.15

    Type Alias NamedTensorMap

    NamedTensorMap: { [name: string]: tf.Tensor }

    Type declaration

    diff --git a/typedoc/types/tf.Tensor1D.html b/typedoc/types/tf.Tensor1D.html index f0e3ad3..77a52f5 100644 --- a/typedoc/types/tf.Tensor1D.html +++ b/typedoc/types/tf.Tensor1D.html @@ -1,2 +1,2 @@ -Tensor1D | @vladmandic/face-api - v1.7.14
    Tensor1D: tf.Tensor<R1>
    +Tensor1D | @vladmandic/face-api - v1.7.15
    Tensor1D: tf.Tensor<R1>
    diff --git a/typedoc/types/tf.Tensor2D.html b/typedoc/types/tf.Tensor2D.html index 920d086..be5d713 100644 --- a/typedoc/types/tf.Tensor2D.html +++ b/typedoc/types/tf.Tensor2D.html @@ -1,2 +1,2 @@ -Tensor2D | @vladmandic/face-api - v1.7.14
    Tensor2D: tf.Tensor<R2>
    +Tensor2D | @vladmandic/face-api - v1.7.15
    Tensor2D: tf.Tensor<R2>
    diff --git a/typedoc/types/tf.Tensor3D.html b/typedoc/types/tf.Tensor3D.html index 301e07b..e89340d 100644 --- a/typedoc/types/tf.Tensor3D.html +++ b/typedoc/types/tf.Tensor3D.html @@ -1,2 +1,2 @@ -Tensor3D | @vladmandic/face-api - v1.7.14
    Tensor3D: tf.Tensor<R3>
    +Tensor3D | @vladmandic/face-api - v1.7.15
    Tensor3D: tf.Tensor<R3>
    diff --git a/typedoc/types/tf.Tensor4D.html b/typedoc/types/tf.Tensor4D.html index 4c1382d..7ddcdbe 100644 --- a/typedoc/types/tf.Tensor4D.html +++ b/typedoc/types/tf.Tensor4D.html @@ -1,2 +1,2 @@ -Tensor4D | @vladmandic/face-api - v1.7.14
    Tensor4D: tf.Tensor<R4>
    +Tensor4D | @vladmandic/face-api - v1.7.15
    Tensor4D: tf.Tensor<R4>
    diff --git a/typedoc/types/tf.Tensor5D.html b/typedoc/types/tf.Tensor5D.html index 43a7aba..1bd150c 100644 --- a/typedoc/types/tf.Tensor5D.html +++ b/typedoc/types/tf.Tensor5D.html @@ -1,2 +1,2 @@ -Tensor5D | @vladmandic/face-api - v1.7.14
    Tensor5D: tf.Tensor<R5>
    +Tensor5D | @vladmandic/face-api - v1.7.15
    Tensor5D: tf.Tensor<R5>
    diff --git a/typedoc/types/tf.TensorLike.html b/typedoc/types/tf.TensorLike.html index acb4611..25d5c8b 100644 --- a/typedoc/types/tf.TensorLike.html +++ b/typedoc/types/tf.TensorLike.html @@ -1,2 +1,2 @@ -TensorLike | @vladmandic/face-api - v1.7.14
    TensorLike:
        | TypedArray
        | number
        | boolean
        | string
        | RecursiveArray<number | number[] | TypedArray>
        | RecursiveArray<boolean>
        | RecursiveArray<string>
        | Uint8Array[]

    TypedArray|Array

    -
    +TensorLike | @vladmandic/face-api - v1.7.15
    TensorLike:
        | TypedArray
        | number
        | boolean
        | string
        | RecursiveArray<number | number[] | TypedArray>
        | RecursiveArray<boolean>
        | RecursiveArray<string>
        | Uint8Array[]

    TypedArray|Array

    +
    diff --git a/typedoc/types/tf.io.IOHandlerSync.html b/typedoc/types/tf.io.IOHandlerSync.html index 63a3a6c..059065e 100644 --- a/typedoc/types/tf.io.IOHandlerSync.html +++ b/typedoc/types/tf.io.IOHandlerSync.html @@ -1,4 +1,4 @@ -IOHandlerSync | @vladmandic/face-api - v1.7.14
    IOHandlerSync: { load?: LoadHandlerSync; save?: SaveHandlerSync }

    Interface for a synchronous model import/export handler.

