face-api/src/ageGenderNet/AgeGenderNet.ts

126 lines
4.1 KiB
TypeScript
Raw Normal View History

2020-08-18 13:54:53 +02:00
import * as tf from '@tensorflow/tfjs-core';
import { fullyConnectedLayer } from '../common/fullyConnectedLayer';
import { seperateWeightMaps } from '../faceProcessor/util';
import { TinyXception } from '../xception/TinyXception';
import { extractParams } from './extractParams';
import { extractParamsFromWeigthMap } from './extractParamsFromWeigthMap';
import { AgeAndGenderPrediction, Gender, NetOutput, NetParams } from './types';
import { NeuralNetwork } from '../NeuralNetwork';
import { NetInput, TNetInput, toNetInput } from '../dom';
export class AgeGenderNet extends NeuralNetwork<NetParams> {
private _faceFeatureExtractor: TinyXception
constructor(faceFeatureExtractor: TinyXception = new TinyXception(2)) {
super('AgeGenderNet')
this._faceFeatureExtractor = faceFeatureExtractor
}
public get faceFeatureExtractor(): TinyXception {
return this._faceFeatureExtractor
}
public runNet(input: NetInput | tf.Tensor4D): NetOutput {
const { params } = this
if (!params) {
throw new Error(`${this._name} - load model before inference`)
}
return tf.tidy(() => {
const bottleneckFeatures = input instanceof NetInput
? this.faceFeatureExtractor.forwardInput(input)
: input
const pooled = tf.avgPool(bottleneckFeatures, [7, 7], [2, 2], 'valid').as2D(bottleneckFeatures.shape[0], -1)
const age = fullyConnectedLayer(pooled, params.fc.age).as1D()
const gender = fullyConnectedLayer(pooled, params.fc.gender)
return { age, gender }
})
}
public forwardInput(input: NetInput | tf.Tensor4D): NetOutput {
return tf.tidy(() => {
const { age, gender } = this.runNet(input)
return { age, gender: tf.softmax(gender) }
})
}
public async forward(input: TNetInput): Promise<NetOutput> {
return this.forwardInput(await toNetInput(input))
}
public async predictAgeAndGender(input: TNetInput): Promise<AgeAndGenderPrediction | AgeAndGenderPrediction[]> {
const netInput = await toNetInput(input)
const out = await this.forwardInput(netInput)
const ages = tf.unstack(out.age)
const genders = tf.unstack(out.gender)
const ageAndGenderTensors = ages.map((ageTensor, i) => ({
ageTensor,
genderTensor: genders[i]
}))
const predictionsByBatch = await Promise.all(
ageAndGenderTensors.map(async ({ ageTensor, genderTensor }) => {
const age = (await ageTensor.data())[0]
const probMale = (await genderTensor.data())[0]
const isMale = probMale > 0.5
const gender = isMale ? Gender.MALE : Gender.FEMALE
const genderProbability = isMale ? probMale : (1 - probMale)
ageTensor.dispose()
genderTensor.dispose()
return { age, gender, genderProbability }
})
)
out.age.dispose()
out.gender.dispose()
return netInput.isBatchInput
? predictionsByBatch
: predictionsByBatch[0]
}
protected getDefaultModelName(): string {
return 'age_gender_model'
}
public dispose(throwOnRedispose: boolean = true) {
this.faceFeatureExtractor.dispose(throwOnRedispose)
super.dispose(throwOnRedispose)
}
public loadClassifierParams(weights: Float32Array) {
const { params, paramMappings } = this.extractClassifierParams(weights)
this._params = params
this._paramMappings = paramMappings
}
public extractClassifierParams(weights: Float32Array) {
return extractParams(weights)
}
protected extractParamsFromWeigthMap(weightMap: tf.NamedTensorMap) {
const { featureExtractorMap, classifierMap } = seperateWeightMaps(weightMap)
this.faceFeatureExtractor.loadFromWeightMap(featureExtractorMap)
return extractParamsFromWeigthMap(classifierMap)
}
protected extractParams(weights: Float32Array) {
const classifierWeightSize = (512 * 1 + 1) + (512 * 2 + 2)
const featureExtractorWeights = weights.slice(0, weights.length - classifierWeightSize)
const classifierWeights = weights.slice(weights.length - classifierWeightSize)
this.faceFeatureExtractor.extractWeights(featureExtractorWeights)
return this.extractClassifierParams(classifierWeights)
}
}