face-api/build/src/ageGenderNet/AgeGenderNet.js

93 lines
4.0 KiB
JavaScript
Raw Normal View History

2020-10-13 22:57:06 +02:00
import * as tf from '@tensorflow/tfjs/dist/tf.es2017.js';
2020-08-31 15:12:04 +02:00
import { fullyConnectedLayer } from '../common/fullyConnectedLayer';
import { seperateWeightMaps } from '../faceProcessor/util';
import { TinyXception } from '../xception/TinyXception';
import { extractParams } from './extractParams';
import { extractParamsFromWeigthMap } from './extractParamsFromWeigthMap';
import { Gender } from './types';
import { NeuralNetwork } from '../NeuralNetwork';
import { NetInput, toNetInput } from '../dom';
export class AgeGenderNet extends NeuralNetwork {
constructor(faceFeatureExtractor = new TinyXception(2)) {
super('AgeGenderNet');
this._faceFeatureExtractor = faceFeatureExtractor;
}
get faceFeatureExtractor() {
return this._faceFeatureExtractor;
}
runNet(input) {
const { params } = this;
if (!params) {
throw new Error(`${this._name} - load model before inference`);
}
return tf.tidy(() => {
const bottleneckFeatures = input instanceof NetInput
? this.faceFeatureExtractor.forwardInput(input)
: input;
const pooled = tf.avgPool(bottleneckFeatures, [7, 7], [2, 2], 'valid').as2D(bottleneckFeatures.shape[0], -1);
const age = fullyConnectedLayer(pooled, params.fc.age).as1D();
const gender = fullyConnectedLayer(pooled, params.fc.gender);
return { age, gender };
});
}
forwardInput(input) {
return tf.tidy(() => {
const { age, gender } = this.runNet(input);
return { age, gender: tf.softmax(gender) };
});
}
async forward(input) {
return this.forwardInput(await toNetInput(input));
}
async predictAgeAndGender(input) {
const netInput = await toNetInput(input);
const out = await this.forwardInput(netInput);
const ages = tf.unstack(out.age);
const genders = tf.unstack(out.gender);
const ageAndGenderTensors = ages.map((ageTensor, i) => ({
ageTensor,
genderTensor: genders[i]
}));
const predictionsByBatch = await Promise.all(ageAndGenderTensors.map(async ({ ageTensor, genderTensor }) => {
const age = (await ageTensor.data())[0];
const probMale = (await genderTensor.data())[0];
const isMale = probMale > 0.5;
const gender = isMale ? Gender.MALE : Gender.FEMALE;
const genderProbability = isMale ? probMale : (1 - probMale);
ageTensor.dispose();
genderTensor.dispose();
return { age, gender, genderProbability };
}));
out.age.dispose();
out.gender.dispose();
2020-10-13 22:57:06 +02:00
return netInput.isBatchInput ? predictionsByBatch : predictionsByBatch[0];
2020-08-31 15:12:04 +02:00
}
getDefaultModelName() {
return 'age_gender_model';
}
dispose(throwOnRedispose = true) {
this.faceFeatureExtractor.dispose(throwOnRedispose);
super.dispose(throwOnRedispose);
}
loadClassifierParams(weights) {
const { params, paramMappings } = this.extractClassifierParams(weights);
this._params = params;
this._paramMappings = paramMappings;
}
extractClassifierParams(weights) {
return extractParams(weights);
}
extractParamsFromWeigthMap(weightMap) {
const { featureExtractorMap, classifierMap } = seperateWeightMaps(weightMap);
this.faceFeatureExtractor.loadFromWeightMap(featureExtractorMap);
return extractParamsFromWeigthMap(classifierMap);
}
extractParams(weights) {
const classifierWeightSize = (512 * 1 + 1) + (512 * 2 + 2);
const featureExtractorWeights = weights.slice(0, weights.length - classifierWeightSize);
const classifierWeights = weights.slice(weights.length - classifierWeightSize);
this.faceFeatureExtractor.extractWeights(featureExtractorWeights);
return this.extractClassifierParams(classifierWeights);
}
}
//# sourceMappingURL=AgeGenderNet.js.map