    +IOHandlerSync | @vladmandic/face-api - v1.7.15
    IOHandlerSync: { load?: LoadHandlerSync; save?: SaveHandlerSync }

    Interface for a synchronous model import/export handler.

    The save and load handlers are both optional, in order to allow handlers that support only saving or loading.

    -

    Type declaration

    • Optionalload?: LoadHandlerSync
    • Optionalsave?: SaveHandlerSync
    +

    Type declaration

    • Optionalload?: LoadHandlerSync
    • Optionalsave?: SaveHandlerSync
    diff --git a/typedoc/types/tf.io.LoadHandler.html b/typedoc/types/tf.io.LoadHandler.html index 9b8752c..fb5ae76 100644 --- a/typedoc/types/tf.io.LoadHandler.html +++ b/typedoc/types/tf.io.LoadHandler.html @@ -1,2 +1,2 @@ -LoadHandler | @vladmandic/face-api - v1.7.14
    LoadHandler: () => Promise<ModelArtifacts>

    Type definition for handlers of loading operations.

    -

    Type declaration

    +LoadHandler | @vladmandic/face-api - v1.7.15
    LoadHandler: () => Promise<ModelArtifacts>

    Type definition for handlers of loading operations.

    +

    Type declaration

    diff --git a/typedoc/types/tf.io.OnProgressCallback.html b/typedoc/types/tf.io.OnProgressCallback.html index cfdc64b..e02655e 100644 --- a/typedoc/types/tf.io.OnProgressCallback.html +++ b/typedoc/types/tf.io.OnProgressCallback.html @@ -1,5 +1,5 @@ -OnProgressCallback | @vladmandic/face-api - v1.7.14

    Type Alias OnProgressCallback

    OnProgressCallback: (fraction: number) => void

    Callback for the progress of a long-running action such as an HTTP +OnProgressCallback | @vladmandic/face-api - v1.7.15

    Type Alias OnProgressCallback

    OnProgressCallback: (fraction: number) => void

    Callback for the progress of a long-running action such as an HTTP request for a large binary object.

    fraction should be a number in the [0, 1] interval, indicating how much of the action has completed.

    -

    Type declaration

      • (fraction: number): void
      • Parameters

        • fraction: number

        Returns void

    +

    Type declaration

      • (fraction: number): void
      • Parameters

        • fraction: number

        Returns void

    diff --git a/typedoc/types/tf.io.SaveHandler.html b/typedoc/types/tf.io.SaveHandler.html index ed5ed3d..991aa0a 100644 --- a/typedoc/types/tf.io.SaveHandler.html +++ b/typedoc/types/tf.io.SaveHandler.html @@ -1,2 +1,2 @@ -SaveHandler | @vladmandic/face-api - v1.7.14
    SaveHandler: (modelArtifact: ModelArtifacts) => Promise<SaveResult>

    Type definition for handlers of saving operations.

    -

    Type declaration

    +SaveHandler | @vladmandic/face-api - v1.7.15
    SaveHandler: (modelArtifact: ModelArtifacts) => Promise<SaveResult>

    Type definition for handlers of saving operations.

