face-api/src/tinyYolov2/TinyYolov2Base.ts

256 lines
9.3 KiB
TypeScript
Raw Normal View History

2020-08-18 13:54:53 +02:00
import * as tf from '@tensorflow/tfjs-core';
import { BoundingBox } from '../classes/BoundingBox';
import { Dimensions } from '../classes/Dimensions';
import { ObjectDetection } from '../classes/ObjectDetection';
import { convLayer } from '../common';
import { ConvParams, SeparableConvParams } from '../common/types';
import { toNetInput } from '../dom';
import { NetInput } from '../dom/NetInput';
import { TNetInput } from '../dom/types';
import { NeuralNetwork } from '../NeuralNetwork';
import { sigmoid } from '../ops';
import { nonMaxSuppression } from '../ops/nonMaxSuppression';
import { normalize } from '../ops/normalize';
import { TinyYolov2Config, validateConfig } from './config';
import { convWithBatchNorm } from './convWithBatchNorm';
import { depthwiseSeparableConv } from './depthwiseSeparableConv';
import { extractParams } from './extractParams';
import { extractParamsFromWeigthMap } from './extractParamsFromWeigthMap';
import { leaky } from './leaky';
import { ITinyYolov2Options, TinyYolov2Options } from './TinyYolov2Options';
import { DefaultTinyYolov2NetParams, MobilenetParams, TinyYolov2NetParams } from './types';
export class TinyYolov2Base extends NeuralNetwork<TinyYolov2NetParams> {
public static DEFAULT_FILTER_SIZES = [
3, 16, 32, 64, 128, 256, 512, 1024, 1024
]
private _config: TinyYolov2Config
constructor(config: TinyYolov2Config) {
super('TinyYolov2')
validateConfig(config)
this._config = config
}
public get config(): TinyYolov2Config {
return this._config
}
public get withClassScores(): boolean {
return this.config.withClassScores || this.config.classes.length > 1
}
public get boxEncodingSize(): number {
return 5 + (this.withClassScores ? this.config.classes.length : 0)
}
public runTinyYolov2(x: tf.Tensor4D, params: DefaultTinyYolov2NetParams): tf.Tensor4D {
let out = convWithBatchNorm(x, params.conv0)
out = tf.maxPool(out, [2, 2], [2, 2], 'same')
out = convWithBatchNorm(out, params.conv1)
out = tf.maxPool(out, [2, 2], [2, 2], 'same')
out = convWithBatchNorm(out, params.conv2)
out = tf.maxPool(out, [2, 2], [2, 2], 'same')
out = convWithBatchNorm(out, params.conv3)
out = tf.maxPool(out, [2, 2], [2, 2], 'same')
out = convWithBatchNorm(out, params.conv4)
out = tf.maxPool(out, [2, 2], [2, 2], 'same')
out = convWithBatchNorm(out, params.conv5)
out = tf.maxPool(out, [2, 2], [1, 1], 'same')
out = convWithBatchNorm(out, params.conv6)
out = convWithBatchNorm(out, params.conv7)
return convLayer(out, params.conv8, 'valid', false)
}
public runMobilenet(x: tf.Tensor4D, params: MobilenetParams): tf.Tensor4D {
let out = this.config.isFirstLayerConv2d
? leaky(convLayer(x, params.conv0 as ConvParams, 'valid', false))
: depthwiseSeparableConv(x, params.conv0 as SeparableConvParams)
out = tf.maxPool(out, [2, 2], [2, 2], 'same')
out = depthwiseSeparableConv(out, params.conv1)
out = tf.maxPool(out, [2, 2], [2, 2], 'same')
out = depthwiseSeparableConv(out, params.conv2)
out = tf.maxPool(out, [2, 2], [2, 2], 'same')
out = depthwiseSeparableConv(out, params.conv3)
out = tf.maxPool(out, [2, 2], [2, 2], 'same')
out = depthwiseSeparableConv(out, params.conv4)
out = tf.maxPool(out, [2, 2], [2, 2], 'same')
out = depthwiseSeparableConv(out, params.conv5)
out = tf.maxPool(out, [2, 2], [1, 1], 'same')
out = params.conv6 ? depthwiseSeparableConv(out, params.conv6) : out
out = params.conv7 ? depthwiseSeparableConv(out, params.conv7) : out
return convLayer(out, params.conv8, 'valid', false)
}
public forwardInput(input: NetInput, inputSize: number): tf.Tensor4D {
const { params } = this
if (!params) {
throw new Error('TinyYolov2 - load model before inference')
}
return tf.tidy(() => {
let batchTensor = input.toBatchTensor(inputSize, false).toFloat()
batchTensor = this.config.meanRgb
? normalize(batchTensor, this.config.meanRgb)
: batchTensor
batchTensor = batchTensor.div(tf.scalar(256)) as tf.Tensor4D
return this.config.withSeparableConvs
? this.runMobilenet(batchTensor, params as MobilenetParams)
: this.runTinyYolov2(batchTensor, params as DefaultTinyYolov2NetParams)
})
}
public async forward(input: TNetInput, inputSize: number): Promise<tf.Tensor4D> {
return await this.forwardInput(await toNetInput(input), inputSize)
