2020-08-20 02:05:34 +02:00
|
|
|
"use strict";
|
|
|
|
Object.defineProperty(exports, "__esModule", { value: true });
|
|
|
|
exports.TinyXception = void 0;
|
|
|
|
const tf = require("@tensorflow/tfjs-core");
|
|
|
|
const common_1 = require("../common");
|
|
|
|
const dom_1 = require("../dom");
|
|
|
|
const NeuralNetwork_1 = require("../NeuralNetwork");
|
|
|
|
const ops_1 = require("../ops");
|
|
|
|
const utils_1 = require("../utils");
|
|
|
|
const extractParams_1 = require("./extractParams");
|
|
|
|
const extractParamsFromWeigthMap_1 = require("./extractParamsFromWeigthMap");
|
2020-08-18 14:04:33 +02:00
|
|
|
function conv(x, params, stride) {
|
|
|
|
return tf.add(tf.conv2d(x, params.filters, stride, 'same'), params.bias);
|
|
|
|
}
|
|
|
|
function reductionBlock(x, params, isActivateInput = true) {
|
|
|
|
let out = isActivateInput ? tf.relu(x) : x;
|
2020-08-20 02:05:34 +02:00
|
|
|
out = common_1.depthwiseSeparableConv(out, params.separable_conv0, [1, 1]);
|
|
|
|
out = common_1.depthwiseSeparableConv(tf.relu(out), params.separable_conv1, [1, 1]);
|
2020-08-18 14:04:33 +02:00
|
|
|
out = tf.maxPool(out, [3, 3], [2, 2], 'same');
|
|
|
|
out = tf.add(out, conv(x, params.expansion_conv, [2, 2]));
|
|
|
|
return out;
|
|
|
|
}
|
|
|
|
function mainBlock(x, params) {
|
2020-08-20 02:05:34 +02:00
|
|
|
let out = common_1.depthwiseSeparableConv(tf.relu(x), params.separable_conv0, [1, 1]);
|
|
|
|
out = common_1.depthwiseSeparableConv(tf.relu(out), params.separable_conv1, [1, 1]);
|
|
|
|
out = common_1.depthwiseSeparableConv(tf.relu(out), params.separable_conv2, [1, 1]);
|
2020-08-18 14:04:33 +02:00
|
|
|
out = tf.add(out, x);
|
|
|
|
return out;
|
|
|
|
}
|
2020-08-20 02:05:34 +02:00
|
|
|
class TinyXception extends NeuralNetwork_1.NeuralNetwork {
|
2020-08-18 14:04:33 +02:00
|
|
|
constructor(numMainBlocks) {
|
|
|
|
super('TinyXception');
|
|
|
|
this._numMainBlocks = numMainBlocks;
|
|
|
|
}
|
|
|
|
forwardInput(input) {
|
|
|
|
const { params } = this;
|
|
|
|
if (!params) {
|
|
|
|
throw new Error('TinyXception - load model before inference');
|
|
|
|
}
|
|
|
|
return tf.tidy(() => {
|
|
|
|
const batchTensor = input.toBatchTensor(112, true);
|
|
|
|
const meanRgb = [122.782, 117.001, 104.298];
|
2020-08-20 02:05:34 +02:00
|
|
|
const normalized = ops_1.normalize(batchTensor, meanRgb).div(tf.scalar(256));
|
2020-08-18 14:04:33 +02:00
|
|
|
let out = tf.relu(conv(normalized, params.entry_flow.conv_in, [2, 2]));
|
|
|
|
out = reductionBlock(out, params.entry_flow.reduction_block_0, false);
|
|
|
|
out = reductionBlock(out, params.entry_flow.reduction_block_1);
|
2020-08-20 02:05:34 +02:00
|
|
|
utils_1.range(this._numMainBlocks, 0, 1).forEach((idx) => {
|
2020-08-18 14:04:33 +02:00
|
|
|
out = mainBlock(out, params.middle_flow[`main_block_${idx}`]);
|
|
|
|
});
|
|
|
|
out = reductionBlock(out, params.exit_flow.reduction_block);
|
2020-08-20 02:05:34 +02:00
|
|
|
out = tf.relu(common_1.depthwiseSeparableConv(out, params.exit_flow.separable_conv, [1, 1]));
|
2020-08-18 14:04:33 +02:00
|
|
|
return out;
|
|
|
|
});
|
|
|
|
}
|
|
|
|
async forward(input) {
|
2020-08-20 02:05:34 +02:00
|
|
|
return this.forwardInput(await dom_1.toNetInput(input));
|
2020-08-18 14:04:33 +02:00
|
|
|
}
|
|
|
|
getDefaultModelName() {
|
|
|
|
return 'tiny_xception_model';
|
|
|
|
}
|
|
|
|
extractParamsFromWeigthMap(weightMap) {
|
2020-08-20 02:05:34 +02:00
|
|
|
return extractParamsFromWeigthMap_1.extractParamsFromWeigthMap(weightMap, this._numMainBlocks);
|
2020-08-18 14:04:33 +02:00
|
|
|
}
|
|
|
|
extractParams(weights) {
|
2020-08-20 02:05:34 +02:00
|
|
|
return extractParams_1.extractParams(weights, this._numMainBlocks);
|
2020-08-18 14:04:33 +02:00
|
|
|
}
|
|
|
|
}
|
2020-08-20 02:05:34 +02:00
|
|
|
exports.TinyXception = TinyXception;
|
2020-08-18 14:04:33 +02:00
|
|
|
//# sourceMappingURL=TinyXception.js.map
|