    +

    Type declaration

    diff --git a/typedoc/types/tf.io.WeightData.html b/typedoc/types/tf.io.WeightData.html index 9a414d6..a24cebb 100644 --- a/typedoc/types/tf.io.WeightData.html +++ b/typedoc/types/tf.io.WeightData.html @@ -1 +1 @@ -WeightData | @vladmandic/face-api - v1.7.14
    WeightData: ArrayBuffer | ArrayBuffer[]
    +WeightData | @vladmandic/face-api - v1.7.15
    WeightData: ArrayBuffer | ArrayBuffer[]
    diff --git a/typedoc/types/tf.io.WeightGroup.html b/typedoc/types/tf.io.WeightGroup.html index e2d5fc2..ce0bffe 100644 --- a/typedoc/types/tf.io.WeightGroup.html +++ b/typedoc/types/tf.io.WeightGroup.html @@ -1,5 +1,5 @@ -WeightGroup | @vladmandic/face-api - v1.7.14
    WeightGroup: "model" | "optimizer"

    Group to which the weight belongs.

    +WeightGroup | @vladmandic/face-api - v1.7.15
    WeightGroup: "model" | "optimizer"

    Group to which the weight belongs.

    • 'optimizer': Weight from a stateful optimizer.
    -
    +
    diff --git a/typedoc/types/tf.io.WeightsManifestConfig.html b/typedoc/types/tf.io.WeightsManifestConfig.html index ee22c4f..61a1c68 100644 --- a/typedoc/types/tf.io.WeightsManifestConfig.html +++ b/typedoc/types/tf.io.WeightsManifestConfig.html @@ -1,6 +1,6 @@ -WeightsManifestConfig | @vladmandic/face-api - v1.7.14

    Type Alias WeightsManifestConfig

    WeightsManifestConfig: WeightsManifestGroupConfig[]

    A weight manifest.

    +WeightsManifestConfig | @vladmandic/face-api - v1.7.15

    Type Alias WeightsManifestConfig

    WeightsManifestConfig: WeightsManifestGroupConfig[]

    A weight manifest.

    The weight manifest consists of an ordered list of weight-manifest groups. Each weight-manifest group ("group" for short hereafter) consists of a number of weight values stored in a number of paths. See the documentation of WeightManifestGroupConfig below for more details.

    -
    +
    diff --git a/typedoc/variables/FACE_EXPRESSION_LABELS.html b/typedoc/variables/FACE_EXPRESSION_LABELS.html index 573a630..fc14f35 100644 --- a/typedoc/variables/FACE_EXPRESSION_LABELS.html +++ b/typedoc/variables/FACE_EXPRESSION_LABELS.html @@ -1 +1 @@ -FACE_EXPRESSION_LABELS | @vladmandic/face-api - v1.7.14

    Variable FACE_EXPRESSION_LABELSConst

    FACE_EXPRESSION_LABELS: readonly [
        "neutral",
        "happy",
        "sad",
        "angry",
        "fearful",
        "disgusted",
        "surprised",
    ] = ...
    +FACE_EXPRESSION_LABELS | @vladmandic/face-api - v1.7.15

    Variable FACE_EXPRESSION_LABELSConst

    FACE_EXPRESSION_LABELS: readonly [
        "neutral",
        "happy",
        "sad",
        "angry",
        "fearful",
        "disgusted",
        "surprised",
    ] = ...
    diff --git a/typedoc/variables/env.html b/typedoc/variables/env.html index c3c51f6..5acb254 100644 --- a/typedoc/variables/env.html +++ b/typedoc/variables/env.html @@ -1 +1 @@ -env | @vladmandic/face-api - v1.7.14

    Variable envConst

    env: {
        createBrowserEnv: () => Environment;
        createFileSystem: (fs?: any) => FileSystem;
        createNodejsEnv: () => Environment;
        getEnv: () => Environment;
        initialize: () => null | void;
        isBrowser: () => boolean;
        isNodejs: () => boolean;
        monkeyPatch: (env: Partial<Environment>) => void;
        setEnv: (env: Environment) => void;
    } = ...

    Type declaration

    +env | @vladmandic/face-api - v1.7.15

    Variable envConst

    env: {
        createBrowserEnv: () => Environment;
        createFileSystem: (fs?: any) => FileSystem;
        createNodejsEnv: () => Environment;
        getEnv: () => Environment;
        initialize: () => null | void;
        isBrowser: () => boolean;
        isNodejs: () => boolean;
        monkeyPatch: (env: Partial<Environment>) => void;
        setEnv: (env: Environment) => void;
    } = ...