}
public async detect(input: TNetInput, forwardParams: ITinyYolov2Options = {}): Promise<ObjectDetection[]> {
const { inputSize, scoreThreshold } = new TinyYolov2Options(forwardParams)
const netInput = await toNetInput(input)
const out = await this.forwardInput(netInput, inputSize)
const out0 = tf.tidy(() => tf.unstack(out)[0].expandDims()) as tf.Tensor4D
const inputDimensions = {
width: netInput.getInputWidth(0),
height: netInput.getInputHeight(0)
}
const results = await this.extractBoxes(out0, netInput.getReshapedInputDimensions(0), scoreThreshold)
out.dispose()
out0.dispose()
const boxes = results.map(res => res.box)
const scores = results.map(res => res.score)
const classScores = results.map(res => res.classScore)
const classNames = results.map(res => this.config.classes[res.label])
const indices = nonMaxSuppression(
boxes.map(box => box.rescale(inputSize)),
scores,
this.config.iouThreshold,
true
)
const detections = indices.map(idx =>
new ObjectDetection(
scores[idx],
classScores[idx],
classNames[idx],
boxes[idx],
inputDimensions
)
)
return detections
}
protected getDefaultModelName(): string {
return ''
}
protected extractParamsFromWeigthMap(weightMap: tf.NamedTensorMap) {
return extractParamsFromWeigthMap(weightMap, this.config)
}
protected extractParams(weights: Float32Array) {
const filterSizes = this.config.filterSizes || TinyYolov2Base.DEFAULT_FILTER_SIZES
const numFilters = filterSizes ? filterSizes.length : undefined
if (numFilters !== 7 && numFilters !== 8 && numFilters !== 9) {
throw new Error(`TinyYolov2 - expected 7 | 8 | 9 convolutional filters, but found ${numFilters} filterSizes in config`)
}
return extractParams(weights, this.config, this.boxEncodingSize, filterSizes)
}
protected async extractBoxes(
outputTensor: tf.Tensor4D,
inputBlobDimensions: Dimensions,
scoreThreshold?: number
) {
const { width, height } = inputBlobDimensions
const inputSize = Math.max(width, height)
const correctionFactorX = inputSize / width
const correctionFactorY = inputSize / height
const numCells = outputTensor.shape[1]
const numBoxes = this.config.anchors.length
const [boxesTensor, scoresTensor, classScoresTensor] = tf.tidy(() => {
const reshaped = outputTensor.reshape([numCells, numCells, numBoxes, this.boxEncodingSize])
const boxes = reshaped.slice([0, 0, 0, 0], [numCells, numCells, numBoxes, 4])
const scores = reshaped.slice([0, 0, 0, 4], [numCells, numCells, numBoxes, 1])
const classScores = this.withClassScores
? tf.softmax(reshaped.slice([0, 0, 0, 5], [numCells, numCells, numBoxes, this.config.classes.length]), 3)
: tf.scalar(0)
return [boxes, scores, classScores]
})
const results = []
const scoresData = await scoresTensor.array()
const boxesData = await boxesTensor.array()
for (let row = 0; row < numCells; row ++) {
for (let col = 0; col < numCells; col ++) {
for (let anchor = 0; anchor < numBoxes; anchor ++) {
const score = sigmoid(scoresData[row][col][anchor][0]);
if (!scoreThreshold || score > scoreThreshold) {
const ctX = ((col + sigmoid(boxesData[row][col][anchor][0])) / numCells) * correctionFactorX
const ctY = ((row + sigmoid(boxesData[row][col][anchor][1])) / numCells) * correctionFactorY
const width = ((Math.exp(boxesData[row][col][anchor][2]) * this.config.anchors[anchor].x) / numCells) * correctionFactorX
const height = ((Math.exp(boxesData[row][col][anchor][3]) * this.config.anchors[anchor].y) / numCells) * correctionFactorY
const x = (ctX - (width / 2))
const y = (ctY - (height / 2))
const pos = { row, col, anchor }
const { classScore, label } = this.withClassScores
? await this.extractPredictedClass(classScoresTensor as tf.Tensor4D, pos)
: { classScore: 1, label: 0 }
results.push({
box: new BoundingBox(x, y, x + width, y + height),
score: score,
classScore: score * classScore,
label,
...pos
})
}
}
}
}
boxesTensor.dispose()
scoresTensor.dispose()
classScoresTensor.dispose()
return results
}
private async extractPredictedClass(classesTensor: tf.Tensor4D, pos: { row: number, col: number, anchor: number },) {
const { row, col, anchor } = pos
const classesData = await classesTensor.array()
return Array(this.config.classes.length).fill(0)
.map((_, i) => classesData[row][col][anchor][i])
.map((classScore, label) => ({
classScore,
label
}))
.reduce((max, curr) => max.classScore > curr.classScore ? max : curr)
}
}