face-api/build/ssdMobilenetv1/outputLayer.js

47 lines
2.0 KiB
JavaScript
Raw Normal View History

2020-08-26 00:24:48 +02:00
import * as tf from '@tensorflow/tfjs-core';
function getCenterCoordinatesAndSizesLayer(x) {
const vec = tf.unstack(tf.transpose(x, [1, 0]));
const sizes = [
tf.sub(vec[2], vec[0]),
tf.sub(vec[3], vec[1])
];
const centers = [
tf.add(vec[0], tf.div(sizes[0], tf.scalar(2))),
tf.add(vec[1], tf.div(sizes[1], tf.scalar(2)))
];
return {
sizes,
centers
};
}
function decodeBoxesLayer(x0, x1) {
const { sizes, centers } = getCenterCoordinatesAndSizesLayer(x0);
const vec = tf.unstack(tf.transpose(x1, [1, 0]));
const div0_out = tf.div(tf.mul(tf.exp(tf.div(vec[2], tf.scalar(5))), sizes[0]), tf.scalar(2));
const add0_out = tf.add(tf.mul(tf.div(vec[0], tf.scalar(10)), sizes[0]), centers[0]);
const div1_out = tf.div(tf.mul(tf.exp(tf.div(vec[3], tf.scalar(5))), sizes[1]), tf.scalar(2));
const add1_out = tf.add(tf.mul(tf.div(vec[1], tf.scalar(10)), sizes[1]), centers[1]);
return tf.transpose(tf.stack([
tf.sub(add0_out, div0_out),
tf.sub(add1_out, div1_out),
tf.add(add0_out, div0_out),
tf.add(add1_out, div1_out)
]), [1, 0]);
}
export function outputLayer(boxPredictions, classPredictions, params) {
return tf.tidy(() => {
const batchSize = boxPredictions.shape[0];
let boxes = decodeBoxesLayer(tf.reshape(tf.tile(params.extra_dim, [batchSize, 1, 1]), [-1, 4]), tf.reshape(boxPredictions, [-1, 4]));
boxes = tf.reshape(boxes, [batchSize, (boxes.shape[0] / batchSize), 4]);
const scoresAndClasses = tf.sigmoid(tf.slice(classPredictions, [0, 0, 1], [-1, -1, -1]));
let scores = tf.slice(scoresAndClasses, [0, 0, 0], [-1, -1, 1]);
scores = tf.reshape(scores, [batchSize, scores.shape[1]]);
const boxesByBatch = tf.unstack(boxes);
const scoresByBatch = tf.unstack(scores);
return {
boxes: boxesByBatch,
scores: scoresByBatch
};
});
}
//# sourceMappingURL=outputLayer.js.map