    Type declaration

    diff --git a/typedoc/variables/nets.html b/typedoc/variables/nets.html index a0ec603..06192c1 100644 --- a/typedoc/variables/nets.html +++ b/typedoc/variables/nets.html @@ -1 +1 @@ -nets | @vladmandic/face-api - v1.7.14

    Variable netsConst

    nets: {
        ageGenderNet: AgeGenderNet;
        faceExpressionNet: FaceExpressionNet;
        faceLandmark68Net: FaceLandmark68Net;
        faceLandmark68TinyNet: FaceLandmark68TinyNet;
        faceRecognitionNet: FaceRecognitionNet;
        ssdMobilenetv1: SsdMobilenetv1;
        tinyFaceDetector: TinyFaceDetector;
        tinyYolov2: TinyYolov2;
    } = ...

    Type declaration

    +nets | @vladmandic/face-api - v1.7.15

    Variable netsConst

    nets: {
        ageGenderNet: AgeGenderNet;
        faceExpressionNet: FaceExpressionNet;
        faceLandmark68Net: FaceLandmark68Net;
        faceLandmark68TinyNet: FaceLandmark68TinyNet;
        faceRecognitionNet: FaceRecognitionNet;
        ssdMobilenetv1: SsdMobilenetv1;
        tinyFaceDetector: TinyFaceDetector;
        tinyYolov2: TinyYolov2;
    } = ...

    Type declaration

    diff --git a/typedoc/variables/tf.ENV.html b/typedoc/variables/tf.ENV.html index 616c842..3906964 100644 --- a/typedoc/variables/tf.ENV.html +++ b/typedoc/variables/tf.ENV.html @@ -1 +1 @@ -ENV | @vladmandic/face-api - v1.7.14
    ENV: Environment
    +ENV | @vladmandic/face-api - v1.7.15
    ENV: Environment
    diff --git a/typedoc/variables/tf.image.html b/typedoc/variables/tf.image.html index c81716d..c82993e 100644 --- a/typedoc/variables/tf.image.html +++ b/typedoc/variables/tf.image.html @@ -1 +1 @@ -image | @vladmandic/face-api - v1.7.14

