face-api/build/faceFeatureExtractor/FaceFeatureExtractor.js

46 lines
1.8 KiB
JavaScript
Raw Normal View History

"use strict";
Object.defineProperty(exports, "__esModule", { value: true });
exports.FaceFeatureExtractor = void 0;
const tf = require("@tensorflow/tfjs-core");
const dom_1 = require("../dom");
const NeuralNetwork_1 = require("../NeuralNetwork");
const ops_1 = require("../ops");
const denseBlock_1 = require("./denseBlock");
const extractParams_1 = require("./extractParams");
const extractParamsFromWeigthMap_1 = require("./extractParamsFromWeigthMap");
class FaceFeatureExtractor extends NeuralNetwork_1.NeuralNetwork {
2020-08-18 14:04:33 +02:00
constructor() {
super('FaceFeatureExtractor');
}
forwardInput(input) {
const { params } = this;
if (!params) {
throw new Error('FaceFeatureExtractor - load model before inference');
}
return tf.tidy(() => {
const batchTensor = input.toBatchTensor(112, true);
const meanRgb = [122.782, 117.001, 104.298];
const normalized = ops_1.normalize(batchTensor, meanRgb).div(tf.scalar(255));
let out = denseBlock_1.denseBlock4(normalized, params.dense0, true);
out = denseBlock_1.denseBlock4(out, params.dense1);
out = denseBlock_1.denseBlock4(out, params.dense2);
out = denseBlock_1.denseBlock4(out, params.dense3);
2020-08-18 14:04:33 +02:00
out = tf.avgPool(out, [7, 7], [2, 2], 'valid');
return out;
});
}
async forward(input) {
return this.forwardInput(await dom_1.toNetInput(input));
2020-08-18 14:04:33 +02:00
}
getDefaultModelName() {
return 'face_feature_extractor_model';
}
extractParamsFromWeigthMap(weightMap) {
return extractParamsFromWeigthMap_1.extractParamsFromWeigthMap(weightMap);
2020-08-18 14:04:33 +02:00
}
extractParams(weights) {
return extractParams_1.extractParams(weights);
2020-08-18 14:04:33 +02:00
}
}
exports.FaceFeatureExtractor = FaceFeatureExtractor;
2020-08-18 14:04:33 +02:00
//# sourceMappingURL=FaceFeatureExtractor.js.map