face-api/build/xception/TinyXception.js

65 lines
2.7 KiB
JavaScript
Raw Normal View History

2020-08-20 02:10:42 +02:00
import * as tf from '@tensorflow/tfjs-core';
import { depthwiseSeparableConv } from '../common';
import { toNetInput } from '../dom';
import { NeuralNetwork } from '../NeuralNetwork';
import { normalize } from '../ops';
import { range } from '../utils';
import { extractParams } from './extractParams';
import { extractParamsFromWeigthMap } from './extractParamsFromWeigthMap';
2020-08-18 14:04:33 +02:00
function conv(x, params, stride) {
return tf.add(tf.conv2d(x, params.filters, stride, 'same'), params.bias);
}
function reductionBlock(x, params, isActivateInput = true) {
let out = isActivateInput ? tf.relu(x) : x;
2020-08-20 02:10:42 +02:00
out = depthwiseSeparableConv(out, params.separable_conv0, [1, 1]);
out = depthwiseSeparableConv(tf.relu(out), params.separable_conv1, [1, 1]);
2020-08-18 14:04:33 +02:00
out = tf.maxPool(out, [3, 3], [2, 2], 'same');
out = tf.add(out, conv(x, params.expansion_conv, [2, 2]));
return out;
}
function mainBlock(x, params) {
2020-08-20 02:10:42 +02:00
let out = depthwiseSeparableConv(tf.relu(x), params.separable_conv0, [1, 1]);
out = depthwiseSeparableConv(tf.relu(out), params.separable_conv1, [1, 1]);
out = depthwiseSeparableConv(tf.relu(out), params.separable_conv2, [1, 1]);
2020-08-18 14:04:33 +02:00
out = tf.add(out, x);
return out;
}
2020-08-20 02:10:42 +02:00
export class TinyXception extends NeuralNetwork {
2020-08-18 14:04:33 +02:00
constructor(numMainBlocks) {
super('TinyXception');
this._numMainBlocks = numMainBlocks;
}
forwardInput(input) {
const { params } = this;
if (!params) {
throw new Error('TinyXception - load model before inference');
}
return tf.tidy(() => {
const batchTensor = input.toBatchTensor(112, true);
const meanRgb = [122.782, 117.001, 104.298];
2020-08-20 02:10:42 +02:00
const normalized = normalize(batchTensor, meanRgb).div(tf.scalar(256));
2020-08-18 14:04:33 +02:00
let out = tf.relu(conv(normalized, params.entry_flow.conv_in, [2, 2]));
out = reductionBlock(out, params.entry_flow.reduction_block_0, false);
out = reductionBlock(out, params.entry_flow.reduction_block_1);
2020-08-20 02:10:42 +02:00
range(this._numMainBlocks, 0, 1).forEach((idx) => {
2020-08-18 14:04:33 +02:00
out = mainBlock(out, params.middle_flow[`main_block_${idx}`]);
});
out = reductionBlock(out, params.exit_flow.reduction_block);
2020-08-20 02:10:42 +02:00
out = tf.relu(depthwiseSeparableConv(out, params.exit_flow.separable_conv, [1, 1]));
2020-08-18 14:04:33 +02:00
return out;
});
}
async forward(input) {
2020-08-20 02:10:42 +02:00
return this.forwardInput(await toNetInput(input));
2020-08-18 14:04:33 +02:00
}
getDefaultModelName() {
return 'tiny_xception_model';
}
extractParamsFromWeigthMap(weightMap) {
2020-08-20 02:10:42 +02:00
return extractParamsFromWeigthMap(weightMap, this._numMainBlocks);
2020-08-18 14:04:33 +02:00
}
extractParams(weights) {
2020-08-20 02:10:42 +02:00
return extractParams(weights, this._numMainBlocks);
2020-08-18 14:04:33 +02:00
}
}
//# sourceMappingURL=TinyXception.js.map