    Variable imageConst

    image: {
        cropAndResize: (
            image: TensorLike | Tensor4D,
            boxes: TensorLike | Tensor2D,
            boxInd: TensorLike | Tensor1D,
            cropSize: [number, number],
            method?: "bilinear" | "nearest",
            extrapolationValue?: number,
        ) => Tensor4D;
        flipLeftRight: (image: TensorLike | Tensor4D) => Tensor4D;
        grayscaleToRGB: <
            T extends Tensor2D
            | Tensor3D
            | Tensor4D
            | Tensor5D
            | Tensor6D,
        >(
            image: TensorLike | T,
        ) => T;
        nonMaxSuppression: (
            boxes: TensorLike | Tensor2D,
            scores: TensorLike | Tensor1D,
            maxOutputSize: number,
            iouThreshold?: number,
            scoreThreshold?: number,
        ) => Tensor1D;
        nonMaxSuppressionAsync: (
            boxes: TensorLike | Tensor2D,
            scores: TensorLike | Tensor1D,
            maxOutputSize: number,
            iouThreshold?: number,
            scoreThreshold?: number,
        ) => Promise<Tensor1D>;
        nonMaxSuppressionPadded: (
            boxes: TensorLike | Tensor2D,
            scores: TensorLike | Tensor1D,
            maxOutputSize: number,
            iouThreshold?: number,
            scoreThreshold?: number,
            padToMaxOutputSize?: boolean,
        ) => NamedTensorMap;
        nonMaxSuppressionPaddedAsync: (
            boxes: TensorLike | Tensor2D,
            scores: TensorLike | Tensor1D,
            maxOutputSize: number,
            iouThreshold?: number,
            scoreThreshold?: number,
            padToMaxOutputSize?: boolean,
        ) => Promise<NamedTensorMap>;
        nonMaxSuppressionWithScore: (
            boxes: TensorLike | Tensor2D,
            scores: TensorLike | Tensor1D,
            maxOutputSize: number,
            iouThreshold?: number,
            scoreThreshold?: number,
            softNmsSigma?: number,
        ) => NamedTensorMap;
        nonMaxSuppressionWithScoreAsync: (
            boxes: TensorLike | Tensor2D,
            scores: TensorLike | Tensor1D,
            maxOutputSize: number,
            iouThreshold?: number,
            scoreThreshold?: number,
            softNmsSigma?: number,
        ) => Promise<NamedTensorMap>;
        resizeBilinear: <T_2 extends Tensor3D | Tensor4D>(
            images: TensorLike | T_2,
            size: [number, number],
            alignCorners?: boolean,
            halfPixelCenters?: boolean,
        ) => T_2;
        resizeNearestNeighbor: <T_1 extends Tensor3D | Tensor4D>(
            images: TensorLike | T_1,
            size: [number, number],
            alignCorners?: boolean,
            halfPixelCenters?: boolean,
        ) => T_1;
        rgbToGrayscale: <
            T_3 extends Tensor2D
            | Tensor3D
            | Tensor4D
            | Tensor5D
            | Tensor6D,
        >(
            image: TensorLike | T_3,
        ) => T_3;
        rotateWithOffset: (
            image: TensorLike | Tensor4D,
            radians: number,
            fillValue?: number | [number, number, number],
            center?: number | [number, number],
        ) => Tensor4D;
        threshold: (
            image: TensorLike | Tensor3D,
            method?: string,
            inverted?: boolean,
            threshValue?: number,
        ) => Tensor3D;
        transform: (
            image: TensorLike | Tensor4D,
            transforms: TensorLike | Tensor2D,
            interpolation?: "bilinear" | "nearest",
            fillMode?: "reflect" | "nearest" | "constant" | "wrap",
            fillValue?: number,
            outputShape?: [number, number],
        ) => Tensor4D;
    }

