126 lines
4.1 KiB
TypeScript
126 lines
4.1 KiB
TypeScript
![]() |
import * as tf from '@tensorflow/tfjs-core';
|
||
|
|
||
|
import { fullyConnectedLayer } from '../common/fullyConnectedLayer';
|
||
|
import { seperateWeightMaps } from '../faceProcessor/util';
|
||
|
import { TinyXception } from '../xception/TinyXception';
|
||
|
import { extractParams } from './extractParams';
|
||
|
import { extractParamsFromWeigthMap } from './extractParamsFromWeigthMap';
|
||
|
import { AgeAndGenderPrediction, Gender, NetOutput, NetParams } from './types';
|
||
|
import { NeuralNetwork } from '../NeuralNetwork';
|
||
|
import { NetInput, TNetInput, toNetInput } from '../dom';
|
||
|
|
||
|
export class AgeGenderNet extends NeuralNetwork<NetParams> {
|
||
|
|
||
|
private _faceFeatureExtractor: TinyXception
|
||
|
|
||
|
constructor(faceFeatureExtractor: TinyXception = new TinyXception(2)) {
|
||
|
super('AgeGenderNet')
|
||
|
this._faceFeatureExtractor = faceFeatureExtractor
|
||
|
}
|
||
|
|
||
|
public get faceFeatureExtractor(): TinyXception {
|
||
|
return this._faceFeatureExtractor
|
||
|
}
|
||
|
|
||
|
public runNet(input: NetInput | tf.Tensor4D): NetOutput {
|
||
|
|
||
|
const { params } = this
|
||
|
|
||
|
if (!params) {
|
||
|
throw new Error(`${this._name} - load model before inference`)
|
||
|
}
|
||
|
|
||
|
return tf.tidy(() => {
|
||
|
const bottleneckFeatures = input instanceof NetInput
|
||
|
? this.faceFeatureExtractor.forwardInput(input)
|
||
|
: input
|
||
|
|
||
|
const pooled = tf.avgPool(bottleneckFeatures, [7, 7], [2, 2], 'valid').as2D(bottleneckFeatures.shape[0], -1)
|
||
|
const age = fullyConnectedLayer(pooled, params.fc.age).as1D()
|
||
|
const gender = fullyConnectedLayer(pooled, params.fc.gender)
|
||
|
return { age, gender }
|
||
|
})
|
||
|
}
|
||
|
|
||
|
public forwardInput(input: NetInput | tf.Tensor4D): NetOutput {
|
||
|
return tf.tidy(() => {
|
||
|
const { age, gender } = this.runNet(input)
|
||
|
return { age, gender: tf.softmax(gender) }
|
||
|
})
|
||
|
}
|
||
|
|
||
|
public async forward(input: TNetInput): Promise<NetOutput> {
|
||
|
return this.forwardInput(await toNetInput(input))
|
||
|
}
|
||
|
|
||
|
public async predictAgeAndGender(input: TNetInput): Promise<AgeAndGenderPrediction | AgeAndGenderPrediction[]> {
|
||
|
const netInput = await toNetInput(input)
|
||
|
const out = await this.forwardInput(netInput)
|
||
|
|
||
|
const ages = tf.unstack(out.age)
|
||
|
const genders = tf.unstack(out.gender)
|
||
|
const ageAndGenderTensors = ages.map((ageTensor, i) => ({
|
||
|
ageTensor,
|
||
|
genderTensor: genders[i]
|
||
|
}))
|
||
|
|
||
|
const predictionsByBatch = await Promise.all(
|
||
|
ageAndGenderTensors.map(async ({ ageTensor, genderTensor }) => {
|
||
|
const age = (await ageTensor.data())[0]
|
||
|
const probMale = (await genderTensor.data())[0]
|
||
|
const isMale = probMale > 0.5
|
||
|
const gender = isMale ? Gender.MALE : Gender.FEMALE
|
||
|
const genderProbability = isMale ? probMale : (1 - probMale)
|
||
|
|
||
|
ageTensor.dispose()
|
||
|
genderTensor.dispose()
|
||
|
return { age, gender, genderProbability }
|
||
|
})
|
||
|
)
|
||
|
out.age.dispose()
|
||
|
out.gender.dispose()
|
||
|
|
||
|
return netInput.isBatchInput
|
||
|
? predictionsByBatch
|
||
|
: predictionsByBatch[0]
|
||
|
}
|
||
|
|
||
|
protected getDefaultModelName(): string {
|
||
|
return 'age_gender_model'
|
||
|
}
|
||
|
|
||
|
public dispose(throwOnRedispose: boolean = true) {
|
||
|
this.faceFeatureExtractor.dispose(throwOnRedispose)
|
||
|
super.dispose(throwOnRedispose)
|
||
|
}
|
||
|
|
||
|
public loadClassifierParams(weights: Float32Array) {
|
||
|
const { params, paramMappings } = this.extractClassifierParams(weights)
|
||
|
this._params = params
|
||
|
this._paramMappings = paramMappings
|
||
|
}
|
||
|
|
||
|
public extractClassifierParams(weights: Float32Array) {
|
||
|
return extractParams(weights)
|
||
|
}
|
||
|
|
||
|
protected extractParamsFromWeigthMap(weightMap: tf.NamedTensorMap) {
|
||
|
|
||
|
const { featureExtractorMap, classifierMap } = seperateWeightMaps(weightMap)
|
||
|
|
||
|
this.faceFeatureExtractor.loadFromWeightMap(featureExtractorMap)
|
||
|
|
||
|
return extractParamsFromWeigthMap(classifierMap)
|
||
|
}
|
||
|
|
||
|
protected extractParams(weights: Float32Array) {
|
||
|
|
||
|
const classifierWeightSize = (512 * 1 + 1) + (512 * 2 + 2)
|
||
|
|
||
|
const featureExtractorWeights = weights.slice(0, weights.length - classifierWeightSize)
|
||
|
const classifierWeights = weights.slice(weights.length - classifierWeightSize)
|
||
|
|
||
|
this.faceFeatureExtractor.extractWeights(featureExtractorWeights)
|
||
|
return this.extractClassifierParams(classifierWeights)
|
||
|
}
|
||
|
}
|