2020-12-23 18:58:47 +01:00
|
|
|
import * as tf from '../../dist/tfjs.esm';
|
2020-08-18 13:54:53 +02:00
|
|
|
|
2020-12-19 17:46:41 +01:00
|
|
|
import { NetInput, TNetInput, toNetInput } from '../dom/index';
|
2020-08-18 13:54:53 +02:00
|
|
|
import { NeuralNetwork } from '../NeuralNetwork';
|
2020-12-19 17:46:41 +01:00
|
|
|
import { normalize } from '../ops/index';
|
2020-08-18 13:54:53 +02:00
|
|
|
import { convDown } from './convLayer';
|
|
|
|
import { extractParams } from './extractParams';
|
|
|
|
import { extractParamsFromWeigthMap } from './extractParamsFromWeigthMap';
|
|
|
|
import { residual, residualDown } from './residualLayer';
|
|
|
|
import { NetParams } from './types';
|
|
|
|
|
|
|
|
export class FaceRecognitionNet extends NeuralNetwork<NetParams> {
|
|
|
|
constructor() {
|
2020-12-23 17:26:55 +01:00
|
|
|
super('FaceRecognitionNet');
|
2020-08-18 13:54:53 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
public forwardInput(input: NetInput): tf.Tensor2D {
|
2020-12-23 17:26:55 +01:00
|
|
|
const { params } = this;
|
2020-08-18 13:54:53 +02:00
|
|
|
|
|
|
|
if (!params) {
|
2020-12-23 17:26:55 +01:00
|
|
|
throw new Error('FaceRecognitionNet - load model before inference');
|
2020-08-18 13:54:53 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
return tf.tidy(() => {
|
2020-09-08 18:26:51 +02:00
|
|
|
// const batchTensor = input.toBatchTensor(150, true).toFloat()
|
|
|
|
const batchTensor = tf.cast(input.toBatchTensor(150, true), 'float32');
|
2020-08-18 13:54:53 +02:00
|
|
|
|
2020-12-23 17:26:55 +01:00
|
|
|
const meanRgb = [122.782, 117.001, 104.298];
|
|
|
|
const normalized = normalize(batchTensor, meanRgb).div(tf.scalar(256)) as tf.Tensor4D;
|
2020-08-18 13:54:53 +02:00
|
|
|
|
2020-12-23 17:26:55 +01:00
|
|
|
let out = convDown(normalized, params.conv32_down);
|
|
|
|
out = tf.maxPool(out, 3, 2, 'valid');
|
2020-08-18 13:54:53 +02:00
|
|
|
|
2020-12-23 17:26:55 +01:00
|
|
|
out = residual(out, params.conv32_1);
|
|
|
|
out = residual(out, params.conv32_2);
|
|
|
|
out = residual(out, params.conv32_3);
|
2020-08-18 13:54:53 +02:00
|
|
|
|
2020-12-23 17:26:55 +01:00
|
|
|
out = residualDown(out, params.conv64_down);
|
|
|
|
out = residual(out, params.conv64_1);
|
|
|
|
out = residual(out, params.conv64_2);
|
|
|
|
out = residual(out, params.conv64_3);
|
2020-08-18 13:54:53 +02:00
|
|
|
|
2020-12-23 17:26:55 +01:00
|
|
|
out = residualDown(out, params.conv128_down);
|
|
|
|
out = residual(out, params.conv128_1);
|
|
|
|
out = residual(out, params.conv128_2);
|
2020-08-18 13:54:53 +02:00
|
|
|
|
2020-12-23 17:26:55 +01:00
|
|
|
out = residualDown(out, params.conv256_down);
|
|
|
|
out = residual(out, params.conv256_1);
|
|
|
|
out = residual(out, params.conv256_2);
|
|
|
|
out = residualDown(out, params.conv256_down_out);
|
2020-08-18 13:54:53 +02:00
|
|
|
|
2020-12-23 17:26:55 +01:00
|
|
|
const globalAvg = out.mean([1, 2]) as tf.Tensor2D;
|
|
|
|
const fullyConnected = tf.matMul(globalAvg, params.fc);
|
2020-08-18 13:54:53 +02:00
|
|
|
|
2020-12-23 17:26:55 +01:00
|
|
|
return fullyConnected;
|
|
|
|
});
|
2020-08-18 13:54:53 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
public async forward(input: TNetInput): Promise<tf.Tensor2D> {
|
2020-12-23 17:26:55 +01:00
|
|
|
return this.forwardInput(await toNetInput(input));
|
2020-08-18 13:54:53 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
public async computeFaceDescriptor(input: TNetInput): Promise<Float32Array|Float32Array[]> {
|
2020-12-23 17:26:55 +01:00
|
|
|
const netInput = await toNetInput(input);
|
2020-08-18 13:54:53 +02:00
|
|
|
|
|
|
|
const faceDescriptorTensors = tf.tidy(
|
2020-12-23 17:26:55 +01:00
|
|
|
() => tf.unstack(this.forwardInput(netInput)),
|
|
|
|
);
|
2020-08-18 13:54:53 +02:00
|
|
|
|
|
|
|
const faceDescriptorsForBatch = await Promise.all(faceDescriptorTensors.map(
|
2020-12-23 17:26:55 +01:00
|
|
|
(t) => t.data(),
|
|
|
|
)) as Float32Array[];
|
2020-08-18 13:54:53 +02:00
|
|
|
|
2020-12-23 17:26:55 +01:00
|
|
|
faceDescriptorTensors.forEach((t) => t.dispose());
|
2020-08-18 13:54:53 +02:00
|
|
|
|
|
|
|
return netInput.isBatchInput
|
|
|
|
? faceDescriptorsForBatch
|
2020-12-23 17:26:55 +01:00
|
|
|
: faceDescriptorsForBatch[0];
|
2020-08-18 13:54:53 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
protected getDefaultModelName(): string {
|
2020-12-23 17:26:55 +01:00
|
|
|
return 'face_recognition_model';
|
2020-08-18 13:54:53 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
protected extractParamsFromWeigthMap(weightMap: tf.NamedTensorMap) {
|
2020-12-23 17:26:55 +01:00
|
|
|
return extractParamsFromWeigthMap(weightMap);
|
2020-08-18 13:54:53 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
protected extractParams(weights: Float32Array) {
|
2020-12-23 17:26:55 +01:00
|
|
|
return extractParams(weights);
|
2020-08-18 13:54:53 +02:00
|
|
|
}
|
2020-12-23 17:26:55 +01:00
|
|
|
}
|