    Type declaration

    +image | @vladmandic/face-api - v1.7.15

    Variable imageConst

    image: {
        cropAndResize: (
            image: TensorLike | Tensor4D,
            boxes: TensorLike | Tensor2D,
            boxInd: TensorLike | Tensor1D,
            cropSize: [number, number],
            method?: "bilinear" | "nearest",
            extrapolationValue?: number,
        ) => Tensor4D;
        flipLeftRight: (image: TensorLike | Tensor4D) => Tensor4D;
        grayscaleToRGB: <
            T extends Tensor2D
            | Tensor3D
            | Tensor4D
            | Tensor5D
            | Tensor6D,
        >(
            image: TensorLike | T,
        ) => T;
        nonMaxSuppression: (
            boxes: TensorLike | Tensor2D,
            scores: TensorLike | Tensor1D,
            maxOutputSize: number,
            iouThreshold?: number,
            scoreThreshold?: number,
        ) => Tensor1D;
        nonMaxSuppressionAsync: (
            boxes: TensorLike | Tensor2D,
            scores: TensorLike | Tensor1D,
            maxOutputSize: number,
            iouThreshold?: number,
            scoreThreshold?: number,
        ) => Promise<Tensor1D>;
        nonMaxSuppressionPadded: (
            boxes: TensorLike | Tensor2D,
            scores: TensorLike | Tensor1D,
            maxOutputSize: number,
            iouThreshold?: number,
            scoreThreshold?: number,
            padToMaxOutputSize?: boolean,
        ) => NamedTensorMap;
        nonMaxSuppressionPaddedAsync: (
            boxes: TensorLike | Tensor2D,
            scores: TensorLike | Tensor1D,
            maxOutputSize: number,
            iouThreshold?: number,
            scoreThreshold?: number,
            padToMaxOutputSize?: boolean,
        ) => Promise<NamedTensorMap>;
        nonMaxSuppressionWithScore: (
            boxes: TensorLike | Tensor2D,
            scores: TensorLike | Tensor1D,
            maxOutputSize: number,
            iouThreshold?: number,
            scoreThreshold?: number,
            softNmsSigma?: number,
        ) => NamedTensorMap;
        nonMaxSuppressionWithScoreAsync: (
            boxes: TensorLike | Tensor2D,
            scores: TensorLike | Tensor1D,
            maxOutputSize: number,
            iouThreshold?: number,
            scoreThreshold?: number,
            softNmsSigma?: number,
        ) => Promise<NamedTensorMap>;
        resizeBilinear: <T_2 extends Tensor3D | Tensor4D>(
            images: TensorLike | T_2,
            size: [number, number],
            alignCorners?: boolean,
            halfPixelCenters?: boolean,
        ) => T_2;
        resizeNearestNeighbor: <T_1 extends Tensor3D | Tensor4D>(
            images: TensorLike | T_1,
            size: [number, number],
            alignCorners?: boolean,
            halfPixelCenters?: boolean,
        ) => T_1;
        rgbToGrayscale: <
            T_3 extends Tensor2D
            | Tensor3D
            | Tensor4D
            | Tensor5D
            | Tensor6D,
        >(
            image: TensorLike | T_3,
        ) => T_3;
        rotateWithOffset: (
            image: TensorLike | Tensor4D,
            radians: number,
            fillValue?: number | [number, number, number],
            center?: number | [number, number],
        ) => Tensor4D;
        threshold: (
            image: TensorLike | Tensor3D,
            method?: string,
            inverted?: boolean,
            threshValue?: number,
        ) => Tensor3D;
        transform: (
            image: TensorLike | Tensor4D,
            transforms: TensorLike | Tensor2D,
            interpolation?: "bilinear" | "nearest",
            fillMode?: "reflect" | "nearest" | "constant" | "wrap",
            fillValue?: number,
            outputShape?: [number, number],
        ) => Tensor4D;
    }

    Type declaration

    diff --git a/typedoc/variables/tf.version.html b/typedoc/variables/tf.version.html index 804c439..f08cf4e 100644 --- a/typedoc/variables/tf.version.html +++ b/typedoc/variables/tf.version.html @@ -1 +1 @@ -version | @vladmandic/face-api - v1.7.14

    Variable versionConst

    version: {
        tfjs: string;
        "tfjs-backend-cpu": string;
        "tfjs-backend-webgl": string;
        "tfjs-converter": string;
        "tfjs-core": string;
        "tfjs-data": string;
        "tfjs-layers": string;
    }

    Type declaration

    • tfjs: string
    • tfjs-backend-cpu: string
    • tfjs-backend-webgl: string
    • tfjs-converter: string
    • tfjs-core: string
    • tfjs-data: string
    • tfjs-layers: string
    +version | @vladmandic/face-api - v1.7.15

    Variable versionConst

    version: {
        tfjs: string;
        "tfjs-backend-cpu": string;
        "tfjs-backend-webgl": string;
        "tfjs-converter": string;
        "tfjs-core": string;
        "tfjs-data": string;
        "tfjs-layers": string;
    }

    Type declaration

    • tfjs: string
    • tfjs-backend-cpu: string
    • tfjs-backend-webgl: string
    • tfjs-converter: string
    • tfjs-core: string
    • tfjs-data: string
    • tfjs-layers: string
    diff --git a/typedoc/variables/version.html b/typedoc/variables/version.html index ce01574..66ba321 100644 --- a/typedoc/variables/version.html +++ b/typedoc/variables/version.html @@ -1 +1 @@ -version | @vladmandic/face-api - v1.7.14

    Variable versionConst

    version: string = ...
    +version | @vladmandic/face-api - v1.7.15

    Variable versionConst

    version: string = ...